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Abstract

This paper proposes a voting scheme that protects voters privacy even when
the Central Tabulating Facility reveals individual responses. The basic idea is
to add random noise to the true opinion by randomizing in a way such that the
true vote is chosen with higher probability than the other alternatives. A major
part of this paper is to outline the statistical propeties of our proposed protocol.
A commitment protocol is also proposed to cope with dishonest voters who do
not randomize their votes. The primary result is that the accuracy of the voting
result improves as the number of voters increases.
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1 Introduction

Alice is a student who is evaluating her instructor, Bob, by submit-

ting an evaluation form through his Web page. She is afraid that Bob

could discover her vote by examining the access logs and retaliate by

giving her a low grade if she voices her true opinion (she �nd the

course was borning!) Fearing retribution, Alice answered that the

course was excellent.

Electronic voting is sometimes skewed by fear that the the Central Tabu-
lating Facility (CTF) might violate voters privacy, though it has the potential
of being cheaper and less time consuming than the conventional voting. In this
example, we make the following observations:

1. The privacy of the voter (Alice) is paramount. Neither the CTF (Bob)
nor anyone else can associate vote to the voter who cast it.

2. Bob requires voter authentication in order to permit only eligible voters
to vote and to ensures that each voter can vote only once.

3. Alice wishes to verify that her vote is counted in the tally, no vote is
eliminated from the tally, and no bogus vote is tallied.

4. Highly accurate result is not required. A rough estimate is good enough
to rate instructors.

5. An e�cient and light-weight implementation is feasible in combination of
current technologies.

The last two properties makes this problem di�erent from the traditional
electronic voting problem, which involve a considerable sacri�ce in communica-
tion and computation costs to achieve high accuracy. Our goal is to provide a
practical and e�cient protocol for conducting surveys or votes, even though the
accuracy may be lost. Here are a few possible applications of this protocol.

� Voting for choosing news groups to be carried in local site.

� Conducting surveys on topics of sensitive (or illegal) matter.

� Computing average salaries of a closed group.

� Determine how much money to donate to an institution.

� Rating Web sites.

To deal with the issue of privacy, many protocols based on cryptographic
techniques have been proposed. Broadly, there are two categories.
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1. Blind signature with anonymous channel[2, 3, 4, 5]

Each vote is blindly signed by an authority and then collected by way of
anonymous channel such as Mixnet[2] so that no one can associate a vote
with a voter, but only authorized votes are tallied. This mechanism is
equivalent to the class of digital cash protocols that satis�e the privacy of
payment.

2. Multiparty computation [6, 9, 8, 10]

Votes are divided up among independent CTFs so that no single (or up
to a constant) CTF can determine any individual vote. Secret sharing
and relevant techniques are used to sum up all votes without revealing
anyone's vote. Veri�able secret sharing schemes and zero-knowledge pro-
tocols are often used for guarantee that both voters and the CTFs follows
the protocol correctly.

Ideally, both approaches should be able to hold secure votes. Although there
have been some attempts for anonymous channel[11, 12, 17], these involve large
communication costs and hence not deployed over the internet. The multi-party
computation protocol solves the privacy problem and holds some theoretically
interesting properties such as receipt-freeness[7]; however, the protocol is quite
computationally complex and does not scale well.

In this paper, we propose a new light-weight anonymous voting mechanism.
Our solution for protecting voter's privacy is to randomize votes by adding noise
to votes so that the true vote is chosen with higher probability than the other
alternatives. The result would be estimated by discarding the random noises
according to statistical properties of expected noise.

For simplicity, consider a single-bit (yes/no) vote, which will be extended to
multiple candidates protocol in Section 4.1.

1. Each voter 
ips a coin. In the case of heads, the voter give his true vote.
Otherwise, the voter 
ips a second time and votes on the basis of the
second 
ip.

