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Abstract
Domain-specific modeling priors and specialized components are becoming

increasingly important to the machine learning field. These components inte-
grate specialized knowledge that we have as humans into model. We argue in
this thesis that optimization methods provide an expressive set of operations
that should be part of the machine learning practitioner’s modeling toolbox.

We present two foundational approaches for optimization-based modeling:
1) the OptNet architecture that integrates optimization problems as individual
layers in larger end-to-end trainable deep networks, and 2) the input-convex
neural network (ICNN) architecture that helps make inference and learning in
deep energy-based models and structured prediction more tractable.

We then show how to use the OptNet approach 1) as a way of combining
model-free and model-based reinforcement learning and 2) for top-k learning
problems. We conclude by showing how to differentiate cone programs and turn
the cvxpy domain specific language into a differentiable optimization layer that
enables rapid prototyping of the approaches in this thesis.

The source code for this thesis document is available in open source form at:
https://github.com/bamos/thesis

https://github.com/bamos/thesis
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Chapter 1
Introduction

The field of machine learning has grown rapidly over the past few years and has a growing
set of well-defined and well-understood operations and paradigms that allow a practitioner
to inject domain knowledge into the modeling procedure. These operations include lin-
ear maps, convolutions, activation functions, random sampling, and simple projections
(e.g. onto the simplex or Birkhoff polytope). In addition to these layers, the practitioner
can also inject domain knowledge at a higher-level of how modeling components interact.
Paradigms are becoming well-established for modeling images, videos, audio, sequences,
permutations, and graphs, among others. This thesis proposes a new set of primitive opera-
tions and paradigms based on optimization that allow the practitioner to inject specialized
domain knowledge into the modeling procedure.

Optimization plays a large role in machine learning for parameter optimization or ar-
chitecture search. In this thesis, we argue that optimization should have a third role in
machine learning separate from these two, that it can be used as a modeling tool inside of
the inference procedure. Optimization is a powerful modeling tool and as we show in Sec-
tion 2.4.4, many of the standard operations such as the ReLU, sigmoid, and softmax can all
be interpreted as explicit closed-form solutions to constrained convex optimization prob-
lems. We also highlight in Section 2.2.1 that the standard feedforward supervised learning
setup can be captured by an energy-based optimization problem. Thus these techniques
are captured as special cases of the general optimization-based modeling methods we study
in this thesis that don’t necessarily have explicit closed-form solutions. This generalization
adds new modeling capabilities that were not possible before and enables new ways that
practitioners can inject domain knowledge into the models.

From an optimization viewpoint, the techniques we propose in this thesis can be used
for partial modeling of optimization problems. Traditionally a modeler needs to have a
complete analytic view of their system if they want to use optimization to solve their
problem, such as in many control, planning, and scheduling tasks. The techniques in
this thesis lets the practitioner leave latent parts in their optimization-based modeling
procedure that can then be learned from data.
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1.1 Summary of research contributions
The first portion of this thesis presents foundational modeling techniques that use optimization-
based modeling:

• Chapter 3 presents the OptNet architecture that shows how to use constrained convex
optimization as a layer in an end-to-end architecture.

Section 3.3 presents the formulation of these architectures and shows how back-
propagation can be done in them by implicitly differentiating the KKT condi-
tions.
Section 3.3.2 studies the representational power of these architectures and proves
how they can represent any piecewise linear function including the ReLU.
Section 3.3.1 presents our efficient QP solver for these layers and Section 3.3.1
shows how we can compute the backwards pass with almost no computational
overhead.
Section 3.4 shows empirical results that uses OptNet for a synthetic denoising
task and to learn the rules of the Sudoku game.

• Chapter 4 presents the input-convex neural network architecture.
Section 4.4 discusses efficient inference techniques for these architectures. We
propose a new inference technique called the Bundle-Entropy method in Sec-
tion 4.4.4.
Section 4.5 discusses efficient learning techniques for these architecture.
Section 4.6 shows empirical results applying ICNNs to structured prediction,
data imputation, and continuous-action Q learning.

The remaining portions discuss applications and extensions of OptNet.
• Chapter 5 presents our differentiable model predictive control (MPC) work as a step

towards leveraging MPC as a differentiable policy class for reinforcement learning in
continuous state-action spaces.

