
Deciding Type Equivalence in a Language with

Singleton Kinds

Christopher A. Stone Robert Harper

September 15, 1999

CMU-CS-99-155

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Work on the TILT compiler for Standard ML led us to study a language with singleton kinds: S(A) is the

kind of all types provably equivalent to the type A. Singletons are interesting because they provide a very

general form of de�nitions for type variables and allow �ne-grained control of type computations.

Internally, TILT represents programs using a predicative variant of Girard's F! enriched with singleton

kinds, dependent product and function kinds (� and �), and a sub-kinding relation. An important bene�t

of using a typed language as the representation of programs is that typechecking can detect many common

compiler implementation errors. However, the decidability of typechecking for our particular representation

is not obvious. In order to typecheck a term, we must be able to determine whether two type constructors

are provably equivalent. But in the presence of singleton kinds, the equivalence of type constructors depends

both on the typing context in which they are compared and on the kind at which they are compared.

In this paper we concentrate on the key issue for decidability of typechecking: determining the equivalence

of well-formed type constructors. We show this problem decidable by presenting a sound, complete, and

terminating decision algorithm. These properties are established by a novel Kripke-style logical relations

argument inspired by Coquand's result for type theory.

This research was sponsored in part by the Advanced Research Projects Agency CSTO under the title \The Fox
Project: Advanced Languages for Systems Software," ARPA Order No. C533, issued by ESC/ENS under Contract

No. F19628-95-C-0050.

Keywords: singleton kinds, subkinding, logical relations, type theory

1 Introduction

1.1 Motivation

The TIL compiler for core Standard ML [17] was structured as a series of translations between explicitly-

typed intermediate languages. Each pass of the compiler (e.g., common subexpression elimination or closure

conversion) transformed the program and its type, preserving well-typedness. One advantage of this frame-

work is that typechecking the intermediate representation can detect a wide variety of common compiler

implementation errors. The typing information on terms can also be used to support type-based optimiza-

tions and e�cient data representations; TIL used a type-passing interpretation of polymorphism in which

types were passed and analyzed at run-time [12]. In the future, it should be possible to use such typing

information for annotating binaries with a certi�cation of safety [13, 14].

The results from TIL were very encouraging, but the compiler implementation was ine�cient and could

only handle complete programs written without use of modules. The Fox Project group at Carnegie Mellon

therefore decided to completely re-engineer TIL to produce TILT (TIL Two), a more practical compiler

which could handle separate compilation and the complete SML language.

One challenge in scaling up the compiler was properly handling the propagation of type information. For

example, in the Standard ML module language we can have a structure Set with the signature

sig

type item = int

type set

type setpair = set * set

val empty : set

val insert : set * item -> set

val member : set * item -> bool

val union : setpair -> set

val intersect : setpair -> set

end

From this interface it is apparent that the module Set has three type components: the type Set.item known

to be equal to int, the type Set.set about which nothing is known, and the type Set.set which is the type

of pairs of Set.set's.

There are two important points to note about this example. First, equivalences such as the one between

Set.item and int are open-scope de�nitions available to \the rest of the program", which may not even be

written when this module is compiled. Second, because of type-passing these type components really are

computed and stored by the run-time code. Although it is possible get rid of type de�nitions in signatures

by replacing all references to these components with their de�nitions [16] we do not wish to do so; such

substitutions could substantially increase the number of type computations performed at run-time.

The choice we made was to use an typed intermediate language based on F! with the following kind

structure (recall that kinds classify type constructors):

� A kind T classifying ordinary types;

� Singleton kinds S(A) classifying all types of kind T provably equivalent to A;

� Dependent record kinds classifying records of type constructors and dependent function kinds classi-

fying functions mapping type constructors to type constructors1;

� A sub-kinding relation induced by S(A) � T .

Modules are represented in this language using a phase-splitting interpretation [7, 16]. The main idea is

that modules can be split into type constructor and a term, while signatures split in a parallel way into a

kind and a type. Singleton kinds are used to model de�nitions and type sharing speci�cations in module

1A record of type constructors should not be confused with a record type, which would have kind T . Similarly, functions of
type constructors are not function types, which would also have kind T .

1

signatures, dependent record kinds model the type parts of structure signatures, dependent function kinds

model the type parts of functor signatures, and subkinding models (non-coercive) signature matching.

For example, the kind corresponding to the above signature is a dependent record kind saying that there

are three type components: the �rst component item has kind S(int) because its de�nition is known; the

second component set has kind T because its de�nition is not known; �nally the third component setpair

has kind S(set�set), which takes advantage of the record kind being dependent.

Singletons are used to describe and control the propagation of type de�nitions and sharing in the compiler.

The constructor A has kind S(B) if and only if the constructors A and B are provably equivalent. Thus,

the hypothesis that the variable � has type S(A) essentially says that � is a type variable with de�nition A.

This models open-scope de�nitions in the source language.

Furthermore, singletons provide \partial" de�nitions for variables. If � is a pair of types with kind

S(int)�T this tells us that the �rst component of this pair, �1�, is int. However, this kind tells us

nothing about the identity of the �2�. As in the above example, partial de�nitions allow natural modeling

of de�nitions in a modular system, where some components of a module have known de�nitions and others

remain abstract.

Interestingly, in a language with singleton kinds we can additionally express with delimited scope (closed-

scope) de�nitions. The expression let�:T = int�int in id[�](3; 4) end does not typecheck when expressed as

a function application (��:T:id[�](3; 4))[int�int]; the application of id[�] to a pair of integers is only well-

formed if � is known to be int�int, which is not apparent while checking the abstraction. We can express

this information, however, by annotating the argument with a singleton kind to get the well-formed term

(��:S(int�int):id[�](3; 4))[int�int]. Now let-bindings of types could be directly added to our calculus,

but the general ability to turn types into function arguments (particularly into new arguments of pre-existing

functions) is necessary for a low-level description of type-preserving closure-conversion in the type-passing

framework [11]. It also enables �ner control of when type computations occur at run time, permitting

optimizations such as improved common subexpression elimination of types.

Given that we wish to typecheck our intermediate representation, the question that arises is whether

typechecking is decidable. This question reduces to the decidability of equivalence for well-formed type

constructors. This latter question is non-trivial because the equivalence of two constructors can depend both

on the singletons (de�nitions) in the context and | less obviously | on the kind at which the constructors

are being compared. (See Section 2.2.) The common method of implementing equivalence via context-

insensitive rewrite rules is thus completely inapplicable for our calculus. The goal of this paper is to show

that constructor equivalence is nevertheless decidable.

1.2 Outline

In Section 2 we introduce the ���S� calculus (a formalization of the key features of the type constructors

and kinds of the TILT intermediate representation). We explain some of the more interesting aspects of

this calculus, including the dependency of equivalence on the typing context and the classifying kind. We

show that singletons for constructors of higher kinds are de�nable, and show that every constructor has a

principal (most-speci�c) kind.

In Section 3 we present a sound algorithm for determining equivalence of well-formed constructors. We

were inspired by Coquand's approach to ��-equivalence for a type theory with � types and one universe [3].

Coquand worked with an algorithm which directly decides equivalence, rather than using a con
uent and

strongly-normalizing reduction relation. However, in contrast to Coquand's system we cannot compare

terms by their shape alone; we must take account of both the context and the classi�er. Where Coquand

maintains a set of bound variables, we maintain a full typing context. Similarly, he uses shapes to guide

the algorithm where we maintain a classifying kind. (For example, when he would check whether either

constructor is a lambda-abstraction, we check whether the classifying kind is a function kind.) Although the

natural presentation of our algorithm de�nes a relation of the form � ` A1 , A2 : K, we cannot analyze

the correctness of this algorithm directly. Asymmetries in the formulation preclude a direct proof of such

simple properties as symmetry and transitivity, both of which are immediately evident in Coquand's case.

Instead we analyze a related algorithm which restores symmetry by maintaining two typing context and two

classifying kinds, with the form �1 ` A1 : K1 , �2 ` A2 : K2.

2

Contexts �;� ::= � Empty context

j �; �:K Context extension

Kinds K;L ::= T Kind of types

j S(A) Singleton kind

j ��:K1:K2 Dependent function kind

j ��:K1:K2 Dependent product kind

Constructors A;B;C ::= bi Base types

j �; �; : : : Variables

j ��:K:A Function

j AA0 Application

j hA;A0i Pair

j �iA Projection

Figure 1: Syntax of ���S�

Our main technical result is the proof in Section 4 that the algorithm of Section 3 is both complete and

terminating. Our proof of completeness is inspired by Coquand's use of Kripke logical relations, but our

proof di�ers substantially from his. Our \worlds" are full contexts rather than sets of bound variables. More

importantly, we make use of a novel form of Kripke logical relations in which we employ two worlds, rather

than one.

In Section 5 we use this completeness result to show the correctness of the natural algorithm. This yields

the practical algorithm used in the TILT implementation.

Finally we discuss related work and conclude.

Appendix A contains the full set of rules for the ���S� calculus, and Appendix B contains a collection of

important but standard properties of the calculus.

2 The ���S� calculus

2.1 Overview

The syntax of ���S� is shown in Figure 1. The constants bi of kind T represent base types such as int. As

usual, we use the usual notation of K1�K2 for ��:K1:K2 and K1!K2 for ��:K1:K2 when � is not free in

K2.

There is a natural notion of size for kinds where size(T) = 1, size(S(A)) = 2, and size(��:K:K0) =

size(��:K:K0) = size(K) + size(K0) + 2. The size of a kind is preserved under substitution of terms for

variables.

The declarative rules de�ning the kinding and equivalence system of ���S� are given in Appendix A. For

the most part, these are the usual rules for a dependently-typed lambda calculus with �� equivalence. We

concentrate here on presenting the less common rules.

Since we restrict constructors within singletons to be types (constructors of kind T), we have the following

well-formedness rule for singleton kinds:
� ` A : T

� ` S(A)
:

However, Section 2.3 shows that singletons of constructors of higher kind are de�nable in this language.

There are two introduction rules for singletons:

� ` A : T

� ` A : S(A)

� ` A � B : T

� ` A � B : S(A)

3

and a corresponding elimination rule:
� ` A : S(B)

� ` A � B : T
:

The calculus includes implicit subsumption, where the subkinding relation is generated by the rules

� ` A : T

� ` S(A) � T

� ` A1 � A2 : T

� ` S(A1) � S(A2)

and is lifted to subkinding at � and � kinds with the usual co- and contravariance rules. Under this ordering,

the singleton introduction rule above allows a constructor A of kind T to be viewed as a constructor of the

subkind S(A). Symmetrically, by subsumption any constructor of a singleton kind can be viewed as having

the superkind T .

Constructor equivalence includes � and � rules for functions and pairs. We express the � rules as

extensionality principles:

� ` A1 : ��:K
0:K00

1

� ` A2 : ��:K
0:K00

2

�; �:K0 ` A1� � A2� : K00

� ` A1 � A2 : ��:K
0:K 00

� ` ��:K0:K00

� ` �1A1 � �1A2 : K
0

� ` �2A1 � �2A2 : f�7!�1A1gK
00

� ` A1 � A2 : ��:K
0:K00

The constructor well-formedness rules may be seen as re
exive instances of equivalence rules. For example,

we have the following two non-standard kinding rules corresponding to the extensionality rules:

� ` A : ��:K0:K00
1

�; �:K0 ` A� : K00

� ` A : ��:K0:K00

� ` ��:K0:K00

� ` �1A : K0

� ` �2A : f�7!�1AgK
00

� ` A : ��:K0:K00

Similar rules have previously appeared in the literature, including the non-standard structure-typing rule

of Harper, Mitchell, and Moggi [7], the \VALUE" rules of Harper and Lillibridge's translucent sums [6],

the strengthening operation of Leroy's manifest type system [8], and the \self" rule of Leroy's applicative

functors [9]. In the presence of singletons, these rules give constructors more precise kinds than would

otherwise be possible. (See Section 2.3.)

A number of straightforward properties of the ���S� calculus, used in the following proofs, are given in

Appendix B.

2.2 Examples of Term Equivalence

As mentioned in the introduction, singletons in the context can act as de�nitions and partial de�nitions for

variables. So the provable judgments include:

� : S(bi) ` � � bi : T

� : S(bi) ` h�; bii � hbi; �i : T�T

� : T�S(bi) ` �2� � bi : T

� : ��:T:S(�) ` �1� � �2� : T

� : ��:T:S(�) ` � � h�1�; �1�i : T�T:

In the last two of these equations, the assumption governing � gives a de�nition to �2� (namely �1�) without

specifying what the two equal components actually are.

Singletons behave like terminal types, so by extensionality we can prove equivalences such as:

� : S(bi)!T ` � � ��:S(bi):(�bi) : S(bi)!T

� : T!S(bi) ` � � ��:T:bi : T!T

Notice that in the �rst of these equations, the right-hand side is not simply an �-expansion of the left-hand

side.

4

S(A : T) := S(A)

S(A : S(A0)) := S(A)

S(A : ��:K1:K2) := ��:K1:(S(A� : K2))

S(A : ��:K1:K2) := (S(�1A : K1))�(S(�2A : f�7!�1AgK2))

Figure 2: Encodings of Labelled Singletons

Because of subkinding, constructors do not have unique kinds. The equivalence of two constructors

depends on the kind at which they are compared; they may be equivalent at one kind but not at another.

For example, one cannot prove

` ��:T:� � ��:T:bi : T!T

as the identity function and constant function have distinct behaviors. However, by subsumption these two

functions also have kind S(bi)!T and the judgment

` ��:T:� � ��:T:bi : S(bi)!T

is provable using extensionality.

The classifying kind at which constructors are compared depends on the context of their occurrence. For

example, from this last equation it follows that

� : (S(bi)!T)!T ` �(��:T:�) � �(��:T:bi) : T

2.3 Labelled Singletons

In our calculus S(A) is well-formed if and only if A is of type T . Aspinall [1] has studied equivalence in a

lambda calculus with labelled singletons of the form S(A : K).2 This represents the kind of all constructors

equivalent to A at kind K. Because equivalence depends on the classi�er, the label K in these labelled

singletons does matter. It follows from the examples of the previous section that S(��:T:bi : ��:S(bi):T)

and S(��:T:bi : T!T) are not equivalent; only the former classi�es the identity function ��:T:�.

Our system does not contain such labelled singletons as a primitive notion because they are all de�nable;

Figure 2 gives an inductive de�nition.

For example, if � has kind T!T , then S(� : T!T) is de�ned to be ��:T:S(��). This can be interpreted

as \the kind of all functions which, when applied, yield the same answer as � does". The non-standard

kinding rules mentioned in Section 2.1 are vital in proving that � has this kind.

The following proposition shows that the de�nitions of Figure 2 do have properties analogous to Aspinall's

labelled singletons.

Proposition 2.1

1. Let
 be a substitution mapping variables to terms, extended in the obvious way to constructors and

kinds. Then
(S(A : K)) = S(
A :
K).

2. If � ` A2 : K and � ` A1 : S(A2 : K) then � ` A1 � A2 : K.

3. If � ` A1 � A2 : K then � ` A1 � A2 : S(A1 : K).

4. If � ` A : K then � ` S(A : K) and � ` A : S(A : K).

5. If � ` A : K then � ` S(A : K) � K.

6. If � ` A1 � A2 : K1 and � ` K1 � K2 then � ` S(A1 : K1) � S(A2 : K2).

2Aspinall's notation for our S(A : K) is fAgK. Our S(A) is not the same as Aspinall's unlabelled singleton fAg, but rather
would correspond to fAgT .

5

Proof:

1. By induction on K.

2. By induction on the size of K.

� Case K = T and S(A2 : K) = S(A2). Then � ` A1 � A2 : T by Rule 34.

� Case K = S(B) and S(A2 : K) = S(A2). Then � ` A1 � A2 : T and � ` A2 � B : T , so

� ` A1 � A2 : S(B).

� Case K = ��:K1:K2 and S(A2 : K) = ��:K1:S(A2� : K2). Then �; �:K1 ` A1� : S(A2� : K2). By the
inductive hypothesis, �; �:K1 ` A1� � A2� : K2. Therefore by Rule 30 we have

� ` A1 � A2 : ��:K1:K2.

� K = ��:K1:K2 and S(A2 : K) = (S(�1A2 : K1))�(S(�2A2 : f�7!�1A2gK2)). Then

� ` �1A1 : S(�1A2 : K1) and � ` �2A1 : S(�2A2 : f�7!�1A1gK2). By the inductive hypothesis,

� ` �1A1 � �1A2 : K1 and � ` �2A1 � �2A2 : f�7!�1A1gK2. Therefore by Rule 31 we have
� ` A1 � A2 : ��:K1:K2.

3. By induction on the size of K.

� Case K = T and S(A1 : K) = S(A1), and � ` A1 � A2 : S(A1).

� Case K = S(B) and S(A2 : K) = S(A2). Straightforward.

� Case K = ��:K 0:K 00 and S(A1 : K) = ��:K 0:S(A1� : K 00). Then �; �:K 0 ` A1� � A2� : K 00. By the

inductive hypothesis, �; �:K 0 ` A1� � A2� : S(A1� : K 00). Therefore by Rule 30,
� ` A1 � A2 : ��:K

00:S(A1� : K 00).

� K = ��:K 0:K 00 and S(A1 : K) = (S(�1A1 : K
0))�(S(�2A1 : f�7!�1A1gK

00)). Then
� ` �1A1 � �1A2 : K

0 and � ` �2A1 � �2A2 : f�7!�1A1gK
00. By the inductive hypothesis,

� ` �1A1 � �1A2 : S(�1A1 : K
0) and � ` �2A1 � �2A2 : S(�2A1 : f�7!�1A1gK

00). Therefore by Rule 31

we have � ` A1 � A2 : (S(�1A1 : K
0))�(S(�2A1 : f�7!�1A1gK

00))

(Note the crucial use of extensionality in the � and � cases.)

4. By re
exivity of equivalence, Part 3, and Lemma B.1.

5. By induction on the size of K.

� Case K = T and S(A : K) = S(A). Assume � ` A : T . By Rule 9 we have � ` S(A : T) � T .

� Case K = S(B) and S(A : K) = S(A). Assume � ` A : S(B). Then � ` A � B : T so � ` S(A) � S(B).

� Case K = ��:K1:K2 and S(A : K) = ��:K1:S(A� : K2). Then � ` K1 and �; �:K1 ` A� : K2. By the
inductive hypothesis, �; �:K1 ` S(A� : K2) � K2. Therefore, � ` ��:K1:S(A� : K2) � ��:K1:K2.

� Case K = ��:K 0:K 00 and S(A : K) = (S(�1A : K 0))�(S(�2A : f�7!�1AgK
00)). Then � ` �1A : K 0 so

by the inductive hypothesis, � ` S(�1A : K 0) � K 0. Furthermore, � ` �2A : f�7!�1AgK
00. By the

inductive hypothesis, � ` S(�2A : f�7!�1AgK
00) � f�7!�1AgK

00. Also, by Lemma B.1 and Weakening,

�; �:S(�1A : K 0) ` K 00 � K 00 and by Part 4 �; �:S(�1A : K 0) ` � � �1A : K 0 so by Lemma B.11

�; �:S(�1A : K 0) ` f�7!�1AgK
00 � K 00. Therefore,

� ` (S(�1A : K 0))�(S(�2A : f�7!�1AgK
00)) � ��:K 0:K 00.

6. By induction on the size of K1.

� Case K1 = T or S(A1) and K2 = T or S(A2). S(A1 : K1) = S(A1), S(A2 : K2) = S(A2), and the

desired conclusion follows by Rule 11.

� Case K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 . S(Ai : Ki) = ��:K 0

i:S(Ai� : K 00

i). By inversion

� ` K 0

2 � K 0

1 and �; �:K 0

2 ` K
00

1 � K 00

2 . Now �; �:K 0

2 ` A1� � A2� : K 00

1 . By the inductive hypothesis,
�; �:K 0

2 ` S(A1� : K 00

1) � S(A2� : K 00

2). The conclusion follows by Rule 12.

� Case K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 . S(A1 : K1) = ��:S(�1A1K
0

1 : :)S(�2A1 : f�7!�1A1gK
00

1)

and S(A2 : K2) = ��:S(�1A2K
0

2 : :)S(�2A2 : f�7!�1A2gK
00

2). Now � ` �1A1 � �1A2 : K
0

1 and

� ` �2A1 � �2A2 : f�7!�1A1gK
00

1 . By the inductive hypothesis, � ` S(�1A1 : K
0

1) � S(�1A2 : K
0

2).

Since � ` f�7!�1A1gK
00

1 � f�7!�1A2gK
00

2 , the inductive hypothesis applies yielding
� ` S(�2A1 : f�7!�1A1gK

00

1) � S(�2A2 : f�7!�1A2gK
00

2). (Here it is important that the induction is on

the size of K1 and not by induction on the proof � ` K1 � K2.) The desired result follows by

Weakening and Rule 13.

6

� ` bi * S(bi)

� ` � * S(� : �(�))

� ` ��:K0:A * ��:K0:K00 where �; � : K0 ` A * K00

� ` AA0 * f�7!A0gK00 where � ` A * ��:K0:K00

� ` hA0; A00i * K0�K00 where � ` A0 * K0 and � ` A00 * K00.

