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Abstract

A quality of service (QoS) management framework for systems is presented that

satisfies application needs along multiple dimensions such as timeliness, reliability,

cryptographic security and other application-specific quality requirements. In this

model, end users’ quality preferences are taken into account when system resources

are apportioned across multiple applications such that the net system utility accrued

to the end-users is maximized. The framework facilitates QoS tradeoff through a

semantically rich (in terms of expressiveness and customizability) QoS specification

interface that enables the end users to give guidance on the qualities they care about

and the tradeoffs they are willing to make under potential resource shortages. The

interface also allows the user or system administrator to define fine-grained service

requests easily for multi-dimensional complex QoS provisioning. Furthermore, by

introducing the abstraction of Quality Index, which maps qualities to indices in a uni-

form way, and by the mathematical modeling of QoS Tradeoff and Resource Tradeoff,

we transform the QoS management problem into a combinatorial optimization which

ultimately enables us to quantitatively measure QoS, and to analytically plan and

allocate resources.

A series of optimization algorithms is developed that tackle the QoS management

problem which is provably NP-hard. The first set of algorithms treats the problem

of maximizing system utility by allocating a single finite resource to satisfy the QoS

requirements of multiple applications along multiple QoS dimensions. Two near-

optimal algorithms are developed to solve this problem. The first yields an allocation

within a known distance from the optimal solution, and the second yields an allocation

whose distance bound from the optimal solution can be explicitly controlled by a

QoS manager. We compare the run-times of these near-optimal algorithms and their

solution quality relative to the optimal allocation, which in turn is computed using
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dynamic programming.

The second set of algorithms deals with apportioning multiple finite resources

to satisfy the QoS needs of multiple applications along multiple QoS dimensions.

Three strategies are evaluated and compared First, dynamic programming and integer

programming with branch-and-bound compute optimal solutions to this problem but

exhibit very high running times. Then the integer programming approach is adapt

to yield near-optimal results with faster running times. Finally, an approximation

algorithm based on an extended local search technique is presented that is less than a

few percent from the optimal solution but which is more than two orders of magnitude

faster than the optimal scheme of dynamic programming. Perhaps more significantly,

the local search technique turns out to be very scalable and robust as the number of

resources under management increases. These detailed evaluations provide practical

insight into which of these algorithms can be used online in real-time systems.
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Chapter 1

Introduction

1.1 Motivation

Quality of Service (QoS) control is receiving widespread attention in computer net-

work and real-time multimedia system research as well as commercial markets. Typ-

ically, service characteristics in existing multimedia and networked systems are fixed

when systems are built, therefore they often do not give users any real influence over

the QoS they can obtain. On the other hand, multimedia applications and their users

can differ enormously in their requirements for service quality and the resources avail-

able to them at the time of application use. Therefore, there is an increasing need for

customizable services that can be tailored for the end users’ specific requirements.

In the meantime, new and improved systems such as the one proposed by the

Amaranth project at Carnegie Mellon University [59] are placing more and more

complex demands on the quality of service that are reflected in multiple criteria over

multiple quality dimensions. These QoS requirements can be objective in some aspects

and subjective in others. Moreover, because of the manifold and subjective nature of

user quality demands, it is very hard to measure whether the provided quality fulfills

the stated demands without guidance and input from end clients.

One issue is QoS Tradeoff where a user of an application might want to emphasize

certain aspects of quality, but not necessarily others. Users might tolerate different

levels of service, or could be satisfied with different quality combination choices, but

the available system resources might only be able to accommodate some choices but

not others. In situations where a user is able to identify a number of desirable objective

1



2 Introduction

qualities and rate them (subjectively), the system should be able to reconcile different

demands to maximize the user’s preference and to make the most effective use of the

system. So it is important for a system to provide a large variety of service qualities

and to accommodate specific user quality requirements and deliver as good service as

it can from the users’ perspective.

An issue related to QoS tradeoff is Resource Tradeoff. In this case, the tradeoff

refers to reconciling or balancing competing resource demands. Resource tradeoff

is often transparent to the user but can be of great help in accommodating user re-

quirements including QoS tradeoff, especially when the availability of several different

resources is not balanced. It arises when an application is able to use an excess of

one resource, say CPU power or cache, to lower its demands on another, say network

bandwidth, while maintaining the same, or similar, level of QoS. For example:

• Video conferencing systems often use compression schemes that are effective,

but computationally intensive, to trade CPU time for network bandwidth. If

the bandwidth is congested on some intermediate links (which is often the case),

this benefits the system as a whole.

• In the case of a mobile client with limited CPU and memory capacity but suf-

ficient link speed with a nearby intermediate powerful server, computationally

expensive speech recognition, silence detection and cancellation, and video com-

pression could be carried out on the nearby server.

• For proxy servers which act as transcoders/transceivers besides caching data,

the proxy servers can distill data for low bandwidth clients (when both server

and client have fast CPU, memory and disk bandwidth, but the network link

speed in between is limited).

Consider a video-conferencing application. The audio streams in this application

have multiple QoS characteristics: the sampling rate of the audio data, the resolution

(number of bits) of each audio sample, and the end-to-end latency of the audio stream.

Similarly, the video streams must deal with multiple QoS dimensions: the video

frame rate, the size of the video window, the number of bits per pixel and so on.

Given an operating point along each of these QoS dimensions, the application requires
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processing and network bandwidth resources at the application end-hosts and all

intermediate links that the audio/video streams traverse.

We envision an environment where many such time-critical, real-time and non-

real-time applications each with multiple QoS dimensions co-exist in a system with a

set of finite resources under management. During loaded periods, the system may not

have sufficient resources to deliver the maximum quality possible to every application

along each of its QoS dimensions. Hence, decisions must be made by the underlying

resource manager to apportion available resources to these applications such that a

global objective is maximized.

1.2 Related Work

Research on Quality of Service for multimedia applications has gained significant

momentum over the last few years. Much research has been conducted on the end-

system or end-to-end architectures for QoS support [12, 17, 6, 39, 40, 4, 36, 24, 8,

60, 48, 26, 21], and much more is on link, network and transport layer ([62, 61, 11,

52, 55, 33, 54, 5] to name a few). Most of this research has been focused on low-level

system mechanisms. The authors consider and work on such parameters as period,

buffer size, jitter, bandwidth and so on. While these issues are important factors for

QoS control, we believe that they are not sufficient for the ultimate end-users who

experience the resulting QoS.

Research on adaptive QoS control [57, 56, 35, 29, 41] brings us a step closer to the

QoS support from a user’s perspective by providing a mechanism in an application

to accommodate potential dynamic changes in the operating environment. But these

mechanisms are still mainly system-oriented in that a user has limited influence over

the quality of the service to be delivered or adapted.

In coping with the shortage of QoS support from an end-user point of view, we

proposed a basic framework [25, 30, 46] that enables the end users to give guidance

on the qualities they care about and the tradeoffs they are willing to make under

potential resource constraints. Working from the user’s perspective and maximizing

the user perceived quality or utility has also been addressed in [19, 2, 3]. In [19], a

user-centric approach is taken, where a user’s preferences are considered for applica-

tion runtime behavior control and resource allocation planning. Example preferences



4 Introduction

include statements that a video-phone call should pause a movie unless it’s being

recorded and that video should be degraded before audio when all desired resources

are not available. These are useful hints for high-level QoS control and resource plan-

ning, but are inadequate for quantitatively measuring QoS, or analytically planning

and allocating resources.

The notion of using utility functions to represent varying satisfaction with QoS

changes is certainly not new. Jensen et al. [18] and Locke [32] are perhaps among the

first to study “value functions” to represent the benefit of different completion times

of a task. Their value function model is a utility function along the latency quality

dimension of real-time tasks. Our model can be viewed as extending this notion to

include quality dimensions other than timeliness. The imprecise computation model

proposed by Liu et al. [31] considered the problem of optimally allocating CPU cycles

to applications which must satisfy minimum CPU requirements, but can produce

better results with additional CPU cycles. The frequency of each application remains

constant, while the computation time per instance of an application can be varied.

The results were generally assumed to improve linearly with additional resources. The

model described in this thesis can be considered to be a generalization of the above

model from single quality dimension to multiple QoS dimension optimization with

potential QoS tradeoffs, and from single resource to multiple resource allocation with

potential resource tradeoffs. Applying utility model for QoS control is also studied

in [2, 22]. In [2], the authors propose a mechanism for QoS (re)negotiation as a way

to ensure graceful degradation. The authors suggest that a user should be able to

express, in his/her service requests, the spectrum of QoS levels the user can accept

from the provider, as well as the perceived utility of receiving service at each of these

levels. A similar approach is taken in [22]. But neither of the authors address the

resource tradeoff problem. Also, neither has developed the specification method and

mechanism to facilitate utility data acquisition. We will return to [22] in Chapter 6

for more related work and comparisons.

Interesting research have been conducted in [3] and [37, 20]. In [3], the authors

present a framework for the construction of network-aware applications. The basic

idea is to allow an application to adapt to its network environment, e.g. by trading off

the volume (and with it the quality) of the data to be transfered and the time needed

for the transfer. Their mechanism coincides with one of our schemes for implement-
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ing the resource tradeoff (r |=i q). The model defined in [30] can be considered a

generalization of [3]. The authors in [37] thoroughly explored building an analytical

framework for adaptive terminal IO service, which can be viewed as good mechanism

for resource tradeoff. We believe that their work can operate well together with the

work presented in this thesis.

1.3 Approach

Figure 1.1 gives a pictorial view of our QoS management optimization system.

The QoS architecture [27] we consider consists of a QoS specification interface,

a quality tradeoff specification model, and a unified QoS-based admission control

and resource allocation model. The QoS specification interface allows multiple QoS

requirements to be specified, and is semantically rich both in terms of expressiveness

and customizability. Note that our QoS management framework is translucent in a

sense that some aspects are made visible to the end-users so that users can control the

delivered QoS parameters, while at the same time hiding how the requested delivery

is accomplished. In the model, end users’ quality preferences are elicited when system

resources are apportioned across multiple applications such that the net utility that

accrues to the end-users is maximized. Specifically, the QoS tradeoff specification

interface allows applications and users to assign values (utilities) to different levels

of service that a system can provide. A QoS resource manager, taking QoS profiles

and resource profiles of arriving applications as its inputs and exploring fully the QoS

tradeoffs and resource tradeoffs, makes resource allocations to these applications so as

to maximize the global utility derived by these systems. Finally, by introducing the

abstraction of Quality Index, which maps qualities to indices in a uniform way, and by

the mathematical modelling of QoS Tradeoff and Resource Tradeoff, we transform the

QoS management problem into combinatorial optimization which ultimately enables

us to quantitatively measure QoS, and to analytically plan and allocate resources.
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Figure 1.1: Input and Output of the QoS Management Optimization Module

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows: In Chapter 2 we formally in-

troduce our QoS management model. We start the chapter with example quality

dimensions. We then introduce the abstraction of Quality Index. Then QoS Tradeoff

and Resource Tradeoff are formally modeled. We conclude this chapter by formulat-

ing our QoS management problem and demontrating its power in terms of generality

and expressiveness. In Chapter 3 the user specification interface and mechanisms for

QoS specification acquisition are addressed. In Chapter 4 we clasify our QoS manage-

ment problem and discuss the design principles for the corresponding algorithms. In

Chapter 5 and Chapter 6 we presents our algorithms for single resource multiple QoS

dimension and multiple resource multiple QoS dimension problem respectively, with

theoretical measure of their performances. Experimental performance evaluation is

conducted in Chapter 7. Finally, we draw conclusions and discuss future work in

Chapter 8.



Chapter 2

Quality Index and QoS Modeling

In this chapter, we are going to formalize our QoS management problem. First,

however, we need to regularize the problem using a concept we call quality index.

This is a mapping from qualities to indices in uniform way. Using quality index as

basis, we transform the QoS management problem into a optimization problem which

utltimately enables us to quantitatively measure QoS, and to analytically plan and

allocate resources.

2.1 Quality Dimensions

Consider a video-streaming system which deals with real-time audio and video data

streams being encrypted and transmitted across potentially unreliable networks. In

this context, we consider the following example quality dimensions:

• Cryptographic Security (encryption key-length)

– 0(off), 56, 64, 128

• Data Delivery Reliability, which could be

– maximum packet loss: measured in percentage

– expected packet loss: measured in percentage

– packet loss occurrence: measured as the probability that one or more pack-

ets are lost over the length of the session.

7
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• Video Related Quality

– picture format1: SQCIF, QCIF, CIF, 4CIF, 16CIF

– color depth(bits): 1, 3, 8, 16, 24, . . .

black/white, grey scale to high color

– video timeliness — frame rate(fps): 1, 2, . . . , 30

low rate animation to high motion picture video

• Audio Related Quality

– sampling rate(kHz): 8, 16, 24, 44, . . .

AM, FM, CD quality to higher fidelity audio

– sample bit(bits): 8, 16, . . .

– audio timeliness, or end-to-end delay(ms)

. . . , 25, 50, 75, 100, . . .

For the sake of this example we assume that cryptographic key lengths are in-

dicative of the level-of-security provided. This is not generally true. For example, a

56-bit DES encryption is a vast improvement over a 128-bit RSA encryption. But as

we shall see shortly, all we require is the ability to place an ordering on the choices.

Notice that all quality dimensions have a discrete set of options. For some, picture

format for instance, this is natural; for others, audio timeliness for example, we require

that a discrete set of choices be selected. It is not explicit from the example above,

but we also require that the set of choices be finite.

2.2 Quality Index

As the example above shows, quality dimensions can differ radically from each other

in nature. Certain quality dimensions, such as frame rate, can have a regular quality

specification, while others, such as picture format, color depth and end-to-end delay,

are non-numeric, non-uniform, or in non-increasing order. For example, there is color

1The choices listed here come from [16] [51]. Other standards, such as MPEG could have been

used instead.
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depth where high numbers corresponds to high quality. Then there is audio timeliness,

where high numbers means low quality.

In order to present a coherent formalization of the QoS management problem, we

need to regularize the quality dimensions. To this end, we introduce the notion of

Quality Index, which is a mapping between qualities to integers (“indices”) starting

with one in such a way that higher indices correspond to higher quality.

For the video application (assume it is Ti in the system) introduced ealier, we

would have the following quality indices.

Picture format: Assume it uses the H263 [16] standard format

Format: SQCIF QCIF CIF 4CIF 16CIF

Quality Index: 1 2 3 4 5

The corresponding Quality Index is therefore Qi1 = {1, 2, 3, 4, 5}.

Color depth: Assume that Ti has 1, 3, 8, 16, and 24 bit color depths available for

the user to choose.

Depth: 1 3 8 16 24

Quality Index: 1 2 3 4 5

Therefore Qi2 = {1, 2, 3, 4, 5}.

Frame rate: Ti allows frame rates ranging from 1 fps to 30 fps in steps of 1 fps.

These will map directly onto Qi3 = {1, 2, . . . , 30}.

Rate (fps): 1 2 . . . 30

Quality Index: 1 2 . . . 30

Encryption key length: For Ti, encryption will be either on with 56-bit encryp-

tion or off2. Therefore we have Qi4 = {1, 2}.

Key length: (none) 56-bit

Quality Index: 1 2

Audio sampling rate: Assume Ti provides audio sampling rates from AM-quality

(8 kHz) to CD-quality (44 kHz).

2For the simplicity of illustration, we reduced the levels of encryption to 2 from the 4 in previous

example in 2.1. We also omited the quality dimensions related with data delivery reliability here.
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Sampling rate (kHz): 8 16 24 44

Quality Index: 1 2 3 4

Thus we have Qi5 = {1, 2, 3, 4}.

Audio bit count: Assume that Ti provides only two sampling sizes, 8 bits and

16 bits.

Bit count: 8 16

Quality Index: 1 2

Therefore Qi6 = {1, 2}.

End-to-end delay: Assume that end-to-end delays ranging from 125ms to 25ms

in steps of 25ms. Since high numbers for end-to-end delay are worse than low

numbers, high numbers are mapped to low indices in the set Qi7 = {1, 2, . . . , 5}.

Delay (ms): 125 100 . . . 25

Quality Index: 1 2 . . . 5

Quality Index Hence Quality Index is essentially a bijective function between a

task’s dimensional quality space and natual numbers

fij : Qij → {1, 2, . . . , |Qij|}

that provides a uniform and consistent ordering of dimensional quality space. That

is, if q1 is “better than” q2, then fij(q1) > fij(q2). Since fij is bijective, it has an

inverse f−1
ij = {(y, x) | (x, y) ∈ f}, i.e. f−1

ij : {1, 2, . . . , |Qij|} → Qij.

From now on, we will mostly use Qij and qij to represent their corresponding fij–

indexed quality sets and quality points, except in occasional cases. This should not

cause any confusion as the context clearly determines whether the original quality

specification or index value is under consideration.

Note that this abstraction forms the basis of our quantitative and analytic ap-

proach for QoS management, including the QoS based resource allocation.
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2.3 QoS Tradeoff and Application Utility

By QoS tradeoff or quality tradeoff we mean an assignment of value to each possible

quality point. This valuation is central to our model and it allows the management

system to take the task’s and the user’s preferences into account when allocating

resources. The function that describes a task’s valuation is known as the application’s

utility function, ui : Qi→ IR where Qi represents the set of all possible quality points,

and IR is the set of real numbers.