Section 5.3 shows how to efficiently differentiate through the Linear Quadratic
Regulator (LQR) by solving another LQR problem. This result comes from
implicitly differentiating the KKT conditions of LQR and interpreting the re-
sulting system as solving another LQR problem.
Section 5.4 shows how to differentiate through non-convex MPC problems by
differentiating through the fixed point obtained when solving the MPC problem
with sequential quadratic programming (SQP).
Section 5.5 shows our empirical results using imitation learning in the pendulum
and cartpole environments. Notably, we show why doing end-to-end learning
with a controller is important in tasks when the expert is non-realizable.
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• Chapter 6 presents the Limited Multi-Layer Projection (LML) layer for top-k learning
problems.

Section 6.3 introduces the LML projection problem that we study.
Section 6.3.1 shows how to efficiently solve the LML projection problem by
solving the dual with a parallel bracketed root-finding method.
Section 6.4 presents how to maximize the top-k recall with the LML layer.
Section 6.5 shows our empirical results on top-k image classification and scene
graph generation.

• Chapter 7 shows how to make differentiable cvxpy optimization layers by differen-
tiating through the internal transformations and internal cone program solver. This
enables rapid prototyping of all of the convex optimization-based modeling methods
we consider in this thesis.

Section 7.3 shows how to differentiate cone programs (including non-polyhedral
cone programs) by implicitly differentiating the residual map of Minty’s param-
eterization of the homogeneous self-dual embedding.
Section 7.5 shows examples of using our package to implement optimization lay-
ers for the ReLU, sigmoid, softmax; projections onto polyhedral and ellipsoidal
sets; and the OptNet QP.
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1.2 Summary of open source contributions
The code and experiments developed for this thesis are free and open-source:

• https://github.com/locuslab/icnn: TensorFlow experiments for the input-convex
neural networks work presented in Chapter 4.

• https://locuslab.github.io/qpth/ and https://github.com/locuslab/qpth: A
stand-alone PyTorch library for the OptNet QP layers presented in Chapter 3.

• https://github.com/locuslab/optnet: PyTorch experiments for the OptNet work
presented in Chapter 3.

• https://locuslab.github.io/mpc.pytorch and https://github.com/locuslab/
mpc.pytorch: A stand-alone PyTorch library for the differentiable model predictive
control approach presented in Chapter 5.

• https://github.com/locuslab/differentiable-mpc: PyTorch experiments for the
differentiable MPC work presented in Chapter 5.

I have also created the following open source projects during my Ph.D.:
• https://github.com/bamos/block: An intelligent block matrix library for numpy,

PyTorch, and beyond.
• https://github.com/bamos/dcgan-completion.tensorflow: Image Completion

with Deep Learning in TensorFlow.
• https://github.com/cmusatyalab/openface: Face recognition with deep neural

networks.
• https://github.com/bamos/densenet.pytorch: A PyTorch implementation of DenseNet.
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1.3 Summary of publications

The content of Chapter 3 appears in:

[AK17] Brandon Amos and J. Zico Kolter. “OptNet: Differentiable Opti-
mization as a Layer in Neural Networks”. In: Proceedings of the International
Conference on Machine Learning. 2017

The content of Chapter 4 appears in:

[AXK17] Brandon Amos, Lei Xu, and J. Zico Kolter. “Input Convex Neural
Networks”. In: Proceedings of the International Conference on Machine
Learning. 2017

The content of Chapter 5 appears in:

[Amo+18b] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and
J. Zico Kolter. “Differentiable MPC for End-to-end Planning and Control”.
In: Advances in Neural Information Processing Systems. 2018, pp. 8299–
8310

Non-thesis research: I have also pursued the following research directions during my
Ph.D. studies. These are excluded from the remainder of this thesis.

[Amo+18a] Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl,
Sergio Gómez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa,
Nando de Freitas, and Misha Denil. “Learning Awareness Models”. In:
International Conference on Learning Representations. 2018

[ALS16] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan.
OpenFace: A general-purpose face recognition library with mobile appli-
cations. Tech. rep. Technical Report CMU-CS-16-118, CMU School of
Computer Science, 2016
Available online at: https://cmusatyalab.github.io/openface

I have also contributed to the following publications as a non-primary author.

Priya L Donti, Brandon Amos, and J. Zico Kolter. “Task-based End-to-end
Model Learning”. In: NIPS. 2017

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. “Collapsed
Variational Inference for Sum-Product Networks”. In: ICML. 2016
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Chapter 2
Preliminaries and Background

This section provides a broad overview of foundational ideas and background material
relevant to this thesis. In most chapters of this thesis, we include a deeper discussion of
the related literature relevant to that material.

