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Abstract

We present a novel taxonomy that classifies I/O data passing between applications and operating
system along three dimensions: buffer allocation scheme, guaranteed integrity, and optimization.
We contribute new optimizations — input-disabled pageout, transient output copy-on-write, and input
alignment — that are used in a novel buffering semantics, emulated copy. We implemented an 1/0
framework, Genie, that allows applications to select any semantics in the taxonomy. Using Genie for
end-to-end communication over an ATM network, we found that, compared to other semantics, only
copy had sharply inferior performance. All other semantics performed quite similarly, contradicting
the expectation that emulated copy, being application-allocated and strong-integrity (as is copy
semantics), should have considerably worse performance than those of move (system-allocated) or
share (weak-integrity) semantics. We analyzed end-to-end latencies in terms of the costs of primitive
data passing operations and modeled how those costs scale with CPU, memory, and network speeds.
The analysis suggests that current trends tend to intensify the observed performance clustering.
We conclude that I/O interfaces with copy semantics, such as that of Unix, can be transparently
converted to emulated copy and thus achieve performance approaching the best in the taxonomy.






1. Introduction

Most workstation operating systems continue to use I/O buffering schemes with copy semantics,
similar to that of Unix [14]. In such schemes, the system inputs or outputs data only through system
buffers. On an output call, the system copies data from application buffers to system buffers and,
conversely, on input completion, the system copies data from system buffers to application buffers.

The relative cost of the memory accesses necessary for such copying has increased dramatically
since the 1970’s, when Unix was introduced. Access times for DRAMs, the almost universal option
for workstation main memory, have been improving by roughly only 50% each decade [11]. In
contrast, CPU performance has been improving from 50 to 100% per year [11], and local area
network (LAN) point-to-point bandwidth, as shown in Table 1, has been increasing by roughly an
order of magnitude each decade. Today, LAN bandwidth sometimes actually ezceeds main memory
bandwidth.

Data passing between applications and operating system, therefore, has become a major bottle-
neck in workstation I/O performance [16]. Emerging I/O-intensive applications, such as multime-
dia, parallel file systems, and supercomputing on clusters of workstations, among others, demand
elimination of this bottleneck.

Several previous works have proposed improving data passing efficiency by making I/O opera-
tions have move [22] or share [5, 2, 9] semantics. Move semantics avoids data copying by using
typically much cheaper virtual memory (VM) manipulations. On output with move semantics, the
system removes the region containing the application data from the application address space. The
application buffer becomes the system output buffer, and its pages carry the data without copying,
being simply unmapped. Conversely, on input with move semantics, the system inputs data into a
system buffer and, after input completion, maps it to a freshly allocated region in the application
address space. The system buffer becomes the application input buffer and its pages carry the data,
again, without copying, being simply mapped. Although efficient, these manipulations also imply
that applications can neither access output data after output nor determine the location or layout
of input data. This restrictive application programming interface (API) may have prevented move
semantics from gaining widespread use.

Share semantics eliminates data copying by performing I/O in-place, that is, directly to or from
application buffers, without distinct intermediate system buffers. Application buffers are simply
promoted to double as system buffers during I/0. This promotion may require VM manipulations
such as wiring the buffer to guarantee that it remains in physical memory. Share semantics can use
the same API as copy semantics, but offers lower integrity guarantees on application I/0 buffers
and may require special hardware support.

We present a novel taxonomy of I/0O data passing semantics that extends previous works so as
to permit a clear characterization of associated software and hardware tradeoffs. The taxonomy
identifies a fourth basic semantics for I/0O data passing, weak move, and associates with each basic
semantics the possible optimizations.

This work contributes two new techniques for safety and correctness of in-place I/O: I/O-deferred
page deallocation and input-disabled copy-on-write. We also introduce four new optimizations:
input-disabled pageout, region hiding, transient output copy-on-write (TCOW), and input alignment.
Input-disabled pageout improves the performance of in-place I/O by making it unnecessary to wire



| LAN | Year introduced | Bandwidth (Mbps)

Token ring | 1972 1,4, 0r16 |

Ethernet 1976 3or 10 |
| FDDI 1987 100

ATM 71989 155, 622, or 2488
 HIPPI | 1992 800 or 1600

Table 1: Approximate year of introduction and point-to-point bandwidth of several popular LANs

the application buffer during I/O, in the traditional sense of removing its pages from lists where
the pageout daemon might find them. Region hiding avoids region allocation and removal costs in
the emulated move semantics. TCOW and input alignment eliminate data copying in an optimized
semantics, emulated copy, that offers the same API and integrity guarantees as those of copy
semantics and thus can, unlike other semantics in the taxonomy, replace copy semantics without
requiring any changes in existing applications.

We implemented a new I/O framework, Genie, that allows applications to select any semantics
in the taxonomy. Using Genie for communication between PCs and AlphaStations over an ATM
network at 155 Mbps, we found, rather surprisingly, that all semantics other than copy performed
quite similarly. Only copy semantics had sharply inferior performance.

We analyzed end-to-end latencies in terms of the costs of primitive data passing operations
required by each semantics and modeled how those costs scale with CPU, memory, and network
speeds. The analysis suggests that, if current trends are maintained, performance differences be-
tween semantics other than copy will further decrease, and the performance gap between copy and
the other semantics will widen.

The main conclusion of this work is that good I/O performance does not require radical redesign
of the I/O API Existing interfaces with copy semantics can be transparently converted to emulated
copy semantics and thus achieve performance approaching the best obtainable with any semantics
in the taxonomy.

The rest of this paper is organized as follows. Section 2 presents our taxonomy. Sections 3, 4,
and 5 describe techniques for in-place, emulated move, and emulated copy I/0. Section 6 describes
the implementation of each data passing semantics in terms of primitive data passing operations.
Section 7 shows our experimental results, and Section 8 analyzes them. Section 9 discusses related
work, and Section 10 presents our conclusions.

2. Taxonomy of data passing semantics

Data can be passed between applications and operating system according to different semantics. We
classify buffering semantics, as shown in Figure 1, in three dimensions: buffer allocation scheme,
guaranteed integrity, and level of optimization. The following subsections discuss each dimension
in turn.
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Figure 1: Taxonomy of data passing semantics

2.1. Buffer allocation scheme

In application-allocated buffering the application determines the location of its input buffers on
input and retains access to its output buffers after output. This is the case of the copy semantics
of Unix I/0 [14]. In system-allocated buffering, on the contrary, the system automatically allocates
application input buffers on input and deallocates application output buffers on output, and appli-
cations cannot or should not access their output buffers after output. System-allocated buffering
is typified by DASH’s move semantics [22].

Application-allocated and system-allocated buffering require different APIs. The main difference
is on input: In the application-allocated API, the application passes the location of its input buffers
to the system, while in the system-allocated API, the system returns to the application the location
of newly allocated application input buffers. The system-allocated API alsoincludes calls to allocate
or deallocate I/O buffers. Applications with balanced amounts of input and output may be able
to avoid explicit buffer allocation and deallocation by using buffers implicitly allocated in input
operations for Subsequpnt output operations.