� ` �1A * K0 where � ` A * ��:K0:K00

� ` �2A * f�7!�1AgK
0 where � ` A * ��:K0:K00

Figure 3: Algorithm for Principal Kind Synthesis

It is curious to note that in our system, as in Aspinall's, �-rules become admissible in the presence of

singletons. This can be easily seen using Proposition 2.1; for example,

�; �:K2 ` A : K

�; �:K2 ` A : S(A : K)

� ` ��:K2:A : ��:K2:S(A : K)
� ` A2 : K2

� ` (��:K2:A)A2 : S(f�7!A2gA : f�7!A2gK)

� ` (��:K2:A)A2 � f�7!A2gA : f�7!A2gK
:

For convenience we have chosen to formulate the system with a stronger form of the �-rules (though we

conjecture this does not change the system) and we do not use this admissibility result in the remainder of

the paper.

2.4 Principal Kinds

Figure 3 gives an algorithm for determining the principal kind of a well-formed constructor. Correctness is

shown by the following lemma:

Lemma 2.2

If � ` A : L then � ` A * K, � ` A : K, and � ` K � S(A : L).

Proof: [By induction on the proof of the assumption.]

� Case: Rule 18.
� ` ok

� ` bi : T

� ` bi * S(bi) and � ` bi : S(bi). S(bi : T) = S(bi). � ` b � b : T , so � ` S(b) � S(b).

� Case: Rule 19.
� ` ok

� ` � : �(�)

1. � ` � * S(� : �(�)) by de�nition.

2. By Proposition 2.1, � ` S(� : �(�))

3. and � ` � : S(� : �(�)).

4. Thus by re
exivity, � ` S(� : �(�)) � S(� : �(�)).

� Case: Rule 20.
�; �:K 0 ` A : L00

� ` ��:K 0:A : ��:K 0:L00

1. By the inductive hypothesis �; �:K 0 ` A * K 00,

2. �; �:K 0 ` A : K 00,

7

3. and �; �:K 0 ` K 00 � S(A : L00).

4. Then � ` ��:K 0:A * ��:K 0:K 00

5. and � ` ��:K 0:A : ��:K 0:K 00.

6. Now �; �:K 0 ` (��:K 0:A)� � A : L00,

7. so �; �:K 0 ` S(A : L00) � S((��:K 0:A)� : L00) by Proposition 2.1.

8. Since S(��:K 0:A : ��:K 0:L00) = ��:K 0:S((��:K 0:A)� : L00)

9. and � ` K 0 � K 0,

10. we have � ` ��:K 0:K 00 � S(��:K 0:A : ��:K 0:L00).

� Case: Rule 21.
� ` A : ��:L0:L00 � ` A0 : L0

� ` AA0 : f�7!A
0gL00

1. By the inductive hypothesis � ` A * K

2. � ` A : K

3. and � ` K � S(A : ��:L0:L00).

4. Now S(A : ��:L0:L00) = ��:L0:S(A� : L00).

5. By inversion K = ��:K 0:K 00,

6. � ` L0 � K 0,

7. and �; �:L0 ` K 00 � S(A� : L00).

8. Then � ` AA0 * f�7!A0gK 00.

9. By subsumption, � ` A0 : K 0, so

10. � ` AA0 : f�7!A0gK 00.

11. Finally, by Lemma B.4 and Proposition 2.1 we have � ` f�7!A0gK 00 � S(AA0 : f�7!A0gL00).

� Case: Rule 22
� ` A : ��:L0:L00

� ` �1A : L0

1. By the inductive hypothesis, � ` A * K,

2. � ` A : K,

3. and � ` K � S(A : ��:L0:L00).

4. Now S(A : ��:L0:L00) = S(�1A : L0)�S(�2A : f�7!�1AgL
00).

5. By inversion, K = ��:K 0:K 00,

6. and � ` K 0 � S(�1A : L0).

7. Finally, � ` �1A * K 0

8. and � ` �1A : K 0.

� Case: Rule 23
� ` A : ��:L0:L00

� ` �2A : f�7!�1AgL
00

1. By the inductive hypothesis, � ` A * K,

2. � ` A : K,

3. and � ` K � S(A : ��:L0:L00).

4. Now S(A : ��:L0:L00) = S(�1A : L0)�S(�2A : f�7!�1AgL
00).

5. By inversion, K = ��:K 0:K 00,

6. � ` K 0 � S(�1A : L0),

7. and �; �:K 0 ` K 00 � S(�2A : f�7!�1AgL
00).

8. Then � ` �1A : K 0.

8

9. so by Lemma B.4 and Proposition 2.1, � ` f�7!�1AgK
00 � S(�2A : f�7!�1AgL

00).

10. Finally, � ` �2A * f�7!�1AgK
00

11. and � ` �2A : f�7!�1AgK
00.

� Case: Rule 24
� ` ��:L0:L00

� ` A0 : L0

� ` A00 : f�7!A0gL00

� ` hA0

; A
00i : ��:L0

:L
00

1. By the inductive hypothesis, � ` A0 * K 0,

2. � ` A0 : K 0,

3. � ` K 0 � S(A0 : L0),

4. � ` A00 * K 00,

5. � ` A00 : K 00,

6. and � ` K 00 � S(A00 : f�7!A0gL00).

7. Then � ` hA0;A00i * K 0�K 00,

8. and � ` hA0; A00i : K 0�K 00.

9. Now S(hA0;A00i : ��:L0:L00) = S(�1hA
0;A00i : L0)�S(�2hA

0;A00i : f�7!�1hA
0;A00igL00).

10. By Proposition 2.1, � ` S(A0 : L0) � S(�1hA
0;A00i : L0)

11. and � ` S(A00 : f�0 7!A0gL00) � S(�2hA
0;A00i : f�7!�1hA

0; A00igL00).

12. Therefore, � ` K 0�K 00 � S(hA0;A00i : ��:L0:L00).

� Case: Rule 25
� ` A : T

� ` A : S(A)

By the inductive hypothesis, noting that S(A : S(A)) = S(A).

� Case: Rule 27
� ` A : ��:L0:L00

1

�; �:L0 ` A� : L00

� ` A : ��:L0:L00

1. By the inductive hypothesis, � ` A * K,

2. � ` A : K,

3. and � ` K � S(A : ��:L0:L00

1).

4. Now S(A : ��:L0:L00

1) = ��:L0:S(A� : L00

1)

5. so by inversion K = ��:K 0:K 00

6. and � ` L0 � K 0.

7. Also by the inductive hypothesis �; �:L0 ` A� * K 00

2 ,

8. �; �:L0 ` A� : K 00

2 ,

9. and �; �:L0 ` K 00

2 � S(A� : L00).

10. But since the principal kind synthesis algorithm is deterministic and clearly obeys weakening, we have
K 00

2 = f�7!�gK 00 = K 00.

11. Now S(A : ��:L0:L00) = ��:L0:S(A� : L00).

12. Therefore � ` ��:K 0:K 00 � S(A : ��:L0:L00).

� Case: Rule 26.
� ` ��:L0:L00

� ` �1A : L0

� ` �2A : f�7!�1AgL
00

� ` A : ��:L0

:L
00

9

1. First, note that principal kind synthesis never returns a dependent � type.

2. By Lemma B.17 and the inductive hypothesis � ` A * K 0�K 00 and � ` A : K 0�K 00.

3. Also, � ` �1A * K 0,

4. � ` �1A : K 0,

5. and � ` K 0 � S(�1A : L0).

6. Also, � ` �2A * K 00,

7. � ` �2A : K 00,

8. and � ` K 00 � S(�2A : f�7!�1AgL
00).

9. Since S(A : ��:L0:L00) = S(�1A : L0)�S(�2A : f�7!�1AgL
00),

10. � ` K 0�K 00 � S(A : ��:L0:L00).

� Rule 28
� ` A : L2 � ` L2 � L

� ` A : L

The desired result follows from the inductive hypothesis and by Proposition 2.1 to get

� ` S(A : L2) � S(A : L).

3 An Algorithm for Constructor Equivalence

Following Coquand, we present the equivalence test by de�ning a set of rules de�ning algorithmic relations,

shown in Figure 4. It is clear that these rules can be translate directly into a deterministic algorithm, since

for any goal there is at most one algorithmic rule which can apply. Then decidability of the algorithmic

relations corresponds to termination of the algorithm.

Our algorithm is somewhat more involved than that of Coquand because of the context and kind-

dependence of equivalence. We divide the algorithmic constructor equivalence rules into a kind-directed

part and a structure-directed part, while Coquand needs only structural comparison. Our weak head nor-

malization includes looking for de�nitions in the context. We have also extended the algorithm in the natural

fashion to handle � types, pairing, and projection.

De�ne an elimination context to be a series of applications to and projections from \�", which we call

the context's hole. If E is such a context, then E[A] represents the constructor resulting by replacing the

hole in E with A. If a constructor is either of the form E[�] or of the form E[bi] then we will call this a path

and denote it by p.

E ::= �

j EA

j �1E

j �2E

The kind extraction relation � ` p " K attempts to determine a kind for a path by taking the kind of

the head variable or constant and doing appropriate substitutions and projections. A path is said to have a

de�nition if its extracted kind is a singleton kind S(B); in this case we say B is the de�nition of the path.

The extracted kind is not always the most precise kind. For example, �:T ` � " T but the principal type

of � in this context would be S(�). We must show that given a well-formed path, kind extraction succeeds

and returns a valid kind for this path using induction on the well-formedness proof for the path (with a

strengthened induction hypothesis).

Lemma 3.1

If � ` p : K then � ` p " L, � ` p : L, and � ` S(p : L) � K .

Proof: By induction on the proof of the hypothesis.

10

Kind Extraction

� ` bi " T

� ` � " �(�)

� ` �1p " K1 if � ` p " ��:K1:K2

� ` �2p " f� 7!�1pgK2 if � ` p " ��:K1:K2

� ` pA " f� 7!AgK2 if � ` p " ��:K1:K2

Weak head reduction

� ` E[(��:K:A)A0]; E[f�7!A0gA]

� ` E[�1hA1; A2i]; E[A1]

� ` E[�2hA1; A2i]; E[A2]

� ` E[p]; E[B] if � ` p " S(B)

Weak head normalization

� ` A + B if � ` A; A0 and � ` A0 + B

� ` A + A otherwise

Algorithmic constructor equivalence

�1 ` A1 : T , �2 ` A2 : T if �1 ` A1 + p1, �2 ` A2 + p2, �1 ` p1 " T $ �2 ` p2 " T

�1 ` A1 : S(B1), �2 ` A2 : S(B2) always

�1 ` A1 : ��:K1:L1 , �2 ` A2 : ��:K2:L2 if �1; �:K1 ` A1� : L1 , �2; �:K2 ` A2� : L2
�1 ` A1 : ��:K1:L1 , �2 ` A2 : ��:K2:L2 if �1 ` �1A1 : K1 , �2 ` �1A2 : K2, and

�1 ` �2A1 : f�7!�1A1gL1 , �2 ` �2A2 : f�7!�1A2gL2

Algorithmic path equivalence

�1 ` bi " T $ �2 ` bj " T if i = j

�1 ` � " �1(�)$ �2 ` � " �2(�) always

�1 ` p1A1 " f�7!A1gL1 $ if �1 ` p1 " ��:K1:L1 $ �2 ` p2 " ��:K2:L2,

�2 ` p2A2 " f�7!A2gL2 and �1 ` A1 : K1 , �2 ` A2 : K2.

�1 ` �1p1 " K1 $ �2 ` �1p2 " K2 if �1 ` p1 " ��:K1:L1 $ �2 ` p2 " ��:K2:L2.

�1 ` �2p1 " f�7!�1p1gL1 $ if �1 ` p1 " ��:K1:L1 $ �2 ` p2 " ��:K2:L2
�2 ` �2p2 " f�7!�1p2gL2

Algorithmic kind equivalence

�1 ` T , �2 ` T always

�1 ` S(A1), �2 ` S(A2) if �1 ` A1 : T , �2 ` A2 : T

�1 ` ��:K1:L1 , �2 ` ��:K2:L2 if �1 ` K1 , �2 ` K2 and �1; �:K1 ` L1 , �2; �:K2 ` L2
�1 ` ��:K1:L1 , �2 ` ��:K2:L2 if �1 ` K1 , �2 ` K2 and �1; �:K1 ` L1 , �2; �:K2 ` L2

Figure 4: Algorithmic Relations

� Case: Rule 18. p = bi.

1. Then � ` bi " T and S(bi : T) = S(bi).

2. By Rule 18, � ` bi : T

3. and by Rule 9, � ` S(bi) � T .

� Case: Rule 19. p = �.

1. Then � ` � " �(�).

2. By Rule 19 � ` � : �(�),

3. and by Proposition 2.1 Part 5, � ` S(� : �(�)) � �(�).

� Case: Rule 21.
� ` p : ��:K 0:K 00 � ` A0 : K 0

� ` pA0 : f�7!A0gK 00

11

1. By the inductive hypothesis, � ` p " ��:L0:L00,

2. � ` p : ��:L0:L00, and

3. � ` S(p : ��:L0:L00) � ��:K 0:K 00.

4. Then � ` pA0 " f�7!A0gL00.

5. Since S(p : ��:L0:L00) = ��:L0:S(p� : L00),

6. we have by inversion of Rule 12 that � ` K 0 � L0 and �; �:K 0 ` S(p� : L00) � K 00.

7. By subsumption, � ` A0 : L0

8. and hence � ` pA0 : f�7!A0gL00 by Rule 21.

9. Finally, by Lemma B.4 we have � ` S(pA0 : f�7!A0gL00) � f�7!A0gK 00.

� Case: Rule 22.
� ` p : ��:K 0:K 00

� ` �1p : K 0

1. By the inductive hypothesis, � ` p " ��:L0:L00,

2. � ` p : ��:L0:L00, and

3. � ` S(p : ��:L0:L00) � ��:K 0:K 0.

4. Then � ` �1p " L
0,

5. and by Rule 22, � ` �1p : L
0.

6. Since S(p : ��:L0:L00) = S(�1p : L
0)�S(�2p : f�7!�1pgL

00),

7. by inversion of rule 13 we have � ` S(�1p : L
0) � K 0.

� Case: Rule 23.
� ` p : ��:K 0:K 00

� ` �2p : f�7!�1pgK 0

1. By the inductive hypothesis, � ` p " ��:L0:L00,

2. � ` p : ��:L0:L00, and

3. � ` S(p : ��:L0:L00) � ��:K 0:K 00.

4. Then � ` �2p " f�7!�1pgL
00,

5. and � ` �2p : f�7!�1pgL
00 by Rule 23.

6. Since S(p : ��:L0:L00) = S(�1p : L
0)�S(�2p : f�7!�1pgL

00),

7. by inversion of Rule 13 �; �:S(�1p : L
0) ` S(�2p : f�7!�1pgL

00) � K 00.

8. Then � ` �1p : S(�1p
0 : L0)

9. so by the Substitution Lemma B.4 we have � ` S(�2p : f�7!�1pgL
00) � f�7!�1pgK

00.

� Case: Rule 25
� ` p : T

� ` p : S(p)

1. By the inductive hypothesis, � ` p " L,

2. � ` p : L,

3. and � ` S(p : L) � T .

4. Thus L is either T or a singleton, and S(p : L) = S(p).

5. and by re
exivity, � ` S(p) � S(p).

� Case: Rule 26.
� ` ��:K 0:K 00

� ` �1p : K
0

� ` �2p : f�7!�1pgK
00

� ` p : ��:K 0:K 00

1. By Lemma B.17 and the inductive hypothesis, � ` p " ��:L0:L00,

2. � ` p : ��:L0:L00,

12

3. � ` �1p " L
0,

4. � ` �1p : L
0,

5. � ` S(�1p : L
0) � K 0,

6. � ` �2p " f�7!�1pgL
00,

7. � ` �2p : f�7!�1pgL
00,

8. and � ` S(�2p : f�7!�1pgL
00) � f�7!�1pgK

00.

9. Now to show that � ` S(p : ��:L0:L00) � ��:K 0:K 00

10. it remains to show that �; �:S(�1p : L
0) ` S(�2p : f�7!�1pgL

00) � K 00.

11. But �; �:S(�1p : L
0) ` f�7!�1pgK

00 � K 00,

12. so the desired result follows from Line 8 and transitivity.

� Case: Rule 27.
� ` p : ��:K 0:K 00

1

�; �:K 0 ` p� : K 00

� ` p : ��:K 0:K 00

1. By the inductive hypothesis, � ` p " ��:L0:L00,

2. � ` p : ��:L0:L00,

3. and � ` (��:L0:S(p� : L00)) � ��:K 0:K 00

1 .

4. By inversion, � ` K 0 � L0.

5. By the inductive hypothesis, and determinacy and weakening of the kind extraction algorithm,
�; �:K 0 ` p� " L00

6. and �; �:K 0 ` S(p� : L00) � K 00.

7. Therefore, � ` ��:L0:S(p� : L00) � ��:K 0:K 00.

� Case: Rule 28.
� ` p : K1 � ` K1 � K2

� ` p : K2

1. By the inductive hypothesis, � ` p " L,

2. � ` p : L,

3. and � ` S(p : L) � K1.

4. By transitivity, � ` S(p : L) � K2.

Corollary 3.2

If � ` E[p] : K and � ` p " S(A) then � ` E[p] � E[A] : K.

Proof:

1. By Lemma 3.1, � ` E[p] " L,

2. � ` E[p] : L,

3. and � ` S(E[p] : L) � K.

4. By the determinacy of kind extraction, this can be reconciled with � ` p " S(A) only if E = � and L = S(A).

5. Thus by Rule 34, � ` p � A : T .

6. Now S(E[p] : L) = S(p).

7. By inversion of subkinding, either K = T or K = S(A0) with � ` p � A0 : T .

8. In either case, � ` p � A : K.

9. That is, � ` E[p] � E[A] : K as desired.

13

The weak head reduction relation � ` A; B contracts the head �-redex of A, if such a redex exists.

Otherwise, when the head of A is a path with a de�nition reduction replaces the head with the de�nition.

Weak head normalization � ` A + B repeatedly applies weak head reduction to A until a weak head

normal form is found. Weak head reduction and weak head normalization are deterministic, since the head

�-redex is always unique if one exists, and a path can have at most one pre�x with a de�nition.

The algorithmic term equivalence relation

�1 ` A1 : K1 , �2 ` A2 : K2

is intended to model the declarative equivalence �1 ` A1 � A2 : K1, when ` �1 � �2 and �1 ` K1 � K2.

The algorithmic path equivalence relation

�1 ` p1 " K1 $ �2 ` p2 " K2

will be shown to implement constructor equality for head normal paths when ` �1 � �2. As a notational

convenience, this relation explicitly includes the extracted kinds of the two paths being compared.

Lemma 3.3

If �1 ` A1 " K1 $ �2 ` A2 " K2 then �1 ` A1 " K1 and �2 ` A2 " K2.

Finally, the algorithmic kind equivalence relation

�1 ` K1 , �2 ` K2

determines whether two kinds are equivalent given ` �1 � �2. This easily reduces to checking the equivalence

of constructors appearing within singleton kinds.

To prove soundness of this equivalence algorithm, we �rst prove that weak-head normalization preserves

equivalence.

Proposition 3.4

If � ` E[(��:L:A)A0] : K then � ` E[(��:L:A)A0] � E[f�7!A0gA] : K

Proof: By induction on the given derivation.

� Case:
� ` ��:L0:A : ��:K 0:K 00 � ` A0 : K 0

� ` (��:L0:A)A0 : f�7!A0gK 00

where E = �.

1. Using Proposition B.16 and the correctness of principal kind synthesis we have �; �:L0 ` A * L00,

2. �; �:L0 ` A : L00,

3. � ` ��:L0:A * ��:L0:L00,

4. � ` ��:L0:A : ��:L0:L00,

5. and (using Proposition 2.1) � ` ��:L0:L00 � ��:K 0:K 00.

6. By inversion, � ` K 0 � L0

7. and �; �:K 0 ` L00 � K 00.

8. By subsumption, � ` A0 : L0.

9. Thus � ` (��:L:A)A0 � f�7!A0gA : f�7!A0gL00

10. By Substitution � ` f�7!A0gL00 � f�7!A0gK 00.

11. Therefore by subsumption we have � ` (��:L:A)A0 � f�7!A0gA : f�7!A0gK 00

� All other cases follow by structural rules and re
exivity of declarative equivalence.

14

Proposition 3.5

1. If � ` E[�1hA
0; A00i] : K then � ` E[�1hA

0; A00i] � E[A0] : K.

2. If � ` E[�2hA
0; A00i] : K then � ` E[�2hA

0; A00i] � E[A00] : K.

3. If � ` hA0; A00i : ��:K0:K00 then � ` A0 : K0 and � ` A00 : f�7!A0gK00.

Proof:

1. � Case:
� ` hA0;A00i : ��:K 0:K 00

� ` �1hA
0;A00i : K 0

where E = �.

(a) Inductively by Part 3, � ` A0 : K 0

(b) and � ` A00 : f�7!A0gK 00.

(c) The desired result follows by Rule 32.

� The remaining cases follow by structural rules and re
exivity.

2. � Case:
� ` hA0;A00i : ��:K 0:K 00

� ` �2hA
0;A00i : f�7!�1hA

0;A00igK 00

where E = �.

(a) Inductively by Part 3, � ` A0 : K 0

(b) and � ` A00 : f�7!A0gK 00.

