The Amulet Reference Manuals

Brad A. Myers
Rich McDaniel, Alan Ferrency, Andy Mickish,
Alex Klimovitski, Amy McGovern

June, 1995
CMU-CS-95-166
CMU-HCII-95-102

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

The Amulet User Interface Development Environment contains a comprehensive set of tools that make it
significantly easier to design and implement highly interactive, graphical, direct manipulation user interfaces.
Applications implemented in Amulet will run without modification on both Unix and PC platforms. Amulet
provides a high level of support, while still being Look-and-Feel independent and providing applications with
tremendous flexibility. Amulet currently provides a low-level toolkit layer, which is an object-oriented,
constraint-based graphical system that allows properties of graphical objects to be specified in a simple,
declarative manner, and then maintained automatically by the system. The dynamic, interactive behavior of the
objects can be specified separately by attaching high-level “interactor” objects to the graphics. Higher-level tools
are currently in production, which will allow user interfaces to be layed out without programming.

The Amulet toolkit is available for unlimited distribution by anonymous FTP. Amulet uses X/11 on Unix-based
systems and the native Windows NT graphics on PC’s. This document contains an overview with downloading
and installation instructions, a tutorial, and a full set of reference manuals for the Amulet system.

Copyright © 1995 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa Order No.
B326. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of NCCOSC or the U.S.
Government.



Keywords: User Interface Development Environments, User Interface Management
Systems, Constraints, Prototype-Instance Object System, Widgets, Object-Oriented
Programming, Direct Manipulation, Input/Output, Amulet, Garnet.



page iii

TABLE OF CONTENTS
1. AMULET OVERVIEW 1
1.1 Introduction 3
1.2 Amulet Mailing List 4
1.3 How to Retrieve and Install Amulet 4
1.3.1 The Amulet Manual 4
1.3.2 Installation on a PC 5
1.3.2.1 Retrieving and Unpacking the ZIP Files 5
1.3.2.2 Configuring Visual C++ 6
1.3.2.3 The Amulet Library Files 6
1.3.2.4 Compiling Test Programs and Demos 6
1.3.2.5 Using GWStreams to Simulate a Terminal Window 7
1.3.2.6 Writing and Compiling New Programs Using Amulet 7
1.3.2.7 PC filenames 8
1.3.3 Installation in Unix 9
1.3.3.1 Retrieving and Unpacking the TAR Files 9
1.3.3.2 Setting your Environment Variables 9
1.3.3.3 Generating the Amulet Library File 10
1.3.3.4 Compiling Test Programs and Examples 11
1.3.3.5 Writing and Compiling New Programs Using Amulet 11
1.3.3.6 Customizing the Makefile vars.custom Variables 11
1.4 Test Programs and Demos 14
1.5 Parts of Amulet 15
2. AMULET TUTORIAL 17
2.1 Setting Up 19
2.1.1 Install Amulet in your Environment 19
2.1.2 Copy the Tutorial Starter Program 19
2.1.3 Amulet Header Files 20
2.1.3.1 Basic header files 20
2.1.3.2 Advanced header files 21
2.2 The Prototype-Instance System 22
2.2.1 Objects and Slots 22
2.2.2 Dynamic Typing 23
2.2.3 Inheritance 23
2.2.4 Instances 27
2.2.5 Prototypes 28
2.2.6 Default Values 31
2.2.7 Destroying Objects 31
2.2.8 Unnamed Objects 31
2.3 Graphical Objects 32
2.3.1 Lines, Rectangles, and Circles 32
2.3.2 Groups 32
2.3.3 Am_Group 34
2.3.4 Am_Map 35
2.3.5 Windows 35
2.4 Constraints 35



page iv

2.4.1 Formulas
2.4.2 Declaring and Defining Formulas
2.4.3 An Example of Constraints
2.4.4 Values and constraints in slots
2.4.5 Constraints in Groups

2.5 Interactors
2.5.1 Kinds of Interactors
2.5.2 The Am_One_Shot_Interactor
2.5.3 The Am_Move_Grow_Interactor
2.5.4 A Feedback Object with the Am_Move_Grow_Interactor
2.5.5 Command Objects
2.5.6 The Am_Main_Event_Loop

2.6 Widgets

2.7 Debugging
2.7.1 The Inspector
2.7.2 Tracing Interactors

. ORE OBJECT AND CONSTRAINT SYSTEM
3.1 Introduction
3.2 Include Files
3.3 Objects and Slots
3.3.1 Get and Set
3.3.2 Slot Keys
3.3.3 Slot Types
3.3.4 The Basic Types
3.3.5 Bools
3.3.6 The Am_String Class
3.3.7 Storing Methods in Slots
3.3.8 Calling methods
3.3.9 Using Wrapper Types
3.3.9.1 Standard Wrapper Methods
3.3.10 Using Am_Value
3.4 Inheritance: Creating Objects
3.5 Parts
3.5.1 Parts Can Have Names
3.5.2 How Parts Behave With Regard To Create and Copy
3.5.3 Other Operations on Parts
3.6 Formulas
3.6.1 Formula Functions
3.6.1.1 Declaring Formulas
3.6.1.2 Formulas Returning Multiple Types
3.6.2 Using GV
3.6.3 Putting Formulas into Slots
3.6.4 Slot Setting and Inheritance of Formulas
3.7 Lists
3.7.1 Current pointer in Lists
3.7.2 Adding items to lists
3.7.3 Other operations on Lists
3.8 Iterators
3.8.1 Reading Iterator Contents
3.8.2 Types of Iterators
3.8.3 The Order of Iterator Items
3.9 Errors

36
36
37
39
40
42
43
44
45
46
47
48
48
51
51
51

53
55
56
56
56
57
58
59
60
60
61
61
62
63
63
64
66
66
67
67
68
68
70
70
71
72
73
73
73
74
74
75
75
76
76
77



3.10 Advanced Features of the Object System

3.10.1 Destructive Modification of Wrapper Values

3.10.2 Writing a Wrapper Using Amulet’s Wrapper Macros
3.10.2.1 Creating the Wrapper Data Layer
3.10.2.2 Using The Wrapper Data Layer
3.10.2.3 Creating The Wrapper Outer Layer

3.10.3 Using Am_Object_Advanced

3.10.4 Controlling Slot Inheritance

3.10.5 Controlling Formula inheritance

3.10.6 Writing and Incorporating Demon Procedures
3.10.6.1 Object Level Demons
3.10.6.2 Slot Level Demons
3.10.6.3 Modifying the Demon Set and Activating Slot Demons
3.10.6.4 The Demon Queue
3.10.6.5 How to Allocate Demon Bits and the Eager Demon

4. OPAL GRAPHICS SYSTEM
4.1 Overview
4.1.1 Include Files
4.2 The Opal Layer of Amulet
4.3 Basic Concepts
4.3.1 Windows, Objects, and Groups
4.3.2 The “Hello World” Example
4.3.3 Initialization and Cleanup
4.3.4 The Main Event Loop
~ 4.3.5 Am_Do_Events
4.4 Slots of All Graphical Objects
4.4.1 Left, Top, Width, and Height
4.4.2 Am_VISIBLE
4.4.3 Line Style and Filling Style
444 Am_HIT_THRESHOLD and Am_PRETEND_TO_BE LEAF
4.5 Specific Graphical Objects
4.5.1 Am_Rectangle
4.5.2 Am_Line
453 Am_Arc
4.5.4 Am_Roundtangle
4.5.5 Am_Polygon
4.5.5.1 The Am_Point_List Class
4.5.5.2 Using Point Lists with Am_Polygon
4.5.6 Am_Text
4.5.6.1 Fonts
4.5.6.2 Functions on Text and Fonts
4.5.6.3 Editing Text
4.5.7 Am_Bitmap
4.5.7.1 The Am_Image_Array Class
4.5.7.2 Using Images with Am_Bitmap
4.6 Styles
4.6.1 Predefined Styles
4.6.2 Creating Simple Line and Fill Styles
4.6.2.1 Thick Lines
4.6.2.2 Halftone Stipples
4.6.3 Customizing Line and Fill Style Properties
4.6.3.1 Color Parameter

page v

77
77
78
79
81
82
83
84,
84
85
85
87
87
39
90

91
93
93
93
94
94
95
96
96
96
97
97
97
97
98
98
98
99
99

100

101

102

102

103

104

105

105

105

106

106

107

107

108

108

108

109

110



page vi

4.6.3.2 Thickness Parameter 110
4.6.3.3 Cap_Flag Style Parameter 110
4.6.3.4 Join_Flag Style Parameter 111
4.6.3.5 Dash Style Parameters 111
4.6.3.6 Fill Style Parameters 112
4.6.3.7 Stipple Parameters 112

4.7 Groups 113
4.7.1 Adding and Removing Graphical Objects 114
4.7.2 Layout 114
4.7.2.1 Vertical and Horizontal Layout 114
4.7.2.2 Custom Layout Procedures 116

4.8 Maps 116
4.9 Methods on all Graphical Objects 119
4.9.1 Reordering Objects 119
4.9.2 Finding Objects from their Location 119
4.9.3 Beeping 120
4.9 .4 Filenames 120
4.9.5 Translate Coordinates 120
4.10 Windows 121
4.10.1 Slots of Am_Window 121
4.10.2 Am_Screen 122
4.11 Predefined formula constraints: 123

5. INTERACTORS AND COMMAND OBJECTS FOR HANDLING INPUT 125

5.1 Include Files 127
5.2 Overview of Interactors and Commands 127
5.3 Standard Operations 127
5.3.1 Designing Behaviors 128
5.3.2 General Interactor Operation 129
5.3.3 Parameters 129
5.3.3.1 Events 130
5.3.3.2 Graphical Objects 133
5.3.3.3 Active 135

5.3.4 Top Level Interactor 135
5.3.5 Specific Interactors 136
5.3.5.1 Am_Choice_Interactor 137
5.3.5.2 Am_One_Shot_Interactor 139
5.3.5.3 Am_Move_Grow_Interactor 140
5.3.5.4 Am_New_Points_Interactor 143
5.3.5.5 Am_Text_Edit_Interactor 146

5.4 Advanced Features 148
5.4.1 Output Slots of Interactors 148
5.4.2 Priority Levels 149
5.4.3 Multiple Windows 150
5.5 Command Objects 151
5.5.1 Parent hierarchy 152
5.5.2 Undo 154
5.5.2.1 Enabling and Disabling Undoing of Individual Commands 154
5.5.2.2 Using the standard Undo Mechanisms 154
5.5.2.3 Building your own Undo Mechanisms 157

5.5.3 Building Custom Command Objects 157
5.5.3.1 Command Objects for Am_Choice_Interactor and Am_One_Shot_Interactor 158

5.5.3.2 Command Objects for Am_Move_Grow_Interactors 159



5.5.3.3 Command Objects for Am_New_Point_Interactors
5.5.3.4 Command Objects for Am_Text_Interactors

5.6 Debugging

5.7 Building Custom Interactor Objects

6. WIDGETS
6.1 Introduction

6.1.1 Current Widgets

6.1.2 Customization

6.1.3 Using Widget Objects

6.1.4 Application Interface

6.2 The Standard Widget Objects

6.2.1 Slots Common to All Widgets

6.2.2 Border_Rectangle ’

6.2.3 Buttons and Menus
6.2.3.1 Am_Button_Command
6.2.3.2 Am_Menu_Line_Command
6.2.3.3 Am_Button
6.2.3.4 Am_Button_Panel
6.2.3.5 Am_Radio_Button_Panel
6.2.3.6 Am_Checkbox_Panel
6.2.3.7 Am_Menu
6.2.3.8 Am_Menu_Bar

6.2.4 Scroll Bars
6.2.4.1 Integers versus Floats
6.2.4.2 Am_Scroll_Bar Command
6.2.4.3 Horizontal and vertical scroll bars
6.2.4.4 Am_Scrolling_Group

6.2.5 Am_Text_Input_Widget
6.2.5.1 Am_Text_Input_Command

7. GEM--LOW-LEVEL GRAPHICS LAYER
7.1 Introduction
7.2 Include Files
7.3 Drawonables
7.3.1 Creating Drawonables
7.3.2 Modifying and Querying Drawonables
7.4 Drawing objects
7.4.1 General drawing operations
7.4.2 Image arrays and fonts
7.4.3 Clipping Operations
7.4.4 Regions
7.4.5 Specific Drawing Functions
7.5 Input Handling
7.5.1 Am_Input_Event_Handlers
7.5.2 Input Events
7.5.3 Main Loop

8. SUMMARY OF EXPORTED OBJECTS AND SLOTS

8.1 Am_Style:
8.2 Am_Font:

page vii

159
160
160
161

165
169
169
170
170
170
172
172
174
174
175
176
177
178
181
182
182
184
186
186
187
187
189
192
193

195
197
197
197
197
199
200
200
201
201
202
203
204
204
205
206

207
209
210



page viii

8.3 Predefined formula constraints: 210
8.4 Opal Graphical Objects 211
8.5 Interactors 214
8.6 Interactor Command Objects 217
8.7 Undo objects 218
8.8 Widget objects 219
8.9 Widget command objects 223

9. INDEX 228



1. Amulet Overview

This section provides an overview of Amulet, and contains retrieval and installation
instructions.

Copyright © 1995 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa
Order No. B326. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of NCCOSC or the U.S. Government.






Amulet Overview Page 3

1.1 Introduction

The Amulet research project in the School of Computer Science at Carnegie Mellon
University is creating a comprehensive set of tools which make it significantly easier to
create graphical, highly-interactive user interfaces. The lower levels of Amulet are called
the “Amulet Toolkit,” and these provide mechanisms that allow programmers to code
user interfaces much more easily. Amulet stands for Automatic Manufacture of Usable
and Learnable Editors and Toolkits.

This manual describes version 1.0 of Amulet.

Amulet is written in C++ and can be used with either Unix systems running X Windows
or PC’s running Windows NT. Therefore, Amulet is quite portable to various
environments. Computers currently running Amulet include Suns, HPs and PCs.

Amulet is being actively developed with these compilers:
e gcc2.6.3
e ObjectCenter 2.1.0
e Visual C++2.0

There is a known bug in the gcc 2.5.8 compiler involving premature destruction of local
variables that prevents it from being able to compile Amulet.

Amulet provides support for color and gray-scale displays. Amulet runs on X/11 R4
through R6, using any window manager such as mwm, uwm, twm, etc. It does not use
any X toolkit (such as Xtk or TCL). It has also been implemented using the native
Windows graphics system on the PC. Because of stack-size limitations on the 16-bit
Windows operating system, Amulet requires PC users to run Windows NT or Windows
95.

More details about Amulet are available in the Amulet home page on the World Wide
Web:

http://www.cs.cmu.edu/Web/Groups/amulet/amulet-home.html
which is updated periodically.

A previous project named Garnet was developed by the same people who are now
writing Amulet. It has features similar to those in Amulet, but is implemented in Lisp.
For information about Garnet, please refer to the Garnet home page:

http://www.cs.cmu.edu/Web/Groups/garnet/garnet-home.html



Page4  Amulet Overview

1.2 Amulet Mailing List

There is a mailing list called amulet-users@cs.cmu.edu where users and developers
exchange information about Amulet. Topics include user questions and software
releases. To be added to the list, please send your request to amulet-users-
request@cs.cmu. edu.

Please send questions about installing Amulet to amulet@cs.cmu.edu

You can also send bug reports directly to amulet-bugs@cs.cmu.edu. This mail is read
only by the Amulet developers.

Another mailing list, amulet-interest@cs.cmu.edu, is available for people who are
interested in learning only about new releases of Amulet.

1.3 How to Retrieve and Install Amulet

Amulet is available for free by anonymous FTP. It is in the public domain, so there are
no licensing restrictions.

There are different instructions for obtaining the software depending on whether it will
be installed on a PC or a Unix system. You will get only PC-specific or Unix-specific
files, depending on which package you download.

These instructions assume that a C++ compiler such as gcc, cc, or Visual C++ has been
installed properly on your system, and you know the location of your window manager
libraries, etc. Amulet is known to not compile in gcc 2.5.8, due to a compiler bug.

1.3.1 The Amulet Manual

The Amulet manual is distributed separately from the Amulet source code. It is available
in raw postscript format, or compressed using zip (for the PC) or-compress (for UNIX).
To download the Amulet manual, FTP to ftp.cs.cmu.edu (128.2.206.173) and login as
“anonymous” with your e-mail address as the password. Type “cd
/usr0/anon/project/amulet/amulet” (note the double amulet’s). Do not type a
trailing “/” in the directory name, and do not try, to cd there in multiple steps, since the
intermediate directories are probably protected from anonymous access.

Set the mode of your FTP connection to binary: Some versions of FTP require you to
type “binary” at the prompt, and others require something like “set mode binary”.

At the "ftp>" prompt, get the manual file you require using the get command:
“ammanual .ps” is raw postscript, “ammanual.zip” is PC zip format, and “ammanual.z”
is UNIX compress format.



Amulet Overview Page 5

1.3.2 Installation on a PC
1.3.2.1 Retrieving and Unpacking the ZIP Files

The source code and documentation for Amulet 1.0 is available in z1Pp files that make it
easy to install Amulet on a PC. To download the Amulet zzp files, FTP to
ftp.cs.cmu.edu (128.2.206.173) and login as “anonymous” with your e-mail address as
the password.

Type “cd /usr0/anon/project/amulet/amulet” (note the double amulet’s). Do not
type a trailing “/” in the name of the directory, and do not try to cd there in multiple
steps, since the intermediate directories are probably protected from anonymous access.

Set the mode of your FTP connection to binary: Some versions of FTP require you to
type “binary” at the prompt, and others require something like “set mode binary”.

At the "ftp>" prompt, do "get amulet.zip". This will retrieve a file that was prepared
with the command zip, which can easily be expanded on a PC.

Quit FTP, and unzip amulet.zip into the directory where you want it to reside,
preserving the directory structure. For example, if you use pkunzip and want to have
Amulet files in the c:\AMULET directory, type at the DOS prompt “pkunzip -d
amulet.zip c:\”.

It is easiest to use Amulet in the base directory \aMuLET. The turotial and installation
instructions assume you installed amulet in c: \aMmuLET. The provided .mak files expect
to find all your source files in that directory structure. If you place your Amulet
directory somewhere else, you will need to change all the makefiles to find your source
code elsewhere. The easiest but most tedious way to do this is to use Visual C++ to
remove all the old files from the project, and add all the new ones.

People familiar with PC nmake files may directly edit the .mak files to specify the
location of their files. This is somewhat dangerous, because changing the wrong parts of
the makefile may confuse Visual C++ and cause it to reject the file. To manually edit the
makefile, use your favorite editor to search and replace all occurances of ¢: \amulet with
your preferred pathname (for example, D: \blah\blah\amulet).

Next you should set the environment variable AMULET_DIR to the directory where you
installed Amulet. Go to the Program Manager, and open the Control Panel. Choose
System, and add AMULET_DIR = C:\amulet (substitute the appropriate pathname) to the
User Environment Variables section. Amulet uses this environment variable to look for
its dynamic link libraries, as well as some bitmap files in the demo programs. If the
AMULET_DIR is not set, Amulet looks in ¢: \amulet by default.



Page 6 Amulet Overview

Change to the directory c: \AMULET\BIN\ and launch the program GWSTREAM. EXE, then
close it again. This will register the program GWStreams with the Windows program
database. (This program will be used if you run the Amulet tests, discussed below.)

1.3.2.2 Configuring Visual C++

In the Visual C++ menubar, choose “Tools”, “Options”, and “Directories” to access the
search paths. Add the Amulet include directory c: \AMULET\ INCLUDE to the include path,
and add the Amulet library directory c:\AMULET\LIB to the library path. (If you
installed Amulet in some other directory, be sure to specify that directory instead.)

1.3.2.3 The Amulet Library Files

The PC distribution comes with a compiled version of the Amulet library files
amulet.lib and amuletd.lib. These are located in the directory aMuL.ET\L.IB. You
can use these libraries without recompiling them. The following paragraphs describe
how to compile the Amulet library if you want to test your Amulet installation, or if you
ever need to recompile the library..

Launch the Visual C++ application, and open the Visual C++ project file
C:\AMULET\BIN\AMULET.MAK. You can do this all in one step by double-clicking on the
aMULET.MAK file from the File Manager.

Choose the Build All option. Compiling Amulet may generate over 500 warnings in
Visual C++, but there should not be any errors.

AMULET.MAK generates either AMULETD.LIB for a “debugging” version of the Amulet
library file, or AMULET.LIB for a release build. Choose the version to compile in the
“Targets” choice of the “Project” menu. The standard Amulet library does not include
the debugger file inspectr. cpp, since this is not needed in all Amulet applications. To
use the inspector, you should include this file in your project explicitly.

Once you have generated either AMULETD.LIB Or AMULET.LIB, you are ready to write
your own Amulet programs and link them to the Amulet library. Section 1.3.2.4
discusses how you can build and run some of the Amulet demos and test programs. Your
first experience with Amulet programming should involve the Amulet Tutorial, which
includes a starter program and instructions to acquaint you with the compiling process.
When you are ready to write your own Amulet program, see the PC-specific Section
1.3.2.6 below for instructions about linking your new program to the Amulet library.

1.3.2.4 Compiling Test Programs and Demos

There are about 10 test programs included in Amulet that test the lower levels of Amulet:
the ORE object system, GEM graphics routines, OPAL graphical objects, Interactors
event handlers, and Widgets. The .mak files for these tests appear in the BIN\ directory.
While you can build and run these programs to test your installation of Amulet, they are
not intended to be particularly good examples of Amulet coding style. The test programs



Amulet Overview Page 7

use the GWStreams program, discussed below. The makefiles for these programs
assume you’ve installed Amulet in \AMULET, so if you want to try these programs and
have installed Amulet elsewhere, you’ll have to change the makefiles.

There are also some example programs in AMULET\SAMPLES\ *. Executables are provided
in the PC distribution for each of these programs. These programs are more like you
would write as an actual Amulet user, and are intended to be exerriplary code. Each of
these programs have their own .Max file in their subdirectory, and depend on the Amulet
library file aMuLET.LIB (see above). To regenerate a binary for any of these files, just
open the project file for the program, located in its AMULET\SAMPLES\ * subdirectory, and
build it.

See Section 1.4 for instructions and discussions about these demos and test programs.

1.3.2.5 Using GWStreams to Simulate a Terminal Window

The Amulet test programs were designed in a Unix environment, and require a simulated
terminal window for some output. The special utility GWStreams provides this terminal
window, and is called from the file GwsTREAM. EXE during execution of a test program.
When a test program asks you to type a character to continue, you will need to type into
the terminal window. Because GWStreams is not a real Unix terminal, you may need to
input something (just pressing Enter is enough) even if an Amulet sample program says
"Press Ctrl-D". If you encounter problems with too much tracing output (which could
cause some Amulet samples to crash on slower PCs), simply lock the output stream using
GWStreams controls or close GWStreams or its "STDIO" document window. You can
later unlock output or relaunch GWStreams. Output will be resumed.

1.3.2.6 Writing and Compiling New Programs Using Amulet

When you are ready to build your first Amulet program, you will need to set up your

Visual C++ project as follows:

e Create a new Visual C++ non-MFC project: In “General Settings” for the project,
choose “Not using MFC”.

e Add your program to the project.

e Make sure the Amulet include and library paths are set in Visual C++, as discussed in
Section 1.3.2.3.

e In settings for the C/C++ preprocessor, define NEED_BoOL and SHORT_NAMES. Also
define _Msc_ver and _winpows if they are not already defined.

¢ In settings for the linker input:

e Add the amuLETD.LIB library if you want to use the “debugging” version, or
AMULET.LIB for a streamlined version.

e If you want your program to handle terminal-style I/O, add the GwSTRMD.LIB
library for the “debugging” version, or GWSTRM.LIB for a streamlined
version. If your program does not input any data from the terminal, and
doesn’t need any terminal output, use the GWSTRM_D.LIB Or GWSTRM_.LIB
libraries instead.



Page 8 Amulet Overview

Now you are ready to build your project.

1.3.2.7 PC filenames

For historical and practical reasons, we are still using 8 character file names for the
Windows NT Amulet files. This manual generally refers to UNIX or machine
independant file names. The PC filenames are logically shortened versions of the UNIX
filenames. The following table describes the correspondence between PC and UNIX

filenames.

JUNIX filename
priority_list.h
standard_slots.h
symbol_table.h
value_list.h
object_advanced.h
formula_advanced.h
opal_advanced.h
inter_advanced.h
widgets_advanced.h
priority_list.cc
standard_slots.cc
symbol_table.cc
value_list.cc
testobject.cc
testcolor.cc
test_utils.h
test_utils.cc
testinput.cc
testlineprops.cc
testwinprops.cc
testwisizes.cc
testpoints.cc
testsubwins.cc
testtrans.cc
testMSl.cc
testfonts.cc
testlines.cc
command_basics.cc
inter_basics.cc
inter_choice.cc
inter_move_grow.cc
inter_new_points.cc
inter_ text.cc
testinter.cc
inspector.cc
button_widgets.cc
scroll_widgets.cc
testwidgets.cc
text_widgets.cc
goodbye_button.cc
goodbye_inter.cc

__PC filename
prty_lst.h

std_slot.h
symb_tbl.h
val_lst.h
object_a.h
form_a.h
opal_a.h
inter_a.h
widgts_a.h
prty lst.cpp
std_slot.cpp
symb_tbl.cpp
val_lst.cpp
testobj.cpp
testcolr.cpp
testutil.h
testutil.cpp
testinpt.cpp
testline.cpp
testwinp.cpp
testwins.cpp
testpts.cpp
testsubw.cpp
testtran.cpp
testmsl.cpp
testfont.cpp
testline.cpp
crnd_bas.cpp
intr_bas.cpp
intr_chc.cpp
intr_mvg.cpp
intr_npt.cpp
intr_txt.cpp
testintr.cpp
inspectr.cpp
btn_wdgt.cpp
scl_wdgt.cpp
testwidg.cpp
text_wid.cpp
bye_butn.cpp
bye_intr.cpp




Amulet Overview Page 9

1.3.3 Installation in Unix

1.3.3.1 Retrieving and Unpacking the TAR Files

The source code and documentation for Amulet 1.0 is available in compressed tar files
that make it easy to install Amulet on a Unix machine. To download the Amulet tar
files, FTP to ftp.cs.cmu.edu (128.2.206.173) and login as “anonymous” with your e-
mail address as the password.

Type “cd /usr0/anon/project/amulet/amulet” (note the double amulet’s). Do not
type a trailing “/” in the name of the directory, and do not try to cd there in multiple
steps, since the intermediate directories are probably protected from anonymous access.

Set the mode of your FTP connection to binary: Some versions of FTP require you to
type “binary” at the prompt, and others require something like “set mode binary”.

At the "ftp>" prompt, do "get amulet.tar.z". This will retrieve a compressed tar file
that can easily be expanded on a Unix system.

Quit FTP, and type "uncompress amulet.tar.z" and "tar -vxf amulet.tar" at the
Unix prompt to generate the amulet/ directory tree.

1.3.3.2 Setting your Environment Variables

The Amulet Makefiles have been written so that all Amulet users must set two
environment variables in their Unix shell before they can compile any program.
Consistent binding of these variables by all Amulet users ensures that the installed
Amulet binaries will always be compatible with user programs. Once Amulet has been
installed and programs are being written that only depend on its library file, it would be
possible for users to write their own Makefiles without regard to these variables.
However, we recommend that all Amulet users at a site continue to use consistent values
of environment variables to facilitate upgrading to future versions of the system.

There are two environment variables that all Amulet users must set in their Unix shell
before they can compile any program. Typically, these will be set in your .1login file:

® AMULET_DIR -- Set this to the root directory of the Amulet software hierarchy. For
example, "setenv AMULET DIR /usr/amickish/amulet’.

® AMULET VARS_FILE -- Set this to the particular Makefile.vars.* file appropriate
for your compiler and machine. This file will be included by the main Amulet
Makefile. Try compiling Amulet with this variable set to one of the pre-defined
files first. If the compilation does not finish smoothly, you probably need to make
changes to the variables in Makefile.vars.custom-- see instructions below, under
“Customizing the Makefile Variables”.



Page 10  Amulet Overview

e If you are at CMU, then there may be a sub-makefile already defined that is
appropriate for you. Set your AMULET VARS_FILE environment variable to one of
the following values:

Makefile.vars.gcc.Sun -- For gcc on a Sun
Makefile.vars.gcc.HP -- For gecc on an HP
Makefile.vars.cC.Sun -- For ObjectCenter’scc on a Sun

Makefile.vars.CC.HP -- For ObjectCenter’scc on an HP

For example, your .login might include the lines
setenv AMULET_DIR /afs/cs/project/amickish/work/amulet
setenv AMULET_VARS_FILE Makefile.vars.CC.HP

o If you are not at CMU, and none of the above Makefile.vars.* files are
appropriate, then you should set your AMULET_VARS_FILE variable to this file:

Makefile.vars.custom -- For any other configuration

For example, your .login might include the lines
setenv AMULET_DIR /usr/amickish/amulet
setenv AMULET_VARS_FILE Makefile.vars.custom

Only edit amulet/bin/Makefile.vars.custom while installing Amulet. See
“Customizing the Makefile.vars.custom Variables” below for a guide to the
Makefile variables.

1.3.3.3 Generating the Amulet Library File

After you have set your environment variables, cd into the bin/ directory and invoke
make, with no arguments. This generates many object files, and eventually 1ibamulet.a
will be deposited in the 1ib/ directory.

If the compile procedure is interrupted by an error, you probably need to customize the
Makefile variables for your platform. Set your AMULET VARS_FILE environment
variable to Makefile.vars.custom, and refer to Section 1.3.3.6. Change some of the
switches in Makefile.vars.custom, and recompile. If you are unable to compile
Amulet after trying different combinations of compiler switches, please send mail to
amulet-bugs@ cs.cmu.edu and we will try to make the Amulet code more portable.

Once you have generated libamulet.a, you are ready to write your own Amulet
programs and link them to the Amulet library. Your first experience with Amulet
programming should involve the Amulet Tutorial, which includes a starter program and
instructions to acquaint you with the compiling process. When you are ready to write
your own Amulet program, see the Unix-specific Section 1.3.3.5 below for instructions
about linking your new program to the Amulet library.



Amulet Overview Page 11

1.3.3.4 Compiling Test Programs and Examples

From the bin/ directory, doing “make all” generates about 10 executable binaries that
test the lower levels of Amulet: ORE object system, GEM graphics routines, OPAL
graphical objects, Interactors event handlers, and Widgets. You can run these programs
directly, such as “. /testgem”. While you can build and run these programs to test your
installation of Amulet, they are not intended to be particularly good examples of Amulet
coding style.

There are also some example programs in amulet/samples/*. These programs are
more like you would write as an actual Amulet user, and are intended to be exemplary
code. Each of these programs have their own Makefile in their subdirectory, and depend
on the Amulet library file 1ibamulet.a (see above). To generate binaries for these files,
just cd into their subdirectory and invoke make with no parameters.

See Section 1.4 for instructions and discussions about these demos and test programs.

1.3.3.5 Writing and Compiling New Programs Using Amulet

It is important to set your AMULET_DIR and AMULET_VARS_FILE environment variables,
and to retain the structure of the sample Makefiles in your local version. By keeping the
line “include $(AMULET_DIR)/bin/Makefile.vars” at the top of your Makefile, and
continuing to reference the Amulet Makefile variables such as FLags and cc, you will be
assured of generating binary files compatible with the Amulet libraries.

When you are ready to write a new program using Amulet, it is easiest to start with an
example Makefile. For example, you could copy the contents of samples/tutorial/
into your new directory, and edit the Makefile and sample file to begin your project.
From the start, you will be able to just invoke make in that directory to generate a binary
for your Amulet program. The examples in the Tutorial all start from this point, and can
be used as models for your programs.

1.3.3.6 Customizing the Makefile.vars.custom Variables

Although C++ is supposed to be a standardized language, there are differences among
compilers and machine architectures that still require different source code. Conditional
code is built into Amulet that depends on the definition of several variables at compile-
time, which you set according to your compiler and computer. This section is a guide to
the variables that control the conditional Amulet code. If, after juggling the compiler
variables documented below, you are still not able to compile Amulet, please send mail
to amulet-bugs@cs.cmu.edu SO we can try to make the Amulet code more portable.

Amulet is known to not compile in gcc 2.5.8, due to a compiler bug.



Page 12 Amulet Overview

Before changing any of the Makefile variables, you should try compiling Amulet once
(see Section 1.3.3.3, above). If the procedure does not terminate smoothly, you should
have some indication of what switches need to be added or changed. Make sure that your
AMULET_VARS_FILE environment variable is set to Makefile.vars.custom, and bring
this file up in an editor (found in amulet/bin/). This is the only file that should change.

The variables that control conditional Amulet code are defined with -p compiler
switches. For example, we have found that the cc libraries on Suns do not provide the
standard function memmove (), s0 we have to define it ourselves in Amulet. The Amulet
version of memmove () is only defined when the compiler switch -DNEED_MEMMOVE is
included in the compile call (which declares the variable NEED_MEMMOVE). By adding or
removing the -DNEED_MEMMOVE switch, you control whether Amulet defines memmove ().

The interface for defining these variables is the FLaGs list in Makefile.vars.custom.
For each variable var, you would include the switch ~-Dvar in the Fracs list to define
the variable, or simply leave out the switch to avoid defining the variable. By iteratively
adding or removing these variables from your FLAGS list and recompiling Amulet, you
should be able to install Amulet on your system.

Compiler Variables:
HP -- Including -paP in the rFLags list will cause some type
casting required for HP’s, inappropriate for other machines.
GCC -- Including -pccc in the FLacs list causes different header
files to be referenced than when Amulet is compiled with cc
or Visual C++.
NEED_BOOL -- Including -DNEED_BOOL in the FLAGS list causes Amulet to

define the bool type. This type is pre-defined in gcc.

Including -DNEED_MEMMOVE in the FLAGS list causes Amulet
to define its own memmove () function. This function is
missing in some C libraries.

NEED_MEMMOVE

Including -DNEED_STRING in the FLAGS list causes Amulet to
include the standard header file strings.h in special places
required by some versions of the cc compiler.

NEED_STRING



Amulet Overview Page 13

DEBUG -- Including -DDEBUG in the FLAGs list causes Amulet debug-
ging code to be compiled into your binaries. This allows you
to turn on tracing of internal Amulet behavior, which might
help you understand why a program behaves unexpectedly.
Not defining bEBUG will make your binaries slightly smaller,
and you will not be able to turn on tracing.

Makefile Variables:

cC -~ Your compiler, such as /usr/local/bin/gce.

LD --  Your linker, such as /bin/1d.

OP -- Options you want to pass to your compiler, such as -g which
tells gcc to put debugging information in the binaries.

FLAGS -- A list of switches to pass to the compiler, including the
Amulet compiler variables listed above and any include paths
not pre-defined for your compiler.

LIBS -~ A list of libraries to link, such as -1x11 and -1g++.

XLIB Pathnames:

Some compilers on Unix systems do not know where to find the XLIB library
and include files. You may need to include the pathnames for your XLIB files in
the FLAGS list in Makefile.vars.custom. The include path should be provided
with the -1 switch (pronounced “eye”), and the library path should be provided
with the -1 switch.

For example, if your XLIB files reside in /usr/include/X11R5/x11/ and
/usr/1lib/X11R5/%11/, your FLAGS definition might look like this:

FLAGS = -I$(AMULET DIR)/include -DGCC -DDEBUG -DHP \
-I/usr/include/X11R5 -L/usr/lib/X11R5

Note that a backslash is required at the end of a line when the definition of a
Makefile variable continues on the next line.



Page 14  Amulet Overview

1.4 Test Programs and Demos

The procedure for compiling and executing the demos and test programs is different
depending on your platform. See section 1.3 for PC-specific and Unix-specific
instructions for installing Amulet and compiling the demos.

hello -~ This program creates a window and displays “hello world” in it. You
can exit by hitting control-ESC.

go’odbye_button
-- This program creates a button widget on the screen which quits when
pressed.

goodbye_inter
-- This program displays “goodbye world” in a window, and an interactor
causes the program to quit when the text is clicked on.

tutorial -- This program just creates a window. It is the starting point for all the
examples in the Tutorial.

checkers -- This is a two-player checkers game that demonstrates the multi-screen
capabilities of Amulet in Unix. You can run it on two screens by
supplying the names of the displays when the program is executed, as
in “checkers my_machine:0.0 your_machine:0.0”. On the PC,
you can still run this program, but it can only be displayed on one
screen.

space -- This program demonstrates many features of Amulet: constraints,
bitmaps, polylines, widgets, and scrolling windows. Some of the
interactions to try are:

e Leftdown in the background of the Short-Range Scan creates a ship

e Leftdown on an existing ship moves it

e Middledown+drag (or META-leftdown+drag on PC) from one ship to
another draws phasers and destroys the destination ship

e Rightdown+drag from one ship to another establishes a tractor beam
which stays attached to the ships through constraints

e Dragging the white rectangle in the Long-Range Scan changes the
visible area in the Short-Range Scan. You can scroll the visible area
with the scroll-bars or by dragging the white feedback rectangle in
the Long-Range Scan.



Amulet Overview Page 15

1.5 Parts of Amulet

Amulet is divided into various layers, which each have their own interface (and chapter
of this manual). The overall picture is shown below.

Widgets
Opal Interactors and
Graphics Commands

ORE objects and constraints |

Gem low-level graphics layer

Window manager
(X/11 or Windows)

The Gem layer provides a machine-independent interface so the rest of Amulet is
independent of the particular window manager in use. Most programmers will not need
to use Gem. Ore provides a prototype-instance object system and constraint solving that
is used by the rest of Amulet. Opal provides an object-oriented interface to the output
graphics, and the Interactors and Command objects handle input processing. At the top
are a set of Widgets, including scroll bars, buttons, menus and text input fields.






2. Amulet Tutorial

Abstract

Amulet is a user interface development environment that makes it easier to create highly
interactive, direct manipulation user interfaces in C++ for Windows NT or Unix X/11. This
tutorial introduces the reader to the basic concepts of Amulet. After reading this tutorial and
trying the examples with a C++ compiler, the reader will have a basic understanding of: the
prototype-instance system of objects in Amulet; how to create windows and display
graphical objects inside them; how to constrain the positions of objects to each other using
formulas; how to use interactors to define behaviors on objects (such as selecting objects
with the mouse); how to collect objects together into groups; how to use the Amulet
widgets; and how to use some of the debugging tools in Amulet.

Copyright © 1995 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa
Order No. B326. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or
implied, of NCCOSC or the U.S. Government.






Tutorial Page 19

2.1 Setting Up

2.1.1 Install Amulet in your Environment

Before beginning this tutorial, you should have already installed Amulet in your
computing environment, according to the instructions in the Amulet Overview. If you are
using Unix, you should set your AMULET_DIR and AMULET VARS_FILE environment
variables according to the installation instructions. The Visual C++ environment will be
automatically set up for PC users through a predefined project file, mentioned below.
This tutorial assumes that you are familiar with c++ and with the editor and compiler
environments on your system.

In this tutorial, you will be introduced to the most common programming layer of
Amulet, where you can create windows, graphical objects, interactors, and widgets. It
includes code examples that can you can type in and compile yourself, along with
discussions of Amulet programming techniques.

There is another programming interface to Amulet at the Gem layer (the Graphics and
Events Module). By accessing the Gem layer, you can explicitly call the functions that
Amulet uses to draw objects on the screen. Most Amulet users will not need to call Gem
functions directly, because Amulet objects redraw themselves automatically once they
are added to a window. Gem is only needed by programmers who cannot get sufficient
performance using the higher layers.

2.1.2 Copy the Tutorial Starter Program

Throughout this tutorial, you will be typing and compiling code to observe its behavior.
A starter program is installed with Amulet in the directory samples/tutorial/ in Unix,
or in samples\tutorial\ in Windows NT. By following the instructions in this tutorial,
you will iteratively edit and recompile this program in your local area while learning
about Amulet.

If you are using Unix, copy the tutorial/ directory and its contents into your local
filespace. Your copy of the directory should contain the Makefile and tutorial.cec.
From the tutorial/ directory, invoke make which will generate tutorial.o and
tutorial. You should be able to execute the tutorial binary which creates a window
in the upper-left corner of the screen. Exit the program by placing the mouse in the
Amulet window (and clicking in the window to make it active, if necessary) and type the
Amulet escape sequence, SHIFT-ESC.

If you are using Windows NT, copy the tutorial\ directory and its contents into your
local filespace. If Amulet is installed in your CAAMULET directory, you might copy the
tutorial files with the following sequence of commands:

mkdir tutorial
copy c:\amulet\samples\tutorial\*.* tutorial



Page 20 Tutorial

Your copy of the directory should contain the source code tutorial.cpp and the project
file tutorial.mak. From the File Manager, double-click on tutorial.mak to launch
Visual C++ and load the project file. If you change the tutorial working directory, you’ll
have to change the makefile so Visual C++ can find your source code. Add the files
tutorial.cpp, and src\debug\inspectr.cpp. If you choose “Build” from the
“Project” menu, and then run the program, a window will be created in the upper-left
corner of the screen. To exit the program, click the mouse in the Amulet window to make
it active, and type the Amulet escape sequence, SHIFT-ESC.

If you have trouble copying the starter program or generating the tutorial executable,
there may be a problem with the way that Amulet was installed at your site. Consult the
Amulet Overview for detailed instructions about installing Amulet. In Windows NT, the
GW Streams program must be executing to see output or type input for an Amulet
program.

2.1.3 Amulet Header Files

The only header file you need to include in your Amulet programs is amulet.h, which
will include all of the others for you. However, some programmers like to look at header
files, and they can be found in the include/amulet/ directory if you are using Unix,
and in include\amulet\ if you are using Windows NT.

Amulet header files fall into two categories, Basic, and Advanced. Basic header files
define all the standard objects, functions, and global variables that Amulet users might
need to write various applications. Advanced header files define lower level Amulet
functions and classes which would be useful to an advanced programmer interested in
creating custom objects in addition to the default objects Amulet supports. Most users
will only ever include the Basic header files.

2.1.3.1 Basic header files

The header file amulet.h includes all the headers most amulet programmers will ever
needtotme:standard_slots.h,value_list.h,gdefs.h,idefs.h,opal.h,inter.h,
and widgets.h. Here is a summary of the basic header files, listing the major objects,
classes, and functions they define.

o gdefs.h: Am_Style, Am_Font, Am Point_List, Am Image_Array
® idefs.h: Am_Input_Char, default am_ Input_cChar’s

e object.h: Am Object, Am_String, Am Value, Am_Slot,
Am_Instance_JIterator, Am_Slot_Iterator, Am_Part_Iterator

® standard_slots.h: standard slot names, Am Register Slot_Kevy,
Am_Register_Slot_Name, Am_Get_Slot_Name, Am_Slot_Name Exists

¢ opal.h: default Am_style’s, default Am_Font’s, Am_Screen,
Am Graphical_Object, Am_Window, Am Rectangle, Am_Roundtangle,
Am_Line, Am_Arrow, Am_Polygon, Am_Arc, Am_Text, Am_Bitmap, Am_ Group,

Am_Map, default constraints, Am_Initialize, Am Cleanup, Am Beep,



Tutorial Page 21

Am_Move_Object, Am_To_Top, Am To_Bottom, Am_Create_Screen, Am_Update,
Am Update_All, Am Do_Events, Am_Main_Event_Loop,
Am_Exit_Main_Event_Loop, default am_Point_In_ functions,
Am_Translate_Coordinates, Am_Merge_Pathname

formula.h: Am_Formula, Am_ Declare_Formula, Am Define_Formula,
Am_Declare_Value_Formula, Am_Define Value_Formula

value_list.h: Am_Value_List
text_fns.h: all text editing functions, Am_Edit_Translation_Table

inter.h: Am_Interactor, Am_Choice_Interactor,
Am_New_Points_Interactor, ,Am_One_Shot_Interactor,

Am_Move_Grow_Interactor, Am_Text_Edit_Interactor, Am Where Functions,

interactor debugging functions, Am_Command, Am_Choice_Command,
Am_Move_Grow_Command, Am New_Points_Command, Am_Edit_Text_Command,
Am_Undo_Handler, Am_Single_Undo_Object, Am_Multiple_Undo_Object

widgets.h: Am_Border_Rectangle, Am Button, Am_Button_Panel,
Am_Checkbox_Panel, Am_Radio_Button_Panel, Am Menu, Am_Menu_Bar,
Am_Button_Command, Am_Menu_Line_ Command, Am Scroll_Command,
Am_Vertical_Scroll_Bar, Am_Horizontal_Scroll_Bar, Am Scrolling_ Group
Am_Text_Input_Widget

debugger .h: Am Initialize_Inspector, Am Inspect, Am_Text_ Inspect

2.1.3.2 Advanced header files

All other header files are considered Advanced header files. They support advanced
Amulet features, such as user-defined objects, daemons, constraints, and so on. Most
users should never include these files explicitly. For users who will be using Amulet’s
advanced features, here is a brief summary of the contents of each advanced header file.

gem.h: Am_Drawonable, Am_Input_Event, Am_Input_Event_Handlers,
Am_Region

am_io.h: Am_TRACE

object_advanced.h: Am_Demon_Queue, Am_Demon_Set, Am_Constraint,
Am_Constraint_TIterator, m_Dependancy_Iterator, Am_Slot_Advanced,
Am_Object_Advanced, Am_Constraint_Context, Ore_Initialize

priority_list.h: Am_Priority_ List_TItem, Am Priority_ List
symbol_table.h: Am_Symbol_Table

types.h: NULL, Am Error, Am Wrapper, Am_WRAPPER_DECL,
Am WRAPPER_IMPL, Am WRAPPER DATA DECL, Am WRAPPER_ DATA IMPL

formula_advanced.h: Am_Formula_Advanced, Am_Depends_TIterator

opal_advanced.h: Am_Aggregate, advanced opal object slots,
Am_Draw_Method, Am_Draw, Am_Invalid_Method, Am_Invalidate,
Am_Point_In_Obj_Method, Am_Translate_Coordinates_Method,
Am_State_Store, Am_TItem Function, Am_Invalid_Rectangle_Intersect,
Am_Window_ToDo

inter_advanced.h: Am_TInitialize_Interactors, Am Action_Function,
Am_Four_Ints_Data, Am_Interactor_Input_Event Notify,
Am_Inter Tracing, Am Get_Filtered_Input, Am_Modify_ Object_Pos,



Page 22 Tutorial

Am_Choice_Command_Set_Value, interactor Am_*_Action functions,
Am_Command functions, Undo handler functions

e widgets_advanced.h: Computed_Colors_Record, Am_Button_Command
functions, Am_Checkbox, Am Radio_Button_Item, Am_Menu_Item, widget
drawing functions, widget formula constraints, other widget support
functions

2.2 The Prototype-Instance System

The most common action performed in Amulet is to create objects and display them in
windows on the screen. am_oObject is a fundamental data type in Amulet. Lines, circles,
groups and windows are all objects. These are all prototype objects -- you make
instances of these objects, and customize them to have your desired size and position, as
well as other graphic qualities such as filling styles and line styles. The instances will
have default property values determined by their prototypes if you don’t supply values
yourself. Thus, Amulet is a prototype-instance system.

For a complete list of all of Amulet’s default prototype objects, see Chapter 8, Summary
of Exported Objects and Slots.

2.2.1 Objects and Slots

The properties of an Amulet object are stored in its slots. A rectangle’s slots contain
values for its left, top, width, height, line-style, filling-style, etc. In the following code,
a rectangle is created and its slots are set with new values (it is not necessary to type in
this code, it is just for discussion):

Am_Object my_rect = Am Rectangle.Create (“my_rect”)
.Set (Am_LEFT, 20)
.Set (Am_TOP, 20)
.Set (Am_LINE_STYLE, Am_Black)
.Set (Am_FILIL_STYLE, Am Red);

int my_ left = my rect.Get (Am LEFT); // my_left has value 20

The set operation sets the values of slots, and the corresponding Get operation retrieves
them. set takes a slot key, like am_LEFT, and a new value to store in the slot. Get takes
a slot key and returns the value stored in the slot. A slot key is just an index into the set
of slots in an object.

k3

There are many pre-defined slot keys used by Amulet objects, all starting with the “Am_
prefix, declared in the header file standard_slots.h. Slot keys that you create for your
own use need to be declared with special Amulet functions, as in:

Am_Slot_Key MY SLOT = Am_Register_ Slot_Name ("MY_SLOT");

There are many examples of setting and retrieving slot values throughout this tutorial.



Tutorial Page 23

An important difference between C++ classes and Amulet objects is that Amulet allows
the dynamic creation of slots in objects. A program can add and remove slots from an
object as required by the given situation. In C++ classes, only the class’s data can be
modified at runtime -- modifying a class’s structure would require recompiling.

2.2.2 Dynamic Typing

Another difference between Amulet objects and C++ classes involves the type
restrictions of the values being stored. In C++ classes, you are restricted to defining
member variables of a specific type, and you can only store data of that type in the
variables. In contrast, Amulet uses dynamic typing, where the type of a slot is
determined by the value currently stored in it. So, any slot can hold any type of data.

Amulet achieves dynamic typing by overloading the set and cet operators. There are
versions of set and Get that handle most simple C++ types including int, float,
double, char, and bool. They also handle more general types like strings, Amulet
objects, functions, and void*. Other types are encapsulated in a type called am_wrapper,
which allows C++ data structures to be stored in slots.

For example, if your code contains:
int i = obj.Get (Am_LEFT);

then Amulet looks in the slot am_r.EFT and if the value there is an integer, it is assigned to
i. If the value there is not an integer, however, this causes an error. If you do not know
what type a slot contains, you can get the slot into a generic Am value type or ask the
slot what type it contains using obj.Get_Slot_Type (these are explained in the ORE
manual).

Unfortunately, some compilers cannot always correctly determine the type to use for a
slot access, and you might have to cast values that are passed to set or retrieved by Get.
The following instruction casts the value retrieved from ob3j’s am_LEFT slot into an int,
so that it can be compared to another int:

if ((int)obj.Get(Am_LEFT)) > 10) {

Some compilers even get confused with perfectly unambiguous expressions involving
Am_objects and other types of wrappers. In this case, you need to put the variable
declaration in a separate statement from its assignment:

Am_Object obj; /Husing two statements works!
obj = my_object.Get (Am_PARENT) ;

2.2.3 Imheritance

When instances are created, an inheritance link is established between the prototype and
the instance. Inheritance is the property that allows instances to get values from.their



Page 24 Tutorial

prototypes without specifying those values in the instances themselves. For example, if
we set the filling style of a rectangle to be gray, and then we create an instance of that
rectangle, then the instance will also have a gray filling style. Naturally, this leads to an
inheritance hierarchy among the objects in the Amulet system. In fact, there is one root
object in Amulet -- the am_Graphical_object --that all graphical objects are instances
of. Figure 2-1 shows some of the objects in Amulet and how they fit into the inheritance
hierarchy.

Am_Rectangle]

Am_Roundt angle]

[Am_Graphical_Obj ect

Am_Polygon]

Figure 2-1: The inheritance hierarchy among some of the Amulet prototype objects.
Objects shown in bold are used by all Amulet programmers, while the others are internal,
and intended to be accessed only by advanced users. All of the standard shapes in
Amulet are instances of the Am _Graphical oObject prototype. As an example of
inheritance, the am Map and am_Group objects are both special types of aggregates, and
they inherit most of their properties from the am_aAggregate prototype object. The
Widgets (the Amulet gadgets) are not pictured in this hierarchy, but most of them are
instances of the am_aAggregate object.

Am Aggregate

To see an example of inheritance, let’s create an instance of a window and look at some
of its inherited values. If you have followed the instructions in Section 2.1.2, you should
have the file tutorial.cc (Unix) or tutorial.cpp (PC) in your local area. On Unix,
bring up tutorial.cc in an editor, or on the PC double-click on the tutorial.cpp
icon in the Visual C++ Project Window, to show the code pictured in Figure 2-2.

If you have not already compiled this file, do so now. In UNIX, invoke make in your
tutorial/ directory to generate the tutorial binary. On the PC, select “Build” from
the “Project” menu. Execute tutorial to create a window in the upper-left corner of the
screen.



Tutorial Page 25

#include <amulet/amulet.h>
#include <amulet/debugger.h>

main (void)
{ -
Am_TInitialize {);

Am Object my win = Am Window.Create ("my_win")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 50);

Am_Screen.Add_Part (my_win);

Am_Tnitialize_Inspector {(my_win); /#Allow Inspector -- see Section 2.7.1
Am Main_ Event_Loop (); // Process events -- see Section 2.5.5
Am Cleanup (); // Destroy Amulet prototypes and classes

}

Figure 2-2: The initial contents of tutorial.cc / tutorial.cpp

I

(=7 Amutet |21 ]

‘='iAmulet|' IA

Figure 2-3: The window created by tutorial, as displayed by the Motif window
manager in Unix X/11 (left), and by Windows NT on the PC (right).

The tutorial program creates an object called my_win, which is an instance of
Am Window. A value of 20 was installed in its am_LEFT slot and 50 in its am_Top slot.
These values are reflected in the position of the window on the screen.

To check that the slot values are correct, bring up the Amulet Inspector to examine the
slots and values of the window. Move the mouse over the window and press the F1 key.
The Amulet Inspector will pop up a window that displays the slots and values of
my_win, as shown in Figure 2-4. You will see many slots displayed, some of which are
internal and not intended for external use. In general, the slots with “*”s in their names
are internal slots. Many of the other slots are “advanced” and should not be needed by
most programmers. Chapter 8 of this manual called “Summary of Exported Objects”
lists the primary exported slots of the main Amulet objects.



Page 26 Tutorial

S ' | Inspector <my_win:Am_Window> (0x7b033a88) | | A

:{Inspecting <my_win:Am Window> (0x7b033a88)
|Press “g=quit. “p=Previous Object. Left c¢lick on int value to edit.
Right click on object to inspect. (Shift-Right for new win)

|Instance of <Am Window:NULL> (07b033d9¢c)
Part of <Am Screen:NULL> (0x7b033db4)

1Slots:
WINDOW (constraint = 0x4003b8d8) : <my win:Am Window> (07b034064)
LEFT : 20
TOP : 50

WIDTH : 100

HEIGHT : 100

TITLE : Amulet

FILL STYLE : 0x4002a9d8

*DRAWONABLE* : 0x4003£100

i GRAPHICAL PARTS : 0x0

*DRAW METHOD* : 040025422

|Parts:

<Ask_Inspect_Inter 12:Ask Inspect_Inter> (0x7b033234)
<Show Position_Inter_ 10:Show_Position_Inter> (0x7b033e24)
<Inspector_ Inter 8:Inspector_ Inter> (0x7b033e24)

I |

Figure 2-4: The Amulet Inspector displaying the slots and valués of my_win. (The set
of slots actually displayed has been abridged in this picture so that it will fit on the page.)

The am_rLEFT and Am_TOP slots of my_win shown in the Inspector contain the expected
values. Additionally, the Am_WIDTH and Am_HEIGHT slots contain values that were not set
by the tutorial program. These values were inherited from the prototype. That is, they
were defined in the am_window object when it was created, and now my_win inherits
those values as its own. The Inspector shows they are inherited by displaying the slots
in blue. We could, however, override these inherited values.