System-allocated I/0O buffers can be implemented as regions that are marked moved in when
accessible by the application. Regions that are not system-allocated are marked unmovable. Out-
put with system-allocated semantics is only allowed on moved in regions because the resulting
deallocation might open inconsistent gaps in unmovable regions, such as the heap or the stack.

Compared to application-allocated buffering, system-allocated buffering imposes fewer con-
straints on the system and thus may be more easily optimized, but whether it results in better
end-to-end performance depends on the application. Applications that require access to output
buffers after output or that are sensitive to the layout of data, e.g. those using data structures such
as arrays, may not be able to use system-allocated semantics without copying between system-
allocated I/0O buffers and application data structures. This user-level copying may defeat perfor-
mance advantages of system-allocated semantics.



2.2. Guaranteed integrity

For strong-integrity buffering the system guarantees that it will output the data contained in the
application output buffer at the time of output invocation, unaffected by subsequent overwriting by
the application, and that the application will not observe application input buffers in incomplete
or erroneous states during input or after failed input operations. For weak-integrity buffering the
system makes no such guarantees.

Strong integrity is typified by copy and move semantics, both of which guarantee integrity by
physically inputting or outputting data only through system buffers inaccessible by the application.

Wealk integrity allows I/O to be performed in-place, directly into or from buffers mapped to the
application. The application can access these buffers during I/O and, consequently, can corrupt
data being output or observe input data in inconsistent states.

Weak-integrity buffering can be application-allocated, which we call share semantics, or system-
allocated, which we call weak move semantics. In weak move semantics, output buffers remain
mapped to the application after output, but the application should not access them because the
system may reuse them for subsequent input and their contents until then are indeterminate. This
reuse can be implemented by what we call region caching: The system marks the region weakly
moved out and enqueues it in the corresponding list, per address space, where the system can find
it for later reuse. On a subsequent input, the system dequeues the region and marks it again
moved in. Genie uses region caching for weak move as well as the optimized emulated weak move
semantics. A similar caching technique is used for input buffering in the cached and cached volatile
fbuf schemes [9].

2.3. Level of optimization

The buffer allocation scheme and guaranteed integrity together define what we call the basic se-
mantics of a data passing scheme. The semantics is specified by the basic semantics plus the set
of optimizations used. Some optimizations may depend on special conditions, and inclusion of this
dimension in the taxonomy makes those conditions visible to programmers!. Contrary to the other
two dimensions, which each had two discrete points, the optimization dimension admits a spectrum
of possibilities, including many different from those presented here. We call Genie’s optimized se-
mantics emulated because Genie only uses optimizations that are transparent to applications and
that do not require changes in programs written for the corresponding basic semantics. The rest
of this subsection summarizes previously proposed optimizations, and the following three sections
describe novel optimizations used in Genie.

Output with copy semantics can be performed in-place if the region containing the output data
is made copy-on-write (COW) [17]. The system removes write permissions from all mappings of
the pages in the region. An application’s attempt to overwrite one such page will cause a VM
fault. The system recovers from this fault by copying the page’s data to a new page and mapping
this new page to the same virtual address in the application address space, with writing enabled.
Applications cannot overwrite output pages, which guarantees integrity, and copying only occurs

'For optimizations that are transparent to applications, however, our our use of the term semantics becomes
non-standard; strictly speaking, the semantics in such cases would be what we call basic semantics.



if an application does attempt overwriting.

A page-level alternative to COW, reported to have better performance [1], is sleep-on-write: the
system removes write permissions from all mappings of the output pages and marks the latter busy
during output. An application’s attempt to overwrite one such page will cause the application to
fault and stall until output completes.

If the region containing the output data is system-allocated, yet another alternative to COW is
abort-on-write. On output, the system marks the region in output and removes write permissions
from the region and all mappings of its pages. An application’s attempt to overwrite the latter will
cause a protection violation exception and normally will abort the application. The region remains
read-only until the application explicitly deallocates and again allocates it. When the application
deallocates the I/O buffer, the system places the latter in a list, per address space, where it can
be found for reuse. At output completion, the system marks the region output completed. At a
subsequent /O buffer allocation call, the system dequeues an output completed region, marks it
moved in, reinstates write permissions, and returns the region to the application. A scheme similar
to this is used for cached fbuf output [9].

Input with copy semantics can be optimized, if the application buffer is page-aligned and of
length multiple of a page size, by swapping pages between system and application buffers. Swapping
unmaps application buffer pages and then maps corresponding system buffer pages to the same
virtual addresses. This optimization is present in IRIX and HP-UX systems.

I/0O with share and weak move semantics can be optimized by requiring application I/0O buffers
to be located in special unpageable areas, which eliminates the need to wire the buffers during

I/0 [2].
3. Safe and efficient in-place I/0

Previous proposals have often restricted in-place 1/O to special regions, such as ezposed buffer
areas [2] or fbuf regions [9]. In this section we describe how Genie makes in-place I/O safe and
efficient regardless of data location.

3.1. I/O-deferred page deallocation

Wiring is sufficient to guarantee that a system buffer will remain in physical memory during I/0
because only the pageout daemon might asynchronously deallocate system buffer pages. In the case
of application buffers, however, wiring is insufficient because other events may also cause application
memory deallocation. These events include normal or abnormal termination of the application and
explicit memory deallocation by the (possibly malicious) application. If deallocated pages still have
pending I/O when they are reused for a different process, there may be corruption of output data
or of the other process’s memory.

Genie makes in-place I/O safe by keeping counts of input and output references to each physical
page in current input and output operations. Genie integrates in what we call page referencing the
activities of preparing the descriptor with the physical addresses of an I/O request, verifying access
rights, and updating reference counts.



Genie changes the system page deallocation routine to refrain from placing pages with nonzero
input or output count in the list of free pages, whence they might be allocated to other processes.
After completing an I/O operation, Genie unreferences pages by updating their reference counts.
If a given page no longer has any input or output references, Genie verifies whether the page is
still allocated to a memory object; if not, Genie assumes that the page was deallocated during 1/0,
and enqueues it in the list of free pages for reutilization. We call this scheme I/O-deferred page
deallocation and use it for all in-place I/O.

3.2. Input-disabled pageout

Genie modifies the pageout daemon to refrain from paging out pages with nonzero input reference
count. Pending input would modify these pages after pageout, making paged out data inconsistent.
Moreover, the application that invoked the input is likely to access these pages after input, making
them poor candidates for pageout. Genie allows the daemon to page out pages with zero input
count normally, regardless of output reference count.

This optimization, input-disabled pageout, adds no overhead to page referencing and makes
wiring unnecessary in Genie’s emulated semantics, both on input and on output. Note that,
unlike previous work [2], input-disabled pageout eliminates wiring costs without requiring data to
be placed in unpageable buffer areas. Rather, data can be arbitrarily located, and there is no
reduction in the amount of physical memory available to the rest of the system. Performance is the
same with unpageable buffer areas or input-disabled pageout because the cost of either option is
that of page referencing, which is necessary in both cases to guarantee safe deallocation of output

pages.