(c) By Rule 33, � ` �2hA
0;A00i : f�7!A0gK 00.

(d) As in Part 1, � ` E[�1hA
0;A00i] � E[A0] : K.

(e) So by Lemma B.11 � ` f�7!�1hA
0;A00igK 00 � f�7!A0gK 00.

(f) Thus by subsumption we have � ` �2hA
0;A00i : f�7!�1hA

0;A00igK 00.

� The remaining cases follow by structural rules and re
exivity.

3. � Case:
� ` ��:K 0:K 00

� ` A1 : K
0

� ` A2 : f�7!K 0gK 00

� ` hA1;A2i : ��:K
0:K 00

Obvious.

� Case:
� ` ��:K 0:K 00

� ` �1hA
0;A00i : K 0

� ` �2hA
0;A00i : f�7!�1hA

0;A00igK 00

� ` hA0;A00i : ��:K 0:K 00

(a) Inductively by Part 1, � ` �1hA
0;A00i � A0 : K 0.

(b) Inductively by Part 2, � ` �2hA
0;A00i � A00 : f�7!�1hA

0;A00igK 00.

(c) By Lemma B.11, � ` f�7!�1hA
0;A00igK 00 � f�7!A0gK 00.

(d) Thus by subsumption and Lemma B.1, � ` A0 : K 0

(e) and � ` A00 : f�7!A0gK 00.

� Case:
� ` hA0;A00i : K1

� ` K1 � ��:K 0:K 00

� ` hA0;A00i : ��:K 0:K 00

(a) By inversion, K1 = ��:K 0

1:K
00

1 ,

(b) � ` K 0

1 � K 0,

(c) and �; �:K 0

1 ` K
00

1 � K 00.

(d) By the inductive hypothesis, � ` A0 : K 0

1

(e) and � ` A00 : f�7!A0gK 00

1 .

15

(f) By Lemma B.4, � ` f�7!A0gK 00

1 � f�7!A0gK 00.

(g) Then the desired results follow by subsumption.

Corollary 3.6

If � ` A : K and � ` A + B then � ` A � B : K.

Proof: By transitivity and re
exivity of declarative equivalence, it su�ces to show that if � ` A : K and � ` A; B

then � ` A � B : K. But all possibilities for the reduction step are covered by Lemma 3.1, Proposition 3.4, and

Proposition 3.5.

Theorem 3.7 (Soundness)

1. If ` �1 � �2, �1 ` K1 � K2, �1 ` A1 : K1, �2 ` A2 : K2, and �1 ` A1 : K1 , �2 ` A2 : K2 then

�1 ` A1 � A2 : K1.

2. If ` �1 � �2, �1 ` p1 : L1, �2 ` p2 : L2, and �1 ` p1 " K1 $ �2 ` p2 " K2 then �1 ` K1 � K2 and

�1 ` p1 � p2 : K1.

3. If ` �1 � �2, �1 ` K1, �2 ` K2, and �1 ` K1 , �2 ` K2 then �1 ` K1 � K2.

Proof: Parts 1 and 2 follow by simultaneous induction on the algorithmic judgments and by cases on the last step

in the algorithmic derivation. We omit the proof of Part 3, which follows directly by Part 1 and induction.

1. � Case: �1 ` A1 : T , �2 ` A2 : T because �1 ` A1 + p1, �2 ` A2 + p2, and �1 ` p1 " T $ �2 ` p2 " T .

(a) By Corollary 3.6, �1 ` A1 � p1 : T

(b) and �2 ` A2 � p2 : T .

(c) By Corolllary B.13 �1 ` A2 � p2 : T .

(d) By Lemma B.1, �1 ` p1 : T

(e) and �2 ` p2 : T .

(f) By the inductive hypothesis, �1 ` p1 � p2 : T .

(g) By symmetry and transitivity of equivalence therefore, �1 ` A1 � A2 : T .

� Case: �1 ` A1 : S(B1), �2 ` A2 : S(B2).

(a) By Rule 34, �1 ` A1 � B1 : T

(b) and �2 ` A2 � B2 : T .

(c) By inversion of Rule 15, �1 ` B1 � B2 : T .

(d) By symmetry, transitivity, and Corollary B.13, �1 ` A1 � A2 : T .

(e) By Rule 35 �1 ` A1 � A2 : S(A1).

(f) But � ` S(A1) � S(B1)

(g) so by subsumption �1 ` A1 � A2 : S(B1).

� Case: �1 ` A1 : ��:K1:L1 , �2 ` A2 : ��:K2:L2 because �1; �:K1 ` A1� : L1 , �2; �:K2 ` A2� : L2.

(a) Since ` �1; �:K1 � �2; �:K2,

(b) �1; �:K1 ` A1� : L1,

(c) �2; �:K2 ` A2� : L2,

(d) and �1; �:K1 ` L1 � L2,

(e) the inductive hypothesis applies, yielding �1; �:K1 ` A1� � A2� : L1.

(f) Thus by Rule 30, �1 ` A1 � A2 : ��:K1:L1.

� �1 ` A1 : ��:K1:L1 , �2 ` A2 : ��:K2:L2 because �1 ` �1A1 : K1 , �2 ` �1A2 : K2, and

�1 ` �2A1 : f�7!�1A1gL1 , �2 ` �2A2 : f�7!�1A2gL2.

(a) Since �1 ` �1A1 : K1

(b) �2 ` �1A2 : K2,

(c) and by inversion �1 ` K1 � K2,

(d) by the inductive hypothesis we have �1 ` �1A1 � �1A2 : K1.

(e) By Lemma B.11, �1 ` f�7!�1A1gL1 � f�7!�1A2gL2.

16

(f) Then �1 ` �2A1 : f�7!�1A1gL1

(g) and �2 ` �2A2 : f�7!�1A2gL2.

(h) By the inductive hypothesis, �1 ` �2A1 � �2A2 : f�7!�1A1gL1.

(i) By Corollary B.13 and Rule 31, �1 ` A1 � A2 : ��:K1:L1.

2. � Case: �1 ` bi " T $ �2 ` bi " T .

By Lemma B.1, �1 ` ok. Thus by Rule 38, �1 ` bi � bi : T .

� Case: �1 ` � " �1(�)$ �2 ` � " �2(�).

By Lemma B.1 and Rule 39, �1 ` � � � : �1(�).

� Case: �1 ` p1A1 " f�7!A1gL
00

1 $ �2 ` p2A2 " f�7!A2gL
00

2 because

�1 ` p1 " ��:L
0

1:L
00

1 $ �2 ` p2 " ��:L
0

2:L
00

2 and �1 ` A1 : L
0

1 , �2 ` A2 : L
0

2.

(a) By Lemma B.17, �1 ` p1 : ��:K
0

1:K
00

1 ,

(b) �1 ` A1 : K
0

1,

(c) �2 ` p2 : ��:K
0

2:K
00

2 ,

(d) and �2 ` A2 : K
0

2.

(e) By the inductive hypothesis, �1 ` ��:L0

1:L
00

1 � ��:L0

2:L
00

2 .

(f) and �1 ` p1 � p2 : ��:L
0

1:L
00

1 .

(g) By Lemma 3.1, �1 ` S(p1 : ��:L
0

1:L
00

1) � ��:K 0

1:K
00

1

(h) and �2 ` S(p2 : ��:L
0

2:L
00

2) � ��:K 0

2:K
00

2 .

(i) Thus �1 ` K
0

1 � L0

1

(j) and �2 ` K
0

2 � L0

2.

(k) By subsumption then, �1 ` A1 : L
0

1

(l) and �2 ` A2 : L
0

2.

(m) The induction hypothesis applies, and so �1 ` A1 � A2 : L
0

1.

(n) Thus �1 ` p1A1 � p2A2 : f�7!A1gL
00

1

(o) and by Lemma B.11, �1 ` f�7!A1gL
00

1 � f�7!A2gL
00

2 .

� Case: �1 ` �1p1 " K1 $ �2 ` �1p2 " K2 because �1 ` p1 " ��:K1:L1 $ �2 ` p2 " ��:K2:L2

(a) By Lemma B.17 the inductive hypothesis applies,

(b) so �1 ` ��:K1:L1 � ��:K2:L2

(c) and �1 ` p1 � p2 : ��:K1:L1.

(d) Thus �1 ` �1p1 � �1p2 : K1

(e) and by inversion, �1 ` K1 � K2.

� Case: �1 ` �2p1 " f�7!�1p1gL1 $ �2 ` �2p2 " f�7!�1p2gL2 because

�1 ` p1 " ��:K1:L1 $ �2 ` p2 " ��:K2:L2.

(a) By Lemma B.17 the inductive hypothesis applies,

(b) so �1 ` ��:K1:L1 � ��:K2:L2

(c) and �1 ` p1 � p2 : ��:K1:L1.

(d) Thus �1 ` �2p1 � �2p2 : f�7!�1p1gL1.

(e) �1 ` �1p1 � �1p2 : K1

(f) So by Lemma B.11, �1 ` f�7!�1p1gL1 � f�7!�1p2gL2

A key aspect of this algorithm is that it can easily be shown to obey symmetry and transitivity properties

necessary for the decidability proof. It is for this purpose that the algorithm maintains two contexts and

two classi�ers. (Section 5 shows that this redundancy can be eliminated in an actual implementation.)

Lemma 3.8 (Algorithmic PER Properties)

1. If �1 ` A1 : K1 , �2 ` A2 : K2 then �2 ` A2 : K2 , �1 ` A1 : K1.

2. If �1 ` A1 : K1 , �2 ` A2 : K2 and �2 ` A2 : K2 , �3 ` A3 : K3 then

�1 ` A1 : K1 , �3 ` A3 : K3.

17

3. If �1 ` A1 " K1 $ �2 ` A2 " K2 then �2 ` A2 " K2 $ �1 ` A1 " K1.

4. If �1 ` A1 " K1 $ �2 ` A2 " K2 and �2 ` A2 " K2 $ �3 ` A3 " K3 then

�1 ` A1 " K1 $ �3 ` A3 " K3.

5. If �1 ` K1 , �2 ` K2 then �2 ` K2 , �1 ` K1.

6. If �1 ` K1 , �2 ` K2 and �2 ` K2 , �3 ` K3 then �1 ` K1 , �3 ` K3.

Proof Sketch: By induction on execution of the algorithm.

4 Completeness and Termination

To show the completeness and termination for the algorithm we de�ne a collection of Kripke-style logical

relations, shown in Figures 5, 6, and 7. The strategy for proving completeness of the algorithm is to de�ne the

logical relations, show that logically-related constructors are related by the algorithm, and �nally show that

provably-equivalent constructors are logically related. Using completeness we can then show the algorithm

terminates for all well-formed inputs.

We use the notation � to denote a Kripke world. Worlds are restricted to contexts containing no duplicate

bound variables; the partial order � on worlds is simply the pre�x ordering.

The logical kind validity relation (�;K)valid is indexed by the world � and is well-de�ned by induction

on the size of kinds. Similarly, the logical constructor validity relation (�;A;K)valid is indexed by a �

and de�ned by induction on the size of K, which must itself be logically valid.

In addition to validity relations, we have logically-de�ned binary equivalence relations between (logically

valid) types and terms. The unusual part of these relations is that rather than being a binary relation indexed

by a world, they are relations between two kinds or constructors which have been determined to be logically

valid under potentially di�erent worlds. Thus the form of the equivalence of kinds is (�1;K1) is (�2;K2)

and the form of the equivalence on constructors is (�1;A1;K1) is (�2;A2;K2). With this modi�cation,

the logical relations are otherwise de�ned in a reasonably familiar manner. At the base and singleton kinds

we impose the algorithmic equivalence as the de�nition of the logical relation. At higher kinds we use a

Kripke-style logical relations interpretation of � and �.

With these de�nitions in hand we construct some derived relations. The relation (�1;K1 � L1) is

(�2;K2 � L2) is de�ned to satisfy the following \subsumption-like" behavior:

(�1;A1;K1) is (�2;A2;K2)

(�1;K1 � L1) is (�2;K2 � L2)

(�1;A1;L1) is (�2;A2;L2)

Finally, we have validity and equivalence relations on environments (substitutions mapping variables to

constructors) which are de�ned by pointwise validity and pointwise equivalence.

We �rst give some basic properties of the algorithm and logical relations.

Lemma 4.1 (Weakening)

1. If �;�00 ` A; B and dom(�0) \ dom(�;�00) = ; then �;�0;�00 ` A; B

2. If �;�00 ` A + p and dom(�0) \ dom(�;�00) = ; then �;�0;�00 ` A + p.

3. If �;�00 ` A " K and dom(�0) \ dom(�;�00) = ; then �;�0;�00 ` A " K.

4. If �1;�
00
1 ` A1 : K1 , �2;�

00
2 ` A2 : K2, dom(�

0
1) \ dom(�1;�

00
1) = ;, and dom(�02) \ dom(�2;�

00
2) = ;

then �1;�
0
1;�

00
1 ` A1 : K1 , �2;�

0
2;�

00
2 ` A2 : K2.

5. If �1;�
00
1 ` A1 " K1 $ �2;�

00
2 ` A2 " K2, dom(�

0
1) \ dom(�1;�

00
1) = ;, and dom(�02) \ dom(�2;�

00
2) = ;

then �1;�
0
1
;�00

1
` A1 " K1 $ �2;�

0
2
;�00

2
` A2 " K2.

18

� (�1;K1)valid i�

1. { K1 = T

{ Or, K1 = S(A1) and (�1;A1; T) valid

{ Or, K1 = ��:K 0

1:K
00

1 and (�1;K
0

1)valid and 8�0

1 � �1;�
00

1 � �1 if (�0

1;A1;K
0

1) is (�00

1 ;A2;K
0

1)
then (�0

1; f�7!A1gK
00

1) is (�00

1 ; f�7!A2gK
00

1)

{ Or, K1 = ��:K 0

1:K
00

1 and (�1;K
0

1)valid and 8�0

1 � �1;�
00

1 � �1 if (�0

1;A1;K
0

1) is (�00

1 ;A2;K
0

1)

then (�0

1; f�7!A1gK
00

1) is (�00

1 ; f�7!A2gK
00

1)

� (�1;K1) is (�2;K2) i�

1. (�1;K1) valid and (�2;K2)valid.

2. And,

{ K1 = T and K2 = T

{ Or, K1 = S(A1) and K2 = S(A2) and (�1;A1; T) is (�2;A2;T)

{ Or, K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 and (�1;K
0

1) is (�2;K
0

2) and 8�
0

1 � �1;�
0

2 � �2 if
(�0

1;A1;K
0

1) is (�0

2;A2;K
0

2) then (�0

1; f�7!A1gK
00

1) is (�0

2; f�7!A2gK
00

2)

{ Or, K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 and (�1;K
0

1) is (�2;K
0

2) and 8�
0

1 � �1;�
0

2 � �2 if

(�0

1;A1;K
0

1) is (�0

2;A2;K
0

2) then (�0

1; f�7!A1gK
00

1) is (�0

2; f�7!A2gK
00

2)

� (�1;K1 � L1) is (�2;K2 � L2) i�

1. 8�0

1 � �1;�
0

2 � �2 if (�0

1;A1;K1) is (�0

2;A2;K2) then (�0

1;A1;L1) is (�0

2;A2;L2).

Figure 5: Logical Relations on Kinds

� (�;A;K1)valid i�

1. (�;K1)valid

2. And,

{ K1 = T and � ` A : T , � ` A : T .

{ Or, K1 = S(B) and (�;A;T) is (�;B;T).

{ Or, K1 = ��:K:L, and 8�0 � �;�00 � � if (�0;B0;K) is (�00;B00;K) then

(�0;AB0; f�7!B0gL) is (�00;AB00; f�7!B00gL).

{ Or, K1 = ��:K:L, (�;�1A;K)valid and (�;�2A; f�7!�1AgL)valid

� (�1;A1;K1) is (�2;A2;K2) i�

1. (�1;K1) is (�2;K2)

2. And, (�1;A1;K1)valid and (�2;A2;K2)valid

3. And,

{ K1 = K2 = T and �1 ` A1 : T , �2 ` A2 : T .

{ Or, K1 = S(B1), K2 = S(B2), and (�1;A1;T) is (�2;A2;T)

{ Or, K1 = ��:K0
1:K

00
1 , K2 = ��:K0

2:K
00
2 , and 8�

0
1 � �1;�

0
2 � �2 if

(�0
1;B1;K

0
1) is (�

0
2;B2;K

0
2) then (�0

1;A1B1; f�7!B1gK
00
1) is (�

0
2;A2B2; f�7!B2gK

00
2).

{ Or, K1 = ��:K0
1:K

00
1 , K2 = ��:K0

2:K
00
2 , (�1;�1A1;K

0
1) is (�2;�1A2;K

0
2) and

(�1;�2A1; f�7!�1A1gK
00
1) is (�2;�2A2; f�7!�1A2gK

00
2)

Figure 6: Logical Relations on Constructors

19

� (�;
; �)valid i�

1. 8� 2 dom(�): (�;
�;
(�(�)))valid.

� (�1;
1; �1) is (�2;
2; �2) i�

1. (�1;
1; �1)valid and (�2;
2; �2)valid

2. And, 8� 2 dom(�1) = dom(�2): (�1;
1�;
1(�1�)) is (�2;
2�;
2(�2�)).

Figure 7: Logical Relations on Substitutions

6. If �1;�
00
1
` K1 , �2;�

00
2
` K2, dom(�

0
1
) \ dom(�1;�

00
1
) = ;, and dom(�0

2
) \ dom(�2;�

00
2
) = ; then

�1;�
0
1
;�00

1
` K1 , �2;�

0
2
;�00

2
` K2.

Lemma 4.2 (Monotonicity)

1. If (�1;K1)valid and �0
1
� �1 then (�0

1
;K1)valid.

2. If (�1;K1) is (�2;K2), �
0
1
� �1, and �0

2
� �2 then (�0

1
;K1) is (�0

2
;K2).

3. If (�1;K1 � L1) is (�2;K2 � L2), �
0
1 � �1, and �0

2 � �2 then (�0
1;K1 � L1) is (�0

2;K2 � L2).

4. If (�1;A1;K1) is (�2;A2;K2), �
0
1 � �1, and �0

2 � �2 then (�0
1;A1;K1) is (�0

2;A2;K2).

5. If (�1;A1;K1)valid and �0
1 � �1 then (�0

1;A1;K1)valid.

6. If (�1;
1; �1) is (�2;
2; �2), �
0
1 � �1, and �0

2 � �2 then (�0
1;
1; �1) is (�0

2;
2; �2)

We next give a technical lemma which shows that logical equivalence of kinds is enough to get logical

subkinding.

Lemma 4.3

If (�1;L1) is (�2;L2), (�1;K1) is (�1;L1), and (�2;K2) is (�2;L2) then

(�1;K1 � L1) is (�2;K2 � L2).

Proof: Assume (�1;L1) is (�2;L2), (�1;K1) is (�1;L1), and (�2;K2) is (�2;L2).

Let (�0

1;�
0

2) � (�1;�2) and assume (�0

1;A1;K1) is (�0

2;A2;K2). Then (�0

1;K1) is (�0

2;K2).

� Case K1 = K2 = L1 = L2 = T . (�0

1;A1;T) is (�0

2;A2;T) by assumption.

� Case K1 = S(B1), K2 = S(B2), L1 = S(C1), and L2 = S(C2).

1. By monotonicity, �0

1 ` B1 : T , �0

1 ` C1 : T

2. and �0

2 ` B2 : T , �0

2 ` C2 : T .

3. Similarly, �0

1 ` A1 : T , �0

1 ` B1 : T ,

4. �0

2 ` A2 : T , �0

2 ` B2 : T , and

5. and �0

1 ` A1 : T , �0

2 ` A2 : T .

6. Thus by Lemma 3.8, �0

1 ` A1 : T , �0

1 ` C1 : T

7. and �0

2 ` A2 : T , �0

2 ` C2 : T .

8. Therefore (�0

1;A1;S(C1))valid,

9. (�0

2;A2; S(C2))valid,

10. and (�0

1;A1;S(C1)) is (�0

2;A2;S(C2)).

� Case: K1 = ��:K 0

1:K
00

1 , K2 = ��:K 0

2:K
00

2 , L1 = ��:L0

1:L
00

1 , and L2 = ��:L0

2:L
00

2 .

1. Let (�00

1 ;�
00

2) � (�0

1;�
0

2) and assume (�00

1 ;B1;L
0

1) is (�00

2 ;B2;L
0

2).

2. By monotonicity, (�00

1 ;K
0

1) is (�00

2 ;K
0

2),

20

3. (�00

1 ;L
0

1) is (�00

2 ;L
0

2),

4. (�00

1 ;K
0

1) is (�00

1 ;L
0

1), and

5. (�00

2 ;K
0

2) is (�00

2 ;L
0

2).

6. By the inductive hypothesis, (�00

1 ;L
0

1 � K 0

1) is (�00

2 ;L
0

2 � K 0

2), (�
00

1 ;L
0

1 � K 0

1) is (�00

1 ;L
0

1 � L0

1), and
(�00

2 ;L
0

2 � K 0

2) is (�00

2 ;L
0

2 � L0

2).

7. Thus (�00

1 ;B1;K
0

1) is (�00

2 ;B2;K
0

2).

