
dLι: Definite Descriptions in
Differential Dynamic Logic

Brandon Bohrer Manuel Fernández
André Platzer
November 2019

CMU-CS-19-111

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A version of this work [3] appears in the 27th International Conference on Automated Deduc-
tion (CADE) 2019.

This research was sponsored by NDSEG, the AFOSR under grant number FA9550-16-1-0288, and the Alexander
von Humboldt Foundation.

Keywords: dynamic logic, definite description, hybrid systems, theorem proving, uniform
substitution, partial functions

Abstract

We introduce dLι, which extends differential dynamic logic (dL) for hybrid systems with definite
descriptions and tuples, thus enabling its theoretical foundations to catch up with its implemen-
tation in the theorem prover KeYmaera X. Definite descriptions enable partial, nondifferentiable,
and discontinuous terms, which have many examples in applications, such as divisions, nth roots,
and absolute values. Tuples enable systems of multiple differential equations, arising in almost
every application. Together, definite description and tuples combine to support long-desired fea-
tures such as vector arithmetic. We overcome the unique challenges posed by extending dL with
these features. Unlike in vanilla dL, definite descriptions enable non-locally-Lipschitz terms, so
our differential equation (ODE) axioms now make their continuity requirements explicit. Tuples
are simple when considered in isolation, but in the context of hybrid systems they demand that dif-
ferentials are treated in full generality. The addition of definite descriptions also makes dLι a free
logic; we investigate the interaction of free logic and the ODEs of dL, showing that this combina-
tion is sound, and characterize its expressiveness. We give an example system that can be defined
and verified using these extensions.

1 Introduction
Cyber-physical systems (CPSs) such as self-driving cars, trains, and airplanes combine discrete
control and continuous physical dynamics and are often safety-critical because they operate around
humans. Thus, it is essential to achieve the highest possible confidence in their correctness, e.g.,
using formal methods with strong theoretical foundations. Differential dynamic logic (dL) [19,
23, 24] is a logic for formal verification of hybrid systems [10], widely-used models of CPSs that
incorporate both their discrete and continuous behaviors. Among formal methods for CPSs, dL is
notable both for its case studies [12, 15, 16] using the KeYmaera X [9] theorem prover, and for its
strong foundations, as evidenced by its completeness results [19, 23, 24, 26] and a formal proof of
soundness in both Isabelle/HOL and Coq [4].

However, there is a tension between the goals of practical applicability and rigorous founda-
tions. In practice, multiple theorem prover implementations have demanded new features which
were not anticipated in theory. Formalizations of KeYmaera X [5], Coq [2], and Nuprl [1] all
omit or simplify whichever practical features are most theoretically challenging for their specific
logic: discontinuous and partial terms in KeYmaera X, termination-checking in Coq, or context
management in Nuprl. When formalizations of theorem provers do succeed in reflecting the im-
plementation [13], they owe a credit to the generality of the underlying theory: it is much more
feasible to formalize a general base theory than to formalize multiple ad-hoc extensions as they
arise. To that end, this paper addresses the challenge of how best to reimagine the foundation of
dL to support the features needed in practice without any ad-hoc concessions.

This paper identifies definite descriptions as a feature which can enrich dL with a variety of
new term constructs, including the partial and discontinuous terms used in practice. We extend
vanilla dL to a new dialect dLι with terms ιx φ that denote the unique x for which φ holds iff there
is exactly one such x. It is not surprising that partiality and continuity are pain points for dL: dif-
ferential equations are the defining feature of dL, and interfacing differential equations with partial
or discontinuous terms is known to require care. It is pleasantly surprising however that definite
descriptions allow us to confront the questions of partiality and continuity just once and reap the
benefits of many new definable term constructs. Certainly, adding definite description requires
confronting continuity and partiality because many choices of ιx φ do not have a unique solution
x in every state, or have solutions that are not continuous as a function of the other state variables.
Rather, the pleasant surprise is that existing practical extensions like divisions θ1/θ2, roots n

√
θ,

and the functions min(θ1, θ2), max(θ1, θ2), and |θ| are all definable from one core feature: definite
description. Even better, useful new features like trigonometric functions are definable as well.
Because vectoriality has also proven a crucial feature in practice, dLι also extends dL with pairs
(θ, η), which enable differential equation (ODE) systems. Desirable new features definable from
pairs include vectors and matrices, which arise frequently in physical applications. The combina-
tion of definite descriptions with pairs also gives new, general axiomatizations for existing features
like differential terms (θ)′. Our new axiomatization has a practical impact of future-proofing dLι’s
differential reasoning rules: when a user of dLι defines a new term construct, they can employ
user-level proofs to build a corresponding differentiation rule, without further extensions to the dLι
core.

The term ιx φ is the definite (i.e., requiring unique existence) counterpart of Hilbert’s choice

1

εx φ; both have seen success in HOL-style theorem provers [17, 27]. We chose definite ιx φ over
εx φ because uniqueness significantly simplifies continuity and differential reasoning. In adopting
definite descriptions and tuples in dLι, we solve the novel challenges of integrating them with dif-
ferential equations, dL’s distinguishing feature. Definite descriptions allow partiality, discontinuity,
and nondifferentiability, all of which interact subtly with sound ODE reasoning. Multidimensional
systems, enabled by tuples, demand a general treatment of differentials and expose subtle variable
dependencies in some advanced ODE reasoning principles.

An example demonstrates the power of definite description: definite descriptions allow non-
polynomial terms and thus non-polynomial ODEs, which need not have unique solutions. While
non-polynomial ODEs (and all of dLι) are reducible to dL in theory, the reduction of ιx φ is com-
pletely impractical, which justifies our choice to develop a calculus for proving dLι formulas di-
rectly. Expressiveness comes with deep semantic changes: supporting partiality makes dLι a free
logic, for which we adopt a 3-valued Łukasiewicz semantics. We show this profound change in
foundations needs only small changes to the proof calculus with additional definedness condi-
tions. We develop the theory of dLι, show that the proof calculus is sound and show the nontrivial
reduction from dLι to dL.

2 Syntax
We present the core syntax of dLι, which extends dL with definite descriptions, tuples, null-
terminators, and primitive recursors. We describe the constructs informally here, deferring formal
semantics to Sec. 3. As a free logic [8], dLι contains terms that do not denote and formulas whose
truth values are unknown or uncertain (definite truth is indicated ⊕, definite falsehood by 	, and
uncertainty by �); this is a major point of difference between our semantics and proof calculus
vs. those of dL. Our calculus uses uniform substitution [6, §35,§40], where symbols ranging over
predicates, programs, etc. are explicitly represented in the syntax, because it has simplified the
construction of dL calculi [24], implementations [9], and machine-checked correctness proofs [4].
This will ease implementing dLι and mechanizing the soundness proof in future work. The syntax
of dLι is divided into terms, programs, and formulas, whose definitions, unlike in dL, are all mu-
tually recursive. The terms θ (also η, ζ, γ) of dLι extend the terms of dL with definite descriptions,
nullary and binary pairs, and reductions:

θ, η, ζ, γ ::= q | x | f(θ) | θ + η | θ · η | (θ)′ | ιx φ | () | (θ, η) | mr(θ, η, s ζ, lr γ)

for literal q ∈ Q and variable x ∈ V , where V is the (at most countable) set of all base variable
names, f is a function symbol, and φ is a formula. The set of variables x′ corresponding to each
x is written V ′. The constructors novel to dLι are listed in red. The first six cases are as in dL:
rational literals q, program variables x, uninterpreted function symbols f applied to arguments
θ, sums θ + η, products θ · η, and differentials (θ)′. Variables are flexible: they are modified by
quantifiers and programs. Variables x always denote some value and so programs which assign
to variables will succeed only when the right-hand side denotes a value. In contrast, f(θ) is an
uninterpreted function f applied to term θ, but both θ and f(θ) are allowed to be non-denoting.
While most theorem statements could be expressed without function symbols f, they are essential

2

for the axioms of Sec. 5. The definite description ιx φ denotes the unique value of x that makes
formula φ true, if exactly one such value exists, else it does not denote a value (since description
is definite). Pairs (θ, η) can be nested to arbitrary finite depth, so their eliminator is primitive
recursion on finite binary trees with values at the leaves and with null-terminators. When a definite
description does not denote any value because it does not have a unique solution, we will write ⊥
for its denotation. This should not be confused with a notation we will introduce in Sec. 3: > for
the semantic counterpart of ().

The nullary tuple () is primarily used as a list terminator in combination with pairs to express
Lisp-style lists, which are untyped and nestable. For example the list of 1 and 2 is represented as
(1, (2,())). The primitive recursor can be understood as map-reduce: mr(θ, η, s ζ, lr γ) reduces
every null terminator to η, every leaf t ∈ R to ζts, and every pair a, b of recursive results to γal

b
r,

where eyx is the capture-avoiding substitution of y for every x in e. We give an example of mr
applied to a tree, albeit one which is not a valid (nested) list. If θ = ((−1, 2),−3), then the
reduction mr(θ,(), s s2, lr (r, l)) is the elementwise square of the reverse tree, (9, (4, 1)). We
remark that mr(θ, η, s ζ, lr γ) is not the only elimination construct we could have defined. We made
this choice because primitive recursion supports simple arguments for termination and totality,
while still enabling many common recursive operations. In Sec. 4 we will see examples of useful
recursive functions. We will also see that some of the operations in Sec. 4 have more complex
definitions with primitive recursors than with general recursors, but adopting general recursion
would have required a much more complex treatment of partiality.

The programs α, β of dLι are hybrid programs, a program syntax for hybrid systems combining
discrete and continuous dynamics. Hybrid programs of dLι are identical to those of dL with the
exception that any formula or term contained therein is again any formula or term of dLι, not
necessarily just dL. For any starting state, a program α might transition to zero, one, or many final
states. Whenever a program transitions to zero states, we say it aborts.

α, β ::= x := θ | x′ = θ&ψ | ?φ | α ∪ β | α; β | α∗ | a

Assignments x := θ assign the value of term θ to variable x, if θ denotes a value, else they abort.
Tests ?φ are no-ops if formula φ is true, else they abort execution. Nondeterministic choices α∪ β
behave as either α or β, nondeterministically. Sequential composition α; β performs β in any state
resulting from α. Loops α∗ repeat α sequentially any number of times, nondeterministically. The
defining construct of hybrid programs are the differential equations x′ = θ&ψ, which continu-
ously evolve x according to the differential equation x′ = θ for any duration such that term θ
denotes and formula ψ is definitely true throughout. Note the core syntax of dLι need only con-
tain systems of a single variable x: in Sec. 4 we will derive systems with multiple variables from
systems of one variable. Uninterpreted program symbols a range over programs. We parenthe-
size programs α as {α} with braces for disambiguation and readability. dLι has the same formula
constructors as dL, and the formulas φ, ψ of dLι are defined inductively:

φ, ψ ::= φ ∧ ψ | ¬φ | ∀xφ | θ ≥ η | [α]φ | p(θ) | C(φ)

Conjunctions φ ∧ ψ, negations ¬φ, and quantifiers ∀xφ are as in first-order Łukasiewicz [14]
logic. In particular, quantifiers range only over the existing values because program variables,

3

unlike function symbols, must always denote something that exists. The quantifier ∃xφ is also as
in first-order Łukasiewicz logic and can be derived ∃xφ ≡ ¬∀x¬φ. In comparing θ ≥ η, if terms
θ and η both denote reals, those reals are compared, if they both denote tuples they are compared
elementwise, and a null terminator is equal only to itself. In all other cases the result is unknown
(�). The defining construct of dynamic logics is [α]φ, which says φ holds in all states reachable by
running α. Its dual, 〈α〉φ, says there exists a state reachable by running α where φ holds, and can
be derived by the equivalence 〈α〉φ ≡ ¬[α]¬φ. Uninterpreted predicate symbols p expect terms θ
as arguments. The argument θ is allowed not to denote, and p(θ) is likewise allowed to take on the
unknown truth value (�). The unary quantifier symbol C(φ) is a higher-order predicate symbol
which has φ as an argument and which binds all program variables. These are primarily used
for rigorous formal contextual equivalence reasoning. We also write P,Q for nullary quantifier
symbols, i.e., predicate symbols which take all variables as arguments. These can be defined
as unary quantifier symbols with trivial arguments, i.e., P ≡ C(true). We sometimes write the
implication φ → ψ as ψ ← φ for emphasis on ψ. The always-true and always-false formulas can
be defined true ≡ 1 ≥ 0 and false ≡ 0 ≥ 1. This should not be confused with the notation we
will introduce in Sec. 3: > for the semantic counterpart of () and ⊥ for the denotation of a term
with no value.

Our exact requirements regarding definedness may be a stumbling block on a first reading
for some. However, our requirements follow a convention which is standard among free logics:
flexible symbols always denote a value and range only over the existing values, while rigid sym-
bols range also over ⊥ for terms or � for formulas. The program variables x which appear in
assignments and quantifiers are flexible, while symbols f, p, and C are rigid. A flexible symbol
can change its value throughout a formula, while a rigid symbol does not. We will see in Sec. 5
both that rigid symbols are essential to supporting the substitution rule of our uniform substitution
calculus, and also that the above convention yields natural rules for assignments and quantifiers.

Example 1 (Robot Water Cooler). A leaky bucket is a textbook example (see Hubbard [11, §4.2])
of a non-Lipschitz ODE, because a leaky bucket is described by an ODE of form h′ = k ·

√
h with

constant k. In dLι, in contrast to dL, non-Lipschitz terms simplify describing a hybrid system with
a leaky-bucket ODE. Our example hybrid system extends the leaky-bucket example with a simple
discrete controller. Consider a water cooler of height h and an opening of surface area a in its
bottom of surface area A, where g is acceleration due to gravity. Suppose an enterprising student
has equipped the cooler’s valve with robotic control. We could then model the cooler as:

αB ≡
{{
{?h > 0; a := 1} ∪ a := 0

}
;h′ = −

√
2gh

a

A
&h ≥ 0

}∗
This says that so long as there is water in the cooler (?h > 0) we can choose to open the valve
(a := 1), but we can always close the valve (a := 0). Then the water drains out the cooler at a
rate proportional to the square root of the current volume by Torricelli’s Law [7], or rate 0 if the
valve is closed. This control process repeats arbitrarily often. The constructs

√
2gh (root) and a

A

(division) are not core dL, but we can rewrite αB using definite descriptions:{{
{?h > 0; a := 1} ∪ a := 0

}
;h′ = −(ιy y2 = 2gh ∧ y ≥ 0)(ιz zA = a) &h ≥ 0

}∗
4

This example is representative because the ODE is non-Lipschitz: the solution is unique at h = 0
only within the constraint h ≥ 0. The terms

√
2gh and a

A
are also both partial: defined only

assuming gh ≥ 0 and A 6= 0, respectively. The interactions between partiality, uniqueness, and
the constraint will combine to make proofs about our example subtle, even if short.

Common dL (and likewise, dLι) theorems include safety assertions of the form φ → [α]ψ
which say that if φ holds initially, then ψ will necessarily hold after α. We give an example
proposition about the water cooler: the final water height of αB never exceeds the initial height, so
the cooler is leaky (or at least is not filling up):
Proposition 1 (Leakiness). The following formula is valid, i.e., definitely true (⊕) in all states:

g > 0 ∧ h = h0 ∧ h0 > 0 ∧ A > 0→ [αB](h ≤ h0)

We will prove Prop. 1 after we have introduced a proof calculus for dLι in Sec. 5.

3 Denotational Semantics
We now formally define the semantics of dLι terms, formulas, and programs. Due to the pres-
ence of definite descriptions ιx φ(x), not every dLι term denotes in every state, i.e., dLι is a free
logic [8]. We write ⊥ for the interpretation of a term that does not denote any value, not to be con-
fused with the trivial (i.e. unit tuple) denotation > for the nullary pair (). When a term denotes,
it denotes a finite, binary tree with real values and/or terminators at the leaves. The terminator
> denotes an empty tree, a scalar denotes a singleton tree, and (arbitrarily nested) pairs denote
non-singleton trees. We refer to the set of all real trees as Tree(R), where for any S, Tree(S) is
the smallest set such that: i)> ∈ Tree(S), ii) S ⊆ Tree(S), and iii) for any L and R ∈ Tree(S),
(L,R) ∈ Tree(S). We use variable names u and v for arbitrary elements of Tree(R), names
L and R for components, and r, s, t ∈ R ⊂ Tree(R). Typing is extrinsic, i.e., we do not make
typing distinctions between R and Tree(R) in the semantics; typing constraints will be expressed
explicitly as predicates. To account for non-denoting terms, formulas can take on three truth val-
ues: ⊕ (definitely true), � (unknown), and 	 (definitely false). Thus dLι is a 3-valued logic, and
first-order connectives use the Łukasiewicz [14] interpretation. We use the Łukasiewicz [14] inter-
pretation both because it is standard and because it yields intuitive interpretations of conjunction,
disjunction, and negation. We will sometimes write j, k for metavariables over the truth values
⊕,�,	.

The interpretation functions are parameterized by state ω : V → Tree(R) mapping variables
to values, and by an interpretation I mapping function symbols, predicate symbols, and program
constants to their interpretation, including the possibility of not denoting a value. Writing S for
the set of all states, we have

I(f) : (Tree(R) ∪ ⊥) → (Tree(R) ∪ ⊥)

I(p) : (Tree(R) ∪ ⊥) → {⊕,�,	}
I(C) : (S → {⊕,�,	}) → (S → {⊕,�,	}
I(a) : ℘(S × S)

5

where ℘(U) is the power set of a set U . For a given t ∈ Tree(R), we write ωtx for the state that is
equal to ω except at x, where ωtx(x) = t.

Definition 1 (Term semantics). The denotation of a term is either a tree or undefined, i.e. Iω[[θ]] :
Tree(R) ∪ {⊥}, and is inductively defined as:

Iω[[q]] = q Iω[[x]] = ω(x) Iω[[f(θ)]] = I(f)(Iω[[θ]]) Iω[[()]] = >
Iω[[θ + η]] = Iω[[θ]] + Iω[[η]] if Iω[[θ]], Iω[[η]] ∈ R
Iω[[θ · η]] = Iω[[θ]] · Iω[[η]] if Iω[[θ]], Iω[[η]] ∈ R

Iω[[ιx φ]] =

{
v if a unique v ∈ Tree(R) has Iωvx[[φ]] = ⊕
⊥ otherwise

Iω[[(θ, η)]] = (Iω[[θ]], Iω[[η]]) if Iω[[θ]], Iω[[η]] 6= ⊥
Iω[[mr(θ, η, s ζ, lr γ)]] = Reduce(Iω[[θ]], Iω[[η]], s ζ, lr γ, Iω) if Iω[[θ]] 6= ⊥

Iω[[(θ)′]] =
∑
x∈V

ω(x′)
∂Iω[[θ]]

∂x
if I[[θ]] totally differentiable at ω

Iω[[θ]] = ⊥ in all other cases

The partial application I[[θ]] is a function which expects a state ω. Addition and multiplication
denote sums or products when applied to two scalars, else they denote ⊥. It is occasionally useful
(Sec. 4.2) to write, e.g., u[[·]]v for the semantic product of u by v, with dimensionality checking.

Semantics of Differential Terms In this subsection, we devote significant attention to explor-
ing the semantics of differential terms (θ)′ in detail. Compared to prior work [24], differential
term semantics in dLι are remarkably subtle, because we must consider vector-valued functions of
vector-valued inputs. Even handling the error cases grows more complicated, for example when
two variables x and x′ differ in shape. Our exploration begins by carefully defining the expres-
sion ω(x′)∂Iω[[θ]]

∂x
from Def. 1, which is thus far an abuse of notation. When ω(x) is a tuple, we

mean to say that partial derivatives are taken w.r.t. each real-number component of x, scaled by
the corresponding component of x′. At a high level, because dLι’s tuples allow vectorial terms, we
wish to support vectorial differentials in our semantics. However, getting the definition just right
requires care, because nested tuples can be shaped as arbitrary binary trees, and because there are
several notions of vectorial differentials, each of which interacts with partiality in unique ways.
This subsection is dedicated to getting these details just right.

Formally, we say a path d into a variable x can be either i) a path to the root of x, which is just
written x, ii) the left projection d.0, or iii) the right projection d.1. Paths index the state, so that,
e.g., ω(d.0) is the left projection of ω(d) assuming ω(d) is a pair. For a set of variables S ⊆ V∪V ′,
we write Dimω(S) for the set of all paths into ω which point to a leaf of some variable x ∈ S. Only
returns paths which vary in the neighborhood of ω are included, i.e., Dimω(S) = {d | ω(d) ∈ R}.
Likewise for a value v we write Dim(v) = {d | v(d) ∈ R}. We write FV(θ) ⊆ V ∪ V ′ for the

6

finite set of variables which influence the meaning of θ, as defined in Sec. 6.1. We can now give a
precise semantics for differential terms:

Iω[[(θ)′]] =
∑

d∈Dimω(FV(θ))

ω(d′)
∂Iω[[θ]]

∂d
if I[[θ]] is totally differentiable at ω

Iω[[(θ)′]] = ⊥ otherwise

In discussing the semantics, we also exploit a formal notion of the shape of a term, shape(θ),
which will be defined in Fig. 2 of Sec. 4, and correspondingly shape(t) for values t, defined as
the smallest relation such that shape(Iω[[θ]]) = Iω[[shape(θ)]] for all θ, I, ω. We remark on the
important subtleties in this definition now, and defer additional soundness subtleties to the appendix
(App. A):

• A guiding principle of our design, which will be captured in Lem. 36, is that only variables
which are explicitly mentioned in an expression should influence its meaning. For this rea-
son, it is essential that only FV(θ) contributes to the sum, even if employing the syntactic
notion FV(θ) in a semantic definition is inelegant. In support of Lem. 36, our semantics for
differential terms (x)′ permits that ω(y) and ω(y′) differ in shape, because y is not men-
tioned. In contrast, if ω(x) and ω(x′) differ in shape, then Iω[[(x)′]] = ⊥, as desired.

• Dimω(S) includes even paths for which only one of ω(d) or ω(d′) is defined. Thus if x and x′

differ in shape for x ∈ FV(θ), then the differential does not exist. It is only when x /∈ FV(θ)
that x and x′ are free to differ in shape. The semantics of a differential equation x′ = θ will
ensure x and x′ have the same shape, so that this edge case does not arise in differential
reasoning.

• Formally, the semantics of each differential term (θ)′ can be understood as a total differential
on a Euclidean space isomorphic to Rk, where k = |Dimω(FV(θ))|. To show this isomor-
phism, we identify a set of variables {x1, . . . , xn} with a sequence of variables ~x under
some canonical (e.g. alphabetical) ordering. For each ~x ⊆ Dom(ω) such that shape(xi) =
shape(x′i) for all xi ∈ ~x, define A~x = {v | shape(v) = shape(ω(x))} ⊂ Tree(R),
then Ax is a Euclidean space. Specifically, A~x is isomorphic to R|Dimω(~x)| under the isomor-
phism f(t) = (Dimω(~x)(1), . . . ,Dimω(~x)(n) | n = |Dimω(~x)|). Moreover, for any θ, we
define Bθ = {v | shape(v) = shape(Iω[[θ]])} ⊂ Tree(R), which is a Euclidean space
isomorphic to a subspace of R|Dimω(θ)|. Specifically, Bθ is isomorphic to R|Dimω(θ)| under the
isomorphism f(t) = {Dimω(θ)(1), . . . ,Dimω(θ)(n) s.t. n = |Dimω(θ)|}. In the case that θ
is defined in every state, then A~x = R|Dimω(~x)| exactly, else it is a strict subset. The set on
which θ is defined must include a neighborhood of ω in order for a total differential to exist.
Given these definitions, we note that I[[θ]] can be restricted in the neighborhood of ω to a
function from AFV(θ) to Bθ. Because AFV(θ) and Bθ are Banach and even Euclidean spaces,
the notion of differentiable functions between them is well-defined.

• One notable alternative design choice would be to let the shape of a term vary throughout
a differential. The main motivation would be to simplify the mathematical description of

7

differentials, rather than a practical motivation. It would simplify our intuition if we could
say the set of all tree values were a Banach space globally, rather than each differential
ranging over some space locally. Sadly, the set of all tree values simply is not a Banach
space, thus we treat differentials locally over some Euclidean space.

Tree(R) is not a Banach space for the same reason that the eventually-zero sequence space
c00 is not a Banach space [18]: despite being real-normed vector spaces, neither is complete.
A standard counterexample for c00 constructs a series of eventually-zero sequences ci where
cij = 1

j
for j ≤ i and cij = 0 otherwise. Every ci is in c00 because only the first i elements are

nonzero, but their limit is the infinite sequence d(i) = 1
i

which, being infinitely non-zero, is
not in c00. Because c00 does not contain all its limits, it is not complete and thus not Banach.
This example generalizes immediately to Tree(R) by embedding eventually-zero sequences
into trees as finite lists. In each case, a Banach space could be constructed by taking the
completion of the real-normed vector space, e.g., the completion of c00 is the Banach space
c0, the space of infinite sequences with finite sums. The completion of Tree(R) is a set of
trees which may have infinitely many nodes, so long as all infinite series of node values are
convergent. For example, if the i’th element of an infinite (1-indexed) list is 1

2i
, we generate

a list whose values sum to finite value, specifically 1. Such an approach should be possible
technically, however we deem it excessively complex given its modest benefits.

In conclusion, tuples raise several crucial subtleties. We define differentials as a subtle sum over
partial derivatives to account for conflicting shapes in x and x′. With tuples, we must carefully
consider competing notions of differential, of which only total differentials suits our soundness
needs. Previous formulations of dL [24] did not encounter such nuances because they considered
scalar, smooth terms, for which different notions of differentials are interchangeable and for which
x and x′ are always scalar.

Reduction semantics The semantics of the primitive recursor mr(θ, η, s ζ, lr γ) are given by an
inductively-defined helper function: Iω[[mr(θ, η, s ζ, lr γ)]] = Reduce(Iω[[θ]], Iω[[η]], s ζ, lr γ, Iω),
(for the case Iω[[θ]] 6= ⊥). The helper function Reduce(u, v, s θ, lr η, Iω) evaluates the reduction
by primitive recursion on t:

Reduce((), v, s θ, lr η, Iω) = v

Reduce(u, v, s θ, lr η, Iω) = Iωu
s [[θ]] when u ∈ R

Reduce((L,R), v, s θ, lr η, Iω) = IωKl
S
r [[η]] where

K = Reduce(L, v, s θ, lr η, Iω), S = Reduce(R, v, s θ, lr η, Iω)

That is, v is returned in the base case, singleton trees u are reduced by binding s to u in θ, and
nodes (L,R) are reduced by binding l, r to the reductions of the respective branches in η. The
interpretation I and state ω are simply passed along and used to interpret any symbols which
appear in θ or η.

