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Abstract

Redundant disk arrays provide highly-available, high-performance disk storage to a wide variety of applications.
Because these applications often have distinct cost, performance, capacity, and availability requirements, researchers
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restricting code changes to mapping, algorithms and other functions that are known to be specific to an array archi-
tecture. Algorithms are executed using a general mechanism which automates the recovery from device errors, such
as a failed disk read. RAIDframe enables a single implementation to be evaluated in a self-contained simulator, or
against real disks as either a user process or a functional device driver.

 1995, 1996, Carnegie Mellon University. All rights reserved.

This research is supported in part by the National Science Foundation through the Data Storage Systems Center, an
NSF engineering research center, under grant number ECD-8907068 and an AT&T fellowship. It is also supported in
part by industry members of the Parallel DataConsortium, including: Hewlett-Packard, Data General Corporation,
Digital Equipment Corporation, International Business Machines, Seagate Technology, Storage Technology, and
Symbios Logic.



Keywords: disk array, storage, architecture, simulation, directed acyclic graph, software.



p-
INTRODUCTION The Importance of RAIDframe to the Research and Develo
ment Communities 9

CHAPTER 1 Redundant Disk Arrays: 13
A Brief Overview 13

1.1 The Need for Improved Availability in the Storage Subsystem 13
1.1.1 The Widening Access Gap 13
1.1.2 The Downsizing Trend in Disk Drives 14
1.1.3 The Advent of New, I/O-Intensive Applications 15
1.1.4 Why These Trends Necessitate Higher Availability 15

1.2 Technology Background 16
1.2.1 Disk Technology 17
1.2.2 Disk-Array Technology 19

CHAPTER 2 Managing the Complexity of Array Software 41
2.1 Traditional Approaches in Managing Array Software are Suboptimal 42

2.2 Treating RAID Operations as Programs 43
2.2.1 Creating Pass-Fail Primitive Operations 45
2.2.2 Constructing RAID Operations from a Set of Primitive Operations 46
2.2.3 Summary 46

2.3 Representing RAID Operations as Graphs 46
2.3.1 Directed, Acyclic Graphs (DAGs) 47
2.3.2 Simplifying Constraints for DAGs 48
2.3.3 Incorporating Roll-Away Error Recovery Within DAGs 49
2.3.4 Verifying the Correctness of DAGs 50

2.4 Executing RAID Operations 51
2.4.1 Node States and Transitions 51
2.4.2 Executing DAGs Without Errors 53
2.4.3 Handling Errors When Executing DAGs 53

2.5 Reconstructing Data On-line When a Disk Fails 55
2.5.1 Disk-Oriented Reconstruction 55
2.5.2 Buffer Memory Management 57
2.5.3 Interaction with Writes in the Normal Workload 57
2.5.4 Summary 58

CHAPTER 3 RAIDframe: A Framework for Implementing New
Designs 59

3.1 Features 59
3.1.1 RAIDframe as a Stand-Alone User Application 60
3.1.2 RAIDframe as an Event-Driven Simulator 60
3.1.3 RAIDframe as a Device Driver in the Kernel 61
3.1.4 RAID Architectures Implemented in RAIDframe 61

3.2 Internal Architecture 64
3.2.1 RAIDframe Infrastructure 64
3.2.2 Configurable RAIDframe Modules 67

3.3 Reconstruction Architecture 69
RAIDframe: A Rapid Prototyping Tool for RAID Systems v

Version 1.0 6/24/96



3.3.1 Reconstruction State Machine 69
3.3.2 Reconstruction States 69

3.4 Suite of Test Applications 70

CHAPTER 4 Installing, Configuring, and Using RAIDframe 73
4.1 Installing RAIDframe 73

4.1.1 Creating Executables for the Stand-Alone Application and Simulator 73
4.1.2 Installing the Device Driver 74

4.2 Configuring RAIDframe 75
4.2.1 RAIDframe’s Configuration File 76
4.2.2 Configuring the Device Driver Using Control Programs 79

4.3 Testing RAIDframe Operation 81
4.3.1 Running the Test Applications 81
4.3.2 Setting Up the Workload File For the Script Test 82

4.4 Comparing How RAID Architectures Perform 84
4.4.1 Preparing to Run the rf_genplot Front End 85
4.4.2 Running the rf_genplot Front End 85

4.5 Accessing Built-in Performance Tracing 86

4.6 Debugging RAIDframe Installations 87

CHAPTER 5 Extending RAIDframe 91
5.1 RAIDframe fundamentals 91

5.1.1 Types and Conventions 91
5.1.2 Return Codes 92
5.1.3 Memory Allocation 92
5.1.4 Memory-Allocation Lists 93
5.1.5 Shutdown Lists 93
5.1.6 Threads 94
5.1.7 Creating New Debug Options 100
5.1.8 Timing 100
5.1.9 Built-in Tracing of RAIDframe Performance 101

5.2 Installing a New RAID Architecture 102
5.2.1 parityConfig, configName 103
5.2.2 MakeLayoutSpecific, makeLayoutSpecificArg 103
5.2.3 Configure 104
5.2.4 MapSector, MapParity, MapQ 105
5.2.5 IdentifyStripe 106
5.2.6 SelectionFunc 106
5.2.7 MapSIDToPSID 107
5.2.8 GetDefaultHeadSepLimit 107
5.2.9 GetDefaultNumFloatingReconBuffers 108
5.2.10GetNumSparePUs 108
5.2.11 InstallSpareTable 108
5.2.12SubmitReconBuffer 108
5.2.13VerifyParity 109
5.2.14 faultsTolerated 110
5.2.15states 110
5.2.16flags 110

5.3 Implementing New RAID Operations 111
5.3.1 DAG Creation 111
vi RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96



5.3.2 Creating New Primitive Operations 111

5.4 Adding a New Disk-Queueing Policy 112
5.4.1 Create Operation 112
5.4.2 Enqueue Operation 113
5.4.3 Dequeue Operation 113
5.4.4 Peek Operation 113
5.4.5 Promote Operation 114

5.5 Porting RAIDframe to Other Systems 114
5.5.1 Basic Types 114
5.5.2 Byte Ordering 115
5.5.3 Word Size 115
5.5.4 Timing 115
5.5.5 SCSI Operations 115
5.5.6 Threads 115

RAID Level 0 117

RAID Level 1, Chained Declustering, Interleaved Declustering 118

RAID Level 4, RAID Level 5, Parity Declustering 119

RAID Level 6 121
RAIDframe: A Rapid Prototyping Tool for RAID Systems vii

Version 1.0 6/24/96



viii RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96



INTRODUCTION The Importance of
RAIDframe to the
Research and Development
Communities
e has
pera-
isks
 the

r new
erfor-
 of
r ana-
s, it is

pen-
nting
by an
rrect.

g the
ability

 sim-
d in
mming
y be
) are

time
ish-
The demand for high-capacity, high-performance, and highly available data storag
increased as information systems have grown to critical importance in business o
tions. Given how rapidly the market for Redundant Arrays of Independent D
(RAID) [Patterson88] is growing [DISK/TREND94], these architectures are clearly
storage technology of choice for meeting this demand.

The increasing importance of RAID systems has led to a number of proposals fo
architectures and algorithms, for example, designs emphasizing improved write p
mance [Menon92, Mogi94, Polyzois93, Solworth91, Stodolsky94]. While many
these proposals are promising, they have been largely evaluated by simulation o
lytic modeling. To understand the advantages and limitations of these new design
essential for RAID architects to experiment with concrete implementations.

However, evaluating new designs by introducing them into the marketplace is ex
sive, slow, and too often unenlightening. Using traditional approaches, impleme
redundant disk arrays has been a difficult, manual process. This is evidenced 
inabilty to generate code which is reusable, extensible, and easily verifiable as co
While these problems prevent RAID researchers and developers from explorin
design space, they also lead to long development times and uncertain product reli
for RAID vendors.

In developing RAIDframe, our primary goal was to decrease design-cycle time by
plifying the process of implementation without sacrificing performance (measure
terms of storage access and response time). We developed a simple progra
abstraction from which distinct RAID operations (and therefore, architectures) ma
easily implemented in RAIDframe. Once the basic instructions (fewer than a dozen
implemented, the time required to implement a new RAID operation is simply the 
required to write a new program. Error recovery is then mechanized without dimin
RAIDframe: Motivation, Theory, and Implementation 9
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ing performance or increasing overhead—in contrast to traditional approaches w
were manual and prone to error [Courtright94].

The programming abstraction RAIDframe uses is based on directed acyclic g
(DAGs). A designer wishing to introduce a new architecture or optimize an exis
architecture will be able to achieve this goal by modifying the library of graphs 
graph-invocation rules implemented in RAIDframe. While graphs and the bindin
graphs to requests varies widely, the majority of the code in RAIDframe is found in
unchanging DAG interpretation-engine. In this way, designers are encouraged to e
ment with and extend various RAID architectures because they can ignore the ma
of the code, which is devoted to device-manipulation details.

A particularly powerful feature of RAIDframe is that it separates error recovery f
array architecture. The mechanism used to recover from failed primitive opera
(such as a disk read) during the execution of an array operation is a part of RAIDfra
internal infrastructure. To do this, RAIDframe uses a two-phase approach to error r
ery which we callroll-away error recovery. RAIDframe’s architecture-independen
DAG interpreter handles errors by identifying those nodes in a DAG which commit 
to disk and by specifying the direction of recovery based on when errors occur in
tion to this commit point.

Specifically, if an error occurs before any data has been committed to disk, then th
tem rolls back, releasing resources, and retries the operation with a more appro
graph. On the other hand, if an error occurs after data has been committed, the 
rolls forward through the remainder of the graph, giving later requests the impre
that this graph completed instantaneously before the error. In either case, this pro
hidden from the user and performed without regard to array architecture. Graph co
points can be specified so that roll-back is inexpensive (that is, it does not induce
tional device work in preparing for or executing roll-back) and so that roll-forward d
not need to execute any device operation not already coded in the in-progress gra
eliminating the need for architecture-specific code for handling errors, roll-away e
recovery further simplifies the process of building new RAID architectures: there i
need to create or alter thousands of lines of error-recovery code.

Currently, RAIDframe acts as a software-only RAID controller for Alpha-based OS
machines. To emphasize our intent to enable real designers to experiment with a
RAIDframe, we have implemented the software so that it can be configured to ex
as an event-driven simulator, as a stand-alone application managing disks throu
UNIX raw-disk-interface, or as an OSF/1 device driver through which standard U
file systems can be mounted and accessed.

RAIDframe’s library of architectures includes RAID levels 0 (nonredundant), 1 (mir
ing with shortest-queue selection), 4 (centralized parity), 5 (rotated parity), 6 (R
Solomon double-failure protection), declustered parity, interleaved declustering,
chained declustering; additionally, variants of some of these support distributed, o
spare-disk capacity. Preliminary performance analysis shows that RAIDframe’s R
level 0 can keep an array as busy as a much-more-limited direct implementation o
striping without substantially increasing response time, although RAIDframe requ
more processing power to achieve this goal [Gibson, 1995]. Moreover, beginning
the RAID level 0 graphs in its library, well over 90% and frequently 99% of the line
10 RAIDframe: Motivation, Theory, and Implementation
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code in RAIDframe are unchanged by the modifications necessary to implemen
architectures listed above. Finally, the roll-away error recovery is fully functio
requiring only that a graph’s commit nodes be marked.

This content in this document can be roughly divided into two categories:background
andusing RAIDframe. Background chapters are Chapter One: Redundant Disk Arr
Chapter Two: Theory of Operation; and Chapter Three: RAIDframe: A Framework
Implementing New Designs. Together, these chapters provide a basic understand
RAID technology, explain the programmatic abstraction RAIDframe uses for mode
RAID operations, and detail RAIDframe’s features, internal architecture, and sup
ing libraries. The remaining chapters are Chapter Four: Installing, Configuring,
Using RAIDframe; and Chapter Five: Extending RAIDframe. These last two chap
help provide designers and developers with the necessary information for using R
frame.

This document, along with the RAIDframe code, will be continually revised a
updated. These updates will be made available on the Parallel Data Laboratory
pages at the URL http://www.cs.cmu.edu/afs/cs/project/pdl/WWW/Index.html. To
notified when updates are made available, send mail to pdl-webmaster@cs.cmu.e
RAIDframe: Motivation, Theory, and Implementation 11
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CHAPTER 1 Redundant Disk Arrays:
A Brief Overview
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In Chapter 1, we will present a brief overview of redundant disk arrays. The text fo
chapter was excerpted from Chapter 2 of Mark Holland’s thesis, “On-line Data Re
struction in Redundant Disk Arrays,” published in 1994 by Carnegie Mellon Univer
The text has been edited and updated in minor ways to allow it to fit into the RAIDfr
documentation. For a more thorough description of RAID technology, we recomm
The RAIDbook: A Source Book for Disk Array Technology [RAID96].

1.1 The Need for Improved Availability in the Storage
Subsystem

There exist several trends in the computer industry that are driving the design of s
subsystems toward higher levels of parallelism. This means that current and futur
tems will achieve better I/O performance by increasing the number, rather than th
formance, of the individual disks used [Patterson88, Gibson92]. This distinctio
important in that, as will be seen, it implies directly the need for improved data a
ability. This section briefly describes these trends (Sections 1.1.1 through 1.1.3)
shows why they lead to the need for improved availability in the storage subsy
(Section 1.1.4).

1.1.1 The Widening Access Gap

First and foremost, processors are increasing in performance at a much faster ra
disks. Microprocessors are increasing in computational power at between 25 and
per year [Myers86, Gelsinger89], and projections for future performance incre
range even higher. Gelsinger et. al. [Gelsinger 89] predicts that the huge transisto
gets projected for microprocessors in the 1990s will allow on-chip multiprocess
RAIDframe: A Rapid Prototyping Tool for RAID Systems 13
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yielding a further 20% annual growth rate for microprocessors. Bell [Bell89] proj
supercomputer growth rates of about 150% per year.

Disk drives, by way of contrast, have been increasing in performance at a much s
rate. Comparing the state of the art in 1981 [Harker81] to that in 1993 [Wood93] s
that the average seek time1 for a disk drive improved from about 16 ms to about 10 m
rotational latency from about 8.5 ms to about 5 ms, and data transfer rate from ab
MB/sec. (which was achieved only in the largest and most expensive disks) to ab
MB/sec. Combining these, the time taken to perform an average 8 KB access imp
from 27.1 ms to 15.0 ms, or by about 45%, in the twelve-year period. This corresp
to an annual rate of improvement of less than 5%.

Increased processor performance leads directly to increased demand for I/O ban
[Gibson92, Kung86, Patterson88]. Since disk technology is not keeping pace with
cessor technology, it is necessary to use parallelism in the storage subsystem to m
increasing demands for I/O bandwidth. This has been, and continues to be, the p
motivation behind disk-array technology.

1.1.2 The Downsizing Trend in Disk Drives

Prior to the early 1980s, storage technology was driven by the large-diameter (14
drives [IBM3380, IBM3390] used by mainframes in large-scale computing envir
ments such as banks, insurance companies, and airlines. These were the only driv
offered sufficient capacity to meet the requirements of these applications [Woo
This changed dramatically with the growth of the personal computer market. The 
mous demand for small-form-factor, relatively inexpensive disks produced an ind
trend towarddownsizing, which is defined as the technique of re-implementing exist
disk-drive technology in smaller form factors. This trend was enabled primarily by
rapid increase in storage density achieved during this period, which allowed the ca
of small-form-factor drives to increase from a few tens of megabytes when first i
duced to over two gigabytes today [IBM0664]. It was also facilitated by the ra
growth in VLSI integration levels during this period, which allowed increasingly sop
ticated drive-control electronics to be implemented in smaller packages. Further i
tus for this trend derived from the fact that smaller-form-factor drives have sev
inherent advantages over large disks:

• smaller disk platters and smaller, lighter disk arms yield faster seek operations,

• less mass on each disk platter allows faster rotation,

• smaller platters can be made smoother, allowing the heads to fly lower, which
improves storage density,

• lower overall power consumption reduces noise problems.

These advantages, coupled with very aggressive development efforts necessitated
highly competitive personal computer market, have caused the gradual demise 
larger drives. In 1994, the best price/performance ratio was achieved using 3-1/2
disks, and the 14-inch form factor has all but disappeared. The trend is toward

1.  Seek time, rotational latency, and transfer rate are defined in Section 1.2.1.
14 RAIDframe: A Rapid Prototyping Tool for RAID Systems
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smaller form factors: 2-1/2-inch drives are common in laptop computers [ST9096]
1.3-inch drives are available [HPC3013]. One-inch-diameter disks should appear o
market by 1995 and should be common by about 1998. At a (conservative) proj
recording density in excess of 1-2 GB per square inch [Wood93], one such disk s
hold well over 2 GB of data.

These tiny disks will enable very large-scale arrays. For example, a one-inch disk 
be fabricated for surface-mount, rather than using cables for interconnection as i
rently the norm, and thus a single, printed circuit board could easily hold an 80
array. Several such boards could be mounted in a single rack to produce an arra
taining on the order of 250 disks. Such an array would store at least 500 GB, and e
disk performance does not improve at all between now and 1998, could service 
12,500 concurrent I/O operations or deliver 1.25-GB-per-second aggregate band
The entire system (disks, controller hardware, power supplies, etc.) would fit in a
ume the size of a filing cabinet.

To summarize, the inherent advantages of small disks, coupled with their ability to
vide very high I/O performance through disk-array technology, leads to the conclu
that storage subsystems are, and will continue to be, constructed from a large num
small disks, rather than from a small number of powerful disks. Many trends in the
age industry substantiate this claim. For example, DISK/TREND predicts that
redundant-disk-array market will exceed thirteen billion dollars by 1997 [DIS
TREND94]. Storage Technology Corporation, traditionally a maker of large-form-
tor IBM-compatible disk drives, has stopped developing disks altogether and is re
ing this product line by one based on disk arrays [Rudeseal92].

1.1.3 The Advent of New, I/O-Intensive Applications

Finally, increases in on-line storage capacity and commensurate decreases in c
megabyte enable new technologies that demand even higher levels of I/O perform
The most visible example of this is in the emergence of digital audio and video app
tions such as video-on-demand [Rangan93]. Others include scientific visualizatio
large-object servers such as spatial databases [McKeown83, Stonebraker92]. 
applications are all characterized by the fact that, if implemented on a large scale
demands for storage and I/O bandwidth will far exceed the ability of current data 
age subsystems to supply them. These applications will drive storage technolog
consuming as much capacity and bandwidth as can be supplied and hence nec
higher levels of parallelism in storage subsystems.

1.1.4 Why These Trends Necessitate Higher Availability

The preceding discussion demonstrated that higher degrees of I/O parallelism
increased number of disks in a storage subsystem) are increasingly necessary t
the storage demands of current and future systems. The discussion deliberately a
identifying the specific organizations to be used in future storage systems but ma
case that such systems will be composed of a relatively large number of indepe
disks. However, constructing a storage subsystem from a large number of disks h
significant drawback: the reliability of such a system will be worse than that of a sy
constructed from a small number of disks because the disk array has a much 
component count.
RAIDframe: A Rapid Prototyping Tool for RAID Systems 15
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As the number of disks comprising a system increases, the reliability of that sy
falls. Specifically, assuming the failure rates for a set of disks to be identical, inde
dent, exponentially distributed random variables, a simple reliability calculation sh
that the mean time to data loss for a group ofN disks is only 1/N times as long as that of
a single disk [Patterson88]. Gibson analyzed a set of disk-lifetime data to investiga
accuracy of the assumptions behind this calculation and found “reasonable evide
indicate that the lifetimes of the more mature of these products can be modeled 
exponential distribution” [Gibson92, p. 113]. Working from this assumption, a 100-
array composed of disks with a 300,000-hour mean-time-to-failure (typical for cur
disks) will experience a failure every 3000 hours, or about once every 125 day
disks get smaller and array sizes grow, the problem gets worse: a 600-disk array e
ences a failure approximately once every three weeks.

Disk arrays typically incorporate some form of redundancy in order to protect ag
data loss when these failures occur. This is generally achieved either bydisk mirroring
[Katzman77, Bitton88, Copeland89, Hsiao91], or byparity encoding [Arulpragasam80,
Kim86, Park86, Patterson88, Gibson93]. In the former, one or more duplicate cop
each user data unit are stored on separate disks. In the latter, commonly kno
Redundant Arrays of Inexpensive1 Disks (RAID) [Patterson88], a portion of the array
physical capacity is used to store an error-correcting code computed over the data
in the array. Section 1.2.2 describes both of these approaches in detail. Studie
shown that, due to superior performance on small read and write operations, a mi
array, also known as RAID Level 1, may deliver higher performance to many impo
workloads than can a parity-based array [Chen90a, Gray90]. Unfortunately, mirror
substantially more expensive—its storage overhead for redundancy is 100%, wh
the overhead in a parity-encoded array is generally less than 25% and may be le
10%. Furthermore, several recent studies [Rosenblum91, Menon92a, Stodols
demonstrated techniques that allow the small-write performance of parity-based a
to approach and sometimes exceed that of mirroring.

1.2 Technology Background

This section describes the structure and organization of modern disk drives and
arrays; the subsection on disk technology has been kept to a minimum. Product m
such as Digital Equipment Corporation’sMass Storage Handbook [DEC86] provide
more thorough descriptions of disk-drive technology. This section describes disk-
structure and functionality in more detail because this information is essential to u
standing the RAIDframe prototyping tool.

1.  Because of industrial interest in using the RAID acronym and because of their concerns
the restrictiveness of its “Inexpensive” component, RAID is often reported as an acronym fo
Redundant Arrays of Independent Disks [RAID96].
16 RAIDframe: A Rapid Prototyping Tool for RAID Systems
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FIGURE  1 Physical Components of a Disk Drive

1.2.1 Disk Technology

Figure 1 shows the primary components of a typical disk drive. A disk consists 
stack of platters coated with magnetic media with data stored on all surfaces. The
ters rotate on a common spindle at constant velocity past the read/write heads (o
surface), each of which is fixed on the end of a disk arm. The arms are connecte
common shaft called an actuator. Applying a directional current to a positioning m
causes the actuator to rotate small distances in either direction. Rotating the ac
causes the disk heads to move, in unison, radially along the platters, thereby all
access to a band spanning most of the coated surface of each platter.

Figure 2 illustrates how data is typically organized on a disk. Part (a) shows how a 
of sequential user data (almost always 512 bytes) is collected together and store
sector. A sector is the minimum-sized unit that can be read from or written to a 
drive. A header area in front of each sector contains sector identification and clock
chronization information, and a trailer area contains an error correcting code com
over the header and data. The set of sectors on a single surface at constant rad
tance from the spindle is called atrack, and the set of all tracks at constant radial offs
is called acylinder. At current densities, a typical 3-1/2-inch disk has 50-100 sectors
track, 1000-3000 cylinders, and 4-20 surfaces.

Drive Motor
(Constant RPM)

Positioning Motor
(Voice Coil)

Platter

Surfaces
(Media)

Actuator

Read/Write HeadArm

Spindle
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FIGURE  2 Data Layout on a Disk Drive

In order to access a block of data, the drive-control electronics moves the actua
position the disk heads over the correct cylinder, waits for the desired data to 
under the heads, and then reads or writes the indicated sectors. Moving the actu
calledseeking and takes 1-20 ms depending on the seek distance. Current disks ro
between 3600 and 7200 RPM, making the expected rotational latency (one half o
revolution) between 4.2 and 8.3 ms. Thus, for each access the disk must firstseek to the
indicated cylinder and thenrotate to the start of the requested data. The combination
these two operations is referred to aspositioning the disk heads.

If a user access requests a full track’s worth of data, the rotational latency can be 
nated by reading or writing the data in the order that the requested sectors pass un
heads, rather than waiting until the first sector rotates under the heads to commen
operation. This is calledzero-latencyoperation orfull-track I/O and can be extended to
include the case where the access spans only part of a track.

Note that the tracks near the outside of each surface have greater circumferenc
those near the spindle. A technique calledzoned bit recording (ZBR) takes advantage of
this and stores more sectors per track in the outer cylinders. This approach group
of 50-200 adjacent cylinders into zones with the number of sectors per track being
stant within each zone but successively larger in the outer zones than the inner.

Figure 2b illustrates the assignment of sequential data to sectors, tracks, and cyl
Nearly all disks read or write only one head at time, that is, they do not access mu
heads in parallel,1 and so sequential user data is sequential in any given sector. Thu
shown in the figure, sequential data starts at sector zero, proceeds around to the
the track, moves to the next track (which is actually on the underside of the first pla

1.  This is because the disk heads cannot be positioned independently, and thermal variatio
the rigidity of the actuator, platters, and spindle make it difficult or impossible to keep all the
heads simultaneously positioned over their respective tracks. There do exist a few disks that
multiple heads in parallel by careful management of head alignment [Fujitsu2360], but thes
not commodity products and typically have lower density and higher cost per megabyte than
dard disks.
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continues this way to the end of the cylinder, and then moves to the next cylinde
starts again. Note that in this example a rotational distance equal to one sector is s
upon crossing a track boundary (moving from sector 7 to 8), and two sectors are sk
upon crossing a cylinder boundary (moving from sector 23 to 24). These gaps are 
the track skew andcylinder skew. The data is laid out in this manner to assure that 
drive-control electronics will have time to reposition the actuator when a user ac
spans a track or cylinder boundary. The track skew is shorter than the cylinder 
because only fine adjustments are necessary when switching to a new track with
cylinder, whereas switching to a new cylinder requires the actuator to be moved on
cylinder width and then fine-adjusted over the new track. Typical values for track
cylinder skew in current technology are about 0.5 and 1.5 ms, respectively.