In a system where resources are in high demand and in which not every task can

be allocated the resources it wants, tasks can benefit from QoS tradeoff. In order to

see this, consider first a task in a system that does not have QoS tradeoff. If a resource

used by this task gets over-subscribed, the system will have to either reject the task,

or lower the assigned resource and thus quality and utility at its own discretion.

With QoS tradeoff, however, if the system cannot fulfill the resouce demands for

a particular quality mode, it can use the QoS tradeoff information to make smart

decision on alternative and perhaps equally desired mode. If the resource usages

of the equally desired choices cannot be satisfied, the system can lower the service

quality in a way that affects the user minimally. As a result, the task might be able

to run at an acceptable, if sub-optimal, level of service. Since quality is at least

partially subjective, it is important that the user be allowed to influence the QoS

tradeoffs. Therefore it is to the user’s significant advantage for a system to provide

the capability and interface that allows the user to make implicit or explicit quality

tradeoffs. We will consider user interfaces implications in Chapter 3.

With QoS tradeoff, our QoS management optimization engine will work most

effectively to help each task achieve as high level of quality as possible, subject to

resource constraints and the management policy deployed in the system.

The benefits of QoS tradeoff become even larger in a dynamic environment, where

resources, processing power and the link speed, on or between the end and inter-

mediate nodes might dynamically change, and an application’s resource allocation

fluctuates during the course of operation.
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2.4 Resource Tradeoff

The more resource an application is given, the better quality it can provide. With this

in mind, one might naively think that the relationship between resource and quality

could be described as a function.

Unfortunately, this does not work in the context of multiple resources and quality

dimensions. This is because an application can choose between two or more algo-

rithms that achieve the same quality but using different resources. Consider data

transmission where two different compression algorithms, A1 and A2 are available to

use. Assume that A1 has a relatively low compression rate, but is computationally

cheap, whereas A2 has a high compression rate, but is computationally more expen-

sive. To the user, the end result after decoding will be the same no matter what

algorithm is in use. But using A2 results in more CPU processing power and less

network bandwidth compared to that of A1.

...q = 〈q1, · · · , qd〉

rA1
= 〈r1, · · · , rm〉

rA2 = 〈r′1, · · · , r′m〉

A1

A2

This example shows that one quality point can correspond to multiple resource

usage points. Thus we cannot describe the situation as a function from quality space

to resource space.

Likewise, given a resource allocation, an application can use this to improve quality

along one of several quality dimensions, which yields different quality results. For

example, in a video conferencing session with limited network capacity, the bandwidth

can be used primarily for video to improve the picture quality, or used primarily for

audio thereby increasing the sound quality.

...

A1

A2

r = 〈r1, · · · , rm〉

qA1
= 〈q1, · · · , qd〉

qA2
= 〈q′1, · · · , q′d〉
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This example shows that one resource point can correspond to multiple quality

points. Therefore we cannot expected to have a function from resource space to

quality space that describes the quality in terms of resource allocation. Instead, only

a scatter for R and Q can be drawn.

Consequently, only a relation, but not a function, can be defined between Qi

and R. We elect to model the relationship between the resource and quality in the

most general fashion, that is as a mathmatical relation:

r |=i q

A resource choice, r ∈ R, and a quality point, q ∈ Qi, are in relation if task Ti can

achieve quality q using resource r, but not less.

Note that both R and Qi have partial orderings which |=i must respect, i.e., more

resource must not lead to lower quality. That is, if r1 |=i q1, r2 |=i q2, and r1 > r2,

then we must have q1 6< q2.

This requirement ensures that utility is non-decreasing with respect to resources.

In other words, more resources should not lead to reduced quality (and thus utility),

which is reasonable and natural.

2.5 Problem Formulation

In this section, we are going to formally describe the QoS management problem

including the QoS based resouce allocation. We will formalize it as a optimization

problem.

Consider a system with multiple independent applications and multiple resources.

Each application, with its own quality-of-service requirements, contends with others

for finite system resources. Let the following be given

T1, T2, . . . , Tn — tasks (or applications)

R1, R2, . . . , Rm — shared system resources

Qi1, Qi2, . . . , Qidi — QoS dimensions for task Ti

Each Ri is a set of non-negative values representing the possible allocation choices of

the ith shared resource. The set of possible resource vectors, denoted as R, is given

by R = R1 × · · · ×Rm. The available amount of each shared resource is finite, so we

also have rmax = 〈rmax
1 , . . . , rmax

m 〉.
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Similarly, each Qij is a finite set of quality choices for the ith task’s jth QoS

dimension, and we define the set of possible quality vectors for task Ti by Qi =

Qi1 × · · · ×Qidi.

2.5.1 Task Profile

Associated with each Ti is a task profile, which is a characterization of Ti on quality

and resource requirement. It consists of an application profile and a user profile. An

application profile comes from an application designer, while a user profile provides

user-specific quality requirements associated with each session.

A user can either instantiate the quality attributes of the default application

profile, by selecting one of many templates supplied with the application, or the user

can supply their own reward functions with respect to different levels of qualities.

2.5.1.1 Application Profile

An Application Profile consists of a QoS Profile and a Resource Profile.

QoS Profile A QoS Profile consists of

• Quality Indices — Qij, 1 ≤ j ≤ di.

• Quality Space — Qi = Qi1 × · · · ×Qidi.

• Application Utility — a QoS or rate of service measure

ui : Qi→ IR

which for each quality point specifies a utility in the form of a non-negative

number.

Resource Profile A Resource Profile for Ti is a description of the application’s

resource usage at different levels of quality. Due to resource tradeoff and quality

tradeoff as described earlier, we cannot expect this to be a function (the scatter plot

in Figure 2.1, which depicts a possible relation between resource and quality, might

help us visualize this). Instead we use the relation r |=i q.
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Figure 2.1: Scatter of Resource and Quality

2.5.1.2 User Profile

A User Profile is an instantiation of the application profile with perhaps some addi-

tional QoS requirement.

• The QoS profile part of application profile provides a template which a user

can instantiate to create a user profile. A user can also supply his/her own

QoS profile which supersedes those provided by the application.

• QoS Constraint: is the minimum QoS requirement specification

qmin
i = 〈qmin

i1 , qmin
i2 , . . . , qmin

idi
〉.

The semantics of qmin
i is that if the minimum requirements cannot be satisfied,

then the application cannot run or the user prefers not to run Ti at all.

• Saturation point: A user may explicitly specify a cap, or saturation point,

qmax
i , on its quality requirement to indicate that further improvements beyond

it are not likely to be perceived or appreciated. Similar to the discussion of qmin

above, the maximum quality constraint could be handled by setting

ui(q) := ui(q
max
i ) for all q > qmax

i .

To simplify algorithm descriptions, we will not explicitly use this aspect in the

algorithms presented later in this thesis.
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In general, Task Profile will be used to represent the effect of using an application

profile that has been instantiated by the user profile. Occasionally we will not distin-

guish the two sources and use task profile for application profile and user profile as

well.

For the overall system, with multiple applications possibly requiring multiple re-

sources, system utility can be introduced and defined.

2.5.2 System Utility

Each task has a utility function that measures the value it puts on a quality as-

signment. We will use these utility functions to define an overall System Utility,

u : Q1 × · · · × Qn → IR. Many different definitions are possible, depending on the

system or policy in question. Examples include:

• u = uw, a (weighted) sum of application utilities

uw(q1, . . . , qn) =
n∑
i=1

wiui(qi)

for differential services, where ui is non-decreasing, and 0 ≤ wi ≤ 1 could be

the priority of Ti, or

• u = u∗, where

u∗(q1, . . . , qn) = min
i=1...n

ui(qi)

for “fair” sharing.

Note that the algorithms or schemes presented in this thesis are for the weighted

sum where the weights are set to 1 for simplification to present the algorithms.

As the reader can see, the QoS management model is very flexible and powerful. It

can be adapted to fit a variety of situations. In this thesis, however, the weighted-sum

definition is used for system utility.

2.5.3 Optimization Formulation

Given a set of task profile, our goal is to assign qualities (qi) and allocate resources

(ri) to tasks or applications, such that the system utility u is maximized. Therefore
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we have the following Problem Function formulation

maximize u(q1, . . . , qn)

subject to qi ≥ qmin
i or qi = 0 , i = 1, . . . , n, (QoS Constraints)

n∑
i=1

rij ≤ rmax
j , j = 1, . . . , m, (Resource Constraints)

ri |=i qi , i = 1, . . . , n.

(2.1)

Due to the presence of a general relation (r |=i q) in the constraints, this optimiza-

tion problem is different from what is found in the general optimization literature.

But we shall see in Section 4.2 that the problem can be transformed into a general

combinatorial optimization problem.

If maximizing the profit margin, rather than the users’ appreciation of the quality,

is the objective goal of the system, the objective function u(q1, . . . , qn) in Equation 2.1

would be u ((q1, r1), . . . , (qn, rn)) which is defined as

u ((q1, r1), . . . , (qn, rn)) =
n∑
i=1

(ui(qi)− cost(ri)) (2.2)

The algorithms to be described in the Chapters 5 and 6 for Formulation 2.1 can

be used straightforwardly with only trivial changes for the problem with modified

objective function in Equation 2.2. See Section 2.6.3 for further discussion on the

profit-based QoS management problem.

2.6 Expressive Power of Model

In order to show that the model described in last section is semantically rich, we will

now show how some other models can be embedded into it.

2.6.1 Basic Priority Scheme

With the basic priority scheme, a task with high priority is selected or admitted to

run over lower priority tasks, unless it is not possible to run the high priority task at

all.
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Let p(Ti) be the priority of Ti. Let us further assume that tasks with high priorities

are assigned low numbers and low priorities assigned high numbers.

To ensure that the system exhibits the basic priority behavior, we need to control

the task admission in a way that a task, say Tj, will not be accepted to run unless

all tasks with higher priority have been accepted or resources required by Tj exceed

the available resource after tasks with higher priority than Tj are admitted. We will

show that this basic priority policy can be realized in Formulation 2.1 through weight

assignment and by giving a task utility 1 if it runs (and utility 0 if it does not run).

Let

p : {T1, . . . , Tn} → {1, . . . , n}

be a bijective function that describes the tasks’ priorities with 1 as the highest and n as

the lowest priority. We shall see later, that this function actually need not be bijective,

and a group of tasks are allowed to have the same priority. We require bijectivity

here for notational simplicity so we can make reference to p’s inverse function, p−1.

We want to show, that if Ti is admitted to run (i.e., it is allocated non-zero

resource) then all Tj with higher priority, p(Tj) < p(Ti), are also admitted to run. We

can ensure this by simply assigning task Ti a weight of wi := 2−p(Ti), where p(Ti) is

the priority of Ti.

We will demonstrate that such a assignment guarantees that a task with a higher

priority will contribute more towards the system utility than the utilities combined

by all tasks with lower priorities, therefore would be admitted in the system unless

its resource requirement exceeds the reminding resources after higher priority tasks

are alloted. In other words, we need to show that:

wiui(q) >
n∑

j=p(Ti)+1

wp−1(j)up−1(j)(q)
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Substituting the assignment in for wi and each wj, we have

2−p(Ti)ui(q) >
n∑

j=p(Ti)+1

2−jup−1(j)(q)

m (
1

2

)p(Ti)
1 >

n∑
j=p(Ti)+1

(
1

2

)j
1

⇑ (
1

2

)p(Ti)
≥

∞∑
j=p(Ti)+1

(
1

2

)j
m (

1

2

)p(Ti)
≥

(
1

2

)p(Ti)+1 ∞∑
j=0

(
1

2

)j
m

2 ≥
∞∑
j=0

(
1

2

)j

The right hand side of the last inequality is an infinite decreasing geometric series,

which converges to 2. Thus Problem Formulation 2.1 with the weights set above

indeed realizes the basic priority scheme.

If multiple tasks have the the same priority, the weights can be adjusted in the

following way. First, give all tasks a distinct priority, and let the tasks to have the

same priority be adjacent, but their relative order can be arbitrary. Then designate

weights using p(·). Subsequently, for groups of tasks that have the same priority, use

the lowests weight of the group for all the tasks in this group. Since doing this only

lowers the weight of each task to the lowest of this group, the utility condition still

holds.

2.6.2 Enhanced Prioritized Allocation

Assume that tasks in the systems are in adaptive nature as well as prioritized. One

might wonder whether we can have a system that lets admitted task run with various

levels of quality (therefore potentially different utility) while still enforcing that tasks

are admitted based on their priority. We will refer such policy adaptive prioritized

allocation, and we will show that Problem Formulation 2.1 can realize this adaptive
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prioritized allocation scheme. To see this, let again

p : {T1, . . . , Tn} → {1, . . . , n}

be a bijective function that describes the tasks’ priorities with 1 as the highest and

n as the lowest priority. Again this function need not be bijective, and tasks are

allowed to have the same priority. As in Section 2.6.1 we require bijectivity here for

notational simplicity.

Assume that

ui(q) ∈ [δi, 1] for all i and q ∈ Qi

where δi ∈ (0, 1] describes the utility range of Ti.

We want to show that if Ti is admitted to run, no matter upon which level of quality

it will operate, then all Tj with higher priority, p(Tj) < p(Ti), are also admitted to

run with one of the quality modes specified in their corresponding quality spaces,

unless resources required by Tj exceeds the available amount. We can ensure this by

assigning proper weights, wi, in the following way.

Let δ = min
i=1...n

δi, wi = (δ/2)p(Ti) and let p−1 be the inverse function of p. We will

now prove that such weight assignments guarantees that a task with a higher priority

contributes more towards the system utility than the utilities combined by all tasks

with lower priorities:
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wiui(q) >
n∑

j=p(Ti)+1

wp−1(j)up−1(j)(q)

m

(δ/2)p(Ti)ui(q) >
n∑

j=p(Ti)+1

(δ/2)jup−1(j)(q)

⇑

(δ/2)p(Ti)δ >
n∑

j=p(Ti)+1

(δ/2)j1

⇑

(δ/2)p(Ti)δ ≥
∞∑

j=p(Ti)+1

(δ/2)j

m

(δ/2)p(Ti)δ ≥ (δ/2)p(Ti)+1
∞∑
j=0

(δ/2)j

m
(δ/2)p(Ti)δ ≥ (δ/2)p(Ti)+1 1

1− δ/2

m
2 ≥ 1

1− δ/2

m
1 ≥ δ

The latter inequality is true by assumption, so the former is always true. Thus the

model in 2.1 with the weights set as claimed realizes the QoS adaptive, or enhanced,

prioritized allocation.

2.6.3 Profit as Utility

As mentioned above, the system with objective funtion defined as in Equation 2.2 can

be solved directly using the algorithms to be described later in this thesis. Neverthe-

less we will now show how it can also be embedded into the model in 2.1 by reducing

the profit-based problem to an instance of the problem described in 2.1. In order to

differentiate the symbols of one problem from the symbols of the other, the symbols
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of the profit-based problem will be underlined.

R = R

Qi = {(qi, ri) ∈ Q
i
×R | ri |=i qi}

qmin
i = (qmin

i
, 0)

ri |=i qi ⇔ ri = Er(qi)

ui(qi) = ui(Eq(qi))− cost(Er(qi)) + C

where Er is a function that extracts the r component from a q-r-pair and Eq extracts

the q component. The (partial) ordering of elements in Qi is inherited from Q
i
.

The constant C is defined as maxr cost(r). It is used to ensures that utilities remain

non-negative, and it does not influence the optimization result in any other way.

It can now be seen that this is a problem instance of Equation 2.1 and that it

solves the profit-based management problem.

2.6.4 Connected or Conditional QoS Requirements

With the introduction of quality indices and quality dimensions, connected or condi-

tional QoS requirements can also be easily specified in the QoS management system.

Assume that the user wants to add conditions on the quality apportioning across

quality dimensions, e.g., the user might require that the quality on one dimension

is contingent on the offered quality of another dimension. For example, for a video

streaming session, a user might require that the video frame rate follow frame reso-

lution in either the same or opposite direction, such as

{〈5 fps, QCIF〉, 〈10 fps, CIF〉, . . . , 〈15 fps, 16CIF〉}

where the rates follow each other, or

{〈5 fps, 16CIF〉, 〈10 fps, 4CIF〉, . . . , 〈15 fps, QCIF〉}

where the rates go against each other. This can be viewed as the user explicitly

disallowing certain quality points, or alternatively as restricting the set of valid QoS

points. This conditional QoS requirements can be accommodated in one of the fol-

lowing ways:
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Pre-digitize Quality Space in User Profile When the size of the qualified (or

disqualified) quality space is small, we can let the user specify the qualifying (or

disqualifying if the number of disallowed points is smaller) points.

Augment QoS Constraints Alternatively, we can simply let the user describe the

connected QoS requirements through predicates as augmented QoS constraints.

Augment Resource Profile Furthermore, the system can faciliate such condi-

tional QoS requirements through restricting r |=i q. Let Qc
i ⊆ Qi be the qualifying

points. We can embed this into the model described in 2.1 by simply making sure

that r |=i q is never true for any such q, i.e., using

r |̂=i q ≡ q ∈ Qc
i ∧ r |=i q

as our resource profile.

2.6.5 Functional Qi-R Relationship

Many authors, for example [53, 22], assume a functional relationship between resource

and quality, i.e., either qi = fq(ri) or ri = fr(qi) for suitable fq or fr. Such functions

are special cases of our general relation, r |=i q.