Definition 2 (Formula semantics). The formula semantics are 3-valued:

8

Iω[[φ ∧ ψ]] = Iω[[φ]] u Iω[[ψ]] Iω[[¬φ]] = Iω[[φ]]

Iω[[∀xφ]] =
l

v∈Tree(R)

Iωvx[[φ]] Iω[[[α]φ]] =
l

(ω,ν)∈I[[α]]

Iν[[φ]]

Iω[[θ ≥ η]] = Geq(Iω[[θ]], Iω[[η]]) Iω[[p(θ)]] = I(p)(Iω[[θ]])

Iω[[C(φ)]] = I(C)(I[[φ]])(ω)

Geq(>,>) = ⊕
Geq(r1, r2) = (r1 ≥ r2) if r1, r2 ∈ R

Geq((l1, r1), (l2, r2)) = Geq(l1, l2) u Geq(r1, r2)

Geq(u, v) = � otherwise

j u k k = ⊕ � 	
j = ⊕ ⊕ � 	
j = � � � 	
j = 	 	 	 	

j j = ⊕ � 	
	 � ⊕

j →Ł k k = ⊕ � 	
j = ⊕ ⊕ � 	
j = � ⊕ ⊕ �
j = 	 ⊕ ⊕ ⊕

j ↔Ł k k = ⊕ � 	
j = ⊕ ⊕ � 	
j = � � ⊕ �
j = 	 	 � ⊕

Below, let P and Q be formulas and j, k their truth values. Likewise, let θ and η be terms with
denotations u, v. We sometimes write the interpretation of connectives as an infix operator, e.g.,
p→Ł q for the interpretation of a formula P → Q. This infix notation is primarily used in proofs,
e.g., in Sec. 4.2. Implication P → Q is interpreted as j →Ł k, which can be intuited as j ≤ k,
(where	 < � < ⊕) so (j →Ł k) is⊕ even when j = k = �. Conjunction P ∧Q is interpreted as
juk, which takes the minimum value of the arguments, and is unknown� when the least conjunct
is �. Equivalence P ↔ Q is interpreted as j ↔Ł k, which is reflexive (even � ↔Ł � = ⊕),
but is � when exactly one argument is �. We say a formula φ is valid if it is definitely-true
everywhere, i.e., for all ω and I we have Iω[[φ]] = ⊕. Comparisons θ ≥ η (interpreted Geq(u, v))
are taken elementwise and are unknown (�) for differing shapes. Predicates p are interpreted by
the interpretation I . In the interpretation of C(φ), the notation I[[φ]] denotes the function which
computes Iν[[φ]] for any argument ν, i.e., the interpretation of C(φ) is allowed to depend on the
truth value of φ at each and every state ν, not just the current state ω. The meaning of quantifiers
∀xφ and [α]φ are taken as conjunctions uS over potentially-uncountable index sets S. The value
of uS is the least truth value of any conjunct under the ordering 	 < � < ⊕. The maximum
exists over any index set S and agrees with the supremum over S because there are only three
truth values. Note that Geq(u, v) interacts with equality in the expected way, so that u = v iff
Geq(u, v) u Geq(v, u) = ⊕.

9

Definition 3 (Program semantics). Program semantics generalize those of dL as conservatively
as possible so that verification finds as many bugs as possible: e.g. assignments of non-denoting
terms and tests of unknown formulas abort. The denotation of a program α is a relation I[[α]] where
(ω, ν) ∈ I[[α]] whenever final state ν is reachable from initial state ω by running α.

I[[x := θ]] = {(ω, ωIω[[θ]]
x) | Iω[[θ]] 6= ⊥} I[[?φ]] = {(ω, ω) | Iω[[φ]] = ⊕}

I[[α ∪ β]] = I[[α]] ∪ I[[β]] I[[α; β]] = I[[α]] ◦ I[[β]]

I[[α∗]] = I[[α]]∗ =
⋃
n∈N

I[[α; · · · ;α︸ ︷︷ ︸
n times

]]

I[[x′ = θ&ψ]] = {(ω, ν) | ω=ϕ(0) on {x′}{ and ν =ϕ(r) for some r ∈ R≥0, ϕ : [0, r]→ S

which solves x′ = θ&ψ, i.e., for s ∈ [0, r],
d ϕ(t)(x)

dt
(s) = ϕ(s)(x′)

and Iϕ(s)[[x′ = θ ∧ ψ]] = ⊕ and ϕ(s) = ϕ(0) on {x, x′}{}

where X{ is the complement of set X . Assignments x := θ are strict: they store the value of θ in
variable x, or abort if θ does not denote a value. Tests ?φ succeed if φ is definitely true (⊕); both the
unknown (�) and definitely false () cases abort execution. Likewise, the domain constraint ψ of
a differential equation x′ = θ&ψ must be definitely-true (⊕) throughout the entire evolution and
the term θ implicitly must denote values throughout the evolution, since Iϕ(s)[[x′ = θ ∧ ψ]] = ⊕.
ODEs x′ = θ&ψ are initial value problems: (ω, ν) ∈ I[[x′ = θ&ψ]] if some solution ϕ of some
duration r ∈ R≥0 takes ω to ν while satisfying ψ throughout. A solution ϕ must satisfy x′ = θ
as an equation, satisfy constraint ψ, and assign the time-derivative of x to x′. The initial value of
x′ is overwritten and variables except x, x′ are not changed. Note that θ may be either scalar or
nonscalar: in the nonscalar case, x′ matches the shape of θ and x matches the shape of x′ (in ν)
since dϕ(t)(x)

dt
(s) = ϕ(s)(x′). The initial shape of x′ in ω is irrelevant since x′ is overwritten. In

real models, every ODE right-hand side θ is intended to have a constant shape over time. However,
if the shape of θ were to change, then x′ = θ will have no solution ϕ, i.e., I[[x′ = θ&ψ]] = ∅. The
proof rules of Sec. 5 are sound even in this degenerate case.

Time differentials agree with (total) spatial differentials throughout on ODE.

Lemma 2 (Differential lemma). Let η such that FV(θ) ⊆ {x}. and let ϕ solve x′ = θ&ψ on [0, r]
for r > 0. Then all s ∈ [0, r] satisfy

Iϕ(s)[[(]](η))′ =
dϕ(t)[[η]]

dt
(s)

Proof. Direct proof from the semantics of ODEs, following the proof of [24, Lem. 35].

10

4 Derived Constructs
A key benefit of dLι is extensibility: Many term constructs can be defined with definite descriptions
ιx φ and tuples which otherwise require unwieldy encodings as formulas. In this section we reap
the benefits of extensibility by defining such new term constructs. The constructs defined in this
section can be understood as a prelude or standard library for dLι.

4.1 Defining the Standard Library
Arithmetic Operations. In practice, we often wish to use arithmetic operations beyond the core
dL operations. Fig. 1 demonstrates basic arithmetic operations which have simple definitions in
dLι but not as terms in dL: Of these, max, min, and | · | preserve Lipschitz-continuity but not

(if(φ)(θ)else(η)) = ιx (φ ∧ x=θ) ∨ (¬φ ∧ x=η)
max(θ, η) = ιx (θ ≥ η ∧ x = θ) ∨ (η ≥ θ ∧ x = η)

min(θ, η) = ιx (θ ≥ η ∧ x = η) ∨ (η ≥ θ ∧ x = θ)

|θ| = max(θ,−θ)
√
θ = ιx (x2=θ ∧ x ≥ 0) θ/η = ιx (x · η=θ)

(sin θ, cos θ) = ιz [t := 0; s := 0; c := 1; s′=c, c′=−s, t′=1; ?t=θ]z=(s, c)

Figure 1: Derived arithmetic operations (for fresh x, t, c, s, z)

differentiability. Roots
√
θ can violate even Lipschitz-continuity and both roots and divisions are

non-total. In practice (as in Ex. 1), these operators are used in ODE models, making their continuity
properties essential. Since pure dL requires smooth terms [24], even functions max and min would
be encoded as formulas in pure dL.

Types and Definedness. Many of the operations in dLι expect, for example, reals or terms that
denote values. For simplicity, we make these type distinctions extrinsically: core dL terms are
untyped, and proposition inR(θ) says θ belongs to type R. Typed quantifiers are definable, e.g.,
∀x :R φ ≡ ∀x (inR(x) → φ). Whether a term denotes is also treated extrinsically. Formula
E(θ) ≡ D(θ = θ) only holds for terms that denote, where D(φ) says φ is definitely true, which has
truth value ⊕ when φ has truth value ⊕ and has value 	 otherwise. We give its truth table and a
definition:

p ⊕ � 	
D(p) ⊕ 	 	 D(φ) ≡ ¬(φ→ ¬φ)

That is, D(φ) collapses � into 	. It is also sometimes useful (Sec. 4.2) to write D(p) for the truth
value resulting from applying modality D(·) to an argument with truth value p. Likewise, E(v) can
be written for the truth value resulting from applying E(·) to a term whose denotation is v. These
constructs are used in the axioms of Sec. 5. In the same spirit, we sometimes need to know that a
function f(x) (of any dimension) is continuous, but derive this notion. We write Con(f(x)) to say

11

that f(x) is continuous as x varies around its current value:

Con(f(x)) ≡ D(∀ξ>0∃δ>0∀y (0 < ‖y − x‖ < δ → ‖f(y)− f(x)‖ < ξ))

Note that when Con(f(x)) holds, the shape of f(x) is constant in a neighborhood of x, since the
Euclidean norm ‖f(y) − f(x)‖ does not exist when f(y) and f(x) differ in shape. Likewise,
Con(f(x)) requires only continuity on y whose shape agrees with that of x, since the Euclidean
norm ‖y − x‖ does not otherwise exist.

Tuples. We make tuples first-class in dLι to simultaneously simplify the treatment of ODEs com-
pared to prior work [19] and provide support for data structures such as vectors, widely used in
physical computations. In contrast to the flexible function symbols (think: unbounded arrays) of
QdL [21], they are equipped with a primitive recursion operator, making it easier to write sophisti-
cated functional computations. These structures can be used in systems with non-scalar inputs, for
example a robot which avoids a list of obstacles [16].

While pairs (θ, η) are core dLι constructs, the left and right projections π1θ and π2θ are deriv-
able, as are convenience predicates is>(θ), inR(θ), and isP(θ) which hold exactly for (), for
scalars, and for tuples, respectively:

π1θ ≡ ιl ∃r (θ = (l, r)) is>(θ) ≡ D(mr(θ, 0, s 1, lr 2) = 0)

π2θ ≡ ιr ∃l (θ = (l, r)) inR(θ) ≡ D(mr(θ, 0, s 1, lr 2) = 1)

isP(θ) ≡ D(mr(θ, 0, s 1, lr 2) = 2)

When combined with the reduce operation on trees, these operations can be used to implement
a variety of data structures. Fig. 2 shows an example library of operations on lists. Lists are repre-
sented as right-nested pairs, i.e., trees whose left-projections are never pairs and whose rightmost
projection is (). We name an argument J,K, L, to indicate its intended use as a list rather than an
arbitrary tree. We write M,N for arguments which are intended to be matrices, which are column-
major. Note that (L ×M) is vector-matrix multiplication, with L understood as a row vector on
the left.

Systems of ODEs. Tuples reduce ODE systems to individual ODEs, e.g.:

{x′1=θ, x′2=η} ≡
(
z := (x1, x2); {z′ = (θπjzxj

, ηπjzxj
)}; x1 := π1z; x2 := π2z

)
While this encoding is simple, it will enable us in Sec. 5 to support systems of any finite dimension
in axiom DG, which implementation experience [9] has shown challenging due to the variable
dependencies involved.

4.2 Correctness of the Standard Library
In Sec. 4.1 we defined a standard library of useful constructs in dLι. In the present section, we
give formal specifications for each construct and prove that the definitions satisfy their specifica-
tions. The constructs in our library are common in standard libraries of functional programming

12

map2(T, f(x, y)) = mr(T,(), s s, lr if(size(l) = 2)(f(π1l, π1π2r), r)else(l, r))

snoc(L, x) = mr(L, (x,()), s s, lr (l, r))

rev(L) = mr(L,(), s s, lr snoc(r, l))

zip(K,L) = π2mr(K, (rev(L),()), s s, lr (π2π1r, ((l, π1π1r), π2r)))(
K~+L

)
= map2(zip(K,L), x+ y)

(K~∗L) = map2(zip(K,L), x · y)

K · L = mr((K~∗L) , 0, s s, lr l + r)

‖L‖ =
√
L · L(

K~−L
)

= map(zip(K,L), π1x− π2x)

mapc(M, f(x)) = mr(M,(), s s, lr if(inR(l))(l, r)else(f(l), r))

(L×M) = mapc(M,x · L)

shape(T) = mr(T, 0, s 1, lr (l, r))

size(T) = mr(T, 0, s 1, lr l + r)

depth(T) = mr(T, 0, s 1, lr max(l, r) + 1)

islist(T) = (mr(T, 0, s 1, lr 1 + r) = size(T))

Figure 2: Example vector and tree functions

13

languages and in linear algebra libraries. Therefore, some readers may find their specifications
standard or their proofs repetitive. However, we provide this section of the report in the interest
of comprehensiveness. A few constructs such as zip(K,L) also have nonstandard proofs because
they are implemented with primitive recursion instead of the general recursion which is typical in
functional programming languages. Where we have used nonstandard definitions, detailed proofs
provide an extra level of confidence.

In this section, it is convenient to use the notation [x1, . . . , xn] ≡ (x1, (· · · , (xn,()))) for the
list consisting of scalars xi, or {|T1, . . . , Tn|} ≡ (T1, (· · · , (Tn,()))) for a list consisting of Ti
which might not be scalars. We also use the word vector to refer to nonempty scalar lists, and
matrix to refer to nonempty rectangular lists of vectors, i.e., a matrix is not empty and does not
contain the empty list, and each inner list has identical length, containing only scalars.

Because we are proving the correctness of derived constructs, we can employ both semantic
proof approaches and syntactic proof approaches using the dLι calculus (Sec. 5). In a software
implementation, syntactic proof would be preferred in order to minimize the amount of trusted
code. Because these are paper proofs and we wish for this section to stand alone from Sec. 5,
we primarily use semantic proof, only presenting the proofs in a syntactic style when it poses a
readability advantage.

Typing. Below, fix a term θ, state ω, and interpretation I . In every theorem statement of this
section, let v = Iω[[θ]].

Proposition 3 (Definite truth). If Iω[[φ]] = ⊕ then Iω[[D(φ)]] = ⊕, else Iω[[D(φ)]] = 	.

Proof. By cases on Iω[[φ]].
Case ⊕: Iω[[D(φ)]] = Iω[[¬(φ→ ¬φ)]] = ⊕ →Ł ⊕ = ⊕ →Ł 	 = 	 = ⊕
Case �: Iω[[D(φ)]] = Iω[[¬(φ→ ¬φ)]] = � →Ł � = � →Ł � = ⊕ = 	
Case 	: Iω[[D(φ)]] = Iω[[¬(φ→ ¬φ)]] = 	 →Ł 	 = 	 →Ł ⊕ = ⊕ = 	
In each case D(φ) has the desired truth value by calculation.

Proposition 4 (Type inspectors). Recall v = Iω[[θ]], then exactly one of the following holds:

• v = ⊥, Iω[[E(θ)]] = 	, and Iω[[is>(θ)]] = Iω[[inR(θ)]] = Iω[[isP(θ)]] = �.

• v = > and Iω[[is>(θ)]] = Iω[[E(θ)]] = ⊕ while Iω[[inR(θ)]] = Iω[[isP(θ)]] = 	.

• v ∈ R and Iω[[inR(θ)]] = Iω[[E(θ)]] = ⊕ while Iω[[is>(θ)]] = Iω[[isP(θ)]] = 	.

• v = (L,R) and Iω[[isP(θ)]] = Iω[[E(θ)]] = ⊕ while Iω[[is>(θ)]] = Iω[[inR(θ)]] = 	.

Proof. By cases on v.
First case: v = ⊥, then Iω[[E(θ)]] = Iω[[D(θ = θ)]] = Iω[[¬(θ = θ → ¬(θ = θ))]] =

Iω[[θ = θ → ¬(θ = θ)]] = Iω[[θ = θ]]→Ł Iω[[(θ = θ)]]. Then since v = ⊥, we have Iω[[θ = θ]] =

Geq(v, v) u Geq(v, v) = �. Then Iω[[θ = θ]]→Ł Iω[[(θ = θ)]] = � →Ł � = � →Ł � = ⊕ = 	
as desired.

14

We show the second subcase:

Iω[[is>(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 0)]]

=D(Reduce(⊥, 0, s 1, lr 2, Iω) = 0)

=D(⊥ = 0)

=D(Geq(⊥, 0) u Geq(0,⊥))

=D(�) = 	.

We show the third subcase:

Iω[[inR(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 1)]]

=D(Reduce(⊥, 0, s 1, lr 2, Iω) = 1)

=D(⊥ = 1)

=D(Geq(⊥, 1) u Geq(1,⊥))

=D(�) = 	.

We show the fourth subcase:

Iω[[isP(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 2)]]

=D(Reduce(⊥, 0, s 1, lr 2, Iω) = 2)

=D(⊥ = 2)

=D(Geq(⊥, 2) u Geq(2,⊥))

=D(�) = 	

Second case: v = >, then Iω[[E(θ)]] = Iω[[D(θ = θ)]] = Iω[[¬(θ = θ → ¬(θ = θ))]] =

Iω[[θ = θ → ¬(θ = θ)]] = Iω[[θ = θ]]→Ł Iω[[(θ = θ)]]. Then since v = >, we have Iω[[θ = θ]] =

Geq(v, v) u Geq(v, v) = ⊕. Then Iω[[θ = θ]]→Ł Iω[[(θ = θ)]] = ⊕ →Ł ⊕ = ⊕ →Ł 	 = 	 = ⊕
as desired.

We show the second subcase:

Iω[[is>(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 0)]]

=D(Reduce(>, 0, s 1, lr 2, Iω) = 0)

=D(0 = 0)

=D(Geq(0, 0) u Geq(0, 0))

=D(⊕) = ⊕.

15

We show the third subcase:

Iω[[inR(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 1)]]

=D(Reduce(>, 0, s 1, lr 2, Iω) = 1)

=D(0 = 1)

=D(Geq(0, 1) u Geq(1, 0))

=D() = 	.

We show the fourth subcase:

Iω[[isP(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 2)]]

=D(Reduce(>, 0, s 1, lr 2, Iω) = 2)

=D(0 = 2)

=D(Geq(0, 2) u Geq(2, 0))

=D() = 	.

Third case: v ∈ R, then Iω[[E(θ)]] = Iω[[D(θ = θ)]] = Iω[[¬(θ = θ → ¬(θ = θ))]] =

Iω[[θ = θ → ¬(θ = θ)]] = Iω[[θ = θ]]→Ł Iω[[(θ = θ)]]. Then since v ∈ R, we have Iω[[θ = θ]] =

Geq(v, v) u Geq(v, v) = ⊕. Then Iω[[θ = θ]]→Ł Iω[[(θ = θ)]] = ⊕ →Ł ⊕ = ⊕ →Ł 	 = 	 = ⊕
as desired.

We show the second subcase:

Iω[[is>(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 0)]]

=D(Reduce(v, 0, s 1, lr 2, Iω) = 0)

=D(1 = 0)

=D(Geq(1, 0) u Geq(0, 1))

=D() = 	.

We show the third subcase:

Iω[[inR(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 1)]]

=D(Reduce(v, 0, s 1, lr 2, Iω) = 1)

=D(1 = 1)

=D(Geq(1, 1) u Geq(1, 1))

=D(⊕) = ⊕.

16

We show the fourth subcase:

Iω[[isP(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 2)]]

=D(Reduce(v, 0, s 1, lr 2, Iω) = 2)

=D(1 = 2)

=D(Geq(1, 2) u Geq(2, 1))

=D() = 	.

Fourth case: v = (L,R), then Iω[[E(θ)]] = Iω[[D(θ = θ)]] = Iω[[¬(θ = θ → ¬(θ =

θ))]] = Iω[[θ = θ → ¬(θ = θ)]] = Iω[[θ = θ]]→Ł Iω[[(θ = θ)]]. Then since v = (L,R), and since
Geq(v, v) = Geq(L,L) u Geq(R,R) = ⊕ u ⊕ = ⊕ then we have Iω[[θ = θ]] = Geq(v, v) u
Geq(v, v) = ⊕. Then Iω[[θ = θ]]→Ł Iω[[(θ = θ)]] = ⊕ →Ł ⊕ = ⊕ →Ł 	 = 	 = ⊕ as desired.

We show the second subcase:

Iω[[is>(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 0)]]

=D(Reduce(v, 0, s 1, lr 2, Iω) = 0)

=D(2 = 0)

=D(Geq(2, 0) u Geq(0, 2))

=D() = 	.

We show the third subcase:

Iω[[inR(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 1)]]

=D(Reduce(v, 0, s 1, lr 2, Iω) = 1)

=D(2 = 1)

=D(Geq(2, 1) u Geq(1, 2))

=D() = 	.

We show the fourth subcase:

Iω[[isP(θ)]]

=Iω[[D(mr(θ, 0, s 1, lr 2) = 2)]]

=D(Reduce(v, 0, s 1, lr 2, Iω) = 2)

=D(2 = 2)

=D(Geq(2, 2) u Geq(2, 2))

=D(⊕) = ⊕.

17

Proposition 5 (Projections). Recall v = Iω[[θ]]. If v has shape (L,R), then Iω[[π1θ]] = L and
Iω[[π2θ]] = R, else Iω[[π1θ]] = Iω[[π2θ]] = ⊥.

Proof. First note (1) Iω[[π1θ]] is the unique L ∈ Tree(R) s.t. there exists R ∈ Tree(R) s.t.
v = (L,R), if unique such L exists. Likewise (2) Iω[[π2θ]] is the unique R ∈ Tree(R) s.t. there
exists L ∈ Tree(R) s.t. v = (L,R), if unique such R exists. These facts follow directly by
expanding the definitions of π1θ and π2θ then expanding the semantics.

We finish the proof by cases on u.
If v = ⊥, v = >, or v ∈ R, then Iω[[π1θ]] = Iω[[π2θ]] = ⊥ since the descriptions (1) and

(2) have no solutions. Else v = (L,R), then (1) and (2) have L and R as their unique solutions
respectively, as desired.

Proposition 6 (Typed quantifiers). The typed quantifiers obey the equations:

• Iω[[∀x :R φ]] =
d
v∈R Iω

v
x[[φ]]

• Iω[[∃x :R φ]] =
⊔
v∈R Iω

v
x[[φ]]

Proof. Direct proof. Iω[[∀x :R φ]] = Iω[[∀x (inR(x) → φ)]] =
d
v∈Tree(R) Iω

v
x[[inR(x)→ φ]] =∗d

v∈R Iω
v
x[[φ]] as desired. The step marked (*) uses the semantics of implication and the fact that

Iω[[inR(x)]] 6= � always (Prop. 4).
Likewise, Iω[[∃x :R φ]] = Iω[[∃x (inR(x)∧φ)]] =

⊔
v∈Tree(R) Iω

v
x[[inR(x) ∧ φ]] =∗

⊔
v∈R Iω

v
x[[φ]]

as desired. The step marked (*) again uses Iω[[inR(x)]] 6= � (Prop. 4).

Proposition 7 (Continuity). If Iω[[Con(f(x))]] = ⊕ then the function y : Tree(R) 7→ Iω[[f(y)]] is
continuous in some neighborhood of y = x, else Iω[[Con(f(x))]] = 	.

Proof. Throughout, we consider F which maps every y : Tree(R) to Iω[[f(y)]]. By Prop. 4,
Con(f(x)) 6= �. Formally, the notion of function continuity can be defined for functions be-
tween any two metric spaces. As in Sec. 3, we note that the value space Tree(R) behaves locally
as some Rk when the shape of a tree is fixed. It suffices to show F is (locally) a continuous function
between two Euclidean subspaces of Rk which we call Ax (satisfying Ax ⊆ Tree(R)) and Bf(x),
again borrowing the notation of Sec. 3. Specifically, v ∈ Ax iff shape(v) = shape(ω(x)) and
v ∈ Bf(x) iff shape(v) = shape(I(f)(ω(x))).

Note that in the below, Nξ(ω(x)) = {ωvx | ‖v − ω(x)‖ < ξ}. To show local continuity, we
show:

• There exists an open ballNξ(ω(x)) of size ξ > 0 centered on ω(x) for whichNξ(ω(x)) ⊆ Ax
and the image F (Nξ(ω(x))) of Nξ(ω(x)) under F is a subset F (Nξ(ω(x))) ⊆ Bf(x).

• The restriction Fξ of F toNξ(ω(x)) is continuous, i.e., according to the delta-epsilon defini-
tion of continuity between metric spaces under the Euclidean metric.

We now show that the definition (0) of Con(f(x)) is equivalent the conjunction of (1) and (2).
First show (0) implies (1) and (2). Assume x and f are such that Iω[[∀ξ > 0∃δ > 0 ∀y (0 <

‖y−x‖ < δ∧‖f(y)−f(x)‖ < ξ)]] = ⊕. Then by expanding the semantics, we have for all ξ > 0

18

there exists δ > 0 such that for all y where ‖y−ω(x)‖ ∈ (0, δ) then ‖I(f)(y)− I(f)(ω(x))‖ < ξ.
To show (1), consider any ξ > 0 then fix some δ > 0 where ∀y (0 < ‖y − ω(x)‖ < δ →
‖I(f)(y)− I(f)(ω(x))‖ < ξ). ThenNδ(ω(x)) is the desired neighborhood sinceNδ(ω(x)) ⊆ Ax
and F (Nδ(ω(x))) ⊆ Bf(x). Since the norms ‖y − x‖ and ‖f(y) − f(x)‖ exist it follows that
y has the same shape as x and f(y) the same shape as f(x): the difference of two terms which
differ in shape is undefined. Then (2) also holds since Con(f(x)) implies limy→x f(y) = x for y
in Nδ(ω(x)).

Then show First show (1) and (2) implies (0). In the converse direction, assume x and f such
that Iω[[∀ξ > 0 ∃δ > 0 ∀y (0 < ‖y − x‖ < δ ∧ ‖f(y) − f(x)‖ < ξ)]] = 	 6= ⊕ (truth value �
cannot arise). Then by de Morgan’s law, there exists ξ > 0 such that for all δ > 0 there exists y
such that ‖y − x‖ ∈ (0, δ) where ‖f(y) − f(x)‖ < ξ. Then the limit limy→x f(y) = x does not
exist, that is the limits as y approaches x from each direction do not exist or do not equal each
other, thus f is not continuous at x.

Arithmetic.
Proposition 8 (Conditional terms). If Iω[[φ]] = ⊕ then Iω[[if(φ)(θ)else(η)]] = Iω[[θ]], else if
Iω[[φ]] = 	 then Iω[[if(φ)(θ)else(η)]] = Iω[[η]], else Iω[[if(φ)(θ)else(η)]] = ⊥.

Proof. Below, we assume x is fresh w.r.t. to φ, θ, and η. By the semantics, Iω[[if(φ)(θ)else(η)]]
is the unique v ∈ Tree(R) such that (Iωvx[[φ]] u Iωvx[[x = θ]]) t (Iωvx[[φ]] u Iωvx[[x = η]]) = ⊕,
which is the unique v such that (Iωvx[[φ]] u Iωvx[[x = θ]]) = ⊕ or (Iωvx[[φ]] u Iωvx[[x = η]]) = ⊕
(assuming there exists a unique such v). This is the unique v such that Iωvx[[φ]] = Iωvx[[x = θ]] = ⊕
or Iωvx[[φ]] = Iωvx[[x = η]] = ⊕.