The interface electronics in a disk drive typically contain a buffer memory, varyin
size from about 32 KB to about 1 MB, which serves two purposes. First, several 
may share a single path to the CPU, and the memory serves to speed-match the 
the bus. In order to avoid holding the bus for long periods of time, a disk will typic
read data into the buffer and then burst-transfer it to the CPU. The buffer serve
same purpose on a write operation: the CPU burst-transfers the data to the drive’s 
and the drive writes it to the media at its own rate. Reading and writing to and from
buffer, instead of directly between the media and the bus, also eliminatesrotational-
position-sensing (RPS) misses [Buzen87], which occur in bufferless disks when th
transfer path to the CPU is not available at the time the data arrives under the disk 
The second purpose served by the buffer is as a cache memory [IBM0661, Maxt
Applications typically access files sequentially, and so the disks comprising a st
subsystem typically observe a sequential access pattern as well. Thus after eac
operation, the disk controller will continue to read sequential data from the media
the buffer. If the next block of requested data is sequential with respect to the pre
block, the disk can often service it directly from the buffer instead of accessing
media. This yields both higher throughput and lower latency. Many disks generaliz
readahead function so that the buffer becomes a full-fledged cache memory.

1.2.2 Disk-Array Technology

This section describes the structure and operation of disk arrays in detail.

FIGURE  3 Disk-Array Architectures
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1.2.2.1 Disk-Array Architecture
Figure 3 illustrates two possible disk-array-subsystem architectures. Today’s sy
use the architecture of Figure 3a in which the disks are connected via inexpensive
bandwidth (e.g., SCSI [ANSI86]) links to an array controller, which is connected
one or more high-bandwidth parallel buses (e.g., HIPPI [ANSI91]) to one or more
computers. Array controllers and disk buses are often duplicated (indicated by th
ted lines in the figure) so that they do not represent a single point of failure [Katzma
Menon93]. The controller functionality can also be distributed amongst the disks o
array [Cao93].

As disks get smaller [Gibson92], the large cables used by SCSI and other bus inte
become increasingly unattractive. The system sketched in Figure 3b offers an al
tive. It uses high-bandwidth, bidirectional serial links for disk interconnection. T
architecture scales to large arrays more easily because it eliminates the need 
array controller to incorporate a large number of string controllers. Further,  by ma
each link bidirectional, it provides two paths to each disk without duplicating bu
Standards for serial-interface disks have emerged (P1394 [IEEE93], Fibre Ch
Fibre91], DQDB [IEEE89]) and Seagate has begun shipping drives with serial i
faces. As the cost of high-bandwidth serial connectivity is reduced, architectures s
to that of Figure 3b may supplant today’s short, parallel bus-based arrays.

In both organizations, the array controller is responsible for all system-related act
controlling individual disks, maintaining redundant information, executing reque
transfers, and recovering from disk or link failures. The functionality of an array c
troller can also be implemented in software executing on the subsystem’s host or h

1.2.2.2 Defining the RAID Levels: Data Layout and ECC
An array controller implements the abstraction of alinear address space. The array
appears to the host as a linear sequence of data units, numbered 0 throughN·B- 1,
whereN is the number of disks in the array andB is the number of units of user data o
a disk. Units holding ECC do not appear in the address space exported by the arra
troller; they are not addressable by the application program. The array controller 
lates addresses in this linear space into physical disk locations (disk identifiers an
offsets) as it performs requested accesses. It is also responsible for performin
redundancy-maintenance accesses implied by application write operations. We re
the mapping of an application’s logical unit of stored data to physical disk locations
associated ECC locations as the disk array’slayout.

Fundamental to all disk arrays is the concept ofstriping consecutive units of user data
across the disks of the array [Kim86, Livny87, Patterson88, Gibson92, Merchan
Striping is defined as breaking up the linear address space exported by the array c
ler into blocks of some size and assigning the consecutive blocks to consecutive
rather than filling each disk with consecutive data before switching to the next.
striping unit (or stripe unit) [Chen90b] is the maximum amount of consecutive da
assigned to a single disk. The array controller has the freedom to set the stripin
arbitrarily; the unit can be as small as a single bit or byte, or as large as an entire
Striping has two benefits: automatic load balancing in concurrent workloads and
bandwidth for large sequential transfers by a single process.
20 RAIDframe: A Rapid Prototyping Tool for RAID Systems
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Disk arrays achieve load balance in concurrent workloads (those that have man
cesses concurrently accessing the stored data) by selecting the stripe unit to b
enough that most small accesses are serviced by a single disk. This allows the in
dent processes to perform small accesses concurrently in the array, and as long
processes’ access patterns are not pathologically regular with respect to the stripin
it assures that the load will be approximately evenly balanced over the disks. Thu
N-disk coarse-grain striped array can serviceN I/O requests in parallel, but each of them
occurs at the bandwidth of a single disk.

Arrays achieve high data rates in low-concurrency workloads by striping at a finer g
for example, one byte or one sector. Such arrays are used when the expected work
a single process requesting data in very large blocks. Fine-grain striping assure
each access uses all the disks in the array, which maximizes performance wh
workload concurrency (number of processes) is one1. After the initial seek and rota-
tional delay penalties associated with each access, a fine-grain-striped array tra
data to or from the CPU atN times the rate of a single disk. Therefore, a fine-gra
striped array can service only one I/O at any one time but is capable of reading or
ing the data at a very high rate.

Patterson, Gibson, and Katz [Patterson88] classified redundant disk arrays int
types, called RAID Levels 1 through 5, based on the organization of redundant info
tion and the layout of user data on the disks. This terminology has gained wide a
tance [RAID93] and is used throughout this dissertation. The term “RAID Level 0” 
since entered common usage to indicate a non-redundant array. Figure 4 illustra
layout of data and redundant information for the six RAID levels. The remainder of
section briefly introduces each of the levels, and subsequent sections provide add
details.2

RAID Level 1, also calledmirroring or shadowing, is the standard technique used 
achieve fault-tolerance in traditional data-storage subsystems [Katzman77, Bitto
The disks are grouped into mirror pairs, and one copy of each data block is stor
each of the disks in the pair. To unify the taxonomy, RAID Level 1 defines the user
to be block-striped across the mirror pairs, but traditional mirrored systems instea
each disk with consecutive user data before switching to the next. This can be thou
as setting the stripe unit to the size of one disk. RAID Level 1 is a highly reliable org
zation since the system can tolerate multiple disk failures (up toN/2) without losing
data, so long as no two disks in a mirror pair fail. It can be generalized to provide m
ple-failure tolerance by maintaining more than two copies of each data unit. Its d
back is that its cost per megabyte of storage is at least double that of RAID Level 0

1.  Since the host views the array as one large disk, it never attempts to read or write less th
sector, and hence every user access uses all the disks in the array. Note that one sector is 
mum unit that can be read from or written to an individual disk, and so a fine-grain-striped a
typically disallows accesses that are smaller thanN times the size of one sector, whereN is the
number of disks in the array. This rarely poses a problem since fine-grain striped arrays are
cally used in applications where the average request size is very large.

2.  Editor’s Note: Mark Holland’s thesis did not include a description of RAID Level 6, a leve
which offers protection from two disk failures.
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RAID Level 2 provides high availability at lower cost per megabyte by utilizing we
known techniques used to protect main memory against transient data loss. The
comprising the array are divided intodata disks andcheck disks. User data is bit- or
byte-striped across the data disks, and the check disks hold a Hamming error corr
code [Peterson72, Gibson92] computed over the data in the corresponding bits or
on the data disks. This reduces the storage overhead for redundancy from 100% 
roring to a value in the approximate range of 25-40% (depending on the number o
disks) in RAID Level 2 but reduces the number of failures that can be tolerated wi
data loss. As will be seen, the reliability and performance of such a system can s
very high. It can be extended to support multiple-failure toleration by using ann-failure-
tolerating Hamming code, which of course increases the capacity overhead for r
dancy and the computational overhead for computing the codes.

Thinking Machines Corporation’s Data Vault storage subsystem [TMC87] emplo
RAID Level 2, but this organization ignores an important fact about failure mode
disk drives. Since disks contain extensive error-detection and -correction function
and since they communicate with the outside world via complex protocols, the 
controller can directly identify failed disks from their status information or by their f
ure to adhere to the communications protocol. A system in which failed componen
self-identifying is called anerasure channel, to distinguish it from anerror channel, in
which the locations of the errors are not known. Ann-failure-detecting code for an erro
channel becomes ann-failure-correcting code when applied to an erasure chan
[Gibson89, Peterson72]. RAID Level 3 takes advantage of this fact to reduce the st
overhead for redundancy still further.

In RAID Level 3, user data is bit- or byte-striped across the data disks, and a simpl
ity code is used to protect against data loss. A single check disk (called theparity disk)
stores the parity (cumulative exclusive-or) over the corresponding bits on the data 
This reduces the capacity overhead for redundancy to 1/N. When the controller identi-
fies a disk as failed, it can recover any unit of lost data by reading the correspo
units from all the surviving disks, including the parity disk and XORing them toget
To see this, assume that disk 2 in the RAID Level 3 diagram within Figure 4 has fa
and note that

Multiple-failure tolerance can be achieved in RAID Level 3 by using more than 
check disk and a more complex error-detecting/correcting code such as a Reed-So
[Peterson72] or MDS code [Burkhard93, Blaum94]. RAID Level 3 has very low stor
overhead and provides very high data-transfer rates. Since user data is striped on
grain, each user access uses all the disks in the array, and hence only one acces
serviced at any one time. Thus this organization is best suited for applications su
scientific computation, in which a single process requests a large amount of sequ
data from the array.

Because all accesses use all disks in RAID Level 3, the disk heads move in uniso
so the cylinder over which the heads are currently located is always the same 
disks in the array. This assures that the seek time for an access will be the same
disks, which avoids the condition in which some disks are idle waiting for others to

p0 4– d0 d1 d2 d3 d4⊕ ⊕ ⊕ ⊕=( ) d2 d0 d1 p0 4– d3 d4⊕ ⊕ ⊕ ⊕=( )⇒
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ish their portion of an access. In order to assure that rotational latency is also the
for each access on each disk, systems using RAID Level 3 typically use phase-loc
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FIGURE  4 Data and Redundancy Organization in RAID Levels 0 through 5
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The figure shows the first few units on each disk in each of the RAID level
“D” represents a block of user data (of unspecified size, but some multiple 
one sector), “d” a bit or byte of user data, “hx-y” a Hamming code compute
over user data bits/bytes x through y, “px-y” a parity (exclusive-or) bit/byte
computed over data blocks x through y, and “Px-y” a parity block over us
data blocks x through y. Note from these definitions that the number of byt
represented by each individual box and label in the above diagrams varies w
the RAID level. The numbers on the left indicate the offset into the disk
expressed in stripe units. Shaded blocks represent redundant information, 
non-shaded blocks represent user data.
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FIGURE  4 Cont. Data and Redundancy Organization in RAID Levels 0 through 5

loop circuitry to synchronize the rotation of the spindles of the disks comprising
array. Many disks currently on the market support this spindle synchronization.

RAID Level 4 is identical to Level 3 except that the striping unit is relatively coar
grained (perhaps 32KB or larger [Chen90b]), rather than a single bit or byte. The 
of parity that protects a set of data units is called aparity unit. A set of data units and
their corresponding parity unit is called aparity stripe. RAID Level 4 is targeted at
applications like on-line transaction processing (OLTP), in which a large numbe
independent processes concurrently request relatively small units of data from the
Since the striping unit is large, the probability that a single small access will use 
than one disk is low, and hence the array can service a large number of accesses 
rently. This organization is also effective for workloads that are predominantly s
accesses but contain some fraction of larger accesses. The array services con

Level 0 is non-redundant and therefore not fault-tolerant. Level 1 is simple mirr
ing in which two copies of each data block are maintained. Level 2 uses a Hamm
error-correction code to achieve fault tolerance at a lower capacity overhead 
Level 1. Levels 3 through 5 exploit the fact that failed disks are self-identifyin
Thus Levels 3 through 5 achieve fault tolerance using a simple parity (exclusive
code, lowering the capacity overhead to only one disk out of six in this examp
Levels 3 and 4 are distinguished only by the size of the striping unit: one bit or 
byte in Level 3 and one block in Level 4. In Level 5, the parity blocks rotate throu
the array rather than being concentrated on a single disk to avoid throughput 
due to contention for the parity drive.

0

1

2

RAID Level 5: Rotated Block-Interleaved Parity

Disk 5

P0-4

D5

D11

D173

Disk 4

D4

P5-9

D10

D16

Disk 3

D3

D9

P10-14

D15

Disk 2

D2

D8

D14

P15-19

Disk 1

D1

D7

D13

D19

Disk 0

D0

D6

D12

D18

4 D23

D295

D22

D28

D21

D27

D20

D26

P20-24

D25

D24

P25-29

(Left-Symmetric)

0

1

2

RAID Level 4: Block-Interleaved Parity

Disk 5

P0-4

P5-9

P10-14

P15-193

Disk 4

D4

D9

D14

D19

Disk 3

D3

D8

D13

D18

Disk 2

D2

D7

D12

D17

Disk 1

D1

D6

D11

D16

Disk 0

D0

D5

D10

D15
RAIDframe: A Rapid Prototyping Tool for RAID Systems 25

Version 1.0 6/24/96



Redundant Disk Arrays:A Brief Overview

cess by

s the
o not
e the

nd can
t disks

ads
 user
ange.
k, and
is
 prob-
s that
 work-

ity is
d the
the
 at the
disks
y stripe

rovide
n.

 RAID
ingle
arity

 “read
n be

upplied
disks
s or
o par-
ure.
th
gered
 a disk
small accesses in parallel but achieves a high data rate on the occasional large ac
utilizing many disk arms.

In RAID Level 4, each disk typically services a different access, and so, unles
workload applied contains a significant fraction of large accesses, the heads d
remain synchronized. Consequently, there is no compelling reason to synchroniz
spindles either. However, spindle synchronization never degrades performance a
improve it on large accesses; disks arrays typically use it whenever the componen
support it.

The problem with RAID Level 4 is that the parity disk can be a bottleneck in worklo
containing a significant fraction of small write operations. Each update to a unit of
data implies that the corresponding parity unit must be updated to reflect the ch
Thus the parity disk sees one update operation for every update to every data dis
its utilization due to write operations isN-1 times larger than that of the data disks. Th
does not occur in RAID Level 3, since every access uses every disk. To solve this
lem, RAID Level 5 distributes the parity across the disks of the array. This assure
the parity-update workload is as well balanced across the disks as the data-update
load.

In RAID Level 5, there are a variety of ways to lay out data and parity such that par
evenly distributed over the disks [Lee91]. The structure shown in Figure 4 is calle
left-symmetric organization and is formed by first placing the parity units along 
diagonal and then placing the consecutive user data units on consecutive disks
lowest available offset on each disk. This method for assigning data units to 
assures that, if there are any accesses in the workload large enough to span man
units, the maximum possible number of disks will be used to service them.

RAID Levels 2 and 4 are of less interest than the others because levels 3 and 5 p
better solutions, respectively. We omit Levels 2 and 4 from the remaining discussio

1.2.2.3 Reading and Writing Data in the Different RAID Levels
This section describes the techniques used to read and write data in the different
levels, both when the array is fault-free (“fault-free mode”) and when it contains a s
failed disk (“degraded mode”). The focus is on the techniques used to maintain p
and to continue operation in the presence of failure. This section uses the terms
throughput” and “write throughput” to indicate the maximum rates at which data ca
read from or written to the array.

In all cases, the array controller maps the linear array address and access type s
by the host (the “user” read or write) to the indicated set of operations on physical 
(the corresponding “disk” reads and/or writes). In RAID Level 0, the set of read
writes so generated can be immediately and concurrently initiated since there is n
ity to maintain and no possibility of continuing operation in the presence of fail
Thus the read throughput and write throughput of a RAID Level 0 array are boN
times the throughput of a single disk. In Levels 1, 3, and 5, the disk operations trig
by a user read or write operation are more complex, especially in the presence of
failure, and often must be sequenced appropriately.
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1.2.2.3.1 RAID Level 1
Figure 5 illustrates the different read and write operations in RAID Level 1. In fault-
mode, the controller must send user write operations to both disks. This reduce
maximum possible write throughput to 50% of that of RAID Level 0. The two w
operations can, in general, occur concurrently, but some systems perform them s
tially in order to guarantee that the old data will be recoverable should the first write

FIGURE  5 Read and Write Operations in RAID Level 1 (mirroring)

Typically, read requests are sent to only one of the two disks in the pair so that the
will be free to service other read operations. The controller can service user rea
fault-free mode from either copy of the data. This flexibility allows the controller
improve throughput by selecting, for each user read operation, the disk that will 
the least positioning overhead [Bitton88, Bitton89]. This is frequently called theshort-
est-seek optimization and can improve read throughput by up to about 15% over RA
Level 0 [Chen90a].

In degraded mode, the controller sends user write operations that target a unit wi
copy on the failed disk only to the surviving disk in the pair instead of to both. This 
not affect the utilization on the surviving disk because it does not absorb any write
fic that it would not otherwise encounter. However, in the presence of a disk failure
surviving disk must absorb, in addition to its regular workload, all the read traffic
geted at the failed drive in fault-free mode. In read-intensive workloads, this can c
the utilization on the surviving disk to double. User reads and writes that do not t
any units on the failed disk occur as if the array were fault-free.
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FIGURE  6 Read and Write Operations in RAID Level 3 (bit-interleaved parity)

1.2.2.3.2 RAID Level 3
Figure 6 illustrates reads and writes in RAID Level 3. The following discussion assu
that each user access is some multiple of(N-1)·S in size, whereN is the number of disks
in the array andS is the number of bytes in a sector (almost always 512). This is bec
each access uses all data disks, and the minimum sized unit that can be read f
written to a disk is one sector. If the array is to support accesses that are not a mult
this size, the controller must handle any partial-sector updates via read-modify-
operations, which can degrade write performance.

In fault-free mode, user write operations update the old data in place. The cont
updates the parity disk by computing the cumulative XOR of the data being writte
each drive and writing the result to the parity disk concurrently with the write of the 
data to the data disks. The controller may perform this XOR operation before the 
is initiated or as the data flows down to the disks [Katz93]. Because the XOR happ
electronic speeds (a few microseconds per complete user access) but the disk 
mechanical speeds (milliseconds per access), this computation typically has no m

The diagonal lines in the figure indicate that when the host accesses (reads or wri
block of data consisting of bits 0 through n-1, disk 0 services bits 0, 3, 6, …, n-3, 
1 services bits 1, 4, 7, …, n-2, and disk 2 services bits 2, 5, 8, …, n-1. The array 
troller arranges for the correct bits to read from or write to the correct drive. On a w
operation, the controller writes to disk 3 a block containing the following bi
(0⊕1⊕2), (3⊕4⊕5), (6⊕7⊕8), …, ((n-3)⊕(n-2)⊕(n-1)). Note that the controller
implements this bit-level parity operation using only sector-sized accesses on
disks; so n must be a multiple of 8·N·S, where N is the number of disks in the array
S is the number of bytes in a sector. The controller typically enforces this condi
since the only alternative is to use read-modify-write operations on the individual d
which drastically reduces efficiency.
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able effect on the performance of the array. User read operations simply stream th
into the controller; the parity disk remains idle during this time.

A degraded-mode user write operation in RAID Level 3 occurs in exactly the s
manner as in fault-free mode except that the controller suppresses the write to the
disk. A degraded-mode user read is serviced by reading the parity and the survivin
and XORing them together to reconstruct the data on the failed drive. Disk array
stripe data on a fine grain (a bit or a byte) have the property that their performan
degraded mode is not significantly different than their performance in fault-free m
This is because the controller accesses all disks during every access in any case
supporting degraded-mode operation simply amounts to modifying the bit streams
to and from each drive. The XOR operations that occur in degraded mode are typ
performed as the data streams into or out of the controller, and so they do not s
cantly increase access times.

1.2.2.3.3 RAID Level 5
Figure 7 illustrates the various translations of user accesses to disk accesses in
Level 5. User write operations in fault-free mode are handled in one of three w
depending on the number of units being updated. In all cases, the update mech
are designed to guarantee the property that after the write completes, the parit
holds the cumulative XOR over the corresponding data units, or

If the update affects only one data unit, the prior content of that unit is read and XO
with the new data about to be written. This produces a map of the bit positions tha
to be toggled in the parity unit in order that the parity unit should reflect the new 
These changes are applied to the parity unit by reading its old contents, XORing 
previously generated map, and writing the result back to the parity unit. The correc
of this transformation is shown as follows where a new data blockD2,newis being writ-
ten to a unit on disk number 2 in anN-disk array:

This parity-update operation is called aread-modify-write and is easily generalized to
the case where the user access targets more than one data unit. In this case, the
ler reads the previous contents of all data units to be updated and then XORs
together with the new data prior to reading, XORing, and re-writing the parity u
Read-modify-write updates are used for all fault-free user write operations in whic
number of data units being updated is less than half the number of data units in a
stripe.

Pnew D1 D2 D3 ... DN 1–⊕ ⊕ ⊕ ⊕=

Pnew Pold D2 old, D2 new,⊕( )⊕= ⇒

Pnew D1 D2 old, D2 old,⊕( ) D2 new, D3 ... DN⊕ ⊕ ⊕ ⊕ ⊕= ⇒

Pnew D1 D2 new, D3 ... DN⊕ ⊕ ⊕ ⊕=
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FIGURE  7 Read and Write Operations in RAID Level 5 (rotated parity)

The preread-and-then-write operation performed on the data unit is typically done a
ically to minimize the positioning overhead incurred by the access [Stodolsky94]. 
is also true for the parity unit. Since the old data must be available to perform the 
update, the data preread-and-write is typically allowed to complete (atomically) be
the parity preread-and-write is started.

In applications that tend to read blocks of data shortly before writing them, the pe
mance of the read-modify-write operation can be improved by acquiring the old 
tents of the data unit to be updated from the system’s buffer cache rather than rea
from disk. This reduces the number of disk operations required from four to three.
situation is very common in OLTP environments [TPCA89, Menon92c].

When the number of data units being updated exceeds half of one parity stripe, the
more efficient mechanism for updating the parity. In this case, the controller write
new data without pre-reading the old contents of the written unit, reads and X
together all of the data units in the parity stripe that arenot being updated, XORs in to
this result each of the new data units to be written, and writes the result to the 
unit. The new parity that is written is therefore the cumulative XOR of the new 
units and the data units not being updated, which is correct. This is called areconstruct-
write operation because of its similarity to the way failed data is recovered.
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The final mechanism used to update parity in a fault-free RAID Level 5 array is
degenerate case of the reconstruct-write that occurs when a user access updates
units in a parity stripe. In this case, the controller does not need to read any old da
instead simply updates each data unit in place and then XORs together all the ne
units in buffer memory and writes the result to the parity unit. This is often calle
large write and is the most efficient form of update.

In degraded mode, a user read requesting data on the failed disk is serviced by r
all the units in the parity stripe, including the parity unit, and XORing them togethe
reconstruct the requested data unit(s). User reads that do not request data on th
disk are serviced normally. User write requests updating data on the failed drive ar
viced via reconstruct-writes, independently of the number of units being updated,
the write to the failed disk suppressed. Since the data cannot be written, this met
update causes the new data to be reflected in the parity so that the next read will
the correct data. User write requests not updating data on the failed drive are se
normally except in the reconstruct-write case where the parity needs to be read. W
user write request updates data for which the parity has failed, the data is simply w
in place since no parity-maintenance operations are possible.

1.2.2.4 Comparing the Performance of the RAID Levels
Table 1, adapted from Patterson, Gibson, and Katz [Patterson88], compares the
free performance and capacity overhead of the RAID levels. The values are all
order approximations since there are a wide variety of effects related to seek dis
head synchronization, access patterns, etc., that influence performance, but th
provides a baseline comparison. It’s clear that RAID Level 1 offers better perform
on concurrent, small-access workloads but does so at a high cost in capacity over

1.2.2.5 On-line Reconstruction
The preceding has shown how a disk array operates, and how it may continue to o
in the presence of a single disk failure. The next step to take is that the array shoul
the ability torecover from the failure, that is, restore itself to the fault-free state.1 Fur-
ther, a disk array should be able to effect this recovery without taking the system
line. This is implemented by maintaining one or more on-line spare disks in the a
When a disk fails, the array switches to degraded mode as described above b
invokes abackground reconstruction process to recover from the failure. This proces
successively reconstructs the data and parity units that were lost when the disk
and stores them on the spare disk. The mechanism by which this is accomplis
called thereconstruction algorithm. Once all the units have been recovered, the ar

1.  Editor’s Note: The term “recovery” traditionally encompasses more than the process of t
array restoring itself to the fault-free state following a single disk failure: it also includes the 
cess by which the array controller handles software errors during operation. Mark Holland lim
the term here, however, to the specific case of reconstructing data lost on a failed disk. To c
this distinction further: recovering from the physical loss of a disk can take the array anywhe
from several minutes to several hours. Handling errors, on the other hand, will take the array
seconds, occurring transparently to the host or user. Automating error recovery is central to
design of RAIDframe and is covered in greater detail in Chapter 2. To lessen confusion, we
use the term “recovery” in its broader sense throughout the rest of the document.
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o the
returns to normal performance and is once again single-failure tolerant, and s
recovery is complete.
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The table reports performance numbers as percentages of RAID Level 0 performance.
The “RMW” column gives the performance of the array when the application reads each
data unit before writing it, which eliminates the need for the data preread. The capacity
overheads are expressed as a percentage of the user data capacity of the array. The con
rency figures indicate the maximum number of user I/Os that can be simultaneously exe
cuted. The table reports the maximum concurrency numbers for Levels 1 and 5 as N
because such arrays can support N concurrent reads but writes involve multiple I/O opera
tions, and this reduces the maximum supportable concurrency.

