
Replicated Training in
Self-Driving Database Management Systems

Gustavo E. Angulo Mezerhane

CMU-CS-19-129

December 2019

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Andrew Pavlo, Chair
David G. Andersen

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2019 Gustavo E. Angulo Mezerhane

Keywords: Database Systems, Replication, Machine Learning

Para mis padres Gustavo y Claret

iv

Abstract

Self-driving database management systems (DBMSs) are a new family of
DBMSs that can optimize themselves for better performance without human
intervention. Self-driving DBMSs use machine learning (ML) models that
predict system behaviors and make planning decisions based on the workload
the system sees. These ML models are trained using metrics produced by
different components running inside the system. Self-driving DBMSs are a
challenging environment for these models, as they require a significant amount
of training data that must be representative of the specific database the model
is running on. To obtain such data, self-driving DBMSs must generate this
training data themselves in an online setting. This data generation, however,
imposes a performance overhead during query execution.

To deal with this performance overhead, we propose a novel technique
named Replicated Training that leverages the existing distributed master-replica
architecture of a self-driving DBMS to generate training data for models.
As opposed to generating training data solely in the master node, Replicated
Training load balances this resource-intensive task across the distributed replica
nodes. Under Replicated Training, each replica dynamically controls training
data collection if it needs more resources to keep up with the master node.
To show the effectiveness of our technique, we implement it in NoisePage, a
self-driving DBMS, and evaluate it in a distributed environment. Our experi-
ments show that training data collection in a DBMS incurs a noticeable 11%
performance overhead in the master node, and using Replicated Training elim-
inates this overhead in the master node while still ensuring that replicas keep
up with the master with low delay. Finally, we show that Replicated Training
produces ML models that have accuracies comparable to those trained solely
on the master node.

vi

Acknowledgments

I want to thank my advisor Andy Pavlo for his mentorship not just through this entire
project, but throughout the majority of my undergraduate college experience. Having fun
is a significant motivator for my work ethic, and Andy showed me the joy in doing sick
computer science work. His lessons and sensational stories are something I will carry
dearly into my next chapter of life. I also want to shoutout and thank the fantastic peers
I’ve worked with throughout my tenure with the CMU Database Group, including but not
limited to: Matt Butrovich, Tianyu Li, Lin Ma, John Rollinson, Wan Shen Lim, Amadou
Ngom, and Terrier. I wish them all the best and I am hyped for all the amazing work
they will continue to do. I want to thank Hadley Killen for her unwavering support and
excitement about me pursuing my passions. Finalmente, quiero darle mis gracias a mi
familia por su apoyo y amor. Todos mis logros son por y gracias a ellos.

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 4

2 Background 5

2.1 Self-Driving Database Management Systems 5

2.2 Replication . 6

2.2.1 Replication Delay . 7

2.3 Training Data Collection . 7

2.4 Active Learning . 8

3 System Architecture 11

3.1 Transactions . 11

3.2 Timestamp Manager . 12

3.3 Logging . 13

3.3.1 Log Serializer Task . 14

3.3.2 Log Consumer Tasks . 14

3.4 Recovery . 16

3.4.1 Log Record Replay . 17

3.4.2 Transaction Replaying . 17

3.5 Internal Replication Protocol . 19

ix

3.6 Replication . 20

4 Replicated Training 23
4.1 Replicated Training Architecture . 23

4.2 Dynamic Metrics Collection . 25

4.2.1 Metrics Collection Policies . 25

4.2.2 Partial Metrics Collection . 26

4.2.3 Dynamic Hybrid Logging . 26

4.3 Action Exploration . 27

5 Evaluation 29
5.1 Replication Architecture . 29

5.1.1 Arrival Rate . 30

5.1.2 Replication Delay Over Time 30

5.2 Metrics Overhead . 31

5.3 Dynamic Metrics Collection . 33

5.4 Self-Driving Models . 36

6 Related Work 39

7 Conclusions and Future Work 41

Bibliography 43

x

List of Figures

1.1 Metrics Overhead on Throughput – Effects of metrics collection on
throughput of TPC-C with 4 warehouses for various systems 3

3.1 Log Manager Architecture – The log manager receives as input log
record buffers from transactions, serializes these records, and sends them
to different destinations (e.g. disk). 13

3.2 Log Record Serialization Formats – Along with the log record, addi-
tional information must be serialized to ensure replayability. 15

3.3 Schedule With DDL Changes – This schedule is allowed under SNAPSHOT-
ISOLATION, but can create problematic races involving the DDL command. 18

3.4 IRP Packet Types – Packets are minimal in size to reduce network con-
gestion and speed up packet processing 20

3.5 Replication Architecture – Although there are other components in NoiseP-
age, this diagram highlights the processes involved in replicating data be-
tween a master and replica . 21

4.1 Self-driving DBMS Architectures – Replicated Training enhances a self-
driving DBMS by leveraging database replicas for training data generation 24

5.1 Sensitivity of Replication Delay – Measuring the average replication de-
lay with varying arrival rates in NoisePage over TPC-C with 4 warehouses
on Type 2 machines. When the arrival rate exceeds the transaction replay-
ing rate, delay sharply increases. The shaded region denotes one standard
deviation from the mean for each data point. 31

xi

5.2 Replication Delay in NoisePage – Measuring the average replication de-
lay in NoisePage over TPC-C with 4 warehouses on Type 2 machines. We
average the delay for each second, and plot the average over 10 benchmark
runs. The red line shows the running mean of the replication delay. 32

5.3 Metrics Overhead in NoisePage – Overhead of metrics collection over
TPC-C with 6 warehouses as we scale up the number of metrics exported. 33

5.4 Varying Delay Thresholds on Dynamic Metrics Collection (DMC) –
We execute the TPC-C benchmark, replicating the data between two Type
2 machines. The green regions on the graphs indicate when metrics col-
lection is enabled under DMC. 34

5.5 Quantity of Training Data Generation – As we increase the replication
delay threshold on the replica (e.g., configuration “Rep-30” has a 30ms
threshold), DMC generates more training data. “Rep-Unlimited” denotes
no threshold. The data sets are separated by each component. 35

5.6 Mean Average Error (MAE) Across DMC Configurations – As we in-
crease the replication delay threshold on the replica (e.g., configuration
“Rep-30” has a 30 ms threshold), Replicated Training produces more ac-
curate models. “Relica-Unlimited” denotes no threshold. 37

xii

List of Tables

2.1 Replication Protocol for Various DBMSs – Systems that do log shipping
can still have differences in their replication protocol. 7

5.1 Test Set Data Distribution – Processing time distribution in Log Serial-
izer Task for test set (30,000 total samples). 36

xiii

xiv

Chapter 1

Introduction

Database management systems (DBMSs) are notoriously hard and expensive to manage
and tune [44]. DBMSs can have hundreds of tuning knobs and configuration settings that
have a significant impact on the performance of the system. To best make use of these op-
tions, a database administrator (DBA) is in charge of hardware provisioning, monitoring,
and tuning for a DBMS. DBAs, however, are expensive to hire and do routine work such
as tuning individual knobs and monitoring their effects or scaling the DBMS hardware to
meet with demands. It plays a critical role in the deployment of a production DBMS, but
one that modern computational techniques could improve.

Previous research has explored using machine learning (ML) as a solution to this prob-
lem. ML is used to train models that predict the runtime behavior of DBMSs and auto-
mate tuning system configurations. Some systems have used ML as a central coordinating
component in the system, creating a new class of so-called self-driving DBMSs [34, 36].
These systems use ML for high-level decision making, such as workload prediction [20],
or system-wide tasks such as transaction scheduling [17]. Analogous to this, other systems
use ML to solve component-scoped challenges by creating so-called learned components.
Examples include learned index structures [16], cardinality estimation [15], and join or-
dering in the PostgreSQL query optimizer [22].

Other research has resulted in tools external to the DBMS that are powered by ML
models. The tools output system configurations, such as knob settings [10, 44, 48], or
make recommendations, such as adding or dropping indexes [9]. The DBA then tunes the
system by deciding which recommendations to apply.

All these approaches face the same problem: the ML models that power these tech-
niques require a lot of training samples. These models are trained using metrics collected

1

by the DBMS. These metrics include query arrival rates [20], latch contention in the trans-
action manager, and disk write performance in the log manager. The more metrics our
system generates, the more models we can train to automate its run time configurations.

Further, it is crucial to generate training data in different environments to prevent the
models from overfitting to one specific configuration. In cloud environments, even identi-
cal instance types can have significant variations in performance [8]. Accounting for such
differences during training data generation will make the models robust and resilient to
dynamic environments.

One possibility is to generate training data for models in an offline setting (i.e., not
during production execution). Some systems [33] capture production workloads to allow
DBAs to try out different system configurations on a snapshot of the database. Other
tuning systems [10, 44, 48] use training data from a simulated or prior execution to train
ML models that recommend configurations in new deployments. The problem with these
offline approaches is that the models are trained on past workloads and environments.
They do not test the effects of system configurations on the most recent workload. As
workloads evolve, the efficacy of these tool’s recommendations decreases if they are not
retrained [7].