2.7 Chapter Summary

This chapter formalized our QoS management problem and introduced the basic en-

tities of our model. It first introduced the notion of quality dimensions across which

optimization will need to be performed. The concept of quality index allows a map-

ping from non-uniform QoS dimensions to integers. The notion of application utility

is used to quantify the relative merits of various QoS points. QoS tradeoffs can there-

fore be made based on application utilities. The same QoS operating point can be

satisfied by making tradeoffs among resources. For example, CPU time might be

traded for network bandwidth by compressing or not compressing a video stream.

Profiles are used to characterize applications and their requirements. A task profile

characterizes the relationship between QoS and resource requirements, and consists
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of an application profile and a user profile. An application profile consists of a QoS

profile and a resource profile. The QoS profile specifies the utility of all possible

QoS points, or modes, while the resource profile specifies the relation between the

QoS points and the resources necessary to achieve them. The application profile is

typically created by the application designer. The user profile is a possibly customized

instantiation of an application profile by the end-user.

The goal of our optimization is to assign qualities and the corresponding allocation

of resources to applications such that the total system utility is maximized. This

optimization model is semantically rich and can also be used to model traditional

schemes such as prioritized allocation and “fair” sharing schemes. The model also

supports conditional QoS requirements, where the quality along one dimension is

contingent on the offered quality along another dimension.

In conclusion, our QoS management model can be very flexible and expressive.

Here we only describe several examples of realization schemes. We expect that this

formulation is capable of modelling and supporting the ever demanding and sophis-

ticated QoS requirements.
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Specification Methodology for QoS

Provision

At the crux of our translucent QoS management optimization system lies the QoS

specification. It is important that we provide a powerful and semantically rich QoS

specification for the system to use for service optimization. Equally important we

need to provide a user friendly interface that facilitates specification acquisition.

The reason for the emphasis on QoS specification and interface design might not

be obvious, but the reader should see the point shortly when we take a closer look at

the quality space of a typical multimedia systems.

QoS specifications represent the combined wishes of the user and the application

writer. But while the application writer can be assumed to be willing to spend

substantial effort in order to produce a suitable QoS specification for optimization,

the same is not true for the user who, after all, is interested in using the application,

not in pleasing the optimization system. On one hand, this puts a severe constraint

on the level of complexity that the application can present to the user for purposes

of QoS control. On the other hand, the user must be presented with enough options

that his or her desires can be adequately expressed. Therefore, the user interface

must strike a careful balance.

In our previous work [29], we presented RT-Phone (Figure 3.1), an IP video con-

ferencing system with some preliminary QoS control. This system had two modes of

user control over quality — basic and advanced.

In the basic mode, we had a simple interface in which overall quality of service was

25
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Figure 3.1: A Screendump of RT-Phone

selected on a scale from one to ten. Each point of the increasing scale corresponded

to an application-defined quality point. Selecting a quality point for the RT-Phone

model is equivalent to setting both qmin
i and qmax

i to the same value in the model of

this thesis, that is to say the RT-Phone model has no utility concept. It should be

clear that just selecting on a scale from one to ten is a fairly coarse way of specifying

quality, as we can think about it as a “QoS digitization” by the application designer

(rather than the end user) where many of the quality choices will be ruled out.

The RT-Phone system therefore also had an advanced mode that allowed users

control over individual quality dimensions (see Figure 3.2). Since the RT-Phone

QoS model did not have the quality index and utility concepts, the power of QoS

control is of a much lesser degree than suggested in the example of Section 2.1. We

believe that the principles of facilitating the dimensional quality control in advanced
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mode are sound, so we have adapted them into the QoS specification model defined

in [25, 30, 27] and this thesis.

Figure 3.2: RT-Phone QoS Control

3.1 Quality Space

The application utility is a function defined on the set of quality points, Qi. Therefore,

producing a QoS specification consists of determining a value for each element in Qi,

either directly or through some indirect means.

To illustrate this, let us revisit some of the quality dimensions for the video con-

ferencing system shown in section 2.1
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Quality Choices Choice Count

Cryptographic security 0, 56 2

Picture format SQCIF, . . . , 16CIF 5

Color depth(bits) 1, 3, 8, 16, 24 5

Frame rate(fps) 1, 2, . . . , 30 30

Sampling rate(kHz) 8, 16, 24, 44 4

Sample size 8, 16 2

Audio end-to-end delay(ms) 25, 50, 75, 100 4

The original specification had ellipses, “. . . ”, representing more choices than shown

above. We will ignore those here.

The size of the QoS specification, that is the total number of different quality

points, in this example is

|Qi| =
di∏
j=1

|Qij| = 2× 5× 5× 30× 4× 2× 4 = 48000.

With this many quality points, it is clearly infeasible to have the user specify the

utility on a point-by-point basis; there are simply too many choices. Therefore a

pragmatic scheme is needed to address the issue.

3.2 Dimensional Utilities

Obvious way of trying to solve the specification problem is to have the user specify

the utility of selected quality points and then interpolate. Unfortunately, this does

not work well in a multidimensional quality space, where the quality points are not

completely ordered. For example, if we have two dimensions each with two points,

there will be four quality points:

Qi = {〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉}.

The points 〈1, 2〉 and 〈2, 1〉 are unordered. The lack of order increases with the number

of dimensions and turns interpolation into extrapolation.
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Gaining insight from decision science as well as our previous experience, we there-

fore provide the user with the capability to specify dimensional quality utilities. The

application utility can then be defined in term of dimensional utilities. In particularly,

we embed the dimensional QoS control capability scheme into our utility based QoS

management model by allowing task Ti to specify functions uij : Qij → IR, one for

each quality dimension j ∈ {1, . . . , di}. We call these “dimentional utility functions”

and combine them to form the task’s utility function as we shall see in Section 3.3.

The quality points in the multi-dimensional case do not have a complete ordering,

but the individual dimensions do. Moreover, some common properties associated

with dimensional quality utility are observed including: non-decreasing, often quasi-

continuous and piecewise concave. Figure 3.3 depicts some typical utility function

shapes. Therefore, the application writer can easily define and supply the user various

such function classes that can be used as templates for the user to instantiate for the

dimensional utility function.

min max

iju ijuiju

ijq ijqijq

Figure 3.3: Typical Dimensional Utility Functions

Note that the algorithms presented in Chapters 5 and 6 rely only on the (quite

natural) property of non-decreasing utility. The others are only used for user interface

purposes — the continuous-looking graphical presentation of a function template only

serves the purpose of easing the user defining his QoS utility function.

These utility function classes will be put into the general dimensional utility func-

tion template pool. Upon sighting a matching template, the user can customize it

with actual parameter instantiation.
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3.3 Construction of Application Utility

In the same way that application utilities were combined into an overall system utility

— see Section 2.5.2 — we can now combine the dimentional utility functions into

application utility functions. One reasonable way of doing this is to use a weighted

sum

ui(qi) =
di∑
j=1

wijuij(qij)

and for the remainder of this thesis, we shall do just that. The weights allow us to

emphasize certain quality dimensions at the expense of others.

This creates an interesting issue regarding how weights should be assigned. Cur-

rently, the Analytic Hierarchy Process (AHP) [49] is used to cope with the problem.

By using dimensional utility functions, we have reduced the number of utility

values that need to be determined from 48000 above to

di∑
j=1

|Qij| = 2 + 5 + 5 + 30 + 4 + 2 + 4 = 52

if we ignore the weights. This may or may not still be too much to demand from the

user, but we shall see shortly that there are ways of bringing it down even further.

Still, a reduction of three orders of magnitude is a good start.

3.4 Example Dimensional and Application Utility

Again, an example task profile will be presented to illustrate the possible structure

of dimensional utility functions and application utility functions.

Recall that application utility ui for Ti is defined as a weighted sum of the dimen-

sional quality utilities.

ui(qi) =
di∑
j=1

wijuij(qij)

where uij are the dimensional utility functions. Example definitions could be:
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Function Comments

ui1(qi1) = 20qi1 Picture format: linear.

ui2(qi2) = 100qi2/3 Color depth: linear.

ui3(qi3) = 100(1− eaqi3+b) Frame rate: exponential decay, assume Ti achieves 50%

at qi3 = 5 and 95% at qi3 = 20. Therefore a =

−0.1535, b = 0.0744.

ui4(qi4) = 20(qi4 − 1) Encryption: linear.

ui5(qi5) = 100(1− e−1.5qi5) Audio sampling rate: exponential decay, Ti achieves 95%

at qi5 = 2 or 16kHz.

ui6(qi6) = 50qi6 Audio sampling bits: linear.

ui7(qi7) = 20qi7 End-to-end delay: linear, achieves 100% at the best qual-

ity point, qi7 = 5 or 25ms delay.

Figure 3.4 depicts the utility curve described above for frame rate.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

D
im

en
si

on
-w

is
e 

U
til

ity

Frame Rate (fps)

1 - exp(-0.1535 fps + 0.0744)

Figure 3.4: Dimensional Utility Function for Frame Rate

Suppose Ti is a remote surveillance system, where video is much more important to

the user than audio. Assume that SQCIF, gray-scale, low frame rate is fine for video,



32 Specification Methodology for QoS Provision

and there is no need for encryption. Therefore, in the example system of Section 2.2,

we could have the following minimum quality specification

qmin
i = 〈1, 1, 2, 1, 1, 1, 2〉

which corresponds to the following minimum quality

〈SQCIF, 1bpp, 2 fps, no encryption, 8kHz, 8bps, 75ms〉.

Since video is more important to the user than audio, an example application

utility function for Ti could be:

ui(q1, . . . , q7) = 5
(
ui1(qi1) + · · ·+ ui4(qi4)︸ ︷︷ ︸

video

)
+ 1

(
ui5(qi5) + · · ·+ ui7(qi7)︸ ︷︷ ︸

audio

)

where video quality is weighted five times more than that of audio.

3.5 Other Interface Issues

If a user were to choose quality on a scale of 1 to 10 with some pre-determined quality

choices preset by the system, the interface would be very simple, but such built-in

“QoS digitization” can severely limits the degree of customization.

Satisfaction Knee Points A more flexible, but also more sophisticated, scheme

would be to have a set of parameterized utility curves available for each quality

dimension, and to have the user pick the curves and instantiate appropriate param-

eters/coefficients. In our system, the instantiation is carried out by letting the user

graphically specify Satisfaction Knee Point parameters. For the exponential-decay

used in the previous example (ui3(qi3) = 1− eaqi3+b), the user could specify the 50%

and 95% levels. This is enough to uniquely determine a and b. For example, a user

could specify 〈5 fps, 0.50〉 and 〈20 fps, 0.95〉, and the corresponding utility curve would

then be the one shown in Figure 3.4, with a = −0.1535 and b = 0.0744.

Satisfaction Knee point choice can be realized through a drag-able marker graphic

interface. Upon choosing a utility function graph outline, a user can drag markers,

representing satisfaction knee points, to the desired positions. The corresponding
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dimensional utility function can therefore be determined and fed into system auto-

matically.

By using Satisfaction Knee points, we can further reduced the number of utility

values that need to be determined from 52 above to approximately two for each

dimension in most cases, which amounts to a total of 12 for the example above.

It would be ideal to have an interface that can assist the user digitize the quality

to a certain range of scale, and acquire the corresponding utility accordingly. Note

that such mapping process is different from the built-in QoS digitization, where the

quality choices are pre-determined by application designer.

One way could be to move the dimensional utility function method to the user

interface part to synthesize or digitize quality-utility data, as it could significantly

reduce the quality space searched by the QoS management optimizer. This especially

crucial if the management system is to be deployed on a gate or route of a mediume

or larger area network.

User QoS Constraint Recall the definition of User Profile in Section 2.5 we allow a

user to specify its quality constraints explicitly through qmin
i . Alternatively we could

let the user specify the constraints implicitly through utility functions by setting

ui(q) = 0 for all q < qmin
i . We have yet to complete a user-interface study to decide

whether this approach will compromise the simplicity of the user-interface. For now,

we will use this QoS Constraint approach. In this thesis, we will use this explicit QoS

Constraint approach.

3.6 Chapter Summary

This chapter presented our QoS specification methodology with emphasis on the ap-

plication user. The application utility is a function defined on the set of quality points,

but the number of quality points to be considered can sometimes become unwieldy.

Dimensional utility functions represent a pragmatic way of specifying utility values

for a large number of quality points. Affine, concave and s-curves are three typical

dimensional utility functions. The dimensional utility functions also enable the ex-

pression of conditional QoS requirements, and can be individually modified by the

end-user. Our dimensional utilities are guided by the results from decision science
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which allow relative weights to be assigned to various dimensions.



Chapter 4

Problem Complexity and

Algorithm Design

4.1 Problem Taxonomy

We assume that multiple applications similar to the one described in Chapter 2 can

co-exist in a system. We classify (Figure 4.1) our QoS management problem based
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Figure 4.1: Problem Classification.

on whether the system deals just with a single resource or with any number, and

35
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on whether there is a single QoS dimension or multiple. We have the following four

problem classes:

• Single Resource and Single QoS Dimension: SRSD

• Single Resource and Multiple QoS Dimensions: SRMD

• Multiple Resources and Single QoS Dimension: MRSD

• Multiple Resources and Multiple QoS Dimensions: MRMD

In this thesis, we are going to address the SRMD and MRMD problems directly.

Since MRMD is a superset of the other problem classes, we could have chosen to

address that class only, but it turns out that there are significant computational

benefits to addressing SRMD separately. We have developed efficient schemes for

SRMD that are not easily achievable for MRMD. The schemes we have for SRMD

readily lead us to a QoS-driven single resource allocation when only a single resource

is of concern (either it is the only resource under consideration, or it is relatively more

scarce and other resources are abundant). For instance, these schemes can be used

for QoS-driven disk, memory, network bandwidth as well as for processor scheduling.

We treat the two remaining classes only indirectly: an SRSD problem is also an

SRMD problem and an MRSD problem is also an MRMD problem.

4.2 Problem Complexity

This combinatorial problem could also be formulated as follows. Let κi1, . . . , κi|Qi| be

an enumeration of the quality space, Qi, for task Ti. Let ρij1, . . . , ρijNij be an enumer-

ation of the resource usage choices (tradeoffs among different resources) associated

with κij for Ti, where Nij is the number of such resource usage choices. (In particular

we should always have ρijk |=i κij.)

Let xijk = 1 if task Ti has been given quality point κij and resource consump-
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tion ρijk, and xijk = 0 otherwise. We can now reformulate system 2.1 as:

maximize
n∑
i=1

|Qi|∑
j=1

Nij∑
k=1

xijkui(κij)

subject to
n∑
i=1

|Qi|∑
j=1

Nij∑
k=1

xijkρijk` ≤ rmax
` , ` = 1, . . . , m,

|Qi|∑
j=1

Nij∑
k=1

xijk ≤ 1 , i = 1, . . . , n,

xijk ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , |Qi| , k = 1, . . . , Nij.

(4.1)

The three constraints express the following. The first one ensures that we will not

oversubscribe resources. The second ensures that we assign at most one quality-

resource allotment per task. The third one expresses the boolean nature of the choice

variables xijk.

Note, that ρijk` is just the `th coordinate of the vector ρijk.

Therefore all the instances of our problem can be viewed as special cases of the

general integer or nonlinear programming problems.

Proposition 1 SRSD, SRMD, MRSD, and MRMD are all NP-hard problems.

Proof Since SRSD is a special case of the other three, we only have to show that

SRSD is NP-hard.

For SRSD, we have m = Nij = 1 and thus k = ` = 1. System (4.1) becomes

maximize
n∑
i=1

|Qi|∑
j=1

xij1ui(κij)

subject to
n∑
i=1

|Qi|∑
j=1

xij1ρij11 ≤ rmax
1 ,

|Qi|∑
j=1

xij1 ≤ 1, i = 1, . . . , n,

xij1 ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , |Qi| .

(4.2)

The 0–1 Knapsack Problem is known to be NP-hard [34]. It can be described as

follows. Given a set of n items and a knapsack of capacity c, with pi and wi the profit
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and weight of item i respectively, select a subset of the items so as to

maximize
n∑
i=1

pixi

subject to
n∑
i=1

wixi ≤ c

xi ∈ {0, 1}, i = 1, . . . , n,

(4.3)

We can therefore reduce the 0–1 Knapsack Problem to SRSD by setting

Qi = {(1)}

ui(qi) = pi

rmax
1 = c

ρi111 = wi

and have the 0–1 Knapsack Problem’s xi represented by xi11 in the SRSD case. Thus

SRSD is as least as hard as the 0–1 Knapsack problem and therefore it is NP-hard.2

4.3 Algorithm Design Issues

As just shown and also in [30][28], the QoS management optimization problems are

NP-hard. As a consequence, there are no optimal solution techniques other than

a (possibly complete) enumeration of the solution space. On the other hand, QoS

management calls for on-line solutions as the optimization module will ideally be in

the heart of an admission control and adaptive QoS management system. Therefore

the goal is to strike the right balance between solution quality and computational

complexity.

For more than two decades, many researchers from the fields of mathematics,

computer science and operations research have been working on the combinato-

rial optimization and solving NP-hard problems. There are three algorithmic ap-

proaches [1] [34] that have been well studied and widely used:

Enumerative methods

that are guaranteed to produce an optimal solution [13][14],
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Approximation algorithms

that run in polynomial time [50][15], and

Heuristic techniques (under the general heading of local search)

that do not have a priori guarantee in terms of solution quality or running time,

but provide a robust approach to obtaining a high-quality solution to problems

of a realistic size in reasonable time [1].

