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Abstract

Planning, the process of �nding a course of action which can be executed to achieve
some goal, is an important and well-studied area of AI. One of the central assumptions
of classical AI-based planning is that after performing an action the resulting state
can be predicted completely and with certainty. This assumption has allowed the
development of planning algorithms that provably achieve their goals, but it has also
hindered the use of planners in many real-world applications because of their inherent
uncertainty.
Recently, several planners have been implemented that reason probabilistically about
the outcomes of actions and the initial state of a planning problem. However, their
representations and algorithms do not scale well enough to handle large problems
with many sources of uncertainty. This thesis introduces a probabilistic planning
algorithm that can handle such problems by focussing on a smaller set of relevant
sources of uncertainty, maintained as the plan is developed. This is achieved by using
the candidate plan to constrain the sources of uncertainty that are considered, incre-
mentally considering more sources as they are shown to be relevant. The algorithm
is demonstrated in an implemented planner, called Weaver, that can handle uncer-
tainty about actions taken by external agents, in addition to the kinds of uncertainty
handled in previous planners. External agents may cause many simultaneous changes
to the world that are not relevant to the success of a plan, making the ability to
determine and ignore irrelevant events a crucial requirement for an e�cient planner.
Three additional techniques are presented that improve the planner's e�ciency in
a number of domains. First, the possible external events are analyzed before plan-
ning time to produce factored Markov chains which can greatly speed up the proba-
bilistic evaluation of the plan when structural conditions are met. Second, domain-
independent heuristics are introduced for choosing an incremental modi�cation to
apply to the current plan. These heuristics are based on the observation that the
failure of the candidate plan can be used to condition the probability that the mod-
i�cation will be successful. Third, analogical replay is used to share planning e�ort
across branches of the conditional plan. Empirical evidence shows that Weaver can
create high-probability plans in a planning domain for managing the clean-up of oil
spills at sea.
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Chapter 1

Introduction

Planning and problem solving are essential characteristics of intelligent behaviour and
have held a central place in AI research since the beginning of the �eld. The emphasis
of research in planning has most often been the design of e�cient algorithms to �nd
plans given a simpli�ed representation of a planning task, encoding only its essential
features. By assuming a certain syntactic representation for planning domains and
problems, general-purpose planning algorithms could be designed and in some cases
proofs could be given of their correctness and completeness [Fikes & Nilsson 1971;
Tate 1977; Chapman 1987; Minton et al. 1989; McAllester & Rosenblitt 1991].

While these systems represent signi�cant technical achievements, when we want
to apply them to problems that occur in the world around us we �nd that the as-
sumptions they make can be severely limiting. For example, their representations do
not address trade-o�s between goals with di�erent value in cases where they cannot
all be achieved, or the possibility that the world can be changed independently of the
actions taken by the planning agent. Nor do they address the fact that planners often
do not know the state of the world or the e�ects of actions taken in it with certainty.

Uncertainty a�ects a wide spectrum of planning domains, from Saturn orbit in-
sertion for the Cassini satellite (where the primary rocket may fail requiring the
secondary rocket to be primed before the maneuver) to a plan to have a picnic in a
park (where one should take into account the chance of rain or that the park may be
crowded). Frequently there are many things that can go wrong with each step of a
plan and a detailed plan created in advance will almost certainly fail. For example,
it is not feasible to create a detailed plan for driving to the o�ce that speci�es turns,
pauses and levels of acceleration before getting in the car. The planner does not know
if the tra�c lights will be red or green, or what tra�c will be encountered. This led
some researchers to abandon programs that choose steps in advance in favour of \re-
active" programs that choose each step as it is to be made [Agre & Chapman 1987;
Schoppers 1989b].

However it is often necessary to make contingency plans ahead of time even if not
every situation can be predicted and planned for. For example, the Cassini space-
craft's secondary rockets take several hours to �re up, but must be ready immediately

1



2 Chapter 1. Introduction

if the primary rockets should fail during the critical minutes of orbit insertion. The
spacecraft cannot wait until this point to think about the problem, and reactive
systems that explicitly prime the secondary rocket beg the question of how such
behaviour could be designed automatically.

To deal with such problems, a planning system must be able to prioritise the
di�erent possible situations that might occur when a candidate plan is executed,
and produce a plan that covers the most important ones while leaving others to be
completed as more information is available during execution. One way to approach
this problem, adopted in this thesis, is to assign probabilities to the various sources
of uncertainty in the planning domain and use them to derive probabilities for each
of the di�erent possible outcomes when the plan is executed. The outcomes with
higher probability are treated as having higher priority. This approach is attractive
because a single parameter | a minimum acceptable value for the probability of plan
success | can be used to control the planner and values can be combined using the
standard axioms of probability. Computing the probability of success of a plan can
be expensive, however.

This thesis describes an implemented algorithm to produce plans that meet a
threshold probability of success in uncertain domains. The thesis concentrates on
plan generation and does not address plan execution, plan monitoring or re-planning
although these are important pieces of a complete system for planning in uncertain
domains. The central contributions of the thesis are described below after the key
concepts of planning under uncertainty are covered in more detail.

1.1 Planning under uncertainty

Planning, in the absence of uncertainty, is the process of �nding a sequence of opera-
tors to transform an initial state into one that matches a goal description. The initial
state is usually speci�ed by giving a list of facts that hold in it, and the goal descrip-
tion is usually a logical sentence using a subset of the facts as terms. Operators are
usually described in terms of preconditions and e�ects, where the precondition of an
operator is a logical sentence describing the states in which the operator can legally
be applied, and the e�ects describe the changes that will be brought about in a state
if the operator is applied. Following strips [Fikes & Nilsson 1971], the e�ects are
usually represented as a list of facts to be deleted from the current state and a list of
facts to be added.

This thesis builds on the Prodigy planner [Minton et al. 1989; Carbonell et al.
1992; Veloso et al. 1995], a domain-independent planner that was designed as a test-
bed for learning and problem solving. Prodigy provides a rich language for specifying
search control knowledge and includes a number of independent machine learning
modules that can produce control knowledge from experience in a particular domain
or use saved cases.
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Uncertainty can enter a planning domain through a number of di�erent types of
cause. The initial state may not be completely known, either because it is not com-
pletely observable by the agent or because of delays between forming and executing
a plan. The outcomes of actions taken in the domain may be non-deterministic and
other agents may be changing the world though exogenous events that are not com-
pletely known or predictable. Finally the goals of the agent may change over time,
perhaps unpredictably. For each of these sources, partial information is still useful,
for example a subset of the possible initial states that is guaranteed to contain the
actual initial state, or a probability that some new goal will be given over a �xed time
scale can be helpful in building a working plan.

This thesis presents a planner that can handle uncertainty from three types of
cause: more than one possible initial state, non-deterministic outcomes of actions
and non-deterministic exogenous events. For each of these, the planner requires a
probabilistic representation. It then attempts to �nd a plan that exceeds a minimum
desired probability of success.

The presence of exogenous events means that each step in a plan that has an ap-
preciable duration is e�ectively nondeterministic. Explicitly considering each of these
alternative outcomes could lead to a combinatorial explosion in the separate cases that
a planner would need to consider. The planning algorithm present in the thesis, called
Weaver, addresses this problem by lazily including sources of uncertainty in its eval-
uation of a plan. This is done building creating a plan in two alternating steps, plan
creation and plan evaluation. In the plan creation step, Weaver chooses an outcome
for a step that is desired in order to achieve a goal and does not explicitly consider
the other outcomes, although it does make sure the outcome is reasonably likely. In
the plan evaluation step, all sources of uncertainty can potentially be considered, but
only those that are shown to have an a�ect on the plan's chance of success are ex-
plicitly represented. After this, the plan creation step is then re-entered, with one or
more of the sources of uncertainty that are known to be important being explicitly
considered.

1.2 An example planning problem

Consider for example a planning domain describing an oil tanker that has run aground
near the coast and is beginning to leak oil into the sea. The goal is to stop the
oil from polluting the water or reaching any of several areas of coastline along the
shore. The available actions include pumping the oil from the tanker into a secondary
vessel, surrounding the tanker with booms to contain the oil, using booms and other
equipment to prevent the oil from reaching the shore and cleaning oil up from either
the sea or the shore. Cleaning up oil from the water is successful with 70% probability.
The amount of oil spilled from the tanker is a stochastic process represented as an
exogenous event. Its path of travel once in the water is also treated as an exogenous
event. Many of the pieces of equipment used in the recovery process require good
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weather conditions and change in the weather is also modelled with exogenous events.

Weaver begins by ignoring the sources of uncertainty in the domain. An initial
plan might put equipment in place and pump the oil from the tanker into another
vessel. When this plan is evaluated, those sources of uncertainty that can a�ect the
plan are considered. For example, in the time taken to move the vessel and the pump,
oil may spill from the tanker and the weather around the tanker may change. However
nondeterministic changes to the world, such as weather changes in other parts of the
sea, are still ignored. The plan critic will select a potential 
aw in the plan to have the
planner improve, for example that oil can be spilled. This event is now represented
to the planner, which may produce a plan to clean oil from the water if it is spilled,
or to move booms around the tanker to prevent the oil being spilled.

In either case oil may still be in the water when the new plan is completed,
although with lower probability than in the original plan. On the next improvement,
the plan critic might direct the planner to pay attention to the situation where oil
might reach some shoreline, and the planner might create a conditional branch in
the plan to protect the shore or clean it up in that case. Although an alternative
plan might always protect the shore without testing the state, in some cases a higher
probability of success can be achieved with a conditional plan than otherwise. If there
are not enough resources, for example, to protect both potentially threatened pieces
of shoreline, a branching plan that tests the oil's position before allocating equipment
would be more successful than any non-branching plan.

1.3 Contributions

The thesis describes a novel algorithm for producing conditional plans based on the
Prodigy planner. The main contributions of the thesis are techniques that allow
the planner both to �nd plans in situations where there can be many sources of
uncertainty and to reason e�ciently about these plans. These techniques can be
divided into those that a�ect the process of plan creation and those that a�ect the
process of plan evaluation.

Plan creation

Although previous uncertain planners, such as Buridan and C-Buridan [Kushmerick,
Hanks, & Weld 1995], represented probabilistic e�ects of actions, their techniques
did not scale well because of the joint expenses of handling all the contingencies
the planner may need to consider and evaluating a plan with a number of sources
of uncertainty. The problem is more severe when uncertainty through exogenous
events is considered, because there can be a number of di�erent resulting states after
applying any action, rather than just those that have explicitly marked uncertain
outcomes, and the number of such states climbs exponentially with the number of
exogenous events.
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A contribution of this thesis is an implemented planner that selectively ignores
some of the sources of uncertainty while choosing actions for the plan, and in a
separate evaluation stage considers the sources that are known to be relevant to the
candidate plan, ignoring others. This process is iterative, with the planner re�ning its
candidate plan and becoming aware of more sources of uncertainty on each iteration.
Using this technique, the planner is the �rst to handle uncertain exogenous events.

Two further contributions of the thesis are aimed at improving the e�ciency
of plan creation. First, based on a study of the algorithm a family of domain-
independent search heuristics is proposed that relax the assumptions of independence
typically made in probabilistic planners, using the observation that the failure of a
candidate plan can be used to condition the probability that the modi�cation will be
successful. Heuristics from this family are demonstrated. Second, a variant of inter-
nal analogy is used to reduce the amount of duplicated work in di�erent conditional
branches of the plans produced.

Plan evaluation

A plan's probability of success is computed by automatically creating a Bayesian
belief net to represent the plan and evaluating it using a standard join tree method
[Pearl 1988]. A contribution of this thesis is an algorithm to produce a belief net that
can be e�ciently evaluated when there are exogenous events. The algorithm exploits
two properties that are expected to be common in probabilistic planning domains:
a representation for exogenous events that uses stationary probabilities, and a high
variability in the length of establishment intervals of domain-level properties in plans.
The �rst property makes it possible to use Markov chains to summarise the action
of exogenous events over time and the second property makes it useful to do so. I
brie
y explain this approach below, and describe it in more detail in Chapter 5.

In the representation for exogenous events developed in this thesis, events have
probabilities of occurrence and probability distributions for their possible outcomes.
All of these probabilities may depend on the state of the world at the time the event
may occur, but do not otherwise depend on the time of occurrence. This stationary
property of the probabilities makes it possible to de�ne Markov chains, whose nodes
represent abstract world states, that can be used to infer the probability of future
abstract world states.

The actions that planners consider can often take widely varying amounts of time
to perform. For instance if a planner considers moving a boat or aircraft to a desired
location, the action may take from under an hour to several days depending on the
current location and state of readiness of the boat or aircraft. Because of these
wide variations, the lengths of time between when the value of a domain variable is
established in a plan and when it is required can also vary greatly. We call such an
interval of time an establishment interval for the variable. We see that if time were
divided into units of equal length when a belief net is created to evaluate the plan,
some establishment intervals would necessarily cross many time units, and if belief
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net nodes at one time point were connected to parents at the previous time point,
long paths of nodes in the belief net would be created. The time to evaluate this
belief net would be at least linear in the length of these paths and frequently worse,
since belief net evaluation is NP-hard in general [Cooper 1990].

One can use the ability to describe exogenous events using Markov chains to
escape this di�culty. The probability distribution of states in a Markov chain at some
future time t given the distribution at time 0 can be computed in time logarithmic
in t. Methods to de�ne such Markov chains that guarantee correctness are given in
Chapter 3. The chains that are computed might have exponential size in the number
of exogenous events in the worst case. The improved time performance in evaluating
the resulting belief net outweighs the cost of computing the Markov chains when the
establishment intervals vary su�ciently and the resulting chains are not too large. I
show in Chapter 7 that there are signi�cant bene�ts in the oil-spill domain and it is
likely that this is the case in a large number of interesting planning domains.

Limitations in scope

Creating robust plans under uncertainty is a hard problem that requires a much
broader set of algorithms and approaches than can be dealt with properly in one
thesis. Handling some of the aspects of the problem that have been ignored here
would make a very interesting extension to this work. In particular, the planner
described here does not address plan monitoring or re-planning. After the initial plan
is created, a complete system would begin to check certain key domain features as
the plan is executed, updating its beliefs that the various alternative courses of action
will be successful, and revising part or all of the plan if it was deemed necessary. The
potential need to revise a plan could also a�ect the initial plan, since an ideal plan
would not make early commitments that would reduce later options for revision. In
fact the objectivemeasure of a robust plan might include the potential for re-planning.
In this thesis the objective measure views the plan as a static, complete object. While
the belief net approach lends itself to plan monitoring and belief updates, this aspect
is not addressed.

Also ignored is the important issue of the source of and con�dence in the planner's
knowledge about its uncertainty. For example single point probabilities are given
for each possible action outcome rather than intervals of probability. Again the
approach taken to plan evaluation makes some examination possible of the importance
of the assumptions about uncertainty, via sensitivity analysis, but this has not been
addressed.

1.4 Reader's guide to the thesis

The next chapter surveys some of the related work to this thesis. Chapter 3 describes
the model used to describe planning problems that contain sources of uncertainty.
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This model is based on the Markov decision process although the planner does not
explicitly build one. Chapter 4 describes the planning algorithm used in Weaver and
provides a simple example. Chapter 5 presents a method to improve the e�ciency of
evaluating plans, and chapter 6 presents methods to improve the e�ciency of planning
when there is uncertainty. Chapter 7 presents an empirical analysis of the planning
problem and the methods to improve e�ciency in a large planning domain. Finally,
chapter 8 summarises the main contributions of the thesis.
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Chapter 2

Related work

Work in automatic planning began early in the �eld of arti�cial intelligence, with such
programs as GPS [Newell & Simon 1963] and strips [Fikes & Nilsson 1971]. As well
as introducing new planning algorithms [Chapman 1987; McAllester & Rosenblitt
1991], later work considered more general conditions, for example where external
events could take place during plan execution [Vere 1983], where the domain theory
is incomplete or incorrect [Gil 1992; Wang 1996; Gervasio 1996] or where the agent
must consider the relative quality of alternative plans [P�erez 1995].

There has been a wide variety of work done in the design of systems for planning
under uncertainty. In this chapter I provide a survey of some of this work, point out
the work most closely related to this thesis and show how the thesis contributes to
the body of work in this area.

2.1 Overview of \classical" planning.

Broadly, planning systems aim to construct a pattern of behaviour for a performance
system to accomplish some given goal in its environment. Most planning systems are
given a representation for possible actions that can be taken in the environment in
terms of the conditions required to hold for the action to be taken and the e�ects on
the environment when the action is taken. Systems referred to as \classical" planning
systems typically make the following additional assumptions:

� The environment can be represented in a sequence of discrete states, which are
represented using a logical language.

� The actions are represented in a language similar to that used by strips [Fikes
& Nilsson 1971], in which the action's preconditions form a logical sentence over
the language used to de�ne states, and the action's e�ects are represented by a
set of terms to be added to or deleted from the terms used to represent a state.

� The goal is a property of a state, characterised by a logical sentence (rather
than a property of a sequence of states).

9
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In addition to these assumption, classical planners return a plan in the form of a
sequence of actions, either totally or partially ordered.

This is a much studied family in AI planning because the assumptions are pow-
erful and seem reasonable. An interesting range of behaviours can be captured with
strips-style operators and they allow a planner to perform backward chaining since
given a goal, one can subgoal on the preconditions required for an action or sequence
actions to achieve the goal. In addition the logical representation allows a plan to be
proved correct. Prodigy, the planning system extended in this thesis, is a classical
planner according to this de�nition [Veloso et al. 1995]. A more detailed description of
Prodigy's action representation, which is an example of a strips-like representation,
can be found in Section 3.1.

Work in classical planning has typically focussed on improving the e�ciency with
which a plan is created. For example partial-order planners, introduced in the late
eighties [Chapman 1987; McAllester & Rosenblitt 1991; Penberthy & Weld 1992],
attempt to reduce the search space using a \least commitment" principle where steps
in a plan are only ordered with respect to one another as required to prove that the
plan is successful. Planners can be made faster by solving a series of abstractions of the
planning problem, each more detailed until the problem is solved in full complexity,
at each stage using the solution from the previous stage [Sacerdoti 1974; Yang &
Tenenberg 1990; Knoblock 1991]. Work has also been done on controlling search with
various heuristics [Blythe & Veloso 1992; Gerevini & Schubert 1996; Pollack, Joslin,
& Paolucci 1997] and with explicit control rules [Minton 1988; Minton et al. 1989].

The strips action representation does not support non-deterministic action out-
comes and classical planners do not have a means to represent sources of change in
the domain other than the actions taken by the performance agent. These systems
therefore cannot be used for planning problems involving uncertainty. However the
ideas and algorithms developed under the assumptions of classical planning form the
basis of many approaches to planning under uncertainty including the ones described
in this thesis.

2.2 Reactive planning and approaches that mix

planning with execution.

When a plan is executed in a stochastic domain in which initial conditions and action
outcomes are uncertain, many di�erent scenarios can take place as a result of the
execution. A closed-loop plan, one that contains no sensing and always executes
the same set of actions, will usually be too brittle to achieve high reliability in such
a domain. Instead, planning systems must create branching plans that take into
account the intermediate states reached while the plan is being executed and take
di�erent actions accordingly.

Some approaches to this problem, motivated in addition by real-time constraints,
aim to create strategies for behaviour in which a system repeatedly senses its envi-
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ronment and chooses an action based on this information, similar to a policy on
a Markov decision process described in Section 2.4. These systems have no ex-
plicit representation of a global plan and some, such as Brook's subsumption ar-
chitecture [Brooks 1986] and Agre and Chapman's Pengi [Agre & Chapman 1987],
have little or no internal state. The subsumption architecture arranges reactive sub-
sytems into hierarchies, so that higher-level behaviour is achieved by one system
over-riding, or subsuming, a more basic system. Neither of these systems, how-
ever, shows how a reactive plan could be built from a declarative description of
the environment. Schoppers [Schoppers 1989a] develops a similar scheme in his
\universal plans" and describes how they can be created automatically. Other re-
active planning systems such as prs [George� & Lansky 1987], rap [Firby 1987;
1989] and hap [Loyall & Bates 1991] do include internal state | prs represents the
agent's beliefs, desires and intentions explicitly | and also control structures such as
iteration.

These systems can produce appropriate behaviour under di�erent execution con-
ditions but for each contingency that arises the appropriate response must be pro-
grammed by a human in advance. In many domains, however, it is not feasible to
specify the correct action in each possible situation in advance. Instead we would like
to combine the speed of a reactive planner in familiar situations with the 
exibility
of a classical planner in situations not previously anticipated. Systems have been
developed for this purpose that combine reactive execution with classical planning,
using the latter when no pre-programmed response is available for some contingency.

Both the Theo-agent [Blythe & Mitchell 1989] and the \anytime synthetic pro-
jection" technique of Drummond and Bresina [Drummond & Bresina 1990] follow
reactive rules if they are present, and otherwise fall back on planning and then com-
pile the resulting plan into new reactive rules to be used in future episodes. The two
systems di�er on the action and goal representation and on the planning technique.
The Theo-agent uses a strips-like action representation and backward chaining. In
anytime synthetic projection, forward chaining is used with a richer action and goal
language that can specify probabilistic outcomes, exogenous events and goals to main-
tain predicates over time intervals.

A mixed planning and execution strategy can provide further advantages if it is
under explicit control. Some goals can be planned for in advance, while others can be
deferred until part way through the execution, when there may be more information
about the best course of action. By not always giving priority to reactive rules, the
mixed-strategy system can avoid pitfalls in some cases. On the other hand, delaying
planning for these goals can drastically reduce the number of alternatives to consider.

Gervasio shows how to build \completable plans" which are designed to be incom-
plete, and amenable to being further elaborated during execution [Gervasio & DeJong
1994; Gervasio 1996]. Goodwin [Goodwin 1994] considers the question of when to
switch from planning to executing in a time-dependent planning problem. Onder and
Pollack [Onder & Pollack 1997] describe a probabilistic planner that reasons about
which contingencies to plan for before execution and which to defer. Washington



12 Chapter 2. Related work

makes use an abstraction hierarchy, planning at some abstract level before execution
and picking a concrete instance of the abstract plan during execution [Washington
1994].

2.3 Extensions to classical planning systems

Within the broader context of systems for planning and execution in uncertain en-
vironments, some recent work has focussed on creating a plan before execution that
accounts for a signi�cant subset of the contingencies that might occur during execu-
tion, but not necessarily all of them. For this purpose it is useful to have some way
to compare the di�erent contingencies to �nd the most important. A probabilistic
representation of the sources of uncertainty is well suited for this, although some
have used a Dempster-Sha�er formalism [Mansell 1993], fuzzy reasoning [Bonissone
& Dutta 1990] or a minimax approach [Koenig & Simmons 1995].

Work on extensions to planning systems using decision theory began shortly af-
ter the initial work on strips [Feldman & Sproull 1977], but this line of work was
largely discontinued until the 1990's. Wellman lays the ground-work for develop-
ing probabilistic extensions to classical planning systems, pointing out in [Wellman
1990b] that the strips representation of action embodies a Markov assumption |
since the success of an operator depends on its preconditions, this is conditionally
independent of all other knowledge if the current state is known. This makes it pos-
sible to factor the formula that describes the probability of plan success, using for
example the standard techniques for Bayesian belief networks [Pearl 1988]. Wellman
also shows [Wellman 1990a] how proofs that one partial plan \dominates" another,
in that each of its possible completions will have a higher utility than those of the
other, can be used to reduce the search space for high-utility plans. Goldszmidt and
Darwiche [Goldszmidt & Darwiche 1995] also discuss using belief nets to evaluate
plans, but unlike the work described in this thesis they do not construct belief nets
automatically. In another important paper, Peot and Smith describe an extension
to the snlp algorithm, called cnlp for building conditional plans when some of the
domain actions can have non-deterministic e�ects [Peot & Smith 1992].

Among the best-known probabilistic planners are Buridan [Kushmerick, Hanks,
& Weld 1995] and C-Buridan [Draper, Hanks, & Weld 1994]. Buridan uses a variant
of the snlp algorithm, and a strips-like action representation with probabilistic
e�ects. Each action has a set of triggers, each of which is a conjunction of terms that
describe the world state, and each is connect to a probability distribution of e�ect
sets. Each e�ect set in this distribution is a collection of terms to be added to or
deleted from the state, as in a strips action. Buridan's input includes a probability
threshold value as well as a logical goal, and it tries to �nd a plan that succeeds with
probability at least equal to the threshold value. Weaver's action representation is
similar to Buridan's and is described in detail in Section 3.2.

One way that Buridan extends snlp is by being able to propose more than one
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action in its plan to achieve any goal or subgoal. This is necessary since each individual
action may fail to achieve the goal with some probability. Buridan can provably �nd
a plan that achieves the threshold probability of success, if a non-branching plan
exists that does so. C-Buridan is an extension to Buridan that can create branching
plans, using a technique similar to that introduced with cnlp [Peot & Smith 1992].
Essentially, one new way that C-Buridan can �x a candidate plan in which two actions
might interfere with each other is to add a test and restrict the actions to di�erent
conditional branches based on the test. Information about the branch that an action
belongs to is then propagated to the action's descendants and ancestors in the goal
tree.

Cassandra [Pryor & Collins 1993; 1996] is another planner based on snlp and
uses an explicit representation of decision steps. Bagchi et al. describe a planner
that uses a spreading activation technique to choose actions with highest expected
utility [Bagchi, Biswas, & Kawamura 1994]. Onder and Pollack also extend snlp

with explicit reasoning about the contingencies to plan for [Onder & Pollack 1997].

Haddawy's thesis work [Haddawy 1991] introduces a logic with extensions to rep-
resent probabilities of terms, intended for representing plans. He and his group have
developed hierarchical task-network (htn) planners that use a similar representation
[Haddawy & Suwandi 1994; Haddawy, Doan, & Goodwin 1995; Haddawy, Doan, &
Kahn 1996].

While this thesis concentrates mainly on extensions to classical planning that
support probabilistic planning in uncertain domains, other work develops extensions
to enable planners to �nd high-quality plans according to some speci�ed criteria.
P�erez [P�erez & Carbonell 1994; P�erez 1995] describes how to learn control knowledge
from interactions with a human expert that allows Prodigy to produce higher-quality
plans. Williamson and Hanks [Williamson & Hanks 1994; Williamson 1996] develop
a decision-theoretic extension to ucpop.

The planner described in this thesis is unique in its ability to reason explicitly
about exogenous events, and to perform a relevance analysis of those events. Vere
[Vere 1983] introduced a planner that could reason about exogenous events that were
known to occur at some �xed time, but not about uncertain events.

2.4 Approaches based on Markov decision pro-

cesses

In the past �ve years, much of the research activity in AI planning under uncertainty
has built on standard techniques for solving Markov decision problems (mdps) and
partially-observable Markov decision problems pomdps [Dean et al. 1995; Littman
1996; Boutilier, Brafman, & Geib 1997]. This formalism has the advantage of a sound
mathematical underpinning, and the standard solution techniques aim at an optimal
policy while most systems based on classical planning try to meet a lower bound.
However these standard techniques are not tractable since they require enumerating
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all the states of the system. Work to make mdp approaches tractable has attempted
to incorporate ideas from classical planning and other areas of AI to exploit any
underlying structure in the state space [Dearden & Boutilier 1997] as well as to relax
the requirement of optimalty [Parr & Russell 1995].

In this section I give a brief overview of Markov decision processes and survey
some of the work in this area. This thesis pursues an approach based on classical
planning, but uses an mdp representation to describe planning problems and their
solutions.

2.4.1 Overview of Markov Decision Processes

This description of Markov decision processes follows [Littman 1996] and [Boutilier,
Dean, & Hanks 1995]. A Markov decision process M is a tuple M =< S;A;�; R >

where

� S is a �nite set of states of the system.

� A is a �nite set of actions.

� �:A�S! �(S) is the state transition function, maping an action and a state to
a probability distribution over S for the possible resulting state. The probability
of reaching state s

0

by performing action a in state s is written �(a; s; s
0

).

� R:S �A!R is the reward function. R(s; a) is the reward the system receives
if it takes action a in state s.

A policy for an mdp is a mapping �:S ! A that selects an action for each state.
Given a policy, we can de�ne its �nite-horizon value function V �

n :S ! R, where V
�
n (s)

is the expected value of applying the policy � for n steps starting in state s. This is
de�ned inductively with V �

0 (s) = R(s; �(s)) and

V �
m(s) = R(s; �(s)) +

X

u2S

�(�(s); s; u)V �
m�1(u)

Over an in�nite horizon, a discounted model is frequently used to ensure policies
have a bounded expected value. For some � chosen so that � < 1, the value of any
reward from the transition after the next is discounted by a factor of � and the one
after that by a factor of �2, and so on. Thus if V �(s) is the discounted expected value
in state s following policy � forever, we must have

V �(s) = R(s; �(s)) + �
X

u2S

�(�(s); s; u)V �(u)

This yields a set of linear equations in the values of V �().

A solution to an mdp is a policy that maximises its expected value. For the
discounted in�nite-horizon case with any given discount factor �, there is a policy
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V � that is optimal regardless of the starting state [Howard 1960], which satis�es the
following equation:

V �(s) = max
a
fR(s; a) + �

X

u2S

�(a; s; u)V �(u)g

Two popular methods for solving this equation and �nding an optimal policy for
an mdp are value iteration and policy iteration [Puterman 1994].

In policy iteration, the current policy is repeatedly improved by �nding some
action in each state that has a higher value than the action chosen by the current
policy for that state. The policy is initially chosen at random, and the process
terminates when no improvement can be found. Tha algorithm is shown in Table 2.1.
This process converges to an optimal policy [Puterman 1994].

Policy-Iteration(S;A;�; R; �):
1. For each s 2 S, �(s) = RandomElement(A)
2. Compute V �(:)
3. For each s 2 S f
4. Find some action a such that

R(s; a) + �
P

u2S �(a; s; u)V
�(u) > V �(s)

5. Set �
0

(s) = a if such an a exists,
6 otherwise set �

0

(s) = �(s).
g

7. If �
0

(s) 6= �(s) for some s 2 S goto 2.
8. Return �

Table 2.1: The policy iteration algorithm

In value iteration, optimal policies are produced for successively longer �nite hori-
zons, until they converge. It is relatively simple to �nd an optimal policy over n steps
��n(:), with value function V �

n (:), using the recurrence relation:

��n(s) = argmaxafR(s; a) + �
X

u2S

�(a; s; u)V �
n�1(u)g

with starting condition V �
0 (s) = 08s 2 S, where V �

m is derived from the policy ��m as
described above. Table 2.2 shows the value iteration algorithm, which takes an mdp,
a discount value � and a parameter � and produces successive �nite-horizon optimal
policies, terminating when the maximum change in values between the current and
previous value functions is below �. It can also be shown that the algorithm converges
to the optimal policy for the discounted in�nite case in a number of steps which is
polynomial in jSj, jAj, log maxs;ajR(s; a)j and 1=(1 � �).

2.4.2 Planning under uncertainty with MDPs

The algorithms described above can �nd optimal policies in polynomial time in the
size of the state space of the mdp. However, this state space is usually exponentially
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Value-Iteration(S;A;�; R; �; �):
1. for each s 2 S, V0(s) = 0
2. t = 0
3. t = t+ 1
4. for each s 2 S f
5. for each a 2 A
6. Qt(s; a) = R(s; a) + �

P
u2S �(a; s; u)Vt�1(u)

7. �t(s) = argmaxaQt(s; a)
8. Vt(s) = Qt(s; �t(s))
g

9. if ( maxs jVt(s)� Vt�1(s)j � �) goto 3
10. return �t

Table 2.2: The value iteration algorithm

large in the inputs to a planning problem, which includes a set of literals whose cross
product describes the state space. Attempts to build on these and other techniques
for solving mdps have concentrated on ways to gain leverage from the structure of
the planning problem to reduce the computation time require.

Dean et al. used policy iteration in a restricted state space called an envelope

[Dean et al. 1993]. A subset of the states is selected, and each transition in the
mdp that leaves the subset is replaced with a new transition to a new state OUT

with zero reward. No transitions leave the OUT state. They developed an algorithm
that alternated between solving the restricted-space mdp with policy iteration and
expanding the envelope by including the nmost likely elements of the state space to be
reached by the optimal policy that were not in the envelope. The algorithm converges
to an optimal policy considerably more quickly than standard policy iteration on the
whole state space, but as the authors point out [Dean et al. 1995], it makes some
assumptions which limit its applicability, including that of a sparse mdp in which
each state has only a small number of outward transitions. Tash and Russell extend
the idea of an envelope with an initial estimate of distance-to-goal for each state and
a model that takes the time of computation into account [Tash & Russell 1994].

While the envelope extension method ignores portions of the state space, other
techniques have considered abstractions of the state space that try to group together
sets of states that behave similarly under the chosen actions of the optimal policy.
Boutilier and Dearden [Boutilier & Dearden 1994] assume a representation for actions
that is similar to that used in Buridan [Kushmerick, Hanks, & Weld 1994] described
in Section 2.3 and a state utility function that is described in terms of domain literals.
They then pick a subset of the literals that account for the greatest variation in the
state utility and use the action representation to �nd literals which can directly or
indirectly a�ect the chosen set, using a technique similar to the one developed by
Knoblock for building abstraction hierarchies for classical planners [Knoblock 1991].
This subset of literals then forms the basis for an abstract mdp by projection of the
original states. Since the state space size is exponential in the set of literals, this
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reduction can lead to considerable time savings over the original mdp. Boutilier and
Dearden prove bounds on the di�erence in value of the abstract policy compared with
an optimal policy in the original mdp.

Lin and Dean further re�ne this idea by splitting themdp into subsets and allowing
a di�erent abstraction of the states to be considered in each one [Dean & Lin 1995].
This approach can have extra power because typically di�erent literals may be relevant
in di�erent parts of the state space. However there is an added cost to re-combining
the separate pieces unless they happen to decompose very cleanly. Lin and Dean
assume the partition of the state space is given by some external oracle.

Boutilier et al. extend modi�ed policy iteration to propose a technique called
structured policy iteration that makes use of a structured action representation in
the form of 2-stage Bayesian networks [Boutilier, Dearden, & Goldszmidt 1995]. The
representation of the policy and utility functions are also structured in their approach,
using decision trees. In standard policy iteration, the value of the candidate policy
is computed on each iteration by solving a system of jSj linear equations (step 2 in
Table 2.1, which is computationally prohibitive for large real-world planning problems.
Modi�ed policy iteration replaces this step with an iterative approximation of the
value function V� by a series of value functions V 0; V 1; . . . given by

V i(s) = R(s) + �
X

u2S

�(�(s); s; u)V i�1(u)

Stopping criteria are given in [Puterman 1994].

In structured policy iteration, the value function is again built in a series of ap-
proximations, but in each one it is represented as a decision tree over the domain
literals. Similarly the policy is built up as a decision tree. On each iteration, new
literals might be added to these trees as a result of examining the literals mentioned
in the action speci�cation � and utility function R. In this way the algorithm avoids
explicitly enumerating the state space.

Similar work has also been done with partially-observable Markov decision pro-

cesses or pomdps, in which the assumption of complete observability is relaxed. In
a pomdp there is a set of observation labels O and a set of conditional probabilities
P (oja; s); o 2 O; a 2 A; s 2 S, such that if the system makes a transition to state s
with action a it receives the observation label o with probability P (oja; s). Cassandra
et al. introduce the witness algorithm for solving pomdps [Cassandra, Kaelbling, &
Littman 1994]. A standard technique for �nding an optimal policy for a pomdp is to
construct the mdp whose states are the belief states of the original pomdp, ie each
state is a probability distribution over states in the pomdp, with beliefs maintained
based on the observation labels using Bayes' rule. A form of value iteration can be
performed in this space making use of the fact that each �nite-horizon policy will be
convex and piecewise-linear. The witness algorithm includes an improved technique
for updating the basis of the convex value function on each iteration. Parr and Russell
use a smooth approximation of the value function that can be updated with gradient
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descent [Parr & Russell 1995]. Brafman introduces a grid-based method in [Brafman
1997].

Although work on pomdps is promising, it is still preliminary, and the largest
completely solved pomdps have about 10 states [Brafman 1997].



Chapter 3

Planning under Uncertainty

In this chapter I provide an overview of the prodigy 4.0 planning algorithm and
discuss extensions made to allow it to create and evaluate plans under conditions of
uncertainty. I present extensions to prodigy 4.0's model to represent uncertainty in
Section 3.2. I give the meaning of the elements of this language in terms of a Markov
decision process in Section 3.3. I illustrate the chapter with an example domain, a
plan and the domain's derived mdp in Section 3.4.

3.1 Overview of prodigy 4.0

prodigy 4.0 takes as input a representation of a planning problem and attempts to
produce a solution. The problem consists of the allowable object types, the actions
that can be taken, a set of speci�c objects, an initial state and a goal state description.
A solution, if found, will be a sequence of operators that can be applied to the initial
state to produce some state satisfying the goal description. prodigy 4.0 uses means-
ends analysis to search for plans. In this section I give a detailed description of the
language prodigy 4.0 uses to represent planning problems, how it constructs a plan
and how it searches a space of partial plans to �nd a solution.