3.3. Input-disabled COW

COW is frequently used to optimize interprocess communication or memory inheritance with copy
semantics [17]. However, it may not implement copy semantics correctly if there is a pending
in-place input operation in the region. Indeed, if the input is by DMA, the input will modify
memory without generating any write faults, even though the pages are mapped read-only to the
applications. Consequently, changes may be observed by processes other than the one that issued
the input, and COW in this case actually implements share rather than copy semantics.

Genie guarantees correctness in this case by also monitoring the total number of input references
to pages of each memory object in current input operations. Genie updates these counts at page
referencing and unreferencing. Genie modifies the system COW set-up routine to perform a physical
copy, instead of setting up COW, if any of the region’s backing memory objects has nonzero input
count.

The reverse case, when a region is marked COW before in-place input, does not require special
handling, because input page referencing verifies write access rights, which will automatically fault-
in a private, writable copy of the data.



4. Move emulation with region hiding

Genie uses region hiding to implement a new semantics, emulated move, that is compatible with
move semantics but performs I/O in-place. On output with emulated move semantics, Genie
removes read and write permissions to pages in the output region, marks the region moved out, and
enqueues it for later reuse, as in region caching. Genie modifies the system VM fault routine to
recover from faults only in unmovable or moved in regions. Attempts by the application to access
the region after output will therefore cause unrecoverable VM faults, as would be the case if the
region had actually been removed, but the region and its pages remain allocated to the application
address space. On a subsequent input, Genie reuses the region, marks it moved in, and reinstates
page read and write permissions.

5. Optimizations for copy emulation

5.1. TCOW

Conventional COW can be too expensive for output copy avoidance [1]. Page referencing, however,
allows Genie to implement a specialized, page-level form of COW, TCOW, that is highly efficient

for this purpose.

On output with emulated copy semantics, Genie simply references and removes write permissions
from all mappings of the output pages. Attempts by applications to overwrite output pages will
cause VM faults. Genie modifies VM fault processing as follows, in the case of write faults in
regions for which the faulted application has write permissions, when the page is found in the top
memory object backing the region [17]: If the output count of the page is nonzero, the system
recovers from the fault by invalidating all mappings of the page, copying the contents of the page
to a new page, swapping pages in the memory object, and mapping the new page to the same
virtual address, with writing enabled; if the output count is zero by the time the write fault occurs,
the system recovers by simply reenabling writing on the page (no copying). If the page is found
but not in the top object, the fault is a conventional COW fault and is handled normally. Note
that TCOW adds to page referencing only the cost of removing page write permissions, which is
arguably the minimum necessary overhead for strong-integrity, safe in-place output.

TCOW differs from conventional COW in two ways. First, TCOW is transient — COW is
conventionally long-term, while TCOW only lasts during output, which is when it is actually
useful. Second, TCOW operates at page level instead of at region level. This allows TCOW to
prevent the proliferation of regions on output and reduce the number of VM data structures that
it needs to manipulate.

TCOW and sleep-on-write are both page-level techniques and perform very similarly for ap-
plications that do not overwrite output buffers during output. Both schemes add to the cost of
removing write permissions only that of the same number of updates to fields (output reference
count or busy bit, respectively) of the page data structure. TCOW offers the added benefits of
supporting multiple concurrent output references to a given page and not stalling applications that
do overwrite output buffers during output.



5.2. Input alignment

On input with emulated copy semantics, Genie inputs data into system buffers that start at the
same page offsets and have the same lengths as the corresponding application buffers. Consequently,
Genie can swap pages between system and application buffers even if application buffers are not
page-aligned or have lengths that are not multiple of the page size. This scheme, system input
alignment, goes against the traditional practice of allocating system buffers without regard to the
alignment and length of application buffers. As illustrated in Figure 2, lack of alignment makes it
impossible to swap pages.

For situations where the system is unable to align its buffers, Genie offers application input
alignment, where the application aligns its buffers to system buffers. Genie includes an interface
through which applications can query I/O modules (e.g. a protocol stack) about the preferred
alignment and length of input buffers. The preferred alignment may be nonzero and the preferred
length may be not equal to a multiple of the page size because of, for example, unstripped packet
headers and network maximum transmission units.

Genie uses what we call reverse copyout to pass data in partially filled pages in aligned buffers.
If data in the system page is shorter than the reverse copyout threshold, Genie simply copies it
out, as shown for item 1 in Figure 2. If it is longer, however, Genie first completes the rest of
the system page with corresponding data from the respective application page and then swaps the
pages, as shown for items 3 and 4 in Figure 2. The threshold is set just above half the page size so

as to minimize data copying.

System Buffer Application Buffer
Traditional Copyout
1. Copyout
2. Swap
i - =
Aligned
4. Swap
=l -1
‘3. Reverse Copyout

Figure 2: Input alignment makes it possible to swap pages.



6. Data passing implementation in Genie

This section describes, in terms of primitive data passing operations, how Genie implements each
semantics for data passing between user-level applications and I/0 modules (such as protocol stacks
and drivers) in the kernel. The following subsections discuss output and input in turn. We will use
these detailed descriptions to analyze experimental results in the next two sections.

Both on output and on input, Genie takes advantage of the fact that copy semantics often is
very efficient for short data. If data is shorter than configurable thresholds, Genie automatically
converts emulated copy or emulated share semantics into copy semantics.

6.1. Output

Output data passing involves two processing stages: prepare, when the application invokes the
output operation, and dispose, when output completes and the system 1s ready to return control
to the application. The operations used for output are summarized in Table 2, where “read-only”
means “remove write permissions”, and “invalidate” means “remove all access permissions” from
all mappings (VM page table entries) corresponding to a given physical page.

|| Prepare | Dispose
Copy Allocate system buffer. Deallocate system buffer.
Copyin output data.
“Emulated copy Reference application pages. Unreference application pages.
Read-only application pages.
Share Reference application pages. Wire region. | Unwire region. Unreference application pages.
" Emulated share || Reference application pages. Unreference application pages.
“Move Reference application pages. Wire region. | Unwire region.
Mark region moving out. Unreference application pages.
Invalidate application pages. Remove region.
Emulated move Reference application pages. Unreference application pages.
Mark region moving out. Mark region moved out and enqueue.
| Invalidate application pages. |
Weak move Reference application pages. Wire region. | Unwire region. Unreference application pages.
Mark region moving out. Mark region weakly moved out and enqueue.
Emulated weak move | Reference application pages. Unreference application pages.
| Mark region moving out. Mark region weakly mowved out and enqueue.

Table 2: Operations for data output from application to kernel

Note that Genie does not remove a system-allocated region until dispose time in order to guar-
antee that the corresponding virtual addresses will not be reassigned during I/O, thus allowing
graceful recovery in case of error.

6.2. Input

Input data passing involves three processing stages: prepare, when the application invokes the
input operation; ready, when the device needs buffering; and dispose, when the input operation is
complete and the system is ready to return control to the application.