In contrast, an online approach collects training data that the production system gener-
ates during live execution. Systems such as IBM’s LEO [23] and Automatic Indexing [9]
use metrics generated from live query execution as training data. These systems can also
tune their models on the fly, i.e., while the system is running. This technique has limi-
tations; however, as it will only collect data for the specific environment and configura-
tion the production system is currently running. As a result, the models could overfit the
production setting. On the other hand, the exploration and testing of configurations in a
production environment can have serious performance risks, so customers expect these
features to result in zero regressions on their performance [9]. These regressions include
both the overhead incurred from running these systems and the potential degradations of
harmful recommendations or configurations.

1.1 Motivation

The need for self-driving DBMS has increased with the growing size of data sets and the
desire to run complex analytics over that data [36]. As databases grow in size, so does their
complexity, and therefore the difficulty to tune the DBMS. DBAs spend approximately a
quarter of their time on tuning tasks and account for nearly 50% of a DBMS’s operating
cost [6]. Self-driving DBMSs could alleviate this problem by using ML models to optimize

2

themselves without human intervention, allowing DBAs to spend their valuable time on
other essential tasks.

In a self-driving DBMS, the training data, or input, to the ML models is metrics col-
lected during the execution of the system. For example, the logging component may col-
lect metrics on how long it takes to write data to disk. This metrics collection, however,
comes at an overhead to system performance. To measure the effects of metrics collection
in a DBMS, we execute an online transactional processing (OLTP) workload (TPC-C [5])
on PostgreSQL with and without metrics collection, taking the average throughput perfor-
mance over five runs. In our benchmark, the number of client threads equal to the number
of warehouses. We run this benchmark on an AWS m5d.4xlarge instance running with an
Intel Xeon Platinum 8175 with eight threads (16 hyper-threads). Our experiments indicate
that when scaling up the number of threads, the overhead of metrics collection decreases
the throughput of PostgreSQL by 11% on average.

Figure 1.1: Metrics Overhead on Throughput – Effects of metrics collection on
throughput of TPC-C with 4 warehouses for various systems

Further, we execute the TPC-C benchmark with four warehouses on an AWS m5ad.xlarge
instance, and show the effects of metrics collection on throughput for PostgreSQL and
MySQL-8 in Figure 1.1. The measurements show that metrics collection results in a no-

3

ticeable throughput degradation of 5.4% and 12.5% for PostgreSQL and MySQL-8, re-
spectively.

We propose a technique called Replicated Training for users that may not want to pay
the performance overhead of metrics collection on the master node, but still want to take
advantage of the autonomous capabilities of a self-driving DBMS. Many DBMSs operate
in a distributed master-replica architecture, where the master node sends new changes
to replica nodes that hold up-to-date copies of the database. Replicated Training makes
use of these replicas by using their metrics collected to train the ML models of a self-
driving DBMS. Doing so balances the overhead of training data generation across the
entire distributed system.

Replicated Training allows offloading metrics collection to replica nodes; however, the
system must still make sure that the replica can keep its copy of the database in sync with
the master. Many database users have strict service-level agreements (SLAs) with regards
to replication delay to limit the amount of data loss in the event of a node failure in an
asynchronous replication environment. Allowing metrics collection to run unchecked in
the replica can result in degradations in transaction replaying performance, resulting in
higher replication delays.

1.2 Contribution

We present our Replicated Training technique, discuss the system architecture considera-
tions that make it possible and implement it in NoisePage. We further propose additional
variants to the method to highlight its promising potential. Finally, we evaluate the effec-
tiveness of Replicated Training and show its ability to produce accurate models without
needing to pay the penalty of metrics collection on the master node.

The remainder of this thesis is structured as follows. We first discuss some background
for DBMSs and ML in Chapter 2. In Chapter 3, we describe the system architecture of
NoisePage, primarily focusing on the components that make distributed replication possi-
ble. We then present Replicated Training in Chapter 4, and discuss various considerations
and variants in the technique. Next, we evaluate Replicated Training in Chapter 5. Finally,
we discuss related work in Chapter 6 and conclude in Chapter 7.

4

Chapter 2

Background

2.1 Self-Driving Database Management Systems

Self-driving DBMSs are a family of DBMSs that utilize ML models to optimize their
runtime performance and behaviors [36]. Self-driving DBMS consist of the same infras-
tructure in a traditional DBMS, along with a central self-driving component to manage
the autonomous operation. At a high level, the self-driving infrastructure consists of a
modeling and prediction component. The modeling component receives as input metrics
collected throughout the system. It then builds ML models representative of the DBMS’s
runtime behavior. In the prediction component, these models are used to forecast future
workloads and recommend actions to optimize the DBMS’s configurations to handle these
workloads [20].

The self-driving component optimizes the DBMS by recommending and applying ac-
tions. Actions range from adjusting configuration knobs on the memory available to the
system, constructing index structures based on predicted future workloads, to even chang-
ing the storage layout of data in memory [36]. The self-driving component monitors the
consequences of applying these actions through the metrics collected by the system. If it
finds that an action has an unpredicted negative impact, the system can rollback the action.
The system also maintains a history of past actions and their effects.

5

2.2 Replication

Practically every production DBMS will support some form of replication. Most systems
will employ a hot-standby approach to replication, where a different database instance
is running on a separate machine. This instance, known as a replica node, will receive
changes from the master and replay them to create a consistent snapshot of the database.
In the event of the master failing, the replica can become the new master. The number of
replicas is provisioned by the user, and is usually at least two to ensure a greater degree of
fault tolerence.

Table 2.1 shows the replication protocol of various log shipping DBMSs. Production
systems handle how changes are communicated between the master and its replicas in
different ways. Most systems [14, 26, 30, 32, 35, 37] will do a form of log shipping,
where the primary node ships changes to the replica. The replica then replays the changes
in the order they were made on the master. Other systems [1, 12, 42] abstract away how
replication is done by letting an underlying cloud object storage handle the data replication.
To the system programmers, this appears as if all replicas are reading from the same logical
copy of the data.

If systems employ replication using log shipping, they will have to make the critical
decision of what type of logging to use: physical or logical logging. Physical logging
involves recording the physical changes that are made to the storage layer of the DBMS.
Logical logging, on the other hand, logically describes the high-level modifications made
to the data [47]. Most commercial systems that employ logical logging will implement
command logging, where the transactions themselves (or commands) are logged [21].
Each logging type has its tradeoffs. Physical logging carries more overhead during ex-
ecution because it produces more logs than logical logging, but is faster to replay and
more parallelizable during recovery. Logical logging, on the other hand, has less overhead
during execution (typically a single log per query) but is more expensive to replay during
recovery. Some systems [47] implement hybrid logging, which is a mix of logical and
physical logging. Hybrid logging dynamically determines which logging type to use that
best fits the replaying behavior of the workload.

Additionally, there are two ways changes are committed in a replicated setting. In
synchronous replication, the DBMS does not notify the user that their transaction has been
persisted in the database until at least one replica replays the changes. In asynchronous
replication, the user may be told the DBMS has persisted their transaction before a replica
has completely replayed their changes. Synchronous replication minimizes data loss in
the event of a master node failure, as all committed changes are guaranteed to be on some
replica. Synchronous replication, however, adds more latency to requests as at least one

6

remote replica must receive and replay the changes.

System Logging Type Replicated Commit Type
MemSQL [24] Logical Asynchronous
MongoDB [29, 30] Logical Asynchronous
MySQL [31, 32] Both Both
PostgreSQL [37] Physical Both
SQL Server [25, 26] Logical Both

Table 2.1: Replication Protocol for Various DBMSs – Systems that do log shipping can
still have differences in their replication protocol.

2.2.1 Replication Delay

A common problem that all DBMSs that support replication will suffer from is replication
delay: the difference in time between when a change is applied on the master, and when a
replica replays the change. Many DBMS users have strict service-level agreements (SLAs)
that they must adhere to. A delimited replication delay is a frequent SLA users expect
their DBMS to support to ensure a bounded degree of consistency between master and
replica nodes. Low replication delays also reduce the amount of data loss in the event
of a crash. Synchronous replication also increases this delay, as an extra network trip is
incurred before the transaction is allowed to commit.

2.3 Training Data Collection

Effective training data generation is a hard and expensive task for production ML mod-
els. Companies have entire teams of costly data analysts and spend thousands in com-
pute resources to generate enough training data for their models to produce reasonable
ouputs [39]. Training data is a vital piece of any ML operation, and there are many chal-
lenges associated with generating quality training data. Further, many ML techniques
involve supervised learning, where the training data must be labeled with a desired output
value.

There are two crucial facets of training data generation that we will concern ourselves
with: performing actions to produce this training data and choosing what data to gener-
ate. To illustrate the challenges in these two areas, we will discuss them in the context
of self-driving cars. Self-driving cars serve as an excellent comparison to self-driving

7

DBMSs as they are both expensive to deploy, and must be able to handle completely new
environments or workloads with little to no human interaction.