2.1 Preliminaries
The content in this thesis builds on the following topics. We assume preliminary knowledge
of these topics and give a limited set of key references here. The reader should have an
understanding of statistical and machine learning modeling paradigms as described in
Wasserman [Was13], Bishop [Bis07], and Friedman, Hastie, and Tibshirani [FHT01]. Our
contributions mostly focus on end-to-end modeling with deep architectures as described
in Schmidhuber [Sch15] and Goodfellow, Bengio, Courville, and Bengio [Goo+16] with
applications in computer vision as described in Forsyth and Ponce [FP03], Bishop [Bis07],
and Szeliski [Sze10]. Our contributions also involve optimization theory and applications
as described in Bertsekas [Ber99], Boyd and Vandenberghe [BV04], Bonnans and Shapiro
[BS13], Griewank and Walther [GW08], Nocedal and Wright [NW06], Sra, Nowozin, and
Wright [SNW12], and Wright [Wri97]. One application area of this thesis work focuses on
control and reinforcement learning. Control is one kind of optimization-based modeling
and is further described in Bertsekas, Bertsekas, Bertsekas, and Bertsekas [Ber+05], Sastry
and Bodson [SB11], and Levine [Lev17b]. Reinforcement learning methods are summarized
in Sutton, Barto, et al. [SB+98] and Levine [Lev17a].

2.2 Energy-based Learning
Energy-based learning is a machine learning method typically used in supervised settings
that explicitly adds relationships and dependencies to the model’s output space. This is in
contrast to purely feed-forward models that typically cannot explicitly capture dependen-
cies in the output space. At the core of energy-based learning methods is a scalar-valued
energy function Eθ(x, y) : X × Y → R parameterized by θ that measures the fit between
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some input x and output y. Inference in energy-based models is done by solving the
optimization problem

ŷ = argmin
y

Eθ(x, y). (2.1)

We note that this is a powerful formulation for modeling and learning and subsumes the
representational capacity of standard deep feedforward models, which we show how to do
in Section 2.2.1. The energy function can also be interpreted from a probabilistic lens as
the negated unnormalized joint distribution over the input and output spaces.

Energy-based methods have been in use for over a decade and the tutorial LeCun,
Chopra, Hadsell, Ranzato, and Huang [LeC+06] overviews many of the foundational meth-
ods and challenges in energy-based learning. The two main challenges for energy-based
learning are 1) learning the parameters θ of the energy function Eθ and 2) efficiently solv-
ing the inference procedure in Equation (2.1). These challenges have historically been
tamed by using simpler energy functions consisting of hand-engineered feature extractors
for the inputs x and linear functions of y. This captures models such as Markov random
fields [Li94] and conditional random fields [LMP01; SM+12]. Standard gradient-based
methods are difficult to use for parameter learning because ŷ depends on θ through the
argmin operator, which is not always differentiable. Historically, a common approach to
doing parameter learning in energy-based models has been to directly shape the energy
function with a max-margin approach Taskar, Guestrin, and Koller [TGK04] and Taskar,
Chatalbashev, Koller, and Guestrin [Tas+05].

More recently, there has been a strong push to further incorporate structured predic-
tion methods like conditional random fields as the “last layer” of a deep network architec-
ture [PBX09; Zhe+15; Che+15a] as well as in deeper energy-based architectures [BM16;
BYM17; Bel17; WFU16]. We further discuss Structured Prediction Energy Networks
(SPENs) in Section 2.2.2.

An ongoing discussion in the community argues whether adding the dependencies ex-
plicitly in an energy-based is useful or not. Feedforward models have a remarkable rep-
resentational capacity that can implicitly learn the dependencies and relationships from
data without needing to impose additional structure or modeling assumptions and without
making the model more computationally expensive with an optimization-based inference
procedure. One argument against this viewpoint that supports energy-based modeling is
that explicitly including modeling information improves the data efficiency and requires
less samples to learn because some structure and knowledge is already present in the model
and does not have to be learned from scratch.