An important attribute is the incremental and state-reuse property of a scheme,

so as to avoid having to completely redo expensive computations to accommodate the

dynamic arrival and departure of tasks. Also, we ensure that all algorithms should be

formulated so that the the search for an optimal solution can be terminate at any time

while still reaching a feasible, but sub-optimal and hopefully good, solution. These

two properties are essential for an algorithm to be used in an online (or near-online)

environment.

Therefore a series of schemes have been developed that give approximation, ap-

proximation with bound, and exact solutions, with increased asymptotic computa-

tional complexity. These algorithms use various optimization techniques including

linear and nonlinear programming, constraint relaxation, basic dynamic program-

ming, branch-bound, advanced dynamic programming with addition of dominance

rules, direct and local search schemes.

It will be necessary to conduct extensive empirical studies to evaluate the practical

performance of these algorithms when deployed under different system setups and task

profiles. For instance, the systems to which QoS management optimization engine

could be deployed could range from an end-node multi-media workstation, small or

medium scale proxy/transceiver1 servers, medium or large (with firewall and routing

capability) gates [23], and on-demand media (news, video, stock quote, game) servers.

These studies allow comparison of the relative performance of the the algorithms and

answer questions such as whether algorithms are robust [44] enough to cover multiple

cases, or whether combination algorithms might prove useful. In the latter case, the

QoS management optimization engine could fire an algorithm based on the particular

data instance exhibited by the profiles of application/user sessions in the system.

1Data distillation for low-link-speed mobile or other clients for instance.
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Another important issue, which is policy-dependent but would affect the actual

algorithm design, is the stability of the task quality assigned to existing tasks in the

system. In the case where policy requires that quality not degrade for certain tasks,

some algorithms might not be suitable , while others might be more appropriate.

4.4 Structure Composition of Resource & Utility

In Section 2.5 we explained that no function relationship can be described between

quailty and resource. Similarly, there is no direct function relationship present be-

tween resource and utility, as utility is a function of quality. Moreover, due to the

multi-dimensional and potentially subjective nature of quality of services, there is

often no complete ordering among quality-of-service points, even for individual tasks.
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Figure 4.2: Scatter of Resource and Utilities

As in the case of resource and quality, only a scatter plot for R and U can be

drawn; an illustration is shown in Figure 4.2. Therefore some structural composition

or processing is required for those algorithms that call for mapping from resource

to utility as heuristic. Fortunately, an R-U (resource to utility) function/graph can

constructed for each task through QoS Profile and Resource Profile. Such an R-U

graph can be drawn by listing each valid quality point’s resource usage(s) and its

corresponding utility through the steps described below.

Recall that given a resource allocation to a task, one could use the resource to im-

prove different QoS dimensions, which could therefore lead to different utility values.
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But the most valued QoS point for each resource value can be picked (as depicted in

Figure 4.3, assume that u1 > u2) as intuitively, we certainly want to assign resources

to those quality points with the highest utility value.

hi(r)

q1

q2r

u1 = gi(r)

u2
q3

Figure 4.3: Resource-Utility Structure Composition

We therefore can define a function gi : R→ IR by

gi(r) = max{ui(q) | r |=i q } (4.4)

and define hi : R → P(Qi) (see Figure 4.3) to retain the quality points associated

with the utility value gi(r):

hi(r) = { q ∈ Qi | ui(q) = gi(r) ∧ r |=i q } (4.5)

Then an R-U graph can be generated for each task, each of which would be a step

function (perhaps with multiple level of steps).

When utility is defined as profit, functions gi and hi above will be defined as

gi(r) = max{ ūi(q, r) | r |=i q } (4.6)

hi(r) = { q ∈ Qi | ūi(q) = gi(r) ∧ r |=i q } (4.7)
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4.5 Chapter Summary

This chapter classify our problems into four subcategories, two of which will be given

direct treatment in the following chapters. Complexity, algorithm design issues and

structure composition was discussed.

The taxonomy of the problem space was defined based on our quality optimiza-

tion model. The following four classes of problems are identified: Single-Resource

Single QoS Dimension (SRSD), Single-Resource Multiple QoS Dimensions (SRMD),

Multiple-Resource Single QoS Dimension (MRSD) and Multiple-Resource Multiple

QoS Dimensions (MRMD). All these four problem classes are then shown to be NP-

hard. Enumerative techniques, approximation algorithms or heuristics must therefore

be applied to solve our optimization problem. Since a simple functional relationship

does not exist between quality and resource in our case, a structural composition

processing scheme is introduced that produces resource-utility heuristics for the ap-

proximation algorithms to be presented in Chapter 5 and 6.
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SRMD Algorithms

In this chapter we focus on the SRMD problem where just one resource under man-

agement. We present two near-optimal algorithms to solve this problem. The first

yields an allocation within a known bounded distance from the optimal solution, and

the second yields an allocation whose distance from the optimal solution can be ex-

plicitly controlled by the QoS manager. We compare the asymptotic performance of

the approximation algorithms to an exact algorithm which in turn is designed using

dynamic programming. Their practical performance evaluations will be presented in

Chapter 7.

5.1 An Optimal Solution Scheme

Assume that the resources are allocated in units of rmax/P for some integer P . If, for

example, P = 100 this would mean that allocation is in integer percentage. Under this

assumption, we can characterize the structure of the optimal solution and recursively

define its value as follows.

Denote by v(i, p) the maximum utility achievable when the first i of n tasks are

considered with resource rmaxp/P available for allocation. We can describe v(i, p) in

terms of v(i− 1, ·) by considering all allocation choices for the ith task:

v(i, p) = max
p′∈{0,...,p}

{gi(p′) + v(i− 1, p− p′)} (5.1)

Obviously, v(0, p) = 0. As optimization, the set of interesting p′ values to consider is

in fact just all the (starting) discontinuity points of gi (see Definition 4.4).

43
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Therefore v(n, P ) will be the maximum utility achievable by allocating up to rmax

to the n tasks, i.e., the best allocation overall.

Based on Equation 5.1, the following algorithm srmd can be constructed through

dynamic programming. Let

Ci =

〈(
ui1
ri1

)
, . . . ,

(
uiki
riki

)〉

denote the utility function gi’s discontinuity points in increasing u-order, and qos(i, p)

the list of QoS allocation choices for T1 through Ti towards v(i, p).

srmd(n, P, C1, . . . , Cn)

1. for p = 0 to P do

2. qos(0, p) := nil

3. v(0, p) := 0

4. r(0, p) := 0

5. for i = 1 to n do

6. qos(i, 0) := nil

7. v(i, 0) := 0

8. for p = 1 to P do

9. u∗ := 0

10. r∗ := 0

11. j∗ := 0

12. for j = 1 to |Ci| do

13. if (rij > p or hi(rij) < qmin
i ) break

14. u := uij + v(i− 1, p− rij)

15. if u > u∗ then

16. u∗ := u

17. r∗ := rij

18. j∗ := j

19. qos(i, p) := qos(i− 1, p− rij∗) concat [hi(rij∗)]

20. v(i, p) := u∗

21. r(i, p) := r∗

22. p := rmax

23. for i = n downto 1 do
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24. resource(i) := r(i, p)

25. u(i) := v(i, p)

26. p := p− resource(i)

27. return v(n, P ), qos(n, P ) resource(1), . . . ,resource(n),

u(1), u(2)− u(1), . . . ,u(n)− u(n− 1)

The result v(n, P ), the utility accrued when 100% of the resource is available, is

optimal. Let L = maxni=1 |Ci|. The time complexity of the algorithm is O(nLP ) or

O(nP 2), which is pseudo-polynomial.

One of the plus sides of this scheme (also true for the MRMD scheme described

in Chapter 6) is its incremental and state-reuse property in which when a new task

arrives, previous results can be directly reused to avoid the expensive recomputation

of the complete new task set.

When the session length information of tasks are available, the task lists are

generally ordered in decreasing session length order, so when a task Tn finishes and

departs the system (and therefore releases some resources), the result for Ti, i =

1, . . . , n−1 is already computed and kept in the system, that could be reused to make

a quick decision (not necessarily to be optimal especially when a stability policy is in

use) on which tasks’ qualities could be improved.

When a priority-based policy alone is emphasized, the task list to be fed into the

algorithm will be in non-increasing order of task priorities.

Algorithm srmd could be a practical method for QoS-driven single resource allo-

cation, such as processor scheduling in operating systems which support QoS. The

algorithm, with minor change, would be suitable to deal with the stability problem

when a user prefers (or a policy requires) a relative consistent quality.

5.2 An Approximation Scheme

By constructing the convex hull for each of gi (see Definition 4.4) functions we get

piece-wise linear relaxation functions g◦i , i = 1, . . . , n. The gradients of of g◦i can be

used as a heuristic to allocate resources among these tasks. Let

Ci =

〈(
ui1
ri1

)
, . . . ,

(
uiki
riki

)〉
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be the utility function gi’s discontinuity points in increasing r-order (therefore in-

creasing u-order as well). We will refer to these lists as r-u-pair lists. Denote by rc

the current remaining resource capacity after certain resource has been allocated;

s list[i].t, s list[i].r, s list[i].u the task id, the associated r-value and u-value of the

corresponding r-u-pair list; and r[i] the resource allocated for Ti.

asrmd1(n, C1, . . . , Cn)

1. for i = 1 to n do

2. C ′i := convex hull frontier(Ci)

3. u[i] := 0

4. r[i] := 0

5. s list= merge(C ′1, . . . , C
′
n)

6. rc := rmax

7. u := 0

8. for j = 1 to |s list | do

9. i := s list [j].t

10. β = s list [j].r− r[i]

11. if (β ≤ rc) then

12. rc := rc − β

13. r[i] := s list [j].r

14. u[i] := s list [j].u /* Update allocation info for Ti. */

15. else

16. break

17. for i = 1 to n do

18. q[i] := hi(r[i]) /* See Definition 4.5. */

19. u := u + u[i]

20. return (u, q[1], . . . , q[n], r[1], . . . , r[n], u[1], . . . , u[n])

Note that each q[i] provides a set of quality choices from which Ti (its user, or session

manager) could choose to make further QoS tradeoffs.

Notice that in implementation, we actually replace “break” in line 16 with continue

(i.e., let the loop continue when condition at step 11 does not hold). This means

that after the optimality condition (to be described shortly) is violated, the residual
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capacity (rc) will be greedily filled. The continuation can be thought as a post-

optimization process. The error bound property to be proved below holds for either

case.

Let L = maxni=1 |Ci|. After the procedure convex hull frontier1 (which takes time

O(nL)) a convex hull frontier with non-increasing slope segments (piece-wise concave)

is obtained for each task. The segments are merged at step 5 using a divide-and-

conquer approach with log2 n levels, each level having nL comparisons. Merging thus

takes time O(nL log n). Steps 8 through 16 require O(|s list|) = O(nL). Steps 17

through 19 take O(n). The total running time of the algorithm is thus O(nL log n)+

O(nL) = O(nL log n).

Denote by δi the maximum utility difference between adjacent discontinuity points

of C ′i, i.e., the largest increase in utility for task Ti on the convex hull frontier. Let χ =

maxni=1 δi. Denote by Uopt the optimal utility result and Uasrmd1 the approximation

result obtained by algorithm asrmd1.

Theorem 1 Uasrmd1 is within χ of Uopt, i.e. Uopt − χ < Uasrmd1 ≤ Uopt.

Proof Note first, that if the residual resource, rc, ends up being zero before execut-

ing “break” at step 15 (or if j reaches the end of |s list|), then the solution found

is in fact optimal based on the Kuhn-Tucker condition[43], as each g◦i (represented

by C ′i in asrmd1) is essentially a piece-wise concave function.

Algorithm asrmd1 produces a utility value, Uasrmd1, which is feasible. Therefore

we have Uasrmd1 ≤ Uopt.

Suppose that convex hull frontier segments (ordered and stored in s list) are

consecutively used (with corresponding quality upgrade and added utility) until the

first segment, s, is found that requires more resource than residual resource capacity

rc to realize the extra utility at the end of the segment s (remember that the convex

hull segments are imaginary linear relaxation of the real utility functions).

Let the two end points of the critical segment s be (rsi, usi) and (rsi+1, usi+1) in C ′i.

Based on the Kuhn-Tucker condition and the Dantzig[9] upbound (combined referred

to as the Optimality Condition), we have

Uopt ≤ Uasrmd1 + (rc − rsi)
usi+1 − usi
rsi+1 − rsi

1Overmars & Leeuwen’s [42] algorithm, or simply the quickhull [45] or Graham-Scan [7] when Ci
are not pre-sorted.
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< Uasrmd1 + (rsi+1 − rsi)
usi+1 − usi
rsi+1 − rsi

= Uasrmd1 + usi+1 − usi

and we know that usi+1 − usi ≤ χ, therefore Uopt − Uasrmd1 <2 χ. 2

Remark: To give a feel for how tight the bound is from below, examine two cases

(see Figure 5.1) when the results are suboptimal. The reason for the first case is

u u
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Figure 5.1: Suboptimal Cases

sub-optimality is due to the convex hull approximation error (where one or more

intermediate utility points are bridged and removed when we construct g◦i (or C ′i),

from gi (or Ci); the reason for the second case is the consequence of the greedy

heuristic (no costly backtracking after optimal condition is violated) near the end of

the asrmd1 optimization process.

Case 1. When interior (intermediate) points are bridged over and dominated by

the critical convex hull segment s (see Figure 5.1(a)).

Let the inferior point bridged over by s with the largest utility be (rj , uj), where

j > si in the original Ci list of Ti. Further assume that rj− rsi ≤ rc, and there are no

more elements left in s list. Then when asrmd1 stops and reports the achieved utility

of Uasrmd1, which excludes (rsi+1, usi+1), the optimal is in fact Uopt = Uasrmd1+(uj−usi).

Since uj − usi < χ, Uasrmd1 < Uopt − χ.

2Except in the degenerate case where χ = 0, and Uopt − Uasrmd1 = χ = Uopt = Uasrmd1 = 0.
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Case 2. When rc > rsi, and there are (rsj , usj) and (rsk, usk) 3 in s list, where

sj, sk > si, and their slopes are lower than that of
(
usi
rsi

)
, but (rc−rsi) < rsj, (rc−rsi) <

rsk, rsj + rsk ≤ rc, and (usj + usk) > usi (Figure 5.1(b)). By the Dantzig bound, the

Uasrmd1 would be well within χ as well.

Although asrmd1 is a polynomial approximation algorithm with a describable and

potentially small error bound from the optimal result, the bound is not controllable.

Section 5.3 presents another polynomial scheme with a controllable error bound.

5.3 A Polynomial Scheme with Controllable Bound

The algorithm asrmd2 to be described will give an approximate quality and resource

allocation which is guaranteed to have a maximum relative error, ε, where 0 < ε < 1

is a user-specified value. A relative error of ε means that the utility Uasrmd2 found by

the algorithm satisfies

(1− ε)Uopt ≤ Uasrmd2 ≤ Uopt

where Uopt is the optimal utility.

Before presenting asrmd2, let us define some data structures and operations to

be used in the algorithm. All utility function gi’s discontinuity points are listed in

increasing u-order as

Ci =

〈(
ui1
ri1

)
, . . . ,

(
uiki
riki

)〉

where
(

0
0

)
is the first element, and referred to as r-u-pair lists. We also define the

following addition operation for r-u-pair lists and r-u-pair elements.〈(
u1

r1

)
, . . . ,

(
uk
rk

)〉
+

(
u

r

)
=

〈(
u1 + u

r1 + r

)
, . . . ,

(
uk + u

rk + r

)〉

Note, that this operation produces a new r-u-list that is sorted non-decreasingly in

u-value. From now on such sorting will be assumed.

Let A and B be r-u-pair lists. The procedure combine and merge will combine A

and B into a single r-u-pair list.

3Or a single element with higher utility value than usi given rsi + rc. This case is not shown in

Figure 5.1
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combine and merge(A, B)

1. foreach bi ∈ B

2. Ai := A + bi /* Ai is now increasing in u-value. */

3. C := merge(A1, . . . , Ak)

4. return C

where k = |B|, and Ai, 1 ≤ i ≤ k, are intermediate r-u-pair lists.

Steps 1 and 2 takes O(|A| |B|), step 3 takes O(|A| |B| log |B|) if we do it through

divide-and-conquer and merge lists in pairs recursively. So combine and merge is

O(|A| |B| log |B|).
The procedure resource sieve trims those r-u-pair elements of list L =

〈(
ui1
ri1

)
, . . . ,

(
uin
rin

)〉
which do not satisfy r < rmax; and those elements that are inefficient. By inefficient

we mean: for each element
(
ui
ri

)
and element

(
ui+1

ri+1

)
from L, if ri+1 ≤ ri (and ui ≤ ui+1

since elements are sorted) then
(
ui
ri

)
is inefficient and should be removed from L. In-

tuitively, we only want to keep those choices that use less resource while achieving

the same or higher utility. The procedure takes O(|L|).

resource sieve(L, rmax)

1. i := 1

2. while i < |L| do

3. if ri+1 > rmax then

4. Remove
(
ui+1

ri+1

)
from L

5. else

6. while i ≥ 1 and ri+1 ≤ ri do

7. Remove
(
ui
ri

)
from L

8. i := i− 1

9. i := i + 1

10. if ri > rmax then

11. Remove
(
ui
ri

)
from L

12. return L.