Input processing must match the type of input buffering used by the device controller. Genie
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distinguishes three types of device input buffering: early demultiplezed, pooled in-host, and outboard,
as described in the following.

6.2.1. Input with early demultiplexing

With early demultiplexed input buffering, buffers reside in host main memory and are specified by
multiple (pointer, length) pairs. The device controller keeps separate input buffer lists per input
request or connection and inputs data directly into a buffer from the appropriate list.

Early demultiplexing enables in-place or system-aligned buffering ¢f the application informs the
system about the location of its buffers bdefore physical input. This condition is trivially met when
physical input is synchronous to application requests. In data communication, however, input may
occur before solicited by the application, and location information must be provided either by the
receiver, using a preposted, possibly asynchronous input operation, or by the sender, using a field
in the packet header [4, 19] or implicitly by the connection used [15]. If location information is not
available to the system, copy avoidance is still possible by application-aligned or system-allocated
buffering.

Table 3 summarizes the operations used for preposted input with early demultiplexing.

| Prepare - __ | Ready | Dispose ]
Copy ‘ Allocate Copyout input data.
system buffer. | Deallocate system buffer.
Emulated ' Allocate Swap pages.
copy aligned buffer. | Deallocate aligned buffer.
Slare | Telerence application pages. = | Unwire region. =
Wire region. ‘ Unreference application pages.
Fmulated share || Reference application pages. | Unreference application pages.

" Move | Allocate Create region. Zero-complete
I system buffer. | system pages and fill region.
Map region and mark mowved in.
Emulated Dequeue moved out region, - Check region, unreference application
move mark region mowing in, and reference pages, reinstate page accesses,
! | application pages. and mark region moved in.
| Weak move Dequene weakly moved out region, Check region. Unwire region.
mark region mowing in, and reference Unreference application pages
| application pages. Wire region. | and mark region moved in.
Emulated ' Dequeue weakly moved out region, | Check region,
weak move mark region moving in, and reference unreference application pages,
| application pages. | | and mark region moved in.

Table 3: Operations for data input with early demultiplexing

Note that, to maintain protection, move semantics has to clear the unused portions of a system
buffer before mapping it to the application. If the semantics is emulated move, weak move, or
emulated weak move and at prepare time no suitable cached region can be found in the appropriate
queue, Genie allocates a new region and marks it moving in. For the same three semantics, Genie
checks, at dispose time, that the cached region prepared and used for input is still present in the
application address space. If it was removed (advertently or not) by the application, Genie maps
the corresponding pages to a new region, guaranteeing that the location information returned to
the application correctly points to the input data.

10



6.2.2. Input with pooled buffering

With pooled in-host buffering, the device controller allocates input buffers from a pooal of fixed-
size buffers (commonly pages) in host main memory without considering the corresponding input
request or connection. This is still the most popular of the input buffering schemes, although early
demultiplexing is becoming more common with the advent of ATM networks.

Pooled buffering does not allow in-place or system-aligned buffering, and copy avoidance is
possible only with application-aligned or system-allocated buffering.

Genie always prepares application input buffers according to Table 3, enabling early demul-
tiplexing. Actual input may use pooled buffering, however, either because the device does not
support early demultiplexing or because the application did not inform the location of its input
buffers before physical input. For pooled buffering, the ready-time and dispose-time operations are
those shown in Table 4. At ready time the I/O module inputs data into overlay buffers allocated
from a private pool of pages in main memory. At dispose time, Genie passes data from overlay
buffers to application buffers and deallocates the overlay buffers, returning them to the respective
I/0 module pool for reuse.

[ Ready | Dispose
' Copy ‘ Allocate overlay buffer. | Copyout input data.
Overlay buffer. Deallocate overlay buffer.
"Emulated copy Allocate overlay buffer. | If aligned, swap pages, else copy out.
Overlay buffer. Deallocate overlay buffer.
Share Allocate overlay buffer. | Unwire region. Unreference application pages.
Overlay buffer. If aligned, swap pages, else copy out. Deallocate overlay buffer.
Emulated share Allocate overlay buffer. | Unreference application pages.
| Overlay buffer. If aligned, swap pages, else copy out. Deallocate overlay buffer.
Move | Allocate overlay buffer. | Create region. Zero-complete overlay pages, fill region and
Overlay buffer. refill overlay buffer. Map region and mark moved in.
Deallocate overlay buffer.
Emulated move | Allocate overlay buffer. | Check region. Unreference application pages. Swap pages.
Emulated weak move || Overlay buffer. Mark region moved in. Deallocate overlay buffer.
Weak move [["Allocate overlay buffer. | Check region. Unwire region. Unreference application pages.
|| Overlay buffer. Swap pages. Mark region moved in. Deallocate overlay buffer.

Table 4: Ready and dispose-time operations for input with pooled buffering

Note that in the case of move semantics, Genie maps overlay pages to the application and
therefore needs to refill the overlay buffer with the same number of newly-allocated pages to avoid

pool depletion.

6.2.3. Input with outboard buffering

With outboard buffering, the device controller allocates input buffers from a pool in outboard mem-
ory. Data in outboard buffers can be transferred directly into application buffers after successful
input completion, providing strong integrity regardless of the semantics of application buffers and
even if the system was not previously informed of the location of application buffers.

However, outboard buffering can also add complexity and cost to the controller. In the context of
network adapters, early demultiplexed and pooled in-host buffering are examples of “cut-through”
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architectures, while outboard buffering has a “store-and-forward” architecture that typically im-
poses higher latency.

If the device uses outboard buffers for input, Genie alters the operations in Table 3 as follows:
For all semantics other than emulated copy, at ready time, after the operations in the table,
start DMA into host memory; and at dispose time, after the operations in the table, deallocate
the outboard buffer. For emulated copy semantics, no buffer is allocated at ready time, and at
dispose time, the system references the application pages, DMAs data from the outboard buffer
to the application buffer, unreferences the application pages, and deallocates the outboard buffer.
Consequently, with outboard buffering, emulated copy is implemented much as emulated share
semantics.