1.2.2.6 Related Work: Variations on These Organizations
This section summarizes industrial and academic research on disk arrays. It define
categories of investigation and presents brief summaries of some papers in each.
studies serve as background in the area of redundant disk arrays.

1.2.2.6.1 Multiple-Failure Toleration
Each of the RAID levels defined above is only single-failure tolerant; in each orga
tion there exist pairs of disks such that the simultaneous failure of both disks resu
irretrievable data loss. This is adequate in most environments because the reliab
the component disks is high enough that the probability of incurring a second fa
before a first is repaired is low. There are, however, three reasons why single-failu
erance may not be adequate for all systems. First, recalling that the reliability o
array falls as the number of disks increases, the reliability of very large single-fa
tolerating arrays may be unacceptable [Burkhard93]. Second, applications in which
loss has catastrophic consequences may mandate a higher degree of reliability th
be delivered using the RAID architectures described above. Finally, disk drives s
times exhibitlatent sector failures in which the contents of a sector or group of secto
are irretrievably lost, but the failure is not detected because the data is never acc
The rate at which this occurs is very low, but if a latent sector failure is detected
surviving disk during the process of reconstructing the contents of a failed disk, the
responding data becomes unrecoverable. Multiple-failure toleration allows reco
even in the presence of latent sector failures.

The drawback of multiple-failure toleration is that it degrades write performance: i
n-failure-tolerating array, every write operation must update at leastn+1 disks so that
some record of the write will remain shouldn of thosen+1 disks fail [Gibson89]. Thus
the write performance of the array decreases in proportion to any increase inn.

Gibson et. al. [Gibson89] treated multiple-failure tolerance as an error-control co
problem [Peterson72]. They restricted consideration to the class of codes that (1) 
encode user data but instead simply store additional “check” information in each p

TABLE 1. First-Order Comparison Between the RAID Levels for an N-disk Array

RAID
Level

Large Accesses Small Accesses Capacity
Overhead
 (%)

Max
ConcurrencyRead Write RMW Read Write RMW

0 100 100 100 100 100 100 0 N

1 100+ 50 66 100+ 50 66 100 N

3 100 100 100 n/a n/a n/a 100/N 1

5 100 100 100 100 25 33 100/N N
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stripe, (2) use only parity operations (modulo-2 arithmetic) in the computation of
check information, and (3) incur exactlyn+1 disk writes per user write. They define
three primary figures of merit on the codes used to protect against data loss: themean-
time-to-data-loss, which is the expected time until unrecoverable failure in an ar
using the indicated code, thecheck-disk overhead, which is the ratio of disks containing
ECC to disks containing user data, and thegroup size, which is the number of units in a
parity stripe, including check units, supportable by the code. They demonstrated 
for double- and triple-error toleration based on three primary techniques, which
call N-dimensional parity, full-n codes, and theadditive-3 code. Each of these is a tech
nique for defining the equations that relate each check bit to a set of information b
comparing the techniques according to the figures of merit, they show multiple-o
of-magnitude reliability enhancements in moving from single- to multiple-failure to
ation and achieve this using relatively low check-disk overheads ranging from 2
30%.

Burkhard and Menon [Burkhard93] described two multiple-failure tolerating sche
as examples ofmaximum-distance-separable (MDS) codes [MacWilliams78]. The first
uses afile-dispersal matrix to distribute a block of data (afile in their terminology) into
n fragments such that anym < n of them suffice to reconstruct the entire file. An arra
constructed using such a code can tolerate (n-m) concurrent failures without losing data
The second, described fully by Blaum et. al. [Blaum94], clusters together sets oN-1
parity stripes whereN is the number of disks in the array and stores two parity units
parity stripe. The first parity unit holds the same information as in RAID Level 5, 
the second holds parity computed using one data unit from each of the parity stri
the cluster. Blaum et. al. showed that this scheme tolerates two simultaneous failu
optimal with respect to check-disk overhead and update penalty, and uses only
operations in the computation of the parity units.

1.2.2.6.2 Addressing the Small-Write Problem
Recall from Section 1.2.2.3.3 that small write operations in RAID Level 5 incur u
four disk operations: data preread, data write, parity preread, and parity write.
degrades the performance of small write operations by a factor of four when com
to RAID Level 0. Several organizations have been proposed to address this proble

Menon and Kasson [Menon89, Menon92a] proposed a technique based onfloating the
data and/or parity units to different disk locations upon each update. Normally, the
troller services a small write operation by pre-reading the old data, waiting for the
to spin through one revolution, writing the new data back to the original location,
then repeating this process for the parity unit. In the floating data/parity scheme
controller reserves (leaves unoccupied) some number of data units on each track o
disk. After each preread operation, the array controller writes the new data to a rot
ally convenient free location rather than writing it in place. This saves up to one
rotation (10-17 milliseconds of disk time) per preread-write pair. An analytical mode
the paper shows that a free unit can typically be found within about two units o
location of the old data. This makes each preread/write pair take only slightly lo
than a single access and thus can potentially nearly double the small-write perform
of the array. Menon and Kasson concluded that the best capacity-performance tr
is achieved by applying this floating only to the parity unit rather than to both data
parity. A potential problem with this approach is that the array controller must be 
mately familiar with the geometry and performance characteristics of the compo
34 RAIDframe: A Rapid Prototyping Tool for RAID Systems
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disks as well as the latencies involved in communicating with them. This requires a
degree of predictability from the disks and makes the design difficult to verify, tune
maintain.

Another technique proposed to address the small-write problem is to eliminate 
from the workload. TheLog-Structured File System (LFS) [Rosenblum91, Seltzer93]
has the potential to achieve this by organizing the file system as an append-only lo
motivation behind this file system is that a disk drive is able to service seque
accesses at about twenty times the bandwidth of random accesses. All user wri
held in memory until enough have accumulated to allow them to be written to disk u
a single large update. Over time, this causes the disk to fill with dead data, and
cleaner process periodically sweeps through the disk, compacts live files into sequ
extents, and reclaims dead space. This technique improves write performance by
ing all writes to be sequential and can potentially improve read performance by ca
files written contiguously to end up contiguous on the disk. When the underlying 
age mechanism is a disk array, the only writes that are encountered are large eno
span entire parity stripes, and thus the large-write optimization always applies.

Stodolsky et. al. [Stodolsky94] adapted the ideas behind LFS to the problem of p
maintenance and proposed an approach based on logging the parity changes ge
by each write operation rather than immediately updating the parity upon each
write. In this scheme, the controller reads the old data (or acquires it from the b
cache) and writes the new data as before. It then XORs together the old and new 
produce aparity-update record, which it appends to a write-only buffer rather XORin
it with the old parity. The controller spills the entire buffer to disk when it becomes 
No parity operations are performed for each user write, but some of the array’s ca
(about one disks’ worth) must be reserved to hold the parity update logs. Eventual
log space in the array becomes full, at which time the controller empties it by rea
the log records and the corresponding parity units, XORing them together, and w
the result back out to the parity locations. Note that the controller buffers only p
information and so is not vulnerable to data loss due to power failure. While in R
Level 5 parity is updated using a large number of small, random accesses, in parit
ging it is updated using a smaller number of large, sequential accesses. The
showed simulation results indicating that this technique can allow the performan
RAID Level 5 arrays to approach, or under certain conditions even exceed, that o
roring.

Menon and Cortney [Menon93] described the architecture of a controller that impr
small-write performance by deferring the actual update operations for some peri
time after the application performs the write. In this approach, the controller store
data associated with a write in a nonvolatile, fault-tolerant cache memory in the 
controller. Immediately upon storing the data in the cache, the host computer is tol
the write is complete even though the data has not yet been sent to disk. The con
maintains the data block in the cache until another block replaces it, at which time
written (“destaged”) to disk using the four-operation RAID Level 5 update. T
improves write performance in two ways. First, if the host performs another write to
same unit prior to destage, the new data can simply replace the old in the cache, a
first write need not occur at all. Second, if the host writes several units in the same
they are all destaged at the same time, which greatly improves disk efficiency. This
RAIDframe: A Rapid Prototyping Tool for RAID Systems 35

Version 1.0 6/24/96



Redundant Disk Arrays:A Brief Overview

sity of

con-
pare
put of

ganiz-

in the

ilure
iving
r two
, but

sepa-
l con-
d that
tion-

n in
r an
nectiv-
93]

ols a
h the
e dis-
h the
d the
-con-

 disk
rkload.

s the
sac-
 request
triped
isks
isk,
m to
sign-
expensive solution, suitable only for large-scale systems because of the neces
incorporating the large, nonvolatile, fault-tolerant cache.

1.2.2.6.3 Spare-Space Organizations
RAID Level 5 arrays typically maintain one or more on-line spare disks so that re
struction can be immediately initiated should one of the primary disks fail. This s
disk can be viewed as a system resource that is grossly underutilized; the through
the array could be increased if this disk is used to service user requests.

Menon and Kasson [Menon92b] described and evaluated three alternatives for or
ing the spare space in a RAID Level 5 disk array. The first,dedicated sparing, is the
default approach of dedicating a single disk as the spare. In the second, calleddistrib-
uted sparing, the spare space is distributed amongst the disks of the array, much 
same manner as parity is distributed in RAID Level 5. In the third technique,parity
sparing, the array is divided into at least two independent groups, and when a fa
occurs the affected group is merged into another with the parity space in the surv
group serving as the spare space for the group containing the failure. In the latte
organizations, the completion of reconstruction returns the array to fault-free mode
in a different configuration than before the failure. For this reason, they require a 
ratecopyback phase in the reconstruction process to restore the array to the origina
figuration when the failed disk has been physically replaced. The paper conclude
distributed sparing was preferable to parity sparing due to improved reconstruc
mode performance.

1.2.2.6.4 Distributing the Functionality of the Array Controller
The existence of a centralized array controller in both of the architectures show
Figure 2 has two disadvantages: it constitutes either a single point of failure o
expensive system resource that must be duplicated, and its performance and con
ity limit the scalability of the array to larger numbers of disks. Cao et. al. [Cao
described a disk-array architecture they callTickerTAIP that distributes the controller
functionality amongst several loosely coupled controller nodes. Each node contr
relatively small set of disks (one SCSI string, for example) and communicates wit
other nodes via a small, dedicated interconnect network. Under the direction of th
tributed controllers, data and parity units as well as control information pass throug
interconnect to effect the RAID read and write algorithms. The paper demonstrate
elimination of several performance bottlenecks through the use of the distributed
trol architecture.

1.2.2.6.5 Striping Studies
A variety of studies have looked at how to select the striping unit in a redundant
array. The choice is always made based on the characteristics of the expected wo

Gray, Horst, and Walker [Gray90] objected to the notion of striping the data acros
disks comprising an array, arguing that fine-grain striping is inappropriate for tran
tion processing systems because it causes more than one arm to be used per disk
and that coarse-grain striping has several drawbacks when compared to non-s
arrays. These drawbacks stem primarily from the inability to address individual d
directly from software. They include the inability to archive and restore a single d
the software problems inherent in re-coding existing device drivers to enable the
handle the abstraction of one very large, highly concurrent disk, the problem of de
36 RAIDframe: A Rapid Prototyping Tool for RAID Systems
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ing single channels fast enough to absorb all bandwidth produced by the array, etc
proposed instead an organization in which the parity is striped across the array in
contiguous extents at the end each disk. The data is not striped at all; the controlle
cates sequential user data sequentially on each disk and fills each disk with data 
using the next. This is essentially equivalent to RAID Level 5 with a very large stri
unit, but it allows each disk to be addressed individually. The paper conceded that
of these problems are insurmountable in RAID arrays but asserted that designers 
ignore the problem of retrofitting existing systems to use disk arrays.

Chen and Patterson [Chen90b] developed simple rules of thumb for selecting the
ing unit in a nonredundant disk array. They expect that these rules will hold, pe
with some modification, for redundant arrays as well. The study used simulation to
uate the performance of a block-striped RAID Level 0 on many different, synthetic
generated workloads and then investigated choices of the striping unit that maximi
minimum observed throughput across all these workloads. They found that a goo
of thumb is to select the striping unit according to the formula

whereS is a constant typically around 1/4. Note that the stripe-unit size takes on its
imum value (one sector) at concurrency one in order to assure that the single requ
process is able to utilize all the disks. The size of the striping unit increases as th
currency rises in order to gradually reduce the probability that any particular acces
use more than one disk arm.

Lee and Katz [Lee91] described several different strategies for placing the parity 
amongst the striped data units. They found that the most significant performance 
of varying parity placement was the number of disks used for large reads and w
some placement strategies caused fewer than the maximum number of possible d
be used on large accesses, and these suffered in performance. The left-symmetri
placement illustrated in the RAID Level 5 case of Figure 4 was among the best o
options.

Merchant and Yu [Merchant92] noted that it is common for a database workload to
sist of two components: transactions and ad hoc, read-only queries into the dat
Transactions generate small, randomly distributed accesses into the array, where
ad hoc queries often scan significant portions of the database. To efficiently hand
workload combination, they proposed a dual striping strategy for mirrored arrays w
the size of the stripe unit is small in one copy (4 KB) and large in the other (32 KB).
authors note that using a large stripe unit is efficient for relatively large accesses be
it reduces the number of actuators used, but under a small-access model it can
workload imbalance amongst the disks. They assert that the converse is true as 
small stripe unit achieves good workload balance but causes too many actuators
used per large access. Thus they service the transactions using the small-stripe-un
of the data and the ad hoc queries with the large-stripe-unit copy. Merchant and Yu
uated this organization, using both analytical modeling and simulation, with a synt
cally generated workload that adhered to the assumptions made in designing the s
strategy. They found substantial benefits to this approach.

Size S avg positioning time disk xfer rateconcurrency 1–( )⋅ ⋅ ⋅ 1 sector+=
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1.2.2.6.6 Disk-Array Performance Evaluation
Chen et. al. [Chen90a] tackled the thorny problem of comparing RAID Level 5 to R
Level 1. The comparison is difficult to make because equating the number of actu
causes the array capacities to differ and vice versa. The authors addressed this p
by choosing to equate user data capacity and reporting two metrics: throughpu
fixed 90th-percentile response time and throughput per disk at a fixed 90th-perc
response time. Their motivation for this was the assumption that systems will dict
minimum acceptable capacity and level of responsiveness and will desire the max
possible throughput subject to these constraints. The authors evaluated the archit
by implementing them in real hardware and applying synthetically generated work
that varied in the parameters of interest. The results largely validated the simple m
of Patterson et. al. [Patterson88], which is approximated in Table 1. They fu
showed that due to the shortest-seek optimization, the RAID Level 1 outperforme
RAID Level 5 on small-access dominated-workloads, whereas the reverse was tr
large-access workloads due to more efficient write operations in RAID Level 5.

1.2.2.6.7 Reliability Modeling
Patterson et. al. [Patterson88] derived a simple expression for the mean-time-to
loss (MTTDL) in a redundant disk array:

whereMTTFdisk is the mean time to failure of a component disk;Ngroups is the number
of independent groups in the array, each of which containsNdiskspergroup disks, includ-
ing the (possibly distributed) parity disk; andMTTRdisk is the mean time to repair
(reconstruct) a disk failure. This model assumes that disk failure rates are iden
independent, exponentially distributed random variables. In arrays that maintain o
more on-line spare disks, the repair time can be very short, a few minutes to h
hour, and so the mean time to data loss can be very long.

Schulze et. al. [Schulze89] noted that the time until data loss due to multiple sim
neous disk failures, which is the only failure mode modeled by the above equatio
not an adequate measure of true reliability because the failure of other system c
nents (array controllers, string controllers, cabling, air conditioning, etc.) can eq
well cause data to be lost or become temporarily inaccessible. This paper estimat
reliability of each such component and derived simple techniques for building re
dancy into the controllers, cabling, cooling, etc. so as to maximize the overall sy
reliability.

Modeling the reliability of disk arrays was the one of the primary topics of Gibso
Ph.D. dissertation [Gibson92, Gibson93]. He analyzed all of the assumptions behin
simple equation given above, identified the conditions under which they do and d
hold, and derived new reliability models for conditions not previously covered. Spe
cally, he investigated whether disk failure rates are truly exponentially distribu
derived reliability models for disk arrays with dependent failure modes, extended 
models to take into account the possibility of spare-pool exhaustion, and investi
the reliability implications of both the number and the connectivity of the spare dr
He verified the models using Monte Carlo simulation of disk lifetimes and found g

MTTFRAID

MTTFdisk( )2

NgroupsNdiskspergroupNdiskspergroup 1–( )MTTRdisk
--------------------------------------------------------------------------------------------------------------------------------------------------------=
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agreement between the two. This work theoretically and empirically validated the u
the models and disk-array structures described above.

1.2.2.6.8 Improving the Write-Performance of RAID Level 1
As shown in Table 1, mirrored systems achieve only 50% of the write performan
nonredundant arrays because each write must be sent to two disks. This s
describes several studies intended to improve this performance. Most of the idea
relate to caching and deferring updates and so apply to parity-encoded arrays as w

Solworth and Orji proposed several variations on an organization to improve mirro
array write performance. They first proposed implementing a large, nonvolatile, p
bly fault-tolerant write-only disk cache dedicated exclusively to write operation
[Solworth90]. In this scheme, the controller defers user write operations by holdin
corresponding data in the cache until a user read operation moves the disk heads
vicinity of the data to be written at which time it destages the data to disk. In this s
this scheme is similar to the deferred-update techniques described by Menon an
ney [Menon93] with the primary difference being that reads are not cached in Solw
and Orji’s proposal, and the cache replacement policies are adapted to account fo
The authors do not address the question of whether some of the memory used for
caching would be better used for read-caching.

In two follow-on studies, Solworth and Orji proposeddistorted mirrors [Solworth91]
anddoubly distorted mirrors[Orji93]. In the former, the controller updates data in pla
on the primary disk in a mirror pair but writes the data to any convenient location o
secondary drive. The controller maintains a data structure in memory describin
location of each block on the secondary drive. This approach reduces the total dis
time consumed in servicing a write request. The controller services small reads
either copy but services large reads from the primary copy only since consecutive b
on the secondary are not, in general, sequential on the disk. In the latter (doubl
torted mirrors), the authors combined the ideas of a write-only cache and write
where semantics on the secondary drive to eliminate the necessity that the ca
nonvolatile and fault-tolerant.

Polyzois, Bhide, and Dias [Polyzois93] proposed a modification to the deferred-
technique in which the two disk arms in a mirror pair alternate between reading
writing. Deferred writes accumulate in the cache for some period of time, and the
controller batches them together and writes them out to one drive. During this pe
the other drive services all read operations. The two drives then switch roles: th
services reads, and the second destages deferred writes. This scheme yields v
latency access to data for moderate workloads because there is always one di
available to service user read requests and write operations incur only the la
required to install the data in the cache.

1.2.2.6.9 Network File Systems Based on RAID
Several studies have looked at extending the ideas of striping and parity protect
network file systems. This allows the file system to operate in the presence of s
and/or network failures and provides for disaster recovery should all data stored a
site be permanently destroyed. It achieves this at lower disk cost that the sta
approach of file duplication on multiple servers.
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Stonebraker and Schloss [Stonebraker90] proposed an organization that is esse
identical to RAID Level 5 with each disk replaced by a server in a network file sys
They evaluated the performance, overhead, and reliability of several variations o
idea and concluded that distributed RAID has many reliability advantages but perf
poorly in the presence of failures. Other studies [Cabrera91, Hartman93] have ext
this idea to network file systems that stripe data for performance.
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CHAPTER 2 Managing the Complexity
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In Chapter 1, we described the need for improved availability in the storage subs
due to the widening access gap, the downsizing trend in disk drives, and the adv
new I/O-intensive applications. We discussed the structure and operation of disk a
in some detail, explaining the different data layouts and fault tolerance for each o
original RAID levels. We also summarized some of the related work done on varia
of these RAID organizations, most of which looks at improving performance by ide
fying the best techniques for laying out and writing data.

What should be clear from our description of disk arrays in Chapter 1 is the compl
of the array software used to control the disks in the array. What may not be clear
our discussion is that most of the related work has approached the task of managi
complexity on a case-by-case basis. What we mean by this is that researcher
looked at specific contexts for using redundant arrays and have proposed ways t
mize the software based on the specific needs of expected workloads. This a
approach to designing and implementing array software means that there is little
reused between RAID organizations. It also means that each architecture handl
errors that occur during operation in a specific, limited way, adding to the complexi
the array software.

Our goal is to simplify the process of designing and implementing array software
performs optimally for a particular situation. To do this, we have aimed to increas
amount of code reused between RAID designs, to enable a means for verifying th
rectness of designs before they are implemented, to generalize an error-recovery m
nism, and to provide a mechanism for reconstructing data on-line when a disk 
Achieving these four things, we believe, will lead to shorter design-cycle times, 
ware that performs as it was designed to do, mechanized error recovery, and 
available and reliable systems.
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In this chapter, we introduce a structured method for implementing array softw
based on a graphical programming abstraction, which allows many RAID operatio
be composed quickly from a relatively small set of primitive operations. We begin
looking in more detail at traditional approaches to managing array software in Se
2.1, then move to the concept underlying our own structured approach in Sectio
that RAID operations can be viewed as software programs. Next, we describe h
compose these RAID operations, or programs, with graphs in Section 2.3 befor
cussing how to execute them in Section 2.4. Finally, in Section 2.5 we discuss an
rithm for reconstructing data when a disk fails.

2.1 Traditional Approaches in Managing Array
Software are Suboptimal

As we have already said, redundant arrays have typically been designed in an a
fashion, each organization developed to address particular needs and each custom
handle specific error conditions. It is this customized error recovery that has particu
added to the complexity of array software and that has contributed to the difficul
managing array software. Traditionally, array designers have adopted one o
approaches to error recovery: forward error recovery and backward error recovery

Briefly, forward error recovery requires anticipating all possible errors and manu
coding actions for completing operations once an error has occurred. This app
requires hundreds of thousands of lines of code with the possibility of overloo
errors. While custom-designed code from a complete understanding of all error ve
allows the software to achieve near-optimal performance, the error-recovery code
be re-written to handle a new set of error vectors if the code is to be reused for a s
but distinct application. As long as the set of vectors is relatively small, this task i
too difficult and, in fact, this approach is the dominant method of error recovery in 
eral-production software.

Of course, many of the error vectors may be consolidated and treated similarly, red
the number of unique cases which must be handled. For example, if parity has fa
the middle of a large write operation, the remaining data writes may continue u
fected, regardless of their current disk state (old or new). However, this does not 
nate the problem of extending existing code to support new array operations. T
because the remaining error vectors are still a function of error context and as new
operations are introduced, that context will change, thereby requiring changes in 
recovery code.

Finally, verifying code constructed in this fashion can be tedious and prone to mist
To demonstrate that it is correctly implemented, each RAID operation must satisfy
of invariants, rules which are always true for a consistent array. Ensuring correct
requires identifying each error scenario and demonstrating that the code correctly
dles each error vector. Automating this process is possible if the code structure i
defined, perhaps in the form of a state machine [Clarke82, Clarke94]. However, be
of the ad hoc nature of code using forward error recovery, hand analysis is require
42 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96



Treating RAID Operations as Programs

gard
read
ould

over-
om-

e new
eing
en an

d with

f the
ted to
k of
istent

 dura-
ined

y com-
n to

te the

rites
ons is
nstead
d par-
 and
; and,

ward
ry to

ery is
tate to

l in

ple-

hich
t

 oper-
In an ideal world, redundant-disk-array software would be constructed without re
for the context in which errors occur. This implies that when, for example, a disk 
fails, only the very general process of recording the fact that a disk has failed w
need to be implemented. The implications of the error (e.g., failure to read non-
write data during a “reconstruct write”) would be irrelevant, making the software c
pletely independent of array architecture.

Database systems have achieved this simplicity, allowing programmers to creat
transactions with little regard for error recovery. This is accomplished by guarante
that the operations which compose the transaction are atomic and undoable. Wh
error occurs which causes an atomic operation to fail, the programmer is presente
the illusion that the operation never occurred. Furthermore, thesystem undoes the
effects of the previously completed operations, completely removing all effects o
failed transaction. With the burden of detecting and recovering from errors delega
the underlying system, the programmer is left with the relatively straightforward tas
creating transactions which begin in a consistent system and commit only cons
state changes to the system.

The approach used to achieve this simplicity, backward error recovery, requires a
ble log which records the effects of operations as they complete. When it is determ
that a transaction has failed, the contents of the log are used to undo the previousl
pleted operations. Unfortunately, maintaining this log may be expensive—in additio
the resources required to store the log, additional work may be required to crea
information which is stored in the log.

For example, consider a large write operation in a RAID level 5 array which overw
data and parity with new information. To guarantee that each of these write operati
undoable, the previous contents of the data and parity must be stored in the log. I
of just overwriting each one, each disk operation must now read and write data an
ity, doubling the total workload of the disks and decreasing the response time
throughput of the system. If a disk operation fails, then the saved state is restored
while the system restores state, processing stops.