2.2.1 Energy-based Models Subsume Feedforward Models
We highlight the power of energy-based modeling for supervised learning by noting how
they subsume deep feedforward models. Let ŷ = fθ(x) be a deep feedforward model.
The energy-based representation of this model is E(x, y) = ||y − fθ(x)||22 and inference
becomes the convex optimization problem ŷ = argminy E(x, y), which has the exact solu-
tion ŷ = fθ(x). An energy function that has more structure over the output space adds
representational capacity that a feedforward model wouldn’t be able to capture explicitly.
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2.2.2 Structured Prediction Energy Networks
Structured Prediction Energy Networks (SPENs) [BM16; BYM17; Bel17] are a way of
bridging the gap between modern deep learning methods and classical energy-based learn-
ing methods. SPENs provide a deep structure over input and output spaces by representing
the energy function Eθ(x, y) with a standard feed-forward neural network. This expressive
formulation comes at the cost of making the inference procedure in Equation (2.1) difficult
and non-convex. SPENs typically use an approximate inference procedure by taking a
fixed-number of gradient descent steps for inference. For learning, SPENs typically replace
the inference with an unrolled gradient-based optimizer that starts with some prediction y0
and takes a fixed number of gradient steps to minimize the energy function

yi+1 = yi − α∇yEθ(x, yi).

The final iterate as then taken as the prediction ŷ ≜ yN . Gradient-based parameter
learning can be done by differentiating the prediction ŷ with respect to θ by unrolling
the inference procedure. Unrolling the inference procedure can be done in most autodiff
frameworks such as PyTorch [Pas+17b] or TensorFlow [Aba+16]. activation functions with
smooth first derivatives such as the sigmoid or softplus [GBB11] should be used to avoid
discontinuities because unrolling the inference procedure involves computing∇θ∇yEθ(x, y).

2.3 Modeling with Domain-Specific Knowledge
The role of domain-specific knowledge in the machine learning and computer vision fields
has been an active discussion topic over the past decade and beyond. Historically, domain
knowledge such as fixed hand-crafted feature and edge detectors were rigidly part of the
computer vision pipeline and have been overtaken by learnable convolutional models Le-
Cun, Cortes, and Burges [LCB98] and Krizhevsky, Sutskever, and Hinton [KSH12]. To
highlight the power of convolutional architectures, they provide a reasonable prior for vi-
sion tasks even without learning [UVL18]. Machine learning models extend far beyond the
reach of vision tasks and the community has a growing interest on domain-specific priors
rather than just using fully-connected architectures. These priors ideally can be integrated
as end-to-end learnable modules into a larger system that are learned as a whole with
gradient-based information. In contrast to pure fully-connected architectures, specialized
submodules ideally improve the data efficiency of the model, add interpretability, and
enable grey-box verification.

Recent work has gone far beyond the classic examples of adding modeling priors by
using convolutional or sequential models. A full discussion of all of the recent improvements
is beyond the scope of this thesis, and here we highlight a few key recent developments.

• Differentiable beam search [Goy+18] and differentiable dynamic programming [MB18]
• Differentiable protein simulator [Ing+18]
• Differentiable particle filters [JRB18]
• Neural ordinary differential equations [Che+18] and applications to reversible gen-

erative models [Gra+18]
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• Relational reasoning on sets, graphs, and trees [Bat+18; Zah+17; KW16; Gil+17;
San+17; HYL17; Bat+16; Xu+18; Far+17; She+18]

• Geometry-based priors [Bro+17; Gul+18; Mon+17; TT18; Li+18a]
• Memory [SWF+15; GWD14; Gra+16; XMS16; Hil+15; PS17]
• Attention [BCB14; Vas+17; Wan+18]
• Capsule networks [SFH17; HSF18; XC18]
• Program synthesis [RD15; NLS15; Bal+16; Dev+17; Par+16]

2.4 Optimization-based Modeling
Optimization can be used for modeling in machine learning. Among many other applica-
tions, these architectures are well-studied for generic classification and structured predic-
tion tasks [Goo+13; SRE11; BSS13; LeC+06; BM16; BYM17]; in vision for tasks such as
denoising [Tap+07; SR14] or edge-aware smoothing [BP16]. Diamond, Sitzmann, Heide,
and Wetzstein [Dia+17] presents unrolled optimization with deep priors. Metz, Poole,
Pfau, and Sohl-Dickstein [Met+16] uses unrolled optimization within a network to stabi-
lize the convergence of generative adversarial networks [Goo+14]. Indeed, the general idea
of solving restricted classes of optimization problem using neural networks goes back many
decades [KC88; Lil+93], but has seen a number of advances in recent years. These models
are often trained by one of the following four methods.