We proceed by cases on Iωvx[[φ]], which by Lem. 36 equals Iω[[φ]], and seek a unique solution v
to the above definite description in each case:
⊕: then by case, have Iωvx[[φ]] = ⊕. Let v = Iω[[θ]] = Iωvx[[θ]] (by Lem. 36). Then if v 6= ⊥, we

have that v is a solution to Iωvx[[x = θ]] = ⊕ by reflexivity. It is trivially the unique such solution as
desired. Else v = ⊥ so Iωvx[[x = θ]] = �. There is no solution v to the definite description so that
Iω[[if(φ)(θ)else(η)]] = ⊥, but in this case Iω[[θ]] = ⊥ anyway so Iω[[if(φ)(θ)else(η)]] = Iω[[θ]]
regardless as desired.
�: then by case, have Iωvx[[φ]] = � = Iωvx[[φ]]. Since neither Iωvx[[φ]] = ⊕ nor Iωvx[[φ]] = ⊕

then the description has no solution. Then Iω[[if(φ)(θ)else(η)]] = ⊥ as desired.
	: then by case, have Iωvx[[φ]] = 	, i.e., Iωvx[[φ]] = ⊕. Let v = Iω[[η]] = Iωvx[[η]]. Then

if v 6= ⊥, we have that v is a solution to Iωvx[[x = η]] = ⊕ by reflexivity. It is trivially the
unique such solution as desired. Else v = ⊥ so Iωvx[[x = η]] = �. There is no solution v to
the definite description so that Iω[[if(φ)(θ)else(η)]] = ⊥, but in this case Iω[[η]] = ⊥ anyway so
Iω[[if(φ)(θ)else(η)]] = Iω[[η]] regardless as desired.

Proposition 9 (Five-function arithmetic). If Iω[[θ]] ∈ R≥0 then Iω[[
√
θ]] =

√
Iω[[θ]], else Iω[[

√
θ]] =

⊥. If Iω[[η]] ∈ R \ {0} and Iω[[θ]] ∈ R then Iω[[θ/η]] = Iω[[θ]]/Iω[[η]], else Iω[[θ/η]] = ⊥.

Proof. In the first case for
√
θ, let r = Iω[[θ]] ∈ R≥0. Then we need Iω[[

√
θ]] to be some unique v

such that Iωtx[[x ≥ 0∧x ·x = θ]] = ⊕, equivalently some unique v ∈ R s.t. v > 0 and v2 = Iω[[θ]].

19

Now let v =
√
r which is a solution and a unique one. It is a solution because r ≥ 0 has a square

root, because (
√
r)2 = r, and

√
r ≥ 0 necessarily. It is the unique solution because the only other

solution of v2 = r is−
√
r, which is not a solution of v ≥ 0 except at v = 0 where v = −v anyway.

In the second case for
√
θ, let r = Iω[[θ]] /∈ R≥0. Then there is no solution v such that

Iωvx[[x ≥ 0 ∧ x · x = θ]] = ⊕. Assume for the sake of contradiction such a v exists, then
Geq(v, 0) = 	 so v ∈ R≥0 but then v2 = r ∈ R≥0 contradicting r /∈ R≥0.

In the first case for θ/η, let r = Iω[[θ]] ∈ R and s = Iω[[η]] ∈ R \ {0}. We need Iω[[θ/η]] to be
some unique v such that Iωvx[[x · η=θ]] = ⊕, i.e., (by Lem. 36) such that v[[·]]s = r. Since r, s ∈ R
it suffices that vs = r. Now let v = r/s and since s 6= 0 by gradeschool algebra v is a solution. It
is unique, also by gradeschool algebra.

In the second case for θ/η, let r = Iω[[θ]] /∈ R or s = Iω[[η]] /∈ R\{0}. If either r /∈ R or s /∈ R
then v[[·]]s = ⊥ so that Iωvx[[x · η=θ]] = �, thus Iω[[θ/η]] = ⊥ as desired. Otherwise r ∈ R but
s = 0. If r = 0 as well then every v ∈ R is a solution vs = r, else when r 6= 0 then v ·0 = r has no
solution. In either case there is no unique solution v so in both cases Iω[[θ/η]] = ⊥ as desired.

Proposition 10 (Extremum functions). If Iω[[θ]] = ⊥ or Iω[[η]] are ⊥ or differ in shape then
Iω[[max(θ, η)]] = Iω[[min(θ, η)]] = ⊥. If Iω[[θ]] = ⊥ then additionally Iω[[|θ|]] = ⊥. Else
Iω[[max(θ, η)]] = max(Iω[[θ]], Iω[[η]]) and Iω[[min(θ, η)]] = min(Iω[[θ]], Iω[[η]]) and Iω[[|θ|]] =
|Iω[[θ]]|. In the case that θ and η have the same nonscalar shape, the extremum of a pair is a pair of
the extrema of the components.

Proof. By cases. Case θ = ⊥ (or η = ⊥ for max and min). Let v stand for the solution of the
definite description, if a unique such solution exists. Iωvx[[θ ≥ η]] = Iωvx[[η ≥ θ]] = Iωvx[[x = θ]] =
Iωvx[[x = η]] = �. By calculation Iω[[max(θ, η)]] = Iω[[min(θ, η)]] = Iω[[|θ|]] = ⊥.

Case shape(Iω[[θ]]) 6= shape(Iω[[η]]): Let v stand for the solution of the definite description,
if a unique such solution exists. Then still Iωvx[[θ ≥ η]] = Iωvx[[η ≥ θ]] = � so both disjuncts are
� (or possibly) so there is no solution v where (θ ≥ η ∧ x = θ) ∨ (η ≥ θ ∧ x = η) for max or
where (θ ≥ η ∧ x = η) ∨ (η ≥ θ ∧ x = θ) for min, thus Iω[[max(θ, η)]] = Iω[[min(θ, η)]] = ⊥ as
desired.

Case shape(Iω[[θ]]) = shape(Iω[[η]]): Proceed by subcases for each function, letting L =
Iω[[θ]] and R = Iω[[η]]. For max, let v = max(L,R) (we write max(L,R) for componentwise
maximum, likewise for min(L,R) and |L|). If L ≥ R then v = L so the left disjunct is satisfied
Iωvx[[θ ≥ η ∧ x = θ]]. The solution is unique by x = θ. Else L ≥ R and v = R and right disjunct is
satisfied uniquely: Iωvx[[η ≥ θ ∧ x = η]] = ⊕. For min, let v = min(L,R). If L ≥ R then v = R
so the left disjunct is satisfied Iωvx[[θ ≥ η ∧ x = η]]. The solution is unique by x = η. Else R ≥ L
and v = L and right disjunct is satisfied uniquely: Iωvx[[η ≥ θ ∧ x = θ]] = ⊕. For absolute value,
let v = |L| = max(L,−L), then the result follows from the case for max.

Proposition 11 (Trig. functions). If Iω[[θ]] ∈ R≥0 then Iω[[sin θ]] = sin Iω[[θ]] and Iω[[cos θ]] =
cos Iω[[θ]].

We assume θ ≥ 0 because it simplifies the definitions of sin and cos. If desired, this assumption
can be removed by prefixing the program z := θ; {z := z + 2π}∗; ?0 ≤ z to the ODE in the
definition of (sin, cos) and testing z=θ rather than t=θ. Note such a loop is nondeterministic

20

because multiple positive solutions exist, but all such solutions are congruent modulo 2π and thus
have the same sine and cosine.

Proof. We wish to show that v = (sin θ, cos θ) is the unique value such that we have the equality
Iωvz [[[t := 0; s := 0; c := 1; s′=c, c′=−s, t′=1; ?t=θ]z=(s, c)]] = ⊕. We abbreviate µ = ωvz

0
t

0
s

0
c .

Now by assignment semantics it suffices to show v = (sin Iω[[θ]], cos Iω[[θ]]) is the unique solu-
tion of Iµ[[[s′=c, c′=−s, t′=1; ?t=θ]z=(s, c)]] = ⊕, i.e., the unique v such that for all (µ, ν) ∈
I[[s′=c, c′=−s, t′=1]], if Iν[[?t=θ]] = ⊕ (i.e., ν(t) = Iν[[θ]]) then Iν[[z=(s, c)]] = ⊕ (i.e., ν(z) =
(ν(s), ν(c)). By ODE semantics, (µ, ν) ∈ I[[s′=c, c′=−s, t′=1]] iff there is some r ∈ R and
ϕ : [0, r] such that ϕ solves s′=c, c′=−s, t′=1 and ω = ϕ(0) on {x′}{ ν = ϕ(r). Since the
ODE s′=c, c′=−s, t′=1 is linear, there is even a unique such ϕ. Specifically, we can define
ϕ by ϕ(r)(t) = r, ϕ(r)(c) = cos r, ϕ(r)(s) = sin r, ϕ(r)(z) = µ(z). We check that our ϕ
is indeed a solution. The initial conditions hold: ϕ(0)(t) = 0 = µ(t), ϕ(0)(c) = cos 0 =
1 = µ(c), ϕ(0)(s) = sin 0 = 0 = µ(s), ϕ(0)(z) = µ(z) = v. The ODE is satisfied because
∂ϕ(r)(s)

∂r
= ϕ(r)(c) and ∂ϕ(r)(c)

∂r
= −ϕ(r)(s) (a direct result of the differentiation laws for sine and

cosine) and ∂ϕ(r)(t)
∂r

= 1. Of the possible durations r, it suffices by the test ?t=θ to consider only
those where ν(t) = Iν[[θ]] = Iω[[θ]] (by Lem. 36 and the assumption that c, s, t, z are fresh). Thus
it suffices to consider only ν = ϕ(Iω[[θ]]) = ω

Iω[[θ]]
t

cos Iω[[θ]]
c

sin Iω[[θ]]
s

v
z . Specifically, for v to be a solu-

tion, it suffices to ensure Iν[[z=(s, c)]] or equivalently v = (sin Iω[[θ]], cos Iω[[θ]]). This is exactly
the solution we chose for v. It is the unique solution because equality formulas Iν[[z=(s, c)]] hold
for unique values of z only.

Data structures. In this section, we specify and verify our operations on vectors and matrices.
Because the terms that appear here are comparatively large, we knowingly blur the lines between
syntax and semantics for the sake of readability. Specifically, if we say that θ = η is a theorem, we
mean that Iω[[θ]] = Iω[[η]] for all I and ω.

Proposition 12 (map2). Assume T is a list of 2-element lists T = {|[x1, y1], . . . , [xn, yn]|}. Then
map2(T, f(x, y)) = {|f(x1, y1), . . . , f(xn, yn)|}.

Proof. By induction on n.
Case n = 0 then T = () and

map2(T, f)

=mr(T,(), s s, lr if(size(l) = 2)(f(π1l, π1π2r), r)else(l, r))

=().

Case n = k + 1 then T = {|[x1, y1], . . . , [xn, yn]|} = ([x1, y1], {|[x2, y2], . . . , [xn, yn]|}). Then

21

map2(T, f)

=mr(T,(), s s, lr if(size(l) = 2)(f(π1l, π1π2r), r)else(l, r))

=if(size(map2([x1, y1], f)) = 2)(f(π1l, π1π2r),map2({|[x2, y2], . . . , [xn, yn]|}, f))else(l, r)

=if(size([x1, y1]) = 2)(f(π1[x1, y1], π1π2[x1, y1]),map2({|[x2, y2], . . . , [xn, yn]|}, f))else(l, r)

=((f(π1[x1, y1], π1π2[x1, y1]),map2({|[x2, y2], . . . , [xn, yn]|}, f))

=(f(x1, y1),map2({|[x2, y2], . . . , [xn, yn]|}, f))
=
IH(f(x1, y1), {|f(x2, y2), . . . , f(xn, yn)|})
={|f(x1, y1), . . . , f(xn, yn)|}.

Proposition 13 (snoc). snoc([x1, . . . , xn], y) = [x1, . . . , xn, y]

Proof. By induction on n.
Case n = 0 then snoc((), y) = mr((), (y,()), s s, lr (l, r)) = (y,()) = [y] as desired.
Case n = k + 1 then

snoc([x1, . . . , xn], y)

=mr([x1, . . . , xn], (y,()), s s, lr (l, r))

=(x1,mr([x2, . . . , xn], (y,()), s s, lr (l, r)))

=(x1, [x2, . . . , xn, y])

=[x1, . . . , xn, y].

Proposition 14 (Reverse). rev([x1, . . . , xn]) = [xn, . . . , x1]

Proof. By induction on n.
Case n = 0 then rev(()) = mr((),(), s s, lr snoc(r, l)) = () as desired.
Case n = k + 1 then

rev([x1, . . . , xn])

=mr([x1, . . . , xn],(), s s, lr snoc(r, l))

=snoc(rev([x2, . . . , xn]), x1)

=snoc([xn, . . . , x2], x1)

=[xn, . . . , x1].

Proposition 15 (zip). zip([x1, . . . , xn], [y1, . . . , yn]) = {|[x1, y1], . . . , [xn, yn]|}

22

Proof. Recall that zip is defined by:

zip(K,L) = π2mr(K, (rev(L),()), s s, lr (π2π1r, ((l, π1π1r), π2r)))

We write zip’([x1, . . . , xn], [y1, . . . , yn], k) for the k′th intermediate step of the main reduction, i.e.,
f(xn−k+1, . . . , f(xn, ([yn, . . . , y1],()))) where f(l, r) = (π2π1r, ((l, π1π1r), π2r)) By induction
on n we show zip’([x1, . . . , xn], [y1, . . . , yn], k) = ([yn−k, . . . , y1], {|[xn−k+1, yn−k+1], [xn, yn]|}).
Setting k = n yields zip’([x1, . . . , xn], [y1, . . . , yn], n) = ((), {|[x1, y1], [xn, yn]|}), then the the-
orem follows directly from the “obvious” (i.e., we do not bother presenting a proof) property
zip([x1, . . . , xn], [y1, . . . , yn]) = π2zip’(x1, . . . , xn, y1, . . . , yn, n).

Case k = 0 then

zip’([x1, . . . , xn], [y1, . . . , yn], 0)

=([yn, . . . , y1],())

=([yn−k, . . . , y1], {|[xn−k+1, yn−k+1], [xn, yn]|})

since {|[xn−k+1, yn−k+1], [xn, yn]|} = {|[xn+1, yn+1], [xn, yn]|} = ().
Case k = j + 1 then

zip’([x1, . . . , xn], [y1, . . . , yn], j + 1)

=f(xn−k+1, . . . , f(xn, ([yn, . . . , y1],())))

=f(xn−j, f(xn−j+1, . . . , f(xn, ([yn, . . . , y1],()))))

=f(xn−j, ([yn−j, . . . , y1], {|[xn−j+1, yn−j+1], [xn, yn]|})
=([yn−(j+1), . . . , y1], {|[xn−j, yn−j], [xn, yn]|})

as desired.

Proposition 16 (Vector addition).
(
[x1, . . . , xn]~+[y1, . . . , yn]

)
= [x1 + y1, . . . , xn + yn]

Proof. By direct proof and Prop. 12:(
[x1, . . . , xn]~+[y1, . . . , yn]

)
=[f(x1, y1), . . . , f(xn, yn)](for f(x, y) = x+ y)
=[x1 + y1, . . . , xn + yn].

Proposition 17 (Vector subtraction).
(
[x1, . . . , xn]~−[y1, . . . , yn]

)
= [x1 − y1, . . . , xn − yn]

Proof. By direct proof and Prop. 12:(
[x1, . . . , xn]~−[y1, . . . , yn]

)
=[f(x1, y1), . . . , f(xn, yn)](for f(x, y) = x− y)
=[x1 − y1, . . . , xn − yn].

23

Proposition 18 (Vector elementwise multiplication). ([x1, . . . , xn]~∗[y1, . . . , yn]) = [x1y1, . . . , xnyn]

Proof. By direct proof and Prop. 12:

([x1, . . . , xn]~∗[y1, . . . , yn])

=[f(x1, y1), . . . , f(xn, yn)](for f(x, y) = xy)
=[x1y1, . . . , xnyn].

Proposition 19 (Dot product). [x1, . . . , xn] · [y1, . . . , yn] = x1y1 + · · ·+ xnyn

Proof. Start by applying Prop. 18:

[x1, . . . , xn] · [y1, . . . , yn]

=mr(([x1, . . . , xn]~∗[y1, . . . , yn]) , 0, s s, lr l + r)

=mr([x1y1, . . . , xnyn], 0, s s, lr l + r)

=[x1y1, . . . , xnyn].

To finish the proof, show mr([x1y1, . . . , xnyn], 0, s s, lr l + r) = x1y1 + · · ·+ xnyn by induction:
Case n = 0 then mr((), 0, s s, lr l + r) = 0.
Case n = k + 1 then

mr([x1y1, . . . , xnyn], 0, s s, lr l + r)

=x1y1 + mr([x2y2, . . . , xnyn], 0, s s, lr l + r)

=x1y1 + (x2y2 + · · ·+ xnyn)

=x1y1 + · · ·+ xnyn.

Proposition 20 (Matrix map). We have that mapc(M, f(x)) = {|f(c1), . . . , f(cn)|} for all matrices
M = {|c1, . . . , cn|}.

Proof. By two inductions, first for the columns and then the matrix. By convention we writem×n
for the dimensions of M . We write xij for the i’th row, j’th column, e.g., cj = [x1j, . . . , xmj] since
matrices are column-major.

We write mred(M) for the reduction mr(M,(), s s, lr if(inR(l))(l, r)else(f(l), r)) applied
to list or matrix M . First for arbitrary j ∈ [1, n] we show by induction on k ∈ [0,m − 1] that
mred([cj(n−k+1)], . . . , cjn) = [cj(n−k+1), . . . , cjn].

Base case k = 0: then mred(()) = () as desired.

24

Base case k > 0: then

mred([cj(n−k+1)], . . . , cjn)

=if(inR(cj(n−k+1)))(cj(n−k+1),mred([cj(n−k+2)], . . . , cjn))

else(f(cj(n−k+1)),mred([cj(n−k+2)], . . . , cjn))

=(cj(n−k+1),mred([cj(n−k+2), . . . , cjn]))

=(cj(n−k+1), [cj(n−k+2), . . . , cjn])

=[cj(n−k+1), . . . , cjn]

So letting k = n we get mred(cj) = cj .
We now use a second induction to show for arbitrary k ∈ [0, n−1] that mred({|cn−k+1, . . . , cn|}) =

{|f(cn−k+1), . . . , f(cn)|}.
Base case k = 0: then mred(()) = ().
Base case k > 0: then

mred({|cn−k+1, . . . , cn|})
=if(inR(mred(cn−k+1)))(mred(cn−k+1),mred({|cn−k+2, . . . , cn|}))

else(f(mred(cn−k+1)),mred({|cn−k+2, . . . , cn|}))
=(f(mred(cn−k+1)),mred({|cn−k+2, . . . , cn|}))
=(f(cn−k+1),mred({|cn−k+2, . . . , cn|}))
=(f(cn−k+1), {|f(cn−k+2), . . . , f(cn)|})
={|f(cn−k+1), . . . , f(cn)|}).

using the previous result mred(cj) = cj for all j. Now plugging in k = n again, we get
mred({|c1, . . . , cn|}) = {|f(c1), . . . , f(cn)|}, i.e., mapc(M, f(x)) = {|f(c1), . . . , f(cn)|} as de-
sired.

Proposition 21 (Row-matrix multiplication). Let L be a row vector and M be a matrix of compat-
ible dimension, then (L ×M) is the matrix product LM, i.e., the result of matrix multiplication
where L is treated as a one-row matrix.

Proof. Let m× n be the dimension of M and m be the dimension of L. Then M = {|c1, . . . , cn|}
for some columns cj . Then (L ×M) = mapc(M,x · L) = mapc({|c1, . . . , cn|}, x · L). Then by
Prop. 20 we have (L×M) = {|c1 ·L, . . . , cn ·L|}which is the definition of row-matrix product.

Proposition 22 (Shape). Function shape(θ) captures the shape of term θ while ignoring its ele-
ments. That is, shape(θ) = shape(η) iff θ and η have the same shape, regardless of their ele-
ments. Formally we say Iω[[shape(θ)]] = shape(Iω[[θ]]) where we inductively define shape(v)
(for v ∈ Tree(R) ∪ {⊥}) as:

• shape(⊥) = ⊥

• shape(>) = 0

25

• For v ∈ R, then shape(v) = 1

• For v = (L,R) then shape(v) = (shape(L), shape(R))

Proof. By induction on v, with Iω[[θ]] = v.
Case v = ⊥ then Iω[[shape(θ)]] = Iω[[mr(θ, 0, s 1, lr (l, r))]] = ⊥ = shape(⊥) as desired.
Case v = > then Iω[[shape(θ)]] = Iω[[mr(θ, 0, s 1, lr (l, r))]] = Iω[[0]] = 0 = shape(>) as

desired.
Case v ∈ R then Iω[[shape(θ)]] = Iω[[mr(θ, 0, s 1, lr (l, r))]] = Iω[[1]] = 1 = shape(v).
Case v = (L,R) then

Iω[[shape(θ)]]

=Iω[[mr(θ, 0, s 1, lr (l, r))]]

=(mr(π1θ, 0, s 1, lr (l, r)),mr(π2θ, 0, s 1, lr (l, r)))

=(shape(L), shape(R))

=shape((L,R)) = shape(v).

Proposition 23 (Size). The function size(θ) computes the number of elements in θ. Formally we
say Iω[[size(θ)]] = size(Iω[[θ]]) where we define size(v) inductively by:

• size(⊥) = ⊥

• size(>) = 0

• For v ∈ R, then size(v) = 1

• For v = (L,R) then size((L,R)) = size(L) + size(R)

Proof. By induction on v.
Case v = ⊥ then Iω[[size(⊥)]] = Iω[[mr(θ, 0, s 1, lr l + r)]] = ⊥ as desired.
Case v = > then Iω[[size(>)]] = Iω[[mr((), 0, s 1, lr l + r)]] = Iω[[0]] = 0 as desired.
Case v ∈ R then Iω[[size(θ)]] = Iω[[mr(θ, 0, s 1, lr l + r)]] = Iω[[1]] = 1 as desired.
Case v = (L,R) then Iω[[size(θ)]] = Iω[[mr(θ, 0, s 1, lr l + r)]] = Iω[[mr(π1θ, 0, s 1, lr l +

r)]] + Iω[[mr(π2θ, 0, s 1, lr l + r)]] = size(L) + size(R).

Proposition 24 (Depth). The function depth(θ) computes the longest root-to-leaf path in θ. For-
mally we say Iω[[depth(θ)]] = depth(Iω[[θ]]), where we define depth(v) inductively by:

• depth(⊥) = ⊥

• depth(>) = 0

• If v ∈ R then depth(v) = 1

26

• If v = (L,R) then depth(v) = max(depth(L),depth(R)) + 1

Proof. By induction on v.
Case ⊥ then Iω[[depth(θ)]] = Iω[[mr(θ, 0, s 1, lr max(l, r) + 1)]] = ⊥.
Case > then Iω[[depth(θ)]] = Iω[[mr(θ, 0, s 1, lr max(l, r) + 1)]] = Iω[[0]] = 0.
Case v ∈ R then Iω[[depth(θ)]] = Iω[[mr(θ, 0, s 1, lr max(l, r) + 1)]] = Iω[[1]] = 1.
Case v = (L,R) then

Iω[[depth(θ)]]

=Iω[[mr(θ, 0, s 1, lr max(l, r) + 1)]]

=Iω[[1 + max(depth(π1θ),depth(π2θ))]]

=1 + max(depth(L),depth(R))

=depth(v)

by Prop. 10 as desired.

Proposition 25 (Is-list). If Iω[[θ]] is of form [x1, . . . , xn] then Iω[[islist(θ)]] = ⊕, else if Iω[[θ]] = ⊥
then Iω[[islist(θ)]] = �, else Iω[[islist(θ)]] = 	.

Proof. By cases, induction on n and using Prop. 23.
Case Iω[[θ]] = ⊥, then Iω[[islist(θ)]] = Iω[[mr(π2θ, 0, s 1, lr 1 + r)]].
Case Iω[[θ]] is of form [x1, . . . , xn]: Show Iω[[mr(θ, 0, s 1, lr 1 + r)]] = Iω[[size(θ)]] 6= ⊥.
Subcase n = 0 and Iω[[θ]] = > then Iω[[mr(θ, 0, s 1, lr 1+r)]] = 0 = size(>) = Iω[[size(())]].
Subcase n = k + 1 and Iω[[θ]] = [x1, . . . , xn] then

Iω[[mr(θ, 0, s 1, lr 1 + r)]]

=Iω[[1 + mr(π2θ, 0, s 1, lr 1 + r)]]

=1 + Iω[[mr(π2θ, 0, s 1, lr 1 + r)]]

=1 + (size(π2θ))

=1 + (size([x2, . . . , xn]))

=size(x1, . . . , xn)

=Iω[[size(θ)]].

Case Iω[[θ]] ∈ Tree(R) not of form [x1, . . . , xn]: We show Iω[[islist(θ)]] = 	 by showing
Iω[[mr(θ, 0, s 1, lr 1 + r)]] 6= Iω[[size(θ)]]. We show this by assuming (C) Iω[[mr(θ, 0, s 1, lr 1 +
r)]] = Iω[[size(θ)]] and deriving a contradiction. The contradiction proceeds by induction on
Iω[[θ]].

Case > or R then θ is a list, which contradicts the outer case.
Case (L,R) then either (a) L = > or (b) L ∈ R and (c) R is not a list. In case (a) we

can assume without loss of generality R is a list. In case (a) then Iω[[mr(θ, 0, s 1, lr 1 + r)]] =
1 + Iω[[mr(π2θ, 0, s 1, lr 1 + r)]] = 1 + Iω[[size(π2θ)]] = 1 + Iω[[size(π2θ)]] contradicting
Iω[[size(θ)]] = Iω[[size(π2θ)]] since L = >.

27

In case (b) then Iω[[mr(θ, 0, s 1, lr 1 + r)]] = 1 + Iω[[mr(π2θ, 0, s 1, lr 1 + r)]] 6= 1 +
Iω[[size(π2θ)]] = Iω[[size(θ)]] so by transitivity Iω[[mr(θ, 0, s 1, lr 1 + r)]] 6= Iω[[size(θ)]] which
contradicts (C) as desired.

Proposition 26 (Euclidean norm). If Iω[[θ]] = [x1, . . . , xn] then Iω[[‖θ‖]] =
√∑

i∈[1,n] x
2.

Proof. Direct proof. Assume Iω[[θ]] = [x1, . . . , xn] then Iω[[‖θ‖]] = Iω[[
√
θ · θ]] =∗

√
Iω[[θ · θ]] =√∑

i∈[1,n] x
2. Step (*) is by Prop. 9 and because θ · θ is necessarily nonnegative.

5 dLι Axioms
Our proof system is given in the Hilbert style, with a minimum number of proof rules and larger
number of axioms, each of which is an individual concrete formula. The core proof rule is uniform
substitution [24][6, §35,§40]: from the validity of φ we can conclude validity of σ(φ) where the
uniform substitution σ specifies concrete replacements for some or all predicates, functions, and
program constants in a formula φ:

US
φ

σ(φ)

The soundness side-conditions to US about σ are non-trivial, and make up much of its soundness
proof in Sec. 6. The payoff is that uniform substitution enables a modular design where such subtle
arguments need only be done once in the soundness proof of the US rule, and every axiom, which
is now an individual concrete dLι formula, is significantly simpler to prove valid and to implement.

Fig. 3 gives axioms and rules for the discrete programming constructs, which are generaliza-
tions of corresponding axioms [24] for dL to account for non-denoting terms and unknown formu-
las. Axioms are augmented with definedness conditions whenever multiple occurrences of terms or
formulas differ in their tolerance for partiality. The conclusion (in canonical usage) of each axiom
is highlighted in blue, while any difference from the dL axioms is highlighted in red. Recall the op-
erator D(φ) says φ is definitely true. For example, axiom [?] says that a test ?Q succeeds when Q is
definitely true. The induction axiom I requires the inductive step proved definitely true ⊕, but also
concludes definite truth. This is necessitated by the subtle semantics of Łukasiewicz implication:
two unknown tvm propositions can definitely ⊕ imply each other, which is only compatible with
repeated applications of the inductive step if we ensure definite truth at each step. The other axioms
for program constructs ([·],[∪],[;][∗]) carry over from dL without modification, since partiality pri-
marily demands changes when mediating between formulas and programs or between terms and
program variables. As is standard in free logics, axiom ∀i says that since quantifiers range over val-
ues, they must be instantiated only to terms that denote values (E(f())). Assignments [:=] require
the assigned term to denote a value, since program variables x range over values.