Our strategy is to address the limitations of both forward error recovery and back
error recovery and to provide criteria for using each, thereby enabling error recove
be automated, transparent, and verifiably correct. Specifically, forward error recov
easy if no case analysis is required; backward error recovery is easy if there is no s
save and restore. We call our approach roll-away error recovery because it is a hybrid
approach. We will describe how roll-away error recovery works in more detai
Section 2.4.3 on page 53.

2.2 Treating RAID Operations as Programs

As we discussed in Section 1.2.2.3 on page 26, the array controller—however im
mented—maps user read and write operations (such assmall write anddegraded-mode
read) to a relatively small set of corresponding disk operations. These operations, w
we will refer to asprimitive operations throughout the remainder of this documen,
include operations for disk access (such asdisk read and exclusive-or), redundancy
computation, and resource allocation (such as memory buffers). Because primitive
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ations are the basic actions used by the array software to control disks, they c
thought of as instructions or steps, and when constraints upon their sequencin
imposed, they can be used to construct RAID operations in a programmatic fashio

By treating RAID operations as programs, we are able to minimize the amount of
changes required to extend the software. The best-known method to do this is to 
modular code which isolates functions that are known to change orthogonally 
architecture [Meyers78].

FIGURE  8 Isolating Common Infrastructure

As Figure 8 shows, the most obvious functions which vary with array architecture
data encoding, information layout, and operation structure. For example, recall 
Chapter One that the only difference between RAID levels 4 and 5 is the mann
which information is distributed across the disks in the array. By isolating device-
cific code from the code which defines the array architecture and by requiring tha
device software handle all device-specific errors, we are able to provide an infra
ture which allows array designers to build a variety of architectures without thin
about the underlying device actions.

In order to understand how primitive operations can be used to compose RAID o
tions, we will first look at the set of primitive operations most commonly used
Section 2.2.1 through Section 2.2.2 we will then describe how to create pass-fall p
tives and how to create RAID operations from primitive operations.

2.2.0.1 Primitive Operations Commonly Used in Redundant Disk Arrays
In addition to disk drives, the most popular devices used to construct arrays being
today include: memory managers, lock managers, arithmetic units, and parity 
Table 2 summarizes the primitive operations provided by these devices and their e

Infrastructure code, which provides the primitive operations from which array op
ations are implemented, appears in the lower half. Architecture-specific code, s
as data encoding, appears in the upper half. When a new architecture is im
mented, the infrastructure is unchanged, restricting changes to modules which 
tain array-specific code.

disk I/O

encoding

paritylock
manager logarithmetic

layout array operations

memory
manager
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These devices may be constructed from either hardware, software, or some com
tion.

A memory manager is used to negotiate the use of a buffers from a shared pool.
larly, the lock manager maintains a set of locks, granting either shared or exclusive
ership to competing processes. The arithmetic unit provides operations which pe
data encoding and decoding functions, such as bitwise exclusive-or which is us
parity encodings and nonbinary polynomial multiplication which is used in Re
Solomon encodings. The parity log is an append-only log used to accumulate eithe
ity-update or parity-overwrite records.

2.2.1 Creating Pass-Fail Primitive Operations

Before we can automate array error recovery transparently, it is necessary for us 
tinguish between errors at the device level and those at the array level. Isolating d
specific recovery from array-specific error recovery enables us to create RAID o
tions without regard for the internal details of the devices. To do this, we abstract p
tive operations with a wrapper that is responsible for creating the illusion of pas
devices in whichpass implies successful completion andfail implies the presence of a
permanent fault [Courtright94].

By allowing primitive operations to returnfail only when an unrecoverable device fau
is detected, we are further able to restrict the class of errors observable by RAID o
tions to those which require handling at the array level. Otherwise, primitive opera
returnpass, completely hiding from RAID operations the effects of any device fau
which may have been detected. When primitive operations do fail, we want them t
atomically (i.e., all-or-nothing state changes), but we don’t require it. We will defer 
cussing how nonatomic failure is handled until Section 2.4.3, which describes 
recovery.

TABLE 2. Common Device Operations

Device Primitive Operation Effect

disk disk read copy data from disk to buffer

disk disk write copy data from buffer to disk

disk Rd copy data from disk to buffer

disk Wr copy data from buffer to disk

memory manager MemA acquire a buffer

memory manager MemD release a buffer

lock manager Lock acquire a lock

lock manager Unlock release a lock

arithmetic XOR xor contents of buffers

arithmetic Q generate a Reed-Solomon code

arithmetic Q Reed-Solomon decode

read cache probe if hit, return, shared lock and pointer

read cache copy copy data from cache to a buffer
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To ensure thatpass implies that a primitive operation has successfully completed, 
allow primitive operations to commit only those state changes which are consisten
their behavior. For example, a disk write is required to write the correct ECC info
tion to disk when writing data to a sector.

2.2.2 Constructing RAID Operations from a Set of Primitive Operations

As we have already said, RAID operations are composed from a relatively small 
primitive operations; the order in which primitive operations are executed is sole
function of the data and control dependencies which exist between them. Therefor
important for the array designer to know the location of necessary dependencies 
exist between primitive operations in order to design RAID operations well. Omit
dependencies will result in erroneous behavior while extra dependencies may r
concurrency and unnecessarily degrade performance. Table 3 lists the four basic
of dependencies which may exist between primitive operations.

2.2.3 Summary

Defining an array operation is a straightforward process: our primary concern 
abstract device-specific operation from the array-specific operation, which is the e
nal interface of the operation. To do this, we have required that primitive operation
responsible for detecting all faults and for tolerating those faults which are specifi
be tolerable by the device fault model. Primitive operations which complete suc
fully, either by avoiding or tolerating a device fault, returnpass to indicate success.
Primitive operations returnfail only when they are unable to recover from a fault. 
compose RAID operations, the array designer must know where dependencies
between primitive operations.

2.3 Representing RAID Operations as Graphs

Creating storage operations from a set of primitive operations is a technique whic
been used for more than twenty years. The best-known example of this is thechannel-
program approach used in the IBM System/370 architecture [Brown72]. At the tim
was introduced, much of the internal workings of a disk drive were exposed to the
tem, requiring external control of arm positioning, sector searching, and data tra
Channel programs isolated these details from users by providing an abstract int
which was closer to that found in today’s SCSI drives [ANSI91]. The programs are
resented as a linear array of primitive operations which is parsed sequentially.

TABLE 3. Ordering Constraints Imposed on Sequences of Primitive Operations

Dependence Explanation

True read after write data dependence

Anti write after read data dependence

Output write after write data dependence

Control dependence of a primitive operation upon the completion
of another
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Similar methods for abstracting the details of storage operations were recently pro
in the distributed, redundant-disk-array architecture called TickerTAIP [Cao94]
TickerTAIP, the work required to maintain valid data encodings is performed bywork-
ers which are distributed throughout the array. To simplify managing simultane
primitive operations occurring across the array, TickerTAIP uses a centralized tab
which each entry contains a list of operations for a worker to execute. Once an 
operation is initiated, each worker is responsible for sequencing its own activ
Unlike channel programs, TickerTAIP achieves parallelism within an array opera
because multiple workers may execute primitive operations concurrently.

These two examples clearly show that it is possible to construct RAID operations fr
set of primitive operations using tables. However, we believe that there is b
approach based upondirected, acyclic graphs (DAGs) which will allow designers to
reason about the ordering of primitive operations. Because we have decided to
RAID operations as programs, we are able to use DAGs to model primitive opera
and the ordering constraints which bind them together—the visual information sup
by DAGs is intuitive and aids in analyzing the design of RAID operations. The foll
ing subsection describes how DAGs are created.

2.3.1 Directed, Acyclic Graphs (DAGs)

When using DAGs to model RAID operations, the primitive operations describe
Table 2 on page 45 are represented as the nodes of the graph. Figure 9 illustrates
write operation represented as a directed acyclic graph. Each primitive operation i
resented by a single node and therefore the properties of a node (e.g., atomic failu
inherited from the defining properties of the primitive operations.

Notice that the nodes in the graph of Figure 9 do not convey the context (e.g., “rea
parity”) of each primitive operation. This is because the context is known only by
designer of the graph. Section 2.4.3 shows how we capitalize upon this independe
context to achieve mechanized execution.

As we already said in Section 2.2.2 on page 46, executing primitive operations with
array operation is constrained by the presence of control and data dependencies. 
dencies are represented in a DAG by the directed arcs which connect the nodes
DAG. An arc is drawn from a parent node to a child node if executing the child is de
dent upon the parent node. Because the type of dependence represented by the a
not be used to control execution, the arcs are left unlabeled. Furthermore, a sing
may represent the presence of one or more data or control dependencies. We de
cussing further the rules for executing DAGs until Section 2.4 on page 51.
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FIGURE  9 RAID Level 4/5 Small-Write Graph

2.3.2 Simplifying Constraints for DAGs

There are a number of constraints which we have imposed on DAGs to simplify ex
ing them. First, a node that is a direct descendent of a predicate node may have 
ents other than the predicate node. Second, because DAGs are by definition a
there cannot be any cycles in RAID operations; eliminating cycles does not elim
predicate nodes and conditional execution.1 An array designer can include a node whic
selectively enables one or more branches for execution. Finally, all DAGs mus
rooted graphs, meaning that all graphs begin with a singleroot or source node. The
source node has the property that it has no parents. Similarly, all DAGs must have
gle sink node, a node which has no children. If a graph does not contain a single s
or sink node, aNOP (no operation) node can be inserted. Adding an extraNOP node to
create a single source or sink does not have any effect upon the array operation
sented by the graph.

1.  The current release of RAIDframe does not contain predicate nodes or support
processing.

This illustration presents the small write operation. The nodes of the graph are p
fail actions and the arcs represent the presence of control or data dependencies

In this graph, theRd-XOR-Wr chain on the far right performs the read-modify-write
of parity. TheRd-Wr chains represent the reading of old data and the overwriting
new data. The fact that parity is computed from the old data is represented by
presence of theRd-XOR arcs (true data dependencies). TheRd-Wr arcs represent
anti (read after write) data dependencies. Finally, aNOP (no-operation) node has
been added to simplify the structure of the graph, guaranteeing a single sink (
node.

NOP

Rd

Wr Wr

NOP

RdRd

XOR

Wr ● ● ●

● ● ●
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Besides modeling RAID operations, we have also incorporated automated roll-
error recovery into the DAG structure. The following section describes the ad
requirements for structuring DAGs to enable them to handle errors when the array
ates.

2.3.3 Incorporating Roll-Away Error Recovery Within DAGs

As we said earlier, roll-away error recovery is a hybrid approach: when appropria
uses forward error recovery without accounting for all possible error scenarios; w
necessary, it uses backward error recovery without the cost of logging state inform
A more detailed discussion of roll-away error recovery can be found in William
Courtright II’s dissertation, which is currently in progress. Here we will explain 
basic method for mechanizing error recovery through the structure and compositi
DAGs.

To understand how roll-away error recovery works, it is important first to recall 
redundant arrays encode data to survive disk faults (See “Why These Trends Nece
Higher Availability” on page 15). Codewords are composed of two types of symb
one for data, the other for a check, for example parity. In order for redundant arra
tolerate faults—meaning the loss of one or more symbols without losing informa
the set of valid codewords is constrained. Primitive operations change data symbo
example, they write new data; this in turn requires modifying the corresponding c
symbols, that is, they must then write new parity. If a primitive operation fails befo
has completed—that is, one or more symbols have been modified on disk—the 
word can be left in one of a large number of states.

Because the direction of error recovery depends upon when a primitive operation fa
is essential to determine where in the RAID operation all modified symbols ca
safely committed to disk. To establish this place, which we call thecommit barrier, we
have divided RAID operations into two phases in which codewords are modified on
phase two. Within the DAG structure, we add aCommit node to distinguish between
these two phases.

In the first phase no existing codewords can be modified; here, nodes within a DAG
resent primitive operations that can generally be undone easily, such asdisk read or
XOR. Obviously, the second phase of a RAID operation is where we place those p
tive operations that modify symbols—however, not all RAID operations have 
phases. For example, because a read operation does not modify any codewords,
not have a phase two. On the other hand, a write operation (shown in Figure 10) c
modifies codewords; in order for the write operation to progress to phase two, all 
bols which are to be updated must be available. Section 2.4.3 on page 53, which fo
a discussion of how DAGs are executed, explains how the error-recovery mech
automatically executes when an error is detected.
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FIGURE  10 RAID Level 4/5 Small-Write Graph with Commit Node

To establish the commit barrier when constructing a DAG for a RAID operation,
array designer must first identify all those nodes which modify a symbol. Next,
designer must create control dependencies from the nodes’ parents to the nodes
selves. This will guarantee that no symbols will be modified until all modified sym
can be safely committed to disk. In short, commit nodes are generally the sink no
read operations and the parent of all symbol update actions which are found in
operations.

2.3.4 Verifying the Correctness of DAGs

Because we model RAID operations as well-structured graphs, correctness ve
tion—that is, the process of demonstrating that an array’s behavior is consistent w
specified behavior—is greatly simplified. Furthermore, automating this task is now
sible. Given that DAGs consist of well-defined primitives, it is possible to think of th
as state machines. Through model checking, used to verify the correctness o
machines [Clarke82, Clarke94], RAID designs can be verified immediately, long be
actual implementation begins [Wing96].

Verifying that RAID operations are correctly implemented requires that graphs m
three criteria. First, primitive operations must be valid. Second, valid codewords

NOP

Rd

Wr Wr

NOP

RdRd

XOR

Wr ● ● ●

● ● ●

Commit

A Commit node was inserted to prevent writes of new data from proceeding until
reads of old data and the computation parity have been completed.
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RAID operations must be maintained; for example, to maintain valid parity for RA
Level 5, the sum of the parity bits must always equal 0. And third, graphs must re
from errors using roll-away handling, which we describe briefly in Section 2.4.3.

2.4 Executing RAID Operations

Array operations modeled as DAGs may be executed directly without first being t
lated into an intermediate form. More importantly, modeling with graphs has enable
to simplify and automate error recovery. To do this, we employ an undo-redo 
recovery scheme, similar to the one used in the System R recovery manager [Gr
In our approach, if a primitive operation fails at any time during the execution 
graph, the execution mechanism will automatically undo the effects of the previo
completed primitives.

In this section, we describe node states and their transitions, how to execute a grap
how to structure graphs to incorporate roll-away error recovery. To guarantee co
operation in the first two subsections, we assume that all primitive operations are a
and undoable. We relax these requirements in Section 2.4.3 on error recovery, 
allows much of the overhead (both performance and storage) required to achieve
able atomic primitives to be eliminated.

2.4.1 Node States and Transitions

In addition to a primitive, each node in a graph has three other fields, summariz
Table 4:do action, undo action andstate. Thedo action is used during normal execution
and theundo action is used during error recovery. Each of these fields contains the n
and parameters of an action.

Each node in a graph may be in one of the seven states summarized in Table
allowable transitions between these states are illustrated in Figure 11.

TABLE 4. Node Fields

Node Field Description

do action function executed during normal processing

undo action function which removes the effects of the do action

state current state of the node
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When a graph is initially submitted for execution, all nodes are in thewait state. A node
enters theskip state if its parent is a predicate node which determines that the br
which contains the node will not be executed. Once entered, a node will never lea
skip state.

TABLE 5. Node States

Node State Description

wait blocked, waiting on parents to complete

fired execution of do action in progress

pass execution of do action completed successfully

fail execution of do action failed

skip node will not be executed

error recovery execution of undo action in progress

undone previously executed node has since been undone

All nodes in a graph begin in the wait state. When a graph successfully co
pletes execution, all nodes are in either thepass or skipped states. Theerror
recovery andundone states, described later in Section 2.5, are reached only
the operation fails.

wait

fired skipped

fail pass

branch not taken
node ready to be executed

execution failed
execution successful

execute node’s undo action

undone

node undo complete

undo
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Thefired state is entered if at least one of its parents is in thepass state and the remain-
der of its parents are in either theskip or pass states. When a node enters thefired state,
its do action is executed. The node remains in thefired state until thedo action com-
pletes. The node then enters either thepass or fail state, depending upon the outcome 
this execution. If a completed node must be undone, the node first enters theerror
recovery state which indicates that the node’sundo action is being executed. Once the
undo action completes, the node enters theundone state. The error-recovery procedure
which is responsible for moving nodes to theundone state, is described in further deta
in Section 2.4.3.

2.4.2 Executing DAGs Without Errors

Executing a graph, for example the graph shown in Figure 9 on page 48, begins w
source (head) node and completes with thesink (tail) node. This direction of execution
from source to sink, is referred to asforward execution throughout the remainder of this
document. The source node is executed and, assuming it completes successfully (
it returnspass), the node enters thepass state.

If the graph does not contain predicate nodes (which is the case with the current R
frame release), any node can be executed (i.e., enter thefired state) once all of its par-
ents have reached thepass state. Assuming all nodes complete successfully, t
process continues until the sink node enters thepass state; at this point, the execution o
the graph is complete and the RAID operation is declared to be successful.

2.4.3 Handling Errors When Executing DAGs

Because device-specific error recovery is removed from the structure of the grap
were able to define a general execution mechanism which automates handling of
due to failed primitives. This mechanism, together with a library of RAID operatio
will allow array architectures to be implemented rapidly.

As we explained in Section 2.3.3, we have divided RAID operations into two phas
determine the direction of roll-away error recovery. If an error occurs during phase
of a RAID operation, as shown in Figure 12, the error-recovery mechanism rolls b
ward, releasing resources. At this point, the system substitutes a new graph for the
graph and retries the operation. If an error is detected during phase two, as sho
Figure 13, the error-recovery mechanism completes the RAID operation—when
happens, all symbols are simultaneously updated. To an outside observer, it 
appear as if the failure(s) occured after the RAID operation completed.

In the next section, we describe the mechanism we have developed which the arra
to recover from a disk failure. We present the library of DAGs provided in the cur
release of RAIDframe, the prototyping framework which incorporates our approac
modeling and executing RAID operations, in the Appendix.
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FIGURE  12 Handling Errors Prior to Commit Point

The failure of theRd node (indicated in bold) occurs prior to the commit point. Thi
causes forward execution to halt and roll back to begin. Roll back works backw
through the graph from the point of failure, undoing the previously complet
nodes. If a failure occurs prior to the commit point, the system appears as if
graph never executed.
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FIGURE  13 Handling Errors After Commit Point

2.5 Reconstructing Data On-line When a Disk Fails

In Chapter One we introduced the need for a process in which the array restores it
the fault-free state following a disk failure. In this section, we provide a brief descrip
of a disk-oriented algorithm (taken from [Holland94]) for reconstructing lost data 
spare disk space. For a more complete discussion of reconstruction algorithms, i
ing performance evaluations and optimizations of the disk-oriented algorithm, p
refer to Chapter Four in [Holland94].

2.5.1 Disk-Oriented Reconstruction

Not only must a single-fault-tolerant disk array recover from the loss of a disk, it sh
be able to effect this recovery without taking the system off-line. This is impleme
by maintaining one or more on-line spare disks in the array. When a disk fails, the
switches to degraded mode as described in Chapter One; at the same time, 
invokes a background reconstruction process to recover from the failure. This pr
successively reconstructs the data and parity units that were lost when the disk
and stores them on the spare disk. The mechanism by which this is accomplis

Because the leftmost Wr node failed after the commit point had been reached, forw
execution continues. The rightmost Wr node completes successfully as does the 
(NOP) node.  If a failure occurs after a commit point, the sink node is always reac
and teh system appears as if the successful completion of the graph was followed
failure.
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called the reconstruction algorithm. Once all the units have been recovered, the
returns to normal performance and is once again single-failure tolerant, and s
recovery is complete. Prior to Mark Holland’s thesis work, the default algorithm
reconstructing data from a failed disk wasstripe-oriented; in his thesis, Mark demon-
strated adisk-oriented algorithm which performs substantially better than the stripe-o
ented one. The disk-oriented algorithm createsC reconstruction processes, where 
represents the number of disks in the array not including the spare. Each of theC-1 pro-
cesses associated with a surviving disk execute the following loop:

repeat

1. Find lowest-numbered unit on this disk that is needed for reconstruction.

2. Issue a low-priority request to read the indicated unit into a buffer.

3. Wait for the read to complete.

4. Submit the unit’s data to a centralized buffer manager for XOR or block the pro
if buffer manager has no memory to accept the unit.

until (all necessary units have been read)

The process associated with the replacement disk executes:

repeat

1. Request the next sequential full buffer from the buffer manager.

2. Block the process if none are available.

3. Issue a low-priority write of the buffer to the replacement disk.

4. Wait for the write to complete.

until (the failed disk has been reconstructed)

The buffer manager provides a central repository for data and parity from parity st
that are currently “under reconstruction.” When a new buffer arrives from a surviv
disk process, the manager XORs the data into an accumulating “sum” for that p
stripe and notes the arrival of a unit for the indicated parity stripe from the indic
disk. When it receives a request from the replacement-disk process it searches i
structures for a parity stripe for which all units have arrived, deletes the correspo
buffer from the active list, and returns it to the replacement-disk process.

The advantage of this approach is that it is able to maintain one low-priority reque
the queue for each disk at all times, which means that it will absorb a significant po
of the array’s bandwidth that is not absorbed by users. This approach yields su
tially faster reconstruction than alternative approaches.

There are two implementation issues that need to be addressed in order for the
algorithm to perform as expected. The first relates to the amount of memory neede
the second to the interaction of reconstruction accesses with updates in the n
workload. The following two sections discuss these implementation issues.
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2.5.2 Buffer Memory Management

In the disk-oriented algorithm, transient fluctuations in the arrival rate of user reque
various disks can cause some reconstruction processes to read data more rapid
others. The buffer manager must store this information until the corresponding da
parity arrives from slower reconstruction processes, and thus the buffering require
of each individual reconstruction process vary over time. It’s possible to cons
pathological conditions in which a substantial fraction of the data space of the 
needs to be buffered in memory, and so it’s necessary to define a buffer memory
agement policy for the disk-oriented algorithm.

The amount of memory needed for disk-oriented reconstruction can be bounde
enforcing a limit on the number of buffers employed. If no buffers are availabl
requesting process blocks until a buffer is freed by some other process. We have d
the buffer pool into two parts: each surviving-disk reconstruction process has one 
assigned for its exclusive use, and all remaining buffers are assigned to a “free 
pool.” A surviving-disk process always reads units into its exclusive buffer, but 
upon submission to the buffer manager, the buffer manager transfers the data to a
from the free pool, and then installs this buffer in its data structures. This divisio
buffers simplifies the code by assuring that there is always a free buffer into whi
read data or parity when a reconstruction access arrives at the head of a disk qu
buffer stall condition occurs only when there are no free buffers available into whic
transfer the incoming unit, at which point the corresponding reconstruction proces
no outstanding I/O requests. Only the first process submitting data for a particular 
stripe must acquire a free buffer because subsequent submissions for that parity
can be XORed into this buffer. Thus this approach is able to maintain as many 
stripes under reconstruction as there are buffers in the free buffer pool.

Forcing reconstruction processes to stall when there are no available free buffers 
the corresponding disks to idle respecting reconstruction. For our purposes, a rela
small number of free buffers suffices to achieve good reconstruction performance. 
should be at least as many free buffers as there are surviving disks, so that in the
case each reconstruction process can have one access in progress and one buffer
ted to the buffer manager.

2.5.3 Interaction with Writes in the Normal Workload

The reconstruction accesses for a particular parity stripe must be interlocked with
writes to that parity stripe because a user write can potentially invalidate data tha
been previously read by a reconstruction process. This problem applies only to
writes to parity stripes for which some (but not all) data units have already been fet
if the parity stripe is not currently “under reconstruction,” then the user write can 
ceed independently.

We handle this problem by beginning a conflicting user write only after the des
stripe’s reconstruction is complete. This approach is memory-efficient and doe
waste disk bandwidth but if it is implemented as stated, a user write may experie
very long latency when it is forced to wait for a number of low-priority accesses to c
plete. The disk-oriented algorithm overcomes this drawback by expediting the re
struction of a parity stripe containing the data unit that is about to be written by the
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When the algorithm detects a user write to a data unit in a parity stripe that is cur
under reconstruction, it elevates all pending accesses for that reconstruction to the
ity of user accesses. If there are any reconstruction accesses for the indicated
stripe that have not yet been issued, the algorithm issues them immediately, at r
priority rather than low priority. The user write triggering the re-prioritization stalls u
the expedited reconstruction is complete, and the algorithm allows it to proceed
mally.

Note that a user write to a lost and as-yet unreconstructed data unit implies that 
the-fly reconstruction operation must occur because the written data must be inc
rated into the parity and there is no way to do this without the previous value o
affected disk unit. Thus, this approach to interlocking reconstruction with user w
does not incur any avoidable disk accesses. Also, forcing the user write to wait f
expedited reconstruction does not significantly elevate average user response
because the number of parity stripes that are under reconstruction at any given m
(typically less than about 3C) is small respecting the total number of parity stripes in t
array (many thousand).

A potential problem arises if a free reconstruction buffer has not yet been acquire
the parity stripe whose reconstruction is to be expedited, and none are available
algorithm simply allocates a new buffer and frees it when the reconstruction is 
plete. This may not be acceptable for some implementations because the amo
buffer memory available may be strictly limited and completely in use. There are a 
ber of potential solutions to this problem, ranging from reserving a few buffers for
purpose to stealing an in-use buffer and forcing the reconstruction of the correspo
parity stripe to be restarted. We did not pursue these avenues as the problem is
and highly transient.