Performing actions to generate training data can be broken down into two parts: sam-
pling and labeling. Self-driving cars sample new data by driving through streets and
recording the environment of the car through the use of high-tech cameras. Apart from
the difficulty of building all the technology to capture the car’s conditions, this process
is costly. In the case of supervised learning models, the sampled data must then be la-
beled. Often times this requires large numbers of humans manually labeling objects in the
car’s film. For other domains, such as ML for medicine, labeling can often be incredibly
expensive as few people are qualified enough to label data accurately [39].

The other aspect we consider is choosing what data to sample. As we have discussed,
the process of sampling and labeling can be extremely resource-intensive. On the one
hand, the training data should be diverse for the ML models to adequately generalize [11].
Capturing every single environment and data point, however, is often not feasible. For
example, our self-driving car can prioritize learning how to drive down streets we’ve never
seen before. It’s not realistic, however, to drive down every possible road during every
different environment, such as daytime, nighttime, rain, rush hour, etc.

One approach is to build an environment, or gym, where the workload can be sim-
ulated to generate training data and see how the self-driving infrastructure behaves [4].
For example, one could construct a test track where a self-driving car could drive around
and learn. There are some obvious limitations to this approach. The first is cost: it may
be impossible to build such an environment depending on the resources required. Many
production DBMSs are too large and expensive to duplicate in a simulated environment.
Secondly, these simulated environments only approximate the real conditions. A car test
track would not perfectly replicate the chaotic and variable reality of driving in the real
world. Similarly, a simulated environment would not be able to perfectly represent the
variabilities of a mission-critical production system, such as workload spikes or machine
failures.

2.4 Active Learning

In some ML environments, training data annotation is often an expensive task, as we
discussed in Section 2.3. Suppose the DMBS collects metrics for query execution by
annotating queries with their runtime cost. The system needs to execute the query to
compute this runtime cost. Depending on the query, this could cost a lot of resources
such as CPU utilization or memory. Some of the variations to Replicated Training we

8

propose make use of an ML technique called active learning to overcome high labeling
cost environments. The idea behind active learning is that the model is allowed to choose
which data to label and train on [2]. In the example of query execution, the model may
determine that it does a poor job at predicting runtimes for queries that sort their output.
The model will, therefore, choose to only execute and generate metrics on queries that
contain a sort operator. Using active learning often leads to better model accuracy with
fewer training samples [41].

9

10

Chapter 3

System Architecture

NoisePage is an in-memory DBMS that supports ACID transactions and SNAPSHOT-
ISOLATION. The system is built in C++, and supports the PostgreSQL wire protcol for
communicating with the database server. In this chapter, we will discuss the architectural
components of NoisePage relevant to supporting Replicated Training.

3.1 Transactions

Transactions are the atomic unit of work in a DBMS. The way transactions in NoisePage
make updates to the database is conducive to a streamlined logging, recovery, and physical
replication scheme. NoisePage’s transactional engine is a multi-versioned delta store [40]
that supports SNAPSHOT-ISOLATION [3]. The transactional engine is coordinated by
the Transaction Manager (TM) component. In NoisePage’s transaction engine, readers do
not block writers and vice versa, however, write-write conflicts on a per tuple basis are
not allowed. When logging (Section 3.3) is disabled, transactions are considered active
between when they begin, and when they commit or abort. When logging is enabled,
transactions are active between when they begin, and when the log manager (LM) seri-
alizes their changes. Enabling synchronized commit further extends this by guaranteeing
that a transaction is active until its changes are persisted in the disk.

Tuples in NoisePage are uniquely identified by a TupleSlot that contains offset infor-
mation about the tuple. When a tuple is first inserted into a table, the TupleSlot denotes
the in-memory location in the table. Transactions update tuples in the database by creating
delta records that are not an updated copy of the tuple, but rather the after-image of the
changes. There are four types of delta records: Redo, Delete, Commit, and Abort. Redo

11

records represent both inserts and updates. Aside from the changes or transactional ac-
tions, the delta records hold additional information such as the transaction start timestamp
and what database and tables were modified. These pieces of information are necessary
for ensuring correct replaying of the record during recovery or replication. Delta records,
however, do not hold all the information needed to accomplish this. It is the role of the
LM, discussed in Section 3.3, to serialize any additional information required along with
the record.

Each transaction has its own redo buffer to store these records. Rather than using an
extendible buffer, redo buffers are fixed size (4096 bytes). Upon creation, transactions
acquire a buffer from a pre-allocated, centralized buffer pool. To record a change, a trans-
action reserves space in its redo buffer and writes in the new change. In the case that
there is not enough space left in the buffer, the transaction will relinquish the buffer to
the log manager, and receive a new one from the buffer pool. This allows downstream
consumers, such as logging and replication, to process these changes before a transaction
has completed.

To commit, the transaction will write a commit record to the redo buffer and relinquish
it to the log manager. During commit time, the oldest active transaction timestamp is also
queried from the TSM, and included in the commit record. Aborts, on the other hand,
require additional logic to ensure correct behavior during recovery and replication. We
discussed before that a transaction relinquishes its redo buffer to the log manager once
it is full. Due to this, an aborting transaction can have already persisted records. For
correct behavior during recovery and replication, an aborting transaction that has previ-
ously relinquished a redo buffer must also write and relinquish an abort record. Without
this abort record, a downstream consumer would be unable to differentiate between an
aborted transaction and an uncommitted, active transaction. From an observation of an
OLTP workload [5], however, it is rare that an aborting transaction will ever relinquish a
buffer, as the amount of data generated by an OLTP transaction rarely fills up an entire
redo buffer.

3.2 Timestamp Manager

The Timestamp Manager (TSM) is a central component of NoisePage that is in charge
of providing atomic timestamps to running transactions. Timestamps are globally unique
64-bit unsigned integers. A transaction is given a start timestamp when it begins, and a
commit timestamp if it commits.

The TSM also maintains an active transaction set that contains the start timestamp of

12

every active transaction running in the system. Components can query the TSM for the
oldest active transaction timestamp (smallest start timestamp) using this set. If there is
no oldest active transaction, it is indicated using a special value. The importance of this
information is discussed in Section 3.4. If logging is enabled, then once the LM (discussed
in section Section 3.3) serializes the delta records of a transaction, the transaction is re-
moved from the active transaction set. This prevents the background garbage collecttor
(GC) from cleaning up the transaction before its changes are persisted to disk.

Fast performance of polling for the oldest active transaction timestamp is crucial be-
cause it is done during the critical section of every committing transaction. When logging
is enabled, there is no bound on the number of active transactions, since transactions are
active until they are at least serialized. Due to this, polling for the oldest active transaction,
which requires scanning the entire active transaction set, can be a costly operation. Instead,
the TSM keeps a cached oldest active transaction timestamp. During commit, transactions
atomically read this value instead of scanning the active transaction set. Background GC
periodically (default to every 5 ms) refreshes the cached value. Although the cached value
might be a stale view of the system for a committing transaction, it still maintains correct-
ness, as the transaction associated with the cached value is guaranteed to have been active
at some point and older relative to any transaction which reads the cached value.

3.3 Logging

Log Manager

Replication Log
Consumer Task

Disk Log
Consumer Task Disk

Log Serializer Task

Network

Transaction

Transaction

Redo Buffers

Serialized Log Buffers

Figure 3.1: Log Manager Architecture – The log manager receives as input log record
buffers from transactions, serializes these records, and sends them to different destinations
(e.g. disk).

Changes to a database in NoisePage are persisted on disk using write-ahead logging

13

[28] through a dedicated component called the Log Manager (LM). The LM serializes
delta records such that they are entirely replayable on their own without any additional
in-memory metadata (e.g., attribute sizes), such as in the case of recovery after a system
crash or replication.

The LM coordinates multiple parallel tasks structured in a Producer-Consumer archi-
tecture shown in Figure 3.1. The producer, a log serializer task, feeds serialized log records
to multiple log consumer tasks (e.g., replication log consumer task).

3.3.1 Log Serializer Task

The log serializer tasks receive redo buffers from transactions and write their raw mem-
ory contents (ignoring any padding used for memory alignment) into fixed-sized buffers
(4096 bytes) to be processed by the log consumers. The serializer task ensures that all
the information needed to replay the delta record is included alongside it. For example,
large variable-length strings (varlens) in NoisePage are not inlined in the delta record but
instead stored in a separate memory location, with a pointer to the varlen entry stored in
the delta record. The serializer task must thus fetch the varlen entry and serialize it inline.

Figure 3.2 shows the serialized format of the log records. The delete, commit, and
abort records have fixed sizes of 29, 29, and 13 bytes, respectively. Due to the variability
in the updated data, the size of serialized redo records varies depending on the contents.
Over a run of the TPC-C benchmark [5] with four warehouses, NoisePage will generate
approximately 1 GB of total log data, with an average redo record size of 100 bytes.