3.1.1 Domains, problems and plans

A planning domain in prodigy 4.0 consists of a type hierarchy T , a set of literals
L and a set of operators O1, based on the strips domain de�nition [Fikes & Nilsson
1971]. Each operator is de�ned by specifying its preconditions and e�ects. The
preconditions specify conditions about the world that must be true in order for the
operator to be applied, and are made of combinations of literal terms, that may
include typed variables and may be combined using conjunction, disjunction, negation
and existential and universal quanti�cation. The e�ects specify literals that are either

1A domain also contains inference rules, which are very similar to operators but add inferences

to the state rather than changing it. Full details can be found in [Carbonell et al. 1992].
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added to (made true in) the state or deleted from (made false in) the state. The
literals in the e�ects may mention the same variables that were mentioned in the
preconditions, or new variables, in which case universal quanti�cation is understood.
Conditional e�ects may also be speci�ed, in which the conditional test has the same
form as the preconditions of the operator. An example of an operator is shown in
Figure 3.1 and is discussed after a brief description of a planning problem. Full
details on the syntax of planning domains and problems in prodigy 4.0 can be
found in [Carbonell et al. 1992].

(Operator Move-Barge

(preconds

((<barge> Barge)

(<from> Place)

(<to> (and Place ( di� <from> <to>))))

(at <barge> <from>))

(effects ()

((del (at <barge> <from>))

(add (at <barge> <to>)))))

Figure 3.1: An operator that can move an object of type Barge from the location
bound to variable <from> to the location bound to variable <to>. Variables have an
associated type and can also be constrained with functions.

A planning problem consists of a planning domain, a set of objects each of which
belongs to one of the types in the domain, an initial state which is speci�ed by giving
all the literals that are true in the state and a goal description. The goal description
is a combination of literals formed in the same way as the precondition of an operator,
except that there may be no free variables | all the variables in the goal expression
must be either existentially or universally quanti�ed. The literals specifying the initial
state may contain no variables.

Figure 3.1 shows a simple operator from a domain that will be developed as an
example in this chapter as well as later chapters in the thesis. The operator has
three variables, <barge>, <from> and <to>2, and their types are speci�ed in the
preconditions slot: <barge> is of type Barge and <from> and <to> are both of type
Place. In addition to mentioning a type, the speci�cation of the variable <to> uses
a function to further restrict the possible values for the variable. The function call
(diff <from> <to>)must also be true | this function is true when the two variables
have di�erent values.

The second part of the preconditions slot consists of the precondition statement,
which in this case is the single literal (at <barge> <from>). An instantiation of this
operator consists of the operator along with an object from the planning problem

2Angle brackets are used to denote variables, such as <from>, in prodigy 4.0.
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associated with each variable in the operator's preconditions. The object's type must
match the variable's type and the set of objects must agree with all the functions
used in the variable speci�cations. The instantiated operator is applicable in a state
if the literal made from its preconditions statement is true in that state.

If an instantiated operator is applied to a state, a new state is produced corre-
sponding to the result of applying the operator in the original state. The new state
is speci�ed as follows. First, the test corresponding to each conditional e�ect set is
evaluated in the state. If it is true, the corresponding conditional e�ects are treated
as regular e�ects, otherwise they are discarded. Next the literals mentioned in each
add or del statement are examined for variables, and any variables mentioned in the
preconditions slot are replaced with their object values from the instantiation of the
operator. If there are variables that are not mentioned in the preconditions slot, they
are treated as universally quanti�ed. For each such variable, a variable speci�cation
must be given in the e�ects slot, mentioning a type and optionally some bindings
functions in the same way as in the preconditions slot. Each literal in the e�ects that
mentions one of these variables is replaced with a set of literals, corresponding to
every object in the planning problem that matches the variable speci�cation. After
the literals in the e�ects are all translated into one or more literals that mention
no variables, the state transformation is made. First the literals mentioned in del

statements are made false in the state. Next the literals mentioned in add statements
are made true in the state. Any literal that is not mentioned in the e�ects of the
instantiated operator has the same truth value in the new state as in the old state.

For example, suppose a planning problem uses a domain that includes the Move-Barge
operator as shown, and includes the objects barge1 of type Barge and Richmond and
Oakland of type Place. If the initial state has the true literal (at barge1 Richmond),
then the instantiated operator
(Move-Barge <barge>=barge1 <from>=Richmond <to>=Oakland)

will be applicable in the initial state. Applying it would lead to a new state, in which
(at barge1 Richmond) would be false and (at barge1 Oakland) would be true,
with all other literals unchanged.

A plan in prodigy 4.0 is a totally-ordered sequence of instantiated operators
(O1; O2; . . .On). The plan can be re-formulated in a partial order after creation if
desired [Veloso 1992]. I will refer to an instantiated operator in a plan as a step in
the plan. A plan is a solution to the planning problem if:

1. O1 is applicable in the initial state and applying it leads to the state S1,

2. each step Oi for 2 � i � n is applicable in the state Si�1 and applying it leads
to the state Si and

3. the goal description is satis�ed in state Sn.

For example, given the initial state above and the goal (at barge1 Oakland), the
plan consisting of the single step (Move-Barge <barge>=barge1 <from>=Richmond

<to>=Oakland) is a solution for this planning problem.
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3.1.2 Constructing plans

Typically, however, a plan consists of a large number of steps and constructing a
plan is not a trivial exercise. prodigy 4.0 constructs plans using a technique called
means-ends analysis, in which it uses the di�erence between the current state and its
goals to decide which steps to include in a plan. In order to illustrate how plans are
constructed, I introduce two more operators into the barge domain and consider a
problem with a slightly harder goal. Figure 3.2 shows the operators Pump-Oil and
Unload-Oil, which can be used respectively to pump oil from a vessel at sea into a
barge and to unload the oil from the barge when it is at a dock. I also introduce two
new types, which are specializations or subtypes of the type Place that already exists
in the domain.

(operator Pump-Oil

(preconds ((<barge> Barge)

(<sector> Sea-Sector))

(and (at <barge> <sector>)

(oil-in-tanker <sector>)))

(effects ()

((add (oil-in-barge <barge>))

(del (oil-in-tanker <sector>)))))

(operator Unload-Oil

(preconds ((<barge> Barge)

(<dock> Dock))

(and (at <barge> <dock>)

(oil-in-barge <barge>)))

(effects ()

((del (oil-in-barge <barge>))

(add (disposed-oil)))))

Figure 3.2: Two more operators in the example domain.

The new planning problem includes the objects barge1 of type Barge, Richmond of
type Dock and west-coast of type Sea-Sector. The type hierarchy and the objects
in the planning problem are shown in Figure 3.3. The problem has an initial state
in which the literals (at barge1 Richmond) and (oil-in-tanker west-coast) are
the only true literals, and the goal (disposed-oil). This can be achieved by the
following four-step plan:

(Move-Barge <barge>=barge1 <from>=Richmond <to>=west-coast)

(Pump-Oil <barge>=barge1 <sector>=west-coast)

(Move-Barge <barge>=barge1 <from>=west-coast <to>=Richmond)

(Unload-Oil <barge>=barge1 <dock>=Richmond)

prodigy 4.0 searches a space of candidate plans, in which each candidate plan
is represented by two structures, a head plan and a tail plan [Fink & Veloso 1995].
The head plan is a totally-ordered sequence of steps that can be applied to the initial
state. The tail plan is a partially-ordered set of steps, that is, a directed acyclic graph
in which there is an arc from step a to step b if a was added to the tail plan in order to
satisfy some precondition of b. If a step was added to satisfy a goal that is part of the
planning problem itself, then there is an arc from that step to the special node Root
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Dock
 (Richmond)

Barge
 (barge1)

Place

Sea-Sector
  (west-coast)

Figure 3.3: The type hierarchy for the planning domain. Objects in the example
planning problem are shown in brackets below their type.

Unload-Oil
barge1
Richmond

Root

Pump-Oil
barge1
west-coast

Head Plan

1. Move-Barge

    Richmond west-coast
    barge1

Move-Barge

Tail Plan

Richmond
west-coast
barge1

Figure 3.4: A candidate plan for the planning problem to dispose of the oil. The
variable names have been ommitted from the instantiated operators. The head plan
contains one step, to move the barge from Richmond to the west coast.

at the top of the partial order. If the head plan is applied to the initial state, it leads
to a new state called the current state. This current state is used to guide planning
in two ways. First, no steps are added to the tail plan to achieve subgoals that are
already achieved in the current state. Second, steps are preferred if they have fewer
preconditions that are not true in the current state. Both of these guidance rules are
heuristics, and may delay �nding a solution. They typically speed the search process,
however. Figure 3.4 shows an example candidate plan that might be generated in the
search for a solution to the current problem.

prodigy 4.0 begins its search with the null plan, in which the head plan is
empty and the tail plan consists of the single node Root. It can expand a candidate
plan in one of two ways: it can either add a new step to the tail plan to achieve
some open precondition, or it can move a step from the tail plan to the head plan.
A step that is moved to the head plan must be applicable in the current state. It
is added to the end of the head plan, yielding a new current state. More details on
the representation of plans and the search techniques used in prodigy 4.0 can be
found in [Fink & Veloso 1995; Veloso et al. 1995; Veloso & Stone 1995].

For example, in Figure 3.4, the step with operator Pump-Oil is applicable and
could be moved to the head plan. Moving it would yield a new current state,
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in which (oil-in-barge barge1) is true. There is only one other way that the
plan in Figure 3.4 can be expanded, which is by moving the step (Move-Barge

<from>=west-coast <to>=Richmond) to the head plan. However, this candidate
plan would include a state loop, the situation where the exact same state is visited
twice while the head plan is executed. This plan is therefore pruned from the search
space, since if it leads to a solution there must be another more e�cient solution that
avoids the state loop. The plan in Figure 3.4 cannot be expanded by adding a step
to the tail plan because there are no open preconditions in the tail plan.

A summary of the prodigy 4.0 algorithm is shown in Table 3.1 (taken from
al. [Veloso et al. 1995]).

prodigy 4.0(G,I)
1. Current state C := initial state I,
Head-Plan := null,
Tail-Plan := null. 2. If the goal statement G is satis�ed in the current state C, then
return Head-Plan.
3. Either

(A) Back-Chainer adds an operator to the Tail-Plan, or
(B) Operator-Application moves an operator from Tail-Plan to Head-Plan.

Decision point: Decide whether to apply an operator or to add an operator to the

tail.

4. Goto 2.

Operator-Application

1. Pick an operator op in Tail-Plan such that
(A) there is no operator in Tail-Plan ordered before op, and
(B) the preconditions of op are satis�ed in the current state C.

Decision point: Choose an operator to apply.

2. Move op to the end of Head-Plan and update the current state C.

Table 3.1: Summary of the prodigy 4.0 planning algorithm. Each decision
point is a potential backtracking point in the algorithm.

3.1.3 Organization of the search space

Table 3.1 gives a nondeterministic algorithm to construct a plan for a given planning
problem. prodigy 4.0 maintains an audit trail of the search if performs while
constructing the plan, called the search tree. A description of the search tree is
useful for explaining some extensions made to prodigy 4.0 to support conditional
planning and planning with external events. It is also used in Chapter 4 to describe
how Weaver interacts with prodigy 4.0.

The nodes in the search tree represent the choices made at each decision point of
the algorithm, and are typically of four types. An applied operator node represents
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the choice to move a particular step from the tail plan to the head plan. As an
alternative to moving a step to the head plan, a goal node represents the decision to
focus on an open condition in the tail plan (also known as a goal). The children of a
goal node must all be operator nodes, which represent the decision to use a particular
operator schema to achieve the goal represented by the parent node. The children of
an operator node must all be bindings nodes, which represent the decision to use a
particular set of bindings to instantiate the operator represented by the parent node.
The combination of a goal node, an operator node and a bindings node together
represent the act of prodigy 4.0 adding a step into the tail plan.

While the tail plan and the head plan together represent one candidate plan, the
search tree represents all the candidate plans that have been examined and also all
the ways that new candidate plans can be expanded. A path from the root node to
any other node in the search tree corresponds to a candidate partial plan, which can
be reconstructed by following the decisions encoded in the nodes in the path. For
example, the candidate plan in Figure 3.4 is actually generated by prodigy 4.0 as
the sequence of search tree nodes shown in Table 3.2. In this sequence, each node is
the child of the node in the line above3, so the candidate plan is produced without
backtracking over any choices. Other sequences of search nodes could produce the
candidate plan just as well: in particular the order in which prodigy 4.0 works on
the goals (oil-in-barge barge1) and (at barge1 Richmond) doesn't matter. The
choice of this particular sequence was largely due to search heuristics that prodigy
4.0 uses, which will not be discussed here (but see [Blythe & Veloso 1992] and
[Carbonell et al. 1992]).

3.2 A representation for planning under uncer-

tainty

In Section 3.1 I provided a brief description of planning domains, planning problems
and plans in prodigy 4.0. Here I extend those de�nitions to the versions used
by Weaver, in which planning domains and problems also contain information about
uncertainty in the domain, and plans can specify a number of contingencies. In
addition to operators, which can have more than one possible outcome, planning
domains in Weaver also contain exogenous events, which specify ways that the world
can be changed independently of the actions in a plan.

In order to give a precise characterisation of the problems that Weaver can repre-
sent and solve, I describe Weaver's representation scheme in terms of Markov decision
processes. Speci�cally, I describe how to take a planning problem in Weaver's lan-
guage and construct a Markov decision processM which is equivalent in the sense that
if there is a non-looping policy forM with an expected value greater than 0 then there

3except n5 which is the child of a special node that prodigy 4.0 uses to add the top-level goals

to its list of goals.
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n5 Goal (disposed-oil) top-level

n6 Operator unload-oil

n7 Bindings <unload-oil barge1 richmond>

n8 Goal (oil-in-barge barge1) for n7

n9 Operator pump-oil

n10 Bindings <pump-oil barge1 west-coast>

n11 Goal (at barge1 west-coast) for n10

n12 Operator move-barge

n13 Bindings <move-barge barge1 richmond west-coast>

n14 Apply <MOVE-BARGE BARGE1 RICHMOND WEST-COAST> apply n13

n16 Goal (at barge1 richmond) for n7

n17 Operator move-barge

n18 Bindings <move-barge barge1 west-coast richmond>

Table 3.2: An annotated trace of prodigy 4.0 which shows a sequence of search
tree nodes created to produce the candidate plan shown in Figure 3.3. Each node
except n5 is a child of the node in the line above. The text in italics has been added
to the trace output for clarity of presentation.

is a plan in the original problem with probability of success equal to that expected
value, and conversely if there is a plan then there is such a policy. A description of
Markov decision processes was given in Section 2.4.

Recall that in prodigy 4.0, a planning domain consists of a type hierarchy T , a
set of literals L and a set of operators O. A planning problem consists of a planning
domain, a set of objects belonging to each type in the hierarchy, an initial state and
a goal description. Each literal in the domain has a type signature, specifying the
number of arguments and the type of each argument, which is a member of T . Given
the objects in the planning problem, the set of all possible ground literals L can be
constructed by �lling in the arguments of each literal's type signature with all objects
that match, which are those objects of the exact type or any subtype of the type in
the signature.

Consider the oil-spill planning problem that has been used as an example in the
previous sections. The domain includes the literal at with signature (at Barge

Place). In the planning problem, there are two objects of type Barge, barge1 and
barge2 and two objects belonging to subtypes of the type Place, Richmond of type
Dock and west-coast of type Sea-Sector. Therefore there are four ground literals
derived from at in the set L: (at barge1 Richmond), (at barge1 west-coast),
(at barge2 Richmond) and (at barge2 west-coast).

A state in a planning problem in prodigy 4.0 assigns a value of true or false
to each literal in the ground literals L. Therefore there are 2jLj possible states. Some
of these assignments may not correspond to valid states in the planning domain be-
ing modelled. For example, (at barge1 Richmond) and (at barge1 west-coast)



3.2. A representation for planning under uncertainty 27

cannot both be true at the same time. However since any state that is reachable
by a sequence of actions in the domain from a valid initial state will also be valid,
these invalid states are not an issue in practice. This state property of validity could
be partially derived by considering the states reachable by applying actions to any
physically possible initial state, or it could be enforced by adding domain axioms such
as those used in [Knoblock 1991]. In what follows I will ignore this distinction.

In Weaver the planning domain is generalised as follows.

1. The operators in the domain include a duration which is an integer-valued func-
tion of the bindings of the operator (and therefore a integer for an instantiated
action or step). This integer may represent any time unit, for example seconds
or hours, although the unit must be the same for di�erent operators in the same
domain.

2. Operators may specify a discrete, conditional probability distribution of possible
outcomes rather than the single possible outcome used in prodigy 4.0. An
example of this will be described in more detail below.

3. A planning domain includes a set of exogenous events E as well as the set of
operators O. These are syntactically very similar to operators but are used to
specify the way that the world can change independently of the actions taken in
a plan, as I describe below. For example, they can be used to model the actions
of other agents or natural processes.

4. A total precedence order < is given over the actions and events. This is used to
resolve con
icts between their e�ects if more than one action or event produces
changes to a state. An example is given below.

Weaver generalises prodigy 4.0's de�nition of a planning problem by specifying
a probability distribution of possible initial states rather than a single initial state.
The problem also includes a threshold probability, � , a minimumprobability of success
that a plan must equal or exceed to be considered a solution. The objects and goal
statement in the planning problem are unchanged.

In the rest of this section I make the semantics of planning domains and problems
in Weaver precise in terms of an underlying Markov decision process M de�ned by
a planning problem. While this de�nition is needed to prove that Weaver correctly
computes probabilities for plans and to discuss its coverage, on a casual reading of the
thesis it can be skipped and replaced with the following summary: at each time step,
several events may take place simultaneously with one action as a plan is executed.
When more than one event or action complete in one time step, their results are
applied to the state in parallel. If more than one possible value is speci�ed for some
ground literal in the state, the value nominated by the event or action that is highest
in the pre-speci�ed precedence order is used. Actions are usually higher than events
in the precedence order.
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Actions and exogenous events

Weaver operators are very similar to operators in prodigy 4.0, but include a dura-
tion function and generalise from a single outcome to multiple possible outcomes, one
of which will take place when an instantiated operator is executed. Thus each oper-
ator has an e�ect distribution function, edf() that takes a state as input and returns
a probability distribution of e�ects, that is, a �nite set edf(s) = f(pi; �i) j 1 � i � ng

for some n, where each �i is a list of add and delete statements denoting an e�ect set
as in the operators of prodigy 4.0, each pi is a positive number and

Pn
i=1 pi = 1.

The e�ect distribution function is represented as a binary tree whose internal
nodes are labelled with literals mentioning variables from the domain and whose leaf
nodes are labelled with probability distributions of outcomes. Each internal node has
one out-arc labelled false and one labelled true. To �nd the appropriate e�ect dis-
tribution for a given state, the tree is traversed from the root node, taking the branch
labelled true or false respectively depending on whether the literal at the node is
true or false in the state. Figure 3.5 shows a version of the Move-Barge operator from
the oil-spill domain used in the previous sections that has a simple branching e�ect
distribution function with one internal node labelled with (barge-ready <barge>).
In this case the two possible e�ect distributions have the same set of outcomes with
di�erent probabilities, but this need not be true in general. The probability values
are part of the domain de�nition, assigned externally to Weaver. Deriving them
using machine learning or knowledge acquisition techniques would make an feasible
extension but is not covered in this thesis.

Informally, when an instantiated operator is applied in some state s in a domain
with no exogenous events, the resulting state is determined probabilistically as follows.
First the e�ect distribution function is called to �nd the e�ect distribution for s,
edf(s). Then an e�ect set is chosen at random, with the probabilities given in the
e�ect distribution. Finally this e�ect set is applied to the state in the same way that
the single outcome of an instantiated operator in prodigy 4.0 is applied to the
state. For example, if the instantiated-operator
(Move-Barge <barge>=barge1 <from>=Richmond <to>=west-coast) is applied in
any state in which (at barge1 Richmond) and (operational barge1) are true but
(barge-ready barge1) is false, (operational barge1) will be true in the resulting
state with probability 0.1 and will be false with probability 0.9, while (at barge1

Richmond) will be false and (at barge1 west-coast) will be true with certainty.

The situation is complicated signi�cantly by the presence of exogenous events in
the planning domain. Since events specify ways the world can change independently
of an action taken in a plan, the resulting state when an action is taken depends on
what events may take e�ect between the start and end of the action. Since some of
these events may have begun before the action is taken, at least some aspects of the
history of the world are needed, and in order to model such events it is necessary
to introduce a notion of time. A variety of theoretical models in the AI literature
can handle exogenous events and are in the same spirit as the situation calculus on
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(Operator Move-Barge

(duration (/ (distance <from> <to>) (speed <barge>)))

(preconds

((<barge> Barge)

(<from> Place)

(<to> (and Place ( di� <from> <to>))))

(at <barge> <from>))

(effects

(branch (barge-ready <barge>)

((0.667 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))))

(0.333 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))

(del (operational <barge>)))))

((0.1 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))))

(0.9 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))

(del (operational <barge>))))))))

Figure 3.5: The Move-Barge action from the oil-spill domain used in Weaver has
a duration and a probability distribution of possible outcomes.

which the prodigy 4.0 representation rests e.g. [Allen et al. 1991; Kartha 1995;
Shanahan 1995; Baral 1995].

In this thesis I have chosen a simple and restricted language for events that is still
adequate for planning with some interesting domains. While some approaches, based
on circumscription, are independent of an underlying model of the language, my ap-
proach is based on the adoption of a Markov decision process as an underlying model.
This approach was chosen partly because the existing techniques did not handle prob-
abilistic reasoning well, although the random-worlds approach is promising [Bacchus
et al. 1997], and partly to make it easier to compare the planning system developed
in this thesis with other approaches to planning under uncertainty, many of which
are based on Markov decision processes [Boutilier & Dearden 1994; Dean & Lin 1995;
Littman 1996].

Exogenous events have a very similar representation to operators. Figure 3.6 shows
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an example of a simple exogenous event calledWeather-Brightens. It can only take
e�ect in a state in which (poor-weather) is true, and its application leads to a state
in which (poor-weather) is false and (fair-weather) is true. Unlike operators, the
agent that executes plans is not free to apply this external event at will. The event
will take place randomly in any state that satis�es its preconditions, with probability
given in the probability slot of the event. Each event can take place any time that
its preconditions are satis�ed, independently of its previous occurrences and with the
same probability.

As an example, Figure 3.7 shows the set of states that can result from the given
initial state when the action
(Move-Barge <barge>=barge1 <from>=Richmond <to>=west-coast) is executed in
a domain with Weather-Brightens as the sole external event, and the action has a
duration of one time unit. The probability that the event takes place in this state is
independent of the action outcome in the state and this fact is used to compute the
probabilities shown on each arc in the �gure. The probability that (poor-weather) is
true on completion of the action, for example, is found by summing the probabilities
of the two states on the left of the diagram, giving 0.75. However if the action were
to have a duration of two time units, the probability of (poor-weather) would be
reduced to 0.5625, because the event might take place in either of two states while
the action is executed.

(event Weather-Brightens

(probability 0.25)

(duration 1)

(preconds ()

(poor-weather))

(effects ()

((del (poor-weather))

(add (fair-weather)))))

Figure 3.6: An exogenous event.

Suppose that the event and action may be in con
ict over the value of some
literal. For example, suppose that in some of its possible outcomes, Move-Barge
deletes (fair-weather) and adds (poor-weather), perhaps because of pollution. In
the cases where both the event and action would a�ect these literals, the precedence
order over events and operators is used to decide their values. If Move-Barge comes
before Weather-Brightens in the order, (fair-weather) will be false, otherwise it
will be true. More sophisticated schemes for reasoning about simultaneous events are
possible, such as the one proposed in [Shanahan 1995].
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(operational barge1)

(poor-weather) (poor-weather)

(operational barge1)
(at barge1 west-coast) (at barge1 west-coast) (at barge1 west-coast) (at barge1 west-coast)

(fair-weather) (fair-weather)

(at barge1 Richmond)
(operational barge1)

(poor-weather)

0.167 0.0830.5 0.25

(distance Richmond west-coast 1)
(ready barge1)

True in all states:

Figure 3.7: The set of states reachable when the action Move-Barge is executed
from the initial state shown, when Weather-Brightens is the only exogenous event
in the domain and the action has a duration of one time unit. The probability of
reaching each state is shown along its arc.

3.3 A Markov decision process model of uncer-

tainty

.

In the previous section I showed the result when an action is applied and one event
with the same duration may take place simultaneously. In general, actions and events
may have di�erent durations and events may take e�ect after an action begins but
before it ends. Multiple events may take place at the same time, and they may have
e�ects that alter the same literals in di�erent ways. In order to precisely state the
probability distributions of state histories that can result from a sequence of actions
in a planning problem, I introduce its underlying Markov decision process (MDP).

Recall from Chapter 2, on related work, that an MDP is de�ned by its state
space, its state transition function and its reward function. A state in the state space
of the underlying MDP M contains more information than a state in the planning
problem, since it contains a limited history of actions and exogenous events that are
in progress. This is because the MDP models the interaction of actions and events
that have di�erent lengths and whose time intervals may overlap, and it is useful to
choose the state space and transition function such that each successor state occurs a
�xed unit of time after the predecessor state. For this reason, a state inM contains a
history of the events and actions taking place in the world as well as the current state
described in terms of literals from the planning problem. Individual state transitions
then correspond to the passage of a unit of time rather than an action or event viewed
as an atomic unit.

The action and event history contained in a state in M consists of a set of pairs
n:� where n is an integer denoting the time before the action or event will take place,
and � is an e�ect set, a list of add and delete statements that specify the changes to
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be made to the state when the action or event will take place. There is no distinction
in the history list between actions and events, since once they are added to the state
there is no need for a distinction. These pairs are called pending e�ects.

Figure 3.8 shows the sequence of states in M that is traversed if a deterministic
version of Move-Barge is executed in the beginning state. In each state, literals from
the state space of the planning problem are shown above the dotted line, while below
the line is shown a list of pending e�ects. The initial state and the two �nal states
in the diagram have no pending e�ects, while each intermediate state has exactly
one pending e�ect. When the action is performed in the left-most state, it gives rise
to two possible successor states, with di�erent pending e�ects corresponding to the
di�erent possible outcomes of the action. Since the length of the action is the same
in each outcome, the count-down on the pending e�ects in each state is the same,
3. Whenever the pending e�ect has a count-down higher than 1, the successor state
simply decrements the count-down. When the count-down reaches 1, the pending
e�ect is not present in the successor state, but the e�ects themselves are applied to the
portion of the MDP state corresponding to the literals in the planning problem. Thus
in the �nal states, (at barge1 west-coast) is true and (at barge1 Richmond) is
false. In the lower of the two �nal states, (operational barge1) has become false,
while it is still true in the upper �nal state.

(at barge1 Richmond)

(speed barge1 1)

(ready barge1)

(operational barge1)

(distance Richmond west-coast 4)

(at barge1 Richmond)

(speed barge1 1)

(ready barge1)

(operational barge1)

(distance Richmond west-coast 4)

(at barge1 Richmond)

(speed barge1 1)

(ready barge1)

(operational barge1)

(distance Richmond west-coast 4)

(at barge1 west-coast)

(speed barge1 1)

(ready barge1)

(operational barge1)

(distance Richmond west-coast 4)

σ3: σ2: σ1:(at barge1 Richmond)

(speed barge1 1)
(ready barge1)

(operational barge1)

(distance Richmond west-coast 4)

(add (at barge1 west-coast))
(del (at barge1 Richmond))

(del (operational barge1))

(at barge1 Richmond)

(speed barge1 1)

(ready barge1)

(operational barge1)

(distance Richmond west-coast 4)

(at barge1 Richmond)

(speed barge1 1)

(ready barge1)

(operational barge1)

(distance Richmond west-coast 4)

(at barge1 Richmond)

(speed barge1 1)

(ready barge1)

(operational barge1)

(distance Richmond west-coast 4)

(at barge1 west-coast)

(speed barge1 1)

(ready barge1)

NOT (operational barge1)

(distance Richmond west-coast 4)

υ υ2: υ1:3: 

(add (at barge1 west-coast))
(del (at barge1 Richmond))σ=

υ=

2/3

1/3

Figure 3.8: The two possible sequences of states in the underlying Markov decision
process arising from executing the Move-Barge operator in the state shown on the
left in the absence of exogenous events.

The pending e�ects in Figure 3.8 were added by choosing the action Move-Barge

in the initial state. Exogenous events are also modelled by adding pending e�ects to
the state in the MDP. For example, Figure 3.9 shows the states arising from taking
the same action in an initial state that also has no pending e�ects but includes
the literal (poor-weather) and in a domain that also includes the exogenous event
Weather-Brightens shown in Figure 3.6, but with a duration of 2 time units. Since
the presence of the exogenous event leads to considerably more states, I only show the
domain-level state features that di�er from those of the parent state. The probability
that each state is reached is shown above the state. The probabilities of the state
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transitions are calculated from the event and action outcome probabilities, which are
conditionally independent given the states in which the corresponding pending e�ects
began.

(at barge1 Richmond)
(operational barge1)
(poor-weather)
(speed barge1 1)
(ready barge1)
(distance Richmond west-coast 4)

(add (at barge1 west-coast))
(del (at barge1 Richmond))

(del (operational barge1))

υ=

σ3: 1: ε

σ3: 

υ3: 

υ3: 1: 

σ2: 

σ2: 

υ2: 

σ2: 1: ε

υ 1: ε2: 

υ2: 

1: εσ1: 

σ1: 

υ 1: ε1: 

υ1: 

σ1: 

υ1: 

(at barge1 west-coast)

(at barge1 west-coast)

1: ε

(at barge1 west-coast)
(fair-weather)

(at barge1 west-coast)
NOT (operational barge1)

1: ε

(at barge1 west-coast)
NOT (operational barge1)

(at barge1 west-coast)
NOT (operational barge1)
(fair-weather)

0.75

0.25

0.75

0.25

0.211

0.07

0.386

0.193

0.1

0.04

(del (poor-weather))
(add (fair-weather))

(add (at barge1 west-coast))
(del (at barge1 Richmond))σ=

ε= .05

0.167

0.25

0.083

1.0

ε

0.5

0.167

0.25

0.083

0.75

0.25

0.75

0.25

(fair-weather)

(fair-weather)

0.375

0.125

0.167

0.187

0.063

0.083

(fair-weather)

(fair-weather)

0.75

0.25

0.75

0.25

0.281

0.094

0.292

0.14

0.047

0.146

Figure 3.9: The possible sequences of states in the underlying Markov decision
process arising from executing the Move-Barge operator in the state shown on the
left, when the exogenous event Weather-Brightens can also take place. Only literals
that are changed from a parent state are shown.

Formal description of the underlying MDP

Each state s of the underlying mdp M consists of two parts:

1. a truth assignment to the ground literals L, corresponding to a state in the
planning domain and referred to as the literal state �.

2. a set of pending e�ects �.

Each element of the pending e�ects is a triple (t; a; �) where t is an integer denoting
a time interval, a is an operator or exogenous event and � is a set of \e�ects", a
set of add and delete statements over ground literals in L. The pending e�ects
represent the events and actions that are currently taking place in the given state of
M . Intuitively, t denotes the time left before the e�ect \completes" or is applied to
change the state.
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We begin by de�ning a \successor function" �(:) on states of M . This function
shows how a state leads to its successor if there are no exogenous events, and is used
as the basis for building the transition function for the MDP.

Let s be a state in M and write s = � [� where � and � are the literal state
and the pending e�ects as described above. To calculate the successor state �(s),
�rst �nd those pending e�ects whose time-to-complete value is 1:

�I = f� = (1; a; �) j � 2 �g

�I can be thought of as the \imminent" pending e�ects, and is applied to the
literal state � to give a new literal state �0, the literal state in the successor MDP
state �(s). �0 is de�ned by specifying a truth value for each ground literal:

�0(l) = true; when there is some pending e�ect (1; a; �) 2 �I, � such that
� contains (add l) and a is the least operator or event in the
total order with a pending e�ect that mentions l.

�0(l) = false; when there is some pending e�ect (1; a; �) 2 �I , � such that
� contains (del l) and a is the least operator or event in the
total order with a pending e�ect that mentions l.

�0(l) = �(l); if no such pending e�ect exists.

The remaining pending e�ects, �R = � ��I , contribute to the pending e�ects
of the new state �(s) with their time count reduced by one:

�(s) = �0 [ f(t� 1; a; �) j (t; a; �) 2 �Rg

This successor function forms the basis of the MDPM describing the actions and
external events in the planning domain P . As described below, changes to the world
due to actions or external events are expressed by inserting pending e�ects into the
set � for the state that is changed. At each time step, the successor function is also
performed. Note that the successor function is deterministic: �(s) is uniquely de�ned
for each state s 2M .

In the special case when there are no external events, the transition function
�(a; s) that maps an action a and a state s in M to a probability distribution of new
states is de�ned as follows:

�(a; s) = �(s [ f(d; a; �i)g) with probability pi; with 1 � i � n

Where d is the duration of the action in the state s, and the e�ects �i and corre-
sponding probabilities pi are computed from the actions e�ect distribution function,
edf(s) = f(pi; �i) such that 1 � i � ng. Thus if the duration d of action a is 1, the
e�ects take place in the next state after a is performed, otherwise there is a delay
corresponding to d before a's e�ects are realised.

When exogenous events may take place, they modify the possible transitions from
the states in which their preconditions are satis�ed. For example, the presence of
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the event Weather-Brightens leads to four possible transitions from the initial state
in Figure 3.9, while the same state has two transitions when there are no exogenous
events in Figure 3.8. Essentially, each combination of occurrences of the applicable
exogenous events and each possible outcome of the chosen action leads to a possible
transition for the state and the action. The probability of the transition is the product
of the probabilities corresponding to the events and the action outcome.

Recall that exogenous events have a precondition, duration and e�ect distribution
similar to actions, and also have a probability of occurrence p. Let E be the set of of
exogenous events and let H(E; s) be the set of external events whose preconditions
are satis�ed in the state s. Intuitively, any combination of the events in H(E; s)
might take place when an action is performed in state s. The probability that event
h takes place and has e�ect ed(s)i is p� pi.

For each subset H 0 � H(E; s), applying action a in state s can lead to transitions
with the following probabilities:

�(a; s) = �(s [ f(d; a; �i)g
[

h2H 0

(dh; h; edf(s)ih))

with prob pi
Y

h2H 0

phpih
Y

h02H�H 0

(1 � ph0)

This expression combines the probabilities that (1) action a has its ith possible
outcome, that (2) each external event in H 0 takes place and has its ihth outcome,
and that (3) none of the external events in H � H 0 takes place. These outcomes
are treated as independent. If R is the maximum number of di�erent outcomes that
an event can have and jEj is the number of exogenous events, then the worst case
complexity of computer �(a; s) is exponential in jEj � R since each combination of
the outcomes must be considered. In the next chapter I show how Weaver evaluates a
plan typically without computing �(a; s), using the plan to constrain the events and
outcomes considered.

Now that the state space and the state transition function have been de�ned for
the MDP that models a particular planning problem, it remains only to specify the
reward function for the MDP. Recall that in an MDP, a reward R(a; s) is given for
making a transition to state s using action a. An optimal policy on the MDP is
a choice of an action for each state in the MDP that will maximise the expected
reward. The original planning problem speci�es a goal description, a logical sentence
over the literals L of the domain. In order for the optimal policies on the MDP to
have the e�ect of reaching a goal state and staying there, I specify a reward of 0 for all
transitions between goal state, and reward of 1 for each transition from a non-goal to
a goal state and a reward of -2 for each transition from a goal to a non-goal state. A
new action is also added to the MDP, distinguished from the actions of the planning
problem, called stop. This action always connects a state to the same state with a
reward of 0.
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It is easy to see that any optimal policy will choose the stop action (or an equiv-
alent) at a goal state, since the negative reward for leaving the state dominates the
positive reward for subsequently arriving at a goal state. It is also easy to see that the
expected reward of any policy is equal to the probability that the policy will reach
some goal state. A plan in the original planning problem can easily be mapped to a
policy in the MDP in the manner described in the following example. It is reasonable
to then de�ne the probability of success of the plan as the conditional expected value
of that policy, conditioned on the initial state distribution of the planning problem.

3.4 Putting it together: a complete example

In the previous sections I have developed operators and events from an oil-spill domain
to illustrate elements of the representation for planning problems used in this thesis.
In this section I will extend the domain, show the model for a simple planning problem
and evaluate a plan as a policy on the model. I will use the planning problem
introduced in Section 3.1 with the extensions introduced in Section 4.1. This example
is a simpli�cation of the oil-spill clean-up domain described in chapter 7.