2.5.4 Summary

This section describes the disk-oriented reconstruction algorithm which is design
absorb for reconstruction all of the disk-array bandwidth not absorbed by the users
algorithm keeps every surviving disk busy with reconstruction reads at all times, u
blocked by the inability to acquire a buffer to hold the reconstruction unit. Splitting
buffer pool into “exclusive” and “free” parts and forcing processes to block only
buffer submission time assures maximally efficient buffer usage because a recon
tion process cannot block unless there are zero free buffers in the system. Expedit
reconstruction of parity stripes for which a user write is pending preserves soft
boundaries in that the code controlling the user write operations is maintained 
rately from the code controlling the reconstruction process. The only modifica
required to the user-write code is that it must make a single call into the reconstru
module prior to initiating a write operation so that a pending reconstruction operatio
any, can be forced to complete before the write occurs.
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We now describe RAIDframe, a framework for implementing RAID designs, inten
for use in researching, verifying, testing and producing RAID systems. This chapte
sents an overview of RAIDframe features and the RAID architectures implement
the current release, then describes its internal architecture and the accompanying
struction architecture, and concludes by briefly describing the suite of test applica
packaged with the RAIDframe release which can be used to create a variety of 
loads for controlled testing.

3.1 Features

RAIDframe has a number of features which support experimenting and verif
advanced disk-array designs, including:

• extensibility

• correctness verification

• mechanized error recovery

• disk-oriented reconstruction

• applications for controlled testing of workloads

• synthetic workload generation

• trace playback

• performance monitoring

• debugging facilities

• multiple front ends for the user level

Array architectures implemented in RAIDframe can be evaluated in three distinct
cution environments: a stand-alone application controlling UNIX “raw” disks, an ev
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driven simulator, and a Digital UNIX device driver capable of performing block a
character operations (and thus, capable of mounting a standard file system on a
disks). In all three environments, the code unique to a disk-array architecture (map
caching, DAGs, primitive operations, and disk queueing) is reused without chang
the following sections, we describe each of these environments, the types of use
one is intended to support, and the limitations of each. Then we list the RAID arch
tures currently implemented in the RAIDframe. We end the section with a figure s
ing a case study of the performance of microbenchmarks in RAIDframe.

3.1.1 RAIDframe as a Stand-Alone User Application

As a stand-alone user application, RAIDframe is a process which accesses rea
through the UNIX “raw” device interface. RAIDframe itself is provided as a libra
libraidframe.a . Applications may link this library into their address space a
treat RAIDframe as a flat, addressable storage space (much like a single, large file
enables users to verify and benchmark their work without modifying the kernel, w
can greatly reduce time for developing and evaluating new RAID architectures, 
queueing policies, DAG constructs, et cetera.

There are several front ends to this user-level library available with RAIDframe. 
such (driver ) can accept either a synthetic workload from a workload generator 
trace file of I/O activities. Because the parameters of the synthetic workload are
cisely controllable, array architects can investigate specific array-performance ef
This front end also provides various debugging and stress tests for architectures a
icies, including forced reconstruction, constant workload, and layout checking.

The stand-alone user application shares another front end,rf_genplot , with the
event-driven simulator (described in the next section). Therf_genplot  front end pro-
vides array architects with a means for comparing how different RAID architect
perform running a simulated workload: it runs workload scripts against various R
configurations and outputs results into a file. Additionally, options allow users to g
the results, either from a current stand-alone run or using results from a previous 
generate graphs in multiuser mode.

Developing, testing, and instrumenting a RAID architecture at the user level enha
portability and extensibility. Moreover, as shown in Figure 14, there is almost no di
ence in the measurements between in-kernel and stand-alone user-level RAIDfram
formance [Gibson95]—which means that array designers unable or unwilling to
RAIDframe’s in-kernel implementation to their operating system can be confident o
validity of user-level performance results. The main drawback of running RAIDfram
a stand-alone user application is that only a single application may be run again
disk array, and in doing so, may not have an access pattern identical to what it wo
if it were running through a file system (and, thus, potentially performing additio
meta-data accesses).

3.1.2 RAIDframe as an Event-Driven Simulator

The RAIDframe simulator exists to support analyses of configurations for which
user has no hardware (for example, a new disk) or no interest in building (for exa
hundreds of disks in an array). The RAIDframe simulator is built on top of the Berk
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RaidSim simulator [Chen90b, Lee91], which was further modified at CMU. In the s
ulator, the low-level disk operations are simulated by a configurable disk-geom
model instead of being executed by a real disk; the geometry model is configurab
wide range of disks. The simulator, like the stand-alone application, uses either a
thetic workload generator or a trace file for replay. Because it runs a synthetic wor
against simulated disks, the simulator provides results quickly—more quickly than
versions running against real disks.

The simulator runs as a single-threaded, event-driven program which tracks dis
time. However, there are several disadvantages in using it. First, it is more difficu
run an application against this simulator because it does not actually transfer dat
its event-driven nature causes “virtual time” to pass more quickly than “wall tim
Next, while the geometry model provides seek, rotate, and transfer information for
SCSI I/O sent to any drive, it does not account for bus overhead or disk caching.
support for verifying data correctness is not provided. The lack of support for bus 
head and data verification can have significant impact on user results.

Like the previous configuration, the simulator provides its functionality in a libr
(libraidframe_sim.a ) which applications may link against. This enables many
the same front ends to the real-disk user-level configuration to be used with this si
tor (with the caveat that the simulator is single-threaded and its routines are not
trant; therefore, multithreaded tests are not supported).

3.1.3 RAIDframe as a Device Driver in the Kernel

RAIDframe also runs as a Digital Unix device driver capable of mounting a standar
system on a set of disks (and supports standard file system operations, such asnewfs).
This allows RAIDframe users to measure the performance of a disk array when it is
ning a real workload (as opposed to the trace-driven or synthetic versions at the
level). At this level, RAIDframe represents disks as either a raw or block device.

Because the device driver must be compiled in the kernel, any unstable code—suc
bad memory access—can cause a machine crash. Therefore, it is recommended t
disk-array architectures be developed in user mode before being installed in the ke

3.1.4 RAID Architectures Implemented in RAIDframe

RAIDframe is released with a variety of disk-array architectures which include not 
the basic RAID architectures which are in production today but also a number of e
imental architectures which are proposed by the research community. Table 6 lis
architectures that have been implemented in RAIDframe. See Chapter 1, “Redu
Arrays: A Brief Overview,” for descriptions of these architectures.

TABLE 6. RAID Architectures Currently Supported by RAIDframe

Architecture Support Level

RAID level 0 [Fill in reconstruction ability, etc.]

RAID level 1

RAID level 4
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RAID level 5

Parity declustering

Distributed sparing

Parity declustering + Distributed sparing

Chained declustering

Interleaved declustering

TABLE 6. RAID Architectures Currently Supported by RAIDframe

Architecture Support Level
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FIGURE  14 Case-Study Peformance of Microbenchmarks in RAIDframe
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3.2 Internal Architecture

RAIDframe’s internal architecture is partitioned into a relatively small set of module
separates infrastructure which does not change from libraries which users can mo
create and test new disk-array architectures.

As Figure 15 illustrates, RAIDframe is composed of eleven independent modules, 
of which may be modified to support new architectures.

FIGURE  15 RAIDframe Modules

3.2.1 RAIDframe Infrastructure

This section describes modules which we consider to be infrastructure and do not 
to be modified.

3.2.1.1 State Machine
User requests are processed by a central state machine which is responsible for c
graphs, submitting them for execution, et cetera. While the state machine is co
urable, most architectures use a machine similar to the one illustrated in Figure
page 66. The following table lists the access states controlled by the state machin

TABLE 7. Access States and Their Function

State Function

rf_MapState map user access

rf_LockState acquire stripe locks

rf_CreatDAGState select and create DAG(s)

Memory MgmtMapping

Graph

Graph Library

Primitives

Graph Disk-Queue
Module

Policy
(can be modified)

Library
Disk

Interface

Infrastructure
(unchanging)

State Machine

Engine
Execution

Access States

Selection

Disk-Geometry
Database
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tion
It is important to note that RAIDframe performs stripe locking and memory alloca
prior to creating a DAG.

rf_ExecuteDAGState execute DAG(s) which are ready

rf_ProcessDAGState postprocess completed DAGs

rf_CleanupDAGState free a graph and stripe locks

rf_LastState null state (indicates end of sequence)

rf_IncrAccessCountState increase count of graphs in flight

rf_DecrAccessCountState decrease count of graphs in flight

rf_QuiesceState wait for the array to quiesce (no graphs in flight)

TABLE 7. Access States and Their Function

State Function
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FIGURE  16 RAIDframe Control Flow

3.2.1.2 Graph Execution Engine
The primary infrastructure module is the graph execution engine. This engine is re
sible only for fully exploiting the allowable concurrency within a DAG; that is, t
engine has no knowledge of the architecture embodied in the graph. Figure 15 illus
the structure of RAIDframe.

RAIDframe’s engine also incorporates a simple and uniform mechanism for han
error conditions in the array. When any error condition occurs prior to the commit n
the engine rolls back, undoing previous state changes. The engine then creates
graph and retries the operation. If an error occurs after the commit node, the engin
forward and finishes executing the graph.

In this example, when a request arrives in the system, it is first sent to the mappin
module to compute the set of physical disk locations affected by the access. This
produces a data structure describing, for each stripe touched by the access, the m
of addresses in the RAID address space to physical disk units within each stripe. N
stripes containing parity information are locked to assure that concurrent writes to 
same stripe do not conflict in their parity updates. The access is then converted to
graph and submitted for execution. If a failure occurs while a graph is processing,
recovery local to the failed graph leads to creating a graph appropriate for avoiding
failure, if possible.

Map Addresses

Lock

Select DAG

Execute DAG

Unlock

Reconfigure Array

User Request

Complete

Good Bad

Mapping Library

Graph Selection

Graph Library

Graph Primitives

Disk Models
Event-Driven

Simulator

Queueing Disciplines

Simulation only

Mechanized InfrastructureArchitectural Policies
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3.2.1.3 Disk Interface
The disk interface module organizes pending disk requests according to queuing
plines specified at the time of configuration; this allows users to optimize disk us
needed.

[Additional text to come from Jim.]

3.2.2 Configurable RAIDframe Modules

The following sections describe the default implementations of RAIDframe’s con
urable modules. Please see Chapter 5, “Extending RAIDframe,” for more informa
about reconfiguring the modules.

3.2.2.1 Disk-Queue Module
In the current version, disk requests can be queued in RAIDframe or at the disk
number of requests allowed for queuing at the disk is configurable. Within RAIDfra
multiple queueing policies are available, including FIFO, SSTF, SCAN, CSCAN 
CVSCAN. FIFO is First Come First Serve—requests are serviced in arrival o
Shortest Seek Time First (SSTF) queueing specifies that the next request dispatc
the one closest geographically to the previous request. SCAN specifies that the dis
traverses the disk from one end to another and back (two-way elevator algorithm), 
CSCAN specifies one-way disk sweeps (one-way elevator algorithm). CVSCAN
discipline that uses two parameters to queue disk requests. With CVSCAN, addin
queuing disciplines can be achieved simply by assigning new values to the two pa
ters. New disciplines can also be added to the disk-queue switch by specifying
function calls forcreate, enqueue, dequeue, promote,and peek.

*For more information about CVScan, please refer to [Geist87].

3.2.2.2 Disk-Geometry Database
This database contains disk specifications used by the simulator. These specific
include layout parameters (tracks per cylinder, number of zones, etc.) as well as p
mance parameters (rpm, seek times, etc.).

3.2.2.3 Mapping
All accesses in RAIDframe go through a mapping module prior to locking the b
ranges in the disk array. The framework for the mapping is general to all architec
and invokes architecture-specific mapping routines. The routines are typically shor
example, 5 lines of C code). Each routine provides the ability for the mapping code

TABLE  8 Disk-Queue Scheduling Algorithms

Name Algorithm

fifo First In, First Out

cvscan CVSCAN*

sstf Shortest Seek Time First

scan Two-way Elevator

cscan One-way Elevator
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• map individual sectors and parity units for a given RAID address

• identify a stripe for a given RAID address

• identify a parity-stripe ID for a given data-stripe ID

The mapping module maps an access in the RAID address space to the corresp
set of physical disk addresses. The result is returned as a list of Access Stripe
(ASM) structures, one per stripe accessed. Each ASM structure contains a pointe
list of physical-disk-address structures which describe the physical locations touch
the user access.

Note that this first-level mapping routine returns only static mapping information, 
is, the list of physical locations that will actually be read or written. Additional rem
ping to physical location can be done at later stages of the access.

The mapping module also maps the parity. The physical-disk location returned a
indicates the entire parity unit, even when only a subset of it is being accessed. T
because an access that is not stripe-unit aligned but spans a stripe-unit bounda
require access to two distinct portions of the parity unit. At this point, however, the
tem cannot determine which portion(s) of the parity unit will be needed. Instead
algorithm-selection code decides what subset of the parity unit to access.

3.2.2.4 Graph Selection
A graph-selection algorithm is required for each architecture. This algorithm, im
mented as a C routine, determines which graph from the graph library is to be us
execute a specific user request (type, layout map), given the current state of the ar
default, RAIDframe attempts to create one graph for each ASM (in other words, p
stripe). However, if this is not possible, graphs are then selected on a per data u
even per sector) basis.

3.2.2.5 Graph Library
The graph library contains the routines, such asCreateSmallWriteDAG() , which
are capable of creating graphs if called by graph selection. Each routine receive
and physical mapping information and returns a pointer to a graph which is tailore
that request. Adding new graphs requires installing new or extending existing cre
functions. The graphs which can be created by the graph-selection algorithm are 
in the Appendix.

3.2.2.6 Primitive-Operations Library
The primitive-operations library contains the functions which abstract single de
operations (for example,XOR, DISKRD, etc.) from which graphs are created. Primitive
delineate the failure domains that RAIDframe accommodates; that is, when a node
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the device associated with it is considered failed as well. Primitives are required to
pendently detect and recover from soft errors.

3.3 Reconstruction Architecture

In Chapter 2, we described the disk-oriented algorithm which Mark Holland im
mented and evaluated prior to RAIDframe’s development (See “Reconstructing 
On-line When a Disk Fails” on page 55). We have incorporated this reconstruction 
rithm into the current RAIDframe package to allow RAID designers to simulate a 
failure so that they can evaluate the performance of their systems while under
reconstruction; [May or may not be true:] RAIDframe currently supports reconstruc
for all RAID architectures released with version one except distributed sparing. Pla
future releases of RAIDframe will support reconstruction on real disks and distrib
sparing.

In this section, we describe the reconstruction architecture currently implement
RAIDframe.

3.3.1 Reconstruction State Machine

The state machine in Section 3.2.1.1 controls the processing of user-initiated
accesses. However, when a disk fails, a separate state machine which is respons
reconstructing the lost data initiates a reconstruction thread and then processes
struction requests in parallel with the user workload. Reconstruction requests, of c
are lower priority than user-initiated ones; the reconstruction thread simply dispa
disk accesses in batches until all data on the failed disk has been restored. The d
ented algorithm allows reconstruction to keep one low-priority disk request in the q
for each physical disk at all times, maximizing the efficiency of reconstruction with
significantly penalizing response time for the system user.

3.3.2 Reconstruction States

When invoked, the reconstruction thread issues, through the locking and DAG lay
low-priority read request for the next unit on each disk required for reconstruction
each reconstruct read completes, its data is XORed into the accumulating “sum” f
indicated stripe, and the next read request for that disk is issued. When the last uni

TABLE 9. Primitive Operations Provided by RAIDframe

Operation Function

DiskRead read from disk

DiskReadMirror issue disk read to disk with the shortest queue (RAID Level 1)

DiskWrite write to disk

XOR compute bit-wise exclusive-or

NOP no operation

Q compute Reed-Solomon encoding

Q’ decode Reed-Solomon code
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ciated with a particular stripe has been read and summed, the reconstruction 
issues a low-priority request for the now reconstructed data to be written to a rep
ment or spare disk.

FIGURE  17 RAIDframe Reconstruction Control Flow

3.4 Suite of Test Applications

In this section, we introduce the test suite we have included with the RAIDframe 
which will allow implementers to test their systems at the user level.

An important method for testing the operation of an array is by actually using it; h
ever, placing the system within a real workload environment in order to test it is o
ously not ideal. Therefore, the stand-alone application and simulator version

Map Addresses

Lock Stripe(s)

Select DAG

Execute DAG

Unlock Stripe(s)

Reconfigure Array

User Request

Complete

Good Bad

User-Initiated Process

The reconstruction thread starts by quiescing the array. The thread sets up its i
nal state, queues one access request per surviving disk, and then re-enables th
workload. From this time on, reconstruction proceeds in parallel with the appl
user workload. A new request is submitted to a surviving disk after a previous r
request is completed. Reconstruction completes when the reconstruction 
requests associated with all surviving disks have completed (i.e., they have sub
ted their last stripe unit to the buffer manager).
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RAIDframe receive I/O requests from a workload file which can contain either 
script that is interpreted by a synthetic workload generator or 2) traces of actua
I/Os. For both of these versions of RAIDframe, the workload file is mandatory for o
ating (the stand-alone application currently does not accept live user workl
although it can be tested against real disks). The script test runs the workload file.

Six other tests—single-access, loop, degraded-mode read, random read or wri
write-read, and reconstruction—verify the data and redundancy of the array by ac
ing its disks in different ways. The layout test verifies that the mapping of data
redundancy between the array software (that is, logical location) and actual disk
tions (that is, physical locations) is correct. We briefly describe how to use these te
Chapter 4.

TABLE  10 Tests for Verifying Data, Redundancy, and Layout in RAIDframe

Test Operation

single-access test writes, reads, and verifies a single location in the
RAID address space

loop test writes, reads, and verifies multiple locations concur-
rently in the array

degraded-mode read test tests read activity with the array in a faulted state

random read or write test allows a user to read and write to multiple locations
in the array in fault-free and degraded mode

file write-read test writes, reads, and verifies the contents of a file

reconstruction test runs the loop test while forcing reconstruction to
occur at the same time

*script test runs the workload file which contains either a script
for generating a synthetic workload or actual I/O
traces

*layout test verifies the 1-to-1 mapping properties (that is, RAID
address to physical locations) of a given architecture

*Because it runs without threading, the simulator version runs only these two tests.
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CHAPTER 4 Installing, Configuring, and
Using RAIDframe
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RAIDframe may be installed as either a stand-alone application, a simulator, or a d
driver in the kernel. Installed as a stand-alone application, RAIDframe runs agains
disks using either a synthetically generated workload or replaying traces of actual 
loads. As a simulator, RAIDframe uses a disk-geometry model to simulate various
figurations of hardware; the workload for the simulator, as with the stand-a
application, can be either a synthetically generated one or traces of I/O from a
workloads. In the kernel, RAIDframe runs as a device driver against real disks and
which a real file system can be mounted. All three versions currently run on 
Alphas running versions 2.0 and 3.2c of the Digital UNIX operating system.

We begin this chapter by describing the contents of the first RAIDframe code rel
then explain how to install and configure each version. Then we briefly describe h
test RAIDframe’s operation by verifying data, redundancy, and mapping and ho
generate workloads for RAIDframe. Finally, we end this chapter by describing ho
access RAIDframe’s built-in performance tracing and by listing some of the option
debugging implementations.

4.1 Installing RAIDframe

Before installing any of the RAIDframe versions, you will need to decompress and
tar the distribution file. [Filename?]

4.1.1 Creating Executables for the Stand-Alone Application and Simulator

You can create executables for the user-level and simulator versions of RAIDf
without taking any machine-specific steps. Both user-level versions of RAIDframe
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stand-alone application and the simulator, have a number of options for installing 
at compile time, which are listed below in Table 11.

4.1.2 Installing the Device Driver

RAIDframe provides both block and character (UNIX “raw”) device interfaces. To c
figure them into your kernel, you must add appropriate stanzas to the block and c
ter device switches. This will require selecting a major device number. We recomm
choosing 51. For further discussion about assigning major device numbers, seeDEC
OSF/1 Writing Device Drivers, Volume 1: Tutorial. [check publication info]

To compile RAIDframe in the kernel, you will need to take the following steps:

1. Add the RAIDframe option to your kernel’s configuration file (/sys/MACHINE-
NAME in a binary-only tree,src/kernel/conf/alpha/CONFIGNAME  in a
complete source tree). This entry looks like:

pseudo-device raidframe <Number of arrays to support>

options RAIDFRAME_RECON 1

The number of arrays to support must be an integer greater than 0.

2. Add an entry for RAIDframe to the device switch tables found inconf.c  (if you’re
compiling from a complete source tree, this issrc/kernel/io/common/
conf.c ; if you’re compiling in a kernel binary tree, this is/sys/io/common/
conf.c ). To do this, type the following lines exactly:

1.  Removing this option disables in-kernel reconstruction but reduces code size.

TABLE 11. Compiling the Stand-Alone Application and Simulator

Command Resulting Action

make user creates stand-alone executable named “driver ”

make uo2 creates optimized (-O2 ) stand-alone executable named
“driver ”

make sim creates simulator executable named “driver ” with -g compiler
option

make so2 creates optimized (-O2 ) simulator named “driver ”

make depend updates file dependency lists inMakefile.{s,u}

make clean removes the executable and all.o  files

make tags creates an emacs TAGS file

make othertests compiles additional front-end applications for the user-level
driver

make othertestso2 compiles additional optimized front ends for the user-level
driver

make sothertests compiles additional front-end applications for the simulator

make utils compiles support utilities for all configurations
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#include <raidframe.h>

#if NRAIDFRAME > 0

int rf_open(), rf_close(), rf_strategy(), rf_read();

int rf_write(), rf_ioctl(), rf_size();

#else /* NRAIDFRAME > 0 */

#define rf_open       nodev

#define rf_close      nodev

#define rf_strategy   nodev

#define rf_read       nodev

#define rf_write      nodev

#define rf_ioctl      nodev

#define rf_size       nodev

#endif /*NRAIDFRAME > 0 */

3. Select the major number for the device. (Note: OSF/1 requires that the number i
the comment match the number in the entry table).

To do this, first look for the block device (bdevsw ) table in theconf.c  file; this is
where you set the major number for the RAIDframe pseudo device. Type these
into it with line breaks only for the start of each comment:

{rf_open, rf_close, rf_strategy, nodev, /*51*/

rf_size, 0, rf_ioctl, DEV_FUNNEL_NULL},

Next, look for the character device switch (cdevsw ) table in the same file; this is
where you select the major number for RAIDframe. Type these lines intocdevsw :

{rf_open, rf_close, rf_read, rf_write, /*51*/

rf_ioctl, nodev, nulldev, 0,

asyncsel, nodev, DEV_FUNNEL_NULL, NULL, NULL},

4. Copy the RAIDframe directory into the source directory of the kernel tree, t
update thefiles  file with the new modules. You can do so by appending the c
tents of the filekfiles  included in the RAIDframe distribution.

5. Rebuild the kernel. Once RAIDframe has been configured in the kernel, a file sy
can be mounted.

4.2 Configuring RAIDframe

While all three versions of RAIDframe share the same configuration file, the kerne
sion is configured at the same time that it is compiled in the kernel. For those user
want to configure a device driver after it has been installed, we have included two
trol programs for doing so; we describe these control programs in Section 4.2
page 79.
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4.2.1 RAIDframe’s Configuration File

The configuration file is divided into sections marked bySTART <section_name> .
Comments are supported in the configuration file; they must be preceded by a 
sign (#). Of the seven sections in the configuration file, four are mandatory:array, disks,
layout, and queue; these are denoted with an(m) in the following paragraphs. See
Figure 4.2 for a sample configuration file.

Each of the following sections describes how to enter specifications for the stand-
application and the simulator.

4.2.1.1 Array (m)
This section is used to specify in integers the number of rows, columns, and spare
in the array. Enter these specifications into the configuration file in this order:

<numRow> <numCol> <numSpare>

4.2.1.2 Disks (m)
This section lists the pathnames to the device files corresponding to physical dis
the kernel and user-level versions of RAIDframe; each item in the list is a string en
with the device filename. Enter pathnames in this format:

/dev/...

/dev/...

The simulator, on the other hand, uses a set of disk names that it will instantiate fro
disk.db  database file. Enter disk names as

<Disk name>

<Disk name>

where each item is a string containing the name of an actual disk drive.

4.2.1.3 Spare
This section may include the device files of spare disks (if they exist). Pathname
entered in the same format as theDisk section.

For the simulator, theDisks and Spare sections must contain names of actual di
drives instead of listing the pathnames to the device files (that is, /dev/... ). If a
pathname is specified instead of an actual disk drive, the simulator version of R
frame will default to the Hewlett-Packard HP2247 disk drive.

4.2.1.4 Layout (m)
This section includes general layout parameters:sectors per stripe unit, stripe unit per
parity unit, andstripe units per reconstruction unit. It also contains a parity configura
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tion label (which is a single character) to specify the RAID architecture to use.
parameters are detailed in the following table.

For the parity-configuration layout, there are nine single-character labels that c
spond to the RAID architectures currently implemented (see Table 6 on page 61
complete list of architectures and their support levels).