2.4.1 Explicit Differentiation
If an analytic solution to the argmin can be found, such as in an unconstrained quadratic
minimization, the gradients can often also be computed analytically. This is done in
Tappen, Liu, Adelson, and Freeman [Tap+07] and Schmidt and Roth [SR14]. We cannot
use these methods for the constrained optimization problems we consider in this thesis
because there are no known analytic solutions.

2.4.2 Unrolled Differentiation
The argmin operation over an unconstrained objective can be approximated by a first-order
gradient-based method and unrolled. These architectures typically introduce an optimiza-
tion procedure such as gradient descent into the inference procedure. This is done in Domke
[Dom12], Belanger, Yang, and McCallum [BYM17], Metz, Poole, Pfau, and Sohl-Dickstein
[Met+16], Goodfellow, Mirza, Courville, and Bengio [Goo+13], Stoyanov, Ropson, and Eis-
ner [SRE11], Brakel, Stroobandt, and Schrauwen [BSS13], and Finn, Abbeel, and Levine
[FAL17]. The optimization procedure is unrolled automatically or manually [Dom12] to
obtain derivatives during training that incorporate the effects of these in-the-loop opti-
mization procedures.
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Given an unconstrained optimization problem with a parameterized objective

argmin
x

fθ(x),

gradient descent starts at an initial value x0 and takes steps

xi+1 = xi − α∇xfθ(x).

For learning, the final iterate of this procedure xN can be taken as the output and ∂xN/∂θ
can be computed with automatic differentiation.

In all of these cases, the optimization problem is unconstrained and unrolling gradient
descent is often easy to do. When constraints are added to the optimization problem,
iterative algorithms often use a projection operator that may be difficult to unroll through
and storing all of the intermediate iterates may become infeasible.

2.4.3 Implicit argmin differentiation
Most closely related to this thesis work, there have been several applications of the implicit
function theorem to differentiating through constrained convex argmin operations. These
methods typically parameterize an optimization problem’s objective or constraints and
then applies the implicit function theorem (Theorem 1) to optimality conditions of the op-
timization problem that implicitly define the solution, such as the KKT conditions [BV04,
Section 5.5.3]. We will first review the implicit function theorem and KKT conditions and
then discuss related work in this space.

Implicit function analysis [DR09] typically focuses on solving an equation f(p, x) =
0 for x as a function s of p, i.e. x = s(p). Implicit differentiation considers how to
differentiate the solution mapping with respect to the parameters, i.e. ∇ps(p). The implicit
function theorem used in standard calculus textbooks can be traced back to the lecture
notes from 1877-1878 of Dini [Din77] and is presented in Dontchev and Rockafellar [DR09,
Theorem 1.B.1] as follows.
Theorem 1 (Implicit function theorem). Let f : Rd × Rn → Rn be continuously differen-
tiable in a neighborhood of (p̄, x̄) and such that f(p̄, x̄) = 0, and let the partial Jacobian
of f with respect to x at (p̄, x̄), namely ∇xf(p̄, x̄), be nonsingular. Then the solution
mapping S(p) =

{
x ∈ Rn

∣∣ f(p, x) = 0
}

has a single-valued localization s around p̄ for
x̄ which is continuously differentiable in a neighborhood Q of p̄ with Jacobian satisfying
∇s(p) = −∇xf(p, s(p))

−1∇pf(p, s(p)) for every p ∈ Q.
In addition to the content in this thesis, several other papers apply the implicit function

theorem to differentiate through the argmin operators. This approach frequently comes
up in bilevel optimization [Gou+16; KP13] and sensitivity analysis [Ber99; FI90; BB08;
BS13]. [Bar18] is a note on applying the implicit function theorem to the KKT conditions of
convex optimization problems and highlights assumptions behind the derivative being well-
defined. Gould, Fernando, Cherian, Anderson, Santa Cruz, and Guo [Gou+16] describes
general techniques for differentiation through optimization problems, but only describe
the case of exact equality constraints rather than both equality and inequality constraints
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(they add inequality constraints via a barrier function). Johnson, Duvenaud, Wiltschko,
Adams, and Datta [Joh+16] performs implicit differentiation on (multi-)convex objectives
with coordinate subspace constraints. The older work of Mairal, Bach, and Ponce [MBP12]
considers argmin differentiation for a LASSO problem, derives specific rules for this case,
and presents an efficient algorithm based upon our ability to solve the LASSO problem
efficiently. Jordan-Squire [Jor15] studies convex optimization over probability measures
and implicit differentiation in this context. Bell and Burke [BB08] adapts automatic dif-
ferentiation to obtain derivatives of implicitly defined functions.