Currently, the inspector does not update the display when the values change (say because
you move the window with the mouse). However, you can explicitly update the
inspector by typing control-r in the inspector window.

To exit the tutorial program and destroy the Amulet window, position the mouse over the
window (and click to select the window, if necessary) and type SHIFT-ESC.

Let’s change the width and height of my_win using set, the function that sets the values
of slots. Edit the source code, and immediately after the definition of my_win add the
following lines:



Tutorial Page 27

my_win.Set (Am_WIDTH, 200)
.Set (Am_HEIGHT, 400);

Notice that we can cascade the calls to set without placing semi-colons at the end of
each line. set makes this possible by returning the object that is being changed, so that
the return value of set can be used without intermediate binding. After compiling and
executing the file, and hitting F1 to invoke the Inspector, you can see that we have
successfully overridden the am_wIDTH and Am_HEIGHT slots in my_win with our local
values.

The counterpart to set is Get, which retrieves values from slots. The Inspector uses
Get on my_win to obtain the values to print in the Inspector window. We can use Gget
directly by typing the following code into the source code, after the definition of my_win:

int left my_win.Get (Am LEFT);
int width nmy_win.Get (Am_WIDTH) ;
cout << "left == " << left << endl;
cout << "width == " << width << endl;

Try deleting the code we used to set the left, top, width, and height of the window, and
see what values are printed by the cout statement.

The inheritance hierarchy which was partially pictured in Figure 2-1 is traced from the
leaves toward the root (from right to left) during a search for a value. Whenever we use
Get to retrieve the value of a slot, the object first checks to see if it has a local value for
that slot. If there is no value for the slot in the object, then the object looks to its
prototype to see if it has a value for the slot. This search continues until either a value
for the slot is found or the root object is reached. When no inherited or local value for
the slot is found, an error is raised. This might occur if you are asking for a slot from the
wrong object.

2.2.4 Instances

Typically, all the objects displayed in a window are instances of other objects. In
tutorial, my win is an instance of am_window. Let’s create several instances of
graphical objects and add them to my_win. First, make sure that your window is large
enough, at least 200x200. You could change your definition of my_win to look
something like this:

Am Object my win = Am Window.Create ("my_win")
.Set (Am_ LEFT, 20)
.Set (Am_TOP, 50)
.Set (Am_WIDTH, 200)
.Set (Am_HEIGHT, 200);

Am_Screen.Add_Part (my_win); // Puts my_win on the screen

Now we can create several graphical objects and add them to the window. Type the
following code into the tutorial program, then recompile and execute tutorial.



Page 28 Tutorial

Am_Object my_arc = Am Arc.Create ("my_arc")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10);

Am_Object my_text = Am_Teéext.Create ("my_text")
.Set (Am_LEFT, 80)
.Set {(Am_TOP, 30)
.Set (Am_TEXT, "This is my_text");

Am_Object my_rect = Am_Rectangle.Create ("my_rect")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 100)
.Set (Am_WIDTH, 180)
.Set (Am_HEIGHT, 80)
.Set (Am_FILL_STYLE, Am Red);

my_win.Add_Part (my_arc)
.Add_Part (my_text)
.Add_Part (my_rect);

The circle, text, and rectangle will be displayed in the window. You can position the
mouse over any of the objects and hit r1 to display the slots of the object in the
Inspector. If you hit F1 while the mouse is over the background of the window, you
will raise the Inspector for the window itself. While inspecting my_win, you can see at
the bottom of the Inspector display that the new objects have been added as parts of the

window.

Amulet supplies a large collection of objects that you can make instances of, including
the basic graphical primitives like rectangles and circles, and the standard widgets like
menus, buttons and scroll bars. Chapter 8, called “Summary of Exported Objects” at the
end of the manual, lists the main exported Amulet objects you can make instances of.

2.2.5 Prototypes

When programming in Amulet, inheritance among objects can eliminate a lot of
duplicated code. If we want to create several objects that look similar, we could create
each of them from scratch and copy all the values that we need into each object.
However, inheritance allows us to define these objects more efficiently, by creating
several similar objects as instances of a single prototype.

Figure 2-5: Three instances created from one prototype rectangle.




Tutorial Page 29

To start, look at the picture in Figure 2-5. We are going to define three rectangles with
three different filling styles and put them in a window. Using your current version of
tutorial, make sure it will create a window of size at least 200x200.

Now let’s consider the design for the rectangles. The first thing to notice is that all of the
rectangles have the same width and height. Therefore, we will create a prototype
rectangle which has a width of 40 and a height of 20, and then we will create three
instances of that rectangle. To create the prototype rectangle, type the following.

Am_Object proto_rect = Am _Rectangle.Create ("proto_rect")
.Set (Am_WIDTH, 40)
.Set (Am_ HEIGHT, 20);

This rectangle will not appear anywhere, because it will not be added to the window.
But now we need to create the three actual rectangles that will be displayed. Since the
prototype has the correct values for the width and height, we only need to specify the
left, top, and filling styles of our instances.

Am_Object rl = proto_rect.Create ("rl")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 20)
.Set (Am_FILL_STYLE, Am White);

Am_Object r2 = proto_rect.Create ("r2")
.Set (Am_LEFT, 40)
.Set (Am_TOP, 30)
.8et (Am_FILL_STYLE, Am_Gray_Stipple);

Am_Object r3 = proto_rect.Create ("r3")
.Set (Am_LEFT, 60)
.8et (Am_TOP, 40)
.Set (Am_FILI, STYLE, Am_ Black);

my_win.Add_Part(rl)
.Add_Part (r2)
.Add_Part (r3);

After you recompile and execute, you can see that the instances r1, r2, and r3 have
inherited their width and height from proto_rect. You may wish to use the Inspector
to verify this. With these three rectangles still in the window, we are ready to look at
another important use of inheritance by changing values in the prototype.

Bring proto_rect up in the Inspector by selecting it from a display of one of the
instances. That is, if r1 is already displayed in the Inspector, the line “Instance of
<proto_rect:Am_Rectangle>" will appear at the top of the Inspector window, with
proto_rect shown in bold. When you click the right mouse button on proto_rect, the
contents of the Inspector window will be replaced by the slots and values of
proto_rect. You could also hold down the shift key while clicking the right mouse
button over proto_rect to bring up its display in a new Inspector window.



Page 30 Tutorial

The 1nspector displays values of slots in bold, and these values can be edited to change
the properties of the object being inspected. (Currently, only the editing of integer values
is supported, but eventually all kinds of values will be editable through the Inspector).
When you click the left mouse button in an integer value, a cursor appears and you can
use standard Amulet text editing commands to change the value. Here is a brief
summary of text editing commands (note: “~£” means “hold down coNTROL and press
the ‘f’ key).

~f or rightarrow -- forward ~k -- kill (or delete) rest of line
one character ~y, INSERT -- insert the contents of the
~bor leftarrow -- backward cut buffer into the string at the
one character current point
~a -- go to beginning of line ~c  -- copy the current string into the cut
~e -- goto end of line buffer
~h, DELETE, BACKSPACE -- ~g -- aborts editing and returns the string
delete previous character to the way it was before editing
“w, “DELETE, "BACKSPACE -- started
delete previous word leftdown (inside the string) -- move the
~d -- delete next character cursor to the specified point
~u -- delete entire string

All other characters go into the string (except other control characters which beep).

By editing the values in the Inspector window, change the width of proto_rect to 30
and change its height to 40. The result should look like the rectangles in Figure 2-6.
Just by changing the values in the prototype rectangle, we were able to change the
appearance of all its instances. This is because the three instances inherit their width and
height from the prototype, even when the prototype changes.

Figure 2-6: The instances change whenever the prototype object changes.

For our last look at inheritance in this section, let's override the inherited slots in one of
the instances. Suppose we now want the rectangles to look like Figure 2-7. In this case,
we only want to change the dimensions of one of the instances. Bring r3 (the black
rectangle) up in the Inspector, and change the value of its width slot to 100.



Tutorial Page 31

The rectangle r3 now has its own value for its am_wIDTH slot, and no longer inherits it
from proto_rect. If you change the width of the prototype again, the width of r3 will
not be affected. However, the width of r1 and r2 will change with the prototype,
because they still inherit the values for their am_wIDTH slots. This shows how inheritance
can be used flexibly to make specific exceptions to the prototype object.

Figure 2-7: The width of r3 is overridden by a local value, and is no longer inherited
from the prototype.

2.2.6 Default Values

Because of inheritance, all instances of Amulet prototype objects have reasonable default
values when they are created. As we saw in Section 2.2.3, the am_window object has its
own Am_WIDTH value. So, if an instance of it is created without an explicitly defined
width, the width of the instance will be inherited from the prototype, and it can be
considered a default value. Section 8 contains a complete list of Amulet objects and the
default values of their slots.

2.2.7 Destroying Objects

After objects have fulfilled their purpose, it is appropriate to destroy them. All objects
occupy space in memory, and continue to do so until explicitly destroyed (or the program
terminates). A Destroy () method is defined on all objects, so at any point in a program
you can do obj.Destroy () to destroy obj.

When you destroy a graphical object (like a line or a circle), it is automatically removed
from any window or group that it might be in and erased from the screen. Destroying a
window or a group will destroy all of its parts. Destroying a prototype also destroys all of
its instances.

2.2.8 Unnamed Objects

Sometimes you will want to create objects that do not have a particular name. For
example, you may want to write a function that returns a rectangle, but it will be called
repeatedly and should not return multiple objects with the same name. In this case, you
should return an unnamed rectangle from the function, and allow Amulet to generate a
unique name for you.



Page 32 Tutorial

As an example, the following code creates unnamed objects and displays them in a
window. Instead of supplying a quoted name to create, we invoke it with no
parameters.

Am Object obj;
for (int i=0; i<10; i++) {
obj = Am_Rectangle.Create()
.Set (Am_LEFT, i*10)
.Set (Am_TOP, i*10);
my_win.Add_Part (obj);
}

When no name string is supplied to Create, Amulet generates a unique name for the
object being created. In this case, something like <Am_Rectangle_5:Am_Rectangle>.
This name has a unique number as a suffix that prevents it from being confused with
other rectangles in Amulet. '

2.3 Graphical Objects

2.3.1 Lines, Rectangles, and Circles

The Opal module provides different graphical shapes including circles, rectangles,
roundtangles, lines, text, bitmaps, and polygons. Each-graphical object has special slots
that determine its appearance, which are fully documented in chapter 4 and summarized
in section 8.4. (For example, am_Line uses the slots am_x1, Am Y1, Am X2, and Am_v2.)
Examples of creating instances of graphical objects appear throughout this tutorial.

2.3.2 Groups

In order to put a large number of objects into a window, we might create all of the
objects and then add them, one at a time, to the window. However, this is usually not
how we organize the objects conceptually. For example, if we were to create a
sophisticated interface with tool palettes, icons with labels, and feedback objects, we
would not want to add each line and rectangle directly to the window. Instead, we would
think of creating each palette from its composite rectangles, then creating the labeled
icons, and then adding each assembled group to the window.

Grouping objects together like this is the function of the am_Group object. Any
graphical object can be part of a group - lines, circles, rectangles, widgets, and even other
groups. Usually all the parts of a group are related in some way, like all the selectable
icons in a tool palette. '

Groups define their own coordinate system, meaning that the left and top of their parts is
offset from the origin of the group. Changing the position of the group translates the
position of all its parts. However, there is no complementary feature of scaling groups to
change the size of all the parts. Groups also clip their parts to the bounding box of the



Tutorial Page 33

group, meaning that objects outside the left, top, width, or height of the group are not
drawn.

In Amulet terminology, a group is the owner of all of its parts. The Add_prart () and
Remove_Part () methods are used to add and remove parts. You can optionally provide
a slot key (a slot name, such as am_LEFT) in an Add_pPart () call. If a slot key is
provided, then in addition to becoming a part of the group, the new part will be stored in
that slot of the group. Parts with slot keys are instantiated when instances of an existing
group are created, but parts without a key are not. It is often convenient to provide slot
keys for parts so that functions and formulas can easily access these objects in their
groups.

Objects may be added directly to a window or to a group which, in turn, has been added
to the window. When groups have other groups as parts, a group hierarchy is formed.

Gray Background]

Indicator

[Scroll Bar

Top Trill Box

Bottom Trill Box

Figure 2-8: One possible hierarchy for the objects that make up a scroll bar.

In the scroll bar hierarchy, all of the leaves correspond to shapes that appear in the scroll
bar. The leaves are always Amulet graphic primitives, like rectangles and text. The
nodes Top_Trill_Box and Bottom Trill_Box are both groups, each with two parts.
And, of course, the top-level scroll_Bar node is a group.

This group hierarchy should not be confused with the inheritance hierarchy that was
discussed earlier. Parts of a group do not inherit values from their owners. Instead,



Page 34 Tutorial

relationships among groups and their parts must be explicitly defined using constraints, a
concept which will be discussed shortly in this tutorial.

2.3.3 Am_Group

Am_Group and Am_Map are used to form groups of other objects. They both define their
own coordinate system, so that their parts are offset from the origin of the group.

You may create a group and add components to it in distinct steps, or you can use the
cascading style of method invocation to perform all the set and add_part operations in
one expression. Figure 2-9 shows an example of a group that contains an arc and a

rectangle.

// Declared at the top-level, outside of main ()

/ You may install new slots in any object, but if they are not pre-defined Amulet slots, starting with the
“Am_" prefix, then

// you must define them seperately at the top-level. See Section 2.2.1.

Am_Slot_Key ARC_PART Am_Register_Slot_Name ("ARC_PART");
Am_Slot_Key RECT_PART Am Register_Slot_Name ("RECT_PART");

// Defined inside of main ()
Am_Object my_group = Am Group.Create ("my_group")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 20)
.Set (Am_WIDTH, 100)
.Set (Am_HEIGHT, 100)
.Add_Part (ARC_PART, Am Arc.Create ("my_circle")
.Set (Am_WIDTH, 100)
.Set (Am_HEIGHT, 100))
.Add_Part (RECT _PART, Am Rectangle.Create ("my_rect")
.Set (Am_WIDTH, 100)
.Set (Am_HEIGHT, 100)
.Set (Am_FILL_STYLE, Am No_Stvle)});

// Instances of my._group
Am_Object my_group2 = my_group.Create ("my_ group2")
.Set (Am_LEFT, 150);

Am_Object my_group3 = my_group.Create ("my_group3")
.Set (Am_TOP, 150);

// Don’t forget to add the graphical objects to the window!
my_win.Add_Part (my_group)

.Add_Part (my_group2)

.Add_Part (my_group3);

Figure 2-9: A group with two components, and two instances of that group.

The add_part () method is reminiscent of set -- it takes an optional slot key and an
object to install in the group. In addition to making the object an official part of the
group, it is installed in the given slot in the group. Thus, the objects my_circle and



Tutorial Page 35

my_rect are stored in slots ARC_PART and RECT_PART of my_group. The slots ARC_PART
and RECT_PART are pointer slots because they point to other objects. These slots provide
immediate access to these objects through my_group, which is useful when defining
constraints among the objects. Once installed, the parts can be retrieved by name from
the group with the methods Get () and Get_part ().

When an instance of my_group is created, all of the named parts are duplicated in the
new group. Thus, my_group2 and my_group3 are groups with the same structure as
my_group, but at different positions.

2.3.4 Am_Map

A map is a kind of group that has similar parts, all generated from a single prototype. In
an Am_Map, a single object is defined to be an item-prototype, and instances of this object
are generated according to a set of items. See the Opal chapter for details and examples
of maps.

2.3.5 Windows

Any object must be added to a window in order for it to be shown on the screen. Or, the
object must be added to a group that, in turn, has been added to a window. All objects in
a window are continually redrawn as necessary while the Am_Main_Event_Loop() is
running (see Section 2.5.5).

As shown in previous examples, objects are added to windows using the Add_part ()
method. Subwindows can also be attached using add_part (), using exactly the same
syntax for adding groups or other graphical objects.

2.4 Constraints

In the course of putting objects in a window, it is often desirable to define relationships
among the objects. For example, you may want the tops of several objects to be aligned,
or you might want a set of circles to have the same center, or you may want an object to
change color if it is selected. Constraints are used in Amulet to define these relationships
among objects.

Constraints can be arbitrary C++ code, and can contain local variables and calls to
functions. They may also have side effects on unrelated data structures with no ill effect,
including setting slots and creating and destroying other Amulet objects.

Although all the examples in this section use constraints on the positions of objects, it
should be clear that constraints can be defined for filling styles, strings, or any other
property of an Amulet object. Many examples of constraints can be found in the
following sections of this tutorial.



Page 36 Tutorial

2.4.1 Formulas

A formula is an explicit definition of how to calculate the value for a slot. If we want to
constrain the top of one object to be the same as another, then we define a formula for
the am_Top slot of the dependent object. With constraints, the value of one slot always
depends on the value of one or more other slots, and we say the formula in that slot has
dependencies on the other slots.

An important point about constraints is that they are constantly maintained by the system.
That is, they are evaluated once when they are first created, and then they are continually
re-evaluated when any of their dependencies change. Thus, if several objects depend on
the top of a certain rectangle, then all the objects will change position whenever the
rectangle is moved.

Figure 2-10: Three objects that are all aligned with the same top. The top of the gray
rectangle is constrained to the white rectangle, and the top of the black circle is
constrained to the top of the gray rectangle.

2.4.2 Declaring and Defining Formulas

There are several macros that are used to define formulas. These macros expand to
conventional function definitions, but with special context information that Amulet uses
to keep track of the constraint’s dependencies. The particular macro you should use to
define your formula depends on the type of the value to be returned from the formula.

Am_Define_Formula (type, formula_name) -- General purpose: returns
specified type

Am_Define No_Self_Formula.(type, function_name) -- General purpose:
returns specified type. Used when the formula does not reference
the special self variable, so compiler warnings are avoided.

Am Define Value_ Formula (formula_name) -- Return type iSs Am_Value

Am_Define Value List_Formula (formula_name) -- Return type is
Am_Value_List

Am_Define_Object_Formula (formula_name) -- Returntype is Am Object



Tutorial Page 37

Am_Define_Style_Formula (formula name) -- RenuntypeiSAm_Style
Am_Define_Font_Formula (formula_name) -- Return type is Am Font

Am_Define_Point_List_Formula (formula_name) -- Return type is
Am_Point_List

There are complimentary declaration macros that you can use in your own header files,
when a formula is defined in one source file and referenced in another.

Am_Declare_Formula (type, formula_name)
Am_Declare_No_Self_ Formula (type, formula_name)
Am_Declare_Value_Formula (formula name) »
Am_Declare_Value List_Formula (formula_name)

Am Declare_Object_Formula (formula_name)
Am_Declare_Style_Formula (formula_name)

Am Declare_Font_Formula (formula_name)

Am_Declare_Point_List_Formula (formula_ name)

2.4.3 An Example of Constraints

As our first example of defining constraints among objects, we will make the window in
Figure 2-10. Let’s begin by creating the white rectangle at an absolute position, and then
create the other objects relative to it.

The constraints in the following examples will reference global values, and it is essential
that the object variables and formulas be defined at the top-level of the program, outside
of main (). Create the window and the first box with the following code.



Page 38 Tutorial

// Defined at the top-level, outside of main ()
Am_Object my_win, white_rect, gray_rect, black arc;

// Defined inside main ()

// Create the window and display it on the screen
my_win = Am Window.Create ("my_win")

.Set (Am_LEFT, 20)

.Set (Am_TOP, 50)

.Set (Am_WIDTH, 260)

.Set (Am_HEIGHT, 100);
Am_Screen.Add_Part (my_win);

// Create the white rectangle
white_rect = Am Rectangle.Create ("white_rect")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 30)
.Set (Am_WIDTH, 60)
.Set (Am_HEIGHT, 40)
.Set (Am_FILL_STYLE, Am_White);

// Add the rectangle to the window
my win.Add_Part (white_rect);

We are now ready to create the other objects that are aligned with white_rect. We
could simply create another rectangle and a circle that each have their top at 30, but this
would lead to extra work if we ever wanted to change the top of all the objects, since
each object’s am_ToP slot would have to be changed individually. If we instead define a
relationship that depends on the top of white_rect, then whenever the top of
white_rect changes, the top of the other objects will automatically change, too. Define
and use a constraint that depends on the top of white_rect as follows:

// Define this at the top-level, outside of main()

Am_Define_Formula (int, top_of_white_rect) { / The formulais named top_of white_rect
return white_rect.GV (Am_TOP) ; /Y and returns an int

}

// Define this inside main (), after white_rect
gray_rect = Am_Rectangle.Create ("gray_rect")
.Set (Am_LEFT, 110)
.Set (Am_TOP, Am_Formula: :Create (top_of_white_rect))
.8et (Am_WIDTH, 60)
.Set (Am HEIGHT, 40)
.Set (Am_FILL_STYLE, Am_Gray_Stipple);

my_win.Add_Part (gray_ rect);
Without specifying an absolute position for the top of the gray rectangle, we have

constrained it to always have the same top as the white rectangle. The formula in the
am_ToP slot of the gray rectangle was defined using the macro am_Define_Formula and



Tutorial Page 39

Am_Formula::Create(). The am Define Formula macro helps to define a function to
be used as a constraint. The formula is named top_of_white_rect, and returns an int.

The macro Gv () means “get value”, and it is just like Get (), except that gv () causes a
dependency to be established on the referenced slot, so that the formula will be
reevaluated when the value in the referenced slot changes. Typically, you will always
want to use gv () inside of formulas, and Get () inside of normal functions.

To see if our constraint is working, bring up the Inspector on white_rect by hitting F1
while the mouse is positioned over the white rectangle. Change the top of white_rect
and notice how the gray rectangle stays aligned with its top. This shows that the formula
in gray_rect is being re-evaluated whenever its depended values change.

Now we are ready to add the black circle to the window. We have a choice of whether to
constrain the top of the circle to the white rectangle or the gray rectangle. Since we are
going to be examining these objects closely in the next few paragraphs, let's constrain the
circle to the gray rectangle, resulting in an indirect relationship with the white one.
Define another constraint and the black circle with the following code.

// Define this at the top-level, outside of main ()

Am_Define_Formula (int, top_of_gray_rect) {
return gray_rect.GV (Am_TOP);

}

// Define this inside main (), after gray._rect
black_arc = Am _Arc.Create {("black_arc")
.8et (Am_LEFT, 200)
.Set (Am_TOP, Am_ Formula::Create (top_of_gray rect))
.Set (Am_WIDTH, 40)
.Set (Am HEIGHT, 40)
.8et (Am_FILIL_STYLE, Am_Black);

my_win.Add_Part (black_arc);

At this point, you may want to inspect the white rectangle again and change its top just to
see if the black circle follows along with the gray rectangle.

2.4.4 Values and constraints in slots

What happens if you set the am_Top of the gray rectangle now? The default for most
slots, including the am_ToP slot of Am_Rectangle, is for the value you set to replace the
formula you put in the slot. Try setting the am_Top of the gray rectangle now, by hitting
F1 over the rectangle, and editing the value of its am_ToP slot. You should see that the
rectangle will now have a different position which will not be recalculated, because the
formula that was in the slot has been destroyed.

In some slots of certain objects, such as the button widgets, there are formulas in the slots
by default which are required to maintain proper behaviour of the objects. If the
formulas were destroyed, the object would no longer work as expected. These slots have



Page 40 Tutorial

a special flag set which tells Amulet to keep the formula around even if you set the slot
with a new value, and to reevaluate the formula if any of its dependencies change.
Setting these slots with a new value does not replace the formula in the slot, it simply
overrides the current cached value of the formula.

Any slot can be set so that formulas will not be destroyed when the slot is set. This is
currently an advanced feature of Amulet, which is described in the advanced section of
the ORE chapter.

2.4.5 Constraints in Groups

As mentioned in Section 2.3.3, parts can be stored in pointer slots of their group, making
it easier for the parts to reference each other. Additionally, the owner is set in each part
as they are added to a group. In this section, we will examine how pointer slots and
variations on the Gv function can be used to communicate among parts of a group.

The group we will use in this example will make the picture of concentric shapes in
Figure 2-11. Suppose that we want to be able to change the size and position of the
shapes easily, and that this should be done by setting as few slots as possible.

Figure 2-11: A group with two parts.

From the picture, we see that the dimensions of the rectangle are the same as the
diameter of the circle. Therefore, it will be helpful to put slots for the size and position at
the top-level of the group, and have the parts reference these top-level values through

formulas.



Tutorial Page 41

// Declared at the top-level, outside of main ()
Am_Slot_Key ARC_PART = Am_Register_ Slot_Name ("ARC_PART");
Am_Slot_Key RECT_PART = Am_Register_Slot_Name ("RECT_PART"):;

/self is an Am_Object parameter to all formulas that holds the object the constraint is in.

// The Am_Define_Formula macro expands to define self and some other necessary variables.
Am_Define_Formula (int, owner_width) {

return self.GV_Owner () .GV (Am _WIDTH) ;
}

Am Define_Formula (int, owner_height) {
return self.GV_Owner() .GV (Am_HEIGHT) ;
}

// Defined inside of main ()
Am_Object my_group = Am Group.Create ("my_group")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 20)
.Set (Am_WIDTH, 100)
.Set (Am_HEIGHT, 100)
.Add_Part (ARC_PART, Am_ Arc.Create {("my_circle")
.Set (Am WIDTH, Am Formula::Create (owner_width))
.Set (Am HEIGHT, Am Formula::Create (owner_height)))
.Add_Part (RECT_PART, Am Rectangle.Create ("my_rect")
.Set (Am WIDTH, Am_Formula::Create (owner_width})
.8et (Am_HEIGHT, Am_ Formula::Create (owner_height))
.Set (Am _FILL_STYLE, Am No_Style));

Both parts of my_group get their position and dimensions from the top-level slots in
my_group. The reference to my_group from the arc is through the cv_owner ()
function, which links the part to its group. The special variable self is used in the
formulas to reference slots within the object that the formula is installed on. The arc’s
left and top are relative to the origin of my_group, so as it inherits a position of (0,0)
from the am_arc prototype, it will appear at (20,20) in the window.

Finally, notice that the parts do not "inherit" any values from their owner. Adding parts
to a group sets up a group hierarchy, where values travel back-and-forth over constraints,
not inheritance links. If you want a part to depend on values in its owner, you have to
define constraints.

The slot names for the parts could have been used to define the constraints, also. Instead
of asking its owner for its dimensions, the rectangle part could have asked the arc for its
dimensions. In this example the result would be the same, but here are alternate
definitions for the rectangle’s width and height formulas to illustrate the use of aggregate
pointer slots:

Am_Define_ Formula (int, arc_width) {
return self.GV_Owner () .GV_Part {(ARC_PART) .GV(Am_WIDTH) ;

}

Am_Define_Formula (int, arc_height) {
return self.GV_Owner () .GV_Part (ARC_PART) .GV (Am_HEIGHT) ;
}



Page 42 Tutorial

2.5 Interactors

Graphical objects do not directly respond to any input events. Instead, you create
invisible “interactor” objects and attach them to objects to respond to input. Sometimes
you may just want a function to be executed when the mouse is clicked, but often you
will want changes to occur in the graphics depending on the actions of the mouse.
Examples include moving objects around with the mouse, editing text with the mouse
and keyboard, and selecting an object from a given set.

Interactors are described in detail in chapter 5, and a summary of interactors can be
found in the object summary, section 8.6. It is important to note that all of the widgets
(Section 2.6 and chapter 6) come with their interactors already attached. Therefore, you
do not need to create interactors for the widgets.

The fundamental way that the interactors communicate with graphical objects is that they
set slots in the objects in response to mouse movements and keyboard key strokes. That
is, they generate side effects in the objects that they operate on. For example, the
Am_Move_Grow_Interactor sets the left, top, width, and height slots of objects. The
Am_Choice_Interactor sets the Am_SELECTED and Am_INTERIM_ SELECTED slots to
indicate when an object is currently being operated on. You might define formulas that
depend on these special slots, causing the appearance of the objects (i.e., the graphics of
the interface) to change in response to the mouse. The examples in Sections 2.5.2, 2.5.3,
and 2.5.4 show how you can use interactors this way.

A more advanced way to use interactors (and widgets) is through their command objects
(Section 2.5.5). Command objects contain methods that support undo, help, and
selective enabling of operations associated with interactors and widgets. They can also
contain a custom function that will be executed whenever the user operates the interactor
or widget.

Figure 2-12 shows the general data flow when input events occur: the user hits a
keyboard key or a mouse event, which is passed to the window manager. The Gem layer
of Amulet converts it into a machine-independent form and passes it to the Interactors
which finds the right interactor object to handle the event. Each interactor has an
embedded command object that causes the appropriate action to take place. If this
interactor is part of a widget, then the command object in the interactor calls the widget’s
command object. Eventually, some graphics will be modified in the Opal layer, which is
automatically transformed into drawing calls at the Gem level, and then to the window
manager.




Tutorial Page 43

Opal | | Gem | Window

{ . :l E Manager @
Command in | | Widget | -] Command in | | Interactors || Gem | ’;IVindow
Widget Interactor Manager

Figure 2-12: The data flow when events come from the user.

In this section we will see some examples of how to change graphics in conjunction with
interactors. Section 2.7.2 describes how to use an important debugging function for
interactors called Am_set_Inter_Trace(). Although this tutorial only gives examples
of using the Am One_shot_Interactor and Am Move_Grow_Interactor, there are
examples of interactors in demo and test programs included with the Amulet files. For
example, see samples/demo_space/demo_space.cc in your Amulet source files
(instructions for compiling and running these programs are in the Overview chapter).

2.5.1 Kinds of Interactors

The design of the interactors is based on the observation that there are only a few kinds
of behaviors that are typically used in graphical user interfaces. Currently, Amulet
supports five types of interactive behavior, which allows a wide variety of user actions in
an interface. Below is a list of the available interactors.

* Am_Choice_Interactor - This is used to choose one or more from a set of
objects. The user is allowed to move around over the objects (getting interim
feedback) until the correct item is found, and then there will often be final
feedback to show the final selection. The am _Choice_Interactor can be used
for selecting among a set of buttons or menu items, or choosing among the
objects dynamically created in a graphics editor.

* Am_One_Shot_Interactor - This is used whenever you want something to happen
immediately, for example when a mouse button is pressed over an object, or
when a particular keyboard key is hit. Like the am_Choice_iInteractor, the
Am_One_shot_Interactor can be used to select among a set of objects, but it
will not provide interim feedback—the one where you initially press will be the
final selection. The Am One_shot_Interactor is also useful in situations where
you are not selecting an object, such as when you want to get a single keyboard
key.

* Am_Move_Grow_Interactor - This is useful in all cases where you want a
graphical object to be moved or changed size with the mouse. It can be used for
moving and growing objects in a graphics editor.



Page 44 Tutorial

* Am_New_Points_Interactor - This interactor is used to enter new points, such as
when creating new objects. For example, you might use this to allow the user to
drag out a rubber-band rectangle for defining where a new rectangle should go.

* Am_Text_FEdit_Interactor - This supports editing the text string of a text object.
It supports a flexible key translation table mechanism so that the programmer
can easily modify and add editing functions. The built-in mechanisms support
basic text editing behaviors.

* Am_Rotate_Interactor - This interactor will support rotating graphical objects.
It is not yet implemented.

* Am Gesture_Interactor - This interactor will support free-hand gestures, such as
drawing an X over an object to delete it, or encircling a set of objects to be
selected. It is not yet implemented.

* Am_Animation_Interactor - This interactor will support animations and time-
based events. It is not yet implemented.

2.5.2 The Am_One_Shot_Interactor

In this example, we will perform an elementary operation with an interactor. We will
create a window with a white rectangle inside, and then create an interactor that will
make it change colors when the mouse is clicked inside of it. First, make sure you have
working code that creates a window (maybe from Section 2.2.4), then add the following
definitions to your program. Remember to add the rectangle to your window using

Add_Part().

// Defined at the top-level, outside of main ()
Am_Define_Style_Formula (compute_f£fill) {
// bool is a Boolean type defined by Amulet. Often you need to cast the
// value returned from GV, since a slot can contain any type of object.
if ((bool) self.GV (Am_SELECTED))
return Am_Black;
else
return Am_White;

// Defined inside main ()
Am_Object changing rect = Am_Rectangle.Create ("changing rect")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 30)
.Set (Am WIDTH, 60)
.Set (Am_HEIGHT, 40)
.Set (Am_SELECTED, false) //Set by the interactor
.Set (Am FILL_STYLE, Am Formula::Create (compute_£fill));

my_win.Add_Part (changing_rect);

From the definition of the compute _£ill formula, you can see that if the am_SELECTED
slot in changing_ rect were set to true, then its color would turn to black. You can test



Tutorial Page 45

this by bringing up the Inspector on changing_rect, and editing the value of the slot.
Conveniently, setting the am_SELECTED slot is one of the side effects of the
Am_One_Shot_Interactor. The following code defines an interactor which will set the

Am_SELECTED slot of an object, and attaches it to changing_rect.
Am_Object color_inter = Am_ One_Shot_TInteractor.Create ("color_inter");
changing rect.Add_Part (color_inter);

Now you can click on the rectangle repeatedly and it will change from white to black,
and back again. From this observation, and knowing how we defined the compute_f£i11
formula of changing_rect, you can conclude that the am_one_shot_Interactor is
setting (and clearing) the Am_sELECTED slot of the object. This is one of the functions of

this type of interactor.

Figure 2-13: The rectangle changing_rect when its Am_SELECTED slot is false (the
default), and when it is set to true by the interactor (when the mouse is clicked over it).

2.5.3 The Am_Move_Grow_Interactor

From the previous example, you can see that it is easy to change the graphics in the
window using the mouse. We are now going to define several more objects in the
window and create an interactor to move and grow them. The following code creates a

prototype circle and several instances of it.

Am_Object moving_circle = Am_Arc.Create ("moving circle")
.Set (Am_WIDTH, 40)
.Set (Am_HEIGHT, 40)
.Set (Am_FILL_STYLE, Am_No_Style) ;

Am_Object objs_group = Am_Group.Create ("objs_group")
.Set (Am_WIDTH, Am Width_ Of_Parts)
.Set (Am_HEIGHT, Am_Height_ Of_Parts)
.Add_Part (moving_circle.Create(})
.Add_Part (moving_circle.Create().Set (Am _LEFT, 50))
.Add_Part (moving circle.Create().Set (Am_LEFT, 100));

Now let’s create an instance of the am_Move_Grow_Interactor which will cause the
moving circles to change position. The following interactor, when added to objs_group,

works on all the parts of that group.



Page 46 Tutorial

Am_Object objs_mover = Am_Move_Grow_Interactor.Create ("objs_mover")
. .Set (Am_START WHERE_TEST, (Am_Object_Proc*)&Am Inter_In_Part);

objs_group.Add_Part (objs_mover) ;

Notice that the interactors by default operate directly on the object they are attached to
(with Add_part), as shown in the changing_rect example. However, by setting the
Am_START WHERE_TEST slot to Am_Inter_In_Part, you can have an interactor work on
any part of a group. A few other tests are provided in inter.h, or you can write your
own start-where-test procedure to return whatever object is appropriate.

Now if you press and drag in any of the circles, they will follow the mouse. This is
because the interactor sets the left and top slots of the objects it acts on.

While the program is running, you can bring up the Inspector on the objs_mover
interactor and change the value of some of its slots to alter its behavior. (You will have
to inspect a circle first, then inspect its owner, and then find the interactor in its list of
parts to activate the Inspector for objs_mover.) Click in the value field of the
objs_mover’s Am_GROWING slot and change the value to true. Now dragging the circles
will cause them to change size rather than move.

2.5.4 A Feedback Object with the Am_Move_Grow_Interactor

Now let's add a feedback object to the window that will work with the moving circles. In
this case, the feedback object will appear whenever we click on and try to drag a circle.
The mouse will actually drag the feedback object, and then the real circle will jump to
the final position when the mouse is released.

Our feedback object will be a circle with a dashed line. The feedback_circle object
defined below will have its left, top, and visible slots set by the interactor. Given our
moving_circle prototype, the feedback object is easy to define:

Am Object feedback_circle = moving circle.Create ("feedback circle")
.Set (Am_LINE_STYLE, Am_ Dashed_Line)
.Set (Am_VISIBLE, false);

my_win.Add_Part (feedback_circle);

// The definition of the interactor, with feedback object

Am_Object objs_mover = Am_Move_Grow_Interactor.Create ("objs_mover")
.Set (Am_START WHERE_TEST, (Am_Object_Proc*)&Am_ Inter_In_Part)

.Set (Am_GROWING, true) // Makes the circles grow instead of move
.Set (Am_FEEDBACK_OBJECT, feedback_circle);

objs_group.Add_Part (objs_mover);

// Don’t forget to add feedback_circle and objs_mover to the right owners!



Tutorial Page 47

The am_vIsSIBLE slot of feedback_circle is initialized to false, because we do not
want it visible unless it is being used by objs_mover. The interactor will set the
am_vISIBLE slot to true and false as it is needed. Now when you move or grow the
circles with the mouse, the feedback object will follow the mouse, instead of the real
circle following it directly.

2.5.5 Command Objects

All interactors and widgets have command objects associated with them stored as the
am_coMMAND part. Command objects contain functions that determine what the interactor
will do as it operates. For example, you can store a function in a command object that
will be executed as the interactor runs in order to cause side-effects in your program.
You can also store functions in a command object to support undo, help, and selective
enabling of operations. There is a library of pre-defined command objects, so you can
often use a command object from the library without writing any code. See demo_space
and testinter for examples of how to use command objects.

Most interactors have three different things that they do: they directly modify the
associated graphical objects (like setting the am_sSELECTED slot), they set the am_VALUE
field of their attached command object, and they call the am_Do_acTToN method of the
attached command object. Widgets, such as menus or scroll bars, do the last two of these
operations, plus changing their appearance on the screen.

To use the am_varLue slot of the command object, you can establish a constraint from
your object to the am_vALUE slot of the am_coMMAND part in the interactor or widget.

Putting a “call-back” procedure in a command object is somewhat more complicated
with interactors and widgets. Currently, the am_Do_acTION procedure in the command
object causes the interactor or widget to operate correctly. If you replace the procedure,
the object may not do its normal actions. Therefore, you should make sure the standard
code is called in addition to your code. (This will probably be fixed in the next release.)
You can do this by adding a call to the prototype’s method inside your procedure before
your custom code. For example, suppose we are creating a custom Am_DO_ACTION for a

Am Move_Grow_Interactor:

void my_do_action (Am_Object command_obj) {

// First, call the standard do action from the command object in the Am_Move_Grow_Interactor.

Am_Call (Am_Object_Proc, Am_Move_Grow_Interactor.Get_Part (Am COMMAND},
Am_DO_ACTION, (command_obij)});

//mow do custom stuff here

Am_call is a macro that takes a procedure type, an object to get the procedure out of, the
slot the procedure is stored in and the parameters to the procedure. Note that the
parameters have to be in an extra set of parentheses. Here, we need to get the
am_DO_ACTION out of the standard move-grow interactor’s command object.



Page 48 Tutorial

Remember that you must set the am_po_acTIoN and access the am_varus slot of the
Command object in the Interactor or widget, and not access those slots directly in
the Interactor or widget themselves. Thus:

my_inter.Get_Part (Am_COMMAND) .Get (Am_VALUE) ; //right
my_inter.Get_Part (Am_COMMAND)
.Set (Am_DO_ACTION, my_do_action); /Vright

ﬂt?._iitter . GeE (iﬂ!t_oi\:BBE) 7 75 ngejve
2z LIPS = A\ e A m N oo =P
Y . A 5 q 7

2.5.6 The Am_Main_Event_Loop

In order for interactors to perceive input from the mouse and keyboard, the main event
loop must be running. This loop constantly checks to see if there is an event, and
processes it if there is one. The automatic redrawing of graphics also relies on the main-
event-loop. Exposure events, which occur when one window is uncovered or exposed,
cause Amulet to refresh the window by redrawing the objects in the exposed area.

All Amulet programs should call two routines at the end of main().
Am Main_Event_Loop () should be called, followed by Am_cleanup (), which destroys
the resources Amulet allocated. Your program will continue to run until Amulet
perceives the escape sequence, which by default is surFT-Esc. Typically, your program
will have some sort of Quit button. This should call am_Exit_Main_Event_Loop(),
which will cause the main-event-loop to terminate.

2.6 Widgets

The Amulet Widgets are a set of ready-made gadgets that can be be added directly to a
window or a group just like other graphical objects. You do not have to define separate
interactors to operate the gadgets -- they already have their own interactors. They have
slots that can be set in order to customize their apperance and behavior. Generally, they
are controls that are commonly found in an interface including scroll bars, menus,
buttons and editable text fields. Section 8.9 summarizes the widget objects, and Chapter
6 discusses them all in detail.

The Widgets will eventually be available in several versions, simulating the look-and-
feel of the standard widgets available in Motif, Windows, and Macintosh toolkits. To
date, however, only the Motif style of widgets have been implemented in Amulet; they
work on all platforms, but always look like Motif widgets. Examples of the widgets can
be found in several Amulet demos (including demo_space, found in the
samples/demo_space subdirectory of your Amulet source files -- see the Overview
chapter for instructions on compiling and running Amulet demos).



Tutorial Page 49

v Rad ':\T
\ Green
s Blue -
W Crange
W Yellow
v

Figure 2-14: A panel of radio buttons and a vertical scroll bar, affecting a rectangle.

In this section we will use a radio button panel and a scroll bar to change the appearance
of a rectangle.

There are two ways to interact with widgets. You can define a formula to depend on the
value of the command object in the widget, or you can define a function that will be
executed by the widget’s command object whenever the user operates the widget.

The code below defines the radio button panel pictured in Figure 2-14. As mentioned
abové, in section 2.5.5, all widgets store their value in the am _vaLUE slot of the command
object stored as the am commanD part. Here, we define a formula for the filling style of
the rectangle that depends on the value of the button panel. This formula is reevaluated
every time the buttons are operated, so the rectangle changes color.

// Declared at the top-level, outside of main ()
Am_Object color_buttons, color_rect;

// Declared at the top-level, outside of main ()
Am_Define_Style_Formula (color_from_panel) {
Am_Object cmd = color_ buttons.GV_Part (Am_COMMAND) ;
Am_String s:
s = cmd.GV (Am_VALUE) ;
if ((const char*)s) {

if (strcmp({s, "Red") == 0) return Am Red;

else if (strcocmp(s, "Blue") == 0) return Am_Blue;
else if (strcmp(s, "Green") == 0) return Am Green;
else if {(strcmp(s, "Yellow" 0) return Am_ Yellow;

) ==
else if (strcmp(s, "Orange") == 0) return Am_Orange;
else return Am_White;
}

else return Am_White;



Page 50 Tutorial

// Defined inside main ()

color_buttons = Am_Radio_Button Panel.Create("color_buttons")
.8et (Am_LEFT, 10)
.Set (Am_TOP, 10)

.Set (Am_ITEMS, Am_Value_List () / An Am_Vézlue_List supports an arbitrary list
.Add ("Red") / of dynamically typed values
.Add ("Blue")

LAdd("Green")
JAdd("Yellow"™)
.Add ("Orange"})
.Set (Am_FILL_STYLE, Am_Motif_ Gray);

// Defined inside main ()
color_rect = Am_Rectangle.Create("color_rect")
.Set (Am_LEFT, 100)
.Set (Am_TOP, 50)
.Set (Am_WIDTH, 50)
.Set (Am_HEIGHT, 50)
.Set (Am_FILL_STYLE, Am_Formula::Create(color_from_panel));

my_win.Add_Part (color_buttons)
.Add_Part (color_rect);

Now let’s create the scroll bar to change the position of the rectangle. As with the button
panels, we could define a formula that depends on the value of the widget's command
object. Instead, let’s use the am_po_acT1oN of the scroll bar's command object to call a
function each time the widget is operated.

// Defined at the top-level, outside of main ()
Am_Object my_scrollbar;

// Defined at the top-level, outside of main ()
void my_scrollbar_do (Am_Object cmd) {
int value = cmd.Get (Am_VALUE) ;
color_rect.Set (Am_TOP, 20 + value);
//Now, call the standard do action from the command object in the Am_Vertical_Scroll_Bar.
Am_Call (Am_Object_Proc, Am Vertical_Scroll_Bar.Get_Part (Am COMMAND),
Am DO_ACTION, (cmd));

// Defined inside main ()
my_scrollbar = Am Vertical_Scroll_Bar.Create ("my_scrollbar")

.Set (Am_LEFT, 250)
.Set (Am_TOP, 10)
.Set (Am_SMALL_INCREMENT, 5)
.Set (Am_LARGE_INCREMENT, 20)
.Set (Am_VALUE_1, 0)
.Set (Am_VALUE_2, 100);

my_scrollbar.Get _Part (Am_COMMAND) .Set (Am_DO_ACTION, my_scrollbar_do);

my_win.Add_Part (my_scrollbar);



Tutorial Page 51

2.7 Debugging

2.7.1 The Inspector

The Inspector is an important tool for examining properties of objects. This tool is
accessible in Amulet by adding the “#include <amulet/debugger.h>” statement at
the top of your file, and adding the file src\debug\inspectr.cpp to your project if
you’re using Visual C++. A call to am Initialize_Inspect (win) is required on each
win that you want to be able to launch the Inspector from. This call installs interactors
in the window that make it sensitive to the r1 keystroke.

If your keyboard does not have an 1 key, or hitting it does not seem to do anything, you
can start the Inspector manually by calling the function Am_Inspect (obj) with the
object you want to inspect as its argument. The function aAm_Text_Inspect (ob7) is
similar, except that it prints the object’s slots and values to stdout instead of popping up
an interactive window.

The Inspector shows all inherited and local slots of an object, with the inherited slots
shown in blue. Editing an inherited value causes the value to become local, and changes
its color from blue to black. Currently, only the editing of integer values is supported,
but in future versions of Amulet you will be able to edit all types of values. . ‘

In the Inspector window, clicking the right mouse button over a value that is an object
will cause that object’s slots and values to be displayed in the window. To display an
object in a new window instead, hold down the suIFT key while pressing the right mouse
button over its name in the Inspector window. When you are finished with the
Inspector, you can type ~q (hold down the conTrOL key and press ‘q’) to make the
Inspector windows disappear.

The Inspector does not keep the display up-to-date with the objects. To refresh the
display, hit ~r. Other commands include ~i to turn on interactor tracing (Section 2.7.2)
and ~p to redisplay he previous object shown in the Inspector window.

2.7.2 Tracing Interactors

The interactors and default commands provide a number of mechanisms to help
programmers debug their interactions. The primary one is a tracing mechanism that
supports printing to standard output (cout) whenever an “interesting” interactor event
happens. Amulet supplies many options for controlling when printout occurs, as
described below (full details are in the Interactors chapter). You can either set these
parameters in your code and recompile, or they can be dynamically changed as your
application is running, if you have a C++ interpreter like ObjectCenter, or from the
interactive Inspector (see Section 2.7.1).



Page 52 Tutorial

-typedef enum { Am_INTER_TRACE_NONE, Am_INTER_TRACE_ALL,
Am_INTER_TRACE_EVENTS, Am INTER_TRACE_SETTING,
Am INTER _TRACE_PRIORITIES, Am_INTER_TRACE_NEXT,
Am_INTER_TRACE_SHORT } Am_Inter_Trace_Options;

void Am_Set_Inter Trace(); //prints current status

void Am_Set_Inter_Trace(Am_Inter_Trace_Options trace_code);
void Am_Set_Inter_Trace (Am_Object* inter to_trace);

void Am Clear_Inter Trace();

By default, tracing is off. Each call to Am_set_Inter_Trace adds tracing of its
parameter to the set of things being traced (except for Am_INTER_TRACE_NONE which
clears the entire trace set). The options for Am_Set_Inter_Trace are:

* no parameters: If Am_set_Inter Trace is called with no parameters, it prints out
the current tracing status.

* Am_INTER_TRACE_NONE: If am_Set_Inter Traceis called with zero or
Am_INTER_TRACE_NONE, then it sets there to be nothing being traced. This is the
same as calling am_Clear_Inter_Trace.

* Am_INTER_TRACE_ALL: Traces evérything. The Inspector command ~i does this.

* Am_INTER_TRACE_EVENTS: Only prints out the incoming events, and not what
happens as a result of those events. When you trace anything else, Amulet
automatically also adds am_INTER_TRACE_EVENTS to the set of things to trace, so
you can tell why things are being updated.

* Am_INTER_TRACE_SETTING: This very useful option just shows which slots of
which objects are being set by interactors and commands. It is very useful for
determining why an object slot is being set.

* Am_INTER_TRACE_PRIORITIES: This prints out changes to the priority levels.

* Am_INTER_TRACE_NEXT: This turns on tracing of the next interactor to be executed.
This is very useful if you don’t know the name of the interactor to be traced.

* Am_INTER_TRACE_SHORT: This prints out only the name of the interactors which
are run.

e an interactor: This prints lots of information about the execution of that one
interactor.



3. ORE Object and Constraint System
The Amulet Object System

Abstract

This chapter describes “ORE”, the object and constraint level of Amulet. ORE allows
programmers to create objects as instances of other objects, and define constraints among
objects that keep properties consistent. For advanced users and researchers, ORE allows
demons to be defined on various object operations, slot inheritance to be controlled, and
even entirely new constraint solvers to be written.

Copyright © 1995 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa
Order No. B326. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of NCCOSC or the U.S. Government.






ORE Page 55

3.1 Introduction

This is the chapter for the Amulet object and constraint system, nicknamed ORE which
stands for Object Registering and Encoding. (Naturally, ORE is a reverse engineered
acronym so any day its meaning may change without notice.) This portion of the manual
covers the basic operation and use of ORE and its facilities. The basic operation of ORE
covers general use of objects and the kinds of values that can be stored in them. Also
covered is how to make and use formulas that can be used to attach values together. At
the end of this chapter, the means for writing new kinds of value types called wrapper
types is covered.

ORE is used in Amulet as the means for representing all higher-level graphical concepts.
Rectangles, for instance, are created using an exported object called am_Rectangle. The
process for moving a rectangle is also represented as an object. It is called
Am_Move_Grow_Interactor. Lower-level graphical features like colors and fonts are
not ORE objects in Amulet. Instead they are “wrapper types” or “wrapper values,”
“wrapper objects,” or just plain “wrappers.” What makes wrappers different from
regular C++ objects is that they contain data that derives from the class Am_wrapper.
This makes it easy to fetch and store them in ORE objects.

The coding style for ORE objects is declarative. That means the values and behaviors of
objects are specified mostly at the time an object gets created by storing initial values and
declaring constraints in the needed slots. All high level objects defined in Amulet are
designed to be used in a declarative way. Normal programming practice consists of
choosing the kinds of objects your program needs, finding out what slots these objects
contain and what the semantics of the slots do, and finally assigning values to the slots
and grouping the objects together to make the final application.

Much of the concepts and processes in ORE are derived from the Garnet object system
called KR. KR differs from ORE in that it was originally designed to be a artificial
intelligence knowledge representation framework. The graphics came later and KR
underwent an evolution that made it more compatible with the demands of a graphical
system. ORE begins where KR left off. In ORE, some KR features were abandoned like
multiple inheritance. Many of the good KR features that only made it into KR in the last
couple releases have been put into ORE right from the start. These features include
dynamic type checking and an efficient algorithm for formula propagation and
evaluation. And, of course, there are many brand new features in ORE that were never
part of KR. Things like the owner-part hierarchy and the ability to install multiple
constraint solvers which are hoped to become very useful to Amulet programmers.

ORE features like setting up type checking and writing a new constraint solver are quite
advanced and are covered in Section 3.10 of this chapter. These sorts of features are not
necessary for the novice Amulet programmer to make working applications, but are
intended to be used by system programmers or researchers that want to extend Amulet.



Page 56 ORE

3.2 Include Files

The various objects, types and procedures described in this chapter are spread out though
several .hfiles. Typically, you will include amulet.h in your code which automatically
includes all the ones you need. This chapter tells you where various names are defined
so you can look up their exact definitions. The main include files relevant to ORE are:

* standard_slots.h: The functions for defining slot names, and the list of Amulet-
defined slots

* objects.h: All of the basic object methods, the Am Value type, slot and part
iterators, and the Am_Call macros

* objects_advanced.h: Needed if you use any of the advanced features discussed in
section 3.10.

* value_list.h: Defines the type Am_Value_List and all its related methods.

3.3 Objects and Slots

The Amulet object system, ORE, supports a “prototype-instance” object system.
Essentially, an object is a collector for data in the form of “slots.” Each slot in an object
is similar to a field in a structure. Each slot stores a single piece of data for the object. A
Am_Rectangle object, for example, has a separate slot for its left, top, width, and height.

An ORE object is different from a C++ object in many ways. The slots of ORE objects
are dynamic. A program can add and remove slots as required by the given situation.
Whole new types of objects can be created on demand without requiring anything to be
recompiled. In C++, only the object's data can be modified and not its structure without
recompiling. Furthermore in ORE, the types stored into each slot can change. For
instance, the Am_VALUE slot can hold an integer at one time, and then a string later. ORE
keeps track of the current type stored in the slot, and supports full integration with the
C++ type system, including dynamic type checking.

3.3.1 Get and Set

The basic operations performed on slots are Get and set. A slot is essentially a key—
value pair. Get takes a slot key and returns the slot's value. set takes a key and value
and replaces the slot’s previous value with the one given. Creating new slots is done by
performing Set using a key that has not been used before in that object. Another way to
think of an object is as a name space for slot keys. A single key can have only one value
in a given object.



ORE Page 57

my_object.Set (Am_LEFT, 5); /Setleftslottovalues
int position = my_ object.Get (Am_TOP); / Getthe value of slot Am_TOP
my_object.Set (Am _ANGLEl, 45.3); // Setthe anglel slot to float 45.3

Calling Get on a slot which does not exists raises an error. Make sure you initialize
objects with values to avoid this problem. To test whether a slot exists yet, you can use
the cet_slot_Type method on objects (see Section 3.3.3), or else use the am_value
form of Get (see Section 3.3.10).

If you are interested in how this is implemented, there are multiple versions of set and
the compiler differentiates automatically. However, because C++ does not allow
methods to be disambiguated on their return type, the method Get actually returns a
am_slot reference which in turn has a multitude of casting operators to convert it to the
type one desires. This is usually invisible to Amulet programmers. One should never
save the am_slot reference directly because slots are dynamic entities and a am_Slot
stored in a variable quite literally grows stale.

3.3.2 Slot Keys

A slot key in ORE is simply an unsigned integer. An example of a slot key is am_LEFT.
Am_LEFT is actually the integer 100 as defined in standard_slots.h, but one uses the
name Am_LEFT because it is more descriptive. The slot am_LEFT is used in all the
graphical objects like rectangles, circles, and windows and it represents the leftmost
position of that object. Potentially, the slot key, 100, could be used in another object
with semantics completely different from those used in graphical objects, in essence 100
could be a key besides am_rEFT. However, ORE provides mechanisms to avoid this kind
of inconsistency and makes certain that integers and slot names map one to one. The
string names associated with slots are mainly used for debugging. For example, they are
printed out by the inspector. The string names for slots are not used during normal
program execution.

Programmers can define new slot keys for their own use by using functions defined in
ORE (in standard_slots.h). There are four essential functions to do this: am_
Register_Slot_Name, Am_Register_Slot_Key, Am Get_Slot_Name, and Am_Slot_
Name_Exists.