2. Votes are tallied and summed. The CTF publishes the tally m. Let
m = 60 given the total voters, n, is 100.

Voter submits his vote with his identity from web page. The CTF immediately
adds the vote to the tally (m). The voter can make sure the CTF's computation
by seeing the di�erence of the tally from the one before he submitted. To ensure
that no bogus vote is added to the tally, the CTF should add the voter's identity
to the list of voters that have submitted votes and �nally publish the list. His
vote may be noticed by other voters, but no one can identify his true vote as
the CTF can not do it.

2



Here we have an intuitive solution to discard the random noise from the
tally. Since the tallied votes m includes a half random component, in which a
half of the component is yes, the total of true votes is m� n=4 = 60� 25 = 35,
which is the result for the half population, thus we have the estimated result
by doubling it, that is, k� = 2 � 35 = 70. In this way, given m = 60, about 70
voters are likely to have yes votes.

3. With the published total number of yes votes, m, voters can estimate the
result, k�, as follows:

k� =
1

1� p
(m� npq) (1)

where both p and q denote 1=2 probability of coin 
ipping.

We de�ne the basic protocol by the above three steps. Obviously, the basic
protocol has the following properties:

� It is an one-shot protocol. Even one round between voters and the CTF
is not involved.

� Low computational costs. Neither computational nor information-theoretical
assumption is required.

� No trusted third party is assumed. Even the CTF can not learn whether
voters are true or random.

� The protocol is scalable to a number of voters. (Beside, the accuracy of
vote increases as more voters participate in voting.)

However, the proposed protocol has the following di�culties:

1. Statistical Analysis Equation (1) is derived by intuition without theoret-
ical analysis, and not always correct. For instance, consider what would
happen when m = 80. According to Equation (1), the estimate of true
yes votes is k� = 2(80� 100=4) = 110, which exceeds the total number n
?! What does this mean?

We will answer this question by statistical analysis of the basic protocol
in Section 3.2.

2. Accuracy The proposed protocol sacri�ces the accuracy of the result to
protect voter's privacy. The solution mentioned above gives an approx-

imation of the votes; however, we have no guarantee of the accuracy of
estimate. What can we say about the di�erence between the estimate, k�,
and the true number of yes votes, k?

According to the statistical propeties of randomness, the fraction of error
would be relatively small as more voters participate in the voting. We will
answer to this question by showing the con�dence interval of estimate.
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3. Dishonest voter Since each voter randomizes his vote secretly, some mali-
cious voters can vote the way they want without adding random element,
which will skew the �nal result.

We present a revised protocol so that no voter can cast a vote without
adding random noise.

In this paper, after we give a basic formalization of proposed protocol in
Section 2, we study probability distributions associated with some random vari-
ables m and k in Section 3. The probability distribution follows an expected
value and the most likely value for k in Section 3.2. The correctness of the
intuitive solution will be clari�ed mathematically. In Section 3.3, we discuss
the variance of k with regards to some parameters in the protocol in order to
�gure out a con�dent interval given n and m under an assumption the random
variable of k is distributed normally.

To prevent dishonest voters from disrupting voting, in Section 4.1, we pro-
pose a modi�cation of the basic protocol using an one-way function as commit-
ment of vote.

2 Basic Protocol

First, we de�ne a basic protocol which deals with a simple binary election where
individual votes are either 1 (means "yes") or 0 (means "no").

2.1 Notation

The following is a list of symbols.
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n number of voters
m number of "Yes" votes observed

in the protocol
k number of voters who have true "Yes"
l number of candidates (l = 2 in single vote)
p probability that a voter picks

random vote
q probability of random vote being "Yes" (q = 1=l)

P (mjk) probability that number of yes votes
is m given number of true votes is k

P (kjm) probability that number of true votes
is k given number of yes votes is m

P (m) prior probability of m
P (k) prior probability of k

M random variable in f0; ::; ng of m
K random variable in f0; ::; ng of k

�(mjk) standard deviation of M given k

�(kjm) standard deviation of K given m

�(kjm) (E[kjm]) an expected value of M given k

2.2 Protocol De�nition

We have n voters and a single Central Tabulating Facility (CTF).