The serialized ordering of the records is essential to ensure correct replayability. Recall
from Section 3.1 that transactions relinquish redo buffers as soon as they fill them. This
means that records of different transactions can be interleaved in the log. Additionally,
transactions can appear in the log in non-serial order relative to their start timestamp.
The only guarantee that is made is that records for individual transactions appear in the
order that they were created, with a commit or abort record always being the last record
to appear. As we will discuss in Section 3.4, this guarantee, along with the oldest active
transaction timestamp discussed in Section 3.1, is enough to achieve a consistent snapshot
of the database after replaying the log.

3.3.2 Log Consumer Tasks

The buffers generated by the log serializer are distributed to potentially multiple log con-
sumers. Each consumer is given a copy of the serialized buffer so they can each work

14

record len (uint32) record type (uint8) txn start timestamp (uint64)

database ID (uint32) table ID (uint32)

TupleSlot (uint64) num columns (uint16)

col ID 1 (uint32) col ID 2 (uint32)

col 1 attr size (uint8) col 2 attr size (uint8)

...

...

null bitmap (variable) val 1 val 2

val 3 varlen size (uint32) val 3 varlen content ...

col ID 3 (uint32)

col 3 attr size (uint8)

(a) Redo Record

record len (uint32) record type (uint8) txn start timestamp (uint64)

database ID (uint32) table ID (uint32) TupleSlot (uint64)

(b) Delete Record

record len (uint32) record type (uint8) txn start timestamp (uint64)

txn commit timestamp (uint64) oldest active txn timestamp (uint64)

(c) Commit Record

record len (uint32) record type (uint8) txn start timestamp (uint64)

(d) Abort Record

Figure 3.2: Log Record Serialization Formats – Along with the log record, additional
information must be serialized to ensure replayability.

15

independently of each other, preventing a slow consumer from slowing down the others.
Currently, NoisePage supports two consumers: (1) a disk consumer that writes logs to a
file on disk, and (2) a replication consumer that sends logs over the network to replicas.

The disk consumer task waits until it receives buffers from the serializer task, and
writes them to a log file. For proper performance in persisting the log file to the disk, we
take advantage of group commit, which is configurable by the user with a combination of
time and data size settings. For example, under the default settings, the disk consumer task
will persist the log file every 10 ms or if more than one megabyte of data has been written
since the last persist.

The replication consumer task also receives buffers from the serializer task and sends
them over the network to any replicas listening to the master. There is no group commit
done in order to minimize the replication delay. Instead, the system sends serialized logs
as soon as they are handed off to the replication consumer task. We describe the network
protocol used for sending logs between nodes in Section 3.5.

3.4 Recovery

The Recovery Manager (RM) component manages recovery in NoisePage. The RM re-
ceives serialized log records from an arbitrary source and replays them to produce a con-
sistent view of the database.

A log provider will deserialize log data into delta records, and hand them off to the RM.
The log provider provides an abstraction to the recovery manager as to what the source of
the records is. This way, log records can come from any source, such as a log file or over
the network, without any changes needed to the log replaying logic of the RM.

Abstracting the source of log records gives NoisePage the advantage that the replaying
component of replication can be implemented for “free.” By simply having the source of
records be a stream of logs over the network, a standby replica can use the RM to replay
the log records arriving from the master node. Other systems, such as PostgreSQL [37],
also take this approach for replication. This method of replication, however, requires the
processing model of the RM to be a streaming model. We can not take advantage of cases
when all the log data is available apriori, as is the case during single node crash recovery.
Other recovery algorithms, such as ARIES [28], take advantage of having access to all
the data from the start and trim out unnecessary processing.

16

3.4.1 Log Record Replay

The API for updating tables in the system allows for easy replaying of records. Recall
from Section 3.1 that transactions must write their changes as delta records in their private
buffers. The system takes advantage of this by passing tables a pointer directly to these
records in the buffer. This prevents having to make an additional copy of the data. Since
recovery deserializes delta records, there is no need to transform the data; the table API
accepts these delta records directly.

The TupleSlot contained in the replayed record is no longer valid during recovery, as it
represented a unique memory location before recovery. Instead, it is used during recovery
to create an internal mapping from the original TupleSlot to the new one when an insert
is replayed. Using the mapping, the RM can correctly identify what TupleSlot to apply
updates to after recovery.

Processing records that modify the catalog require additional logic. The metadata
stored in the catalog is kept in tables. These tables are the same structure used for user
tables in the system. This makes recovering the catalog metadata the same process as
updating a user table, as they appear as updates to the catalog tables. Despite this, the RM
needs additional logic to re-instantiate particular in-memory objects in the system, such as
indexes, views, or user tables.

While recovery could replay changes as it sees them in the log and roll them back in the
case of aborts, we will see in Section 3.4.2 that the RM must defer all updates until it sees
a commit or abort record anyway. Buffering also gives the added advantage that it prevents
the unnecessary work of replaying records for aborted transactions. When the RM sees an
abort record, it cleans up and discards any records buffered for that transaction. When the
RM sees a commit record, it processes the transactions as described in Section 3.4.2. The
transactions apply changes in the order they were made before recovery.

3.4.2 Transaction Replaying

The RM must make special considerations when replaying transactions because of the
streaming processing model of recovery and the design of our transactional engine. Recall
from Section 3.3 that the only guarantee we have about the ordering of logs is that changes
for an individual transaction appear in the log in the order they occurred. There are no
guarantees about how transactions are ordered relative to each other in the log, so it is the
responsibility of the RM to execute them in an ordering that results in a consistent view of
the database.

17

BEGIN;
BEGIN;
DROP TABLE foo;
COMMIT:

WRITE(foo);
COMMIT;

T1 T2

Ti
m

e

Figure 3.3: Schedule With DDL Changes – This schedule is allowed under SNAPSHOT-
ISOLATION, but can create problematic races involving the DDL command.

Recall from Section 3.1 that NoisePage supports SNAPSHOT-ISOLATION, which
means that each transaction operates on a “snapshot” of the database taken when the trans-
action begins. Additionally, any committed transactions which executed concurrently are
guaranteed to not have any write-write conflicts with each other on a per tuple basis. The
TM guarantees that there are no dependencies between transactions that executed con-
currently and all committed transactions that the RM replays will successfully commit.
Further, because we use physical logging, all the values written during log replaying are
predetermined (i.e., no writes are based on randomization). Based on these two guaran-
tees, the RM can replay transactions sequentially (i.e., a transaction commits before the
next one is allowed to begin).

We have determined that the RM can execute transactions sequentially, but the order in
that it executes them is also important. Consider the schedule in Figure 3.3 that is allowed
under SNAPSHOT-ISOLATION. Although there is no write-write conflict in this sched-
ule, there is an implicit conflict due to the DDL change (DROP TABLE). During replaying,
transaction T1 must be replayed before transaction T2 in order to ensure that T1’s write to
table foo occurs before T2 deletes foo. There are no guarantees about the ordering of logs
between transactions, so T2’s changes can appear before T1’s changes in the log. Even
worse, if T1 is a long-running transaction, its changes may not appear until much further
along in the log. This raises the issue of when is it safe to execute a transaction.

Executing transactions in the order in that they appear in the log could violate SNAPSHOT-
ISOLATION, since executing a newer transaction first would create a different snapshot
than what an older transaction saw when it was executed before recovery. Thus, the RM
must execute transactions in the order that they were created (i.e., ordered by their start

18

timestamp).

One approach for accomplishing this would be as follows: A transaction Ti with start
timestamp i is safe to replay after the RM has replayed transaction Ti−1. The TM, however,
does not guarantee that consecutive transactions have consecutive start timestamps. Ad-
ditional processes, such as GC or assigning commit timestamps, also receive timestamps
from the TSM.

The solution to this problem is to use the oldest active transaction timestamp (described
in Section 3.1) as an indicator for when to replay a transaction. When a transaction com-
mits, the LM includes the oldest active transaction timestamp at the time of commit in
the commit record (shown in Figure 3.2(c)). When a transaction is entirely deserialized,
rather than executing it right away, the RM defers its execution. Using the oldest active
transaction timestamp i stored in the commit record, the RM then executes, in sorted order
oldest-to-newest, all deferred transactions with start timestamps j where j ≤ i. If i is the
special value reserved for indicating there are no active transactions, then the RM executes
all deferred transactions.

Once again, consider the schedule in Figure 3.3. Suppose the start timestamps of T1
and T2 are 1 and 2 respectively. The commit record of T2 will indicate that the oldest
active transaction timestamp at commit time was 1. If T2 is serialized before T1, it will
be deferred because 1 < 2. Eventually the RM deserializes and executes T1, followed
immediately by T2, because there were no older transactions at the time T1 committed.