2.4.4 An optimization view of the ReLU, sigmoid, and softmax
In this section we note how the commonly used ReLU, sigmoid, and softmax functions can
be interpreted as explicit closed-form solutions to constrained convex optimization (argmin)
problems. Bibi, Ghanem, Koltun, and Ranftl [Bib+18] presents another view that inter-
prets other layers as proximal operators and stochastic solvers. We use these as examples
to further highlight the power of optimization-based inference, not to provide a new anal-
ysis of these layers. The main focus of this thesis is not on learning and re-discovering
existing activation functions. In this thesis, we rather propose new optimization-based in-
ference layers that do not have explicit closed-form solutions like these examples and show
that they can still be efficiently turned into differentiable building blocks for end-to-end
architectures.
Theorem 2. The ReLU, defined by f(x) = max{0, x}, can be interpreted as projecting a
point x ∈ Rn onto the non-negative orthant as

f(x) = argmin
y

1

2
||x− y||22 s. t. y ≥ 0. (2.2)

Proof. The usual solution can be obtained by looking at the KKT conditions of Equa-
tion (2.2). Introducing a dual variable λ ≥ 0 for the inequality constraint, the Lagrangian
of Equation (2.2) is

L(y, λ) =
1

2
||x− y||22 − λ⊤y. (2.3)

The stationarity condition ∇yL(y
⋆, λ⋆) = 0 gives a way of expressing the primal optimal

variable y⋆ in terms of the dual optimal variable λ⋆ as y⋆ = x + λ⋆. Complementary
slackness λ⋆

i (xi + λ⋆
i ) = 0 shows that λ⋆

i ∈ {0,−xi}. Consider two cases:
• Case 1: xi ≥ 0. Then λ⋆

i must be 0 since we require λ⋆ ≥ 0. Thus y⋆i = xi+λ⋆
i = xi.

• Case 2: xi < 0. Then λ⋆
i must be −xi since we require y ≥ 0. Thus y⋆i = xi+λ⋆

i = 0.
Combining these cases gives the usual solution of y⋆ = max{0, x}.
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Theorem 3. The sigmoid or logistic function, defined by f(x) = (1 + e−x)−1, can be
interpreted as projecting a point x ∈ Rn onto the interior of the unit hypercube as

f(x) = argmin
0<y<1

−x⊤y −Hb(y), (2.4)

where Hb(y) = − (
∑

i yi log yi + (1− yi) log(1− yi)) is the binary entropy function.

Proof. The usual solution can be obtained by looking at the first-order optimality condition
of Equation (2.4). The domain of the binary entropy function Hb restricts us to 0 < y < 1
without needing to explicitly represent this as a constraint in the optimization problem. Let
g(y;x) = −x⊤y−Hb(y) be the objective. The first-order optimality condition ∇yg(y

⋆;x) =
0 gives us −xi + log y⋆i − log(1− y⋆i ) = 0 and thus y⋆ = (1 + e−x)−1.

Theorem 4. The softmax, defined by f(x)j = exj/
∑

i e
xi, can be interpreted as projecting

a point x ∈ Rn onto the interior of the (n− 1)-simplex

∆n−1 = {p ∈ Rn | 1⊤p = 1 and p ≥ 0}

as
f(x) = argmin

0<y<1
−x⊤y −H(y) s. t. 1⊤y = 1 (2.5)

where H(y) = −
∑

i yi log yi is the entropy function.

Proof. The usual solution can be obtained by looking at the KKT conditions of Equa-
tion (2.5). Introducing a scalar-valued dual variable ν for the equality constraint, the
Lagrangian is

L(y, ν) = −x⊤y −H(y) + ν(1⊤y − 1) (2.6)
The stationarity condition ∇yL(y

⋆, ν⋆) = 0 gives a way of expressing the primal optimal
variable y⋆ in terms of the dual optimal variable ν⋆ as

y⋆j = exp{xj − 1− ν⋆}. (2.7)

Putting this back into the equality constraint 1⊤y⋆ = 1 gives us
∑

i exp{xi − 1− ν⋆} = 1
and thus ν⋆ = log

∑
i exp{xi − 1}. Substituting this back into Equation (2.7) gives us the

usual definition of yj = exj/
∑

i e
xi .