The details for specifying new parity-configuration parameters are given in Chap
“Extending RAIDframe.” Enter layout specifications into the configuration file in t
order:

<sectPerSU> <SUsPerPU> <SUsPerRU> <parityConfig>

where the items are integers. Depending on the value of the parity configuration
can add a number of needed parameters that are specific to an architecture. In this

TABLE 12. Layout Parameters for the RAIDframe Configuration File

Parameter Explanation

numRow number of rows of disks, each row a distinct parity group

numCol number of columns of disks in each row

sectPerSU number of sectors in a stripe unit

parityConfig parity layout based on RAID level

SUsPerPU number of stripe units per parity unit

SUsPerRU number of stripe units per reconstruction unit

When specifiying SUsPerRU, set the number to 1 unless you are specifically
implementing reconstruction under party declustering; if so, you should read
through the reconstruction code first.

TABLE  13 Parity Configurations

parityConfig Architecture Must be followed by

0 RAID level 0

1 RAID level 1

4 RAID level 4

5 RAID level 5

Q RAID level 6

T Parity declustering data layout file

D Declustering + distributed sparing data layout file

R RAID level 5 + distributed sparing

C Chained declustering [?]

I Interleaved declustering [?]
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the pathname for layout-specific parameters will follow the general ones in theLayout
section (Table 12).

4.2.1.5 Queue (m)
This section contains generic parameters for the queue of disk I/O requests: queu
(FIFO, CVSCAN, etc.) and the number of concurrent requests that can be sent to
Enter queue specifications into the configuration file in the format:

<queue type> <numConcurrentrequests>

where thequeue type is a string and thenumber of concurrent requests is an integer.
Where necessary, queue-specific parameters will follow the general ones in theQueue
section (Figure 4.2).

4.2.1.6 Debug
This section lists a number of user-configurable debug options. Enter these option
the configuration file in the format:

<debug variable><value>

where thedebug variable is a string and thevalue is an integer (a partial list of debug
options and their variables is given in Section 4.6 on page 87). Some debugging o
have only on/off settings—for these, zero is off, non-zero is on. Others can acc
range of integral values.
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FIGURE  18 RAIDframe’s Configuration File

4.2.2 Configuring the Device Driver Using Control Programs

Once the RAIDframe device driver has been installed, you can configure it using e
the command-line options ofrf_setconfig  or the menu-drivenrf_ctrl —an
OSF menu-driven program located in the RAIDframe directory.rf_ctrl  is a simple
front end to a set of I/O controls (ioctls) which are listed in Table 14; in addition, th
ioctls can be used by other applications. Using both programs is explained in the fo
ing sections.

RAIDframe’s configuration file has seven sections: array, disks, spare, layout
queue, and debug;array, disks, layout, andqueue must be specified. All sec-
tions begin with START and all comments are denoted with a#.

START array
# parameters are: numRow numCol numSpare
1 4 1

START disks
# a list of device files corresponding to physical disks
/dev/rrz17c
/dev/rrz19c
/dev/rrz20c
/dev/rrz21c

START spare
# a list of device files corresponding to spare physical disks
# spare device goes here
/dev/rrz117c

START layout
# general layout parameters: sectPerSU SUsPerParityUnit SUsPerReconUnit pari-
tyConfig
64 1 1 T

# layout-type specific parameters for 'T' layout: bd_file_name
/afs/cs/project/pdl/Reconstruction/lib/bds/4.4.bd

START queue
# generic queue parameters:  queue type, number
# concurrent requests that can be sent to a disk
FIFO 1
# queue-specific configuration lines:
# (none for FIFO)

START debug
accessDebug 1
mapDebug 1
dagDebug 1
testDebug 1
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4.2.2.1 rf_setconfig
To runrf_setconfig , type:

rf_setconfig config<n>

where<n> is an integer for the each device you configure.rf_setconfig  copies and
saves config0  into /dev/.rfconfig0 .

To unconfigure the device, type:

rf_setconfig -s

4.2.2.2 rf_ctrl
To runrf_ctrl , type

rf_ctrl <device_file>

and select the desired ioctl from the menu..

TABLE  14 Ioctls Supplied with RAIDframe

Control Option Syntax

Configure the driver; takes a struct
rf_configuration

RAIDFRAME_CONFIGURE:

Unconfigure the array; takes no arguments RAIDFRAME_SHUTDOWN:

Takes a structrf_test_acc RAIDFRAME_TEST_ACC

“Fail” a disk (for testing reconstruction); takes a
structrf_recon_req

RAIDFRAME_FAIL_DISK

Get reconstruction percentage complete on a
row; takes and returns an integer

RAIDFRAME_CHECKRECON

Copy reconstructed data back to replaced diskRAIDFRAME_COPYBACK

Start tracing accesses (DFStrace) RAIDFRAME_START_ATRACE

Stop tracing accesses (DFStrace) RAIDFRAME_STOP_ATRACE

Get the size of the device (number of sectors);
yields an integer

RAIDFRAME_GET_SIZE:

Get basic configuration information (not the
same asrf_configuration ); yields
structrf_device_config

RAIDFRAME_GET_INFO

ResetAccTrace  totals on the device RAIDFRAME_RESET_ACCTOTALS

RetrieveAccTrace  totals for a device; yields
RF_AccTotals

RAIDFRAME_GET_ACCTOTALS

TurnAccTrace  on if integer is nonzero (off
otherwise); takes an integer

RAIDFRAME_KEEP_ACCTOTALS
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4.3 Testing RAIDframe Operation

As we mentioned in Chapter 3, there are eight test applications for verifying the 
redundancy and layout for RAIDframe implementations at the user level (that is
stand-alone application and the simulator). Because the simulator runs only agains
ulated disks, only the script and layout tests are available in that mode.

4.3.1 Running the Test Applications

In the following subsections, we will show you sample interactions with the me
driven test applications. In many cases, we also comment on the options and intera
to give you a better idea about how to use them.

4.3.1.1 Single-Access Test

Pick a test: s

enter -1 for the RAID address to quit

Starting RAID address [0-82176]? 4032

number of blocks? 219

Input row id of disk to mark failed (-1 for none): -1

Entering 0 for theinput row id  will cause the system to prompt you for the colum
number of the disk to be failed.

4.3.1.2 Loop Test

Pick a test: l

How many parallel threads? 2

How many I/Os per thread? 10

Same seed or different seeds in each thread [s/d]? d

Degraded mode? [n=none, c=constant, a=asynchronously,
r=async, init recon] n

TABLE 15. Options for Tests

Test Option

single-access test s

loop test l

degraded-mode read test d

random read or write test r

file write-read test f

reconstruction test R

*script test S

*layout test L

* The simulator runs only these two test options.
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The mode optionn is the fault-free test in which no disks are failed. Mode optionc  fails
a disk before beginning the loop test; you must specify which disk just as you wou
order to run the single-access test. Mode optiona lets RAIDframe randomly fail a disk
during the run; optionr  is same as optiona but initiates reconstruction after failing the
specified disk.

4.3.1.3 Random Read or Write Test

Pick a test: r

How many parallel threads? [0 is ok] 1

Reads or Writes [r/w]? r

Degraded mode: none, constant, constant double
degraded,async, async+init recon

 [n/c/2/a/r]? n

Random or sequential I/Os? [r/s] r

How many I/Os per thread? 2

4.3.1.4 File Write-Read Test

Pick a test: f

File name? foo

The only parameter RAIDframe requests is the file name.

4.3.1.5 Reconstruction Test

Pick a test: R

How many parallel threads? [0 is ok] 1

Degraded-mode: none, const, async, async+recon, reconfig,
recon+copyback?

 [n/c/a/r/R/C] n

Perform the painful test? [y/n] n

4.3.1.6 Script Test

Pick a test: S

Trace or script file name? foo

You must specify either a script or trace file. See Section 4.3.2 on setting up a wor
file.

4.3.1.7 Layout Test

Pick a test: L

There are no parameters for this test.

4.3.2 Setting Up the Workload File For the Script Test

It may be necessary to test how the array operates under a simulated worklo
RAIDframe, the stand-alone user application and simulator versions receive
requests from a synthetic-workload generator or replay traces of actual disk I/Os
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following sections describe how to create a script file for the workload generator an
parameters for a trace file of actual disk I/Os.

4.3.2.1 Synthetically Generated Workloads
The synthetic-workload generator conforms its load to a script containing a var
number of access profiles with individual occurrence probabilities. Each profile de
a deterministic or exponentially distributed access size with a given mean and 
ment. Access addresses are randomly generated throughout the entire address s
with a given probability, within a single locality specified with each profile. Acc
types are either read, write or sequential (the same as the last access with its a
advanced).

The script file contains a description of the workload that you want to run, inclu
probability, I/O request type, size, alignment, distribution, and local region (Table 1

The lines are in the format:

<probability> <reqType> <size> <align> [<distr> [<lprob>
<lfrac> <loffs>]]

where only the first four parameters,<probability> <reqType> <size>
<align> , are mandatory in the script file. Or, they can be in the format:

<probability> s

TABLE  16  Parameters for Writing a Script to Generate a Workload

Parameter What is Specified

<probability> the fraction of the total workload (given as an integer between
0-100) that this script describes

<reqType> the type of I/O request using anr ,w, ors for a read, write or
save

<size> the access size in KB (given as an integer)

<align> the access alignment in KB (given as an integer)

<distr> a character describing the access-size distribution: d
means deterministic (this is always equal to<size> ); e
means exponentially distributed with mean<size>

<lprob> the probability (given as an integer between 0-100) that this
access is within the local region

<lfrac> the fraction of the array’s data space (given as an integer
between 0-100) defining the local region

<loffs> the offset into the array of the start of the local region (given as
an integer between 0-100)

The<lfrac>  and<loffs>  parameters allow you to define the local region of the
disk array where you want to generate accesses.
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If the script file contains a line in the second form (<probability> s ), it means that
with probability<probability>  the next access selected by any given process 
be sequential with respect to the previous access, whatever it happened to be. Th
be only one such line in any given script file.

The following is an example of a script file that specifies running a 50/50 read/w
workload using random 8k accesses that are 8k aligned:

50 r 8 8

50 w 8 8

4.3.2.2 Trace-Driven Workloads
The trace file contains actual I/O traces that have been collected from another ap
tion instead of synthetic traces that have been generated from a script. The tra
must contain aheader andtrace records. The header contains the number of indepe
dent processes in the trace, the number of traces for each process, and the file off
each trace. Traces understood by RAIDframe must contain an explicit sequen
tuples: (thread id, delay time before issuing this request, read or write, block add
number of blocks, and a requester-waits/requester-does-not-wait flag). Table 17 
the parameters for trace records.

Each trace record has the following format:

<long blkno> <long size> <double delay> <short pid> <char
op> <char async_flag>

4.4 Comparing How RAID Architectures Perform

Because it is valuable to compare how different RAID architectures perform relati
one another when implemented in RAIDframe, we have included a front end for d
so at the user level calledrf_genplot . A key benefit ofrf_genplot  is that it
enables users to test throughput versus response time for various RAID archite
and configurations. As we explained in Section 3.1.1 on page 60,rf_genplot  runs

TABLE  17  Records for a File with Actual Workload Traces

Parameters What is Specified

<long blkno> RAID address (given as an integer)

<long size> number of blocks (given as an integer)

<double delay> number of seconds (given as an integer)

<short pid> process identification number (given as an integer)

<char op> character operation withanr  orw for a read or write

<char async_flag> character asynchronous flag;set to 1 if the I/O requests
are asynchronous

For the parameters,long equals 4 bytes;double equals 8 bytes;short equals two bytes;
andchar equals 1 byte. These traces are stored in binary format as opposed to ASCII.
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workload scripts from a work file against various RAID architectures and outputs re
into a file.

4.4.1 Preparing to Run the rf_genplot Front End

rf_genplot  requires three arguments in order to run:configlistfile ,
worklistfile , andoutfilebase . It reads the files namedconfiglistfile
and worklistfile  and writes files namedoutfilebase.out , outfile-
base.ps , andoutfilebase.mif.

The first four lines ofconfiglistfile  provide parameters for graphing the resu
of the workload scripts. Specifically, the first line lists the graph title, the second i
graph subtitle, the third defines x- and y-axis ranges, and the fourth defines majo
minor tick marks for both the x and y axes. After that, theconfiglistfile  lists
configurations to use and names for them, separated by colons. The filename of th
figuration file must appear before the colon; after the colon is the name of the confi
tion which will appear on the graph. Here’s an example of aconfiglistfile :

Random 4KB Reads

RAID level 1 Vs. RAID level 5

0 900 10 60

200 100 5 2.5

/usr20/config/config1.user:Raid 1

/usr20/config/config5.user:Raid 5

Theworklistfile  simply lists scripts forrf_genplot  to run; here’s an example:

/usr20/data/randblock/randblock.1.Read.10disk.A.rst

/usr20/data/randblock/randblock.2.Read.10disk.A.rst

/usr20/data/randblock/randblock.5.Read.10disk.A.rst

/usr20/data/randblock/randblock.10.Read.10disk.A.rst

/usr20/data/randblock/randblock.15.Read.10disk.A.rst

/usr20/data/randblock/randblock.20.Read.10disk.A.rst

/usr20/data/randblock/randblock.30.Read.10disk.A.rst

/usr20/data/randblock/randblock.40.Read.10disk.A.rst

4.4.2 Running the rf_genplot Front End

rf_genplot  runs each of the scripts listed in theworklistfile  against each
RAID configuration given in theconfiglistfile  and outputs the results to the
outfilebase.out  file. Results are given as throughput and response time pair
each architecture with blank lines between configurations.

If given the -o  option before the filenames,rf_genplot  will generate the xmgr
batch  file and run xmgr to produceoutfilebase.ps  andoutfilebase.mif
files in addition to running the workload scripts against the RAID configurations. 
outfilebase.ps  andoutfilebase.mif  files contain graphs of throughput ver
sus response time for all the architectures listed in theconfiglistfile .
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If given the -p  option, rf_genplot  will produceoutfilebase.ps  and out-
filebase.mif  files using theoutfilebase.out  file created from a previous run
This option allows you to runrf_genplot  first as a stand-alone application then in
multi-user environment to generate graphs.

4.5 Accessing Built-in Performance Tracing

RAIDframe provides a mechanism for timing and tracing eleven predefined sy
events (Table 18). The codepath for each event is delineated by a of set macro
make calls to a built-in timer mechanism, which in turn relies on a cycle-counter reg
of the DEC Alpha architecture [Digital92]. An assembly module in the timer reads
cycle counter and evaluates the number of s elapsed. Once the built-in tracing mecha-
nism is turned on, it gathers timer records and saves them in a file.

To turn on tracing at the user level, setaccessTraceBufSize  to a value greater than
0 in theDebug section of the RAIDframe configuration file (see Section 4.2.1 for m
details); this determines the number of trace entries to accumulate in memory b
flushing them to disk where they are saved in the filetrace.dat  (an example of a
trace file is given in Figure 19 below).trace.dat  is accessed using a utility called
rf_tracestats  whose command line argument is in the form:

rf_tracestats [-v] [-p] trace.dat

where-v  is verbose mode and-p  prints formatted trace records on-screen. If no fil
name is given,rf_tracestats expects a trace to be fed in fromstdin .

Traces can also be extracted from the kernel withrf_tracestats  by running it with
the-k  argument and specifying the name of the device to extract traces from. For e
ple:

TABLE  18 RAIDframe System Events and Their Codepaths

Event Timed Codepath

User I/O Average Access Time

Graph suspend Suspend Ovhd

Call to complete access stripe map (ASM) Mapping

Acquiring stripe-lock ranges Locking

Graph creation DAG Creations

Graph retry DAG Retry

Freeing graph structures and return to user Cleanup

Execute full graph DAG Execution

Request pending in disk queue diskwait

Reconstruction recon

Exclusive-or computation Xor eval
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rf_tracestats -k /dev/rraidframe_c

Section 5.1.9 on page 101 explains how to extend built-in performance tracing by
ing new codepaths.

FIGURE  19 Parity Logging Execution Profile

4.6 Debugging RAIDframe Installations

Here is a partial list of the currently implemented debug options and their effects
have chosen to list the options which are most likely to be used frequently. A com
list of debug options may be found in the source filerf_optnames.h .

TABLE 19. Debug Options and Their Effects

Option Effect

accessdebug Prints out details of each user request.

accSizeKB  n The “loop test” generates a synthetic workload of ran
dom I/Os. This debug variable can force the size of the
I/Os to be n KB. If n=0, the size of the I/Os are not
fixed. Default is n=0.

Average Access Time: 24652.32 us

Suspend Ovhd       :     3.38 us ( 0.0 %)

Mapping            :    55.70 us ( 0.2 %)

Locking            :    46.03 us ( 0.2 %)

DAG Creation       :   136.50 us ( 0.6 %)

DAG Retry          :     0.00 us ( 0.0 %)

Cleanup            :    10.47 us ( 0.0 %)

DAG Execution      : 24342.59 us (98.7 %)

                    ******** DAG Execution Profile********

                    Total Xor Time   :   131.24 us ( 0.5 %)

                    Total Log Time   :   169.22 us ( 0.7 %)

                    Total Disk Queue :  5227.00 us (21.2 %)

                    Total Disk Phys  : 17840.21 us (72.4 %)

                    ******* summary disk statistics*******

                    Avg num phys IOs :     1.50

                    Avg queueing time:  3461.59 us (14.0 %)

                    Avg physical time: 11814.71 us (47.9%)

                    Avg total time   : 15276.30 us (62.0 %)
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accessTraceBufSize n Specifies the number of trace records which will be
buffered before writing to the file trace.dat If n=0,
tracing (execution profiling) is disabled. Default is
n=0.

alignAccesses  n The “loop test” generates a synthetic workload of ran
dom I/Os. This debug variable forces the I/Os to be
aligned if n=1. Default is n=0.

dagDebug This variable prints out the type of each DAG when
created.

degDagDebug This variable prints additional information about
degraded-mode DAGs.

demoMode  n This debug variable enables demo mode if n=1. In
demo mode, most data and redundancy verification is
disabled and meters are generated to display respons
time and throughput. Default is n=0.

diskDebug This variable prints information about each disk at
configuration time.

doDebug This variable prints each disk operation as it begins
and ends (user driver only).

dtDebug This variable prints disk-thread status (user driver
only).

engineDebug This variable prints information about engine-thread
and node processing.

maxRandomSizeKB The “loop test” generates a synthetic workload of ran
dom I/Os. This debug variable can force the size ofthe
I/Os to be no greater than n KB. If n=0, max size is
unlimited. Default is n=0.

maxTraceRunTimeSec n n = the amount of time in seconds a script file should
drive I/Os into RAIDframe. If n=0, max time is unlim-
ited.

TABLE 19. Debug Options and Their Effects

Option Effect
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memDebug  n This variable is useful for debugging memory leaks
and buffer overruns. Enabled when n=1. When n=2,
this debug variable also prints the address range of
every buffer as it is allocated and freed.

printDagsDebug  n If n=1, each DAG (graph) is printed after creation.
Default is n=0.

printStatesDebug  n If n=1, the state machine prints state information.
Default is n=0.

queueDebug This variable prints disk-queue operations as they hap
pen (policy-independent layer).

rewriteParityStripes n If n=1, parity is rewritten prior to start of test. This is
useful when tests which verify parity are run on an
uninitialized array. Default is n=0.

shutdownDebug This variable prints shutdown activities as they occur.

sizePercentage  n n is an integer which represents what fraction of the
total available disk space will be used. Useful for lim-
iting the duration of reconstruction testing and array
initialization. If n=0, 100% of the array is used.
Default is n=0.

validateDAGDebug  n If n=1, integrity of each DAG (graph) is verified prior
to execution. Default is n=0.

TABLE 19. Debug Options and Their Effects

Option Effect
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This chapter is intended to give you a head-start in understanding how to enhance
existing RAIDframe package; we expect that, in order to understand thoroughly ho
extend RAIDframe, you will first have to become familiar with the code itself. The f
lowing sections briefly describe key RAIDframe subsystems, and provide a how-to
guide for certain common extensions.

5.1 RAIDframe fundamentals

5.1.1 Types and Conventions

Most RAIDframe types are defined inrf_types.h . These definitions are intended
both to make code more easily readable and more easily portable. For instance, a
number is of typeRF_SectorNum_t . This is defined as typeRF_uint64 , which is
in turn the system-independent definition of a 64-bit unsigned integer. Thus, portin
RAIDframe to a new system type requires the correct definition ofRF_uint64  on that
platform, but does not require redefinition ofRF_StripeNum_t , much less changes
to the code using values of this type.

Here are some commonly used RAIDframe types and what they represent:

TABLE 20. Common RAIDframe Types

RAIDframe Type Type Representation

RF_SectorNum_t the number of an individual sector (e.g.,sector #37 of
an array)

RF_SectorCount_t a number of sectors (e.g.,read 100 sectors)
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When new type and structures are introduced, the header files in which they are d
are given. It is often the case that a structure is defined in that header file, but the 
guagetypedef  which is used to refer to it is defined in the filerf_types.h . The
convention is that astruct RF_SomeName_s  will be defined in an appropriate
header file, whichRF_SomeName_t is defined inrf_types.h  as

typedef struct RF_SomeName_s RF_SomeName_t;

In the future, this document will refer to “RF_SomeName_t, defined in
some_file.h ” even though the actualtypedef  of RF_SomeName_t is in
rf_types.h , andsome_file.h  contains the definition ofstruct
RF_SomeName_s.

5.1.2 Return Codes

Most RAIDframe operations return typeint . This is a descriptive error code with0
being defined as success and a non-zero value being a value defined insys/errno.h ,
which is appropriate for providing to a calling process to identify the nature of a fai

5.1.3 Memory Allocation

Memory allocation is different for different systems, and vastly different inside and 
side the kernel. For this reason, RAIDframe provides an internal abstraction of mem
allocation operations to avoid cluttering code with special cases for various environ
ments and platforms. The following macros, which are defined inrf_debugMem.h ,
should suffice for most simple memory allocation and deallocation operations:

RF_Malloc(ptr,size,cast)

RF_Calloc(ptr,nelements,element_size,cast)

RF_Free(ptr,size)

In the user environment, these perform the following operations, respectively:

ptr = cast malloc(size)

ptr = cast calloc(nelements, element_size)

free(ptr)

Thus, to allocate an array of five integers, you might:

RF_StripeNum_t the number of an individual stripe (e.g.,stripe number
three)

RF_StripeCount_t a number of stripes (e.g.,30 stripes)

RF_IoType_t kind of I/O (RF_IO_TYPE_READ,
RF_IO_TYPE_WRITE, or RF_IO_TYPE_NOP)

RF_Raid_t entire in-core state of an array

TABLE 20. Common RAIDframe Types

RAIDframe Type Type Representation
92 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96



RAIDframe fundamentals

r-

n of

re
ut-
ivid-

they
fig-

n
 it is
from
dded to

uires
le B
st be

onfig-
int *i;

RF_Malloc(i,5*sizeof(int),(int *));

or

RF_Calloc(i,5,sizeof(int),(int *));

And deallocate it with:

RF_Free(i,5*sizeof(int));

While the size argument toRF_Free  is not used at the user level, it should be set co
rectly, because in-kernel memory deallocation does require this field.

5.1.4 Memory-Allocation Lists

Tracking memory allocations can be difficult. In addition, most allocation should be
done at start-of-day and deallocated at end-of-day. To ease the programmer burde
tracking allocations, RAIDframe providesallocation lists (of type
RF_AllocListElem_t , defined inrf_alloclist.h ). In addition, two new
memory-allocation operations are defined inrf_debugMem.h :

RF_MallocAndAdd(ptr,size,cast,alloc_list)

RF_CallocAndAdd(ptr,nelements,element_size,cast,alloc_list)

These behave the same asRF_Malloc  andRF_Calloc , respectively, with the addi-
tional semantic that the operations are noted in the allocation listalloc_list . When
alloc_list  is destroyed, the memory will be freed automatically. Allocation lists a
generally provided to start-of-day configuration routines to simplify cleanup and sh
down and are destroyed after all end-of-day activities are complete. In addition, ind
ual I/Os have associated allocation lists which are used by some DAGs to track
temporary buffers for parity computation.

5.1.5 Shutdown Lists

Another way in which RAIDframe simplifies the cleanup process is with the use of
shutdown lists (RF_ShutdownList_t , defined inrf_shutdown.h ). Start-of-day
configuration routines are provided as a pointer to the head of a shutdown list, so 
may add entries. The shutdown list is invoked to deconfigure and clean up any con
ured systems.

A shutdown list is a linked list of elements containing a void function pointer, and a
argument to be passed to that function. When an item is added to a shutdown list,
prepended. When a shutdown list is invoked, the functions in it are called in order 
beginning to end and are passed their associated arguments. Thus, the last item a
a shutdown list is the first item called when the shutdown list is invoked. This is to
ensure correctness when dealing with dependent modules where one module req
another to be configured and operational to function correctly. (For instance, modu
must operate upon module A at creation and clean-up time; therefore, module A mu
configured before module B and must not be unconfigured before module B is unc
ured).
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Entries are added to a shutdown list by callingrf_ShutdownCreate , which is
defined as:

int rf_ShutdownCreate(RF_ShutdownList_t **listp,

void (*func)(void *arg), void *arg)

When the shutdown list pointed to bylistp  is executed, the functionfunc  will be
called, and the argumentarg  will be passed to it. Ifrf_ShutdownCreate()
returns non-zero, it was unable to add an entry to the shutdown list, and the caller s
behave accordingly (and is guaranteed thatfunc()  has not been called, nor will it be
called when the contentslistp  are invoked).