Figure 3.10 shows all the operators from the planning domain, and Figure 3.11
shows all the exogenous events. The object types in the domain are the top-level
types Barge and Place, and the two sub-types of Place, Dock and Sea-Sector.
The typed literals in the domain are (at Barge Place), (oil-in-barge Barge),
(disposed-oil), (oil-in-tanker Sea-Sector), (operational Barge),
(barge-ready Barge), (distance Place Place), (poor-weather)
and (fair-weather).

As in the previous sections, the planning problem considered has one object,
barge1, of type Barge, one object, Richmond, of type Dock and one object, west-coast,
of type Sea-Sector. Thus the 10 literals in L yield 11 ground literals in L, for a state
space size of 211 = 2048. In fact only 48 of these states are physically possible, but
this is not explicitly modelled as discussed in Section 3.2. The planning initial state
and goal are shown in Table 3.3.

In Section 4.1 I showed how a conditional planner based on Prodigy can compute
a plan for this problem with one conditional branch. In this section I will describe
the underlying MDP for this planning problem, show the expected reward for this
plan interpreted as a policy on the MDP and explain the relationship between the
expected reward and the plan's probability of success.

Figure 3.12 shows a reachability graph of the states reachable from the initial
state of the example planning problem through sequences of operators and exogenous
events. These are states in the state space of the planning problem, not the underlying
MDP, because they do not contain any information about pending e�ects. Only 12
states are reachable because (barge-ready barge1) is true in the initial state and
cannot be made false, and because the weather can only be altered by exogenous
events. For brevity, the object barge1 is not shown in the literals in which it is an
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(operator Unload-Oil

(preconds ((<barge> Barge)

(<dock> Dock))

(and (at <barge> <dock>)

(oil-in-barge <barge>)))

(effects ()

((del (oil-in-barge <barge>))

(add (disposed-oil)))))

(operator Pump-Oil

(preconds ((<barge> Barge)

(<sector> Sea-Sector))

(and (at <barge> <sector>)

(operational <barge>)

(fair-weather)

(oil-in-tanker <sector>)))

(effects ()

((add (oil-in-barge <barge>))

(del (oil-in-tanker <sector>)))))

(operator Make-Ready

(preconds ((<barge> Barge))

(true))

(effects ()

((add (barge-ready <barge>))

)))

(operator Move-Barge

(duration (/ (distance <from> <to>)

(speed <barge>)))

(preconds

((<barge> Barge)

(<from> Place)

(<to> (and Place ( di� <from> <to>))))

(at <barge> <from>))

(effects

(branch (barge-ready <barge>)

((0.667 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))))

(0.333 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))

(del (operational <barge>)))))

((0.1 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))))

(0.9 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))

(del (operational <barge>))))))))

Figure 3.10: The operators from the simple oil-spill domain used in this chapter.
When the duration of an operator isn't mentioned, it defaults to 1.

argument, only true literals are shown and the literals (barge-ready barge1) and
(fair-weather), which are always true, are not shown.

If the domain included no exogenous events, then the underlying MDP for the
problem would be similar to the reachability graph except that each transition cor-
responding to the action move-barge would lead to a sequence of 3 transitions en-
coding the count-down of the pending e�ects. A part of this MDP, restricted only
to the four states reachable from the initial state in which (oil-in-tanker) is true,
is shown in Figure 3.13. In this diagram, literal information is not shown when a
state's literals match those of its parents. There are 4 di�erent sets of pending e�ects
that are marked with letters. For example, \a" corresponds to f(del (at barge1
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(event Weather-Brightens

(probability 0.25)

(duration 1)

(preconds ()

(poor-weather))

(effects ()

((del (poor-weather))

(add (fair-weather)))))

(event Weather-Darkens

(probability 0.25)

(duration 1)

(preconds ()

(fair-weather))

(effects ()

((del (fair-weather))

(add (poor-weather)))))

Figure 3.11: The exogenous events from the oil-spill domain.

(at barge1 Richmond) t

(at barge1 west-coast) f

(oil-in-barge barge1) f

(disposed-oil) f

(oil-in-tanker west-coast) t

(operational barge1) t

(barge-ready barge1) t

(distance Richmond west-coast 4) t

(distance west-coast Richmond 4) t

(poor-weather) f

(fair-weather) t

Goal: (disposed-oil)

Table 3.3: The initial state and goal description. Here t and f stand for \true"
and \false".

Richmond)), (add (at barge1 west-coast))g and \c" corresponds to the e�ects in
\a" together with (del (operational barge1)). The transitions that correspond to
initiating an action are labelled with their probabilities, but intermediate transitions
are not labelled.

The extension of this MDP to one with the full graph including the e�ects of
exogenous events is shown in Figure 3.14. The MDP is composed of two layers. The
literal (fair-weather) is true in each state in the top layer and (poor-weather) is
true in each state of the lower layer. Within each layer there are three groups of states
that are similar to the states in Figure 3.13. In the �rst, the literal (oil-in-tanker
west-coast) is true, in the second, (oil-in-barge barge1) is true and in the third,
(disposed-oil) is true. Each layer is therefore similar to the reachability graph
shown in Figure 3.12. Including the other actions and the two exogenous events does
not increase the number of states because they all have durations of 1 time unit
and so do not give rise to intermediate states. Therefore the resulting MDP has 96
states. For each transition within a layer, one of the exogenous events causes another
transition, which is 1=3 as likely, with the same starting point but the equivalent state
in the other layer as the ending point. A few of these transitions are illustrated in
Figure 3.14 by the dotted lines towards the bottom of the �gure.
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(oil-in-tanker)
(operational)

(at west-coast)

(oil-in-tanker)
NOT (operational)

(at west-coast)

(oil-in-barge)
NOT (operational)

(at Richmond)

(oil-in-barge)
(operational)

(at Richmond)
(oil-in-barge)
(operational)

(at west-coast)

(oil-in-barge)
NOT (operational)

(at west-coast)

(at Richmond)

(operational)

NOT (operational)

(at Richmond)

(operational)

(at west-coast)

NOT (operational)

(at west-coast)

(disposed-oil)

(disposed-oil)

(disposed-oil)

(disposed-oil)

(at Richmond)
(oil-in-tanker)
(operational)

(oil-in-tanker)
NOT (operational)

(at Richmond)

pump-oil

unload-oil

unload-oil

move

move

move move

move

move

move

movemove

move

move

move

move

move

move

move

move

move

Figure 3.12: Reachability graph of literal states in the planning problem from the
initial state, considering only operators. The initial state is shown in the top left-hand
corner, and the four goal states are shown in bold in the bottom left-hand corner.
Actions corresponding to the plan that is produced for this problem are shown in
bold.

The plan found by the conditional planner described in Section 4.1 is:
(Move-Barge <barge>=barge1 <from>=Richmond <to>=west-coast)

(Pump-Oil <barge>=barge1 <sector>=west-coast)

(Move-Barge <barge>=barge1 <from>=west-coast <to>=Richmond)

(Unload-Oil <barge>=barge1 <dock>=Richmond)

This plan is illustrated by the bold lines in Figure 3.14. These bold lines also
represent a partial policy on the MDP, a choice of action for some of the states in the
MDP. The plan can be extended to a full policy by any arbitrary assignment of actions
to the remaining states. I choose the following assignment, which is guaranteed not
to increase the expected reward of the policy: A new action called fail is added to
the set of actions in the MDP. This action does not appear in the planning domain.
The action is de�ned in every state of the MDP to loop back to the same state with
probability 1. The reward function assigns a reward of 0 for each such transition.
The partial policy is extended by choosing this action in every state where the plan
does not choose an action.

The plan used for this problem does not branch, consisting of a linear sequence
of actions. The partial policy is made from the plan by choosing the �rst action in
each state that has non-zero probability in the initial state distribution, choosing the
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(at Richmond)
(oil-in-tanker)
(operational)

(at west-coast)
(oil-in-tanker)
(operational)

(at Richmond)
(oil-in-tanker)
NOT (operational)

(at west-coast)
(oil-in-tanker)
NOT (operational)

(a,3) (a,2) (a,1)

(b,3)(b,2)

(c,3) (c,2)

(c,1)(d,2)(d,1)

(a,3) (a,2) (a,1)

(b,1) (b,2) (b,3)

(b,1)

(d,3)

move, 1/3

move, 2/3

move, 1/3

move, 2/3

move, 1

move, 1

Figure 3.13: Part of the MDP that would correspond to the example problem
if it had no exogenous events, restricted to the states in which (oil-in-tanker) is
true. All transitions and intermediate states correspond to a move-barge action. The
transitions that correspond to initiating an action are labelled with their probabilities.
Intermediate transitions are not labelled.

second action in each state that is reached when the �rst action completes, and so on.
If a state that is reached already has an action choice, in other words the plan has
visited this state previously with non-zero probability, the action chosen �rst remains.
If every possible sequence of states through the MDP that arose from following the
plan had a loop, this algorithm would not be able to assign every action in the plan.
However, Prodigy includes a mechanism for avoiding loops and, in the absence of
exogenous events, at least one path through its plan will complete. I will discuss the
case for planning with exogenous events in the following chapter.
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NOT (operational)
(oil-in-tanker)
(at Richmond)

NOT (operational)
(oil-in-tanker)
(at west-coast)

(operational)
(oil-in-tanker)
(at Richmond)

(oil-in-tanker)
(at west-coast)

(operational)

(oil-in-tanker)
(at Richmond)

(oil-in-tanker)
(at west-coast)

(operational)

(operational)
(oil-in-tanker)
(at Richmond)

(oil-in-tanker)
(at west-coast)

(operational)

(operational)

(fair-weather)

(poor-weather)

unload-oil, 0.75

pump-oil, 0.75

pump-oil, 0.75

move, 0.25

move, 0.5

move, 0.25
move, 0.5

move, 0.75

move, 0.75

move, 0.75

move, 0.25

NOT (operational)
(oil-in-tanker)
(at Richmond)

NOT (operational)
(oil-in-tanker)
(at west-coast)

NOT (operational)
(oil-in-tanker)
(at Richmond)

NOT (operational)
(oil-in-tanker)
(at west-coast)

NOT (operational)
(oil-in-tanker)
(at Richmond)

NOT (operational)
(oil-in-tanker)
(at west-coast)

NOT (operational)
(oil-in-tanker)
(at Richmond)

NOT (operational)
(oil-in-tanker)
(at west-coast)

Figure 3.14: The full set of states for the MDP for the example problem. The
transitions due to exogenous events are shown with dotted lines, connecting the
two planes into which the states are divided. In the upper plane the state variable
(fair-weather) is true and in the lower plane (poor-weather) is true.
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Chapter 4

The Weaver Algorithm

In the previous chapter I presented a model of planning under uncertainty, describing
the representation of uncertain planning problems and the semantics of the repre-
sentation in terms of a Markov decision process. In this chapter I provide a broad
overview of Weaver's algorithm. Weaver operates in a loop, shown in Figure 4.1. On
each iteration it creates a candidate plan, evaluates its probability of success and uses
the evaluation to suggest ways to improve the candidate plan. Each of these three
activities corresponds to a module in the system and is described below.

Plan

Success if threshold
probability met.

Failure if all
plans tried

Conditional
Planner

Evaluator

Belief netPlan critic

Reduced domain model

Figure 4.1: Weaver's main loop has three modules: a conditional planner, a plan
evaluator and a plan critic.

Given a planning problem, one can always produce its underlying Markov deci-
sion process as shown in the last chapter and, in principle, solve it using standard
techniques such as policy iteration to �nd a plan. This approach is computationally
intractable in practice because the model grows rapidly as objects and actions are
added to the domain. The idea behind Weaver is to use goal-directed planning to
focus attention on a version of the original problem that ignores irrelevant features,
in which a plan can be formulated without explicitly reasoning about the full Markov
decision process. After creating such a plan, Weaver creates a parsimonious model
of its probability of success, using the \evaluator" module in Figure 4.1. This model

43
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is used by the \plan critic" module to increase the subset of features considered to
include all the relevant ones, that is, all the features that are used to compute the
plan's probability of success. Once the feature set has been increased a new plan is
produced if necessary and the process is repeated, allowing the model of the planning
problem to grow incrementally.

The smaller version of the planning problem that ignores many features is referred
to in Figure 4.1 as the \reduced domain model". As the �gure shows, the conditional
planner works in this reduced domain model while the plan evaluator and plan critic
do not. However, the latter modules still take a constrained view of the planning
problem, because they take the plan as their input and only consider domain features
that a�ect it. The precise way in which each module constrains the next is made
more clear as the modules are described below. In the next section I describe the
conditional planner and in Section 4.2 I describe how the plan is evaluated with a
probabilistic model that captures only the relevant features. In Section 4.3 I show how
the plan critic updates the plan by increasing the number of sources of uncertainty
made visible to the planner.

4.1 Conditional planning

Planners that deal with uncertainty must be able to create and evaluate conditional
plans, which contain branches. For example, suppose that the Move-Barge operator
can have two possible outcomes, in one of which the barge is made inoperable even
if it is ready. If the planning problem contains more than one barge, then a plan
to transfer the oil with high probability should be conditional on the state of the
barge being used. Several planning systems are capable of solving problems like this,
such as cnlp [Peot & Smith 1992], Cassandra [Pryor & Collins 1996] and C-Buridan
[Draper, Hanks, & Weld 1994]. In this section I �rst describe some extensions made
to prodigy 4.0's set of search node types in order to support planning in non-
deterministic domains, then describe an algorithm that extends prodigy 4.0 to be
able to create conditional plans.

4.1.1 Extensions to the prodigy 4.0 node set to support

probabilistic planning

Weaver interacts with Prodigy by analysing a candidate plan, inserting new nodes
into the search tree and re-starting Prodigy's search tree at some node of its choosing.
The details of this process are provided in Chapter 4. In order to support this process,
two new types of nodes are added to the vocabulary of prodigy 4.0 to represent new
decisions that can be made about the plan. These are context nodes and protection

nodes. A context node represents the decision to treat a particular step in the tail
plan as having a set of alternative possible outcomes, rather than just one possible
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outcome as is the standard. The use of these nodes is described in Section 4.1.2, while
here I cover protection nodes.

A protection node represents a decision to augment the preconditions of a step that
is already in the tail plan with extra preconditions. Weaver uses protection nodes to
specify extra preconditions to ensure that either a possible outcome of the step will
not occur or that some exogenous event will not occur simultaneously with the step.

Prodigy can make use of protection nodes independently of Weaver to ensure that
some chosen conditional e�ects of a step will not occur. In fact, some mechanism of
this kind is required for planners in the Prodigy family to be complete [Blythe & Fink
1997]. As an illustration, suppose that the Move-Barge and Pump-Oil operators are
extended so that Pump-Oil requires that the barge be operational, and Move-Barge

may conditionally delete that the barge is operational if the literal barge-ready is
false. These altered operators are shown in Figure 4.2.

(Operator Pump-Oil

(preconds ((<barge> Barge)

(<sector> Sea-Sector))

(and (at <barge> <sector>)

(operational <barge>)

(oil-in-tanker <sector>)))

(effects ()

((add (oil-in-barge <barge>))

(del (oil-in-tanker <sector>)))))

(Operator Make-Ready

(preconds ((<barge> Barge))

(true))

(effects ()

((add (barge-ready <barge>))

)))

(Operator Move-Barge

(preconds

((<barge> Barge)

(<from> Place)

(<to> (and Place ( di� <from> <to>))))

(at <barge> <from>))

(effects ()

((del (at <barge> <from>))

(add (at <barge> <to>))

(if (~ (barge-ready <barge>))

((del (operational <barge>)))))))

Figure 4.2: The Pump-Oil and Move-Barge operators are modi�ed respectively
to require and conditionally delete (operational <barge>). The new operator
Make-Ready can add barge-ready.

If the initial state is unchanged from that of Section 3.1.2, so that (barge-ready
barge1) is false, then prodigy 4.0 as described is not able to solve the problem
with the new operators. This is because it has no way to add the step (Make-Ready

<barge>=barge1) to the tail plan, since it does not achieve either the top-level goal
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n5 Goal (disposed-oil) top-level

n6 Operator unload-oil

n7 Bindings <unload-oil barge1 richmond>

n8 Goal (oil-in-barge barge1) for n7

n9 Operator pump-oil

n10 Bindings <pump-oil barge1 west-coast>

n11 Goal (at barge1 west-coast) for n10

n12 Operator move-barge

n13 Bindings <move-barge barge1 richmond west-coast>

n14 Protect (operational barge1) from n13 with (barge-ready barge1)

n15 Goal (barge-ready barge1)

n16 Operator make-ready

n17 Bindings <make-ready barge1>

n18 Apply <MAKE-READY BARGE1> apply n17

n19 Apply <MOVE-BARGE BARGE1 RICHMOND WEST-COAST> apply n13

n16 Goal (at barge1 richmond) for n7

n17 Operator move-barge

n18 Bindings <move-barge barge1 west-coast richmond>

Table 4.1: An annotated trace of Prodigy, showing the use of a protection node
(n14) to add a precondition to the step at node n13 which will stop its conditional
e�ect from taking place.

or any open precondition in the problem. However the step is necessary because
otherwise the �rst step of the plan,
(Move-Barge <barge>=barge1 <from>=Richmond <to>=west-coast),
will render the barge inoperable.

The key fact about the original plan is that a literal is made false by a conditional
e�ect that is later required to be true but cannot be made true. This indicates that
a plan might be found by stopping the conditional e�ect from taking place, which
may be done by requiring that the conditions of the conditional e�ect be false when
the step is moved to the head plan. I created a version of Prodigy that is able to
notice this condition and to add a protection node to the search tree that replaces the
preconditions of this step with the conjunction of its preconditions and the negation
of the conditions of the conditional e�ect, similar in spirit to the confrontation step of
ucpop-style planners [McAllester & Rosenblitt 1991]. This is described in [Blythe &
Fink 1997]. Table 4.1 shows the sequence of nodes in the search tree that correspond
to a solution based to the new problem based on the previous solution sequence in
Table 3.2.
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4.1.2 B-Prodigy

Weaver's conditional planner, B-prodigy, is a modi�ed version of prodigy 4.0

described in Section 3.1, that creates branching plans. B-prodigy, which stands
for Branching Prodigy, allows steps in the tail plan to have more than one possible
outcome, and its planning algorithm has two principal modi�cations to prodigy

4.0. First, steps in both the head plan and the tail plan are associated with contexts,
which represent the branch of the plan under which the step is proposed to be used.
A step's context is a �rst-order logical expression over variable-value pairs for context
variables. When a step with more than one possible outcome is introduced into the
tail plan, a new context variable is introduced into the plan, with possible values
representing the possible outcomes of the step, since each outcome may lead to a
separate branch in the plan. The step is termed the producer of the context variable.
The context associated with a step may involve several context variables. For each
variable the context may include a single value, the negation of a value or a disjunction
of several values. The di�erent variables are combined as a conjunction.

The second modi�cation to the prodigy 4.0 algorithm takes e�ect when a
branching step is moved from the tail plan to the head plan, at which time the
B-prodigy routine is called recursively for each possible outcome of the step. On
each call, the remaining steps in the tail plan that do not match the context corre-
sponding to the chosen outcome of the branching step are ignored. The several calls
together produce a branching head plan. These two alterations are su�cient to create
branching plans in uncertain domains. Table 4.2 shows the top-level algorithm. The
parts printed in bold are only present in B-prodigy, the others are from the original
prodigy 4.0 algorithm.

Figure 4.3 shows a simpli�ed version of the Move-Barge operator from the planning
domain used in the previous chapter in which moving a barge has a 1/3 probability
of rendering it inoperable. The effects slot of the operator contains two lists of add
and delete changes labelled with their probability of occurrence instead of the single
list used before. When the operator is applied, exactly one of these lists is chosen
randomly with the given probabilities and used to specify the e�ects of the operator.
The other operators are unchanged from the domain of Section 3.4.

Figure 4.4 shows a tail plan constructed for a candidate plan for a planning prob-
lem in which two barges, barge1 and barge2 are at the dock Richmond, the oil is in
a tanker at west-coast as in the previous chapter, and the goal is (oil-disposed).

Step s3, (Move-Barge <barge>=barge1 <from>=Richmond <to>=west-coast),
is a context-producing step that has two possible sets of e�ects. Marking a step
as context-producing is done externally to B-prodigy by Weaver as described in
Section 4.3. The choice to suppress the fact that some steps have multiple outcomes
is part of the de�nition of the reduced domain model. Using a reduced model can
greatly reduce the complexity of building a plan by directing the planner's e�ort
to the sources of nondeterminism that impact the plan's probability of success. The
e�ects marked with context s3 = � correspond to the situation where barge1 remains
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B-Prodigy

1. If the goal statement G is satis�ed in the current state C, then return Head-Plan.
2. Either

(A) Back-Chainer adds an operator with the same context as the step it

is linked to to the Tail-Plan, or
(B) Operator-Application moves an operator from Tail-Plan to Head-Plan.

Decision point: Decide whether to apply an operator or to add an operator to the

tail.

3. Goto 1.
If an operator with multiple possible consequences was moved to Head-Plan,

call B-Prodigy on each resulting plan, in each case removing from Tail-Plan

all operators that do not match the appropriate context.

Operator-Application

1. Pick an operator op in Tail-Plan such that
(A) there is no operator in Tail-Plan ordered before op, and
(B) the preconditions of op are satis�ed in the current state C.

Decision point: Choose an operator to apply.

2. Move op to the end of Head-Plan and update the current state C.

Table 4.2: Algorithm for B-prodigy, based on prodigy 4.0. Steps which only
appear in B-prodigy are shown in bold font.

operational when it is moved, and the e�ects marked with context s3 = � correspond
to the situation where it is no longer operational.

Step s2 is marked as belonging to context s3 = �. This means that the planner
chose to add a new link for the goal it achieves, oil-pumped, in the context s3 6= �.
Another choice open to the planner would be to use step s1 in context � as well as
�, and then it would have to achieve the precondition that barge1 be operational
in that context. Since no actions are available to make the barge operational, this
option was rejected.

In Figure 4.5 the step s3, moving barge1, has been moved to the head plan. Two
recursive calls to B-prodigy will now be made, one for each context, in which B-
prodigy will proceed to create a linear plan for the context. In context s3 = �, steps
s4, s5 and s6 will be removed from the tail plan, and in context s3 = �, steps s1 and
s2 will be removed. Note that no steps are removed from the head plan, whatever
their context. Each recursive call produces a valid linear plan, and the result is a
valid conditional plan that branches on the context produced by step s3.

The �nal plan produced after the planner solves the � and � contexts is as follows:

(Move-Barge <barge>=barge1 <from>=Richmond <to>=west-coast)

If (operational barge1)

(Pump-Oil <barge>=barge1 <sector>=west-coast)

(Move-Barge <barge>=barge1 <from>=west-coast <to>=Richmond)
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(Operator Move-Barge

(preconds

((<barge> Barge)

(<from> Place)

(<to> (and Place ( di� <from> <to>))))

(at <barge> <from>))

(effects

(0.667 () ;; context �

((add (at <barge> <dest>))

(del (at <barge> <source>))))

(0.333 () ;; context �

((add (at <barge> <dest>))

(del (at <barge> <source>))

(del (operational <barge>))))))

Figure 4.3: A version of the operator Move-Barge with two possible outcomes.

Root

Pump-Oil
barge1
west-coast

Unload-Oil
barge1
Richmond

Move-Barge
barge1
Richmond
west-coast

Move-Barge

Richmond
west-coast

Pump-Oil
barge2
west-coast

Unload-Oil
barge2
Richmond

barge2

s1s2
s3

s4s5s6

+α,β
s3= s3=

s3=s3=s3=

α α

β ββ

Figure 4.4: An initial tail plan to solve the example problem, showing two alter-
native courses of action. Step s3 has two di�erent possible outcomes, labelled � and
�. The steps along the top row are restricted to outcome � of s3, and use barge1 in
the situation when it is operational. The steps along the bottom row are restricted
to outcome � of s3 and use barge2.

(Unload-Oil <barge>=barge1 <dock>=Richmond)

otherwise

(Move-Barge <barge>=barge2 <from>=Richmond <to>=west-coast)

(Pump-Oil <barge>=barge2 <sector>=west-coast)

(Move-Barge <barge>=barge2 <from>=west-coast <to>=Richmond)

(Unload-Oil <barge>=barge2 <dock>=Richmond)



50 Chapter 4. The Weaver Algorithm

Root

Pump-Oil
barge1
west-coast

Unload-Oil
barge1
Richmond

Move-Barge

Richmond
west-coast

Pump-Oil
barge2
west-coast

Unload-Oil
barge2
Richmond

barge2

s1s2

s4s5s6

s3= s3=

s3=s3=s3=

α α

β ββ

Tail Plan

α

1. Move-Barge
    barge1 Richmond
    west-coast

β

Head Plan

s3

Figure 4.5: A more developed version of the candidate plan. One step has been
moved to the head plan and now determines two possible current states, given context
labels � and �.

When there is only one, universal context, this algorithm is identical to that of
prodigy 4.0. As with prodigy 4.0, it is easy to see that the algorithm is sound,
yielding only correct plans. Central to the completeness of back-chainer is the use of
contexts in the tail plan. Contexts allow steps to appear in the head plan that are
required for parts of the plan with a speci�c context before that context is resolved
(for example, taking an umbrella because it might rain).

The completeness of B-prodigy rests on the completeness of the underlying
classical planner. If this is complete, in the sense that if there is a non-branching
plan for a problem in any classical domain then the planner will �nd a plan, then
B-prodigy is complete for the nondeterministic problems that can be represented
to it. Here I make an informal argument that this is the case. Consider a branching
plan that achieves its goal with certainty. It can be viewed as a merge of several linear
plans, one for each leaf of the tree-structured plan, with the steps before some branch
point possibly establishing preconditions of operators on more than one branch after
the branch point. If the classical planner is complete, the tail plan for each individual
branch of the plan could in principle be constructed. For each branch point in the
original plan, a context-producing action can then be designated allowing the required
steps from the component plans to be present in the tail-plan for the branching plan,
designated with di�erent contexts. Thus, B-prodigy is complete for branching plans
if the classical planner on which it is based is complete.

In general it is not possible to guarantee the completeness of Prodigy because it
allows arbitrary functions to be used to determine bindings for operators and in the
antecedents of control rules. In earlier work, completeness is shown for a version of
prodigy 4.0 in a limited case when no lisp functions are used in the bindings of
operators and no control rules are used [Blythe & Fink 1997]. Extensions to control
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rules and functions known to conform to certain conditions would be possible.

4.2 Calculating the probability of success

To compute the probability of success of a plan produced by B-prodigy in the
framework of Section 3.2, we can appeal to the underlying Markov decision process
described there. If each barge has an independent probability of 1/3 of becoming
unoperational when it is moved, the probability of success of the initial plan drops
from 5/8 to 5/12, and the probability of success of the branching plan is approximately
0.535. The improvement from the contingent plan that uses barge2 is reduced by the
continuing chances of deterioration in the weather conditions.

When the plan is implemented as a policy in the mdp, it generates a simple
Markov process, part of which is illustrated in Figure 4.6. The probability of success
can be found by summing the probabilities of each of the goal states in the Markov
process, which are shown in the �gure with thick borders. In this �gure, the thick
dotted line separates the state nodes for the two di�erent branches of the contin-
gent plan. The nodes above the dotted line correspond to the case in which barge1

is operational after it is moved, and below the line to the case in which barge1

is not operational. For brevity, Figure 4.6 omits the steps of moving either barge
back to the dock and unloading the oil, and the states marked as goals satisfy (not

(oil-in-tanker west-coast)). Since the omitted steps do not fail unless previous
steps have failed, the probability of reaching one of these states is the same as the
probability of reaching a goal state in the larger MDP corresponding to the original
goal. Thus, the plan evaluated in Figure 4.6 is the following:

(Move-Barge <barge>=barge1 <from>=Richmond <to>=west-coast)

If (operational barge1)

(Pump-Oil <barge>=barge1 <sector>=west-coast)

otherwise

(Move-Barge <barge>=barge2 <from>=Richmond <to>=west-coast)

(Pump-Oil <barge>=barge2 <sector>=west-coast)

This plan will be used as an example throughout this section.

In order to perform the probability calculations e�ciently, a Bayesian belief net
is automatically constructed from the plan. This representation has a number of
advantages for reasoning probabilistically about plans. It makes e�cient use of the
dependency structure between domain features when computing probabilities, and
has a sound theoretical basis [Pearl 1988]. It can also e�ciently maintain beliefs
about unobservable world features based on observations during plan execution.
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Time point: 0 1 2 3 4 5

barge1 = spill

oil = tanker
weather = good
barge1-op = false
barge2-op = false

m4-3

barge1 = spill
barge2 = spill
oil = tanker
weather = bad
barge1-op = false
barge2-op = false

m4-4

barge2 = spill

barge1 = dock
barge2 = dock
oil = tanker
weather = good
barge1-op = true
barge2-op = true

m0

barge1 = dock
barge2 = dock
oil = tanker
weather = good
barge1-op = true
barge2-op = true

m1-1

barge1 = dock
barge2 = dock
oil = tanker
weather = bad
barge1-op = true
barge2-op = true

m1-2

barge1 = spill
barge2 = dock
oil = tanker
weather = good
barge1-op = false
barge2-op = true

m2-3

barge1 = spill
barge2 = dock
oil = tanker
weather = bad
barge1-op = false
barge2-op = true

m2-4

barge1 = spill
barge2 = dock
oil = tanker
weather = bad
barge1-op = true
barge2-op = true
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Figure 4.6: A reachability graph of states in the planning problem corresponding
to the conditional plan to transfer the oil with one of two barges. Goal states are
marked with a thick border, and the probability of arriving at each state is shown
above it. Time increases from left to right, and the actions taken are shown with
their intervals below the nodes.

Overview of Bayesian belief networks

Before describing in detail the algorithm used to construct a belief network that
models the plan's probability of success, I give here a brief overview of Bayesian
belief networks, based on [Pearl 1988]. In the rest of the thesis I will refer to Bayesian
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belief networks as \belief networks" or \belief nets".

A Bayesian belief network is a directed acyclic graph (or dag) whose nodes rep-
resent random variables over which it encodes a probability distribution. A simple
example of a belief net is shown in Figure 4.7. Essentially, the arcs in a belief net
encode information about local dependencies between variables that can be used to
construct the full, global probability distribution. Algorithms for computing the prob-
ability distribution and for propagating observations on the variables as evidence to
update the posterior distributions of the other variables can make use of the depen-
dency information to improve e�ciency [Pearl 1988; Lauritzen & Spiegelhalter 1988].
This problem is, however, NP-hard [Cooper 1990].

Bell

Coin2Coin1

Figure 4.7: A small example Bayesian belief network.

Formally, if a belief net models a probability distribution, then dependence rela-
tionships among variables in the distribution can be read from the graph using the
criterion of d-separation. Let D be a dag that is a belief net, and let X, Y and Z be
disjoint subsets of the variables in D. Then Z is said to d-separate X from Y if along
every path from a node in X to a node in Y there is a node w satisfying one of the
following conditions: (1) w has converging arrows and none of w or its descendants
are in Z or (2) w does not have converging arrows and w is in Z. This is written
< XjY jZ >D. In Figure 4.7, the variable bell d-separates coin1 and coin2.

Let D be a dag and let I(X;Y;Z)P stand for the statement \Z is conditionally
independent of X given knowledge of Y in the probability distribution P", where
X, Y and Z are subsets of the random variables in D. Then D is an I-map of the
probability distribution P if every d-separation displayed in D corresponds to a valid
conditional independence relationship in P , i.e. for every disjoint sets of vertices X,
Y and Z,

< XjY jZ >D! I(X;Z; Y )P :

The dag D is a Bayesian belief network of probability distribution P if and only
if it is a minimal I-map of P . That is, if D is an I-map of P , but removing any arrow
from D will make it cease to be an I-map of P .
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It would be cumbersome to use this de�nition to verify that some dag constructed
for a probability distribution P is indeed a belief net for P . The following theorem
due to Verma [86] makes this considerably easier:

TheoremGiven a probability distribution P (x1; x2; . . . ; xn) and any ordering d of

the variables, the dag created by designating as parents of Xi any minimal set �Xi

of predecessors satisfying

P (xij�Xi
) = P (xijx1; . . . ; xi�1);�Xi

� fX1;X2; . . . ;Xi�1g

is a Bayesian network of P .

Constructing a belief net to evaluate a plan

The belief net constructed to evaluate a plan has time-stamped nodes of two types:
those representing the belief that some fact about the world is true at a certain time
and those representing the belief that an executed action or exogenous event has a
particular outcome at a certain time. The belief net is constructed in two stages.
First, nodes are created representing beliefs in the state variables that are relevant
to the plan regardless of any external events that may take place. In the second
stage nodes are added that represent external events and the state features that are
relevant to them. An example of such a net can be found in Figure 4.9.

The algorithm for creating the topology of the belief net is shown in Figure 4.8. Be-
fore nodes representing the state of the world are created, a transformation is made to
the state representation so that literals that are functionally related are grouped into
one random variable in the belief net. For example, since a barge can only be in one
place at one time, only one of (at barge1 Richmond) and (at barge1 west-coast)

is true in a state. These literals are grouped together to contribute to one state vari-
able, location(barge1)which has the value Richmondwhen (at barge1 Richmond)

is true and the value west-coast when (at barge1 west-coast) is true. This
grouping of literals into variables is speci�ed through domain axioms added by the
user. For an example see Appendix B.

The �rst stage in the construction of the belief net adds nodes representing state
variables that are relevant to the plan based on the actions. This is done by �rst
adding nodes that represent the actions taken in the plan. The assumption is made
that the actions are taken sequentially with no pauses in between, although this is not
necessary to the belief net construction algorithm. Thus in the example plan, a node
is added representing the action (Move-Barge <barge>=barge1 <from>=Richmond

<to>=west-coast) at time 0, which takes 2 time units, and a node is added rep-
resenting (Pump-Oil <barge>=barge1 <sector>=west-coast) at time 2. Since the
planner represents its top-level goals as the preconditions to a �nal action finish, a
node is added to represent that action at time 3. The probability of success of the plan
is the probability that this �nal node, has the value true. After actions are added,
nodes are added to represent their preconditions and e�ects. For each variable that
corresponds to one or more of the literals in the preconditions of the action, a node
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T = 0, S = 0
Stage 1:

For each action A in the plan
Create a node NA to represent A at time T .
For each precondition P of A

Find or create a node NP for P at time T .
Link NP to NA.

T = T + duration(A)
For each e�ect E of A

Find or create a node NP for P at time T .
Link NP to NA.

Stage 2:

For each node N in the belief net representing a state feature
If N is not the e�ect of an action,

link it to the most recent previous node of the same type.
Find the set EN of events that can a�ect N
For each event � in EN
Add nodes for the event and its preconditions
in the same way as stage 1.

If new events were added, go back to Stage 2.

Figure 4.8: The two-stage algorithm to construct a belief net to evaluate a plan.
In the �rst stage, nodes are added to the belief net to represent actions and their
preconditions and e�ects. In the second stage, persistence assumptions are replaced
with nodes representing exogenous events and their preconditions and e�ects when
appropriate.

is added representing belief in the variable's value at the time the action is begun,
and an arc is added from this node to the action. For each variable that corresponds
to one or more literals mentioned in the e�ect distribution of the action, a node is
added representing belief in the variable's value at the time the action completes, and
an arc is added from the action to the node. A node representing a variable at some
time can be both the e�ect of some action and the precondition of the next action.
In what follows I will refer to a node representing a state variable at a particular time
as a 
uent node.

The �rst of the two nets shown in Figure 4.9 is the belief net created to evaluate
the example plan before any nodes are added for exogenous events. The time stamp
of each node is represented by its position along the x-axis. The time value is shown
on the x-axis, assuming the �rst action in the plan begins at time 0. The type of the
node is represented by its position along the y-axis. For example, all the nodes in
the top row of the diagram represent the location of the oil, which in this plan can
be in the tanker or in barge1. The action nodes are all in the same row to keep the
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diagram small, and the particular actions are labelled at the node.

Most of the arcs in this belief net represent the preconditions and e�ects of actions
as described above, but while all such arcs would link a 
uent node and an action
node, the net also has �ve arcs that directly link 
uent nodes. These links re
ect
persistence assumptions in the belief net. The algorithm initially makes a persistence
assumption for every 
uent node with a time value greater than 0. After precondition
and e�ect nodes are created, each 
uent node is linked to the latest node before it of
its type, or if there is no such node a new node of its type is created at time 0 and it
is linked to that. The intention is to encode the belief that each state variable at a
certain time has the same value as this parent, which is the most recent state variable
of the same type, unless some action changes its value. However the conditional
probabilities are not added to the net until the possible exogenous events that could
challenge these persistence assumptions are examined.