Corollary 1. A temperature-scaled softmax scales the entropy term in the objective and
the sparsemax [MA16] replaces the objective’s entropy penalty with a ridge section.
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2.5 Reinforcement Learning and Control
The fields of reinforcement learning (RL) and optimal control typically involve creating
agents that act optimally in an environment. These environments can typically be rep-
resented as a Markov decision process (MDP) with a continuous or discrete state space
and a continuous or discrete action space. The environment often has some oracle-given
reward associated with each state and the goal of RL and control is to find a policy that
maximizes the cumulative reward achieved.

Using the notation from [Lev17a], policy search methods learn a policy πθ(ut|xt) pa-
rameterized by θ that predicts a distribution over next action to take given the current
state xt. The goal of policy search is to find a policy that maximizes the expected return

argmax
θ

Eτ∼pθ(τ)

[∑
t

γtr(xt, ut)

]
, (2.8)

where pθ(τ) = p(x1)
∏

πθ(ut|xt)p(xt+1|xt, ut) is the distribution over trajectories, γ ∈ (0, 1]
is a discount factor, r(xt, ut) is the state-action reward at time t, and p(xt+1|xt, ut) is the
state-transition probability. In many scenarios, the reward r is assumed to be a black-
box function that derivative information cannot be obtained from. Model-free techniques
for policy search typically do not attempt to model the state-transition probability while
model-based and control approaches do.

Control approaches typically provide a policy by planning based on known state transi-
tions. For example, in continuous state-action spaces with deterministic state transitions,
the finite-horizon model predictive control problem is

argmin
x1:T∈X ,u1:T∈U

T∑
t=1

Ct(xt, ut) subject to xt+1 = f(xt, ut), x1 = xinit, (2.9)

where xinit is the current system state, the cost Ct is typically hand-engineered and differ-
entiable, and xt+1 = f(xt, ut) is the deterministic next-state transition, i.e. the point-mass
given by p(xt+1|xt, ut). While this thesis focuses on the continuous and deterministic set-
ting, control approaches can also be applied in discrete and stochastic settings.

Pure model-free techniques for policy search have demonstrated promising re-
sults in many domains by learning reactive polices which directly map observations to
actions [Mni+13; Oh+16; Gu+16b; Lil+15; Sch+15; Sch+16; Gu+16a]. Despite their suc-
cess, model-free methods have many drawbacks and limitations, including a lack of inter-
pretability, poor generalization, and a high sample complexity. Model-based methods
are known to be more sample-efficient than their model-free counterparts. These methods
generally rely on learning a dynamics model directly from interactions with the real sys-
tem and then integrate the learned model into the control policy [Sch97; AQN06; DR11;
Hee+15; Boe+14]. More recent approaches use a deep network to learn low-dimensional
latent state representations and associated dynamics models in this learned representation.
They then apply standard trajectory optimization methods on these learned embeddings
[LKS15; Wat+15; Lev+16]. However, these methods still require a manually specified and
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hand-tuned cost function, which can become even more difficult in a latent representation.
Moreover, there is no guarantee that the learned dynamics model can accurately capture
portions of the state space relevant for the task at hand.

To leverage the benefits of both approaches, there has been significant interest in com-
bining the model-based and model-free paradigms. In particular, much attention
has been dedicated to utilizing model-based priors to accelerate the model-free learning
process. For instance, synthetic training data can be generated by model-based control
algorithms to guide the policy search or prime a model-free policy [Sut90; TBS10; LA14;
Gu+16b; Ven+16; Lev+16; Che+17a; Nag+17; Sun+17]. [Ban+17] learns a controller and
then distills it to a neural network policy which is then fine-tuned with model-free policy
learning. However, this line of work usually keeps the model separate from the learned
policy.