3.5 Internal Replication Protocol

The Internal Replication Protocol (IRP) is the network protocol used to communicate be-
tween nodes of NoisePage. IRP uses TCP/IP sockets to send packets of data between the
master and replica node(s). NoisePage uses TCP instead of UDP for its delivery guarantee
since no log data can be lost over the network. NoisePage has a network layer that sits at
the top of the system to handle client and other NoisePage node connections. The network
layer is designed to support multiple protocols on separate ports. Currently it supports IRP
and the PostgreSQL Wire Protocol (described in [19]).

Packets in IRP consist of a header and payload. The header is used by NoisePage’s
network layer to parse the packet. It consists of single char to identify the packet type,
and a uint32 t value for the size of the packet. This portion of the protocol resembles the
PostgreSQL wire protocol.

The current packet types for IRP are shown in Figure 3.4. The Replication Data packet

19

packet type (char) packet len (uint32)

Header

message id (uint64)

data len (uint64) raw log byte data

(a) Replication Data Packet

packet type (char) packet len (uint32)

(b) End Replication and Replica Synced Packets

Figure 3.4: IRP Packet Types – Packets are minimal in size to reduce network congestion
and speed up packet processing

(Figure 3.4(a)) holds variable-length portions of the serialized log data from the master
node’s LM to the replica. The End Replication packet is sent by the master and tells the
replica to end replication. The Replica Synced packet is sent from the replica and notifies
the master that the data in both nodes are in sync. Both these packets (figure Figure 3.4(b))
require no payload as the type in the header entirely describes the purpose of the packet.

3.6 Replication

Figure 3.5 shows an overview of the replication architecture in NoisePage. Replication can
be done by two NoisePage instances, a master and a replica, running on different machines
connected to the internet. Replication is established by a connection between the master’s
LM and the replica’s network layer. The LM serializes the logs on the master and places
them in a Replication Data packet that is shipped over the network to a replica. The packets
reach the replica’s network layer and are handed off to the RM running in the system. A
log provider parses the log data from these arriving packets into log records. For replaying
these logs, we discussed in Section 3.4 that we can accomplish replication using the same
RM logic used for crash recovery. If the replica is ever in sync with the master (i.e., there
are no more logs left to replay), it will also send a Replica Synced packet.

The RM running on the replica will sit in a loop, continually processing log records

20

Log Manager

Replication Log
Consumer Task

Network

Master Node

Network Layer

Database

Transaction Manager

Txn Txn Txn

ReplicationDataPacket

Clients

Replica Node

Network Layer

Database

Transaction
Manager

Txn

Recovery Manager

Replication Log Provider Deferred
Transactions

Txn Txn

Txn Txn

ReplicaSyncedPacket

Figure 3.5: Replication Architecture – Although there are other components in NoiseP-
age, this diagram highlights the processes involved in replicating data between a master
and replica

21

as they arrive over the network. This is unlike in crash recovery, where the RM will
terminate when it reaches the end of the log. Instead, the master can terminate replication
with a replica by sending it an End Replication packet.

22

Chapter 4

Replicated Training

We discussed in Section 1.1 how self-driving capabilities are beneficial to a system, but
collecting the necessary training data is detrimental to performance. Replicated Training
leverages the existing architecture of a distributed DBMS to support self-driving infras-
tructure without paying the penalty of supplying training data solely from the master.

We first present the Replicated Training architecture in a self-driving DBMS. We then
discuss how Replicated Training can adhere to performance requirements set by the user
through Dynamic Metrics Collection (DMC) while still generating useful models for the
system. We propose different policies and techniques to control and improve the effec-
tiveness of DMC. Lastly, we present future extensions to Replicated Training to help with
action exploration in a self-driving DBMS.

4.1 Replicated Training Architecture

The crux of Replicated Training is to use resources available on existing replicas to gener-
ate additional training data for models in a self-driving DBMSs. In a self-driving DBMS
architecture (shown in Figure 4.1(a)), the master node generates metrics by executing
queries. The DBMS aggregates and sends the metrics to the self-driving infrastructure,
which then uses them as input to train ML models. For instance, the DBMS may keep
metrics on which tables and columns queries access over time. The master node sends
these aggregated metrics to the self-driving infrastructure that trains a model to forecast
future data accesses [20]. The system can then use this model to predict future workloads
and recommend actions that improve performance, such as building an index on a column
the self-driving infrastructure expects will be frequently scanned. The critical issue is that

23

Self-Driving
Infrastructure

PredictionModeling

Master

Replica

Replica

Replica
Physical logs

ActionsMetrics

(a) Without Replicated Training

Self-Driving
Infrastructure

PredictionModeling

Master

Replica

Replica

Replica
Logical logs

ActionsMetrics

(b) With Replicated Training

Figure 4.1: Self-driving DBMS Architectures – Replicated Training enhances a self-
driving DBMS by leveraging database replicas for training data generation

metrics collection penalizes performance on the master node, which may exceed some
user’s requirements.

With Replicated Training, the system balances the metrics collection overhead by dis-
tributing the task of training data generation across the entire distributed topology. As
shown in Figure 4.1(b), replicas send their aggregated metrics to the self-driving infras-
tructure. The process of training models and recommending actions remains the same as
in the self-driving architecture shown in Figure 4.1(a). The user can choose whether the
master should output metrics, or rely entirely on replicas for training data generation. As
we will discuss in Section 4.3, the self-driving infrastructure can also choose to test actions
on a replica before applying them on the master node.

24

4.2 Dynamic Metrics Collection

Customers often have strict SLAs for their DBMS deployments. For instance, some cus-
tomers may require that the replication delay (discussed in Section 2.2) between their
master and replica nodes is at most 100 milliseconds. We showed in Section 1.1, however,
that metrics collection causes performance degradations in a DBMS. To avoid this issue,
we propose a method that allows the DBMS to dynamically control when to collect met-
rics under Replicated Training. Instead of metrics collection being permanently enabled,
the system enables metrics when replication complies with some policy. We also propose
tuning the granularity of metrics collection by selectively enabling or disabling metrics
for specific components. Finally, we propose dynamically performing hybrid logging to
exercise more layers of the system in the replica node.

4.2.1 Metrics Collection Policies

To control when metrics collection is enabled, Replicated Training can impose a policy
that determines when to enable or disable metrics collection. For this section, we will
assume that metrics are either enabled or disabled across all components, but as we will
see in Section 4.2.2, this is not always the case.

The goal of Dynamic Metrics Collection is to ensure that the replica can remain in sync
with the master when using Replicated Training. Since replication delay gives a numerical
estimate of how in sync the replica is with the master, we propose a policy around this
value as follows: if the replication delay during the previous time window (default: 1
second) exceeds a fixed threshold (e.g., 100 milliseconds), then the system disables metrics
collection until the delay drops below the threshold, after which the system can enable
metrics once again. Assuming a reasonable threshold relative to the expected replication
delay, even if Replicated Training causes the to replica fall behind and exceed the delay
threshold, it should be able to catch up once metrics collection is disabled. Users can
configure this threshold based on their system requirements. Further, as we will see in
Section 5.3, metrics collection is generally enabled for more time with a higher delay
threshold, resulting in more training data generated.

It is worth noting that the strictness of a metrics collection policy can affect the quality
of the training data. Consider an environment with high resource contention where the
replica can only keep up with the master when resources are abundant. With too restrictive
of a policy, metrics collection will only be enabled when there is low resource contention,
resulting in training data that is highly skewed towards such an environment. By using
a more relaxed policy, the system can still generate training data during periods of high

25

resource contention, improving the quality of the training data.

4.2.2 Partial Metrics Collection

Some system’s [13, 27] metrics collection allows for more fine-grained metrics control
than “all-or-nothing.” The system can toggle metrics for individual components during
runtime, which we call Partial Metrics Collection. Enabling or disabling metrics for parts
of the system can reduce the overall Replicated Training overhead while still generating
some amount of training data.

The ability to choose which metrics to enable or disable opens up unique possibili-
ties for dynamic metrics collection. One option would be to disable metrics on the log
replaying critical path when the replica falls behind. This option can minimize the over-
head while the replica is catching up, while still generating metrics for other tasks in the
system, such as garbage collection. Another approach would be to use active learning [2]
to prioritize what metrics to keep enabled, and which ones can be disabled. For example,
if a replica is violating the collection policy, it can use active learning to determine what
components the system’s ML models no longer need training data from, and disable met-
rics for those components. Inversely, if the replica is complying with the collection policy,
it may choose to enable metrics for components whose collection is currently disabled if
our models require their specific training data. Using active learning reduces the overall
overhead of metrics collection while ensuring that models receive the training data they
need the most.

4.2.3 Dynamic Hybrid Logging

We discussed in Section 2.2 how some systems use physical logging to replicate data
across machines. Physical logs have the advantage that the replica can replay them with-
out additional processing. In the case of training data generation, however, this can be a
disadvantage, as the upper layers of the system are not exercised and, therefore, not gen-
erating metrics. Logical logging requires processing through the entire DBMS stack (e.g.,
parsing, optimizing, execution) to replay. This additional processing generates more met-
rics than processing physical logs. To take advantage of this property of logical logging,
we propose a modified hybrid logging scheme that always uses physical logging for repli-
cation, but sends a subset of the read workload as logical logs for generating training data
(shown in Figure 4.1(b)). These logical logs are then replayed for metrics collection.