Fig. 4 gives the dLι generalizations of dL’s axioms for reasoning about differential equations.
Interfacing ODEs with partial, discontinuous, or vectorial terms is an important contribution of
dLι, and we now show that only modest changes are required for ODE axioms, in contrast to the
complete rethinking of differential terms. The smooth generalization of ODE axioms owes largely

28

[·] 〈a〉P ↔ ¬[a]¬P

[:=] ([x := f()]p(x)↔ p(f()))← E(f())

[?] [?Q]P ↔ (D(Q)→ P)

[∪] [a ∪ b]P ↔ [a]P ∧ [b]P

[;] [a; b]P ↔ [a][b]P

[∗] [a∗]P ↔ P ∧ [a][a∗]P

∀i (∀x p(x))→ (E(f())→ p(f()))

∀→ ∀x (p(x)→ q(x))→ ∀x p(x)→∀x q(x)

K [a] (P → Q)→ ([a]P → [a]Q)

I [a∗]D(P → [a]P)→D(P → [a∗]P)

V p→ [a]p

G
P

[a]P

∀
p(x)

∀x p(x)

MP
P → Q P

Q

V∀ p→ ∀x p

Figure 3: Discrete dL axioms

DW [x′ = f(x)&q(x)]q(x)

DC
(
[x′ = f(x)&q(x)]p(x)↔ [x′ = f(x)&q(x) ∧ r(x)]p(x)

)
← D([x′ = f(x)&q(x)]r(x))

DE [x′ = f(x)&q(x)][x′ := f(x)]p(x, x′)↔ [x′ = f(x)&q(x)]p(x, x′)

DI≥

(
[x′ = h(x)&q(x)]f(x) ≥ g(x)↔ [?q(x)]f(x) ≥ g(x)

)
← [x′ = h(x)&q(x)](f(x))′ ≥ (g(x))′

DG
∀x (q(x)→ Con(a(x)) ∧ Con(b(x)))

→
(
[x′ = f(x)&q(x)]p(x)↔ ∃y :R [x′=f(x), y′ = a(x)y + b(x)&q(x)]p(x)

)
DS

(
∀t :R ((∀0≤s≤t q(x+ f()s))→ [x := x+ f()t]p(x))

)
→ [x′ = f() & q(x)]p(x)

(θ)′
(f(x))′ = x′ · (ιM ∀ξ > 0 ∃δ > 0∀yD(0 < ‖y~−x‖ < δ

→f(y)− f(x)−
((
y~−x

)
·M

)
< ξ‖y~−x‖))

← inR((f(x))′) ∧ islist((x)′)

E(′)
E((f(x))′)←E(x′ · (ιM ∀ξ > 0 ∃δ > 0∀yD(0 < ‖y~−x‖ < δ)

→ f(y)− f(x)−
(
(y~−x) ·M

)
< ξ‖y~−x‖))

Figure 4: Differential equation axioms and differential axioms

29

to the modal nature of dynamic logic reasoning: a user of dLι might write an ill-behaved ODE
where no solution exists for any duration, but axioms such as DC and DW hold vacuously in this
case, because they maintain the presence or absence of solutions. While DI≥ is written identically
to the corresponding axiom in dL, this is simply because we already confronted the challenges of
differential induction reasoning when we defined a new semantics for differential terms in Sec. 3.
Of all the ODE axioms, changes appear most explicitly in DG: not all dLι terms are continuous,
so an explicit assumption ensures continuity throughout the domain constraint. DC is generalized
by analogy to [?] to require definite truth and DG is generalized to require continuity, otherwise
the axioms carry over unchanged. DW says the domain constraint of an ODE always holds as
a postcondition. DC says any postcondition which is proven (definitely) true may be added to
the domain constraint. DE says the ODE holds as an equation in the postcondition. DI≥ is the
differential induction [20] axiom for proving nonstrict inequalities f(x) ≥ g(x) follow from their
differential formula (f(x))′ ≥ (g(x))′. The strict case f(x) > g(x) is analogous; axioms for
equality, inequality, conjunction, and disjunction can be derived from these. Note the assumptions
in DI≥ hold only when f(x) and g(x) are totally differentiable within the domain constraint, as
required for soundness. DG allows extending a system with an additional ghost dimension, and is
used for everything from solving systems to reasoning about exponentially-decaying systems [26].
The new dimension is required to be continuous in existing variables so that solutions exist and
is required to be linear in the new variables so that the solutions of the extended system exist as
long as those of the initial system. DS says the solution of a constant ODE system is linear. To
solve multidimensional systems with DS, interpret x + f()s and x + f()t using pairwise vector
sums and products per Fig. 2. Axiom (θ)′ expands a differential (f(x))′ according to the definition
of total differential. Axiom (θ)′ is clearly long-winded which is not desired for practical proving.
However, our design goal for (θ)′ was not to be directly useful in proofs, but to provide future-
proofing if users wish to define new term constructs. In contrast to previous axiomatizations [24],
(θ)′ expresses differential terms in full generality, so that a user-friendly rule for each construct
can be derived from (θ)′, without expanding the list of core axioms. To demonstrate this ability,
we use (θ)′ to derive differentiation axioms for the vanilla dL terms in Ex. 2. Rule (θ)′ assumes
E((f(x))′) because equalities are not allowed to hold between non-denoting terms; proving the
existence assumption is enabled by axiom E(′). In E(′), proving the existence of (f(x))′ enables
proving the existence of any term which depends on a single variable that need not be scalar. In
practice, axioms are derived from E(′) for each case and applied recursively to automatically prove
existence, for example:

E((f(x))′) ∧ E((g(x))′)→ E(((f + g)(x))′)

is used to show differentials of sums exist. The definition of (θ)′ above is specialized to real-valued
x and f(x), because scalar differences f(y)− f(x) and y−x only denote a value when x, y, f(x),
and f(y) are reals. We now generalize it to vectorial differentials.

Vector differentials. The semantics of differential terms given in Def. 2 apply equally well to
terms of any shape. However, axiomatizing differential terms is a separate challenge from defining
their semantics, and is harder in the general case than in the scalar case. Axioms (θ)′ and E(′)

30

were introduced in the conference version [3] of this work, and only implement the differentials
of scalar terms. Even in the scalar case, the summation from Def. 2 is nuanced, and axiom (θ)′

must find a way to express it within the limitations of dLι syntax. For the sake of keeping a small,
clean core language of dLι terms, we wish to express differentials using only the existing primitive
recursion construct mr(θ, η, s ζ, lr γ) and functions defined from it, rather than general recursion.
In this section, we show that (θ)′ and E(′) can be generalized to vectorial axioms (θ)′s and E(′)s.
The main change required for vectors is to employ vector subtraction

(
θ~−η

)
, vector pairwise

multiplication (θ~∗η) , and vector-matrix multiplication (L ×M) of which dot product θ · θ is a
special case.

(θ)′s
(f(x))′ = x′~∗(ιM ∀ξ ‖ξ > 0‖ → ∃δ > 0 ∀yD(0 < ‖y~−x‖ < δ

→f(y)~−f(x)~−
(
y~−x

)
×M < ξ~∗

(
y~−x

)
)

← islist((f(x))′) ∧ islist((x)′))

E(′)s
E((f(x))′)←E(x′~∗(ιM ∀ξ ‖ξ > 0‖ → ∃δ ∀yD(0 < ‖y~−x‖ < δ

→ f(y)~−f(x)~−
(
y~−x

)
×M < ξ~∗

(
y~−x

)
)))

The semantic definition goes even further and supports arbitrary trees. However, the practical
motivations for such generality are weak. Differentials in general only see practical use in:

• differential invariant formulas and

• differential effect (DE) reasoning, i.e., substituting the right side of an ODE for the left.

In the former case, even scalar terms suffice; while vectorial formulas may be more elegant in
some cases, the same expression can be rewritten using scalars, at least for fixed-length vectors. In
differential effect reasoning, it is important to support vector-valued variables and their projections,
i.e., it is essential to support systems of ODEs. Given these applications, and given that there
is no practical value in tree-shaped ODE systems vs. list-shaped ODE systems, there is thus no
compelling need for tree-shaped differential terms. While we have not disproved the possibility of
an axiom for tree-shaped differentials, we remark that it would be notably harder than the vector
case, as it would require a notion of tree-matrix multiplication.

Contextual reasoning. Contextual reasoning (Fig. 5) applies valid equations and equivalences in
a context. The rule CQ rewrites equal terms while CE rewrites equivalent formulas. In each case,
it is essential for soundness that the equation or equivalence is valid, i.e., true everywhere. This is
because, for example, the truth value of C(P) at the current state is allowed to depend on the truth
value of P in arbitrary states. Rule CQ additionally requires as its second premise that terms f(x)
and g(x) denote in the context h, since equalities in dLι can only hold between terms that denote.
Rule CE does not need a similar existence condition because equivalences may hold when both
sides are unknown (�). In a practical sense, the contextual equivalence rules are not needed for
completeness; they are a convenience feature which both improves performance of some proofs
and allows more flexible proof approaches. Thus we include discussion of contexts in this report
for the sake of a complete technical development, not for the sake of a complete proof calculus.

31

CQ
f(x) = g(x) E(h(f(x))) ∧ E(h(g(x)))

h(f(x)) = h(g(x))

CE
P ↔ Q

C(P)↔ C(Q)

Figure 5: Contextual rules

Contextual equivalence reasoning is perhaps best understood by example. When proving for-
mulas with nested modalities (or sequential compositions), it is useful in practice to simplify pro-
grams right-to-left, which minimizes the difficulty of arithmetic reasoning at the leaves. Consider
the formula φ ≡ [x := x+ 1][x := 1 + 1]x > 0 ↔ [x := x+ 1]2 > 0. Formula φ could be one
step of a right-to-left proof which simplifies the inner equation first. In the dLι calculus, we would
prove φ thusly:

CE

[:=]

QE
∗

1 + 1 > 0↔ 2 > 0
[x := 1 + 1]x > 0↔ 2 > 0

[x := x+ 1][x := 1 + 1]x > 0↔ [x := x+ 1]2 > 0

In the above application of CE, the context is C ≡ (ψ 7→ [x := x+ 1]ψ), that is the context is a
mapping which returns [x := x+ 1]ψ for any formula ψ. We rewrite two equivalent formulas ψ in
this context C: to show that the formulas [x := 1 + 1]x > 0 and 2 > 0 are equivalent under context
C, it suffices to show they are equivalent everywhere, which we then prove by [:=] and QE. While
this proof in the formal calculus is more pedantic than most paper proofs, this level of detail is
essential to ensure our calculus is implementable in a theorem prover.

ι p(ιz p(z))↔ ∃x
(
p(x) ∧ ∀y (p(y)→ y = x)

)
=T (l1(), r1())=(l2(), r2())↔ l1()=l2() ∧ r1()=r2()

QE
∗(∧

x∈V(φ) inR(x)
)
→ φ

(where φ is valid in first-order real arithmetic)

redT mr((L(), R()), b(), s f(s), lr g(l, r)) = g
(
mr(L(), b(), s f(s), lr g(l, r)),mr(R(), b(), s f(s), lr g(l, r))

)
redR inR(r)→ mr(r(), b(), s f(s), lr g(l, r)) = f(r()) redN mr((), b(), s f(s), lr g(l, r)) = b

TreeI D
(
p(ιx false) ∧ p(()) ∧ ∀s

(
inR(s)→ p(s)

)
∧ ∀lr

(
p(l) ∧ p(r)→ p((l, r))

))
→ D(p(f()))

refl () = () =⊥ ¬(D(ιx false = f())) ∧ ¬(D(¬(ιx false = f())))

Figure 6: Axioms for datatypes

Datatype axioms. Fig. 6 gives axioms for definite descriptions and tuples. Axiom ι fully charac-
terizes definite descriptions, and it is used to derive axioms for defined term constructs like those
in Ex. 2. Axiom ι is an example of an axiom of an axiom which benefits from free-logical quan-
tifiers that do not quantify over ⊥: we never want ⊥ to be the solution of a definite description.

32

Axiom =T enables comparisons on tuples. Quantifier elimination rule QE uses the theorem that
first-order real arithmetic, a fragment of dLι, is decidable [28]. Since variables of dLι may range
over tuples, which are not part of first-order arithmetic, it must first check that all variables of the
formula (written V(φ)) are indeed real-valued. Axioms redT and redR evaluate reductions when
their shape is known, and axiom TreeI allows proving a property of an arbitrary value by induc-
tion on its shape. In redT, we write L() and R() for (constant) function symbols standing for the
components of a pair. The first base case p(ιx false) indicates that induction must consider the
case where the argument f() does not denote, which is possible for rigid function symbols. In
practice, and especially because TreeI is designed to conclude definite truth, p will often contain
an existence test on f(). The second and third base cases say the nullary tuple and scalars satisfy
the predicate p. The inductive step of TreeI preserves definite truth, which then enables TreeI to
conclude definite truth; simple implication is insufficient in the inductive step for the same reasons
as it does not suffice in loop induction.

Rules refl and =⊥ say that the trivial value () equals only itself while the valueless term
ιx false compares indeterminately with everything.
Example 2 (Derived axioms). The following are examples of derived axiom schemata that have
been proved from those above.

E∨ is>(f()) ∨ inR(f()) ∨ isP(f())← E(f())

()′ () = (())′

(x)′ (x)′ = x′

πL l = π1(L(), R())

πR R() = π2(L(), R())

π′L π1((f(x))′) = (π1f(x))′

π′R π2((f(x))′) = (π2f(x))′

(+)′ (f(x))′ + (g(x))′ ← E((f(x))′) ∧ E((g(x))′) = (f(x) + g(x))′

(·)′ (f(x))′ · g(x) + (g(x))′ · f(x)← E((f(x))′) ∧ E((g(x))′) = (f(x) · g(x))′

(f())′ (f())′ = 0← inR(f()) (θ, η)′ ((f(x))′, (g(x))′) = (f(x), g(x))′

Figure 7: Some derived axioms

It is significant that the differential axioms of Ex. 2 are derived: when new term constructs are
added in the future, we expect to derive their differential axioms as well, so that these extensions
lie entirely outside the core dLι calculus. Note that these axioms also conclude (by applying axiom
E(′)) that the differential of the larger term exists, because it equals something. Thus, these axioms
are suitable both for showing that differentials exist and what form differentials take.

In proving the axiom schemata for differential terms, we will exploit the following proposition:
Proposition 27 (Uniqueness of differentials). Define the abbreviation:

P (θ) ≡ ∀ε > 0 ∃δ ∀y
(
0 < |y − x| < δ →

(f(y)− f(x))− θ · (y − x) < ε · |y − x|
)

Then the formula P (M)→M = ιM P (M) is provable.

33

Proof. Apply ι. The first premise P (M) holds by assumption P (M). The second premise is the
uniqueness of derivatives, whose truth is common knowledge since derivatives can be defined as
limits. Since it is true and is a formula of first-order arithmetic, it is provable by QE.

Note also in general that the differential term axiom schemata (+)′ and (·)′ expect univariate
functions: this is no restriction in practice because the one argument is not restricted to reals. These
axioms are needed only when simplifying the right-hand side of an ODE, and all multidimensional
ODE’s are already implemented as single ODEs over a tuple. Implicitly, the functions in (+)′ and
(·)′ do return a single real as the builtin operators + and · are defined only on reals. If we wished,
we could generalize these axioms to vectorial sums and products, since the core (θ)′ axiom holds
even for tree-valued differentials of tree-valued arguments. These generalizations are unlikely to
be needed in practice, however: (θ)′ is primarily used to simplify differential invariants, and the
invariants which arise in practice can be rewritten in terms of scalars.

Lemma 28 (Derived axioms). The axioms in Fig. 7 are derivable.

Proof. By cases, one for each axiom. The soundness proofs for many of these axioms, such as
the syntactic differentiation axioms, implement standard theorems from multivariate and vector
calculus. Our contribution in those cases is that we show standard theorems and their proofs can
be expressed in dLι.

• πL
By axiom ι with p(x) ≡ x = L(). Then (L(), R()) = (L(), R()) by =T and reflexivity. The
for-all premiss proves by transitivity.

• πR
By axiom ι with p(x) ≡ x = R(). Then (L(), R()) = (L(), R()) by =T and reflexivity. The
for-all premiss proves by transitivity.

• E∨
Apply TreeI with invariant J(θ) ≡ ¬E(θ) ∨ is>(θ) ∨ inR(θ) ∨ isP(θ) By propositional
rewriting, it suffices to prove J . By TreeI reduces to four cases:

– In case J(ιx false), it suffices to show ¬E(ιx⊥). By ι and by =⊥ since the right-hand
side (RHS) is false everywhere, it does not denote and is not equal to itself.

– In case J(()) it suffices to observe is>(()) and apply disjunction elimination.

– In case J(v ∈ R) it suffices to observe inR(v) and apply disjunction introduction.

– Case J((L,R)) holds by redT.

• (f())′

By Prop. 27 differentials are unique and by axiom (θ)′ the constant 0 is the differential if

∀ξ > 0 ∃ δ∀y (0 < ‖y − x‖ < δ → (f()− f())− (y − x) · 0 < ξ‖y − x‖) (1)

34

so it suffices to prove the validity of (1). By QE and CQ, reduces to ξ > 0 ∧ 0 < ‖y − x‖ <
δ → 0 < ξ‖y − x‖ which proves by QE. CQ is applicable because E(f()) by assumption.
Then applying axiom (θ)′, have E(f())→ (f())′ = x′·0, and by QE and CQ again, E(f())→
(f())′ = 0.

• (x)′

By Prop. 27, it suffices to prove the validity of the formula ∀ξ > 0 ∃ δ∀y (0 < ‖y − x‖ <
δ → (y− x)− (y− x) · 1 < ξ‖y− x‖). By QE and CQ, reduces to ξ > 0∧ 0 < ‖y− x‖ <
δ → 0 < ξ‖y − x‖ which proves by QE. Then applying axiom (θ)′, have (x)′ = x′ · 1, and
by QE and CQ again, (x)′ = x′.

• ()′

By Prop. 27, differentials are unique and by axiom (θ)′ the constant ()is the differential if

∀ξ > 0 ∃ δ∀y (0 < ‖y − x‖ < δ → (()− ())− (y − x) · () < ξ‖y − x‖) (2)

so it suffices to prove the validity of (2). Assume without loss of generality y = x = () for
the argument of a the function (), then (y−x) ·() = () universally. Then by QE and CQ,
it suffices to show ξ > 0 ∧ 0 < ‖y − x‖ < δ → 0 < ξ‖y − x‖ which proves by QE since
‖()‖ = 0 and ξ > 0. Then applying axiom (θ)′, have (())′ = ().

• (θ, η)′

We unpack the differentials (f(x))′ and (g(x))′, which exist by assumption, introducing new
variables M and N which uniquely satisfy

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →

(f(y)− f(x))− (y − x) ·M < ξ‖y − x‖
)

(1)

and

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →

(g(y)− g(x))− (y − x) ·N < ξ‖y − x‖
)

(2)

then we show (M,N) satisfies

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →((

(f(y), g(y))~−(f(x), g(x))
)
~−
(
y~−x

)
· (M,N)

)
< ξ‖y − x‖

)
(0)

which will suffice to show the axiom by Prop. 27, since any differential is the unique differ-
ential.

• π′L

35

We unpack the differential (f(x))′ which exists by assumption, introducing new variable M
which uniquely satisfies

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →

(f(y)− f(x))− (y − x) ·M < ξ‖y − x‖
)

(1)

then we show π1M satisfies

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →((

π1f(y)~−π1f(x)
)
~−
(
y~−x

))
· π1M < ξ‖y − x‖

)
(0)

which will suffice to show the axiom by Prop. 27, since any differential is the unique differ-
ential.

Begin the proof of (0) by applying rule ∀ to (0), fixing ξ > 0. Apply rule ∀i to (1) with
ξ1 = ξ, then apply ∀, fixing δ1. Apply (the existential dual of) rule ∀i to (0) with δ = δ1, then
apply ∀, fixing y s.t. (2) 0 < ‖

(
y~−x

)
‖ < δ. By QE and (2) have (3) 0 < ‖

(
y~−x

)
‖ < δ1

by definition of δ. Apply MP to (1) with (2) (3) yielding (4)
((
f(y)~−f(x)

)
~−
(
y~−x

))
·

M < ξ1‖
(
y~−x

)
‖ = ξ‖

(
y~−x

)
‖. Lastly we have

((
π1f(y)~−π1f(x)

)
~−
(
y~−x

))
· π1M <

ξ‖
(
y~−x

)
‖ since ((

π1f(y)~−π1f(x)
)
~−
(
y~−x

))
· π1M

= π1

((
f(y)~−f(x)

)
~−
(
y~−x

))
·M

≤
((
f(y)~−f(x)

)
~−
(
y~−x

))
·M

≤ ξ‖
(
y~−x

)
‖

proving (0).

• π′R
We unpack the differential (f(x))′ which exists by assumption, introducing new variable M
which uniquely satisfies

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →

(f(y)− f(x))− (y − x) ·M < ξ‖y − x‖
)

(1)

then we show π2M satisfies

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →((

π2f(y)~−π1f(x)
)
~−
(
y~−x

))
· π2M < ξ‖y − x‖

)
(0)

which will suffice to show the axiom by Prop. 27, since any differential is the unique differ-
ential.

Begin the proof of (0) by applying ∀ to (0), fixing ξ > 0. Apply ∀i to (1) with ξ1 = ξ, then
apply ∀, fixing δ1. Apply (the existential dual of) ∀i to (0) with δ = δ1, then apply ∀, fixing

36

y s.t. (2) 0 < ‖
(
y~−x

)
‖ < δ. By QE and (2) have (3) 0 < ‖

(
y~−x

)
‖ < δ1 by definition of δ.

Apply MP to (1) with (2) (3) yielding (4)
((
f(y)~−f(x)

)
~−
(
y~−x

))
·M < ξ1‖

(
y~−x

)
‖ =

ξ‖
(
y~−x

)
‖. Lastly we have

((
π2f(y)~−π2f(x)

)
~−
(
y~−x

))
· π2M < ξ‖

(
y~−x

)
‖ since((

π1f(y)~−π1f(x)
)
~−
(
y~−x

))
· π2M

= π2

((
f(y)~−f(x)

)
~−
(
y~−x

))
·M

≤
((
f(y)~−f(x)

)
~−
(
y~−x

))
·M

≤ ξ‖
(
y~−x

)
‖

proving (0).

• (+)′

We unpack the differentials (f(x))′ and (g(x))′, which exist by assumption, introducing new
variables M and N which uniquely satisfy

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →

(f(y)− f(x))− (y − x) ·M < ξ‖y − x‖
)

(1)

and

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →

(g(y)− g(x))− (y − x) ·N < ξ‖y − x‖
)

(2)

this allows us to prove that M +N satisfies

∀ξ > 0 ∃ δ∀y
(
0 < ‖y − x‖ < δ →

((f(y) + g(y))− (f(x) + g(x))− (y − x) · (M +N)) < ξ‖y − x‖
)

(0)

which will suffice to show the axiom by Prop. 27, since any differential is the unique differ-
ential.

Begin the proof of (0) by applying ∀ to (0), fixing ξ > 0. Apply ∀i to (1) and (2) with
ξ1 = ξ2 = ξ

2
, then apply ∀, fixing δ1, δ2. Apply (the existential dual of) ∀i to (0) with

δ = min(δ1, δ2), then apply ∀, fixing y s.t. (3) 0 < ‖
(
y~−x

)
‖ < δ. By QE and (3) have

(4a) 0 < ‖
(
y~−x

)
‖ < δ1 and (4b) 0 < |

(
y~−x

)
| < δ2 by definition of δ. Apply MP to

(1) and (2) with (4a) and (4b) yielding (5a)
((
f(y)~−f(x)

)
~−
(
y~−x

))
·M < ξ1‖

(
y~−x

)
‖

and (5b)
((
g(y)~−g(x)

)
~−
(
y~−x

))
· N < ξ2‖

(
y~−x

)
‖. Then by the rule QE we have (6)((

((f(y), g(y))~−(f(x), g(x))
)
~−
(
y~−x

))
· (M,N)) < ξ‖

(
y~−x

)
‖ since

‖
(
(f(y), g(y))~−(f(x), g(x))

)
‖ · (M,N)

=‖(
(
f(y)~−f(x)

)
,
(
g(y)~−g(x)

)
)‖ · (M,N)

=‖
(
f(y)~−f(x)

)
‖ ·M + ‖

(
g(y)~−g(x)

)
‖ ·N

≤ξ1‖
(
y~−x

)
‖ + ξ2‖

(
y~−x

)
‖

=ε‖
(
y~−x

)
‖

proving (0).

37

• (·)′

For the sake of simplicity, we focus on the case where x is real-valued. Rather than a direct
εδ proof, a proof by limits is simpler for axiom (·)′. Fortunately, limits are definable in dLι:

lim
y→x

f(y) ≡ ιL∀ξ > 0∃δ > 0 ∀y (0 < ‖y − x‖ < δ → ‖f(y)− L‖ < ξ)

Because the sum and product rules for limits are standard, we assume them here without
proof:

Lemma 29 (Sums of limits). In any state where E(limy→x f(x)) and E(limy→x g(x)) are
definitely true, so is limy→x (f(x) + g(x)) = limy→x f(x) + limy→x g(x).

Lemma 30 (Products of limits). In any state where E(limy→x f(x)) and E(limy→x g(x)) are
definitely true, then so is limy→x (f(x) · g(x)) = limy→x f(x) · limy→x g(x).

Lemma 31. If function f is differentiable at a point x, then f(y) goes to f(x) as y goes to x.
That is, formula E((f(x))′)→ ((limy→x f(y)) = f(x)) is valid.

We also note that our definition of differential is equivalent to the limit definition of differ-
ential:

Lemma 32 (Differential as limit). Formula (f(x))′ = x′ · limy→x
f(y)−f(x)

y−x is valid when x
and y are reals.

Then we prove (·)′ as a chain of equalities. Each equality step assumes at least one side of the
equality exists. It is easiest to show this is the case by working backwards from the final step:
because axiom (·)′ assumes (f(x))′ and (g(x))′ exist, then (f(x))′ ·g(x)+(g(x))′ ·f(x) exists
because f(x) exists any time (f(x))′ does and because addition and multiplication preserve
existence.

(f(x) · g(x))′

=x′ · lim
y→x

f(y) · g(y)− f(x) · g(x)

y − x
[Lem. 32]

=x′ · lim
y→x

f(y) · g(y)− f(x) · g(y) + f(x) · g(y)− f(x) · g(x)

y − x
[QE]

=x′ · lim
y→x

(f(y)− f(x)) · g(y) + f(x) (g(y)− g(x))

y − x
[QE]

=x′ · lim
y→x

(f(y)− f(x)) · g(y)

y − x
+ x′ · lim

y→x

f(x) · (g(y)− g(x))

y − x
[Lem. 29]

=x′ · lim
y→x

(f(y)− f(x))

y − x
· lim
y→x

g(y) + x′ · lim
y→x

(g(y)− g(x))

y − x
· lim
y→x

f(x) [Lem. 29]

= (f(x))′ · lim
y→x

g(y) + (g(x))′ · lim
y→x

f(x) [Lem. 32]

= (f(x))′ · g(x) + (g(x))′ · f(x) [Lem. 31]

38

Now that we have introduced the core dLι calculus and used it to derive a library of derived
constructs, we revisit our example system Ex. 1 and show how Prop. 1 is proved using dLι axioms.