Am_Register_slot_Name is the major function for defining new slot keys. The function
returns a key which is guaranteed not to conflict with any other key chosen by this
function (it is actually just a simple counter). The return value is normally stored in a
global variable which is used throughout the application code. If the string name passed
already has a key associated with it, Am_Register_slot_Name will return the old key
rather than allocating a new one. Thus, Am_Register_Slot_Name can also be used to
look up a name to find out its current key assignment.

Am Slot_Key MY _FOO_SLOT = Am Register_Slot_Name ("My Foo Slot");



Page 58 ORE

We recommend that programmers define their slots this way, as shown in the various
example programs.

Am_Register_sSlot_Key is for directly pairing a number with a name. This is useful for
times when one does not want to use a global variable to store the number returned by
Am_Register_Slot_Name. The number and name chosen must be known beforehand not
to conflict with any other slot key chosen in the system. The range of numbers that
programmers are allowed to use for their own slot keys is 10000 to 29999. Numbers
outside that range are allocated for use by Amulet. The number of new slot keys needed
by an application is likely to be small so running out of numbers is not likely to be a
problem. The main concern will be conflicting with numbers chosen by other
applications written in Amulet.

#define MY BAR_SLOT 10500

Am_Register_Slot_Key (MY BAR_SLOT, "My Bar Slot");

The functions Am_Get_Slot_Name and Am_slot_Name_Exists are used for testing the
library of all slot keys for matches. This is especially useful when generating keys
dynamically from user request.

const char* name = Am_Get_Slot_Name (MY_BAR_SLOT);
cout << "Slot " << MY_BAR_SLOT << " is named " << name << endl;

if (Am Slot_Name_Exists (name)) cout << "Slot already exists\n";

3.3.3 Slot Types

The value of am_LEFT in a graphical object is an integer specifying a pixel location.
Hence slot values have types, specifically the am_reFT slot has integer type in graphical
objects. The type of a slot’s value is determined by whatever value is stored in the slot.
A slot can potentially have different types of values at different times depending on how
the slot is used, but a given value has only one type so that a slot has only one type at a
time. Thus, slots are “dynamically typed” like variables in Lisp.

The types supported in ORE are the majority of the simple C++ types including integer,
float, double, character, and boolean. Also supported are some more high-level types
like string, ORE object, a function type, and void pointer. Although void* can be used
to store any type of object, ORE supports a type called am_wrapper which is used to
encapsulate C++ classes and structures so that general C++ data can be stored in slots
while still maintaining a degree of type checking.



ORE Page 59

Am_NONE -- the value of the slot does not exist

Am_WRAPPER -- used for encapsulating generic C++ classes

Am_OBJECT -- an ORE object

Am_INT -- signed integer

Am_LONG -- signed long integer

Am_BOOL -- the type bool

Am_FLOAT -- floating point value

Am_DOUBLE -- double precision floating point value

Am_CHAR -- a single character

Am_STRING -- stores a character string as class am_String (section 3.3.6),
which is readily converted into a const char*

Am_VOIDPTR -- void* in Unix and unsigned char* in Windows. A type-

def called am _ptr can be used as a cast to make code portable between

Unix and Windows
Am_PROC -- the type void (*) (Am_oObject), used for storing proce-
dures like call backs and methods

Figure 3-1: ORE Types for Slot Values, defined by Am_slot_Type in objects.h

my_object.Set (Am_LEFT, 50);

Am_Slot_Type slot_type = my_ object.Get_Slot_Type (Am_ LEFT);

// slot_type == Am_INT

my_object.Set (Am_FILL_STYLE, Am Blue);

Am_Slot_Type slot_type = my_object.Get_Slot_Type (Am_FILL_STYLE) ;

// slot_type == Am_WRAPPER

3.3.4 The Basic Types

As shown by the examples above, the set and cet operators are overloaded so that the
normal built-in C++ primitive types can be readily used in Amulet. This section
discusses some details of the primitive types, and the next few sections discuss some
specialized types.

Usually, the C++ compilers can tell the appropriate types of slots from the various
declarations. Thus, the compiler will correctly figure out which set to use for each of

the following:

my_object.Set (Am_LEFT, 50); /uses int
my_object.Set (Am TEXT, "Foo"); /uses Am STRING
my_object.Set (Am_PERCENT_VISIBLE, 0.75); /uses Am FLOAT

long lng = 600000
my_object.Set (Am VALUE_1, 1ng);



Page 60 ORE

However, in some cases, the compiler cannot tell which version to use. In these cases,
the programmer must put in an explicit type cast:

/Hwithout cast, compiler doesn’t know whether to use bool, int, void¥, ...
i1f ((bool)my_object.Get (Am_VISIBLE))

/without cast, compiler doesn’t know whether to use int, longor float
int 1 = 5 + (int)my_object.Get (Am_LEFT) ;

Unfortunately, some compilers seem to get confused with perfectly unambiguous
expressions involving Am_objects and am_wrappers. In this case, you need to put the
variable declaration in a separate statement from its assignment:

orks!

D, S 2

Am_Object obj; Husing two statements w

obj = my object.Get (Am_PARENT) ;

Am_INT is the same as am_1.0NG on Unix machines (32 bits), but on Windows an am_INT
is only 16 bits, so you should be careful to use long whenever the value might overflow
16 bits if you want to have portable code.

The am_ptr type (defined in types.h) should be used where-ever you would normally
use a void* pointer, because Visual C++ cannot differentiate void* from some more
specific pointers used by Amulet. am_prtr is defined as void* in Unix and unsigned
char* in Windows.

3.3.5 Bools

Amulet makes extensive use of the bool type supplied by some C++ compilers (gcc).
For compilers that do not support it (Visual C++, ObjectCenter, etc.), Amulet defines
bool as int and defines true as 1 and false as 0, so you can still use bool in your
code. When bools are supported by the compiler, Amulet knows how to return a bool
from any kind of slot value. For example, if a slot contains a string and you convert it to
a bool, it will return true if there is a string and false if the string is null. However,
for compilers that do not support bool, conversion to an int is znot provided, so counting
on this conversion is a bad idea. Instead, it would be better to get the value into a
Am_value type and test that for valid (see section 3.3.10).

3.3.6 The Am_String Class

The Am_string type (defined in object.h) allows simple, null terminated C++ strings
(char*) to be conveniently stored and retrieved from slots. It is implemented as a form
of wrapper (see section 3.3.9). An Am_String can be created directly from a char* type,
likewise it can be compared directly against a char*. Because Am _String is a
am_wWrapper which is a reference counted structure, the programmer need not worry
about the string’s memory being deallocated in a local variable even if an object slot that
holds a pointer to the same string gets destroyed.



ORE Page 61

The am_string class will make a copy of the string if the programmer wants to modify
its contents. The am_string class does not allow the programmer to perform destructive
modification on the string’s contents.

Listed below are the basic methods defined for am_String:

Am_String ()
Am_String (const char* initial)

The constructor that takes no parameters essentially creates a NULL char pointer. It is
not equivalent to the string "". The second constructor creates the am_string object
with a C string as its value. The C string must be *\O’ terminated so as to be usable with
the standard string functions like strcpy and strcmp. The am_string object will
allocate memory to store its own copy of the string data.

operator const char* ()
operator char* ()

These casting operators make it easy to convert a Am_String to the more manipulable
char* format. When a programmer casts to const char*, the string cannot be
modified so no new memory needs to be allocated. When the programmer casts to
char*, however, the copy of the string stored in object slots are protected by making a
local copy that can be modified. The modified string can be set back to an object slot by
calling set.

3.3.7 Storing Methods in Slots

ORE treats methods (procedures) stored in slots exactly the same as data. Thus, method
slots can be dynamically stored, retrieved, queried and inherited like all other slots. A
few macros are provided for making the use of methods easier.

Methods stored in slots are normally all typed as am_oObject_Proc which is specifically
declared as:

typedef void Am_Object_Proc (Am_Object context);

It is up to the programmer to keep straight what the actual number of parameters needed
by the actual method stored in the slot. (This will probably be fixed in the next version.)
Typically, there will be a typedef of the actual signature of the method you are storing,
and you use this name with the am_call macro to invoke the method.

3.3.8 Calling methods

Am_call (defined in object.h) takes the type, the object to get the method from, the slot
name, and the list of parameters to the function in an extra pair of parentheses:



Page 62 ORE

//This is defined in inter.h. See the interactors chapter for what it does
typedef Am_Object Am_Where_ Function (Am Object inter, Am_Object object,
Am_Object event_window, Am Input_Char ic, int x, int vy):

//store my specific where function called My_Where_Test into a slot
inter.Set (Am_START WHERE_TEST, (Am_Object_Proc* )My _Where_Test);

/call the function in that slot
Am_Call (Am_Where_Function, inter, Am_START WHERE_TEST,
(inter, current_ic, 20, 50));

am_call does nothing if the procedure is not found (if the slot does not exist or contains
NULL). You will get a run-time error from Amulet if the slot contains a non-procedure
value, and usually a segmentation fault or something if the procedure is not of the same
type as the type passed to am_call.

There is also am_Function_call which can be used for methods in slots that return a

value. This is used as:
Am_Function_Call (Func_type, object, slot, return_variable, (args));

where the return_variable is the name of the variable into which the return of the

function is to be assigned. For example:
Am_Function_Call (Int_Func_Type, obj2, COUNT_METHOD _SLOT, i, (obj2));

3.3.9 Using Wrapper Types

Although you could store C++ objects into ORE slots as a void*, ORE provides the
Am_Wrapper type to “wrap” the C++ objects. am_wrappers provide dynamic type
checking and memory management to the objects. These wrapper objects add a degree
of safety to slots without sacrificing the dynamic aspects. Making new wrapper types is
discussed in Section 3.10.2 and requires some care. On the other hand, using wrapper
types is extremely simple. Notable wrapper types in Amulet are am_Style, Am_Font,
Am_String, Am_Value_List (see section 3.7), and especially am_oObject itself. Getting
and setting a wrapper is syntactically identical to getting and setting an integer.

Am_Style blue (0.0, 0.0, 1.0); #/Am Style isa wrapper type
my_object.Set (Am_FILL_STYLE, blue); /using a wrapper with Set
Am_Style color;

color = my_object.Get (Am FILL_STYLE); / awrapper with Get

Even though both am_object and am_string are both wrapper types, ORE still
distinguishes their type as separate from other wrapper types. For am _object, the slot
type Am_OBJECT is used, for Aam_String, the type Am STRING is used. This aids in
distinguishing these two very common kinds of values from other wrappers.



ORE Page 63

3.3.9.1 Standard Wrapper Methods

Amulet wrappers provide a number of useful methods for querying about their state and
for testing whether a given am_wrapper* belongs to a given class. These methods are
common across all wrapper objects that Amulet provides. The methods are also
available when programmers build their own wrapper objects using the standard macros.

The first thing that all built-in wrappers have is not really a method but a special NULL
object. The name of the NULL object is Am_No_Typename where typename is replaced by
the actual name for the type. Examples are Am_No_Font, Am_No_Object, and
Am_No_Style. All of the NULL wrapper types are essentially equivalent to a NULL
pointer. To test whether a wrapper is NULL or not one uses the method valid(). If a
wrapper is not valid, then it should not be used to perform operations.

/ / Here the code checks to see that my_obj is not a NULL pointer by using the Valid method.
Am_Object my obj = other obj.Get (MY_ORBJ);
if (my_obj.valid ()) {
my_obj.Set (OTHER_SLOT, 6);
}

Sometimes a programmer uses a slot to hold multiple different wrapper types. To
distinguish whether a wrapper pointer is of a given type the Test method is available.
Test is a static method so it can be called directly.

// Here the Test method is used to test which kind of wrapper type the
// value holds.
Am_Value_List my list;
Am_Object my_ object;
Am_Value val = obj.Get (MY_VALUE);
if (Am Value_List::Test (val))
my_list = wval;
else if (Am_Object::Test (val))
my_object = val;

3.3.10 Using Am_Value

Most of the time a programmer knows precisely what sort of value is stored in a slot.
For these situations, the most convenient form of et is the one that returns the value
directly. For times when the programmer wants to call Get on a slot but does not know
what type the slot contains (or possibly if there is a slot there at all), one can either query
the type of the slot using the Get_slot_Type method for objects, or the programmer can
Get the value into a Am_value structure. The am_value is a union type for all the ORE
types. It is always valid to use the am_value style of cet. If the slot does not exist, Get
will set the am_value with type Am_NONE.



Page 64 ORE

int i_value; float f_value;
Am _Value value;
my_object.Get (SOME_SLOT, value); / Getthe value regardless of type

if (value.type == Am_INT) // the type field contains the type of value retrieved
i_value = value; /#/ Am_Value defines many casting operators

else 1f (value.type == Am_FLOAT) / as assignment and constructors to aid
f_value = value; // setting and retrieving the value from

// the Am_Value

The am_value type has a number of methods, including printing (<<), ==, = and valid.
valid returns true if the slot value existed (not am_NoNE) and if the value in the slot is
not zero:

Am_Value value;
my_object.Get (SOME_SLOT, value); / Getthe value regardless of type
if (value.valid()) {

// then it is safe to use value

3.4 Inheritance: Creating Objects

The inheritance style of ORE objects is prototype - instance (as opposed to C++ which is
class - instance). A prototype - instance object model means that objects are used
directly as the prototypes of other objects. There is no distinction between instances and
classes, in essence there are only instances. Specialization of sub objects into new types
is performed by adding slots to the sub-object or changing the contents of existing slots
defined in the prototype.

Here is an example of creating an ORE object and setting some of its slots:

Am_Object my_rectangle = Am_Rectangle.Create ("my rect")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 20)
.Set (Am_WIDTH, 100)
.Set '(Am_HEIGHT, 150)

’

A major style convention in ORE is to write an object all in one expression. This is so
that the programmer need not repeat the name of objects over and over. This works
because set returns the original object. The main components of the creation action

involves:

e Choose a prototype object. In the above case, the prototype is Am Rectangle
which is defined as one of the Amulet graphical objects.

e Call the create method on the prototype. The optional parameter to create
is a string which is used if one prints out the name of the object and can be
used for other sorts of debugging. The alternative to Create is the copy
method which is described below.

e Set the initial values of slots. This includes making new slots if desired.



ORE Page 65

Although this manual uses the one expression convention for brevity and to familiarize
programmers with its use, it would be just as correct to write out each individual create
and set call on its own line.

Am_Object my_rectangle;

my_rectangle = Am_Rectangle.Create ("my rect");
my_rectangle.Set (Am LEFT, 10});
my_rectangle.Set (Am _TOP, 20);

my_rectangle.Set (Am_WIDTH, 100);
nmy_rectangle.Set (Am_ HEIGHT, 150);

Objects inherit all the slots of their prototype that they do not specifically set locally.
Thus, if the Am_Rectangle object defines a color slot called Am_LINE_sTYLE with a value
of am_Black, then my_rectangle will also have a am_LINE_STYLE slot with the same
value. If a slot is inherited, it will change value if the prototype’s value changes. Thus, if
Am_LINE_STYLE 0f Am_Rectangle i§ set to Am_Blue, then my_rectangle’s Am LINE_
styLE will also change. However, the Am_LEFT of my_rectangle will not change if the
am LEFT of Am_Rectangle is set because my_rectangle sets a local value for that slot.
See Section 3.10.4 for a discussion about how you can control the inheritance of slots.

The inheritence of Amulet objects’ print names is dealt with slightly differently. Objects
created with a name parameter to the Create() call have that name. Objects created
without a string parameter get the name of their. prototype, with a number appended to
distinguish between the objects when their names are printed.

The root of the inheritance tree is Am_Root_oObject. Programmers will typically create
instances of the pre-defined objects exported by the various Amulet files (as shown in the
examples in this manual), but Am_Rroot_object is useful if you are defining application-
specific objects, say for your own data structures.

The copy method can also be used to make new objects. Instead of being an instance of
the prototype object, a copied object will become a sibling of the object. Every slot in
the prototype is copied in the same manner as in the original. If a slot is local in the
original, it will be local in the copy likewise if the slot is inherited, the copy will also be
inherited.

Other useful methods relevant to inheritance include:
* obj.Is_Instance_Of (obj2); returns true if obj is an instance of obj2.

* Am_Object proto = obj.Get_Prototype ();reuunstheprounypcfbrthe
object.

* bool inherited = obj.Is_Slot_Inherited (SLOT_KEY); Returns true if the
slot is not local, so the value is inherited from a prototype.

* obj.Destroy (); Destroys the object and all its parts.

* const char* name = obj.Get_Name ();returns the string name of the object
-defined when the object was created. Objects alsq define operator<< so they can



Page 66 ORE

be used in C++ cout statements.

* obj.Print_Name (ostreams); prints the string name of the object to the given
stream. Acts just as the << operator.

* Objects can be tested for == and 1= with other objects

* obj.Remove_Slot (SLOT_KEY); removes the slot from the object.

3.5 Parts

In ORE, it is possible to make objects become part of another object. The subordinate
object is called a “part” of the containing object which is called the “owner.” The part-
owner relationship is used heavily in Amulet programs.

The Opal level of Amulet defines the Am _Window and Am_Group objects which are
designed to hold graphical parts (rectangles, circles, text, etc.). Thus, if you want to
make a composite of graphical objects, they should be added as part of a window or
group. Non-graphical objects can be made parts of any kind of object. Thus, an
Interactor object can be a part of a rectangle, group, or any other object. Similarly, any
kinds of objects that an application defines can be added as parts of any objects. So for
graphical objects, the “owner” of any graphical object will be a window or a group, but
the owner of an interactor or application object can be any kind of object. We decided
not to support adding graphical objects directly as parts of other graphical objects (so that
you cannot add a rectangle directly as a part of a circle; instead, you would create a
group object and add the rectangle and circle as parts of the group). Behaviors like
translating the coordinates of the parts is handled by Opal level routines, so would not
happen for non-graphical parts added as parts.

3.5.1 Parts Can Have Names

A very important distinction among parts is whether or not the part is named. A “named”
part has a slot key. One can generate a key for a part the same way that they are
generated for slots. When a part is named, it becomes possible to refer to it by that name
in the method Get_prart (or by regular Get) and it also takes on other properties. If the
part is unnamed, then the part cannot be accessed from the owner except through the part
iterator (section 3.8) and perhaps by reading its name from a list like the
Am_GRAPHICAL_PARTS slot in graphical objects (described in the Opal chapter).

In some ways, a named part of an object is like a slot that contains an object. The named
part has a value and can have dependencies just like a slot. Parts are different from slots
in that their type can only be an object and that any particular object can only be assigned
as a part to only one owner. Parts cannot be generated by a constraint and the inheritance
mechanism for parts is not as sophisticated as that for slots.

New names for parts are define the same way as new slot keys:



ORE Page 67

Am_Slot_Key MY FOO_PART = Am Register_Slot_Name ("My Foo Part");
Am_Object my_obj = Am_Group.Create("My_Obj") :
.Add_Part (MY_FOO_PART, Am_Rectangle.Create("foo")); /named part

3.5.2 How Parts Behave With Regard To Create and Copy

The other very important distinction between named and unnamed parts is if an instance
or copy is made of an object which has named parts, then instances are made for each of
the parts also. Unnamed parts are nof created in the instance, and regular slots which
contain objects will share the same object. Thus:

Am_Object my obj = Am_Group.Create("My_Obij")
.Add_Part (MY_PART, Am_Rectangle.Create("foo")) /named part
.Add_Part (Am Circle.Create()) /fun-named part
.Set (Am_PARENT, other_object); /slot containing an object

Am_Object my_obj2 = my obj.Create();

// my_ob3j2 now has a rectangle part called MY_PART which is an instance of foo.

// It does not have a circle part, since that part was un-named in the prototype.

// The Am_PARENT slot of both my_obj and my_ob7j2 point to the same object, other_object.

When an object is copied, all parts are copied along with the object. Both named and
unnamed parts are copied. If the parts had a name, the same name will be used but with
a number appended to the end to distinguish it from the original.

3.5.3 Other Operations on Parts

Other methods on objects relevant to parts are listed below. In each of these, My_PART is
a part name.

* Am_Object part = obj.Get_Part (MY_PART); returns the part of obj named
MY_PART.

* Am_Object owner = obj.Get_Owner (); returns the owner of obj (the object
that obj is part of).

* Am_Object part = obj.Get_Sibling (MY_PART) ; is equivalent to
Obj.Get_Owner () .Get_Part (MY_PART) ;

* obj.Remove_From_Owner (); makes obj no longer be a part of any object.
* obj.Remove_Part (MY_PART) ; removes from obj the part named My_PpaRT.
* obj .Remove_Part (part); removes object part from owner obj

* obj.Is_Part_Of (Am_Object object); returns true if obj is a part of object.
Objects are considered to be parts of themselves: obj . Is_Part_of (obj) returns

true.

* obj.Get_Key (Am_Object object); if the object is a named part, then this will
return the slot key name for the part.



Page 68 ORE

For example:
Am_Slot_Key RECT = Am Register Slot_Name ("RECT");
Am_Object my_window = Am _Window.Create ("a window")
.Add_Part (RECT, Am_Rectangle.Create ("a rectangle"))
.Add_Part (Am_Line.Create ("a line"));

Am Object rect = my_window.Get_Part (RECT);
my_window.Remove_Part (RECT) ;

As mentioned above, when you destroy an object, all of its parts are destroyed also.
Removing a part does not destroy the part.

3.6 Formulas

Formulas are the means for connecting together the values of slots. The use of formulas
in ORE is the chief means for making Amulet declarative. With formulas, the
programmer assigns the value of a slot to be dependent on the value of other slots. When
the dependent slot changes, the value of the formula will be recomputed and the
formula’s slot will take on the computed value.

Often times this method of computing values from dependencies is called constraint
maintenance. ORE's mechanisms for constraint maintenance are actually more general
(and complicated) than the formula constraint mentioned here. The full ORE constraint
mechanism will be described in a later revision of this manual. Suffice it to say for now
that ORE allows more than one constraint system to be included in the system. The
formula constraint is just one of many possible constraints that may be used in ORE. For
example, Amulet currently also contains a “Web” constraint used to support multi-way
interactions, but it is currently not finished or documented.

3.6.1 Formula Functions

An ORE formula consists of a C++ function that defines the dependencies of a slot and
returns the value to set into the slot. The parameter list of a formula function is always
the same two parameters: an Am Object called self, which points to the object
containing the slot, and an am_constraint_Context& called cc, which is an opaque
handle (which means that its internals are not visible) to the state of the formula which
used internally by the constraint system. The cc parameter is also used to distinguish the
two forms of Get: one which just returns the value of the slot, discussed above, the other
which returns the value and also sets up a dependency link. The return value of the
function is of the same type that the slot will be when it takes on the returned value.
There are also constraint versions of most of the get_xx functions defined above, as
shown by the following code example:



ORE Page 69

// Example of a formula function. This formula returns a value for

// Am_LEFT which will center itself within its owner’s dimensions.
int my_left_formula (Am Constraint_Context& cc, Am Object self) {
Am_Object owner = self.Get_Owner (cc);
int owner_width = owner.Get (cc, Am_WIDTH) ;
int my_width = self.Get (cc, Am WIDTH);
return (owner_ width - my_width) / 2;

The above example uses no macros so it is clear where variables are defined, and which
methods take the special cc parameter. Because formula functions have such a generic
format, the macro am Define_Formula is usually used to save some verbiage. Likewise,
using the cc parameter in Get is common enough in a formula that macros like gv are
available that automatically add the cc parameter. Using macros, the function above
would look like the function below. (This particular function definition could easily be
reduced to one line, as most Amulet programmers will quickly become adept at doing.)

// Example of a formula function. This formula returns a value for
// Am_LEFT which will center itself within its owner’s dimensions.
Am Define Formula (int, my_ left_form) {

Am_Object owner = self.GV_Owner ();

int owner_width = owner.GV (Am_WIDTH) ;

int my_width = self.GV (Am_WIDTH) ;

return (owner_width - my_width) / 2;

It is noteworthy that there exists a set version of av called sv, that is used in other kinds
of constraints, in particular for constraints with multiple outputs, like Web constraints.
Though it is possible to use sv in a formula, it is generally easier to simply return the
desired value. None of the formulas defined in the sample code use SV.

There are also macros for defining formulas that return many of the built-in wrapper
types. For instance, the macro am_Define_Style_Formula (func_name) returns the
type am_style. Actually, all the wrapper formulas return the same type, am_wrapper*.
It is somewhat confusing to look at a formula function that is supposed to return
Am_Style or Am_Object and see that it returns am Wrapper*. So, these macros are
available to make the code better reflect what is really intended. The various types of
wrappers are described in the Opal chapter:

Am_Define_Formula (type, formula_name) -- (General purpose: returns
specified type

Am_Define_ No_Self_ Formula (type, function name) -- General purpose:
returns specified type. Used when the formula does not reference
the special self variable, so compiler warnings are avoided.

Am_Define_Value_Formula (formula_name) -- Return type is am_value;
used when the formula might return different types, described in
Section 3.6.1.2

Am _Define_ Object_Formula (formula name) -- Retumn type 1S Am_Object



Page 70 ORE

Am_Define_String Formula (formula_name) -- Return type 1S Am_String
Am_Define_Style Formula {(formula_name) -- Return type is Am_Style
Am_Define_Font_Formula (formula_name) -- Return type is Am_Font

Am_Define_Point_List_Formula (formula_name) -- Returns an Am_Point_List

.Am_Define Image Formula (formula_name) -- Returns an Am_Tmage_Array

Am_Define_Value_List_Formula (formula_name) -- Returns an

Am_Value_List

Am_Define Cursor_ Formula (formula_name) -- Returns an Am_Cursor

3.6.1.1 Declaring Formulas

In order to use a formula procedure outside of the file that defines it, C++ expects an
external declaration. To facilitate making declarations of formula procedures, macros are
available that spell out the parameters of the formula as an extern. The "Declare" macros
take the same parameters as their "Define" counterparts. These are often used in .h files.

Am_Declare_Formula (int, my_int_form);

/f same as:

// extern int my_int_form (Am_Constraint_Context& cc, Am Object self);

Am_Declare_Style_Formula (form2);

// same as:

// extern Am Wrapper* form2 (Am_Constraint_Context& cc, Am Object self);

The set of declare forms is:

Am_Declare_Formula (type, formula_name)

Am_Declare_No_Self Formula (type, formula_ name)

Am_Declare_Value_ Formula (formula name)

Am_Declare_Object_Formula (formula_name)

Am_Declare_String Formula (formula_ name)

2Am Declare_Style_Formula (formula_name)

Am_Declare_Font_Formula (formula_ name)

Am_Declare_Point_List_Formula (formula_ name)

Am_Declare_Image_Formula (formula_name)

Am Declare_Value_List_Formula (formula_name)

Am_Declare_Cursor_Formula (formula_name)

3.6.1.2 Formulas Returning Multiple Types

Some formulas do not return only one type of value. For these formulas, you don’t want
to define a single return type. To remedy this situation, the formula constraint system
uses the am_value as a parameter instead of having a return value.



ORE Page 71

The value formula declaration is similar to the normal formula declaration except that its
return value is void and it has one extra parameter of type am _value whose name is
"value." The self and cc parameters are the same as in normal formulas and are used
in exactly the same way. The standard macro for declaring a multi-type formula is
Am_Define_value_Formula, and there is an associated Am_Declare_vValue_ Formula.

Am_Define_Value_Formula (my_form) {
if ((bool)self.GV (Am_SELECTED))
value = 5;
else
value = Am_Blue;

To pass on a value from a different slot and without checking what type it is, something

like the following can be used:
Am_Define_Value_Formula (my_copy_ it form) {
other_obj.GVM(SOME_SLOT, value); /Aalueiswhatis returned from this formula
}

In the above example, if the slot am_SELECTED is true, the formula will return an integer
value of 5. If it is false, it returns the color blue.

To read a slot set with a value formula the programmer can use either the Am_value form
of Get or can call Get_slot_Type.

3.6.2 Using GV

When the cet method is used with a constraint context (or equivalently, the gv macro is
used), the constraint solver gets to decide how the actual Get is performed. The regular
formula constraint solver sets up a dependency to the slot being fetched. Whenever the
fetched slot changes value, the formula will automatically be updated by the system.
Likewise, if the slot with the formula changes value due to the formula being updated, it
too will cause dependent formulas to update. This continues recursively. The formula:

Am _Define_Formula (int, my_left) {
int owner width = self.GV_Owner ().GV (Am_WIDTH);
int my_width = self.GV (Am_WIDTH) ;
return {owner_width - my width) / 2;

}

defines three slots as dependencies: the object’s am_OwNER slot (the ¢v_owner macro
expands into a Gv on the Am_OWNER slot), the owner’s am_wIDTH slot, and the object’s
am_wIDTH slot. A formula can change dependencies by simply calling gv on different
slots. For instance, the above formula’s dependencies will change if ever the object get
moved to a new owner.

A programmer can still use a regular cet without a constraint context in a formula
function, but the slot fetched will not become a dependency. Forgetting to use ov instead



Page 72 ORE

of Get is a common mistake for Amulet programmers. If ever it seems that a formula is
not updating when it is supposed to, check to make sure that Gv is being used in the right

places.

There exists a form of v for all forms of Get but one, Get_Prototype. Since the
prototype of an object is fixed and can never change, there is never a need to install a
dependency to it. The full list of GV forms is:

* GV(slot) Get the specified slot, setting up a constraint.

* GVM(sl, value) Get the specified slot into the Am_Value parameter, setting up a
constraint. Unfortunately, macros cannot be differentiated like procedures; hence
the different name.

* gv_owner () Get the owner of this object, setting up a constraint.
* GV_part (slot) Get the specified part of this object, setting up a constraint.

* GV_sibling (slot) Get the specified sibling of this object, setting up a constraint.

3.6.3 Putting Formulas into Slots

Once you have defined the formula function, you then need to create a formula object
using that function, and then set the formula object into a slot. Typically, these are done
in a single step, but it is also possible to re-use a formula object in multiple slots by
declaring a variable that the result of the am_Formula: :Create is stored into.

The normal way to install a formula is as part of a create call. Remember that the second
parameter to a Am_Define_Formula is the name of the function. This is then passed to
the Am_Formula: :Create call:

Am_Object my_ rectangle = Am Rectangle.Create ("my rect")
.Set (Am_LEFT, Am_Formula: :Create(my_left_form))

’

Formulas are evaluated eagerly, which means that the formula expression must always be
evaluatable, even right after the formula is created. Therefore, it is wise to make sure
that any slots that the formula references are Set before the formula is set into a slot.
Furthermore, the formula expression should be written so that it checks to make sure that
any pointer variables are valid before using them. For example, the following code

makes sure that the owner is valid:
Am_Define_Formula (int, my_form) {
Am_Object owner = self.GV_Owner();
if (owner.valid ())
return owner.Get (Am LEFT);
else return 0;



ORE Page 73

3.6.4 Slot Setting and Inheritance of Formulas

When a slot is set, by default a formula in that slot is removed. Just like setting a slot
with a new value removes the old value of the slot, setting a slot with a value or a new
formula removes the old value that was there, even if the old value was a formula.

Like values, formulas are inherited from prototypes to their instances. However, the
formula in the instance might compute a value from the formula in the prototype if the
formula contains indirect links. For example, the formula that computes the width of a
text object depends on the text string and font, and even though the same formula is used
in every text object, they will all compute different values.

Sometimes, constraints from a prototype should be retained in instances even if the local
value is set. This requires declaring that the slot is not Single_Constraint_Mode, which
is an advanced feature covered in section 1.10.5.

3.7 Lists

In virtually any non-trivial program written in Amulet, one is going to use lists. For
example, many widgets require a list of labels to be displayed. To make lists easy to
manipulate and store into slots, ORE provides the standard am_value_rist type,
implemented as a form of wrapper. The operations on Am Value_ Lists are provided in
the file value_list.h. Likeslots, Lists can hold any type of value. In fact, a single list
can contain many different types at the same time.

Because the Am_value_List is a form of wrapper, it supports all the standard wrapper
operations, including:

* assignment (=), which makes copy of the value list: am_value List 12 = 11;

* test for equality (==), which tests whether the two lists contain values which are the
same (thus, it goes through each list testing each element for ==).

» test for whether a wrapper is an Am_Value_List: Am_value_List::Test (wrap) ;

3.7.1 Current pointer in Lists

In addition to the data, Am_Value_Lists also contain a pointer to the "current" item.
This pointer is manipulated using the following functions:

* void start (); Make first element be current. This is always legal, even if the
list is empty.

*void End (); Make lastelement be current. This is always legal, even if the list
is empty.

* void Prev (); Make previous element be current. This will wrap around to the
end of the list when current is at the head of the list.



Page 74 ORE

* void Next (); Make next element be current. This will wrap around to the
beginning of the list when current is at the last element in the list.

*bool First (); Returns true when current element passes the first element.

*bool Last (); Returns true when current element passes the last element.

The standard way to iterate through all the items in a list in a forward order is:
for (my_list.Start (); 'my_list.Last (); my_list.Next ()) {
}

Similarly, to go in reverse order, you would use:
for (my_list.End (); !my list.First (); my_list.Prev ()) {
}

Note that the pointer is not initialized automatically in a list, so you should always call
Start or End on the list before using the pointer.

3.7.2 Adding items to lists

There are two mechanisms for adding items to lists: either always at the beginning or
end, or at the position of the pointer.

To add items at the beginning or end of the list, the Add method can be used. Since this
does not use the pointer, you do not need to call start. The first parameter to add is the
value to be added, which can be any primitive type, an object, a wrapper, or am_value.
The second parameter to Add is either Aam_TATL or am_HEAD and defaults to am_TAIL and
controls where the value goes. Add returns the original Am_Value_List so multiple adds
can be chained together:

Am_Value_List 1;

1.2add(3)
.Add(4.0)
.Add {Am_Rectangle.Create())
.Add (Am_Blue)

r

To add items at the current position, the programmer must first initialize the pointer,
using start or End and then the Insert routine can be called. The second parameter to
Insert specifies whether the new item should go am BEFORE or am_aAFTER the current
item. There is no default for this parameter.

3.7.3 Other operations on Lists

The cet method will retrieve the item at the current position. Like object's get, it will
convert into the appropriate type, and there is a Am_vValue version if you don't know what
types the list contains. For example:



ORE Page 75

Am Value v;

for (my_list.End (); !'my_list.First (); my list.Prev ()) {
my list.Get(v);
cout << "List item type is " << v.type << endl << flush;

}

If you don’t know the type of the current value in the list, you can use Get_Type ()
instead of using Get with an am_value.

Set can be used to change the current item in the list. This is different from Insert
because set deletes the old current item and replaces it with the new value.

The pDelete() method will destroy the item at the current position. It is an error if no
element is current. The current position is shifted to the element previous to the deleted
one. Make_Empty () deletes all the items of the list.

Am_Value_Lists support a membership test, using the Member method. This starts from
the current position, so be sure to set the pointer before calling Member. Thus, to find

the first instance of 3 in a list, the following would be used:
l.Start () ;
if (l.Member(3)) cout << "Found a 3";

Member leaves the pointer at the found item, so calling set or Delete will affect the
found item. Calling Member again will find the next occurrence of the item.

1.Length() will return the current length of the list, and 1.Empty () returns true if the
list is empty.

3.8 Iterators

For efficiency, ORE does not allocate an am_value_List for some types of list-like
information, and instead supplies an "iterator.” The iterator object contains a current
pointer and allows the programmer to examine all the elements. There are three kinds of
iterators available in the basic use of objects: one for slots, one for instances, and another
for parts. Each of the iterators has the same basic form, and the interface is essentially
the same as for am_value_Lists. The main difference between them is the type of
objects upon which is iterated.

3.8.1 Reading Iterator Contents

The iterator methods treat the list of items more like a linked list rather than an array.
The main operations are Start and Next. Start places the iterator at the first element.
Next moves the iterator to the next element. To find the value of the current element use
cet. To initialize the list, one assigns the iterator with the object that contains whatever
is to be iterated upon. For example:



Page 76 ORE

cout << "The instances of " << my object << " are:" << endl;
Am_Instance_Iterator iter = my_object;
for (iter.Start (); !iter.Last (); iter.Next ()) {

Am_Object instance = iter.Get ();
cout << instance << endl;

}

The first line of the example is used to initialize the iterator. The example prints out the
instances of my_object so my_object is the object to assign to the iterator. To detect
when the list is complete, the method Last is used which returns true when the last
element of the list is passed and the iterator no longer has an element that is current.

3.8.2 Types of Iterators

To iterate over the parts of an object, use an am_Part_TIterator which is initialized with
the object for which you want the parts of. The cet method returns an am_object which
is the part. For Am _Groups and Am_Windows, however, it is better to use the
Am_Value_List stored in the Am_GRAPHICAL_PARTS slot instead of the part iterator.

To iterate over the instances of an object, use an am_Instance_Iterator which is
initialized with the object for which you want the instances of. The Get method returns
an am_object which is the part.

To get all the slots (both inherited and local) of an object, use the am_siot_iterator,
which is initialized with the object for which you want the slots of. The Get method
returns an Am_slot_Key which is the name of the slot. You can use the object method
Is_Slot_Inheritedto see if the slot is inherited or not.

3.8.3 The Order of Iterator Items

When an iterator is first initialized, there is no particular order imposed on the list. The
order of the elements will be such that a single element will not repeat if the list is read
from beginning to end, but the order may change if the iterator is restarted from the
beginning. (Opal keeps track of the Z (stacking or covering) order of the parts through a
different mechanism, using the am_GRAPHICAL PARTS slot which contains an
am_value_List of the graphical parts, sorted correctly).

When items are added to an iterator’s list during the middle of searching the list, the
items added are not guaranteed to be seen by the iterator. In other words, the iterator
may skip them. The value returned by the Length method will be correct, but the only
way to make certain all values have been seen is to restart the iterator.

Likewise, the order in which the elements are stored in each iterator is not guaranteed to
be maintained when an item is deleted from the list. The iterators themselves cannot be
used to destroy an item, but other methods like obj.Destroy, obj.Remove_Part, and
obj .Remove_slot will affect the contents of iterators that hold those values.



ORE Page 77

When an iterator has a slot or object as its current position, and that item gets removed,
the affect on the iterator is not determined. An iterator can always be restarted by calling
the start method in which case it will operate as expected. Though an iterator will not
likely cause a crash if its current item is deleted, continued use of it will cause some very
odd results.

For iterators that iterate over objects (specifically am_part_Iterator and Am_Instance_
Iterator), it is possible to continue using'the iterator even when items are deleted. If
the programmer makes certain that the iterator does not have the deleted object as the
current position when the object is removed, then the iterator will remain valid. For
example:

// Example: Remove all parts of my_object that are instances of Am_Line.
Am_Part_Iterator iter = my_ object;
iter.Start ();
while (l!iter.Last ()) {
Am_Object test_obj = iter.Get ();
iter.Next ();
if (test_obj.Is_Instance_0f (Am_Line))
test_obj.Remove_From_Owner ();

}

In the above example, the call to Next occurs before the call to Remove_From_owner. If
these methods calls were reversed, then iterator would go into an odd state and one
would get undetermined results.

The am_slot_Iterator type does not have the same deletion properties as the object
iterators. If a slot gets removed from an object being listed by a slot iterator (or the
prototype of the object assuming the slot is defined there), then the affect on the iterator
is undetermined. The slot iterator must be restarted whenever a slot gets added or
removed from the list in order to guarantee that all slots are seen.

3.9 Errors

Whenever Amulet notices an error, it calls the am_Error routine which prints out the
error and then aborts the program. If you have a debugger running, it should cause the
program to enter the debugger. Note that under Visual C++, you have to have the
GWStreams application running to see the error output.

3.10 Advanced Features of the Object System

3.10.1 Destructive Modification of Wrapper Values

Some wrappers, like am_style’s are immutable, which means that once created, the
programmer cannot change their values. Other wrapper objects, like am_value_Lists
are mutable. The default Amulet interface copies the wrapper every time it is used and
automatically destroys the copies when the programmer is finished with them (explained
in section 3.10.2.2). This design guarantees both that the programmer will not



Page 78 ORE

accidentally change a value still stored in a slot, and that there will not be a space leak.
However, for the programmers that know what they are doing, it is unnecessarily
wasteful since copies are not always required. This section discusses how you can
modify a wrapper value without making a copy. See also the discussion of the
implementation of wrappers, Section 3.10.2.

When you retrieve a wrapper value out of a slot, it points to the same value that is in the
slot, and only when a destructive modification is made to the value is a copy made.
Thus, most mutable wrappers provide a "make_unique" optional parameter in their data
changing operations. The default for this parameter is always true, but if you call the
procedure with it false, then the value you modify will be the same as the value stored
in the slot. However, the object system will not know that you have changed the value,
so you have to called Note_changed on the object to tell it after you are done your
modifications. This is needed so Amulet will know to redraw the object if necessary and
notify any slots with a constraint dependent on this slot. For example:

Am Value_List list = obj.Get (MY_LIST_SLOT);

list.Start();

list.Delete(false); /Hdestructively delete the first item

obj .Note_Changed (MY_LIST SLOT); /tell Amulet that I modified the slot

An important point to remember when doing destructive modification is to be careful that
the wrapper is not shared among multiple objects. To save space, Amulet shares a
wrapper between multiple objects, especially between a prototype and its instances.
Thus, if you make an instance of obj in the example above called obj_instance, then
both obj_instance and obj will have the same list in the My_r.1sT_sroT. In that case,
the above code would modify the list for both obj and obj_instance, but Amulet would
not know about the change to obj_instance. Thus, you should only do destructive
modifications if you are sure the wrapper value is not shared (possibly due to your setting
of the slot inheritance--see Section 3.10.4), or because you have explicitly set the
wrapper value into the slot of an instance.

If the programmer cannot be sure that the slot contains a local copy of the wrapper, or
knows for fact that it does not, then there is the option of using the Make_Unique method.
Make_Unique is a method on am_Object that takes a slot key as a parameter. The effect
of Make_Unigque is to make certain that whatever value is in that slot, it will be made
local. After Make_unique is called on the slot, the wrapper can be fetched without worry
and destructively modified as desired.

// Example which uses Make_Unique to guarantee the uniqueness of MY_SLOT’s value.
obj.Make_Unique (MY_SLOT);

Am_Value_List list = obj.Get (MY_SLOT);

list.Add (5, Am_TAIL, false);

obj.Note_Changed (MY_SLOT);

3.10.2 Writing a Wrapper Using Amulet’s Wrapper Macros

You should consider creating a new type of wrapper whenever you need to store a C++
object into a slot of an Amulet object. A wrapper manages two things for its value. First



ORE Page 79

it has a simple mechanism that supports dynamic type checking, so you can make sure
that you have the correct type of data. Second, wrappers add a reference counting
scheme to the value to prevent the value’s memory from being deleted while the value is
still in use.

Wrappers are created in two layers. The outermost layer is the C++ object layer used by
programmers to refer to the object. The type am_style is the object layer for the
am_style wrapper. Inside the object layer is the data layer. For am_style, the type is
called am_style Data. Normally, programmers do not have access to the data layer.
The object layer of the wrapper is used to manipulate the data layer which is where the
actual data for the object is stored.

3.10.2.1 Creating the Wrapper Data Layer

Both the typing and reference counting is embodied by the definition of the class
am_Wrapper from which the data layer of all wrappers must be derived. The class
Am_Wrapper is pure virtual with five methods that all wrappers must define. Most of the
time, the programmer can use the pre-defined macros Am_WRAPPER_DATA_ DECL and
Am_WRAPPER_DATA_IMPL to define these five methods.

void Note_Reference ()

Am_ Wrapper* Make_Unigue ()

void Release ()

operator== (Am_Wrapper& test_value)
Am ID Tag ID ()

Of the five methods, three are used for maintaining the reference count and making sure
that only a unique wrapper value is ever modified. These are Note_Reference,
Make_ Unique, and Release.’

Note_Reference tells the wrapper object that the value is being referenced by another
variable. The reference could be a slot or a local variable or anything else. The
implementation of Note_Reference is normally to simply add one to the reference
count.

Release is the opposite of Note_Reference. It says that the variable that used to hold
the value does not any longer. Typical implementation is to reduce the reference count
by one. If the reference count reaches zero, then the memory should be deallocated.

Make Unique is the trickiest of these methods to understand. The basic idea is that a
programmer should not be allowed to modify any wrapper value that is not unique. For
example, if the programmer retrieves a Am_value_List from a slot and adds an item to
the list, this destructive modification should normally not affect the list that is still in the
slot. The way to maintain this paradigm is for the method used to modify the wrapper’s
data to first call Make_unique. If the reference count is one, the wrapper value is already
unique and Make_Unique simply returns this. If the reference count is greater than one,
then Make_Unique generates a new allocation for the value that is unique and returns it.
Either way a unique wrapper value will be modified. Some wrapper types have boolean



Page 80 ORE

parameters on their destructive operations that turn off the behavior of Make_unique to
allow the programmer to do destructive modifications (see Section 3.10.2.1).

The operator== method allows the object system to compare two wrapper values
against one another. The system will automatically compare the pointers so all the ==
method must do is compare the actual data. Simply returning false is sufficient for most
wrappers.

The final operator is used to handle a primitive dynamic typing system. Each wrapper
type is assigned a number called an Am_ID_Tag which is just an unsigned integer.
Integers are dispensed using the function am_Get_Unique_ID_Tag. Normal procedure is
to define a static member to the wrapper data class called id which gets set by calling
Am_Get_Unique_ID_Tag. Then the ID method simply returns id.

All of the methods can be defined instantly by using the Am_WRAPPER_DATA_DECIL and
Am_WRAPPER_DATA IMPL macros. The macros require that the user define at least two
methods in the wrapper data class. The first required method is a constructor to be used
by Make_unique. The method is used to create a copy of the original value which can be
modified without affecting the original. This can be done easily by making a constructor
that takes a pointer to its own class as its parameter. Make sure that in all the data class
constructors to initialize the ref member (defined by am_wrRaPPER_DECL) to 1. The
second required method is a operator== that tests equality with a reference to the
wrapper data class. The == method does not need to check to make sure the parameter is
of the same type as itself because that is handled by the default implementation of the
operator== that takes a am_wrappers and which calls the specific == routine if the
types are the same.

For example:

class Foo_Data : public Am_Wrapper {
Am_ WRAPPER_DATA DECL (Foo_Data)
public:
Foo_Data (Foo_Data* prev)
{
... // initialize member values
refs = 1; // Do not forget this line!
}

operator== (Foo_Data& test_wvalue)

{

}
protected:
// define own members

// compare test_value to this

};:

/ typically this part goes ina . cc file
Am_WRAPPER_DATA_IMPL (Foo_Data, (this))

All the standard wrapper macros take the name of the type as their first parameter. If one
wants the name of the wrapper type to be Foo, the data layer type must be name
Foo_Data assuming the programmer is using the standard macros in the outer layer. The



ORE Page 81

Am_WRAPPER_DATA_IMPL macro takes a second parameter which is the parameter set to
use when the Make_uUnique method calls the data object’s constructor. In the above case,
"(this)" is used because the parameter to the Foo_bata constructor is equivalent to the
this pointer in the Make_Unique method. That is, the Make_Unique method will
sometimes have to create a new copy of the wrapper object. The new copy will be
created using one of the object’s constructors. In the above case, the programmer wants
the constructor Foo_Data (Foo_Data* prev) to be used. This constructor requires
Make_Unique to pass in its this pointer as the parameter. Therefore the parameter set
declared in the macro Am_WRAPPER_DATA_IMPL is "(this)." If the programmer wanted a
different constructor to be used, the parameter set put into the macro would be different.

3.10.2.2 Using The Wrapper Data Layer

The wrapper data layer is normally manipulated only by the methods in the wrapper
outer layer. One can take the Am_Foo_Data* and manipulate it as a normal C++ object
with the following caveat. One must be sure that the reference count is always correct.
When one uses the data pointer directly, there are no functions called Add_Reference or
Release for the programmer so it must be done in the code.

Consider the following example: The programmer wants to return a Am_Foo type but
currently has a am_Foo_bData* stored in his data.

// Here we move a Foo_Data pointer from one variable to another. The
// object that lives in the first variable must be released and the
// reference object moving to the new variable must be incremented
Foo_Data* foo_datal;

Foo_Data* foo_data2;

//... assume that foo_datal and foo_data2 are somehow set up with
// real values

if (foo_datal)
foo_datal->Release ();

foo_datal = foo_datal;

foo_datal->Note_Reference ();

To keep changes in a wrapper type local one must call the Make_unique method on the
data before one makes a change to it. If the wrapper designer wants to permit the
wrapper user to make destructive modifications, a boolean parameter should be added to
let the user decide which to do.

void Foo::Change_Data (bool destructive = false)

if (!destructive)
data = data->Make_Unique ();
data->Modify Somehow ();
}

Sometimes a programmer will want to use the wrapper data pointer outside the outer
wrapper layer of the object. To convert from the wrapper layer to the data layer, one
uses Narrow.



Page 82 ORE

Foo my_£foo;
Foo_Data* data = Foo_Data::Narrow (my_foo);

The way to test if a given wrapper is the same type as a known wrapper class is to
compare IDs.

Am_Wrapper* some_wrapper_ptr = something;
Am_TID_Tag id = some_wrapper_ptr->ID ();
if (id == Foo_Data: :Foo_Data_ID ())

cout << "This wrapper is foo!" << endl;

The static method TypeName_1D is provided in the standard macros.

Other functions provided for wrapper data classes by the standard macro are 1s_unique,
and 1s_zZero with are boolean functions that query the state of the reference count.

3.10.2.3 Creating The Wrapper Outer Layer

The standard macros for building the wrapper outer layer assume that the class for the
wrapper data is called TypeName_bata where TypeName is the name for the wrapper
outer layer. Like the data layer macros, there are two outer layer macros, one for the
class declaration part and one for the implementation.

// Building the outer layer of Foo. This bit normally goes in a .h file.
class Foo { // Note there is no subclassing.
Am_WRAPPER_DECL (Foo)
- public:
Foo (params);
Use ():
Modify ();
};

// This normally goes in the .cc file.
Am_WRAPPER_IMPL (Foo)

The wrapper outer layer is given a single member named data which is a pointer to the
data layer. In all the wrapper methods, one performs all operation on the data member.

// A Foo constructor - initializes the data member.
Foo::Foo (params)

{

data = Foo_Data::Create (params);

}

For methods that modify the contents of the wrapper data, one must be sure that the data
is unique. One uses the Make_Unique method to manage uniqueness.

Foo::Modify ()
{
if (!'data)

Am_Error ("not initialized!");
data = data->Make_Unique ();
data->Modify ();

}



ORE Page 83

Methods that do not modify data do not need to force uniqueness so they can use the

wrapper data directly.
Foo::Use ()

{
if (!data)
Am_Error ("not initialized!");
data->Use ();
}

Somewhere in the code the wrapper will actually do something: calculate an expression,
draw a box, whatever. Whether the programmer puts the implementation in the data
layer or the outer layer is not important. Most wrapper implementations will
compromise somewhere in between.

Putting a wrapper around an existing C++ class is not difficult. One can put the original
class as a single piece of data for the wrapper data layer. If the programmer does not
want to reimplement all the methods that come with the existing class, then provide a
single function that returns the class and one can perform the methods on that. Be certain
that Make_Unique is called before the existing object is returned. If the object can be
destructively modified, then the wrapper must be made safe before the modifications
occur. However, if the programmer wants the wrapper object to behave as if it were the
original class then some reimplementation may be required.

3.10.3 Using Am_Object_Advanced

There are several extra methods that can be used on any Amulet object that are not
available in the regular am_object class. A programmer can manipulate these methods
by typecasting a regular Am_oObject into a Am_oObject_advanced class. For instance, in
order to retrieve the Am_slot_advanced form for a slot one can use Get_slot:

Am_Object_Advanced obj_adv = (Am_Object_Advanced&)my_ object;
Am_Slot_Advanced* slot = obj_adv.Get_Slot (Am_LEFT);

Needless to say, a programmer can break a good many things using the advanced object
and slot classes. A general principle should be to use the advanced features for a short
time right after an object is first created. After the object is manipulated to add or change
whatever is needed, the object should never need to be cast to advanced again.

A number of methods in the advanced object class are used to fetch slots. The method
Get_slot retrieves a slot and returns it as the advanced class am_slot_advanced.
Get_Slot will always return a slot local to the object. If the slot was previously not local
because it is still inherited or for other reasons, Get_slot will make a placeholder slot
locally in the object and return that. If the slot does not exist at all, Get_slot will return
am_NULL_SLOT. There are two other methods used for fetching slots: Get_owner_silot,
and Get_prart_slot. These methods are similar to Get_slot except they are to be used
only for fetching part slots. It is entirely possible to use Get_slot instead of these
specialized methods, but the specialized methods are more efficient.



Page 84 ORE

3.10.4 Controlling Slot Inheritance

An innovation in Amulet is that the programmer can control the inheritance of each slot.
This is useful if you want to make sure that certain slots are not shared by a prototype
and its children. For example, the Amulet am_window object has a slot that points to the
actual X/11 or MS Windows window object associated with that window. This slot
should not be shared by multiple objects. To control the inheritance, you need to include
object_advanced.h The choices are defined by the enum Am_Tnherit_Rule and are:

* am_INHERIT: The default. Slots are inherited normally from prototypes to
instances, and subsequent changes to the prototype will affect all instances that do
not override the value.

* am_LocAL: The slot is never inherited by instances. Thus, the slot will not exist in
an instance unless explicitly set there.

» am_copY: When the instance is created, a copy is made of the prototype's value and
this copy is installed in the instance. Any further changes to the prototype will
not affect the instance.

e am_sTATIC: All instances will share the same value. Changing the value in one
object will therefore affect all objects. We have found this to be rarely useful.

Setting the inheritance is an "advanced" feature, which means that you have to use an
Am_slot_Advanced. For example, to set the inheritance rule of the am_INTER_LIST slot
of new_win to be local, you need to do:

#include <amulet/object_advanced.h> /for slot_advanced

Am_Object_Advanced obj_adv = (Am_Object_Advanced&)new_win;
Am_Slot_Advanced *slot = obj_adv.Get_Slot (Am DRAWONABLE) ;
slot->Set_Inherit_Rule (Am_LOCAL) ;

The default rule with which an object will create all new slots added to an object can be
changed using the Set_Default_Inherit Rule method. Likewise, the current inherit rule
can be examined using Get_Default_Inherit_Rule.

((Am_Object_Advanced&)my_object).Set_Default_Inherit_Rule‘(Am_COPY);
Am_TInherit_Rule rule = my_adv_object.Get_Default_Inherit_Rule ();

3.10.5 Controlling Formula inheritance

For slots that are inherited normally, sometimes you still might want to control Formula
inheritance separately. Remember from section 1.6.4 that instances inherit formulas
from their prototypes, but that setting the instance’s slot normally removes the inherited
formulas. There are times, however, when constraints from a prototype should be
retained in instances even if the instance’s value is set. For example, the am_vaLUE slot
of widgets contain formulas that compute the value based on the user’s actions.
However, programmers are also allowed to set the am_vALUE slot if they want the widget



ORE Page 85

to reflect an application-computed value. In this case, the default formula in the
Am_VALUE slot should not be removed if the programmer sets the slot.