(oil)

(operational barge1)

(:action)

(location barge1)

(weather)

0 2 3

finish

pump−oil

move−barge

(oil)

(operational barge1)

(:action)

(location barge1)

(weather)

(weather darkens)

(weather brightens)

0 2 31

finish

pump−oil

move−barge

Figure 4.9: Belief nets representing the �rst plan created by the conditional plan-
ner for the example problem, before and after event nodes are added to justify the
persistence of the (weather) variable. In the �rst graph, the dotted lines show the
unexplored persistence intervals. In the second graph, gray nodes represent possible
occurrences of external events during one interval. No exogenous events a�ect the
other intervals.

In the second stage of belief net construction nodes are added to represent exoge-
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nous events that can a�ect the plan's probability of success. For each link between two

uent nodes, nodes are added representing the occurrence of any exogenous events
that may a�ect the variable involved. These nodes are added at each time point
that the persistence interval spans. The second net in Figure 4.9 shows the example
plan after this process. Event nodes, shown in gray, have been added for events of
type Weather-Darkens and Weather-Brightens at time points 0 and 1, a�ecting the
weather before the Pump-Oil action.

As with action nodes, 
uent nodes are added for the preconditions and e�ects of
event nodes. Persistence intervals are created in turn for these 
uent nodes. New
event nodes are then recursively sought that can a�ect these persistence intervals
and the process is repeated. This stage terminates because each new interval must
be shorter than the one for which the previous event node was introduced and since
the plan length was �nite the possible intervals over which events can take place will
eventually have zero length.

At this point, the conditional probability tables are �lled in. Any node with no
parents is an \initial state" node, a 
uent node with time stamp 0. These nodes have
probability distributions determined by the initial state distribution of the problem.
Any 
uent node with just a 
uent node parent is given the identity distribution, since
no exogenous events or planned actions a�ect the value. An example of this is the
(oil) node at time 2. An action or event node is given a probability distribution that
re
ects its preconditions. If it is deterministic, so is the distribution: all the proba-
bilities are 1 or 0. If the action has probabilistic outcomes, each possible outcome is
labelled and the conditional probabilities in the belief net are assigned from the e�ect
distribution function. In either case the action's value is false with probability 1
whenever its preconditions aren't satis�ed. Finally, if a 
uent has an event or action
node parent (or both), then if the action node has a value other than false, the 
uent
node takes the indicated value with probability 1. Otherwise if an event takes place,
the 
uent takes the value indicated by the event. If neither an action nor an event is
successfully executed, the 
uent takes the same value as its parent 
uent node. Note
that Weaver cannot handle two or more parent events occuring simultaneously due to
the language restriction that events which a�ect the same literals must have mutually
exclusive preconditions. Figure 4.10 shows the marginal probabilities for the nodes
in the belief net for the example plan.

When a conditional plan is evaluated, separate nets are created for each linear set
of actions that can be executed in the plan. In principle it is quite possible to represent
a branching plan with a single belief net, but in practice it was found that the separate
nets are more e�cient to evaluate. The test node and value are chosen such that the
original plan is known to fail if the value is such that the alternative branch of the
plan is chosen. In the belief net for the alternative branch, any 
uent node that has
a time stamp after the test node but whose parents are time-stamped before the test
node is made to have the test node as an extra parent. When the test node takes a
value such that the branch of the plan is not taken, the 
uent node takes on a new
value branch-not-taken, which is guaranteed to make any subsequent action fail.
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31 20

Move-Barge FinishPump-Oil
(action)

(operational barge1)

(oil)

(location barge1)

(weather)

(weather darkens)

(weather brightens)

Tanker: 1

True: 1

Richmond: 1

Fair: 1

True: 0.25

False: 1 True: 0.06

Poor: 0.25

Fair: 0.75

Poor: 0.375

Fair: 0.625

west-coast: 1

False: 0.333

True: 0.667

Tanker: 1 Barge: 0.583

Tanker: 0.417

True: 0.417

False: 0.583

True: 0.19

β
α : 0.667

: 0.333

True: 0.417

False: 0.583

Figure 4.10: The belief net for the �rst conditional branch of this section's example
plan, with marginal probabilities shown.

This is done so that the two nets succeed under mutually exclusive conditions and
the probabilities of the two finish step nodes can be added to get the probability of
success of the plan. The nets that are computed for the example plan are shown in
Figure 4.11.

This algorithm produces a belief net D which is concise in the sense that only
state variables and events known to be relevant to the plan are represented. The
bene�ts of this concise representation are discussed in Section 4.4. The algorithm
by which the belief net is constructed will ignore exogenous events that can make
variables have desired values, so the probability distribution encoded by the belief
net is not the same as the true probability distribution of the set of variables as found
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(oil)

(operational barge1)

(:action)

(location barge1)

(weather)

(weather darkens)

(weather brightens)

0 2 31

finish

pump−oil

move−barge

(oil)

(operational barge1)

(:action)

(location barge1)

(weather)

(weather darkens)

(weather brightens)

(location barge2)

(operational barge2)

2 4 50 1 3

move−barge

pump−oil

finish

move−barge

Figure 4.11: The two nets constructed for the two conditional branches of this
section's example plan.

from the Markov decision process. However, the belief net is guaranteed not to be
over-optimistic: the true probability of the plan's success may be greater than the
probability predicted by the net but it will not be less. The reason that it may be
greater is that some chance events may fortuitously improve the plan's probability
of success, and these events are not necessarily represented in the net. A proof that
the predicted probability cannot be higher than the true probability is given in detail
in Appendix A. Essentially, for each complete assignment to the variables in D for
which plan success is true, a set of paths through the underlying Markov decision
process is found whose combined probability mass is at least equal to the marginal
probability of the assignment in D.

4.3 Incrementally improving a plan with the plan

critic

Weaver iterates between creating a plan, evaluating it, �nding points where the plan
can be improved and creating an improved plan, and so on, as shown in Figure 4.1.
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The plan critic, discussed in this section, makes use of the information about the
current plan's probability of success, represented in the belief net, to identify points
where the current plan can be improved. It then calls the conditional planner to
search for a new plan that might address one of these points.

The belief net contains not only the probability of the plan succeeding, but also the
probabilities of each possible outcome of each intermediate step in the plan. The plan
critic examines each step whose probability of having a desired outcome is less than
one. For each one, possible explanations for the undesired outcomes are extracted
from the belief net. These may include external events that a�ect the preconditions
of the chosen step as well as previous steps having several outcomes, one or more of
which causes the plan to fail. The plan critic chooses one such 
aw to work on, picking
arbitrarily by default. Once a 
aw is chosen, the plan critic may select one of two
ways to attempt to remove the 
aw. It can either cause the conditional planner to add
a new branch which will speci�cally plan for the goals from a situation corresponding
to the 
aw, or it can cause the planner to attempt to make the event or undesired
step outcome impossible. These actions are described in more detail in this section.
Weaver can backtrack over all of these choice points.

4.3.1 Analysing the belief net and choosing a 
aw

On each iteration, Weaver examines the belief net for its candidate plan and uses it
to �nd a way to improve the plan. Figure 4.10 shows the belief net that is created
to analyse the �rst plan produced to solve the example problem. This plan has just
two steps, to move barge1 to the spill site, and pump oil into it from the tanker.
The node representing the �rst action has three possible values, corresponding to
the two possible outcomes � and � as shown in Figure 4.4 and �nally the possibility
that the action is not successfully executed. These values have the probabilities
2=3, 1=3 and 0 respectively. The second action has two possible values, representing
whether the action is successfully or unsuccessfully applied, and their probabilities
are respectively 5=12 and 7=12. Since only outcome � for the �rst action can lead
to the plan succeeding, both actions are investigated by the plan critic for possible

aws.

For each action, each 
uent node in the belief net that has an arc to the action
node is investigated as a possible 
aw. The set of desired values for the 
uent node
is computed as the subset of its possible values for which the plan will lead to a goal
state, assuming that the other nodes in the belief net take on appropriate values.
This set is computed as the union across each conditional branch of the plan of the
intersection within each conditional branch of the values for the variable required by
each child action node, computed from the action speci�cation. For example, the set
of desired values for the 
uent node corresponding to weather at time 2 is ffairg since
it forms part of the precondition to the pump-oil action. Similarly the desired value
for the node corresponding to (operational barge1) is true. Once the set of desired
values is computed for a possible 
aw, their combined probability mass is computed
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as the sum of their individual probabilities. If this is less than one, the 
uent node
is labelled a 
aw. Table 4.3 shows the three 
aws found for the initial plan in the
example problem, as well as the set of desired values for each 
aw node and the
probability that the node has a desired value.

For each 
aw node, the plan critic computes a set of explanations. Each explana-
tion speci�es either an external event or an action that is a parent of the 
aw node
in the belief net, and can take on a value such that the 
aw node may have a value
outside its set of desired values. All such explanations are produced for each 
aw
node. For example, the one explanation for the 
aw node corresponding to weather

at time 2 is the event node Weather-Darkens at time 1. Each explanation comprises
a 
aw node, an event of action outcome that can lead to a set of undesired values,
the resulting set of undesired values and their probability mass.

Flaw node Time Desired values P Explanations
(operational barge1) 2 ftrueg 0.667 Move-Barge = �

(weather) 2 ffairg 0.625 Weather-Darkens = true
(oil) 3 fbarge1g 0.417 none

Table 4.3: The 
aws uncovered by the plan critic for the �rst candidate plan for
the example problem. For each 
aw a set of desired values is computed from the
preconditions of the child action node, and the probability mass of this set is show.
The explanations column shows parent node values that can lead to an undesired
value.

Once each explanation is produced for each 
aw node in the plan, the plan critic
selects one explanation and attempts to �nd an improvement to the current plan that
reduces the probability attached to it. If no such improvement can be found, the plan
critic backtracks and selects another 
aw explanation. For each explanation, the plan
critic may choose to add a conditional branch or add preventive steps, as described
below.

4.3.2 Adding a conditional branch

If the plan critic chooses to address a 
aw explanation by creating a new conditional
branch, it achieves this by adding a new outcome to some step that is already present
in the candidate plan and making a call to the conditional planner. Since the condi-
tional planner searches for a plan that covers every action outcome that it is aware
of, it will add the new branch as it creates the plan. Although the plan critic rea-
sons about 
aws with explanations that can consist of action outcomes or exogenous
events, it will represent both of these to the conditional planner as a new action out-
come. If the explanation names an action outcome, the same action will be chosen
by the plan critic for this process. The outcome in the explanation was previously
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not shown to the conditional planner as a simpli�cation, or otherwise it could not
have been a 
aw explanation since the candidate plan would have accounted for this
value. If the explanation names an exogenous event, the a�ected step is the earliest
that completes after or at the same time as the event. In this case each outcome of
the action is made into two outcomes, one representing the case when the event takes
place and the other representing the case when it does not.

For example, if the plan critic works on the �rst 
aw in Table 4.3, (operational
barge1), there is only one possible explanation, that action Move-Barge has outcome
�. Both possible outcomes of this action are now shown to the conditional planner,
which will produce the branching plan described in Section 4.1. If, on the other hand,
the plan critic works on the second 
aw, (weather), the only possible explanation is
that event Weather-Darkens has value true. In this case the plan critic also alters
the Move-Barge action since it completes at the same time as the event. The one
outcome that is represented to the conditional planner is now replaced by two, one
the same as the previous outcome and one in which the weather changes from fair to
poor in addition to the movement of the barge. The conditional planner will fail to
solve this problem, however, since there is no solution in the new alternative outcome
of Move-Barge, so the plan critic will backtrack, try to prevent the 
aw as described
in the next section and �nally try to address another 
aw.

Once the outcome to be added to an action in the plan is chosen, the plan critic
forces the conditional planner to backtrack to the point where the action is added to
the tail plan, and repeat its earlier planning episode with the new action. A context
node is added to the search space, as described in Section 4.1.1, that represents the
decision to add the extra outcomes to the step. The plan produced by the conditional
planner has one or more extra branches at the point where the branching action is
added to the head plan. If the extra branch is unsatis�able, the conditional planner
may choose to alter the order in which actions are applied or may choose to add
di�erent actions to the tail plan to achieve goals that are outstanding when the
altered action was added to the tail plan, but it may not backtrack to any point in
its search before the new action was added. This \ceiling" in its search space ensures
that the branching step is included in the plan.

4.3.3 Adding preventive steps

In some cases a 
aw explanation can be addressed without adding a conditional
branch, by adding steps to the plan to reduce the probability of the 
aw explanation
producing undesired e�ects. The plan critic causes the planner to add these steps by
choosing an action from the current plan and augmenting its preconditions. If the

aw explanation is an action outcome, the plan critic selects a probability distribution
for the action that can lead to an undesired value, and adds the negation of the
distribution's path preconditions to the preconditions of the operator. It then causes
the conditional planner to backtrack to the point where the action was added to the
tail plan, and repeat its earlier planner episode with the new action, just as when a
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new conditional branch is added. The extra preconditions for the action, if satis�able,
will ensure that the e�ect probability distribution chosen by the critic cannot take
place, and this in turn will reduce the probability of the plan 
aw, assuming that
the plan critic has made a good choice of e�ect distribution. The plan critic can
backtrack and try a new e�ect distribution for the chosen action and can also add
the negations of multiple e�ect distributions.

If the chosen 
aw explanation is an external event, the plan critic selects an e�ect
probability distribution for the event that can lead to an undesired value in the chosen
plan 
aw. The negation of the path preconditions of the e�ect distribution are added
to the preconditions of the action in the plan during which the event begins. The
plan critic then causes the conditional planner to backtrack and �nd a new plan in
exactly the same way as for a 
aw explanation that is an action outcome.

The planning domain that has been used as an example for this chapter does not
provide any opportunities to add preventive steps. Consider the more complicated
version of the Move-Barge operator shown in Figure 4.12, however, in which the un-
desirable outcome that deletes (operational barge1) can only take place if (barge-ready
barge1) is false. Suppose that (barge-ready barge1) is false in the initial state. Then
after producing the same initial plan and the same 
aws, the plan critic could ad-
dress the 
aw that (operational barge1) is false, with the explanation that Move-Barge
has outcome � by adding preconditions to Move-Barge to prevent this outcome from
happening, in this case adding (barge-ready barge1) to its preconditions.

(Operator Move-Barge

(preconds

((<barge> Barge)

(<from> Place)

(<to> (and Place ( di� <from> <to>))))

(at <barge> <from>))

(effects ()

(branch (barge-ready <barge>)

((add (at <barge> <dest>))

(del (at <barge> <source>)))

((0.667 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))))

(0.333 ()

((add (at <barge> <dest>))

(del (at <barge> <source>))

(del (operational <barge>))))))))

Figure 4.12: A version of the Move-Barge operator that depends on the literal
(barge-ready <barge>).
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4.4 Discussion

In this chapter I have presented the basic algorithms used in Weaver to produce a
plan that meets a given threshold probability of success. At a high level, Weaver al-
ternates between stages of plan creation and plan evaluation. A plan critic repeatedly
calls a conditional planner with an increasingly faithful representation of the domain
although it is initially ignorant of all forms of uncertainty. The plan critic therefore
reasons about what sources of uncertainty to pay attention to during plan creation,
guided by knowledge of which ones have a signi�cant impact on the current plan's
probability of success.

This separation of responsibilities allows Weaver to create plans in domains with
exogenous events that essentially add many alternative outcomes to every action in
the domain. Without the ability to ignore these alternatives until they are shown to
be important the planning task would be intractable. The constraining e�ect between
the modules is important in both directions, both from the critic on the conditional
planner and from the planner on the plan evaluator. I illustrate this with two small
synthetic domains, in each of which the initial state is empty and the goal is the
literal (goal).

In the �rst domain shown in Figure 4.13, the literal (sub-0) is true in the initial
state and a sequence of at least n+ 1 steps is required to solve the goal: Op-1, Op-2
. . . Op-n, Final. Each step of the form Op-i in the plan has a 0.5 probability of adding
the literal (bad-luck), so the success probability of this plan is 1=2n. Either of two
improvements to the plan can raise the probability to 1. A conditional branch could
be added after the step Op-n, testing the literal (bad-luck) and using the �nal step
Alt-Final instead of Final if it is true. Alternatively the undesired outcomes of the
nondterministic steps could be prevented by adding the step Protect to the start of
the plan.

When Weaver solves this problem, the conditional planner initially ignores the
nondeterminism of the Op-i operators and produces the �rst plan as shown. The
critic will then choose one of these operators and choose whether to improve the plan
with a conditional branch or a protection step. It is possible for the protection step
or conditional branch to be added in the middle of the sequence of Op-i operators, in
which case several iterations of improvement may be required. By default, however,
it will try to put a protection step as early as possible and a conditional branch as
late as possible.

If the planner was aware of every source of nondeterminism in its �rst call, it
would attempt to create a branching plan to account for each of the combinations of
outcomes for the nondeterministic operators, producing a tree with 2n leaves. Other
conditional planners can represent branching plans whose branches merge later, and
would be able to �nd a conditional plan accounting for all the outcomes in time linear
in n. However in the case of causal-link planners such as Buridan or Cassandra, the
plan would require n improvements to be made, as each of the alternative outcomes
must be linked to the alternative step in the case where a branch is used, or have a
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link from the protecting step in the other case.

(Operator Final

(preconds ()

(and (sub-n)

(not (bad-luck))))

(effects () ((add (goal)))))

(Operator Op-i

(preconds () (sub-i� 1))

(effects ()

(branch (protected)

((add (sub-i)))

((0.5 () ((add (sub-i))))

(0.5 () ((add (sub-i))

(add (bad-luck))))))))
(Operator Alt-Final

(preconds ()

(and (sub-n)

(bad-luck)))

(effects () ((add (goal)))))

(Operator Protect

(preconds () (true))

(effects () ((add (protected)))))

Figure 4.13: Operators in the synthetic domain to illustrate the utility of the
constraints on the planner from the critic. The initial plan found by the conditional
planner will have a success probability of 1=2n. Either one conditional branch or one
protection step can increase the probability to 1.

The essential details of this example, a sequence of operators that can with some
probability a�ect a literal that is required after the end of the sequence, would arise
frequently if exogenous events were handled by \compiling" them into the e�ects
of actions. This is a simple way to represent exogenous events by representing all
the potential e�ects of the events explicitly as possible outcomes of each operator
during which they can take place. For example, if the operators of the form Op-i

in Figure 4.13 are replaced with deterministic operators and the exogenous event
It-Happens as shown in Figure 4.14, and the Op-i operators all have a duration of 1
unit, the compiled operators are the same as before. In this case Weaver can make
an extra savings in time using techniques for compressing the belief net described in
the next chapter.

The second synthetic domain, shown in Figure 4.15 requires only two steps for
an initial plan to achieve (goal), but there are n independent exogenous events,
each of which can take place while the �rst step is taken. Without an abstraction
barrier, this would be represented with 2n di�erent outcomes for the action. However
only m < n of these can a�ect the plan, by making the literal (bad-luck) true. In
this case Weaver's abstraction barrier hides the n �m events from the planner and

(Operator Op-i

(preconds () (sub-i� 1))
(effects ()

((add (sub-i)))))

(Event It-Happens

(preconds () (not (protected)))

(effects () ((add (bad-luck))))

(probability 0.5))

Figure 4.14: The nondeterminism from the operators in the previous domain
is replaced with a single exogenous event. The operators Final, Alt-Final and
Protect are unchanged and so are the solutions.
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leads to signi�cantly more e�cient planning. Weaver does this by using the belief
net construction process to test which events are relevant, so this domain provides
an example of how the plan can constrain the size of the probabilistic model built for
the domain.

(Operator Final

(preconds ()

(and (sub)

(not (bad-luck))))

(effects () ((add (goal)))))

(Operator Alt-Final

(preconds ()

(and (sub)

(bad-luck)))

(effects () ((add (goal)))))

(Operator Op

(preconds () (true))

(effects ()

((add (sub)))))

(Event Event-i

(preconds () (true))

(effects () ((add (e-i))

(add (bad-luck)))) ;; If i � m

(probability 0.5))

Figure 4.15: Operators in the synthetic domain to illustrate the utility of the
constraints on the evaluator and critic from the planner.

The conditional planner builds the initial plan Op, Final. When this is evaluated,
the m events Event-i, where 1 � i � m are identi�ed as potentially a�ecting the plan
and the belief net includes them. One is chosen and the critic adds an alternative
outcome to the plan step Op, in which the literal (bad-luck) is added (as well as
(e-j) for some j). The planner then produces the same conditional plan as in the
last domain, which solves the problem. Only one alternative outcome is examined by
the planner.

In contrast, without the plan critic to restrict the outcomes considered by the
conditional planner, it would have to examine each of 2n possible outcomes for the �rst
step in the plan. This is true regardless of the planning method used unless it restricts
the outcomes considered in some way. By ignoring the rest of the external events,
Weaver forms an abstraction over the outcomes. The two outcomes it considers are
aggregates of many indivisible outcomes, that specify the outcome for each exogenous
event. Some conditional planners, such as C-Buridan, terminate before planning for
each outcome even though they consider each indivisible outcome explicitly. Such
planners will not have to consider all 2n possible outcomes to Op, but in order to �nd a
high-probability plan these planners will still have to consider a signi�cant proportion
of the indivisible outcomes where the initial plan fails. There are 2n�m � (2m � 1) of
these, each with probability 1=2n.

Similarly to the previous domain, although this is an arti�cial domain the same
situation can occur in real domains. It occurs when there is a large number of possible
exogenous events but only a small number a�ect the outcome of the candidate plan.
In the oil-spill domain discussed in Chapter 7, there are many exogenous events
governing the weather change in di�erent sectors of the domain, and other events
could be added governing, for example, equipment failures. These events must be
pruned dynamically, using the plan as it is created, because it is not possible to tell
which exogenous events are relevant to the plan before a partial plan is developed.
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In Chapter 7 I develop measures of the bene�t of the mutual constraint between
the planner, plan evaluator and critic that consider both the number of steps during
which events can take place and the number of exogenous events that are not relevant
to the current plan.

In spite of these bene�ts, the strategy of complete separation of plan evaluation
and plan creation does not produce the best behaviour in most planning domains.
In particular, faster convergence to a high-probability plan can be obtained if some
estimations of the probability of plan completions are used to choose between di�erent
candidate actions in a partial plan. In Section 6.1 I present some domain-independent
search heuristics that improve the planner by doing local probability estimations.

The basic Weaver algorithm also makes some approximations in the intermediate
states in branching plans. This is because it represents the branch to the conditional
planner by merging a single new outcome with some existing step (Section 4.3.2).
This can produce an impossible state, however, if the action outcome or event being
added is only realisable as the end of a chain of events or alternative action outcomes.
In theory this will not cause the algorithm to make incorrect probabilistic evaluations
since the new plan will be evaluated in a context where all the relevant sources of
uncertainty are considered. Nor will it cause a solution to be missed, since if the
inconsistency a�ects the plan's probability of success it will show up as a direct

aw. Still, it can a�ect the rate of convergence to a plan that passes the threshold
probability, which in cases with hard computational resource constraints this can
reduce the best probability of success found.

Weaver has three basic mechanisms for improving a plan's probability of success:
standard backtracking, adding preventive steps and adding a conditional branch. The
question arises whether these are either necessary or adequate for �nding plans that
pass a probability threshold. Backtracking is obviously needed, and in fact simple
examples can show that both conditional branches and preventive steps, or something
like them, are needed to be able to �nd good plans in every domain.

The main example used in this chapter solves a problem in which oil is to be
removed from a tanker with a conditional plan, moving barge1 and using it if it is
operational, otherwise using barge2. This example does not support the claim that
conditional branches are necessary, though, since a possible plan is to move both
barges and always attempt to pump oil into each, one after the other. At least one
of the Pump-Oil steps will always fail, either because a barge is not operational or
because the oil has already been pumped. However, the plan has the same probability
of success as the original branching plan.

As an example of a problem where a branching plan is needed, suppose that a
pump must be deployed in a barge in order to pump oil into it, and that the pump can
only be deployed once. If the problem is otherwise identical to the example problem,
then a branching plan is required to achieve a probability of success above 0.5, since
the second barge could not be used after the pump had been deployed in the �rst
barge. The modi�ed operators for this example are shown in Figure 4.16. Although
this simple example is contrived, it follows a pattern that often occurs naturally: a
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conditional plan is necessary because limited resources must be used sparingly.

(operator Pump-Oil

(preconds ((<barge> Barge)

(<sector> Sea-Sector))

(and (at <barge> <sector>)

(operational <barge>)

(fair-weather)

(pump-deployed <barge>)

(oil-in-tanker <sector>)))

(effects ()

((add (oil-in-barge <barge>))

(del (oil-in-tanker <sector>)))))

(operator Deploy-Pump

(preconds ((<barge> Barge))

(~ (exists ((<b2> Barge))

(pump-deployed <b2>))))

(effects ()

((add (pump-deployed <barge>)))))

Figure 4.16: A modi�ed Pump-Oil operator and a new Deploy-Pump operator
that make a conditional plan necessary to achieve a probability of success greater
than 0.5 in the example problem.

An example of a planning problem where prevention steps are necessary can be
found by replacing the Move-Barge operator with one that has di�erent e�ect prob-
abilities depending on the literal schema (barge-ready <barge>), as in Figure 3.10,
and removing (barge-ready barge1) from the initial state. Now the step (Make-Ready

<barge>=barge1)must be added to the plan to achieve the required probability, and
this can be found by addressing the 
aw that the barge is not ready using prevention.

An informal argument can be made that these mechanisms, adding a conditional
branch, adding preventive steps and backtracking, are together adequate for �nding
plans that can be represented as policies on the underlying mdp that do not have
loops. A version of Prodigy that can add preventive steps to avoid undesired condi-
tional e�ects in plans can be shown to be complete when there are no lisp functions
used in operator bindings or control rules [Blythe & Fink 1997]1. Thus, supposing
that a planning problem admits a policy � on the underlying mdp which has no loops
and reaches the threshold probability of success, a version of Prodigy could �nd a
plan that corresponds to at least one path from an initial state to a goal node in �.
If this plan does not meet the threshold probability of success, there must be other
paths in � that are not present in the plan. The points where following the plan is
less desirable than the action chosen by the policy � will be found as 
aws in the plan
and a preferable path can be added with a branching plan. While the mechanisms
developed here can lead in principle to a complete planner for plans without loops,
I do not argue that Weaver is complete. In real-world planning domains, bindings
functions and control rules are frequently used to control the search, and the ability
to call arbitrary functions makes the planning problem undecidable.

1This version of Prodigy also plans for subgoals that are true in the current state, which is not

done in the version used in Weaver



Chapter 5

E�ciency improvements in plan

evaluation

In the previous chapter I introduced the methods used for probabilistic evaluation of
Weaver's candidate plans. These plans are produced by a conditional planner that is
ignorant of many of the sources of uncertainty in its planning domain. The task of the
plan evaluator is then to identify the relevant sources of uncertainty and assess their
impact on the plan. Its output is a belief net structure that encodes dependencies
among steps in the plan and external events and which when evaluated computes
lower boundaries on the probabilities of success for each step in the plan.

Although there are methods for evaluating belief nets that can make e�cient use
of the structure that they show for the probability distribution, evaluating belief nets
is NP-hard in the general case [Cooper 1990]. Evaluating the belief net can quickly
become the bottleneck in the process described in Chapter 4. In this chapter I describe
some techniques that can reduce the computation required to evaluate the plan. I
focus on representing the plan with an accurate but smaller belief network, rather
than seeking algorithms to evaluate belief nets more e�ciently, an area which has
already received considerable attention [Lauritzen & Spiegelhalter 1988; Pearl 1988;
Draper & Hanks 1994; Darwiche 1995].

In particular, I focus on removing the nodes in the belief net that correspond
to individual occurrences of external events, replacing them with links that re
ect
aggregates of several possible events. Consider the belief net shown in Figure 5.1,
which captures the probability of success of the plan developed in Chapter 4 to
illustrate Weaver. The shaded nodes represent individual occurrences of the external
events Weather-Brightens and Weather-Darkens, accounting for possible changes
in the weather between time 0 and time 4. These nodes represent information at a
�ner level of detail than is required to evaluate the plan, since the weather conditions
at times 1 and 3 are not important. Only the weather conditions at times 2 and 4
e�ect the outcome of any actions in the plan.

The belief net shown in Figure 5.2 does not have the redundant nodes, and instead
computes the weather change over the intervals of interest using a Markov chain. Al-

69
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though in this example avoiding the nodes corresponding to external events does not
signi�cantly reduce the size of the belief net, notice that the number of these nodes
increases linearly with the length of the time interval over which the weather can
change. The time to compute the probability of success also increases linearly when
event nodes are included, but only logarithmically using a Markov chain representa-
tion as shown below.

The rest of this chapter describes how a suitable Markov chain can be constructed,
discusses the bene�ts and pitfalls of the approach and provides further examples.

(oil)

(operational barge1)

(:action)

(location barge1)

(weather)

(weather darkens)

(weather brightens)

0 2 31

finish

pump−oil

move−barge

(oil)

(operational barge1)

(:action)

(location barge1)

(weather)

(weather darkens)

(weather brightens)

(location barge2)

(operational barge2)

2 4 50 1 3

move−barge

pump−oil

finish

move−barge

Figure 5.1: Belief nets from Chapter 4, in which shaded nodes represent speci�c
occurrences of external events.

5.1 The Markov chain representation for external

events

Consider the evolution of the random variable (weather) over time in the graph of
Figure 5.1. The conditional probability of the two events a�ecting the weather is
the same at each time step, so the di�erent probability distributions for the variable
correspond to four steps of the Markov chain shown to the right in Figure 5.3. The
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(oil)

(operational barge1)

(:action)

(location barge1)

(weather)

0 2 3

finish

pump−oil

move−barge

(oil)

(operational barge1)

(:action)

(location barge1)

(weather)

(location barge2)

(operational barge2)

2 4 50

move−barge

pump−oil

finish

move−barge

Figure 5.2: A belief net representing the same plan but with Markov chains used
to compute changes in the weather over the required time intervals rather than a
series of event nodes.

Markov chain is described by a transition matrixM whose value in row i and column
j is the conditional probability P (w(1) = jjw(0) = i), where w(n) is the value of the
weather at time n. This representation can provide a more e�cient way to compute
the probability distribution for the weather at time N given the distribution at time
0, where N is large, since this is given by applying the transition matrix MN to the
initial distribution, and this transition matrix can be found in time logarithmic in
N . The simple technique of adding event nodes directly to the belief net described in
Section 4.8 takes time at least linear in N , both for constructing and evaluating the
belief net.

In general the evolution of any state variable while an action is being executed can
be described by a Markov chain. This is because the planning language itself can be
described as a Markov decision process, which reduces to a Markov chain when there
are no action choices. However, it would be too expensive to use the underlying MDP
as the Markov chain to compute probability distributions of state variables because of
its size. Planning problems in the oil spill domain described in Chapter 7 frequently
have literal state spaces containing more than 21000 states, for example. So in order
to take advantage of the Markov chain representation, a small Markov chain must be
found to compute the values of interest.

In the case of the state variable describing the weather, the Markov chain whose
states are just the values of this variable is adequate to compute the right probabilities,
and the transition matrix M has only 4 entries. In general one must consider the
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poor-weather

fair-weather

0.25 0.25

0.75

0.751 2 3 4

(weather brightens)

(weather)

(weather darkens)

Figure 5.3: The nodes governing weather from the plan's belief net follow the
Markov chain on the right.

set of state variables whose values need to be known at a particular time in order
to see how to build an adequate Markov chain, and this chain may reference state
variables other than those of initial interest. To see this, consider adding the event
Oil-Spills shown in Figure 5.4 to the planning domain and problem described in
Chapter 4. This event requires the weather to be poor and the oil to be in the
tanker. If this is true, with probability 0.1 the oil will be spilled in the sea in the next
state, represented with the new predicate (oil-in-sea west-coast), and will no
longer be in the tanker. If this event takes place, it will prevent the Pump-Oil action
in either branch of the plan from working since the action's preconditions include
(oil-in-tanker west-coast).

(event oil-spills

(params <sea-sector>)

(probability 0.1)

(preconds

((<sea-sector> Sea-sector))

(and (oil-in-tanker <sea-sector>)

(poor-weather)))

(effects ()

((del (oil-in-tanker <sea-sector>))

(add (oil-in-sea <sea-sector>)))))

Figure 5.4: The event Oil-Spills a�ects the location of the oil and is partly
determined by the weather.

Since the event depends on the weather, changes in the weather must be taken
into account to compute the probability distribution for the state variable (oil).
Otherwise the probability that the oil is spilled into the sea might be wrongly com-
puted as 0, since in the initial state (fair-weather) is true with probability 1.
In fact, since the Pump-Oil action depends on the conjunction (fair-weather) ^

(oil-in-tanker west-coast), the two state variables must be computed together
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in a single Markov chain. If two separate chains were used, even if the one used to
compute the probability distribution for (oil) correctly modelled the weather, the
probability of the conjunction would be wrong since it would e�ectively model the
(oil) and (weather) state variables as independently evolving. The next section
shows how to take a conjunction of literals whose probability distribution is needed
at time N and automatically build a set of small but adequate Markov chains to
compute this.

5.2 Using an event graph to guarantee a correct

Markov chain

Given a set of literals of interest, we would like to build a submodel that is small
enough to answer queries about these literals e�ciently, but includes all the liter-
als necessary to ensure the result is correct. Event graphs enable us to do this by
capturing the dependencies between the events in the domain.

The event graph for a set of event schemas E is a directed graph whose nodes are
either event schemas or literal schemas in the domain. Event and literal schemas are
distinguished from events and literals in that they have variables rather than domain
objects as argument. There is an arc from each event schema e 2 E to every literal
schema in its e�ects, and from every literal schema in any of the branches of e to
e (so the graph may have cycles) Variables are uni�ed when two di�erent schemas
mention the same literal with matching variable types. Figure 5.5 shows the event
graph for the example domain. A simple algorithm that adds arcs for each event
schema in turn can produce the event graph in time linear in the number of event
schemas, the maximum number of branches in an event schema and the maximum
number of e�ects in an e�ect distribution.

fair-weather

poor-weather

Oil-Spills

(oil-in-tanker <sea>)

(oil-in-sea <sea>)

Weather-Brightens Weather-Darkens

Figure 5.5: The event graph for the example domain, with boxes for event schemas
and ovals for literal schemas.

Given a query, such as oil = tanker^ weather = fair, that contains a set of literals,
V , a set of Markov chains is created in two steps. First, create the subgraph of the



74 Chapter 5. E�ciency improvements in plan evaluation

(oil) = tanker
(weather) = fair

(oil) = tanker
(weather) = poor

(oil) = west-coast
(weather) = poor

(oil) = west-coast
(weather) = fair

0.75

0.25 0.025

0.075

0.75

0.75

0.225

0.675

0.25 0.25

Figure 5.6: The Markov model built to model the evolution of the state variable
(oil), instantiated by the literal (oil-in-tanker west-coast).

event graph, restricted to the nodes in V and all their ancestors in the graph. Second,
create one Markov chain for each component of the resulting graph. The state space
for each chain is the cross product of the literals that appear in the corresponding
component, and the transitions are formed from the events in the component in the
same way as the full-size Markov chain is created from all the events, described above.
The probability of the query over literals in V after n stages can then be computed by
multiplying together the probability from each chain of the projection of V on that
chain after n stages. I refer to this set of Markov chains as the submodel of the full

model induced by V . For example, the reduced model in Figure 5.6 is the submodel
of the full model for the domain induced by f(oil)g.

Intuitively, no literal that is not contained in the subgraph of the event graph
created for V can a�ect the way any literal in V changes over time, since if it could
a�ect any event that could a�ect any of the literals in V , either directly or indirectly, it
would be contained in the subgraph by its de�nition. Similarly the literals in di�erent
components of the subgraph change independently of each other, since the value of
one can never a�ect the way the value of the other changes. This intuition underlies
the proof of the following theorem. A sketch of the proof is given in Appendix A.

Theorem: Let Q be a logical expression mentioning a set of literals V � L.

Computing the conditional probability of Q after some �xed number of stages n given

an initial state probability distribution over the full state space 
 will yield the same

value in the submodel induced by V as in the full model of the domain.

Using this theorem we can compute the answers to queries about small subsets of
the domain variables without consulting the full model of the domain. In fact, the
full model is typically never constructed.
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5.3 Using the event graph in Weaver

The event graph is used to create smaller belief nets representing plans in Weaver. The
plans themselves provide the queries that are used with the event graph to choose
the Markov chains that provide input to the belief net. The lack of speci�c event
nodes in the resulting net means that the 
aw set found by the plan critic is slightly
di�erent. This section describes the changes to the Weaver plan evaluator and plan
critic that are necessary to use belief nets built with the event graph.

First, the algorithm to create the belief net to evaluate a plan is altered to make
use of the Markov chains that are created from the event graph. Stage 2 of the
algorithm from Table 4.8 described in Section 4.2 is replaced by stages 2 and 3 as
shown in Table 5.1. A new node is created for each group of nodes that share a
Markov chain, that represents the conjunction of the group of nodes. The persistence
interval links to this new node and it has an arc to each node in the group specifying
its value deterministically.