Procedure representative list trims the r-u-pair list further in O(|L|) by removing

elements that are too close to other element in terms of u-value. That is, for each

adjacent
(
ui
ri

)
and

(
ui+1

ri+1

)
from L, if (ui+1− ui)/ui+1 ≤ δ, then

(
ui+1

ri+1

)
can be presented
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by
(
ui
ri

)
with a discrepancy of at most δ w.r.t. the u-value of

(
ui+1

ri+1

)
, and therefore(

ui+1

ri+1

)
can be removed from L.

representative list(L, δ)

1. L′ :=
〈(

u1

r1

)〉
2. u∗ := u1

3. for i = 2 to |L| − 1 do

4. if (u∗ < ui(1− δ)) then

5. append
(
ui
ri

)
to L′

6. u∗ := ui

7. return L′

Given the above procedures, the bounded approximation scheme can be con-

structed as follows. For the sake of simplicity of the complexity analysis to follow, we

introduce some intermediate lists Lia, Lib and Li.

asrmd2(C1, ..., Cn, ε)

1. L0 :=
〈(

0
0

)〉
2. δ := ε/n

3. for i = 1 to n do

4. Lia := combine and merge(Li−1, Ci)

5. Lib := resource sieve(Lia, rmax)

6. Li := representative list(Lib, δ)

7. let
(
u
r

)
be the element with the largest utility value in Ln

8. return
(
u
r

)
Without resource sieve and representative list the length of the list obtained at

step 4 in asrmd2 could increase exponentially. We will show that with those steps,

the length of Li will be bounded by
⌊
n ln(uup/ulow)

ε
+ 2

⌋
, where uup and ulow are easily

determined from Ci.

Lemma 1 Given two sorted r-u-pair lists A and B, combine and merge generates a

sorted r-u-pair list which contains all the possible combinations of a choice element

from A and a choice element from B.
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Proof Since A is sorted, each Ai in step 2 of combine and merge maintains its

order. Moreover Ai contains all new combinations of choices that can be generated

by selecting one choice from A and the other as bi from B. Therefore after the loop at

step 1 of combine and merge finishes, all possible combinations of one element chosen

from A and one element chosen from B are stored in Ai, where 1 ≤ i ≤ |B|. The

merge at step 3 will therefore generate a single combined sorted list. 2

Theorem 2 The approximation of asrmd2 is within a bound of ε w.r.t. the optimal.

Proof If we were not to have the trimming operations resource sieve and represen-

tative list in steps 5 and 6 (denote such lists generated without trimming by L◦i ), we

could prove, based on Lemma 1, by induction on i that combine and merge at step 4

would list all the possible r-u-pair combinations for i tasks. It would then lead us to

an optimal solution at the expense of exponential time complexity in general, since

the length of L◦i would grow exponentially.

With trimming that removes from Li every element that is greater (in terms of r-

value) than rmax in step 5, and the trimming in step 6, the property that every remain

element in Li is a member of the complete solution space is maintained. Therefore,

the r-u-pair returned in step 7 is indeed one valid allocation scheme. It remains to

show that the u-value of the returned pair is not smaller than 1− ε times an optimal

solution.

Since resource sieve at step 5 only throws away invalid elements that violate the

resource constraint, or those that for sure cannot contribute toward the optimal solu-

tion, any error will only be caused by representative list. So it remains to be shown

that the relative error caused by representative list is bounded.

When Li is trimmed by representative list, a relative error of at most δ (or ε/n)

is introduced between the representative values remaining in the list and the values

before the trimming. By induction on i, it can be shown that for every element
(
u◦

r◦

)
in L◦i with r◦ ≤ rmax, there is an

(
u
r

)
in Li such that

(1− ε/n)iu◦ ≤ u ≤ u◦.

If
(
Uopt
r∗

)
∈ L◦i denotes an optimal solution to the SRMD problem, then there is an(

u
r

)
∈ Li such that

(1− ε/n)nUopt ≤ u ≤ Uopt
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The
(
u
r

)
with the largest u is the value returned by representative list and u = Uasrmd2.

The value of (1− ε/n)n increases with n, as it can be shown that

d

dx

(
1− ε

x

)x
> 0 for x ≥ 1,

so that n > 1 implies 1− ε < (1− ε/n)n, and therefore

(1− ε)Uopt ≤ Uasrmd2 ≤ Uopt

That is, the result returned by representative list has a maximum relative error of

less than ε. 2

We will show that the algorithm is of polynomial time complexity. Begin by

investigating Li in representative list. After trimming, successive elements
(
ui
ri

)
and(

ui+1

ri+1

)
of Li must satisfy ui < ui+1(1− δ), that is

ui+1

ui
>

1

1− δ
.

as illustrate in Figure 5.2.

...
(log scale)
   Utility

ulow fulow f2ulow fkulow uup fk+1ulow

Figure 5.2: Successive Elements in Li After representative list

Let f = 1/(1− δ) and K = blogf (uup/ulow) + 2c, where uup > 0 is the u in step 7

of asrmd2 and ulow > 0 is the smallest utility value, among all tasks, other than 0.

Lemma 2 There are at most K elements in each Li of step 6 of asrmd2.

Proof Not counting the first element (whose u-value is zero), representative list at

step 6 removes elements that differ in u-value from each other by a factor of less

than f . Therefore, the number of elements in Li will be at most

1 + max{ k ≥ 0 | fkulow ≤ uup } = 1 + blogf(uup/ulow) + 1c

= blogf (uup/ulow) + 2c

= K.

2
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Theorem 3 asrmd2 is a polynomial approximation for SRMD.

Proof Since steps 4 through 6 in asrmd2 are all polynomial in the lengths of the

lists they handle, and since step 6 by Lemma 2 reduces the number of elements to

less than K, it remains to be shown that the number of elements after steps 4 and 5

are bounded.

For step 5 this is trivial since it reduces the number of elements. For step 4, the

number of elements grows by a factor of |Ci|, so the number of elements after step 4

is bounded by KCmax where

Cmax = max
i=1,...,n

|Ci|

The total number of steps in asrmd2 therefore is bounded by

cnKCmax = cnCmax
⌊
logf(uup/ulow) + 2

⌋
= cnCmax

⌊
log1/(1−ε/n)(uup/ulow) + 2

⌋
≤ cnCmax

⌊
n ln(uup/ulow)

ε
+ 2

⌋

for some constant c > 0. So the running of asrmd2 can be obtained as

O(nLiL log L) = O(nKL log L)

= O(n2 ln
uup

ulow

1

ε
L log L)

= O(n2 ln
numax

umin
L log L

1

ε
)

= O(n2L ln n log L/ε)

= O(n2L log n log L/ε)

where umax is the maximum utility and umin is the minimum utility in the system.

Therefore it is polynomial in time in terms of the input n, L and 1/ε. And it is clear

that the algorithm is polynomial in space as well. 2

The analysis of asrmd2 is, in part, modelled after [15].

5.4 An Optimization Example

Here we present a simple example to illustrate the asrmd1 algorithm. Figure 5.3

depicts a set of simplified task profiles after the resource-utility structural composition
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is done (see definition 4.4 and 4.5). In this case, there are eight tasks, each with twenty

different quality levels specified, and a total available resource level of 100.
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Figure 5.3: Task Profiles: num tasks=8, rmax=100, quality levels=20

Figure 5.4 plots the approximation data points for each task after the con-

vex hull frontier procedure is called in asrmd. Note the drastic reduction in the

number of points. Table 5.1 shows the resource allocation result of both algorithm

asrmd1 and srmd, which happens to be exactly the same.

5.5 Chapter Summary

This chapter focused on solving the SRMD (Single Resource, Multiple QoS Dimen-

sion) problem. A dynamic programming scheme that obtains the optimal solution is

first presented. An approximation algorithm is then presented. This computes the

convex hull frontier on the processed scatter graph, and uses a greedy method to
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Figure 5.4: Convex Hull Frontier Approximation

traverse the highest utility-per-resource slope at any given allocation step. This al-

gorithm has the property that the distance of this solution from the optimal solution

is bounded and that the bound can be easily determined from a set of task profiles.

An example of this computationally efficient algorithm is also given to illustrate its

key steps. Then, a polynomial approximation scheme that allows the specification of

a maximum distance from the optimal solution is presented. This algorithm works

by keeping a set of evenly interspersed partial solutions.

We will study the practical performance of these algorithms in Chapter 7.
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task id
asrmd1 srmd

resource utility resource utility

1 2 0.2689 2 0.2689

2 24 0.6891 24 0.6891

3 18 0.4842 18 0.4842

4 1 0.2342 1 0.2342

5 1 0.2121 1 0.2121

6 26 0.6738 26 0.6738

7 27 0.7513 27 0.7513

8 1 0.2337 1 0.2337

total 100 3.547 100 3.547

Table 5.1: Example resource allocations of asrmd1 and srmd





Chapter 6

MRMD Algorithms

The problem of maximizing system utility by allocating a single finite resource to

satisfy discrete Quality of Service (QoS) requirements of multiple applications along

multiple QoS dimensions was studied in Chapter 5 and [27]. In this chapter, we

consider the more complex problem of apportioning multiple finite resources to satisfy

the QoS needs of multiple applications along multiple QoS dimensions. In other words,

each application, such as video-conferencing, needs multiple resources to satisfy its

QoS requirements. We evaluate and compare three strategies to solve this class of

problem. We show that dynamic programming and mixed integer programming can

be used to compute optimal solutions to this problem but exhibit high complexity.

We then adapt the mixed integer programming problem to yield near-optimal results

with smaller running times. Finally, we present an approximation algorithm based

on a local search technique with very low complexity. Perhaps more significantly,

the local search technique turns out to be very scalable and robust as the number of

resources required by each application increases.

6.1 An Exact Solution Scheme

The solution method and algorithm described in this section can be viewed as an

extension of the dynamic programming algorithm described in [27]. The scenario we

use to illustrate the algorithm is a two-resource (m = 2) case, but the scheme and

results described below extend readily to higher dimensions.

The challenge here is to extend the tabular or regular dynamic programming

59
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scheme to the case of multiple resources. As in the single resource case, each allo-

cation is in units of size rmax
1 /P1 and rmax

2 /P2. These represent the smallest possible

allocation of each resource type, and Pi, i = 1, 2 determine the total number of these

resource bundles. When P1 = P2 = 100, for instance, this would mean that allocation

is given as an integer percentage of the total resource available.

For the two-resource case, the structure of an optimal solution to the problem can

be characterized as follows.

Denote by v(i, p1, p2) the maximum utility achievable when only the first i tasks

are considered with rmax
1 p1/P1 units of resource R1 and rmax

2 p2/P2 units of resource R2

available for allocation. Define the value of an optimal solution recursively in terms

of the optimal solutions to subproblems as

v(i, p1, p2) = max
p′
1
∈{0,...,p1}

p′
2
∈{0,...,p2}

{gi(p′1, p′2) + v(i− 1, p1 − p′1, p2 − p′2)} (6.1)

In analogy with the single resource case, v(n, P1, P2) will be the maximum utility

achievable given n tasks and rmax of resources. The set of interesting p′1 and p′2 values

are the discontinuity points of gi.

We shall use the following notation in our algorithm. Let

Ci =

〈(
ui1
ri1

)
, . . . ,

(
uiki
riki

)〉

list the discontinuity points of gi, the utility function associated with Ti in increasing

u-order. Let r(i, p1, p2) contain the corresponding resource allocations that yield

v(i, p1, p2). Let qos(i, p1, p2) be the list of QoS allocations choices for tasks T1 through

Ti that result in v(i, p1, p2).

Using the above notation and based on Equation (6.1), an exact algorithm can be

constructed for the MRMD problem with discrete resource bundle allocations. As an

illustrative example, the following formalizes this algorithm for m = 2 and general n

assuming that resources have been divided into Pi, i = 1, 2 bundles.
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mrmd(n, P1, P2, C1, . . . , Cn)

/* Initialization */

1. for p1 = 0 to P1 do

2. for p2 = 0 to P2 do

3. v(0, p1, p2) := 0

4. r(0, p1, p2) := 0

5. qos(0, p1, p2) := nil

/* Dynamic programming */

6. for i = 1 to n do g

7. for p1 = 0 to P1 do

8. for p2 = 0 to P2 do

9. u∗ := 0

10. r∗ := 0

11. j∗ := 0

12. for j = 1 to |Ci| do

13. if (rij 6≤ (p1, p2)) then

14. continue

15. u := uij + v(i− 1, p1 − rij1, p2 − rij2)

16. if (u > u∗) then

17. u∗ := u

18. r∗ := rij

19. j∗ := j

20. v(i, p1, p2) := u∗

21. r(i, p1, p2) := r∗

22. qos(i, p1, p2) := qos(i− 1, p1 − rij1, p2 − rij2) concat [hi(rij∗)]

/* Unwind and retrieve allocation results */

23. (p1, p2) := rmax

24. for i = n downto 1 do

25. resource(i) := r(i, p1, p2)

26. u(i) := v(i, p1, p2)

27. (p1, p2) := (p1, p2)− resource(i)

28. return v(n, P1, P2), qos(n, P1, P2), resource(1), . . . , resource(n),

u(1), u(2)− u(1), . . . , u(n)− u(n− 1)
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Upon the return of the algorithm mrmd, qos(n, P1, P2) will contain the QoS values

assigned to T1 through Tn, utility(i) contains the corresponding utility accrued for

Ti, and resource(i) gives the resource allocation for Ti. Notice that the resource part

in each element of the Ci list above is a vector, and therefore they do not necessarily

increase in the resource component.

Let L = maxni=1 |Ci|. The computational complexity of the algorithm is then given

by O(nLP1P2), or O(nP 2
1 P 2

2 ), which is pseudo-polynomial as in the SRMD case.

The above algorithm extends in straightforward fashion to m resources with com-

putational complexity O(nP 2
1 · · ·P 2

m), where m is the number of different resources

available for allocation. Due to its pseudo-polynomial complexity, we expect that

it will have limited use for large-sized on-line systems. However, it can be used for

off-line and solution quality evaluation of other heuristic and approximation schemes.

6.2 Integer Programming

Using the problem formulation given in Equation 4.1 of Section 4.2, Integer Pro-

gramming (IP) algorithms can also be applied. For efficiency reasons, we use the

CPLEX [10] MIP callable library which employs a branch-and-bound algorithm. In

the branch-and-bound method, a series of linear programming (LP) subproblems is

solved. A tree of subproblems is built, where each subproblem is a node of the tree.

The root node is the LP relaxation of the original IP problem.

To improve the performance of the integer programming with branch-and-bound

approach, one can use task priorities and gradients of the dimension-wise quality

utility functions as heuristics for developing an integer solution at the root node

and for selecting the branching node, the variable and direction. By setting the

optimality tolerance (such as the gap between the best result and utility of the best

node remaining) or setting limits on time, nodes, memory, etc., one can also obtain

fast approximately optimal results.

One drawback of the branch-and-bound technique for solving integer programming

problems is that the solution process can continue long after the optimal solution has

been found, while the tree is exhaustively searched in an effort to guarantee that the

current feasible integer solution is indeed optimal. As we know, the branch-and-bound

tree may be as large as 2n nodes, where n equals the number of binary variables. A
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problem containing only 30 variables could produce a tree having over one billion

nodes.

We shall provide a performance evaluation of this scheme in the next chapter. Its

applicability for practical but large MRMD problems is yet to be determined.

6.3 An Approximation Scheme

In this section, we shall define an algorithm that yields near-optimal results but can

execute at much higher speeds than the optimal algorithms using dynamic program-

ming or mixed integer programming. We shall use an algorithm that uses a local

search technique. Recall that n denotes the number of tasks and m denotes the

number of resources. Let

Ci =

〈(
ui1
ri1

)
, . . . ,

(
uiki
riki

)〉

represent the discrete set of utility-resource pairs for task Ti. Note that in contrast

with the SRMD algorithms presented in Chapter 5 and [27] where each rij , 1 ≤ j ≤ ki

was a scalar, the resource components, rij, in Ci are vectors.

To handle the multi-dimensional resource case, it is useful to define a penalty

vector to “price” each resource combination. Specifically, let p = (p1, · · · , pm), where

pi ∈ [1,∞) be the penalty factor, and rp = (r1 · p1, · · · , rm · pm) be the penalized

resource vector. It is useful to define a scalar metric for each penalized resource

vector. This metric is denoted r∗. A variety of metrics could be used. For example,

r∗ can be defined as:

r∗ = ‖rp‖ =
√

(rp1)
2 + · · ·+ (rpm)2

The notion of this virtual or compound resource can be thought of as either the length

operator in a space scaled by p, or as similar to aggregate resource concept described

in [58].