To achieve this, the programmer must set the slot’s single_Constraint_Mode to false
(the default is true). This is an advanced feature of Am_Slot_Advanced, so it would be
done like:

Am_Object_Advanced obj_adv = (Am_Obj ect_Advanced&)o‘b'j;
obj_adv.Get_Slot (Am WIDTH)->Set_Single_Constraint_Mode (false);

Now, if obj contains a constraint, any instances of obj will always retain that constraint,
even if another constraint or value is set into the instance. -Furthermore, calls like
Remove_Constraint on the instance’s slot will still nof remove the inherited constraint
(though it will remove any additional constraints set directly into the instance).

3.10.6 Writing and Incorporating Demon Procedures

Amulet demons are special methods that are attached directly to an object or slot. The
demons are for controlling behavior that objects must do frequently or that have a
specific purpose in the object's function. The demons are written as procedures that are
stored in an object's "demon set." The demon set is shared among objects that are
inherited or copied from another.

The demon procedures that operate on an object have very specific purpose. There are
five demons in total that can be overridden on the object level. Three of the demons deal
with object creation and destruction, the other two are used to handle part management.

Demons that are attached to slots behave in a way similar to formulas. The slot demons
are more generic than object level demons. Slot demons can detect when the slot value
changes or is invalidated. Several slot demons can be assigned to a single slot making it
possible for the slot to have multiple effects with a single event.

When a demon event occurs, the demon affected is put into the "demon queue" to be
invoked later. All the demons put into demon queue are invoked, in order, whenever any
slot is fetched by using Get. By invoking the demons on Get, Amulet can simulate the
effects of eager evaluation because any demon that affects the value of different slots will
invoked whenever a slot is queried.

3.10.6.1 Object Level Demons

The three demons that handle object creation and destruction are the create, copy, and
destroy demons. Each demon is enqueued on its respective event. The create and copy
demons get enqueued when the object is first created depending on whether the method
Create Or Copy was used to make the object. The destroy demon is not actually ever
enqueued. Since the pDestroy operation will cause the object to no longer exist, all



Page 86 ORE

demons that are already enqueued will be invoked and then the destroy demon will be
called directly. This allows the programmer to still read the object while the destroy
procedure is running.

All of the creation/destruction demon procedures have the same parameter signiture.
They all take just the single object that has been affected. The type of the procedure is
Am_Object_Demon.

// Here is an example create demon that initializes the slot MY_SLOT to be zero.
void my_create_demon (Am_Object self)

{
self.Set (MY_SLOT, 0);

}

Two object level demons are used to handle part-changing events. These are the add-part
and the change-owner demons. The add-part and change-owner demons are always
paired: the add-part demon for the part and the change-owner demon for the part’s
owner. Both demon procedures have the same parameter signature, three objects, which
has the type am_pPart_Demon, but the semantics of each demon is different. The first
parameter for both prodecures is the self object -- the object being affected by the
demon. The next two objects represent the change that has occured. In the add-part
demon, the second object parameter is object that is being removed or replaced. The
third parameter is the object that is being added or is replacing the object in the second
parameter. For the change-owner demon, the semantics are reversed -- instead of parts
being added the second and third parameters represent the change that a part sees in its
owner. The second parameter is the owner the part used to have, the third parameter is
the new owner that has replaced the old owner.

// This owner demon checks to make sure that it’s owner is a window.
// other owner will cause an error.
void my_owner_demon (Am_Object self, Am_Object prev_owner,

Am_Object new_owner)

{

if (!new_owner.Is_Instance_Of (Am Window))
Am_Error ("You can only add me to a window!");

}

The events that generate add-part and change-owner demon updates are the methods like
Add_Part, Remove_Part, Destroy, and other methods that can change the object
hiearchy. Note that a given add-part demon can always be associated with a
corresponding change-owner demon. The correspondance is not neccessarily one to one
because one can conceive of situations where one part is replacing another and thus two
add-part calls can be associated with a single change-owner and vice versa.

Important note: The Opal and Interactor layers of Amulet define important demons for
all of these object-level operations, so before setting a custom demon, the code should
fetch the demon procedure currently stored in the demon set and call these in addition to
the new demon. In a future release, we will make this more convenient to do.



ORE Page 87

3.10.6.2 Slot Level Demons

Slot demons are not given permanent names as the object level demons are. The slot
demons are assigned a bit in a bit field to serve as their moniker. For space
considerations, the actual slot demon procedure pointer is stored in the object. The bit is
turned on in the slot to indicate that it should look up the procedure from the demon
whenever a triggering event occurs.

There are two parameters that control a slot demon. The first parameter distinguishes
what event will trigger the demon. Slot demons can be triggered by one of two slot
messages, either the invalidate message or the value changed message. Most demons
trigger on the value changed message because the demon’s purpose is to note the change
to other parts of the system. This can be used to implement an active value scheme with
a slot. Triggering using invalidate message makes the demon act more like a formula.
The demon can be used to revalidate the slot if desired. In fact, the "eager demon" uses
precisely this mechanism to make Amulet formulas eager.

The other slot demon parameter is used to determine how often the demons will be
triggered. Quite often several slots affect the same demon in the same object. For
instance, in a graphical object, the am_Top and am_LEFT slots both affect the position of
the object. A demon that handles object motion only needs to be triggered once if either
of these slots changes. For this case, we use the per-object style demon. Whenever
multiple slots change in a single object, the per-object demon will only be enqueued
once. Only after the demon has been invoked will it reset and be allowed to trigger
again. The other style of demon activation is per-slot. In this case, the demons act
independently on each slot they are assigned. The demon triggers once for each slot and
after it is invoked, it will be reset. The per-slot demon does not check to see if other
demons have already been enqueued for the same object.

The slot demon procedure takes as its only parameter the slot that triggered the demon.
If the demon could have been triggered by more than one slot as can be the case when the
demon is set to be per object, the slot provided is the very first one that triggered it.

// Here is an example slot demon. This demon does not do anything

// interesting, but it shows how the parameter can be used,
void my_slot_demon (Am_Slot_Advanced* slot)

{
Am_Object_Advanced self = slot->Get_Owner ();

self.Set (MY_SLOT, 0);
}

3.10.6.3 Modifying the Demon Set and Activating Slot Demons

To activate any demon, the demon procedure must be made known to the object. Objects
keep the list of available procedure in a structure called the "demon set" which is defined
by the class am_Demon_set. Objects inherit their demon set from their prototypes. The
demon set, therefore, is shared between objects in order to conserve memory. To modify
the demon set of an object, one must first make sure that the set is a local copy. The



Page 88 ORE

demon set’s create method is used for making new sets. The programmer can pass a
demon set that is already filled with demon procedures as a parameter to the create
method in order to make a copy.

// Here we will modify the demon set of my_adv_obj by first making
// a copy of the old set and modifying it. The new demon set is then

/ placed back into the object.

Am_Demorn_Set* prev_demons = my_adv_obj.Get_Demon_Set ();

Am_ Demon_Set* my demons = Am_Demon_Set::Create (prev_demons) ;
my_demons->Set_Object_Demon (Am_DESTROY_OBJ, my_destroy_demon) ;
my_adv_obj.Set_Demon_Set (my_demons);

Once the demon procedures are installed for object level demons, the demons will trigger
on the next occurance of their corresponding event. Note that the create and copy
demon’s events have already occured for the prototype object in which the demon
procedures are installed. However, instances of the prototype as well as new copies will
cause the new procedures to run. To make the demon procedure run for the current
prototype object, one must call the demon procedure directly.

The demon set holds all demon procedures for the object, including the demons used in
slots. The slot demon are installed by assigning each demon a bit name that will be
stored in the slot that activates the demon. The bit name is represented by its integer
value so bit 0 is number 1, bit 5 is number 32 (hex 0x0020). Section 3.10.5.5 discusses
how to allocate demon bits.

// Here we install a slot demon that uses bit 5. The slot demon’s semantics are to activate when
// the slot changes value and only once object. Make sure that the demon set is local to the per

// object (see above section).
my_demons->Set_Slot_Demon (0x0020, my_ slot_demon,
Am DEMCON_ON_CHANGE | Am_DEMON_PER_ OBJECT) ;

After the demon procedure is stored, one can set the bits on the slot to tell it which
demons belong to it.

// Here we set a new bit to a slot. To make sure we do not turn off

// previously set bits, we first get the old bits and bitwise-or the new.
Am_Slot_Advanced* slot = my_adv_obj.Get_Slot (MY SLOT);
unsigned short prev_bits = slot->Get_Demon_Bits (};
slot->Set_Demon_Bits (0x0020 | prev_bits);

If one wants every new slot in an object to have certain demon bits set, one can change
the default demon bits in the object.

// Make the new slot demon default.

unsigned short default_bits = my_adv_obj.CGet_Default_Demon_Bits ();
default_bits |= 0x0020;

my_adv_obj.Set_Default_Demon_Bits (default_bits);

Another factor in slot demon maintainance is the "demon mask." The demon mask is
used to control whether the presence of a demon bit in a slot will force the slot to make a
temporary slot in every instance. A temporary slot is used by ORE to provide a local slot
in an object even when the value of the slot is inherited. If a temporary slot is not



ORE Page 89

available, then there will be no demon run for that object. This is especially necessary
when one wants inherited objects to follow the behavior of a prototype object. For
instance, in a rectangle object, if one changes the am_LEFT slot in the prototype, one
would like a demon to be fired for the am_LEFT slot in any instance of that prototype.
That requires there to be a temporary slot for every instance. For demons that require a
temporary slot put a one in the demon mask. For all other demons put zero. Bitwise-and
is performed between the demon mask and the demon bits of every slot that is instanced.
If the result is non-zero a temporary slot is created for the new instance.

// Setting the demon mask

unsigned short mask = my_adv_obj->Get_Demon_Mask ();
mask |= 0x0020; // add the new demon bit.
my_adv_obj->Set_Demon_Mask (mask) ;

3.10.6.4 The Demon Queue

The demon queue is where demon procedure are put when their events occur. Objects
store the demon queue in the same way that they store their demon set: the same queue
is shared when objects are instanced or copied. However, Amulet never uses more than
one demon queue. There is only one global queue for all objects. It is quite possible to
make a new queue and store it in an object but it just never happens.

// Here is how to make a new gqueue.

// It is highly unlikely that anyone will ever do this.
Am_Demon_Queue* my_ queue = Am Demon_Queue: :Create ();
my_adv_obj.Set_Queue (my_ queue);

To find and manipulate the global demon queue, one can take any object and read its
queue.

Am_Demon_Queue* global_gueue =
((Am_Object_Advanced&) Am_Root_Object) .Get_Queue ():

The demon queue has two basic operations: one can enqueue a new demon into the list
and one can cause the queue to invoke. Invoking the queue causes all the demon
procedures stored to be read out of the queue, in order, and executed. While the queue is
invoking, it cannot be invoked recursively. This prevents the queue from being read out
of order while a demon is still running.

The demon queue is automatically invoked in a few circumstances. First, the queue is
invoked whenever the method Get is called on an object. This is to make sure that any
demons that affect the slot being retrieved are brought up to date. Another time is when
the Destroy method is called on the object for similar reasons. The other time invoke is
called is in the updating cycle in main loop and other window updating procedures.
When windows are updated the demon queue is invoked to update all the object values.

The demon queue is not a true queue in that it does not have a dequeue operation. The
dequeue is wrapped up in the Invoke method. The queue does have a means for deleting



Page 90 ORE

entries, though. One can delete all the demons that have a given slot or object as a
parameter by using the Delete method. -One can also delete the demons that pertain to a
given object including the slots that the object contains by using the Delete_owned
method.

3.10.6.5 How to Allocate Demon Bits and the Eager Demon

In order to develop new slot demons, one must provide a bit name for it. Presently,
Amulet does not provide a means for dispensing bit names for demons. To see if a
demon bit is being used by an object it is quite possible to read the slot demons from the
demon set and see which bits are not being used. This procedure should be very
sufficient since one would not expect an object’s demon set to be modified very often.
Generally, only prototype objects need to be manipulated and one can often know which
demons are set in a given prototype object.

Some of the demon bits are off limits to Amulet programmers. Amulet reserves two bits
for use by the object system and another three bits for opal. The object system uses bits
0 and 1, opal uses bits 2, 3, and 4. Bits 5, 6, and 7 are available for programmers.
Presently there are only the eight bits total available for slot demons.

Bit 0 in the object system is for the "eager demon.” The eager demon is a default demon
that all slots use. The demon is used simply to validate the slot whenever it becomes
invalid. This makes the formula validation scheme eager hence the name. A
programmer can turn off eager evaluation by turning off the eager bit in all the slots that
one wants to be lazy. One can also set the eager demon procedure to be NULL in the
demon set. When one is adding new demons to a slot one should be careful not to turn
off the eager bit by accident.



4. Opal Graphics System

Abstract

This chapter describes simple graphical objects, styles, and fonts in Amulet. “Opal”
stands for the Object Programming Aggregate Layer. Opal makes it easy to create and
manipulate graphical objects. In particular, Opal automatically handles object redrawing
when properties of objects are changed.

Copyright © 1995 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa
Order No. B326. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of NCCOSC or the U.S. Government.






Opal Page 93

4.1 Overview

This chapter describes the Opal graphical object system. The text assumes that the reader
is familiar with the ideas of objects, slots, and constraints presented in the Amulet
Tutorial and the ORE chapter.

4.1.1 Include Files

There are several data types documented in this chapter, declared in several different
header files. You only need to include amulet.h at the top of your files, but some
programmers like to look at header files. Here is a list of most of the objects and other
data types discussed in this manual, along with the header file in which they are declared.

e gdefs.h: Am Style, Am Font, Am_Point_List, Am_Image_Array

e opal.h: default am_style’s, default am_Font’s, Am_Screen,
Am_Graphical_Object, Am_Window, Am_Rectangle, Am_Roundtangle,
Am_Line, Am_Arrow, Am_Polygon, Am Arc, Am_Text, Am Bitmap, Am_Group,

Am_Map, default.constraints, Am_Initialize, Am_Cleanup, Am_Beep,
Am_Move_Object, Am To_Top, Am_To_Bottom, Am_Create_Screen, Am_Update,
Am Update_All, Am Do_Events, Am_Main_Event_Loop,

Am_Exit_Main_Event_Loop, default Am Point_In_ functions,
Am_Translate_Coordinates, Am_Merge_Pathname
o value_list.h: Am Value_List

e text_fns.h: all text editing functions, Am_Edit_Translation_Table

4.2 The Opal Layer of Amulet

Opal, which stands for the Object Programming Aggregate Layer, provides simple
graphical objects for use in the Amulet environment. The goal of Opal is to make it easy
to create and edit graphical objects. To this end, Opal provides default values for all of
the properties of objects, so simple objects can be drawn by setting only a few
parameters. If an object is changed, Opal automatically handles refreshing the screen and
redrawing that object and any other objects that may overlap it. Objects in Opal can be
connected together using constraints, which are relations among objects that are declared
once and automatically maintained by the system. An example of a constraint is that a
line must stay attached to a rectangle. Constraints are discussed in the Tutorial and the
ORE chapter.

Opal is built on top of the Gem module, which is the Graphics and Events Module that
refers to machine-specific functions. Gem provides an interface to both X windows and
to Windows NT, so applications implemented with Opal objects and functions will run
on either platform without modification. Gem is described in chapter 7.



Page 94 Opal

To use Opal, the programmer should be familiar with the ideas of objects and constraints
presented in the Tutorial. Opal is part of the Amulet library, so all objects discussed in
this manual are accessible just by linking Amulet to your program (see the Overview
manual for instructions). Opal will work with any window manager on top of X/11, such
as mwm, uwm, twm, etc. Additionally, Opal provides support for color and gray-scale
displays.

Within the Amulet environment, Opal forms an intermediary layer. It uses facilities
provided by the ORE object and constraint system, and provides graphical objects that
can be combined to build more complicated gadgets. Opal does not handle any input
from the keyboard or mouse -- that is handled by the separate Interactors module, which
is described in chapter 5. The Amulet Widgets, such as scroll-bars and menus, are
partially built out of Opal objects and partly by calling Gem directly (for efficiency).
Widgets are generally more complicated than the Opal objects, usually consisting of
interactors attached to graphics, and are discussed in chapter 6.

4.3 Basic Concepts

4.3.1 Windows, Objects, and Groups

X/11 and Windows NT both allow you to create windows on the screen. In X they are
called “drawables”, and in Windows NT they are just called “windows”. An Opal
window is an ORE data structure that contains pointers to these machine-specific
structures. Like in X/11 and Windows NT, Opal windows can be nested inside other
windows (to form “sub-windows”). Windows clip all graphics so they do not extend
outside the window's borders.

Also, each window forms a new coordinate system with (0,0) in the upper-left corner.
The coordinate system is one-to-one with the pixels on the screen (each pixel is one unit
of the coordinate system). Amulet windows are discussed fully in section 4.10.

The basics of object-oriented programming are beyond the scope of this chapter. The
objects in Opal use the ORE object system, and therefore operate as a prototype-instance
model. This means that each object can serve as a prototype (like a class) for any further
instances; there is no distinction between classes and instances. Each graphic primitive
in Opal is implemented as an object. When the programmer wants to cause something to
be displayed in Opal, it is necessary to create instances of these graphical objects. Each
instance remembers its properties so it can be redrawn automatically if the window needs
to be refreshed or if objects change.

A group is a special kind of object that holds a collection of other objects. Groups can
hold any kind of graphic object including other groups, but an object can only be in one
group at a time. Therefore, groups form a pure hierarchy. The objects that are in a
group are called parts of that group, and the group is called the owner of each of the
parts. Groups, like windows, clip their contents to the bounding box defined by their



Opal Page 95

left, top, width, and height. Groups also define their own coordinate system, so that the
positions of their parts are relative to the left and top of the group.

Objects are not drawn anywhere until they are added to a window. Windows are not
drawn until they are added to the screen. Graphical objects can be added directly to a
window, or they can be added to a group that is, in turn, part of a window.

Non-graphical objects, like Interactors and Command objects (and the application-
specific objects) can be added as parts to any kind of object, but graphical objects can
only be added as parts to an am Window Or a Am_Group.

4.3.2 The “Hello World” Example

An important goal of Opal is to make it significantly easier to create pictures, hiding
most of the complexity of the X/11 and Windows NT graphics models. Therefore, there
are appropriate defaults for all properties of objects (such as the color, line-thickness,
etc.). These only need to be set if the user desires to. All of the complexity of the X/11
and Windows NT graphics packages is available to the Opal user, but it is hidden so that
you do not need to deal with it unless it is necessary to your task.

To get the string "Hello world" displayed on the screen (and refreshed automatically if
the window is covered and uncovered), you only need the following simple program:

#include <amulet/amulet.h>

main (void)
{
Am_Initialize ();

Am_Screen
.Add_Part (Am_Window.Create ("window")
.Set (Am_WIDTH, 200)
.Set (Am HEIGHT, 50)
.Add_Part (Am Text.Create ("string")
.Set (Am_TEXT, "Hello World!")));

Am_Main_Event_Loop ();
Am_Cleanup ();
}

This code, and a Makefile that compiles it, is provided in the Amulet source code in the
directory samples/hello/. Note that the programmer never calls “draw” or “erase”
methods on objects. This is a significant difference from other graphical object systems.
Opal causes the objects to be drawn and erased at the appropriate times automatically.

Section 4.5 presents all the kinds of objects available in Opal.



Page 96 Opal

4.3.3 Initialization and Cleanup

Amulet requires a call to am_Initialize() before referencing any Opal objects or
classes. This function creates the Opal prototypes and sets up bookkeeping information
in Amulet objects and classes. Similarly, a call to am_cleanup () at the end of your
program allows Amulet to destroy the prototypes and classes, explicitly freeing memory
that might otherwise remain occupied.

4.3.4 The Main Event Loop

In order for interactors to perceive input from the mouse and keyboard, the main-event-
loop must be running. This loop constantly checks to see if there is an event, and
processes it if there is one. The automatic redrawing of graphics also relies on the main-
event-loop. Exposure events, which occur when one window is uncovered or exposed,
cause Amulet to refresh the window by redrawing the objects in the exposed area.

A call to Am_Main_Event_Loop() should be the second-to-last instruction in your
program, just before am_Cleanup(). Your program will continue to run until Amulet
perceives the escape sequence, which by default is conTroL-ESc. Typically, your
program will have some sort of Quit button that calls the am_Exit_Main Event_Loop()
routine, which will cause the main event loop to terminate.

4.3.5 Am_Do_Events

Normally, in response to an input event, applications will make some changes to graphics
or their internal state and then return. Sometimes, however, an application might want to
make a graphical change, have it seen by the user while waiting a little, and then make
another change. This might be necessary to make something blink a few times, or for a
short animation. To do this, an application must call Am_Do_Events () to cause Amulet
to update the screen based on all the changes that have happened so far. Eventually,
Amulet will contain an Animation Interactor, but it is not implemented yet.

You might also use am_po_Events () if you want your own event loop, for example,
because you need to monitor non-Amulet queues, processes or inter-process-
communication sockets. Calling am_Do_Events () repeatedly in a loop will cause all the
Interactors and Amulet activities to operate correctly, because the standard
Am Main_Event_Loop essentially does the same thing as calling Am_Do_Events() in a
loop. am_Do_Events () never blocks waiting for an event, but returns immediately
whether there is anything to do or not. The return boolean from am_po_Events tells
whether the whole application should quit or not. Therefore, a main-loop might look
like:



Opal Page 97

main (void) {
Am_TInitialize ();
./ do the necessary set up and creating of objects

// use the following instead of Am_Main_Event_Loop ();
bool continue_looping = true;
while (continue_looping) {
continue_looping = Am_Do_Events();
. // check other queues or whatever

}
Am_Cleanup ();

4.4 Slots of All Graphical Objects

4.4.1 Left, Top, Width, and Height

All graphical objects have Am_LEFT, Am_TOP, Am _WIDTH, and Am_HEIGHT slots that
determine their position and dimensions. Some objects have simple numerical values in
these slots, and some have formulas that compute these values. Check the section below
for a specific object to find its default values for these slots. All values must be ints.

4.4.2 Am_VISIBLE

In a graphical object, the am_visIBLE slot, which should contain a bool, controls
whether the object is drawn in the window or group that it is a part of. In a window,
Am_VISIBLE controls whether the window is drawn on the screen. To make a group and
all of its parts invisible, it is sufficient to just set the am_vISIBLE slot of the group to
false.

Invisible objects are typically ignored by interactors and graphics routines. For example,
you cannot use interactors to select an invisible object with the mouse, even if you click
on the area where the invisible object would appear. Also, invisible parts of a group are
generally not taken into account when the size of the group is computed.

4.4.3 Line Style and Filling Style

The am_LINE_STYLE and Am_FILL_STYLE slots hold instances of the am_style class. If
an object has a style in its Am_LINE_STYLE slot, it will have a border of that color. If it
has a style in the Am_rILL_sTYLE slot, it will be filled with that color. Other properties
such as line thickness and stipple patterns are determined by the styles in these slots.

Usually you do not have to create customized instances of am_Style to change the color
of an object -- you can just use the predefined styles like am_Red. Styles are fully
documented in section 4.6.

Storing the special value Am _No_style or NULL in either slot will cause the object to
have no border or no fill.



Page 98 Opal

44.4 Am_HIT THRESHOLD and Am_PRETEND_ TO_BE_LEAF

The am_HIT_THRESHOLD, Am_PRETEND_TO_BE_LEAF, and Am_VISIBLE slots are used by
functions which search for objects given a rectangular region or an (x,y) coordinate. For
example, suppose a mouse click in a window should select an object from a group of
objects. When the mouse is clicked, Amulet compares the location of the mouse click
with the size and position of all the objects in the window to see which one was selected.

First of all, only visible objects can be selected this way. If an object’s am_vISIBLE slot
contains false, it will not respond to events such as mouse clicks with conventional
Interactors programming techniques.

The am_HIT_THRESHOLD slot controls the sensitivity of functions that decide whether an
event (like a mouse click) occurred “inside” an object. If the am_HIT_THRESHOLD of an
object is 3, then an event 3 pixels away from the object will still be interpreted as being
“inside” the object. The default value of am_HIT THRESHOLD for all Opal objects is O.
Note: it is often necessary to set the Am_HIT_THRESHOLD slot of all groups above a target
object; if an event occurs “outside” of a group, then the selection functions will not
check the parts of the group.

When the value of a group’s am_PRETEND_TO_BE_LEAF slot is true, then the selection
functions will treat that group as a leaf object (even though the group has parts). See
Section 4.9.2 regarding the function am_Point_In_Leaf. Also, consult the Interactors
manual regarding the function am_Inter In_Leaf.

4.5 Specific Graphical Objects

The descriptions in this section highlight aspects of each object that differentiate it from
other objects. Some properties of Opal objects are similar for all objects, and are
documented in section 4.4. All of the exported objects in Amulet are summarized in
Chapter 8.

4.5.1 Am_Rectangle

Am_Rectangle:

Slot Default Value Type

Am VISIBLE true bool

Am LEFT 0 int
Am_TOP 0 int

Am WIDTH 10 int

Am HEIGHT 10 int

Am FILL_STYLE Am_Black Am_Stvle
Am_LINE_STYLE Am_Rlack Am Style




Opal Page 99

4.5.2 Am_Line

Am Line:

Slot Default Value Type
Am_ LINE_STYLE Am_Black Am_Stvyle
Am_X1 0 int
Am_Y1 0 int
Am_X2 0 int
Am_Y2 0 int
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 1 int
Am_HEIGHT 1 int
Am_VISIBLE true bool
Am_HIT_ THRESHOLD 0 int

Am_X1, Am Y1, Am X2, Am_Y2, Am LEFT, Am_TOP, Am WIDTH, and Am_HEIGHT are
constrained in such a way that if any one of them changes, the rest will automatically be
updated to reflect that change. The am_r1r1_sSTYLE slot is ignored in Am_Line.

4.5.3 Am_Arc
Am_Arc: (useful for circles, ovals, and arcs)
Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 10 int
Am_ HEIGHT 10 int
Am_ANGLEL1 0 0..360
Am_ANGLE2 360 0..360
Am FILL STYLE Am Black Am_ Style
Am_ LINE STYLE Am_Black Am_Style

The slots am_aNGLE1 and Aam_aNGLE2 are used to specify the origin and terminus of the
arc. The arc runs from am_ANGLE1 counterclockwise for a distance of am_ANGLE2
degrees. am_aNGLE1 is measured from 0° at the center right of the oval (three o’clock),
and am_ANGLEZ2 is measured from Am_ANGLE1.

Arcs are filled as pie pieces to the center of the oval when a colored filling style is
provided.



Page 100 Opal

4.5.4 Am_Roundtangle

Am_Roundtangle: (rectangle with rounded corners)

Slot Default Value Type

Am VISIBLE true bool

Am_LEFT 0 int

Am_TOP 0 int

Am WIDTH 10 int

Am_HEIGHT 10 int

Am_RADIUS Am_SMALL_RADIUS Am_Radius_Flag
or int

Am_ FILL STYLE Am_Black Am_Style

Am_LINE STYLE Am_Black Am_ Style

Instances of the am_Roundtangle prototype are rectangles with rounded corners. The
slots in this object are the same as Am_Rectangle, with the additional slot am_RaDIUS,
which specifies the curvature of the corners. The value of the am_RADIUS slot can either
be an integer, indicating an absolute pixel radius for the corners, or an element of the
enumerated type Am_Radius_Flag, indicating a small, medium, or large radius (see table
below). The keyword values do not correspond directly to pixel values, but rather
compute a pixel value as a fraction of the length of the shortest side of the bounding box.

Value of am rRaDIUS Fraction
Am_SMALL_RADIUS 1/5
Am_MEDIUM_RADIUS 1/4
Am_LARGE_RADIUS 1/3

Figure 4-1 shows the meanings of the slots of am_Roundtangle. If the value of
am_RADIUS is 0, the roundtangle looks just like a rectangle. If the value of Am_RaDIUS is
more than half the shortest side (which would mean there is not room to draw a corner of
that size), then the corners are drawn as large as possible, as if the value of am_raprus
were half the shortest side.



Opal Page 101

\" Am_TOP

Am_HEIGHT

us

/- -

S CREEEEEEEEE

b Am_WIDTH
Am_LEFT

Figure 4-1: The parameters of a roundtangle.

4.5.5 Am_Polygon
Am_Polygon:
Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT <formula> int
Am_TOP <formula> int
Am_WIDTH <formula> int
Am HEIGHT <formula> int
Am_POINT_LIST empty Am Point_List Am_Point_List

The interface to the am_Polygon object is more complicated than other Opal objects. To
specify the set of points that should be drawn for the polygon, you must first create an
instance of Am_Point_List with all your (x,y) coordinates, and then install the point list
in the Am_POINT_LIST slot of your am_Polygon object.

Section 4.5.5.1 lists all of the functions that are available for the am_point_List class,
including how to create point lists and add points to the list. Section 4.5.5.2 provides an
example of how to create a polygon using the am_Polygon object and the
Am_Point_List class.

The formulas in the am LEFT, Am TOP, Am WIDTH, and Am_HEIGHT slots reevaluate
whenever a new point list is installed in the Am_poINT_rIsT slot. If a destructive
modification is made to the point list class currently installed in the slot, such as adding a
point to it with Add_Point (), then Note_Changed () will have to be called to cause the



Page 102 Opal

formulas to reevaluate and to cause the object to be redrawn (for details about destructive
modification of slot values and formula evaluation, see the ORE manual).

The shape defined by an am_Polygon object does not necessarily have to be a closed
polygon. To draw a regular polygon, the first and last points in the am_point_rist
should be the same. If they are not the same, and a fill style is provided, then the border
of the fill style will be along an invisible line between the first and last points.

4.5.5.1 The Am_Point_List Class

Am_Point_List is a regular C++ class, defined in gdefs.h. Here is a list of the member
functions that are available for the am_roint_rnist class. The creator functions are used
to make customized instances containing the list of (x,y) coordinates. The other
functions are for adding, removing, and manipulating points within your specific
instance. Section 4.5.5.2 contains an example of how to use the Am_pPoint_List class
with the am_Polygon object.

Am_Point_List (); /emptylist: this constructor is implicitly called when you declare the type
//  of a point list variable, as in “Am_Point_List my point_ list;”

Am_Point_List ({(int x, int y); /first point: asin “Am_Point_List my_pl (25, 75)”

Am_Point_List (int *ar, int size); /#copyfromarray: the array should be aflat list
/Y ofvalues{ x,y,x,y,... x,y, }, where size is 2n

void Add_Point (int x, int y, int index); /#Index is relative to number of (x,y) pairs.
// If there is already a point at index, it is
//  replaced by the new point. Index can
// be any positive integer, regardless of
/' the number of points already in the list.

void Delete_Point (int index); /index is relative to number of (x,y) pairs.
void Get_Extents (int& min_x, int& min_y, int& max_x, int& max_vy);

int Size () const; /returns number of (x,v) pairs in the list

The member functions of the am_roint_List class are invoked using the standard C++
dot notation, as in “my_point_list.Add_Point (10, 20);”.

4.5.5.2 Using Point Lists with Am_Polygon

The list of points for the polygon should be installed in an instance of am_Point_List,
and then that point list should be installed in the am_poINT_LIST slot of your
am_Polygon object. The constructors for am_pPoint_List allow you to initialize your
point list with some, all, or none of the points that you will eventually use. After the
point list has been created, you can add and remove points from it.



Opal Page 103.

Here is an example of a triangle generated by adding points to an empty point list. The
point list is then installed in an Am_Polygon object. To see the graphical result of this
example, add the triangle_polygon object to a window.

Am_Point_List triangle pl;

triangle_pl.Add_Point (15, 50, 0);
triangle_pl.Add_Point (45, 10, 1);
triangle_pl.Add_Point (75, 50, 2);

Am_Object triangle_polygon = Am Polygon.Create ("triangle_polygon")
.Set (Am POINT_LIST, triangle pl)
.Set (Am_LINE_STYLE, Am_ Line_2)
.Set (Am_FILL_STYLE, Am_Yellow);

Here is an example of a five-sided star generated from an array of integers. To see the
graphical result of this example, add the star_polygon object to a window.

static int star_ar([12] = {100, O, 41, 181, 195, 69, 5, &9, 159, 181,
100, 0};

Am_Point_List star_pl (star_ar, 12);
Am_Object star_polygon = Am_Polygon.Create ("star_polygon")

.Set (Am_POINT_LIST, star_pl)
.Set (Am FTILL_STYLE, Am No_Style);

4.5.6 Am_Text

Am Text:

Slot Default Value Type

Am VISIBLE true bool
Am_LEFT 0 int

Am_ TOP 0 int -

Am WIDTH <formula> int

Am_ HEIGHT <formula> int

Am_ TEXT nu Am_String
Am_FONT Am Default_Font Am_Font
Am_CURSOR_INDEX Am_NO_CURSOR int
Am_LINE_STYLE Am_Line_2 Am_Style
Am FILL_STYLE Am No_Style Am Stvyle
Am_X_OFFSET <formula> int
Am_INVERT false bool

The am_Text object is used to display single lines of text in a specified font. The
am_TEXT slot holds the string to be displayed, and the am_ronT slot holds an instance of
Aam_Font. Section 4.5.6.1 contains a list of predefined fonts and discusses how to create
specific fonts.

The Am_wIDTH and Am_HEIGHT slots contain formulas that reevaluate according to the
string and the font being displayed. These formulas are marked so that if the value of the
slot is set, then the formula will be removed and from then on the string will stay the



Page 104 Opal

constant value set there. In that case, the am_x_oFFSET field contains a formula that
scrolls the text string left and right to make sure the cursor is always visible.

The Am_CURSOR_INDEX contains an integer specifying the position of the cursor in the
string. A value of zero places the cursor at the beginning of the string, and a value of
Am_NO_CURSOR turns off the cursor.

The am_LINE_STYLE slot controls the color of the string and the thickness of the cursor.
If a style is provided in the am_FILL_sTYLE slot, then the background behind the text will
be filled with that color. Setting am_INVERT to true causes the line and filling styles to
be switched, which is useful for “highlighting” text. If am_INVERT is true but no fill
style is provided, Amulet draws the text as white against a background of the line style
color.

4.5.6.1 Fonts

am_Font is a regular C++ class, defined in gdefs.h. Its creator functions are used to
make customized instances describing the desired font. You can create fonts either with
standard parameters that are more likely to be portable across different platforms, or by
specifying the name of a specific font. The properties of fonts are: family (fixed, serif,
or sans-serif), face (bold, italic, and/or underlined), and size. 2m_Default_Font,
exported from opah . h, is the fixed-width, medium-sized font you would get from calling
the am_Font constructor with its default values. Allowed values of the standard
parameters appear below.

Constructors:

Am_Font (Am_Font_Family Flag family = Am FONT_FIXED,
bool is_bold = false,
bool is_italic = false,
bool is_underline = false,
Am_Font_Size Flag size = Am_FONT_MEDIUM)

Am_Font (const char* the_name)

Pre-Defined Fonts:

Am_Default_Font - afixed, medium-sized font

In the creator functions for Am_Font, the allowed values for the family parameter are:

e Am FONT FIXED -- a fixed-width font, such as Courier.
® Am FONT_SERIF -- a variable-width font with “serifs”, such as Times.
e 2Am_FONT_SANS_SERIF -- a variable-width font with no serifs, such as Helvetica.

The allowed values for the size parameter are:

® Am FONT SMALL -- a small size: about 10 pixels tall
® Am FONT_MEDIUM -- anormal size: about 12 pixels tall
® Am_FONT_LARGE -- alarge size: about 18 pixels tall



Opal Page 105

¢ Am_FONT_VERY_LARGE -- alarger size: about 24 pixels tall

4.5.6.2 Functions on Text and Fonts

There are additional functions that operate on am_Text objects, strings, and fonts
declared in the header file text_fns.h. These functions are included in the standard
Amulet library, but are not automatically included by amulet.h because of their
infrequent use. The Am_Text_Interactor uses these functions to edit strings. To
access these functions directly, add the line “#include <amulet/text_fns.h>" at the
top of your Amulet program.

4.5.6.3 Editing Text

Text editing is a feature provided by the Interactors module. To make a text object
respond to mouse clicks and the keyboard, you need to define an instance of
Am_Text_Interactor that operates on it. See the Interactors manual for details.

4.5.7 Am_Bitmap

Am Bitmap:

Slot Default Value Type
Am_VISIBLE true bool

Am LEFT 0 int

Am TOP 0 int

Am_WIDTH <formula> int

Am_HEIGHT <formula> int

Am _LINE_STYLE Am_Black Am_Style

Am FILL_STYLE Am_No_Style Am_Style
Am_IMAGE Am_No_TImage (solid) Am_Tmage_ Array

The interface to the am_Bitmap object is more complicated than other Opal objects. To
specify the image that should be drawn by this object, you must first create an instance of
Am_Image_Array containing the image data, and then install the image in the Am_IMAGE
slot of your am_Bitmap object.

Section 4.5.7.1 lists all of the functions that are available for the Am_Image_array class,
including how to create images from data stored in files. Section 4.5.7.2 provides an
example of how to display an image using the am_Bitmap object and the Am_Image_
Array class.

The formulas in the Am_wIDTH and am_HEIGHT slots reevaluate whenever a new image is
installed in the am_1MAGE slot. If a destructive modification is made to the image class
currently installed in the slot, such as by using set_Bit (), then Note_cChanged () will
have to be called to cause the formulas to reevaluate and to cause the object to be
redrawn (for details about destructive modification of slot values and formula evaluation,
see the ORE manual).



Page 106 Opal

4.5.7.1 The Am_Image_Array Class

Am_Image_Array 1s a regular C++ class, defined in gdefs.h. Here is a list of the
member functions that are available for the am_TImage_Array class. The creator
functions are used to make customized instances containing images described by data
arrays or data stored in files. The other functions are for accessing, changing, and saving
images to a file. Section 4.5.7.2 contains an example of how to use the am_Image_array
class with the am_Bitmap object. Section 4.6.3.7 discusses how to use the am_Image
Array class with am_style.

Am_Tmage_Array (int percent); // Halftone pattern (see Section 4.6.2.2)
Am_TImage_Array (unsigned int width, // Solid rectangular image

unsigned int height,

int depth,

Am_Style intial_color);

Am_Tmage_Array (const char* file_name); / Patternread from a file:
// * On Unix, the file must be in X11 bitmap
Y format (i.e., generated by the Unix
/4 bitmap utility).
/' On the PC, the file must be in BMP or
V4 GIF format

// For portable code, you should use #ifdef to
/ load a different file depending on the platform
// (See the Amulet space demo and testgobs for

/ examples.) Use XV to convert among formats.

void Get_Hot_Spot (int& x, int& y) const;
void Set_Hot_Spot (int x, int y);

// The size of an image will be zero until drawn, & depends on the window in which the image is displayed.

void Get_Size (int& width, int& height);

int Get_Bit (int x, int y); / NotImplemented Yet

void Set_Bit (int x, int y, int val); /# NotImplemented Yet

int Write_To_File (const char* file_name, / NotImplemented Yet
Am_TImage_File_Format form);

4.5.7.2 Using Images with Am_Bitmap

To display an image whose description is stored in a file, you must first create an
instance of Am_Image_ Array initialized with the name of the file, and then install that
image in the am_TMAGE slot of your Am_Bi tmap object.

The example below creates a bitmap for the Federation ship used in the Amulet space
demo. Either the X11 or BMP file is read, depending on which platform the code has
been compiled (the compiler variable _winpows is defined in Visual C++ for the PC).
To see the graphical result of this code, add the federation_bm object to a window.



Opal Page 107

// Use either the X11 or BMP format, depending on the platform
#if defined(_WINDOWS)

#define FEDERATION_FILE "lib/images/ent.bmp"
#else

#define FEDERATION_FILE "lib/images/ent"
#endif

Am_Image_Array federation_image =
Am_TImage_Array (Am_Merge_Pathname (FEDERATION_FILE) ) ; /# Merge the filename
// with the Amulet root
// directory (see Sec. 4.9.4)

Am_Object federation_bm = Am Bitmap.Create ("federation_bm")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 30)
.Set (Am_ IMAGE, federation_image);

4.6 Styles

The C++ class am_style is used to specify a set of graphical properties, such as color
and line thickness. The am _LINE_STYLE and Am_FILL_STYLE slots present in all
graphical objects hold instances of am_style. The definition of the am_style class is in
gdefs.h, and the predefined styles are listed in opal.h.

There are many predefined styles, like am_Red, that provide the most common colors and
thicknesses (see Section 4.6.1). You can also create your own custom styles just by
calling the constructor functions for am_style with your desired parameters (see
Sections 4.6.2 and 4.6.3). Whether you use a predefined style or create your own, you
can set it directly into the appropriate slot of a graphical object. The style placed in the
am_LINE_STYLE slot of a graphical object controls the drawing of lines and outlines, and
the style in the am_rFILL_STYLE slot controls the inside of the object.

Instances of am_style are immutable, and cannot be changed after they are created.

4.6.1 Predefined Styles

The most frequently used styles are predefined by Amulet. You can use any of the styles
listed in this section directly in the Am_LINE_STYLE or Am_FILL_STYLE slot of an object.



Page 108 Opal

Color styles: all have thickness zero (which really means 1--explained in the manual

Am_Red Am_Cyan Am_Motif_Gray Am_Motif_ Light_Gray
Am_Green Am_Orange Am_Motif_ Blue Am Motif Light_Blue
Am_Blue Am_Black Am_Motif_ Green Am Motif_ Light_Green
Am_Yellow Am_White Am_Motif_Orange Am_Motif_ TLight_Orange
Am_Purple Am_Amulet_Purple

Thick and dashed line styles: all are black

Am_Thin_ Line Am_Line_1 Am_TLine_4 Am_Dashed_Line
Am _Line_0 Am_Line_2 Am_Line_8 Am_Dotted_Line

Stippled styles: all are black and white

Am_Gray_Stipple Am_Opaque_Gray_Stipple
Am_Light_Gray_Stipple Am_Diamond_Stipple
2m_Dark_Gray Stipple Am_Opaque_Diamond_Stipple
Special:
Am_No_Style - can be used in place of NULL

You can create a style of any other color, of any line thickness, by using the constructor
functions in Section 4.6.2 and 4.6.3.

4.6.2 Creating Simple Line and Fill Styles
4.6.2.1 Thick Lines

To quickly create black line styles of a particular thickness, you can use the following
special am_style creator function:

Am_Style: :Thick_Line (unsigned short thickness);

For example, if you wanted to create a black line style 5 pixels thick, you could say
“plack5 = Am_Style::Thick_Line (5)”. To specify the color or any other property
simultaneously with the thickness, you have to use the full am_style creator functions
discussed in Section 4.6.3. Section 4.6.3.2 explains the thickness.

4.6.2.2 Halftone Stipples

Stippled styles repeat a pattern of “on” and “off” pixels throughout a line style or fill
style. A halftone is the most common type of stipple pattern, where the “on” and “off”
bits are regularly spaced to create darker or lighter shades of a color. When mixing black
and white pixels, for example, a 50% stipple of black and white bits will look gray. A
75% stipple will look darker, and a 25% stipple will look lighter. Some gray stipples are
predefined in Amulet, and listed in Section 4.6.1. More complicated stipples, such as
diamond patterns, are discussed in Section 4.6.3.7.

To create a simple halftone style with a regular stipple pattern, use this special am_style
creator function:



Opal Page 109

Am_Style::Halftone_Stipple (int percent,
Am_Fill_Solid_Flag fill_flag = Am_FILL_STIPPLED) ;

The percent parameter determines the shade of the halftone (0 is white and 100 is black).
The fill_flag determines whether the pattern is transparent or opaque (see Section
4.6.3.6). In order to create a halftone that is one-third black and two-thirds white, you
could say “gray33 = Am_Style::Halftone_Stipple (33)”. There are only 17
different halftone shades available in Amulet, so several values for percent will map onto
each built-in shade.

To specify the color or any other property simultaneously with the stipple, or to specify a
more interesting stipple pattern, you have to use the full am_style creator functions
discussed in Section 1.6.3.

4.6.3 Customizing Line and Fill Style Properties

Any property of a style can be specified by creating an instance of am_style. The
properties are provided as parameters to the am_style constructor functions. All the
parameters have convenient defaults, so you only have to specify values for the
parameters you are interested in. Since styles are used for both line styles and fill styles,
some of the parameters only make sense for one kind of style or the other. The
parameters that do not apply in a particular situation are simply ignored.

Am_Style (float red, float green, float blue, Hcolor part
short thickness = 0,
Am Line_Cap_Style_Flag cap_flag = Am_CAP BUTT,
Am Join_Style_Flag join_flag = Am_JOIN_MITER,
Am_Line_Solid_Flag line_flag = Am _LINE_SOLID,
const char* dash_list = Am DEFAULT DASH_LIST,
int dash_list_length = Am DEFAULT DASH LIST LENGTH,
Am_Fill_Solid_Flag fill_flag = Am FILL_SOLID,
Am _Fill_Poly Flag poly_flag = Am FILL_POLY EVEN_ODD,
Am_TImage_Array stipple = Am_ No_Image)

Am_Style (const char* color_name, /color part
short thickness = 0,
Am_Line_Cap_Style_Flag cap_flag = Am CAP_BUTT,
Am_Join_Style_Flag join_flag = Am_JOIN_MITER,
Am Line_Solid Flag line_flag = Am_LINE_SOLID,
const char *dash_list = Am_DEFAULT DASH_LIST,
int dash_list_length = Am DEFAULT DASH LIST_ LENGTH,
Am _Fill_Solid_Flag fill flag = Am FILI,_ SOLID,
Am_Fill_Poly Flag poly flag = Am_FILL_POLY_EVEN_ODD,
Am_TImage_Array stipple = Am_No_Image)

The only required parameters for these style constructors are for the colors, discussed
below. Before you read the details about what all the other parameters mean, be aware
that most applications will just use the default values. All these parameters are discussed
in Sections 1.6.3.1 through 1.6.3.7 below.



Page 110 Opal

4.6.3.1 Color Parameter

The am_style constructor functions allow color to be specified in two ways: either with
three red, green, blue values, or with a color_name such as “pink”. The RGB values
should be three floats between 0.0 and 1.0, where 1.0 is full on. Color names are
looked up by the native graphics system (either X Windows or Windows NT) to get color
indices. In X, the list of allowed color names is stored in the file
/usr/misc/lib/rgb.txt, /usr/misc/.X11/1lib/rgb. txt, Or /usr/1ib/X11/xrgb.txt.
However, if the X server does not find the color, a warning will be printed and black will
be used instead.

4.6.3.2 Thickness Parameter

The thickness parameter holds the integer line thickness in pixels. There may be a subtle
difference between lines with thickness zero and lines with thickness one. Zero thickness
lines are actually drawn as one pixel wide, but they use a device-dependent line drawing
algorithm, and therefore may be less aesthetically pleasing. They are also probably
drawn much more efficiently. Lines with thickness one are drawn using the same
algorithm with which all the thick lines are drawn. For this reason, a thickness zero line
parallel to a thick line may not be as aesthetically pleasing as a line with thickness one.

For instances of Am_Rectangle, Am_Roundtangle, and Am Arc, increasing the thickness
of the line style will not increase the width or height of the object; the object will stay
the same size, but the solid black boundary of the object will extend inwards to occupy
more of the object. On the other hand, increasing the thickness of the line style of an
Am_Line Or Am_Polygon will increase the object’s width and height; for these objects the
thickness will extend outward on both sides of the line or polyline.

4.6.3.3 Cap_Flag Style Parameter

The cap_flag parameter determines how the end caps of line segments are drawn in X11
-- this parameter is ignored on the PC. Allowed values are elements of the enumerated
type Am_Line_Cap_Style_Flag:

cap_flag I Result

Am_CAP_BUTT Square at the endpoint (perpendicular to the slope of
the line) with no projection beyond.

Am_CAP_NOT_LAST Equivalent to am_CcaAP_BUTT, except that for thickness
0 or 1 the final endpoint is not drawn.

Am_CAP_ROUND A circular arc with the diameter equal to the
thickness centered on the endpoint.

Am_CAP_PROJECTING  Square at the end, but the path continues beyond the
endpoint for a distance equal to half of the thickness.




Opal Page 111

4.6.3.4 Join_Flag Style Parameter

The join_flag parameter determines how corners (where multiple lines come together)
are drawn for thick lines as part of rectangle and polygon objects in X11 -- this parameter
is ignored on the PC. This does not affect individual lines (instances of Am_Line) that
are part of a group, even if they happen to have the same endpoints. Allowed values are
elements of the enumerated type am_Join_Style_Flag:

Jjoin_flag l Result
Am_JOIN_MITER The outer edges of the two lines extend to meet at an
angle.
Am_JOIN_ROUND A circular arc with a diameter equal to the thickness
is drawn centered on the join point.
Am_JOIN BEVEL Endpoints of lines are drawn with am_cap_guTT
style, with the triangular notch filled.

4.6.3.5 Dash Style Parameters

The line_flag parameter determines whether the line is solid or dashed, and how the
spaces between the dashes should be drawn. Valid values are elements of the enumerated
type Am_TLine_Solid_Flag:

line_flag ] Result
Am_TLINE_SOLID No dashes

Am _LINE_ON_OFF_DASH  QOnply the “on” dashes are drawn, and nothing is
drawn in the “off” dashes.

The dash_list and dash_list_length parameters describe the pattern for dashed lines. The
dash_list should be a const char* array that holds numbers corresponding to the pixel
length of the “on” and “off” pixels. The default Am_DEFAULT DASH_LIST valueis (4 4}.
Adash_listof {1 1 1 1 3 1} isatypical dot-dot-dash line. A list with an odd number
of elements is equivalent to the list being appended to itself. Thus, the dash_list {3 2 1}
isequivalentto {3 2 1 3 2 1}.

The following code defines a dash pattern with each “on” and “off” dash 15 pixels long.
To see the result of this code, store the thick_dash style in the am_1L.INE_sTYLE slot of a
graphical object.

static char thick dash_list([2] = {15, 15};
Am_Style thick_dash ("black", 8, Am CAP_ BUTT, Am_ JOIN_MITER,
Am_LINE_ON_OFF_DASH, thick dash_list);



Page 112 Opal

4.6.3.6 Fill Style Parameters

The fill_flag determines the way “off” pixels in the stippled pattern (see Section 1.6.3.7)
will be drawn. The “on” pixels are always drawn with the color of the style. Allowed
values are elements of the enumerated type Am_Fill_Solid_Flag:

fill_flag | Result
Am_FILL_SOLID Draw “off” pixels same as “on” pixels.
Am_FILL_TILED Not implemented yet
Am_FILL STIPPLED Only the “on” pixels are drawn, and nothing is
drawn for the “off” pixels (transparent
stipple).
Am_FILL_OPAQUE_STIPPLED  Draw the “off” pixels in white.

The value of the poly_flag parameter should be an element of the enumerated type
Am_Fill_Poly_Flag, either Am_FILL_POLY_EVEN_ODD Or Am_FILI_POLY WINDING. This
parameter controls the filling for self-intersecting polygons, like the five-pointed star
example in Section 1.5.5.2. For a better discussion of polygon filling, see any reasonable
graphics textbook, or the X11 Protocol Manual.

4.6.3.7 Stipple Parameters

A stippled style consists of a small pattern of “on” and “off” pixels that is repeated
throughout the border or filling of an object. The simplest stipple pattern is the halftone,
discussed in Section 1.6.2.2. You should only need to specify the stipple parameter in
the full am_style creator functions when you are specifying some other property (like -
color) along with a non-solid stipple, or you are specifying an unconventional image for
your stipple pattern.

The value of the stipple parameter should be an instance of Am_Image_Array. An image
array holds the pattern of bits, which can either be a standard halftone pattern or
something more exotic. The creator functions and other member functions for
Am_TImage_Array are discussed in Section 1.5.7.1.

Here is an example of a colored style with a 50% halftone stipple, created using the
halftone initializer for Am_Image_aArray:

Am_Style red_stipple ("red", 8, Am _CAP_ BUTT, Am JOIN_MITER, Am_LINE_SOLID,
Am_DEFAULT_DASH_LIST, Am DEFAULT DASH_ LIST_ LENGTH,
Am_FILL,_STIPPLED, Am_FILL_POLY_ EVEN_ODD,
(Am_Image_Array (50)}) );

Here is an example of a stipple read from a file. The “stripes” file contains a description
of a bitmap image. On Unix, the “stripes” file must be in X11 bitmap format (i.e.,
generated with the Unix bitmap utility). On the PC, the “stripes” file must be in either
BMP or GIF format. This implies that for portable image definitions, you should use the



Opal Page 113

#ifdef macro to load different files depending on your platform (see Section 1.5.7.2,
the Amulet space demo and testgobs for more examples).

Am_Style striped_style ("black", 8, Am_CAP_BUTT, Am_JOIN_MITER,
Am_LINE_SOLID, Am_DEFAULT DASH LIST,
Am DEFAULT_DASH_LIST_LENGTH, Am FILI_STIPPLED,

Am_FILL _POLY EVEN_ODD,
(Am_TImage_Array ("stripes")) );

Am_H_ALIGN

Am V_ALIGN

Am_FIXED_WIDTH
Am FIXED_HEIGHT
Am_TNDENT

Am MAX RANK
Am_MAX STZE

Am_CENTER_ALIGN

Am_CENTER_ALIGN

Am NOT FIXED SIZE
Am_NOT FIXED SIZE
0

false

false

4.7 Groups
Am_Group:
Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 10 int
Am_HEIGHT 10 int
Am_GRAPHICAL_PARTS empty Am Value_List Am Value_List
Am_LAYOUT NULL <formula>
Am_X_OFFSET 0 int
Am_Y_OFFSET 0 int
Am_H_SPACING 0 int
Am_V_SPACING 0 int

{Am_LEFT_ALIGN,
Am RIGHT_ ALIGN,
Am_CENTER_ALIGN}
{Am_TOP_ALIGN,
Am_ BOTTOM_ALIGN,
Am_CENTER_ALIGN}
int

int
int
int, bool
int, bool

Groups hold a collection of graphical objects (possibly including other groups). The
objects in a group are called its parts, and the group is the owner of each component.
The concept of part/owner relationships was introduced in the ORE manual, but groups
treat their parts specially, by drawing them in windows.

Groups define their own coordinate system, meaning that the left and top of their parts is
offset from the origin of the group. Changing the position of the group translates the
position of all its parts. However, there is no complementary feature of scaling groups to
change the size of all the parts.

Am_Width_Of_Parts = Am_Height_Of_Parts Groups also clip their parts to the
bounding box of the group, meaning that objects outside the left, top, width, or height of
the group are not drawn. The default width and height of any group is only 10x10, so
you must be careful to set the am wipTH and am HEIGHT slot of your instances of
aAm_Group. The predefined constraints Am_width_Of_Parts and Am_Height_Of_Parts
may be used to compute the size of a group based on its parts.



Page 114 Opal

Groups can lay out their parts in rows and columns, as in a list of menu items. See
Section 1.7.2.