This new conjunction node could be avoided by clustering the nodes in the group
directly, but using it preserves the condition that each precondition node for an
action represents a single state variable. Since the Markov chain is built under the
assumption that no actions that a�ect the variables take place during the time interval
of the chain, the algorithm splits a persistence interval at each point where an action
a�ects any of the variables involved. The e�ect of the action is a direct intervention
into the natural evolution of the variables represented by the Markov chain, resulting
in a model similar to that of Pearl in [Pearl 1994].

Figure 5.7 shows the belief net that is created by this algorithm for the �rst branch
of the example plan along with some of the marginal probabilities. The node shown
in gray is added by the algorithm to allow the Markov chain to be expressed as a
conditional probability table in the belief net.

Once the belief net has been created, Weaver's plan critic analyses it for possible

aws which are used to �nd ways to improve the plan. The basic algorithm to �nd

aws, described in Section 4.3, examines each 
uent node that is a parent of an action
node and if the 
uent node has probability less than 1 of having a desired value it
looks for either an action or event node as an explanation for a subset of the undesired
values. Since the belief nets created using the event graph do not have event nodes,
the set of explanations is modi�ed.

Rather than look for an event node parent, the modi�ed algorithm tests if the

uent node has a conditional distribution that has been created using a Markov chain.
If this is the case, the chain is analysed for exogenous events that are responsible for
the undesired values. For each member of the set of desired values, the transitions in
the Markov chain that move from a state with the desired value to a state with an
undesired value are checked and the events responsible for the change are returned
as possible explanations for the 
aw.

For example, when the 
uent node for (weather) at time 2 is analysed in the belief
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T = 0, S = 0
Stage 1: For each action A in the plan

Create a node NA to represent A at time T .
For each precondition P of A

Find or create a node NP for P at time T .
Link NP to NA.

T = T + duration(A)
For each e�ect E of A

Find or create a node NP for P at time T .
Link NP to NA.

Stage 2: For each 
uent node N in the belief net
If N is not the e�ect of an action,

link it to the most recent previous node of the same type.
Stage 3: For each time point T with 
uent nodes in the plan

Let F be the set of 
uent nodes with this time point
Let S be the subsets of F grouped into the same Markov chains using the event graph
For each subset G of S

Let T
0

be the time of the most latest 
uent node before T that matches a type in G
Construct nodes for all types in G at time T

0

, making a set G
0

If jGj > 1, add a new node NG at time T with an arc to each node in G
The values of NG are the cross product of those of G
the arcs from NG implement projection.

Otherwise set NG to the single node in G.
Add an arc from each node in G

0

to NG, with probability table given by the Markov chain.
If new nodes were added, go to Stage 3.

Table 5.1: Algorithm to construct the belief net to evaluate a plan.

net in Figure 5.7, the Markov model in Figure 5.6 is checked for events that lead to
transitions from states with (weather) = fair to states with (weather) = poor. The
event Weather-Darkens is then considered as a possible explanation for the 
aw.

Since the explanation for the 
aw does not mention a speci�c event node, the
plan critic chooses an action from the entire interval of the Markov chain to adjust,
either to prevent the event or to add a conditional branch. This choice is equivalent
to choosing the di�erent event nodes that span the interval in the belief net created
without using Markov chains. In this example, there is only one action to choose to
create a conditional branch, the Move-Barge action that was also used in the earlier
version. By default, the plan critic adds a conditional branch as late as possible,
subject to the condition that backtracking in Prodigy's search space should undo as
few other context and protection nodes as possible.



5.3. Using the event graph in Weaver 77

3210

Move-Barge FinishPump-Oil
(action)

(location barge1)
Richmond: 1 west-coast: 1

True: 0.412

False: 0.588: 0.333β
α

(weather)
Fair: 1 Poor: 0.375

Fair: 0.625

(oil)
Tanker: 1 Barge: 0.588

Tanker: 0.412

(operational barge1)
True: 1 False: 0.333

True: 0.667

Tanker: 0.975

Sea: 0.025

True: 0.412

False: 0.588

: 0.667

Figure 5.7: The belief net created to evaluate the �rst branch of the example plan
with exogenous events a�ecting both the weather and the oil modelled with a Markov
chain.
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Chapter 6

E�ciency improvements in

planning

6.1 Domain-independent search heuristics

In any search-based planning system, heuristics to control search are extremely im-
portant if the planner is to be e�cient. Prodigy includes a rich language for spec-
ifying search control knowledge in the form of explicit, domain-dependent control
rules [Minton et al. 1989; Veloso et al. 1995]. Domain-independent search heuris-
tics are also vital in generic planning systems where complete domain-speci�c control
knowledge is not always available [Stone, Veloso, & Blythe 1994].

In this chapter I introduce some principles for de�ning domain-independent search
heuristics that are speci�c to the problem of planning under uncertainty. The \foot-
print" principle leads to a family of heuristics for probabilistic planners produced
by attempting to make subsequent re�nements to a plan apply to a set of possible
execution traces that is disjoint from the set for which the plan being re�ned is al-
ready successful. Since Weaver's architecture separates the phases of plan creation
and plan evaluation, other heuristics can be derived from integrating the two more
closely by doing small amounts of probabilistic reasoning during plan search. The
rest of this chapter describes these approaches and illustrates them with synthetic
domains that help delineate the conditions under which they work well. Experiments
in a real-world domain are described in Chapter 7.

6.1.1 Local estimations of probabilities

One source of heuristics for probabilistic planners is to perform local estimations
of probabilities, used in greedy maximum-gradient heuristics. For example one can
choose the operator for a goal that achieves it with the highest conditional probability,
given that its trigger is satis�ed. This heuristic is an extremely cheap estimate of the
probability that the operator will satisfy its goal as part of the plan, requiring just

79
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inspection of the operator de�nition. A more expensive heuristic that uses gradient
ascent to choose between instantiated operators includes an estimate of the probability
that the preconditions can be satis�ed, for example estimating their probability in
the set of possible current states. This can be viewed as a probabilistic version of
theminimum-unsolved-preconditions heuristic used in Prodigy [Blythe & Veloso 1992]
although a more faithful version would minimize the expected number of unsolved
preconditions. These heuristics all make estimates using the current state, which
arises from applying the operators whose order in the plan pre�x is already chosen.

In the oil-spill domain, several control rules can be seen as compiled versions of
the heuristic to maximise the probability of the step's preconditions in the current
state. These control rules prefer pieces of equipment with higher tolerance to weather
conditions. Since the main sources of uncertainty in the oil-spill domain are exogenous
events that cause the situation to deteriorate over time, control rules that prefer
operators that take less time, for instance using closer equipment or faster transport,
also maximise the estimated probability of success, but this is based on predictions
about how the world will change rather than on the current state. The e�ect of these
heuristics is explored in Section 7.5.

6.1.2 The footprint principle

Probabilistic planners such as Weaver, Buridan [Kushmerick, Hanks, & Weld 1995]
and drips [Haddawy & Suwandi 1994] build plans by incrementally re�ning some
candidate plan to increase its probability of success, stopping when the threshold
probability is reached and backtracking if no extensions achieve the desired prob-
ability. This incremental re�nement might for example be the addition of a new
conditional branch of the plan, or some extra steps to improve the probability of
some subgoal in the plan. The heuristics based on the footprint principle aim to
increase the rate of convergence to a good plan, by choosing improvements to an
existing plan that are more likely to signi�cantly increase the probability of success.
This is similar to the maximum expected utility approach of Russell and Wefald [91] .
While the exact heuristics may di�er between di�erent planners, the underlying prin-
ciples are the same. I begin with two observations about the process of improving
the probability of success of plans in uncertain domains.

Coherence

Firstly, while plans in strips-style domains are created for individual initial states,
plans in probabilistic domains are created for a set of states, those with su�ciently
high probability in the initial distribution to in
uence the probability of plan suc-
cess. I de�ne a trace of execution of a plan in a stochastic domain to be a complete
assignment for each of the choice points during the plan's execution: the initial state
is speci�ed and so is each action outcome and potential occurrence of an exogenous
event. In Weaver, a trace corresponds to a path through the underlying mdp that



6.1. Domain-independent search heuristics 81

can be realised when the plan is executed. The probability of success of a plan is
equal to the probability mass of the set of traces of the plan that lead to a goal state.
A simple strategy for a planner may be to try to re�ne a plan to cover an individual
trace that has high probability and is not currently covered by the plan. Picking the
most likely initial state or the most likely action outcome that lead to plan failure to
work on are examples of this strategy.

However it may be that a number of distinct initial states exist that each have low
probability but when combined form a set with higher probability that also shares
features allowing a single plan or plan re�nement to solve them all. I refer to such a
set as a coherent set of traces with respect to the plan. It can be a valuable strategy
for a probabilistic planner to expend computation looking for a coherent set of traces
with a high probability mass, and this I refer to as the \coherence" strategy.

As an example, consider the family of domains \Mop(n,�)" parameterised by an
integer n and some small number � whose operators are in Figure 6.1. The initial state
distribution in an instance of Mop(n, �) consists of n possible states, Si, 1 � i � n,
where (Si) is the sole true fact in each state Si. State Si has a probability of 1=2i if
1 � i � n � 1 and state Sn has a probability of 1=2n�1, bringing the total to 1. The
goal is always the literal (goal). There are n operators Si which all add (goal) with
certainty if their preconditions are met. Each Si has the single precondition (Si). In
addition the single operator Mop achieves (goal) in any state with probability 1 � �,
and with probability � has no e�ect.

(Operator Si
(preconds () (Si ))

(effects ()

((add (goal)))))

(Operator Mop

(preconds () (true))

(effects ()

(1� � () (add (goal)))

(� () nil)))

Figure 6.1: Operators in the parameterised domain \Mop(n,�)". There are n

operators Si for 1 � i � n

Consider �nding a plan to achieve (goal) with probability above some threshold
� . If � < 1� � then the one-step plan Mop solves the problem. However if the planner
concentrates on the most likely state and selects the most promising operator for that
state, its initial candidate plan will be S1. On addressing the 
aw that (goal) can be
false, it will select the next most likely state S2 and build the conditional plan:
S1
If (goal) is false

S2

Thus the planner will require approximately log2(1=1� � ) steps to achieve (goal)
with probability � , although a one-step plan exists. If the planner instead estimates
the operator most likely to achieve the goal from the probability distribution of pos-
sible current states, Mop will be chosen as long as � < 1=2. The set of possible initial
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Figure 6.2: The operators for an example domain.

states is coherent with respect to the Mop action, but not with respect to any of the
actions Si. A practical way to estimate this probability is to make use of the belief net
created to evaluate plan success. The marginal probabilities of the action precondi-
tions can be accessed and combined under the heuristic assumption of independence.

Mop also leads to shorter plans when � > 1� �, as long as � < 1=2. This is because
the probability of the plan S1; S2; :::; Sm (with the appropriate conditional branches)
is 1� 1=2m as long as m < n. The probability of the plan Mop; S1; ::; Sm�1, which has
the same length, is 1� �+ �(1� 1=2m�1). This can be rewritten as 1� �=2m�1, which
is greater than 1 � 1=2m as long as � < 1=2.

The footprint principle

The second observation is that the increase in the probability of success due to a plan
re�nement is not additive, since the new re�nement to the plan typically does not
work in a completely di�erent set of traces from the original. Recall that if E and F

are expressions, P (E_F ) = P (E)+P (F )�P (E^F ). Thus an estimate of P (E_F )
found by summing P (E) and P (F ) overestimates to the extent that E and F overlap.
This can happen when estimates of the probability of success of the re�ned plan are
made from the probability of the original plan and an estimate of the goodness of the
re�nement.

To illustrate this, consider an example scenario from the domain with the operators
shown in Figure 6.2, in which the planner has the goal g and a partial plan consisting
of the operator O1. The task is to choose an operator to add to the plan to improve
its probability of success.

A comparison of the operators O2 and O3 that assumes independence might lead
the planner to prefer O2, since p and q are both true with probability 1=2 after O1 is
applied, so O2 adds g with probability 1=2 but O3 adds it with probability only 1=4.
However the plan consisting of O1 followed by O2, which I shall write as [O1 ; O2],
does not improve over [O1] since p is true only when O1 achieves g. The plan [O1 ;
O3] has probability 3=4 of success because O3 precisely addresses the case when O1
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Figure 6.3: Operators in the car-starting domain

fails. In the general case, comparisons of operators based on their \average" ability
to achieve goals tell us nothing about their usefulness for re�ning plans.

This simple observation about independence becomes important when we consider
heuristics that estimate the increase in probability of success provided by re�ning a
plan. I de�ne the footprint of a plan as the set of traces in which it succeeds. Note
that when we re�ne a plan by adding a step, each trace of the new plan is an extension
of some trace in the old plan, so the traces in the footprint of the new plan can be
classi�ed into two categories: those that extend traces in the footprint of the original
plan and those that extend other traces. The new traces that extend traces in the
original footprint form the intersection of the re�nement's footprint with that of the
original plan, and do not improve the probability of success.

Some heuristics estimate the goodness of the re�nement without regard to the
existing plan, such as noting the maximum or average probability that some step will
add a desired subgoal. Such heuristics are likely to over-estimate the e�cacy of the
re�nement when its footprint has a signi�cant intersection with the footprint of the
original plan, in terms of its probability mass. This was the case forO2 | the footprint
of [O1;O2] is completely contained within the footprint of [O1]. If instead relatively
cheap heuristics can be designed that take some of the overlap into account, they
can be considerably more powerful than those that assume independence. I describe
heuristics built on this principle as belonging to the \footprint" family. Combining
the two observations in this section, by discounting the overlap between old and new
parts of the plan these heuristics can be viewed as seeking re�nements to the plan
that have a footprint with high probability mass that is disjoint from the footprint
of the original plan. Alternatively, these re�nements can be viewed as having a high-
probability footprint, conditional on the original plan failing.

Case study: Starting a car

Weaver has several choice points in its search, including which of several potential
failure pairs to address, whether to plan to avoid the failure or address it after its
occurrence, which extra preconditions to add if avoiding the failure and which state
to pick if planning after a failure's occurrence. By default, Weaver deals with failures
that occur earlier before those that occur later. It prefers to plan to avoid a failure
rather than to branch in case of failure. If it branches, it creates a planning initial
state for Prodigy by assuming the undesirable action outcome is the only one to
occur.
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I illustrate a heuristic based on the footprint principle on the \car-starting do-
main". The operators for this domain are shown in �gure 6.3, and the goal is to
achieve started with probability at least 0.95. In addition, the literal engine-ok is not
observable, meaning that a branching plan based on this test is not allowed.

There is one plan of length 4 that achieves the goal with the required probability:
turn the ignition twice, and if the car has not started, poke under the hood and then
turn the ignition once more. If the ignition key is turned only once before the hood is
opened, the problem cannot be solved because with too high a probability the car is
wrecked1, so Weaver's default heuristic will not work. If the agent never pokes under
the hood the threshold probability cannot be reached.

I focus on the choice point of the planning initial state that Weaver passes to
Prodigy when creating a branching plan, and derive a heuristic from the footprint
principle . Recall that in this case, Weaver has chosen a literal l that has a low
probability of taking a value required for the current plan, and an action that can
lead to an undesired value for l. The default heuristic creates the state that would
be produced if the operators in the plan gave the outcome nominated by Prodigy up
to the suspect action, which then takes the most likely outcome that produces an
undesired value for l.

I take a Bayesian view of the footprint principle described earlier in this section and
replace the default heuristic by one that attempts to create a likely state given that
the original plan fails in a way predicted by l and a. The initial state distribution PI
is taken as a prior distribution, and the posterior, given that a produces an undesired
value for l, is computed by propagating the undesired outcome as evidence in the belief
net. Then one of the most likely states from the posterior distribution is chosen, and
the plan simulated, each time picking one of the most likely outcomes given the new
distribution.

When Weaver is run with the default heuristic, it begins solving the start-car
problem with the plan turn-ignition, and then attempts to create a branching plan
based on the test started after the action is executed. With the default heuristic,
Prodigy plans for a state with engine-ok true, producing the branching plan

turn-ignition

If notstarted

turn-ignition

Next Weaver creates a branching plan based on the test started after the second
time the ignition is turned. The default heuristic produces exactly the same state,
and Weaver appears caught in an endless loop2, producing a plan whose probability
of success asymptotically approaches 0.9.

With the footprint heuristic for choosing a state, Weaver starts in the same way,
and tries to improve the plan [turn-ignition] when started is false. Now the probability

1This is only a slight exaggeration of my skills as a mechanic.
2This is the behaviour with depth-�rst search, and it can be avoided using a scheme based on

depth-�rst iterative deepening.
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of the initial state having engine-ok given that started is false drops from 0.9 to roughly
0.64. Since this is still the most likely state it is chosen and the new plan involves
two turns of the ignition key as before. When Weaver creates a state for Prodigy
given that the car fails to start twice, however, the probability of the initial state
with engine-ok drops from 0.64 to 0.26, and it becomes more likely that the engine
is broken. This state is chosen, the current plan is simulated on it, and Prodigy
returns the plan poke-under-hood ; turn-ignition. The branching plan that results has
probability just over 0.95 of success, and is returned.

In general, propagating evidence through the Bayes net to compute the posterior
state distribution could take time exponential in the size of the net. In practice,
updates are typically fast since the net can often be constructed to avoid large cycles
and nodes with many parents. In other cases, a heuristic based on approximating the
posterior distribution may still prove valuable.

6.2 Using derivational analogy in a conditional

planner

The work presented in this chapter has two purposes. First, I focus on improving the
e�ciency of the conditional planner described in Chapter 3. In some cases the planner
can duplicate search e�ort unnecessarily when the same goals must be planned for in
di�erent branches of a conditional plan. Analogical replay can be used to share the
search e�ort between the di�erent branches. The approach of derivational analogy,
which reconstructs the plan's justi�cation rather than following the plan at a surface
level, helps to ensure that the search is shared only when appropriate.

The second purpose of this chapter is to demonstrate that the machine learn-
ing techniques developed for Prodigy 4.0, a classical planner that does not handle
uncertainty, are still useful and applicable to Weaver, an extension of Prodigy 4.0
as a conditional planner that handles uncertainty. Prodigy's algorithm for deriva-
tional analogy was originally developed by Manuela Veloso [Veloso 1994] for No-
Limit, a predecessor to Prodigy 4.0, and subsequently ported. Weaver is able to
make use of the algorithm with very few changes because it is a conservative ex-
tension to Prodigy, itself having as few changes as are needed to perform condi-
tional planning. Given the amount of e�ort that has been spent on e�cient classi-
cal planners over the past decade e.g [Minton 1988; Etzioni 1990; Knoblock 1991;
Gil 1992], it is signi�cant that many of the ideas can be re-used.

I begin this chapter with a discussion of the motivation for using analogical replay
in the conditional planner, then discuss the algorithm and illustrate its performance
on some synthetic domains. Further experiments are described in Chapter 7, and
some comparisons are made with other probabilistic planning systems in Chapter 2.
Some of the work described in this section was done jointly with Manuela Veloso
[Blythe & Veloso 1997].
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6.2.1 The need to share search e�ort within the conditional

planner

Consider a simple planning problem in which a package is to be loaded into a truck.
In the initial state, the package is at the depot and the truck is at the warehouse.
However, consider also that, in the time it takes to drive the truck to the depot, the
package can be misplaced with probability 0.5. When this happens, the package is
transferred from the depot to the lost-property department, from where it cannot be
lost. The following branching plan solves this problem: drive the truck to the depot
and if the package is still there load it into the truck, otherwise drive to lost property
and load the package into the truck.

Figure 6.4 shows a tail plan with four steps that may be constructed by Weaver's
conditional planner to solve the problem described at the beginning of this section.
The truck must be made ready, with step 1 \start-truck" before it can be driven, and
the �nal goal requires that the truck is put away, with step 4 \stop-truck." The arc
from \drive to depot" to \load package at depot" indicates that the former step is an
establisher of the latter. We have omitted the preconditions from the diagram.

Step 2 \drive to depot," is a context-producing step that has two possible sets of
e�ects. Contexts � and � correspond respectively to the situations where the package
is still at the depot and where it is in lost property, when the truck arrives. A step
is marked as context-producing externally to B-prodigy (in fact by Weaver as we
described).

RootLoad package at depotDrive to depot
+α, β

Figure 6.4: Initial tail plan to solve example problem. The directed arcs are causal
links showing that a step establishes a necessary precondition of the step it points to.

When a branching step is introduced into the tail plan, producing new contexts,
the other steps are initially assumed to belong to all contexts. This is true of step 3,
\load package at depot." However each step's contexts can be restricted to a subset,
and new steps can be added to achieve the same goal in the other contexts. In this
example, new operators could be introduced both for the top-level goal and the goal
for the truck to be at the depot. The branching step is always introduced with a
commitment that one of its outcomes will be used to achieve its goal, and all the
ancestors of the step in the tail plan must always apply to that context. In this
example step 2 was introduced to establish step 3 using context �, so step 3 may not
be restricted to context �.

In Figure 6.5, step 3 has been restricted to context �, new steps have been added
to achieve the top-level goal in context �, and steps 1 and 2 been moved to the head
plan. Two recursive calls to B-prodigy will now be made, one for each context,
in each of which B-prodigy will proceed to create a totally-ordered (but possibly
nonlinear) plan. In context �, the steps labelled with �, driving to and loading at
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lost-property, will be removed from the tail plan. In context �, the step labelled
with �, \load package at depot," will be removed. Step 4, stop-truck, has not been
restricted and remains in the tail plan in both contexts. No steps are removed from
the head plan, whatever their context. Each recursive call produces a valid totally-
ordered plan, and the result is a valid conditional plan that branches on the context
produced by the step \drive to depot."

+α, β
Drive to depot

Load package at depot
α

RootI 

α

β
Load package at lost-propertyDrive to lost-property

ββ

Figure 6.5: A second stage of the planner. There are now two possible current
states for contexts � and �.

The ability to create conditional plans is vital to planners that deal with uncer-
tainty, however creating them can lead to high computational overheads because of
the need for separate planning e�ort supporting each of the branches of the condi-
tional plan, measured in terms of the computation required to search for an validate
the plan. This problem can be alleviated by sharing as much of the planning e�ort
as possible between di�erent branches.

Analogical replay enables sharing the e�ort to construct plans, while revalidating
decisions for each new branch. As the following three examples show, in some cases
the planning architecture directly supports sharing this e�ort and in others it does
not.

1. Step 1, start-truck, is shared through the head plan. The step is useful for
both branches, but is only planned for in one since its e�ect is shared through
the current state. Although in this plan there is only one step, in general an
arbitrary amount of planning e�ort could be shared this way.

2. Step 4, stop-truck, is shared through the tail plan. As shown in Figure 6.5, this
step does not have a context label and achieves its goal in either context. Thus
when the branching step is moved to the head plan, it remains in the tail plan
in each recursive call made to B-prodigy, making the planning e�ort available
in each call.

3. Sometimes duplicated planning e�ort is not architecturally shared as in the last
two examples. Suppose that extra set-up steps are required for loading a truck.
These would be added to the tail-plan in Figure 6.5 in two di�erent places,
as establishers of steps 3 and 6, and restricted to di�erent contexts in the two
places. Thus, the planning e�ort cannot be shared by the tail-plan unless it
is modi�ed from a tree to a DAG structure. But this approach would lead to
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problems if descendant establishing steps were to depend on the context, for
instance on the location of the truck. We show below how the use of analogy
can transfer planning e�ort of this kind between contexts. Analogy provides an
elegant way to handle other kinds of shared steps as well.

6.2.2 Using derivational analogy in Weaver

Weaver's conditional planner, B-prodigy, is integrated with Prodigy/Analogy in
such a way that the usual tasks of case retrieval and set-up are made trivial because
the case memory is restricted to the current problem. First, a previously visited
branch is selected to guide planning for the new branch. By default, the branch that
was solved �rst is used. Next B-prodigy is initialized to plan from the branch-
point, the point where the new branch diverges from the guiding branch. Then
B-prodigy plans for the new branch, guided by Prodigy/Analogy, proceeding as
usual by analogical-replay: previous decisions are followed if valid, unnecessary steps
are not used, and new steps are added when needed. Prodigy/Analogy successfully
guides the new planning process based on the high global similarity between the
current and past situations. This is particularly well suited for the analogical replay
guidance and typically leads to minor interactions and a major sharing of the past
planning e�ort. The smoothness of this integration is made possible by the common
underlying framework of the Prodigy planning and learning system.

In this integration of conditional planning and analogy, the analogical replay
within the context of di�erent branches of the same problem can be viewed as an
instance of internal analogy [Hickman, Shell, & Carbonell 1990]. The accumulation
of a library of cases is not required, and there is no need to analyze the similarity
between a new problem and a potentially large number of cases. The branches of
the problem need only to be cached in memory and most of the domain objects do
not need to be mapped into new objects, as the context remains the same. While
we currently use this policy in our integration, the full analogical reasoning paradigm
leaves us with the freedom to reuse branches across di�erent problems in the same
domain. We may also need to merge di�erent branches in a new situation.

Table 6.1 presents the analogical reasoning procedure combined with B-prodigy.
We follow a single case corresponding to the plan for the last branch visited according
to the order selected by Weaver.

The adaptation in the replay procedure involves a validation of the steps proposed
by the case. There may be a need to diverge from the proposed case step, because
new goals exist in the current branch (step 9). Some steps in the old branch can
be skipped, as they may be already true in the new branching situation (step 13).
Steps 8 and 12 account for the sharing between di�erent branches and for most of the
new planning, since typically the state is only slightly di�erent and most of the goals
are the same across branches. This selective use of replay controls the combinatorics
of conditional planning.
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procedure b-prodigy-analogical-replay

1. Let C be the guiding case,
and Ci be the guiding step in the case.

2. Set the initial case step C0 based on the branch
point.

3. Let i = 0.
4. Terminate if the goal state is reached.
5. Check which type of decision is Ci:
6. If Ci adds a step O to the head plan,
7. If O can be added to the current head plan

and no tail planning is needed before,
8. then Replay Ci; Link new step to Ci; goto 14.
9. else Hold the case and call B-prodigy,

if planning for new goals is needed; goto 5.
10.If Ci adds a step Og to the tail plan, to achieve

goal g,
11. If the step Og is valid and g is needed,
12. then Replay Ci; Link new step to Ci; goto 15.
13. else Mark unusable all steps dependent on Ci;
14.Advance the case to the next usable step Cj;
15.i j; goto 5.

Table 6.1: Overview of the analogical replay procedure combined with B-

prodigy.

6.2.3 Illustrations of performance using synthetic domains

Each segment of a conditional plan has a corresponding planning cost. If a segment
is repeated k times and can be shared but is not, the planner incurs a penalty of k�1
times the cost of the segment. Suppose that a plan contains n binary branches in
sequence, all of which share steps. Either the �rst or the last part of the plan may
be created 2n times, but with step sharing it may only need to be created once. This
exponential cost increase can quickly become a dominant factor in creating plans for
uncertain domains.

Chapter 7 describes experiments to determine the performance of analogical replay
in the oil-spill domain. However, to isolate features of the domain or problem that
are pertinent to performance, a family of synthetic domains was created in order to
comprehensively verify experimentally the e�ect of analogy in conditional planning.
These domains allow precise control over the number of branches in a plan, the amount
of planning e�ort that may be shared between branches and the amount that belongs
only to each branch.
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Table 6.2 describes the operators. The top-level goal is always g, achieved by
the operator Top. There is a single branching operator, Branch, with N di�erent
branches corresponding to N contexts. A plan consists of three main segments. The
�rst segment consists of the steps taken before the branch point. These are all in
aid of the goal bb, the only goal initially unsatis�ed, which is achieved by the step
Branch. All of the branches of Branch achieve bb, but delete cx and sh. Each branch
also adds a unique \context" fact, ci. After the branch point, the second segment is a
group of steps unique to each individual branch, in aid of the goal cx. We name each
of these segments \Ci." Finally, the third \shared" segment contains the steps which
are the same in every branch in aid of the goal sh. They must be taken after the
branching point, since Branch deletes sh. The planning work done in each segment
is controlled by the iterative steps that achieve the predicates iter-bb0, iter-cxi;0 and
iter-sh0. The plan to achieve iter-sh0, for example, has a length determined by some
number z for which iter-shz is the initial state. The planner selects the operators
S-shk which succeed or F-shk (k = 0; . . . ; z) which fail as their preconditions u-shk
of the operators A-shk are all unachievable. The domain can have N copies of these
operators. So the planning e�ort to solve iter-sh0 is up to 2N � z operators added to
the tail plan, all but z of which are removed.

Operator Preconds Adds Deletes

Top bb, cx, sh g {
Branch iter-bb0 bb,ci sh, cx

where i refers to each branch i, i = 1; . . . ; B
Contxi iter-cxi;0, ci cx {
Shared iter-sh0 sh {

F-bbl a-bbl iter-bbl {
A-bbl u-bbl a-bbl {
S-bbl iter-bbl+1 iter-bbl {

F-cxi;m a-cxi;m iter-cxi;m {
A-cxi;m u-cxi;m a-cxi;m {
S-cxi;m iter-cxi;m+1 iter-cxi;m {

F-shk a-shk iter-shk {
A-shk u-shk a-shk {
S-shk iter-shk+1 iter-shk {

where l; k;m capture the lengths of the segments

Table 6.2: Operator schemas in the test domain.

Figure 6.6 shows an example of a plan generated for for a problem with goal g,
and initial state cx, sh, iter-bbx, iter-cx1;y, . . . , iter-cxB;y, and iter-shz.

We have performed extensive experiments with a variety of setups. As an illus-
trative performance graph, Figure 6.7 shows the planning time in seconds when the
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S-bbx. . .S-bb0 Branch
S-cx1;y. . .S-cx1;0 Contx1 S-shz . . .S-sh0 Top

. . .

S-cxB;y . . .S-cxB;0 ContxB S-shz. . .S-sh0 Top

Figure 6.6: A typical plan in the test domain.

number of branches is increased from 1 to 10. For this graph, the �nal plan has
one step in each of the \Ci" and the \shared" segments. The domain was chosen so
that B-prodigy examined 4 search nodes to create a \Ci" segment and 96 for the
\shared" segment. With less extreme proportions of shared planning time to unique
planning time, the shape of the graph is roughly the same and analogical replay still
produces signi�cant speedups. With 24 search nodes examined for each unique plan
segment, and 72 for the shared segment, B-prodigy completes the plan with 10
branches more than twice as quickly with analogical replay as without it.

The improvement in time is similar when the depth and breadth of search are
increased for the shared segment and the number of branches is held constant.

0

5

10

15

20

2 3 4 5 6 7 8 9 10
Branches

normal
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Figure 6.7: Time in seconds to solve planning problem with and without analogy
plotted against the number of branches in the conditional plan. Each point is an
average of �ve planning episodes.

The use of analogical replay in B-prodigy is a heuristic based on the assumption
that a signi�cant proportion of planning work can be shared between the branches.
We tested the limits of this assumption by experiments holding constant both the
number of branches and the e�ort to create the shared segment, and increasing the
e�ort to create each unique segment. Under these conditions, the time taken by B-
prodigy grows at the same rate whether or not analogical replay is used, because the
overhead of replay is small relative to planning e�ort, and appears constant. When
the planning e�ort for each C-i was increased from 4 to 100 search nodes while the
e�ort to create a shared branch was held constant at 24 search nodes, B-prodigy
took about 1 second longer with analogy than without it, an overhead of less than 10
per cent when each C-i took 100 search nodes.
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Chapter 7

Experimental results in the

Oil-spill domain

Throughout this thesis, most of the techniques introduced have been described us-
ing synthetic domains, and these have also been used to demonstrate the potential
bene�ts of the techniques. In this chapter I present an experimental demonstration
of these techniques in the domain of oil-spill clean-up. This is a real-world domain,
consisting of 62 operator and inference rule schemata, that was originally developed
by SRI for the US Coast Guard [Desimone & Agosta 1994].

In the next section I provide an overview of the oil-spill domain. Sections 7.2
and 7.3 discuss how Weaver improves plans in this domain. In section 7.4 I demon-
strate the improvement in the time to evaluate the belief net that comes from using
the event graph technique describe in Chapter 5. In Section 7.5 I investigate the
e�ect of domain-independent heuristics and in Section 7.6 I investigate the e�ect of
derivational analogy in this domain.

7.1 The oil-spill clean-up domain

The domain models the problem of cleaning up oil-spills from vessels, which comprises
3 kinds of activity: (1) stopping the 
ow of oil from a tanker, (2) cleaning up oil from
the surface of the water and (3) protecting and/or cleaning sensitive areas of coastline.
The domain uses 151 object types, of which 52 of the most important are shown in
Figure 7.1. The 62 operators and inference rules of the domain can be roughly grouped
as follows:

� 8 are used exclusively for stopping the 
ow of oil from a vessel, by pumping
oil from the vessel, towing the vessel to port or using booms to contain the oil
around the vessel and skimming it from the surface.

� 18 are used for cleaning oil from the sea, by skimming it into a barge, using
chemical dispersants or controlled burns.

93
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� 11 are used for protecting sensitive areas of coastline, either using booms to
keep oil from the shore, or using booms or berms and dams to divert oil and
vacuum trucks to clean it from the shore.

� 9 are used for shared subgoals of the above three high-level activities. They
include placing booms and making inferences about the state of the sea.

� 16 deal with moving equipment, teams and vessels.

The domain is shown in detail in Appendix B.

The main sources of uncertainty in the domain come from the movement of the oil
and changes in the weather conditions while the plan is being executed. Equipment is
stored at various locations along the coast and may have to be moved large distances
to be employed in a clean-up operation. Therefore plans may include long lead times
before crucial steps, such as positioning a boom or pumping oil into a barge, can take
place. Over these time periods exogenous events model the weather and the amount of
oil spilled in the sea as stochastic processes. Certain steps require a level of calmness
of the sea in order to be performed, and their probability of success depends on these
exogenous events.

The uncertainty in the oil spread over time can also a�ect the allotment of re-
sources for shore protection. For example in some cases spilled oil may have some
probability of reaching one or more of a number of sensitive areas of coastline but
resources may not be su�cient to protect all of them. In these cases a conditional
plan that moves resources once the direction of the oil is known can have a higher
probability of success than any non-conditional plan. An example of this is shown in
Section 7.2

The planning problems used for this domain model the geography and equip-
ment available in the San Francisco bay area (Figure 7.2). These problems are mod-
elled with 183 objects belonging to subtypes of place, 55 belonging to subtypes of
equipment, 30 belonging to subtypes of vessel and 119 other objects. Details can
be found in [Desimone & Agosta 1994].

In the remainder of this chapter I demonstrate Weaver and show experimental
results in the oil-spill domain about Weaver's performance and about the impact of
the techniques described in this thesis.

7.2 Case studies of improving plan reliability

This section provides demonstrations of how Weaver improves the probability of plan
success. The next section provides experimental results and analysis of the improve-
ment obtained for a set of randomly generated examples. Subsequent sections that
demonstrate techniques for improving Weaver's speed will focus on the rate of im-
provement of probability. When Prodigy is used to create plans in the oil-spill domain,
it ignores the domain's sources of uncertainty. Consequently Weaver can improve on
plans found by Prodigy in three qualitatively di�erent ways:
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top-type

vessel

spilled-oil

sea-state

wind-velocity

oil-viscosity

place

oil-area-level

storage-level

env-resource

aircraft

boat

fishing-boat

tug

tanker

platform-workboat

utility-boat

barge

tank-barge

work-barge

dispersant-barge

dracon-barge

equipment

team

response-equipment

heavy-equipment

other-equipment

fire-chem-equipment

bladder

boom

skimmer

sorbent

dispersant

pump

crane

backhoe

vacuum-truck

tank

support-equipment

tractor

sector

location

inland-water

land-sector

sea-sector

air-sector

urban

seaport

airfield

sensitive-area

river

lake

Figure 7.1: Part of the type hierarchy, showing the 52 most important of the 151
types in the domain.

1. Better plans can be found by backtracking from one choice of operator or bind-
ings to another that avoids the source of uncertainty.

2. Conditionally branching plans can be created that in some cases have a higher
probability of success than is possible without including conditional branches.
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Figure 7.2: San Francisco Bay area

3. Better plans can be found by including steps whose purpose is to prevent some
undesired action outcome or exogenous event.

The mechanisms by which Weaver can use these techniques are described in Chap-
ter 4. Here I provide a brief example of the last two of these e�ects in the oil-spill
domain.

Creating a conditional plan

When oil is spilled, it can move unpredictably on the surface of the water directed
by the wind and currents, so that the stretches of coastline that will be hit by oil
are uncertain. Consequently the number of sensitive areas potentially under threat
from the oil may be much larger than the number that the oil may reach in any
single eventuality. Frequently the available resources for cleaning up the shore may
be adequate for only a small number of areas and a more reliable plan can be made
by delaying the deision on where to deploy the resources as late as possible so that
the path of the oil is known with greater certainty. The approach relies on building
a conditional plan that tests for the sensitive areas under greatest threat.