Similar to the policies mentioned in Section 4.2.1, we propose two policies to control

26

which read queries the master will send as logical logs to the replica nodes. The first is
to use random sampling: whenever a new read query arrives in the system, it samples a
binomial distribution [45] to decide if it should send this query to the replica. By adjusting
the success probability of the binomial distribution, the master can control the number of
queries sent to the replica, thereby limiting the number of resources used on the replica to
replay logical logs. The second approach is similar to the active learning approach pro-
posed in Section 4.2.2. The self-driving infrastructure can use active learning to determine
what components of the system it needs to exercise and choose queries based on that. For
example, if the self-driving infrastructure has a model on query execution that determines
it needs more training data on aggregations, the system can sample queries containing
GROUP BY clauses. This technique would work well with the active learning-based partial
metrics collection approach proposed in Section 4.2.2, as the system can decide which
components it needs metrics for and which queries the system can sample to target them.

4.3 Action Exploration

A self-driving DBMSs applies actions to the system to optimize for some objective func-
tion. The user can set an objective function (e.g., maximize throughput, minimize latency)
depending on their system requirements. Actions applied to the master, however, are not
always guaranteed to impact the objective function positively. The self-driving infrastruc-
ture might incorrectly predict an action to improve the system, but it does the opposite.

Similar to how Replicated Training leverages replicas for training data generation, we
propose using replicas to explore the effects of actions. When the self-driving infrastruc-
ture identifies a candidate action, it applies the action on one or more candidate replicas.
The self-driving infrastructure then monitors the metrics received from Replicated Train-
ing on the candidate replica(s) to evaluate the performance impact of the action. If the
self-driving infrastructure determines the action has a positive effect on the objective func-
tion, it applies the action on the master; otherwise, it undoes the action on the replica(s).
Using Replicated Training prevents the performance monitoring of the action from hav-
ing severe performance degradations by using the dynamic metrics collection described in
Section 4.2.

27

28

Chapter 5

Evaluation

We now evaluate our replication architecture and Replicated Training technique. We build
all the infrastructure within NoisePage. We use the following two types of machines for
our experimental evaluation:

• Type 1: Dual-socket 10-core Intel Xeon E5-2630v4 CPU, 128 GB of DRAM, and
a 500 GB Samsung 970 EVO Plus SSD. This machine is used for single-node mi-
crobenchmarking.

• Type 2: Single-socket 6-core Intel Xeon CPU E5-2420 CPU and 32GB of DRAM.
These machines are used for experiments involving replication between two nodes.
Each machine has a 1GB NIC and are connected to each other on the same switch
through 1GB Ethernet.

We first give an analysis of the overhead of metrics collection in NoisePage. We next
evaluate the OLTP performance of our replication architecture described in Chapter 3. We
then observe the behavior of dynamically controlling metrics exporting. Finally, we ana-
lyze the effectiveness of our Replicated Training technique to build accurate ML models.

5.1 Replication Architecture

To evaluate our system architecture, we use a write-heavy OLTP workload. Even though
reads are not replicated, a write-only workload is not representative of a real OLTP work-
load. We use the TPC-C benchmark [5] as our OLTP workload, which simulates a ware-

29

house order processing system. The number of warehouses is used as a scale factor for the
TPC-C database, and is also equal to the number of client threads in our experiments.

To simulate a distributed environment, we execute the TPC-C benchmark between two
NoisePage instances running on Type 2 machines. We use a master-replica architecture
where one instance is the master and serves requests, and the other machine is a hot-
standby replica node. We replicate data asynchronously across the two machines. We use
the Network Time Protocol (NTP) to synchronize clocks in our machines to get measure-
ments for replication delay. We do not require high clock precision because we are not
making any decisions based on timestamp orderings, we are only using the timestamps to
estimate delay.

We now evaluate our replication architecture using microbenchmarks, and then define
important test configurations and baselines.

5.1.1 Arrival Rate

One important consideration to make with any benchmark is the arrival rate. The arrival
rate is defined as the frequency clients query the database. For example, if there are four
clients, each executing 2,500 transactions per second (txns/sec), then the arrival rate is
10,000 txns/sec.

It is important to pick a good arrival rate for measuring the replication delay. If the
arrival rate exceeds the rate at which replication is able to replay transactions, then the
replication delay will grow unboundedly because the replica is not able to keep up with
the master node. Figure 5.1 illustrates this effect in NoisePage. We can see how the replica
remains in sync wth the master with a sub-second delay until the arrival rate reaches 14,000
txns/sec. After that, the replica is not able to keep up with the arrival rate of transactions,
and accordingly the delay sharply increases. This is a natural limitation in any DBMS,
although systems may vary in the arrival rate they are able to handle. We assume an
arrival rate of 10,000 txns/sec for future experiments to get stable delay measurements.

5.1.2 Replication Delay Over Time

As discussed in Section 2.2, many DBMS users have replication delay SLAs that they
expect the DBMS to support. To get an idea of replication delay in NoisePage, we execute
TPC-C using asynchronous replication to measure the replication delay over the span of
the benchmark. In Figure 5.2, the spikes in delay are a result of few transactions of TPC-
C that take longer to replay relative to the other transactions. Despite the spikes, we

30

Figure 5.1: Sensitivity of Replication Delay – Measuring the average replication de-
lay with varying arrival rates in NoisePage over TPC-C with 4 warehouses on Type 2
machines. When the arrival rate exceeds the transaction replaying rate, delay sharply in-
creases. The shaded region denotes one standard deviation from the mean for each data
point.

see from the running mean (red line) that the replication delay remains stable throughout
the benchmark execution. Over the entire benchmark, the average replication delay is
approximately 30 ms.

5.2 Metrics Overhead

In Section 1.1, we motivated our decision to use database replicas by discussing the metrics
collection overhead, and observed it is on average 11% in PostgreSQL across various
number of threads. For this analysis, we used PostgreSQL instead of NoisePage because
NoisePage does not have as advanced metrics as PostgreSQL. In particular, NoisePage
still has an immature metrics collection infrastructure and does not yet produce as many
metrics as a system of its size should.

31

Figure 5.2: Replication Delay in NoisePage – Measuring the average replication delay
in NoisePage over TPC-C with 4 warehouses on Type 2 machines. We average the delay
for each second, and plot the average over 10 benchmark runs. The red line shows the
running mean of the replication delay.

NoisePage currently has two (out of 10) high-level components, the TM and LM that
produce metrics. Collectively, these two components export 11 unique metrics (e.g., disk
write speed, transaction latch wait time). For reference, we estimate PostgreSQL-9 to
export approximately 300 unique metrics. Due to this difference, we simulate NoisePage
having similar metrics overheads to PostgreSQL.

The approach we take to simulate a realistic DBMS metrics overhead in NoisePage is
to scale up the amount of metrics data exported by each component (i.e, when a metric
is generated, the system exports it multiple times). To show the effect of this approach,
we execute the TPC-C benchmark with six warehouses on machine Type 1. We compare
the transaction throughput while scaling up the number of metrics exported using the ap-
proach described. Figure 5.3 shows the effects of this technique on transactional through-
put. With the current metrics in the system (red line), NoisePage executes approximately
67, 000 txns/sec. If we scale number of metrics to the number of metrics we estimate Post-
greSQL exports (green line), we see a throughput of approximately 65, 000 txns/sec, only
a 3% overhead. This is not equivalent to the 11% we expect to see because throughout
the lifecycle of a tranaction, the system exports different metrics at different frequencies.
Therefore, scaling NoisePage’s metrics to the same number of metrics that PostgreSQL

32

Figure 5.3: Metrics Overhead in NoisePage – Overhead of metrics collection over TPC-
C with 6 warehouses as we scale up the number of metrics exported.

exports is an insufficient comparison, as NoisePage exports at different frequencies than
PostgreSQL. Instead, we scale up the number of metrics until we see the 11% overhead
(yellow line), which occurs at approximately 800 metrics. We use this scale of metrics
collection for future experiments.

5.3 Dynamic Metrics Collection

In Section 4.2, we proposed using Dynamics Metrics Collection (DMC) for Replicated
Training. The basis of DMC is to prevent the overhead of training data generation from
increasing the replication delay on the replica. We proposed various policies for control-
ling DMC, including one based on the measuring average replication delay over some time
window and limiting it based on a user-defined threshold.