4.7.1 Adding and Removing Graphical Objects

The am_cGRarPHICAL_PARTS slot of a group contains a list of objects. This slot should be
considered read-only, to be referenced perhaps in a situation involving iteration over
graphical parts. Parts of a group should be manipulated with the following member
functions defined on am_object:

Am_Object Add_Part (Am_Object new part);
Am_Object Add_Part (Am_Slot_Key key, Am_Object new_part);

void Remove_Part (Am_Slot_Key key);
void Remove_Part (Am Object part);

Parts can be named or unnamed, depending on whether a slot name is provided in the
Add_part () call. If a slot name is provided, then in addition to becoming a part of the
group, the new part will be stored in that slot of the group. It is often convenient to name
parts so that functions and formulas can easily access these objects in their groups. Also,
‘named parts are reproduced in groups when instances of groups are created.

Of course, you can add non-graphical parts, like Interactors, to a group or any other kind
of object, but only add graphical parts to groups or windows.

4.7.2 Layout

The simplest type of group is one that does not use a layout procedure. In a regular
group, each part has its own left and top, which places it at some user-defined position
relative to the left and top of the group.

However, it is often convenient for the group itself to lay out its graphical parts. For
example, if the parts should all be in a row or column. Therefore, the am_Group object
can contain a formula in the Am_1.AYOUT slot which lays out all of the parts. This formula
operates by directly setting the am_LEFT and am_ToP of the parts. The following sections
discuss this in more detail.

4.7.2.1 Vertical and Horizontal Layout

Amulet provides two built-in layout procedures:

Am_Constraint* Am_Vertical_ Layout
Am_Constraint* Am_Horizontal_ Layout

These layout procedures arrange the parts of a group according to the values in the slots
listed below. To arrange the parts of a group in a vertical list (like a menu), set the
Am_LAYOUT slot to Am_vVertical Layout. You may then want to set other slots of the



Opal Page 115

group like Am_v_SPACING to control things like the spacing between parts or the number

of columns.

These procedures install values in the am_LEFT and am_Top slots of the parts of the
group, overriding whatever values were there before.

The slots that control layout when using the standard vertical or horizontal layout

procedures are:

Am_X_OFFSET

Am_Y_ OFFSET

Am_H_SPACING

Am_V_SPACING

Am_H_ ALIGN

Am_V_ATLIGN

Am_FIXED _WIDTH

Am_FIXED_HEIGHT

Am_ INDENT

Am_MAX_RANK

Am MAX SIZE

The horizontal space to leave between the origin of the group
and the first part that is placed, measured in number of pixels
(default is 0)

Same as Am_X_OFFSET, only vertical (default is 0)

The horizontal space to leave between parts, measured in
pixels (default is 0)

Same as am_H_SPACING, only vertical (default is 0)

Justification for parts within a column: when a narrow part
appears in a column with other wider parts, this parameter
determines whether the narrow part is positioned at the left,
center, or right of the column (default is Am_CENTER_ALIGN)

Same as am_H_ALIGN, only vertical (default is Am_CENTER_
ALIGN)

The width of each column, probably based on the width of the
widest part. When Am_NOT_FIXED_SIZE is used, the columns
are not necessarily all the same width; instead, the width of
each column is determined by the widest part in that column.
(default is Am_NOT_FIXED_SIZE)

Same as Am FIXED_WIDTH, only vertical (default is
Am_NOT_FIXED_SIZE)

How much to indent the second row or column (depending on
horizontal or vertical orientation), measured in number of
pixels (default is 0)

The maximum number of parts allowed in a row or column,
depending on horizontal or vertical orientation (default is
false)

The maximum number of pixels allowed for a row or column,
depending on horizontal or vertical orientation (default is
false)



Page 116 Opal

. For example, the following will create a column containing a rectangle and a circle:
Am_Object my_group = Am_Group.Create ("my_group")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10)
.Set (Am_LAYOUT, Am_Vertical_Layout)
.S8et (Am_V_SPACING, 5)
.Add_Part (Am_Rectangle.Create())
.Add_Part (Am_Circle.Create());

4.7.2.2 Custom Layout Procedures

You can provide a customized layout procedure for arranging the parts of a group. The
procedure should be defined as a constraint, using Am_Define_Formula or a related
function, and the constraint should be installed in the am_tavour slot of the group. The
parts of the group should be arranged as a side effect of evaluating the formula (the
return value is ignored). This can be done by iterating over the Am_GRAPHICAL_PARTS
list, and setting each part’s am_LEFT and am_ToP slots appropriately.

Am H_ALIGN

Am_V_ALIGN

Am_FIXED WIDTH
Am FIXED HEIGHT
Am_INDENT

Am MAX RANK
Am_MAX SIZE

Am CENTER_ALIGN

Am_CENTER_ALIGN

Am NOT FIXED_SIZE
Am_NOT_FIXED_SIZE
0

false

false

4.8 Maps
Am Map:
Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH Am_Width_Of_Parts int
Am_HEIGHT Am_Height_Of_Parts int
Am_GRAPHICAIL_PARTS <formula> Am_Value_ List
Am ITEMS 0 int, Am_Value_List
Am_ TITEM PROTOTYPE Am_No_Object Am_Object
Am_LAYOUT NULL <formula>
Am_X OFFSET 0 int
Am Y OFFSET 0 int
Am_H_SPACING 0 int
Am_V_SPACING 0 int

{Am_LEFT_ ALIGN,
Am_RIGHT ALIGN,
Am_CENTER_ALIGN}
{Am_TOP_ALIGN,
Ar_BOTTOM_ALIGN,
Am_CENTER_ALIGN}
int

int
int
int, bool
int, bool

The am_Map object is a special kind of group that generates graphical parts based on a
prototype description. Maps should be used when all the parts of a group are similar
enough that they can be generated from one prototype object (for example, they are all
rectangles, or all the same kind of group.). This part-generating feature of maps is often
used in conjunction with the layout feature of groups, in a situation such as arranging the



Opal Page 117

selectable text items in a menu. For details on laying out the components of groups and
maps, see Section 1.7.2.

You must set two slots in the map to control the parts that are generated:
e am ITEMS - The value should be either:
« A number, specifying how many parts should be generated, or

» An instance of Am_value_List, containing elements corresponding to each
part to be generated

e Am_ITEM_PROTOTYPE - A graphical object or group, to serve as the prototype
for each part

Additionally, there are two slots automatically installed in each of the generated parts,
that are useful for distinguishing the parts from each other. These slots can be referenced
by formulas in the item-prototype to make each part different (see examples below).

am_RANK - The position of this part in the list, from 0
am_ITEM - The element of the map’s am_1TEMS list that corresponds to this part

The am_RaNK of each created part is set with the count of this part, so that the first part’s
Am_RANK is set to 0, the second part’s am_RANK is set to 1, and so on. If the am_ITEMS slot
of the map contains an Am_value_List, then the am_1TEM (note: singular) of each
created part is set with the corresponding element of the list.

The following code defines a map whose am_1TEMS slot is a number. The map generates
4 rectangles, whose fill styles are determined by the formula map fill_from_rank. The
formula computes a halftone fill from the value stored in the am_rank slot of the part,
which was installed by the map as the part was created. This uses a vertical layout
formula so the rectangles will be in a column.

// Formulas are defined at the top level, outside of main ()
Am_Define Style Formula (map_fill_from_rank) {
int rank = self.GV (Am_RANK) ;

return Am Style::Halftone_Stipple (20 * rank);
}

// Defined inside main ()
Am_Object my map = Am Map.Create ("my_map")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10)
.Set (Am_LAYOUT, Am_Vertical_Layout)
.Set (Am_V_SPACING, 5)
.Set (Am_ITEMS, 4)
.Set (Am_ITEM_PROTOTYPE, Am_Rectangle.Create ("map item")
.Set (Am_FILL_STYLE, Am Formula::Create (map_£fill_from_rank))
.Set (Am_WIDTH, 20)
.Set (Am_HEIGHT, 20));



Page 118 Opal

The next example defines a map whose am_ITEMS slot contains a list of fill styles. The
map generates 4 rectangles, whose fill styles are determined by the formula
map_fill_from_item. The formula simply returns the value stored in the am_1TEM slot
of the part, which was installed by the map as the part was created.

// Formulas are defined at the top level, outside of main()
Am_Define_Style_Formula (map_fill_ from_item)
{

return self.GV (Am_ITEM) ;
}

// Defined inside main ()
Am_Object my_map = Am_Map.Create ("my map")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10)
.Set (Am_LAYOUT, Am Horizontal_Layout)
.Set (Am_H_SPACING, 5)
.Set (Am_ITEMS, Am Value_List ()
.Add (Am _Motif_ Blue)
.Add (Am_Motif Green)
.Add (Am_Motif_ Orange)
.Add (Am_Motif_ Light_Blue))
.Set (Am_ITEM_PROTOTYPE, Am Rectangle.Create ("map item")
.Set (Am_TITEM, Am_Black)

.Set (Am_FILL_STYLE, Am_Formula::Create (map_fill_from item))

.Set (Am WIDTH, 20)
.Set (Am_HEIGHT, 20));:

To add another item to the map in the second example, you could install a new list in the
am _ITEMS slot containing all the old items plus the new one:

Am_Value_List map_items = (Am_Value_List) my map.Get (Am_ITEMS);
map_items.Add (Am _Gray_ Stipple);
my_map.Set (Am_TITEMS, map_items);

A more efficient way to add an item to the list is to destructively modify the list that is
already installed (note the use of the false parameter in the add method for
Am Value_List):

Am _Value_List map_items = (Am Value_List) my map.Get (Am_ITEMS);
map_items.Add (Am_Gray_Stipple, false);
my_map .Note_Changed (Am_ITEMS) ;

The list in the am_TITEMS slot can also be calculated with a formula, and the items in the
map will change whenever the formula is reevaluated.

For more information on am_value Lists, see section 3.7.



Opal Page 119

4.9 Methods on all Graphical Objects

4.9.1 Reordering Objects

As you add objects to a group or window, each new object by default is on top of the
previous one. This is called the “Z” or “stacking” or “covering” order.

The following functions are useful for changing the order of an object among its siblings.
For example, am_To_Top (obj) will bring an object to the front of a all of the other
objects in the same group or window. To promote an object just above a certain target
object, use Am_Move_Object (obj, target_obj, true). These functions work for
windows as well as for regular graphical objects.

void Am_To_Top (Am_Object object):
void Am_To_Bottom (Am_Object object);

void Am Move_Object (Am_Object object, Am Object ref object,
bool above = true);

4.9.2 Finding Objects from their Location

The following functions are useful for determining whether an object is under a given
(x,y) coordinate:

Am_Object Am_Point_TIn_Obj (Am Object in_obj, int x, int vy,
Am Object ref_obj);

Am_Object Am_Point_In_Part (Am_Object in_obj, int x, int vy,
Am_Object ref_obij);

Am Object Am_Point_In_Leaf (Am_Object in_obj, int x, int vy,
Am_Object ref_obj);

Am_Point_In_oObj () checks whether the point is inside the object. It ignores covering
(i.e., it just checks whether point is inside the object, even if the object is covered). If the
point is inside, the object is returned; otherwise the function returns NurLL (0). The
coordinate system of x and y is defined with respect to ref_obj, that is, the origin of x and
y is the left and top of ref_obj.

Am_Point_In_Part() finds the front-most (least covered) immediate part of in_obj at
the specified location. If none, then it returns NuLL (0). The coordinate system of x and
y is defined with respect to ref_obj.

Am_Point_In Leaf() 1S similar to am_Point_In_Part(), except that the search
continues to the deepest part in the group hierarchy (i.e., it finds the leaf-most object at
the specified location). If (x,y) is inside the bounding box of in_obj but not over a leaf,
it returns in_obj. The coordinate system of x and y is defined with respect to ref_obj.
Sometimes you will want a group to be treated as a leaf in this search, like a button group
in a collection of buttons. In this case, you should set the Am_PRETEND_TO_BE_LEAF slot



Page 120 Opal

to true for each group that should be treated like a leaf. The search will not proceed
through the parts of such a group, but will return the group itself.

Am_Point_In_Part() and Am Point_In_Leaf () use the function am_Point_In_obj ()
on the parts.

4.9.3 Beeping
void Am Beep (Am_Object window = Am_No_Object);

This function causes the computer to emit a “beep” sound. Passing a specific window is
useful in Unix, when several different screens might be displaying windows, and you
only want a particular screen displaying a particular window to beep.

4.9.4 Filenames

char *Am Merge_Pathname (char *name);

Am_Merge_Pathname () takes a filename as an argument, and returns the full Amulet
directory pathname prepended to that argument. For example, “Am Merge_Pathname
(*lib/images/ent.bmp~)” will return the full pathname to the Unix-compatible
Enterprise bitmap included with the Amulet source files.

bool Am;Translate_Coordinates (Am_Object src_obj, int srec_x, int src_y,
Am_Object dest_obj, int& dest_x, int& dest_y,
Am_Constraint_Context& cc = *Am_Empty_Constraint_Context);

4.9.5 Translate Coordinates

Am_Translate_Coordinates () converts a point in one object's coordinate system to that
of another object. It works for both windows and groups. If the objects are not
comparable (like being on different screens or not being on a screen at all) then the
function will return false. Otherwise, it will return true and dest_x and dest_y will
contain the converted coordinates. Note that the coordinates are for the inside of
dest_obj. This means that if obj was at src_x, src_y in src_obj and you remove it from
src_obj and add it to dest_obj at dest_x, dest_y then it will be at the same physical screen
position. Providing an am_Constraint_Context parameter can be used in formulas to
make the formula dependent on the relative positions of the objects.

Since each group and window defines its own coordinate system, you must use
Am_Translate_Coordinates whenever you define a formula that depends on the left or
top of an object that might be in a different group or window.



Opal Page 121

4.10 Windows

Am_Window:

Slot Default Value Type

Am _VISIBLE true bool

Am LEFT 0 int
Am_TOP 0 int

Am WIDTH 100 int

Am_ HEIGHT 100 int
Am_GRAPHICAL_PARTS empty Am Value_List Am_Value_List
Am FILIL, STYLE Am _White Am_Stvle
Am MAX_ WIDTH 0 int
Am_MAX_ HEIGHT 0 int

Am MIN_WIDTH 1 int

Am_ MIN_HEIGHT 1 int
Am_TITLE “Amulet” char*

Am ICON_TITLE “Amulet” char*
Am_TCONIFIED false bool
Am_USE_MIN_WIDTH false bool

Am USE_MIN_HEIGHT false bool
Am_USE_MAX_WIDTH false bool
Am_USE_MIN_HEIGHT false bool
Am_QUERY_POSITION false bool
Am_QUERY_SIZE false bool

Am LEFT_BORDER_WIDTH 0 int
Am_TOP_BORDER_WIDTH 0 int

Am RIGHT BORDER_WIDTH 0 int
Am_BOTTOM_BORDER_WIDTH 0 int
Am_CURSOR NULL Am Cursor
Am_OMIT TITLE_BAR false bool
Am_CLIP CHILDREN false bool
Am_SAVE_UNDER false false

Objects can be added to windows with Add_part (), just like with groups. All graphical
objects added to a window will be displayed in that window. When a window is added
as a part to another window, it becomes a subwindow. Subwindows usually do not have
any window manager decoration (such as title bars).

4.10.1 Slots of Am_Window

The initial values of Am_LEFT, Am_TOP, Am_WIDTH, and Am_HEIGHT determine the size
and position of the window when it appears on the screen. These slots can be set later to
‘change the window’s size and position. If the user changes the size or position of a
window using the window manager (e.g., using the mouse), this will be reflected in the
values for these slots.

The am_rFILL_sTYLE determines the background color of the window. All parameters of
am_Style that affect fillings, including stipples, affect the fill style of windows (see
section 1.6). This is more efficient than putting a window-sized rectangle behind all the
other objects in the window.



Page 122 Opal

When values are installed in the Am_MAX_WIDTH, Am_MAX_HEIGHT, Am_MIN_WIDTH, Or
Am_MIN_HEIGHT slots, and the corresponding Am_USE_MAX_WIDTH, Am_USE_MAX_HEIGHT,
Am_USE_MIN_WIDTH, Or Am USE_MIN_HEIGHT slot is set to true, then the window
manager will make sure the user is not allowed to change the window’s size to be outside
of those ranges. You can still set the am_wIDTH and Am_HEIGHT to be any value, but the
window manager will eventually clip them back into the allowed range.

When Am_QUERY_POSITION Or Am QUERY_SIZE are set to true, then the user will have
the opportunity to place the window on the screen when the window is first added to the
screen, clicking the left mouse button to position the left and top of the window, and
dragging the mouse to the desired width and height.

The border widths applied to the window by the window manager are stored in the
Am_LEFT_BORDER_WIDTH, Am_TOP_BORDER_WIDTH, Am_RIGHT BORDER_WIDTH, and
Am_BOTTOM_BORDER_WIDTH. These slots should be considered read-only, set by Amulet
as the window becomes visible on the screen.

When the am_cUrsoRr slot is set with an instance of am_cursor, then the mouse pointer
will change when it moves into this window according to the bitmaps in the Am_cursor.

The am_oMIT_TITLE_BaR slot tells whether the Amulet window should have a title bar.
If the slot has value false (the default), and the window manager permits it, then the
window will have a title bar; otherwise the window will not have a title bar.

In the rare case when you want to have graphics drawn on a parent window appear over
the enclosed (child) windows, you can set the am_cLIP_CHILDREN slot of the parent to
be true. Then any objects that belong to that window will appear on top of the
window’s subwindows (rather than being hidden by the subwindows).

When the am_SAVE_UNDER slot is set to true, then the window manager is instructed to
save the graphics appearing under the window at all times, so that when it destroyed or
made invisible, the graphics under the window will be redrawn quickly. Using this
feature requires slightly more memory than otherwise.

4.10.2 Am_Screen

As mentioned in Section 1.3.1, windows are not visible until they are added to the screen.
The Am_screen object can be thought of as a root window to which all top-level
windows are added. In the “hello world” example of Section 1.3.2, the top-level window
is added to Am_Screen with a call to Add_prart ().

Am_Screen can be used in calls to am_Translate_Coordinates() to convert from
window coordinates to global coordinates and back again.



Opal Page 123

4.11 Predefined formula constraints:

Opal provides a number of constraints that can be put into slots of objects that might be
useful. Some of these constraints were described in previous sections.

Am_width_Of_parts - Useful for computing the width of a group: returns the distance
between the group’s left and the right of its rightmost part. You might put this
into a group’s Am_WIDTH slot.

Am_Height_ Of_ Parts - Analogous to Am_width_of_Parts, but for the Am_HETGHT.

Am_Right_Is_Right_Of_owner - Useful for keeping a part at the right of its owner. Put
this formula in the am_LEFT slot of the part.

Am_Bottom_Is_Bottom_Of_Owner - Useful for keeping a part at the bottom of its owner.
Put this formula in the am_Top slot of the part.

Am_Center_X Is_Center_ Of Owner - Useful for centering a part horizontally within its
owner. Put this formula in the am_LEFT slot of the part.

Am_Center_Y_Is_Center_Of_oOwner - Useful for centering a part vertically within its
owner. Put this formula in the am_ToP slot of the part.

Am_Center_X_TIs_Center_ Of - Useful for horizontally centering obj1 inside obj2. Put
this formula in the am_rEFT slot of obj1, and put obj2 in the Am_CENTER_X_0BJ
slot of obj1.

Am_Center_Y_Is_Center_0Of - Useful for vertically centering obj1 inside obj2. Put
this formula in the am_ToP slot of ob3j1, and put obj2 in the Am_CENTER_Y_OBJ
slot of obj1.

Am_Horizontal_Layout - Constraint which lays out the parts of a group horizontally in
one or more rows. Put this into the am ravour slot of a group.

Am Vertical Layout - Constraint which lays out the parts of a group vertically in one
or more columns. Put this into the am_r.AYOUT slot of a group.






5. Interactors and Command Objects for
Handling Input

Abstract
Graphical objects in Amulet do not respond to input events; they are purely output.
When the programmer wants to make an object respond to a user action, an Interactor
object is attached to the graphical object. The built-in types of Interactors usually enable
the programmer to simply choose the correct type and fill in a few parameters. The
intention is to significantly reduce the amount of coding necessary to define behaviors.

When an Interactor or a widget (see the Widgets chapter) finishes its operation, it
allocates a Command object and then invokes the “do” method of that Command object.
Thus, the Command objects take the place of call-back procedures in other systems. The
reason for having Command objects is that in addition to the “do” method, a Command
object also has methods to support undo, help, and selective enabling of operations. As
with Interactors, Amulet supplies a library of Command objects so that often
programmers can use a Command object from the library without writing any code.

Copyright © 1995 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa
Order No. B326. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of NCCOSC or the U.S. Government.






Interactors And Command Objects Page 127

5.1 Include Files

The primary include files that control the Interactors and Command objects are inter.h
for the main, top-level objects and procedures, idefs.h for the definitions specific to
input events, and inter_advanced.h for what you might need if you are going to create
your own custom Interactors. Of course, all the slots of the Interactor and Command
objects are defined in standard_slots.h. Some of the functions and types needed to
customize the text editing Interactor are defined in text_fns.h.

5.2 Overview of Interactors and Commands

The graphical objects created with Opal do not respond to input devices: they are just
static graphics. In order to handle input from the user, you create an “Interactor” object
and attach it to the graphics. The Interactor objects have built-in behaviors that
correspond to the normal operations performed in direct manipulation user interfaces, so
usually coding interactive interfaces is quick and easy using interactors. However, like
programming with constraints, programming with Interactors requires a different “mind
set” and the programming style is probably different than what most programmers are
used to.

All of the Interactors are highly parameterized so that you can control many aspects of
the behavior simply by setting slots of the Interactor object. For example, you can easily
specify which mouse button or keyboard key starts the interactor. In order to affect the
graphics and connect to application programs, each Interactor has multiple protocols.
For example, the “Move-Grow” interactor, for moving graphical objects with the mouse,
explicitly sets the am_LEFT and am _ToP slots of the object, and also calls the
am_po_acTIioN method stored in the Command object attached to the Interactor.
Therefore, there are multiple ways to use an Interactor, to give programmers flexibility in
what they need to achieve.

When an Interactor or a widget (see the Widgets chapter) finishes its operation, it
allocates a Command object and then invokes the “do” method of that Command object.
Thus, the Command objects take the place of call-back procedures in other systems. The
reason for having Command objects is that in addition to the “do” method, a Command
object also has methods to support undo, help, and selective enabling of operations.
Each Interactor and Widget has a Command object as the part named am_coMMaNnD, and
Interactors set the am vALUE and other slots in its command object, and then call the
am_Do_acTION method. This and other methods in the Command objects implement the
functionality of the Interactors.

5.3 Standard Operations

We hope that most normal behaviors and operations will be supported by the Interactors
and Command objects in the library. This section discusses how to use these. If you find
that the standard operations are not sufficient, then you may need to create your own



Page 128 Interactors And Command Objects

Command objects or even your own Interactors. These advanced features are discussed
in sections 5.5 and 5.7.

5.3.1 Designing Behaviors

The first task when designing the interaction for your interface is to choose the desired
behavior. The first choice is whether one of the built-in widgets provides the right
interface. If so, then you can choose the widget from the Widgets chapter and then
attach the appropriate Command object to the widget. The widgets, such as buttons,
scroll bars and text-input fields, combine a standard graphical presentation with an
interactive behavior. If you want custom graphics, or you want an application-specific
graphical object to be moved, selected or edited with the mouse, then you will want to
create your own graphics and Interactors.

The first step in programming an Interactor is to pick one of the fundamental built-in
styles of behavior that is closest to the interaction you want. The current choices are
(these are exported in inter.h):

* Am_Choice_Interactor. This is used to choose one or more from a set of objects.
The user is allowed to move around over the objects (getting interim feedback)
until the correct item is found, and then there will often be final feedback to
show the final selection. The Am Choice_Interactor can be used for selecting
among a set of buttons or menu items, or choosing among the objects
dynamically created in a graphics editor.

* Am_One_Shot_Interactor. This is used whenever you want something to happen
immediately when an event occurs, for example when a mouse button is pressed
over an object, or when a particular keyboard key is hit. Like the
Am_Choice_Interactor, the Am_One_Shot_Interactor can be used to select
among a set of objects, but the Am_oOne_shot_Interactor will not provide
interim feedback—the object where you initially press will be the final selection.
The Am_one_shot_Interactor is also useful in situations where you are not
selecting an object, such as when you want to get a single keyboard key.

* Am Move_Grow_Interactor. This is useful in all cases where you want a graphical
object to be moved or changed size with the mouse. It can be used for dragging
the indicator of a scroll bar, or for moving and growing objects in a graphics
editor.

* Am New_Points_Interactor. This Interactor is used to enter new points, such as
when creating new objects. For example, you might use this to allow the user to
drag out a rubber-band rectangle for defining where a new object should go.

* Am_Text_Edit_Interactor. This supports editing the text string of a text object.
It supports a flexible key translation table mechanism so that the programmer
can easily modify and add editing functions. The built-in mechanisms support
basic text editing behaviors.

-» am_Rotate_Interactor. This Interactor will support rotating graphical objects. It
1s not yet implemented.



Interactors And Command Objects Page 129

* Am_Gesture_Interactor. This Interactor will support free-hand gestures, such as
drawing an X over an object to delete it, or encircling the set of objects to be
selected. It is not yet implemented.

* Am_Animation_Interactor. This Interactor will support animations and time-
based events. It is not yet implemented.

5.3.2 General Interactor Operation

Once an Interactor is created and its parameters are set (see Section 5.3.3), the
programmer will then attach the Interactor to some object in a window (see Section
5.3.3.1.5). Amulet then waits for the user to perform the Interactor’s start event (for
example by pressing the left mouse button, see Section 5.3.3.1) over the graphical object
to which the Interactor is attached. Am_One_shot_Interactors then immediately
execute their Command’s bo method and go back to waiting. Other types of Interactors,
however, usually show interim feedback while waiting for a specific stop event (for
example, left mouse button up). While Interactors are operating, the user might move
the mouse outside the Interactor’s operating area, in which case the Interactor stops
working (for example, a choice Interactor used in a menu should turn off the highlighting
if the mouse goes outside the menu). If the mouse goes back inside, then the Interactor
resumes operation. If the abort_event is executed while an Interactor is running, then it
is aborted (and the Command’s po method is not executed). Similarly, if the stop event
is executed while the mouse is outside, the Interactor also aborts. The operation is
summarized by the following diagram.

Start_Event mouse moves outside
Waitin >| ' B Outside |
9 while over object Running J‘ —

mouse moves back inside

Stop_Event
(executes DO method)

Abort_Event (aborts)
Abort_Event or Stop_FEvent (aborts)

Multiple Interactors can be running at the same time. The way this works is that each
Interactor keeps track of its own status, and for each input event, Amulet checks which
Interactor or Interactors are interested in the event. The appropriate Interactor(s) will
then process that event and return.

5.3.3 Parameters

Once the programmer has chosen the basic behavior that is desired, then the various
parameters of the specific Interactor must be filled in. The next sections give the details
of these parameters. Some, such as the start and abort events, are shared by all
Interactors, and other parameters, such as gridding, are specific to only a few types of
Interactors.



Page 130 Interactors And Command Objects

The parameters are set as normal slots of the objects. The names of the slots are defined
in standard_slots.h and are described below. As an example, the following creates a
choice Interactor called “Select It” assigned to the variable select_it and sets its start
event to the middle mouse button. See the ORE chapter for how to create and name
objects.

select_it = Am_Choice_Interactor.Create("Select It")
.Set (Am_START_WHEN, "MIDDLE_DOWN") ;

5.3.3.1 Events

One of the most important parameters for all Interactors are the input events that cause
them to start, stop and abort. These are encoded as an am_Tnput_char which are defined
in idefs.h. Normally, you do not have to worry about these since they are
automatically created out of normal C strings, but you can convert a string into an
am_Input_char for efficiency, or if you want to set or access specific fields.

Note: Do not use a C++ char to represent the events. It must be a C string or an
Am_Input_Char object.

5.3.3.1.1 Event Slots
There are three slots of Interactors that can hold events: Am_START WHEN,
Am_ABORT WHEN, and Am_STOP_WHEN.

Am_START WHEN determines when the Interactor begins operating. The default value is
"LEFT_DOwWN" with no modifier keys (see section 5.3.3.1.3) but with any number of clicks
(see section 5.3.3.1.4). So by default, all interactors will operate on both single and
double clicks.

Am_ABORT WHEN allows the Interactor to be aborted by the user while it is operating. The
default value is "coNTROL_g*. Aborting is different from undoing since you abort an
operation while it is running, but you undo an operation after it is completed.

am_sTop_WHEN determines when the Interactor should stop. The default value is
"ANY_MOUSE_UP" so even if you change the start_when, you can often leave the
stop_when as the default value.

5.3.3.1.2 Event Values

In any of these slots, you can provide an Am_Input_Char, a string in the format described
below, or the special values true or false. The value true matches any event, and
false will never match any event. You might use false for example in the
Am_ABORT_WHEN slot of an Interactor to make sure it is never aborted.



Interactors And Command Objects Page 131

The general form for the events is a string with the modifiers first and the specific
keyboard key or mouse button last. The specific keys include the regular keyboard keys,
like *aA", *z", *[», and "\"" (use the standard C++ mechanism to get special characters
into the string). The various function and special keys are generally named the same
thing as their label, such as "F1", "rR5", "HELP", and "DELETE". Sometimes, keys have
multiple markings, in which case we usually use the more specific or textual marking, or
sometimes both markings will work. Also, the arrow keys are always called
"LEFT_ARROW", "UP_ARROW", "DOWN_ARROW", and "RIGHT_ARROW". Note that keys
with names made out of multiple words are separated by underscores. For keyboard
keys, we currently only support operations on the button being pressed, and no events are
generated when the button is released. You can specify any keyboard key with the
special event "ANY_KEYBOARD". You can find out what the mapping for a keyboard key
is by running the test program testinput, which is in the src/gem directory. We have
tried to provide appropriate mappings for all of the keyboards we have come across, but
if there are keyboard keys on your keyboard that are not mapped appropriately, then
please send mail to amulet@cs.cmu.edu and we will add them to the next release.

For the mouse buttons, we support both pressing and releasing. The names of the mouse
buttons are "LEFT*, "MIDDLE" and "RIGHT" (on a 2-button mouse, they are "LEFT" and
“RIGHT" and on a 1-button mouse, just "LEFT"), and you must append either *up* or
"pDowN". Thus, the event for the left button down is "LEFT_pDowN". You can specify any
mouse button down or up using "ANY_MOUSE_DOWN" and "ANY_MOUSE_UP",

5.3.3.1.3 Event Modifiers

The modifiers can be specified in any order and the case of the modifiers does not matter.
The currently supported modifiers are:

shift_ Either of the keyboard shift keys, or the caps-lock key is being held down.
For regular letters, you can also just use the upper case. Thus, "F" is equivalent
to *su1rT_£". However, do not use shift to try to get the special characters.
Therefore "shift_5" is not the same as "%" .

control_ The control key is being held down.

meta_ The meta Key is the diamond key on Sun keyboards, the EXTEND-CHAR key on
HPs, the option key on Macintosh keyboards, and the arT key on PC keyboards.
On other Unix keyboards, it is generally whatever is used for “meta” by Emacs
and the window manager.

any_ This means that you don’t care which modifiers are down. Thus *any_f"
matches "shift_fr as well as "F* and "meta_control_shift_f". Note that
"ANY_KEYBOARD" Or "ANY_MOUSE_DOWN" also specifies any modifiers.



Page 132 Interactors And Command Objects

5.3.3.1.4 Multiple Clicks

Amulet supports the detection of multiple click events from the mouse. To double-click,
the user must press down on the same mouse button quickly two times in succession.
The clicks must be faster than am Double_click_Time (which is defined in gem.h)
milliseconds, which defaults to 250 milliseconds.

On the PC, Amulet detects single and double clicks, and on Unix Amulet will detect up
to five clicks. The multiple clicks are named by preceding the event name with the
words "DOUBLE_“, “TRIPLE ", "QUAD_", and "FIVE_". For example,
"double_left_down", Or "shift_meta_triple_right_down". When the user double
clicks, a single click event will still be generated first. For example, for the left button,
the sequence of received events will be "LEFT_DOWN", "LEFT UP",
"DOUBLE_LEFT_DOWN", "DOUBLE_LEFT_UP". The "anvy_" prefix can be used to accept
any number of clicks, so "anvy_rEFT_DOWN" will accept single or multiple clicks with any
modifier held down.

5.3.3.1.5 Am_Input_Char type
The am_Input_char is defined in idefs.h. It is a regular C++ object (not an Amulet
object). It has constructors from a string or from the various pieces:

Am_TInput_Char (const char *g); /Mfrom a string like "META_LEFT DOWN"
Am_TInput_Char (short ¢ = 0, bool shf = false,

bool ctrl = false,

bool meta = false, Am_Button_Down down = Am NEITHER,

Am_Click_Count click = Am_NOT_MOUSE,
bool any _mod = false);

It can be converted to a string, to a long (which is only useful for storing the
Am_Input_Char into a slot of an object) or to a character (which returns 0 if it is not an
normal ascii character). An am_Input_char will also print to a stream as a string. If ic
IS an Am_Input_Char:

* ic.As_sString(char *s); convert to a string by writing into s, which should be
at least am_LONGEST_CHAR_STRING characters long.

* (long)ic; convert ic into along, for storing it into a slot.

* char ¢ = ic.As_Char(); Returns a char if ic represents a simple ascii
character, otherwise returns 0

® cout << ic; youcan print an Am_Input_Char directly.



Interactors And Command Objects Page 133

The member variables of an am_Input_Char are:

typedef enum { Am NOT MOUSE = 0, /When nota mouse button.
Am_SINGLE_CLICK 1, HAlso for mouse moved, with Am_NEITHER.
Am_DOUBLE_CLICK 2, Am_TRIPLE_CLICK = 3,
Am_QUAD CLICK = 4, Am _FIVE_CLICK = 5, Am MANY CLICK =
Am_ANY_CLICK = 7 //whendon’tcare about how many clicks
} Am_Click_Count;

no o~

typedef enum { Am _NEITHER = 0, Am_BUTTON_DOWN = 1,

Am_BUTTON_UP = 2, Am ANY DOWN_UP 3} Am_Button_Down;

short code; /the base code.

bool shift; / whether these modifier keys were down

bool control;

bool meta;

bool any modifier; /trueifdon’t care about modifiers

Am_Button_Down button_down; / whether a down or up transition.
// For keyboard, only support down.

Am_Click_Count click_count; /#0O==notmouse, otherwise # clicks

5.3.3.2 Graphical Objects

5.3.3.2.1 Start_ Where

For an Interactor to become active, it must be added as a part to a graphical object which
is part of a window. To do this, you use the regular Add_Part method of objects. For
example, to make the select_it Interactor defined above in section 5.3.3 select the
object my_rect, the following code could be used:

my_rect.Add_Part (select_it});

Interactors can be added as parts to any kind of graphical object, including primitives
(like rectangles and strings), groups, and windows. You can add multiple Interactors to
any object, and they can be interspersed with graphical parts for groups and windows.
Interactors can be removed or queried with the standard object routines for parts. If you
plan to make instances of the object and wish to have an instance made of the Interactor
also, then the add_part call should also contain a slot name (see the ORE chapter). For
example:

Am_Slot_Key INTER_SLOT = Am Register_ Slot_Name ("INTER_SLOT");
my_rect.Add_Part (INTER_SLOT, select_it); //named part
rect2 = my_rect.Create(); Hrect2 will have its own which is an instance of select_it

It is very common for a behavior to operate over the parts of a group, rather than just on
the object itself. For example, a choice Interactor might choose any of the items (parts)
in a menu (group), or a move_grow Interactor might move any of the objects in the
graphics window. Therefore, the slot am_sTaART_wWHERE_TEST can hold a function to
determine where the mouse should be when the start-when event happens for the



Page 134 Interactors And Command Objects

Interactor to start. The built-in functions for the slot (from inter.h) are as follows.
Each of these returns the object over which the Interactor should start, or NULL if the
mouse is in the wrong place so the Interactor should not start.

* am_Inter_In: If the mouse is inside the object the Interactor is part of, this returns
that object. This is the default. ’

* am_Inter_In_Part: The Interactor should be part of a group or window object.
This tests if the mouse is in a part of that group or window object, and if so,
returns the part of the group or window the mouse is over.

* am_Inter_In Leaf: This is useful when the Interactor is part of a group or
window which contains groups which contain groups, etc. It returns the lowest
level object the mouse is over. If you want Am_Inter_In_Leaf to return a group
rather than a part of the group, set the Am_PRETEND_TO_BE_LEAF slot of the group
to be true.

* am_Inter_ In_Text: If the mouse is inside the object the Interactor is part of, and
that object is an instance of Am_Text, then returns that object. This is useful for
Am_Text_TInteractors.

e am_Inter_In_Text_Part: If the mouse is in a part of the object the Interactor is
part of, and that the part the mouse is over is an instance of am_Text, then returns
that part. This is useful for Am_Text_Interactors.

* am_Inter_In Text_Leaf: If the mouse is in a leaf of the object the Interactor is
part of, and that leaf part is an instance of am_Text. This is useful for
Am_Text_TInteractorsS.

If none of these functions returns the object you are interested in, then you are free to
define your own function. It should be of the form am_Where_Function and return the
object that the Interactor should manipulate, or NULL if none.

Note that this means that the Interactor may actually operate on an object different from
the one to which it is attached. For example, Interactors will often be attached to a group
but actually modify a part of that group. With a custom Am_START WHERE_TEST
function, the programmer can have the Interactor operate on a completely independent
object.

5.3.3.2.2 Running_Where

Section 5.3.2 mentioned that Interactors can be defined so that they stop operating when
the mouse goes outside of their active area. The active area is defined by the value of the
Am_RUNNING_WHERE_OBJECT slot. This slot should contain either a graphical object or
true, which means anywhere (so the Interactor never goes outside). The default for
most Interactors for this slot is true, but for Choice Interactors, this slot contains a
constraint that makes it have the same object as where the Interactor starts. To refine
where the Interactor should be considered outside, the programmer can also supply a
value for the Am_RUNNING_WHERE_TEST slot, which defaults to Am_Inter_In except for



Interactors And Command Objects Page 135

choice Interactors, where it contains a constraint that uses the same function as the
Am_START WHERE_TEST.

5.3.3.3 Active

It is often convenient to be able to create a number of Interactors, and then have them
turn on and off based on the global mode or application state. The am_acTIVE slot of an
Interactor can be set to false to disable the Interactor, and it can be set to true to re-
enable the Interactor. By default, all Interactors are active. The default value in this slot
is a constraint that depends on the am_acTIVE slot of the command object in the
interactor (see Section 5.5). Setting the am ACTIVE slot is more efficient than creating
and destroying the Interactor. The am ACTIVE slot can also be set with a constraint that
returns true or false.

5.3.4 Top Level Interactor

The top level Interactor has the following default values. Most of these are advanced
features and are discussed in Section 5.4.



Page 136

Interactors And Command Obijects

Am_Interactor:

Slot

Default Value

Type

Am_START_ WHEN

Am_START_WHERE_TEST
Am_ABORT_WHEN

Am_RUNNING_WHERE_OBJECT
Am_RUNNING _WHERE_TEST
Am_STOP_WHEN

Am_ACTIVE

Am_START_OBJECT

Am_ START CHAR

Am_CURRENT_OBJECT

Am RUN_ALSO

Am_ PRIORITY

Am_OTHER_WINDOWS

Am_ WINDOW

Am_COMMAND

Am_Input_Char

(“LEFT_DOWN" )

Am TInter_In
Am_TInput_Char
(*CONTROL_g”)
true
Am_Inter In
Am_Input_Char

(“ANY_MOUSE_UP”)

true

false

NULL

NULL

Am_ Command

Am Input_Char

Am Where_Function
Am_Input_Char

Am_Object, bool
Am_Where_Function
Am Input_Char

bool

Am_Object

Am_TInput_Char

Am_Object

bool

float

Am_Value_List or

Am_Window

Am_Window

Am_Command

// Section Error!
Reference source r
found.

/ Section Error!
Reference source r
found.

// Section Error!
Reference source r
found.

/ Section Error!
Reference source r
found.

// SectionError!
Reference source r
found.

#/ Section Error!
Reference source r
found.

// Section Error!
Reference source r
found.

Set with current
window

5.3.5 Specific Interactors

All of the interactors and command objects are summarized in Chapter 8. The next
sections discuss each one in detail.



Interactors And Command Objects Page 137

5.3.5.1 Am_Choice_Interactor

Am_Choice_Interactor:

Slot Default Value Type
Am_ START_ WHEN Am_Input_Char Am_Input_Char

{“*LEFT_DOWN”)
Am_START WHERE_TEST Am_Inter_In Am_Where_Function
Am_ABORT_WHEN Am_TInput_Char Am_Input_Char

(“CONTROL_g”)
Am_RUNNING_WHERE_OBJECT <formula> Am__Obj ect, bool //computes OWHL
Am_RUNNING_WHERE_TEST <formula> Am _Where_Function / same as start
Am_STOP_WHEN Am_Input_Char Am_TInput_Char

(*ANY MOUSE_UP”)
Am_HOW_SET Am CHOICE TOGGLE Am_ Choice_How_Set
Am_FIRST_ONE__ONLY false bool // whether menu-

//  or button-like

Am_COMMAND Am Choice_Command Am Command

The choice Interactor is used whenever the programmer wants to choose one or more out
of a set of objects, such as in a menu or to select objects in a graphics window. The
standard behavior allows the programmer to choose whether one or more objects can be
selected, and special slots called am_INTERIM SELECTED and Am_sELECTED of these
objects are set by the default Command in the choice Interactor. Typically, the
programmer would define constraints on the look of the object (e.g. the color) based on
the values of these slots. Note that am_INTERIM_SELECTED and Am_SELECTED are set in
the graphical object the Interactor operates on, not in the Interactor itself.

5.3.5.1.1 Special Slots of Choice Interactors
Two slots of choice Interactors can be set to customize its behavior:

- am _How_SET: This controls whether a single or multiple values will be selected.

Legal values are from the following type:
typedef enum { Am_CHOICE_SET, Am_CHOICE CLEAR, Am_CHOICE_TOGGLE,
Am_CHOICE_LIST_TOGGLE } Am_Choice_How_Set;

These mean:

* Am_CHOICE_SET: the object under the mouse becomes selected, and the
previously selected object is de-selected (useful for single selection menus
and radio buttons). Unlike am_CHOICE_TOGGLE, clicking on an already-
selected object leaves it selected.

* Am_CHOICE_CLEAR: the object under the mouse becomes de-selected. This is
rarely useful.

* am_CHOICE_TOGGLE: if the object under the mouse is selected, it becomes
deselected, otherwise it becomes selected and any previous object become
de-selected. This is useful when you want zero or one selection (the user is
able to turn off the selection).

* Am_CHOICE_LIST_TOGGLE: if the object under the mouse is selected, then it is
de-selected, otherwise it becomes selected, but other objects are left alone.
This allows multiple selection, and is useful for check boxes.



Page 138 Interactors And Command Objects

The default value for the am_now_sET slot is Am_CHOICE_TOGGLE.

« am_FIRST_ONE_ONLY: If false (the default), then the selection is free to move from
one item in the group to another, as in menus. If true, then only the initial object
the mouse is over can be manipulated, and the user must release outside and then
press down in another object to change objects. This is how radio button and
check box widgets work on most systems.

5.3.5.1.2 Standard operation of the am_choice Command
Am_Choice_Command:

Slot Default Value Type

Am_START_ ACTION Am_Choice_Command_Start

Am_ INTERIM_DO_ACTION Am_Choice_Command_Interim_Do Am_Object_Proc*

Am_DO_ACTION Am_Choice_Command_Do Am_Object_Proc*

Am_UNDO_ACTION Am_Choice_Command_Undo Am_Object_Proc*

Am_UNDO_THE_UNDO_ACTION Am_Choice_Command_Undo_ Am_Object_Proc*
The Undo

Am_ABORT_ACTION Am_Choilce_Command_Abort Am_Object_Proc*

Am_LABEL “choice interactor” Am_String

Am_ACTIVE true bool

Am_INTERIM_VALUE 0 Am_Object

Am_OLD_TINTERIM VALUE 0 Am Object

Am_ OLD_ VALUE 0 any

Am VALUE 0 any

As the Choice_Interactor is operating, it calls the various methods of the Command
object stored in its am coMMaND slot. The default Command object,
Am_choice_Command, uses the following mechanisms to show the operation. If this is
not sufficient for your needs, then you need to create a custom Command object, as
described in Section 5.5.

As the Interactor moves over various graphical objects, the Am_INTERIM_SELECTED slot
of the object is set to true for the object which is under the mouse, and false for all other
objects. Typically, the graphical objects that the Interactor affects will have a constraint
to the Am_INTERIM_SELECTED slot from the Am_FILL_STYLE or other slot. At any time,
the Interactor can be aborted by typing the key in am_aBORT wHEN (the default is
"controlg"). When the stop_when event occurs, the Am_INTERIM SELECTED slot is set
to false, and the am_now_sET slot of the Interactor is used to decide how many objects
are allowed to be selected (as explained above). The objects that should end up being
selected have their am_SELECTED slot set to true, and the rest of the objects have their
Am_SELECTED slot set to false. Also the am vALUE slot of the Command object (in the
am_coMMAND slot of the Interactor) will contain the current value. If am HOw_SET is not
Am_CHOICE_LIST_ TOGGLE, then the am_vALUE slot will either contain the selected object
or NULL (0). If Am HOW_SET iS Am_CHOICE_LIST_TOGGLE, then the am VvALUE slot of the
Command object will contain an am_Multi_value containing the list of the selected
objects (or it will be the empty list).



Interactors And Command Objects Page 139

The Undo_Action of the default Command object in the Am_Choice_Interactor simply
resets the am_SELECTED slots of the selected object(s) and the am_value of the Command
object to be as they were before the am_Choice_Interactor was run.

5.3.5.1.3 Simple Example

See the file testinter.cc for lots of additional examples of uses of Interactors and
Command objects. The following Interactor works on any object which is directly a part
of the window. Due to the constraints, if you press the mouse down over any rectangle
created from rect_proto that is in the window, it will change to having a thick line style
when they mouse is over it (when it is “interim-selected”), and they will turn white when
the mouse button is release (and it becomes selected).

Am_Define Style Formula (rect_line) {
if ((bool)self.GV (Am_INTERIM_SELECTED)) return thick_line;
else return thin_line;
} N
Am_Define_Style Formula (rect_fill) {
if ({(bool)self.GV (Am_SELECTED)) return Am White;
else return self.GV (Am_VALUE); //the real color

}
rect_proto = Am_Rectangle.Create ("rect_proto")

.Set (Am_WIDTH, 30)

.Set (Am_HEIGHT, 30)

.Set (Am_SELECTED, false)

.Set (Am_INTERIM_SELECTED, false)

.Set (Am_VALUE, Am_Purple) //putthe real color here

.Set (Am_FILL_STYLE, Am Formula::Create (rect_fill))
.Set (Am_LINE_STYLE, Am_Formula::Create (rect_line))

select_inter = Am_Choice_Interactor.Create("choose_rect")
.Set (Am_START _WHERE_TEST, &Am Inter_In_ Part);
window.Add_Part (select_inter);

5.3.5.2 Am_One_Shot_Interactor

The Am_oOne_sShot_Interactor is used when you want something to happen immedi-
ately on an event. For example, you might want a Command to be executed when a
keyboard key is hit, or when the mouse button is first pressed. The parameters and
default behavior for the Am_One_Shot_Interactor are the same as for a
Am_cChoice_Interactor, in case you want to have an object be selected when the
start_when event happens. The programmer can choose whether one or more objects can
be selected, and the slots Am_INTERIM SELECTED and am_SELECTED of these objects are
set by the default Command in the Am_One_Shot_ Interactor.

The slots for the am_one_shot_Interactor are identical to those for the am Choice_
Interactor (see above).



Page 140 Interactors And Command Objects

5.3.56.2.1 Simple Example

In this example, we create a Am_One_Shot_Interactor which calls the change_setting
function when any keyboard key is hit in the window. The unchange_setting function
will be used to undo this action. The programmer would write the change_setting and
unchange_setting functions (see Section 5.5.3.1 for how to write command procedures
that won’t break the Interactors).

Am_QObject how_set_inter =
Am_One_Shot_Interactor.Create("change_settings")
.Set (Am_ START_WHEN, "ANY_KEYBOARD")

Am_Object cmd = how_set_inter.Get (Am_COMMAND) ;
cmd. Set (Am_DO_ACTION, (Am_Object_Proc*)&change_setting)

.Set (Am_UNDO_ACTION, (Am_Object_Proc*)&unchange_setting);
window.Add_Part (how_set_inter);

5.3.5.3 Am_Move_Grow_Interactor

The am_Move_Grow_Interactor is used to move or change the size of graphical objects
with the mouse. The default Command object in the am_Move_Grow_Interactor
directly sets the appropriate slots of the object to cause it to move or change size. For
rectangles, circles, groups and most other objects, the default Command object sets the
Am_LEFT, Am_TOP, Am WIDTH and Am_HEIGHT. For lines (more specifically, any object
whose am_as_LINE slot is true), the Command object may instead set the am_x1,
Am_v1l, Am_X2 and Am_v2 slots.



Interactors And Command Objects Page 141

Am_ Move_Grow_Interactor:

Slot Default Value Type
Am_START WHEN Am_TInput_Char Am_Input_Char
(*LEFT_DOWN”)
Am_START WHERE_TEST Am Inter_In Am_Where_ Function
Am ABORT WHEN Am_TInput_Char Am_TInput_Char
(“CONTROL_g*)
Am_ RUNNING_WHERE_ true Am_Object, bool
OBJECT
Am_RUNNING _WHERE__ Am Inter_TIn Am_Where Function
TEST

Am_GROWING false bool

Am_AS_LINE <formula> bool

Am_FEEDBACK_OBJECT 0 Am_Object // interim feedback

Am_GRID_X 0 int

Am GRID_ Y 0 int N

Am GRID ORIGIN_X 0 int

Am GRID ORIGIN_Y 0 int

Am_GRID_PROC 0 Am_Custom__

Gridding_Proc
Am_WHERE_ATTACH Am ATTACH_ Am Move_Grow_ Am_ATTACH_ ..
WHERE_HIT Where_Attach {WHERE_HIT, NW,

N, NE, E, SE, S,
SW, W, END_1,
END_2, CENTER}

Am_MINIMUM WIDTH 0 int

Am_ MINIMUM HEIGHT 0 int

Am_MINIMUM LENGTH 0 int

Am__COMMAND Am_Move Grow_ Am_Command

Command

5.3.5.3.1 Special Slots of Move_Grow Interactors

* am_GROWING: If false or zero, then object is moved without changing its size (or for
lines, without changing the orientation or length). If true or non-zero, then
adjusts the size (or a single end-point for a line). The default is false.

* am_As_LINE: If false or zero, then treats the object as a rectangle and adjusts the
Am_LEFT, Am_TOP, Am _WIDTH and Am_HEIGHT slots. If true or non-zero, then if
the object is being changed size, then sets the am X1, Am_ Y1, am x2 and Am_ Y2
slots (lines can be moved by setting their am_LEFT and am_Top slots). The
default is a formula that looks at the value of the am_as_LINE slot of the object
the Interactor is modifying.

* Am_FEEDBACK_OBJECT: If NuLL (0) (the default), then the actual object moves
around with the mouse. If this slot contains an object, however, then that object
is used as an interim-feedback object, and it moves around with the mouse, and
the actual object is moved or changed size only when the stop-when event
happens (e.g., when the mouse button is released). Don’t forget to add the
feedback object to a group or window in addition to adding it as the
Am_FEEDBACK_OBJECT. While the feedback object is moving around, the original
object simply stays in its original paesition.



Page 142 Interactors And Command Objects

» am_WHERE_ATTACH: This slot controls what part of the object is attached to the
mouse as the object is manipulated. The options are defined by the enum type
Am_Move_Grow_Where_Attachin inter.h. They are:

* am_ATTACH_WHERE_HIT: (This is the default.) The mouse is attached where the
mouse is pressed down. If growing the object, then checks which edge the
mouse is closest to, and grows from there.

* Am_ATTACH_CENTER: The center of the object. This is illegal if growing the
object.

* Am ATTACH_NW, Am_ATTACH N, Am_ATTACH_NE, Am_ATTACH E,
Am_ATTACH_SE, Am_ATTACH_S, Am_ATTACH_SW, Am_ATTACH_W The mouse
is attached at this corner or at the center of this side of the object.

* Am_ATTACH_END_1, Am_ATTACH_END_2: Only available for lines. End_1 is the
end defined by am_x1 and Am_v1.

* Am MINIMUM WIDTH, Am MINIMUM_HEIGHT : When growing, these are the
minimum legal size. Default is 0.

* Am_MINIMUM_LENGTH: Minimum length when growing lines. Default is O.

5.3.5.3.2 Gridding

There are two ways to do gridding for am Move Grow_Interactors and
Am_New_Point_Interactors. The first is to provide a function, and the second is the
provide the gridding origin and multiples:
* am_GRID_PROC: (Default is NuLL (0)). If supplied, this should be a function of the
type:
typedef void Am_Custom Gridding_Proc (Am Object inter, int x, int vy,
int& out_x, int & out_y);

which will be given the current x and y and should return the new x and y to use.
This kind of gridding is also useful for snapping, “gravity,” and keeping the object
being dragged inside a region.

* Am_GRID_X, Am_GRID_Y: If am GRID_PROC is not supplied, then these slots can hold
the number of pixels the mouse skips over. Default is 0.

* Am_GRID_ORIGIN_X, Am_GRID_ORIGIN_Y: These can hold the offset in pixels from
the edge of the window for the origin of the gridding. Default is O.



Interactors And Command Objects Page 143

5.3.5.3.3 Standard operation of the Am_Move_Grow_Command
Am_Move_Grow Command:

Slot Default Value Type

Am_START ACTION Am_Move_Grow_Command_Start Am_Object_Proc*

Am_TNTERIM_DO_ACTION Am_Move_Grow_Command_Interim_Am_Object_Proc*

Do

Am_DO_ACTION Am_Move_Grow_Command_Do Am_ Object_Proc*

Am_UNDO_ACTION Am_Move_Grow_Command_Undo Am_Object_Proc*

Am_UNDO_THE_UNDO_ Am_Move_Grow_Command_Undo__ Am_Object_Proc*
ACTION The_Undo

Am_ABORT_ ACTION Am_Move_Grow_Command_Abort Am_Object_Proc*

Am LABEL “Move_Grow interactor” Am_String

Am_ACTIVE true bool

Am OBJECT MODIFIED 0 Am_Object

Am_INTERIM VALUE 0 Am_Four_ Ints

Am_OLD_VALUE 0 Am_Four_ Ints

Am_VALUE 0 Am_Four_Ints

As the Move_Grow_Interactor is operating, it calls the various methods of the Command
object stored in its Am_coMMaND slot. The default Command object, Am_Move Grow_Com-
mand, uses the following mechanisms to show the operation. If this is not sufficient for
your needs, then you can create a custom Command object, as described in Section
5532

If there is a feedback object in the am_FEEDBACK_OBJECT slot then its size is set to the
size of the object being manipulated, and its Am vISIBLE slot is set to true. Then it is
moved or changed size with the mouse. Otherwise, the object itself is manipulated. At
any time while the Interactor is running, the abort event can be hit (default is "control-
g") to restore the object to its original position. When the stop event happens, then the
feedback object is made invisible, and the object is moved or changed size to the final
position.