8. Since (�00

1 ;B1;L
0

1) is (�00

1 ;B1;L
0

1) and (�00

2 ;B2;L
0

2) is (�00

2 ;B2;L
0

2),

9. we have (�00

1 ;B1;K
0

1) is (�00

1 ;B1;L
0

1),

10. and (�00

2 ;B2;K
0

2) is (�00

2 ;B2;L
0

2).

11. So, (�00

1 ;A1B1; f�7!B1gK
00

1) is (�00

2 ;A2B2; f�7!B2gK
00

2),

12. (�00

1 ; f�7!B1gK
00

1) is (�00

1 ; f�7!B1gL
00

1),

13. (�00

1 ; f�7!B1gL
00

1) is (�00

2 ; f�7!B2gL
00

2),

14. and (�00

2 ; f�7!B2gK
00

2) is (�00

2 ; f�7!B2gL
00

2).

15. By the inductive hypothesis, (�00

1 ; f�7!B1gK
00

1 � f�7!B1gL
00

1) is (�00

2 ; f�7!B2gK
00

2 � f�7!B2gL
00

2).

16. Thus (�00

1 ;A1B1; f�7!B1gL
00

1) is (�00

2 ;A2B2; f�7!B2gL
00

2).

17. Therefore (�0

1;A1;��:L
0

1:L
00

1) is (�0

2;A2;��:L
0

2:L
00

2).

� Case: K1 = ��:K 0

1:K
00

1 , K2 = ��:K 0

2:K
00

2 , L1 = ��:L0

1:L
00

1 , and L2 = ��:L0

2:L
00

2 .

1. (�0

1;�1A1;K
0

1) is (�0

2;�1A2;K
0

2).

2. Also, (�0

1;K
0

1) is (�0

2;K
0

2),

3. (�0

1;L
0

1) is (�0

2;L
0

2),

4. (�0

1;K
0

1) is (�0

1;L
0

1),

5. and (�0

2;K
0

2) is (�0

2;L
0

2).

6. By the inductive hypothesis, (�0

1;K
0

1 � L0

1) is (�0

2;K
0

2 � L0

2),

7. so (�0

1; �1A1;L
0

1) is (�0

2;�1A2;L
0

2).

8. By similar considerations, (�0

1; f�7!�1A1gK
00

1) is (�0

1; f�7!�1A1gL
00

1),

9. (�0

2; f�7!�2A2gK
00

2) is (�0

2; f�7!�1A2gL
00

1),

10. and (�0

1; f�7!�1A1gL
00

1) is (�0

2; f�7!�1A2gL
00

2).

11. By the inductive hypothesis,

(�0

1; f�7!�1A1gK
00

1 � f�7!�1A1gL
00

1) is (�0

2; f�7!�1A2gK
00

2 � f�7!�1A2gL
00

2).

12. Since (�0

1;�2A1; f�7!�1A1gK
00

1) is (�0

2;�2A2; f�7!�1A2gK
00

2),

13. we have (�0

1;�2A1; f�7!�1A1gL
00

1) is (�0

2;�2A2; f�7!�1A2gL
00

2).

14. Therefore (�0

1;A1; ��:L
0

1:L
00

1) is (�0

2;A2; ��:L
0

2:L
00

2).

An easy corollary of this lemma may be visualized as the following rule:

(�1;A1;K1) is (�2;A2;K2)

(�1;K1) is (�2;K2)

is is

(�1;L1) is (�2;L2)

(�1;A1;L1) is (�2;A2;L2)

The logical relations obey re
exivity, symmetry, and transitivity properties. The logical relations were

carefully de�ned so that the following property holds:

Lemma 4.4 (Re
exivity)

1. (�;K)valid if and only if (�;K) is (�;K).

21

2. (�;A;K)valid if and only if (�;A;K) is (�;A;K).

3. (�;
; �)valid if and only if (�;
; �) is (�;
; �).

Proof: The \if" direction is immediate from the de�nitions of the logical relations, so we only show the \only if"

direction.

1. By induction on the size of K. Assume (�;K)valid.

� Case: K = T . Follows by de�nition of (�;T) is (�;T).

� Case: K = S(B).

(a) (�;B;T) valid.

(b) � ` B : T , � ` B : T .

(c) Then (�;B;T) valid

(d) and (�;B;T) is (�;B;T).

(e) Therefore (�;S(B)) is (�;S(B)).

� Case: K = ��:K 0:K 00.

(a) By (�;��:K 0:K 00)valid we have (�;K 0)valid.

(b) By the inductive hypothesis, (�;K 0) is (�;K 0).

(c) Let (�0;�00) � (�;�)

(d) and assume (�0;A1;K
0) is (�00;A2;K

0).

(e) By (�;��:K 0:K 00)valid we have (�0; f�7!A1gK
00) is (�00; f�7!A2gK

00).

(f) Therefore (�;��:K 0:K 00) is (�;��:K 0:K 00).

� Case: K = ��:K 0:K 00.

Same proof as for � case.

2. By induction on the size of A. Assume (�;A;K)valid. Then (�;K)valid so that by Part 1,

(�;K) is (�;K).

� Case: K = T .

(a) (�;A;T) valid implies � ` A : T , � ` A : T .

(b) Therefore, (�;A;T) is (�;A;T).

� Case: K = S(B).

(a) (�;A;S(B))valid implies � ` A : T , � ` B : T .

(b) By Lemma 3.8, � ` A : T , � ` A : T ,

(c) so (�;A;T) valid

(d) and (�;A;T) is (�;A;T).

(e) Therefore (�;A;S(B)) is (�;A;S(B)).

� Case: K = ��:K 0:K 00.

(a) Let (�0;�00) � (�;�)

(b) and assume (�0;B1;K
0) is (�00;B2;K

0).

(c) Then (�0;AB1; f�7!B1gK
00) is (�00;AB2; f�7!B2gK

00).

(d) Therefore (�;A;��:K 0:K 00) is (�;A;��:K 0:K 00).

� Case: K = ��:K 0:K 00.

(a) Then (�;�1A;K
0) valid

(b) and (�;�2A; f�7!�1AgK
00) valid.

(c) By the inductive hypothesis, (�;�1A;K
0) is (�;�1A;K

0)

(d) and (�;�2A; f�7!�1AgK
00) is (�;�2A;f�7!�1AgK

00).

(e) Therefore (�;A; ��:K 0:K 00) is (�;A; ��:K 0:K 00).

3. (a) Assume (�;
; �) valid.

(b) Let x 2 dom(�) be given.

22

(c) Then (�;
x;
(�x))valid.

(d) By Lemma 4.4, (�;
x;
(�x)) is (�;
x;
(�x)).

(e) Therefore (�;
; �) is (�;
; �).

Symmetry is straightforward and exactly analogous to the symmetry properties of the algorithmic rela-

tions.

Lemma 4.5 (Symmetry)

1. If (�1;K1) is (�2;K2) then (�2;K2) is (�1;K1)

2. If (�1;A1;K1) is (�2;A2;K2) then (�2;A2;K2) is (�1;A1;K1).

3. If (�1;
1; �1) is (�2;
2; �2) then (�2;
2; �2) is (�1;
1; �1).

Proof:

1. Assume (�1;K1) is (�2;K2). Then (�1;K1)valid and (�2;K2) valid.

� Case: K1 = K2 = T . Trivial.

� Case: K1 = S(A1), K2 = S(A2).

(a) (�1;A1;T) is (�2;A2;T).

(b) Inductively by Part 2, (�2;A2;T) is (�1;A1;T).

(c) Therefore (�2;S(A2)) is (�1;S(A1)).

� Case: K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 .

(a) (�1;K
0

1) is (�2;K
0

2) by (�1;K1) is (�2;K2).

(b) By induction, (�2;K
0

2) is (�1;K
0

1).

(c) Let (�0

2;�
0

1) � (�2;�1) and assume (�0

2;A2;K
0

2) is (�0

1;A1;K
0

1).

(d) Inductively by Part 2, (�0

1;A1;K
0

1) is (�0

2;A2;K
0

2).

(e) By (�1;K1) is (�2;K2) again, (�
0

1; f�7!A1gK
00

1) is (�0

2; f�7!A2gK
00

2)

(f) By the inductive hypothesis again, (�0

2; f�7!A2gK
00

2) is (�0

1; f�7!A1gK
00

1).

(g) Therefore, (�2;��:K
0

2:K
00

2) is (�1;��:K
0

1:K
00

1).

� Case: K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 . Same proof as for � types.

2. Assume (�1;A1;K1) is (�2;A2;K2). Then (�1;K1) is (�2;K2), (�1;A1;K1)valid, and

(�2;A2;K2)valid.

By Part 1, (�2;K2) is (�1;K1).

� Case K1 = K2 = T .

(a) �1 ` A1 : K1 , �2 ` A2 : K2

(b) By Lemma 3.8, �2 ` A2 : K2 , �1 ` A1 : K1.

(c) Therefore (�2;A2;T) is (�1;A1;T).

� Case K1 = S(B1) and K2 = S(B2).

(a) (�1;A1;T) is (�2;A2;T).

(b) By the inductive hypothesis, (�2;A2;T) is (�1;A1;T).

(c) Therefore (�2;A2;S(B1)) is (�1;A1;S(B2)).

� Case K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 .

(a) Let (�0

2;�
0

1) � (�2;�1)

(b) and assume (�0

2;B2;K
0

2) is (�0

1;B1;K
0

1).

(c) By the inductive hypothesis, (�0

1;B1;K
0

1) is (�0

2;B2;K
0

2).

(d) Thus (�0

1;A1B1; f�7!B1gK
00

1) is (�0

2;A2B2; f�7!B2gK
00

2).

(e) By the inductive hypothesis, (�0

2;A2B2; f�7!B2gK
00

2) is (�0

1;A1B1; f�7!B1gK
00

1).

(f) Therefore (�2;A2;��:K
0

2:K
00

2) is (�1;A1; ��:K
0

1:K
00

1).

23

� Case K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 .

(a) Then (�1;�1A1;K
0

1) is (�2;�1A2;K
0

2)

(b) and (�1;�2A1; f�7!�1A1gK
00

1) is (�2;�2A2; f�7!�1A2gK
00

2).

(c) By the inductive hypothesis, (�2;�1A2;K
0

2) is (�1;�1A1;K
0

1)

(d) and (�2;�2A2; f�7!�1A2gK
00

2) is (�1;�2A1; f�7!�1A1gK
00

1).

(e) Therefore (�2;A2; ��:K
0

2:K
00

2) is (�1;A1; ��:K
0

1:K
00

1).

3. (a) Assume (�1;
1; �1) is (�2;
2; �2). Then (�1;
1; �1) valid and (�2;
2; �2)valid.

(b) Let x 2 dom(�2) be given.

(c) Then x 2 dom(�1).

(d) Then (�1;
1�;
1(�1�)) is (�2;
2�;
2(�2�)).

(e) By Part 2, (�2;
2�;
2(�2�)) is (�1;
1�;
1(�1�)).

(f) Therefore (�2;
2; �2) is (�1;
1; �1).

In contrast, the logical relation cannot be easily shown to obey the same transitivity property as the

algorithm; it does hold at the base kind but does not lift to function kinds. We therefore prove a slightly

weaker property, which is nevertheless what we need for the remainder of the proof. The key di�erence is

that the transitivity property for the algorithm involves three contexts/worlds whereas the following lemma

only involves two.

Lemma 4.6 (Transitivity)

1. If (�1;K1) is (�1;L1) and (�1;L1) is (�2;K2) then (�1;K1) is (�2;K2).

2. If (�1;A1;K1) is (�1;B1;L1) and (�1;B1;L1) is (�2;A2;K2) then (�1;A1;K1) is (�2;A2;K2).

Proof:

1. Assume (�1;K1) is (�1;L1) and (�1;L1) is (�2;K2). First, (�1;K1) valid and (�2;K2)valid.

� Case: K1 = L1 = K2 = T .

(�1;T) is (�2;T) always.

� Case: K1 = S(A1), L1 = S(B1), and K2 = S(A2).

(a) Then �1 ` A1 : T , �1 ` B1 : T

(b) and �1 ` B1 : T , �2 ` A2 : T .

(c) By Lemma 3.8, �1 ` A1 : T , �2 ` A2 : T .

(d) Therefore (�1;S(A1)) is (�2;S(A2)).

� Case: K1 = ��:K 0

1:K
00

1 , L1 = ��:L0

1:L
00

1 , and K2 = ��:K 0

2:K
00

2 .

(a) (�1;K
0

1) is (�1;L
0

1) and (�1;L
0

1) is (�2;K
0

2).

(b) By induction, (�1;K
0

1) is (�2;K
0

2).

(c) Let (�0

1;�
0

2) � (�1;�2)

(d) and assume (�0

1;A1;K
0

1) is (�0

2;A2;K
0

2).

(e) By Lemma 4.4, (�1;K
0

1) is (�1;K
0

1).

(f) By monotonicity and Lemma 4.3, (�0

1;K
0

1 � K 0

1) is (�0

1;K
0

1 � L0

1).

(g) Since (�0

1;A1;K
0

1) is (�0

1;A1;K
0

1),

(h) we have (�0

1;A1;K
0

1) is (�0

1;A1;L
0

1).

(i) Thus (�0

1; f�7!A1gK
00

1) is (�1; f�7!A1gL
00

1).

(j) Similarly, (�0

1;K
0

1 � L0

1) is (�0

2;K
0

2 � K 0

2).

(k) Then (�0

1;A1;L
0

1) is (�0

2;A2;K
0

2).

(l) So, (�0

1; f�7!A1gL
00

1) is (�0

2; f�7!A2gK
00

2).

(m) By induction, (�1; f�7!A1gK
00

1) is (�2; f�7!A2gK
00

2).

(n) Therefore (�1;��:K
0

1:K
00

1) is (�2;��:K
0

2:K
00

2).

24

� Case: K1 = ��:K 0

1:K
00

1 , L1 = ��:L0

1:L
00

1 , and K2 = ��:K 0

2:K
00

2 .

Same proof as for � types.

2. Assume (�1;A1;K1) is (�1;B1;L1) and (�1;B1;L1) is (�2;A2;K2). Then (�1;A1;K1)valid,

(�2;A2;K2)valid, (�1;K1) is (�1;L1), and (�1;L1) is (�2;K2). By Part 1, (�1;K1) is (�2;K2).

� Case: K1 = L1 = K2 = T .

(a) �1 ` A1 : T , �1 ` B1 : T

(b) and �1 ` B1 : T , �2 ` A1 : T .

(c) By Lemma 3.8, �1 ` A1 : T , �2 ` A2 : T .

(d) Therefore (�1;A1;T) is (�2;A2;T).

� Case: K1 = S(A0

1), L1 = S(B0

1), and K2 = S(A0

2).

(a) (�1;A1;T) is (�1;B1;T)

(b) and (�1;B1;T) is (�2;A2;T).

(c) By the inductive hypothesis, (�1;A1;T) is (�2;A2;T).

(d) Therefore (�1;A1;S(A
0

1)) is (�2;A2;S(A
0

2)).

� Case: K1 = ��:K 0

1:K
00

1 , L1 = ��:L0

1:L
00

1 , and K2 = ��:K 0

2:K
00

2 .

(a) Let (�0

1;�
0

2) � (�1;�2)

(b) and assume (�0

1;A
0

1;K
0

1) is (�0

2;A
0

2;K
0

2).

(c) Then by monotonicity (�0

1;K
0

1) is (�0

1;L
0

1) and (�0

1;L
0

1) is (�0

2;K
0

2).

(d) By Lemma 4.3, (�0

1;K
0

1 � K 0

1) is (�0

1;K
0

1 � L0

1).

(e) By Part 2, (�0

1;A
0

1;K
0

1) is (�0

1;A
0

1;K
0

1),

(f) so (�0

1;A
0

1;K
0

1) is (�0

1;A
0

1;L
0

1).

(g) Thus (�0

1;A1A
0

1; f�7!A0

1gK
00

1) is (�0

1;B1A
0

1; f�7!A0

1gL
00

1).

(h) Similarly, (�0

1;K
0

1 � L0

1) is (�0

2;K
0

2 � K 0

2),

(i) so (�0

1;A
0

1;L
0

1) is (�0

2;A
0

2;K
0

2).

(j) Thus, (�0

1;B1A
0

1; f�7!A0

1gL
00

1) is (�0

2;A2A
0

2; f�7!A0

2gK
00

2).

(k) By the inductive hypothesis, (�0

1;A1A
0

1; f�7!A0

1gK
00

1) is (�0

2;A2A
0

2; f�7!A0

2gK
00

2).

(l) Therefore, (�1;A1;��:K
0

1:K
00

1) is (�2;A2;��:K
0

2:K
00

2).

� Case: K1 = ��:K 0

1:K
00

1 , L1 = ��:L0

1:L
00

1 , and K2 = ��:K 0

2:K
00

2 .

(a) (�1;�1A1;K
0

1) is (�1;�1B1;L
0

1)

(b) and (�1;�1B1;L
0

1) is (�2;�1A2;K
0

2).

(c) By the inductive hypothesis, (�1;�1A1;K
0

1) is (�2;�1A2;K
0

2).

(d) Similarly, (�1;�2A1; f�7!�1A1gK
00

1) is (�1; �2B1; f�7!�1B1gL
00

1)

(e) and (�1;�2B1; f�7!�1B1gL
00

1) is (�2;�2A2; f�7!�1A2gK
00

2).

(f) By the inductive hypothesis, (�1;�2A1; f�7!�1A1gK
00

1) is (�2;�2A2; f�7!�1A2gK
00

2).

(g) Therefore, (�1;A1; ��:K
0

1:K
00

1) is (�2;A2; ��:K
0

2:K
00

2).

Because of this restricted formulation, we cannot use symmetry and transitivity to derive properties such

as \if (�1;K1) is (�2;K2) then (�1;K1) is (�1;K1)". An important purpose of the validity predicates is

to make sure that this property does in fact hold (by building it into the de�nition of the equivalence logical

relations).

Next we show that logical relations are closed under head expansion and reduction. De�ne � ` A1 ' A2

to mean that A1 and A2 have a common weak head reduct. The following lemma then follows by induction

on the size of kinds.

Lemma 4.7 (Weak Head Closure)

1. If � ` A; B then � ` E[A]; E[B]

2. If � ` A1 ' A2 then � ` E[A1] ' E[A2].

25

3. If (�;A;K)valid � ` A0 ' A, then (�;A0;K)valid.

4. If (�1;A1;K1) is (�2;A2;K2), �1 ` A0
1
' A1, and �2 ` A0

2
' A2 then (�1;A

0
1
;K1) is (�2;A

0
2
;K2).

Proof:

1. Obvious by de�nition of � ` A; B.

2. By repeated application of Part 1.

3. By induction on the size of K. Assume (�;A;K)valid and � ` A0 ' A. Note that (�;K)valid.

� Case: K = T .

(a) � ` A : T , � ` A : T .

(b) By the de�nition of the algorithm and determinacy of weak head reduction,

� ` A0 : T , � ` A0 : T .

(c) Therefore (�;A0;T) valid.

� Case: K = S(B)

(a) Then � ` A : T , � ` B : T

(b) so by the de�nition of the algorithm and determinacy of weak head reduction

� ` A0 : T , � ` B : T

(c) which yields (�;A0;S(B))valid

� Case: K = ��:K 0:K 00.

(a) Let (�0;�00) � (�;�)

(b) and assume that (�0;B1;K
0) is (�00;B2;K

0).

(c) Then (�0;AB1; f�7!B1gK
00) is (�00;AB2; f�7!B2gK

00),

(d) By Part 2 and an obvious context weakening property, �0 ` AB1 ' A0B1

(e) and �00 ` AB2 ' A0B2.

(f) By the inductive hypothesis, (�0;A0B1; f�7!B1gK
00) is (�00;A0B2; f�7!B2gK

00).

(g) Therefore, (�;A0; ��:K 0:K 00)valid.

� Case: K = ��:K 0:K 00.

(a) Then (�;�1A;K
0) valid

(b) and by Part 2, � ` �1A
0 ' �1A.

(c) By the inductive hypothesis, (�1;�1A
0

1;K
0

1)valid.

(d) and inductively by Part 4, (�;�1A;K
0) is (�;�1A

0;K 0).

(e) Similarly, (�1;�2A; f�7!�1AgK
00)valid,

(f) and � ` �2A
0 ' �2A,

(g) so by the inductive hypothesis again, (�;�2A
0; f�7!�1AgK

00) valid.

(h) But (�; f�7!�1AgK
00) is (�; f�7!�1A

0gK 00),

(i) so by Re
exivity and Lemma 4.3,

(�; f�7!�1AgK
00 � f�7!�1A

0gK 00) is (�; f�7!�1AgK
00 � f�7!�1A

0gK 00).

(j) so by Re
exivity (�;�2A
0; f�7!�1A

0gK 00) valid.

(k) Therefore, (�;A0; ��:K 0:K 00)valid.

4. By induction on the size of K1.

Assume (�1;A1;K1) is (�2;A2;K2), �1 ` A
0

1 ' A1, and �2 ` A
0

2 ' A2. First, note that (�1;A1;K1)valid,
(�2;A2;K2)valid, and (�1;K1) is (�2;K2). By the argument in Part 3, (�1;A

0

1;K1) valid and

(�2;A
0

2;K2)valid.

� Case: K1 = K2 = T .

(a) �1 ` A1 : T , �2 ` A2 : T .