It is a RAIDframe convention that a failing configuration operation must provide for
complete cleanup at its point of failure. That is, if a configuration operation returns
unsuccessfully (see above), any memory it has allocated must be listed in an alloc
list it was provided, or be already freed. Likewise, any necessary cleanup operatio
must be entered into the shutdown list provided, or must be invoked before the err
returned. To simplify the coding of such creation and configuration operations, a p
grammer may wish to add multiple entries to a shutdown list for a single configura
operation.

5.1.6 Threads

Thread support is provided by a variety of macros and functions found in
rf_threadstuff.[ch] . These macros hide various porting issues, as well as u
kernel/simulator differences.

5.1.6.1 Thread Types
Threads in RAIDframe are represented by handles, which are of typeRF_Thread_t .
When a thread is created, it is passed a single pointer-sized argument of type
RF_ThreadArg_t . Pointers may be explicitly cast to and from this type. Because
synchronization primitives must be declared very differently in the kernel than at th
user-level, and they do not exist at all in the simulator, there are no explicit mutex a
condition types. Instead, several macros exist to declare mutexes and conditions.

TABLE  21 Mutex and Condition Declaration Macros

Macro name Declaration type

RF_DECLARE_MUTEX Declare a mutex with no special keywords

RF_DECLARE_STATIC_MUTEX Declare a mutex with thestatic  C keyword

RF_DECLARE_EXTERN_MUTEXDeclare a mutex with theextern  C keyword

RF_DECLARE_COND Declare a condition variable with no special
keywords

RF_DECLARE_STATIC_COND Declare a condition variable with thestatic  C
keyword

RF_DECLARE_EXTERN_COND Declare a condition variable with theextern  C
keyword
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These macros are invoked with a single argument, which is the name of the mutex
condition variable to declare. For example:

RF_DECLARE_MUTEX(rf_new_lock)

declares a global mutex namedrf_new_lock . Note the lack of trailing semicolon on
the line above; the declaration macros add semicolons as necessary.

5.1.6.2 Using mutex variables
Before they may be used, mutexes must be initialized with the function
rf_mutex_init() . After they are no longer needed, they must be destroyed with
functionrf_mutex_destroy() . Each of these functions takes a pointer to a mut
variable, and returns a value of typeint . A zero-valued return indicates success; any
thing else indicates an error of some sort. To initialize and destroyrf_new_lock ,
from our example above:

int rc;

/* ... */

rc = rf_mutex_init(&rf_new_lock);

if (rc) {

printf(“ERROR: cannot initialize rf_new_lock\n”);

return(rc);

}

/* ... */

rc = rf_mutex_destroy(&rf_new_lock);

if (rc) {

printf(“ERROR: cannot destroy rf_new_lock\n”);

}

To simplify the destruction of mutexes when necessary, an entry can be automatic
added to a shutdown list to destroy a mutex. Rather than initializing a mutex with
rf_mutex_init() , the functionrf_create_managed_mutex()  may be used
instead. The first argument to this function is of typeRF_ShutdownList_t ** , and
the second is a pointer to the mutex, just likerf_mutex_init() . This also returns an
int , with a value of0 indicating success. In this case, success indicates that not on
was the mutex initialized correctly, but an entry has been added to the shutdown li
which will destroy the mutex when necessary.

As their names imply, the macrosRF_LOCK_MUTEX andRF_UNLOCK_MUTEX
respectively lock and unlock mutexes. These macros each take a single argument,
is the name of the mutex to operate upon. Previously, we gave an example definin
mutex namedrf_new_lock . Now we shall lock and unlock it, to provide a critical
section for some new code:

RF_LOCK_MUTEX(rf_new_lock);

/* Your critical section here. */

RF_UNLOCK_MUTEX(rf_new_lock);
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5.1.6.3 Using condition variables
Before a condition variable may be used, it must be initialized with
rf_cond_init() . When a condition variable is no longer needed, it must be
destroyed withrf_cond_destroy() . Like the corresponding mutex operations,
these functions take as their only argument a pointer to the condition variable to be
tialized, and return anint , with 0 indicating success. Similarly,
rf_create_managed_cond()  takes anRF_ShutdownList ** , and a pointer
to a condition variable, and returns success to indicate that not only has the condit
variable been successfully initialized, but an entry has been added to the shutdow
which will automatically destroy the condition variable.

RAIDframe provides simple macros for accessing the functionality of condition var
ables, in the form of macros namedRF_WAIT_COND, RF_SIGNAL_COND, and
RF_BROADCAST_COND. The wait operation takes two arguments, a conditon varia
to wait for an event on, and a mutex to atomically unlock before waiting, and lock a
waiting. The signal and broadcast operations both take a condition variable upon w
to generate a wakeup event. The signal operation attempts to wake at most one th
which broadcast awakens all threads awaiting an event. For implementation reaso
is important that threads waiting for events re-check their wakeup conditions upon
ing the wait operation to be sure that a bogus wakeup event has not been generate
is an example of what a consumer thread in a standard producer-consumer might 
like:

while (1) {

RF_DECLARE_EXTERN_MUTEX(rf_new_wrkr_mutex)

RF_DECLARE_EXTERN_COND(rf_new_wrkr_cond)

RF_LOCK_MUTEX(rf_new_wrkr_mutex)

while (rf_new_wrkr_queue == NULL) {

RF_WAIT_COND(rf_new_wrkr_cond, rf_new_wrkr_mutex);

if (rf_new_wrkr_shutdown) {

/* something wants us to quit */

RF_UNLOCK_MUTEX(rf_new_wrkr_mutex);

return;

}

}

/* queue now locked and unempty, dequeue something */

RF_UNLOCK_MUTEX(rf_new_wrkr_mutex)

/* queue now unlocked, dispatch op */

}

5.1.6.4 Creating threads
The macroRF_CREATE_THREAD is used to create threads. This macro evaluates to
return code of typeint , with 0 indicating success, and nonzero indicating that an er
occurred (and the thread could not be created). For example:

static void showmyname_thread(arg)

RF_ThreadArg_t arg;
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char *name = (char *)arg;

printf(“My name is \”%s\”\n”, name);

RF_EXIT_THREAD(0);

}

void run_name_threads()

{

RF_ThreadArg_t a;

RF_Thread_t th;

char name[100];

int i, rc;

for(i=0;i<10;i++) {

a = (RF_ThreadArg_t)name;

rc = RF_CREATE_THREAD(th, showmyname_thread, a);

if (rc) {

printf(“ERROR: could not create thread %d\n”, i);

}

}

}

The above example also uses the macroRF_EXIT_THREAD, which a thread calls when
it wishes to cease executing. This macro takes as an argument an integer exit stat

5.1.6.5 Managing threads
One problem with the code in the above example is that the loop which creates the
threads does not know when the threads have been created or when they exit. In m
cases, threads will be created for the purpose of dispatching various events. In the
cases, the creator of the thread will want to know when the thread has begun exec
and is ready to accept events. Likewise, during a cleanup phase, end-of-day routine
want to know when a thread has received notification of system teardown, so reso
which the thread might otherwise check or use in its normal operation (for instance
work queues, mutex and condition variables, et cetera) can be deallocated. To add
this problem, RAIDframe provides “thread group” management, which can be use
determine when one or a group of threads have been created and are ready to ex
events, and when they are no longer executing.

A thread group is of typeRF_ThreadGroup_t . This must be initialized one of two
ways. One is by callingrf_init_threadgroup() , which takes as its sole argu-
ment a pointer to anRF_ThreadGroup_t  to initialize. The other is to call
rf_init_managed_threadgroup() , which takes as its first argument an
RF_ShutdownList_t**  and anRF_ThreadGroup_t*  as its second argument.
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In the case of the former, the thread group must be deallocated when it is no longe
needed by callingrf_destroy_threadgroup()  with a pointer to the thread group
as its sole argument (in the case of the latter, the deallocation action is queued on
shutdown list).

Several macros, described in the table below, are key to thread group operation:

TABLE  22 Thread Group Operations

Rewritten to use a thread group, the previous example might look like:

static RF_ThreadGroup_t group;

int threads_should_run = 0;

static void showmyname_thread(arg)

RF_ThreadArg_t arg;

{

char *name = (char *)arg;

printf(“My name is \”%s\”\n”, name);

/* other local initialization */

RF_THREADGROUP_RUNNING(&group);

while(threads_should_run && (...)) {

/* dispatch loop */

}

RF_THREADGROUP_DONE(&group);

RF_EXIT_THREAD(0);

}

void run_name_threads()

Macro name Caller When called

RF_THREADGROUP_STARTED Creator After successfully
creating a member thread

RF_THREADGROUP_RUNNING Member
thread

Once running

RF_THREADGROUP_DONE Member
thread

When ready to exit

RF_THREADGROUP_WAIT_START Creator Waiting for member
threads to successfully
begin running

RF_THREADGROUP_WAIT_STOP Creator Waiting for member
threads to stop running
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RF_ThreadArg_t a;

RF_Thread_t th;

char name[100];

int i, rc;

rc = rf_init_threadgroup(&group);

if (rc) {

printf(“ERROR: cannot create thread group\n”);

return;

}

threads_should_run = 1;

for(i=0;i<10;i++) {

a = (RF_ThreadArg_t)name;

rc = RF_CREATE_THREAD(th, showmyname_thread, a);

if (rc) {

printf(“ERROR: could not create thread %d\n”, i);

}

else {

RF_THREADGROUP_STARTED(&group);

}

}

RF_THREADGROUP_WAIT_START(&group);

printf(“All threads running\n”);

/* potentially do something here */

threads_should_run = 0;

RF_THREADGROUP_WAIT_STOP(&group);

printf(“All threads done\n”);

rc = rf_destroy_threadgroup(&group);

if (rc) {

printf(“WARNING: error destroying thread group\n”);

}

}

If RF_THREADGROUP_WAIT_STOP is called on a thread group before
RF_THREADGROUP_WAIT_START, the results may not be what is desired.
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5.1.6.6 Threads in the simulator
The simulator does not support threads. In this environment, all mutex and conditi
operations become no-ops, and thread creation is disallowed. Architectures and mo
which require a separate stream of execution should instead maintain timed event
queues when compiled for simulation.

5.1.7 Creating New Debug Options

Debug options are of typelong . To add a debug option, add an entry of the form:

RF_DBG_OPTION(<Name>,<Val>)

to rf_optnames.h  where the<Name> is the name of your debugging variable and
<Val>  is the (long) value that it should default to. To use your debug variable, put 
line #include “rf_options.h”  at the top ofrf_optnames.h  and reference
the variable asrf_<Name> . For example, say we want to add a debug variable nam
newDebugVar , with a default value of zero. The following line would be added to
rf_optnames.h :

RF_DBG_OPTION(newDebugVar,0) /* our new entry */

Note that it is important to preserve the lack of whitespace between the parenthes
when adding new entries to rf_optnames.h. Code which uses this variable might lo
like:

if (rf_newDebugVar) {

printf(“foo is now %d\n”, foo);

if (rf_newDebugVar > 1) {

/* print detailed info */

printf(“bar is now %d, baz is %lu\n”, bar,

(u_long)baz));

}

}

5.1.8 Timing

RAIDframe provides a platform- and environment-independent timing mechanism
which can be used both for microbenchmarking individual codepaths, and for collec
statistics about how time is being spent in the system overall. This generic timing m
anism is used, among other ways, to generate the elements of RAIDframe trace re
(seeBuilt-in Tracing of RAIDframe Performance , below).

A timer is of typeRF_Etimer_t , which is defined in a platform-dependent manner 
rf_etimer.h . Timers require no special initialization to be used, and are fully co
able. The macroRF_ETIMER_START takes as its only argument the timer to start.
Likewise,RF_ETIMER_STOP also takes a timer as its sole argument. To find out ho
long a timer has been running, the difference between the start time and the stop t
must be computed. Because this computation time might affect other timing results
invoked separately with the macroRF_ETIMER_EVAL, which computes the time
elapsed betweenRF_ETIMER_START andRF_ETIMER_STOP for that timer. To
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access this result, the macroRF_ETIMER_VAL_US takes as its argument a timer, and
returns the number of microseconds thatRF_ETIMER_EVAL computed as the elapsed
time.RF_ETIMER_VAL_MS likewise returns the number of elapsed milliseconds.

This example demonstrates how timers can be used to compute the amount of tim
elapses between different points in a codepath. It takes advantage of the copyabil
timers to snapshot a running timer at different points to obtain intermediate timing
results. Evaluation of elapsed time is deferred until all events being timed have com
pleted, to avoid timing the computation of elapsed time.

RF_Etimer_t timer, t1, t2;

RF_ETIMER_START(timer);

/* do some computation (A) here */

t1 = timer;

RF_ETIMER_STOP(t1);

/* do some computation (B) here */

t2 = timer;

RF_ETIMER_STOP(t2);

/* perform some set of operations (C) here */

RF_ETIMER_STOP(timer);

RF_ETIMER_EVAL(timer);

RF_ETIMER_EVAL(t1);

RF_ETIMER_EVAL(t2);

printf(“Operation A took %lu microseconds\n”,

(unsigned long)RF_ETIMER_VAL_US(t1));

printf(“%lu ms elapsed before operation C started\n”,

(unsigned long)RF_ETIMER_VAL_MS(t2));

printf(“Together, A, B, and C took %d:%06d\n”,

(int)RF_ETIMER_VAL_US(timer)/1000000,

(int)RF_ETIMER_VAL_US(timer)%1000000);

5.1.9 Built-in Tracing of RAIDframe Performance

RAIDframe has several predefined codepaths that it will evaluate once the tracing
option is turned on in theDebug section of the RAIDframe configuration file. To turn on
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tracing, setaccessTraceBufSize  to a value greater than 0. Table 23  shows the
source files used in timing and tracing and what their functions are.

To add a trace record to the trace file, you must callrf_LogTracRec(). The tracing
module accumulates records until it is shut down, or its tracing buffers fill (it uses t
number of buffers specified byaccessTraceBufSize ). At this time, the accumu-
lated buffers are flushed into thetrace.dat  file. rf_LogTraceRec()  takes two
arguments. The first is a pointer to anRF_Raid_t , which is the array for which an
event has occurred. The second is a pointer to the trace record itself. Trace records
typeRF_AccTraceEntry_t , which is defined inrf_acctrace.h .

To readtrace.dat , userf_tracestats . The command line argument is in th
form:

rf_tracestats [-v] [-p] trace_dat

where-v  is verbose mode and-p  prints formatted trace records on-screen (without
arguments,rf_tracestats  displays only summary information for an entire trace
file).

5.2 Installing a New RAID Architecture

A central switch table in the modulerf_layout.c  specifies the routines which each
array architecture relies on for functions such as graph selection, mapping, and re
struction. The first step in adding a new architecture is to create a new entry in this 
calledmapsw in the code.

This is themapsw entry  for RAID level 5. Note that portions of the table appear
within theRF_NK2 and RF_NU macros. These macros are used inmapsw entries to
remove unnecessary parts of the table in certain environments. (For instance, the 
nel portion of RAIDframe does not parse configuration files itself, but instead relies 
utility program (rf_setconfig  or rf_ctrl ) to do so. Likewise, this utility pro-
gram has no need to actually perform RAID operations such as sector-mapping.)

/* RAID level 5 */

{‘5’, “RAID Level 5”,

TABLE 23. Source Files for RAIDframe’s Timer and Trace Mechanism

Source File Function

rf_etimer.h Times codepaths

rf_readcc.s Platform-specific assistance for
rf_etimer.h

rf_acctrace.[ch] Gathers timer records efficiently

rf_tracestats.c Processes the records
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RF_NK2(rf_MakeLayoutSpecificNULL, NULL)

RF_NU(

rf_ConfigureRAID5,

rf_MapSectorRAID5, rf_MapParityRAID5, NULL,

rf_IdentifyStripeRAID5,

rf_RaidFiveDagSelect,

rf_MapSIDToPSIDRAID5,

rf_GetDefaultHeadSepLimitRAID5,

rf_GetDefaultNumFloatingReconBuffersRAID5,

NULL, NULL,

rf_SubmitReconBufferBasic,

rf_VerifyParityBasic,

1,

DefaultStates,

0)

},

5.2.1 parityConfig, configName

The first entry is of typeRF_ParityConfig_t . This is a single-character identifier
of the RAID architecture. Every entry in this table should have a unique value for it
RF_ParityConfig_t . This is the character identifier used in the RAIDframe confi
uration files to identify the RAID architecture. The second entry is of typechar* , and
is a string identifying the RAID architecture. For instance, “RAID Level 5” above.
There is no limit on the length of this string, but it should be reasonably short, and
contain newlines, tabs, or any special characters.

5.2.2 MakeLayoutSpecific, makeLayoutSpecificArg

The next two entries are for parsing layout-specific information from the user’s RA
frame configuration file. The first is a function returningint , which is used to parse the
relevant portion of the configuration file. The second,MakeLayoutSpecificArg , is
an extra argument to this function, to make it easier to use the same parsing funct
with different parameters for different RAID architectures.

The function has a declaration of the form:

int MakeLayoutSpecific(FILE *fp, RF_Config_t *cfgPtr,

void *arg);

The first argument is a regular file pointer, which has advanced to the beginning of
layout-specific section of the configuration file (note that this section may begin wi
one or more blank lines). The second argument is the configuration which is curre
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being parsed (RF_Config_t  is defined inrf_configure.h ). The final argument,
arg , is the aforementionedMakeLayoutSpecificArg .

TheMakeLayoutSpecific  function should perform all necessary parsing and co
putation, and allocate memory to store its results (as necessary). The number of b
allocated for this purpose should be stored incfgPtr->layoutSpecificSize ,
and a pointer to this memory should be stored incfgPtr->layoutSpecific . This
should be a single, contiguous block of memory that is fully copyable (that is, cont
no pointer to other regions of memory). This can later be retrieved by other layout-
cific functions.

Upon success, theMakeLayoutSpecific  operation should return0. Otherwise, it
should return a meaningful error value fromsys/errno.h .

5.2.3 Configure

TheConfigure  operation is called at start-of-day to initialize any layout- and arra
specific information, and to allocate any extra resources the RAID architecture ma
require. It has the form:

int Configure(RF_ShutdownList_t **shutdownListp,

RF_Raid_t *raidPtr, RF_Config_t *cfgPtr);

The shutdown list is provided so that any necessary shutdown and cleanup activiti
may be registered at this configuration time. In addition,raidPtr->cleanupList
is of typeRF_ShutdownList_t* . The contents ofraidPtr->cleanupList  are
deallocated after the array is quiesced and shut down. The array which is being co
ured israidPtr , and the user’s configuration file is described fully bycfgPtr .

On success, theConfigure  routine should return0. On failure, it should return a
descriptive, nonzero error code. Additionally, all memory which theConfigure
routine allocated should either be deallocated or enqueued on
raidPtr->cleanupList . Likewise, any necessary cleanup activities should be
performed immediately before returning a failure, or enqueued onshutdownList .

TheConfigure  routine may use the field
raidPtr->Layout.layoutSpecificInfo , which is of typevoid* , to store
any array-specific information which it desires. It should also initialize
raidPtr->totalSectors to the number of data sectors the array is capable o
storing (note that this does not include the number of sectors which have been allo
to redundancy data).  Additionally, there are several fields in theraidPtr->Layout
structure (of typeRF_RaidLayout_t , defined inrf_layout.h ) which this routine
is required to initialize. They are as follows:

TABLE  24 RF_RaidLayout_t fields to be filled in by Configure

Layout Field Contents

numStripe number of stripes in the array

dataSectorsPerStripe number of data sectors in each stripe
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5.2.4 MapSector, MapParity, MapQ

TheMapSector , MapParity , andMapQ routines provide basic array-layout infor-
mation. They are declared as:

void MapSector(RF_Raid_t *raidPtr,

RF_RaidAddr_t raidSector, RF_RowCol_t *row,

RF_RowCol_t *col, RF_SectorNum_t *diskSector,

int remap);

void MapParity(RF_Raid_t *raidPtr,

RF_RaidAddr_t raidSector, RF_RowCol_t *row,

RF_RowCol_t *col, RF_SectorNum_t *diskSector,

int remap);

void MapQ(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,

RF_RowCol_t *row, RF_RowCol_t *col,

RF_SectorNum_t *diskSector, int remap);

Each of these functions is called to determine the location of a single sector in the 
The array is indicated byraidPtr . The sector is indicated byraidSector , which is
the sector number of the array to be mapped. The function assigns*row  and*col  to
indicate which disk the sector resides on, and*diskSector  is the sector number on
that disk which the mapping has yielded.

TheMapSector  routine is used to map data sectors to physical disk sectors. All a
architectures must provide this routine. This should yield a unique mapping for eve
sector in the array.

TheMapParity  routine is likeMapSector , except that the resulting sector is not th
corresponding physical data sector, but rather the corresponding physical parity se
In most architectures, many data sectors will map to the same parity sector. In non
tolerant architectures, this routine may beNULL.

TheMapQ routine is similar toMapParity , except it is used to map an additional
redundancy unit. This is provided by dual-fault-tolerant architectures, such as Even
and Raid Level 6.

If the remap  argument has the valueRF_REMAP, the mapping should be to the spare
sector corresponding to the sector to which the mapping function would otherwise 

bytesPerStripeUnit number of bytes in each stripe unit

numDataCol number of data columns in each stripe

numParityCol number of parity columns in each stripe

Layout Field Contents
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5.2.5 IdentifyStripe

TheIdentifyStripe  routine is used to determine which physical disks contain s
tors that share a stripe with a particular sector. This routine has the declaration:

void IdentifyStripe(RF_Raid_t *raidPtr,

RF_RaidAddr_t addr, RF_RowCol_t **diskids,

RF_RowCol_t *outrow);

The first argument,raidPtr , is the array in which the mapping is to be performed.
The second argument,addr , is the sector in said array for whichIdentifyStripe
is to determine the disks of its fellow stripe members. This function should assign 
*diskids  an array of (raidPtr->Layout.numDataCol  +
raidPtr->Layout.numParityCol) RF_RowCol_t  elements. These are the
column numbers of the disks. The row of disks which the stripe occupies should b
assigned to*outrow .

When reading the extant RAIDframe code, one may note that some architectures 
ally generate an ordered list of disks in the stripe. This is not necessary; rather, thi
historic convention used to make debugging easier.

5.2.6 SelectionFunc

When an I/O request enters the system, it is passed through
rf_SelectAlgorithm()  in rf_aselect.c . This routine uses the layout-spe-
cific DAG selection routine to choose a DAG creation function for a particular acce
This routine,SelectionFunc , is declared as:

void SelectionFunc(RF_Raid_t *raidPtr, RF_IoType_t type,

RF_AccessStripeMap_t *asmap,

RF_VoidFuncPtr *createFunc);

This routine is used to determine what DAG creation function a particular access t
array indicated byraidPtr  should use.RF_IO_TYPE_READ and
RF_IO_TYPE_WRITE are the only legal values for thetype  argument, which indi-
cates the direction of the access. Theasmap argument (of type
RF_AccessStripeMap_t , found inrf_layout.h ) describes the access in its
entirety, including physical disk mappings for data and parity, ranges accessed, an
presence of disk failures which may affect the access. TheSelectionFunc  routine
should take these failures into account when determining the creation function to u
potentially determining that an access should be performed in degraded mode, rat
than fault-free. If a unit to be accessed has failed, but is already reconstructed, the
SelectionFunc  routine should also take this into account, and alter the physical
mappings inasmap to reflect the fact that the data has been reconstructed. This is 
cially important when the access is a write, because without this remapping, a rec
structed data or parity unit will not be updated to reflect the new contents of the str

A pointer to the DAG creation function should be assigned to*createFunc . A later
section details DAG creation operations, and how this function should behave. Ass
ing a value ofNULL to *createFunc  indicates that a DAG cannot be created for th
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access.rf_SelectAlgorithm()  will initially attempt to create one graph for each
parity stripe in the access’s codeword. If this creation is unsuccessful,
rf_SelectAlgorithm()  will then try to create a set of graphs for each stripe un
within that parity stripe. If graphs cannot be generated for each stripe unit,
rf_SelectAlgorithm()  will attempt to create a DAG for each sector in each
stripe unit in the codeword. Finally, if this fails,rf_SelectAlgorithm()  declares
failure, and the access is failed.

5.2.7 MapSIDToPSID

TheMapSIDToPSID  routine is used by architectures for which the relationship
between data stripes and parity stripes is not an equivalence. For instance, parity d
tering allows multiple stripes to be packed into a single parity stripe, to increase the
of the reconstruction unit without affecting the size of the stripe unit. This routine h
the declaration:

void MapSIDToPSID(RF_RaidLayout_t *layoutPtr,

RF_StripeNum_t stripeID, RF_StripeNum_t *psID,

RF_ReconUnitNum_t *which_ru);

The layout of the array in which this mapping is to be performed is described by
layoutPtr . The stripe number of the stripe to be mapped isstripeID , and the
resulting parity stripe is stored byMapSIDToPSID  in *psID . This routine also stores
the reconstruction unit of the stripe in*which_ru . The identity mapping is most
common here; that is:

*psID = stripeID;

*which_ru = 0;

This is performed automatically if theMapSIDToPSID  routine for an architecture is
NULL, or if the number of stripe units per parity unit for a layout is1.