7. Experimental comparison of data passing semantics

This section reports end-to-end latencies and I/0O processing times for datagram communication
measured using the various buffering semantics and early demultiplexed or pooled input buffering.
We ran our experiments on computers of the types shown in Table 5, connected by the Credit
Net ATM network [13] at OC-3 (155 Mbps) rates. All figures in this section refer to Micron P166
PCs. Results for the other platforms were similar and are summarized in Section 8.1. The Credit
Net network adapter transfers data between main memory and the physical medium by burst-
mode DMA over the PCI I/O bus. We used the NetBSD 1.1 operating system augmented with
an implementation of the Genie interface, through which applications accessed the network. We
measured latencies by capturing the value of the CPU on-chip cycle counter at appropriate points
in the code. All measurements were made on warm caches and are the averages of five runs. We
report primarily latencies rather than throughput to simplify analysis.

| Micron P166 | Gateway P5-90 | DEC AlphaStation 255/233 |
CPU Pentium 166 MHz Pentium 90 MHz 21064A 233 MHz I
Integer rating || 4.52 < 2.88 < 3.48
Li-cache | 8 KBI + 8 KBD, 3560 Mbps | 8 KBI + 8 KBD, 1910 Mbps | 16 KBI + 16 KBD, 2860 Mbps
L2-cache 256 KB, 486 Mbps 256 KB, 244 Mbps 1 MB, 1366 Mbps
[ Memory 32 MB, 4 KB page, 351 Mbps | 32 MB, 4 KB pa.g_e, 146 Mbps | 64 MB, 8 KB page, 350 Mbps

Table 5: Characteristics of the computers used in the experiments. The integer rating used for the
Micron P166 is the listed SPECint95 of the Dell XPS 166. The rating taken as upper bound for the
Gateway P5-90 is the listed SPECint95 of the Dell XPS 90, which has a bigger and faster L2-cache.
The rating taken as upper bound for the AlphaStation is its listed SPECint_base95 because the
version of NetBSD used on it could not be compiled with optimizations. The cache and memory
copy bandwidths listed are the peak values we observed using a bcopy benchmark at user level.

Figure 3? shows latencies using early demultiplexing. We measured latencies for increasing
datagram lengths equal to a multiple of the page size, up to 60 KB, the largest such multiple
allowed by ATM AALS5. For these datagrams, copy semantics gave much higher latency than did
any of the other semantics, which pass data using VM manipulations instead of copying. The
differences between semantics other than copy were small. The most striking difference was that
between copy and emulated copy semantics, which offer the same API and integrity guarantees.

*In all figures in this section, we list the semantics in the legend in the same order as the respective curves. For
fine discrimination between curves that appear cluttered in the figure, please refer to Table 9.
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Figure 3: End-to-end latency with early demultiplexing. Semantics other than copy have similar
performances.

Using TCOW and input alignment, emulated copy reduced latencies for 60 KB datagrams by 37%.
For all data lengths, emulated copy also gave lower latency than those of move and share semantics.
This advantage is due to the use of input-disabled pageout instead of region wiring in emulated
copy semantics. Emulated move semantics gave slightly lower latencies than those of emulated copy
semantics because it simply invalidates and reinstates page table entries instead of fully swapping
pages, which also requires updating the respective memory object. Latency was still lower, but
only slightly, with the emulated weak-integrity semantics, which do not require page table updates.
The equivalent throughput for single 60 KB datagrams was 78 Mbps for copy, 121 Mbps for move,
124 Mbps for share, emulated copy, and weak move, 126 Mbps for emulated move, 128 Mbps for
emulated weak move, and 129 Mbps for emulated share semantics.

We instrumented the idle loop in the operating system scheduler to measure CPU idle time
while performing the experiment of Figure 3. Subtracting idle times from end-to-end latencies, we
obtained the I/O processing times (7o) shown in Figure 4. We derive the relationship between 70
and system throughput in Section 8.2. I/O processing times were much higher for copy semantics
than for any other semantics. The I/O processing for an exchange of 60 KB datagrams occupied
the CPU during 3224 psec with copy, 986 usec with move, 952 usec with share, 931 usec with weak
move, 825 psec with emulated copy, 753 usec with emulated move, 688 usec with emulated weak
move, and 644 psec with emulated share semantics.
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Figure 4: 1/0 processing time (t7/0). I/O with copy semantics leaves much less CPU time available

for application processing.

Figure 5 shows short datagram latencies with early demultiplexing. Move semantics gave by far
the highest latency for short datagrams because it has to zero the part of the page not occupied by
data. Emulated move semantics gave much lower latencies because it performs I/0 in place, using
region hiding, and therefore does not need to zero the remainder of the page. Copy semantics gave
the lowest (145 usec, tied with emulated share semantics) but also the most rapidly rising latency
because of the high incremental cost of copying. '

We set output thresholds so that Genie automatically converted to copy semantics cutput of
data shorter than 1666 bytes with emulated copy or 280 bytes with emulated share semantics.
We set the reverse copyout threshold at 2178 bytes. (Performance is only moderately sensitive to
these settings; we empirically determined these values to give good results.) With these settings,
emulated copy semantics had about the same latency as that of copy semantics for data up to
half page long; above that, reverse copyout and swapping significantly reduced the latency of
emulated copy relative to that of copy semantics. Emulated share had, for all data lengths, the
lowest latency, because its data passing overhead consists solely of page referencing. The difference
between latencies with emulated copy and emulated share semantics was maximal at half page size:
325 vs. 254 usec. Weak move and emulated weak move semantics gave slightly higher latencies
than those of share and emulated share, respectively, because of region caching costs avoided in
application-allocated semantics. The slightly higher latency of emulated move semantics relative
to that of emulated weak move semantics is due to region hiding. The higher latencies of share
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Iigure 5: End-to-end latency for short datagrams with early demultiplexing. Using reverse copyout,
emulated copy avoids copying more than about half a page.

and weak move semantics relative to their emulated counterparts are due to region wiring and
unwiring, which cost about 35 psec for the first page and become unnecessary in the emulated
semantics because of the input-disabled pageout optimization.

Figure 6 shows latencies with pooled input buffering and application-aligned application buffers.
Copy and emulated copy have latencies only very slightly higher than the respective latencies with
early demultiplexing, corresponding to the same operations plus buffer overlay overhead. Share,
move, and weak move semantics have higher latencies than those of emulated copy because of
region wiring and unwiring. All other semantics have latencies very close to that of emulated copy.
Ior single 60 KB datagrams, the equivalent throughput is 77 Mbps for copy, 120 Mbps for share,
move, and weak move, 123 Mbps for emulated move, emulated copy and emulated weak move, and
124 Mbps for emulated share semantics.

Figure 7 shows latencies with pooled input buffering and unaligned application buffers. In this
case, emulated copy, share, and emulated share semantics require data copying on input, whereas
the other semantics are unaffected. This figure clearly shows the impact of data copying, splitting
the semantics into a group with no copies (system-allocated semantics), another with two copies
(copy semantics, with one copy at the sender and another at the receiver), and the remaining group,
between the other two, with one copy. For single 60 KB datagrams, the equivalent throughput is
77 Mbps for copy semantics, around 92 Mbps for the other application-allocated semantics, and
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Figure 6: End-to-end latency with application-aligned pooled input buffering. If there is alignment,
non-copy application-allocated semantics give performances similar to those of system-allocated
semantics.

121 Mbps for the system-allocated semantics.

Figure 7 may give the impression that system-allocated semantics are intrinsically more effi-
cient than application-allocated semantics if pooled buffering is used. However, if an application
is insensitive to data layout enough to use system-allocated semantics, then in principle that ap-
plication can also align its buffers to system buffers, and then emulated copy, emulated share, and
system-allocated semantics give very similar performance, as shown in Figure 6. If, on the con-
trary, an application s sensitive to data layout, it would require application-level copies between
system-allocated I/O buffers and application data structures. The total number of copies (possibly
one copy on output, if the application needs to retain access to the same or other data on the same
pages, plus one copy on input) is then at best the same as if emulated copy or emulated share
semantics were used (one copy on input only). In those cases, system-allocated semantics may
actually give worse end-to-end performance than application-allocated semantics do.