Once we have defined r∗, we augment Ci by adding this component to obtain:

Cic =

〈
ui1

ri1

r∗i1

 , . . . ,


uiki

riki

r∗iki


〉

.
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We now define the algorithm amrmd1. In this algorithm, rc denotes the current re-

maining resource capacity after some of the available resources have been allocated.

s list [i].t, s list [i].r, s list [i].u contain task ids, their associated r-values and u-values

of the corresponding tasks, and r[i] gives the resources currently allocated to Ti.

amrmd1(n, C1, . . . , Cn, rmax, ε)

1. u∗ := 0

2. p := initial penalty (C1, . . . , Cn, rmax)

3. repeat := true; count := 3

4. while repeat and count > 0 do

5. repeat := false; count := count − 1

6. for i = 1 to n do

7. Cic := compound resource (Ci, p)

8. for i = 1 to n do

9. C ′ic := convex hull frontier (Cic)

10. r[i] := 0 // vector assignment

11. u[i] := 0

12. stop[i] := 0

13. s list= merge(C ′1c, . . . , C
′
nc)

14. rc := rmax

15. for j = 1 to |s list | do

16. i := s list [j].t

17. if (stop[i]) then

18. break

19. β := s list [j].r− r[i] // vector subtraction

20. if (β ≤ rc) then

21. rc := rc − β

22. r[i] := s list [j].r

23. u[i] := s list [j].u // update allocation of Ti

24. else

25. stop[i] := 1

26. u := 0

27. for i = 1 to n do
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28. u := u + u∗[i]

29. if ((u− u∗) > ε) then

30. repeat := true

31. u∗ := u

32. for i = 1 to n do

33. u∗[i] := u[i]

34. r∗[i] := r[i]

35. p := adjust penalty (p, rc, rmax)

36. for i = 1 to n do

37. q[i] := hi(r∗[i]) // see Equation (4.5)

38. return u∗, q[1], . . . , q[n], r∗[1], . . . , r∗[i]

Note that the procedure convex hull frontier works on the virtual resource portion of

each element in Cic.

The procedure intitial penalty calculates the intial penalty vector by looking at

the resource usage pattern of all task profiles. Resource dimensions in higher demand

are assigned higher penalties.

initial penalty(n, C1, . . . , Cn, rmax)

1. m := dim rmax

2. rs := 0

3. for i = 1 to n do

4. for j = 1 to |Ci| do

5. rs := rs + Ci[j].r /* vector addition */

6. for k = 1 to m do

7. pk := rsk/r
max
k + 1

8. return p

The procedure adjust penalty updates the penalty vector using information about

the residual resources from the previous iteration.

adjust penalty(p, rc, rmax)

1. m := dim rmax

2. for k = 1 to m do
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3. pk := (pk ∗ rmax
k )/(rck + rmax

k ) + 1

4. return p

Many different formulas could have been used here. The key to understanding the

one used above is write the formula as

rmax
k

rck + rmax
k

∗ pk + 1

where the scale factor applied to pk is a number between 1/2 and 1. The factor will

be 1/2 when the resource is completely unused and grows to 1 when the resource is

used up.

By setting ε in amrmd1 to different values, along with the heuristic result from

procedure initial penalty and adjust penalty, we can control the solution refinement

steps. The asymptotic computational complexity of amrmd1 can be obtained as fol-

lows. Let L = maxni=1 |Ci|. The procedure initial penalty takes O(nL) operations.

After the procedure convex hull frontier1 (which requires O(nL log L) operations) a

convex hull frontier with non-increasing slope segments is obtained for each task. The

segments are merged at step 13 using a divide-and-conquer approach with log2 n levels,

with each level requiring nL comparisons. Merging thus requires O(nL log n) opera-

tions. Steps 15 through 25 require O(|s list|) = O(nL). The adjust penalty procedure

requires O(m), and steps 27 through 35, 36 through 38 require O(nL). The total run-

ning time of the algorithm is, therefore, O(nL log L)+O(nL log n)+O(nL)+O(m) =

O(nL log nL + m).

6.4 Related Work

Our MRMD problem can be recast as a multidimensional multiple-choice knapsack

problem (MMKP) described in [38]. The authors of [38] describe a heuristic algorithm

using the Lagrange multiplier technique for solving MMKP with a complexity of

O(m(n − g)2 + mn) in their notation. It corresponds to O(m(nL − n)2 + mnL) or

O(mn2L2) in our notation, as their m, n and g correspond to our m, nL and n

respectively.

1Overmars & Leeuwen’s [42] algorithm, the quickhull [45] or Graham-Scan [7].
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The author in [22] treats the MRSD problem (without resource tradeoff) using

a heuristic algorithm based on [58]. It is basically a greedy scheme making each

step based on current resource consumption. The algorithm also has a complexity of

O(mn2L2).

Our algorithm described in Section 6.3 is based on convex hull frontier approx-

imation combined with a search scheme that can be viewed as an extended local

search.

Comparing the approximation algorithms in [38] and [22] to ours, we notice that

our algorithm has a significantly lower asymptotic complexity, O(nL log nL + m)

versus O(mn2L2). As we shall see in Chapter 7, this has been achieved without

sacrificing solution quality. As a consequence, we have been able to work with much

larger workloads.

6.5 Chapter Summary

This chapter studied solutions to the MRMD (Multiple Resource Multiple QoS Di-

mensions) problem. As in Chapter 5, dynamic programming is used to obtain the

optimal solution to this problem. Only the case for two resources is presented, but

the same methodology can be used in higher dimensions.

Next, integer programming is used to solve the problem by representing each

resource trade-off, each QoS tradeoff and the admission of each task as an integer

(boolean, in fact) variable. If the integer programming formulation is allowed to

run to completion, it will also yield the optimal solution. However, since that can

be computationally intensive, it may be terminated when a execution-time-bound

and/or an error-bound is reached. In this case, only an approximate solution will

result.

Finally, a local search technique is used to combine the various resources needed

by a task into a single virtual resource. Then, an optimization technique similar to

the convex hull frontier technique from the previous chapter is performed on this

virtual resource. This search technique, therefore, is computationally very efficient.

In the following chapter, we will study the practical performance of these algo-

rithms.





Chapter 7

Performance Evaluation

The ideal way to evaluate the performance of our QoS management optimization sys-

tem would be to subject it to acutal loads from large portfolios of real applications.

Such an approach would not work given the current scarcity of QoS-aware applica-

tions. Therefore, we have chosen to evaluate the effectiveness of our optimization

algorithms by creating a synthetic, but broad, collection of task profiles that are well

beyond the limits that a few real applications can provide. Note that the task profiles

that we have used for evaluation were not created completely arbitrarily, but chosen

to cover the spectrum into which real applications would fall or likely exhibit.

7.1 Experimental Design — Task Profile Charac-

terization

Assume now that the number of tasks, which we will subject our system to, is n.

Assume further, that the maximum available resource, rmax, is known. With this

knowledge, the construction of a test case consists of constructing n task profiles.

These task are created independently to represent different applications.

The set of possible task profiles is infinite, we cannot exhaustively test them all.

We will therefore work with selected representative cases. We have chosen to select

the representative cases randomly. However, care must be taken to ensure that the

produced task profiles really are representative of what applications exhibit and that

they are rational. By rational we mean that

69
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• the application utility function is non-negative and non-decreasing as a function

of quality, and

• quality is non-decreasing with respect to resources, that is r |=i q respects the

partial orderings of R and Q as defined in Section 2.4.

It is relatively simple to arrange for the former condition to be satisfied, but the latter

requires much more attention.

In the following two sections, we will describe in detail how we create the two

parts of a task profile, and how we preserve the two rationality properties above.

7.1.1 QoS Profile

Recall that a QoS profile consists of

• Quality indices — Qij, 1 ≤ j ≤ di.

• Quality space — Qi = Qi1 × · · · ×Qidi.

• Application utility ui : Qi → IR which we define as a weighted sum of dimen-

sional utility functions, uij : Qij → IR:

ui(qi) =
di∑
j=1

wijuij(qij)

Assume that the largest point qsysmax
i ∈ Qi has been given. This point uniquely

identifies the quality indices and the quality space. This leaves us with the application

utility.

The weights are generated in the following way. Given di, the number of quality

dimensions of Ti, we will generate di real numbers w′i1, . . . , w
′
idi

, each of them in the

range of [0, 1]. Each weight can then be obtained as

wij =
w′ij∑
j w
′
ij

, j = 1, . . . , di

and these weights will sum up to 1.

The requirement that ui be non-decreasing in all di arguments and that it be non-

negative can be satisfied by enforcing similar requirements for the dimensional utility

functions.
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The dimensional utilities of each task are generated using the methods outlined

in Chapter 3, that is using the same QoS specification interface structure that we

envision the end user would use. Specifically, we create a pool of typical utility

function shapes as in Figure 3.3 in Section 3.2. In other words, we have a pool of

parameterized function classes — templates that when properly instantiated will yield

a dimensional utility function. Example classes include, but are not limited to:

Affine utility with saturation and minimum, as is illustrated in Figure 7.1. The

most general is on the right, where utility remains zero until a certain minimum

quality, p0, has been reached. At that point, utility p2 is gained, and utility increases

linearly with quality until it saturates at p1. This class of utility function describes

o oo

oo o

qmaxqmax

o

o

111

p2

p0 p1 p0 p0 p1

p2

Utility Utility Utility

QualityQualityQuality

case0: p0=p2=0 case2: general-case

qmax

case1: p1=qmax, p2=0

Figure 7.1: Affine Function Class

a “the more, the better” type of quality, such as the one for cryptographic security

level in the example of Section 3.4.

Step-function utility a series of quality and utility pairs, as illustrated in Fig-

ure 7.2. This class of utility function also describes “the more, the better” type of

quality but in a manner well-suited for dimensions (the original dimensions, not the

indices) that are of non-numeric nature and dimensions for which the size of the index

set is relatively small.

Exponential Decay where the difference between 100% and the achieved utility

decreases exponentially, as illustrated in Figure 7.3. This type of utility we imagine
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qmax
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Utility
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.
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Figure 7.2: Step Function Class

being used for quality dimensions with a diminishing-returns behavior, such as frame

rate. The utility gain between 5 fps and 10 fps is much larger than between 25 fps

and 30 fps.

7.1.1.1 Function Class Creation

For the Affine Function Class: we can define a general function

u(q) =


0 if q < p0

1− p2

p1 − p0
∗ (q − p0) + p2 if p0 ≤ q ≤ p1

1 if q > p1

where p0 and p1 are quality indices or zero for which 0 ≤ p0 < p1 ≤ qmax, and

p2 ∈ [0, 1]. The dimensional utility reaches 100% at quality index point p1.

Note that case 0 and case 1 in Figure 7.1 are two degenerate cases of affine function

classes, in which p0 = p2 = 0 for case 0 whereas p1 = qmax and p2 = 0 for case 1.

For the Step Function Class: we have

u(q) =


0 if q < p0

p2i+1 if p2i ≤ q < p2i+2, i = 0, 1, . . .

1 if q ≥ qmax

where p2i are quality indices or zero, and p2i+1 ∈ [0, 1], both strictly increasing with

respect to their subscripts.
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Figure 7.3: Exponential Decay Function Class

For Exponential Decay: we have

u(q) =

 0 if q < qmin

1− ep0∗q+p1 if q ≥ qmin

where p0 and p1 are real numbers (not necessarily positive). To make u(q) non-

decreasing, we need to have p0 ≤ 0. Further, in order to have 0 ≤ u(q) ≤ 1, we need

to ensure that ep0∗q+p1 ≤ 1, therefore p0 ∗ q + p1 ≤ 0. That is, p1 ≤ −(p0 ∗ q) for all

q ∈ [1..qsysmax], which is equivalent to requiring p1 ≤ −(p0 ∗ qmin), that is p1 ≤ −p0.

Now we can describe the algorithm that creates the function classes for QoS pro-

files.

F(j, qmax
ij ) /* generate function for QoS dimension j with Qij = {1, . . . , qmax

ij } */

1. F.class := random choice (Affine, Step, . . . , Exponential Decay)

2. switch (F.class)

3. case Affine:

4. subtype := random int (0, 2) /* favor the 3 cases equally */

5. switch (subtype) /* set the corresponding p0, p1 and p2 */

6. case 0:

7. F.p0 := 0

8. F.p1 := random int (0, qmax
ij )

9. F.p2 := 0

10. break
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11. case 1:

12. F.p0 := random int (1, qmax
ij )

13. F.p1 := qmax
ij

14. F.p2 := 0

15. break

16. case 2:

17. a := random int (1, qmax
ij )

18. repeat

19. b := random int (1, qmax
ij )

20. until a 6= b

21. F.p0 := min(a, b)

22. F.p1 := max(a, b)

23. F.p2 := random real (0, 1)

24. break

25. case Step:

26. if qmax
ij = 1 then /* binary function */

27. F.num param := 1

28. F.p0 := 1

29. else

30. num steps := random int (0, qmax
ij − 1)

31. F.num param := 2 ∗ num step + 1

32. L1 := [ ]

33. repeat

34. i := random int (1, qmax
ij )

35. if i /∈ L1 then

36. L1 := L1 concat [i]

37. until |L1| = num step + 1

38. L1 := sort (L1)

39. L2 := [ ]

40. repeat

41. r := random real (0, 1)

42. if r /∈ L2 then

43. L2 := L2 concat [r]
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44. until |L2| = num step

45. L2 := sort (L2)

46. for i = 0 to num step− 1 do

47. F.p2i := L1[i]

48. F.p2i+1 := L2[i]

49. F.p2∗num step := L1[num step]

50. break

51. case . . . : /* other function classes */

52.
...

53.
...

54. case Exponential Decay:

55. F.num param := 2

56. F.p0 := random real (−1, 0)

57. repeat

58. F.p1 := random real (0, 1)

59. until F.p1 ≤ −F.p0

60. break

61. return F

Given a utility function F which was instantiated from some class, the QoS dimen-

sion j and the quality index qij ∈ Qij, we can now calculate the dimensional utility

value of Ti on qij.

F::fv(qij)

1. switch (F.class)

2. case Affine:

3. if qij < F.p0 then

4. rfv := 0

5. else if qij ≤ F.p1 then

6. rfv := (1− F.p2)/(F.p1 − F.p0) ∗ (qij − F.p0) + F.p2

7. else

8. rfv := 1

9. break

10. case Step:
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11. if qij < F.p0 then

12. rfv := 0

13. else

14. rfv := 1

15. for i = 2 to F.num param step 2

16. if qij < F.pi then

17. rfv := F.pi−1

18. break

19. break

20. case . . . : /* other function classes */

21.
...

22.
...

23. case Exponential Decay:

24. rfv := 1− eF.p0∗qij+F.p1

25. break

26. return rfv

7.1.2 Resource Profile

A resource profile is much more difficult to create than QoS Profile. In the context of

the resource profiles of our QoS management model, a resource profile is representative

and rational means that we must ensure:

1. Resource usage is non-negative;

2. Resource profiles exhibit resource trade-off; and

3. Higher resource consumption will not result in lower quality.

Enforcing the first property is trivial; the second, as will be shown shortly, will be

satisfied by the construction scheme that we use; the last property, however, is initially

challenging, but we will prove that it follows from the second property when combined

with some reasonable assumptions.

Before we devise the resource profile generation algorithm to satisfy these condi-

tions, let us introduce some symbols and notations that will help to formulate and

validate the steps taken to fulfil the properties imposed on the typical resource profiles.
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We shall assume the resource tradeoff comes from the use of a set of schemes

programmed within an application. Let NTi represent the number of resource tradeoff

schemes for a Ti. Denote by fij : Qi → R, where j = 1, . . . , NTi, the resource

usage function in effect when task Ti is using scheme j. Define fijk = πk ◦ fij the

resource usages on m individual resources respectively using trade-off scheme j, where

j = 1, . . . , NTi, k = 1, . . . , m, and πk is the projection of the resource space into its

kth dimension.

For practical reasons, we will assume NTi = 2 from now on. That is, there will

be two ways of trading off resources to realize a task’s quality space. In other words,

for any given q ∈ Qi, we will have two data points, (q, r) and (q, r′), that describe

the usage of m resources to realize each quality point. Therefore the resource profile

r |=i q of task Ti could be described as:

r |=i q = {(q, fi1(q)) | q ∈ Qi} ∪ {(q, fi2(q)) | q ∈ Qi}

=
⋃
q∈Qi
{(q, fi1(q)), (q, fi2(q))}

=
⋃
q∈Qi

{(
q, 〈fi11(q), . . . , fi1m(q)〉

)
,
(
q, 〈fi21(q), . . . , fi2m(q)〉

)}

With these notations, we can now formalize the three properties above as conditions

on the individual functions fij or πk ◦ fij:

∀q, j : fij(q) ≥ 0 (7.1)

∀q ∈ Qi, ∃s, t : (fi1s(q) > fi2s(q))∧ (fi1t(q) < fi2t(q)) (7.2)

∀qs, qt ∈ Qi : ∀j1, j2 : (fij1(qs) > fij2(qt))→ ¬(qs < qt) (7.3)

We call a resource profile r |=i q rational if it satisfies condition (7.3). Note that

many of the above comparisons (“≥”, “>” and “<”) in (7.1) through (7.3) are between

vectors, not simple numbers. For example, ¬(qs < qt) means that either qs and qt

are not comparable, or qs is bigger than or equal to qt. That is, ¬(qs < qt) is not the

same as qs ≥ qt. The comparisons on fijk in condition (7.2), on the other hand, are

scalar.

Theorem 4 r |=i q is rational if fijk are non-decreasing and satisfy condition (7.2).
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Proof Let qs and qt be given. We will consider three cases:

Case 1: If the two quality points qs and qt are not comparable, then qs < qt is

false, so ¬(qs < qt) is true and condition (7.3) is satisfied.

Case 2: If the two quality points qs and qt are equal, then condition (7.3) is trivially

satisfied.

Case 3: Assume that two quality points qs and qt are comparable, but not

equal. Without loss of generality let us assume that qs < qt. We need to prove

that ¬(fij1(qs) ≥ fij2(qt)), i.e. either (a) fij1(qs) and fij2(qt) are not comparable or

(b) fij1(qs) < fij2(qt). We will prove this by contradiction. Assume that fij1(qs) >

fij2(qt), where j1, j2 ∈ {1, 2}.
Since fijk are non-decreasing functions,

∀i, j, k, qs, qt : (qs ≤ qt)→ (fijk(qs) ≤ fijk(qt))

which is the same as

∀i, j, qs, qt : (qs ≤ qt)→ (∀k : fijk(qs) ≤ fijk(qt))

that is,

∀i, j, qs, qt : (qs ≤ qt)→ (fij(qs) ≤ fij(qt))

Therefore we have fij2(qs) ≤ fij2(qt). Together with our assumption, fij1(qs) >

fij2(qt), this means that fij1(qs) > fij2(qs).