The Undo_Action of the default Command object in the Am_Move_Grow_Interactor
simply resets the object to its original size and position.

5.3.5.3.4 Simple Example

See the file testinter.cc for lots of additional examples of uses of Interactors and
Command objects. The following Interactor will move any object in the window when
the middle button is held down.

Am_Object move_inter = Am_Move_Grow_Interactor.Create("move_object")
.Set (Am_START WHERE_TEST, (Am_Object_Proc)&Am_Inter_In_Part)
.Set (Am_START_WHEN, "MIDDLE_DOWN") ;

window.Add_Part (move_inter);

5.3.5.4 Am_New_Points_Interactor

The Am_New_Points_Interactor is used for creating new objects. The programmer can
specify how many points are used to define the object (currently, only 1 or 2 points are



Page 144 Interactors And Command Objects

supported), and the Interactor lets the user rubber-band out the new points. It is
generally required for the programmer to provide a feedback object for a
Am_New_Points_Interactor SO the user can see where the new object will be. If 1
point is desired, the feedback will still follow the mouse until the stop event, but the final
point will be returned, rather than the initial point. Gridding can be used as with a
Am_Move_Grow_Interactor. To create the actual new objects, in the default Command
object for the Am New_Points_Interactor, the programmer provides a call-back
function in the Am_CREATE_NEW_OBJECT_ACTION slot of the Command object.

Am_New_ Points_Interactor:

Slot Default Value - Type

Am_START WHEN Am_Input_Char (“*LEFT_DOWN”*) Am_Input_Char

Am_START WHERE_TEST Am_Inter In Am_ Where_Function

Am_ABORT_WHEN Am Input_Char (*CONTROL_g”) Am_TInput_Char

Am_RUNNING_WHERE_OBJECT true Am_Object, bool

Am_RUNNING_WHERE_TEST Am_Inter_ In Am Where_ Function

Am_AS_LINE 0 bool

Am_FEEDBACK_QOBJECT 0 Am_Object

Am_HOW_MANY_POINTS 2 int

Am FLIP IF CHANGE_SIDES true bool

Am_ ABORT_IF_TOO_SMALL false bool

Am_STOP_WHEN Am_Tnput_Char (“ANY_MOUSE_UP”) Am_Input_Char

Am_GRID_X 0 int

Am_GRID_ Y 0 int

Am_GRID ORIGIN X 0 int

Am_GRID_ORIGIN_ Y 0 int

Am_GRID_PROC 0 Am_Custom_
Gridding_Proc

Am MINIMUM WIDTH 0 int

Am_ MINITMUM_HEIGHT 0 int

Am_MINIMUM_LENGTH 0 int

Am_COMMAND Am_New_Points_Command Am_Command

5.3.5.4.1 Special Slots of New_Points Interactors

* am_As_LINE: If true, then create the new object as a line, and set the am_x1, am vi,
etc. slots of the feedback object. If false, the default, then create the new object
as a rectangle, and set the am_LEFT, am_TOP, etc. of the feedback object.

* Am_FEEDBACK_OBJECT: Object to rubber band to show where the new object will be.

* am_HOW_MANY_POINTS: How many points are desired. Lines, rectangles, etc. are
normally defined by 2 points, which is the default. Currently, the only supported
values are 1 and 2.

* Am_MINIMUM_WIDTH, Am_MINIMUM_HEIGHT, Am_MINIMUM LENGTH: Same as for
Am_Move_Grow_Interactor (Section 5.3.5.3.1).

* Am_ABORT_IF_To0_sMALL: If true, and if the size is less than the minimum, then no
object will be created (if the stop event happens while the object is less than the
minimum, then the Interactor aborts). If false (the default), then an object is
created with the minimum size.



Interactors And Command Objects Page 145

* Am_FLIP_IF_CHANGE_SIDES: If true, then if the cursor goes above and/or to the left
of the original point, the object is flipped. If false, then the new object is pegged
at its minimum size. This is only relevant if am_as_LINE is false.

* Am_GRID_X, Am_GRID_Y, Am_GRID_ORIGIN_X, Am_GRID_ORIGIN_Y,
Am_GRID_PROC: Same as for am_Move_ Grow_Interactor (Section 5.3.5.3.2).

5.3.5.4.2 Standard operation of the Am_New_Point_Command
Am New Points_Command:

Slot Default Value Type
Am_START_ACTION Am New_Points_Command_Start Am_Object Proc*
Am_INTERIM DO_ACTION Am_New_Points_Command_ Am_Object_Proc*
Interim_Do
Am_ DO_ACTION Am_New_Points_Command_Do Am _Object_Proc*
Am_UNDO_ACTION Am_New_Points_Command_Undo Am_Object_Proc*
Am_UNDO_THE_UNDO_ACTION Am_New_Points_Command_Undo_ Am Object_Proc*
The_Undo
Am ABORT ACTION Am_New_Points_Command_Abort Am_Object_Proc*
Am LABEL “New_Points interactor” Am_String
Am_ACTIVE true bool
Am_TOO_SMALL 0 bool
Am_TINTERIM VALUE 0 Am_Four_TInts
Am_VALUE 0 any :
Am_CREATE_NEW_OBJECT_ 0 Am_Create_New_
ACTION Object_Proc*

As the New Point Interactor is operating, it calls the various methods of the Command
object stored in its am_commanD slot. The default Command object,
Am_New_Point_Command, uses the following mechanisms to show the operation. If this
is not sufficient for your needs, then you need to create a custom Command object, as
described in Section 5.5.3.3.

While the Interactor is operating, the appropriate slots of the feedback object are set, as
controlled by the parameters described above. If the user hits the abort key while the
Interactor is running ("control_g" by default), the feedback object is made invisible and
the Interactor aborts. If the user performs the stop_when event (usually by releasing the
mouse button), then the Command object calls the procedure in the
Am_CREATE_NEW_OBJECT_ACTION slot of the Command object. Note: this procedure
should be set into the Command object, not into the Interactor. (If there is no procedure,
then nothing happens). The procedure is called as:

typedef Am_Object Am Create_New_Object_Proc (Am_Object Command_obj,
int a, int b, int ¢, int d);

The four integers will be the left, top, width and height, or the x1, y1, x2, y2 of the new
object to be created depending on the am_as_Line slot. (Note: this interface may
change when we support more than 2 points). After creating the new object and adding it
as a part to some group or window, the procedure should return the new object.



Page 146 Interactors And Command Objects

The default Undo_Action makes the object invisible (so the default Undo_The_Undo
method will make it visible again). When Undo_The_Undo is no longer possible
(determined by the type of undo handler in use--section 5.5.2), and the Command object
is de-allocated by the undo handler, then the object is automatically destroyed.

5.3.5.5 Am_Text_Edit_Interactor

The am_Text_Edit_Interactor is used for single-line, single-font editing of the text in
Am_Text objects. (Support for multi-line, multi-font text editing will be in a future
release.) The default Command object in the Am_Text_Edit_Interactor directly sets
the am_TEXT and Am_CURSOR_INDEX slots of the am Text object to reflect the user’s
changes. Most of the special operations and types used by the am_Text_Edit_
Interactor are defined in text_fns.h.

When the start_when event occurs, the Interactor puts the text object’s cursor where the
start event occurred, and initializes the Command object. Subsequent events are sent to
the Command object to edit the text object. When the stop_when event happens, the
cursor is turned off and the command object’s DO_ACTION method is called. The
stop_when event is not entered into the string.

The default Am RUNNING WHERE_OBJECT is true, meaning the Interactor will run no
matter where the user moves the cursor. If this slot is set to be a particular object,
leaving that object causes the Interactor to hide the text object’s cursor until the user
moves back into the object.

Notice that am Text_Edit_Interactor's Am_START WHERE_TEST slot is set to the value
Am_Inter_In Text. Am Text Edit_Interactors only work properly on Am_Text
objects, so one of the text tests should be used for the Am_sSTART_WHERE_TEST slot.

Am Text_ Edit_Interactor:

Slot Default Value Type

Am_START WHEN Am_TInput_Char (“LEFT_DOWN”) Am_Input_Char

Am_ START WHERE_TEST Am_ Inter In_Text Am Where_Function

Am_ ABORT WHEN Am_TInput_Char (*CONTROL_g”) Am_ Input_Char

Am RUNNING_WHERE_ OBJECT true Am Object, bool

Am_ RUNNING_WHERE_TEST Am_Inter In Am Where_Function

Am_ STOP_WHEN Am_TInput_Char (“RETURN”" ) Am_Input_Char

Am TEXT EDIT FUNCTION Am_Default_Text_Edit_ Am _Text_Edit_
Function Function

Am EDIT TRANSLATION TABLE Am Edit_Translation_ Am_Edit_Trans-
Table: :Default_Table() lation_Table

Am_COMMAND Am_Edit_Text_Command Am_Command




Interactors And Command Objects Page 147

5.3.5.5.1 Special Slots of Text Edit Interactors

* Am_TEXT_EDIT FUNCTION. This is a function of the form:
typedef void Am Text_ Edit_Function (Am_Object text,

Am_Input_Char ic,
Am_Object inter)

The text edit function should edit the text object's am_TExT field given the input

character ic. It can also modify the am_cURSOR_INDEX slot of the object, but

shouldn’t change other slots. The default function: am Default_Text Edit_

Function, uses the Am_Edit_Translation_ Table specified in the Interactor’s

Am_EDIT_TRANSLATION_TABLE slot to provide the basic editing operations (see

the description of the Am_EDIT_TRANSLATION_TABLE slot below). If the input

character doesn't match any operation in the translation table, the default edit

function does the following:

* ASCII characters between ' (SPACE) and '~' are inserted into the string before
the cursor.

* All other keyboard events make the Interactor beep and do nothing.

* Non-keyboard events are ignored.

* Am_EDIT_TRANSLATION_TABLE: This is an am_Edit_Translation_Table (defined
in the file text_fns.h), a table that maps input characters to am_Text_Edit_Op-
erations.

Am_Edit_Translation_Table::Default_Table() defines the following
mappings:

® CONTROL_h, BACKSPACE, DELETE delete character before cursor

* CONTROL_w, CONTROL_BACKSPACE, CONTROL_DELETE: delete word before

cursor

* CONTROL_d: delete character after cursor

* CONTROL_u: delete the entire string

* CONTROL_k: delete string from cursor to end of line

* CONTROL_b, LEFT_ARROW. move cursor one character to the left

* CONTROL_f, RIGHT_ARROW. move cursor one character to the right

* CONTROL_a: move cursor to beginning of line

* CONTROL_e: move cursor to end of line

* CONTROL_y: insert the contents of the X cut buffer at the cursor position

* CONTROL_¢: copy the current string into the X cut buffer

* any mouse button inside the string: move the cursor

* any mouse button outside the string: beep



Page 148 Interactors And Command Objects

5.3.5.5.2 Standard operation of the Am_Edit_Text_Command object:
Am_Edit_Text Command:

Slot Default Value Type

Am_START ACTION Am Text_Command_Start Am_Object_Proc*

Am_INTERIM_DO_ Am_Text_Command__ Am Object_Proc*
ACTION Interim_Do

Am_DO_ACTION Am_Text_Command_Do Am_Object_Proc*

Am_UNDO_ACTION Am_Text_Command_Undo Am_Object_Proc*
Am_UNDO_THE_UNDO_ Am_Text_Command_Undo_ Am_Object_Proc*

ACTION The_Undo
Am_ABORT ACTION Am_Text_Command_Abort Am_ Object_Proc*
Am_LABEL “text interactor” Am_String
Am_ACTIVE true bool
Am_OBJECT_MODIFIEO Am_Object Hobject edited
D
Am_INTERIM_VALUE 0 Am_TInput_Event feach event set here
Am_OLD_VALUE 0 Am_String //set to old string
Am_VALUE 0 Am_String //new final string

The text interactor's start action sets the Command object’s initial values. It saves a copy
of the text object's original am_TEXT slot in the am_or.D_VALUE slot of the text Command,
sets the Command's am_OBJECT_MODIFIED slot to be the object the Interactor is acting on
(feedback objects are not supported yet), and it moves the cursor to the location specified
by where the Interactor start event occurred. The Command object's start function does
nothing.

The text Interactor sends events to the Command object by setting the
am_INTERIM_VALUE slot of the Command object before calling its interim do function. If
the event is any mousedown inside the object, the Command object moves the cursor to
the position clicked on. It then sends the event to the Am_Text_Edit_Function specified
in the Interactor's Am_TEXT_EDIT_FUNCTION slot.

An abort event causes the Command object to restore the original text object's text from
its Am_OLD_VALUE slot, and to set the object's Am_CURSOR_INDEX to Am_NO_CURSOR.

When the stop event occurs, the Command object's am_vALUE slot is set to the new value
of the text object's am_TEXT slot, and the text object's Am_CURSOR_INDEX is set to
Am_NO_CURSOR. The stop_when event is not entered into the string.

5.4 Advanced Features

5.4.1 Output Slots of Interactors

As they are operating, Interactors set a number of slots in themselves which you can
access from the Command’s Do procedure, or from constraints that determine slots of the
object. The slots set by all Interactors are:

* Am_START OBJECT - Set with the object returned by the am_sTART WHERE_TEST
each time the Interactor starts. This might be useful, for example, if there are two



Interactors And Command Objects Page 149

types of “handles” connected to objects that are to be modified: one for moving
and one for growing, distinguished by the value of the Is_aA_ MOVING_HANDLE slot.
Then you might have a formula in the am_Growing slot of a am Move_Grow_In-
teractor as follows:

Am_Define_Formula (bool, grow_or _move) {
Am_Object start_object;
start_object = self.GV(Am_START OBJECT) ;
if ((bool)start_object.GV(IS_A_ MOVING_HANDLE))
return false;
else return true;

}
* Am_START_CHAR - The initial am_TInput_char that started the Interactor. This is
most useful when the am_sTarRT wHEN slot is something like am_ANY KEYBOARD,
Or Am_ANY_ MOUSE_DOWN. For example, you might put a constraint in the
am_As_Line slot that depends on which mouse button starts the Interactor. In the
following, a line is created when the sHIFT key is held down, otherwise to a
rectangle is created:

Am_Define_ Formula (bool, as_line if shift) ({
Am_Tnput_Char start_char =
Am_Input_Char: :Narrow(self.GV(Am_START_CHAR)):;
if (start_char.shift) return true;
else return false;
}
* am_wWINDOW - The window the Interactor is currently running in. Like graphical
objects, this slot shows which window the Interactor is currently attached to. For
Interactors that run over multiple windows (see Section 5.4.3), this slot is

continuously updated with the current window.

* Am_CURRENT_OBJECT - The current object the Interactor is working on. This will
be object returned by Am_START WHERE_TEST when the Interactor starts running,
and then by the am_RUNNING_WHERE_TEST while the Interactor is running. This is
most useful for Am_Choice_Interactors where the object the Interactor is running
over changes as the Interactor runs.

The specific Interactors also set special slots in the Command objects which are used by
the specific Do procedures. These are described below in Section 5.5.3 about each
specific type of Interactor.

5.4.2 Priority Levels

When an input event occurs in a window, Amulet tests the Interactors attached to objects
in that window in a particular order. Normally, the correct Interactor is executed.
However, there are cases where the programmer needs more control over which
Interactors are run, and this section discusses the two slots which control this:

* Aam_PRIORITY: The priority of this Interactor. The defaultis 1.0.



Page 150 Interactors And Command Objects

* Am_RUN_ALSO: If true, then let other Interactors run after this one is completed.
The default is false.

All the Interactors that can operate on a window are kept in a sorted list. The list is
sorted first by the Interactor’s priority number, and then by the display order of the
graphical object the Interactor is attached to. The result is that for Interactors of the same
priority, the one attached to the least covered (front-most) graphical object is handled
first.

The priority of the Interactor is stored in the am_PRIORITY slot and can be any positive or
negative number. When an Interactor starts running, the priority level is increased by a
fixed amount (defined by Am_INTER_PRIORITY_DIFF which is 100.0 and is defined in
inter_advanced.h). This makes sure that Interactors that are running take priority over
those that are just waiting. If you want to make sure that your Interactor runs before other
default Interactors which may be running, then use a priority higher than 101.0. For
example, the debugging Interactor which pops up the inspector (see section 5.6) uses a
priority of 300.0.

For Interactors with the same priority, the Interactor attached to the front and leaf most
graphical object will take precedence. This is implemented using the slots
Am_OWNER_DEPTH and Am_RANK of the graphical objects which are maintained by Opal.
What this means is that an Interactor attached to a part has priority over an Interactor
attached to the group that the part is in, if they both have the same value in the
Am PRIORITY slot. Note that this determinations does not take into account which
objects the Interactor actually affects, just what object the Interactor is a part of. Thus, if
Interactor A is attached to group G and has a Am_START WHERE_TEST of
Am_Inter_In_Part, and Interactor B is attached to part P which is in G and has a
Am_START_WHERE_TEST Oof Am_Inter_In, then the Interactor on B will take precedence
by default, even though both A and B can affect P.

If the Interactor that accepts the event has its Am_RUN_ALSO slot set to true (the default is
false), then other Interactors will also get to process the current event. Thus, the run-
also Interactor operates without grabbing the input event. This might be useful for
Interactors that just want to monitor the activity in a window, say to provide a “tele-
pointer” in a multi-user application. In this case, you would want the Interactor with
Am_RUN_ALSO set to true to have a high priority.

Furthermore, if an Interactor that has am_RUN_ALSO slot set to false accepts the current
event, the system will continue to search to find if there are any other Interactors with
Am_RUN_ALSO slot set to true that have the same priority as the Interactor that is running.
These are also allowed to process the current event.

5.4.3 Multiple Windows

A single Interactor can handle objects which are in multiple windows. Since an
Interactor must be attached to a single window, graphical object or group, a special



Interactors And Command Objects Page 151

mechanism is needed to have an Interactor operate across multiple windows. This is
achieved by using the am_oTHER_WINDOWS slot. The value of this slot can be:

* false or zero: which means that this slot is ignored, and the Interactor only works
on the window of the object it is attached to. This is the default.

* true (Or any non-zero integer): the Interactor operates on all windows created using
Amulet.

* a single window: which means that the Interactor operates on this window in
addition to the window the Interactor is attached to.

* a Am Value_List containing a list of windows, which means that the Interactor
works on all of these windows, plus the one it is attached to.

Of course, the function in the Am_START WHERE_TEST slot must search for objects in all
of the appropriate windows. It might use the value of the am_wrnpow slot of the
Interactor, which will contain the window of the current event.

5.5 Command Objects

Unlike other toolkits where the widgets call “call-back” procedures, the widgets and
Interactors in Amulet allocate Command Objects and call their “Do” methods. Whereas
so far this is pretty-much equivalent, Command Objects also have slots that handle
undoing, enabling and disabling, and help. Command objects must be added as parts of
the objects they are attached to, so every Interactor and widget has a part named
Am_coMMAND which contains an Am_command object.

The top-level definition of a Command object is:

Am_Command = Am_Root_Object.Create ("Am_Command")

.Set (Am_DO_ACTION, &Am_Command_Do)
.Set (Am UNDO_ACTION, &Am_Command_Undo)
.Set (Am_UNDO_THE_UNDO_ACTION, &Am_Command_Undo_The_Undo)
.Set (Am_ ACTIVE, true)
.Set (Am _LABEL, "A Command")
.Set {(Am_VALUE, 0)
.Set (Am_PARENT, 0)

/fthe next slots are only used for Commands in Interactors
.Set (Am_INTERIM_ VALUE, 0)
.Set (Am_START ACTION, &Am_Command_Start)
.Set (Am_INTERIM_DO_ACTION, &Am_Command_Interim_Do)
.Set (Am_ABORT_ACTION, &Am_Command_Abort)

Most Command objects supply a am_po_acTIon procedure which is used to actually
execute the Command. It will typically also store some information in the Command
object itself (often in the am_VALUE and am OLD_VALUE slots) to be used in case the
Command is undone. The am_unNDO_acTION procedure is called if the user wants to undo
this Command, and usually swaps the object’s current values with the stored old values.
The am_UNDO_THE_UNDO_ACTION procedure is used for “redo” which is when the user
wants to undo the undo. Usually, it is the same procedure as the Am_uNpo_acTIoN. The



Page 152 Interactors And Command Objects

Am_ACTIVE slot controls whether the Interactor or widget that owns this Command object
should be active or not (see section 5.3.3.3). This works because all widgets and
Interactors have a constraint in their active field that looks at the value of the am AcCTIVE
slot of their Command object. Often, the am_acTIVE will contain a constraint that
depends on some state of the application, such as whether there is an object selected or
not. The am_ragEeL slot is used for Command objects which are placed into buttons and
menus to show what label should be shown for this Command. The am_vaLuE slot is set
with the value for use by the am_Do_acTION. You have to look at the documentation for
each Interactor or Widget to see what form the data in the am_varuk slot is. Command
objects which are used in Interactors also support the Am_START ACTION,
Am_INTERIM_DO_ACTION, and Am_ABORT_ACTION methods (see Section 5.5.3).

Note that you must set the am_po_acTIoN and access the am_varLue slot of the
Command object in the Interactor or widget; one cannot access those slots directly
in the Interactor or widget themselves. Thus:

my_inter.Get_Part (Am_COMMAND) .Get (Am_VALUE) ; /right
my_inter.Get_Part (Am_COMMAND)
.Set (Am_DO_ACTION, my_do_action); /right

my—inter Get{Am—VARUE—/WRONG
e LI - B e D m I\ e = P

5.5.1 Parent hierarchy

Normal objects are part of two hierarchies: the prototype-instance hierarchy and the part-
owner hierarchy. The Command objects has an additional hierarchy defined by the
am_PARENT slot. Based on the Ph.D. research of David Kosbiel, we allow lower-level
Command objects to invoke higher-level Command objects. For example, the Command
object attached to a move-grow Interactor which is allowing the user to move a scroll bar
indicator calls the Command object attached to the scrollbar itself, as shown in the figure.

1 David S. Kosbie and Brad A. Myers, “Extending Programming By Demonstration With Hierarchical
Event Histories,” The 1994 East-West International Conference on Human-Computer Interaction. St.

Petersburg, Russia, August, 1994, pp. 147-157.



Interactors And Command Objects Page 153

Scroll bar

>

\ C1: Command Object for Scroll bar

Indicator rectangle A\ A
11: Interactor for indicator 1 “

C2: Command Object for Interactor |
Arrow buttons \
12: Interactor for arrow buttons !

C3: Command Object for Interact(‘)r

Key:

~ Part-Owner hierarchy Graphical parts
I: Interactor parts

C: Command parts

E € ~ Command Parent hierarchy

The default am_po_acTion procedure supplied by the Am_Command object
automatically calls the am_po_acTIoN of the Command object in the parent slot. Thus,
in the figure, the Command objects in the two Interactors (C2 for I2 and C3 for I3)
would have the Command object of the scroll bar (C1) in their Am_PARENT slots, and the
DO action of C1 would be called automatically after the DO action of C2 or C3. This
will typically be the correct behavior since the DO action of C2 and C3 simply adjust the
scroll-bar’s indicator, but the DO action of the scroll bar’s Command is responsible for
updating the scrolling window, or whatever the scroll bar is attached to. The advantage
of this design is that the low-level Command objects do not need to know how they are
being used, and can just operate normally, and the higher-level Command objects will
update whatever is necessary. Note that the parent hierarchy is not usually the same as
the part-owner hierarchy. Unfortunately, it seems to be difficult or impossible for
Amulet to deduce the parent hierarchy from the part-owner hierarchy, which is why the
programmer must explicitly set the am_PARENT slot when appropriate. Of course, the
built-in widgets (like the scroll bar) have the internal Command objects set up.
appropriately. '

You might use the Am_PARENT slot for the Command object in the “OK” button widget
inside a dialog box, so the OK widgets’s action will automatically call the dialog box’s
Command object. Another example is that for the button panel widget (see the Widgets
chapter), you can have a Command object for each individual item and/or a Command
object for the entire panel. If you want the individual item’s Command to be called and
the top-level Command to be called, then you would make the top-level Command be the
am_PARENT of each of the individual item Commands.



Page 154 Interactors And Command Objects

5.5.2 Undo

All of the Command objects built into the Interactors and widgets automatically support
Undo. This means that the default am_Dpo_acTION procedures store the appropriate
information so the default am_unNDO_acTION and Am_UNDO_THE_UNDO_ACTION will work
correctly. Built-in “ando-handlers” know how to copy the command objects when they
are executed, save them in a list of undoable actions, and execute the undo and
undo_the_undo actions of the commands. Thus, to have an application support undo is
generally a simple process. You need to create an undo-handler object and attach it to a
window, and then have some button or menu item in your application call the undo-
handler’s method for undo and undo_the_undo.

5.5.2.1 Enabling and Disabling Undoing of Individual Commands

Throughout the manual, it has been mentioned that you should call the prototype’s do
action inside your custom am_DO_ACTION routines. This is because the top-level
Am_Command object’s am_po_acTIioN method automatically handles the queuing of the
command object on the undo list, as described below.

If there are operations in the application that are not undoable, for example like File
Save, then you will typically still call the prototype method from your am_DO_ACTION
routine, but you will have the am_UNDO_AcCTION and Am_UNDO_THE_UNDO_ACTION
methods be nuLL. This will insure that the menu item for undo will still notify the user
that the previous operation is not undoable.

If there are operations that should not go on the undo list at all, for example like
scrolling, there are different ways to achieve this. First, if all the operations in a
particular window should not be queued (for example, in a pop-up dialog box), you can
simply have the Am_UNDO_HANDLER slot of that window be NULL (see below). Second, if
this is not the case, you can arrange for the prototype’s Am_DO_ACTION to not be called by
the Am_DO_ACTION in the commands that should not be queued. This done simply not
having the am_call to the prototype’s method in your do action code. The third way to
arrange for the command to not be queued is to have the am_pPARENT slot of the command
object be non-null. Normally, the parent’s do action is called automatically, but it is
always OK for a method to be missing. Thus, you could even put an instance of
Am_Root_Object as the parent of a command object to make sure it is not queued for
undoing.

5.5.2.2 Using the standard Undo Mechanisms

There are two styles of undo supplied by Amulet. These are described in this section.
The next section discusses how programmers can provide other undo mechanisms.



Interactors And Command Objects Page 155

Am_Single Undo_Object:

Slot Default Value Type

Am_REGISTER_COMMAND Am_ Single_Undo_Register_ Am_Register
Command Command_Proc

Am_UNDO_THE_UNDO_ALLOWED <formula> Am_Object or 0

Am_UNDO_ALLOWED <formula> Am_Object or 0

Am_ PERFORM_UNDO Am_Single_Perform_Undo Am_Object_Proc*

Am_PERFORM_UNDO_THE_UNDO Am_Single_ Perform Undo_ Am_Object_Proc*
The_Undo

Am Multiple Undo_Object:

Slot Default Value Type

Am REGISTER_COMMAND Am Multiple_Undo_Register Am_ Register_
Command Command__Proc

Am_UNDO_ALLOWED <formula> Am_Object or 0

Am_UNDO_THE_UNDO_ALLOWED <formula> Am_Object or 0

Am_PERFORM_UNDOQ Am_Multiple_Perform_Undo Am_Object_Proc

Am_PERFORM_UNDO_THE_UNDO Am_Multiple_Perform Undo_ Am_Object_Proc
The_Undo

Am LAST UNDONE_COMMAND 0 Am_Command

The two undo handlers supplied by Amulet are:

* am_Single_Undo_object: This handler supports undoing a single Command, like
the Macintosh’s undo. The last operation can be undone, and the last undone
operation can be redone. As soon as another operation is performed, the previous
Command is discarded so it can no longer be undone or redone.

* Am_Multiple_Undo_Object: This handler supports undoing an arbitrary number of
Commands, all the way back to the first Command. This is implemented by
saving all the Commands executed since the application is started, so the list can
grow quite long. If a Command is undone, then it can be redone (undo-the-
undo), but only the last undone Command is saved. Thus, after undoing a series
of Commands, after undoing the last undo (redo), there is nothing available to
redo. The Undo itself is not part of the command history.

To use either of these kinds of undo, the programmer simply attaches an instance of the
appropriate handler object to the window in the Am UNDO_HANDLER slot. The standard
command DO_ACTION methods look for the am_unpo_sHANDLER and if found,
automatically call the Undo-handler’s method to register this command for possible later
undoing. You can put the same undo-handler object into the Am_UNDO_HANDLER slot of
multiple windows, if you want a single list of undo-actions for multiple windows (for
example, for applications which use multiple windows). Creating the undo-handler is
simpler than it sounds:

my _win = Am Window.Create("my_ _win")
.Set (Am_LEFT, ...)

.Set (Am_UNDO_HANDLER, Am Multiple_Undo_Object.Create("undo"))



Page 156 Interactors And Command Objects

Now, all the Commands executed by any widgets or Interactors that are part of this
window will be automatically registered for undoing.

Next, you need to have a widget that will allow the user to execute the undo and redo.
Typically, this will be a widget that should also be active or inactive depending on
whether the undo and redo are currently allowed. The undo_handler objects provide the
Am_UNDO_ALLOWED slot to tell whether undo is allowed. This slot contains the command
object that will be undone (in case yon want to have the label of the Undo Command
show what will be undone). The am_uNDO_THE_UNDO_ALLOWED slot of the undo object
tells whether redo is allowed and it also will contain a command object or NULL. To
actually perform the undo or redo, you call the method in the Am_PERFORM_UNDO OT
Am_PERFORM_UNDO_THE_UNDO slots of the undo object. For example, the undo button in
the demo_space demo is set up as follows (the redo code is similar): (see
amulet/samples/space/space.cc for the complete code):

// First, define formulas to determine when the Undo command should be active
Am_Define_Formula (bool, undo_active) {
Am_Object undo_handler, last_command;
undo_handler = SP_Clip_Win.GV (Am_UNDO_HANDLER) ;
last_command = undo_handler.GV(Am_UNDO_ALLOWED) ;
Hundo is allowed if there is a last command, and if it has an undo method.
if (last_command.valid()) {
Am _Value undo_proc;
last_command.Get (Am_UNDO_ACTION, undo_proc);
if (undo_proc.valid()) return true;
else return false;
}
else return false;

}

// Actually perform the Undo by asking the Undo_handler to do it

void do_undo (Am_Object) {
Am_Object undo_handler, last_Command;
undo_handler = SP_Clip_Win.Get (Am_UNDO_HANDLER) ;
/Hdon’t have to make sure that last_Command is valid here since

Hdo_undo can only be called when undo_active formula returns true
2Am _Call (Am_Object_Proc, undo_handler, Am_PERFORM UNDO,
(undo_handler));
}

// Here is the widget that will allow the user to execute the Undo. See the Widgets chapter for details
SP_Button_Panel = Am Button_Panel.Create()
.Set (Am_ITEMS, Am Value_List ()
.Add (Am_Button_Command.Create ("undo_Command")

.Set (Am_LABEL, "Undo")
.Set (Am_DO_ACTION, do_undo)
.Set (Am_ACTIVE, Am_Formula::Create(undo_active))
)



Interactors And Command Objects Page 157

5.5.2.3 Building your own Undo Mechanisms

Usually, one of the two the supplied Undo objects will do what you want, but Amulet is
designed to be easily extensible with new kinds of undo mechanisms. For example, you
might want to support arbitrary numbers of redo’s or put a limit on the number of
Commands that can be undone, or allow the user to pick a specific past Command to
explicitly undo. Do implement these, you would make your own undo handler object as
an instance of Am_Undo_Handler and supply values in the following slots:

* Am_REGISTER_COMMAND, a method to be called to register a newly executed
Command.

* Am_PERFORM_UNDO, a method to be called to execute the undo of the next command
to be undone.

* Am PERFORM_UNDO_THE_UNDO, a method to be called to execute the redo of the last
undone Command.

* Am_UNDO_ALLOWED, supplies a command object or NULL, usually computed by a
formula, to say whether undo is currently allowed.

* Am_UNDO_THE_UNDO_ALLOWED, supplies a command object or NULL, usually
computed by a formula, to say whether redo (undo the undo) is currently allowed.

See the code in amulet/src/command_basics.cc to see how these methods and slots
are implemented. ‘

5.5.3 Building Custom Command Objects

In many cases, the built in Command objects will be sufficient for your needs. If not,
this section will explain how to create your own Command objects. It also explains what
you need to know to write your own DO methods for Commands in the built-in
Interactors.

Creating Command objects for the built-in widgets is easier than creating new ones for
the Interactors, because the widgets only use the Am DO_ACTION, Am_UNDO_acTION and
Am_UNDO_THE_UNDO_ACTION methods, whereas the Interactors also need the
Am_START_ACTION, Am_INTERIM DO_ACTION, and Am ABORT ACTION methods.
Furthermore, the Interactors are set up so that the various action methods perform the
standard behavior of the Interactor (such as moving the object around) so that if you
override one of the default methods, you will be responsible for performing the behavior
yourself.

Since all of these methods only take a single parameter which is the Command object,
the Interactor or widget stores the required values in the Command object itself before
the method is called. Each type of widget or Interactor defines what slots are set in the
Command object and with what types of values, and these are described below.



Page 158 Interactors And Command Objects

When re-implementing an action routine for a Command, it is very important that you
always call the prototype method for the top level Am_Command object, if you want the
Command to be undoable. The top-level Command object’s Do and Undo actions call
the appropriate routines to register the command with the appropriate undo-handler
object, as discussed above. Typically, these calls will be at the end of the action
procedure. For example, you might have the following in a do-action method:

void my_do_action (Am_Object command_obj) {
/first, do my custom stuff

//now call the prototype method to set up for. Undo
Am_Call (Am_Object_Proc, Am_Command, Am DO_ACTION, (command_obij));
}

All of the default methods for the Commands in the Interactors contain code to report
what is being set for using during tracing (see Section 5.6) which makes the built-in
methods look more complicated than yours would have to be.

5.5.3.1 Command Objects for Am_Choice_Interactor and
Am_One_Shot_Interactor

The Am_Choice_Interactor and Am_One_Shot_Interactor are implemented using the
same command objects and procedures. The important slots of the Command object for
these are: '

* Am OLD_INTERIM_VALUE which is set with an object or NULL which is the
previously interim selected object.

* Am_TINTERIM_VALUE which is set with the newly selected object.

* am_VALUE which is set with the final result which may be NULL, an object (if only
a single object can be selected) or a am_value_List of objects.

* Am_OLD_VALUE which is set with the previous value of am_vaLuE for use if the
command is undone.

The default am_choice_cCommand_Do method first turns off the interim feedback by
setting to false the am_INTERIM_SELECTED slot of the object in the Am_TNTERIM_VALUE
slot of the Command object. Next, it uses that object, and the am_zow_SET value of the
Interactor, to determine how to compute the final selected set. Thus, if you override the
Am_INTERIM_DO_ACTION or Am DO_ACTION of a choice Interactor, you might want to
either call the prototype method from the Am_Choice_Command object or set the slots of

the objects yourself. For example:
void my choice_do_action (Am_Object command_obj) {
/first, do my custom stuff

//now call the prototype method to do the regular work of the Interactor
Am_Call (Am Object_Proc, Am_Choice_Command, Am DO_ACTION,
(command_obj) ) ;



Interactors And Command Objects Page 159

5.5.3.2 Command Objects for Am_Move_Grow_Interactors
The important slots of the Command object for a Move-Grow Interactor are:
* am_OBJECT_MODIFIED which is the object being moved or changed size.

* Am_FEEDBACK_OBJECT which is set with a copy of that slot from the Interactor, and
will either be a feedback object or NULL. If NULL, then the
Am_OBJECT_MODIFIED is modified by the interim_do method.

* am_as_LINE which says whether to modify the object as a line or as a box. If the
am_AS_LINE slot of the Interactor is true, and if the object is being grown, then
this slot will be true, otherwise it will be false (lines are moved the same way as
rectangles: by setting their left and top). Thus this slot is not quite a copy of the
corresponding Interactor slot.

* Am_INTERIM_VALUE which contains a list of four integers which are the current
position and size of the object, stored as a Am_Four_Ints structure. These are
either left, top, width and height, or x1, y1, x2, y2 depending on Am_As_LINE..
The am_Four_Ints also contains a reference object, so you can call am_Trans-
late_Coordinates to convert the coordinates in the Am_Four_ Ints to whatever
is required for your object.

» am_oLD_VALUE which holds a copy of the old (original) value as an Am_Four_Ints,
used in case the Interactor is aborted or later undone.

* am_VALUE which contains the final am_Four_ints used to set the position and size
of the object.

The Move-Grow Interactor and-the Command’s Am_START_ACTION set these up, and the
default interim_do and do actions update the objects based on the values in the slots.

5.5.3.3 Command Objects for Am_New_Point_Interactors
The important slots of the Command object for a New_Point Interactor are:

* Am_FEEDBACK_OBJUECT which is set with a copy of the am_FEEDBACK_OBJECT slot
from the Interactor, and should be a feedback object. If NULL, then there is no
feedback while the Interactor is running. '

* am_AS_LINE which says whether to modify the object as a line or as a box.

» am_Too_sMaLL which is set by the interactor if the size is currently smaller than the
minimum allowed. The default method turns off the feedback if am_Too_sMarLL
is true.

* Am_INTERIM VALUE which contains a list of four integers which are the current
position and size of the feedback object, stored as a am_Four_1Ints structure.
These are either left, top, width and height, or x1, y1, x2, y2 depending on
Am_AS_LINE. The am_Four_Ints also contains a reference object, so you can call
Am_Translate_Coordinates to convert the coordinates in the Am_Four Ints to
whatever is required for your object.



Page 160 Interactors And Command Objects

* Am_CREATE_NEW_OBJECT_ACTION should be set by the programmer with a function
to create the new objects.

* am_VALUE which holds the object which was created as a result of this Command.
The default Am_New_Points_Command_Do method calls the method in the
Am_CREATE_NEW_OBJECT_ACTION slot which returns the created object, and this
object is stored in the am_vaLUE slot for later use by undo.

* Am_HAS_BEEN_UNDONE which is initially false, and is set to true when the creating
Command has been undone. That way, when the Command is destroyed (for
example, because it can no longer be redone), then it knows that it is OK to -
destroy the object which was created as a result of this Command.

The default Am_New_Points_Command_Undo method just sets the created object to be
invisible, and the am_New_Points_Command_Undo_The_Unde method makes it visible
again.

5.5.3.4 Command Objects for Am_Text_Interactors
The important slots of the Command object for a Text Interactor are:

* Am_OBJECT_MODIFIED - the object being edited, which will be an instance of
Am_Text.

* Am_INTERIM_VALUE - set by the Interactor with the current Am_Input_Event.
* Am_OLD_VALUE - the original string for the object, in case the user aborts or calls Undo.

* am_VALUE which is the new (final) string for the object.

5.6 Debugging

The Interactors and default Commands provide a number of mechanisms to help
programmers debug programs. The primary one is a tracing mechanism that supports
printing to standard output (cout) whenever an “interesting” Interactor or Command
event happens. Amulet supplies many options for controlling when printout occurs, as
described below. You can either set these parameters in your code and recompile, or
they can be dynamically changed as your application is running. If you have a C++
interpreter like ObjectCenter you can set them from there, or else the interactive
Inspector (see section 5.6) allows tracing of everything to be turned on and off.

typedef enum { Am _INTER_TRACE_NONE, Am INTER_TRACE_ALL,
Am_INTER_TRACE_EVENTS, Am INTER_TRACE_SETTING,
Am_ INTER_TRACE_PRIORITIES, Am INTER_TRACE_NEXT,
Am_TINTER_TRACE_SHORT } Am_Inter Trace_Options;

void Am_Set_Inter_Trace () ; /prints current status

void Am_Set_Inter Trace (Am_Inter_Trace_Options trace_code);
void Am_Set_ Inter Trace (Am_Object inter_to_trace);

void Am_Clear_ Inter_ Trace();



Interactors And Command Objects Page 161

By default, tracing is off. Each call to am_set_Inter Trace adds tracing of the
parameter to the set of things being traced (except for Am_INTER_TRACE_NONE which
clears the entire trace set). The options for Am_Set_Inter_ Trace are:

* no parameters: If Am_Set_Inter_Trace is called with no parameters, it prints out the
current tracing status.

* Am INTER_TRACE_NONE: If am Set_Inter_Trace is called with zero or
Am_INTER_TRACE_NONE, then it sets there to be nothing be traced. This is the
same as calling 2m_Clear_Inter_ Trace.

* Am_INTER_TRACE_ALL: Traces everything.

* Am INTER TRACE_EVENTS: Only prints out the incoming events, and not what
happens as a result of these events. When you trace anything else, Amulet
automatically also adds am_INTER_TRACE_EVENTS to the set of things to trace, so
you can tell the event which causes things to be updated.

* Am_INTER_TRACE_SETTING: This very useful option just shows which slots of
which objects are being set by Interactors and Commands. It is very useful for
determining why an object slot is being set.

* Am_INTER_TRACE_ PRIORITIES: This prints out changes to the priority levels.

* Am_INTER_TRACE_NEXT: This turns on tracing of the next Interactor to be executed.
This is very useful if you don’t know the name of the Interactor to be traced.

* Am_INTER_TRACE_SHORT: This prints out only the name of the Interactors which are
run.

» an Interactor: This prints lots of information about the execution of that one
Interactor.

5.7 Building Custom Interactor Objects

We believe that in almost all cases, programmers will be able to create their applications
by using the pre-defined types of Interactors that are listed above. However, there might
be rare cases when an entirely new type of Interactor is required. For example, in Garnet
which had a similar Interactor model, none of the applications created using Garnet
needed to create their own Interactor types. However, when the Garnet group wanted to
add support for Gesture recognition, this required writing a new Interactor. Since
Amulet is designed to support investigation into new interactive styles and techniques,
new kinds of Interactors may be needed to explore new types of interaction beyond the
conventional direct manipulation styles supported by the built-in Interactors. In
summary, we feel you should only need to create a new kind of Interactor when you are
supporting a radically different interaction style.

This section gives an overview of the standard operation of the Interactor mechanism.
You may need to look at the source code for one of the built-in Interactors to see how
they operate in detail.



Page 162 Interactors And Command Objects

The main event loop in Amulet takes each input event and looks at the sorted list of
Interactors with each window, and then asks each Interactor in turn if they want to handle
the input event. This is done by sending the Interactor one of the messages listed below,
based on the current state of the Interactor, held in the slot Am_CURRENT_STATE (see the
state machine figure in Section 5.3.2). The different Interactors are distinguished by
having different functions for these messages. All of the default Interactors are built by
the Am_Initialize_Interactors function implemented in inter_basics.cc. All of the
messages are of type Am_Action_Function (defined in inter_advanced.h). It is very
important that each action method call the top-level prototype’s method to maintain the
overall Interactor state machine. For example, the move-grow start action starts off as:

void Am_Move_Grow_Start_Action (Am_Object inter, Am Object object,
Am_Object event window, int x, int vy,
Am_Tnput_Char ic) {
// first, call the prototype’s method
Am_Call (Am_Action_ Function, Am_Interactor, Am START ACTION,
(inter, object, event_window, x, vy, ic));

-}

The specific action methods you need to write for a new type of Interactor are stored in
the slots: .

e Am_START_ACTION: This is called when the Interactor should change from state
Am_INTER_WAITING tO Am INTER RUNNING. Typically, the method would
initialize various fields and then call the am_sTART_acTION of the Command
object attached to the Interactor, and then call the am_INTERIM_DO_ACTION of the
Command object. Note that the start action should call the Command object’s
Am_INTERIM_DO_ACTION on the first input event.

* am_RUNNING_ACTION: This is called for each incremental mouse movement or
keyboard key while the Interactor is executing. Typically, it would set some slots
of its Command object and then call the am_INTERIM_DO_ACTION of the
Command object.

* Am_OUTSIDE _ACTION: This is called if the mouse moves outside of the
Am_RUNNING_WHERE_OBJECT while the Interactor is running. Typically it will call
the am_ABORT_AcCTION of the Command object.

* Am BACK_INSIDE ACTION: This is called if the mouse moves back inside the
Am_RUNNING_WHERE_OBJECT while the Interactor is running. Typically it will call
the am_sTART_acTION followed by the Am_INTERIM DO_aAcTION of the Command
object.

* am_ABORT_ACTION: This is called when the user executes the abort key to cause the
Interactor to abort while it is executing. Typically, this will call the
am_ABORT_ACTION of the Command object.

* am_STOP_ACTION: This is called when the Interactor stops (finishes). Typically it
will set some slots in the Command object and then call the am_po_acTION of the
Command object.



Interactors And Command Objects Page 163

* Am_oUTSIDE_sTOP_ACTION: This is called when the user executes the stop event
while the Interactor is outside. For all the built-in Interactors, the
Am_OUTSIDE_STOP_ACTION method is the same as the am_ABORT_acTION method.






6. Widgets

Abstract

Amulet provides a full set of widgets, including buttons, menus, scroll bars, and text
input fields. Eventually, these will display themselves in different looks, corresponding
to the various platforms. The built-in widgets have a large number of parameters to
allow programmers to customize them, and the programmer can also create new kinds of
widgets by writing new methods.






Widgets Page 167







Widgets Page 169

6.1 Introduction

Many user interfaces, spanning a wide variety of applications, have several elements in
common. Menus and scroll bars, for example, are used so frequently that an interface
designer would waste considerable time and effort recreating those objects each time they
were required in an application.

The intent of the Amulet Widget set is to supply several frequently used objects that can
be easily customized by the designer. By importing these pre-constructed objects into a
larger Amulet interface, the designer is able to specify in detail the desired appearance
and behavoir of the interface, while avoiding the programming that this specification
would otherwise entail.

This document is a guide to using Amulet’s Widgets. The objects were constructed using
the complete Amulet system, and their descriptions assume that the reader has some
knowledge of the components of this system: Opal, Interactors, and ORE.

6.1.1 Current Widgets
Amulet currently supports the following widgets:

® Am Border_Rectangle: a rectangle with a raised (or lowered) edge, but no
interaction.

e Am Button: a single button

e Am Button_ Panel: a panel consisting of multiple buttons with the labels
inside the buttons.

e Am_Checkbox_Panel: a panel of toggle checkboxes with the labels next to
the checkboxes.

® Am Radio_Button_Panel: a panel of mutually exclusively selectable radio
buttons with the labels next to the radio buttons.

¢ Am Menu: a menu panel
e 2Am_Menu_Bar: a menu bar used to select from several different menu panels

® 2Am Vertical Scroll_Bar: scroll bar for choosing a value from a range of
values.

¢ Am _Horizontal_Scroll_Bar: scroll bar for choosing a value from a range of
values.

e Am_Scrolling Group: an Amulet group with (optional) vertical and
horizontal scrollbars

e am Text_ Input_Widget: a field to accept text input, like for a filename.

These widgets are described in this chapter in detail, and summarized in chapter 8.



Page 170 Widgets

6.1.2 Customization

We have tried to make the widgets flexible enough to meet any need. Each widget has a
large number of slots which control various properties of its appearance and behavior,
which you can set to customize the look and feel. The designer may choose to leave
many of the default values unchanged, while modifying only those parameters that
integrate the object into the larger user interface.

The visual appearance and the functionality of a widget is affected by values set in its
slots. When instances of widgets are created, the instances inherit all of the slots and slot
values from the prototype object. The designer can then change the values of these slots
to customize the widget. Instances of the custom widget will inherit the customized
values. The slot values in a widget prototype can be considered “default” values for the
instances.

6.1.3 Using Widget Objects

Include files necessary to use Amulet widgets are widgets.h for the widget object
definitions, and standard_slots.h for the widget slot definitions. These files are
included in amulet.h, providing a simple way to make sure all needed files are included.
Programmers who are designing their own custom widget objects will also need
widgets_advanced.h.

Widgets are standard Amulet objects, and are created and modified in the same way as
any other Amulet object. The following sample code creates an instance of am_Button,
and changes the values of a few of its slots.

Am_Object my button = Am_Button.Create (*My Button”)
.Set (Am_LEFT, 10) / change the position of the button
.Set (Am_TOP, 10)
.Set (Am_COMMAND, “Push Me”};
// a string in the Am_COMMAND slot specifies the button’s label: see below

6.1.4 Application Interface

Like interactors, widgets interface to application code through command objects added as
parts of the widgets. Thus, instead of executing a call-back procedure as in other
toolkits, Amulet widgets call the am_Do_acT1ioN method of the command object stored as
the am_commManD part of the widget.

In addition to the am_Do_acTION method, each command also contains the other typical
slots of command objects (see the discussion of command objects in the Interactor’s
chapter). In particular, the am_vALUE slot of the command object is normally set with the
result of the widget. Of course, the type of this value is dependent on the type of the
widget. For scroll bars, the value will be a number, and for a radio-button-panel, it will
be a list of the selected items.



Widgets Page 171

For all of the widgets, the am_vaLUE slot of the command objet can also be set to adjust
the value displayed by the widget. Setting the am_vALUE slot of the command object of a
scrollbar will cause the indicator to move. It is also appropriate to put a constraint into
the am vALUE slot if you want the value shown by the widget to track a slot of another
object.

NOTE: Be sure to set the am_varLUE and Am_Do_aAcTION slots of the command object
part of the widget, and do not set these slots directly in the widget, since this will
have no effect. Thus:

my_widget.Get_Part (Am_COMMAND) .Get (Am VALUE); // Correct
my_widget.Get_Part (Am_COMMAND) . Set (Am VALUE, 10); // Correct
my_widget.Get_Part (Am_COMMAND) .Set (Am DO_ACTION, my_proc); // Correct

my—widget-Get{Am—VALUE);—// WRONE

In some situations, the programmer might want to have a constraint dependent on the
am_vaLUE slot. This constraint can perform side effects like updating an external data
base or even setting slots in Amulet objects or creating or destroying new objects. Other
times, the programmer will need to write an Am_Do_acTIoN method which will typically
access the value in the command’s am_vALUE slot. An example of each of these methods
can be found below. Of course, if you write your own Am_Do_acTION method and you
want the widget to be undo-able, you will also need to write a corresponding
Am_UNDO_ACTION method, etc. The default am_DoO_AcTION just registers the command as
undoable, if appropriate. If you write your own do action, you will usually want to call
the prototype’s do method as the final line of your code, or else the command will not be
registered for Undo. For example, if you create a new command object for some kind of
button, the final line of the am_D0_acTION might be:

Am_Call (Am_Object_Proc, Am Command, Am_DO_ACTION, (command_obij));

All of the widgets are designed so that you can completely replace the DO method of the
command and the widget will still operate correctly, but you still need to call the
prototype method to register the command for undoing. However, the UNDO methods
built into the commands for the various kinds of widgets take care of resetting the widget
to show the new value. For example, the undo method of the radio button panel makes
sure that the radio buttons show the previous selection. If you write a DO method that
does something with the radio button's value, you would then want to write an UNDO
method that undoes that action. If when the user executes UNDO, you want the radio
buttons to go back to their previous state, you should be sure to call the prototype's undo
method. There are different kinds of command objects for the different kinds of widgets,
so you need to be sure to call the correct one. All the buttons, menus and panels use
Am_Button_Command, the scroll bars use the Am_Scroll_command, and the text input
widget uses Am_Text_Input_Command. Thus, if you were setting the Am_UNDO_ACTION
and Am_UNDO_THE_UNDO_ACTION methods of a scroll bar, the last line of your procedure
should be something like:



Page 172 Widgets

Am_Call (Am_Object_Proc, Am Scroll_ Command, Am_UNDO_ACTION, (command_obj));
Similarly, for a button panel, you would use Am_Button_Command.

Note that the Am_Scrolling_Group does not support undoing the scrolling, but the
individual scroll bars do.

Internally, each widget is implemented using graphical objects and interactors. Each
internal interactor has its own associated command objects, but these are normally
irrelevant to the programmer, since the internal command objects will call the top-level
widget command object automatically. This is achieved by setting the am_parENT slot of
the internal command objects to be the widget’s command object, and then Amulet
automatically does the right thing.

6.2 The Standard Widget Objects

Each of the objects in the Widget Set is an interface mechanism through which the
designer obtains chosen values from the user. Buttons, panels, and menus allow the
selection of one or more items from a list of possible alternatives. The scrolling group
and scrollbars are used to obtain values in a specific range, between maximum and
minimum allowed values.

This section describes the widgets in detail. Each object contains customizable slots, but
the designer may choose to ignore many of them in any given application. Any slots not
explicitly set by the application are inherited from the widget’s prototype.

6.2.1 Slots Common to All Widgets

There are several slots the programmer can set which are used by all widgets in a similar
way:

e am_TOP, Am_LEFT: As with all graphical objects, these slots describe the location of
the widget, in coordinates relative to the object’s parent’s location. Default
values are O for both top and left.

e am_vIsIBLE: If this boolean is true, the object is visible; otherwise, it is not drawn
on the screen. Default is true.

e am_WIDGET_LOOK: The value of this slot tells Amulet how you want your widgets to
look when drawn on the screen. Possible values are am_MOTIF_LOOK,
Am _WINDOWS_LOOK, Or Am_ MACINTOSH_LOOK. Any look is available on any
platform, and am_MOTTIF_LOOK is the default. Currently only Am_MOTIF_LOOK is
implemented.

e Am FILL_STYLE: This slot determines the color of the widget. Amulet
automatically figures out appropriate foreground, background, shadow, and
highlight colors given a fill color. Acceptable values are any am_style, and the



Widgets Page 173

default is am_aAmulet_purple. The only part of the style used is the color of the
style. On a black and white screen, a default set of stipples are used to make sure
the widgets are visible.

e am_acTIVE_2: This slot turns off interaction with the widget without turning it
grey. This is mainly aimed at interactive tools like Interface Builders that want to
allow users to select and move widgets around. It might also be useful in a multi-
user situation where users who do not have the “floor” should not have their
widgets responding. For a widget to operate, both am_acTIVE_2 and Am_ACTIVE
must be true. The default value is true.

The command objects in all widgets have the following standard slots:
e am_vALUE: This slot is set to the current value of the widget.

e am_DpO_acTION: The method to be called when the widget executes. This procedure
takes one parameter: the command object. The default for all widgets is only to
register the widget with the undo handler.

e am UNDO_ACTION: This method is called when the widget’s actions are to be
undone. The default procedure here resets the Am_VALUE slot of the widget to
its previous value, and updates the widget’s appearance appropriately.

® Am_UNDO_THE_UNDO_ACTION: This method is called when the widget’s actions are
to be re-done. The default action simply resets the am_varLUE slot and updates the
widget’s appearance appropriately. The built-in widgets all use the same
procedure for Am_UNDO_ACTION and Am_UNDO_THE_UNDO_ACTION.

e am_ACTIVE: This slot in the command is used to determine whether the widget is
enabled or not (greyed out). Often, this slot will contain a formula dependent on
some system state. The default value is true. (Actually, the widget itself also
contains an am_ACTIVE slot, but this one should not normally be used. The
widget-level slot contains a constraint that depends on the am_acTIVE slot of the
command object part of the widget.)

e am PARENT: This slot should be set with the command object which the widget’s
command should invoke. For example, if the widget is the “OK” button of a
dialog box, the am_PARENT of the OK widget’s command might be the command
object for the entire dialog box. Then Amulet will correctly know how to handle
Undo, and it will call the parent command automatically.