We do not show results with outboard buffering because of limitations in the hardware used.
However, we expect that, compared to early demultiplexing, the staging of data at an outboard
buffer will add an equal amount of latency to all semantics except emulated copy. Because of the
special way the latter is handled, we expect it to have performance even closer to that of emulated
share semantics.
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Figure 7: End-to-end latency with unaligned pooled input buffering. Without alignment, non-copy
application-allocated semantics require copying at the receiver.

8. Analysis

This section analyzes the effects of I/O data passing semantics on end-to-end latency and system
throughput, and discusses the sensitivity of our results to current trends in CPU, memory, and

network speeds.

8.1. End-to-end latency

In this subsection, we analyze the empirical end-to-end latencies in terms of the costs of primitive
data passing operations and model how those costs scale with CPU, memory, and network speeds.

End-to-end latencies can be broken down into the sum of a baselatency and data passinglatencies
at the sender and receiver. The base latency captures end-to-end costs that are independent of
the particular buffering semantics or input buffering scheme used, such as crossing the application-
kernel boundary and incurring driver, device, network, and interrupt latencies. Data passing
latencies, on the contrary, depend on the semantics and input buffering scheme used. We take
the base latency to be equal to the end-to-end latency of emulated share semantics with early
demultiplexing, reduced by the costs of referencing and unreferencing application I/O buffers.
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Only prepare time data passing operations at the sender contribute to end-to-end latency, be-
cause dispose-time operations overlap with network latencies and latencies at the receiver. Con-
versely, with early demultiplexing, prepare and ready time operations at the receiver overlap with
latencies at the sender and in the network, and only the dispose time operations at the receiver
contribute to end-to-end latency. With pooled or outboard buffering, only ready time and dispose
time operations at the receiver contribute to end-to-end latency.

We directly measured the latencies of primitive data passing operations by instrumenting the
Genie code. We added instructions at appropriate points in the code to record the value of the
CPU on-chip cycle counter. We recorded the time intervals for each operation and datagram length
when performing the experiments reported in Figures 3, 6, and 7, taking the averages of five runs.
We then performed a least-squares linear fit on each operation latency versus datagram length. We
obtained excellent correlation except in cases of constant or very small latencies. We averaged the
fitted equations of each operation latency over the semantics and input buffering schemes where
the operation is used. We show the results for each platform in Tables 6, 7, and 8, respectively.
Note that copyin cost less than copyout because our experiments were on warm caches. On output
(copyin), data can be read from the cache, while on input (copyout) it has to be read from memory.
The copyin cost is actually nonlinear because the 1.1-cache has much higher bandwidth than that
of the L2-cache. This causes a negative y-intercept in the corresponding linear fit.

| Operation [ Latency || Operation | Latency _‘
Base 0.0598 B -+ 130 || Swap | 0.00163 B + 15 |
Copyin 0.0180 B - 3 | Copyout | 0.0220 B + 15
Reference 0.000363 B + 5 || Unreference | 0.000100 B + 2

| Wire 0.00141 B + 18 || Unwire 0.000237 B + 10
Read only 0.000367_B_+ 2 || Region create 24
Invalidate 0.000373 B 4+ 2 || Region fill 0.000398 B + 9
Region mark out | 3 || Region fill & overlay refil | 0.000716 B + 11
Overlay allocate 7 || Region map 0.000474 B + 6
Overlay 7 || Region check, unreference, | 0.000507 B + 11
Overlay deallocate | 0.000344 B + 12 | reinstate, mark in
Region check 5 || Region check, unreference, 0.000194 B + 6

[ Region mark in 1 || markin

Table 6: Costs of primitive data passing operations on the Micron P166 computer, in usec. B is
the data length in bytes.

I Operation | Latency | | Operation | Latency |
[ Base 0.0718 B + 179 || Swap 0.00285 B + 27
"Copyin 0.0440 B - 63 || Copyout 0.0535 B + 23
Reference 0.000649 B + 10 || Unreference 0.000186 B + 3
Wire 0.00256 B + 33 || Unwire 0.000440 B + 18
“Read only | 0.000648 B + 3 || Region create 43
“Invalidate | 0.000707 B -- 3 || Region fill 0.000714 B + 15
Region mark out 5 || Region fill & overlay refill 0.00132 B + 20
Overlay allocate 17 || Region map 0.000835 B + 12
Overlay 15 Re_gio_n_che.ck, unreference, | 0.000972 B + 20
" Overlay deallocate | 0.000543 B + 22 reinstate, mark in
Region check 9 || Region check, unreference, | 0.000327 B + 11
" Region mark in 2 || mark in

Table 7: Costs of primitive data passing operations on the Gateway P5-90 computer, in usec. B is
the data length in bytes.
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| Operation | _ Latency I Operation | Latency |
Base | 0.0710 B + 235 || Swap 0.00443 B + 12

| Copyin 0.00974 B -5 || Copyout 0.0182 B + 1
Reference 0.000347 B + 8 || Unreference 0.000244 B 4 6
Wire 0.00175 B + 23 || Unwire 0.000450 B + 25
Read only 0.000275 B + 4 | Region create 43
Invalidate 0.00141 B + 4 || Region fill 0.000428 B + 8 |

| Region mark out o 5 || Region fill & overlay refill | 0.000730 B + 10
Overlay allocate 17 || Region map 0.00175 B + 3
Overlay 11 || Region check, unreference, 0.00167 B + 16 |
Overlay deallocate | 0.000336 B + 28 || reinstate, mark in
Region check 7 || Region check, unreference, | 0.000227 B + 12 |
Region mark in 2 || mark in

Table 8: Costs of primitive data passing operations on the AlphaStation 255/233 computer, in
pusec. B is the data length in bytes.

| Semantics | || Early demultiplexing | Application-aligned pooled | Unaligned pooled |

Copy

l

0.0997 B + 141
0.0998 B + 125

0.100 B + 166
0.101 B + 139

0.100 B + 166
0.101 B + 144

Emulated copy

0.0621 B + 153
0.0622 B + 150

| Share

0.0619 B + 165
0.0621 B + 162

0.0625 B + 178
0.0622 B + 175

0.0828 B + 177
0.0848 B + 195

0.0637 B + 204
0.0638 B + 197

0.0841 B + 203
0.0846 B + 219

Emulated share

0.0602 B + 137
0.0600 B + 137

0.0621 B + 175
0.0619 B + 167

0.0825 B 4 175
0.0824 B -+ 178

Move

0.0628 B + 197
0.0626 B + 202

0.0634 B + 224
0.0631 B + 234

0.0634 B + 224
0.0631 B + 234

| Emulated move

0.0610 B + 151
0.0609 B + 150

0.0625 B + 185
0.0623 B + 183

0.0625 B + 185
0.0623 B + 183

Weak move

0.0620 B + 173
0.0615 B + 170

0.0637 B + 212
0.0633 B + 206

0.0637 B + 212
0.0633 B 4 206

Emulated weak move

e oE e E| S E e

0.0603 B + 144
0.0602 B + 143

0.0621 B + 183
0.0619 B + 184

0.0621 B + 183
0.0619 B + 184

Table 9: Estimated (E) and actual (A) end-to-end latencies on Micron P166 computers, in usec.
D is the data length in bytes.