Protocol 1

Step 1 Voter i has true vote vi in f0; 1g. Voter i randomly composes a ballot
bi such that

bi =

�
vi with probability 1� p

r 2 f0; 1g with probability p

where r is a random number such that a probabilities of r being 1 is q and
being 0 is 1� q. The voter sends bi to the CTF.

Step 2 The CTF tallies ballots and publishes the result m, that is, m = b1 +
� � �+ bn.

Step 3 Given m, voters and the CTF learn the estimated number of true yes
votes by

k� =

8<
:

0 if m < npq

n if m > n(1� p+ pq)
1

1�p
(m � pqn) otherwise
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We call vi a true vote and r a random vote.
In the following section, we will show how the estimate k� is statistically

derived and examine the con�dence of the estimate.
To prevent ineligible voters from voting and eligible voters from casting

multiple votes, the CTF requires voter a password, PIN or digial signature with
his certi�cate at Step 1. The CTF checks the voter on a list of eligible voters.
Once a vote is submitted, it may be immediately added to the tally so that the
voter can ensure that his vote is counted correctly. Since the vote is randomized,
the tally may be made public without revealing his true opinion. This property
makes it easier for voters to verify the CTF follows the protocol correctly.

3 Estimate

3.1 Probability Distribution Functions of Voters

In this section, we give a probability distribution function of the actual total
number of \yes" votes k given m.

Lemma 3.1 Let p be a probability of picking random vote in Protocol 1. The

probability of observing m votes given k voters who have true yes vote is given

by

P (mjk) =

min(m;k)X
i=max(0;m+k�n)

�
k

i

��
n� k

m � i

�

�(1� p+ pq)i(p � pq)k�i

�(pq)m�i(1� pq)n�k�m+i: (2)

(All proofs and derivation of the equations are in the appendix.)
Obviously, the behavior of this function is similar to a Binomial distribu-

tion, though the Eq. (2) is more complicated. Figure 1 shows the probability
distributions of P (mjk) when k = 0; 6; 10; 14;20, n = 20, and p = q = 1=2. We
also indicate the results of computer simulation (k = 14) on the �gure.

We are interested in the posterior probability P (kjm), which is the true
number of yes votes, k, given the observed m votes. Bayes theorem is used
to calculate the posterior probability P (kjm) from the prior probability P (k),
P (m) and P (mjk).

Since we have no prior knowledge that particular value of k is more likely
than another, it is reasonable to assign the same prior probability to every
value of k. Furthermore, since the possible value of k are in [0; n], these prior
probabilities sum to 1. Hence, we should assume that

P (k) = 1=(n+ 1)

6



0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16 18 20

P
(m

|k
)

m

k=0
k=6

k=10
k=14
k=20

(sim) k=14

Figure 1: Probability Distribution P (mjk)

and we have

P (m) =

nX
k=0

P (mjk)P (k) = 1=(n+ 1)

nX
k=0

P (mjk)

Figure 2 illustrates the probability distribution ofm when n = 20. The result
of the computer simulation is also indicated. The probability ofm highest when
k = nq and is independent of p.
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Figure 2: Probability Distribution P (m)

Finally, we obtain the desired posterior probability P (kjm) which provides
an estimated value of a total number of yes votes.
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Theorem 3.1 Suppose m is observed in Protocol 1 and we have no prior knowl-

edge of k. The posterior probability of number of true yes votes is computed as

follows:

P (kjm) =
P (mjk)Pn

i=0 P (mjk = i)
; (3)

where P (mjk) is de�ned in Eq. (2).

Figure 3 shows an example of probabilities of the number of true votes k for
m = 2; 6; 10; 14;18 and n = 20. Notice that in comparison with Figure 1, the
probability distributions varies depending on m.
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Figure 3: Probability Distribution P (kjm)

3.2 Expected Value and The Most Likely Value of Votes

Given the probability distribution function we can obtain the expected value,
which should be approximately k� as de�ned by Equation (1).