We implemented this policy in NoisePage and show the effect of different thresholds
on the replication delay and DMC effectiveness in Figure 5.4. The green shaded regions
indicate when metrics collection is enabled. One can see that as we increase the thresh-

33

(a) 50 ms threshold

(b) 40 ms threshold (c) 30 ms threshold

Figure 5.4: Varying Delay Thresholds on Dynamic Metrics Collection (DMC) – We
execute the TPC-C benchmark, replicating the data between two Type 2 machines. The
green regions on the graphs indicate when metrics collection is enabled under DMC.

old, metrics collection is enabled for more time as the higher threshold allows for more
overhead incurred by Replicated Training. For reference, DMC enables metrics collec-
tion 49%, 90%, and 98% of the time when the threshold is 30, 40, and 50 milliseconds
respectively. Further, we can see that whenever the delay exceeds the threshold, the sys-
tem correctly disabled metrics collection. Doing so lets the replica replay records without
the overhead of metrics collection and catch up with the master, reflected by the delay
eventually dropping below the threshold.

Special attention should be paid to Figure 5.4(c). When the threshold is close to the
average delay without metrics collection (approximately 30 ms), we see a significant per-
formance degradation, illustrated by the running mean being much higher in Figure 5.4(c)
compared to Figure 5.4(a) and Figure 5.4(b). This degradation is because the system
is rapidly enabling and disabling metrics as the replication delay oscillates around the
threshold set by the policy. Toggling metrics can be an expensive operation if done too

34

frequently, as the system must reset some internal state each time. This additional work,
however, allows the system to toggle metrics at runtime without needing to restart the
system, unlike other DBMSs [38].

Figure 5.5: Quantity of Training Data Generation – As we increase the replication
delay threshold on the replica (e.g., configuration “Rep-30” has a 30ms threshold), DMC
generates more training data. “Rep-Unlimited” denotes no threshold. The data sets are
separated by each component.

We also suggested that higher thresholds enable metrics collection for more time with
DMC, therefore generating more training data. As we see in Figure 5.5, the system gen-
erates more training data with a higher delay threshold. We also include the total amount
of metrics generated by the master during the same benchmark run for reference, denoted
by “Master” in the chart. The difference between “Master” and “Replica-Unlimited” is
because the TM generates less data on the replica since replication does not replay aborted
transactions.

35

Processing Time (µs) Percentage of Samples
0 - 8 16.9
8 - 10 22.0
10 - 12 28.0
12 - 16 17.7
16 - 20 9.0
>20 6.4

Table 5.1: Test Set Data Distribution – Processing time distribution in Log Serializer
Task for test set (30,000 total samples).

5.4 Self-Driving Models

To show the efficiency of Replicated Training to build useful models, we train a model
using the training data generated from the experiments in Section 5.3. We described in
Section 3.3.1 how the log serializer task receives redo buffers from transactions and se-
rializes them into log buffers. The model we built estimates the amount of time the log
serializer task will take to process some amount of data. the self-driving planning com-
ponents could use thos model to predict when data might take a long time to serialize and
allocate more log serializer tasks to process the redo buffers in parallel.

From the log serializer metrics, we use the number of redo buffers processed and the
amount of data (in bytes) in these buffers as our features for the model. Due to the limited
feature space, we use a linear regression model. We build our model in Python using SciKit
Learn’s linear regression implementation [18]. The output of our model is the processing
time in microseconds.

To test our model, we generate a test set consisting of metrics generated on the master
during a run of TPC-C. We test using metrics from the master because we want to see
the effectiveness of models trained using data from the replicas to predict behavior in the
master node. Table 5.1 shows the distribution of processing times our model is trying to
predict.

Figure 5.6 shows the mean average error (MAE) over the test set for the linear re-
gression model trained on data generated from each DMC configuration. For a baseline
accuracy, we also train a model using metrics from the master node, denoted by the “Mas-
ter” bar. Although these error values are high relative to the processing times we are trying
to predict, we believe that with more metrics instrumentation in the system, we will see
much better accuracies.

36

Figure 5.6: Mean Average Error (MAE) Across DMC Configurations – As we in-
crease the replication delay threshold on the replica (e.g., configuration “Rep-30” has a 30
ms threshold), Replicated Training produces more accurate models. “Relica-Unlimited”
denotes no threshold.

We see that as the replication delay threshold increases, our model can predict the
processing time with lower error, shown by the improvement between the “Rep-30”, “Rep-
40”, and “Rep-50” models. These results suggest that more training data results in better
model accuracy. Users can thus reduce the strictness of their DMC policy if they want to
improve the quality of the self-driving infrastructure. Further, using Replicated Training
for additional training data generation with replicas can lead to better model accuracy for
self-driving capabilities.

We note that without DMC (shown by the “Rep-Unlimited” bar), there is still an accu-
racy difference relative to the model trained on the master. We expect models trained on
the master node itself to have the best accuracy, as the training data will reflect the exact
hardware environment the master node is running on. This accuracy difference, however,
is relatively small compared to the processing times we are trying to predict. Based on the
distribution in Table 5.1, this difference accounts for less than a 10% error on more than
60% of the processing times. Further, we expect this difference to be even smaller with
better metrics instrumentation.

37

38

Chapter 6

Related Work

Similar to our method, iTuned [10] uses unutilized resources on hot-standby replicas to
run experiments using the master’s workload. These experiments are solely for tuning
configuration knobs. While iTuned uses policies to terminate experiments when the hot-
standby requires more resources, it does not bound the cost to replication delay, although
they suggest it is a small cost. Further, iTuned still relies on human interaction; the DBA
must approve or reject tuning recommendations.

Every mission-control DBMS installation uses replicas to serve as a hot standby for the
master node. Commonly, these hot-standby replicas are used to service read-only queries
made by customers to the system [24, 30, 32, 37]. Some systems will also allow replicas to
receive writes, with a change propagation component combined with a consensus protocol
to send the changes to other replicas [12, 26].

While Replicated Training uses replicas for data generation, we explore how other
systems use replicas for non-hot standby uses. Some systems use a replica as a voter
during elections. Google’s Cloud Spanner has witness replicas that participate in voting
during write commits [12]. MongoDB has arbiter replicas that are members of the replica
set to have an uneven number of voters during master elections [30]. Overall, these voter
replicas allow for the easier achievement of quorums without needing the resources of a
read or write replica. Contrary to traditional replicas, however, they do not carry a copy
of the data. iBTune [43] uses database replicas to seamlessly change buffer pool sizes in
nodes to reduce the impact on customers. By promoting a standby replica to master, the
demoted master node can modify its buffer pool size, while the promoted replica handles
client requests. The demoted master node can then promote itself and take over from
where the promoted replica left off, maintaining full availability throughout the process.

39

Previous research has explored the effect of mixing logging types on replication. Adap-
tive logging [47] is a distributed recovery technique that combines logical and physical
logging (hybrid logging) on a per-transaction basis. This technique identifies which trans-
actions cause dependency bottlenecks and then logs them physically to allow for parallel
recovery across nodes. Different from adaptive logging, Replicated Training instead uti-
lizes hybrid logging for targeted training data generation.

QueryFresh [46] combats the problem of high replication delay by using advanced
hardware (NVM, InfiniBand) to speed up log shipping during replication. This approach
limits the replication delay by reducing the network costs, while Replicated Training limits
the delay using controls during log replaying.

40

Chapter 7

Conclusions and Future Work

We presented a technique called Replicated Training for self-driving DBMS to leverage
existing database replicas for training data generation. We dove into the in-memory ar-
chitecture of NoisePage that supports Replicated Training. We discussed how Replicated
Training works and proposed variations that showcase the vast potential of the technique.
We further presented Dynamic Metrics Collection (DMC) for controlling the overhead
incurred by Replicated Training. We evaluated Replicated Training along with DMC on
an OLTP workload and showed its ability to build accurate ML models, with no metrics
collection overhead to the master node.

We implemented a simple Replicated Training architecture in NoisePage. Further, we
proposed additional variations involving hybrid logging and active learning for better qual-
ity training data. These approaches require a more sophisticated metrics instrumentation
and an end-to-end DBMS stack that is currently in the works for NoisePage. We are con-
tinuing to explore these and more variations to Replicated Training, and plan to implement
these techniques in future work.