In the version of the oil-spill domain under test, the fact that a particular sen-
sitive area of coastline is likely to be hit by oil is modelled with the predicate
(threatened-shoreline <oil> <sensitive-area>) and the stochastic motion of
the oil in the water is modelled by an exogenous event threatened-shore-changes,
shown in Figure 7.3. This is a primitive model in which the threat from the oil shifts
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from one area to another without regard to geographic proximity, although the con-
straint function potentially-threatened ensures that the areas are both adjacent
to the sea-sector containing the oil.

(event threatened-shore-changes

(params <sensitive-area-1> <sensitive-area-2> <oil>)

(probability 0.1)

(preconds

((<oil> Spilled-oil)

(<sea-sector> Sea-Sector)

(<amount> (and Numerical

(gfp (amount-spilled <oil> <sea-sector> <amount>))

(> <amount> 0)))

(<sensitive-area-1> (and Sensitive-Area

(potentially-threatened <sensitive-area-1> <oil>)))

(<sensitive-area-2> (and Sensitive-Area

(potentially-threatened <sensitive-area-2> <oil>)

(diff <sensitive-area-1> <sensitive-area-2>))))

(threatened-shoreline <oil> <sensitive-area-1>))

(effects ()

((del (threatened-shoreline <oil> <sensitive-area-1>))

(add (threatened-shoreline <oil> <sensitive-area-2>)))))

Figure 7.3: The exogenous event threatened-shore-changes models the uncer-
tainty of the oil's path in the water.

Table 7.1 shows the objects and the goal for an example problem, and Table 7.2
shows the initial state for the problem. The tanker ss-weany has spilled oil in the
golden-gate sea sector, whose adjacent shoreline, west-marin, contains two sensi-
tive areas, rodeo-lagoon and pt-bonita-cove. Initially, only pt-bonita-cove is
threatened. The goal has been simpli�ed by removing the requirement to clean oil
up from the surface of the water, leaving the requirements to stop the discharge of
oil from the tanker and protect the threatened sensitive area of coastline. There is a
tank barge and pump available to pump oil out of the tanker to stop its discharge.
There is a tractor and a vacuum truck which can be used to build berms and dams
to protect one area of coastline.

The geographic regions and the speci�c properties of the response equipment
in this problem correspond exactly to objects in the scenarios designed by SRI in
conjunction with the coast guard [Desimone & Agosta 1994]. The example has been
made short by modelling a small oil spill that endangers only a small number of
locations. As an uncertain planning problem it has also been simpli�ed by modelling
only the movement of the oil, not the change in the sea state or oil spilling.

Prodigy's solution for this problem, ignoring inference rules, is shown in Table 7.3.
The �rst three steps stop the discharge of oil from the tanker and the next three
protect pt-bonita-cove. Weaver constructs a probabilistic model of this plan and
�nds it has a probability of success of roughly 1/2, because in the time taken to stop
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Objects:

(spill SPILLED-OIL)

(pt-bonita-cove rodeo-lagoon SENSITIVE-AREA)

(golden-gate SEA-SECTOR)

(west-marin LAND-SECTOR)

(richmond-port SEAPORT)

(oakland URBAN)

(ss-weany TANKER)

(tank-barge2 TANK-BARGE)

(utility-boat-2 UTILITY-BOAT)

(cargo-pump2 CARGO-TRANSFER-PUMP)

(vac-truck2 VACUUM-TRUCK)

(tractor-2 TRACTOR)

Goal: (and (no-discharge ss-weany spill golden-gate)

(~ (unprotected-sensitive-area spill)))

Table 7.1: The objects and goal for the example problem used to demonstrate a
conditional plan formed under scarce resources.

(unprotected-sensitive-area spill)

(threatened-shoreline spill pt-bonita-cove)

(amount-spilled spill golden-gate 10)

(discharge-size ss-weany spill 1000)

(discharge-rate ss-weany spill 600)

(sea-state golden-gate 2)

(located-within rodeo-lagoon west-marin)

(located-within pt-bonita-cove west-marin)

(adjacent golden-gate west-marin)

(distance richmond-port golden-gate 25)

(distance oakland rodeo-lagoon 20)

(distance oakland pt-bonita-cove 20)

(distance richmond-port rodeo-lagoon 20)

(distance richmond-port pt-bonita-cove 20)

(shore-personnel-required pt-bonita-cove 10)

(shore-personnel-required rodeo-lagoon 10)

(located ss-weany golden-gate)

(located tank-barge2 richmond-port)

(located cargo-pump2 richmond-port)

(located vac-truck2 richmond-port)

(located tractor-2 oakland)

(max-speed tank-barge2 2)

(barge-capacity-bbl tank-barge2 4000)

(max-sea-state tank-barge2 4)

(max-speed utility-boat-2 5)

(capacity-bbl vac-truck2 1000)

(capacity-bbl-per-hr cargo-pump2 480)

Table 7.2: The initial state for the example problem used to demonstrate a con-
ditional plan formed under scarce resources.

the discharge of oil, the sensitive area that is threatened by oil can change a number
of times and the probability distribution of the threatened area has approached its
steady state value.

Weaver's plan critic forces B-Prodigy to �nd a branching plan, splitting on the test
(threatened-shoreline spill pt-bonita-cove). The exogenous event is mod-
elled in B-Prodigy as taking place due to some action that takes non-zero time. By
default the latest possible action is chosen, to push the branch as late as possible. In
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(move-response-equipment-by-sea1b cargo-pump2 golden-gate richmond-port

utility-boat-2)

(move-to-sea-sector-from-port tank-barge2 richmond-port golden-gate)

(cargo-transfer-oil-to-stabilize ss-weany spill golden-gate

tank-barge2 cargo-pump2 600 120)

(move-heavy-equip-by-ground2 tractor-2 oakland pt-bonita-cove)

(move-heavy-equip-by-ground2 vac-truck2 richmond-port pt-bonita-cove)

(build-berms-and-dams spill pt-bonita-cove)

Table 7.3: Prodigy's solution to the example problem, ignoring inference rules.

(move-response-equipment-by-sea1b cargo-pump2 golden-gate richmond-port

utility-boat-2)

(move-to-sea-sector-from-port tank-barge2 richmond-port golden-gate)

(cargo-transfer-oil-to-stabilize ss-weany spill golden-gate

tank-barge2 cargo-pump2 600 120)

IF (threatened-shoreline (spill)) is in (pt-bonita-cove)

(move-heavy-equip-by-ground2 tractor-2 oakland pt-bonita-cove)

(move-heavy-equip-by-ground2 vac-truck2 richmond-port pt-bonita-cove)

(build-berms-and-dams spill pt-bonita-cove)

ELSE

(move-heavy-equip-by-ground2 tractor-2 oakland rodeo-lagoon)

(move-heavy-equip-by-ground2 vac-truck2 richmond-port rodeo-lagoon)

(build-berms-and-dams spill rodeo-lagoon)

Table 7.4: Weaver's solution to the example problem, ignoring inference rules.

this case that would be the action of moving vac-truck2, but since neither it nor
tractor-2 can be moved more than once, no branching plan is possible at this point
andWeaver backtracks to put the branch after the step cargo-transfer-oil-to-stabilize.
B-Prodigy returns the plan shown in Table 7.4, which Weaver determines has a prob-
ability of success of 0.8. This is less than 1 because of the chance that the threatened
shoreline will change after the tractor has begun to move to its location, but is higher
than any non-branching plan could achieve.

Adding preventive steps

In some cases the probability of success can be improved by inserting steps into the
plan that reduce the probability of some undesired event or action outcome from
taking place, as described in Chapter 4. An example of this in the oil-spill domain
can occur when the actions taken to stabilize the discharge of oil from a tanker take a
signi�cant amount of time to set up. During this time, oil may spill from the tanker
and spread through the water and methods for cleaning it up may be unreliable and
expensive. However, the 
ow of oil from the tanker can be contained by surrounding
it with a length of boom. If this boom can be put in place relatively quickly compared
with the time taken to stabilize the discharge, then much of the oil can be prevented
from spilling.

Figure 7.4 shows the exogenous event oil-spills. The amount-spilled predi-
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cate models the amount of oil in the water, and is the only predicate changed by the
event. The event will not take place if either there is a su�cient amount of boom
surrounding the vessel, modelled by the predicate boom-level>=, or the tanker has
been stabilized to stop the discharge, modelled with the predicate no-discharge.
Stopping the discharge is usually a top-level goal as well as a way to prevent the
oil-spills event from happening.

(event oil-spills

(params <spilled-oil> <sea-sector> <rate> <new>)

(probability 0.2)

(preconds

((<spilled-oil> Spilled-oil)

(<vessel> Vessel)

(<vessel-boom-length>

(and Numerical (gfp (vessel-boom-length <vessel> <vessel-boom-length>))))

(<sea-sector> Sea-sector)

(<sea-state> (and Numerical (gfp (sea-state <sea-sector> <sea-state>))))

(<rate> (and Numerical

(gfp (discharge-rate <vessel> <spilled-oil> <rate>))))

(<total> (and Numerical

(gfp (discharge-size <vessel> <spilled-oil> <total>))))

(<old> (and Numerical (numberp <old>) (< <old> <total>)))

(<new> (and Numerical (add-with-ceiling <old> <rate> <total> <new>)

;; can't spill more than there is.

(<= <new> <total>)

)))

(and

(~ (boom-level>= <vessel> <vessel-boom-length> <sea-sector> <sea-state>))

(~ (no-discharge <vessel> <spilled-oil> <sea-sector>))

(amount-spilled <spilled-oil> <sea-sector> <old>)

))

(effects ()

((del (amount-spilled <spilled-oil> <sea-sector> <old>))

(add (amount-spilled <spilled-oil> <sea-sector> <new>))

)))

Figure 7.4: The exogenous event oil-spills models the uncertain 
ow of oil
from the tanker to the sea.

Table 7.5 shows the objects that and goal for an example problem, and Table 7.6
shows the initial state for the problem. The tanker ss-catastrophe is discharging
oil in the SF-north-coast sea sector, although in the initial state no oil has been
spilled. A skimmer is located at Martinez-port which is 28 miles from the area of
the spill. A boom that is long enough to contain the spill around the tanker is located
8 miles away at Richmond-port. The goal is to stop the discharge of oil and have no
oil spilled in the sea sector.

Prodigy's solution to the problem, ignoring inference rules, is the following two-
step plan:
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Objects:

(sf-bay-spill SPILLED-OIL)

(sf-north-coast SEA-SECTOR)

(martinez-port richmond-port SEAPORT)

(ss-catastrophe TANKER)

(weir-skimmer2 PORTABLE-SKIMMER)

(boom6 BOOM)

(utility-boat-1 utility-boat-2 UTILITY-BOAT)

Goal: (and (no-discharge ss-catastrophe sf-bay-spill sf-north-coast)

(amount-spilled sf-bay-spill sf-north-coast 0))

Table 7.5: The objects and goal for the example problem used to demonstrate
adding steps to prevent an event.

(amount-spilled sf-bay-spill sf-north-coast 0)

(discharge-size ss-catastrophe sf-bay-spill 12000)

(discharge-rate ss-catastrophe sf-bay-spill 2000)

(sea-state sf-north-coast 2)

(distance martinez-port sf-north-coast 28)

(distance richmond-port sf-north-coast 8)

(located boom6 richmond-port)

(located weir-skimmer2 martinez-port)

(located ss-catastrophe sf-north-coast)

(located utility-boat-1 martinez-port)

(located utility-boat-2 richmond-port)

(vessel-boom-length ss-catastrophe 1000)

(max-sea-state boom6 4)

(length-boom-ft boom6 1600)

(max-sea-state weir-skimmer2 6)

(skim-rate-bbl-per-hr weir-skimmer2 2000)

(max-speed utility-boat-1 5)

(draft utility-boat-1 4)

(max-speed utility-boat-2 5)

(draft utility-boat-2 4)

Table 7.6: The initial state for the example problem used to demonstrate adding
steps to prevent an event.
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(move-response-equipment-by-sea1b weir-skimmer2 sf-north-coast

martinez-port utility-boat-1)

(get-skimmer-to-skim-near-vessel ss-catastrophe weir-skimmer2

sf-north-coast 2 2000)

This achieves the goal of stopping the discharge, but it takes nearly 6 hours to
move the skimmer to the spill site and the plan's probability of success is only around
0.26 because in this time oil is likely to spill. One way to improve the probability of
success is to negate the event oil-spills as quickly as possible, by moving the boom
from Richmond-port which can be done in under 2 hours. The plan critic tries this
approach and adds the appropriate predicate using boom-level>= to the precondi-
tions of moving the skimmer and calls B-Prodigy again. The resulting four-step plan
has a probability of success of 0.8:

(move-response-equipment-by-sea1b boom6 sf-north-coast

richmond-port utility-boat-2)

(use-boom-to-contain-vessel ss-catastrophe boom6 1000 sf-north-coast)

(move-response-equipment-by-sea1b weir-skimmer2 sf-north-coast

martinez-port utility-boat-1)

(get-skimmer-to-skim-near-vessel ss-catastrophe weir-skimmer2

sf-north-coast 2 2000)

7.3 Experimental results for improving plan reli-

ability.

In order to experimentally verify the amount of improvement in probability of success
that Weaver can produce, Weaver was run with 75 randomly generated problems each
solved in 4 di�erent ways, making random choices at the planner and plan critic choice
points, yielding a total of 300 trials.

The algorithm to generate the random problems �xes the geography of the area, as
de�ned by the set of objects of types sea-sector, land-sector, urban, seaport and
sensitive-area and by the literals for the predicates adjacent, located-within,
distance and berth-size. The geographic information models the San Francisco
Bay area as de�ned in the version of the domain written at sri. Pseudo-code for the
algorithm is given at the end of Appendix B. Within this geographic framework, one
vessel is placed in a random sea-sector that contains at least one sensitive-area, with
a random amount of oil, spill-rate and length, chosen within �xed parameters. A
random number of equipment objects, for example, of type boom, tractor and tug,
are distributed among the seaports at random. Finally the amount of work required to
protect a sensitive area is varied as are the initial weather conditions. This generation
algorithm produces a set of problems that, along with random choices made in the
problem solver, exercise all possible combinations of the strategies available to the
planner while ensuring that the generated problems are physically plausible.
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The problems vary in di�culty for the planner in the number of steps required,
in the maximum achievable probability of success and in the number of improvement
steps needed to achieve a high probability of success. One of the major factors
a�ecting these aspects of the problems is the amount of equipment available in the
initial state as compared with the size of the oil spill. With adequate equipment
available for a number of clean-up techniques the planner's task is relatively easy,
but as equipment becomes more limited the planner may have to produce unusual
combinations of equipment or use equipment that is more likely to fail. A second
factor is the location of the equipment. If critical equipment is located far from the
spill, the plan may take a long time to execute and therefore allow more time for
exogenous events that can reduce its probability of success. A third factor is the
initial state of the sea. Rough seas can make some clean-up equipment, particularly
booms and skimmers, unusable.

Figure 7.5 shows a graph of the average probability of the plans found as the
number of iterations through the Weaver algorithm is increased, along with the 10th
percentile and 90th percentile probabilities. This graph uses a random sample of
250 examples. The rate of increase in average probability slows as the number of
iterations increases. There is only slight improvement after the �rst two iterations,
partly because a signi�cant number of plans succeed with probability 0.9 or greater
after two iterations. Figure 7.6 shows how many of the trials reach their maximum
value at each iteration.
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Figure 7.5: The average probability of success for the plans for the randomly gen-
erated problems, plotted against the number of iterations of improvement. The upper
and lower lines show the 90th and 10th percentiles of the probabilities respectively.

Figure 7.7 shows the average improvement per iteration for the �rst four iterations
on the random set of problems

two di�erent types of improvement that Weaver can use: adding a conditional
branch and adding preventive steps. The immediate improvement from backtracking
is not shown. Its average value in the oil-spill domain is negative, that is, the plan's
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Figure 7.6: The number of examples that reach their maximum probability at
each iteration.

probability of success typically decreased when the planner backtracked. However,
backtracking allows the planner to explore other parts of the space of plans and is
frequently used before Weaver �nds its best plan. Although the average improvement
from adding a conditional branch is approximately one quarter that of adding preven-
tive steps in this domain, the overall increase in probability due to adding conditional
branches is higher because this method is used more often. The percentage of the
total improvement in probability over the random problem set that is due to each
improvement type is shown in the graph on the right of the �gure.
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Figure 7.7: The graph on the left shows the average improvement gained from each
way to improve a plan across the random set of problems. The graph on the right
shows their cumulative contribution to success probability. Although in this domain
each conditional branch is generally only 1/4 as e�ective as adding preventing steps,
its overall contribution is a higher proportion because it is used more often.
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Ablation study

Figure 7.7 shows how much improvement in probability was actually derived during
problem solving instances from each of the di�erent ways to improve probability.
However, it is frequently the case that while one kind of improvement is used by the
system, another could have been used, so a more complete picture of the relative
utility of the types of improvement can be gained by selectively disabling each of
them and running the same set of examples without it. The results of such a study
are shown in Figure 7.8. When Weaver cannot create conditional branches, it reaches
an average probability of success of roughly 0.6 after 3 iterations and stays constant
on further iterations. When it cannot add steps to prevent an error from taking place,
it reaches an average probability just below 0.7. Using both techniques it reaches an
average of 0.77 in four iterations and 0.79 in eight iterations.
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Figure 7.8: Average probabilities of plans for the same example set, plotted against
the number of iterations, when Weaver's mechanisms for improving plan probability
are selectively disabled.

Easy and hard cases for Weaver

Figure 7.9 shows a histogram of the probabilities of the initial plans found by Weaver
in the example test sets. In approximately half the examples, Weaver's initial plan
has probability below 0.1, and the rest are clustered around a probability of 0.25
with a separate peak at 0.9 - 1.0. To examine whether the cases with low initial
probability are recti�ed quickly or represent examples that have low-probability �nal
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plans, Figure 7.3 shows the probabilities plotted against iterations in Weaver for these
two cases, with the mean for the whole set plotted as a reference. Although they
converge, the initial low probability is not recovered over four iterations of Weaver.
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Figure 7.9: Histogram of the percentage of trials whose initial probability of suc-
cess fell in each of the ten probability ranges 0.1 in width. Roughly half the initial
cases have probability between 0 and 0.1
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Figure 7.10: The lower line shows the mean probability of success plotted against
the iteration of Weaver for the cases whose initial probability was between 0 and 0.1.
The upper line shows these values for the other cases and the middle line shows the
global mean.
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Figure 7.11: Evolution of probabilities for the initially low probability cases

7.4 Mutual constraints between the planner, eval-

uator and critic

In Section 4.4 I mentioned some of the advantages of using the emerging plan to
constrain the probabilistic model of the plan and using the model to incrementally
increase the amount of domain uncertainty that the planner is aware of. One ad-
vantage, demonstrated with an arti�cial domain, is that the plan can be used to
constrain the set of exogenous events that need to be considered to evaluate the plan.
This can greatly a�ect the cost of evaluating the plan, since the size of the joint
probability distribution calculated can be exponential in the number of exogenous
events. In addition if the number of sources of uncertainty considered by the planner
is not constrained, the number of separate cases to be considered by the planner can
also grow exponentially. In Section 7.4.1 I show that while it is important to con-
strain the events considered in the oil-spill domain, it can e�ectively be done with a
domain-dependent algorithm that considers the problem and not the candidate plan.

A second advantage of the mutual constraints between the planner, the plan eval-
uator and the critic discussed in Section 4.4 is that the e�ects of events do not need to
be modelled as alternative outcomes for every operator during which they can occur,
but only where they a�ect the plan. This observation is used in the event graph
technique developed in Chapter 5 to compress the belief net that is built to evaluate
the plan. In Section 7.4.2 I show that this technique is useful in the oil-spill domain.
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Figure 7.12: Evolution of probabilities for the initially high probability cases

7.4.1 Using the plan to constrain events in the evaluator

I focus on the exogenous events of the form sea-gets-worse and sea-gets-better,
which have a numerical sea state and a sea sector as parameters and alter the sea
state of the given sector by one. The event sea-gets-better is shown in Figure 7.13,
and both can be found in the domain speci�cation in Appendix B.

The random problems used in this chapter contain twenty-�ve sea sectors, each
of which takes on one of six sea states independently of the other sea sectors. Since
they are independent, they do not automatically lead to an exponential increase in the
expense of evaluating the plan. However a planner explicitly considering each outcome
of some action due to the full set of events would need to consider 625 � 3 � 1019

states due to the sea-change events alone.

The number of events considered can be considerably reduced by inspecting a
particular planning problem. In the oil-spill domain, only activities concerned with
skimming or pumping oil and laying booms depend on the sea state. This means
that the only sectors of interest are where the spill takes place and the sensitive areas
potentially threatened by the spilled oil. Although there are sixty-nine sensitive areas
in the domain, only a maximum of three are reachable by oil from any one spill site,
and the three are always in the same sea sector. This means that at most two sea
sectors need to be considered to evaluate any plan for any of the test problems. While
this method of reducing the sectors considered is very e�ective, it should be noted
that it is domain-dependent, but using the plan to constrain the events is domain-
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(event sea-gets-worse

(params <sea-sector> <old-sea-state> <new-sea-state>)

(duration 1)

(probability 0.1)

(preconds

((<sea-sector> Sea-Sector)

(<old-sea-state> Sea-State)

(<new-sea-state> (and Sea-State

(add1 <old-sea-state> <new-sea-state>)

;; stop an infinite markov model..

(< <new-sea-state> 7))))

(sea-state <sea-sector> <old-sea-state>))

(effects ()

((del (sea-state <sea-sector> <old-sea-state>))

(add (sea-state <sea-sector> <new-sea-state>)))))

Figure 7.13: The event sea-gets-worse.

independent. Even in this domain, the domain-dependent method would be weaker
than the plan-based method if more sensitive areas of coastline were reachable, and
there is no guarantee that equivalent methods can be found for other domains of
interest.

7.4.2 The event graph

To test the improvements in the speed of evaluating a plan that come from using the
event graph, the initial plans from the same set of random examples were evaluated
both with Markov chains built using the event graph technique described in Chapter 5,
and directly representing individual event occurrences. The complexity of evaluating
the belief net depends mainly on the number of steps in the plan and the number
of precondition nodes required, but it also depends on the number and length of the
persistence intervals in the plan. These are the time intervals between the achievement
of a precondition literal and its use during which exogenous events may take place
that a�ect its value.

The length in time units of the simulated plan is an indication of the length of the
persistence intervals within it. For each step in the plan a duration can be calculated
from its bindings, and this is used when steps are placed on a timeline to create the
belief net as described in Section 4.2. The sum of these is the plan duration, since
Weaver does not apply any of the actions in parallel. Plans with high duration in the
oil-spill domain are typically caused by a small number of steps that move equipment
over long distances. Therefore plans with high duration may not have more steps
than shorter plans, but will include many more exogenous events. If the events are
modelled explicitly, the corresponding nodes will quickly dominate the time to create
and evaluate the belief net. If the events are modelled with a Markov chain, the plan
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duration must be much higher for the event links to dominate.

Figure 7.14 shows the times to create the Jensen join tree for the 67 plans from the
set of problems used in experiments in the previous section that have a plan duration
of 12 hours or less. The graph on the left uses explicit nodes for event occurrences
while the graph on the right uses Markov chains. There is a clear relationship between
the length of the plan and the time required to create the join tree when event nodes
are modelled explicitly. There is no clear relationship when Markov chains are used.
Note also that the maximum time using Markov chains is 3 seconds, compared with
500 seconds for the original method.
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Figure 7.14: The times taken to create the Jensen join tree for the initial plans
with simulated duration less than 12 hours. On the left, explicit event nodes were
used and on the right, Markov chains built using the event graph. Times using the
event graph are on average less than one percent of times taken with explicit event
nodes.

As Figure 7.15 shows, there is a mild increase in times to create the Jensen join tree
for a plan using Markov chains that is apparent when all the plans whose simulated
length is below 1,000 hours are considered. Four outliers are removed from the �gure,
two of which take approximately 300 seconds while the other two have simulated
lengths above 1,000 hours but take less than 5 seconds.

7.5 Domain-independent heuristics in the oil-spill

domain

In Chapter 6 I mention some heuristics that can be used in the oil-spill domain
based on local approximations to maximise the probability of success. They are
implemented by means of a number of control rules, which are preference control
rules that lead the planner to try preferred alternatives before the others, but do
not prune the search space. Therefore the planner can �nd the same solutions with
or without these control rules. They only a�ect the speed with which the planner
reaches a good solution.
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Figure 7.15: The times taken to create the Jensen join tree using Markov chains
for all initial plans with simulated duration less than 1,000 hours.

The control rules can be grouped into two categories: those that prefer closer
things and those that prefer bigger things. Four control rules select operator bindings
that choose closer objects | closer equipment, a closer transport boat or a closer
port if the leaking vessel is to be towed to safety. These rules typically lead to plans
that do not necessarily have fewer steps, but which have a shorter duration in terms
of the sum of the durations of their steps. Four control rules choose larger pieces of
equipment | a unit of boom which is long enough to surround the vessel or protect
the sensitive area and a skimmer or pump that has enough capacity to negate the

ow. One control rule is in both categories, maximising the ratio of boom size to its
distance from the target area.

As Figure 7.16 shows, the control rules lead to a signi�cant improvement in the
average probabilities of plans found in eight iterations of improvement. The �gure
shows the mean probabilities for 50 random problems, a subset of the problems used
in Section 7.3. Using the control rules, the average probability reaches 0.79, and it
reaches 0.61 without them.

The fact that both probability curves appear to have become 
at indicates the
importance of the decisions made early by the control rules. Since the planner has the
same search space with and without the control rules, they will ultimately converge
to the same values. However the trials without using the control rules show no
indication in eight iterations of backtracking over the choices of equipment that lead
to the initially poorer plans. Improving Weaver's ability to backtrack over these
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Figure 7.16: With and without greedy control rules.

choices is an interesting area for further research.

7.6 Analogical replay

In Chapter 6 I described the use of analogical replay to share planning e�ort between
branches of a conditional plan. This section demonstrates the e�ectiveness of ana-
logical replay in the oil-spill domain. As in the previous sections, I begin with some
case studies that illustrate the technique in this domain, and then describe average
performance improvements over a sample population of problems drawn from the
domain.

7.6.1 Case studies

Analogical replay allows Weaver to share the computational resources required to
create a plan between di�erent branches of a conditional plan. The technique is useful
whenever a segment of a larger plan is repeated in di�erent conditional branches but
the segment was not created before the branching action was applied, as shown in
Chapter 6.
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Replay within one clean-up operation.

Repeating segments of a plan after a conditional branch can frequently occur in the
clean-up operations for a single spill. The �rst example used in this chapter can
illustrate this if the top-level goals are treated by the planner in the reverse order
and a conditional branch is again made on the predicate threatened-shoreline. In
the original example, shown in Table 7.2, some work is initially done to achieve the
goal (no-discharge ss-weany spill golden-gate) and after it is completed it is
uncertain which of the two shorelines pt-bonita-cove or rodeo-lagoon is threatened
because of the external event threatened-shore-changes shown in Figure 7.3. In
that case the resulting plan after one conditional branch is added (Table 7.4) is:

(move-response-equipment-by-sea1b cargo-pump2 golden-gate richmond-port

utility-boat-2)

(move-to-sea-sector-from-port tank-barge2 richmond-port golden-gate)

(cargo-transfer-oil-to-stabilize ss-weany spill golden-gate

tank-barge2 cargo-pump2 600 120)

IF (threatened-shoreline (spill)) is in (pt-bonita-cove)

(move-heavy-equip-by-ground2 tractor-2 oakland pt-bonita-cove)

(move-heavy-equip-by-ground2 vac-truck2 richmond-port pt-bonita-cove)

(build-berms-and-dams spill pt-bonita-cove)

ELSE

(move-heavy-equip-by-ground2 tractor-2 oakland rodeo-lagoon)

(move-heavy-equip-by-ground2 vac-truck2 richmond-port rodeo-lagoon)

(build-berms-and-dams spill rodeo-lagoon)

This plan has no opportunities for analogical replay because each branch contains
unique steps. If the planner works on the goals in the opposite order, its �rst plan
looks like this:

(move-heavy-equip-by-ground2 tractor-2 oakland pt-bonita-cove)

(move-heavy-equip-by-ground2 vac-truck2 richmond-port pt-bonita-cove)

(build-berms-and-dams spill pt-bonita-cove)

(move-response-equipment-by-sea1b cargo-pump2 golden-gate richmond-port

utility-boat-2)

(move-to-sea-sector-from-port tank-barge2 richmond-port golden-gate)

(cargo-transfer-oil-to-stabilize ss-weany spill golden-gate

tank-barge2 cargo-pump2 600 120)

This plan can still be defeated by the event threatened-shore-changes which
can take place during the two applications of the step move-heavy-equip-by-ground2,
and after Weaver adds a conditional step to account for this case its plan has the fol-
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lowing form:

(move-heavy-equip-by-ground2 tractor-2 oakland pt-bonita-cove)

(move-heavy-equip-by-ground2 vac-truck2 richmond-port pt-bonita-cove)

(build-berms-and-dams spill pt-bonita-cove)

IF (threatened-shoreline (spill)) is in (pt-bonita-cove)

(move-response-equipment-by-sea1b cargo-pump2 golden-gate richmond-port

utility-boat-2)

(move-to-sea-sector-from-port tank-barge2 richmond-port golden-gate)

(cargo-transfer-oil-to-stabilize ss-weany spill golden-gate

tank-barge2 cargo-pump2 600 120)

ELSE

(move-heavy-equip-by-ground2 tractor-2 pt-bonita-cove rodeo-lagoon)

(move-heavy-equip-by-ground2 vac-truck2-richmond-1000

pt-bonita-cove rodeo-lagoon)

(build-berms-and-dams spill rodeo-lagoon)

(move-response-equipment-by-sea1b cargo-pump2 golden-gate richmond-port

utility-boat-2)

(move-to-sea-sector-from-port tank-barge2 richmond-port golden-gate)

(cargo-transfer-oil-to-stabilize ss-weany spill golden-gate

tank-barge2 cargo-pump2 600 120)

In this plan, the steps taken to achieve (no-discharge ss-weany spill golden-gate)

appear in both branches, and are found independently unless analogical replay is used.
In this instance, of 169 search nodes that are present in the �nal plan, 71 are derived
from analogical replay, or about 42%. The total node number is high because a large
number of inference rules are used in the plan, which have not been shown here.

7.6.2 Experiments in the oil-spill domain

On 20 randomly generated examples, the average proportion of nodes replayed was
0.53. 7 of the trials formed a conditional branch, these had an average replay pro-
portion of 0.36. 13 of the trials formed a protection, and these had an average replay
of 0.64. This set of trials is shown in Table 7.7.
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Problem Nodes Replayed Proportion Type

1 53 35 0.66 protection
2 62 43 0.69 protection
3 48 32 0.67 protection
4 52 35 0.67 protection
5 51 35 0.69 protection
6 40 11 0.27 context
7 40 11 0.27 context
8 35 11 0.31 context
9 23 5 0.22 context
10 75 32 0.43 context
11 44 29 0.66 protection
12 76 32 0.42 context
13 72 29 0.4 context
14 50 33 0.66 protection
15 42 26 0.62 protection
16 48 29 0.6 protection
17 48 29 0.6 protection
18 46 29 0.63 protection
19 42 25 0.59 protection
20 48 29 0.6 protection

Table 7.7: Proportion of nodes replayed by derivational analogy in randomly
generated problems.
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Chapter 8

Conclusions

This thesis presents a novel planner that can build plans to meet a threshold prob-
ability of success given a representation of uncertainty in the form of probabilistic
action outcomes, a probability distribution over possible initial states and probabilis-
tic information about possible exogenous events that can a�ect the planning domain.
The representation of uncertainty was de�ned in terms of a Markov decision process
model.

The planning algorithm harnesses a novel conditional planner that extends prodigy
4.0, and as such is able to make use of control rules, machine learning techniques
and a graphical user interface [Veloso et al. 1995]. The conditional planner attempts
to create a plan that is certain to succeed given a set of non-deterministic actions. A
plan critic controls the planner by removing many of the sources of uncertainty from
the planner's version of the problem domain, and incrementally adding back sources
to improve the probability of success of the �nal plan. This system has been tested
in some synthetic domains and also in a large planning domain for cleaning up oil
spilled from a tanker near the coast of California.

8.1 Contributions of the thesis

The main contributions of the thesis are:

� A representation and approach for planning under uncertainty with exogenous
events. This is a novel problem area for an AI planner.

� A novel, hybrid representation for the computing the plan's probability using
belief nets and Markov chains; a way to automatically decompose the plan into
component Markov chains and recombine them using the net.

� Domain-independent heuristics for planning under uncertainty in order to apply
techniques for planning under uncertainty to large, realistic planning problems.

117
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� The application of derivational analogy to planning under uncertainty, as a
demonstration of how existing machine learning techniques can be used to im-
prove the performance of a probabilistic planner.

� Scaling a system for planning under uncertainty to a real-world domain. The oil-
spill domain has more than 50 operators, a large state space and many sources
of uncertainty. Typical plans range in length from 30 to 50 steps and may have
3 or more conditional branches.

8.2 Future research directions

The thesis has provided a solid foundation for an exciting and important topic for
planning systems. While it gives a promising demonstration of planning under uncer-
tainty in large domains, it raises a number of questions and leaves room for further
work in many areas. Some of these are listed below.

� Tighter integration of plan creation and evaluation, and an evaluation of the
spectrum of approaches from complete to very loose integration. Some of the
power of the system can be claimed to come from judicious use of plan evalu-
ation. However the delayed evaluation sometimes causes the planner to spend
precious computational resources in parts of the search space which might
quickly be seen to yield only low-probability solutions if an evaluation was
made earlier in the process.

� Work on meta-reasoning in the context of planning under uncertainty. An
explicit consideration of the tradeo�s between time spent planning and time
spent evaluating the plan will allow exploration of ways to reason about how to
allot the available computation most e�ectively between these processes. For
example, an upper bound for the contribution of a conditional branch to the
total probability of success is the probability that the ranch is reached. If
this is determined to be small, the computation of the exact probability could
be passed over in favour of more planning work to improve the probability of
succes on more likely branches. A decision-theoretic framework for making such
decisions such as developed in [Russell & Wefald 1991] and [Zilberstein 1993]
could be used.

� More research is needed in machine learning and planning, using derivational
analogy and other forms of machine learning such as learning search control rules
from experience. Some preliminary work has shown the potential to compile
experience gained from the probabilistic evaluation of plans into search control
for the planner although it largely avoids probabilistic evaluations [Blythe &
Veloso 1996]. This approach may be one way to improve the integration of the
plan creation and plan evaluations modules.
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� Although this thesis concentrated on a planner based on Prodigy 4.0, it is in
principle quite possible to apply the same ideas to other planning algorithms.
Despite promising work in planning under uncertainty with partial-order and
hierarchical task network planners [Draper, Hanks, & Weld 1994; Haddawy,
Doan, & Goodwin 1995], exogenous events have not yet been addressed in these
systems. Experience with Weaver suggests that a planner based on iterative
repair principles such as [Ambite & Knoblock 1997; Kautz & Selman 1996]
could be very appropriate for probabilistic planning.

� Weaver computes a lower bound on the probability of success of a plan, improv-
ing its speed by (1) ignoring fortuitous exogenous events that are not explicitly
used by the conditional planner and (2) assuming that a plan fails if any com-
ponent step fails to execute. However it still computes an exact probability for
the belief net that it generates. Since the planning task is to pass a thresh-
old probability, and since only comparative values are needed for Weaver to
choose between alternative plan improvements, algorithms that compute ranges
of probabilities from the belief net can lead to signi�cant performance improve-
ments.
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Appendix A

Proofs of theorems

A.1 The plan's belief net provides a lower bound

on its probability of success.

Theorem: Let � be a solution to a planning problem for which a belief net B is con-

structed by Weaver. If B predicts a probability of success p, then the true probability

of success as given by the interpretation of � as a policy on the underlying Markov

decision process is at least p.

I show the result for non-branching plans �, since the predicted probability of
success for a branching plan is the sum of such belief nets.

I will show that for each complete assignment to the variables of the belief net
B that assigns the value true to every action node in the plan, there is a set of
paths through the MDP that agree with the assignment to B on the value of all
the 
uent, action and event nodes and whose combined conditional probability mass,
conditioned on the initial state distribution, is at least that of the assignment to B.
This is su�cient to prove the result, since the predicted probability of success from
B is the sum of such complete assignments.