The expected valueE[X] of random variableX, de�ned byE[X] =
P

x2X xP (x),
provides the exact mean number of votes. The most likely value is a value of X
which maximizes P (X). Note that the expected value does not always maximize
the probability.

Theorem 3.2 The expected value of M is identical to the most likely M and

obtained as follows:

E[M jk] = L[M jk] = k(1� p) + npq (4)

Notice that this result holds the Equation (1) by having correspondences k� = k

and m = E[M jk].
k = (E[M jk]� npq)=(1� p) = k�
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In other words, the derivation of k� was solving the inverse problem of the
expected value of M to be identical to the observing m.

Next, we consider the expected value of K given m. Straightforwardly, an
expected value E[Kjm] is computed in the following formula,

E[Kjm] =
X

k2f0;:::;ng

P (kjm)k;

where P (kjm) is computed in Eq. (3). However, we have no closed form for
E[Kjm]. Instead, we consider the most likely K given m, written by L[Kjm],
which can be easily computed and nearly equal to E[Kjm].

Theorem 3.3 The most likely value L[Kjm] is given by

L[Kjm] =

8>><
>>:

n if m � n(1� p+ pq)
b 1

1�p
(m � pqn)c if n(1� p+ pq) > m � np

d 1

1�p
(m � pqn)e if np > m > pqn

0 if pqn � m

(5)

Figure 4 illustrates the expected value E[Kjm] and the most likely value
L[Kjm]. We see both values are nearly identical for most m. Let us recall the
di�culty of our �rst estimate of k� that m = 80 gives estimate of k� = 110,
which exceeds n = 100. In Figure 4, this case happens at m being greater than
30, where there is a big di�erence between L[Kjm] and E[Kjm].
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Figure 4: Expected value E[Kjm] and Most Likely value L[Kjm]
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3.3 Con�dence Interval of Votes

Now, we consider the con�dence intervals of the estimated values. One common
way to deal with the uncertainty in our estimate is to give an interval within
the true value is expected to fall, along with the probability.

In order to �gure out the size of interval, we assume that the exact proba-
bility distributions can be approximated with the Normal distributions having
the same expected value �k (= E[Kjm]) and the standard derivation �k(=p
V ar[Kjm]). Then, we have the well-known fact that the true k will fall into

the interval
�k � 1:96�k

with 95 % probability[13].
For example, consider a vote of n = 10 and m = 7. According to the

previous results, we have the expected value and the most likely value of K as
E[Kjm] = 7:57 and L[Kjm] = (m � pqn)=(1 � p) = (7 � 2:5)2 = 9. Then, by
letting �k = 1:97, we have the 95 % con�dent interval as follows,

7:57� 1:96� �k = [3:71; 11:4]:

The ratio of the con�dent interval to the range of a random variable will
shrunk as n gets larger. This implies that the accuracy of the estimate will
improve as more voters participate in voting. We examines the in
uence of the
variance of k with regards to the parameters including p, m and n.

Theorem 3.4 Given true number of yes votes k, the variance of observing yes

votes M is

V ar[M jk] = pk(p� 1)(2q � 1) + npq(1� pq) (6)

Note that when q = 1=2, the �rst term disappears and the variance is V ar[M jk] =
npq(1 � pq), which is a constant independent to k. In Figure 5, we show how
m in
uence the standard derivation of k. Also, the di�erence with regards to
probabilities p = 1=4; 1=2; 3=4 are indicated. In all cases, we see the standard de-
viations maximizes at m = n=2, which gives the upper bound of the con�dence
interval.

3.4 Estimate Error

Now, we consider estimate error, which is a ratio of the con�dence interval to
the number of voters, n. The ratio represents how good the expected value is
estimated. It approaches 0 as the interval gets smaller relative to the number of
voters. Since the con�dence interval is proportional to the standard deviation,
we simplify the metric to the ratio of standard deviation to n.