41

42

Bibliography

[1] Amazon. Amazon aurora documentation: Replication with amazon aurora. 2.2

[2] Maria-Florina Balcan and Ruth Urner. Active learning – modern learning the-
ory. Technical report, New York, NY, 2016. URL https://doi.org/10.1007/
978-1-4939-2864-4_769. 2.4, 4.2.2

[3] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ansi sql isolation levels. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’95, pages 1–
10, New York, NY, USA, 1995. ACM. ISBN 0-89791-731-6. doi: 10.1145/223784.
223785. URL http://doi.acm.org/10.1145/223784.223785. 3.1

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016. 2.3

[5] Transaction Processing Performance Council. Tpc benchmark(tm) c standard speci-
fication. Technical report, February 2001. 1.1, 3.1, 3.3.1, 5.1

[6] B.K. Debnath, D.J. Lilja, and M.F. Mokbel. SARD: A statistical approach for ranking
database tuning parameters. In ICDEW, pages 11–18, 2008. 1.1

[7] Tom Diethe, Tom Borchert, Eno Thereska, Borja Balle, and Neil Lawrence. Contin-
ual learning in practice. ArXiv, abs/1903.05202, 2019. 1

[8] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux.
Oltp-bench: An extensible testbed for benchmarking relational databases. Proc.
VLDB Endow., 7(4):277–288, December 2013. ISSN 2150-8097. doi: 10.14778/
2732240.2732246. URL http://dx.doi.org/10.14778/2732240.2732246. 1

[9] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and Vivek R.
Narasayya. Ai meets ai: Leveraging query executions to improve index recommen-
dations. In Proceedings of the 2019 International Conference on Management of

43

https://doi.org/10.1007/978-1-4939-2864-4_769
https://doi.org/10.1007/978-1-4939-2864-4_769
http://doi.acm.org/10.1145/223784.223785
http://dx.doi.org/10.14778/2732240.2732246

Data, SIGMOD ’19, pages 1241–1258, New York, NY, USA, 2019. ACM. ISBN
978-1-4503-5643-5. doi: 10.1145/3299869.3324957. URL http://doi.acm.org/
10.1145/3299869.3324957. 1

[10] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database config-
uration parameters with ituned. PVLDB, 2:1246–1257, 2009. 1, 6

[11] Zhiqiang Gong, Ping Zhong, and Weidong Hu. Diversity in machine learning. IEEE
Access, 7:6432364350, 2019. ISSN 2169-3536. doi: 10.1109/access.2019.2917620.
URL http://dx.doi.org/10.1109/ACCESS.2019.2917620. 2.3

[12] Google. Cloud spanner documentation: Replication. 2.2, 6

[13] CMU Database Group. Terrier. 4.2.2

[14] IBM. Ibm db2: High availability through log shipping. 2.2

[15] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Al-
fons Kemper. Learned cardinalities: Estimating correlated joins with deep learning.
ArXiv, abs/1809.00677, 2018. 1

[16] Tim Kraska, Alex Beutel, Ed Huai hsin Chi, Jeffrey Dean, and Neoklis Polyzotis.
The case for learned index structures. In SIGMOD Conference, 2017. 1

[17] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Jialin Ding, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. Sagedb: A
learned database system. 2019. 1

[18] SciKit Learn. Scikit learn docs: sklearn.linear model.linearregression. 5.4

[19] Tianyu Li. Supporting Hybrid Workloads for In-Memory Database Management
Systems via a Universal Columnar Storage Format. Master’s thesis, May 2019. 3.5

[20] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J Gordon. Query-based workload forecasting for self-driving database
management systems. In Proceedings of the 2018 ACM International Conference
on Management of Data, SIGMOD ’18, 2018. 1, 2.1, 4.1

[21] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker. Re-
thinking main memory oltp recovery. 2014 IEEE 30th International Conference on
Data Engineering, pages 604–615, 2014. 2.2

44

http://doi.acm.org/10.1145/3299869.3324957
http://doi.acm.org/10.1145/3299869.3324957
http://dx.doi.org/10.1109/ACCESS.2019.2917620

[22] Ryan Marcus and Olga Papaemmanouil. Deep reinforcement learning for join order
enumeration. In Proceedings of the First International Workshop on Exploiting Arti-
ficial Intelligence Techniques for Data Management, aiDM’18, pages 3:1–3:4, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-5851-4. doi: 10.1145/3211954.
3211957. URL http://doi.acm.org/10.1145/3211954.3211957. 1

[23] V. Markl, G. M. Lohman, and V. Raman. Leo: An autonomic query optimizer for
db2. IBM Systems Journal, 42(1):98–106, 2003. ISSN 0018-8670. doi: 10.1147/sj.
421.0098. 1

[24] MemSQL. Memsql docs: Using replication. ??, 6

[25] Microsoft. Sql server: Availability modes. . ??

[26] Microsoft. Sql server: Transactional replication. . 2.2, ??, 6

[27] Microsoft. Sql server: Statistics. . 4.2.2

[28] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
Aries: A transaction recovery method supporting fine-granularity locking and par-
tial rollbacks using write-ahead logging. ACM Trans. Database Syst., 17(1):94–
162, March 1992. ISSN 0362-5915. doi: 10.1145/128765.128770. URL http:
//doi.acm.org/10.1145/128765.128770. 3.3, 3.4

[29] MongoDB. Mongodb documentation: Replica set oplog. . ??

[30] MongoDB. Mongodb documentation: Replication. . 2.2, ??, 6

[31] MySQL. Mysql documentation: Binary log overview. . ??

[32] MySQL. Mysql documentation: Replication. . 2.2, ??, 6

[33] Oracle. Database real application testing user’s guide. . 1

[34] Oracle. Database: Oracle autonomous database. . 1

[35] Oracle. Timesten in-memory database replication guide: Overview of timesten repli-
cation. . 2.2

[36] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth Santurkar,
Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu, Ran Xian,
and Tieying Zhang. Self-driving database management systems. In Conference on
Innovative Data Systems Research, 2017. 1, 1.1, 2.1

45

http://doi.acm.org/10.1145/3211954.3211957
http://doi.acm.org/10.1145/128765.128770
http://doi.acm.org/10.1145/128765.128770

[37] PostgreSQL. High availability, load balancing, and replication. . 2.2, ??, 3.4, 6

[38] PostgreSQL. Run-time statistics. . 5.3

[39] Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher R.
Data programming: Creating large training sets, quickly. 2016. 2.3

[40] D. P. Reed. Naming and synchronization in a decentralized computer system. Tech-
nical report, Cambridge, MA, USA, 1978. 3.1

[41] Burr Settles. Active learning literature survey. Technical report, 2010. 2.4

[42] Snowflake. Snowflake documentation: Key concepts & architecture. 2.2

[43] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin
Qiao, Yue Shi, Wei Cao, and Rui Zhang. ibtune: Individualized buffer tuning for
large-scale cloud databases. Proc. VLDB Endow., 12(10):1221–1234, June 2019.
ISSN 2150-8097. doi: 10.14778/3339490.3339503. URL https://doi.org/10.
14778/3339490.3339503. 6

[44] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic
database management system tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM International Conference on Management of Data, SIG-
MOD ’17, pages 1009–1024, 2017. 1

[45] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11
(1):37–57, March 1985. ISSN 0098-3500. doi: 10.1145/3147.3165. URL http:
//doi.acm.org/10.1145/3147.3165. 4.2.3

[46] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. Query fresh: Log shipping
on steroids. volume 11, pages 406–419. VLDB Endowment, dec 2017. doi: 10.1145/
3186728.3164137. URL https://doi.org/10.1145/3186728.3164137. 6

[47] Chang Yao, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, and Sai Wu. Adaptive
logging: Optimizing logging and recovery costs in distributed in-memory databases.
In Proceedings of the 2016 International Conference on Management of Data, SIG-
MOD ’16, pages 1119–1134, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
3531-7. doi: 10.1145/2882903.2915208. URL http://doi.acm.org/10.1145/
2882903.2915208. 2.2, 6

46

https://doi.org/10.14778/3339490.3339503
https://doi.org/10.14778/3339490.3339503
http://doi.acm.org/10.1145/3147.3165
http://doi.acm.org/10.1145/3147.3165
https://doi.org/10.1145/3186728.3164137
http://doi.acm.org/10.1145/2882903.2915208
http://doi.acm.org/10.1145/2882903.2915208

[48] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yang-
tao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. An end-to-end
automatic cloud database tuning system using deep reinforcement learning. In Pro-
ceedings of the 2019 International Conference on Management of Data, SIGMOD
’19, pages 415–432, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-5643-5.
doi: 10.1145/3299869.3300085. URL http://doi.acm.org/10.1145/3299869.
3300085. 1

47

http://doi.acm.org/10.1145/3299869.3300085
http://doi.acm.org/10.1145/3299869.3300085

	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Background
	2.1 Self-Driving Database Management Systems
	2.2 Replication
	2.2.1 Replication Delay

	2.3 Training Data Collection
	2.4 Active Learning

	3 System Architecture
	3.1 Transactions
	3.2 Timestamp Manager
	3.3 Logging
	3.3.1 Log Serializer Task
	3.3.2 Log Consumer Tasks

	3.4 Recovery
	3.4.1 Log Record Replay
	3.4.2 Transaction Replaying

	3.5 Internal Replication Protocol
	3.6 Replication

	4 Replicated Training
	4.1 Replicated Training Architecture
	4.2 Dynamic Metrics Collection
	4.2.1 Metrics Collection Policies
	4.2.2 Partial Metrics Collection
	4.2.3 Dynamic Hybrid Logging

	4.3 Action Exploration

	5 Evaluation
	5.1 Replication Architecture
	5.1.1 Arrival Rate
	5.1.2 Replication Delay Over Time

	5.2 Metrics Overhead
	5.3 Dynamic Metrics Collection
	5.4 Self-Driving Models

	6 Related Work
	7 Conclusions and Future Work
	Bibliography