Example 3 (Proof of leakiness). Prop. 1 of Sec. 2 is provable in dL.

Sketch. By axiom I with loop invariant P ≡ (g > 0 ∧ A> 0 ∧ 0≤h≤h0). The first two conditions
are trivially invariant by axiom V because g and A are constant throughout αB. Proceed by cases
with axiom [∪]. In each case, show h ≤ h0 to be an invariant of the ODE by DI≥. Because h ≤ h0

holds initially and the ODE is locally Lipschitz-continuous given constraint h ≥ 0, it suffices to
show (h)′ ≤ (h0)′ = 0 throughout. Then (h)′ ≤ 0 iff −

√
2gh a

A
≤ 0 iff

√
h ≥ 0 by algebra and

DE, which is true by DW, showing h ≤ h0.

6 Theory
Now that we have developed a proof calculus in Sec. 5, it remains to evaluate the design of the
calculus. Example proofs such as Ex. 3 only show that the proof system is useful in one concrete
instance. A full evaluation requires understanding general properties of the calculus. Soundness
(Thm. 34) is the sine qua non of proof systems, without which we have no reason to believe that
syntactic proofs lead to true theorems. Future implementation work also demands that proofcheck-
ing is decidable, to which end we provide a simple but important decidability result. We also give
expressiveness results, which help us situate dLι in the broader context of the dL family of logics.

Proofchecking is decidable, and provable formulas are valid.

Theorem 33 (Proofchecking decidability). There exists an algorithm which decides whether a
derivation D is a proof of a given dLι formula φ. Specifically, the proof calculus of Sec. 5 is
an effective proof calculus.

Proof. By induction on the structure of derivations. The base cases are the axioms, which are
trivially effective because each axiom is a single formula. The inductive cases are the rules, of
which G, MP, and ∀ are trivially effective because they have no side conditions. Rule QE is
effective because its side-condition is the validity of a formula in first-order logic over the reals,
which is decidable [28]. Rule US is effective because it is defined by primitive recursion and the
side conditions are defined using only primitive-recursive functions. Because every axiom and rule
is effective, the calculus is effective.

Theorem 34 (Soundness of dLι). If φ is provable in dLι, then φ is valid.

The proof of soundness proceeds by induction on the structure of derivations. That is, we
prove each axiom (which is an individual formula) to be valid and prove every proof rule to be
sound (producing valid conclusions from valid premises). Because dLι supports the formula and
program connectives of dL, many of the axioms are extensions of corresponding dL axioms. The
axiom validity proofs also have a similar flavor to those of dL: each axiom is proven valid by
direct proof, showing truth of the axiom according to the denotational semantics in an arbitrary
state. In the proofs that follow, we will use an equals sign both for comparison of truth values and
for calculational chains of reasoning, with these uses distinguished by formatting.

39

Lemma 35 (Core axioms and rules valid). All the core non-derived axioms are valid formulas of
dLι. All the non-substitution rules are sound rules of dLι.

Proof. By cases. We begin with validity proofs of axioms that deal solely with the discrete frag-
ment of dLι. Recall that in these axioms, uppercase letters P,Q stand for nullary quantifier sym-
bols, which can be defined P ≡ C(true) for a fresh quantifier symbol C, i.e., as unary quan-
tifier symbols with constant arguments. In the semantics, we write I(P) for the interpretation
I(C)(I[[true]]).

As is commonplace with Łukasiewicz logics, it is sometimes convenient to consider arithmetic
operations on truth values, where ⊕ is interpreted as 1, � as 0.5, and 	 as 0. For example, we
write p > q if the truth value p is strictly more true than q.

[·] Formula 〈a〉P ↔ ¬[a]¬P is valid in dLι. By cases, in each case the LHS and RHS have the
same truth value.

Case 1: ⊕

(Iω[[〈a〉P]] = ⊕)

= (exists ν s.t. (ω, ν) ∈ I(a) and I(P)(ν) = ⊕)

= (exists ν s.t. (ω, ν) ∈ I(a) and Iν[[¬P]] =)

= (Iω[[[a]¬P]] =)

= (Iω[[¬[a]¬P]] = ⊕)

Case 2: 	 Symmetric.

Case 3:

(Iω[[〈a〉P]] = �)

= (exists no ν s.t. (ω, ν) ∈ I(a) and I(P)(ν) = ⊕
and exists ν s.t. (ω, ν) ∈ I(a) and I(P)(ν) = �)

= (exists no ν s.t. (ω, ν) ∈ I(a) and Iν[[¬P]] = 	
and exists ν s.t. (ω, ν) ∈ I(a) and Iν[[¬P]] = �)

= (Iω[[[a]¬P]] = �)

= (Iω[[¬[a]¬P]] = �)

[:=] Formula ([x := f()]p(x)↔ p(f())) ← E(f()) is valid in dLι. Assume (1) Iω[[E(f())]] = ⊕
for some state ω and interpretation I , since the case Iω[[E(f())]] = 	 makes the implication
vacuously true, and Iω[[E(θ)]] never assumes value �. Then observe Iω[[[x := f()]p(x)]] =

40

Iω[[p(f())]] by the chain of equalities

Iω[[[x := f()]p(x)]]

= u
ν | (ω,ν)∈{(ω,ωIω[[f()]]x)},Iω[[f()]] 6=⊥ Iω[[p(x)]]

=IωIω[[f()]]
x [[p(x)]] [By (1)]

=I(p)(Iω[[f()]])

=Iω[[p(f())]].

[?] [?Q]P ↔ (D(Q)→ P)

Case 1: ⊕

(Iω[[[?Q]P]] = ⊕)

= (Iω[[Q]] = ⊕ and Iω[[P]] = ⊕ or
Iω[[Q]] ∈ {�,	})

= (Iω[[D(Q)]] = ⊕ and Iω[[P]] = ⊕ or
Iω[[D(Q)]] =)

= (Iω[[D(Q)→ P]] = ⊕).

Case 2: 	

Iω[[[?Q]P]] = 	
= Iω[[Q]] = ⊕ and Iω[[P]] = 	
= Iω[[D(Q)]] = ⊕ and Iω[[P]] = 	
= Iω[[D(Q)→ P]] = 	.

Case 3: �

(Iω[[[?Q]P]] =)

= (Iω[[Q]] = ⊕ and Iω[[P]] = �)

= (Iω[[D(Q)]] = ⊕ and Iω[[P]] = �)

= (Iω[[D(Q)→ P]] = �)

[∪] [a ∪ b]P ↔ [a]P ∧ [b]P

Iω[[[a ∪ b]P]]

= uν | (ω,ν)∈I[[a ∪ b]] Iν[[P]]

= uν | (ω,ν)∈I[[a]] or I[[b]] Iν[[P]]

=
(
uν | (ω,ν)∈I[[a]]Iν[[P]]

)
u
(
uν | (ω,ν)∈I[[b]]Iν[[P]]

)
= Iω[[[a]P]] u Iω[[[b]P]]

= Iω[[[a]P ∧ [b]P]].

41

[;] [a; b]P ↔ [a][b]P

Iω[[[a; b]P]]

= uν | (ω,ν)∈I[[a;b]] Iν[[P]]

= uν,µ | (ω,µ)∈I[[a]],(µ,ν)∈I[[b]] Iν[[P]]

= uµ| (ω,µ)∈I[[a]] uν | (µ,ν)∈I[[b]]Iν[[P]]

= uµ| (ω,µ)∈I[[a]] Iµ[[[b]P]]

= Iω[[[a][b]P]].

[∗] [a∗]P ↔ P ∧ [a][a∗]P

Iω[[[a∗]P]]

= uν | (ω,ν)∈I[[a∗]] Iν[[P]]

= uν | ω=ν or (ω,ν)∈I[[a]]◦I[[a∗]] Iν[[P]]

= Iω[[P]] u
l

ν | (ω,ν)∈I[[a]]◦I[[a∗]]

Iν[[P]]

= Iω[[P]] u Iω[[[α][a∗]P]]

= Iω[[P ∧ [α][a∗]P]].

K [a] (P → Q)→ ([a]P → [a]Q)

By cases on Iω[[[a] (P → Q)]].
Case ⊕: Let k = uν | (ω,ν)∈I[[a]]Iν[[P]]. Consider any ν s.t. (ω, ν) ∈ I[[a]], and let j = Iν[[P]].
By definition of u have k ≤ j. Let n = Iν[[Q]]. By case, have j ≤ Iν[[Q]] = n, so by
transitivity k ≤ n for all such ν and corresponding n. Then let m = uν | (ω,ν)∈I[[a]]Iν[[P]].
Since this held for all possible ν then by the semantics of the box operator we have k ≤ m
yielding Iω[[[a]P → [a]Q]] = ⊕ so the axiom has value ⊕ in this case.

Case �: Let k = uν | (ω,ν)∈I[[a]]Iν[[P]]. Consider any ν s.t. (ω, ν) ∈ I[[a]], and let j = Iν[[P]].
By definition of u have k ≤ j. Let n = Iν[[Q]]. By case, have j = Iν[[P]] ≤ � +
Iν[[Q]] = 0.5 + n so by transitivity k ≤ 0.5 + n for all such ν and corresponding n. Then
let m = uν | (ω,ν)∈I[[a]]Iν[[P]]. Since this held for all possible ν then also have k ≤ 0.5 + m
yielding Iω[[[a]P → [a]Q]] ≥ �. Since Iω[[A → B]] = ⊕ when Iω[[A]] = Iω[[B]] = �, the
truth value of the axiom is ⊕ in this case.

Case 	: Implication holds vacuously when Iω[[[a](P → Q)]].

I [a∗] (D(P → [a]P))→ (D(P → [a∗]P))

Assume (1) Iω[[[a∗] (D(P → [a]P))]] = ⊕ and (2) Iω[[P]] = ⊕, since the other cases are
vacuous. Show Iω[[[a∗]P]] = ⊕, i.e., Iν[[P]] = ⊕ for all ν such that (ω, ν) ∈ I[[a]]∗ iff
(ω, ν) ∈ I[[an]] for some n ∈ N. By induction on the natural number n with induction
predicate P (n) defined by “if (ω, ν) ∈ I[[a]]n = I[[an]] then Iν[[P]] = ⊕”.

42

Base case: When n = 0 then ν = ω so Iν[[P]] = ⊕ by assumption (2).

Inductive case: The inductive hypothesis states for k ∈ N and state µ such that (ω, µ) ∈
I[[ak]] and Iµ[[P]] = ⊕. Now consider any ν s.t. (ω, ν) ∈ I[[ak+1]]: By definition of composi-
tion, we have such a µ and additionally (3)(µ, ν) ∈ I[[a]]. Then (4) Iµ[[P → [a]P]] = ⊕ from
(1) and because (ω, µ) ∈ I[[a∗]]. Then from (4) and and (3) and the IH, have Iν[[P]] = ⊕ as
desired.

V p→ [a]p

Let q = Iω[[p()]] = I(p) = Iν[[p()]] (since p is a nullary predicate, ergo constant) for all ν
including ν for which (ω, ν) ∈ I[[a]] so Iω[[[a]p()]] = uν | (ω,ν)∈I[[a]]Iν[[p()]] = ⊕ when there
exists ν such that (ω, ν) ∈ I[[a]] or ⊕ when no such ν exists. In either case the axiom is valid
since it has truth value ⊕ for all I and ω.

∀i (∀x p(x))→ (E(f())→ p(f()))

It suffices to consider the case Iω[[E(f())]] = ⊕ because the implication is vacuously true
when Iω[[E(f())]] = 	 and Iω[[E(f())]] is necessarily never�. That is, (1) I(f) ∈ Tree(R).
Assume Iω[[∀x p(x)]] = ⊕ and Iω[[E(f())]] = ⊕ for all ω, so Iωvx[[p(x)]] = ⊕ for all v ∈
Tree(R). Now by (1) instantiate v = I(f) ∈ Tree(R), and have ωI(f)

x [[p(x)]] = ⊕. That is,
Iω[[p(f())]] = ⊕ so the implication holds and the axiom is valid.

∀→ ∀x (p(x)→ q(x))→ (∀x p(x)→ ∀x q(x))

Cases on Iω[[∀x (p(x)→ q(x))]].
Case⊕: Let k = uv ∈ Tree(R)Iω

v
x[[p(x)]]. Consider any v ∈ Tree(R) and let j = Iωvx[[p(x)]].

By definition of u have k ≤ j. Let n = Iωvx[[q(x)]]. By case, have Iωvx[[p(x)]] ≤ Iωvx[[q(x)]]
(i.e., j ≤ n) so by transitivity k ≤ n for all such ν, n. Then let m = uv ∈ Tree(R)Iω

v
x[[p(x)]].

Since this held for all possible v then also have k ≤ m yielding Iω[[∀x p(x)→ ∀x q(x)]] = ⊕
so the axiom holds in this case.

Case �: Let k = uv ∈ Tree(R)Iω
v
x[[p(x)]]. Let v ∈ Tree(R), and j = Iωvx[[p(x)]]. By defini-

tion of u have k ≤ j. Let n = Iωvx[[q(x)]]. By case, have Iωvx[[p(x)]] ≤ � + Iωvx[[q(x)]]
(i.e., j ≤ 0.5 + n) so by transitivity k ≤ 0.5 + n for all such v, n. Then let m =
uT ∈ Tree(R)Iω

v
x[[p(x)]]. Since this held for all possible v then also have k ≤ 0.5+m yielding

Iω[[(∀x p(x)→ ∀x q(x))]] ≥ �. Since Iω[[A → B]] = ⊕ when Iω[[A]] = Iω[[B]] = �, the
truth value of the axiom is ⊕ in this case.

Case 	: Implication holds vacuously.

V∀ p()→ ∀x p()
Let k = Iω[[p()]]. Since p constant, k = I(p) = Iν[[p()]] for all ν. Thenuv∈Tree(R)Iω

v
x[[p()]] =

k by plugging in each ωvx for v in turn. Then Iω[[∀xp()]] = k implying Iω[[p()→ ∀x p()]] =
⊕, i.e., the axiom holds for every ω, and I and so is valid.

ι p(ιz p(z))↔ ∃xp(x) ∧ (∀y p(y)→ y = x)

43

Start by observing Iω[[p(ιz p(z))]] = I(p)(v) where v is the unique element of Tree(R)
such that Iωvz [[p(z)]] = ⊕, should a unique such element exist. This exists iff there exists v
such that Iωvz [[p(z)]] = ⊕ and such that (0) for all u ∈ Tree(R), Iωuz [[p(z)]] = ⊕ implies
u = v. Because (0) is quantified over u, v ∈ Tree(R) by the semantics of quantifiers which
specifically do not include u, v = ⊥, then (0) holds exactly when Iω[[∃xp(x) ∧ ∀y(p(y) →
y = x)]] = ⊕ holds.

=T (L1(), R1()) = (L2(), R2())↔ L1() = L2() ∧R1() = R2() because

Iω[[(L1(), R1()) = (L2(), R2())]]

= Iω[[(L1(), R1()) ≤ (L2(), R2()) ∧ (L2(), R2()) ≤ (L1(), R1())]]

= Iω[[(L1(), R1()) ≤ (L2(), R2())]] u Iω[[(L2(), R2()) ≤ (L1(), R1())]]

= Geq((L1(), L2()), (R1(), R2())) u Geq((R1(), R2()), (L1(), L2()))

= Geq(L1(), R1()) u Geq(L2(), R2()) u Geq(R1(), L1()) u Geq(R2(), L2())

= Iω[[L1() = R1() ∧ L2() = R2()]].

redR inR(v()) → mr(v(), b(), s f(s), lr g(l, r)) = f(v()) Assume Iω[[inR(h())]] = ⊕ so I(v) ∈
R, else the implication holds vacuously. Then

Iω[[mr(h(), b(), s f(s), lr g(l, r))]]

=Reduce(I(v), Iω[[b()]], s f(s), lr g(l, r), Iω)

=IωI(v)
s [[f(s)]]

=I(f)(I(v)) = Iω[[f(h())]].

redT Assume Iω[[isP(h())]] = ⊕ so exists L,R ∈ Tree(R) where I(h()) = (L,R). So

Iω[[mr(h(), b(), s f(s), lr g(l, r))]]

= Reduce((L,R), Iω[[b()]], s f(s), lr g(l, r), Iω)

= IωL̃,R̃l,r [[g(l, r)]]

where L̃, R̃ = Reduce(L,R, Iω[[b()]], s f(s), lr g(l, r), Iω) so

IωL̃,R̃l,r [[g(l, r)]]

= I(g)(Reduce(h(), Iω[[b()]], s f(s), lr g(l, r), Iω))

= Iω[[g(mr(π1h(), b(), s f(s), lr g(l, r))),mr(π2h(), b(), s f(s), lr g(l, r))]]

since Iω[[mr(π1h(), b(), s f(s), lr g(l, r))]] = L̃ likewise for R̃.

refl Iω[[() = ()]] = Geq(>,>) ∧ Geq(>,>) = ⊕.

=⊥ I[[¬(D(ιx false = f())) ∧ ¬(D(¬(ιx false = f())))]] = D(�) u D(�) = D(�) = 	 = ⊕
as desired.

44

TreeI D(p(ιx false) ∧ p(()) ∧ ∀s(inR(s)→ p(s)) ∧ ∀lr(p(l) ∧ p(r)→ p((l, r))))→ D(p(h())).
Note the assumption and conclusion both employ D(·) for the same reason that the assump-
tions and conclusions of axiom I do: The inductive step assumption will typically need to be
applied multiple times. Assume (0) Iω[[p(ιx false)∧∀s(inR(s)→ p(s))∧∀lr(p(l)∧p(r)→
p((l, r)))]] = ⊕, else the implication holds vacuously. By inversion on (0), have (1a)
Iω[[p(ιx false)]] = ⊕ and (2a) Iω[[p(())]] = ⊕ and (3a) Iω[[∀s(inR(s) → p(s))]] = ⊕ and
(4a) Iω[[∀lr(p(l)∧p(r)→ p((l, r)))]] = ⊕ which simplify respectively to (1b) I(p)(⊥) = ⊕
(since there is no value of x that satisfies falsehood in ιx false) and (2b) I(p)(>) = ⊕ (3b)
for all v ∈ R, I(p)(v) = ⊕ and (4b) for all and L,R ∈ Tree(R) have I(p)(L) = ⊕ and
I(p)(R) = ⊕ implies I(p)((L,R)) = ⊕. Let v = Iω[[v()]] = I(v) and proceed by induction
on the tree structure of v to show I(p)(v) = ⊕. The induction is well founded because the
set Tree(R) is defined inductively, ergo v has finite width and depth.

Base case 1, v = ⊥: Using assumption (1b), have I(p)(v) = I(p)(⊥) = ⊕ as desired.

Base case 2, v = >: Using assumption (2b), have I(p)(v) = I(p)(>) = ⊕ as desired.

Base case 3, v ∈ R: Using assumption (3b), have I(p)(v) = ⊕ since v ∈ R.

Inductive case, v = (L,R) for some L,R ∈ Tree(R): By inductive hypothesis have (5)
I(p)(L) = ⊕ and (6) I(p)(R) = ⊕. By (5) and (6) and because L,R ∈ Tree(R) can apply
(4b) yielding I(p)(v) = I(p)((L,R)) = ⊕. This completes the induction on v yielding
I(p)(v) = ⊕, so that by definition of v have ⊕ = I(p)(I(v)) = Iω[[p(v())]] as desired.

(θ)′

(f(x))′ = x′ · ιM ∀ξ>0∃δ>0∀yD(0<‖y~−x‖<δ→ f(y)−f(x)−
((
y~−x

)
·M

)
<ξ‖y~−x‖)

← inR((f(x))′) ∧ islist((x)′)

In this case, the assumptions inR((x)′) and islist((x)′) let us assume (by Prop. 4 and Prop. 25)
that f(x) is scalar and that x and x′ are lists with matching shapes. Here ‖u− v‖ computes
the Euclidean distance between u and v, while (u · v) is the dot product of vectors u and v.
We assume (0a) Iω[[inR((f(x))′)]] = ⊕ and (0b) Iω[[islist((x)′)]] = ⊕, else the implication
holds trivially. Assumptions (0a) and (0b) are essential because equalities in dLι only hold
over terms that denote. Next we show each side of axiom (θ)′ equals ∂I(f)(ω(x))

∂x
· ω(x′),

then the axiom follows from transitivity and (0). Starting from the left hand side, we have:
Iω[[(f(x))′]] =

∑
y∈Dim(FV(f(x)))

∂Iω[[f(y)]]
∂y

· ω(y′) =
∑

y∈Dim({x})

∂Iω[[f(y)]]
∂y

· ω(y′) = ∂Iω[[f(x)]]
∂x

·

ω(x′) = ∂I(f)(ω(x))
∂x

· ω(x′) since FV(f(x)) = {x} and the partial derivative with respect to
all y 6= x is zero. Note that in this notation the partial ∂Iω[[θ]]

∂x
is the derivative of the function

IωXx [[θ]] of X at ω(x).

To prove that the right hand side equals ∂I(f)(ω(x))
∂x

· ω(x′), the key observation is to under-
stand ω′ (i.e. the state containing all ω(x′)) as a direction vector and recall that the gradient
multiplied by ω′ agrees with the directional derivative ∂I(f)(ω(x))

∂x
· ω(x′) in direction ω′. that

is, ∂I(f)(ω(x))
∂x

· ω(x′) = ω(x′) ·M where M ∈ Tree(R) is the gradient at x. To complete the

45

proof, we note that M in axiom (θ)′ indeed denotes the gradient derivative, because M de-
notes the unique value such that for all ξ > 0 exists δ > 0 such that for all v ∈ Tree(R) such
that 0 < ‖

(
v~−ω(x)

)
‖ < δ have I(f)(v)−I(f)(ω(x))−(

(
v~−ω(x)

)
)·M < ξ‖

(
v~−ω(x)

)
‖,

which agrees with standard definitions of the gradient. We know a unique such value exists
by assumption (0).

Because both sides of the equation denote a value and denote the same value, the axiom
holds.

E(′) It suffices to note the left-hand side of (θ)′ exists exactly when the right-hand side does, i.e.,
(f(x))′ exists exactly when the differential of f(x) does.

(θ)′s This is a straightforward generalization of the (θ)′ soundness proof. The input x is already
allowed to be a vector. To generalize the output f(x) to a vector, it suffices to generalize our
notion of derivatives from gradients to Jacobian matrices. By Prop. 25 we can assume x and
f(x) are a vector, from which we apply Prop. 21, Prop. 19, and Prop. 17 to show that matrix
multiplication, dot product, and vector subtraction fulfill their specifications as needed to
define total differential (f(x))′ as a function of the Jacobian M .

E(′)s The argument is analogous to the case for (θ)′s: the differential (f(x))′ exists exactly when
the construction of differential as limit exists.

DW Fix I, ω and show that Iω[[[x′ = f(x) & q(x)]q(x)]] = ⊕. Then it suffices to show that
uν | (ω,ν)∈I[[x′=f(x) & q(x)]]Iν[[q(x)]] = ⊕ and likewise suffices to show for all such ν that
Iν[[q(x)]] = ⊕. If no ODE solution should exist then the conjunction uν | (ω,ν)∈I[[x′=f(x) & q(x)]]

is empty and trivially its truth value is⊕. Else there exists a solution ϕ s.t. ϕ(t) = ν for some
t ∈ R≥0 where for all 0 ≤ s ≤ t have Iϕ(s)[[q(x)]] = ⊕, so letting s = t have Iν[[q(x)]] = ⊕.
Since this was generic in ν we have shown Iω[[[x′ = f(x) & q(x)]q(x)]] = ⊕. Remark: DW
is typically not used directly in proofs, rather it is used to first derive a more friendly, but
equivalent, axiom. Hence several similar axioms are all called DW in the literature.

DC Fix I, ω and assume (1) Iω[[[x′ = f(x) & q(x)]r(x)]] = ⊕, since by the semantics of D(·)
and→ there is nothing to show otherwise. Consider any (need not be unique) solution ϕ of
x′ = f(x) & q(x) with ω = ϕ(0) on {x′}{. Define set T = {ϕ(t) | ϕ(t) exists and for all s ∈
[0, t], Iϕ(s)[[q(x)]] = ⊕}, i.e., the set of trajectories of ϕ. Then decompose assumption (1):

(Iω[[[x′ = f(x) & q(x)]r(x)]] = ⊕)

≡ uT Iϕ(t)[[r(x)]] = ⊕
≡ Iϕ(t)[[r(x)]] = ⊕ for all t, ϕ (3)

then show Iω[[[x′ = f(x) & q(x)]p(x)]] = Iω[[[x′ = f(x) & q(x) ∧ r(x)]p(x)]]. First note:

Iω[[[x′ = f(x) & q(x)]p(x)]]

= uν | (ω,ν)∈I[[x′=f(x) & q(x)]] Iν[[p(x)]]

= uT Iν[[p(x)]]

46

Recall that ϕ is a solution of the ODE on t ≥ 0 where for all 0 ≤ s ≤ t we have
Iϕ(s)[[q(x)]] = ⊕. Then by (3) note for each ϕ and t have Iϕ(t)[[q(x)∧r(x)]] = Iϕ(t)[[q(x)]]
since Iϕ(t)[[r(x)]] = ⊕, then we continue the chain of equalities

uT Iν[[p(x)]]

= uν | (ω,ν)∈I[[x′=f(x) & q(x)∧r(x)]] Iν[[p(x)]]

= Iω[[[x′ = f(x) & q(x) ∧ r(x)]p(x)]].

DE Fix I, ω and show that

Iω[[[x′ = f(x) & q(x)]p(x, x′)]]

= Iω[[[x′ = f(x) & q(x)][x′ := f(x)]p(x, x′)]]

to show the equivalence. We start by unpacking the meaning of the left-hand side:

Iω[[[x′ = f(x) & q(x)]p(x, x′)]]

= uν | (ω,ν)∈I[[x′=f(x) & q(x)]] Iν[[p(x, x′)]]

By def. each such ν is ϕ(t) for t ∈ R≥0, and because ϕ is a solution of x′ = f(x) & q(x) at t
satisfies ϕ(t)(x′) = Iϕ(t)[[f(x)]] and thus Iν[[p(x, x′)]] = Iν

Iν[[f(x)]]
x′ [[p(x, x′)]] so we continue

the equality chain

· · ·
= uν | (ω,ν)∈I[[x′=f(x) & q(x)]] Iν

ν[[f(x)]]
x′ [[p(x, x′)]]

= uν | (ω,ν)∈I[[x′=f(x) & q(x)]] Iν[[[x′ := f(x)]p(x, x′)]]

=Iω[[[x′ = f(x) & q(x)][x′ := f(x)]p(x, x′)]]

as desired.