According to the Central Limit Theorem[13], regardless of the distribution
of random variable, the probability distribution of a sample mean approaches
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a normal distribution as n ! 1. The standard deviation is proportional to
1=
p
n where n is sample size. Hence, the ratio of standard deviation of k to

n will be also proportional to 1=
p
n because the votes are chosen by certain

probability distributions, and summed in the protocol. Therefore, the accuracy
of the proposed voting protocol improves as the number of votes increases.

For instance, we shows the behavior of estimate error ratio de�ned by �k(n=2)=n
with regards to the size of voting n(= 10; 20; : : :; 100) in Figure 6.
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4 Revised Protocol

4.1 Commitment Protocol

To prevent dishonest voters from casting invalid vote, n we propose a modi�ca-
tion of the basic protocol using an one-way function as commitment of vote.

The weak point of Protocol 1 is to allow a voter to pick a random number
by himself without coin 
ipping. There is the fair coin 
ipping protocols using
the bit-commitment functions[16], in which voter shows to the CTF only the
outcomes of one-way function for some votes that the fraction of yes votes
represents the probability of coin being head (p), and then the CTF chooses
one of them. The CTF can not �gure out the vote from the outcome of one-way
function, and the voter can not change his vote after one of the outcomes is
chosen. However, it is not su�cient for our purpose; the malicious voter can
prepare all yes (or no) votes, which disrupts the voting. Voter should prove to
the CTF that her vote is randomized correctly without revealing his vote.

We present a simple and lightweight protocol for fair coin 
ipping without
revealing the probability of coin 
ipping, which implies his true vote. Note that
true yes voter casts 1 and 0 with probabilities of 1�p+pq = 3=4 and p�pq = 1=4,
respectively. While, true no voter follows pq = 1=4 and 1�pq = 3=4 probablities.

Protocol 2

Step 1 Each voter picks four random numbers, r1, r2, r3, r3, where each has
large size enough to feed an one-way function f . If a voter is willing to
vote "yes", he composes four commitment numbers as follows;

c1 = f(r1j1); c2 = f(r2j1); c3 = f(r3j1); c4 = f(r4j0);

where rijx means a bit concatenation. Otherwise, he composes

c1 = f(r1j0); c2 = f(r2j0); c3 = f(r3j0); c4 = f(r4j1):

The voter randomizes the order of the commitment numbers so that the
CTF can not learn the assignment. Let us call the randomized commit-
ments c01, c

0
2, c

0
3, and c04.

Step 2 The CTF randomly picks one of these commitment numbers, and ask
the voter to open the committed value.

Step 3 The voter opens the corresponding input number rijx. She also opens
one more input number rjjy so that x is not equal to y.

Step 4 The CTF veri�es that x and y are di�erent and the two input numbers
rijx and rjjy satis�es

c0i = f(rijx) and c0j = f(rj jy):
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The CTF tallies x if only if both identities hold. Otherwise, the vote is
rejected.

In step 2, a voter has �ve possibilities to composes for numbers. First, the
commitment numbers (1; 1; 1; 0) and (0; 0; 0; 1) corresponding to \yes" and \no"
are valid. Second, (1; 1; 1; 1) is invalid and should be rejected. Suppose the CTF
chooses the �rst number. Then, at Step 3, the voter has to open not only the
input r1j1 but also the opposite input rj j0 for some j, which does not exist in
his commitment numbers. Therefore, the invalid vote always fails. The case
of (0; 0; 0; 0) is prohibited in the same way. At last, (1; 1; 0; 0) gives an even
probability of \yes" and \no", which can succeed the protocol without being
detected, but has no e�ect on the result of voting. It may enlarge the probability
p of random voting and the con�dence interval. We assume that the in
uence is
not so large because the canceling voters can not control the result as they like.
Accordingly, any serious misbehavior of voters can be rejected in the protocol.

This protocol is a two round protocol and the messages are small. Conse-
quently, the protocol is light-weight in communication and computation.