5.2.8 GetDefaultHeadSepLimit

The disk-directed reconstruction code has the ability to keep disk arms synchroniz
with one another when sweeping surviving columns. This is controlled by the head
aration limit for the array, which is assigned at start-of-day by calling theGetDe-
faultHeadSepLimit  routine, which is declared as:

RF_HeadSepLimit_t GetDefaultHeadSepLimit(

RF_Raid_t *raidPtr);

This function takes as its sole argument the array in question, and returns how man
tors ahead of the slowest disk the fastest disk is allowed to be. That is to say, it ret
the maximal difference in sector number between the lowest-numbered-sector curr
being read by the disk-directed reconstruction code, and the highest-numbered-se
currently being read by the disk-directed reconstruction code (neglecting stripes b
read for forced reconstruction). If this routine isNULL, a value of(-1)  is assumed.
(-1)  indicates that this separation is unlimited. Note that(-1)  is the only legal value
less than1.
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5.2.9 GetDefaultNumFloatingReconBuffers

The disk-directed reconstruction module maintains a pool of “floating” reconstructi
buffers, which are not assigned to any particular disk, but are instead used to store
results of additional I/Os to disks which would otherwise be idle. An architecture m
specify a minimum number of these buffers to keep for each array by providing a
GetDefaultNumFloatingReconBuffers  routine, which has the following
form:

int GetDefaultNumFloatingReconBuffers(

RF_Raid_t *raidPtr);

This routine is called at start-of-day on the array, and should return the minimum n
ber of floating reconstruction buffers to maintain for the array.

5.2.10 GetNumSparePUs

Architectures which support distributed sparing tell the system how many spare re
struction units there are on each disk with theGetNumSparePUs  routine, which has
the form:

RF_ReconUnitCount_t GetNumSparePUs(RF_Raid_t *raidPtr);

Given an arrayraidPtr , this routine returns the number of spare reconstruction un
there are on each disk.

5.2.11 InstallSpareTable

Distributed-sparing architectures which have dynamic sparing mappings may need
compute a new sparing table when reconstruction begins for a disk. To do so, thes
architectures provide anInstallSpareTable  routine with the following declara-
tion type:

int InstallSpareTable(RF_Raid_t *raidPtr,

RF_RowCol_t frow, RF_RowCol_t fcol);

The arguments indicate the array to determine the mapping for (raidPtr ), and the row
and column (frow  andfcol , respectively) of the failed disk to be reconstructed to
spare space. On success, this routine returns0. On failure, it returns a descriptive non-
zero error code.

5.2.12 SubmitReconBuffer

When the disk-directed reconstruction code finishes reading a buffer, it must eithe
it to compute the contents of a failed unit, or save it until it has enough other informa
from the stripe from which the buffer originated to do so. When a read of a buffer fro
surviving disk completes, an architecture’sSubmitReconBuffer  routine is called.
This routine is declared as:

int SubmitReconBuffer(RF_ReconBuffer_t *rbuf,

int keep_it, int use_committed);
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The buffer which has just been read isrbuf  (the array from which it was read is
rbuf->raidPtr ). If keep_it is nonzero, theSubmitReconBuffer  routine may
hold the buffer, even if it cannot immediately use its contents. Ifkeep_it  is 0, the
SubmitReconBuffer  routine must either immediately use or copy the contents o
rbuf . If use_committed  is nonzero, this routine must consume a buffer off the
committedRbufs  list of the row’s reconstruction control unit, even if such a buffer
not needed (in the case where the buffer is not needed, it may immediately be rele
with rf_ReleaseFloatingReconBuffer() ). In turn, the
SubmitReconBuffer  routine should should callrf_CheckForFullRbuf()
when a targetRF_ReconBuffer_t  contains the reconstructed data for the failed un
in the stripe.

If the SubmitReconBuffer  routine for an architecture isNULL, the architecture
cannot reconstruct failed units.

5.2.13 VerifyParity

RAIDframe has a built-in parity verification and correction mechanism (which is als
used to format arrays with correct parity, and can be used in various tests for debu
purposes to determine that parity is correct for an access). This relies on theVerify-
Parity  routine which an architecture must provide to check and correct (if reques
the redundancy information for a stripe. This routine has the form:

int VerifyParity(RF_Raid_t *raidPtr,

RF_RaidAddr_t raidAddr, RF_PhysDiskAddr_t *parityPDA,

int correct_it, RF_RaidAccessFlags_t flags);

The array in which redundancy information is to be verified israidPtr . The stripe for
which this information is to be checked is the one containing sector number
raidAddr . To improve performance, and ease the coding ofVerifyParity , the
parityPDA  argument provides the already-complete mapping of the redundancy
information to physical addresses for this stripe. Ifcorrect_it  is nonzero, and the
redundancy information is not correct, new redundancy information should be
computed and written for this stripe. Finally, any RAID accesses that must be perfo
should use theflags  given as the last parameter to theVerifyParity  routine.

When reading existing data in the stripe, or writing new redundancy information, th
VerifyParity  routine should create trivial DAGs which do so. The function
rf_MakeSimpleDAG()  in rf_parityscan.c  assists in this task.

TheVerifyParity  routine returns a status value indicating the current correctnes
the parity before and after execution. The following values, defined in
rf_parityscan.h , are the legal returns for this routine:
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TABLE  25 Return Values for the VerifyParity Operation

5.2.14 faultsTolerated

ThefaultsTolerated  field of the mapsw entry for a RAID architecture indicates
the minimum number of faults that an array can tolerate without data loss. For exam
Raid Level 4 can tolerate exactly one disk failure, so itsfaultsTolerated  is 1.
Raid Level 0 cannot tolerate any failures, so itsfaultsTolerated  is 0. Raid Level 1
(mirroring) can potentially survive several faults; however, if both members of a mi
pair fail, data is lost; thus, itsfaultsTolerated  is 1, because that is the minimum
number of failures which it can guarantee surviving.

5.2.15 states

Thestates  field lists the order in which an access to this array architecture passe
through the access state machine. This field is an array of elements of type
RF_AccessState_t . The last element in this array must berf_LastState ,
which indicates that the access is complete. Most architectures will wish to use the 
DefaultStates  in this field, which is a standard ordering of states.

5.2.16 flags

The final field of amapsw entry is flags, which are a set of flags ORd together to ind
cate that the architecture has certain standard properties. Some architectures will w
provide a0 in this field (indicating that none of these flags apply). Legal values inclu

Value Meaning

RF_PARITY_OKAY redundancy information is correct

RF_PARITY_CORRECTED redundancy information was incorrect,
butcorrect_it  was nonzero, and it
is now correct

RF_PARITY_BAD redundancy information is not correct,
andcorrect_it  was0

RF_PARITY_COULD_NOT_CORRECT redundancy information is not correct,
correct_it  was nonzero, and
correct redundancy information could
not be computed or could not be written

RF_PARITY_COULD_NOT_VERIFY redundancy information could not be
verified, either current data or
redundancy could not be read, or
correct redundancy information could
not be computed
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TABLE  26 RF_LayoutSW_t Flag Values

5.3 Implementing New RAID Operations

5.3.1 DAG Creation

As discussed in Section 5.2.6 on page 106, RAIDframe graph-creation functions m
at least be able to create graphs for accessing single blocks at a time for accesses
successfully generated. RAIDframe will currrently never attempt to create graphs fo
access which spans more than a single parity stripe (such accesses are broken up
sets of single-parity-stripe accesses, which are executed concurrently).

The appropriate graph creation routine for an access or portion of an access is de
mined by an architecture'sSelectionFunc . TheSelectionFunc  provides a
void  function pointer. This function should have the form:

void DagCreationFunc(RF_Raid_t *raidPtr,

RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h,

void *bp, RF_RaidAccessFlags_t flags,

RF_AllocListElem_t *allocList);

The array and parameterization of the access are described byraidPtr  andasmap,
respectively. The DAG creation function should fill in the empty DAG headerdag_h .
At the time the DAG creation function is called,dag_h  is initialized as an enabled
DAG with no nodes. In the RAIDframe kernel environment,bp  is astruct buf*
which represents the access’s target buffer (most DAG creation functions will not n
this information at all. Some may choose to operate differently for kernel-internal o
user accesses, so this information is available). Outside the kernel,bp  is generally
ignored. Theflags  variable is a bitwise OR of values fromrf_dagflags.h . Many
of these flags are not applicable to the DAG creation function, but again, they are p
vided for those few cases where the DAG creation function wishes to do somethin
ferent as a result. Finally, a per-access memory allocation list,allocList , is provided
for any temporary storage which may need to be allocated. This not only includes 
buffers for computing redundancy information before storing it, but also includes th
storage required to hold the actual nodes of the DAG themselves.

5.3.2 Creating New Primitive Operations

The most important rule to follow when creating primitive operations is that they m
be nonblocking. Primitives such asdisk read  employ call-back functions—the disk
read is scheduled, the primitive returns, and the call-back routine is later called whe

Value Meaning

RF_DISTRIBUTE_SPARE architecture supports distributed sparing

RF_BD_DECLUSTERED this is a declustered architecture which requires
externally generated block-design tables
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disk read actually completes. If a primitive is allowed to block, RAIDframe will not b
able to properly schedule its workload (and may deadlock).

In its current release, RAIDframe provides a variety of primitive operations which m
be reused by architectures that you later implement.

5.4 Adding a New Disk-Queueing Policy

RAIDframe supports multiple queueing disciplines for pending disk I/Os. The follow
ing section explains how to add a new queueing policy.

A queueing policy must maintain a set of pending I/Os for a single disk. Although a
array may have many disks, a queueing policy is only aware of disks on an individ
basis. Therefore, it only needs to support a limited number of simple operations:create,
enqueue, dequeue, peek, andpromote.

To add a queueing policy, you must register it with the disk queue manager. This is
by modifying thediskqueuesw  structure inrf_diskqueue.c . Entries in this
structure are of typeRF_DiskQueueSW_t  (defined inrf_diskqueue.h ), and
look like:

{"fifo", /* FIFO */

rf_FifoCreate,

rf_FifoEnqueue,

rf_FifoDequeue,

rf_FifoPeek,

rf_FifoPromote},

The first entry is thequeueType  (RF_DiskQueueType_t ) and is a string which is
used to identify the queueing discipline. RAIDframe configuration files will use this
string to request this queueing policy. The remainder of the entries are function en
points, described in the sections below. You should add new policies to the end of 
diskqueuesw  array. The first entry in this array (FIFO ) is the default policy (which is
used when the configuration parser cannot recognize the requested queueing poli
specified in the RAIDframe configuration file).

5.4.1 Create Operation

Your creation function should have a declaration of the form:

void *rf_PolicynameCreate(RF_SectorCount_t
sectors_per_disk, RF_AllocListElem_t *cl_list,
RF_ShutdownList_t **listp)

This function is called to create and initialize a disk queue. It returns a generic (void
* ) pointer, which will be used later to identify the individual queue to your queueing
module. (One disk queue will be created for each disk). The size of each disk in se
is passed by the value in sectors_per_disk . An allocation list is passed as
cl_list . Any memory which your queueing policy allocates should be registered
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with this allocation list by usingRF_CallocAndAdd  or RF_MallocAndAdd  to
allocate the memory. If any special operations need to be performed to shut down
queue, these should be resgistered with the shutdown listlistp .

5.4.2 Enqueue Operation

Your enqueue function should have a declaration of the form:

void rf_PolicynameEnqueue(void *qptr, RF_DiskQueueData_t
*req, int priority)

This function is called to add a request to the disk’s queue. The queue is uniquely 
tified byqptr , which is the returned value from the queue creation function. The
request is pointed to byreq  and is of typeRF_DiskQueueData_t  (defined in
rf_diskqueue.h ). The priority is either of typeRF_IO_NORMAL_PRIORITY or
RF_IO_LOW_PRIORITY. When dequeueing, you should always give preference to
dequeueing I/Os ofNORMAL priority over I/Os ofLOW priority. The
RF_DiskQueueData_t  structure contains two pointers,next andprev, both of type
RF_DiskQueueData_t * , which may be used by this queueing code to maintain
lists of pending I/Os.

The Enqueue, Dequeue, Peek, and Promote operations need not be protected int
with locks; the discipline-independent disk-queueing code inrf_diskqueue.c  will
do this automatically.

5.4.3 Dequeue Operation

Your dequeue function should have a declaration of the form:

RF_DiskQueueData_t *rf_PolicynameDequeue(void *qptr)

This function is called to remove a request from the disk’s queue. The queue is uni
identified byqptr , which is the returned value from the queue creation function. If 
I/O of priority RF_IO_NORMAL_PRIORITY is in the queue, it should be returned. I
there is more than one such I/O, the queueing module should select one and return
instance,FIFO  queueing will return the first such I/O to be enqueued). If no I/O of
NORMAL priority is awaiting dispatch in this queue, an I/O of priority
RF_IO_LOW_PRIORITY may be returned. If there are no I/Os of any priority in the
queue, this operation should returnNULL. Before returning a valid pending I/O, it
should be removed from the queue.

5.4.4 Peek Operation

Your peek function should have a declaration of the form:

RF_DiskQueueData_t *rf_PolicynamePeek(void *qptr)

This function should behave identically to the dequeue function, except that it shou
not remove the I/O from the list of pending I/Os for this disk. Additionally, if the Pee
operation is called, and there are no subsequent Enqueue, Dequeue or Promote o
tions, another Peek or Dequeue operation should return the same I/O (that is, a qu
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should be deterministic for its contents at any given time, and its choice of which I/
execute next should be affected only by a change of its contents).

5.4.5 Promote Operation

Your promote function should have a declaration of the form:

int rf_PolicynamePromote(void *qptr, RF_StripeNum_t par-
ityStripeID, RF_ReconUnitNum_t which_ru)

This operation should search the queue for entries for which theparityStripeID
andwhich_ru  fields of theRF_DiskQueueData_t  structure match those which
are passed as arguments to this function, and which have a priority field valued at
RF_IO_LOW_PRIORITY. Each such I/O should be re-marked as
having priority RF_IO_NORMAL_PRIORITY , and any necessary rearrange-
ments of the queueing policy’s data should be performed at this time. This function
should return the number of such I/Os it has found and promoted toNORMAL priority or
zero if none such were found.

5.5 Porting RAIDframe to Other Systems

Currently all three versions of RAIDframe—stand-alone user application, event-dr
simulator, and in-kernel device driver—run on DEC Alphas running pre-4.0 version
the Digital UNIX operating system. Additionally, the simulator runs on IBM RS/600
running AIX. This section is intended as an aid in porting RAIDframe to new platfor

5.5.1 Basic Types

The first step is to define a set of basic types inrf_types.h . You must provide vari-
ous sizes of signed and unsigned integers for your system. Table 27  lists the type
must define, and what they must be defined to.

TABLE  27 Basic RAIDframe integer types

RAIDframe type Meaning

RF_int8 signed 8-bit integer

RF_uint8 unsigned 8-bit integer

RF_int16 signed 16-bit integer

RF_uint16 unsigned 16-bit integer

RF_int32 signed 32-bit integer

RF_uint32 unsigned 32-bit integer

RF_int64 signed 64-bit integer

RF_uint64 unsigned 64-bit integer
114 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96



Porting RAIDframe to Other Systems

s

ovide
t-
appro-

lator

imple-
pli-
5.5.2 Byte Ordering

If the target platform is big-endian, the macroRF_IS_BIG_ENDIAN  must be set to1
in rf_types.h . If it is not,RF_IS_BIG_ENDIAN  must be set to0.

5.5.3 Word Size

The filerf_dagfuncs.c  contains several optimized XOR routines. These routine
require that the macroLONGSHIFT be defined in this file. LONGSHIFT should be
defined to thelog 2(sizeof(long))  for your system (for example, on a system
with 64-bit long s, this would be3, on a system with 32-bit longs, this would be2).

5.5.4 Timing

Section 5.1.8 describes various timing macros defined inrf_etimer.h  which pro-
vide precision timing. These are architecture-dependent. Ideally, these functions pr
microsecond-accurate timing with little or no overhead. When porting to a new pla
form, the nature of the precision/overhead tradeoff must be characterized, and an 
priate implementation provided. Some architectures need assembly-language
assistance; this should be added torf_readcc.s .

5.5.5 SCSI Operations

SCSI operations are isolated within rf_camlayer.c. Ports of more than just the simu
should provide code in this file for such operations as SCSI Read Capacity.

5.5.6 Threads

Section 5.1.6 details the thread operations defined inrf_threadstuff.c  and
rf_threadstuff.h . Ports which provide user-level-driver or kernel functionality
must provide appropriate platform-dependent thread operations here. A Pthreads 
mentation is already provided for the user-level driver; architectures for which a com
ant Pthreads implementation is available should be able to re-use this.
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Appendix: Graph Library
The graphs necessary for implementing the RAID architectures listed in Table 6 in
Chapter 3 are available for reuse in the graph library and they are shown in the follo
section. We have categorized the graphs implemented in RAIDframe by the particu
architecture for which they were designed; in some cases, graphs are reused amo
eral different RAID levels.

RAID Level 0

As we already explained in Chapter 1, RAID level 0 arrays do not encode data; t
fore, a RAID level 0 array is not fault-tolerant. Because of this, only nonredundant o
ations are available for use. Figure 20 illustrates the structure of nonredundant rea
write operations. The NOP operations guarantee that each DAG has single sour
sink nodes. Each graph is capable of supporting one or more simultaneous pri
operations, allowing the graph to scale with the size of the user request.
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FIGURE  20 Nonredundant Graphs

RAID Level 1, Chained Declustering, Interleaved
Declustering

RAID level 1 arrays are fault tolerant and employ copy-based redundancy to su
single disk faults without loss of service. This means that operations are defined t
vice both fault-free and degraded read and write requests. Table 28 specifies 
operations are used to service a request given the state of the disks.

In addition to the nonredundant graphs described in Figure 20, RAID level 1 a
require an additional write operation, themirrored write, which is responsible for main-
taining copy-based redundancy in a fault-free array. This operation, illustrate
Figure 21, contains twice the number of write operations as a nonredundant write
ation because a copy of each symbol is written to both a primary and a secondary

TABLE 28. RAID Level 1 Graph Selection

Request Disk Faults Graph

read none, single disk nonredundant read

write none mirrored write

write single disk nonredundant write

Commit

Nonredundant WriteNonredundant Read

RdRd ••• WrWr •••

NOP Commit

NOP
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FIGURE  21 Mirrored-Write Graph

RAID Level 4, RAID Level 5, Parity Declustering

RAID levels 4 and 5 tolerate disk faults through the use of parity encoding. As expe
the operations used to satisfy read and write requests are largely the same; ho
because it is possible to write only a fraction of a codeword, additional write opera
are required. Namely, thesmall write operation (Figure 22) which is used to write da
to less than half of a codeword and thereconstruct write operation (Figure 23 on
page 121) which is used to write data to more than half, but less than a full, code
Table 29 breaks down graph selection for RAID level 4 and 5 arrays. Because thes
arrays differ only in mapping, the same table applies to both architectures.

TABLE 29. RAID Levels 4 and 5 Graph Slection

Request
Disk
Faults Graph

read none nonredundant read

read data disk degraded read

read parity disk nonredundant write

write < 50% of codeword none small write

write > 50% and < 100% none reconstruct write

write entire codeword none large write

write data disk reconstruct write

write parity disk nonredundant write

Commit

NOP

WrWr ••• WrWr •••

RAID level 1 arrays use copy-based encoding to survive disk faults and require t
data must be written to two independent disks. In this graph, the write operations
the left represent writes to a primary disk(s) and write operations on the right rep
sent writes of data to secondary disk(s). TheNOP source node of the nonredundant
write graph is replaced by aCommit node.
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The small write operation, illustrated in Figure 22 on page 120, writes both data
parity to disk. Parity is computed as:

(EQ 1)

The cluster of read operations on the left side of the graph represent the read of o
and the single read operation on the right represents the read of old parity. Once
has been computed, the new data and parity symbols are written to the array.

FIGURE  22 Small-Write Graph

In the reconstruct write operation, illustrated in Figure 23, parity is computed from
symbols in the codeword. TheRd operations collect data symbols which are not bei
overwritten. Once all data symbols are collected, parity is computed and the new
and parity symbols are written to disk

Paritynew Parityold Dataold Datanew⊕ ⊕=

NOP

Rd

Wr Wr

NOP

RdRd

XOR

Wr •••

•••

Commit
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RAID Level 6

In addition to parity, RAID level 6 arrays employ a second check symbol to allow t
to survive two simultaneous disk failures. We refer to this second symbol as “Q.”
graphs used by this architecture are summarized in Table 30.

TABLE 30. RAID Level 6 Graph Selection

Request Disk Faults Graph

read none nonredundant read

read single data disk degraded read

read parity disk nonredundant read

read Q disk nonredundant read

read two data disks PQ double-degraded read

read data + parity disks PQ degraded-DP read

read data + Q disks degraded read

TheRd operations read the data symbols which are not being overwritten. The l
mostWr operations overwrite data symbols and theWr operation on the right over-
writes parity.

NOP

Rd

Wr Wr

NOP

Rd

XOR

Wr

•••

Commit

•••
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Read operations to fault-free or single-fault arrays are handled in much the same
ner as RAID level 5. When an attempt is made to read a codeword with two missing
symbols, aPQ double-degraded-read operation, illustrated in Figure 24, is used.

read parity + Q disks nonredundant read

write < 50% of codeword none PQ small write

write < 50% of codeword parity PQ small write, P omitted

write < 50% of codeword Q small write

write > 50% and < 100% none PQ reconstruct write

write > 50% and < 100% parity PQ reconstruct, P omitted

write > 50% and < 100% Q reconstruct write

write 100% none PQ large write

write 100% parity PQ large write, P omitted

write 100% Q large write

write one data disk PQ reconstruct write

write two data disks PQ double-degraded write

write data + parity disks PQ reconstruct, P omitted

write data + Q disks reconstruct write

write parity + Q disks nonredundant write

TABLE 30. RAID Level 6 Graph Selection

Request Disk Faults Graph
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FIGURE  24 PQ Double-Degraded-Read Graph

Reading data from a codeword in which both a data symbol and parity are mi
requires the use of the “Q” symbol to reconstruct the missing data. The operation
this, thePQ degraded-DP-read operations is illustrated in Figure 25.

FIGURE  25 PQ Degraded-DP-Read Graph

Similar to RAID level 5 arrays, writing less than half of a codeword to a RAID leve
array is best done using a read-modify-write algorithm. ThePQ small write operation,

This operation is used when two data units are missing from the codeword. The l
mostRd operation reads the old value of parity and the right-most operation reads 
old value ofQ. The centerRd operations read all surviving data in the codeword. TheQ
operation regenerates a single missing data symbol and theXOR node regenerates the
other missing symbol.

NOP

RdRd

Q

XOR

Rd Rd

Commit

•••

NOP

Rd

Commit

RdRd

Q

•••
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illustrated in Figure 26, writes new data symbols and computes new values of parit
“Q” using Equation 1 on page 120. If either the parity or Q disks fail, this same gra
used but the chains which would normally update the now-failed check symbo
omitted.

FIGURE  26 PQ Small-Write Graph

Writing over half, but less than an entire, codeword is best done by a reconstruct 
similar to the one used in RAID level 5. Illustrated in Figure 27, thePQ reconstruct-
write operation reads the data symbols not overwritten, meaning that the entire 
codeword is held in memory. Parity and Q are then computed and the new data, 
and Q are then written to disk. This operation is also used when data is being writ
an array in which a single data disk has failed and a fault-free disk is being written

This graph is similar to the small-write graph (Figure 22) but with an extra cha
added to update the “Q” disk. TheCommit node blocks all writes from initiating
until all new symbols (data, parity, and Q) have been computed.

NOP

Rd

Wr Wr

NOP

RdRd

Q

Wr

XOR

Rd

Wr

Commit

•••

•••
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If two data disks have failed and data is written to at least one, but not both, of the 
disks, thePQ double-degraded write operation, illustrated in Figure 28, is used. Th
graph employs an algorithm similar to the one used in the PQ degradedwrite ope
but must reconstruct the failed data which is not overwritten.

This graph is similar to the reconstruct-write graph (Figure 23) but with an extra cha
added to update the “Q” disk. In this example, assume thatD1 andD2 are to be written.
TheRd operations read old data (D0, D3 andD4). New values ofP andQ are then com-
puted and the writes ofD1, P, andQ are initiated.. TheCommit node blocks allWr
nodes from executing until all new symbols have been computed.

D0 D1 D2 D3 P QD4

•••

NOP

Rd

Wr Wr

NOP

Rd

Q

Wr

Commit

XOR

Wr •••
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FIGURE  28 PQ Double-Degraded-Write Graph

Finally, writing data to the entire codeword is simply performed using thePQ large-
write operation. Illustrated in Figure 29, the operation overwrites every symbol in
codeword.

Assume thatD1 andD2 are to be overwritten. BecauseD4 is missing, the PQ recon-
struct operation cannot be used. This operation completes the requests by re
structing D4 and then using the reconstruct-write algorithm. First all survivin
symbols are read. TheRd actions in the center read the read of data (e.g.,D0 D1 and
D3), theRd operations on the ends read oldP andQ. TheQ operation reconstructs
D4. At this point, the entire codeword is known and the computation and writing 
parity,Q and data can begin. TheCommit node was added to preventWr operations
from executing before theXOR andQ nodes have completed.

D0 D1 D2 D3 P QD4

NOP

Rd

Wr Wr

NOP

Rd

Q

Wr

XOR

Wr

Rd Rd

Q

XOR

Commit

•••

•••
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Instead of allowing new data to be written concurrently while the parity overwrit
record is computed, theCommit node blocks the writes of new data until theXOR and
Q nodes have executed completely.

NOP

Wr Wr

NOP

Q

Wr

XOR

Wr

Commit

•••
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