DI≥ We give the main argument here to elucidate the impact of 3-valued dLι by showing the
case for ≥. The cases for >,=, 6=,∧, and ∨ generalize in the same fashion from their dL
proofs [24]. In this proof, the term shape(·) is given per its definition in Fig. 2. Fix I and
ω, then assume (1) Iω[[[?q(x)][x′ = f(x)&q(x)](g(x))′ ≥ (h(x))′]] = ⊕. We then show that
Iω[[[x′ = f(x)&q(x)]g(x) ≥ h(x) ↔ [?q(x)]g(x) ≥ h(x)]] = ⊕. By (1), for every solution
ϕ : [0, t] → Tree(R) (for any t ≥ 0) we have that (2) Iϕ(s)[[(g(x))′ ≥ (h(x))′]] = ⊕
holds for all 0 ≤ s ≤ t. Note this implies (3) Iϕ(s)[[g(x)]], Iϕ(s)[[h(x)]] 6= ⊥ because
the terms g(x) and h(x) denote a value whenever their differentials (g(x))′ and (h(x))′ do,
and (4a) Iϕ(s)[[g(x)]] and Iϕ(s)[[h(x)]] are continuous on 0 ≤ s ≤ t because their dif-
ferentials exist (4b) for all t1, t2 ∈ [0, t], Iϕ(t1)[[shape(g(x))]] = Iϕ(t2)[[shape(g(x))]]
and Iϕ(t1)[[shape(h(x))]] = Iϕ(t2)[[shape(h(x))]] as a consequence of the existence of
the differentials: recall the differentials (g(x))′ and (h(x))′ exist only when shape is con-
stant in some neighborhood: by taking the uncountable union of such neighborhoods at
all s ∈ [0, t] we get constancy of shape across [0, t]. We focus first on the case that

47

Iϕ(s)[[g(x)]], Iϕ(s)[[h(x)]] ∈ R for all s ∈ [0, t]. From (4b) we conclude Iϕ(s)[[g(x) ≥
h(x)]] ∈ {⊕,	}We show that the formulas [x′ = f(x)&q(x)] g(x) ≥ h(x) and [?q(x)] g(x) ≥
h(x) imply each other.

Case 1: Assume (5) Iω[[[x′ = f(x)&q(x)]g(x) ≥ h(x)]] = ⊕ to show Iω[[[?q(x)]g(x) ≥
h(x)]]. From (5) have for all ν s.t. (ω, ν) ∈ I[[x′ = f(x)&q(x)]] that Iν[[g(x) ≥ h(x)]].
Assume (6) Iω[[q(x)]] = ⊕ as there is nothing to show otherwise, and let ν = ω

Iω[[f(x)]]
x′ then

(ω, ν) ∈ I[[x′ = f(x)&q(x)]] so by (5) have (6) Iν[[g(x) ≥ h(x)]] = ⊕. Then we can apply
Lem. 36 because ω = ν on {x′}{ ⊆ FV(g(x) ≥ h(x)) since x′ /∈ FV(g(x) ≥ h(x)), yielding
Iω[[g(x) ≥ h(x)]] = ⊕ as desired.

Case 2 Assume (5) Iω[[[?q(x)]g(x) ≥ h(x)]] to show Iω[[[x′ = f(x)&q(x)]g(x) ≥ h(x)]] =
⊕. If Iω[[q(x)]] 6= ⊕ then trivially Iω[[[x′ = f(x)&q(x)]g(x) ≥ h(x)]] = ⊕ because
{ν | (ω, ν) ∈ I[[x′ = f(x)&q(x)]]} = ∅. So consider the case where (6) Iω[[q(x)]] = ⊕
and from (5) have (7) Iω[[g(x) ≥ h(x)]] = ⊕. Next, case on all the transitions of the ODE.
Of these consider first the case that t = 0 and let ν = ω

Iω[[f(x)]]
x′ . By (6) and Lem. 36 have

Iν[[q(x)]] = ⊕ yielding (ω, ν) ∈ I[[x′ = f(x)&q(x)]] which with (7) (again by Lem. 36)
shows the case.

Else assume t > 0. We define a function rel(s) = Iϕ(s)[[g(x)]] − Iϕ(s)[[h(x)]] with do-
main [0, t]. The function rel is differentiable because it is the difference of two differentiable
functions. From (7) we have that (8a) rel(0) ≥ 0. By applying Lem. 2 to (1) we learn that
d Iϕ(t)[[g(x)]]

dt
(s) ≥ d Iϕ(t)[[h(x)]]

dt
(s), i.e., (8b) d rel(t)

dt
(s) ≥ 0 for all s ∈ [0, t]. From (8a) and

(8b) it follows by mean-value theorem that (9) rel(t) ≥ 0 because (reasoning by contradic-
tion) we would else have d rel(t)

dt
(s) < 0 for some s, contradicting (8b). From (9) it follows

immediately that Iϕ(t)[[g(x)]] ≥ Iϕ(t)[[h(x)]] which is to say Iϕ(t)[[g(x) ≥ h(x)]] = ⊕ as
desired.

This generalizes to comparisons of tuples by repeating the mean value theorem argument for
each component.

DG Fix I and ω. Assume the antecedent, equivalently (by Prop. 3) assume for all v ∈ Tree(R)
such that I(q)(v) = ⊕ that (1) Iωvx[[Con(a(x))]] = Iωvx[[Con(b(x))]] = ⊕. By Prop. 7 then
(cont) I(a) and I(b) are continuous real-valued functions of locally-fixed-shape values v at
all values v ∈ Tree(R) such that I(q)(v) = ⊕. Now consider Iω[[[x′ = f(x) & q(x)]p(x)]] =
uν | (ω,ν)∈I[[x′=f(x) & q(x)]]Iν[[p(x)]]. We will show this equal to

Iω[[∃y:R[z := (x, y); z′ = (f(π1z), a(π1z)π2z + b(π1z)) & q(π1z); (x, y) := z]p(x)]]

≡ uν | (ωty ,ν)∈I[[z:=(x,y);z′=(f(π1z),a(π1z)π2z+b(π1z)) & q(π1z)]], some t∈RIω[[p(x)]]

The variable z can be understood here as being fresh, since it is not a dependency of any
function, predicate, etc. in the original system being ghosted. To prove the equivalence, it

48

suffices to let the sets

L ≡{ν | (ω, ν) ∈ I[[x′ = f(x)&q(x) & p(x)]]}
R ≡{ν | (ωvy , ν) ∈ I[[z := (x, y);

z′ = (f(π1z), a(π1z)π2z + b(π1z))&q(π1z); (x, y) := z]], some v ∈ R}

And show L = R by two inclusions: R ⊆ L and L ⊆ R.

Case R ⊆ L: Let (ωvy , ν) ∈ I[[z := (x, y); z′ = (f(π1z), a(π1z)π2z + b(π1z))&q(π1z)]] for
some v ∈ R. Let µ = ω

v,(ω(x),v)
y,z for short. Now consider any solution ϕ to x′ = f(x)&q(x)

where µ = ϕ(0) on {x′}{. We will augment ϕ to a solution ϕ̃ of z′ = (f(π1z), a(π1z)π2z +
b(π1z)) of the same duration. We construct ϕ̃ as follows: let y : EI → R, where EI is the
existence interval of ODE x′ = f(x). Now let ϕ̃ be the unique solution of the initial value
problem:

y(0) = v

y′(t) = F (t, y(t)) = y(t)(Iϕ(t)[[a(x(t))]]) + Iϕ(t)[[b(x)]]

By Picard-Lindelöf [29, §10.VII], solution y(t) exists. By inversion on assumption (1) and
by fact (cont), a(x(t)) and b(x(t)) are continuous as functions of x and, by composition, as
functions of t. Because ϕ is a solution of an ODE, ϕ is differentiable and thus continuous.
Then F is a composition of continuous functions under smooth operators so the solution y(t)
exists uniquely, because F satisfies the Lipschitz condition:

‖F (t, y)− F (t, z)‖ = ‖(y − z)Iϕ(t)[[a(x(t))]]‖ ≤ ‖y − z‖ max
s∈[0,t]

Iϕ(t)[[a(x(t))]]

where the maximum exists because [0, t] is compact and by assumption (1) a(x) is continu-
ous on {ν | Iν[[q(x)]] = ⊕} ⊇ {ν | ν(t) ∈ [0, t]}. We can now define the modification ϕ̃ as
such: It agrees with µ on {z, z′}{, agrees with ϕ in the sense that ϕ(t)(x) = π1ϕ̃(t)(z), then
the new component π2z is defined by π2ϕ̃(0)(z) = r and π2ϕ̃(t)(z′) = F (t, y(t)) for the
solution y(t). In particular the right component of ϕ̃(t)(z′) agrees with the time derivative
y′(t) of the value π2ϕ̃(t)(z) = y(t) of y along ϕ̃. By construction π2ϕ̃(y) = v and I, ϕ̃ |=
z′ = (f(π1z), a(π1z)π2z + b(π1z)) ∧ q(x) because π2(z′) = a(π1z)π2z + b(π1z) holds by
construction of y and π1z agrees with ϕ(t)(x) so that Iϕ(s)[[f(x)]] = Iϕ̃(s)Iϕ̃(s)[[π1z]]

x [[f(x)]]

by Lem. 36, then Iϕ̃(s)Iϕ̃(s)[[π1z]]
x [[f(x)]] = Iϕ̃(s)[[f(π1z)]] and likewise Iϕ̃(s)[[q(π1z)]] =

Iϕ̃(s)Iϕ̃(s)[[π1z]]
x [[q(x)]] = Iϕ(s)[[q(x)]] by Lem. 36 again

uν | (ω,ν)∈I[[x′=f(x) & q(x)]] Iν[[p(x)]]

= uν | (ωty ,ν)I[[z:=(x,y);z′=(f(π1z),a(π1z)π2z+b(π1z))&q(π1z)]], some t∈R Iν[[p(x)]]

so the inclusion R ⊆ L holds.

Case L ⊆ R: We show a more general result in the inverse ghost direction: this direction
of DG holds even if the term a(π1z)π2z + b(π1z) for the ghost dimension is replaced with

49

any term η, and even when the initial value of π2z is arbitrary. Term η is even allowed to
be discontinuous, vectorial, or partial: these edge cases only ever shorten, not expand, the
existence interval of an ODE. While discontinuous η could have multiple solutions, they
would agree with one another on π1z so that continuity does not disturb the applicability
of inverse-ghosting. Show ν ∈ {ν | (ωvy , ν) ∈ I[[z := (x, y); z′ = (f(π1z), a(π1z)π2z +
b(π1z))&q(π1z); (x, y) := z]], v ∈ R} Consider any term η, any v ∈ Tree(R) and any ϕ of
some duration t where I, ϕ |= z′ = (f(π1z), a(π1z)π2z + b(π1z)) ∧ q(π1z) with ϕ(0) = µ
on {z′}{. Consider the restriction ϕ|L where ϕ|L(x) = π1ϕ(z) and ϕ|L(w) = ω(w) for all
other base variables w. By Lem. 36 I, ϕ|L |= x′ = f(x) ∧ q(x) because ϕ|L(x) is defined to
match ϕ(z) and FV(f(x)) = {x}. This completes the proof that L ⊆ R.

Then because the sets L and R are identical on all variables except {y, y′, z, z′} then by
Lem. 36 Iν[[p(x)]] has the same truth value on every element of L∪R, completing the proof.

DS Fix I and ω. Assume without loss of generality (1) I(f) 6= ⊥, else I[[x′ = f() & q(x)]] = ∅
as I[[f()]] = ⊥ throughout, in which case the implication is vacuous. Then we show that
Iω[[[x′ = f() & q(x)]p(x)]] = Iω[[∀t :R ((∀0 ≤ s ≤ t q

(
x~+f()s

)
)→ [x := x+ f()t]p(x))]].

The key of the proof is to observe first that (2) ϕ as defined by ϕ(s)(x) = Iωst [[x + f()t]]
solves x′ = f() on [0,∞) and that because f(), which exists by (1), is trivially Lipschitz,
this solution is unique. Note the existence interval of the solution is [0,∞) because f() is a
constant: if it exists at any time t, it must exist at every time t. In the following, let the do-
main D be defined by D = {t | for all s ∈ [0, t], Iϕ(s)[[q(x)]] = ⊕}. This is interchangeable
with {t | for all s ∈ [0, t], Iω[[q(x+ f()s)]] = ⊕} by construction of ϕ. Then

Iω[[[x′ = f() & q(x)]p(x)]]

= uν | (ω,ν)∈I[[x′=f() & q(x)]] Iν[[p(x)]]

= ur∈D Iϕ(r)[[p(x)]]

= ur∈D I(p)(ϕ(r)(x))

= ur∈D I(p)(ω(x) + I(f)r)

= ur∈D (IωIω[[x]]
x [[p(x+ f()t)]])

= ur∈D (Iω[[[x := x+ f()t]p(x)]])

= ur:R | Iωrt [[∀0≤s≤t q(x+f()s)]] Iω
r
t [[[x := x+ f()t]p(x)]]

= Iω[[∀t :R (∀0 ≤ s ≤ t q(x+ f()s))→ [x := x+ f()t]p(x)]].

G
P

[a]P

Assume Iν[[P]] = ⊕ for all ν (validity). Let ω arbitrary. Then Iµ[[P]] = ⊕ also for all
µ | (ω, µ) ∈ I[[a]] so Iω[[[a]P]] = ⊕ regardless of ω, so [a]P is valid, and thus the rule is
sound.

∀
p(f())

∀x p(x)

50

Assume Iν[[p(x)]]=⊕, all ν. Fix ω, then Iω[[∀xp(x)]]= uv∈Tree(R) Iω
v
x[[p(x)]]. By the as-

sumption, uv∈Tree(R)Iω
v
x[[p(x)]] = uv∈Tree(R)⊕ = ⊕, so the conclusion is valid, and the rule

is sound.

MP
P → Q P

Q

Assume Iν[[P]] = ⊕ and Iν[[P → Q]] = ⊕ for all ν so also Iν[[P]] ≤ Iν[[Q]]. Fix ω. By
assumptions ⊕ = Iω[[P]] ≤ Iω[[Q]], i.e., Iω[[Q]] = ⊕ for all ω so the conclusion is valid, and
the rule is sound.

CQ
f(x) = g(x) E(h(f(x))) ∧ E(h(g(x)))

h(f(x)) = h(g(x))

(For Iω[[f(x)]], Iω[[g(x)]] ∈ Tree(R) ∪ ⊥) Assume Iω[[f(x) = g(x)]] = ⊕, by inversion
Iω[[f(x)]] = Iω[[g(x)]] ∈ Tree(R) (since f(x) = g(x) takes value � if either side is
⊥). By second premise, assume also have Iω[[E(h(f(x))) ∧ E(h(g(x)))]] = ⊕. By in-
version, Iω[[h(f(x))]], Iω[[h(g(x))]] ∈ Tree(R) then Iω[[h(f(x))]] = I(h)(I(f)(ω(x))) =
I(h)(I(g)(ω(x))) = Iω[[h(g(x))]], so Iω[[h(f(x)) = h(g(x))]] = ⊕, so the conclusion is
valid, so the rule is sound.

CE
P ↔ Q

C(P)↔ C(Q)

Assume P ↔ Q is valid, i.e., Iω[[P ↔ Q]] = ⊕ for all ω. Then by inversion Iω[[P]] =
Iω[[Q]]. Then Iω[[C(P)]] = I(C)(I[[P]]) = I(C)(I[[Q]]) = Iω[[C(Q)]]. Then the conclusion
is valid, and so the rule is sound.

This completes the proofs of axioms as well as several proof rules. In order to complete the
proof of soundness, we now shift focus to the one remaining rule: uniform substitution.

6.1 Uniform Substitution
Like any uniform substitution calculus, the workhorse of dLι is the substitution rule US. All the
axioms of dLι are single, valid formulas, rather than axiom schemata, a key advantage of uniform
substitution which simplifies the soundness proof of each axiom. Simplicity in axiom proofs is
achieved by offloading side-condition complexity to the definition of and soundness proof for US
as shown in this section. This is to our overall benefit, because complex side conditions need only
be handled once.

The uniform substitution proof rule in dLι is analogous to that in dL:

US
φ

σ(φ)

In dL, the US rule is sound when the substitution σ does not introduce free references (Fig. 8) to
bound variables (Fig. 9), in which case we say σ is admissible for φ. Admissibility can be checked
syntactically.

51

We show that the same holds of dLι when adding terms ιx φ,(), (θ, η) and mr(θ, η, s ζ, lr γ)
and generalizing dL to a three-valued semantics. Main novelties of dLι substitution include support
for vectorial differentials of non-total terms as well as the use of simultaneous induction principles
supporting terms that mention formulas.

As in dL, we formulate admissibility in terms of U -admissibility (Def. 4) checks.

Definition 4 (Admissible uniform substitution). A substitution σ is U -admissible for φ (or θ or α)
with respect to a set U ⊆ V ∪ V ′ iff FV(σ|Σ(φ)) ∩ U = ∅ where σ|Σ(φ) is the restriction of σ that
only replaces symbols that occur in φ and FV(σ) =

⋃
f∈σ FV(σf(·)) ∪

⋃
p∈σ FV(σp(·)) are the

free variables that σ introduces, and where V ′ = {x′ | x ∈ V}. The substitution σ is admissible for
φ (or θ or α) if all such checks during its applications hold, per Fig. 11.

In Fig. 11, σf denotes the replacement for symbol f provided by σ.
Admissibility checks employ static semantics consisting of free-variable (FV(·), Fig. 8), may-

bound-variable (BV(·), Fig. 9), and must-bound-variable (MBV(·), Fig. 9) computations. Anal-
ogously to FV(·) (Fig. 10), the signature Σ(·) indicates all rigid symbols which influence the
meaning of an expression. In Fig. 10, ⊗ is shorthand for an arbitrary operator and e means any
expression: term, formula, or program.

Intuitively, the free variables of a compound expression θ are the free variables of its immediate
subexpressions, minus any variables that it binds. Formally, FV(θ) (or φ, α) contains all variables
that influence meaning:

Lemma 36 (Coincidence). For all terms θ, formulas φ, programs α, for all interpretations I, J that
agree on Σ(φ or α or θ), have:

• If ω, ω̃ agree on FV(θ), then Iω[[θ]] = Jω̃[[θ]]

• If ω, ω̃ agree on FV(φ), then Iω[[φ]] = Jω̃[[φ]]

• If ω, ω̃ agree on V ⊇ FV(α) then for (ω, ν) ∈ I[[α]] exists ν̃ s.t. (ω̃, ν̃) ∈ I[[α]] and ν, ν̃ agree
on V ∪MBV(α).

Proof. The proof of coincidence follows the general structure of the coincidence proof in [24].
Proceed by simultaneous induction on terms, formulas, and programs. We consider shape(θ)
structurally simpler than (θ)′ in the induction, and we allow the states ω and ω̃ to vary when
applying inductive hypotheses.

• case q: Iω[[q]] = q = Jω̃[[q]].

• case x: Iω[[x]] = ω(x) = ω̃(x) = Jω̃[[x]] since x ∈ FV(x).

• case θ + η when both denote reals: Iω[[θ + η]] = Iω[[θ]] + Iω[[η]]
=
IH Jω̃[[θ]] + Jω̃[[η]] =

Jω̃[[θ + η]].

• case θ + η, error on left: Iω[[θ + η]] = ⊥ and Iω[[θ]] = ⊥ =
IH Jω̃[[η]] = Jω̃[[θ + η]].

• case θ + η, error on right: Iω[[θ + η]] = ⊥ and Iω[[η]] = ⊥ =
IH Jω̃[[η]] = Jω̃[[θ + η]].

52

FV(()) = ∅
FV(q ∈ Q) = ∅

FV(x) = {x}
FV(θ + η) = FV(θ) ∪ FV(η)

FV(θ · η) = FV(θ) ∪ FV(η)

FV(ιx φ) = FV(φ) \ {x}
FV(mr(θ, η, s ζ, lr γ)) = FV(θ) ∪ FV(η) ∪ (FV(ζ) \ {s}) ∪ (FV(γ) \ {l, r})

FV(f(θ)) = FV(θ)

FV(∀xφ) = FV(φ) \ {x}
FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ)

FV(¬φ) = FV(φ)

FV(θ ≥ η) = FV(θ) ∪ FV(η)

FV([α]φ) = FV(α) ∪ (FV(φ) \MBV(α))

FV(p(θ)) = FV(θ)

FV(C(φ)) = V ∪ V ′

FV(?φ) = FV(φ)

FV(x := θ) = FV(θ)

FV(x′ = θ&ψ) = {x} ∪ FV(θ) ∪ FV(ψ)

FV(α ∪ β) = FV(α) ∪ FV(β)

FV(α; β) = FV(α) ∪ (FV(β) \MBV(α))

FV(α∗) = FV(α)

FV(a) = V ∪ V ′

Figure 8: Free variable computation

53

BV(?φ) = ∅
BV(x := θ) = {x}

BV(x′ = θ&ψ) = {x, x′}
BV(α ∪ β) = BV(α) ∪ BV(β)

BV(α; β) = BV(α) ∪ BV(β)

BV(α∗) = BV(α)

BV(a) = V ∪ V ′

MBV(α ∪ β) = MBV(α) ∩MBV(β)

MBV(α; β) = MBV(α) ∪MBV(β)

MBV(a) = MBV(α∗) = ∅
MBV(α) = BV(α) in all other cases

Figure 9: Bound variable computation

Σ(s) = {s} if s is C, a, f, or p
Σ(⊗(e1, . . . , en)) = Σ(e1) ∪ · · · ∪ Σ(en)

Figure 10: Signature computation

54

• case θ · η when both denote reals: Iω[[θ · η]] = Iω[[θ]] · Iω[[η]]
=
IH Jω̃[[θ]] · Jω̃[[η]] = Jω̃[[θ · η]].

• case θ · η, error on left: Iω[[θ · η]] = ⊥ and Iω[[θ]] = ⊥ =
IH Jω̃[[θ]] = Jω̃[[θ · η]].

• case θ = θ · η, error on right: Iω[[θ · η]] = ⊥ and Iω[[η]] = ⊥ =
IH Jω̃[[η]] = Jω̃[[θ · η]].

• case (): Iω[[()]] = > = Jω̃[[()]].

• case (θ, η) when both are reals: Iω[[(θ, η)]] = (Iω[[θ]], Iω[[η]])
=
IH (Jω̃[[θ]], Jω̃[[η]]) = Jω̃[[(θ, η)]].

• case (θ, η), error on left: Iω[[(θ, η)]] = ⊥ and Iω[[θ]] = ⊥ =
IH Jω̃[[θ]] = Jω̃[[(θ, η)]].

• case (θ, η), error on right: Iω[[(θ, η)]] = ⊥ and Iω[[η]] = ⊥ =
IH Jω̃[[η]] = Jω̃[[(θ, η)]].

• case ιx φ, exists unique: Iω[[ιx φ]] = unique v ∈ Tree(R) s.t. ωvx[[φ]] = ⊕. We take special
care in applying the IH because ιx φ, unlike other term constructors, binds a variable x in φ.
Because the IH is general in the states, for all u ∈ Tree(R) we have Iωux [[φ]] = Jω̃ux[[φ]] since
ωux and ω̃ux agree both on x and on FV(ιx φ) = FV(φ) \ {x}, thus they agree on FV(φ). This
holds both for u and all other v so u is also unique u where Jω̃ux[[φ]] = ⊕ so u = Jω̃[[ιx φ]].

• case θ = ιx φ, does not exist uniquely: Since Iω[[ιx φ]] = ⊥, there are either zero or multiple
v ∈ Tree(R) such that ωvx[[φ]] = ⊕. Then for all u ∈ Tree(R) by IH have Iωux [[φ]] = Jω̃ux[[φ]]
since ωux and ω̃ux agree both on x and on FV(ιx φ) = FV(φ)\{x}, thus they agree on FV(φ).
This holds both for all u so there is no unique v where Jω̃vx[[φ]] = ⊕ so Jω̃[[ιx φ]] = ⊥.

• case mr(θ, η, s ζ, lr γ): Proceed by a nested induction on the denotation v = Iω[[θ]].

– case Base case v = ⊥: Then because θ is structurally simpler than mr(θ, η, s ζ, lr γ)
we apply the outer IH to θ and prove Iω[[mr(θ, η, s ζ, lr γ)]] = ⊥ = Jω̃[[mr(θ, η, s ζ, lr γ)]].

– case Base case v = (): Then

Iω[[mr(θ, η, s ζ, lr γ)]] = Iω[[η]]
=
IH Jω̃[[η]] =Jω̃[[mr(θ, η, s γ, lr ζ)]]

– case Base case v ∈ R: Then

Iω[[mr(θ, η, s ζ, lr γ)]]

=Reduce(Iω[[θ]], Iω[[η]], s ζ, lr γ, Iω)

=caseIω
Iω[[θ]]
s [[ζ]]

=
IHIωJω̃[[θ]]

s [[ζ]]
=
IHJω̃Jω̃[[θ]]

s [[ζ]]

=Reduce(Jω̃[[θ]], Jω̃[[η]], s ζ, lr γ, Jω̃)

=Jω̃[[mr(θ, η, s ζ, lr γ)]].

55

– case Inductive case v = (L,R): Then

Iω[[mr(θ, η, s ζ, lr γ)]]

=Reduce(Iω[[θ]], Iω[[η]], s ζ, lr γ, Iω)

=Reduce((L,R), Iω[[η]], s ζ, lr γ, Iω)

Then let L̃ = Reduce(L, Iω[[η]], s ζ, lr γ, Iω) and let R̃ = Reduce(R, Iω[[η]], s ζ, lr γ, Iω)
then by the inner IH we have L̃ = Reduce(L, Jω̃[[η]], s ζ, lr γ, Jω̃) and we have
R̃ = Reduce(R, Jω̃[[η]], s ζ, lr γ, Jω̃).

Then we have Jω̃L̃,R̃l,r [[γ]] = Jω̃L̃,R̃l,r [[γ]] = Reduce((L,R), Jω̃[[η]], s ζ, lr γ, Jω̃) =
Jω̃[[mr(θ, η, s ζ, lr γ)]].

• case (θ)′ exists: Then Iω[[(θ)′]] =
∑

d∈Dim(FV(θ))
∂Iω[[θ]]
∂d

ω′(d) =
∑

d∈Dim(FV(θ))
∂Iω[[θ]]
∂d

ω̃′(d)

which by the IH is equal to
∑

d∈FV(θ)
∂Jω̃[[θ]]
∂d

ω̃′(d) = Jω̃[[(θ)′]] since ω = ω̃ on FV((θ)′) which

includes d′ for each d ∈ Dim(FV(θ)) and thus d′ for every nonzero term of
(∑

d∈Dim(FV(θ))

)
since the partial differential of Jω̃[[θ]] with respect to any d /∈ Dim(FV(θ)) is 0. Furthermore
the IH applies since θ is simpler than (θ)′ and FV(θ) ⊆ FV((θ)′). More precisely, to show
that the partial derivatives ∂Iω[[θ]]

∂d
ω′(d) and ∂Jω̃[[θ]]

∂d
ω̃′(d) agree, we note that they are both taken

by varying d among some valuesD : R in its neighborhood. We apply the IH for each d ∈ D
to show IωDd [[θ]] = Jω̃Dd [[θ]] to get that the partials are equal. Each IH application is allowed
since ωDd = ω̃Dd on {d} ∪ FV(θ) and ω = ω̃ on FV(θ).

• case (θ)′ does not exist: This case applies iff
∑

d∈Dimω(FV(θ))
∂Iω[[θ]]
∂d

ω′(d) does not exist. Only
the following cases are possible:

1. ω(d) and ω(d′) differ in shape for some d such that ‖∂Iω[[θ]]
∂d
‖ > 0. Then d ∈ Dimω(FV(θ))

because nonfree variables have partial derivative 0, and {d, d′} ⊆ FV((θ)′). Then ω =

ω̃ on {d, d′} by assumption. By IH ‖∂Jω̃[[θ]]
∂d
‖ = ‖∂Iω[[θ]]

∂d
‖ > 0 and ω̃(x) and ω̃(x′) differ

in shape, so Jω̃[[(θ)′]] = ⊥. item For every neighborhood Nξ(ω) = {ν s.t. ‖ν − ω‖ <
ξ} there exist two states ν, µ ∈ Nξ(ω) where Iν[[shape(θ)]] 6= Iµ[[shape(θ)]]. Since
FV(shape(θ)) = FV(θ) then by IH on shape(θ) (which is allowable by our choice of
induction metric) assume without loss of generality that ν = µ = ω on {FV(θ)}{ and
that Iν[[θ]] = Jν̃[[θ]] and Iµ[[θ]] = Jµ̃[[θ]] for µ̃ = µ on FV(θ) and µ̃ = ω̃ on FV(θ){,
likewise for ν̃. Because ω̃ = ω on FV(θ) to begin with, then ‖µ̃− ω̃‖ ≤ ‖µ− ω‖ and
‖ν̃ − ω̃‖ ≤ ‖ν −ω‖, so {ν̃, µ̃} ⊆ Nξ(ω̃) = {ν | ‖ν − ω̃‖ < ξ}. Because this argument
is generic in ξ then every neighborhood of ω̃ has ν̃, µ̃ where the shape of θ differs, so
Jω̃[[(θ)′]] = ⊥.