More generally, the commitment protocol can be extended to cope with
arbitrary probability of p. By letting �0; �1; � be intergers so that �1=� =
1� p+ pq and �0=� = pq (�1 > �0), a voter can commit his vote as

f(r1j1); : : : ; f(r�1 j1); f(r�1+1j0); : : : ; f(r�j0)

or
f(r1j1); : : : ; f(r�0 j1); f(r�0+1j0); : : : ; f(r�j0)

in the basis of his vote in Step 1. In response to the CTF at Step 3, the voter
opens the selected commitment number rijx. Furthermore, letting �� = �1 �
�0 > 0, the voter opens �� opposite commitments number rj1 jy; rj2 jy; : : : ; rj��jy
for x 6= y. The �� is the maximumnumber that no more opposite commitment
could reveal whether the vote is yes or no. Note that an invalid vote is rejected
if the number of committed 1s exceeds �1 or the number of committed 0s is less
than �0. As the same as the basic commitment protocol, it is is necessary condi-
tion but not su�cient for invalid votes; the cancelation is allowed by composing

 commitments of 1 such that �0 < 
 < �1.

4.2 Multi Candidate Election

Protocol 1 can be extended to an election that has multiple candidates chosen
from f0; 1; : : :; l � 1g. First, we assume that the candidates represent discrete
quantities such as news groups or web pages.

Protocol 3

13



Step 1 Voter i has true vote vi in f0; 1; : : :; l� 1g. Voter i randomly composes
a ballot bi such that

bi =

�
vi with probability 1� p

r 2 f0; 1; : : :; l � 1g with probability p

where r is a random number of f0; 1; : : :; l�1g chosen with uniform prob-
ability of q = 1=l.

Step 2 The CTF collects ballots and compute l tallies for each i 2 f0; : : : ; l�1g
as,

mi = jfbjjbj = i; j 2 f1; : : : ; nggj
and publishes the results, m0; : : : ;ml�1.

Step 3 For each mi, voters and the CTF computes the estimated number votes
by

k�i =

8<
:

0 if mi < npq

n if mi > n(1� p+ pq)
1

1�p
(mi � pqn) otherwise

The statistical propeties of the basic protocol still hold in multi candidate proto-
col. Since the l estimated values k�0; : : : ; k

�
l1
may not sum up to n, normalization

of k�i is required. Clearly, this protocol includes Protocol 1 as the special case
l = 2.

Next, we consider the candidates represent continuous quantities such as
money or rating value.

Protocol 4

Step 1 Same as Protocol 3.

Step 2 The CTF collects ballots and compute tally m = b1 + � � � + bn and
publishes the results m.

Step 3 Given m, voters and the CTF computes the estimated total of votes by

k�i =

8<
:

0 if m < np�R
n if m > n(1� p+ p�R)
1

1�p
(m � np�R) otherwise

where �R is a mean of random variable R, that is, �R = l�1
2
.

With the expected value of uniform random variable R, we derive the estimated
total votes, k�, which should be divided by n to be a meaningful quantity, e.g.,
the average money to donate, or the course grade determined by n parties.
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4.3 Information Leak

The proposed protocols are not perfect in the sense that it may reveal partial
information about votes. For example, consider a randomized vote bi with
p = q = 1=2. What can we say about the true vote from the observing vote?

We know the following probability of random variable of votes B given true
vote V :

P (B = 1jV = 1) = 1� p+ pq; P (B = 0jV = 1) = p � pq;

P (B = 1jV = 0) = pq; P (B = 0jV = 0) = pq;

and the Bayes theorem provides the posterior probability of true vote V given
observing vote B as follows:

P (V jb) = P (bjV )P
v2V P (bjv)

For example, when a voter casts randomized vote of bi = 1, his true vote vi
would be 1 with probability of 3=4. The leaking information depends on the
probability p for random voting. However, approaching p to 1 implies low
accuracy of the result. We have a tradeo� between the leaking information and
the accuracy of the result of voting.