Page 174 Widgets

6.2.2 Border_Rectangle

Am_Border_ Rectangle: (a Motif-like rectangle with border)

Slot Default Value Type

Am_ SELECTED false bool

Am WIDGET_ LOOK Am_ MOTIF LOOK ‘Am_Widget_Look
Am WIDTH 50 int

Am HEIGHT 50 int

Am_TOP 0 int

Am_LEFT 0 int

Am VISIBLE true bool
Am_FILL_STYLE Am_Amulet_Purple Am_Style

The am_Border_Rectangle has a raised or lowered edge of a lighter or darker shade of
the Am_FILL_STYLE. It ignores the Am_LINE_STYLE. It looks pressed in if
Am_SELECTED is true, and sticking out of the screen if Am_SELECTED is false. This
widget has no interaction or response to the mouse.

6.2.3 Buttons and Menus

All of the buttons and menus operate fairly similarly. The label that is displayed in the
widget is determined by the am_r.ABEL slot of the am_commanD part of the widget. Thus,
for a single button, the am_coMmaND part’s label will contain the string to display.

The various panel objects (that display a set of buttons) and the menus (that display a set
of buttons) all take an Am_1TEMS slot which must contain an Am_VALUE_LIST. The items
in this value list can be:

e a C string (char*), in which case this string is displayed as the label,

e a graphical object, in which case this object (or an instance of this object if the
object is already a part of another object) is displayed as the label. This object
can of course be a group, so arbitrary pictures can be displayed as the value of a
widget.

e a command object, in which case the value of the am_raBEL field of the command
object is used as the item’s label. The am_1.aABEL field itself can contain either a C
string or a graphical object.

There are two basic ways to use the panel-type objects, including menus:

1) Each individual item has its own command object, and the am_Do_acTI0N of this
command does the important work of the item. This would typically be how
menus of operations like Cut, Copy, and Paste would be implemented.

2) The top-level panel itself has a command object and the individual items do not
have a command object. For example, the am_1TEMS slot of the widget contains
an Am_VALUE_LIST.of strings. In this case, the top-level command object will be
called, and it typically will look in its am_vALUE slot to determine which item was



Widgets Page 175

selected. This method is most appropriate when the panel or menu is a list of
values, like colors or fonts, and you do not want to create a command for each
item.

Note that the top-level command object is not called if the individual item has a
command object, unless you explicitly set the am_PARENT of the item’s command to be

the widget’s command. It would be unusual, but is perfectly legal, to have a
Am_Value_List that contains some commands and some strings.

6.2.3.1 Am_Button Command

Am Button_Command:

Slot Default Value Type

Am_DO_ACTION Am_Command_Do Am_Object_Proc*

Am_UNDO_ACTION Am_Button_Command_Undo Am_Object_Proc*

Am_UNDO_THE_UNDO_ACTION Am_Button_Command_Undo Am_Object_Proc*

Am_LABEL *Label” Am_String or any
graphical object

Am ID 0 any

Am_ACTIVE true bool

Am_ VALUE 0 any

Special slots of the command object associated with buttons are as follows. If you are
replacing the command of a button, you will typically want to make an instance of a
Am_Button_Command, rather than, say, of a top level am_Command.

e am 1.ABEL: This slot can contain a string or a graphical object, which will be drawn
as the label for this item.

e am_1D: Normally, buttons set the am_vALUE slot to the am_LABEL of the command.
However, this typically requires doing string matching. Therefore, if the Am 1D
field is non-zero, then the am_varLuE slot is set with the value of the am_1D slot
instead of the am_1.ABEL slot.

e am_VALUE: This slot contains the label(s) or ID(s) of currently the selected
button(s). In a single button, this contains 0 if the button is not selected, or the
button’s label or ID if it is selected. If multiple items can be selected, as in a
check box panel or for a button panel if you set am_How_SET to be
Am_CHOICE_LIST_TOGGLE, then this slot will always contain an am value_List
with the labels or IDs of the selected items. If no items are selected, then the list
will be empty. Note: the value of the zm_vaLUE slot will not be 0; it will be a list
that is empty. For panels where only a single item can be selected, such as a
radio button panel or button panels with am_HOW_SET set to be Am_CHOICE_SET,
the am_vALUE slot is set to the single button’s label or ID, or O if nothing is
selected. If you set the am_vALUE slot, the widget will update its appearance on
the screen. appropriately.

e am_AcTIVE: This controls whether the widget is active or not (greyed out). If the



Page 176 Widgets

Am_ACTIVE slot of the top-level command in a panel or menu is set to false, then
all the items are greyed out. More typically, the am_ACTIVE slot of the command
associated with a single item will be false, signaling that just that one item
should be greyed out.

6.2.3.2 Am_Menu_Line_Command

Am_Menu_Line_Command is a special purpose type of command object provided by
Amulet to draw horizontal dividing lines in menus. To add a horizontal line in a menu,
simply include an instance of Am_Menu_Line_Command in the menu’s Am_ITEMS list. An
example of this can be found in section 6.2.3.7. Am Menu_Line Command has no
customizable slots, and it is an inactive menu item.

Am_Menu_Line_Command:

Slot Default Value Type
Am_DO_ACTION NULL Am_Object_Proc*
Am UNDO_ACTION NULL Am Object_Proc*
Am_UNDO_THE_UNDO_ACTION NULL Am_Object_Proc*
Am_LABEL "Menu_Line_Command” Am_String
Am_ACTIVE false bool

Am_VALUE NULL any




Widgets

Page 177

6.2.3.3 Am_Button

The am_Button object is a single stand-alone button. A button can have a text label, or

can contain an arbitrary graphical object when drawn.

Am_ Button:

Slot Default Value Type
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int
Am_HEIGHT <formula> int
Am Y OFFSET 0 int
Am _H SPACING 0 int
Am_V__SPACING 0 int

Am H_ALIGN

Am_V_ALIGN

Am_FIXED_WIDTH
Am_FIXED_HEIGHT
Am_INDENT
Am_MAX_RANK
Am_MAX_SIZE
Am_ITEM_OFFSET
Am_ACTIVE
Am_ACTIVE_2
Am_WIDGET_LOOK

Am_KEY_ SELECTED
Am_FONT
Am FINAL_

FEEDBACK_WANTED

Am_FILL_STYLE
Am_COMMAND

Am_CENTER_ALIGN

Am_ CENTER_ALIGN

Am_NOT FIXED_SIZE
Am NOT_FIXED SIZE
0

false

false

5

<formula>

true
Am_MOTIF_LOOK

false
Am_Default_Font
false

Am_Amulet_Purple
Am_Button_Command

{Am_LEFT_ALIGN,
Am RIGHT ALIGN,
Am_CENTER_ALIGN}

{Am_TOP_ALIGN,
Am BOTTOM_ALIGN,
Am CENTER_ALIGN}

int

int

int

bool

bool

int

bool

bool

Am_ Widget_Iook

bool
Am_Font
bool

Am_Style
Am_Command

Special slots of am_BUTTONS are:

® Am_WIDTH, Am_HEIGHT: By default, the width and height of the button are
automatically calculated by formulas in these slots. A button is made big enough
to contain its text label or graphical object, including borders, and offset pixels
(see below). A user can replace the width and height formulas by setting these
slots directly. Once the values are set with new values or formulas, the formulas

will be removed.

e am_TTEM OFFSET: The string or object displayed inside the button is set away from
the border of the button by am_ITEM_OFFSET pixels, in both the horizontal and
vertical directions. The default is 5.

e am_FONT: The button’s text label (if any) is drawn in this font. Acceptable values
are any Am_Font, and the default is Am_Default_Font.

® Am_FINAL_FEEDBACK_WANTED: This determines if the button should be drawn as if



Page 178 Widgets

it is still selected, even after user interaction has stopped. This is useful if you
want to use the button to show whether it is selected or not. The default is false.

e Am_coMMAND: This contains an instance of am_Button_Command, as described in
section 6.2.3.1.

6.2.3.4 Am_Button_Panel

An am_Button_Panel 1s a panel of Am_Buttons, with a single interactor in charge of all
the buttons. Since an Am_Button_Panel’s prototype object is a Am_Map, all the slots that
Am_Map uses are also used by am_Button_pranel. See the Opal chapter for a description
of Am Map. Some Am_Map slots are described below along with slots specific to
Am_Button_Panel.

Am Button_Panel:

Slot Default Value Type
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int
Am_HEIGHT <formula> int
Am_HOW_SET Am_CHOICE_SET Am How_Set
Am ITEM OFFSET 5 int
Am_ACTIVE <formula> bool
Am_ACTIVE_2 true bool

Am WIDGET_LOOK

Am_ KEY_SELECTED false bool

Am_FONT Am Default_Font Am_Font

Am_FILL_STYLE Am_Amulet_Purple Am_Style

Am FINAL_ false bool
FEEDBACK_WANTED

Am _WIDTH Am_Width_Of_ Parts int

Am_HEIGHT Am_Width_Of_ Parts int

Am_LAYOUT Am_Vertical_ Layout {Am_Vertical_ Layout,

Am_H_ALIGN

Am_ITEMS

Am_MOTIF_LOOK

Am_ LEFT_ALIGN

<gpecial>

Am_Widget_Look

Am Horizontal_Layout

NULL}

{Am_LEFT_ALIGN,
Am_RIGHT_ ALIGN,
Am_CENTER_ALIGN}

int, Am_Value_ List
of commands or
strings, etc.

6.2.3.4.1 Slot Descriptions

e am_FONT: The font used for the button labels.

e Am_FINAIL_FEEDBACK_WANTED: Whether to show which item is selected or not.

default is false.

The



Widgets Page 179

e am_WIDTH, Am HEIGHT: The width and height slots contain the standard Amulet
formulas Am _width_Of_parts and Am_Height_ Of_Parts, respectively. If these
slots are set to specific values by the designer, those values replace the formulas,
and the panel will no longer resize itself if its contents change.

e am_FIXED_WIDTH: This slot determines how the buttons in a panel get their width.
An integer value of 0, or a boolean value of false, means each button is as wide
as its calculated width based on the contents. Thus, each button will be a
different size. An integer value of 1, or a boolean value of true, means that all
the buttons in the panel are set to be as wide as the calculated width of the widest
button in the panel. An integer value greater than 1 sets the width of all buttons
in the panel to that specific value. The defaultis true.

e am_FIXED_HEIGHT: This slot determines the height of buttons in a panel. It acts
the same way as am_FIXED_WIDTH. The default is false.

e am _HOW_SET: This slot determines whether single or multiple buttons can be
selected. Its default value is am_CHOICE_sSET, which allows a single selection.
Changing this to am_CHOICE_ToGGLE will allow the selected item to be turned off
by clicking it again. Am_CHOICE_LIST TOGGLE allows there to be multiple
selections. See the Interactors manual for a complete description of the legal
values.

e am_rayvouT: This specifies a function determining how the button panel should be
arranged. A more complete description of the slot can be found in section 4.7.2.
Am_Vertical_Layout is the default, and Am_Horizontal_ Tayout is another
good value.

e am_H ALIGN: In a vertically arranged button panel with variable width buttons, this
determines how the buttons should be arranged in the panel. The default is
Am LEFT_ALIGN, and other possible values are Am_CENTER_ALIGN and
Am_RIGHT_ALIGN.

e am_v_ALIGN: This slot works like am_H_ALIGN, except is only used in horizontally
arranged panels width variable height buttons. Possible values are
Am_TOP_ALIGN, Am_CENTER_ALIGN, and Am_BOTTOM_ALIGN.

e am_TTEMS: This slot specifies the items which are to be put in the button panel. An
am_value_List should be used to specify specific items to add to the panel. See
section 6.2.3.1 for a complete description. In summary, elements of the value list
can be either strings, graphical objects, or command objects. A string value is
used as the label for the button in the panel. A graphical object is displayed in the
button. A command object is used to specify a custom command for that
particular button in the panel. For commands, the button’s string label or
graphical object is taken from the command object’s Am_LABEL slot.

e am_coMMAND: This slot contains an am_Button_Command. See section 6.2.3.1 for a
complete description.



Page 180 Widgets

6.2.3.4.2 Example of Using a Button Panel

Each button in the panel is drawn with a text label or a graphical object inside it. An
Am_Value_List in the am_ITEMS slot tells the button panel what to put inside each
button. If a string is specified, it is used as the button’s label. If a graphical object is
specified, it is drawn in the button. If a command object is specified, that command
object’s am_Do_acTION method is called each time the button is pressed, and the button’s
label or graphical object is obtained from the command object’s am_LABEL slot. The
following code specifies a button panel with three buttons in it.

// a graphical object and custom do action, defined elsewhere:
extern Am Object My_Graphical_Object;
extern void My_Custom_Do_Action (Am_Object command_obj);
Am_Object my_command;
// my button panel:
Am_Object My Button_Panel = Am_ Button_ Panel.Create (“My Button Panel”)
.Set (Am_TITEMS,
Am_Value_List ()
.Add (“Push me.”)
.Add (My_Graphical_Object)
.Add (my_command = Am_ Button_Command.Create ()
.Set (Am_LABEL, “Push me too.”)
.Set (Am_DO_ACTION, &My Custom_Do_Action))) ;

The first button in the panel is drawn with the text label “Push me.” and does not have its
own command object. The second button in the panel is drawn containing
My Graphical_oObject drawn inside it, and also does not have its own command. The
third button in the panel is drawn with the text label “Push me too.” and has its own
command object associated with it.

When the third button is pressed, My_Custom_Do_Action is called, with the button’s
command object (my_command) as an argument. The command object’s am_vALUE slot
will already have been set with either 0, if the button was not selected, or “Push me too.”
if the button was selected. We assume that this command is not undoable since there is
no custom Undo action to go with My_Custom_Do_Action.

If any of the other buttons in the panel are pressed, the do action of My_Button_pPanel’s
command object (in its am_coMvanD slot) will be called, with the command object as an
argument. The am VALUE of the command object is set with the labels or objects
corresponding to the currently selected buttons.

If you wanted the button panel’s command to be invoked when the third button was
pressed, you would have to set the third button’s command object’s am_PARENT slot to
point to the button panel’s command object. For example, after executing the following
code, My_Other_Custom_Do_Action in the panel will be called when any of the buttons

are selected.

Am_Object panel_command = My_Button_Panel.Get (Am_COMMAND) ;
panel_command.Set (Am_DO_ACTION, &My_Other_Custom_Do_Action);
My_ Command.Set (Am_PARENT, panel_command) ;



Widgets Page 181

You also need to make My_Custom_Do_Action call the do action of Am_Command to make
sure its parent command is called. Custom do actions should always call Am_Command’s
DO action, unless you know that you don’t want to be able to undo the command, and
you don’t want to call the command’s parent. The following code would be the last line

of My_Custom_Do_Action:
Am_Call (Am _Object_Proc, Am_Command, Am_DO_ACTION, (command_obj));

where command_obj is the command object that your custom do action was passed as an
argument.

6.2.3.5 Am_Radio_Button_Panel

Am_Radio_Button_ Panel: Am_Button_Panel

Slot Default Value Type

all the slots of the button panel

Am_HOW_SET Am_CHOICE_SET Am_How_Set
Am_BOX WIDTH 15 int

Am_ BOX_HEIGHT 15 int

Am FIXED WIDTH false int, bool
Am_FINAL_FEEDBACK WANTED true bool

Am H ALIGN <formula> {Am_LEFT_ALIGN,

Am RIGHT_ALIGN,
Am_CENTER_ALIGN}

A radio button panel is a set of small buttons with items appearing either to the right or
left of each button. Exactly one button from the set should be selected at any particular
time, and the button stays selected after the user stops interacting with it. The radio
button panel is often used to present a user with several different options, only one of
which can be in effect at any particular time.

An am_Radio_Button_Panel is essentially the same as an Am_Button_Panel, with a few
exceptions. There are a few new slots, and some of the defaults of the other slots are
different. All other slots not listed below act the same way as in an Am_Button_Panel.
Since radio buttons always only allow a single selection, the am_vaLUE slot of the top-
level am_coMMaND is always set with either O or the ID or label of the selected item.

® Am_BOX_HEIGHT, Am BOX_WIDTH: These specify the size in pixels of the small
radio button box that is drawn next to the item in the button. The defaults are 15
for each.

e am_BOX_ON_LEFT: This boolean determines whether the radio box should be drawn
to the left of the item, or to the right. If true, the box is drawn on the left, and if
false, itis drawn on the right. The default is true.

e Am_H_ATLIGN: This slot contains a formula which evaluates to am_LEFT_ aAT1.TIGN if the
Am_BOX_ON_LEFTIS true, Or 2m_RIGHT ALIGNif itis false.

e am_rFIXED_WIDTH: The default is false for this slot in a radio button panel.

e Am FINAL_FEEDBACK _WANTED: The default is true for this slot in a radio button



Page 182 Widgets

panel. This makes sure the user selected button stays selected after interaction is
complete.

e am HOW_SET: Since radio buttons are only allowed to have a single selection, this
slot defaults to am_cHoICE_SET. However, if you want to allow the user to turn
off the current selection by clicking on it again, you can set this slot to be
Am_CHOICE_TOGGLE. It would be wrong to use Am_CHOICE_LIST TOGGLE.

6.2.3.6 Am_Checkbox_Panel
Am Checkbox Panel: Am Button_Panel

Slot Default Value Type

all the slots of the button panel

Am_HOW_SET Am_ CHOICE_SET Am_How_Set

Am BOX_ WIDTH 15 int

Am BOX HEIGHT 15 int
Am_FIXED_WIDTH false int, bool

Am FINAL_FEEDBACK_ WANTED true bool

Am_H_ ALIGN <formula> {Am_LEFT_ALIGN,

Am RIGHT_ALIGN,
Am_CENTER_ALIGN}

A checkbox panel is a set of small buttons with items appearing either to the right or left
of each button. Zero or more buttons from the set can be selected at any particular time,
and the buttons stay selected after the user stops interacting with the panel. The
checkbox panel is often used to present a user with several different options that can be
in effect at the same time.

An Am_Checkbox_Panel is essentially the same as an Am_Radio_Button_Panel. It is
drawn slightly differently, and the following slot is different:

e am_HOw_sSET: The default for a checkbox panel is am_CHOICE LIST TOGGLE, which
allows multiple items to be selected at the same time.

Since multiple items can be selected in an am_Checkbox_Panel, the am_vALUE slot of the
top-level Am_COMMAND contains an Am_VALUE_LIST of the labels or IDs of the selected
items.

6.2.3.7 Am_Menu

An am_Menu is a single menu panel, implemented as another form of am_Button_pranel.
A menu panel has a background rectangle behind it, and the items are drawn differently
than in Am_Buttons.



Widgets

Page 183

Am Menu: Am Button_Panel

Slot Default Value Type

all the slots of the button panel

Am_HOW_SET Am_CHOICE_SET Am How_Set
Am FINAL_FEEDBACK_WANTED false bool
Am_WIDTH <formula> int
Am_HEIGHT <formula> int

Am_X OFFSET 2 int

Am Y OFFSET 2 int

Am _V_SPACING -2 int

6.2.3.7.1 Am_Menu Slots

The following slots of an am_Menu differ from those in an am_Button_Panel:

e Am_WIDTH, Am_HEIGHT: The default formulas in these slots calculate the width and
height of the menu’s items, and add enough width and height to contain the

menu’s outer border.

e am_How_sSET: The default for a menu is Am_CHOICE SET.

e Am_X_OFFSET, Am_Y_OFFSET: These slots cause the menu items to be offset from
the upper left corner of the menu. The defaults are 2 for X and Y, to make room

for the outer border around the menu.

e Am_V_SPACING: This creates extra space between the items in a menu. The default
value is -2, which pushes the menu items vertically closer together in the menu.

e am_TEXT_OFFSET: This offset is used only in the horizontal direction when a text
label is being displayed in the menu item (as opposed to a graphical object). This
allows greater horizontal spacing for text, while keeping the standard vertical

spacing. The default value is 2 pixels.

6.2.3.7.2 Simple Example
Here is an example of creating an Am_Menu object.

Am_Object my menu = Am_Menu.Create("my_menu”)

.Set (Am_LEFT, 150}

.Set (Am_TOP, 200)

.Set (Am_ITEMS, Am_Value_List ()
.Add ("Menu item")

.Add (Am_Menu_Line_Command.Create("my menu line"))

.Add (Am_Button_Command.Create("item2")

.Set (Am_ACTIVE, false)

.Set (Am_LABEL, "Not active"))
.Add (Am_Button_Command.Create("item2")
.Set (Am_LABEL, ("Active item")));

my_window.Add_Part (my_menu) ;

The menu has three menu items with a line between the first and second items. The first
item appears as “Menu item” in the menu, and has no corresponding command object.



Page 184 Widgets

If that item is selected by the user, the do action of my_menu’s command object will be
called with “Menu item” in its am_varLUE slot. Since there is no command object
associated with the first menu item, there is no way to make it inactive without making
the whole menu inactive.

The second menu item appears in the menu as “Not active”. It will be grayed out,
because the am_aAcTIVE slot of its corresponding button command object is set to false.
This item cannot be chosen from the menu because it is inactive.

The third menu item appears in the menu as “Active item”. It does have a command
object associated with it, so if it is selected by the user, that command’s do action will be
executed, and the widget’s top level command will not be executed. The widget’s top
level command object is not called unless you set the individual button command
object’s Am_PARENT slot to point to it. Since no do action is explicitly set, it defaults to
Am_command’ s do action, which just registers the command for undo, if appropriate.

6.2.3.8 Am_Menu_Bar

Am Menu Bar: Am Menu

Slot Default Value Type

Am_ LEFT 0 int

Am_TOP 0 int

Am WIDTH <formula> int
Am_HEIGHT <formula> int
Am_ACTIVE <formula> bool

Am ACTIVE_2 true bool
Am_WIDGET_LOOK Am_ MOTIF_ ILOOK Am_Widget_Look
Am_FONT Am_Default_Font Am_Font

Am FILL_STYLE Am_Amulet_Purple Am_Style

Am ITEMS NULL Am Value_List
Am_ COMMAND Am_Button_Command Am_Command

The Am_Menu_Bar is a menubar like you might find at the top of a window that has a
horizontal row of items you can select, and each one pops down a menu of further
options. Sometimes it is called a pull-down menu. Amulet’s menu bar currently supports
a single level of sub-menus (no pull-outs from the pull-downs), and it does not yet
support accelerators (keyboard shortcuts to the commands). However, any menu item
(either at the top level or a sublevel) can be an abitrary Amulet object, just like with other
button-type objects.

The interface to menu bars is similar to other button widgets: the am 1TEMS slot of the
menu_bar object should contain an am_value_List. However, unlike other objects, the
list must contain command objects. The label field of this command object serves as the
top-level menubar item. In the command object should be an am_1TEMS slot containing
an Am value_List of the sub-menu items. This list can contain command objects,
strings or Amulet objects, as with other menus and button panels. For example:



Widgets Page 185

my menu_bar = Am_Menu_Bar.Create()
.Set (Am_ITEMS, Am Value_List ()
.Add (Am_Button_Command.Create("File_Command")
.Set (Am_LABEL, "File")
.Set (Am_DO_ACTION, &my_file_do)
.Set (Am_ITEMS, Am_Value List ()
.Add ("Open...")
.Add ("Save As...")
.Add (Am_Button_Command.Create("Quit_Command")
.Set (Am_DO_ACTION, &my_quit)
.Set (Am_LABEL, "Quit"))
)
)
.Add (Am_Button_Command.Create{"Edit_Command")
.Set (Am_LABEL, "Edit")
.Set (Am_DO_ACTION, &my_edit_do)
.Set (Am_ITEMS, Am_Value_List ()
.Add (undo_command.Create())
.Add ("Cut")
.Add, ("Copy")
.Add ("Paste")
.Add (Am_Menu_Line_Command.Create("my menu line"))
.Add ("Find...")

)

If a sub-menu item has a command (like Quit or Undo above), then its Am_Do_ACTION is
called when the item is chosen by the user. If it does not have a command object (like
Cut and Paste above), then the command object of the main item is called (here, the do
action called my_edit_do in the command object named Edit Command will be called
for Cut and Paste, and the am_vALUE slot of the Edit Command will be set to the string of
the particular item selected). Note that because the first level value list must contain
command objects, the command object stored in the menu_bar object itself will never be
used unless the programmer explicitly sets the am PARENT slot of a command to the
menu_bar’s command object. The am_varLuE of whatever command object is executed
will be set to the label or ID of the selected item.

Am_Menu_Bars allow the top level item to be chosen (unlike, say the Macintosh), in
which case its command object is called with its own label or ID as the am_varLur. The
programmer should ignore this selection if, as usually is the case, pressing and releasing
on a top-level item should do nothing.

Individual items can be made unselectable by simply setting the am_acTIVE field of the
command object for that item to false. If the am_acT1VE field of a top-level command
object is false, then the entire sub-menu is greyed out, although it will still pop up so the
user can see what’s in it.

Unlike regular menus and panels, the Am_Menu_Bar will not show the selected value
after user lets up with the mouse. That is, you cannot have Am_FINAL_FEEDBACK_WANTED
as true.



Page 186 Widgets

Slots that behave different for the Am_Menu_Bar are:

e Am_WIDTH, Am_HEIGHT: By default, these slots contain formulas that make the
menubar be the width of its owner (usually the width of the window) and the
height of the current font. However, you can override these defaults with
constant values or other formulas.

6.2.4 Scroll Bars

Am_Vertical_Scroll_Bar and am Horizontal Scroll_Bar are widget objects that
allow the selection of a single value from a specified range of values, either as a int or a
float (see section 6.2.4.1). You specify a minimum and maximum legal value, and the
scroll bar allows the user to pick any number in between. The user can click on the
indicator and drag it to set the value. As the indicator is dragged, the value is updated
continuously. If the user clicks on the arrows, in the scroll bar, the scroll bar increments
or decrements the current value by am_sMart._TNCREMENT. If the user clicks above or
below the scroll bar, the value jumps by am_LARGE_INCREMENT. Unfortunately, auto-
repeat (repeatedly incrementing while the mouse button is held down) is not
implemented yet. You can also adjust the indicator’s size to show what percent of the
entire contents is visible.

Like all other widgets, the am_vertical_scroll_Bar and Am_Horizontal_ Scroll_Bar
store the value in the am_varLue slot of the object in the am_coMMAND slot. Remember:
not in the am_vaLUE slot of the scroll bar itself. As the value is changed by the user,
the Am_DO_ACTION is also continuously called. The am_vaLUE slot can also be set by a
program to adjust the position of the scroll bar indicator.

The am_Scrolling Group provides a convenient interface for a scrollable area. It
operates similarly to a regular am_Group (see the Opal manual), except that it optionally
displays two scroll bars which the user can use to see different parts.

6.2.4.1 Integers versus Floats

There are four slots that control the operation of the scroll bars: am VALUE_1,
Am_VALUE_2, Am_SMALIL_INCREMENT, and Am_LARGE_INCREMENT. If all of these slots
hold values of type integer, then the result stored into the am_vALUE slot will also be an
integer. If any of these values is a float, however, then the result will be a float. The
default values are 0, 100, 1 and 10, so the default result is an integer. Note that the
inspector and cout display floats without decimals as integers, but the scroll bar still
treats them as floats.



Widgets

Page 187

6.2.4.2 Am_Scroll_Bar_Command
Am_Scroll_ Command:

Slot Default Value

Type

Am_DO_ACTION
Am_UNDO_ACTION
Am_UNDO_THE_UNDO_ACTION

Am_Command_Do

Am_LABEL “Scrollbar”
Am_ACTIVE true
Am_ VALUE 50

Am_Scroll_Command Undo
Am_Scroll_Command Undo

Am_Object_Proc*
Am_Object_Proc*
Am_Object_Proc*
Am_String

bool

int

The Am_scroll_Bar_ Command works similarly to other widget commands. The main

difference is in the am_vVALUE slot.

e am_ACTIVE: This determines whether the scroll bar is active or not. Inactive scroll
. bars do not respond to user input. However, in the default Motif look and feel,

they are not drawn any differently.

e am_VALUE: This holds the currently selected value on the scroll bar. As discussed

above, it will either be an integer or float value.

The scroll bar command supplies an undo method which resets the am_varug slot and the
displayed value to the previous value. However, most applications do not allow scrolling
operations to be undone, in which case, you should make sure that the scrolling
command is not queued on the undo list (see the section on Undo in the Interactors

manual).

6.2.4.3 Horizontal and vertical scroll bars

Am Vertical Scroll_Bar:

Slot Default Value Type

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH 20 int

Am_HEIGHT 200 int

Am WIDGET_LOOK Am_MOTIF LOOK Am _Widget_Look

2Am FILL_STYLE Am_Amulet_Purple Am_Style .

Am_VALUE_1 0 int or float //Value at top
Am_VALUE_2 100 int or float // Value at bottom
Am_SMALL_TINCREMENT 1 int or float / When click arrow
Am_LARGE_INCREMENT 10 int or float // When click “page”
Am_PERCENT_VISIBLE 0.2 float // Size of indicator

Am_COMMAND

Am_Scroll_Command

Am_Command




Page 188 Widgets

Am Horizontal_ Scroll_Bar:

Slot Default Value Type

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH 200 int
Am_HEIGHT 20 int
Am_WIDGET_ IL.OOK Am_MOTIF LOOK Am_Widget_Look
Am_FILL_STYLE Am_Amulet_Purple Am_Style

Am VALUE_1 0 int or float
Am_ VALUE_2 100 int or float
Am_SMALL_INCREMENT 1 int or float
Am LARGE__INCREMENT 10 int or float
Am_PERCENT VISIBLE 0.2 float
Am_COMMAND Am_Scroll_Command 2Am_Command

Here are the customizable slots of a scroll bar:

e am_wIDTH: This determines the width of the scroll bar. This includes the height of
the arrows at the ends of horizontal scroll bars. The default is 20 for vertical bars,
and 200 for horizontal bars.

e am_HETIGHT: This determines the height of the scroll bar. This includes the height of
the arrows at the ends of vertical scroll bars. The default is 200 for vertical bars,
and 20 for horizontal bars.

e am_vALUE_1: This is the value selected in the scroll bar when the indicator is at the
top (for vertical scroll bars) or left (for horizontal) end of the scroll bar. The
default type is an int, but it can also be a float. The default is 0. Note that
Am_VALUE_1 i$ not required to be less than am_VALUE_2, in case you want the
bigger value to be at the top or left.

e am_VvALUE_2: This is the value selected in the scroll bar when the indicator is at the
bottom (for vertical scroll bars) or right (for horizontal) end of the scroll bar. The
defauls type is an int, but it can also hold a float. The default is 100. Note that
Am_VALUE_2 is not required to be bigger than am_vVALUE_1.

e Am_SMALL_INCREMENT: This is the amount the value is changed when the user clicks
on the arrows at the end of the scroll bar. The default value is 1 of type int. The
slot can contain either an int or a float.

¢ Am_LARGE_INCREMENT: This is the amount the value is changed when the user clicks
on the scroll area on either side of scroll handle. The default value is 10 of type
int. The slot can contain either an int or a float.

e Am_PERCENT VISIBLE: This slot specifies how large the indicator will be with
respect to the region it is dragged back and forth in. The slot should hold a float
between 0.0 and 1.0, and the default is 0.2. If this value determines a thumb
smaller than 6 pixels long, a 6 pixel thumb is drawn instead.

e am_COMMAND: Each scroll bar contains an instance of am_Scroll _command. See the
section 6.2.4.2 for descriptions of its slots.



Widgets Page 189

6.2.4.4 'Am_Scrolling_Group

Am_Scrolling Group: (used like a group with scroll bars)

Slot Default Value Type

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH 0 int

Am HEIGHT 0 int

Am X OFFSET 0 int

Am_Y OFFSET 0 int

Am_ WIDGET_LOOK Am_MOTIF_ LOOCK Am_Widget_Look
Am_FILL_STYLE Am_Amulet_Purple Am Style
Am_INNER_FILL_STYLE 0 Am Style or 0
Am_H_SCROLIL_BAR true bool
Am_V_SCROLL_BAR true bool

Am_H SCROLL_BAR_ON_TOP false bool
Am_V_SCROLL_BAR ON_LEFT false bool
Am_H_SMALL_ INCREMENT 10 int
Am_H_LARGE_INCREMENT <formula> int
Am_V_SMALI, INCREMENT 10 int
Am_V_TLARGE_ INCREMENT <formula> int

Am INNER_ WIDTH 400 int
Am_INNER_HEIGHT 400 int

An Amulet scrolling group is useful when you want to display something bigger than
will fit into a window and allow the user to scroll around to see the contents. You can
use the am_Scrolling_Group just like a regular group, but the user will be able to scroll
around using the optional vertical and horizontal scrollbars.

A scrolling group has two distinct rectangular regions. One is the region that is drawn on
the screen, and contains scroll bars, and a rectangle with a visible portion of the group.
This region is defined by the Am_LEFT, Am_TOP, Am WIDTH and Am_HEIGHT of the
Am_scrolling Group itself. The other region is called the inner region which is the size
of all the objects, some of which might not be visible. This area is controlled by the
Am_INNER_WIDTH and Am_INNER_HEIGHT slots.

By default, the am_acTIVE slots of the scroll bars are calculated based on whether the
scroll bars are needed (whether any of the group is hidden in that direction). The
percent-visible is also calculated based on the amount of the group that is visible. The
Am_H_LARGE_INCREMENT and Am_V_LARGE_INCREMENT are also calculated based on the
screen size.

6.2.4.4.1 Members of a Am_ScroIiing_Group

You can add and remove members to a scrolling group using the regular Add_Part and
Remove_Part methods (be sure to adjust the inner size of the group if the new members
change it--you can arrange for this to happen automatically by putting an appropriate
constraint into the am INNER_WIDTH and Am INNER_HEIGHT slots, such as
Am_Width_Of_Parts and Am_Height_Of_pParts.). However, when enumerating the
parts of a Am_Scrolling_Group, do not use a Am_Part_Iterator, since this will also



Page 190 Widgets

list the scroll bars. Instead, use the Am_value_List stored in the Am_GRAPHICAI, PARTS
slot of the group, which will only contain the objects you added. The
Am_GRAPHICAL_PARTS slot can also be used for normal groups (instances of am_Group
and Am_Map), so you can write code that will operate on either scrolling groups or regular
groups.

6.2.4.4.2 Am_Scrolling_Group Slots

® Am WIDTH, Am_HEIGHT: These default to 150 in a scrolling group. The width and
height determine the size of the group’s graphical appearance on the screen,
including space for scroll bars.

® Am_X_OFFSET,

e am_Y_OFFSET: These are the coordinates of the visual region, in relation to the
origin of the inner region. The slots always contain a nonnegative integer, with 0
corresponding to no offset (meaning that the scrollable region’s top and left are
the same at the top, left of the visible area). The default is O for both X and Y
offset. You may also Get or Set these slots, and the slots can even contain
formulas. Getting the slot gives you the current scrollbar position, and setting the
slot changes the current scrollbar position and scrolls the area.

e am FILL_STYLE: The filling style (color) used to draw the scroll bars (and the
background of the window if Am_INNER FILL_STYLEIis 0).

® Am_INNER_FILL_STYLE: This determines what the background fill of the group will
be. If it is an Am_Style, that style is used. If it contains O, the Am_FILL_STYLE
slot is used.

e Am_H_SCROLI_BAR,
e am_V_SCROLL_BAR: These booleans determine whether the group will have vertical
and/or horizontal scroll bars. These slots default to true.

® Am H SCROLL_BAR_ON_TOP, Am V_SCROLL_BAR_ON_LEFT: These booleans
determine which side of the group the scroll bars appear on. The defaults are
false for both, which puts the horizontal scroll bar at the bottom of the group, and
the vertical scroll bar at the right of the group as on most standard windows.

® Am H_SMALL_INCREMENT, Am V_SMALL_INCREMENT: This is the small increment in
pixels of the horizontal and vertical scroll bars. The value determines how much
the scrolling group is moved when the user clicks on the scroll arrows. The
default is 10 pixels.

e Am_H_LARGE_INCREMENT, Am_V_LARGE_INCREMENT: This is the large increment, in
pixels, of the horizontal and vertical scroll bars. The value determines how much
the scrolling group is moved when the user clicks on the scroll areas beside the
scroll indicators. The default is calculated by a formula to jump one visible
screen full.



Widgets Page 191

® Am_TINNER_WIDTH, Am_INNER_HEIGHT: This is the size of the entire group, not just
the visible portion. The defaults are 400 for both. This will usually be calculated
by a formula based on the contents of the scrolling group (e.g.,
Am_Width_Of_Parts and am_Height_Of_parts). It is OK if these are smaller
than the scrolling group’s Am_wIDTH and Am_HEIGHT: this just means that the
entire area is visible, and so the appropriate scroll bars will be disabled.

6.2.4.4.3 Using a Scrolling Group

To use an Am_Scrolling_Group, simply create an instance of it, customize the am_Top,
Am_LEFT, Am_WIDTH, and am_HEIGHT slots of the group to define its size, set the
Am_INNER_WIDTH and Am_INNER_HEIGHT based on the contents, and add graphical parts
to the group.

6.2.4.4.4 Simple Example
Here is a simple example of using a scrolling group.

my_scrolling group = Am_Scrolling Group.Create("scroll_group")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10)
.Set (Am_WIDTH, 200)
.Set (Am_HEIGHT, 300))
.Add_Part (Am_Rectangle.Create()
.Set (Am_LEFT, 0)
.Set (Am_TOP, 0)
.Set (Am_WIDTH, 15)
.Set (Am_HEIGHT, 15)
.Set (Am_FILL_STYLE, Am_Blue)
)
my_window.Add_Part (my_scrolling_ group):

This creates a scrolling group with an area of 200 by 300 pixels, and an internal region
400 by 400 pixels (the default values are inherited since none were specified). The
scrolling group is displayed at location 10,10 in my_window. It contains a single object, a
blue square 15 pixels on a side, in the upper left corner of the inner region. The scrolling
group will have a vertical scroll bar on the right side of the group, and a horizontal scroll
bar on the bottom of the group, as specified by the defaults.



Page 192 Widgets

6.2.5 Am_Text_Input_Widget
Am_Text_ Input_ Widget:

Slot Default Value Type
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 150 int

Am HEIGHT <formula> int
Am_WIDGET_LOOK Am_ MOTIF_ LOOK Am_Widget_Look
Am_FONT Am_Default_Font Am_Font

Am LABEL_FONT bold_font Am_Font

Am FILL_STYLE Am. Amulet_Purple Am_Style
Am ACTIVE_ true bool
Am_COMMAND Am_Text_TInput_Command Am_ Command

The am_Text_Input_widget is used to get text from the user, for example for filenames.
The widget has an optional label to the left of a text type-in field. The label is the value
of the am_r.ABEL field of the command object (and can be a string or arbitrary Amulet
graphical object). The user can click the mouse button in the field, and then type in a
new value. The am_vaALUE of the command in the am_comManD slot is set to the new
string, and the command’s am_Do_acTIoN is called. The command’s default
Am_UNDO_ACTION restores the am_vaLUE and the displayed string to its previous value
(section 6.2.5.1 describes the am_Text_Input_command). As the user types, if the string
gets too long to be displayed, it scrolls left and right as appropriate so the cursor is
always visible. Currently, the user must end the typing by hitting return or ~G (to abort).
Eventually, clicking outside the box will also end the editing, but currently this beeps.

The special slots of the am_Text_Input_widget are:

e Am_WIDTH - unlike most widgets, the default width is a constant (150) since the
widget scrolls the text to fit. You will probably want to set the width to some
other constant or formula.

® Am_HETIGHT - the default formula for the height uses the maximum of the height of
the label and the height of the string.

e Am_FONT - this slot holds the font of the string that the user edits, and the default is
the regular default font.

e Am_LABEL_FONT - this slot holds the font used for the label if the label is a string
(the label comes from the am_1.ABEL slot of the command object in the widget).
The default is a bold font.

e Am_FILL_STYLE - the color used for the user type-in field.



Widgets Page 193

6.2.5.1 Am_Text_Input_Command

Am_Text_Input_Command:

Slot Default Value Type
Am_DO_ACTION Am_Command_Do Am_Object_Proc*
Am_UNDO_ACTION Am_Text_Input_Command Undo Am_Object_Proc*
Am_UNDO_THE_UNDO_ACTION Am_Text_Input_Command Undo Am Object_Proc*
Am_LABEL “Label” Am_String
Am_ACTIVE true bool

Am_VALUE wa Am_String

The command object in the am_Text_Input widget will usually be an instance of a
Am_Text_Input_Command. The Am_ IABEL of the command is used as the label of the
input field, so if you do not want a label, make the slot be the null string "". The
am_vaLuE of the widget is set with the value the user types, and the am_Do_acTION is
called. The default Am UNDO_acTION resets the displayed string and the am_VALUE to
their previous values, so if you have your own UNDO action, you should also call the
Am_Text_Input_Command's to reset the display.






7. Gem--Low-level Graphics Layer

Abstract

This manual describes “GEM?”, the low-level graphics system Amulet. Gem provides a
machine-independent layer so the rest of Amulet can work on different window
managers without changing the code. Most programmers will not use the Gem layer, but
it is available for advanced programmers who need especially efficient code.

Copyright © 1995 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa
Order No. B326. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of NCCOSC or the U.S. Government.






Gem Page 197

7.1 Introduction

Gem is the low-level graphics and input interface in Amulet that provides a window-
manager-independent layer so the rest of Amulet is independent of the platform. We
expect that most Amulet programmers will not use the Gem layer since the Opal and
Interactors layer provide all the functionality of the Gem layer. In fact, Opal, Interactors
and the widgets are written using Gem. We provide the Gem interface for expert
programmers who are particularly worried about efficiency.

Gem, which stands for the "Graphics and Events Manager", can be used independent of
most of the rest of the system. Gem uses the wrapper mechanism (for styles and fonts),
but not Amulet objects.

7.2 Include Files

The primary include file for Gem is gem.h. Gem also uses types.h for wrappers,
gdefs.h for styles and fonts, and idefs.h for the input events.

7.3 Drawonables

The primary data structure in gem is the am_Drawonable, which is a C++ object that
corresponds to a window-manager window or off-screen buffer (for example in X/11 it
corresponds to a "drawable"”). We called it a "Drawonable" because it is something that
you can draw on. We also wanted to reserve the word "Window" for the Opal level
object that corresponds to the drawonable. In this manual, sometimes "window" is used
for "drawonable" since drawonables are implemented as window-manager windows,

7.3.1 Creating Drawonables

Programmers create a "root" drawonable as the initialization, and then create
drawonables as children of the root (or as a child of another drawonable). The typical
initialization is:

Am_Drawonable *root = Am Drawonable: :Get_Root_Drawonable() ;

At the Opal level, this is called automatically by am_Initialize to set up the exported
Am_Screen object. For X/11, Get_Root_Drawonable takes an optional string parameter
which is the name of the screen. You can call therefore call Get_Root_bDrawonable
multiple times to support multiple screens.

Creating subsequent drawonables uses the create method. If you use root.Create you
get a top-level window, and if you use another drawonable, then it creates a sub-window.
All of the parameters of the create call are optional, and are:

*int 1 = 0:the left of the new window in the coordinates of its parent.



Page 198 Gem

*int t = 0:the top of the window

*unsigned int w = 100: width of the window

*unsigned int h = 100: height

* const char* tit = "*:the title for the window

* const char* icon_tit = " the string to display with the icon for the window.
* bool vis = true: whether the window is initially visible on the screen on not.
*bool initially_iconified = false whether the window starts out as an icon.

* Am_Style back_color = Am No_sStyle: the initial color for the background of the
window.

* unsigned int border_w = 2: the size of the border of the window. This is
ignored by most window managers for the top-level windows.

* bool save_under_flag = false: save the bitmaps underneath the window
(useful for pop-up menus).

* int min_w = 1: The minimum size allowed for this window (when the user or
program resizes it). You can't have O size windows.

*int min_h = 1: Minimum height.

* int max_w = 0: The maximum width allowed for the window. 0 is illegal so
means no maximum.

* int max_h = 0: Maximum height.

* bool title_bar_flag = true: Whether the title line is displayed or not. Under
X/11 having no title line means the window is not managed by the window
manager.

* bool query_user_for_position = false: If true, then the initial left and top are
ignored and the user is queried instead.

* bool query_user_for_size = false: If true, then the initial width and height are
ignored and the user is queried instead.

* bool clip_by_children_flag = true: If false, then graphics drawn on the
window show through all children windows (drawonables) created as children of
this window.

* Am_Input_Event_ Handlers *evh = NULL) = 0: How input is handled for this
window, see Section 7.5.1.

To create an off-screen drawonable, you can use the shorter form:

virtual Am_Drawonable* Create_Offscreen (
int width = 0, int height = 0,
Am_Style background_color = Am No_Style) = 0;



Gem Page 199

7.3.2 Modifying and Querying Drawonables
There are a number of methods on drawonables that query and set the various properties:

* Am_Drawonable* Am_Drawonable::Narrow (Am_Ptr ptr): given an arbitrary
pointer, this casts it to be a am_bDrawonable. Because drawonables are not
wrappers, no checking is done.

* void Destroy (): Destroys the drawonable and all its children (including
removing them from the screen).

* void Reparent (Am Drawonable *new_parent): Change a drawonable to have a
different parent (owner).

bool Inquire_Window_Borders (int& left_border, int& top_border, int&
right_border, int& bottom_border, int& outer_left, ints&

outer_top): return the current window border sizes. For X/11, this may be
inaccurate for windows that are not yet visible.

* void Raise_Window (Am_ Drawonable *target_d): Move the window to the
"top" of all its siblings. If target_dis NULL, then so it is not covered by any
other windows, or if supplied, then on top of target_d.

* void Lower_Window (Am_Drawonable *target_d): Move the window to the
"bottom" of all its siblings (if target_d is NULL), or just until it is below
target_d.

* void Set_Iconify (bool iconified): Make the window be iconified or not
iconified.

* void Set_Title (const char* new_title): Change window title.

* void Set_Icon_Title (const char* new_title): Change icon title.

* void Set_Position (int new_left, int new_top): Move the drawonable.

®* void Set_Size (unsigned int new width, unsigned int new_height):
Change the size.

* void Set_Max_Size (unsigned int new_width, unsigned int new_height):
Change the maximum size.

¢ void Set_Min_Size (unsigned int new_width, unsigned int new_height)
: Change the minimum size.

* void Set_vVisible (bool vis): Make the window visible or not.

* void Set_Border (bool new_title_bar, unsigned int new_width): Set
whether has a title bar and how thick the border is.

®* void Set_Background_Color (Am_Style new_color)
®* bool Get_Tconify ()
® const char* Get_Title ()

® const char* Get_TIcon_Title ()



Page 200 Gem

*void Get_Position (int& 1, int& t): Setsland t with current left and top.

®* void Get_Size (int& w, int& h)

®* void Get_Max_Size (int& w, int& h)

® void Get_Min_Size (int& w, int& h)

®* bool Get_Visible ()

®* void Get_Border (bool& title_bar_flag, unsigned int& width)

®* Am_Style& Get_Background_Color ()

* int Get_Depth (): Returns the current pixel depth in bits (e.g. 8 for 8-bit color).

* bool Is_Color (): Returns true if the window is color or false if not.

¢ void Get_Values (int& 1, int& t, int& w, int& h, const char*s tit,

const char*& icon_tit, bool& vis, bool& iconified_now, Am_Style&
back_color, unsigned int& border_w, bools save_under_flag, ints&
min w, int& min_h, int& max w, int& max_h, bool&.title_bar_ flag,

bools clip_by_children_flag, int& bit_depth): returns all of the
parameters at once.

7.4 Drawing objects

The normal operation to draw on drawonables is that you first set a clipping region, then
you call one or more drawing operations, and then you flush the output. The flush is
necessary on X/11 to make the graphics appear.

7.4.1 General drawing operations

* void Beep (): Cause a sound on the machine attached to this drawonable (under

X/11, you might have multiple machines controlled by one process, so this
method will beep on the machine that the drawonable is connected to. This is
called by the Opal-level am_Beep () routine.

void Set_Cursor (Am_Image_Array image, Am_Tmage_Array mask, Am_Style

fg_color, Am_Style bg_color): set the cursor for the drawonable.

virtual void Bitblt (int d_left, int d_top, int width, int height,-

Am_Drawonable* sSource, int s_left, int s_top, Am Draw_Function df
= Am_DRAW_COPY): Bitblt is the standard rectangular area copy routine. The
destination for bitblt is the am_Drawonable this message is sent to.

void Clear_Area (int left, int top, int width, int height): Set the

area to the drawonable's background color.

void Flush_output (): Cause all pending output to be actually displayed on the

screen. Under X/11, you usually will not see any graphics until this is called.

void Translate_Coordinates (int src_x, int src_y, Am_Drawonable

*src_d, int& dest_x_return, int& dest_y return): Convert the



Gem Page 201

coordinates in one window to be coordinates in another window. To translate
from screen coordinates, pass your root drawonable as src_d.

* void Translate_From Virtual_Source (int src_x, int src_y, bool
title_bar, int border_width, int& dest_x_return, inté&

dest_y_return): Translates a point from drawonable that hasn't neccessarily
been created to screen coordinates. This function only works on root
drawonables.

7.4.2 Image arrays and fonts

Under X/11, you cannot get the size of image arrays and fonts without having a window,
since they can take on different bit sizes depending on the particular screen resolution.
Therefore, the following are messages to drawonables rather than on image array and
font objects.

¢ void Get_Image_Size (Am_Image_Array& image, int& ret_width, ints&
ret_height): sets ret_width and ret_height with the width and height of the
image array on this drawonable.

* int Get_Char_wWidth (Am_Font Am_font, char c): returns the width of the
character in the font.

® int Get_String Width (Am_Font Am_font, const char¥* the_string, int
the_string_length)

®* void Get_String_ Extents (Am Font Am_font, const char* the_string,
int the_string_length, int& width, int& ascent, int& descent, int&
left_bearing, int& right_bearing): The total height of the bounding
rectangle for this string, or any string in this font, is ascent + descent. The
left_bearing is the distance from the origin of the text to the first "inked" pixel.
The right_bearing is the distance from the origin of the text to the last "inked"
pixel.

* void Get_Font_Properties (Am_Font Am_ font, int& max_char_ width,
int& min_char_width, int& max char ascent, int& max_char_ descent):
The max ascent and descent include vertical spacing between rows of text. The
min ascent and descent are computed on a per-char basis.

7.4.3 Clipping Operations

Gem supports clipping of all graphic operations to a specified clip region. Once a clip
region is Specified, all subsequent drawing operations are clipped so only parts inside the
current clip region will show. To change the clip region of a drawonable, you invoke
one of the member functions listed below on the drawonable.

Note that there is only one clip mask that is shared by all drawonables on a single screen
(on one root drawonable). So as you set the clip mask for a window, you are actually
setting it for all windows on the same screen as that window.



Page 202 Gem

There are two ways to specify how a drawonable’s clip region should be changed: by
describing the change with integers (left, top, width, and height), or by providing an
actual region. Regions can be of any shape, not necessarily rectangular, and are
discussed in Section 7.4.4. Furthermore, the push_Clip() and Pop_Clip() routines
allow you to iteratively “nest” regions so that the current clip region is the intersection of
all the previous clip regions that have been “pushed”.

®* void Clear_Clip{()
® void Set_Clip (Am_Region* region)

®*void Set_Clip (short left, short top, unsigned short width,
unsigned short height)

® void Push_Clip {(Am Region* region)

® void Push_Clip (short left, short top, unsigned short width,
unsigned short height)

* void Pop_Clip ()
The 1n_clip() routines provide a way to ask a drawonable if a point is inside of its clip
region. When asking if a given region is inside the drawonable’s clip region, you can use
the total parameter to determine whether the given region is completely inside the clip
region, or whether it just intersects it.

®* bool In_Clip (short x, short vy)

®bool In_Clip (short left, short top, unsigned short width, unsigned
short height, bool &total)

®*bool In_Clip {(Am Region *rgn, bool &total)

7.4.4 Regions

Instances of the Am_Region class describe arbitrarily-shaped areas. am_Region is a
generalization of a drawonable’s clip region, discussed in Section 7.4.3. By using the
member functions listed below, you can build a region of arbitrary shape, and ultimately
install it as the clip region of a drawonable.



Gem Page 203

class Am_Region ({
public:

static Am_Region* Create ();
virtual void Destroy () = 0;
virtual void Clear () = 0;
virtual void Set (short left, short top, unsigned short width,
unsigned short height) = 0;
virtual void Push (Am _Region* region) = 0;
virtual void Push (short left, short top, unsigned short width,
unsigned short height) = 0;
virtual void Pop () = 0;
virtual void Union (short left, short top, unsigned short width,
unsigned short height) = 0;
virtual void Intersect (short left, short top, unsigned short width,
unsigned short height) = 0;
virtual bool In (short x, short y) = 0;
virtual bool In (short left, short top, unsigned short width,
unsigned short height, bool &total) = 0;
virtual bool In (Am_Region *rgn, bool &total) = 0;
¥

7.4.5 Specific Drawing Functions

All of the drawing functions take a Am_Draw_Function which controls how the pixels of
the drawn shape affect the screen. Since most programmers will use color screens, draw
functions are not particularly useful. The supported values for Am_Draw_Function are
Am_DRAW_COPY, Am_DRAW_OR Of Am_DRAW_XOR.

The various options for styles and fonts (from gdefs.h) are explained in detail in the
Opal manual, so they are not repeated there. Also, the details of most of the parameters
to the operations correspond to similarly-named slots of the associated Opal objects, so
the manual on Opal can be used to understand these operations more fully.

® void Draw_Arc (Am_Style 1ls, Am_Style fs, int left, int top,
unsigned int width, unsigned int height, int anglel = 0, int
angle2 = 360, Am Draw_Function f = Am DRAW _COPY, Am_Arc_Style_Flag

asf = Am_ARC_PIE_SLICE ): draw an arc. This can also be used for circles.

* void Draw_Image (int left, int top, int width, int height,
Am_Image_Array image, int i_left = 0, int i_top = 0, Am_Style 1ls =
Am_No_Style, Am_Style fs = Am_No_Style, Am_Draw_Function f =

Am_DRAW_coOPY): The 1s parameter is used to control the color of 'on' bits, and
the £s parameter is for the background behind the image.

* void Get_Polygon_Bounding_Box (Am_Point_List pl, Am Style ls, int&
out_left, int& out_top int& width, int& height): calculates the
bounding box of the polygon.

* void Draw_Line (Am_Style ls, int xl1, int yl1, int x2, int v2,
Am_Draw_Function £ = Am_DRAW_COPY): Draw a single line.

* void Draw_Lines (Am_Style 1ls, Am_Style fs, Am_Point_List pl,
Am_Draw_Function f = Am_DRAW_COPY): draw a polygon.

* void Draw_2_Lines (Am_Style ls, Am_Style fs, int x1, int y1, int
x2, int y2, int x3, int y3, Am_Draw_Function f = Am_DRAW COPY):



Page 204 Gem

Draw a polygon with just two lines.

® void Draw_3_Lines (Am_Style ls, Am_Style fs, int x1, int y1, int
x2, int y2, int x3, int y3, int x4, int y4, Am_Draw Function f =
am_DRAW_coOPY): Draw a polygon with just three lines. (This is used by
arrowheads so a point-list does not have to be allocated).