(b) By the de�nition of the algorithm, �1 ` A
0

1 : T , �2 ` A
0

2 : T .

(c) Therefore (�1;A
0

1;T) is (�2;A
0

2;T).

� Case: K1 = S(B1) and K2 = S(B2).

26

(a) Then �1 ` A1 : T , �2 ` A2 : T

(b) so �1 ` A
0

1 : T , �2 ` A0

2 : T

(c) which yields (�1;A
0

1;S(B1)) is (�2;A
0

2;S(B2)).

� Case: K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 .

(a) Let (�0

1;�
0

2) � (�1;�2)

(b) and assume that (�0

1;B1;K
0

1) is (�0

2;B2;K
0

2).

(c) Then (�0

1;A1B1; f�7!B1gK
00

1) is (�0

2;A2B2; f�7!B2gK
00

2),

(d) By Part 2 and an obvious weakening property, �0

1 ` A1B1 ' A0

1B1

(e) and �0

2 ` A2B2 ' A0

2B2.

(f) By the inductive hypothesis (�0

1;A
0

1B1; f�7!B1gK
00

1) is (�0

2;A
0

2B2; f�7!B2gK
00

2).

(g) Therefore, (�1;A
0

1;��:K
0

1:K
00

1) is (�2;A
0

2;��:K
0

2:K
00

2).

� Case: K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 .

(a) Then (�1;�1A1;K
0

1) is (�2;�1A2;K
0

2),

(b) (�1;�1A1;K
0

1) is (�1;�1A1;K
0

1),

(c) (�2;�1A2;K
0

2) is (�2;�1A2;K
0

2),

(d) and by Part 2, �1 ` �1A
0

1 ' �1A1,

(e) and �2 ` �1A
0

2 ' �1A2.

(f) By the inductive hypothesis, (�1;�1A
0

1;K
0

1) is (�2;�1A
0

2;K
0

2),

(g) (�1;�1A1;K
0

1) is (�1;�1A
0

1;K
0

1),

(h) and (�2;�1A2;K
0

2) is (�2;�1A
0

2;K
0

2).

(i) Similarly, (�1;�2A1; f�7!�1A1gK
00

1) is (�2; �2A2; f�7!�1A2gK
00

2),

(j) �1 ` �2A
0

1 ' �2A1,

(k) and �2 ` �2A
0

2 ' �2A2.

(l) By the inductive hypothesis again, (�1;�2A
0

1; f�7!�1A1gK
00

1) is (�2;�2A
0

2; f�7!�1A2gK
00

2).

(m) But (�1;K1) is (�1;K1) and (�2;K2) is (�2;K2),

(n) so (�1; f�7!�1A1gK
00

1) is (�1; f�7!�1A
0

1gK
00

1),

(o) (�2; f�7!�1A2gK
00

2) is (�2; f�7!�1A
0

2gK
00

2),

(p) and (�1; f�7!�1A
0

1gK
00

1) is (�2; f�7!�1A
0

2gK
00

2).

(q) By Lemma 4.3, (�1; f�7!�1A1gK
00

1 � f�7!�1A
0

1gK
00

1) is (�2; f�7!�1A1gK
00

2 � f�7!�1A
0

1gK
00

2).

(r) so (�1;�2A
0

1; f�7!�1A
0

1gK
00

1) is (�2;�2A
0

2; f�7!�1A
0

2gK
00

2).

(s) Therefore, (�1;A
0

1; ��:K
0

1:K
00

1) is (�2;A
0

2; ��:K
0

2:K
00

2).

Following all this preliminary work, we can now show by induction on the size of kinds that equivalence

under the logical relations implies equivalence under the algorithm. This requires a stronger induction

hypothesis: that under suitable conditions variables (and more generally paths) are logically valid or logically

related.

Lemma 4.8 (Main Lemma)

1. If (�1;K1) is (�2;K2) then �1 ` K1 , �2 ` K2.

2. If (�1;A1;K1) is (�2;A2;K2) then �1 ` A1 : K1 , �2 ` A2 : K2.

3. If (�;K)valid, � ` p " K $ � ` p " K, then (�; p;K)valid.

4. If (�1;K1) is (�2;K2) and �1 ` p1 " K1 $ �2 ` p2 " K2 then (�1; p1;K1) is (�2; p2;K2).

Proof: By induction on the size of the kinds involved.

For Part 4, note that in all cases �1 ` p1 " K1 $ �1 ` p1 " K1 and �2 ` p2 " K2 $ �2 ` p2 " K2 by symmetry

and transitivity of the algorithm, (�1;K1)valid, and (�2;K2)valid. Hence by Part 3, (�1; p1;K1)valid and

(�2; p2;K2)valid.

27

� Case: K = K1 = K2 = T .

1. �1 ` T , �2 ` T by the de�nition of the algorithm.

2. (a) Assume (�1;A1;T) is (�2;A2;T).

(b) By the de�nition of this relation, �1 ` A1 : T , �2 ` A2 : T .

3. (a) Assume (�;T) valid and

(b) � ` p " T $ � ` p " T .

(c) By Lemma 3.3, � ` p " T .

(d) Then � ` p + p.

(e) so � ` p : T , � ` p : T .

(f) Therefore (�; p;T) valid.

4. (a) Assume �1 ` p1 " T $ �2 ` p2 " T

(b) and (�1;T) is (�2;T).

(c) By Lemma 3.3, �1 ` p1 " T and �2 ` p2 " T .

(d) Thus �1 ` p1 + p1 and �2 ` p2 + p2.

(e) so �1 ` p1 : T , �2 ` p2 : T .

(f) Therefore (�1; p1;T) is (�2; p2;T).

� Case: K = S(B), K1 = S(B1), and K2 = S(B2).

1. (a) Assume (�1;K1) is (�2;K2).

(b) Then by de�nition (�1;B1;T) is (�2;B2;T),

(c) so �1 ` B1 : T , �2 ` B2 : T .

(d) Therefore, �1 ` S(B1), �2 ` S(B2).

2. (a) By de�nition, �1 ` A1 : S(B1), �2 ` A2 : S(B2) always.

3. (a) Assume (�;S(B)) valid,

(b) and � ` p " S(B)$ � ` p " S(B).

(c) By Lemma 3.3, � ` p " S(B).

(d) Then � ` p; B so � ` p ' B.

(e) By (�;S(B)) valid, � ` B : T , � ` B : T .

(f) By the de�nition of the algorithm, � ` p : T , � ` B : T .

(g) Therefore (�; p;S(B)) valid.

4. (a) Assume (�1;S(B1)) is (�2;S(B2)),

(b) and �1 ` p1 " S(B1)$ �2 ` p2 " S(B1).

(c) By de�nition of the logical relations, �1 ` B1 : T , �2 ` B2 : T .

(d) By Lemma 3.3, �1 ` p1 " S(B1) and �2 ` p2 " S(B2).

(e) That is, �1 ` p1 ; B1 and �2 ` p2 ; B1.

(f) Hence �1 ` p1 : T , �2 ` p2 : T .

(g) Therefore (�1; p1;S(B1)) is (�2; p2;S(B1)).

� Case: K = ��:K 0:K 00, K1 = ��:K 0

1:K
00

1 , and K2 = ��:K 0

2:K
00

2 .

1. (a) Assume (�1;��:K
0

1:K
00

1) is (�2;��:K
0

2:K
00

2).

(b) Then (�1;K
0

1) is (�2;K
0

2).

(c) By the inductive hypothesis we have �1 ` K
0

1 , �2 ` K 0

2.

(d) Now �1; �:K
0

1 ` � " K
0

1 $ �2; �:K
0

2 ` � " K
0

2.

(e) Inductively by Part 4, (�1; �:K
0

1;�;K
0

1) is (�2; �:K
0

2;�;K
0

2).

(f) Thus (�1; �:K
0

1;K
00

1) is (�2; �:K
0

2;K
00

2)

(g) By the inductive hypothesis, �1; �:K
0

1 ` K
00

1 , �2; �:K
0

2 ` K
00

2 .

(h) Therefore �1 ` ��:K 0

1:K
00

1 , �2 ` ��:K 0

2:K
00

2 .

2. (a) Assume (�1;A1;��:K
0

1:K
00

1) is (�2;A2;��:K
0

2:K
00

2).

(b) Then (�1;��:K
0

1:K
00

1) is (�2;��:K
0

2:K
00

2)

28

(c) so as above, inductively by Part 4 we have (�1; �:K
0

1;�;K
0

1) is (�2; �:K
0

2;�;K
0

2).

(d) Then (�1; �:K
0

1;A1�;K
00

1) is (�2; �:K
0

2;A2�;K
00

2).

(e) By the inductive hypothesis again, �1; �:K
0

1 ` A1� : K 00

1 , �2; �:K
0

2 ` A2� : K 00

2 .

(f) Therefore �1 ` A1 : ��:K
0

1:K
00

1 , �2 ` A2 : ��:K
0

1:K
00

1 .

3. (a) Assume (�;K)valid

(b) and � ` p " K $ � ` p " K.

(c) Let (�0;�00) � (�;�)

(d) and assume (�0;B0;K 0) is (�00;B00;K 0).

(e) Inductively by Part 2, �0 ` B0 : K 0 , �00 ` B00 : K 0.

(f) Thus using Weakening, �0 ` pB0 " f�7!B0gK 00 $ �00 ` pB00 " f�7!B00gK 00.

(g) By (�;K)valid, (�0; f�7!B0gK 00) is (�00; f�7!B00gK 00).

(h) Inductively by Part 4, (�0; pB0; f�7!B0gK 00) is (�00; pB00; f�7!B00gK 00).

(i) Therefore (�; p;��:K 0:K 00)valid.

4. (a) Assume (�1;��:K
0

1:K
00

1) is (�2;��:K
0

2:K
00

2),

(b) and �1 ` p1 " ��:K
0

1:K
00

1 $ �2 ` p2 " ��:K
0

2:K
00

2 .

(c) Let (�0

1;�
0

2) � (�1;�2) and assume that (�0

1;B1;K
0

1) is (�0

2;B2;K
0

2).

(d) Then (�0

1; f�7!B1gK
00

1) is (�0

2; f�7!B2gK
00

2).

(e) Inductively by Part 2, �0

1 ` B1 : K
0

1 , �0

2 ` B2 : K
0

2,

(f) and by Weakening, �0

1 ` p1 " ��:K
0

1:K
00

1 $ �0

2 ` p2 " ��:K
0

2:K
00

2 ,

(g) so we have �0

1 ` p1B1 " f�7!B1gK
00

1 $ �0

2 ` p2B2 " f�7!B2gK
00

2 .

(h) By the inductive hypothesis, (�0

1; p1B1; f�7!B1gK
00

1) is (�0

2; p2B2; f�7!B2gK
00

2).

(i) Therefore (�1; p1;��:K
0

1:K
00

1) is (�2; p2;��:K
0

2:K
00

2).

� Case: K = ��:K 0:K 00, K1 = ��:K 0

1:K
00

1 and K2 = ��:K 0

2:K
00

2 .

1. The corresponding argument for the � case also applies here.

2. (a) Assume (�1;A1; ��:K
0

1:K
00

1) is (�2;A2; ��:K
0

2:K
00

2).

(b) Then (�1;�1A1;K
0

1) is (�2;�1A2;K
0

2).

(c) and (�1;�2A1; f�7!�1A1gK
00

1) is (�2;�2A2; f�7!�1A2gK
00

2).

(d) By the inductive hypothesis, �1 ` �1A1 : K
0

1 , �2 ` �1A2 : K
0

2

(e) and �1 ` �2A1 : f�7!�1A1gK
00

1 , �2 ` �2A2 : f�7!�1A2gK
00

2 .

(f) Therefore �1 ` A1 : ��:K
0

1:K
00

1 , �2 ` A2 : ��:K
0

2:K
00

2 .

3. (a) Assume (�;K)valid,

(b) and � ` p " K $ � ` p " K.

(c) By de�nition of the algorithm, � ` �1p " K
0 $ � ` �1p " K

0

(d) and � ` �2p " f�7!�1pgK
00 $ � ` �2p " f�7!�1pgK

00.

(e) By the induction hypothesis, (�;�1p;K
0)valid.

(f) By Lemma 4.4, (�;�1p;K
0) is (�;�1p;K

0).

(g) By (�;K)valid, (�; f�7!�1pgK
00) is (�; f�7!�1pgK

00).

(h) Thus (�; f�7!�1pgK
00) valid.

(i) By the induction hypothesis again, (�;�2p; f�7!�1pgK
00)valid.

(j) Therefore, (�; p; ��:K 0:K 00) valid.

4. (a) Assume (�1; ��:K
0

1:K
00

1) is (�2; ��:K
0

2:K
00

2),

(b) and �1 ` p1 " ��:K
0

1:K
00

1 $ �2 ` p2 " ��:K
0

2:K
00

2 .

(c) Then �1 ` �1p1 " K
0

1 $ �2 ` �1p2 " K
0

2

(d) and �1 ` �2p1 " f�7!�1p1gK
00

1 $ �2 ` �2p2 " f�7!�1p2gK
00

2 .

(e) The inductive hypothesis applies, yielding (�1;�1p1;K
0

1) is (�2;�1p2;K
0

2)

(f) and (�1;�2p1; f�7!�1p1gK
00

1) is (�2;�2p2; f�7!�1p2gK
00

2).

(g) Therefore (�1; p1; ��:K
0

1:K
00

1) is (�2; p2; ��:K
0

2:K
00

2).

29

Finally we come to the Fundamental Theorem of Logical Relations, which relates provable equivalence

of two constructors to the logical relations The statement of the theorem is strengthened to involve related

substitutions of constructors for variables within constructors and kinds.

Theorem 4.9 (Fundamental Theorem)

1. If � ` K and (�1;
1; �) is (�2;
2; �) then (�1;
1K) is (�2;
2K).

2. If � ` K1 � K2 and (�1;
1; �) is (�2;
2; �) then (�1;
1K1 �
1K2) is (�2;
2K1 �
2K2),

(�1;
1K1) is (�2;
2K1), and (�1;
1K2) is (�2;
2K2).

3. If � ` K1 � K2 and (�1;
1; �) is (�2;
2; �) then (�1;
1K1) is (�2;
2K2),

(�1;
1K1) is (�2;
2K1), and (�1;
1K2) is (�2;
2K2).

4. If � ` A : K and (�1;
1; �) is (�2;
2; �) then (�1;
1A;
1K) is (�2;
2A;
2K).

5. If � ` A1 � A2 : K and (�1;
1; �) is (�2;
2; �) then (�1;
1A1;
1K) is (�2;
2A1;
2K),

(�1;
1A1;
1K) is (�2;
2A2;
2K), and (�1;
1A2;
1K) is (�2;
2A2;
2K).

Proof: By simultaneous induction on the hypothesized derivation.

In all cases, (�1;
1; �) is (�1;
1; �) and (�2;
2; �) is (�2;
2; �).

Kind Well-formedness Rules: � ` K.

� Case: Rule 5.

1.
1T =
2T = T .

2. (�1;T) is (�2;T).

� Case: Rule 6.

1. By the inductive hypothesis, (�1;
1A;T) is (�2;
2A;T).

2. Therefore (�1;S(
1A)) is (�2;S(
2A)).

� Case: Rule 7.

1. By Lemma B.1, there is a strict subderivation �; �:K 0 ` ok

2. and by inversion a strict subderivation � ` K 0.

3. By the inductive hypothesis, (�1;
1K
0) is (�2;
2K

0).

4. Let (�0

1;�
0

2) � (�1;�2)

5. and assume that (�0

1;A1;
1K
0) is (�0

2;A2;
2K
0).

6. Then by monotonicity (�0

1;
1[�7!A1]; �; �:K
0) is (�0

2;
2[�7!A2]; �; �:K
0).

7. By the inductive hypothesis, (�0

1; (
1[�7!A1])K
00) is (�0

2; (
2[�7!A2])K
00).

8. That is, (�0

1; f�7!A1g((
1[�7!�])K 00)) is (�0

2; f�7!A2g((
2[�7!�])K 00)).

9. Therefore, (�1;
1(��:K
0:K 00)) is (�2;
2(��:K

0:K 00)).

� Case: Rule 8. Just like previous case.

Subkinding Rules: � ` K1 � K2.

Let (�0

1;�
0

2) � (�1;�2) and assume (�0

1;B1;
1K1) is (�0

2;B2;
2K1).

� Case: Rule 9. By assumption, (�0

1;B1;T) is (�0

2;B2;T).

� Also, (�1;T) is (�2;T)

� and, by the same argument as for Rule 6, (�1;S(
1K)) is (�2;S(
2K)).

� Case: Rule 10. Trivial, since
1T =
2T = T and (�1;T) is (�2;T).

� Case: Rule 11.

30

1. By the inductive hypothesis we have (�0

1;
1A1;T) is (�0

2;
2A1;T)

2. and (�0

1;
1A2;T) is (�0

2;
2A2;T).

3. Thus (�1;S(
1A1)) is (�2;S(
2A1))

4. and (�1;S(
1A2)) is (�2;S(
2A2)).

5. By the inductive hypothesis we have (�0

1;
1A1;T) is (�0

2;
2A2;T),

6. (�0

1;
1A1;T) is (�0

1;
1A2;T),

7. and (�0

2;
2A1;T) is (�0

2;
2A2;T).

8. Thus (�0

1;S(
1A1)) is (�0

2;S(
2A2)),

9. (�0

1;S(
1A1)) is (�0

1;S(
1A2)),

10. and (�0

2;S(
2A1)) is (�0

2;S(
2A2)).

11. By Symmetry and Transitivity, (�0

1;S(
1A2)) is (�0

2;S(
2A2)),

12. so by Lemma 4.3, (�0

1;S(
1A1) � S(
1A2)) is (�0

2;S(
2A1) � S(
2A2)).

13. Therefore (�0

1;B1;S(
1A2)) is (�0

2;B2;S(
2A2)).

� Case: Rule 12.

1. By the inductive hypothesis, (�1;
1(��:K
0

1:K
00

1)) is (�2;
2(��:K
0

1:K
00

1)).

2. For the same reasons as for Rule 7, (�1;
1(��:K
0

1:K
00

1)) is (�2;
2(��:K
0

1:K
00

1)).

3. Let �00

1 ;�
000

1 � �0

1

4. and assume (�00

1 ;B
0

1;
1K
0

2) is (�000

1 ;B
00

1 ;
1K
0

2).

5. By monotonicity and the inductive hypothesis, (�00

1 ;
1K
0

2 �
1K
0

1) is (�000

1 ;
1K
0

2 �
1K
0

1).

6. Thus (�00

1 ;B
0

1;
1K
0

1) is (�000

1 ;B
00

1 ;
1K
0

1).

7. Now by re
exivity and monotonicity, (�00

1 ;B1;
1K1) is (�000

1 ;B1;
1K1).

8. Thus (�00

1 ;B1B
0

1; (
1[�7!B0

1])K
00

1) is (�000

1 ;B1B
00

1 ; (
1[�7!B00

1])K
00

1).

9. Now (�00

1 ;
1[�7!B0

1]; �; �:K
0

2) is (�000

1 ;
1[�7!B00

1]; �; �:K
0

2).

10. By the inductive hypothesis again,

(�00

1 ; (
1[�7!B0

1])K
00

1 � (
1[�7!B0

1])K
00

2) is (�000

1 ; (
1[�7!B00

1])K
00

1 � (
1[�7!B00

1])K
00

2),

11. so (�00

1 ;B1B
0

1; (
1[�7!B0

1])K
00

2) is (�000

1 ;B1B
00

1 ; (
1[�7!B00

1])K
00

2).

12. Note that (�00

1 ; (
1[�7!B0

1])K
00

2) is (�000

1 ; (
1[�7!B00

1])K
00

2).

13. Therefore, (�0

1;B1;
1(��:K
0

2:K
00

2))valid.

14. An analogous argument shows that (�0

2;B2;
2(��:K
0

2:K
00

2)) valid.

15. Let (�00

1 ;�
00

2) � (�0

1;�
0

2)

16. and assume (�00

1 ;B
0

1;
1K
0

2) is (�00

2 ;B
0

2;
2K
0

2).

17. By the inductive hypothesis, (�0

1;
1K
0

2 �
1K
0

1) is (�0

2;
2K
0

2 �
2K
0

1).

18. so (�00

1 ;B
0

1;
1K
0

1) is (�00

2 ;B
0

2;
2K
0

1)

19. and (�00

1 ;B1B
0

1; (
1[�7!B0

1])K
00

1) is (�00

2 ;B2B
0

2; (
2[�7!B0

2])K
00

1).

20. By monotonicity, (�00

1 ;
1[�7!B0

1]; �; �:K
0

2) is (�00

2 ;
2[�7!B0

2]; �; �:K
0

2).

21. By the inductive hypothesis again,
(�00

1 ; (
1[�7!B0

1])K
00

1 � (
1[�7!B0

1])K
00

2) is (�00

2 ; (
2[�7!B0

2])K
00

1 � (
2[�7!B0

2])K
00

2),

22. so (�00

1 ;B1B
0

1; (
1[�7!B0

1])K
00

2) is (�00

2 ;B2B
0

2; (
2[�7!B0

2])K
00

2).

23. Thus (�0

1;B1;
1(��:K
0

2:K
00

2)) is (�0

2;B2;
2(��:K
0

2:K
00

2)).

� Rule 13.