From this, we first conclude that j1 6= j2 and that one of them thus is 1 while the

other is 2. Then, from condition (7.2), we conclude that fi1(qs) and fi2(qs) are non-

comparable — a contradiction to fij1(qs) > fij2(qt). Our assumption must therefore

be false, and the rational condition (7.3) for r |=i q holds. 2

Given the above proposition, we are ready to construct the algorithm for proper

resource profile generation.

Let FC = {F1, F2, ...} be the function class set with a finite number of elements,

Nci be the number of coefficient for Fi. Let CEij, j = 1, . . . ,Nci be the domain set

for the jth coefficient of Fi, CEi be the set of CEij, and CE be the set of CEi, and

fi be the function with Fi being fully instantiated with its coefficient(s) chosen from

CE.

We omit the description of the creation of each function class in FC here. The

process is similar to the function class generation in QoS profile except that the
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different kind of function shapes are created, for example, exponential instead of

exponential decay, since when quality increasing the rate of resource consumption

often is not decreasing.

resource profile(FC, CE, m)

/* generate vector function fij (consists of scalar functions fijk) */

1. for j = 1 to 2 do {
2. for k = 1 to m do {
3. randomly pick a function class, say Fl, from FC

4. for p = 1 to Ncl do

5. randomly pick the pth coefficient from CElp

6. let fijk be the function with Fl fully instantiated

7. while ¬ non decreasing (fijk) do {
8. p := random int (1,Ncl)

9. replace the pth coefficent of fijk with a new value

10. }
11. }
12. }
13. repeat { /* make sure that the fij exhibits resource tradeoff */

14. done tradeoff all := true

15. foreach q ∈ Qi do {
16. done tradeoff one := false

17. s := 1

18. while ¬done tradeoff one and s ≤ m− 1 do {
19. t := s + 1

20. while ¬done tradeoff one and t ≤ m do {
21. if (fi1s(q) > fi2s(q) and fi1t(q) < fi2t(q)) or

(fi1s(q) < fi2s(q) and fi1t(q) > fi2t(q))

22. done tradeoff one := true

23. t := t + 1

24. }
25. s := s + 1

26. }
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27. if ¬done tradeoff one then {
28. done tradeoff all := false

29. break /* foreach loop */

30. }
31. } /* foreach loop */

32. if ¬done tradeoff all then

33. repeat { /* might need to regen functions, not just coeff */

34. j := random int (1, 2)

35. k := random int (1, m)

36. p := random int (1,Ncl)

37. replace fijk’s pth coefficient with a new value

38. } until non decreasing (fijk)

39. } until done tradeoff all

7.1.3 Sample Task Profile

Below is the task profile for T11, a randomly picked sample. T11 has three quality

dimensions in concern, and its qmin and qmax is 〈0, 0, 0〉 and 〈4, 3, 4〉 respectively.

Stanza form is the system internal representation of a task profile, whereas each line

in the vanilla form gives the detaildescription on the utility and resource consumption

of each quality point. For example,

<1,1,1> 0.507014 [<9,5>,<5,15>]

shows that quality level 〈1, 1, 1〉 brings a utility of 0.507014. Moreover, the quality

can be realized in either 9 units of resource 1 and 5 units of resource 2, or 5 units of

resource 1 and 15 units of resource 2. Note that there is resource tradeoff between

the two resources.

Task Profile in stanza form:

{TASK_Profile: tid = 11

qmin = <0,0,0> qmax = <4,3,4>

{Application_Profile:

[QoS_Profile: 3

[QoS_Profile_Dim: 0.3031 4 <0.7697,0.8849,1,1>]
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[QoS_Profile_Dim: 0.3745 3 <0,1,1>]

[QoS_Profile_Dim: 0.3224 4 <0.849,0.849,0.849,1>]

]

[Resource_Profile: <4,3,4>

[<9,5>,<5,15>]

[<13,5>,<6,17>]

[<17,6>,<7,19>]

[<22,6>,<8,21>]

[<11,5>,<5,16>]

[<14,6>,<6,18>]

[<19,6>,<7,20>]

[<26,7>,<8,22>]

[<12,6>,<5,17>]

[<17,6>,<6,19>]

[<22,7>,<7,21>]

[<29,8>,<8,23>]

[<12,6>,<5,16>]

[<16,6>,<6,18>]

[<21,7>,<7,20>]

[<28,8>,<8,22>]

[<14,6>,<5,17>]

[<18,7>,<6,19>]

[<24,8>,<7,21>]

[<32,9>,<8,23>]

[<16,7>,<5,18>]

[<21,8>,<6,20>]

[<27,9>,<7,22>]

[<36,9>,<8,24>]

[<15,7>,<6,17>]

[<20,8>,<7,19>]

[<26,9>,<8,21>]

[<35,10>,<9,23>]

[<17,8>,<6,18>]

[<23,9>,<7,20>]

[<30,10>,<8,22>]
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[<40,11>,<9,24>]

[<19,9>,<6,19>]

[<26,10>,<7,21>]

[<34,11>,<8,23>]

[<45,12>,<9,25>]

[<18,9>,<6,18>]

[<25,10>,<7,20>]

[<33,11>,<8,22>]

[<43,12>,<9,24>]

[<21,10>,<6,19>]

[<28,11>,<7,21>]

[<37,12>,<8,23>]

[<49,13>,<9,25>]

[<24,11>,<6,20>]

[<32,12>,<7,22>]

[<42,13>,<8,24>]

[<56,14>,<9,26>]

]

}

}

Translated Task Profile in vanilla form:

<1,1,1> 0.507014 [<9,5>,<5,15>]

<1,1,2> 0.507014 [<13,5>,<6,17>]

<1,1,3> 0.507014 [<17,6>,<7,19>]

<1,1,4> 0.555696 [<22,6>,<8,21>]

<1,2,1> 0.881514 [<11,5>,<5,16>]

<1,2,2> 0.881514 [<14,6>,<6,18>]

<1,2,3> 0.881514 [<19,6>,<7,20>]

<1,2,4> 0.930196 [<26,7>,<8,22>]

<1,3,1> 0.881514 [<12,6>,<5,17>]

<1,3,2> 0.881514 [<17,6>,<6,19>]

<1,3,3> 0.881514 [<22,7>,<7,21>]

<1,3,4> 0.930196 [<29,8>,<8,23>]
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<2,1,1> 0.541931 [<12,6>,<5,16>]

<2,1,2> 0.541931 [<16,6>,<6,18>]

<2,1,3> 0.541931 [<21,7>,<7,20>]

<2,1,4> 0.590613 [<28,8>,<8,22>]

<2,2,1> 0.916431 [<14,6>,<5,17>]

<2,2,2> 0.916431 [<18,7>,<6,19>]

<2,2,3> 0.916431 [<24,8>,<7,21>]

<2,2,4> 0.965113 [<32,9>,<8,23>]

<2,3,1> 0.916431 [<16,7>,<5,18>]

<2,3,2> 0.916431 [<21,8>,<6,20>]

<2,3,3> 0.916431 [<27,9>,<7,22>]

<2,3,4> 0.965113 [<36,9>,<8,24>]

<3,1,1> 0.576818 [<15,7>,<6,17>]

<3,1,2> 0.576818 [<20,8>,<7,19>]

<3,1,3> 0.576818 [<26,9>,<8,21>]

<3,1,4> 0.6255 [<35,10>,<9,23>]

<3,2,1> 0.951318 [<17,8>,<6,18>]

<3,2,2> 0.951318 [<23,9>,<7,20>]

<3,2,3> 0.951318 [<30,10>,<8,22>]

<3,2,4> 1 [<40,11>,<9,24>]

<3,3,1> 0.951318 [<19,9>,<6,19>]

<3,3,2> 0.951318 [<26,10>,<7,21>]

<3,3,3> 0.951318 [<34,11>,<8,23>]

<3,3,4> 1 [<45,12>,<9,25>]

<4,1,1> 0.576818 [<18,9>,<6,18>]

<4,1,2> 0.576818 [<25,10>,<7,20>]

<4,1,3> 0.576818 [<33,11>,<8,22>]

<4,1,4> 0.6255 [<43,12>,<9,24>]

<4,2,1> 0.951318 [<21,10>,<6,19>]

<4,2,2> 0.951318 [<28,11>,<7,21>]

<4,2,3> 0.951318 [<37,12>,<8,23>]

<4,2,4> 1 [<49,13>,<9,25>]

<4,3,1> 0.951318 [<24,11>,<6,20>]

<4,3,2> 0.951318 [<32,12>,<7,22>]

<4,3,3> 0.951318 [<42,13>,<8,24>]



84 Performance Evaluation

<4,3,4> 1 [<56,14>,<9,26>]

7.2 Practical Performance Evaluation of SRMD

Algorithms

In Chapter 5, we presented the theoretical behavior of the SRMD algorithms. We

will now examine their practical performance. We compare actual computation cost

in terms of running time, and solution quality with respect to optimum.

In our experiments, each algorithm is fed the same series of workloads. The

parameters for each workload consists of:

• Number of tasks (ranging from 8 to 1024).

• Number of quality levels (ranging from 8 to 128)

• Total available system resources (ranging from 100 to 1000000 units)

Note that the number of quality levels is specified in terms of utility value, which is

less than or equal to the number of quality points. The point with the highest utility

is taken when the same resource allocation supports multiple quality points.

7.2.1 Comparative Evaluation of asrmd1 and srmd

We note that all experiments were conducted on a 300 MHz Pentium machine with

192 MB running RedHat Linux.

We now present a series of experiments conducted to compare the run-time effi-

ciency and solution quality of asrmd1 relative to the optimal srmd algorithm. Recall

that the three main variables among the parameters are:

• Number of tasks (num tasks: ranging from 8 to 1024).

• Number of quality levels (quality levels: ranging from 8 to 128).

• Total available system resources (rmax: ranging from 100 to 1000000 units).
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Figure 7.4: Run Time and Solution Quality: asrmd1 vs srmd, with rmax=800
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Figure 7.5: Run Time and Solution Quality: asrmd1 vs srmd, with rmax=3200
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Figure 7.6: Run Time and Solution Quality: asrmd1 vs srmd, with rmax=12800
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Alternatively, we could think of rmax in terms of the precision of the resource

allocation for the srmd algorithm. When rmax ≥ 100, srmd can give fractional resource

allocations. For example, rmax = 10000 corresponds to a precision of one-hundredth of

total capacity or bandwidth. While asrmd1 and asrmd2 handle non-integral resource

allocation without any added computational complexity, the computation time of

srmd increases as the granularity of resource allocation increases.

Figures 7.4 through 7.6 present the run-times of algorithms asrmd1 and srmd, and

the solution quality obtained by algorithm asrmd1 relative to srmd, which represents

the optimal solution. Each figure presents three graphs each. The first and third

graphs plot the run-times (in millisecond) for algorithms asrmd1 and srmd respec-

tively as the number of tasks in the system is increased. The second graph plots

the solution quality of algorithm asrmd1 relative to the optimal solution obtained

by srmd. Figure 7.4 assumes that rmax=800 and 16 QoS options per task. Simi-

larly, Figures 7.5 and 7.6 respectively assume rmax = 3200, 16/32/64 QoS levels and

rmax = 12800, 16/32/64/128 QoS levels. Each workload in these experiments was

repeated 100 times, each with num task number of different tasks with random QoS

options and generated such that we could examine the solution quality of approxima-

tion algorithms in a broad range of scenarios.

A couple of behaviors can be easily observed in each of the graphs. The run-

times increase as the number of tasks increases (e.g. see Figure 7.4, Figure 7.5, and

Figure 7.6 ). The run-times also increase as the number of QoS options per task

increases. But notice that the run-times increase as the rmax increases (e.g. compare

Figures 7.4.[bc] and 7.5.[bc]) only for algorithm srmd, whereas asrmd1 has a running

time that is independent of rmax.

Returning to points of interest, notice how algorithm asrmd1 consistently runs

about an order of magnitude faster than the exact algorithm srmd in Figures 7.4

through 7.6. The difference approaches two orders of magnitude when the granularity

of resource allocation is finer in Figures 7.5 and 7.6. Notice further that the average

solution quality for algorithm asrmd1 in the second graph of each figure stays above

99% for most cases. Since the plotted values are the averages over 100 runs, the

worst case obviously is lower. However, in general, it is easy to conclude that the

approximation algorithm asrmd1 exhibits excellent behavior in achieving near-optimal

results within a small fraction of time needed to find the optimal solution.
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Figure 7.7: Run Time and Solution Quality: asrmd1 vs asrmd2 vs srmd with

rmax=10000, ε = 0.01, and num quality levels = 16

7.2.2 Comparative Evaluation of asrmd1 and asrmd2
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Figure 7.8: Run Time and Solution Quality: asrmd1 vs asrmd2 vs srmd with

rmax=100000, ε = 0.01, and num quality levels = 16

We conducted a second series of experiments to compare the relative performances

of algorithms asrmd1 and asrmd2. In these set of experiments, we fixed the number

of QoS options per task to be 16 in each run, and ε was chosen to be a constant

0.01 (i.e. the desired quality obtained by asrmd2 must be within 1% of the optimal

solution). The run-times and solution qualities of the two approximation algorithms
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Figure 7.9: Run Time and Solution Quality: asrmd1 vs asrmd2 vs srmd with

rmax=1000000, ε = 0.01, and num quality levels = 16

along with the optimal srmd algorithm were measured with rmax = 1000, 100000 and

1000000. The resulting graphs are plotted in Figures 7.7 through 7.9 respectively. The

first of the two graphs in each figure plots the run-times of the three algorithms as

the number of tasks is increased.1 The second graph shows each algorithm’s relative

solution quality compared to the optimal solution.

As discussed earlier, algorithm asrmd2 is very promising from a theoretical point

of view: it always delivers a guaranteed solution quality in polynomial time. Unfor-

tunately, its actual running time is up to two orders of magnitude more than that for

asrmd1 (e.g. see Figure 7.8.a). The solution quality graphs plot the solution quality

of algorithms asrmd1 and asrmd2. They show that asrmd1 is mostly within 1% of

the optimal solution while asrmd2, which must always be within 1%, on the average

yields a solution very close to the optimal solution. However, we believe that the

difference between the two run-times is relatively high, particularly when the solution

quality obtained by asrmd1 is very good.

Based on the above two sets of experiments, we conclude that the asrmd1 algo-

rithm using the convex hull frontier approach yields the largest benefit for the limited

computational time that it consumes.

It is practically useful to note that in absolute terms, even with 128 tasks and 128

1To keep run-times feasible, the maximum number of tasks tested had to be significantly dropped.
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quality levels per task, asrmd1 yields a near-optimal result in about 20ms. The result

is also within 0.5% of the optimal solution on the average. The absolute time spent,

20ms, is an amount of time that can be used in practice in real-time systems to make

near-optimal online QoS-based allocation.

7.3 Practical Performance Evaluation of MRMD

Algorithms

In this section, we present a detailed performance evaluation of the dynamic pro-

gramming (mrmd), integer programming (IP), and the fast approximation algorithm

(amrmd1) discussed in Chapter 6.

The workloads for experiments described here were created using the principles

and algorithms in Section 7.1.

The three MRMD algorithms were then run on these workloads for a given number

of available units on each resource. The running times and total utility obtained for

each algorithm were noted. This was repeated for several task sets and we computed

the average performance across these repeated experiments. Finally, for larger sized

problems, the running times for dynamic programming and integer programming

proved to be impractical (hours or days in some cases) and we evaluated only the

near-optimal algorithm amrmd1.

It must be added here that the optimal results obtained by the integer program-

ming scheme and the dynamic programming algorithm matched. Furthermore, as

expected, the approximative algorithms always delivered results that were bounded

by the optimal solutions. This provides us with a good degree of cross-validation of

correctness with respect to our implementations of our schemes.

7.3.1 Performance of the Dynamic Programming Scheme

We first present the results of the evaluation of the dynamic programming scheme.

As mentioned earlier, dynamic programming yields the optimal resource allocation to

the various tasks but its running time can be rather large.

Figure 7.10 plots the CPU time consumed by mrmd (the dynamic programming

algorithm) when there are two resources and rmax = 〈180, 100〉. In other words, the
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Figure 7.10: The Run Times of Algorithm mrmd with rmax = 〈180, 100〉

number of units of resource 1 is 180, and the number of units of resource 2 is 100.

By assumption, each resource can only be allocated in integer units2. The number

of tasks to which these two resources must be allocated is plotted along the x-axis.

The CPU time consumed by the dynamic programming scheme is plotted along the

y-axis and is in terms of seconds. Three lines are plotted corresponding to different

QoS options available to each task. For example, the top-most line corresponds to a

QoS maximum of 〈4, 3, 4〉 (i.e. there are three QoS dimensions, each having 4, 3 and

4 discrete options respectively).

As it can be seen, the consumed time increases linearly with the number of tasks,

and the slope increases as the number of QoS options to be considered increases.

These results are consistent with the pseudo-polynomial complexity of the dynamic

programming scheme discussed in Section 6.1. Note also that the running times do

not fluctuate, that is they are data independent and very predictable.