5 Conclusion

We have proposed a light-weight electronic voting protocol that protects privacy
of voters. Based on the statistical analysis of the protocol, we have clari�ed a
meaningful estimate of the voting result. We have presented a commitment
protocol that prevents dishonest voters from voting without randomizing their
votes. The main result is that the accuracy of the voting result improves with
the number of of voters increases. The proposed protocol is expected to be
applied in a variety of electronic commerce protocols as a primitive technique.
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A Proof

Proof of Lemma 3.1 Assume that a voter has yes vote. The probabilities
that bi = 1 and 0 are 1 � p + pq and 1 � (1 � p + pq) = p � pq, respectively.
Otherwise, the probabilities that bi = 1 and 0 are pq and 1 � pq, respectively.
Then, we have the probability generating function of P (mjk) as follows,

f(z) =

nX
m=0

P (mjk)zm = ((1� p+ pq)z + (p� pq))k((pq)z + (1� pq))n�k: (7)

By expanding f(z), we have

f(z) =

kX
i=0

�
k

i

�
(1�p+pq)i(p�pq)k�i

n�kX
j=0

�
n� k

j

�
(pq)j(1�pq)n�k�jzi+j ;

where a coe�cient of zi+j corresponds to P (mjk) with letting m = i+ j. Thus,
picking up all coe�cients for i and j that holds i + j = m, we have

P (mjk) =
min(m;k)X

i=max(0;m+k�n)

�
k

i

��
n� k

m� i

�
(1�p+pq)i(p�pq)k�i(pq)m�i(1�pq)n�k�m+i:

(Q.E.D)

Proof of Theorem 3.1 According tothe Bayes theorem, we have

P (kjm) =
P (k;m)

P (m)
=

P (mjk)P (k)Pn

i=0 P (mjk = i)P (k = i)

where P (k) = 1=(n+1) is a constant, so by eliminating it, we have the theorem.
(Q.E.D)

Proof of Theorem 3.2 According to the basic properties of probability gen-
erating function, we have the lemma in the following way.

f 0(z) =
d

dz
f(z) =

nX
m=0

P (mjk)mzm�1

E[mjk] =

nX
m=0

P (mjk)m = f 0(1)

= k((1� p+ pq)z + p� pq)k�1(1� p + pq)(pqz + 1� pq)n�k

+((1 � p+ pq)z + p� pq)k(n� k)(pqz + 1� pq)n�k�1pq

= k(1� p) + npq

The identify of the most likely value is obvious from the behavior of the proba-
bility distribution function. (Q.E.D)
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Proof of Theorem 3.3 Let Pn(mjk) be a conditional probability of observing
m votes given a true number of yes votes k. Then, we have the following
recursive relationship on P (mjk) with regards ot n:

Pn+1(mjk) = Pn(m � 1jk � 1)(1� p+ pq) + Pn(mjk � 1):

where Pn(mjk) is probability of observing m given k in n voters. Then, the
theorem is proved in mathematical induction with n. (Q.E.D)

Proof of Theorem 3.4 According to the propeties of probability generation
function, we have the followings:

f 00(z) =
d

dz
f(z) =

nX
m=0

P (mjk)m(m � 1)zm�2

f 00(1) = �(m2jk)� �(mjk)
= k(k � 1)(1� p+ pq)k�2(1� p+ pq)2(pqz + 1� pq)n�k

+2k(1� p + pq)k�1(1� p+ pq)(n � k)(pqz + 1� pq)n�k�1pq

+(1� p+ pq)k(n� k)(n� k � 1)(pqz + 1� pq)n�k�2(pq)2

V ar[mjk] =

nX
m=0

P (mjk)(�(mjk)�m)2

= �(mjk)2 � 2�(mjk)2 + �(m2jk) = f 00(1) + f 0(1) + f 0(1)2

= pk(p� 1)(2q � 1) + npq(1� pq)

(Q.E.D)
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