1. By the inductive hypothesis, (�1;
1(��:K
0

2:K
00

2)) is (�2;
2(��:K
0

2:K
00

2)).

31

2. For the same reasons as for Rule 7, (�1;
1(��:K
0

1:K
00

1)) is (�2;
2(��:K
0

1:K
00

1)).

3. (�0

1;�1B1;
1K
0

1)valid.

4. By the inductive hypothesis, (�0

1;
1K
0

1 �
1K
0

2) is (�0

1;
1K
0

1 �
1K
0

2).

5. Thus by re
exivity, (�0

1;�1B1;
1K
0

2) valid.

6. Now (�0

1;
1[�7!�1B1]; �; �:K
0

1) is (�0

1;
1[�7!�1B1];�; �:K
0

1)

7. so by the inductive hypothesis,
(�0

1; (
1[�7!�1B1])K
00

1 � (
1[�7!�1B1])K
00

2) is (�0

1; (
1[�7!�1B1])K
00

1 � (
1[�7!�1B1])K
00

2).

8. Since (�0

1;�2B1; (
1[�7!�1B1])K
00

1)valid,

9. Using re
exivity, (�0

1;�2B1; (
1[�7!�1B1])K
00

2) valid.

10. Therefore, (�0

1;B1;
1(��:K
0

2:K
00

2))valid.

11. An analogous argument shows that (�0

2;B2;
2(��:K
0

2:K
00

2)) valid.

12. (�0

1;�1B1;
1K
0

1) is (�0

2;�1B2;
2K
0

1).

13. By the inductive hypothesis, (�0

1;
1K
0

1 �
1K
0

2) is (�0

2;
2K
0

1 �
2K
0

2).

14. (�0

1;�1B1;
1K
0

2) is (�0

2;�1B2;
2K
0

2).

15. Now (�0

1;
1[�7!�1B1]; �; �:K
0

1) is (�0

2;
2[�7!�1B2];�; �:K
0

1)

16. so by the inductive hypothesis,

(�0

1; (
1[�7!�1B1])K
00

1 � (
1[�7!�1B1])K
00

2) is (�0

2; (
2[�7!�1B2])K
00

1 � (
2[�7!�1B2])K
00

2).

17. Since (�0

1;�2B1; (
1[�7!�1B1])K
00

1) is (�0

2;�2B2; (
2[�7!�1B2])K
00

1),

18. (�0

1;�2B1; (
1[�7!�1B1])K
00

2) is (�0

2;�2B2; (
2[�7!�1B2])K
00

2).

19. Therefore, (�0

1;B1;
1(��:K
0

2:K
00

2)) is (�0

2;B2;
2(��:K
0

2:K
00

2)).

Kind Equivalence Rules: � ` K1 � K2.

It su�ces to prove that if � ` K1 � K2 and (�1;
1; �) is (�2;
2; �) then (�1;
1K1) is (�2;
2K2), because we

can apply this to get (�2;
2K1) is (�2;
2K2), so (�1;
1K1) is (�2;
2K1) follows by Symmetry and
Transitivity. A similar argument yields (�1;
1K2) is (�2;
2K2).

� Rule 14. Trivial.

� Rule 15.

1. By the inductive hypothesis, (�1;
1A1;T) is (�2;
2A2;T).

2. Therefore, (�1;S(
1A1)) is (�2;S(
2A2)).

� Rule 16.

1. By the inductive hypothesis, (�1;
1K
0

1) is (�2;
2K
0

2).

2. Let (�0

1;�
0

2) � (�1;�2)

3. and assume (�0

1;A1;
1K
0

1) is (�0

2;A2;
2K
0

2).

4. By the inductive hypothesis, (�0

1;
1K
0

1) is (�0

2;
2K
0

2).

5. (�0

1;
1K
0

1) is (�0

1;
1K
0

2),

6. and (�0

2;
2K
0

1) is (�0

2;
2K
0

2).

7. By Symmetry and Transitivity, (�0

2;
2K
0

2) is (�0

1;
1K
0

1),

8. (�0

1;
1K
0

1) is (�0

1;
2K
0

1)

9. and by Re
exivity (�0

1;
1K
0

1) is (�0

1;
1K
0

1).

10. By Lemma 4.3, (�0

1;
1K
0

1 �
1K
0

1) is (�0

1;
2K
0

2 �
2K
0

1),

11. so (�0

1;A1;
1K
0

1) is (�0

2;A2;
2K
0

1).

12. By monotonicity, then, (�0

1;
1[�7!A1];�; �:K
0

1) is (�0

2;
2[�7!A2];�; �:K
0

1).

13. By the inductive hypothesis again, (�0

1; (
1[�7!A1])K
00

1) is (�0

2; (
2[�7!A2])K
00

2).

32

14. Therefore (�1;
1(��:K
0

1:K
00

1)) is (�2;
2(��:K
0

2:K
00

2)).

� Rule 17. Same proof as for previous case.

Constructor Validity Rules: � ` A : K.

� Case: Rule 18.

1.
1bi =
2bi = b and
1T =
2T = T .

2. �1 ` bi : T , �2 ` bi : T ,

3. �1 ` bi : T , �1 ` bi : T ,

4. and �2 ` bi : T , �2 ` bi : T .

5. Thus (�1; bi;T) is (�2; bi;T).

� Case: Rule 19.

By the assumption on
1 and
2, (�1;
1x;
1(�x)) is (�2;
2x;
2(�x)).

� Case: Rule 20.

1. By Lemma B.1 there is a strict subderivation � ` K 0.

2. By the inductive hypothesis, (�1;
1K
0) is (�2;
2K

0).

3. Let (�0

1;�
0

2) � (�1;�2) and assume (�0

1;B1;
1K
0) is (�0

2;B2;
2K
0).

4. Using monotonicity, (�0

1;
1[�7!B1]; �; �:K
0) is (�0

2;
2[�7!B2]; �; �:K
0).

5. By the inductive hypothesis, (�0

1; (
1[�7!B1])A; (
1[�7!B1])K
00) is (�0

2; (
2[�7!B2])A; (
2[�7!B2])K
00).

6. Now �1 ` (
1[�7!B1])A ' (
1(��:K
0:A))B1

7. and �2 ` (
2[�7!B2])A ' (
2(��:K
0:A))B2.

8. By Lemma 4.7, (�0

1; (
1(��:K
0:A))B1; (
1[�7!B1])K

00) is (�0

2; (
2(��:K
0:A))B2; (
2[�7!B2])K

00).

9. Similar arguments analogous to lines 3{8 (and re
exivity) show that

(�1;
1(��:K
0:A);
1(��:K

0:K 00))valid

10. and (�2;
2(��:K
0:A);
2(��:K

0:K 00)) valid.

11. Therefore (�1;
1(��:K
0:A);
1(��:K

0:K 00)) is (�2;
2(��:K
0:A);
2(��:K

0:K 00)).

� Case: Rule 21

1. By the inductive hypothesis (�1;
1A;
1(��:K
0:K 00)) is (�2;
2A;
2(��:K

0:K 00))

2. and (�1;
1A
0;
1K

0) is (�2;
2A
0;
2K

0).

3. Therefore, (�1;
1(AA
0);
1(f�7!A0gK 00)) is (�2;
2(AA

0);
2(f�7!A0gK 00)).

� Case: Rule 22.

1. By the inductive hypothesis, (�1;
1A;
1(��:K
0:K 00)) is (�2;
2A;
2(��:K

0:K 00)).

2. Therefore (�1;�1
1A;
1K
0) is (�2;�1
2A;
2K

0).

� Case: Rule 23.

1. By the inductive hypothesis, (�1;
1A;
1(��:K
0:K 00)) is (�2;
2A;
2(��:K

0:K 00)).

2. Therefore (�1;�2
1A;
1(f�7!�1AgK
00)) is (�2;�2
2A;
2(f�7!�1AgK

00)).

� Case: Rule 24.

1. By the inductive hypothesis, (�1;
1(��:K
0:K 00)) is (�2;
2(��:K

0:K 00)).

2. By the inductive hypothesis and re
exivity, (�1;
1A1;
1K
0)valid

3. and (�1;
1A2; (
1[�7!
1A1])K
00) valid.

4. Now �1 `
1A1 ' �1h
1A1;
1A2i

5. and �1 `
1A2 ' �2h
1A1;
1A2i.

33

6. by Lemma 4.7 we have (�1;�1h
1A1;
1A2i;
1K
0)valid,

7. (�1;�2h
1A1;
1A2i; (
1[�7!
1A1])K
00)valid.

8. and (�1;�1h
1A1;
1A2i;
1K
0) is (�1;
1A1;
1K

0).

9. Then (�1; (
1[�7!
1A1])K
00) is (�1; (
1[�7!�1h
1A1;
1A2i])K

00).

10. Using Lemma 4.3, (�1;�2h
1A1;
1A2i; (
1[�7!�1h
1A1;
1A2i])K
00)valid.

11. Therefore, (�1; h
1A1;
1A2i;
1(��:K
0:K 00))valid

12. A very similar argument shows that (�2; h
2A1;
2A2i;
2(��:K
0:K 00))valid

13. and an analogous argument shows that
(�1; h
1A1;
1A2i;
1(��:K

0:K 00)) is (�2; h
2A1;
2A2i;
2(��:K
0:K 00)).

� Case: Rule 25

1. By the inductive hypothesis, (�1;
1A;T) is (�2;
2A;T).

2. As in the case for Rule 6, (�1;S(
1A)) is (�2;S(
2A)).

3. Thus (�1;
1A;S(
1A))valid,

4. (�2;
2A;S(
2A))valid,

5. and (�1;
1A;S(
1A)) is (�2;
2A;S(
2A)).

� Case: Rule 26.

1. By the inductive hypothesis, (�1;
1(��:K
0:K 00)) is (�2;
2(��:K

0:K 00)),

2. (�1;�1(
1A);
1K
0) is (�2;�1(
2A);
2K

0),

3. and (�1;�2(
1A);
1(f�7!�1AgK
00)) is (�2;�2(
2A);
2(f�7!�1AgK

00)).

4. Thus (�1;
1A;
1(��:K
0:K 00)) valid,

5. (�2;
2A;
2(��:K
0:K 00))valid,

6. and therefore (�1;
1A;
1(��:K
0:K 00)) is (�2;
2A;
2(��:K

0:K 00)),

� Case: Rule 27

1. By Lemma B.1 and the inductive hypothesis, (�1;
1K
0) is (�2;
2K

0).

2. Let �0

1;�
00

1 � �1

3. and assume (�0

1;B
0

1;
1K
0) is (�00

1 ;B
00

1 ;
1K
0).

4. By monotonicity, (�0

1;
1[�7!B0

1]; �; �:K
0) is (�00

1 ;
1[�7!B00

1]; �; �:K
0).

5. By the inductive hypothesis,
(�0

1; (
1[�7!B0

1])(A�);(
1[�7!B0

1])K
00) is (�00

1 ; (
2[�7!B00

1])(A�); (
2[�7!B00

1])K
00).

6. That is, (�0

1; (
1A)B
0

1; (
1[�7!B0

1])K
00) is (�00

1 ; (
2A)B
00

1 ; (
2[�7!B00

1])K
00).

7. Therefore, (�1;
1(��:K
0:K 00))valid

8. and (�1;
1A;
1(��:K
0:K 00))valid.

9. A similar proof shows that (�2;
2A;
2(��:K
0:K 00))valid.

10. Let (�0

1;�
0

2) � (�1;�2)

11. and assume (�0

1;B1;
1K
0) is (�0

2;B2;
2K
0).

12. By monotonicity, (�0

1;
1[�7!B1]; �; �:K
0) is (�0

2;
2[�7!B2];�; �:K
0).

13. By the inductive hypothesis,
(�0

1; (
1[�7!B1])(A�);(
1[�7!B1])K
00) is (�0

2; (
2[�7!B2])(A�); (
2[�7!B2])K
00).

14. That is, (�0

1; (
1A)B1; (
1[�7!B1])K
00) is (�0

2; (
2A)B2; (
2[�7!B2])K
00).

15. Therefore, (�1;
1(��:K
0:K 00)) is (�2;
2(��:K

0:K 00))

16. and (�1;
1A;
1(��:K
0:K 00)) is (�2;
2A;
2(��:K

0:K 00)).

34

� Case: Rule 28

1. By the inductive hypothesis, (�1;
1A;
1K1) is (�1;
2A;
2K1)

2. and (�1;
1K1 �
1K2) is (�2;
2K1 �
2K2).

3. Therefore, (�1;
1A;
1K2) is (�1;
2A;
2K2)

Constructor Equivalence Rules: � ` A1 � A2 : K.

It su�ces to prove that if � ` A1 � A2 : K and (�1;
1; �) is (�2;
2; �) then (�1;
1A1;
1K) is (�2;
2A2;
2K),

because it follows that (�2;
2A1;
2K1) is (�2;
2A2;
2K2), so (�1;
1A1;
1K) is (�2;
2A2;
2K) by Symmetry
and Transitivity. A similar argument yields (�1;
1A2;
1K) is (�2;
2A2;
2K).

� Case: Rule 29.

1. By the arguments for Rule 40,

(�1;
1(��:K
0:A1);
1(��:K

0:K 00)) is (�2;
2(��:K
0:A2);
2(��:K

0:K 00)).

2. By the inductive hypothesis, (�1;
1A
0

1;
1K
0) is (�2;
2A

0

2;
2K
0).

3. Therefore, (�1;
1((��:K
0:A1)A

0

1);
1(f�7!A0

1gK
00)) is (�2;
2((��:K

0:A2)A
0

2);
2(f�7!A0

2gK
00)).

4. Similarly (�1;
1((��:K
0:A1)A

0

1);
1(f�7!A0

1gK
00)) is (�2;
2((��:K

0:A1)A
0

1);
2(f�7!A0

1gK
00)).

5. But �2 `
2((��:K
0:A2)A

0

2) '
2(f�7!A0

2gA2).

6. Thus by Lemma 4.7,

(�1;
1((��:K
0:A1)A

0

1);
1(f�7!A0

1gK
00)) is (�2;
2(f�7!A0

2gA2);
2(f�7!A0

2gK
00)).

7. Then since (�2;
2A
0

1;
2K
0) is (�2;
2A

0

2;
2K
0)

8. we have (�2;
2(f�7!A0

1gK
00)) is (�2;
2(f�7!A0

2gK
00)).

9. By Lemma 4.3, (�1;
1((��:K
0:A1)A

0

1);
1(f�7!A0

1gK
00)) is (�2;
2(f�7!A0

2gA2);
2(f�7!A0

1gK
00)).

� Case: Rule 30.

Exact analog to the proof of Rule 27.

� Case: Rule 31.

This proof is analogous to the proof for Rule 26 except that due to the assymmetry of the rule's last premise

we must note that (�1;
2(f�7!�1A1gK
00)) is (�2;
2(f�7!�1A2gK

00)) and use Lemma 4.3.

� Case: Rule 32.

1. By an argument as in the proof of Rule 24,

(�1;
1hA1;A2i;
1(K1�K2)) is (�2;
2hA1;A2i;
2(K1�K2)).

2. Thus (�1;
1(�1hA1;A2i);
1K1) is (�2;
2(�1hA1; A2i);
2K1).

3. By the inductive hypothesis, (�1;
1A
0

1;
1K1) is (�2;
2A
0

1;
2K1).

4. Now (�1;
1hA1;A2i;
1(K1�K2)) is (�2;
2hA
0

1;A2i;
2(K1�K2)).

5. and �2 `
2�1hA
0

1;A2i '
2A
0

1.

6. By Lemma 4.7, (�1;
1�1hA1;A2i;
1K1) is (�2;
2A
0

1;
2K1).

� Case: Rule 33.

Same argument as previous case.

� Case: Rule 34.

1. By the inductive hypothesis, (�1;
1A;S(
1B)) is (�2;
2A;S(
2B)).

2. Thus �1 `
1A : T , �2 `
2A : T ,

3. �1 `
1B : T , �2 `
2B : T ,

4. and �2 `
2A : T , �2 `
2B : T .

5. By transitivity, �1 `
1A : T , �2 `
2B : T .

6. Therefore (�1;
1A;T) is (�2;
2A;T),

7. (�1;
1B;T) is (�2;
2B;T),

35

8. and (�1;
1A;T) is (�2;
2B;T).

� Case: Rule 35.

By the inductive hypothesis and the de�nitions of the relations.

� Case: Rule 36.

By the inductive hypothesis and Lemma 4.5.

� Case: Rule 37.

1. By the inductive hypothesis, (�1;
1A;
1K) is (�1;
1A
0;
1K)

2. and (�1;
1A
0;
1K) is (�2;
2A

00;
2K).

3. By Lemma 4.6, (�1;
1A;
1K) is (�2;
2A
00;
2K).

� Case: Rule 38.

By the de�nition of the algorithm and the logical relations.

� Case: Rule 39.

By the assumption regarding
1 and
2.

� Case: Rule 40.

Analogous to the proof for rule 20.

� Case: Rule 41.

1. Using the inductive hypothesis, (�1;
1(AA1);
1(f�7!A1gK2)) is (�2;
2(A
0A0

1);
2(f�7!A0

1gK2)).

2. Therefore by Lemma 4.3, (�1;
1(AA1);
1(f�7!A1gK2)) is (�2;
2(A
0A0

1);
2(f�7!A1gK2)).

� Case: Rule 42.

Analogous to the proof for Rule 22.

� Case: Rule 43.

Analogous to proofs for Rule 23 and Rule 41, except that the assymmetry of the conclusion requires a use of

Lemma 4.3.

� Case: Rule 44.

Analogous to proof for Rule 24 except that the assymmetry of the rule's last premise requires a use of
Lemma 4.3.

� Case: Rule 45.

By the inductive hypothesis and the de�nition of the logical relations.

A straightforward proof by induction on well-formed contexts shows that the identity substitution is

related to itself:

Lemma 4.10

If � ` ok then for all � 2 dom(�) we have (�; �; ��) is (�; �; ��). That is, (�; id; �) is (�; id; �) where id

is the identity function.

Proof: By induction on the proof of � ` ok.

� Case: Empty context. Vacuous.

� Case: �; �:K.

1. By Lemma B.1, � ` K, and � ` ok.

2. Also, � 62 dom(�).

3. By the inductive hypothesis, (�;�;��) is (�;�;��) for all � 2 dom(�).

4. By monotonicity, (�; �:K;�; ((�;�:K)�)) is (�; �:K;�; ((�; �:K)�)) for all � 2 dom(�).

5. By Theorem 4.9, (�;K) is (�;K)

6. and by monotonicity (�; �:K;K) is (�; �:K;K)

36

7. Now �; �:K ` � " K $ �; �:K ` � " K,

8. so by Lemma 4.8, (�; �:K;�;K) is (�; �:K;�;K).

This yields our completeness result for the algorithm:

Corollary 4.11 (Completeness)

1. If � ` K1 � K2 then (�;K1) is (�;K2).

2. If � ` A1 � A2 : K then (�;A1;K) is (�;A2;K).

3. If � ` K1 � K2 then � ` K1 , � ` K2.

4. If � ` A1 � A2 : K then � ` A1 : K , � ` A2 : K.

Proof:

1,2 By Lemma 4.10, we can apply the Fundamental Theorem with
1 and
2 being identity substitutions.

3,4 Follows directly from parts 1 and 2 and the Main Lemma.

Lemma 4.12

1. If �1 ` A1 " K1 $ �1 ` A1 " K1 and �2 ` A2 " K2 $ �2 ` A2 " K2 then

�1 ` A1 " K1 $ �2 ` A2 " K2 is decidable.

2. If �1 ` A1 : K1 , �1 ` A1 : K1 and �2 ` A2 : K2 , �2 ` A2 : K2 then �1 ` A1 : K1 , �2 ` A2 : K2

is decidable.

3. If �1 ` K1 , �1 ` K1 and �2 ` K2 , �2 ` K2 then �1 ` K1 , �2 ` K2 is decidable.

Proof Sketch: By induction on the proof of the �rst assumption.

Roughly speaking, the algorithm does independent expansion of the two terms and compares the results.

If we know that the expansion process terminates for the two terms individually, then the simultaneous

expand-and-compare of both terms will also terminate (possibly earlier if the terms are inequivalent).

Corollary 4.13 (Decidability)

1. If � ` A1 : K and � ` A2 : K then � ` A1 : K , � ` A2 : K is decidable.

2. If � ` K1 and � ` K2 then � ` K1 , � ` K2 is decidable.

Proof: By Corollary 4.11, comparison of each well-formed type or term with itself is decidable. by Lemma 4.12,

therefore, the comparison of the two types or two terms is decidable.

We conclude this section with an application of completeness.

Proposition 4.14 (Consistency)

Let b1 and b2 be two distinct constants of kind T . Then the judgment \ ` b1 � b2 : T " is not provable.

This inequivalence (and the inequivalence of ��:T:� and ��:T:bi at kind T!T mentioned in Section 2.2)

is obvious for algorithmic equivalence, which by completeness transfers to inequivalence in the declarative

system.

In proving soundness of the TILT compiler's intermediate language, these sorts of consistency properties

are essential. The argument that, for example, the only closed values of type int are the integers would fail

if the type int were provably to another base type.