Let � be such an assignment, i.e. a mapping from the nodes of B to values such
that �(a) = true for each action node a in B. Note that since the finish action
node has the value true, this assignment contributes to the belief in plan success. For
the assignment to have probability greater than zero, the preconditions of all actions,
and of all events made true by the assignment, must be satis�ed in the assignment.

I will show that there is a set of paths in the MDP that match the assignment and
have the required conditional probability mass by induction over the length of the
plan. Let F (i) denote the set of 
uent nodes with time stamp i in B, and let M(i)
denote the set of paths through the MDP going through states that are consistent
with the values of the 
uents in F (j) for all j � i as well as with the actions and the
events e in B with �(e) = true whose time stamps are less than (but not equal t)
i. The inductive strategy is to show that at each time point i, the probability mass
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of the paths in M(i) is at least that of the restriction of the assignment � to nodes
with time stamps before or equal to i, which I shall denote �ji.

Base case: M(0) consists of states in the MDP consistent with the assignment
to F (0). By the construction of the belief net B, the probability of the assignment to
F (0), �j0, is equal to the probability of F (0) under the initial state distribution. This
is trivially equal to the conditional probability of the matching states in the MDP
given the initial state distribution.

Inductive step: Assuming that the conditional probability mass of M(j) is at
least the probability that B gives to the assignment �jj for all j � i, we need to show
the same for M(i+ 1) and �ji+1.

Consider any event or action that takes place at time i and according to � has
some outcome o. Its preconditions appear in F (i) and so are satis�ed in the �nal state
of any path in M(i). Therefore the probability of a transition from any such state
that adds pending e�ects corresponding to the correct outcome is the probability
of the event taking place multiplied by the probability of the outcome. This is by
construction the same as the conditional probability that the event or action node
has the outcome o in the belief net B given the values in F (i). Since the events and
actions that take place at time i do so with independent probabilities given F (i), the
probability mass of all paths that satisfy all these events and actions is above the
required value by the inductive hypothesis.

Finally, if a path extends a path from M(i) to match the required events and
actions from �ji+1, then it will also match the 
uent nodes F (i+1). This is because
the 
uent node values are determined by the pending e�ects from these events and
actions or earlier ones in M(i). If some other action or event could alter one of these
values, it would have corresponding nodes in the belief net.

This argument establishes the required inequality. It does not guarantee equality
because the belief net construction algorithm does not search for events that may
cause 
uent nodes to have their required values for the plan to succeed, only those
that could cause other values. Therefore their may be paths in the MDP that reach
a goal state even though not all the steps in the plan succeed.

A.2 Event graphs

Theorem: All queries about the probability of a logical expression over a set of literals

V � L, after some �xed number of transitions n given an initial state probability

distribution over the full state space 
 will have the same value in the submodel

induced by V as in the full model of the domain.

It is su�cient to show that probabilities of all conjunctions involving each literal in
V or its negation will be the same in eachmodel, since any expression can be expressed
as the disjunction of such expressions, whose probabilities can be summed since they
are mutually exclusive. I �rst show that a chain Mr built of the subgraph of the
event graph containing the variables in V and their ancestors in the event graph will
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compute the correct value, and then showing that the same value can be computed
by creating independent chains for the separate components of the subgraph.

Each full conjunctive expression corresponds to a unique state of Mr. For each
such state i, let F (i) denote the set of states in the full model Mf that agree with
i on the literals in V . Let pnr;(i;j) be the probability that the reduced chain Mr is in
state j after n steps given that it began in state i, and let pnf;(x;y) be the probability
that the full model Mf is in state y after n steps given that it began in state x.

A situation in whichMr is in state imay correspond to any probability distribution
P (:) over states in F (i) for Mf , where

P
x2F (i) P (x) = 1. Thus given states i and j

in Mr, we need to show that, for all n and for all P (:),

pnr;(i;j) =
X

x2F (i)

P (x)
X

y2F (j)

pnf;(x;y) (A:1)

By choosing di�erent probability distributions it can be seen that this is equivalent
to

pnr;(i;j) =
X

y2F (j)

pnf;(x;y) 8x 2 F (i) (A:2)

since we can choose P (x) = 1 for any x 2 F (i). Conversely if equation (2) is true, any
linear combination given by a probability distribution will also satisfy the equality,
so equation (1) is true also.

We use induction on n. The base case to prove is for n = 1:

Let Er be the set of events in the subgraph of the event graph used to build Mr,
and let p(e; i; j) be the probability of the e�ect in e�(e; i) that changes the literals
a�ected by e to match j, if such an e�ect exists, and let p(e; i; j) = 0 otherwise. By
de�nition, p1r;(i;j) =

Q
e2Er

p(e; i; j)

Similary for any x 2 F (i) and for any y 2 Mf , p1f;(x;y) =
Q
e2E p(e; x; y). We can

arrange this product in terms of events in Er and the rest:

p1f;(x;y) =
Y

e2Er

p(e; x; y)�
Y

e02E�Er

p(e0; x; y)

Now the events in Er only e�ect the literals inMr and are completely determined
by them, by the construction of the event subgraph. So if y 2 F (j), p(e; x; y) =
p(e; i; j) and the �rst term is just p1r;(i;j). So we have

X

y2F (j)

p1f;(x;y) = p1r;(i;j)
X

y2F (j)

Y

e02E�Er

p(e0; x; y)8x 2 F (i)

Also by the construction of the event subgraph, the events in E�Er do not alter
any of the literals in Mr. So for x 2 F (i), if we �x the outcomes of events in Er to
lead to j, all transitions with non-zero probability inMf must lead to a state in F (j).
Then under these circumstances

P
y2F (j)

Q
e02E�Er

= 1, and the induction base case
is proved.



124 Appendix A. Proofs of theorems

Now suppose the result is true for n � m � 1, so that for any x 2 F (i) and
z0 2 F (k),

pmr;(i;j) =
X

k2Mr

pm�1
r;(i;k)p

1
r;(k;j)

=
X

k2Mr

(
X

z2F (k)

pm�1
f;(x;z)

)(
X

y2F (j)

p1f;(z0;y))

We can re-arrange the summands on the right hand side, and choose z0 = z

separately for each z 2 F (k) to get

pmr;(i;j) =
X

k2Mr

X

z2F (k)

X

y2F (j)

pm�1
f;(x;z)

p1f;(z;y)

since each state in Mf is in F (k) for some k 2Mr,

pmr;(i;j) =
X

z2Mf

X

y2F (j)

pm�1
f;(x;z)p

1
f;(z;y)

=
X

y2F (j)

X

z2Mf

pm�1
f;(x;z)

p1f;(z;y)

=
X

y2F (j)

pmf;(x;y)

which is the desired result.

For the second stage of the proof we need to show that separate Markov chains
derived from the components of the event graph's subgraph and treated independently
will yield the same result as a calculation inMr. The proof uses the same technique as
in the �rst stage, noting that the events in each component e�ect di�erent literals and
are determined by di�erent literals from all the other components, so the transition
probabilities can be split in the same way.



Appendix B

The Oil-spill domain

This appendix contains the Weaver encoding of the oil-spill domain and a speci�cation
of the algorithm used to generate random examples for Chapter 7. The domain en-
coding includes operators, inference rules, external events, control rules and bindings
functions. The original encoding of this domain in sipe can be found in [Desimone &
Agosta 1994]. In order to keep the speci�cation in this document manageable, several
parts have been omitted or contracted. Many simple operators have no preconditions.
These have been listed simply by name and e�ects along with a comment. The spec-
i�cation of the domain problem scenario provided by sri and used as the basis of the
random problem generator, containing over 1500 predicates, has been ommitted. For
full details, contact the author by email at jblythe@cs.cmu.edu.

B.1 Domain speci�cation

(infinite-type numerical #'numberp)

;;; All the names are read in as strings in the object fields

(infinite-type name #'stringp)

;;; Level 1

(inference-rule respond-to-spill-coastal

(params <spilled-oil> <sea-sector> <vessel>)

(preconds

((<spilled-oil> Spilled-oil)

(<sea-sector> Sea-sector)

(<vessel> Vessel)

)

(and (no-discharge <vessel> <spilled-oil> <sea-sector>)

(amount-spilled <spilled-oil> <sea-sector> 0)

(~ (unprotected-sensitive-area <spilled-oil>))

))

(effects ()

125
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((add (respond-to-spill <spilled-oil> <sea-sector> <vessel>)))))

(inference-rule clean-up-spill

(params <spilled-oil> <sea-sector> <steps>)

(preconds

((<sea-sector> Sea-Sector)

(<spilled-oil> Spilled-oil)

(<steps> (and Numerical (remove-oil-steps <steps>))))

(remove-oil-steps <spilled-oil> <steps>))

(effects ()

((add (amount-spilled <spilled-oil> <sea-sector> 0)))))

(inference-rule protect-sensitive-areas

(params <spilled-oil>)

(preconds

((<spilled-oil> Spilled-oil))

(forall ((<sen> Sensitive-area))

(or (~ (threatened-shoreline <sen> <spilled-oil>))

(protect-shore-steps <spilled-oil> <sen> 1))))

(effects ()

((del (unprotected-sensitive-area <spilled-oil>)))))

;;; Level 2

;;; Stop when the discharge-rate is below an acceptable minimum.

(inference-rule end-stabilize

(params <vessel> <spilled-oil> <rate> <sea-sector>)

(preconds

((<vessel> Vessel)

(<spilled-oil> Spilled-oil)

(<sea-sector> sea-sector)

(<rate> (and Numerical

(gfp (discharge-rate <vessel> <spilled-oil> <rate>)))))

(stabilize-discharge-rate <vessel> <spilled-oil> <sea-sector> <rate>))

(effects ()

((add (no-discharge <vessel> <spilled-oil> <sea-sector>)))))

(inference-rule begin-stabilize ; no preconditions

(preconds ((<rate> (and Numerical (acceptable-discharge-rate <rate>)))))

((add (stabilize-discharge-rate <vessel> <spilled-oil> <sea-sector>

<rate>)))))

(operator cargo-transfer-oil-to-stabilize

(params <vessel> <spilled-oil> <sea-sector>

<tank-barge> <cargo-transfer-pump> <rate>

<new-rate>)

(preconds

((<vessel> Vessel)

(<spilled-oil> Spilled-oil)

(<sea-sector> Sea-sector)

(<rate> (and Numerical (> <rate> 0)))
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(<cargo-transfer-pump> (and Cargo-transfer-pump

(not (gfp (in-use <cargo-transfer-pump>)))))

(<tank-barge> Tank-barge)

(<pump-cap>

(and Numerical

(gfp (capacity-bbl-per-hr <cargo-transfer-pump> <pump-cap>))))

(<barge-cap> (and Numerical

(gfp (barge-capacity-bbl <tank-barge> <barge-cap>))))

(<worst-sea> (and Numerical

(gfp (max-sea-state <tank-barge> <worst-sea>))))

(<new-rate> (and Numerical (sub <rate> <pump-cap> <new-rate>)))

;; Although not used, will stop the operator being considered if

;; the literal is not present.

(<discharge-size>

(and Numerical

(gfp (discharge-size <vessel> <spilled-oil> <discharge-size>)))))

(and (~ (in-use <cargo-transfer-pump>))

(located <cargo-transfer-pump> <sea-sector>)

(located <tank-barge> <sea-sector>)

(sea-state-calmer <sea-sector> <worst-sea>)

(stabilize-discharge-rate

<vessel> <spilled-oil> <sea-sector> <new-rate>)))

(effects ()

((add (oil-pumped <cargo-transfer-pump> <spilled-oil> <vessel>

<tank-barge>))

(add (did-cargo-transfer-oil <vessel> <spilled-oil> <sea-sector>))

(add (in-use <cargo-transfer-pump>))

(add (stabilize-discharge-rate <vessel> <spilled-oil> <sea-sector>

<rate>)))))

(operator stabilize-discharge-by-contain-skim

(params <vessel> <spilled-oil> <sea-sector> <rate>)

(preconds

((<vessel> Vessel)

(<spilled-oil> Spilled-oil)

(<sea-sector> Sea-sector)

;; the call to numberp forces <rate> to be bound.

(<rate> (and Numerical (numberp <rate>) (> <rate> 0)))

(<sea-state> (and Sea-state (gfp (sea-state <sea-sector> <sea-state>))))

(<vessel-boom-length> (and Numerical

(gfp (vessel-boom-length

<vessel> <vessel-boom-length>)))))

(and (boom-level>= <vessel> <vessel-boom-length> <sea-sector> <sea-state>)

(portable-skim-level>= <vessel> <sea-sector> <sea-state> <rate>)

))

(effects ()

((add (boom-assembled <vessel> <sea-sector>))

(add (stabilize-discharge-rate <vessel> <spilled-oil> <sea-sector>

<rate>)))))
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(operator stabilize-discharge-by-towing-to-port

(params <vessel> <spilled-oil> <sea-sector1> <sea-port>

<tug> <rate>)

(duration

(let ((distance (or (known-unique '(distance <sea-port> <sea-sector1> <x>))

100))

(speed (or (known-unique '(tow-speed-knots <tug> <x>)) 2)))

(/ distance speed)))

(preconds

((<vessel> Vessel)

(<spilled-oil> Spilled-oil)

(<sea-sector1> Sea-sector)

(<rate> (and Numerical (> <rate> 0)))

(<displacement> (and Numerical

(gfp (displacement <vessel> <displacement>))))

(<sea-port> (and Seaport (berth-greater <sea-port> <displacement>)))

(<tug> (and Tug (diff <tug> <vessel>))))

(and (~ (in-use <tug>))

(located <tug> <sea-sector1>)))

(effects ()

((add (stabilize-discharge-rate <vessel> <spilled-oil> <sea-sector1>

<rate>))

(add (tanker-towed <vessel> <tug> <sea-sector1> <sea-port>)))))

;;; OIL CONTAINMENT, COUNTERMEASURES, AND RECOVERY OPERATORS

(inference-rule begin-remove-oil ;; no preconditions

(effects () ((add (remove-oil-steps <spilled-oil> 0)))))

(inference-rule open-water-recovery

(params <spilled-oil> <sea-sector> )

(preconds

((<spilled-oil> Spilled-oil)

(<sea-sector> (and Sea-sector

(get-covered-sector <sea-sector> <spilled-oil>)))

(<new-steps> (and Numerical (> <new-steps> 0)))

(<old-steps> (and Numerical (sub1 <new-steps> <old-steps>))))

(and (remove-oil-steps <spilled-oil> <old-steps>)

(recovery-open-water <spilled-oil> <sea-sector>)

))

(effects () ((del (remove-oil-steps <spilled-oil> <old-steps>))

(add (remove-oil-steps <spilled-oil> <new-steps>)))))

(operator perform-open-water-recovery

(params <spilled-oil> <sea-sector> <discharge-rate>)

(preconds

((<spilled-oil> Spilled-oil)

(<sea-sector>

(and Sea-sector (get-covered-sector <sea-sector> <spilled-oil>)))

(<vessel> Vessel)

(<discharge-rate>
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(and Numerical

(gfp (discharge-rate <vessel> <spilled-oil> <discharge-rate>))))

(<amount-spilled>

(and Numerical

(gfp (amount-spilled <spilled-oil> <sea-sector> <amount-spilled>)))))

(and (mobile-skim-level>= <sea-sector> <discharge-rate>)

(store-level>= <sea-sector> <amount-spilled>)))

(effects ()

((add (recovery-open-water <spilled-oil> <sea-sector>))))

(duration (/ <amount-spilled> <discharge-rate>)))

(inference-rule shallow-water-recovery

(params <spilled-oil> <sea-sector>)

(preconds

((<spilled-oil> Spilled-oil)

(<sea-sector>

(and Sea-sector (get-covered-sector <sea-sector> <spilled-oil>)))

(<sea-state>

(and Sea-state (gfp (sea-state <sea-sector> <sea-state>))))

(<new-steps> (and Numerical (> <new-steps> 0)))

(<old-steps> (and Numerical (sub1 <new-steps> <old-steps>))))

(and (remove-oil-steps <spilled-oil> <old-steps>)

(recovery-shallow-water <spilled-oil> <sea-sector>)))

(effects ()

((del (remove-oil-steps <spilled-oil> <old-steps>))

(add (remove-oil-steps <spilled-oil> <new-steps>)))))

(operator perform-shallow-water-recovery

(params <spilled-oil> <sea-sector> )

(preconds

((<spilled-oil> Spilled-oil)

(<sea-sector>

(and Sea-sector (get-covered-sector <sea-sector> <spilled-oil>)))

(<sea-state> (and Sea-state (gfp (sea-state <sea-sector> <sea-state>))))

(<boom-length>

(and Numerical

(gfp (boom-length <spilled-oil> <sea-sector> <boom-length>))))

(<vessel> vessel)

(<discharge-rate>

(and Numerical

(gfp (discharge-rate <vessel> <spilled-oil> <discharge-rate>))))

(<amount-spilled>

(and Numerical

(gfp (amount-spilled <spilled-oil> <sea-sector> <amount-spilled>)))))

(and (boom-level>= <sea-sector> <sea-state> <boom-length>)

(portable-skim-level>= <sea-sector> <discharge-rate> <sea-state>)

(store-level>= <sea-sector> <amount-spilled>)))

(effects ()

((add (boom-assembled <boom-length> <sea-sector>))

(add (recovery-shallow-water <spilled-oil> <sea-sector>)))))

(inference-rule apply-chemical-dispersant
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(params <spilled-oil> <sea-sector>)

(preconds

((<spilled-oil> spilled-oil)

(<sea-sector>

(and sea-sector (get-covered-sector <sea-sector> <spilled-oil>)))

(<new-steps> (and Numerical (> <new-steps> 0)))

(<old-steps> (and Numerical (sub1 <new-steps> <old-steps>))))

(and (remove-oil-steps <spilled-oil> <old-steps>)

(apply-dispersant <spilled-oil> <sea-sector>)))

(effects

()

((del (remove-oil-steps <spilled-oil> <old-steps>))

(add (remove-oil-steps <spilled-oil> <new-steps>)))))

(operator get-chem-dispersant

(params <dispersant> <spilled-oil> <sea-sector> )

(duration 1)

(preconds

((<spilled-oil> spilled-oil)

(<sea-sector> sea-sector)

(<dispersant> Dispersant))

(and (~ (use-prohibited <dispersant>))

(located <dispersant> <sea-sector>)))

(effects

()

((add (apply-dispersant <spilled-oil> <sea-sector> )))))

(inference-rule in-situ-oil-burning

(params <spilled-oil> <sea-sector> )

(preconds

((<spilled-oil> spilled-oil)

(<sea-sector>

(and sea-sector (get-covered-sector <sea-sector> <spilled-oil>)))

(<new-steps> (and Numerical (> <new-steps> 0)))

(<old-steps> (and Numerical (sub1 <new-steps> <old-steps>))))

(and (remove-oil-steps <spilled-oil> <old-steps>)

(burn-oil-in-situ <spilled-oil> <sea-sector> )))

(effects

()

((del (remove-oil-steps <spilled-oil> <old-steps>))

(add (remove-oil-steps <spilled-oil> <new-steps>)))))

(operator perform-in-situ-burning ;; no preconditions

(duration 1)

(effects () ((add (burn-oil-in-situ <spilled-oil> <sea-sector>)))))

;;; SHORE PROTECTION AND CLEAN UP OPERATORS

(inference-rule start-protecting-shore ;; no preconditions

(effects ((add (protect-shore-steps <spilled-oil> <sensitive-area> 0)))))
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(operator shore-exclusion-booming

(params <spilled-oil> <sensitive-area> )

(preconds

((<spilled-oil> spilled-oil)

(<sensitive-area> sensitive-area)

(<land-sector>

(and Land-sector (mygfp 'located-within <sensitive-area> <land-sector>)))

(<sea-sector>

(and Sea-sector (adjacent <land-sector> <sea-sector>)))

(<exc-boom>

(and Numerical

(gfp (exclusion-boom-required <sensitive-area> <exc-boom>))))

(<personnel>

(and Numerical

(gfp (boom-personnel-required <sensitive-area> <personnel>))))

(<new-steps> (and Numerical (> <new-steps> 0)))

(<old-steps> (and Numerical (sub1 <new-steps> <old-steps>))))

(and (protect-shore-steps <spilled-oil> <sensitive-area> <old-steps>)

(boom-level>= <sensitive-area> <exc-boom> <sea-sector>)))

(effects ()

((del (protect-shore-steps <spilled-oil> <sensitive-area> <old-steps>))

(add (protect-shore-steps <spilled-oil> <sensitive-area> <new-steps>))

(add (boom-personnel-deployed <personnel> <sensitive-area>))

(add (boom-assembled <exc-boom> <sensitive-area>))

(add (barrier-provided <sensitive-area>)))))

(operator shore-diversion-booming

(params <spilled-oil> <sensitive-area>)

(preconds

((<spilled-oil> spilled-oil)

(<sensitive-area> sensitive-area)

(<land-sector>

(and Land-sector (mygfp 'located-within <sensitive-area> <land-sector>)))

(<sea-sector>

(and Sea-sector (adjacent <land-sector> <sea-sector>)))

(<amount-spilled>

(and Numerical (gfp (amount-spilled <spilled-oil> <sea-sector>

<amount-spilled>))))

(<div-boom>

(and Numerical

(gfp (diversion-boom-required <sensitive-area> <div-boom>))))

(<personnel>

(and Numerical

(gfp (boom-personnel-required <sensitive-area> <personnel>))))

(<new-steps> (and Numerical (> <new-steps> 0)))

(<old-steps> (and Numerical (sub1 <new-steps> <old-steps>))))

(and (protect-shore-steps <spilled-oil> <sensitive-area> <old-steps>)

(boom-level>= <sensitive-area> <div-boom>)

(vacuum-level>= <sensitive-area> <amount-spilled>)))

(effects ()

((del (protect-shore-steps <spilled-oil> <sensitive-area> <old-steps>))

(add (protect-shore-steps <spilled-oil> <sensitive-area> <new-steps>))
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(add (boom-personnel-deployed <personnel> <sensitive-area>))

(add (boom-assembled <div-boom> <sensitive-area>))

(add (barrier-provided <sensitive-area>)))))

(operator berms-and-dams

(params <spilled-oil> <sensitive-area> )

(preconds

((<spilled-oil> spilled-oil)

(<sensitive-area> sensitive-area)

(<new-steps> (and Numerical (> <new-steps> 0)))

(<old-steps> (and Numerical (sub1 <new-steps> <old-steps>)))

(<personnel>

(and Numerical (gfp (shore-personnel-required

<sensitive-area> <personnel>))))

(<land-sector> (and Land-sector

(mygfp 'located-within <sensitive-area> <land-sector>)))

(<sea-sector> (and Sea-sector (adjacent <sea-sector> <land-sector>)))

(<amount-spilled>

(and Numerical (gfp (amount-spilled <spilled-oil> <sea-sector>

<amount-spilled>)))))

(and (protect-shore-steps <spilled-oil> <sensitive-area> <old-steps>)

(barrier-provided <sensitive-area>)

(vacuum-level>= <sensitive-area> <amount-spilled>)))

(effects ()

((del (protect-shore-steps <spilled-oil> <sensitive-area> <old-steps>))

(add (protect-shore-steps <spilled-oil> <sensitive-area> <new-steps>))

(add (shore-personnel-deployed <personnel> <sensitive-area>)))))

(operator cleanup-shore

(params <spilled-oil> <sensitive-area> )

(duration 1)

(preconds

((<spilled-oil> spilled-oil)

(<sensitive-area> sensitive-area)

(<new-steps> (and Numerical (> <new-steps> 0)))

(<old-steps> (and Numerical (sub1 <new-steps> <old-steps>)))

(<shore-personnel>

(and Numerical (gfp (shore-personnel-required

<sensitive-area> <shore-personnel>))))

(<land-sector> (and Land-sector

(mygfp 'located-within <sensitive-area> <land-sector>)))

(<sea-sector> (and Sea-sector

(adjacent <sea-sector> <land-sector>)))

(<amount-spilled>

(and Numerical (gfp (amount-spilled <spilled-oil> <sea-sector>

<amount-spilled>))))

(<boom-personnel>

(and Numerical (gfp (boom-personnel-required

<sensitive-area> <boom-personnel>))))

(<containment-boom-required>

(and Numerical (gfp (containment-boom-required

<containment-boom-required>)))))
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(and (protect-shore-steps <spilled-oil> <sensitive-area> <old-steps>)

(boom-level>= <sensitive-area> <containment-boom-required>)

(vacuum-level>= <sensitive-area> <amount-spilled>)))

(effects ()

((del (protect-shore-steps <spilled-oil> <sensitive-area> <old-steps>))

(add (protect-shore-steps <spilled-oil> <sensitive-area> <new-steps>))

(add (boom-personnel-deployed <boom-personnel> <sensitive-area>))

(add (boom-assembled <containment-boom-required> <sensitive-area>))

(add (barrier-provided <sensitive-area> ))

(add (shore-personnel-deployed <shore-personnel> <sensitive-area>)))))

;;; RECONNAISSANCE OPERATORS

(operator recon-polluted-sectors-by-sea ;; no preconditions

(effects () ((add (recon-performed <spilled-oil> <sea-sector>)))))

(operator recon-polluted-sectors-by-air ;; no preconditions

(effects () ((add (recon-performed <spilled-oil> <sea-sector>)))))

;;; LEVEL 3:

(inference-rule enough-boom1 ;; no preconditions

(effects () ((add (boom-level>= <vessel> <length> <sea-sector> <sea-state>)))))

(inference-rule enough-boom2 ;; no preconditions

(effects () ((add (boom-level>= <sea-sector> <sea-state> <length>)))))

;;; get-boom-to-contain-vessel

(operator get-boom-to-contain-vessel

(params <vessel> <boom> <length-required> <sea-sector> <sea-state>)

(preconds

((<vessel> Vessel)

(<length-required> (and Numerical (numberp <length-required>)

(> <length-required> 0)))

(<sea-sector> sea-sector)

(<sea-state> Sea-state)

(<boom> (and Boom (gfp (in-service <boom>))

(sea-state-greater <boom> <sea-state>)))

(<max-sea-state> (and Numerical

(gfp (max-sea-state <boom> <max-sea-state>))))

(<length> (and Numerical (gfp (length-boom-ft <boom> <length>))))

(<length-left>

(and Numerical (sub <length-required> <length> <length-left>))))

(and (~ (boom-deployed <boom>))

(located <boom> <sea-sector>)

(sea-state-calmer <sea-sector> <max-sea-state>)

(boom-level>= <vessel> <length-left> <sea-sector> <sea-state>)))

(effects ()

((del (boom-level>= <vessel> <length-left> <sea-sector> <sea-state>))

(add (boom-level>= <vessel> <length-required> <sea-sector> <sea-state>))

(add (boom-assembled <vessel> <sea-sector>))
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(add (boom-deployed <boom>)))))

;;; get-boom-to-sea-sector

(operator get-boom-to-sea-sector

(params <sea-sector> <boom> <length-required>)

(preconds

((<sea-sector> sea-sector)

(<sea-state> sea-state)

(<length-required> (and numerical (> <length-required> 0)))

(<boom> (and Boom (gfp (in-service <boom>))

(sea-state-greater <boom> <sea-state>)))

(<max-sea-state>

(and Numerical (gfp (max-sea-state <boom> <max-sea-state>))))

(<length> (and Numerical (gfp (length-boom-ft <boom> <length>))))

(<length-left>

(and Numerical (sub <length-required> <length> <length-left>))))

(and (sea-state-calmer <sea-sector> <max-sea-state>)

(located <boom> <sea-sector>)

(boom-level>= <sea-sector> <sea-state> <length-left>)))

(effects ()

((del (boom-level>= <sea-sector> <sea-state> <length-left>))

(add (boom-level>= <sea-sector> <sea-state> <length-required>))

(add (boom-deployed <boom>)))))

;;; get-boom-to-sensitive-area

(operator get-boom-to-sensitive-area

(params <sensitive-area> <boom> <length-required> <sea-sector>)

(preconds

((<sensitive-area> sensitive-area)

(<length-required> (and Numerical (> <length-required> 0)))

(<sea-sector> sea-sector)

(<sea-state> (and Numerical (gfp (sea-state <sea-sector> <sea-state>))))

(<boom> (and Boom (in-service <boom>)

(sea-state-greater <boom> <sea-state>)))

(<max-sea-state>

(and Numerical (gfp (max-sea-state <boom> <max-sea-state>))))

(<length> (and Numerical (gfp (length-boom-ft <boom> <length>))))

(<length-left>

(and Numerical (sub <length-required> <length> <length-left>))))

(and (sea-state-calmer <sea-sector> <max-sea-state>)

(located <boom> <sea-sector>)

(boom-level>= <sensitive-area> <length-left> <sea-sector>)))

(effects ()

((del (boom-level>= <sensitive-area> <length-left> <sea-sector>))

(add (boom-level>= <sensitive-area> <length-required> <sea-sector>))

(add (boom-deployed <boom>)))))

(inference-rule begin-skim ;; no preconditions

(preconds

((<discharge-rate> (and Numerical (>= 0 <discharge-rate>)))))
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(effects ()

((add (portable-skim-level>= <vessel> <sea-sector> <sea-state>

<discharge-rate>)))))

(inference-rule begin-skim2 ;; no preconditions

(preconds

((<discharge-rate> (and Numerical (>= 0 <discharge-rate>)))))

(effects ()

((add (portable-skim-level>= <sea-sector> <discharge-rate> <sea-state>)))))

(inference-rule begin-skim3 ;; no preconditions

(preconds

((<mskim-rate> (and Numerical (>= 0 <mskim-rate>)))))

(effects () ((add (mobile-skim-level>= <sea-sector> <mskim-rate>)))))

;;; get-skimmer-to-skim-near-vessel

(operator get-skimmer-to-skim-near-vessel

(params <vessel> <p-skimmer> <sea-sector> <sea-state> <discharge-rate>)

(duration 1)

(preconds

((<vessel> vessel)

(<sea-sector> sea-sector)

(<sea-state> sea-state)

(<discharge-rate> (and Numerical (> <discharge-rate> 0)))

(<p-skimmer> (and Portable-skimmer

(skimmer-sea-state-greater <p-skimmer> <sea-state>)

(not (gfp (in-use <p-skimmer>)))))

(<max-sea-state> (and Numerical

(gfp (max-sea-state <p-skimmer> <max-sea-state>))))

(<skim-rate>

(and Numerical (gfp (skim-rate-bbl-per-hr <p-skimmer> <skim-rate>))))

(<discharge-left>

(and Numerical (sub <discharge-rate> <skim-rate> <discharge-left>)))

(<sweep-product>

(and Numerical (gfp (sweep-product <p-skimmer> <sweep-product>)))))

(and

(~ (in-use <p-skimmer>))

(~ (skimmer-employed <p-skimmer> <vessel>)) ; sorry about the redundancy

(located <p-skimmer> <sea-sector>)

(boom-assembled <vessel> <sea-sector>)

(sea-state-calmer <sea-sector> <max-sea-state>) ; Jim 4/96

(portable-skim-level>=

<vessel> <sea-sector> <sea-state> <discharge-left>)))

(effects ()

((del (portable-skim-level>=

<vessel> <sea-sector> <sea-state> <discharge-left>))

(add (portable-skim-level>=

<vessel> <sea-sector> <sea-state> <discharge-rate>))

;;(del (free <p-skimmer>))

(add (skimmer-employed <p-skimmer> <vessel>)))))
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;;; get-portable-skimmer-to-skim-sea-sector

(operator get-portable-skimmer-to-skim-sea-sector

(params <sea-sector> <p-skimmer> <pskim-rate-needed>)

(duration 1)

(preconds

((<sea-sector> sea-sector)

(<sea-state> sea-state)

(<pskim-rate-needed> (and Numerical (> <pskim-rate-needed> 0)))

(<p-skimmer> (and Portable-skimmer

(skimmer-sea-state-greater <p-skimmer> <sea-state>)))

(<max-sea-state>

(and Numerical (gfp (max-sea-state <p-skimmer> <max-sea-state>))))

(<skim-rate>

(and Numerical (gfp (skim-rate-bbl-per-hr <p-skimmer> <skim-rate>))))

(<pskim-rate-left>

(and Numerical (sub <pskim-rate-needed> <skim-rate> <pskim-rate-left>)))

(<assembled>

(and Numerical (gfp (boom-assembled <assembled> <sea-sector>)))))

(and (~ (in-use <p-skimmer>))

(located <p-skimmer> <sea-sector>)

(sea-state-calmer <sea-sector> <max-sea-state>)

(portable-skim-level>= <sea-sector> <pskim-rate-left> <sea-state>)))

(effects ()

((del (portable-skim-level>= <sea-sector> <pskim-rate-left> <sea-state>))

(add (portable-skim-level>= <sea-sector> <pskim-rate-needed> <sea-state>))

(add (in-use <p-skimmer>))

(add (skimmer-employed <p-skimmer>)))))

(operator get-mobile-skimmer

(params <sea-sector> <m-skimmer> <mskim-rate-needed> <worst-sea-state>)

(duration 1)

(preconds

((<sea-sector> sea-sector)

(<mskim-rate-needed> (and Numerical (> <mskim-rate-needed> 0)))

;; use to be generated by skimmer-sea-state-greater

(<m-skimmer> self-mobile-skimmer)

(<worst-sea-state> (and sea-state (gfp (max-sea-state <m-skimmer> <worst-sea-state>))))

(<skim-rate>

(and Numerical (gfp (skim-rate-bbl-per-hr <m-skimmer> <skim-rate>))))

(<mskim-rate-left>

(and Numerical (sub <mskim-rate-needed> <skim-rate>

<mskim-rate-left>)))

)

(and (located <m-skimmer> <sea-sector>)

(sea-state-calmer <sea-sector> <worst-sea-state>)

(~ (in-use <m-skimmer>))

(mobile-skim-level>= <sea-sector> <mskim-rate-left>)))

(effects ()

((del (mobile-skim-level>= <sea-sector> <mskim-rate-left>))

(add (mobile-skim-level>= <sea-sector> <mskim-rate-needed>))
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(add (skimmer-employed <m-skimmer>)))))

;; (store-level>= <sea-sector> <amount-spilled>)

(inference-rule begin-storing ;; no preconditions

(preconds

((<store-needed> (and numerical (>= 0 <store-needed>)))))

(effects () ((add (store-level>= <sea-sector> <store-needed>)))))

(operator get-tank-barge-to-sea-sector

(params <barge> <sea-sector> <storage-level-needed>)

(duration 1)

(preconds

((<sea-sector> sea-sector)

(<storage-level-needed> (and Numerical (> <storage-level-needed> 0)))

(<barge> tank-barge)

(<worst-sea> (and sea-state (gfp (max-sea-state <barge> <worst-sea>))))

(<cap> (and Numerical (gfp (barge-capacity-bbl <barge> <cap>))))

(<store-left> (and Numerical (sub <storage-level-needed> <cap>

<store-left>))))

(and (located <barge> <sea-sector>)

(sea-state-calmer <sea-sector> <worst-sea>)

(store-level>= <sea-sector> <store-left>)))

(effects

()

((del (store-level>= <sea-sector> <store-left>))

(add (store-level>= <sea-sector> <storage-level-needed>))

(add (oil-pumped <sea-sector> <barge>))

)))

(operator get-dracon-barge-to-sea-sector

(params <sea-sector> <storage-level-needed>)

(duration 1)

(preconds

((<sea-sector> sea-sector)

(<storage-level-needed> (and Numerical (> <storage-level-needed> 0)))

(<barge> dracon-barge)

(<worst-sea> (and sea-state

(mygfp 'max-sea-state <barge> <worst-sea>)))

(<cap> (and Numerical (gfp (barge-capacity-bbl <barge> <cap>))))

(<store-left> (and Numerical (sub <storage-level-needed> <cap>

<store-left>))))

(and (sea-state-calmer <sea-sector> <worst-sea>)

(located <barge> <sea-sector>)

(store-level>= <sea-sector> <store-left>)))

(effects ()

((del (store-level>= <sea-sector> <store-left>))

(add (store-level>= <sea-sector> <storage-level-needed>))

(add (oil-pumped <sea-sector> <barge>))

)))

(operator get-tractor-to-sensitive-area
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(params <sensitive-area>)

(duration 1)

(preconds

((<sensitive-area> sensitive-area)

(<tractor> tractor))

(and (free <tractor>)

(located <tractor> <sensitive-area>)))

(effects ()

((del (free <tractor>))

(add (barrier-provided <sensitive-area>)))))

(inference-rule free-if-available

(params <resource>)

(preconds

((<resource> Env-resource)

(<time> (and Numerical (mygfp 'available <resource> <time>))))

(and (available <resource> <time>)

(~ (freed-once <resource>))))

(effects ()

((add (free <resource>))

(add (freed-once <resource>)))))

;;; (vacuum-level>= <sensitive-area> <amount-spilled> <latest>)

(inference-rule begin-vacuum ;; no preconditions

(preconds

((<amount> (and Numerical (>= 0 <amount>)))))

(effects () ((add (vacuum-level>= <sensitive-area> <amount>)))))

(operator get-vacuum-truck

(params <sensitive-area> <amount-needed> <truck>)

(duration 1)

(preconds

((<sensitive-area> sensitive-area)

(<amount-needed> (and Numerical (> <amount-needed> 0)))

(<truck> Vacuum-truck)

(<cap> (and Numerical (gfp (capacity-bbl <truck> <cap>))))

(<amount-left> (and Numerical (sub <amount-needed> <cap> <amount-left>))))

(and (located <truck> <sensitive-area>)

(barrier-provided <sensitive-area>)

(vacuum-level>= <sensitive-area> <amount-left>)))

(effects ()

((del (vacuum-level>= <sensitive-area> <amount-left> ))

(add (vacuum-level>= <sensitive-area> <amount-needed> ))

(add (oil-removed <truck> <sensitive-area>)))))

;;; DEPLOYMENT OPERATIONS

(operator move-self-mobile-skimmer-by-sea ;; no preconditions

(preconds
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((<seaport> (and seaport (mygfp 'located <skimmer> <seaport>)))))

(effects ()

((del (located <skimmer> <seaport>))

(add (located <skimmer> <sea-sector>)))))

(operator move-response-equipment-by-sea1a ;; no preconditions

(duration

(let ((dist (known-unique `(distance <seaport> <sea-sector> <d>))))

(if dist

(/ dist 15) ; assume 15 knots.