®* void Draw_Rectangle (Am_Style ls, Am_Style fs, int left, int top,
int width, int height, Am_Draw_Function f = Am_DRAW_COPY )
® void Draw_Roundtangle (Am Style ls, Am Style fs, int left, int top,

int width, int height, unsigned short x_radius, unsigned short
y.radius, Am Draw_Function £ = Am DRAW_COPY ): arectangle with rounded
corners.

® void Draw_Text (Am_Style ls, const char *s, int str_len, Am_Font
Am__font, int left, int top, Am_Draw_Function £ = Am_DRAW_COPY,
Am_Style fs = Am_No_Style, bool invert = false): The £s is for the
background behind the text.

7.5 Input Handling

7.5.1 Am_Input_Event_Handlers

The general way that input is handled for drawonables is that the underlying window
manager generates various events. These are turned into messages sent to an instance of
the C++ class Am_Input_Event_Handlers which is stored with the drawonable. For
example, each time the user hits a keyboard key or a mouse button, the
Input_Event_Notify member function is called of the am_Input Event_Handlers
stored with the drawonable. Opal and Interactors define standard handlers for all these
functions, so normally programmers do not need to deal with these messages, but instead
will create new interactors. Most of these handlers simply update the associated object's
slots. If you want to make a subclass of the standard event handlers and override some of
the methods, opal_advanced.h exports Am Standard_Opal_Handlers which are a
subclass of am_Input_Event_Handlers. Am_Input_Event_Handlers is defined as:

class Am Input_Event_Handlers {
public:
virtual void Iconify Notify (Am_Drawonable* draw, bool iconified)
virtual void Frame_Resize_Notify (Am_Drawonable* draw, int left,
int top, int right, int bottom)

virtual void Destroy_Notify (Am_ Drawonable *draw) = 0;
virtual void Configure_Notify (Am_Drawonable *draw, int left, int
int width, int height) = 0;

virtual void Exposure_Notify (Am Drawonable *draw,
int left, int top,
int width, int height) = 0;
virtual void Input_Event_Notify (Am Drawonable *draw,
Am_TInput_Event *ev)=0;

The functions are:

1l
o
~

I
o

top,



Gem Page 205

* Iconify Notify: Called when the window is being iconified or de-iconified.
* Frame_Resize_Notify: Called whenever the window's border size changes.

* Destroy_Notify: Called when the user requests that the window be destroyed.
Note that window managers usually don't actually destroy the windows, but rather
call this routine to tell the programs to destroy the window.

* configure_Notify: Called whenever the user changes the window's size or
position.

* Exposure_Notify: Called when the window becomes uncovered and part of it
needs to be redrawn.

* Input_Event_Notify: Called for all input events from the keyboard and mouse.
The am_Input_Event is described below.

You can set and get the handlers in a drawonable using the following functions. If the
event handlers are not set for a drawonable, they are inherited from the drawonable it
was created from.

void Set_Input_Dispatch Functions (Am_Input_Event_Handlers* evh)
void Get_Input_Dispatch Functions (Am_Input_Event_Handlers*& evh)

7.5.2 Input Events

The input event passed to the Input_Event_Notify method is a C++ class containing
the x and y of the mouse when the event occured, the drawonable of the event, a
timestamp, and an Am_Input_Char describing the event. am_Input_chars are described
in the Interactors manual. -

class Am_TInput_FEvent {
public:
Am_TInput_Char input_char; #the char and modifier bits; see idefs.h
int x;
int y;
Am_Drawonable *draw; / Drawonable this event happened in
unsigned long time_stamp;
};

You can control which input events are generated for a drawonable using the following
member functions of drawonables:

* void Set_Enter_Leave (bool want_enter_ leave_events): Whether you want
events generated when the mouse enters and leaves the drawonable. The default
is that they are not.

* void Set_Want_Move (bool want_move_events): Whether events are generated
while the mouse is moving around inside the drawonable. The default is that they
are not.

* void Set_Multi_wWindow (bool want_multi_window): When an interactor
should run over multiple windows, this method should be called on each window.



Page 206 Gem

Otherwise, the cursor is "reserved” for the original window the mouse is clicked
in.

* void Get_Window_Mask (bool& want_enter_leave_events, bools
want_move_events, bool& want_multi_window)

You can control the time interval for multiple clicks. The exported global variable
Am_Double_cClick Time is the inter-click wait time in milleseconds. The default value
is 250. If O, then no double-click processing is done.

7.5.3 Main Loop

.The normal Amulet program calls am_Initialize (which among other things, calls
Get_Root_Drawonable), then sets up a number of objects, and then calls
Am_Main_Event_Loop. This routine then calls a Gem level level routine where the
events are actually processed. This routine is Am_Drawonable: : Process_Event (). An
Gem-level programmer who wants to process events, but not use any of the higher-level
Amulet operations like demons and Opal might use am_Drawonable: :Main_Loop. This
just repeatedly calls Am_Drawonable: : Process_Event (). To stop any of the main
loops, you can set the exported bool called am_Main_TLoop_Go to false

The difference between Process_event and Process_Immediate_Event is that
Process_Event waits for the next event, and processes exactly one input event and all
non-input events (like refresh and configure_notify events) before and after that input

event before returning. For example:
before after
xxxIyyvyIzzz -———> Izzz

Process_Event returns when it encounters a second input event or when the queue is
empty.

Process_Immediate_Event does not wait for an event, but processes the first event in
the queue and all non-input events after it until an input event is seen. Process_Immedi-
ate_Event returns when it encounters an input event (excluding the case where the first
event is an input event) or when the queue is empty.

// Should Am_Drawonable::Main_Loop and Am_Main_Event_Loop keep running?
extern bool Am Main_Loop_Go;

class Am_Drawonable ({
public:

static void Main_Loop ();
static void Process_Event ();
static void Process_Immediate_Event ();



8. Summary of Exported Objects and
Slots

Abstract
This chapter provides a summary of all the objects and slots exported by Amulet that the
normal Amulet programmer will use. The specifics of the operation of the objects are
discussed in other chapters of this manual.

Copyright © 1995 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa
Order No. B326. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of NCCOSC or the U.S. Government.






Object Summary Page 209

8.1 Am_Style:

Constructors:

Am_Style (float red, float green, fleoat blue, Heolor part
short thickness = 0,
Am_Line_Cap_Style_Flag cap_flag = Am_CAP_BUTT,
Am_Join_Style_Flag join_flag = Am JOIN_ MITER,
Am_Line_Solid_Flag line flag = Am_LINE_SOLID,
const char* dash list = Am DEFAULT_DASH_LIST,
int dash_list_length = Am_DEFAULT_DASH_T.IST LENGTH,
Am _Fill_Solid_Flag fill_flag = Am_FILI, SOLID,
Am _Fill_Poly Flag poly_flag = Am FILL_POLY_EVEN_ODD,
Am_Image_ Array stipple = Am_No_Image)

Am_Style (const char* color_name, Heolor part
short thickness = 0,
Am_Line_Cap_Style_Flag cap_flag = Am_CAP_BUTT,
Am_Join_Style_Flag join_ flag = Am_ JOIN_MITER,
Am_Line_Solid_Flag line_flag = Am_LINE SOLID,
const char *dash_list = Am DEFAULT DASH_ILIST,
int dash_list_length = Am_ DEFAULT_DASH LIST_LENGTH,
Am_Fill Solid_Flag fill_flag = Am_FILL_ SOLID,
Am Fill_Poly_Flag poly_ flag = Am _FILL_POLY_EVEN_ODD,
Am_Tmage_Array stipple = Am_No_TImage)

Color styles: all have thickness zero (which really means 1--explained in the manual)

Am_Red Am_Cyan Am_Motif_ Gray Am Motif_Light_Gray
Am_Green Am_Orange Am_Motif_ Blue Am_Motif_ Light_Blue
Am_Blue Am_Black Am_Motif_ Green Am_Motif_ Light_Green
Am_Yellow Am_White Am_Motif_ Orange Am_ Motif_Light_Orange
Am_Purple Am_Amulet_Purple

Thick and dashed line styles: all are black

Am_Thin_Line Am_Line_1 Am Line_4 Am_Dashed_Line
Am_Line_0 Am_Line_2 Am_Line_8 Am_Dotted_Line

Stippled styles: all are black and white

Am_Gray_Stipple Am_Opaque_Gray Stipple

Am_Light_Gray_Stipple Am_Diamond_Stipple

Am_Dark_Gray_Stipple Am_Opaque_Diamond_Stipple
Special:

Am_No_Style - can be used in place of NULL



Page 210 Object Summary

8.2 Am_Font:

Constructors:
Am_Font (Am_Font_Family Flag family = Am_FONT FIXED,
bool is_bold = false,
bool is_italic = false,
bool is_underline = false,
Am Font_Size_Flag size = Am_FONT MEDIUM)

Am_Font (const char* the_name)

Pre-Defined Fonts:

Am_Default_Font - afixed, medium-sized font

8.3 Predefined formula constraints:

Am_width_Of Parts - Useful for computing the width of a group: returns the distance
between the group’s left and the right of its rightmost part. You might put this

into a group’s Am_WIDTH slot.
Am_Height_Of_Parts - Analogous to am width Of_Parts, but for the Am_HEIGHT.

Am_Right_Is_Right_Of_owner - Useful for keeping a part at the right of its owner. Put

this formula in the am_LEFT slot of the part.

Am_Bottom_Is_Bottom Of Owner - Useful for keeping a part at the bottom of its owner.

Put this formula in the am_Top slot of the part.

Am Center_X_Is_Center_Of_ Owner - Useful for centering a part horizontally within its

owner. Put this formula in the am_LEFT slot of the part.

Am_Center Y _Is_Center_Of_oOwner - Useful for centering a part vertically within its

owner. Put this formula in the am_Top slot of the part.

Am Center_X_Is_Center_ 0Of - Useful for horizontally centering ob71 inside obj2. Put
this formula in the am_LEFT slot of obj1, and put obj2 in the Am_CENTER_X_OBJ

slot of obj1.

Am_Center_Y_Is_Center_Of - Useful for vertically centering obj1 inside obj2. Put
this formula in the am_ToP slot of obj1, and put obj2 in the Am_CENTER_Y_OBJ

slot of ob7j1.

Am_Horizontal Layout - Constraint which lays out the parts of a group horizontally in

one or more rows. Put this into the am_ravouT slot of a group.

Am Vertical Layout - Constraint which lays out the parts of a group vertically in one

or more columns. Put this into the am_ravouT slot of a group.



Object Summary Page 211

8.4 Opal Graphical Objects

Am_Graphical_Object:

Slot Default Value Type

Am_LEFT int

Am_TOP int

Am_WIDTH int

Am HEIGHT int

Am_VISIBLE true bool

Am_Line:

Slot Default Vvalue Type

Am_LINE_STYLE Am_Black Am_Style

ilmn:ﬁ 8 iﬁE /#/ Am_ X1, Am Y1, Am_X2, Am_Y2,

Am X2 0 int //  Am_LEFT Am TOP, Am_WIDTH and
Am_Y2 0 int // Am_HETGHT are constrained in such a
Am_LEFT 0 int /' way that if any one of them changes,
E_TTV?ETH g iEE //  the rest will automatically be updated
Am_HEIGHT 1 int // to reflect that change.

Am_VISIBLE true bool

Am_HIT THRESHOLD 0 int

Am Rectangle:

Slot Default Value Type

Am VISIBLE true bool

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH 10 int

Am_HEIGHT 10 int

Am_FILL_STYLE  Am_Black An_Style  yIuside of rectangle

Am_LINE_STYLE Am_Black Am_Style

// Edge of rectangle

Am_Arc: (useful for circles, ovals, and arcs)

Slot Default Value Type

Am_ VISIBLE true bool

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH 10 int

Am_HEIGHT 10 int

Am_ANGLE1 0 0..360 // Origin, degrees from 3:00
Am_ANGLE2 360 0..360 // Terminus, distance from origin
Am FILL_STYLE Am_Black Am_Stvile // Inside of arc
Am_LINE_STYLE Am_Black Am_Style

// Edge of arc



Page 212 Object Summary

Am_Roundtangle:

(rectangle with rounded corners)

Slot Default Value Type
Am VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am WIDTH 10 int
Am_HEIGHT 10 int
Am_RADIUS Am_SMALIL_RADIUS Am_Radius_Flag

or int

/{ Am_SMALL_RADIUS,
// Am_MEDIUM_RADIUS,
// Am_LARGE_RADIUS }

Am_FILL_STYLE Am_Black Am_Style / Inside of roundtangle
Am_ LINE_STYLE Am_Black Am _Style // Edge of roundtangle
Am Polygon:

Slot Default Value Type

Am_VISIBLE true bool

Am_LEFT <formula> int

Am_TOP <formula> int

Am_WIDTH <formula> int

Am_HEIGHT <formula> int

Am_POINT_LIST

empty Am_Point_List

Am_Point_List

Am Text:

Slot Default Value Type

Am_VISIBLE true bool

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH <formula> int

Am_HEIGHT <formula> int

Am_TEXT " Am_String // String to display

Am_FONT Am_Default_Font Am_Font

Am_CURSOR_INDEX Am_NO_CURSOR int // Position of cursor in string
Am_LINE_STYLE Am_Line 2 Am_Style / Color of text
Am_FILL_STYLE Am_No_sStyle Am_sStyle // Background behind text
g:)fﬁgggiET ;§§$u1a> ];gtc-;l // Whether to exchange line and fill style
Am_Bitmap:

Slot Default Value Type

Am_VISIBLE true bool

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH <formula> int

Am_HEIGHT <formula> int

Am_LINE_STYLE Am_Black Am_Style / Color of on pixels
Am_FILL_STYLE Am_No_Style Am_Style // Color of offpixels

Am_IMAGE

Am No_Image (solid)

//  if opaque stipple

Am_Image_ Array , Stipple pattern




Object Summary Page 213
Am_Group:
Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 10 int
Am_HEIGHT 10 int
Am_GRAPHICAI_PARTS empty Am Value_List Am_Value_List // Read-only list
Am_LAYOUT NULL <formula>
Am_X OQFFSET 0 int
Am_Y_OFFSET 0 int
Am_H_SPACING 0 int
Am_V__SPACING 0 int

Am_H ALIGN

Am_V_ALIGN

Am_CENTER_ALIGN

Am_CENTER_ALIGN

{Am_LEFT_ALIGN,
Am RIGHT_ ALIGN,
Am_CENTER_ALIGN}
{Am_TOP_ALIGN,
Am_BOTTOM_ALIGN,
Am_ CENTER_ALIGN}

Am_FIXED WIDTH Am_NOT_FIXED SIZE int

Am_ FIXED HEIGHT Am_NOT_FIXED SIZE int

Am_TINDENT 0 int

Am_MAX RANK false int, bool
Am_MAX SIZE false int, bool

Am Map:

Slot Default Value Type
Am_VISIBLE true bool

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH Am _Width_Of_ Parts int

Am_HEIGHT Am_Height_Of_Parts int
Am_GRAPHICAIL_PARTS <formula> Am Value_List
Am_ ITEMS 0 int, Am Value_List
Am_ITEM_PROTOTYPE Am_No_Object Am_Object
Am_LAYOUT NULL <formula>
Am_X_ OFFSET 0 int

Am Y OFFSET 0 int
Am_H_SPACING 0 int
Am_V_SPACING 0 int

Am H ALIGN

Am_V_ALIGN

Am_FIXED_WIDTH
Am_FIXED_HEIGHT
Am_INDENT
Am_MAX_RANK
Am_MAX_SIZE

Am_CENTER_ALIGN

Am_CENTER_ALIGN

Am_NOT_FIXED_SIZE
Am_NOT FIXED_SIZE
0

false

false

{Am_LEFT ALIGN,
Am RIGHT_ ALIGN,
Am CENTER_ALIGN}
{Am_TOP_ALIGN,
Am_BOTTOM_ALIGN,
Am_CENTER_ALIGN}
int

int

int

int, bool

int, bool




Page 214 Object Summary

Am_Windows:
Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP V] int
Am_WIDTH 100 int
Am_HEIGHT 100 int
Am_GRAPHICAL_PARTS empty Am_Value_List Am Value_List
Am_FILL_STYLE Am_White Am_Style
Am MAX WIDTH 0 int
Am_MAX_ HEIGHT 0 int
Am_ MIN WIDTH 1 int
Am MIN HEIGHT 1 int
Am TITLE “Amulet” char*
Am_ICON_TITLE “Amulet” char*
Am_ICONIFIED false bool
Am_USE_MIN_WIDTH false bool
Am_USE_MIN HEIGHT false bool
Am_USE_MAX WIDTH false bool
Am_USE_MIN_HEIGHT false bool
Am QUERY_POSITION false bool
Am_QUERY_SIZE false bool
Am_LEFT_BORDER_WIDTH 0 int
Am_TOP_BORDER_WIDTH 0 int
Am_RIGHT_BORDER_WIDTH 0 int
Am_BOTTOM_BORDER_WIDTH © int .
Am_ CURSOR NULL Am_Cursor
Am OMIT_TITLE_BAR false bool
Am_ CLIP_CHILDREN false bool
Am_SAVE_UNDER false false
8.5 Interactors
Am_Interactor:
Slot Default Value Type
Am_START WHEN Am_Input_Char Am_TInput_Char
(“"LEFT_DOWN")

Am_ START WHERE_TEST
Am_ABORT_WHEN

Am_ RUNNING_WHERE_OBJECT
Am_RUNNING_WHERE_TEST
Am_STOP_WHEN

Am_ACTIVE
Am_START_OBJECT
Am_START_CHAR

Am CURRENT_OBJECT
Am RUN_ALSO
Am_PRIORITY
Am_OTHER_WINDOWS

Am WINDOW

Am_COMMAND

Am_ Inter_ In

Am_Input_Char
(“*CONTROL_g”")

true

Am_Inter_ In

Am_Input_Char

(“ANY_MOUSE_UP”)

true

0

0

0

false

1.0

NULL

NULL

Am_ Command

Am Where_Function

Am_TInput_Char

Am Object, bool

Am Where_Function

Am Input_Char

bool
Am_Object
Am_Input_Char
Am_Object
bool

float

Am_Value_List or

Am_Window
Am Window

Am_Command

#/ Section 5.3.3.3
4 Section 5.4.1
Y/ Section 5.4.1
// Section 5.4.1
Y/ Section5.4.2
Y/ Section 5.4.2
4 Section 5.4.3

Set with current
window




Object Summary Page 215

Am_Choice_Interactor:

Slot Default Value Type
Am_START_WHEN Am_TInput_Char Am_TInput_Char

(“LEFT_DOWN”")
Am_START_ WHERE_TEST Am_TInter_In Am_Where_Function
Am_ABORT_WHEN Am_TInput_Char Am_Input_Char

(“CONTROL_g")
Am_RUNNING_WHERE_OBJECT <formula> Am_Obj ect, bool ¥/ Computes owWner
Am_RUNNING_WHERE_TEST <formula> Am_Where_Function / same as start
Am_STOP_WHEN Am_TInput_Char Am_TInput_Char

(*ANY_MOUSE_UP”)
Am_ HOW_ SET Am_CHOICE_TOGGLE Am_Choice_How_Set
Am_ FIRST ONE_ONLY false bool // whether menu-

// or button-like

Am_COMMAND Am_Choice_Command Am_Command

Am_One_Shot_Interactor:

Slot Default Value Type
Am_START_WHEN Am_TInput_Char Am_TInput_Char

(“LEFT_DOWN”)
Am_START WHERE_TEST Am Inter_In Am_Where_Functio:
Am_ABORT_WHEN Am_Input_Char Am_TInput_Char

{“"CONTROIL_g”)
Am_RUNNING_WHERE_OBJECT owner Am_Object, bool
Am_RUNNING_WHERE_TEST Am_Inter_In Am_Where_Functio: /same as start
Am_STOP_WHEN Am_Input_Char Am_Input_Char

(“ANY_MOUSE_UP”")
Am_RUN_ALSO false bool
Am_ACTIVE true bool
Am_HOW_SET Am_ CHOICE_TOGGLE Am_Choice_How_Se
Am_FIRST_ONE_ONLY true bool // whether menu-

// or button-like

Am_COMMAND Am Choice_Command Am_Command

Am_Text Edit_Interactor:

Slot Default Value Type
Am_START_ WHEN Am_TInput_Char (*LEFT_DOWN”) Am_Input_Char
Am_START_ _WHERE_TEST Am_Inter_In_Text Am_Where_Function
Am_ABORT_WHEN Am_Input_Char (*CONTROL_g”) Am_Input_Char
Am_RUNNING_WHERE_ OBJECT true Am_Object, bool
Am_RUNNING_WHERE TEST Am_ Inter_In Am_Where_Function
Am_STOP_WHEN Am_Input_Char (*RETURN”) Am_TInput_Char
Am_TEXT EDIT FUNCTION Am_Default_Text_Edit_ Am_Text_Edit_
Function Function
Am_EDIT TRANSLATION_TABLE Am _Edit_Translation_ Am Edit_Trans-
Table: :Default_Table() lation_Table

Am_COMMAND Am_Edit_Text_Command Am_Command




Page 216 Object Summary

Am_Move_ Grow_ Interactor:

Slot Default Value Type
Am_START_WHEN Am_Input_Char Am_Input_Char
(*“LEFT_DOWN" )

Am_START WHERE_TEST
Am_ABORT_WHEN

Am_TInter_In
Am_TInput_Char

Am_Where_ Function
Am_Input_Char

(“CONTROL_g”")
Am_RUNNING_WHERE_ true Am_Object, bool
OBJECT
Am_RUNNING_WHERE_ Am_TInter_In Am_Where_Function
TEST
Am_GROWING false bool
Am_AS_LINE <formula> bool
Am_FEEDBACK_OBJECT 0 Am_Object / interim fgedback
Am_ GRID_X 0 int
Am_GRID Y 0 int
Am_ GRID_ORIGIN_ X 0 int
Am_GRID ORIGIN_Y 0 int
Am_GRID_PROC 0 Am_Custom_
Gridding Proc
Am_WHERE_ATTACH Am_ATTACH_ Am_Move_Grow_ Am_ATTACH__
WHERE_HIT Where_Attach {WHERE_HIT, NW,
N, NE, E, SE, S,
SW, W, END_1,
END_2, CENTER}
Am_MINIMUM_WIDTH 0 int
Am MINIMUM_HEIGHT 0 int
Am MINIMUM_LENGTH 0 int
Am_COMMAND Am_Move_Grow_  Am_Command
Command
Am_New_ Points_Interactor:
Slot Default Value Type

Am_Input_Char (*“LEFT_DOWN”)
Am Inter_ In

Am_Input_Char (*CONTROL_g”)
true

Am_Inter_ In

Am_TInput_Char
Am_Where_Function
Am_TInput_Char
Am_Object, bool
Am_Where_Function

Am_START WHEN

Am_START_ _WHERE_TEST
Am_ABORT_WHEN
Am_RUNNING_WHERE_OBJECT
Am_RUNNING_WHERE TEST

Am_AS_LINE 0 bool

Am_FEEDBACK_OBJECT 0 Am_Object

Am_HOW_MANY_ POINTS 2 int

Am FLIP IF_CHANGE_SIDES true bool

Am_ABORT_IF TOO_SMALL false bool

Am_STOP_WHEN Am_TInput_Char (*ANY_MOUSE_UP”) Am_Input_Char

Am_GRID_X 0 int

Am GRID Y 0 int

Am_GRID_ORIGIN_X 0 int

Am_GRID_ORIGIN_Y 0 int

Am_GRID PROC 0 Am_Custom_
Gridding_Proc

Am MINIMUM_ WIDTH 0 int

Am MINIMUM_HEIGHT 0 int

Am_ MINIMUM_ LENGTH 0 int

Am_COMMAND Am_New_Points_Command Am_Command




Object Summary Page 217

8.6 Interactor Command Objects

Am_Command:

Slot Default Value Type
Am_INTERIM_DO_ACTION Am_Command_TInterim_Do Am_Object_Proc*
Am_DO_ACTION Am_Command_Do Am_Object_Proc*
Am_UNDO_ACTION Am_Command_Undo Am_Object_Proc*
Am__UNDO_ THE_UNDO_ACTION Am Command_Undo_The_Undo Am_Object_Proc*
Am_ABORT_ACTION Am_Command_Abort Am_Object_Proc*
Am_LABEL “A command” Am_String
Am_ACTIVE true bool

Am_VALUE 0 any

Am_ Choice_Command:

Slot Default Value Type
Am_START_ ACTION Am_Choice_Command_Start
Am_INTERIM_ DO_ACTION Am_Choice_Command_Interim_Do Am_Object_Proc*
Am_DO_ACTION Am_Choice_ Command_Do Am Object_Proc*
Am_UNDO_ACTION Am_Choice_Command_Undo Am_Object_Proc*
Am_UNDO_THE_UNDO_ACTION Am_Choice_Command_Undo_ Am_Object_Proc*
The_Undo
Am_ ABORT_ACTION Am_Choice_Command_Abort Am_Object_Proc*
Am_LABEL “choice interactor” Am_String
Am_ACTIVE true bool
Am_INTERIM VALUE 0 Am_Object
Am_OLD_INTERIM_ VALUE 0 Am_Object
Am_OLD_VALUE 0 any
Am_VALUE 0 any
Am_ Move_Grow_ Command:
Slot Default Value Type
Am_START_ACTION Am Move_Grow_Command_Start Am_Object_Proc¥*
Am_TINTERIM_DO_ACTION 2am Move_Grow_ Command Interim Am_ Object_Proc*
Do
Am_DO_ACTION Am_Move_Grow_Command_Do Am_Object_Proc*
Am_UNDO_ACTION Am_Move_Grow_Command_Undo Am_Object_Proc*
Am_UNDO_THE_UNDO_ Am_Move_Grow_Command_Undo_ Am_Object_Proc*
ACTION The_Undo
Am_ABORT_ACTION Am_Move_Grow_Command_Abort Am_Object_Proc*
Am_LABEL “Move_Grow interactor” Am_String
Am_ACTIVE true bool
Am_OBJECT_MODIFIED 0 Am_Object
Am_INTERIM_VALUE 0 Am_Four_ Ints
Am_ OLD_VALUE 0 Am_Four_Ints
Am_VALUE 0 Am_Four_ Ints




Page 218 Object Summary

Am New Points_ Command:

Slot

Default Value

Type

Am_START_ ACTION
Am_INTERIM DO_ACTION

Am_DO_ACTION
Am_UNDO_ACTION
Am_UNDO_THE_UNDO_ACTION

Am_ABORT_ACTION

Am_New_Points_Command_Start
Am_New_ Points_Command_

Interim Do

Am_New_Points_Command_Do
Am_New_ Points_Command_Undo
Am_New_Points_Command_Undo_

The_Undo

Am_New_Points_Command_Abort

Anm_Object_Proc*
Am_Object_Proc*

Am_Object_Proc*
Am_Object_Proc*
Am__Object_Proc*

Am_QObject_Proc*

Am_LABEL “New_Points interactor” Am_String

Am_ACTIVE true bool

Am_TOO_SMALL 0 bool

Am_INTERIM_VALUE 0 Am Four_Ints

Am_VALUE 0 any

Am_CREATE NEW_OBJECT_ 0 Am_Create_New_
ACTION Object_Proc*

Am_ Edit_Text_ Command:

Slot Default Value Type

Am_START_ACTION
Am_TINTERIM_DO_
ACTION
Am_DO_ACTION
Am_UNDO_ACTION

Am_Text_Command_Start
Am_Text_Command__
Interim_ Do
Am_Text_Command_Do
Am_Text_Command_Undo

Am_UNDO_THE_UNDO_Am Text_Command_Undo__

ACTION

The_Undo

Am_ABORT ACTION Am Text_Command_Abort

Am_Object_Proc*
Am_Object_Proc*

Am_Object_Proc*
Am_Object_Proc*
Am_Object_Proc#*

Am_Object_Proc*

Am_LABEL “text interactor” Am_String
Am_ACTIVE true bool
Am_OBJECT_MODIFIEO Am_Object Hobject edited

D
Am_INTERIM_VALUE 0 Am_Input_ Event /feach event set here
Am_OLD VALUE 0 Am_String /set to old String
Am_VALUE 0 Am_String //new final string
8.7 Undo objects
Am_Undo_Handler:
Slot Default Value  Type
Am_REGISTER_COMMAND 0 Am_Register_Command_Proc
Am_UNDO_THE_UNDO_ALLOWED 0 Am Object or 0
Am_UNDO_ALLOWED 0 Am_Object or 0
Am_PERFORM_UNDO 0 Am_Object_Proc*
Am_PERFORM_UNDO_THE_UNDO 0 Am_Object_Proc*




Object Summary

Am_ Single_Undo_oObject:

Slot

Default Value

Type

Am REGISTER_COMMAND

Am_UNDO_THE_UNDO_ALLOWED
Am_UNDO_ALLOWED

Am _PERFORM_UNDO
Am_ PERFORM_UNDO_THE_UNDO

Am_Single_Undo_Register_
Command

<formula>

<formula>

Am_Single_Perform Undo

Am_Single_Perform_Undo_
The_Undo

Am_Register_
Command__ Proc
Am_QObject or 0
Am_Object or 0
Am_Object_Proc*
Am_Object_Proc*

Am Multiple_Undo_Object:

Slot

Default Value

Type

Am_REGISTER_COMMAND

Am_UNDO_ALLOWED
Am_UNDO_THE_UNDO_ALLOWED

Am_PERFORM_UNDO
Am_PERFORM_UNDO_THE_UNDO

Am_ LAST_ UNDONE_COMMAND

Am Multiple_Undo_Register_.
Command ’

<formula>

<formula>

Am Multiple Perform Undo

Am Multiple_Perform_Undo_
The_Undo

0

Am_Register
Command_Proc
Am_Object or 0
Am_Object or 0
Am_Object_Proc*
Am_Object_Proc*

Am_Command

8.8 Widget objects

Am_Border_ Rectangle:

(a Motif-like rectangle with border)

Slot

Default Value

Type

Am_SELECTED false

Am_WIDGET_LOOK

Am_WIDTH 50
Am HEIGHT 50
Am_TOP 0
Am_LEFT 0

Am VISIBLE true

Am_ FILL_STYLE

Am_MOTIF_LOOK

Am_Amulet_Purple

bool
Am_Widget_Look

int

int

int

int

bool

Am Style

4 { Am_MOTIF_LOOK,

/- Am_MACINTOSH_LOOK,
/ Am_WINDOWS_LOOK }

Page 219



Page 220 Object Summary

Am Button:

Slot Default Value Type
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int
Am_ HEIGHT <formula> int
Am_Y OFFSET 0 int
Am_H SPACING 0 int
Am_V_SPACING 0 int

Am H_ ALIGN

Am_V_ALIGN

Am_FIXED_WIDTH
Am_FIXED_HEIGHT
Am_INDENT
Am_MAX_RANK
Am_MAX_SIZE
Am_ITEM_OFFSET
Am_ACTIVE
Am_ACTIVE_2

Am _WIDGET_LOOK

Am_KEY_ SELECTED
Am_FONT
Am_FINAL_
FEEDBACK_WANTED
Am FILL_STYLE
Am_COMMAND

Am_CENTER_ALIGN

Am_CENTER_ALIGN

Am_NOT_FIXED SIZE
Am_NOT_FIXED _SIZE
0

false

false

5

<formula>

true
Am_MOTIF_T1.OCK

false
Am_Default_Font
false

Am_Amulet_Purple
Am_Button_Command

{Am_LEFT ALIGN,
Am RIGHT ALIGN,
Am_ CENTER_ALIGN}
{Am_TOP_ALIGN,
Am BOTTOM_ALIGN,
Am CENTER_ALIGN}
int
int
int
bool
bool
int
bool
bool
Am_Widget_Look

bool
Am_Font
bool

Am_Style
Am_Command

/{ Am_MOTIF_LOOK,

/ Am_MACINTOSH_LOOK,
Y Am_WINDOWS_LOOK }




Object Summary Page 221

Am_Button_Panel:

Slot Default Value Type
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int // Read-only
Am_HEIGHT <formula> int // Read-only
Am_ HOW_SET Am_CHOICE_SET Am_How_Set
Am_ITEM_OFFSET 5 int
Am_ACTIVE <formula> bool
Am_ACTIVE 2 true bool
Am_WIDGET_LOOK Am_MOTIF_LOOK Am_Widget_Look / { Am_MOTIF_LOOK,
/ Am_MACINTOSH_LOOK,
/ Am_WINDOWS_LOOK }
Am_KEY_SELECTED false bool
Am_FONT Am_Default_Font Am_Font
Am_FILL_STYLE Am_Amulet_Purple Am_Stvyle
Am_FINAL_ false bool
FEEDBACK_WANTED
Am_WIDTH Am Width_Of_ Parts int
Am_HEIGHT Am_Width_Of_Parts int
Am_LAYOUT Am_Vertical_Layout {Am_Vertical_Layout,
Am Horizontal_Layout
NULL}
Am_H ALIGN Am_LEFT_ ALIGN {Am_LEFT_ALIGN,

Am RIGHT_ ALIGN,
Am CENTER_ALIGN}
Am_TITEMS <gspecial> int, Am Value_List
of commands or
strings, etc.

Am_Radio_Button_Panel: Am Button_Panel

Slot Default Value Type

all the slots of the button panel

Am_HOW_SET Am_CHOICE_ SET Am_How_Set
Am_BOX_WIDTH 15 int

Am_BOX HEIGHT 15 int

Am_FIXED WIDTH false int, bool

Am FINAL_ FEEDBACK WANTED true bool

Am_H ALIGN <formula> {Am_LEFT_ALIGN,

Am_RIGHT_ALIGN,
Am_CENTER_ALIGN}

Am_Checkbox Panel: Am_ Button_Panel

Slot Default Value Type

all the slots of the button panel

Am_HOW_SET Am_CHOICE_SET Am_How_Set
Am_BOX_WIDTH 15 int
Am_BOX_HEIGHT 15 int
Am_FIXED_WIDTH false int, bool
Am_FINAL_FEEDBACK_WANTED true bool
Am_H_ALIGN <formula> {Am_LEFT_ALIGN,

Am_RIGHT_ALIGN,
Am_CENTER_ALIGN}




Page 222 Object Summary

Am_ Menu: Am_Button_Panel

Slot Default Value Type
all the slots of the button panel

Am_HOW_SET Am_CHOICE_SET Am_How_Set
Am_FINAL_ FEEDBACK_WANTED false bool
Am_WIDTH <formula> int
Am_HEIGHT <formula> int
Am_X OFFSET 2 int
Am_Y OFFSET 2 int
Am_V_SPACING -2 int
Am Menu Bar: Am_Menu

Slot Default Value Type
Am_ LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int
Am_HEIGHT <formula> int
Am_ACTIVE <formula> bool
Am_ACTIVE_2 true bool

Am_WIDGET_LOOK
Am_FONT

Am_ FILL STYLE
Am_ITEMS
Am_COMMAND

Am_MOTIF_LOOK
Am_Default_ Font
Am_Amulet_Purple
NULL
Am_Button_Command

Am_Widget_Look
Am_Font
Am_Stvle

Am Value_List
Am_ Command

Am _Vertical Scroll_ Bar:

Slot Default Value Type

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH 20 int

Am_HEIGHT 200 int

Am_ WIDGET_ LOOK Am_MOTIF_LOOK Am_Widget_Look
Am_FILL_STYLE Am_Amulet_Purple Am_Style

Am_VALUE_1 0 int or float /Valueat top
Am_VALUE_2 100 int or float / Value at bottom
Am_SMALL_INCREMENT 1 int or float / When click arrow
Am_LARGE_INCREMENT 10 int or float 4 When click “page”
Am_PERCENT_VISIBLE 0.2 float ﬂS&equdkamr

Am_COMMAND

Am_Scroll_Command

Am_Command

Am Horizontal_ Scroll Bar:

Slot Default Value Type

Am_LEFT 0 int

Am_TOP 0 int

Am WIDTH 200 int

Am_ HEIGHT 20 int

Am_WIDGET_ LOOK Am_MOTIF_ LOOK Am Widget_Look
Am_FILL_STYLE Am_Amulet_Purple Am_Style

Am_VALUE_1
Am_VALUE_2
Am_SMALL__TINCREMENT
Am_LARGE_INCREMENT
Am PERCENT_VISIBLE

Am_COMMAND

0
100
1
10
0.2

Am_Scroll_Command

int or float
int or float
int or float
int or float
float

Am_Command

// Value at top

// Value at bottom

// When click arrow
// When click “page”
// Size of indicator




Object Summary Page 223
Am_Scrolling Group: (used like a group with scroll bars)
Slot Default Value Type
Am_LEFT 0 int
Am_TOP 0 int
Am WIDTH 0 int
Am_ HEIGHT 0 int
Am_X OFFSET 0 int // Where scrolled to
Am_Y OFFSET 0 int Y/ " "
Am WIDGET_ LOOK Am_MOTIF_LOOK Am_Widget_Look
Am FILI, STYLE Am_Amulet_Purple Am_Style
Am_TINNER_FILIL_STYLE 0 2m_Style or 0  /If0uses FILL STYLE
Am_H_SCROLL_BAR true bool // Whether show horiz bar
Am V_SCROLL_BAR true bool Vi " v vertical "
Am_H_ SCROLL_BAR_ON_TOP false bool
Am_V_SCROLL_BAR_ON_LEFT false bool
Am_H_ SMALL_INCREMENT 10 int
Am_H_LARGE_INCREMENT <formula> int // Computed from page size
Am_V_SMALIL_INCREMENT 10 int
Am_V_LARGE_INCREMENT <formula> int y/4 Computed from page size
Am_INNER_WIDTH 400 int // Size of scrollable area
Am_TINNER_HEIGHT 400 int Y/ " "
Am_Text_Input_Widget:
Slot Default Value Type
Am_LEFT 0 int
Am_ TOP 0 int
Am_WIDTH 150 int
Am_HEIGHT <formula> int
Am WIDGET LOOK Am MOTIF LOOK Am_Widget_Look
Am_FONT Am_Default_Font Am_Font
Am_LABEL_FONT bold_font Am_Font
Am_FILL_STYLE Am_Amulet_Purple Am_Style
Am_ACTIVE_2 true bool

Am_COMMAND

Am_Text_ Input_Command Am_Command

8.9 Widget command objects

Am_Button_ Command:

Slot

Default Value

Type

Am_DO_ACTION
Am_UNDO_ACTION
Am_UNDO_THE_UNDO_ACTION
Am_TLABEL

Am_ID
Am_ACTIVE
Am_VALUE

Am_Command_Do

Am- Button_ Command_Undo
Am_Button Command_ Undo

“Label”

0
true
0

Am_Object_Proc*

Am_Object_Proc*
Am_Object_Proc*

Am_String or any
graphical object

any
bool
any




Page 224 Amulet Object Summary

Am_Menu_Line_ Command:

Slot Default Value Type
Am_DO_ACTION NULL Am_Object_Proc*
Am_UNDO_ACTION NULL Am_Object_Proc*
Am_UNDOQO_THE_ UNDO_ACTION NULL Am_Object_Proc¥*
Am_TLABEL "Menu_Line_ Command” Am_String

Am_ ACTIVE false bool

Am_VALUE NULL any
Am_Scroll_Command:

Slot Default Value Type

Am_DO_ACTION
Am_UNDO_ACTION
Am_UNDO_THE_UNDO_ACTION

Am_Command_Do
Am_Scroll_Command_Undo
Am_Scroll_Command_Undo

Am_Object_Proc*
Am_Object__Proc*
Am_Object_Proc¥*

Am_LABEL “"Scrollbar” Am_String
Am_ACTIVE true bool

Am- VALUE 50 int

Am Text_Input_Command:

Slot Default Value Type

Am_ DO_ACTION
Am_UNDO_ACTION
Am_UNDO_THE_UNDO_ACTION
.Am_LABEL

Am_ACTIVE

Am_VALUE

Am_Command_Do
Am_Text_Input_Command_Undo
Am_Text_ Input_Command_ Undo
“Label” ‘

true

w i

Am_Object_Proc*
Am_Object_Proc*
Am_Object_Proc*
Am_String

bool

Am_String




Index Page 225

—_—A—

Add (for lists), 74
Add_Part, 114
Am_ABORT_ACTION, 162
Am_ABORT_IF_TOO_SMALL
, 144
Am_ABORT_WHEN, 130
Am_ACTIVE, 152,173
Am_ACTIVE (for Interactors),
135
Am_Arc, 99
Am_AS_LINE, 141, 144
Am_ATTACH_WHERE_HIT,
142
Am_BACK_INSIDE_ACTION,
162
Am_Beep, 120
Am_Bitmap, 105
Am_BOOL, 59
Am_Button_Panel, 178
Am_Call, 61, 171
Am_CHAR, 59
Am_Checkbox_Panel, 182
Am_Choice_Command, 138
Am_Choice_How_Set, 137
Am_Choice_Interactor, 137
Am_Cleanup, 96
Am_Clear_Inter_Trace, 51, 160
Am_COMMAND, 151
Am_Constraint_Context, 68
Am_COPY, 84
Am_CREATE_NEW_OBJECT_
ACTION, 144
Am_CURRENT_OBIJECT, 149
Am_Declare_Value_Formula,
71
Am_Define_Formula, 69
Am_Define_Value_Formula, 71
Am_Diamond_Stipple, 108
Am_DO_ACTION, 151
Am_Do_Events, 96
Am_DOUBLE, 59
Am_Double_Click_Time, 132,
206 '
Am_DRAW_COPY, 203
Am_Draw_Function, 203
Am_DRAW_OR, 203
Am_DRAW_XOR, 203
Am_Drawonable, 197
Am_EDIT TRANSLATION_T
ABLE, 147
Am_Error, 77

9. Index

Am_Exit_Main_Event_Loop, 96
Am_FEEDBACK_OBJECT,
141, 144
Am_Fill_Solid_Flag, 112
Am_FILL_STYLE, 97, 107
Am_FIRST_ONE_ONLY, 138
Am_FLIP_IF_CHANGE_SIDES
, 145
Am_FLOAT, 59
Am_Font, 104
Am_Function_Call, 62
Am_Get_Slot_Name, 58
Am_Get_Unique_ID_Tag, 80
Am_GRAPHICAL_PARTS, 114
Am_GRID_PROC, 142
Am_Group, 32, 34,113
Am_GROWING, 141
Am_HAS_BEEN_UNDONE,
160
Am_HEAD, 74
Am_Height_Of_Parts, 113
Am_HIT_THRESHOLD, 98
Am_Horizontal_Layout, 114
Am_Horizontal_Scroll_Bar, 186
Am_HOW_MANY_POINTS,
144
Am_HOW_SET, 137
Am_ID_Tag, 80
Am_Image Array, 106
Am_INHERIT (on slots), 84
Am_Initialize, 96
Am_Input_Char, 130
Am_Input_Event, 205
Am_Input_Event_Handlers, 204
Am_Instance_[Iterator, 76
Am_INT, 59
Am_Inter_In, 134
Am_Inter_In_Leaf, 134
Am_Inter_In_Part, 134
Am_Inter_In_Text, 134
Am_Inter_In_Text_Leaf, 134
Am_Inter_In_Text_Part, 134
Am_INTER_PRIORITY_DIFF,
150
Am_Inter_Trace_Options, 51,
160
Am_Interactor (object), 135
Am_INTERIM_SELECTED,
137
Am_INTERIM_VALUE, 158,
159
Am_ITEM_PROTOTYPE, 116
Am_ITEMS, 116, 174
Am_Join_Style_Flag, 111

Am_LABEL, 152
Am_LAYOUT, 114
Am_Line, 99
Am_Line_Cap_Flag, 110
Am_Line_Solid_Flag, 111
Am_LINE_STYLE, 97, 107
Am_LOCAL (on slots), 84
Am_LONG, 59
Am_MACINTOSH_LOOK, 172
Am_Main_Event_Loop, 96
Am_Main_Loop_Go, 206
Am_Map, 116
Am_Menu, 182
Am_Menu_Bar, 184
Am_Merge_Pathname, 120
Am_MINIMUM_WIDTH, 142,
144
Am_MOTIF_LOOK, 172
Am_Move_Grow_Interactor, 45 s
140
Am_Move_Grow_Where_Attac
h, 142
Am_Move_Object, 119
Am_Multiple_Undo_Object,
155
Am_New_Points_Interactor,
143
Am_No_Font, 63
Am_No_Object, 63
Am_No_Style, 63, 97
Am_NONE, 59
Am_OBJECT, 59
Am_Obiject_Advanced, 83, 84
Am_OBJECT_MODIFIED, 159
Am_Object_Proc, 61
Am_OLD_INTERIM_VALUE,
158
Am_QOLD_VALUE, 159
Am_One_Shot_Interactor, 44,
139
Am_OTHER_WINDOWS, 151
Am_OUTSIDE_ACTION, 162
Am_OUTSIDE_STOP_ACTIO
N, 163
Am_OWNER_DEPT, 150
Am_PARENT, 152, 173
Am_Part_Iterator, 76
Am_PERFORM_UNDO, 156
Am_PERFORM_UNDO_THE_
UNDO, 156
Am_Point_In_Leaf, 119
Am_Point_In_Obj, 119
Am_Point_In_Part, 119
Am_Point_List, 102



Page 226 Index

Am_Polygon, 101
Am_PRETEND_TO_BE_LEAF,
98,119
Am_PRIORITY, 149
Am_PROC, 59
Am_Ptr, 60
Am_Radio_Button_Panel, 181
Am_Rank, 117, 150
Am_Rectangle, 98
Am_REGISTER_COMMAND,
157
Am_Register_Slot_Key, 58
Am_Register_Slot_Name, 57
Am_Root_Obiject, 65
Am_Roundtangle, 100
Am_RUN_ALSO, 150
Am_RUNNING_ACTION, 162
Am_RUNNING_WHERE_OBJ
ECT, 134
Am_RUNNING_WHERE_TES
T, 134
Am_Screen, 122
Am_Scroll_Bar_Command, 187
Am_Scrolling_Group, 189
Am_SELECTED, 137
Am_Set_Inter_Trace, 51, 160
Am_Single_Undo_Object, 155
Am_Slot_Advanced, 83, 84
Am_Slot_Iterator, 76
Am_Slot_Name_Exists, 58
Am_Standard_Opal_Handlers,
204
Am_START_ACTION, 162
Am_START _CHAR, 149
Am_START_OBJECT, 148
Am_START_WHEN, 130
Am_START_WHERE_TEST,
133
Am_STATIC, 84
Am_STOP_ACTION, 162
Am_STOP_WHEN, 130
Am_STRING, 59, 60
Am_Style, 107 .
Am_TAIL, 74
Am_Text, 103
Am_TEXT_EDIT_FUNCTION,
147
Am_Text Edit_Interactor, 146
Am_Text_Input_Command, 193
Am_Text_Input_Widget, 192
Am_To- Bottom, 119
Am_To_Top, 119
Am_TOO_SMALL, 159
Am_Translate_Coordinates, 120
Am_UNDO_ACTION, 151
Am_UNDO_ALLOWED, 156
Am_UNDO_HANDLER, 155
Am_UNDO_THE_UNDO_ACT
ION, 151

Am_UNDO_THE_UNDO_ALL
OWED, 156
Am_Value, 63, 70, 159
of Commands, 151
Am_Value_List, 73
Am_Vertical_Layout, 114
Am_Vertical_Scroll_Bar, 186
Am_VISIBLE, 97
Am_VOIDPTR, 59
Am_WHERE_ATTACH, 142
Am_Where_Function, 134
Am_WIDGET_LOOK, 172
Am_Width_Of Parts, 113
Am_Window, 121, 149
Am_WINDOWS_LOOK, 172
Am_WRAPPER, 59, 78
Am_WRAPPER_DATA_DECL,
79
Am_WRAPPER_DATA_IMPL,
79
AMULET.LIB, 6
AMULET_DIR, 5,9
AMULET_VARS_FILE, 9
amulet-users, 4
Animation, 96
Any (event modifier), 131
ANY_KEYBOARD, 131
application interface, 170
arc, 99
Arrow Keys (on Keyboard), 131

—B—

bboard, 4

beep, 120, 200
Behaviors, 128
BitBlt, 200
bitmap, 105

Bool (type), 60
bugs (reporting), 4

—C—

cap style, 110
casting, 23
CC
compatibility, 3
Makefile.vars.CC.*, 10
cc (constraint context), 68
char* (in objects), 60
checkers demo, 14
circle, 99
cleanup, 96
Clear_Area, 200
Clear_Clip, 202
Clip regions, 201
color, 108, 110
command objects, 47, 151
compiling, 4

compiling Amulet

PC, 6

Unix, 10
Configure_Notify, 205
Constraint context, 68
constraints, 35, 40
Control (event modifier), 131
Create, 65

for Am_Drawonable, 197
Create (for formulas), 72
Create_Offscreen, 198
Creating Objects, 64

—D—

dashed lines, 111
DEBUG (compiler switch), 12
debugging, 51
Debugging Interactors, 51, 160
Declaring Formulas, 70
default values, 31
Defining Formulas, 69
DELETE, 147
Delete (on Lists), 75
Demon Bits, 90
Demon queue, 89
Demon Set, 85
Demons, 85

object, 85

slot, 87
demos

checkers, 14

goodbye button, 14

goodbye interactor, 14

hello world, 14

space, 14
destroy, 31
Destroy (objects), 65
Destroy_Notify, 205
Destructive modification (of

wrapper), 77
diamond stipple, 108
Double-click, 132
Draw_2_Lines, 204
Draw_3_Lines, 204
Draw_Arc, 203
Draw_Image, 203
Draw_Line, 203
Draw_Lines, 203
Draw_Rectangle, 204
Draw_Roundtangle, 204
Draw_Text, 204
drawable, 197
Drawonable, 197
dynamic typing, 23

—E—
Eager Demon, 90



Index Page 227

End (for lists), 73
Errors, 77

Events, 130
Exposure_Notify, 205

—F—

feedback, 46
Filenames, 120
fill style, 107
filling styles, 97
First (for lists), 74
Flush_Output, 200
font, 104
For loop (through lists), 74
Formula

Inheritance, 84
formulas, 36, 68
Formulas in slots, 72
Frame_Resize_Notify, 205
Function Keys, 131

—G—

Garnet, 3
gee
compatibility, 3
GCC (compiler switch), 12
Makefile.vars.gcc.*, 10
Gem, 197
gem.h, 197
Get, 22, 56
Get (on Lists), 74
Get_Char_Width, 201
Get_Font_Properties, 201
Get_Image_Size, 201
Get_Input_Dispatch_Functions,
205
Get_Key, 67
Get_Name(), 66
Get_Owner, 67
Get_Part, 67
Get_Polygon_Bounding_Box,
203
Get_Prototype, 65
Get_Root_Drawonable, 197
Get_Sibling, 67
Get_Slot, 83
Get_Slot_Type, 57
Get_String_Extents, 201
Get_StringWidth, 201
Get_Window_Mask, 206
goodbye button demo, 14
goodbye interactor demo, 14
graphical parts, 114
Gravity, 142
Gridding, 142
group, 94
groups, 32, 113

GV,71
GV_Owner, 72
GV_Part, 72
GV_Sibling, 72
GVM, 72

—H—

Halftone_Stipple, 108
halftones, 108

header files, 20

hello world, 14, 95

hit threshold, 98
horizontal layout, 114
HP (compiler switch), 12

S

Iconify_Notify, 205
idefs.h, 127
images, 106
In_Clip, 202
Include Files (for Interactors),

127
inheritance, 23, 64

of formulas, 84

of slots, 84
initialization, 96
Input Events, 130
Input_Event_Notify, 205
Inspector, 25, 51
inspectr.cpp, 6
installing Amulet

PC, 5

Unix, 9
instances, 27
inter.h, 127
inter_advanced.h, 127
interactors, 42
inter-process-communication, 96
Is_Instance_Of, 65
Is_Part_Of, 67
Is_Slot_Inherited, 65
item prototype, 116
items, 116
Iterators, 75

—J—

join style, 111

—L—

Last (for lists), 74
Last (on iterators), 75
layout, 114

leaf elements, 98
Length (on lists), 75
libamulet.a, 10

line, 99

line style, 107
line styles, 97
Lists, 73

—M—

mailing list, 4

main event loop, 96

Main_Loop (in Gem), 206

Make_Empty (on lists), 75

Make_Unique, 79

Makefile.vars.*, 10

maps, 116

Member (on Lists), 75

Menu Bar, 184

Meta (event modifier), 131

Methods (in slots of objects), 61

Minimum Sizes, 142, 144

Mouse buttons, 131

Multiple clicks, 132

Multiple Windows (for
Interactors), 150

—N—

Named Parts, 66
Narrow

for Am_Drawonable, 199
NEED_BOOL, 12
NEED_MEMMOVE, 12
NEED_STRING, 12
Next (for lists), 74
Next (on iterators), 75
Note_Reference, 79
NULL, 63

—_0—

objects, 22

objects.h (include file), 56

objects_advanced.h (include
file), 56

opal, 93

Operation (of Interactors), 129

ORE, 55

oval, 99
owner, 94

—P—
Parent hierarchy, 152
part, 94
Parts, 66

pathnames, 120
PC filenames, 8
polygon, 101
Pop_Clip, 202
Prev (for lists), 73



Page 228 Index

Print_Name(), 66

Priority levels (of Interactors),
149

Process Immediate_Event, 206

Process_Event, 206

prototype/instance, 22

Prototype-Instance, 56

prototypes, 28

Push_Clip, 202

—R—

rank, 117

rectangle, 98

Release, 79

Remove_From_Owner, 67

Remove_Part, 67, 114

Remove_Slot(), 66

reordering objects, 119

roundtangle, 100

Running where (for Interactors),
134

—S—

sample programs. See demos

scroll bars, 186

self, 68

Set, 22, 56

Set (on Lists), 75

Set_Clip, 202

Set_Cursor, 200

Set_Enter_Leave, 205

Set_Input_Dispatch_Functions,
205

Set_Multi_Window, 205

Set_Single_Constraint_Mode,
84

Set_Want_Move, 205

Shift (event modifier), 131

Single_Constraint_Mode, 84

Slot, 56
inheritance, 84

slot key, 22

Slot keys, 57

Slot types, 58

slots, 22

Snapping, 142

sockets, 96

space demo, 14

standard_slots.h (include file),
56

Start (for lists), 73

Start (on iterators), 75

Start where (for Interactors),
133

State Machine (for Interactors),
129

stipples, 108, 112

Strings, 60, 103

style, 107

—T—

text, 103

Text editing keys, 147

text functions, 105

Text Input Widget, 192
Thick_Line, 108

thickness, 110

Tracing Interactors, 51, 160
Translate_Coordinates, 200

Translate_From_Virtual_Source

, 201
translating coordinates, 120
tutorial.cc, 19
tutorial.cpp, 19
type casting, 23
types, 23

—U—

Undo, 154
Undo (of widgets), 171

—_V—

Valid
for Am_Value, 64
for wrappers, 63
Value, 63
value_list.h, 73
value_list.h (include file), 56
vertical layout, 114
visible, 97
Visual C++, 6
compatibility, 3

—W—

widgets, 48
undo, 171
windows, 121
Wrappers, 62
Wrappers, destructive
modification, 77
Wrappers, writing of, 78
Writing a wrapper, 78