2. I[[θ]] is not totally differentiable at ω. In this case it is easiest to work with defini-
tion of differential as a limit, where we write (I[[θ]])′(ω) for the differential of I[[θ]]
at ω. Analogously to Lem. 32, the differential expressed as a limit is (I[[θ]])′(ω) =

limν→ω
‖Iν[[θ]]−Iω[[θ]]‖
‖ν−ω‖ . If (I[[θ]])′(ω) does not exist, then the limit limν→ω

‖Iν[[θ]]−Iω[[θ]]‖
‖ν−ω‖

does not exist. Observe limν→ω
‖Iν[[θ]]−Iω[[θ]]‖
‖ν−ω‖ = limν→ω̃

‖Jν[[θ]]−Iω̃[[θ]]‖
‖ν−ω̃‖ by applying the

56

IH on θ inside the limit, i.e., for every ν we know Iν[[θ]] = Jν̃[[θ]] where ν̃ = ν on
FV(θ) and ν̃ = ω̃ on FV(θ){. Because these limits are equal, then limν→ω̃

‖Jν[[θ]]−Iω̃[[θ]]‖
‖ν−ω̃‖

does not exist so Jω̃[[(θ)′]] = ⊥ as desired.

• case f(θ): Iω[[f(θ)]] = I(f)(Iω[[θ]]) =assump J(f)(Iω[[θ]])
=
IH J(f)(Jω̃[[θ]]) = Jω̃[[f(θ)]].

• case θ ≥ η both exist: Iω[[θ ≥ η]] = Geq(u, v)Iω where u = Iω[[θ]], v = Iω[[η]]. Then by IH
u = Jω̃[[θ]], v = Jω̃[[η]] so by functionality of Geq(·, ·), have Geq(u, v) = Jω̃[[θ ≥ η]].

• case θ ≥ η not both exist: Then have u = Iω[[θ]] = ⊥, or v = Iω[[η]] = ⊥, so by IH
Jω̃[[θ]] = ⊥ or Jω̃[[η]] = ⊥, so Jω̃[[θ ≥ η]] = ⊥.

• case p(θ): Iω[[p(θ)]] = I(p)(Iω[[θ]]) =assump J(p)(Iω[[θ]])
=
IH J(p)(Jω̃[[θ]]) = Jω̃[[p(θ)]].

• case C(φ): Note ω = ω̃ since FV(C(φ)) = V ∪ V ′. We write the partial application I[[φ]] :
S → {⊕,�,	} as shorthand for the function mapping each ω to Iω[[φ]], or likewise I[[φ]] =
J [[φ]] to say that for all µ, by IH have Iµ[[φ]] = Jµ[[φ]]. Iω[[C(φ)]] = I(C)(I[[φ]]) =assump

J(C)(I[[φ]]) =note J(C)(J [[φ]]) = Jω̃[[C(φ)]] .

• case ¬φ: Iω[[¬φ]] = Iω[[φ]] = Jω̃[[φ]] = Jω̃[[¬φ]].

• case φ ∧ ψ: Iω[[φ ∧ ψ]] = Iω[[φ]] u Iω[[ψ]] = Jω̃[[φ]] u Jω̃[[ψ]] = Jω̃[[φ ∧ ψ]].

• case ∀xφ: Iω[[∀xφ]] = uv∈Tree(R)Iω
v
x[[φ]]

=
IH uv∈Tree(R)Jω̃

d
x[[φ]] = Jω̃[[∀xφ]].

• case [α]φ: Iω[[[α]φ]] = uν | (ω,ν)∈I[[α]]Iν[[φ]]
=
IH uν̃ | (ω̃,ν̃)∈J [[α]]Jν̃[[φ]] = Jω̃[[[α]φ]].

• case a for program constant a: Have I(a) = J(a) by assumption and since FV(a) = V ∪ V ′
have ω = ω̃. Let ν̃ = nu, then (ω, ν) ∈ I[[a]] iff (ω, ν) ∈ I(a) iff (ω, ν) ∈ J(a) iff
(ω̃, ν̃) ∈ J(a).

• case x := θ: (ω, ν) ∈ I[[x := θ]] so ν = ω
Iω[[θ]]
x then by IH Iω[[θ]] = Jω̃[[θ]]. Now let

ν̃ = ω̃Jω̃[[θ]]
x and observe (ω̃, ν̃) ∈ Jω̃[[x := θ]] by definition and that ν agrees with ν̃ on

{x} = MBV(x := θ) by IH above and agrees also on V \ {x} by agreement between ω and
ω̃.

• case ?φ: (ω, ν) ∈ I[[?φ]] so ω = ν, and Iω[[φ]] = ⊕ then let ν̃ = ω̃ and since ω and ω̃ agree
on FV(φ) then Jω̃[[φ]] = ⊕ by IH so (ω̃, ν̃) ∈ J [[?φ]]. Lastly observe ν and ν̃ agree on V
trivially since BV(?φ) = ∅.

• case x′ = θ&ψ: (ω, ν) ∈ I[[x′ = θ&ψ]], let r be such that ϕ(r) = ν and ϕ(0) = ω on
{x′}{. Now define ϕ̃(s) = ϕ(s) on {x, x′} and ϕ̃(s) = ν̃(s) on {x, x′}{. Letting ν̃ = ϕ̃(r)
we will now show (ω̃, ν̃) ∈ J [[x′ = θ&ψ]] since for every 0 ≤ s ≤ r we have Iϕ(s)[[θ]] =

J ˜ϕ(s)[[θ]] and Iϕ(s)[[ψ]] = Jϕ̃(s)[[ψ]] = ⊕, both by the inductive hypotheses, and moreover
since Iϕ[[θ]] and Jϕ̃[[θ]] are the same function of time, they have the same solution and thus
s 7→ Jϕ̃(s)[[θ]] is the time derivative of s 7→ ϕ̃(s)(x) as desired. Lastly, ϕ and ϕ̃ agree on

57

{x, x′} by construction and agree for the other V by assumption that ω and ω̃ agree on V
and since ω = ϕ(s) on {x, x′}{ and ω̃ = ϕ̃(s) on the same, by construction.

• case α ∪ β: Recall that MBV(α) are the variables which are bound on every execution of
α. From (ω, ν) ∈ I[[α ∪ β]] have either (1a) (ω, ν) ∈ I[[α]] or (1b)(ω, ν) ∈ I[[β]]. Since
FV(α) ⊆ FV(α ∪ β), and FV(β) ⊆ FV(α ∪ β) we can apply the IH in both case (1a)
and case (1b). Then there exists ν̃ such that either (2a) (ω̃, ν̃) ∈ J [[α]] and ν̃ agrees with ν
on V ∪MBV(α), or (2b) (ω̃, ν̃) ∈ I[[β]] and ν̃ agrees with ν on V ∪MBV(β). In case (2a)
MBV(α) ⊇ MBV(α ∪ β) and in case (2b) MBV(β) ⊇ MBV(α ∪ β), so in each case (3)
ν and ν̃ agree on MBV(α ∪ β) ∪ V . In each case respectively (4a) J [[α]] ⊆ J [[α ∪ β]] or
(4b) J [[β]] ⊆ J [[α ∪ β]]. In each case, it follows from (3) that (5) (ω̃, ν̃) ∈ J [[α ∪ β]].

• case α; β: From (ω, ν) ∈ I[[α; β]] have µ s.t. (ω, µ) ∈ I[[α]] and (µ, ν) ∈ I[[β]]. Since
FV(α) ⊆ FV(α; β), the IH on α is applicable. By the IH on α, there exists µ̃ s.t. (X1)
(ω̃, µ̃) ∈ J [[α]] where µ̃ agrees with µ on V ∪ MBV(α). Since V ⊇ FV(α; β) then V ∪
MBV(α) ⊇ FV(α; β) ∪MBV(α) = FV(α) ∪ (FV(β) \MBV(α)) ∪MBV(α) = FV(α) ∪
FV(β)∪MBV(α) ⊇ FV(β). Then by the IH on β there exists some ν̃ s.t. (X2) (µ̃, ν̃) ∈ J [[β]]
and ν = ν̃ on (V ∪MBV(α))∪MBV(β) = V ∪MBV(α; β). From (X1) and (X2) we have
(ω̃, ν̃) ∈ J [[α; β]] which completes the case since we just showed ν = ν̃ on V ∪MBV(α; β).

• case α∗: Recall αn is structurally simpler than α∗. Have (ω, ν) ∈ I[[α∗]] iff exists n ∈ N s.t.
(ω, ν) ∈ I[[αn]]. In case n = 0 then ν = ω, so we likewise let ν̃ = ω̃. The case follows from
the fact MBV(α∗) = ∅ and the agreement of ω with ω̃. In the case n > 0, apply the induction
hypothesis on structurally simpler αn, then there exists ν̃ where (ω̃, ν̃) ∈ J [[αn]] and ν̃ = ν
on V ∪MBV(αn) ⊇ V ∪MBV(α∗) = V . This concludes the proof since J [[αn]] ⊆ J [[α∗]].

For substitution in programs, we will also need a bound effect lemma saying that only bound
variables of a program will change during its execution.

Lemma 37 (Bound effect). If (ω, ν) ∈ I[[α]] then ω = ν on BV(α){.

Proof. By induction on α.

• case a: This case is vacuous since BV(a){ = (V ∪ V ′){ = ∅.

• case x := θ: (ω, ν) ∈ I[[x := θ]] iff ν = ω
Iω[[θ]]
x so ν = ω except on {x} = BV(x := θ).

• case ?φ: (ω, ν) ∈ I[[?φ]] iff ω = ν and Iω[[φ]] = ⊕, so ω = ν on V ∪ V ′ as desired for
BV(?φ) = ∅.

• case x′ = θ&ψ implies ω = ϕ(0) on {x, x′}{ and ν = ϕ(r) for solution ϕ of duration
at least r. Then ϕ(s) = ω on {x, x′}{ for all s in its domain. So ω = ν on {x, x′}{ =
BV(x′ = θ&ψ){ as desired.

• case α∪β: (ω, ν) ∈ I[[α∪β]] implies (ω, ν) ∈ I[[α]] or (ω, ν) ∈ I[[β]]; in each case by IH ω =
ν on either BV(α){ or BV(β){ and thus in both cases on BV(α){ ∩ BV(β){ = BV(α ∪ β){.

58

• case α; β: (ω, ν) ∈ I[[α; β]] iff exists µ where (ω, µ) ∈ I[[α]] and (µ, ν) ∈ I[[β]] so by IHs
ω = µ on BV(α){ and µ = ν on BV(β){ so by transitivity ω = ν on BV(α){ ∩ BV(β){ =
BV(α; β){.

• case α∗: (ω, ν) ∈ I[[α∗]] =
⋃
n∈N

I[[αn]], i.e., there exists n ∈ N and ω0, . . . , ωn such that

ω = ω0, ν = ωn and for all (k ∈ [0, n − 1]) have (ωk, ωk+1) ∈ I[[α]]. We proceed by
induction on n.

In the case n = 0 then ω = ω0 = ωk = ν, so trivially ω and ν agree on V ∪ V ′ ⊇ BV(α∗){.

Else n = k + 1 for some k ∈ N. Then (ω0, ω1) ∈ I[[α]] and (ω1, ωk) ∈ I[[α]] for some ω1

and for ω = ω0, ν = ωk. By the outer IH, ω0 = ω1 on BV(α){ = BV(α∗){. By the inner IH,
ω1 = ωk on BV(α∗){. By transitivity, ω = ν on BV(α∗){ as desired.

We give the substitution algorithm in Fig. 11. The substitution result for a compound expression
is found by substituting in each immediate subexpression, and is defined so long as all admissibility
checks hold recursively. In general, the admissibility check for each constructor says that the
substitution result must not contain any new occurrences of the variables bound at that constructor.
Admissibility conditions are checked recursively during the substitution algorithm proper (Fig. 11).
Recall the definition of U−admissibility from Def. 4:

A substitution σ is U -admissible for φ (or θ or α) with respect to a set U ⊆ V ∪ V ′
iff FV(σ|Σ(φ)) ∩ U = ∅ where σ|Σ(φ) is the restriction of σ that only replaces symbols
that occur in φ and FV(σ) =

⋃
f∈σ FV(σf(·))∪

⋃
p∈σ FV(σp(·)) are the free variables

that σ introduces, and where V ′ = {x′ | x ∈ V}. The substitution σ is admissible for
φ (or θ or α) if all such checks during its applications hold, per Fig. 11.

U -admissibility makes the admissibility conditions precise. Note also in Fig. 11 that the symbol
· is a reserved nullary function symbol standing for an argument term and is a reserved nullary
predicate symbol standing for an argument predicate.

To assist in proving the soundness of substitutions, we also define adjoint interpretations σ∗ωI
which capture the effect of a substitution σ on the interpretation I at state ω.

6.2 Adjoint lemma proof
Definition 5 (Adjoint interpretation). For any interpretation I, state ω, and admissible substitution
σ, the adjoint interpretation σ∗ωI is defined by:

σ∗ωI(f) : (Tree(R) ∪ {⊥})→ (Tree(R) ∪ {⊥}); d 7→ Id· ω[[σf(·)]]
σ∗ωI(p) : (Tree(R) ∪ {⊥})→ {⊕,�,	}; d 7→ Id· ω[[σp(·)]]
σ∗ωI(C) : (S → {⊕,�,	})→ (S → {⊕,�,	});R 7→ IR[[σC()]]

σ∗ωI(a) ⊆ (S × S); I[[σa]]

where · is a reserved function symbol and is a reserved predicate symbol.

59

Case Replacement Admissible when:

σ(()) = ()

σ(q) = q

σ(x) = x

σ(θ + η) = σ(θ) + σ(η)

σ(θ · η) = σ(θ) · σ(η)
σ(f(θ)) = {· 7→ σ(θ)}(σf) if f ∈ σ, else f(σ(θ))

σ(ιx φ) = ιx σ(φ) σ is {x}-admissible in φ

σ((θ, η)) = (σ(θ), σ(η))

σ(mr(θ, η, s ζ, lr γ)) = mr(σ(θ), σ(η), s σ(ζ), lr σ(γ)) σ is {s}-admissible in ζ

σ is {l, r}-admissible in γ

σ(x := θ) = x := σ(θ)

σ({x′ = θ&ψ}) = {x′ = σ(θ)&σ(ψ)} σ is {x, x′}-admissible in θ, ψ

σ(?(φ)) =?(σ(φ))

σ(α;β) = σ(α);σ(β) σ is BV(σ(α))-admissible in β

σ(α ∪ β) = σ(α) ∪ σ(β)
σ(α∗) = σ(α)∗ σ is BV(σ(α))-admissible in α

σ(a) = σa if a ∈ σ, else a

σ(θ ≥ η) = σ(θ) ≥ σ(η)
σ(p(θ)) = {· 7→ σ(θ)}(σp) if p ∈ σ, else p(σ(θ))

σ(C(φ)) = { 7→ σ(φ)}(σC) if C ∈ σ, else C(σ(φ)) σ is V ∪ V ′-admissible in φ

σ(¬φ) = ¬σ(φ)
σ(φ ∧ ψ) = σ(φ) ∧ σ(ψ)
σ(∀xφ) = ∀xσ(φ) σ is {x}-admissible in φ

σ([α]φ) = [σ(α)]σ(φ) σ is BV(σ(α))-admissible in φ

Figure 11: Uniform substitution algorithm

60

Lemma 38 (Adjoint agreement). If ω = ν on FV(σ) then σ∗ωI = σ∗νI . If σ is U -admissible for φ or
θ or α and ω = ν and ω = ν on U { then for all states µ:

σ∗ωIµ[[θ]] = σ∗νIµ[[θ]]

σ∗ωIµ[[φ]] = σ∗νIµ[[φ]]

σ∗ωI[[α]] = σ∗νI[[α]]

Proof. First, σ∗ωI(a) = I[[σa]] = σ∗νI(a) because the adjoint to σ for I and ω in the case of
programs is independent of ω. Likewise σ∗ωI(C) = σ∗νIC for quantifier symbols C. By Lem. 36,
·∗dIω[[σf(·)]] = ·∗dIν[[σf(·)]] when ω = ν on FV(σf(·)) ⊆ FV(σ). Also by Lem. 36, ·∗dIω[[σp(·)]] =
·∗dIν[[σp(·)]] on FV(σp(·)) ⊆ FV(σ). Thus σ∗ωI = σ∗νI when ω = ν on FV(σ).

If σ is U -admissible for φ, θ, α then FV(σf(·)) ∩ U = ∅ and thus FV(σf(·)) ⊆ U { for every
function symbol f and (likewise predicate p) in Σ(φ or θ or α). We need not concern ourselves
with C(φ) or a since σ∗ωI(C) and σ∗ωI(a) are independent of ω anyway. Since ω = ν on U { then
σ∗ωI = σ∗νI on Σ(φ, θ, α).

Then by Lem. 36 (for all possible states µ) have σ∗ωIµ[[θ]] = σ∗νIµ[[θ]] and σ∗ωIµ[[φ]] = σ∗νIµ[[φ]]
and σ∗ωI[[α]] = σ∗νI[[α]].

Using adjoint interpretations, we state and prove a substitution lemma syntactic substitution
has the same effect as taking an adjoint semantically. Soundness will be a short corollary of this
lemma.

Lemma 39 (Substitutions). For all φ, θ, α, ω and admissible σ:

1. Iω[[σ(θ)]] = σ∗ωIω[[θ]]

2. Iω[[σ(φ)]] = σ∗ωIω[[φ]]

3. I[[σ(α)]] = σ∗ωI[[α]]

Proof. We proceed by cases.

• case q: Iω[[σ(q)]] = Iω[[q]] = q = σ∗ωIω[[q]].

• case x: Iω[[σ(x)]] = Iω[[x]] = ω(x) = σ∗ωIω[[x]].

• case θ+η exists: Iω[[σ(θ+η)]] = Iω[[σ(θ)]]+Iω[[σ(η)]] = σ∗ωIω[[θ]]+σ∗ωIω[[η]] = σ∗ωIω[[θ+
η]].

• case θ + η does not exist: Then have Iω[[σ(θ)]] = ⊥ or Iω[[σ(η)]] = ⊥, so by IH either
σ∗ωIω[[θ]] = ⊥ or σ∗ωIω[[η]] = ⊥ thus σ∗ωIω[[θ + η]].

• case θ · η exists: Iω[[σ(θ · η)]] = Iω[[σ(θ)]] · Iω[[σ(η)]] = σ∗ωIω[[θ]] · σ∗ωIω[[η]] = σ∗ωIω[[θ · η]].

• case θ · η does not exist: Then Iω[[σ(θ)]] = ⊥ or Iω[[σ(η)]] = ⊥, so by IH either σ∗ωIω[[θ]] =
⊥ or σ∗ωIω[[η]] = ⊥ thus σ∗ωIω[[θ · η]].

61

• case (): Iω[[σ(())]] = Iω[[()]] = > = σ∗ωIω[[()]].

• case (θ, η) exists: Iω[[σ((θ, η))]] = (Iω[[σ(θ)]], Iω[[σ(η)]])
= (σ∗ωIω[[θ]], σ∗ωIω[[η]]) = σ∗ωIω[[(θ, η)]].

• case (θ, η) does not exist: Then have Iω[[σ(θ)]] = ⊥ or Iω[[σ(η)]] = ⊥ so by IH either
σ∗ωIω[[θ]] = ⊥ or σ∗ωIω[[η]] thus σ∗ωIω[[(θ, η)]] = ⊥.

• case ιx φ: Then Iω[[σ(ιx φ)]] = the unique v ∈ Tree(R) s.t. ωvx[[σ(φ)]] = ⊕. For each
u ∈ Tree(R), apply IH and have ωux [[φ]] = σ∗ωuxIω

u
x [[φ]]. Then by {x}-admissibility and

since ω agrees with ωvx on {x}{ have σ∗ωvxIω
v
x[[φ]] = σ∗ωIω

v
x[[φ]]. Since this was for all s, then

uniqueness is preserved, so v is the unique v such that σ∗ωIω
v
x[[φ]] = ⊕ so v = σ∗ωIω[[ιx φ]].

• case ιx φ does not exist: In this case there are 0 or multiple v ∈ Tree(R) s.t. Iωvx[[σ(φ)]] =
⊕. By IH, admissibility, and Lem. 38, for each such v have ωvx[[σ(φ)]] = σ∗ωIω

v
x[[φ]], so

non-uniqueness and non-existence are preserved, so σ∗ωIω[[ιx φ]] = ⊥ as desired.

• case mr(θ, η, s ζ, lr γ) does not exist: Then Iω[[σ(mr(θ, η, s ζ, lr γ))]] and Iω[[σ(θ)]] = ⊥
so by IH · · · = σ∗ωIω[[θ]] and σ∗ωIω[[mr(θ, η, s ζ, lr γ)]] = ⊥ as desired.

• case mr(θ, η, s ζ, lr γ) first base case: In this case we first have the chain of equivalences
Iω[[σ(mr(θ, η, s ζ, lr γ))]] = Iω[[mr(σ(θ), σ(η), s σ(ζ), lr σ(γ))]] = Iω[[σ(η)]] then by IH
· · · = σ∗ωIω[[η]].

• case mr(θ, η, s ζ, lr γ) second base case: Then Iω[[σ(mr(θ, η, s ζ, lr γ))]] = Iω
Iω[[σ(θ)]]
u [[σ(ζ)]].

By first IH, · · · = Iω
σ∗ωIω[[θ]]
u [[η]] and by second IH · · · = σ∗

ω
σ∗ωIω[[θ]]
u

Iω
σ∗ωIω[[θ]]
u [[η]]. Then by ad-

missibility Iωσ
∗
ωIω[[θ]]
u agrees with ω on {u}{ so by Lem. 38 have · · · = σ∗ωIω

σ∗ωIω[[θ]]
u [[η]] Which

is then · · · = σ∗ωIω[[mr(θ, η, s ζ, lr γ)]] as desired.

• case mr(θ, η, s ζ, lr γ) inductive: Then Iω[[σ(mr(θ, η, s ζ, lr γ))]] = IωL̃,R̃l,r [[σ(γ)]] for L̃, R̃ =
Reduce(L, η, s ζ, lr γ, Iω),Reduce(R, η, s ζ, lr γ, Iω) and (L,R) = Iω[[σ(θ)]] = σ∗ωIω[[θ]]

by IH. Then by IH 4 IωL̃,R̃l,r [[σ(γ)]] = σ∗
ωL̃,R̃l,r

IωL̃,R̃l,r [[γ]] which by admissibility condition is

· · · = σ∗ωIω
L̃,R̃
l,r [[γ]] which by definition is Reduce(σ∗ωIω[[θ]], η, s ζ, lr γ, σ∗ωIω) which is

σ∗ωIω[[mr(θ, η, s ζ, lr γ)]] as desired.

• case (θ)′ exists: Iω[[σ((θ)′)]] =
∑

x∈V
∂Iω[[σ(θ)]]

∂x
(ω)′ =

∑
x∈V

∂σ∗ωIω[[θ]]
∂x

(ω)′ by IH and because
by V ∪ V ′-admissibility have σ∗ωI = σ∗µI for any state whatsoever, as encountered while
forming the partial derivative. Then · · · = σ∗ωIω[[(θ)′]] as desired.

• case (θ)′ does not exist: Iω[[σ((θ)′)]] = ⊥ when I[[σ((θ)′)]] is non differentiable at ω. Since
I[[σ((θ)′)]] is the same function as σ∗ωI[[(θ)′]] (which follows from the IH on θ and because
by the admissibility condition σ∗ωI = σ∗νI for all states ν) then it follows that it is also not
differentiable at ω so σ∗ωIω[[(θ)′]] = ⊥ as desired.

62

• case f(θ) in σ:

Iω[[σ(f(θ))]]

=Iω[[{· 7→ σ(θ)}σf]]

=Id· [[σf]]

=σ∗ωI(f)(d)

=σ∗ωI(f)(σ∗ωIω[[θ]])

=σ∗ωIω[[f(θ)]]

(by IH) where d = Iω[[σ(θ)]] = σ∗ωIω[[θ]] (by other IH). In the first case note the term is not
strictly smaller but the substitution is lower-order, so substitution is well founded.

• case f(θ) not in σ: Iω[[σ(f(θ))]] = Iω[[f(σ(θ))]] = σ∗ωIω[[f(θ)]] by IH.

• case θ ≥ η both exist:

Iω[[σ(θ ≥ η)]]

=Geq(Iω[[σ(θ)]], Iω[[σ(η)]])Iω

=Geq(σ∗ωIω[[θ]], σ∗ωIω[[η]])Iω

=σ∗ωIω[[θ ≥ η]]

• case θ ≥ η not both exist: Then Iω[[σ(θ)]] = ⊥ or Iω[[σ(η)]] so by IH either σ∗ωIω[[θ]] = ⊥
or σ∗ωIω[[η]] so σ∗ωIω[[θ ≥ η]] = � as desired.

• case p(θ) for p ∈ σ: Iω[[σ(p(θ))]] = Iω[[{· 7→ σ(θ)}σp]] = Id· [[σp]] = σ∗ωI(p)(d) =
σ∗ωI(p)(σ∗ωIω[[θ]]) = σ∗ωIω[[p(θ)]] (by IH) where d = Iω[[σ(θ)]] = σ∗ωIω[[θ]] (by other IH). In
the first case note the expression is not strictly smaller but the substitution is lower-order, so
substitution is well founded.

• case p(θ) for p /∈ σ: Iω[[σ(p(θ))]] = Iω[[p(σ(θ))]] = σ∗ωIω[[p(θ)]] by IH.

• case C(φ) for C ∈ σ: We reason by a chain of equalities: Iω[[σ(C(φ))]] = Iω[[{ 7→
σ(φ)}σC]] = Idω[[σC]] =1 (σ∗ωI)(C)(d)(ω) =2 (σ∗ωI)(C)(µ 7→ σ∗ωIµ[[φ]])(ω) = σ∗ωIω[[C(φ)]]
(by IH on φ) where we define d as the map µ 7→ Iµ[[σ(φ)]] = σ∗µIµ[[φ]] by IH on φ. The
step marked (1) uses the definition of adjoints while the step marked (2) uses the fact that
for all µ, σ∗ωIω[[φ]] = σ∗µIω[[φ]] by Lem. 38, which is applicable using the assumption that σ
is V ∪ V ′-admissible in φ.

• case C(φ) for C /∈ σ: Iω[[σ(C(φ))]] = Iω[[C(σ(φ))]] = σ∗ωIω[[C(φ)]].

• case ¬φ: Iω[[σ(¬φ)]] = Iω[[σ(φ)]] = σ∗ωIω[[φ]] = σ∗ωIω[[¬φ]].

• case φ∧ψ: Iω[[σ(φ∧ψ)]] = Iω[[σ(φ)]]u Iω[[σ(ψ)]]
=
IH σ∗ωIω[[φ]]uσ∗ωIω[[ψ]] = σ∗ωIω[[φ∧ψ]].