37

Kind Extraction

� ` bi " T

� ` � " �(�)

� ` �1p " K1 if � ` p " ��:K1:K2

� ` �2p " f� 7!�1pgK2 if � ` p " ��:K1:K2

� ` pA " f� 7!AgK2 if � ` p " ��:K1:K2

Weak head reduction

� ` E[(��:K:A)A0]; E[f�7!A0gA]

� ` E[�1hA1; A2i]; E[A1]

� ` E[�2hA1; A2i]; E[A2]

� ` p; B if � ` p " S(B)

Weak head normalization

� ` A + B if � ` A; A0 and � ` A0 + B

� ` B + B otherwise

Algorithmic constructor equivalence

� ` A1 , A2 : T if � ` A1 + p1, � ` A2 + p2, and � ` p1 $ p2 " T

� ` A1 , A2 : S(B) always

� ` A1 , A2 : ��:K
0:K00 if �; �:K0 ` A1�, A2� : K00

� ` A1 , A2 : ��:K
0:K00 if � ` �1A1 , �1A2 : K

0 and � ` �2A1 , �2A2 : f�7!�1A1gK
00

Algorithmic path equivalence

� ` bi $ bj " T if i = j

� ` �$ � " �(�)

� ` p1A1 $ p2A2 " f�7!A1gK2 if � ` p1 $ p2 " ��:K1:K2 andalso � ` A1 , A2 : K1

� ` �1p1 $ �1p2 " K1 if � ` p1 $ p2 " ��:K1:K2

� ` �2p1 $ �2p2 " f�7!�1p1gK2 if � ` p1 $ p2 " ��:K1:K2

Algorithmic kind equivalence

� ` T , T always

� ` S(A1), S(A2) if � ` A1 , A2 : T

� ` ��:K1:L1 , ��:K2:L2 if � ` K1 , K2 and �; �:K1 ` L1 , L2
� ` ��:K1:L1 , ��:K2:L2 if � ` K1 , K2 and �; �:K1 ` L1 , L2

Figure 8: A Simpli�ed Algorithm

5 A Simpler Algorithm

We have shown that constructor equivalence is decidable by presenting a sound, complete and terminating

algorithm. However, as an implementation it ine�ciently maintains two typing contexts and two classifying

kinds. We would prefer an algorithm more like the declarative rules for equivalence, having only a single

typing context and a single classi�er. The revised algorithmic relations are shown in Figure 8.

The de�nition of this simpli�ed algorithm is asymmetric because of essentially arbitrary choices between

two provably equivalent kinds for the classi�er or the typing context. Because we cannot prove directly that

this simpli�ed algorithm satis�es any symmetry or transitivity properties, we cannot simply use the same

proof strategy. However, we can show the simpli�cation is complete with respect to the previous algorithm,

from which the remaining correctness properties follow easily.

One other small simpli�cation is that in weak head reduction we need not worry about a path having

a proper pre�x with a de�nition; for well-formed constructors this can never occur. (See the proof of

Corollary 3.2.)

We �rst de�ne a \size" metric on derivations in the six-place algorithmic system. This metric measures

38

the size of the derivation ignoring head reduction or head normalization steps; equivalently, we can de�ne

the metric as the number of term or path equivalence rules used in the derivation. Since every judgment

has at most one derivation in the six-place system, we can refer unambiguously to the size of a provable

algorithmic judgment.

The important properties of this metric are summarized in the following two lemmas.

Lemma 5.1

1. If �1 ` A1 : K1 , �2 ` A2 : K2 and �1 ` A1 : K1 , �3 ` A3 : K3 then the two derivations have equal

sizes.

2. If �1 ` A1 " K1 $ �2 ` A2 " K2 and �1 ` A1 " K1 $ �3 ` A3 " K3 then the two derivations have

equal sizes.

Proof: [By induction on the hypothesized derivations]

� Assume �1 ` A1 : T , �2 ` A2 : T and �1 ` A1 : T , �3 ` A3 : T . Then �1 ` A1 + p1, �2 ` A2 + p2,

�3 ` A3 + p3, �1 ` p1 " T $ �2 ` p2 " T , and �1 ` p1 " T $ �3 ` p3 " T . By the inductive hypothesis, these
last two algorithmic judgments have equal sizes, so the original equivalences have equal sizes (greater by one).

� Assume �1 ` A1 : S(B1), �2 ` A2 : S(B2) and �1 ` A1 : S(B1), �3 ` A3 : S(B3). Then the derivations

both have a size of one.

� Assume �1 ` A1 : ��:A
0

1:A
00

1 , �2 ` A2 : ��:A
0

2:A
00

2 and �1 ` A1 : ��:A
0

1:A
00

1 , �3 ` A3 : ��:A
0

3:A
00

3 . Then

�1; �:K
0

1 ` A1 � : K 00

1 , �2; �:K
0

2 ` A2 � : K 00

2 and �1; �:K
0

1 ` A1 � : K 00

1 , �3; �:K
0

2 ` A3 � : K 00

3 . By the

inductive hypothesis these derivations have equal sizes and hence the original equivalence judgments have
equal sizes (greater by one).

� Assume �1 ` A1 : ��:A
0

1:A
00

1 , �2 ` A2 : ��:A
0

2:A
00

2 and �1 ` A1 : ��:A
0

1:A
00

1 , �3 ` A3 : ��:A
0

3:A
00

3 . Then
�1 ` �1A1 : K

0

1 , �2 ` �1A2 : K
0

2, �1 ` �1A1 : K
0

1 , �3 ` �1A3 : K
0

3,

�1 ` �2A1 : f�7!�1A1gK
00

1 , �2 ` �1A2 : f�7!�1A2gK
00

2 , and

�1 ` �2A1 : f�7!�1A1gK
00

1 , �3 ` �1A3 : f�7!�1A3gK
00

3 . By the inductive hypothesis twice, both pairs of
judgments contain two derivations with equal sizes.

� Assume �1 ` bi " T $ �2 ` bi " T and �1 ` bi " T $ �3 ` bi " T . Both derivations have size one.

� Assume �1 ` � " �1(�)$ �2 ` � " �2(�) and �1 ` � " �1(�)$ �3 ` � " �3(�). Both derivations have size
one.

� The remaining three cases follow directly by the inductive hypothesis.

Lemma 5.2

1. If �1 ` A1 : K1 , �2 ` A2 : K2 then the derivation �2 ` A2 : K2 , �1 ` A1 : K1 has the same size.

2. If �1 ` A1 " K1 $ �2 ` A2 " K2 then the derivation �2 ` A2 " K2 $ �1 ` A1 " K1 has the same size.

Proof Sketch: The two derivations are essentially mirror-images of each other, and hence use the same

number of rules of each kind.

Using the metric, we can show the completeness of the four-place algorithm with respect to the six-place

algorithm.

Lemma 5.3

1. If ` �1 � �2, �1 ` K1 � K2, �1 ` A1 : K1, �2 ` A2 : K2, and �1 ` A1 : K1 , �2 ` A2 : K2 then

�1 ` A1 , A2 : K1.

2. If ` �1 � �2, �1 ` K1 � K2, �1 ` A1 : K1, �2 ` A2 : K2, and �1 ` A1 " K1 $ �2 ` A2 " K2 then

�1 ` A1 $ A2 " K1.

Proof: [By induction on the size of the hypothesized algorithmic derivation.]

Assume ` �1 � �2, �1 ` K1 � K2, �1 ` A1 : K1, and �2 ` A2 : K2.

39

� Case: �1 ` A1 : T , �2 ` A2 : T because �1 ` A1 + p1, �2 ` A2 + p2, and �1 ` p1 " T $ �2 ` p2 " T .

Now by the soundness and completeness of the six-place algorithm we have �1 ` A1 : T , �1 ` A2 : T , where

�1 ` A2 + p
0

2 and �1 ` p1 " T $ �1 ` p0

2 " T .

By Lemma 5.1, the sizes of the two proofs of algorithmic path equivalence have equal sizes. Since this size is

less than the size of the original algorithmic judgment (by one), we may apply the inductive hypothesis to get
�1 ` p1 $ p0

2 " T . Therefore, �1 ` A1 , A2 : T .

� The remaining cases are all either trivial or follow directly from the inductive hypothesis.

Corollary 5.4 (Completeness)

If � ` A1 � A2 : K then � ` A1 , A2 : K.

Proof: Assume � ` A1 � A2 : K. By the completeness of the six-place algorithm, � ` A1 : K , � ` A2 : K. Then

� ` A1 , A2 : K by Lemma 5.3.

Theorem 5.5 (Soundness)

1. If � ` A1 : K, � ` A2 : K, and � ` A1 , A2 : K then � ` A1 � A2 : K.

2. If � ` p1 : K1, � ` p2 : K2, and � ` p1 $ p2 " K then � ` p1 � p2 : K.

Proof Sketch: By induction on the hypothesized derivations, exactly analogous with the soundness proof

for the six-place algorithm.

Lemma 5.6

1. If � ` A1 $ A1 " K and � ` A2 $ A2 " K then � ` A1 $ A2 " K is decidable.

2. If � ` A1 , A1 : K and � ` A2 , A2 : K then � ` A1 , A2 : K is decidable.

3. If � ` K1 , K1 and � ` K2 , K2 then � ` K1 , K2 is decidable.

Proof: Essentially the same proof as in the original algorithm.

Theorem 5.7 (Decidability)

1. If � ` A1 : K and � ` A2 : K then � ` A1 , A2 : K is decidable.

2. If � ` K1 and � ` K2 then � ` K1 , K2 is decidable.

Proof: Follows from re
exivity of constructor and kind equivalence, Completeness, and Lemma 5.6.

6 Related Work

Our proof was inspired by that of Coquand [3], but because the equivalence considered there was not context-

sensitive in any way our algorithm and proof are substantially di�erent. Because of the validity logical

relations and the form of the symmetry and transitivity properties for logical equivalence, our initial attempts

to use more traditional Kripke logical relations (with worlds being pairs of contexts) were unsuccessful.

Other researchers have considered lambda calculi with more interesting equivalences. Lillibridge [10]

considered a language in which equivalence depends on the typing context. He eliminates the context-

sensitivity by tagging each path with its enclosing typing context, and then gives a rewriting strategy for

this tagged system. Curien and Ghelli [5] gave a proof of decidability of term equivalence in F� with ��-

reduction and a Top type. Because their Top type is both terminal and maximal, equivalence depends on

both the typing context and the type at which terms are compared. They eliminate context-sensitivity by

inserting explicit coercions to mark uses of subsumption and then give a rewriting strategy for the calculus

with coercions. Both Lillibridge's and Curien and Ghelli's approaches require an extra step to transfer

decidability results from this system without context-sensitivity back to the original systems.

40

Severi and Poll [15] study con
uence and normalization of ��-reduction for a pure type system with

de�nitions (let bindings), where � is the replacement of an occurrence of a variable with its de�nition. This

calculus contains no notion of partial de�nitions and no subtyping.

David Aspinall [1] studied a calculus ��fg with singleton types and �-equivalence. Labelled singletons

are primitive notions in this system; in the absence of �-equivalence the encoding of Section 2.3 does not

work. He conjectured that equivalence in this system was decidable. Karl Crary [4] studied an extension of

���S� with subtyping and power kinds and also conjectured that typechecking was decidable.

7 Conclusion and Future Work

We have con�rmed that ��-equivalence for well-formed constructors is decidable in the presence of singleton

kinds by providing a sound, complete, and terminating algorithm. This algorithm | with minor extensions

such as stopping early when constructors are found to be �-equivalent | is used by the internal typechecker

of the TILT compiler.

Although the pattern of our logical relations proof is fairly standard, our formulation | in particular,

the equivalence relation involving two constructors, two kinds, and two worlds | appears novel, as is the

extension to subkinding and singleton kinds.

We believe that our proof should generalize well to extensions of ���S� such as subtyping and power kinds

like those found in Crary's work. The technique may be applicable to other calculi, especially those with

context-sensitive equivalence.

We are currently investigating the addition of singleton types to the TILT compiler. These seem a

promising formalized vehicle for expressing the information needed by cross-module inlining [2, 16] and

modeling the structure sharing feature of original Standard ML.

8 Acknowledgements

We would like to thank Lars Birkedal for his suggestion that the form of the logical relations should mirror

the form of the algorithmic relations and Karl Crary for his detailed critique of our proofs. We also thank

Perry Cheng, Mark Lillibridge, Leaf Petersen, Frank Pfenning, John Reynolds, Jon Riecke, and Rick Statman

for helpful discussions.

References

[1] David Aspinall. Subtyping with Singleton Types. In Proc. Computer Science Logic (CSL'94), 1995. In

Springer LNCS 933.

[2] Matthias Blume and Andrew W. Appel. Lambda-Splitting: A Higher-Order Approach to Cross-Module

Optimizations. In Proc. 1997 International Conference on Functional Programming (ICFP '97), pages

112{124, June 1997.

[3] Thierry Coquand. An Algorithm for Testing Conversion in Type Theory. In G�erard Huet and G. Plotkin,

editors, Logical frameworks, pages 255{277. Cambridge University Press, 1991.

[4] Karl F. Crary. Type-Theoretic Methodology for Practical Programming Languages. PhD thesis, Depart-

ment of Computer Science, Cornell University, 1998.

[5] Pierre-Louis Curien and Giorgio Ghelli. Decidability and Con
uence of ��top� Reduction in F�.

Information and Computation, 1/2:57{114, 1994.

[6] Robert Harper and Mark Lillibridge. A Type-Theoretic Approach to Higher-Order Modules with Shar-

ing. In Proc. 21st Symposium on Principles of Programming Languages, pages 123{137, 1994.

[7] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order Modules and the Phase Distinction.

In 17th Symposium on Principles of Programming Languages, pages 341{354, 1990.

41

[8] Xavier Leroy. Manifest types, modules, and separate compilation. In Proc. 21st Symposium on Principles

of Programming Languages, pages 109{122, 1994.

[9] Xavier Leroy. Applicative Functors and Fully Transparent Higher-Order Modules. In Proc. 22nd Sym-

posium on Principles of Programming Languages, pages 142{153, 1995.

[10] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. PhD thesis,

School of Computer Science, Carnegie Mellon University, 1997. Available as CMU Technical Report

CMU-CS-97-122.

[11] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed Closure Conversion. In Proc. 23rd

Symposium on Princples of Programming Languages, pages 271{283, 1996.

[12] Greg Morrisett. Compiling with Types. PhD thesis, School of Computer Science, Carnegie Mellon

University, 1995. Available as CMU Technical Report CMU-CS-95-226.

[13] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed Assembly Lan-

guage. Technical Report TR97-1651, Department of Computer Science, Cornell University, 1997.

[14] George C. Necula. Proof-Carrying Code. In 24th Symposium on Principles of Programming Languages,

pages 106{119. ACM Press, 1997.

[15] Paula Severi and Eric Poll. Pure Type Systems with de�nitions. In Logical Foundations of Computer

Science '94, number 813 in LNCS, 1994.

[16] Zhong Shao. Typed Cross-Module Compilation. In Proc. 1998 ACM SIGPLAN International Conference

on Functional Programming (ICFP '98), pages 141{152, September 1998.

[17] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter Lee. TIL: A

Type-Directed Optimizing Compiler for ML. In Proc. ACM SIGPLAN '96 Conference on Programming

Language Design and Implementation, pages 181{192, 1996.

42

A Rules for ���S�

Well-Formed Context � ` ok

� ` ok
(1)

� ` K � 62 dom(�)

�; �:K ` ok
(2)

Context Equivalence ` �1 � �2

` � � �
(3)

` �1 � �2 �1 ` K1 � K2 � 62 dom(�1)

` �1; �:K1 � �2; �:K2

(4)

Well-Formed Kind � ` K

� ` ok

� ` T
(5)

� ` A : T

� ` S(A)
(6)

�; �:K0 ` K00

� ` ��:K0:K00
(7)

�; �:K0 ` K00

� ` ��:K0:K00
(8)

Subkinding � ` K � K 0

� ` A : T

� ` S(A) � T
(9)

� ` ok

� ` T � T
(10)

� ` A1 � A2 : T

� ` S(A1) � S(A2)
(11)

� ` ��:K0
1:K

00
1

� ` K0
2 � K0

1 �; �:K0
2 ` K00

1 � K00
2

� ` ��:K0
1:K

00
1 � ��:K0

2:K
00
2

(12)

� ` ��:K0
2:K

00
2

� ` K0
1
� K0

2
�; �:K0

1
` K00

1
� K00

2

� ` ��:K0
1:K

00
1 � ��:K0

2:K
00
2

(13)

43

Kind Equivalence � ` K1 � K2

� ` ok

� ` T � T
(14)

� ` A1 � A2 : T

� ` S(A1) � S(A2)
(15)

� ` K0
2
� K0

1
�; �:K0

1
` K00

1
� K00

2

� ` ��:K0
1
:K00

1
� ��:K0

2
:K00

2

(16)

� ` K0
1
� K0

2
�; �:K0

1
` K00

1
� K00

2

� ` ��:K0
1:K

00
1 � ��:K0

2:K
00
2

(17)

Well-Formed Constructor � ` A : K

� ` ok

� ` bi : T
(18)

� ` ok

� ` � : �(�)
(19)

�; �:K0 ` A : K00

� ` ��:K0:A : ��:K0:K00
(20)

� ` A : ��:K0:K00 � ` A0 : K0

� ` AA0 : f�7!A0gK00
(21)

� ` A : ��:K0:K00

� ` �1A : K0
(22)

� ` A : ��:K0:K00

� ` �2A : f�7!�1AgK
0

(23)

� ` ��:K0:K00

� ` A1 : K
0

� ` A2 : f�7!A1gK
00

� ` hA1; A2i : ��:K
0:K00

(24)

� ` A : T

� ` A : S(A)
(25)

� ` ��:K0:K00

� ` �1A : K0

� ` �2A : f�7!�1AgK
00

� ` A : ��:K0:K00
(26)

� ` A : ��:K0:K00
1

�; �:K0 ` A� : K00

� ` A : ��:K0:K00
(27)

� ` A : K1 � ` K1 � K2

� ` A : K2

(28)

44

Constructor Equivalence � ` A � A0 : K

�; �:K0 ` A1 � A2 : K
00 � ` A0

1
� A0

2
: K0

� ` (��:K0:A1)A
0
1
� f�7!A0

2
gA2 : f�7!A0

1
gK00

(29)

� ` A1 : ��:K
0:K00

1

� ` A2 : ��:K
0:K00

2

�; �:K0 ` A1� � A2� : K00

� ` A1 � A2 : ��:K
0:K00

(30)

� ` ��:K0:K00

� ` �1A1 � �1A2 : K
0

� ` �2A1 � �2A2 : f�7!�1A1gK
00

� ` A1 � A2 : ��:K
0:K00

(31)

� ` A1 � A0
1
: K1 � ` A2 : K2

� ` �1hA1; A2i � A0
1
: K1

(32)

� ` A1 : K1 � ` A2 � A0
2 : K2

� ` �2hA1; A2i � A0
2 : K2

(33)

� ` A : S(B)

� ` A � B : T
(34)

� ` A � B : T

� ` A � B : S(A)
(35)

� ` A0 � A : K

� ` A � A0 : K
(36)

� ` A � A0 : K � ` A0 � A00 : K

� ` A � A00 : K
(37)

� ` ok

� ` bi � bi : T
(38)

� ` ok

� ` � � � : �(�)
(39)

� ` K0
1 � K0

2 �; �:K0
1 ` A1 � A2 : K

00

� ` ��:K0
1:A1 � ��:K0

2:A2 : ��:K
0:K00

(40)

� ` A � A0 : ��:K1:K2 � ` A1 � A0
1 : K1

� ` AA1 � A0A0
1 : f�7!A1gK2

(41)

� ` A1 � A2 : ��:K
0:K00

� ` �1A1 � �1A2 : K
0

(42)

� ` A1 � A2 : ��:K
0:K00

� ` �2A1 � �2A2 : f�7!�1A1gK
00

(43)

� ` ��:K0:K00

� ` A0
1 � A0

2 : K
0

� ` A00
1
� A00

2
: f�7!A0

1
gK00

� ` hA0
1; A

00
1i � hA0

2; A
00
2i : ��:K

0:K00
(44)

� ` A1 � A2 : K � ` K � K0

� ` A1 � A2 : K
0

(45)

45

� K1 is K2 [�] i�

1. � ` ok

2. And,

{ K1 = T and K2 = T

{ Or, K1 = S(A1) and K2 = S(A2) and A1 is A2 in T [�].

{ Or, K1 = ��:K0
1
:K00

1
and K2 = ��:K0

2
:K00

2
and K0

1
is K0

2
[�] and 8�0 � � if

A1 is A2 in K0
1
[�0] then f�7!A1gK

00
1
is f�7!A2gK

00
2
[�0]

{ Or, K1 = ��:K0
1
:K00

1
and K2 = ��:K0

2
:K00

2
and K0

1
is K0

2
[�] and 8�0 � � if

A1 is A2 in K0
1
[�0] then f�7!A1gK

00
1
is f�7!A2gK

00
2
[�0]

� A1 is A2 in K [�] i�

1. � ` A1 : K

2. And, � ` A2 : K

3. And, � ` A1 � A2 : K

�
1 is
2 in � [�] i�

1. � ` ok

2. And, 8� 2 dom(�):
1(��) is
2(��) [�]

3. And, 8� 2 dom(�):
1� is
2� in
1(��) [�].

Figure 9: Logical Relations for Declarative Properties

B Declarative Properties of ���S�

To prove many of the important properties of the declarative system, we use a Kripke logical relations

argument with a more standard form than that used in the main paper to prove completeness. The de�nition

of the relations is shown in Figure 9. As in the main paper, a Kripke world � is a context, and worlds are

ordered by the pre�x ordering.