It must be noted that, in absolute terms, mrmd consumes several tens of seconds for

a problem of modest size in terms of the number of tasks. As a result, its applicability

in making online decisions in real-time systems is highly questionable with current

hardware.

2Higher the total number of units, finer is the granularity of the resource allocation.



Practical Performance Evaluation of MRMD Algorithms 93

7.3.2 Performance of the Integer Programming Scheme
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Figure 7.11: Running Times for Computing the Optimal Solution using Mixed Integer

Programming

The CPU time consumed by the mixed integer programming package CPLEX on three-

dimension, two-resource problems are shown in Figure 7.11. The graph plots the

running times to find an optimal solution for each of the five runs of different sizes.

The results are shown as a scatter-plot rather than as an average of running times

due to their high degree of variability. For example, among the five problems with

15 tasks having a QoS maximum of 〈4, 3, 4〉, the running times were 0.59, 0.69, 2.43,

2.79 and 34.91 seconds. This indicates that subtle differences in the specific utility

and resource values of set-points can drastically increase the size of the traversed

search space. Note that the distribution of the running times has a heavy tail and

certainly not normal. Therefore we omit plotting the traditional two-sigma intervals.

Optimality Bounds In order to reduce the running times while still maintaining

high-quality results, an upper bound for the deviation from optimality can be speci-

fied. A value of 5% of this bound, for example, instructs the algorithm to teminate as

soon as it reaches a solution that is within 5% of optimum. The running times for the

same problem set as earlier with an optimality bound of 5% is shown in Figure 7.12.

By applying this bound, the worst-case running time was reduced to 31.85 seconds
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Figure 7.12: Running Times for Computing Solutions using Mixed Integer Program-

ming and a Specified Maximum Deviation from the Optimal Solution

versus 107.69 seconds for finding the optimal solution while at the same time main-

taining results which are very close to the optimal solution. The actual quality of the

results measured as a fraction of the optimal result is shown in Figure 7.13. All of

the solutions in our problem set were more than 96.95% of the optimal solution.

Running-Time Limits If a strict upper bound on the solution time is required,

a time limit can also be set. When the time limit for a problem is reached, the

best available solution at that time is returned. The solution quality for a 3-second

timeout is shown in Figure 7.14. Even with this timeout, all of the sample problems

completed with solutions that are at least 93.43% of the optimal. This demonstrates

that reasonable sized problems can be solved using integer programming techniques

when a timeout is used.

7.3.3 Performance of Local Search Scheme amrmd1

We now evaluate the performance of the amrmd1 algorithm. Figures 7.15 and 7.16

correspond to the same set of tasks used to plot Figure 7.10 (i.e. rmax = 〈180, 100〉,
n = {5, 10, 15, 20, 25}).

Figure 7.15 plots the ratio of the solution quality obtained by amrmd1 to the opti-
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Figure 7.13: Solution Quality Using Mixed Integer Programming and a Specified

Maximum Deviation from the Optimal Solution

mal solution obtained by the mrmd dynamic programming algorithm. Two conclusions

are of immediate interest. The first is from Figure 7.15 and shows that amrmd1 ob-

tains more than 96% of the maximum quality obtained by the dynamic programming

algorithm. The second conclusion is from Figure 7.16 which shows that the solutions

can be obtained in the order of tens of milliseconds (instead of tens of seconds for

mrmd). Hence, in brief, amrmd1 obtains better than 96% of the quality obtained by

mrmd but does so three orders of magnitude faster.

We then used amrmd1 to solve much larger problems (where mrmd and mixed integer

programming would take too long to be practical). Figure 7.17 plots the scalability

of amrmd1 with respect to the number of tasks and the size of each task’s quality

space. We used rmax = 〈10000, 10000, 10000〉, n = 8, 16, 32, 64, 128, 256, 512, 1024,

and the number of QoS dimensions ranged from 1 through 6. The run times plotted

along the y-axis are in logarithmic scale. As can be seen, acceptable running times

are obtained for up to 100 tasks. The running times scale with both the number of

tasks and the number of QoS dimensions.

Finally, Figure 7.18 plots the scalability of amrmd1 with respect to the number of

tasks and number of resources. We now use qmax of each task to be 〈3, 3, 3〉, n = 8,

16, 32, 64, 128, 256, 512, 1024. The number of resources ranges from 1 through 6,
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Figure 7.14: Solution Quality with Timeouts in Mixed Integer Programming

where each resource has a very large number of 100000 units. As can be seen, the run

times do not change much at all as the number of resources increases. The primary

reason is that amrmd1 uses a compound resource that combines multiple resources into

a single virtual resource to be allocated. Hence, it scales well and is robust with any

increase in the number of resources. The primary determinant of run times in this

case are the number of tasks and quality space which are considered for allocation.

7.3.4 Comparative Evaluation of amrmd1 and IP

The unpredictable run times and the lack of scalability to large problems clearly make

pure integer programming methods unsuitable for use in on-line admission control.

Even with approximation techniques, such as setting a timeout, high quality results

cannot be achieved within a reasonable amount of time. By contrast, the amrmd1

algorithm obtained solution quality of better than 96% of optimal with a worst-case

execution time of only 90ms on the 30 task example compared to solution qualities

of 93% of optimal using integer programming with a 3 second timeout. In addition,

amrmd1 also uses far less memory than integer programming which uses substantial

amounts of memory as it searches the solution space. The combination of the faster

running times and lower memory consumption make amrmd1 far more suitable for

on-line admission control.
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Figure 7.15: Solution Quality obtained by amrmd1 with rmax = 〈180, 100〉

7.3.5 Sample Results

The following example consists of 15 tasks, an rmax of 〈180, 100〉 and a qmax of 〈4, 3, 4〉.
Note that we only show a single assigned quality point for each task even though there

might be multiple quality points which consume the same amount of resources.

Algorithm amrmd1:

Task 0 : (qid=33,q=<3,3,1>,r=<12,7>,u=0.897889)

Task 1 : (qid=21,q=<2,3,1>,r=<13,3>,u=0.986799)

Task 2 : (qid=20,q=<2,2,4>,r=<10,9>,u=0.635217)

Task 3 : (qid=0,q=<0,0,0>,r=<0,0>,u=0)

Task 4 : (qid=46,q=<4,3,2>,r=<26,8>,u=1)

Task 5 : (qid=33,q=<3,3,1>,r=<7,12>,u=0.476604)

Task 6 : (qid=8,q=<1,2,4>,r=<11,12>,u=0.97287)

Task 7 : (qid=24,q=<2,3,4>,r=<18,11>,u=0.950321)

Task 8 : (qid=9,q=<1,3,1>,r=<18,0>,u=0.904968)

Task 9 : (qid=43,q=<4,2,3>,r=<9,5>,u=0.891014)

Task 10 : (qid=10,q=<1,3,2>,r=<12,2>,u=0.963892)

Task 11 : (qid=5,q=<1,2,1>,r=<11,5>,u=0.881512)

Task 12 : (qid=0,q=<0,0,0>,r=<0,0>,u=0)

Task 13 : (qid=37,q=<4,1,1>,r=<16,14>,u=0.717887)

Task 14 : (qid=16,q=<2,1,4>,r=<17,10>,u=0.907425)
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Figure 7.16: Running Times of amrmd1 with rmax = 〈180, 100〉

Time: 39439us

Total: (11.1864,<180,98>)

Algorithm mrmd:

Task 0 : (<12,7>,0.8979)

Task 1 : (<13,3>,0.9868)

Task 2 : (<7,5>,0.5198)

Task 3 : (<0,0>,0)

Task 4 : (<24,7>,0.9452)

Task 5 : (<7,12>,0.4766)

Task 6 : (<21,4>,0.9457)

Task 7 : (<14,11>,0.8911)

Task 8 : (<18,0>,0.905)

Task 9 : (<9,5>,0.891)

Task 10 : (<12,2>,0.9639)

Task 11 : (<11,5>,0.8815)

Task 12 : (<18,8>,0.4959)

Task 13 : (<13,14>,0.6667)

Task 14 : (<0,17>,0.9074)

Time: 31137433us

Total: (11.37, <179,100>)
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Figure 7.17: Running Times of amrmd1 with the number of resources (m) = 3 and

varying the number of QoS Dimensions.

7.4 Chapter Summary

Using extensive simulation studies, this chapter evaluated the performance of the

algorithms to solve the SRMD and MRMD problems from the previous chapters.

The performance of an algorithm is measured both in terms of its solution quality

and its run-time. A good algorithm must yield both a high solution quality and a

low run-time.

The workload for the simulations were generated using the principles for user-

interfaces described in Chapter 3. Care was taken to ensure that the workloads were

rational and that they exhibited tradeoffs.

For the SRMD algorithms, detailed evaluations of the run-times of the three algo-

rithms and their solution qualities shows that the first near-optimal algorithm using

the convex hulls performs very close to the optimal solution. It also has very prac-

tical run-times that it can even be used on-line. For the MRMD case, as might be

expected, the running times are rather high for the dynamic programming and mixed

integer programming. The adaptation of the mixed integer programming problem,

however, yields near-optimal results with (potentially) significant lower running times.

Finally, the approximation algorithm based on a local search technique yields a solu-
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Figure 7.18: Running Times of amrmd1 with the number of QoS dimensions (d) = 3

and varying the number of resources

tion quality that is less than 4% away from the optimal solution but runs more than

two orders of magnitude faster. In addition, the use of the “virtual resource” allows

this technique to be very scalable and robust as the number of resources required by

each application increases.



Chapter 8

Conclusion and Future Work

This dissertation has made some contributions and opened many avenues for future

work on the management of quality of service.

8.1 Contributions of the Thesis

The main contributions of this thesis include:

An Analytical Framework for Multidimensional QoS Management

By introducing the abstraction of quality index, which maps qualities to indices in a

uniform way, and by the mathematical modeling of QoS tradeoff and resource tradeoff,

we transformed the multi-dimension QoS management problem into a combinatorial

optimization problem which ultimately enabled us to measure QoS quantitatively,

and to analytically plan and allocate resources. We proved that the QoS management

problem is NP-hard.

Our QoS management scheme goes beyond the basic QoS scheme of delivering

service in a prioritized fashion. Instead, our system allows applications and users to

assign values (utilities) to different levels of service that a system can provide. The

QoS management optimization module can then explore fully the QoS tradeoffs and

resource tradeoffs to make resource allocations to these applications so as to maximize

the global utility derived by these systems.

The global objective can be the overall appreciation of the applications in the

101
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system, with or without priority enforcement, or the profit margin. The enhanced

prioritized allocation can prevent greedy users from cheating the system and amassing

resources when accounting is not in place for the services. We also demonstrated that

the problem instance associated with each of those objectives can all be solved with

our approximation or heuristic schemes without modification of the algorithms.

QoS and Resource Tradeoff

In coping with the shortage of QoS support from an end-user point of view, we

proposed a management scheme that empowers the end users to give guidance on the

qualities they care about and the tradeoffs they are willing to make under potential

resource constraints.

We investigated the important issues of QoS tradeoff and resource tradeoff and

demonstrated how they can be used in accommodating user requirements of adaptive

nature.

The notion of application utility is used to quantify the relative merits of various

QoS levels or points. QoS tradeoffs can therefore be made based on application

utilities.

The general resource-quality relation r |=i q for each task is a description of the

application’s resource usages at different levels of quality. The same quality level can

be satisfied in several ways by making tradeoffs among resources.

QoS Specification Interface

The QoS Specification Interface is semantically rich both in terms of expressiveness

and customizability. We proposed and presented some user-interface mechanisms

to facilitate such rich specification acquisition, such as utility templates, saturation

point, satisfaction knee points, and conditional requirement etc., that users can use

to interact easily with the system and to communicate their sophisticated request to

the optimisation module efficiently.

Synthetic Rational Task Profile Generation

We developed a systematic way of generating synthetic task profiles that exhibit all

the properties we expect from real task profiles, in particular QoS tradeoff, resource
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tradeoff, and that quality is non-decreasing with respect to resources. Moreover, the

characterization of task profiles conforms to user interface methodology described in

this thesis.

Fast Approximation Algorithms

We have developed a series of optimization algorithms that tackle the QoS manage-

ment problem.

The first set of algorithms treats the problem of maximizing system utility by allo-

cating a single finite resource to satisfy the QoS requirements of multiple applications

along multiple QoS dimensions. We developed two near-optimal algorithms to solve

this problem. The first yields an allocation within a known distance from the optimal

solution, and the second yields an allocation whose distance bound from the optimal

solution can be explicitly controlled by the QoS manager.

The second set of algorithms deals with apportioning multiple finite resources to

satisfy the QoS needs of multiple applications along multiple QoS dimensions. We

evaluated and compared three strategies. First, dynamic programming and mixed

integer programming compute optimal solutions to this problem but exhibit very large

running times. We then adapted the mixed integer programming problem to yield

near-optimal results with faster running times. Finally, we present an approximation

algorithm based on a local search technique that is less than a few percent (less than

4% in average in the experiments we conducted) from the optimal solution but which

is more than two orders of magnitude faster than the optimal scheme of dynamic

programming. Perhaps more significantly, the local search technique turns out to be

very scalable and robust as the number of resources under management increases.

8.2 Future Research Directions

It would be interesting to conduct experiments where the integer programming pack-

age is combined with an approximation algorithm. This, for example, could be done

by giving the near-optimal result of the approximation algorithm as a starting point

to the integer programming scheme. This might improve the already very good solu-

tion quality of an approximation algorithm with moderate use of extra CPU time. In
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addition, parallel algorithms can be developed to speed up the computation process.

In this thesis, most of the effort has been spent on the mathematical modeling

of QoS management that facilitates QoS tradeoff and resource tradeoff, developing

practical algorithms for optimization, and benchmarking workload that characterizes

or represents QoS tradeoff and resource tradeoff. The next important step is to

subject the system to actual loads from real QoS-aware applications. This means

that existing applications need to be modified or new QoS adaptive applications need

to be developed.

Our QoS management optimization system is essentially centralized within each

domain. When several such domains are connected and thus share resources, a dis-

tributed framework has to be in place to facilitate global QoS management.

This thesis as well as [30, 27, 28] focus on the QoS management with discrete

quality dimensions, whereas [46] and [47] focus on continuous quality dimensions. It

would be useful to combine the two into a unified system.

8.3 Concluding Remarks

We envision an environment where many real-time and non-real-time applications

each with multiple QoS dimensions co-exist in a system with a finite set of resources.

During loaded periods, the system may not have sufficient resources to deliver the

maximum quality possible to every application along each of its QoS dimensions.

Hence, decisions must be made by the underlying resource manager to apportion

available resources to these applications such that a global objective is maximized.

The system can be used to continuously monitor and adjust clients’ level of service in

light of the dynamically changing operational environment of clients and resources.

Our QoS specification allows applications and users to put values on the different

levels of service that the system can provide. When “value” is taken literally, this

means that our model is able to facilitate market-efficient resource distribution. Such

a system has considerable potential, especially in solving bandwidth problems of the

increasingly crowded Internet.



Appendix A

Symbols and Notations

A.1 Symbols in General Use

The following symbols are used throughout the thesis:

Symbol Brief Explanation Page

fij mapping between actual quality and quality indices 10

n number of tasks 13

m number of resources 13

di number of quality dimensions of task Ti 13

T1, . . . , Tn tasks in the system 13

R1, . . . , Rm resources for management 13

Qi1, . . . , Qidi dimensional quality space for Ti 13

R resource space 13

rmax maximum amount of resource for allocation — a vector 13

|=i resource-quality relation, or resource profile for Ti 13

Q1, . . . , Qn quality space for task T1, . . . , Tn 14

ui application utility for Ti 14

IR real numbers 14

qmin
i minimum quality for Ti — a vector 15

qmax
i maximum quality for Ti — a vector 15
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Symbol Brief Explanation Page

u system utility in general 16

uw system utility — weighted sum of application utilities 16

u∗ system utility — minimum utility accrued for a task 16

wi weight for Ti 16

uij dimensional utility of Ti 29

wij dimensional utility weight for Ti 30

gi best-utility function 41

hi best-utility quality selector 41

πk projection of the resource space into its kth dimension 77

A.2 Symbols Used for NP-hard Proof

Symbol Brief Explanation Page

κi1, . . . , κi|Qi| an enumeration of the quality space 36

Nij number of resource usage choices 36

ρij1, . . . , ρijNij an enumeration of the resource usage choices 36

xijk binary variable, xijk = 1 if task Ti has been given quality

point κij and resource consumption ρijk, and xijk = 0

otherwise

36

n number of knapsack items 37

c knapsack capacity 37

pi the profit of adding item i 37

wi the weight of item i 37

xi indicator variable for knapsack item i 38
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A.3 Symbols and Notations Used in the Algorithms

Symbol Brief Explanation Page

v dynamic programming recursive function 43

P number of allocation units in total 43

p units of resource allocated 43(
u
r

)
r-u-pair 44

Ci r-u-pair list; list of function gi’s discontinuity points 44

g◦i convex hull frontier of gi 45

C ′i list of function g◦i ’s discontinuity points 47

L maximum length of Ci 45

Uopt optimal utility 47

Uasrmd1 utility obtained through algorithm asmrd1 47

δi maximum utility difference between adjacent discontinu-

ity points of C ′i

47

χ largest δi 47

Uasrmd2 utility obtained through algorithm asmrd2 49

ε error bound relative to optimal result 49
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