63

• case ∀xφ:

Iω[[σ(∀xφ)]]

= uv∈Tree(R) Iω
v
x[[σ(φ)]]

=
IH uv∈Tree(R) σ

∗
ωvx
Iωvx[[φ]]

=Lem. 38 uv∈Tree(R) σ
∗
ωIω

v
x[[φ]]

=σ∗ωIω[[∀xφ]].

• case [α]φ: Then we have that

Iω[[σ([α]φ)]]

= uν | (ω,ν)∈I[[σ(α)]] Iω[[σ(φ)]]

=
=
IH uν | (ω,ν)∈σ∗ωI[[α]]σ

∗
νIω[[φ]]

=Lem. 38 uν | (ω,ν)∈σ∗ωI[[α]] σ
∗
ωIω[[φ]]

=σ∗ωIω[[[α]φ]].

• case a: Have I[[σ(a)]] = I[[σa]] = σ∗ωI(a) = σ∗ωI[[a]] for a ∈ σ, likewise for a /∈ σ.

• case x := θ: Have (ω, ν) ∈ I[[σ(x := θ)]] = I[[x := σ(θ)]] iff ν = ω
Iω[[σ(θ)]]
x = ω

σ∗ωIω[[θ]]
x by IH,

where Iω[[σ(θ)]] 6= ⊥ by semantics case. Then by definition (ω, ν) ∈ σ∗ωI[[x := θ]] as well.

• case ?φ: Have (ω, ν) ∈ Iω[[σ(?φ)]] iff ω = ν and Iω[[σ(φ)]] = ⊕ iff (by IH) σ∗ωIω[[φ]] = ⊕
iff (ω, ν) ∈ σ∗ωI[[?φ]].

• case x′ = θ&ψ: Have (ω, ν) ∈ I[[σ(x′ = θ&ψ)]] (for {x, x′}-admissible σ for θ, ψ) iff there
exists duration r ∈ R≥0 and exists ϕ : [0, r]→ S with ϕ(0) = ω on {x′}{, ϕ(r) = ν and for
all t ∈ [0, r] ϕ′(t) = Iϕ(t)[[σ(θ)]] = σ∗ϕ(t)Iϕ(t)[[θ]] by IH1 and Iϕ(t)[[σ(ψ)]] = ⊕ which by
IH2 is equivalent to σ∗ϕ(t)Iϕ(t)[[ψ]].

Then (ω, ν) ∈ σ∗ωI[[x′ = θ&ψ]] iff exists r ∈ R≥0 and exists ϕ : [0, r] → S with ϕ(0) = ω
on {x′}{, ϕ(r) = ν and for all t ∈ [0, r] ϕ′(t) = σ∗ωIϕ(t)[[θ]] and σ∗ωIϕ(t)[[ψ]] = ⊕, which
holds since σ∗ωIϕ(t)[[θ]] = σ∗ϕ(t)Iϕ(t)[[θ]] and σ∗ωIω[[ψ]] = σ∗ϕ(t)Iω[[ψ]] by Lem. 38 as σ is
assumed {x, x′}-admissible for both. By Lem. 37, ϕ(t) and ω agree on {x, x′}{.

• case α ∪ β: Have (ω, ν) ∈ I[[σ(α ∪ β)]] = I[[σ(α)]] ∪ I[[σ(β)]]
=
IH σ∗ωI[[α]] ∪ σ∗ωI[[β]] =

σ∗ωI[[α ∪ β]].

• case α; β: Have (ω, ν) ∈ I[[σ(α; β)]] iff exists µ where (ω, µ) ∈ I[[σ(α)]] and (µ, ν) ∈
I[[σ(β)]] then by IH1 (ω, ν) ∈ σ∗ωI[[α]] and by IH2 (µ, ν) ∈ σ∗µI[[β]]. Then σ∗µI[[β]] = σ∗ωI[[β]]
by Lem. 38 and because σ is BV(σ(α))-admissible for β by this case of substitution and
ω = ν on BV(σ(α)){ by Lem. 37 lemma. This gives (ω, ν) ∈ σ∗ωI[[α; β]] as desired.

64

• case α∗: Have (ω, ν) ∈ I[[σ(α∗)]] iff exists n ∈ N such that (ω, ν) ∈ I[[σ(α)n]], i.e., there are
ω0 = ω, . . . , ωn = ν s.t. (ωi, ωi+1) ∈ I[[σ(α)]] for each i < n. By applying the IH to each,
(ωi, ωi+1) ∈ σ∗ωiI[[α]]. Then by Lem. 38 σ∗ωiI = σ∗ωI for all i since σ is BV(σ(α))-admissible
by case and since ωi = ωi+1 on BV(σ(α)){ by Lem. 37. Then each (ωi, ωi+1) ∈ σ∗ωI[[α]] and
(ω, ν) ∈ σ∗ωI[[α∗]].

Theorem 40 (Uniform substitution). Rule US is sound.

Proof. Assume φ is valid, so that for all I and ω, we have Iω[[φ]] = ⊕. Since σ∗ωI is also an
interpretation, then for I and ω we have σ∗ωIω[[φ]] = ⊕. By Lem. 39, we have Iω[[σ(φ)]] = ⊕.
Because the argument was generic, then σ(φ) is desired.

Soundness of the proof system then follows from validity of the axioms and soundness of US
and of the other proof rules. Together, soundness and decidability show that formulas proved with
the dLι calculus are indeed true and that the calculus is amenable to implementation.

6.3 Expressive Power
After showing soundness of dLι, we explore its expressive power: can dLι express formulas that
are inexpressible in dL, or is its advantage the ease with which certain formulas are expressed?
Conversely, are all dL formulas expressible in dLι? Because dLι is an extension of dL, it is unsur-
prising that it can express all dL formulas. However, a valid dL formula φ is not always valid in
dLι.

Remark 41 (Conservativity counterexample). There exist valid formulas of dL that are not valid
formulas of dLι.

Proof. The formula φ ≡ (x · x ≥ 0) is not conserved, because it is true for all real values of x, but
fails when x is a tuple such as (0, 0), outside the domain of multiplication. This is why rule QE
requires inR(x) for each mentioned x.

We transform dL quantifiers to real-valued dLι quantifiers to close the gap:

Theorem 42 (Converse reducibility). There exists a reduction T (φ) (or α, or θ) that reduces dL to
dLι in linear time and space. For all states ω, interpretations I , terms θ, formulas φ, programs α of
dL:

• Iω[[T (θ)]] = Iω[[θ]]dL.

• Iω[[T (φ)]] = Iω[[φ]]dL where Iω[[φ]]dL = ⊕ if ω ∈ I[[φ]]dL or Iω[[φ]]dL = 	 if ω /∈ I[[φ]]dL.

• I[[T (α)]] = I[[α]]dL

where Iω[[·]]dL is the dL semantics.

65

Proof. First define a suitable reduction T . The only sense in which dLι is not conservative vs. dL
is that quantifiers and variables range over trees of reals in dLι while they range only over reals in
dL. The key case is:

T (∀xφ) = (∀x (inR(x)→ S(φ)))

while all other cases map through homomorphically.

1. Iω[[T (q)]] = Iω[[q]] = q = Iω[[q]]dL for literal q ∈ Q.

2. Iω[[T (x)]] = Iω[[x]] = ω(x) ∈ R since we assumed ω was a dL state. Then ω(x) = Iω[[x]]dL
since R ⊆ Tree(R).

3. Iω[[T (θ + η)]] = Iω[[T (θ)]] + Iω[[T (η)]]
=
IH Iω[[θ]]dL + Iω[[η]]dL = Iω[[θ + η]]dL.

4. Iω[[T (θ · η)]] = Iω[[T (θ)]] · Iω[[T (η)]]
=
IH Iω[[θ]]dL · Iω[[η]]dL = Iω[[θ · η]]dL.

5. Iω[[T ((θ)′)]] =
∑
x∈V

ω(x′)∂Iω[[T (θ)]]
∂x

=
∑
x∈V

ω(x′)
∂Iω[[θ]]dL

∂x
= Iω[[(θ)′]]dL.

Let φ be a formula of dL. Let ω be a dL state (for all variables x, ω(x) ∈ R). Then
Iω[[T (φ)]]dL = ⊕ if Iω[[φ]] = ⊕ and Iω[[T (φ)]]dL = 	 if Iω[[φ]] = 	.

1. Iω[[T (θ ≥ η)]] = (Iω[[T (θ)]] ≥ Iω[[T (η)]]) = (Iω[[θ]]dL ≥ Iω[[η]]dL) = Iω[[θ ≥ η]]dL.

2. Iω[[T (φ ∧ ψ)]] = Iω[[T (φ)]] u Iω[[T (ψ)]] = Iω[[φ]]dL u Iω[[ψ]]dL = Iω[[φ ∧ ψ]]dL.

3. Iω[[T (¬φ)]] = Iω[[T (φ)]] = Iω[[φ]]dL = Iω[[¬φ]]dL.

4. Iω[[T (∀xφ)]]. Because the domain of quantification differs between dL and dLι, this case of
the reduction T enforce that x varies only over reals:

Iω[[T (∀xφ)]]

=Iω[[∀x (inR(x)→ T (φ))]]

= uv∈Tree(R) Iω
v
x[[inR(x)→ T (φ)]]

= ur∈R Iωrx[[T (φ)]]

= ur∈R Iωrx[[φ]]dL

=Iω[[∀xφ]]dL.

5. Iω[[[α]φ]] = u
(ω,ν)∈I[[α]]

Iν[[φ]] = u
(ω,ν)∈I[[α]]dL

Iν[[φ]]dL = Iω[[[α]φ]]dL. Note the IH is applicable

here because whenever (ω, ν) ∈ I[[α]] for dL program α and dL state ω then ν is also a dL
state. This can be proven by another induction on the program α.

Programs:

66

1. I[[T (x := θ)]] = {(ω, ωvx) | r = Iω[[θ]], r ∈ R} = {(ω, ωvx) | r = Iω[[θ]]dL} = I[[x := θ; ?inR(x)]]dL.

2. I[[T (?ψ)]] = {(ω, ω) | Iω[[T (ψ)]]} = {(ω, ω) | Iω[[ψ]]dL} = I[[?ψ]]dL.

3. I[[T (α ∪ β)]] = I[[T (α)]] ∪ I[[T (β)]] = I[[α]]dL ∪ I[[β]]dL = I[[α ∪ β]]dL.

4. I[[T (α; β)]] = I[[T (α)]] ◦ I[[T (β)]] = I[[α]]dL ◦ I[[β]]dL = I[[α; β]].

5. I[[T (α∗)]] = I[[T (α)]]∗ = I[[α]]∗dL = I[[α∗]]dL.

6.

I[[T (x′ = θ&ψ)]]

={(ω, ϕ(r)) | exist solution ϕ and r ∈ R≥0

and for all s ∈ [0, r] have Iϕ(s)[[T (φ)]] = ⊕ and ϕ′(s)(x) = Iϕ(s)[[T (θ)]]

and ω = ϕ(0) on {x′}{}.

Then for the same ϕ and r and for all s ∈ [0, r] by the IH have Iϕ(s)[[T (φ)]] = Iϕ(s)[[φ]]dL =
⊕ and Iϕ(s)[[T (θ)]] = Iϕ(s)[[θ]]dL so

{(ω, ϕ(r)) | exist solution ϕ and r ∈ R≥0

and for all s ∈ [0, r] have Iϕ(s)[[T (φ)]] = ⊕ and ϕ′(s)(x) = Iϕ(s)[[T (θ)]]

and ω = ϕ(0) on {x′}{}
={(ω, ϕ(r)) | exist solution ϕ and r ∈ R≥0

and for all s ∈ [0, r] have Iϕ(s)[[φ]]dL = ⊕ and ϕ′(s)(x) = Iϕ(s)[[θ]]dL

and ω = ϕ(0) on {x′}{}
=I[[x′ = θ&ψ]]dL

as desired.

The greater challenge is to show that dL also suffices to express all dLι formulas and thus dL
and dLι are equiexpressive:

Theorem 43 (Reducibility). There is a computable T s.t. for all formulas φ, interpretations I, and
states ω in dLι, Iω[[φ]] = ⊕ in dLι iff Iω[[T (φ)]] = ⊕ in dL.

Proof. We take an indirect reduction dLι → dL1 → dLC → dL, where dL1 is dLι without tuples,
dLC is dL1 with all rigid symbols limited to interpretations as continuous functions, and dL is dLC
without such symbols.

67

6.3.1 Eliminate Tuples

By analogy to the dL-definable bijection between R and Rk for any k [25, Lem. A.1], there is a
dL-definable bijection between finite trees of reals and reals. First, observe a real number in dL
can be considered as an infinite string of bits by taking the fractional and interval parts in base 2,
each an infinite string of bits, and interleaving them. The first tag of each typed value is a tag bit:
0 for a real number, in which case the following bits are the bits of the real number, or else 1 to
indicate a pair, in which case the following bits are alternating bits of each component. Given a
tree, one can easily write a hybrid program for post-order traversal, from which mr(θ, η, s ζ, lr γ)
is easily implemented. The exception is systems of ODE’s, but systems of ODE’s are allowed in
dL anyway.

6.3.2 Eliminate Definite Descriptions

Special care must be taken when definite descriptions occur on the right-hand side of an ODE. In
every other context, a definite description ιz φ by introducing a fresh (i.e., discrete ghost) variable
x and an assumption [z := x]φ ∧ ∀y ([z := y]φ→ y = x). Because the meaning of φ and likewise
ιx φ typically depends on variables other than x as well, it is essential that a distinct fresh variable
is introduced for each occurrence of even syntactically identical definite descriptions, and that the
assumption p(x) ∧ ∀y ([x := y]φ→ y = x) is made in the same context as the definite description
term appears. For example:
[y := 3](ιz z + y = 0) < 0 expands to [y := 3](([z := x]z + y = 0) ∧ ∀y (([z := y]z + y = 0) →
y = x) → z < 0) which are both true. Discrete ghost variables are insufficient in the differential
equation case because the bound variables of the ODE are bound continuously, thus the value
of the variable x encoding the definite description would have to change continuously often to
keep up. In an ODE in dL, the only way to change x continuously is to add dimensions to the
ODE. Additional dimensions cannot express every definite description, because some descriptions
are not differentiable and thus must not be the solution of any differential equation. While some
generalizations of dL also support differential games [25] which enable richer continuous changes
in variables, this would defeat our purpose of reducing to vanilla dL.

Instead, the differential equation case is addressed by axiomatizing the ODE system using a
continuous function symbol. The main hurdle is that the ODEs of dL are polynomial ODEs with
guaranteed unique solutions, whereas the ODEs of dLι need not be polynomial. It thus does not
suffice to reduce to FOD (first-order logic with differential equations) of prior work [22]. Rather
we reduce ODEs to dL by introducing function symbols whose interpretations are restricted to
continuous functions. Specifically, we build on prior work that shows the dL reachability modality
〈α〉φ can be embedded in FOD [19, Lem. 5]. Instead, we embed from dL1 into dLC by redefining
the translation for systems of ODEs:

〈x′ = f(x) & q(x)〉p(x)↔ x = sol(0) ∧ ∀t(∀0≤s≤t(q(sol(s)) ∧ sol′ = θ → p(x)))

Where sol is a fresh continuous function symbol. If we wished to semantically impose the con-
straint that the interpretation of the function symbol sol is not only continuous but also differ-
entiable, then this step would be done. However, this is an unnecessary restriction, as we can

68

axiomatize sol′ as a new function symbol (call it d) with the following assumptions, which we
arrive at by combining the reduction for discrete definite descriptions, axiom (θ)′, and Prop. 27:

∀s∀ξ>0 ∃δ ∀y
(
0<‖

(
y~−x

)
‖<δ → (sol(y)−sol(x))−d(s) · (y−x)<ξ‖

(
y~−x

)
‖
)

6.3.3 Eliminate Continuous Function Symbols

To eliminate continuous function symbols, we reuse a previous reduction [25, Corr. A.4]: a bi-
jection between reals R and continuous functions on the reals C(R,R) has previously been estab-
lished, reducing dLC to dL. The reduction exploits the fact that continuous functions C(R,R) can
be uniquely characterized by their values on rational-valued inputs.

While this result might be misread to suggest that dLι is not truly necessary, definite descrip-
tions enable us to define constructs that have no description as terms in dL, even if they can be
expressed through a sufficiently complex formula translation. The key is that the reduction from
dLι to dL is indeed complex, exploiting for example Gödel encodings for tuples and continuous
functions [25, 22]. On the contrary, the complexity of the reduction shows that native support for
definite descriptions is essential for practical proving. The equiexpressiveness result is of theoreti-
cal interest because it allows us to inherit results from dL [19]:
Theorem 44 (Completeness and decidability). dLι is reducible to dL, and therefore semidecidable
relative to properties of differential equations.

While the reduction gives a semi-decision procedure for dLι in principle, it is infeasible for
implementation, especially since deciding even core dL is hard in practice. Moreover, this would
defeat our purpose: easing implementation of practical term language extensions in dL, where
interactive proof is common.

7 Conclusion and Future Work
In this paper we developed dLι, an extension to differential dynamic logic (dL) for formal verifica-
tion of hybrid systems models of safety-critical cyber-physical systems. The key feature of dLι is
definite description ιx φ, which provides a foundation for defining new term language constructs
from their characteristic formulas. We develop the theory of dLι, including semantics, a proof
calculus, and soundness and expressiveness proofs. We apply dLι to verify a classic example of a
non-Lipschitz ODE, which could not be directly verified in dL.

In particular, we give a novel axiomatization that accounts for the interactions between non-
differentiable and partially defined operators with systems of differential equations, an interaction
which does not occur for dL’s simpler language where all terms are smooth. More generally,
example applications abound: almost every serious case study of dL employs these constructs in
practice; we give a fully rigorous foundation to these case studies. In future work, implementing
dLι in KeYmaera X would enable case studies to soundly employ the constructs given herein and
to define their own. We expect few core changes would be needed, thanks to our use of uniform
substitution, rather the challenge is to efficiently prove and track the new assumptions on existence
and continuity.

69

Acknowledgements. We thank Martin Giese for discussions on the use of definite descriptions
in the KeY theorem prover and the CADE referees for their thoughtful feedback.

References
[1] Abhishek Anand and Vincent Rahli. Towards a formally verified proof assistant. In Gerwin

Klein and Ruben Gamboa, editors, ITP, volume 8558 of LNCS, pages 27–44. Springer, 2014.

[2] Bruno Barras. Sets in Coq, Coq in sets. J. Formalized Reasoning, 3(1):29–48, 2010.

[3] Brandon Bohrer, Manuel Fernandez, and André Platzer. dLι: Definite descriptions in differ-
ential dynamic logic. In CADE, LNCS. Springer, 2019.

[4] Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André Platzer. Formally
verified differential dynamic logic. In Yves Bertot and Viktor Vafeiadis, editors, CPP, pages
208–221. ACM, 2017.

[5] Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and André Platzer.
VeriPhy: Verified controller executables from verified cyber-physical system models. In Dan
Grossman, editor, PLDI, pages 617–630. ACM, 2018.

[6] Alonzo Church. Introduction to Mathematical Logic. Princeton University Press, 1956.

[7] RD Driver. Torricelli’s law: An ideal example of an elementary ODE. Amer. Math. Monthly,
105(5):453–455, 1998.

[8] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic. Kluwer, Norwell,
MA, USA, 1999.

[9] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart
Middeldorp, editors, CADE, volume 9195 of LNCS, pages 527–538. Springer, 2015.

[10] Thomas A. Henzinger. The theory of hybrid automata. In LICS. IEEE, 1996.

[11] John H. Hubbard and Beverly H. West. Differential equations: A dynamical systems ap-
proach. Springer, 1991.

[12] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Aurora Schmidt, Ryan Gardner,
Stefan Mitsch, and André Platzer. A formally verified hybrid system for safe advisories in
the next-generation airborne collision avoidance system. STTT, 19(6):717–741, 2017.

[13] Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens. Self-formalisation of
higher-order logic: Semantics, soundness, and a verified implementation. J. Autom. Reas.,
56(3):221–259, 2016.

70

[14] Jan Łukasiewicz. O logice trojwartościowej (on 3-valued logic). Ruch Filozoficzny, (5):169–
171, 1920.

[15] Stefan Mitsch, Marco Gario, Christof J. Budnik, Michael Golm, and André Platzer. For-
mal verification of train control with air pressure brakes. In Alessandro Fantechi, Thierry
Lecomte, and Alexander Romanovsky, editors, RSSRail, volume 10598 of LNCS, pages 173–
191. Springer, 2017.

[16] Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and André Platzer. Formal verification of
obstacle avoidance and navigation of ground robots. I. J. Robotics Res., 36(12):1312–1340,
2017.

[17] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[18] Albrecht Pietsch. About the Banach envelope of `1,∞. Rev. Mat. Comput, 22(1):209–226,
2009.

[19] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):143–
189, 2008.

[20] André Platzer. Differential-algebraic dynamic logic for differential-algebraic programs. J.
Log. Comput., 20(1):309–352, 2010.

[21] André Platzer. A complete axiomatization of quantified differential dynamic logic for dis-
tributed hybrid systems. Log. Meth. Comput. Sci., 8(4):1–44, 2012. Special issue for selected
papers from CSL’10.

[22] André Platzer. The complete proof theory of hybrid systems. In LICS, pages 541–550. IEEE,
2012.

[23] André Platzer. Logics of dynamical systems. In LICS, pages 13–24. IEEE, 2012.

[24] André Platzer. A complete uniform substitution calculus for differential dynamic logic. J.
Autom. Reas., 59(2):219–265, 2017.

[25] André Platzer. Differential hybrid games. ACM Trans. Comput. Log., 18(3):19:1–19:44,
2017.

[26] André Platzer and Yong Kiam Tan. Differential equation axiomatization: The impressive
power of differential ghosts. In Anuj Dawar and Erich Grädel, editors, LICS, pages 819–828,
New York, 2018. ACM.

[27] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aı̈t Mohamed,
César A. Muñoz, and Sofiène Tahar, editors, TPHOLs, volume 5170 of LNCS, pages 28–32.
Springer, 2008.

71

[28] Alfred Tarski. A decision method for elementary algebra and geometry. In Quantifier Elimi-
nation and Cylindrical Algebraic Decomposition, pages 24–84. Springer, 1998.

[29] Wolfgang Walter. Ordinary differential equations. 1998.

72

A Note on Total Differentials
The existence of a total differential implies the existence of all partial derivatives, but the converse
implication does not hold universally. We now show that our choice to require the stronger condi-
tion of total differentiability was a necessary choice. We consider states containing variables x, y, z
and study the following function, which is a textbook example of a function where all partials exist,
but the total differential does not:

f(x, y) =

{
0 x = y = 0
xy

x2+y2
otherwise

Let ω = {x 7→ 0, y 7→ 0, z 7→ 0}. Now both partials are zero in the neighborhood of ω:
∂f(x,y)
∂ω(x)

= ∂f(x,y)
∂ω(y)

= 0. In contrast, the directional derivative along x = y is 0.5, whereas the
partial derivatives would “imply” that every directional derivative were 0. Because the directional
derivatives disagree with the partial derivatives in this fashion, we say that the total differential of
f(x, y) does not exist at ω.

We conclusively justify our total differential requirement by temporarily removing the total
differentiability requirement in (only!) the remainder of this appendix for the sake of argument.
We then derive a falsehood.

We will use the proof calculus of Sec. 5 in this example. The primary use of differential terms
is the differential induction rule. Axiom DI≥ implements the≥ case, from which the = case can be
derived. If two terms θ and η are equal initially with equal differentials throughout an ODE, then
θ and η are equal throughout. Both cases are sound when “differential” means “total differential,”
but neither is sound when “differential” means “sum of partial derivatives”.

To construct our example, we first give definitions: f(x, y) can be expressed as a definite
description. The line x = y can be traversed a program α containing an ODE, while J is an
invariant candidate used in the proof.

f(x, y) ≡
(
ιz x = y = z = 0 ∨

(
(x 6= 0 ∨ y 6= 0) ∧ z =

xy

x2 + y2

))
ODE ≡ x′ = 1, y′ = 1

α = x := 0; y := 0;ODE

J ≡ (f(x, y) = 0)

The piecewise function f is modeled with a disjunction inside a description. The differential
invariant candidate J will demonstrate the main soundness issue: J is not an invariant of ODE ,
but the partial derivatives suggest it is. We “prove” the formula [α]J, which is a falsehood because
f(x, y) = 1/2 everywhere in ODE except the initial point.

The “proof” begins with a lemma D showing that x = y is an invariant:

DI

QE
∗

x = 0, y = 0→x = y
DE

QE
∗

1 = 1
x = 0, y = 0→[ODE]x′ = y′

x = 0, y = 0→[ODE]x = y

73

The full proof cuts in D, then proves J with a second differential induction:

[;],[:=]

DC

D
x = 0, y = 0→[ODE]x = y

DI

QE
∗

x = 0, y = 0→f(x, y) = 0
1

DW
∗

[ODE &x = y]0 = 0

[ODE &x = y](f(x, y))′ = 0

x = 0, y = 0→[ODE &x = y]f(x, y) = 0

x = 0, y = 0→[ODE]J

[α]J

The step marked (1) contains several steps. We apply (θ)′ to expand (f(x, y))′: the axiom (θ)′

differentiates an arbitrary term including f(x, y) which is defined with a definite description. The
general-purpose rule (θ)′ requires us to prove that the differential exists, which is done by applying
E(′). The resulting goal is reduced to first-order real arithmetic by applying ι, then closed with QE.
Crucially, this QE invocation only closes if we define differentials by partials and define axiom E(′)
accordingly. Under the total differential requirement, (θ)′ would require a differential that exists
and agrees in every direction in some open ball around (x, y).

The ODE x′ = 1, y′ = 1 is itself trivial, it is the differential of f(x, y) which requires care, and
in fact ought not exist. If it did, this proof would close. Because it does not, this proof cannot be
done with the real dLι calculus.

In review, what was the main problem? In isolation, our semantic definition of (θ)′ cannot
cause unsoundness, because unsoundness arises from disagreement between semantics and proof
calculus. However, the main application of (θ)′ is rule DI≥, and any definition of (θ)′ which is not
conducive to stating a sound DI≥ axiom is useless. The natural statement of DI≥ is that initially
equal terms are equal throughout when their differentials are equal. The fundamental issue is that
this is not always the case when “differential” is read as partial derivative, only when it is read as
total or directional derivative. In short, we must ensure that Lem. 2 holds. Intuitively, we demand
that DI≥ considers the time differential of θ as an ODE flows, and it is the directional derivative
which always agrees with the time derivative, when it exists. In contrast to the directional deriva-
tive, f(x, y) has partial derivatives of 0. The dot product (0, 0) · (x′, y′) is then 0 which disagrees
with the time derivative of 0.5. That being said, the reading as partial derivative simplifies some
rules such as DE, so the best approach is to first check that directional and partial derivatives agree
(i.e., total differential exists), after which the different notions of differential may be used inter-
changeably. Specifically, the check E((θ)′) prohibits applying DI≥ to terms such as f(x, y) where
the readings of “differential” as partial or total are in disagreement. While our example considered
the equality case of differential induction, this issue is not specific to the equality case. If we wish
to prove an invariant θ > η, it still does not suffice to consider partial derivatives of θ and η if they
disagree with the time derivative.

74

	Introduction
	Syntax
	Denotational Semantics
	Derived Constructs
	Defining the Standard Library
	Correctness of the Standard Library

	 Axioms
	Theory
	Uniform Substitution
	Adjoint lemma proof
	Expressive Power
	Eliminate Tuples
	Eliminate Definite Descriptions
	Eliminate Continuous Function Symbols

	Conclusion and Future Work
	Note on Total Differentials