The logical relations in Figure 9 are not used outside this section, and should not be confused with the

logical relations of Section 4. (It seems possible that the two logical relations arguments could be combined

into one, as in Coquand's work, but we have decided to keep them separate for this presentation.)

Lemma B.1

1. If � ` J then there is a subderivation � ` ok.

2. If �1; �:K;�2 ` J then there is a subderivation �1 ` K.

Proof: By induction on derivations.

Lemma B.2 (Re
exivity)

1. If � ` K then � ` K � K.

2. If � ` K then � ` K � K.

3. If � ` A : K then � ` A � A : K.

Lemma B.3 (Weakening 1)

1. If �1;�3 ` J and �1;�2;�3 ` ok then �1;�2;�3 ` J .

2. If �1; �:K2;�2 ` J , �1 ` K1 � K2, and �1 ` K1 then �1; �:K1;�2 ` J .

46

Lemma B.4 (Substitution)

1. If � ` J , � ` ok, and (8� 2 dom(�):� `
� :
(�(�))) then � `
(J).

2. If �1; �:K;�2 ` J and �1 ` A : K then �1; f�7!Ag�2 ` f�7!AgJ

Proof:

1. By induction on derivations.

2. By Part 1.

Lemma B.5

The logical relations in Figure 9 are monotone (preserved under world extension.)

Lemma B.6

If K1 is K2 [�] then � ` K1 � K2, � ` K1 � K2, � ` K2 � K1, � ` K1, and � ` K2,

Proof: [By induction on the size of kinds]

� Case: T is T [�].

Follows by � ` ok.

� Case: S(A1) is S(A2) [�].

1. Then A1 is A2 in T [�],

2. so � ` A1 � A2 : T , � ` A1 : T , and � ` A2 : T .

3. The desired results follow.

� Case: ��:K 0

1:K
00

1 is ��:K 0

2:K
00

2 [�].

1. K 0

1 is K 0

2 [�],

2. so by the inductive hypothesis � ` K 0

1 � K 0

2, � ` K 0

1 � K 0

2, � ` K 0

2 � K 0

1, � ` K 0

1, and � ` K 0

2.

3. Then �; �:K 0

1 ` ok,

4. so �; �:K 0

1 ` � � � : K 0

1 and �; �:K 0

1 ` � : K 0

1.

5. Thus � is � in K 0

1 [�; �:K
0

1]

6. and K 00

1 is K 00

2 [�; �:K 0

1].

7. By the inductive hypothesis, �; �:K 0

1 ` K
00

1 � K 00

2 , �; �:K
0

1 ` K
00

1 � K 00

2 , �; �:K
0

1 ` K
00

2 � K 00

1 ,

�; �:K 0

1 ` K
00

1 , and �; �:K 0

1 ` K
00

2 .

8. Thus � ` ��:K 0

1:K
00

1 � ��:K 0

2:K
00

2 , � ` ��:K 0

1:K
00

1 , and � ` ��:K 0

2:K
00

2 � ��:K 0

1:K
00

1 .

9. By Weakening, �; �:K 0

2 ` K
00

1 � K 00

2 and �; �:K 0

2 ` K
00

2 .

10. Therefore � ` ��:K 0

1:K
00

1 � ��:K 0

2:K
00

2 and � ` ��:K 0

2:K
00

2 .

� Case: ��:K 0

1:K
00

1 is ��:K 0

2:K
00

2 [�].

Essentially the same argument as in the � case.

Corollary B.7

If A1 is A2 in K1 [�] and K1 is K2 [�] then A1 is A2 in K2 [�].

Lemma B.8

1. If A1 is A2 in K [�] then A2 is A1 in K [�].

2. If A1 is A2 in K [�] and A2 is A3 in K [�] then A1 is A3 in K [�].

3. If K1 is K2 [�] then K2 is K1 [�].

4. If K1 is K2 [�] and K2 is K3 [�] then K1 is K3 [�].

5. If
1 is
2 in � [�] then
2 is
1 in � [�].

47

6. If
1 is
2 in � [�] and
2 is
3 in � [�] then
1 is
3 in � [�].

Proof:

1. By the symmetry rule for constructor equivalence.

2. By the transitivity rule for constructor equivalence.

3. By induction on the sizes of kinds.

� Case: T is T [�]. Trivial.

� Case: S(A1) is S(A2) [�]. Follows by Part 1.

� Case: ��:K 0

1:K
00

1 is ��:K 0

2:K
00

2 [�].

(a) K 0

1 is K
0

2 [�], so by the inductive hypothesis K 0

2 is K
0

1 [�].

(b) Let �0 � � be given and assume A2 is A1 in K 0

2 [�
0].

(c) By Part 1, A1 is A2 in K 0

2 [�
0].

(d) By Corollary B.7, A1 is A2 in K 0

1 [�0].

(e) Then f�7!A1gK
00

1 is f�7!A2gK
00

2 [�0].

(f) By the inductive hypothesis, f�7!A2gK
00

2 is f�7!A1gK
00

1 [�0].

(g) Therefore, ��:K 0

2:K
00

2 is ��:K 0

1:K
00

1 [�].

� Case: ��:K 0

1:K
00

1 is ��:K 0

2:K
00

2 [�]. Same as previous case.

4. By induction on the sizes of types.

� Case: K1 = K2 = K3 = T . Trivial.

� Case: K1 = S(A1), K2 = S(A2), and K3 = S(A3). Follows by Part 2.

� Case: K1 = ��:K 0

1:K
00

1 , K2 = ��:K 0

2:K
00

2 , and K3 = ��:K 0

3:K
00

3 .

(a) K 0

1 is K
0

2 [�] and K 0

2 is K 0

3 [�],

(b) so by the inductive hypothesis K 0

1 is K 0

3 [�].

(c) Let �0 � � and assume A1 is A3 in K 0

1 [�0].

(d) By Parts 1 and 2, A1 is A1 in K 0

1 [�
0].

(e) By Corollary B.7, A1 is A3 in K 0

2 [�0].

(f) Thus f�7!A1gK
00

1 is f�7!A1gK
00

2 [�]

(g) and f�7!A1gK
00

2 is f�7!A3gK
00

3 [�].

(h) By the inductive hypothesis, f�7!A1gK
00

1 is f�7!A3gK
00

3 [�].

(i) Therefore, K1 is K3 [�].

� Case: K1 = ��:K 0

1:K
00

1 , K2 = ��:K 0

2:K
00

2 , and K3 = ��:K 0

3:K
00

3 . Same proof as in the � case.

5. By Parts 1 and 3 and Corollary B.7.

6. By Parts 2, 4, 5, and Corollary B.7.

Theorem B.9

1. If
1 is
2 in � [�] and � ` A1 � A2 : K then
1A1 is
2A2 in
1K [�] and
1K is
2K [�].

2. If
1 is
2 in � [�] and � ` A : K then
1A is
2A in
1K [�] and
1K is
2K [�].

3. If
1 is
2 in � [�] and � ` K then
1K is
2K [�].

4. If
1 is
2 in � [�] and � ` K1 � K2 then
1K1 is
2K1 [�],
1K2 is
2K2 [�], and � `
1K1 �
2K2.

5. If
1 is
2 in � [�] and � ` K1 � K2 then
1K1 is
2K2 [�].

Proof:

� Case: Rule 5. T is T [�] because � ` ok.

� Case: Rule 6.

1. By the inductive hypothesis,
1A is
2A in T [�].

48

2. Therefore, S(
1A) is S(
2A) [�].

� Case: Rule 7.

1. By Lemma B.1 there exists a strict subderivation � ` K 0.

2. By the inductive hypothesis,
1K
0 is
2K

0 [�].

3. Let �0 � � and assume A1 is A2 in
1K
0 [�0].

4. By monotonicity,
1[�7!A1] is
2[�7!A2] in �; �:K 0 [�0].

5. By the inductive hypothesis, (
1[�7!A1])K
00 is (
2[�7!A2])K

00 [�0].

6. That is, f�7!A1g(
1[�7!�]K 00) is f�7!A2g(
2[�7!�]K 00) [�0].

7. Therefore,
1(��:K
0:K 00) is
2(��:K

0:K 00) [�].

� Case: Rule 8. Same argument as for previous rule.

� Case: Subkinding and kind equivalence rules. Straightforward.

� Case: Constructor validity rules. Essentially the same as re
exive instances of the constructor equivalence

rules.

� Case: Rule 29.

1. As in Rule 40, � `
1(��:K
0:A1) :
1(��:K

0:K 00)

2. and
1(��:K
0:K 00) is
2(��:K

0:K 00) [�].

3. By the inductive hypothesis, � `
1A
0

1 :
1K
0.

4. Thus � `
1((��:K
0:A1)A

0

1) :
1(f�7!A0

1gK
00).

5. By the inductive hypothesis,
1A
0

1 is
2A
0

2 in
1K
0 [�].

6. Thus
1[�7!
1A
0

1] is
2[�7!
2A
0

2] in �; �:K 0 [�].

7. By the inductive hypothesis, � ` (
2[�7!
2A
0

2])A2 : (
1[�7!
1A
0

1])K
00.

8.
1[�7!�] is
2[�7!�] in �; �:K 0 [�; �:
1K
0].

9. By the inductive hypothesis,
1[�7!�]A1 is
2[�7!�]A2 in
1[�7!�]K 00 [�;�:
1K
0].

10. Thus � `
1((��:K
0:A1)A

0

1) �
2(f�7!A0

2gA2) :
1(f�7!A0

1gK
00).

11. Finally,
1A
0

1 is
2A
0

2 in
1K
0 [�]

12. so
1(f�7!A0

1gK
00) is
2(f�7!A0

2gK
00) [�].

� Case: Rule 30.

1. As in the argument for Rule 7,
1(��:K
0:K 00) is
2(��:K

0:K 00) [�].

2. In particular, by Lemma B.1 there is a strict subderivation � ` K 0.

3. By the inductive hypothesis
1K
0 is
2K

0 [�].

4. Also using the inductive hypothesis and Lemma B.6, � `
1A1 :
1(��:K
0:K 00

1)

5. and � `
2A1 :
1(��:K
0:K 00

1).

6. By Lemma B.6, � `
1K
0, so �; �:
1K

0 ` ok.

7. By monotonicity,
1[�7!�] is
2[�7!�] in �; �:K 0 [�; �:
1K
0].

8. By the inductive hypothesis, (
1K1)� is (
2K2)� in
1[�7!�]K 00 [�; �:
1K
0]

9. Thus �; �:
1K
0 ` (
1A1)� � (
2A2)� :
1[�7!�]K 00,

10. �; �:
1K
0 ` (
1A1)� :
1[�7!�]K 00,

11. and �; �:
1K
0 ` (
2A2)� :
1[�7!�]K 00.

12. Thus � `
1A1 :
1(��:K
0:K 00),

13. � `
2A2 :
1(��:K
0:K 00),

14. and � `
1A1 �
2A2 :
1(��:K
0:K 00).

15. Therefore
1A1 is
2A2 in
1(��:K
0:K 00) [�]

49

� Case: Rule 31.

1. By the inductive hypothesis,
1(��:K
0:K 00) is
2(��:K

0:K 00) [�],

2. �1(
1A1) is �1(
2A2) in
1K
0 [�],

3. and �2(
1A1) is �2(
2A2) in
1(f�7!�1A1gK
00) [�].

4. Thus � `
1A1 �
2A2 :
1(��:K
0:K 00),

5. and � `
1A1 :
1(��:K
0:K 00).

6. Also,
1(f�7!�1A1gK
00) is
2(f�7!�1A2gK

00) [�],

7. so by subsumption � `
2(�2A2) :
2(f�7!�1A2gK
00).

8. Similarly,
1K
0 is
2K

0 [�]

9. so by subsumption � `
2(�1A2) :
2K
0�.

10. Then � `
2A2 :
2(��:K
0:K 00).

11. and by subsumption, � `
2A2 :
1(��:K
0:K 00).

� Case: Rule 32.

1. By the inductive hypotheses,
1A1 is
2A
0

1 in
1K1 [�],

2.
1K1 is
2K1 [�],

3. and
1A2 is
2A2 in
1K2 [�].

4. Thus � `
1A1 �
2A
0

1 :
1K1,

5. � `
1A1 :
1K1,

6. � `
2A
0

1 :
1K1,

7. and � `
1A2 :
1K2.

8. Then � `
1hA1;A2i :
1(K1�K2),

9. so � `
1(�1hA1;A2i) :
1K1.

10. Also, � `
1(�1hA1;A2i) �
2A2 :
1K1,

11. so
1(�1hA1;A2i) is
2A2 in
1K1 [�].

� Case: Rule 33. Similar proof as in previous case.

� Case: Rule 34.

1. By the inductive hypothesis � `
1A �
2A : S(
1B),

2. � `
1A : S(
1B),

3. � `
2A : S(
1B),

4. and S(
1B) is S(
2B) [�].

5. Thus � `
1B �
2B : T

6. and � `
2B : T .

7. � `
1A �
1B : T .

8. By transitivity, � `
1A �
2B : T .

9. By subsumption � `
1A : T .

10. Finally, T is T [�].

� Case: Rule 35.

1. By the inductive hypothesis
1A is
2B in T [�]

2. so � `
1A �
2B : T ,

3. � `
1A : T ,

4. and � `
2B : T .

5. Then � `
1A �
2B : S(
1A),

6. � `
1A : S(
1A),

50

7. and � `
2B : S(
2B).

8. But � ` S(
2B) � S(
1A)

9. so by subsumption � `
2B : S(
1A).

10. Finally, by the IH and transitivity and symmetry,
1A is
2A in T [�]

11. so S(
1A) is S(
2A) [�].

� Case: Rule 36.

1.
2 is
1 in � [�].

2. By the inductive hypothesis,
2A
0 is
1A in
2K [�]

3. and
2K is
1K [�].

4. Thus � `
2K �
1K.

5. By Corollary B.7 and symmetry,
1A is
2A
0 in
1K [�].

6. By symmetry,
1K is
2K [�].

� Case: Rule 37.

1.
1 is
1 in � [�].

2. By the inductive hypothesis,
1A is
1A
0 in
1K [�],

3.
1A
0 is
2A

00 in
1K [�],

4. and
1K is
2K [�].

5. By transitivity,
1A is
2A
00 in
1K [�].

� Case: Rule 38.

1. Since � ` ok, we have � ` b � b : T and � ` b : T .

2. Also, T is T [�].

� Case: Rule 39. By assumption.

� Case: Rule 40.

1. By the inductive hypothesis,
1K
0 is
2K

0 [�].

2. As in the proof for Rule 7, we have
1(��:K
0:K 00) is
2(��:K

0:K 00) [�].

3. Now
1[�7!�] is
2[�7!�] in �; �:K 0 [�; �:
1K
0].

4. By the inductive hypothesis, (
1[�7!�])A1 is (
2[�7!�])A2 in (
1[�7!�])K 00 [�; �:
1K
0].

5. so �; �:
1K
0 ` (
1[�7!�])A1 � (
2[�7!�])A2 : (
1[�7!�])K 00,

6. and �; �:
1K
0 ` (
1[�7!�])A1 : (
1[�7!�])K 00.

7. Thus � ` ��:
1K
0:(
1[�7!�])A1 � ��:
2K

0:(
2[�7!�])A2 :
1(��:K
0:K 00)

8. and � ` ��:
1K
0:(
1[�7!�])A1 :
1(��:K

0:K 00).

9. Similarly,
2[�7!�] is
1[�7!�] in �; �:K 0 [�;�:
2K
0]

10. So by the inductive hypothesis �; �:
2K
0 `
2[�7!�]A2 :
2[�7!�]K 00.

11. Then � ` ��:
2K
0:(
2[�7!�])A2 :
2(��:K

0:K 00)

12. and by subsumption � ` ��:
2K
0:(
2[�7!�])A2 :
1(��:K

0:K 00).

� Case: Rule 41.

1. By the inductive hypothesis
1A is
2A
0 in
1(��:K1:K2) [�],

2.
1A1 is
2A
0

1 in
1K1 [�],

3. and
1(��:K1:K2) is
2(��:K1:K2) [�].

4. Thus � `
1(AA1) �
2(A
0A0

1) :
1(f�7!A1gK2).

5. � `
1(AA1) :
1(f�7!A1gK2),

6. � `
2(A
0A0

1) : f�7!
2A
0

1g(
1[�7!�]K2).

51

7. But
2A
0

1 is
2A
0

1 in
2K1 [�]

8. so f�7!
2A
0

1g(
1[�7!�]K2) is
2(f�7!A0

1gK2) [�],

9. and by subsumption � `
2(A
0A0

1) :
1(f�7!A1gK2).

10. Finally,
1(f�7!A1gK2) is
2(f�7!A1gK2) [�].

� Rule 42.

1. By the inductive hypothesis,
1A1 is
2A2 in
1(��:K
0:K 00) [�]

2. and
1(��:K
0:K 00) is
2(��:K

0:K 00) [�].

3. Thus � `
1(�1A1) �
2(�1A2) :
1K
0,

4. � `
1(�1A1) :
1K
0,

5. � `
2(�1A2) :
1K
0,

6. and
1K
0 is
2K

0 [�].

� Rule 43

1. As in the previous case,
1(��:K
0:K 00) is
2(��:K

0:K 00) [�],

2.
1A1 is
2A2 in
1(��:K
0:K 00) [�],

3. and
1(�1A1) is
2(�1A2) in
1K
0 [�].

4. and
1(��:K
0:K 00) is
2(��:K

0:K 00) [�].

5. Also, � `
1(�2A1) �
2(�2A2) :
1(f�7!�1A1gK
0),

6. � `
1(�2A1) :
1(f�7!�1A1gK
00),

7. and � `
2(�2A2) : f�7!
2(�1A1)g(
1[�7!�]K 00).

8. But
1(��:K
0:K 00) is
1(��:K

0:K 00) [�],

9. so f�7!
1(�1A1)g(
1[�7!�]A2) is f�7!
2(�1A1)g(
1[�7!�]A2) [�].

10. By subsumption, then, � `
2(�2A2) :
2(f�7!�1A1gK
00)

� Case: Rule 44. Follows easily by the inductive hypotheses.

� Case: Rule 45. Follows easily by the inductive hypotheses.

Lemma B.10

If � ` ok, � ` ok, and (8� 2 dom(�):� `
1� �
2� :
1(��)) then
1 is
2 in � [�].

Proof: By induction on � ` ok.

� Case: Rule 1. Follows by � ` ok; the other conditions are vacuously true.

� Case: Rule 2.

1. By Lemma B.1 there is a strict subderivation � ` ok.

2. By the inductive hypothesis,
1 is
2 in � [�].

3. By Theorem B.9,
1K is
2K [�].

4. Therefore,
1 is
2 in �; �:K [�].

Corollary B.11 (Functionality)

1. If � ` K and � ` ok and (8� 2 dom(�): � `
1� �
2� :
1(�(�))) then � `
1K �
2K.

2. If � ` K1 � K2 and � ` ok and (8� 2 dom(�): � `
1� �
2� :
1(�(�))) then � `
1K1 �
2K2.

3. If � ` K1 � K2 and � ` ok and (8� 2 dom(�): � `
1� �
2� :
1(�(�))) then � `
1K1 �
2K2.

4. If � ` A : K and � ` ok and (8� 2 dom(�): � `
1� �
2� :
1(�(�))) then � `
1A �
2A :
1K.

52

5. If � ` A1 � A2 : K and � ` ok and (8� 2 dom(�): � `
1� �
2� :
1(�(�))) then

� `
1A1 �
2A2 :
1K.

Corollary B.12 (Validity)

1. If � ` A1 � A2 : K then � ` A1 : K, � ` A2 : K, and � ` K.

2. If � ` A : K then � ` K.

3. If � ` K1 � K2 then � ` K1 and � ` K2.

4. If � ` K1 � K2 then � ` K1 and � ` K2.

Corollary B.13 (Weakening 2)

1. If �1; �:K2;�2 ` J and �1 ` K1 � K2 then �1; �:K1;�2 ` J .

2. If � ` J and ` � � �0 then �0 ` J .

Corollary B.14

Kind equivalence is symmetric, transitive, and re
exive on well-formed types, while subkinding is transitive

and re
exive on well-formed kinds.

Corollary B.15

If � ` K1 � K2 then � ` K1 � K2 and � ` K2 � K1.

Proposition B.16

If � ` ��:K0:A : L then �; �:K0 ` A : K00.

Proof: By induction on derivations. For proofs ending with Rule 20 the desired result is given directly; for Rules 27

and 28, the result follows directly by the inductive hypothesis.

Lemma B.17

1. If � ` E[A] : L then there is a subderivation of the form � ` A : K.

2. If � ` E[AA0] : L then there exists a kind ��:K0:K00 such that � ` A : ��:K0:K00 and � ` A0 : K0.

Proof:

1. By induction on typing derivations. If E = � then the result follows trivially; otherwise, the result follows by
the inductive hypothesis.

2. By induction on typing derivations. If E = � and the proof concludes with a use of the application rule then
the result follows by inversion; in all other cases, the result follows by the inductive hypothesis.

53