10)))

(preconds

((<boat> (and platform-workboat (mygfp 'located-within <equip> <boat>)))

(<seaport> (and seaport (mygfp 'located <boat> <seaport>)))))

(effects ()

((del (located <boat> <seaport>))

(add (located <boat> <sea-sector>))

(add (located <equip> <sea-sector>)))))

(operator move-response-equipment-by-sea1b ;; no preconditions

(duration

(let ((dist (known-unique `(distance <seaport> <sea-sector> <d>))))

(if dist

(/ dist 15) ; assume 15 knots.

10)))

(preconds

((<seaport> (and seaport (mygfp 'located <equip> <seaport>)))))

(effects ()

((del (located <equip> <seaport>))

(add (located <equip> <sea-sector>))

)))

(operator move-response-equipment-by-sea2a ;; no preconditions

(params <equip> <seaport1>)

(duration 10)

(preconds

((<boat> (and platform-workboat (mygfp 'located-within <equip> <boat>)))

(<seaport2> (and seaport (mygfp 'located <boat> <seaport2>)))))

(effects ()

((del (located <boat> <seaport2>))

(add (located <boat> <seaport1>))

(add (located <equip> <seaport1>)))))

(operator move-response-equipment-by-sea2b ;; no preconditions

(params <equip> <seaport1>)

(preconds

((<seaport2> (and seaport (mygfp 'located <equip> <seaport2>)))))

(effects ()

((del (located <equip> <seaport2>))

(add (located <equip> <seaport1>)))))

(operator move-response-equipment-by-sea3a ;; no preconditions
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(preconds

((<pboat> (and platform-workboat (mygfp 'located-within <equip> <pboat>)))

(<seaport> (and seaport (mygfp 'located <pboat> <seaport>)))))

(effects ()

((del (located <pboat> <seaport>))

(add (located <pboat> <sensitive-area>))

(add (located <equip> <sensitive-area>)))))

(operator move-response-equipment-by-sea3b ;; no preconditions

(preconds

((<seaport> (and seaport (mygfp 'located <equip> <seaport>)))))

(effects () ((add (located <equip> <sensitive-area>)))))

(operator move-response-equipment-by-sea4 ;; no preconditions

(preconds

((<from-sea-sector> (and sea-sector

(mygfp 'located <equip> <from-sea-sector>)))

(<to-sea-sector> (and sea-sector (diff <from-sea-sector> <to-sea-sector>)))))

(effects () ((add (located <equip> <to-sea-sector>)))))

(operator move-response-equipment-by-ground

(params <equip> <from-location> <to-location>)

(duration 1)

(preconds

((<equip> response-equipment)

(<from-location> (and location (mygfp 'located <equip> <from-location>)))

(<to-location> (and location (diff <from-location> <to-location>)))

)

(located <equip> <from-location>))

(effects ()

((add (located <equip> <to-location>)))))

(operator move-response-equipment-by-air

(params <equip> <from-airfield> <to-airfield>)

(duration 1)

(preconds

((<equip> response-equipment)

(<rand-loc> (and location (mygfp 'located <equip> <rand-loc>)))

(<from-airfield> airfield)

(<to-airfield> (and airfield (diff <from-airfield> <to-airfield>)))

)

(located <equip> <from-airfield>))

(effects ()

((del (located <equip> <from-airfield>))

(add (located <equip> <to-airfield>)))))

(operator move-heavy-equip-by-ground1 ;; no preconditions

(params <heavy> <from-loc> <to-land>)

(duration 1)

(preconds

((<heavy> heavy-equipment)

(<from-loc> (and location (mygfp 'located <heavy> <from-loc>)))
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(<to-land> land-sector)))

(effects ()

((del (located <heavy> <from-loc>))

(add (located <heavy> <to-land>)))))

(operator move-heavy-equip-by-ground2 ;; no preconditions

(params <heavy> <from-loc> <to-loc>)

(duration 1)

(preconds

((<heavy> heavy-equipment)

(<from-loc> (and location (mygfp 'located <heavy> <from-loc>)))))

(effects ()

((del (located <heavy> <from-loc>))

(add (located <heavy> <to-loc>)))))

(operator move-team-by-ground ;; no preconditions

(effects () ((add (located <team> <seaport>)))))

(operator move-team-by-sea ;; no preconditions

(preconds

((<seaport> (and seaport (mygfp 'located <team> <seaport>)))))

(effects ()

((del (located <team> <seaport>))

(add (located <team> <sea-sector>)))))

(operator move-team-by-air ;; no preconditions

(preconds

((<from-airfield> (and airfield (mygfp 'located <team> <from-airfield>)))))

(effects ()

((del (located <team> <from-airfield>))

(add (located <team> <to-airfield>)))))

(operator move-to-sea-sector-from-port ;; no preconditions

(duration

(let ((distance (or (known-unique `(distance <seaport> <sea-sector> <x>))

100))

(max-speed (or (known-unique `(max-speed <vessel> <x>)) 10)))

(/ distance max-speed))) ; a little optimistic..

(preconds

((<seaport> (and seaport (mygfp 'located <vessel> <seaport>)))))

(effects ()

((del (located <vessel> <seaport>))

(add (located <vessel> <sea-sector>)))))

;;;============================================================

;;; Weather

;;;============================================================

(inference-rule calm-enough

(params <sea-sector> <sea-state> <worst-state>)

(preconds

((<sea-sector> Sea-sector)
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(<worst-state> sea-state)

(<sea-state> (and sea-state

(gfp (sea-state <sea-sector> <sea-state>))

(<= <sea-state> <worst-state>))))

(sea-state <sea-sector> <sea-state>))

(effects ()

((add (sea-state-calmer <sea-sector> <worst-state>)))))

;;;============================================================

;;; Eager inference rules

;;;============================================================

;;; sea-state should be primed from sea-state 0. Has to be eager

;;; because the sea states are typically queried with gen-from-pred.

(inference-rule initial-sea-state

(params <sector> <state>)

(mode eager)

(preconds

((<sector> Sea-sector)

(<state> (and Numerical (earliest-sea-state <sector> <state>))))

(and))

(effects ()

((add (sea-state <sector> <state>)))))

(inference-rule initial-amount-spilled

(params <oil> <sector> <amount>)

(mode eager)

(preconds

((<oil> Spilled-oil)

(<sector> Sea-sector)

(<amount> (and Numerical

(earliest-amount-spilled <oil> <sector> <amount>))))

(and))

(effects ()

((add (amount-spilled <oil> <sector> <amount>)))))

;;;============================================================

;;; Events

;;;============================================================

;;; These declare that the literals are functional on the given argument.

(setf *lit-function-translations*

'(

((sea-state <sector> <state>)

((sea-state <sector>) <state>))

((located <obj> <place>) ((located <obj>) <place>))

((mobile-skim-level>= <sector> <rate>)

((mobile-skim-level>= <sector>) <rate>))

((remove-oil-steps <oil> <steps>) ((remove-oil-steps <oil>) <steps>))
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((amount-spilled <oil> <sector> <amount>)

((amount-spilled <oil> <sector>) <amount>))

))

(setf *lits-to-ignore* nil)

;;; A range can be handled directly in the Bayes net, which is much

;;; more efficient than the other methods. Note that the link in the

;;; BN is still done through the inference rule (calm-enough),

;;; but the table is filled in using the fact that it is a range.

(setf *lit-ranges*

'((calm-enough

(sea-state-calmer <sector> <val>)

(sea-state <sector>) <= <worst-state>)))

(event sea-gets-worse

(params <sea-sector> <old-sea-state> <new-sea-state>)

(probability 0.1)

(preconds

((<sea-sector> Sea-Sector)

(<old-sea-state> Sea-State)

(<new-sea-state> (and Sea-State (add1 <old-sea-state> <new-sea-state>)

(< <new-sea-state> 7)

)))

(sea-state <sea-sector> <old-sea-state>))

(effects ()

((del (sea-state <sea-sector> <old-sea-state>))

(add (sea-state <sea-sector> <new-sea-state>)))))

(event sea-gets-better

(params <sea-sector> <old-sea-state> <new-sea-state>)

(probability 0.1)

(preconds

((<sea-sector> Sea-Sector)

(<old-sea-state> Sea-State)

(<new-sea-state> (and Sea-State (sub1 <old-sea-state> <new-sea-state>)

(> <new-sea-state> 0)

)))

(sea-state <sea-sector> <old-sea-state>))

(effects ()

((del (sea-state <sea-sector> <old-sea-state>))

(add (sea-state <sea-sector> <new-sea-state>)))))

(event oil-spills

(params <spilled-oil> <sea-sector> <rate> <new>)

(probability 0.2)

(preconds

((<spilled-oil> Spilled-oil)

(<vessel> Vessel)

(<vessel-boom-length>

;; not gfp because I want this to have a default value (0).

(and Numerical (vessel-boom-length <vessel> <vessel-boom-length>)))
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(<sea-sector> ;;(and Sea-sector (gfp (located <vessel> <sea-sector>)))

Sea-sector

)

;; uh oh. (if left in this will collapse the MC)

(<sea-state> (and Numerical (gfp (sea-state <sea-sector> <sea-state>))))

(<rate> (and Numerical

(gfp (discharge-rate <vessel> <spilled-oil> <rate>))))

(<total> (and Numerical

(gfp (discharge-size <vessel> <spilled-oil> <total>))))

(<old> ;; the numberp call forces it to be bound.

(and Numerical (numberp <old>) (< <old> <total>)))

(<new> (and Numerical (add-with-ceiling <old> <rate> <total> <new>)

;; can't spill more than there is.

(<= <new> <total>)

)))

(and

(~ (boom-level>= <vessel> <vessel-boom-length> <sea-sector> <sea-state>))

;; sorry for the double negative in the next predicate, will fix.

(~ (no-discharge <vessel> <spilled-oil> <sea-sector>))

(amount-spilled <spilled-oil> <sea-sector> <old>)

;;(~ (covered-sector <spilled-oil> <sea-sector>))

))

;; taken eveything out so as not to have spurious nodes in the markov

;; chain.

(effects ()

(;;(add (some-spilled <spilled-oil> <vessel>))

;; this is a trigger for the eager inference rule below.

;;(add (new-spill <vessel> <spilled-oil> <sea-sector>))

(del (amount-spilled <spilled-oil> <sea-sector> <old>))

(add (amount-spilled <spilled-oil> <sea-sector> <new>))

;;(add (boom-length <spilled-oil> <sea-sector> 100)) ; entirely arbitrary.

;;(add (covered-sector <spilled-oil> <sea-sector>))

)))

;;; used to change each place from not threatened to threatened

;;; independently. Now "moves" the threat from one shore to another.

;;; This event highlights a problem with the syntax. I wanted to have

;;; only one such event fire, and use multiple outcomes to decide

;;; which new shoreline is chosen. But since there is a variable

;;; number of shorelines I can't represent them. So I will allow

;;; several such events to potentially fire although they are mutually

;;; exclusive because their results conflict. This means their

;;; probabilities have to be figured as mutually exclusive events

;;; although they're represented here as the independent

;;; probabilities. For example, two of these things at 0.1 probability

;;; means p(event 1) = 0.095 p(event 2) = 0.095 p(nothing) =

(event threatened-shore-changes

(params <from-area> <to-area> <oil>)

(probability 0.1)

(preconds

((<oil> Spilled-oil)
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(<sea-sector> Sea-Sector)

;; Strictly, these bindings should make this event depend on oil-spills.

;; Syntactically they don't because this requires the predicate to

;; be present with any amount, and so does oil-spills.

(<amount> (and Numerical

(gfp (amount-spilled <oil> <sea-sector> <amount>))

(> <amount> 0)))

(<from-area> (and Sensitive-Area

(potentially-threatened <from-area> <oil>)))

(<to-area> (and Sensitive-Area

(potentially-threatened <to-area> <oil>)

(diff <from-area> <to-area>))))

(~ (threatened-shoreline <oil> <sensitive-area-2>)))|#

;; the above is better when this is not a functional literal, below

;; is better when it is.

(threatened-shoreline <oil> <from-area>))

(effects ()

((del (threatened-shoreline <oil> <from-area>))

(add (threatened-shoreline <oil> <to-area>)))))

(setf *events-not-to-negate*

'(sea-gets-better ; King Canute might have something

sea-gets-worse ; to say about this

threatened-shore-changes))

;;;============================================================

;;; Control rules

;;;============================================================

;;; This is a general one for conditional planning, that prefers goals

;;; without contexts over goals with them. This might not win in

;;; general, but it does seem to in this domain (so far).

(control-rule prefer-no-context

(if (and (candidate-goal <g1>)

(goal-has-context <g2>)

(~ (goal-has-context <g1>))))

(then prefer goal <g1> <g2>))

(defun goal-has-context (goal)

(if (p4::lit-context goal) t nil))

;;; On the other hand if a goal becomes unsolvable in some context, I

;;; want to quickly work on the parent goal.

;;; The specialization makes the planner incomplete, because one

;;; option is to wait for the sea to calm, but I want to quickly shut

;;; planning down on that path because it will have low probability.

;;; Note: this rule must have priority over the rule below that

;;; selects the sea-state-calmer rule only.
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(control-rule promote-parent-goal-in-context

(if (and (candidate-goal (sea-state-calmer <sector> <state>))

;; May as well select it anyway since order won't matter.

(known (sea-state <sector> <higher-state>))

(> <higher-state> <state>)

;;(sea-state-goal-has-unselected-context-parent

;;<sector> <state> ;;<better-goal>)

;;)

(context-affected-goals-are-parents-and-none-is-expanded

<sector> <state> <goals>)

))

(then select goal <goals>))

;;; If we're in some context that has introduced this unsatisfiable

;;; sea-state goal and if it has parents that are context-dependent

;;; and none of them has already been re-introduced, then re-introduce

;;; one.

;;; This function is called after we know the current state is too

;;; high. So this must be on a branch where the sea-state goal is a

;;; child of the affected goals. Just test if one is expanded and the

;;; sea-state goal is not a child of that expanded goal.

(defun context-affected-goals-are-parents-and-none-is-expanded

(sector state goal-var)

(unless (and (p4::get-context *current-node*)

(some #'(lambda (cnode) (not (member-if #'zerop (cdr cnode))))

(p4::get-context *current-node*)))

(return-from context-affected-goals-are-parents-and-none-is-expanded

nil))

(let* ((context (p4::get-context *current-node*))

(affected (p4::context-node-affected (car p4::*context-nodes*))))

(if (and affected

(not (some #'(lambda (goal)

(expanded-below-context

goal (car p4::*context-nodes*)))

affected)))

(mapcan

#'(lambda (aff)

(let ((goal (p4::goal-node-goal

(p4::nexus-parent

(p4::nexus-parent aff)))))

(if (member goal p4::*pending-goals*)

(list (list (cons goal-var goal))))))

affected))))

(defun expanded-below-context (goal cnode)

(do ((node *current-node* (p4::nexus-parent node)))

((or (null node) (eq node cnode)

(and (p4::goal-node-p node)

(eq (p4::goal-node-goal node) goal)))

(and (p4::goal-node-p node)

(eq (p4::goal-node-goal node) goal)))))
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;;; Otherwise, select the sea-state goal, either to get it out of the

;;; way or to fail quickly.

(control-rule do-sea-state-early

(if (and (candidate-goal (sea-state-calmer <sector> <goal-state>))

(known (sea-state <sector> <actual-state>))

(or (<= <actual-state> <goal-state>)

(child-in-this-context <sector> <goal-state>)

)))

(then select goal (sea-state-calmer <sector> <goal-state>)))

;;; Find an introducing goal below the lowest context node.

(defun child-in-this-context (sector goal-state)

(or (null p4::*context-nodes*)

(let ((lit (p4::instantiate-consed-literal

`(sea-state-calmer ,(oname sector) ,goal-state))))

(if (some #'(lambda (intro)

(member (car p4::*context-nodes*)

(p4::path-from-root

(p4::instantiated-op-binding-node-back-pointer

intro))))

(if (p4::literal-state-p lit)

(p4::literal-neg-goal-p lit)

(p4::literal-goal-p lit)))

t))))

;;; First, we want to cut down on the bogus search that this method of

;;; encoding multi-step goals produces, for instance when we are about

;;; to cut off the number of steps of some task. Both force the

;;; inference rule that cuts off to be used, and force the goal to be

;;; picked since it won't interfere with anything else.

(mapc #'(lambda (triple)

(let ((goal (first triple))

(op (second triple))

(pred (or (third triple) t)))

(eval `(control-rule ,(intern (format nil "sel-~S" op))

(if (and (current-goal ,goal) ,pred))

(then select operator ,op)))

(eval `(control-rule ,(intern (format nil "sel-~S" op))

(if (and (candidate-goal ,goal) ,pred))

(then select goal ,goal)))))

'(( (stabilize-discharge-rate <v> <o> <s> <r>) begin-stabilize

(acceptable-discharge-rate <r>))

( (remove-oil-steps <o> 0) begin-remove-oil)

( (protect-shore-steps <o> <a> 0) start-protecting-shore)

( (store-level>= <sector> <level>) begin-storing (< <level> 0))

( (portable-skim-level>= <sector> <level> <state>) begin-skim2

(< <level> 0))))
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(mapc #'(lambda (pair)

(let ((goal (first pair))

(op (second pair))

(test (or (third pair) '(> <amount> 0))))

(eval `(control-rule ,(intern (format nil "rej-~S" op))

(if (and (current-goal ,goal) ,test))

(then reject operator ,op)))))

'(( (remove-oil-steps <o> <amount>) begin-remove-oil)

( (protect-shore-steps <o> <a> <amount>) start-protecting-shore)

( (vacuum-level>= <p> <amount> <t>) begin-vacuum)

( (stabilize-discharge-rate <ship> <spill> <place> <amount>)

begin-stabilize (~ (acceptable-discharge-rate <amount>)))

))

(control-rule dont-protect-unnecessarily

(if (and (current-goal (ok-shoreline <area> <oil>))

(~ (known (threatened-shoreline <oil> <area>)))))

(then reject operator shoreline-protected))

(control-rule cannot-stop-threat

(if (and (current-goal (ok-shoreline <area> <oil>))

(known (threatened-shoreline <oil> <area>))))

(then reject operator shoreline-not-threatened))

;;; The order in which these inference rules are expanded won't

;;; matter. As soon as unprotected-sensitive-area is expanded, do these.

(control-rule pick-a-shoreline

(if (lexically-first-candidate-shoreline <area> <oil>))

(then select goal (ok-shoreline <area> <oil>)))

;;; Look at all the shorelines that could be worked on, force the one

;;; that's first in the yellow pages.

(defun lexically-first-candidate-shoreline (area-var oil-var)

(let ((shorelines (candidate-goal '(ok-shoreline <area> <oil>))))

(if shorelines

(sublis (mapcar #'cons '(<area> <oil>) (list area-var oil-var))

(list (car

(sort shorelines

#'(lambda (b1 b2)

(string< (oname (cdr (assoc '<area> b1)))

(oname (cdr (assoc '<area> b2)))))

)))))))

;;; Similarly work on barrier-provided first, since it won't mess with

;;; other goals and we just want to fail quickly if there's no free

;;; tractor.

(control-rule provide-barrier-quickly

(if (candidate-goal (barrier-provided <area>)))

(then select goal (barrier-provided <area>)))

;;; Implement primary effects

(control-rule provide-barrier-simply1
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(if (current-goal (barrier-provided <sensitive-area>)))

(then reject operator shore-exclusion-booming))

(control-rule provide-barrier-simply2

(if (current-goal (barrier-provided <sensitive-area>)))

(then reject operator shore-diversion-booming))

(control-rule provide-barrier-simply3

(if (current-goal (barrier-provided <sensitive-area>)))

(then reject operator cleanup-shore))

;;; This one forces it to use different equipment when subgoaling to

;;; pick up the slack in stabilizing

(control-rule stabilize-differently

(if (and (current-ops (cargo-transfer-oil-to-stabilize))

(expanded-operator

(cargo-transfer-oil-to-stabilize

<v> <o> <s> <r> <pump> <b> <pc> <bc>))))

(then reject bindings ((<cargo-transfer-pump> . <pump>))))

(control-rule different-mobile-skimmer

(if (and (current-ops (use-mobile-skimmer))

(expanded-operator

(use-mobile-skimmer <s> <ss> <srn> <ms> <sr> <srl>))))

(then reject bindings ((<m-skimmer> . <ms>))))

(control-rule different-portable-skimmer

(if (and (current-ops (get-skimmer-to-skim-near-vessel

get-portable-skimmer-to-skim-sea-sector))

(or (expanded-operator

(get-skimmer-to-skim-near-vessel

<v> <sec> <state> <rate> <skimmer> <srate> <left> <product>))

(expanded-operator

(get-portable-skimmer-to-skim-sea-sector

<sec> <state> <rate> <skimmer> <max> <srate> <left>

<assembled>)))))

(then reject bindings ((<p-skimmer> . <skimmer>))))

(control-rule different-boom

(if (and (current-ops (use-boom-in-sensitive-area))

(expanded-operator

(use-boom-in-sensitive-area <area> <req> <sector> <state>

<used-boom> <max> <length> <left>))))

(then reject bindings ((<boom> . <used-boom>))))

;;; These are purely speed-up search control, without which it takes

;;; FOREVER. They remove an operator from the search space if it

;;; requires a resource that has been switched off.

;;; This is a good place to start thinking about iterative

;;; sophistication search.

;;; If a barge has already moved to a sea-sector, it can't be moved to
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;;; another sea-sector - there's no operator to do it.

(control-rule cannot-move-barge-from-sea-sector

(if (and (current-ops (cargo-transfer-oil-to-stabilize))

(current-goal (stabilize-discharge-rate

<barge> <oil> <required-place> <rate>))

(known (located <barge> <place>))

(ptype <place> sea-sector)

(~ (eq <place> <required-place>))))

(then reject bindings

((<tank-barge> . <barge>)

(<sea-sector> . <required-place>))))

(control-rule cannot-move-barge-from-sea-sector

(if (and (current-ops (use-tank-barge-as-storage))

(current-goal

(store-level>= <required-place> <storage-level-needed>))

(known (located <some-barge> <place>))

(ptype <place> sea-sector)

(~ (eq <place> <required-place>))))

(then reject bindings

((<barge> . <some-barge>)

(<sea-sector> . <required-place>))))

(defun ptype (object typename)

(eq (p4::type-name (p4::prodigy-object-type object)) typename))

(mapc #'(lambda (pair)

(let ((object (first pair))

(operator (second pair))

(goal (third pair))

(predicate (or (fourth pair) 'in-use)))

(eval `(control-rule ,(intern (format nil "need-a-free-~S"

object))

(if (and (current-goal ,goal)

(all-objects ,object ,predicate)))

(then reject operator ,operator)))))

'( (self-mobile-skimmer open-water-recovery

(remove-oil-steps <oil> <steps>))

(portable-skimmer shallow-water-recovery

(remove-oil-steps <oil> <steps>))

(dispersant apply-chemical-dispersant

(remove-oil-steps <oil> <steps>) use-prohibited)

(cargo-transfer-pump cargo-transfer-oil-to-stabilize

(stabilize-discharge-rate

<vessel> <oil> <sector> <rate>))

(portable-skimmer stabilize-discharge-by-contain-skim

(stabilize-discharge-rate

<vessel> <oil> <sector> <rate>))

))

;;; known with negated predicates really doesn't seem to work..

(defun all-objects (type pred)
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(every #'(lambda (object) (known (list pred (oname object))))

(p4::type-real-instances

(p4::type-name-to-type type *current-problem-space*))))

;;; Some quick hacks to cut out useless search.

(control-rule no-seaworthy-barges

(if (and (current-goal (stabilize-discharge-rate <v> <o> <s> <r>))

(known (sea-state <s> <state>))

(no-objects-above-sea-state tank-barge <state>)))

(then reject operator cargo-transfer-oil-to-stabilize))

(control-rule no-seaworthy-portable-skimmers-or-booms

(if (and (current-goal (stabilize-discharge-rate <v> <o> <s> <r>))

(known (sea-state <s> <state>))

(or (no-objects-above-sea-state boom <state>)

(no-objects-above-sea-state portable-skimmer <state>))))

(then reject operator stabilize-discharge-by-contain-skim))

(control-rule no-seaworthy-mobile-skimmers-or-booms

(if (and (current-goal (recovery-open-water <oil> <sector>))

(known (sea-state <sector> <state>))

(or (no-objects-above-sea-state self-mobile-skimmer <state>)

(and (no-objects-above-sea-state tank-barge <state>)

(no-objects-above-sea-state dracon-barge <state>)))))

(then reject operator perform-open-water-recovery))

(control-rule no-seaworthy-boom-or-portable-skimmer-or-barge

(if (and (current-goal (recovery-shallow-water <oil> <sector>))

(known (sea-state <sector> <state>))

(or (no-objects-above-sea-state boom <state>)

(no-objects-above-sea-state portable-skimmer <state>)

(and (no-objects-above-sea-state tank-barge <state>)

(no-objects-above-sea-state dracon-barge <state>)))))

(then reject operator perform-shallow-water-recovery))

;;; Should be generalised to whether there is enough boom for all of them.

;;; But "enough" is governed by a different predicate in each case.

(control-rule no-seaworthy-boom-for-shore-ops

(if (and (current-goal (protect-shore-steps <oil> <area> <n>))

(known (located-within <area> <land>))

(adjacent <sea-sector> <land>)

(known (sea-state <sea-sector> <state>))

(no-objects-above-sea-state boom <state>)

(trying-operator <op> (cleanup-shore shore-diversion-booming

shore-exclusion-booming))))

(then reject operator <op>))

(control-rule not-enough-good-boom-for-exclusion-booming

(if (and (current-goal (protect-shore-steps <oil> <area> <n>))

(known (located-within <area> <land>))

(adjacent <sector> <land>)

(known (sea-state <sector> <state>))
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(known (exclusion-boom-required <area> <amount>))

(less-boom-above-state <state> <amount>)))

(then reject operator shore-exclusion-booming))

(control-rule no-seaworthy-boom-to-clean-up-shore

(if (and (current-goal (protect-shore-steps <spill> <area> <steps>))

(known (located-within <area> <land>))

(adjacent <sea-sector> <land>)

(known (sea-state <sea-sector> <state>))

(no-objects-above-sea-state boom <state>)))

(then reject operator cleanup-shore))

(defun no-objects-above-sea-state (type state)

(every #'(lambda (object)

(let ((max-state (known-unique

(list 'max-sea-state (oname object) '<x>))))

(< max-state state)))

(p4::type-real-instances

(p4::type-name-to-type type *current-problem-space*))))

(defun less-boom-above-state (state amount)

(let ((ttl 0))

(dolist (boom (p4::type-instances

(p4::type-name-to-type 'boom *current-problem-space*)))

(let ((max (known-unique `(max-sea-state ,(oname boom) <x>))))

(if (> max state)

(incf ttl (known-unique `(length-boom-ft ,(oname boom) <x>))))))

(< ttl amount)))

(defun trying-operator (var list)

;; If the var is a variable, return every possible binding.

(if (varp var)

(mapcar

#'(lambda (elt)

(list

(cons var (p4::rule-name-to-rule elt *current-problem-space*))))

list)

;; Otherwise check if the value is in the list

(member var list)))

;;; In p1 there are two sources of chemical dispersant, one 6 miles

;;; away and one 345 miles away. Without this rule prodigy chooses the

;;; further one.

(control-rule prefer-closer-dispersant

(if (and;;(current-goal (apply-dispersant <oil> <place> <time))

(current-ops (get-chem-dispersant))

(candidate-bindings ((<spilled-oil> . <sp>)

(<sea-sector> . <sea>)

(<earliest-start> . <early>)

(<dispersant> . <d>)))

;; <b2> is bound as the current best bindings

(inst-val <dispersant> <b2> <other-d>)
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(closer-obj <sea> <d> <other-d>)))

(then prefer bindings

((<spilled-oil> . <sp>)

(<sea-sector> . <sea>)

(<earliest-start> . <early>)

(<dispersant> . <d>))

<b2>))

(control-rule prefer-closer-boat

(if (and (current-ops (move-response-equipment-by-sea1b))

(candidate-bindings ((<equip> . <e>)

(<sea-sector> . <s>)

(<seaport> . <sp>)

(<earliest> . <time>)

(<uboat> . <u>)))

(inst-val <uboat> <b2> <ob>)

(closer-obj <sp> <u> <ob>)))

(then prefer bindings ((<equip> . <e>)

(<sea-sector> . <s>)

(<seaport> . <sp>)

(<earliest> . <time>)

(<uboat> . <u>))

<b2>))

;;; I'd rather not have to write so many similar rules.. on the other

;;; hand this form may be easier to build a tree out of.

(control-rule prefer-closer-skimmer

(if (and (current-ops (use-mobile-skimmer))

(candidate-bindings <b>)

(elt-val 3 <b> <b-sk>)

(inst-val <m-skimmer> <c> <c-sk>) ; <c> is bound from RHS

(inst-val <sea-sector> <c> <ss>) ; assumes they are the same.

(closer-obj <ss> <b-sk> <c-sk>)

(list-to-bindings <b> use-mobile-skimmer <bb>)))

(then prefer bindings <bb> <c>))

(control-rule prefer-closer-port

(if (and (current-ops (stabilize-discharge-by-towing-to-port))

(candidate-bindings <b>)

(elt-val 5 <b> <near-port>)

(inst-val <sea-port> <bad> <far-port>)

(inst-val <sea-sector> <bad> <sea>)

(closer-port-to-sea <sea> <near-port> <far-port>)

(list-to-bindings <b> stabilize-discharge-by-towing-to-port <good>)))

(then prefer bindings <good> <bad>))

;;; Prefer to use a long enough boom if there is one. I guess two

;;; short ones that can be transported together and are much closer

;;; would be better, but.. Ok, so greedily prefer the boom that

;;; maximises the ratio of proportion of boom added to distance.

(control-rule best-boom-length-per-hour



154 Appendix B. The Oil-spill domain

(if (and (current-ops (use-boom-to-contain-vessel))

(candidate-bindings <b>)

(elt-val 1 <b> <required>)

(elt-val 4 <b> <good-boom-obj>)

(obj-to-name <good-boom-obj> <good-boom>)

(elt-val 6 <b> <good-length>)

(inst-val <boom> <other> <other-boom>)

(inst-val <length> <other> <other-length>)

(inst-val <sea-sector> <other> <sector>)

(greater-used-length-per-hr

<good-boom> <good-length> <other-boom> <other-length>

<required> <sector>)

(list-to-bindings <b> use-boom-to-contain-vessel <better>)))

(then prefer bindings <better> <other>))

;;; Figure out how much of the needed length is delivered "per hour"

;;; assuming the same speed of delivery for each boom.

(defun greater-used-length-per-hr (boom1 length1 boom2 length2

needed-length sector)

(let ((delivered1 (min length1 needed-length))

(delivered2 (min length2 needed-length))

(distance1 (obj-distance sector boom1))

(distance2 (obj-distance sector boom2)))

(cond ((zerop distance2) nil)

((zerop distance1) t)

(t

(> (/ delivered1 distance1) (/ delivered2 distance2))))))

(defun obj-to-name (object namevar)

(if (p4::prodigy-object-p object)

(list (list (cons namevar (p4::prodigy-object-name object))))))

(control-rule prefer-long-enough-boom-in-sensitive-area

(if (and (current-ops (use-boom-in-sensitive-area))

(candidate-bindings <b>)

(elt-val 7 <b> <less-left>)

(inst-val <length-left> <other> <more-left>)

(< <less-left> 0) ; there's enough boom in one bindings set

(> <more-left> 0) ; there isn't in the other

(list-to-bindings <b> use-boom-in-sensitive-area <better>)))

(then prefer bindings <better> <other>))

(control-rule prefer-big-enough-skimmer

(if (and (current-ops (get-skimmer-to-skim-near-vessel))

(candidate-bindings <b>)

(elt-val 7 <b> <less-left>)

(inst-val <discharge-left> <other> <more-left>)

(<= <less-left> 0)

(> <more-left> 0)

(list-to-bindings <b> get-skimmer-to-skim-near-vessel <better>)))

(then prefer bindings <better> <other>))
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;;; prefer to use a bigger pump.

(control-rule prefer-big-enough-pump

(if (and (current-ops (cargo-transfer-oil-to-stabilize))

(candidate-bindings <b>)

;; bind <b-cap> to the pump capacity in bindings <b>

(op-val <b> cargo-transfer-oil-to-stabilize <pump-cap> <b-cap>)

(inst-val <pump-cap> <other> <other-cap>)

(> <b-cap> <other-cap>)

(list-to-bindings <b> cargo-transfer-oil-to-stabilize <better>)))

(then prefer bindings <better> <other>))

B.2 Random problem generator

In Chapter 7 I report on experiments with a number of randomly-generated problems
from the oil-spill domain. Here, I describe the problem generator in detail.

The algorithm to generate the random problems �xes the geography of the area, as
de�ned by the set of objects of types sea-sector, land-sector, urban, seaport and
sensitive-area and by the literals for the predicates adjacent, located-within,
distance and berth-size. The geographic information models the San Francisco
Bay area as de�ned in the version of the domain written at sri [Desimone & Agosta
1994]. This �xed base of information includes 130 objects and 320 predicates. The
reader who is interested in this domain and generator is encouraged to send electronic
mail to jblythe@cs.cmu.edu for a copy.

Within this geographic framework, one vessel is placed in a random sea-sector
that contains at least one sensitive-area, of which there are three. The vessel is
given a random displacement, distributed uniformly between 30000 and 80000 at
10000 intervals. The spillable oil has size either 12000 or 24000 chosen uniformly at
random. The discharge-rate is �xed at 1000 and the boom length required to surround
the vessel is also �xed at 1000. With probability 2/3 there is no oil spilled in the
initial state and with probability 1/3 some is spilled, the amount chosen according
to a uniform distribution between 100 and 4000. With probability 1/3 there is no
sensitive area initially threatened by the oil, and with probability 2/3 an area is
threatened, chosen uniformly at random from the areas that can be threatened by oil
in the chosen sea-sector.

Next, the initial sea-states and some features of the sensitive areas are randomly
assigned. The sea-state of a sea-sector can vary from one to six, with one meaning
calm and six meaning very rough. Each sea-sector in the domain is assigned a value
from one to six randomly according to the uniform distribution. With probability 1/5,
each reachable sensitive area is made unthreatenable by the oil. Each reachable sen-
sitive area is given the value 10 for shore-personnel-required, and also assigned three
random values according to the uniform distribution: the diversion-boom-required is
between 2000 and 10000, the exclusion-boom-required is also between 2000 and 10000
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and the boom-personnel-required takes one of the values that occurs naturally in the
domain: 4, 15, 18, 42 and 74.

A random number of equipment objects, for example, of types boom, tractor
and tug, are distributed among the seaports at random. The number of objects of
each type is generated according to a uniform distribution, with the minimum and
maximum values show in Table B.1. In addition the properties of these objects are
assigned at random, for example the max-speed and the tow-speed of each tug.

Object type Min Max

tug 0 4
tractor 0 4
vacuum-truck 0 8
cargo-transfer-pump 0 10
dispersant 0 4
weir-skimmer 0 10
self-mobile-skimmer 0 8
dracon-barge 0 10
dispersant-barge 0 2
tank-barge 0 4
utility-boat 1 3
boom 10 30

Table B.1: The number of objects in a problem is chosen randomly according
to a uniform distribution. This table shows the minimum and maximum number of
objects generated for each type.

This generation algorithm produces a set of problems that, along with random
choices made in the problem solver, exercise all possible combinations of the strategies
available to the planner while ensuring that the generated problems are physically
plausible.
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