Taking the values from Table 6, we added, for each semantics, the base latency, the costs of the
respective output prepare-time operations indicated in Table 2; and the costs of the respective input
dispose-time operations indicated in Table 3, obtaining an estimate of the respective end-to-end
latency with early demultiplexing. We show these estimates in Table 9, along with the least-squares
linear fit of the actual end-to-end latencies from Figure 3. Adding base latency, the costs of output
prepare-time operations, and the costs of input ready-time and dispose-time operations indicated
in Table 4, for each semantics, we obtained estimates of the respective end-to-end latencies with
pooled buffering and application-aligned or unaligned application buffers. We show these estimates
in Table 9, along with the least squares linear fit of the actual end-to-end latencies from Figures 6
and 7. The good fit between estimated and actual latencies suggests that our breakdown model is
accurate for the datagram lengths considered, which are multiples of the page size (additional terms
would increase accuracy for intermediate lengths, but also make the model more complicated).

Using the breakdown model, the end-to-end latency when sender and receiver use different
semantics can be expected to be equal to the sum of the base latency plus sender-side latencies of
the semantics used by the sender plus receiver-side latencies of the semantics used by the receiver.
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The breakdown model can be extended into a scaling model that takes into account CPU,
memory, and network speeds. To a first approximation: (1) The multiplicative factor of the base
latency is network-dominated and equal to the inverse of the net network transmission rate, subject
to adapter and I/O bus bandwidth limitations; (2) The fixed term of the base latency is equal to the
sum of I/O bus, device, and network latencies, plus a term corresponding to fixed operating system
overhead, which scales inversely to CPU speed; (3) The copyout multiplicative factor is memory-
dominated and equal to the inverse of the main memory copy bandwidth, and the associated fixed
term can be ignored; (4) The copyin multiplicative factor is cache-dominated and may vary between
the inverse of the copy bandwidth of the L2-cache and the inverse of the copy bandwidth of main
memory, depending on data and cache sizes and cache associativity and locality. The fixed term
can be ignored; (5) All other parameters are CPU-dominated and scale inversely to to CPU speed,
as estimated by an appropriate integer benchmark, such as SPECint95 3.

|| Micron P166 Gateway P5-90 [ AlphaStation 2557233
| Type of Parameter | Estimated | Actual Estimated | Actual H Estimated | Actual
Network-dominated > 0.0570 10.0598 | > 0.0570 0.0718 | > 0.0570 [ 0.0710
Memory-dominated 0.0228 0.0220 0.0548 0.0535 | 0.0229 | 0.0182
Cache-dominated > 0.0165, < 0.0228 | 0.0180 > 0.0328, < 0.0548 | 0.0440 || > 0.00586, < 0.0229 | 0.00974

Table 10: Data passing costs estimated according to net network transmission rate and memory
and L2-cache copy bandwidths are consistent with the actual values.

We used data from Tables 5, 6, 7, and 8 to verify the scaling model. Table 10 shows the
verification of (1), (3), and (4) for each platform. Table 11 shows the verification of (3), (4), and
(5) across platforms. Agreement between estimated and actual scaling was quite good for the
Gateway P5-90, which has the same architecture as the base case. In the AlphaStation, CPU-
dominated ratios had geometric means consistent with the model but variances that were much
higher than those of the Gateway P5-90. This could be expected, given that the AlphaStation has
a substantially different architecture.

Gateway P5-90 AlphaStation 255/233
| Type of Parameter Estimated | GM | Min | Max || Estimated [ GM [ Min | Max
‘ Memory-dominated 2.40 243 | 2.43 | 2.43 1.00 [ 0.83 ] 083 0.83
Cache-dominated >1.44, < 3.33 | 2.46 | 2.46 | 2.46 || > 0.26, < 1.39 | 0.54 | 0.54 | 0.54
| CPU-dominated multiplicative factor > 1.57 1.79 | 1.58 | 1.92 > 1.30 1.64 | 0.75 | 3.77
CPU-dominated fixed term > 1.57 1.83 | 1.53 | 2.59 > 1.30 1.54 | 0.47 | 3.74 |

Table 11: Scaling of data passing costs relative to the Micron P166. “GM”, “Min”, and “Max”
are the geometric mean, minimum, and maximum values of the ratios of parameters of each given

type.

A comparison between Tables 6 and 9 using the scaling model explains the clustering in Figures 3,
6, and 7. Network-dominated costs strongly dominate CPU-dominated costs (making performance
differences between non-copy semantics relatively minor), but not memory and cache-dominated
costs (penalizing copy semantics).

Extrapolating based on the scaling model, if CPU speeds continue to increase faster than trans-
mission rates, as is the current trend, the performance differences between semantics other than

3The cost of page table updates may scale otherwise between processors of different architecture, causing the
cost of the read-only, invalidate, swap, region map, and reinstate operations to diverge from this model. Page table
updates are particularly costly in multiprocessors, where the semantics that do not use these operations — weak (with
early demultiplexing) and copy — may have some advantage.
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copy will tend to decrease, and if CPU speeds continue to increase faster than main memory band-
width, the performance difference between copy and other semantics will increase. At OC-12 (622
Mbps) rates, the scaling model predicts that the end-to-end throughput for single 60 KB datagrams
with early demultiplexing on the Micron P166 PCs will be close to 140 Mbps with copy semantics,
404 Mbps with emulated copy semantics, 463 Mbps with emulated share semantics, or 380 Mbps
with move semantics, giving emulated copy almost three times better performance than that of
copy semantics.

8.2. System throughput

In this subsection, we derive the relationship between the I/O processing time 7,0 (Figure 4) and
the system throughput 6.

To simplify analysis, we assume that the system runs a single application that handles multiple
work units concurrently. Each unit corresponds to data of length L and requires total CPU time
tapp for application processing and #;/o for I/O processing. We also assume that the physical I/O
subsystem can support a maximum throughput 0pgys, considering device, controller, and 1/0 bus
capacity.

If the system has no idle CPU time (possibly because of multiple concurrent work units), then
0 = L/(tapp +t1/0). Conversely, if the physical I/O subsystem is saturated, then § = fpgys. In
general, the system can support a maximum throughput*:

L

8 = min(fpgys, ——
( "tapP + 110

Consequently:

1. ftapp > trjo (application performs much more computation than I/0), then 8 is essentially
independent of buffering semantics.

2. Conversely, if t4pp < t7/0 (I/O-intensive application, e.g. 1/0 server), then:

(a) If t;j0 < L/0ppys (saturated physical I/O subsystem), then 6 is also independent of '
buffering semantics; or

(b) If t7)0 > L/0pmys (saturated CPU), then § = L/t;/o. In this case, using the data
from Figure 4, we can estimate that, on that system, for . = 60 KB, emulated copy
and emulated share semantics can increase system throughput with respect to that of
copy semantics by 291% and 401%, respectively. (Note that the improvement will be
less if the the CPU saturates with copy semantics but not with non-copy semantics.)
The system throughput with emulated share semantics is up to 28% greater than that
with emulated copy semantics.

*Note that the throughput for single datagrams calculated in the previous sections does not involve multiple
concurrent work units, may saturate neither CPU nor physical I/O subsystem, and therefore may be less than the
system throughput derived here. -
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To a first approximation, t4pp scales inversely to CPU speed, as measured by an appropriate
benchmark, such as SPECint95; ¢7,0 scales inversely to the memory copy bandwidth, for copy
semantics, or inversely to CPU speed, for non-copy semantics; and 8ppy s scales proportionally to
device speed. Therefore, we can project the effects of current trends in CPU, memory, and device

speeds as follows:

1. For copy semantics, the relationship between {4pp and i;/0, for applications with good
cache locality, may tend to tapp < t1/0 (I/O-intensive application) because CPU speeds are
increasing faster than memory bandwidth is. For applications with poor locality, t4pp may
scale similarly to 27/0. The relationship between 7,0 and L/0pnys tends totro > L/8pgys
(saturated CPU) for devices, such as high-speed networks, whose bandwidth is increasing
faster than that of memory.

2. For non-copy semantics, {4pp tends to scale similarly to ¢7/0. The relationship between ¢ 1/0
and L/0pmvs tends to t;;0 < L/0ppys (saturated physical I/O subsystem) because CPU
speed is improving faster than device bandwidth is.

Consequently, also for system throughput, current trends tend to reduce performance differences
between non-copy semantics, because of either relatively long-running applications or saturated
physical I/0 subsystem. For I/O-intensive applications, the tendency is to increase performance
differences between copy and non-copy semantics, because of saturation of CPU/memory in the
former and of the physical I/O subsystem in the latter.

9. Related work

Previous works on I/0O buffering have typically focused on optimizations using a particular seman-
tics, device, or application. We are not aware of other direct, controlled comparisons covering as
broad a range of buffering options as we present here.

The technique discussed here for emulated copy input with outboard buffering is a generalization
of those in {18, 8]. However, those works also use outboard buffering for copy elimination on output.
We, on the contrary, use simple VM manipulations to avoid copying on output, which may simplify
device interface design. Staging output through an outboard buffer may still be advantageous,
however, if, for example, there is hardware to compute the TCP checksum (which goes in the packet
header) while data is being DMAed from application buffer to outboard buffer (as in [18, 8]).

Fbufs [9] are system-allocated but are optimized with mixed semantics. Cached fbuf output has
semantics similar to emulated copy, but requires wiring and uses abort-on-write instead of TCOW.
Cached volatile fbuf output has semantics similar to share. Cached and cached volatile fbuf input
have semantics similar to weak move but use read-only buffers that must be deallocated explicitly.

We assumed the use of DMA for I/0, which is necessary for high throughput in most current
systems. Programmed I/O may make it unnecessary to wire application buffers, reducing latency,
but subject to page faults, which could cause deadlock if the faulted process is itself a (possibly user-
level) pager or is invoked by a pager. In our implementation, input-disabled pageout eliminates
wiring costs safely and cheaply. Programmed I/O may have the advantage of simplifying the
implementation of early demultiplexing [5, 2].
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There have been proposals to reduce the penalty of copying by integrating it with other data
touching operations, such as TCP checksumming [6]. Integration of checksumming on input has
semantic implications: If checksumming is integrated with the copy from device or system buffer
to application buffer, and the checksum is wrong, the application buffer will be overwritten with
faulty data, and the semantics is actually share, not copy. If a system buffer is involved (i.e., not
programmed I/O between device and application buffers), in our implementation, at least for long
data, it costs less to pass the data by VM manipulation and then read it for checksumming than
to read and write (one-step checksum and copy) the data [3].

We have assumed in this paper a one-to-one relationship between application buffers and network
packets. This may hold in datagram communication, but is uncommon in byte streams. In the
latter case, the sender fragments data into packets of variable length and adds a header and a trailer
to each packet; the receiver has to strip headers and trailers and concatenate data of successive
packets. In another paper [3], we show that early demultiplexing provides sufficient support for
multiple-packet emulated copy ¢f there is end-to-end agreement on the length of data transfers. We
propose a novel hardware feature, buffer snap-off [3], that removes the latter restriction.’

The work reported here concerns I/O data path (buffering) optimizations, but we would like to
point out recent work on I/O control-path optimizations, such as bypassing the operating system
(0S) [7, 10, 20] and separating control from data transfer [21, 15]. In terms of the analysis from
the previous section, bypassing the OS reduces the constant term of the base latency (i.e., the
latency for short data). Given that the wiring of application buffers requires OS intervention, OS
bypassing may imply some form of either unpageable buffer areas or application-level programmed
I/0 between application buffers and device controller.

10. Conclusions

We introduced a new taxonomy that characterizes in a structured way a very broad and general
range of options for I/0 data passing between applications and operating systems. We described the
implementation of data passing in Genie, a new I/0O framework that allows applications to select any
data passing semantics in the taxonomy. Using an implementation of Genie on NetBSD, we made
direct, controlled evaluations and comparisons of the different buffering semantics. We identified
the fundamental similarities and differences between the various semantics, assessed the impact of
different architectural support found in device controllers, and investigated how performance scales

with CPU and memory speeds.

The experiments demonstrated significant performance gains due to TCOW, input alignment,
region hiding, and input-disabled pageout. The results indicate that large 1/O performance im-
provements are possible in many Unix-derived operating systems by using emulated copy instead of
copy semantics. This substitution does not require changes in applications because both semantics
give the same integrity guarantees and can offer the same API.

At the I/0 rates tested, some additional latency reduction is possible by using emulated share
semantics, particularly at short data lengths. The scaling model predicts that larger relative im-
provements would occur when interfacing with faster devices or in shared-memory multiprocessors.
Emulated share semantics can also considerably further improve the system throughput in CPU-
bound I/0. Although emulated share semantics can offer the same API as copy semantics, the lower
integrity guarantees may require changes in applications. We expect that few or no changes would
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be necessary in multi-programmed or distributed applications that already lock and checkpoint
data.

Contrary to what might have been expected, we did not find system-allocated semantics to have
any consistent advantage relative to application-allocated semantics, even for devices with pooled
input buffering. In fact, we found that, for such devices, application-aligned, application-allocated
semantics offer essentially the same performance as system-allocated semantics, but less restric-
tions: Applications can’t choose the alignment or layout of their input buffers, but at least retain
access to their output buffers. Because system-allocated semantics may require either substan-
tial rework of pre-existing applications written for copy semantics or application-level copies that
negate performance improvements, we believe that emulated copy and emulated share semantics
— our two optimized application-allocated semantics — offer more practical and general approaches
for I/O performance improvement.
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