Alternatively, the policy can include an explicit planning module which leverages
learned models of the system or environment, both of which are learned through model-
free techniques. For example, the classic Dyna-Q algorithm [Sut90] simultaneously learns
a model of the environment and uses it to plan. More recent work has explored incorporat-
ing such structure into deep networks and learning the policies in an end-to-end fashion.
Tamar, Wu, Thomas, Levine, and Abbeel [Tam+16] uses a recurrent network to predict the
value function by approximating the value iteration algorithm with convolutional layers.
Karkus, Hsu, and Lee [KHL17] connects a dynamics model to a planning algorithm and
formulates the policy as a structured recurrent network. Silver, Hasselt, Hessel, Schaul,
Guez, Harley, Dulac-Arnold, Reichert, Rabinowitz, Barreto, et al. [Sil+16] and Oh, Singh,
and Lee [OSL17] perform multiple rollouts using an abstract dynamics model to predict
the value function. A similar approach is taken by Weber, Racanière, Reichert, Buesing,
Guez, Rezende, Badia, Vinyals, Heess, Li, et al. [Web+17] but directly predicts the next
action and reward from rollouts of an explicit environment model. Farquhar, Rocktäschel,
Igl, and Whiteson [Far+17] extends model-free approaches, such as DQN [Mni+15] and
A3C [Mni+16], by planning with a tree-structured neural network to predict the cost-to-go.
While these approaches have demonstrated impressive results in discrete state and action
spaces, they are not applicable to continuous control problems.

To tackle continuous state and action spaces, Pascanu, Li, Vinyals, Heess, Buesing,
Racanière, Reichert, Weber, Wierstra, and Battaglia [Pas+17a] propose a neural archi-
tecture which uses an abstract environmental model to plan and is trained directly from
an external task loss. Pong, Gu, Dalal, and Levine [Pon+18] learn goal-conditioned value
functions and use them to plan single or multiple steps of actions in an MPC fashion. Sim-
ilarly, Pathak, Mahmoudieh, Luo, Agrawal, Chen, Shentu, Shelhamer, Malik, Efros, and
Darrell [Pat+18] train a goal-conditioned policy to perform rollouts in an abstract feature
space but ground the policy with a loss term which corresponds to true dynamics data. The
aforementioned approaches can be interpreted as a distilled optimal controller which does
not separate components for the cost and dynamics. Taking this analogy further, another
strategy is to differentiate through an optimal control algorithm itself. Okada, Rigazio,
and Aoshima [ORA17] and Pereira, Fan, An, and Theodorou [Per+18] present a way to
differentiate through path integral optimal control [Wil+16; WAT17] and learn a planning
policy end-to-end. Srinivas, Jabri, Abbeel, Levine, and Finn [Sri+18] shows how to embed
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differentiable planning (unrolled gradient descent over actions) within a goal-directed pol-
icy. In a similar vein, Tamar, Thomas, Zhang, Levine, and Abbeel [Tam+17] differentiates
through an iterative LQR (iLQR) solver [LT04; XLH17; TMT14] to learn a cost-shaping
term offline. This shaping term enables a shorter horizon controller to approximate the
behavior of a solver with a longer horizon to save computation during runtime.
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Chapter 3
OptNet: Differentiable Optimization as a
Layer in Deep Learning

This chapter describes OptNet, a network architecture that integrates optimization prob-
lems (here, specifically in the form of quadratic programs) as individual layers in larger
end-to-end trainable deep networks. These layers encode constraints and complex depen-
dencies between the hidden states that traditional convolutional and fully-connected layers
often cannot capture. We explore the foundations for such an architecture: we show how
techniques from sensitivity analysis, bilevel optimization, and implicit differentiation can
be used to exactly differentiate through these layers and with respect to layer parameters;
we develop a highly efficient solver for these layers that exploits fast GPU-based batch
solves within a primal-dual interior point method, and which provides backpropagation
gradients with virtually no additional cost on top of the solve; and we highlight the ap-
plication of these approaches in several problems. In one notable example, we show that
the method is capable of learning to play mini-Sudoku (4x4) given just input and output
games, with no a priori information about the rules of the game; this highlights the ability
of our architecture to learn hard constraints better than other neural architectures.

The contents of this chapter have been previously published at ICML 2017 in Amos
and Kolter [AK17].

3.1 Introduction
In this chapter, we consider how to treat exact, constrained optimization as an individual
layer within a deep learning architecture. Unlike traditional feedforward networks, where
the output of each layer is a relatively simple (though non-linear) function of the previ-
ous layer, our optimization framework allows for individual layers to capture much richer
behavior, expressing complex operations that in total can reduce the overall depth of the
network while preserving richness of representation. Specifically, we build a framework
where the output of the i + 1th layer in a network is the solution to a constrained op-
timization problem based upon previous layers. This framework naturally encompasses
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a wide variety of inference problems expressed within a neural network, allowing for the
potential of much richer end-to-end training for complex tasks that require such inference
procedures.

Concretely, in this chapter we specifically consider the task of solving small quadratic
programs as individual layers. These optimization problems are well-suited to capturing
interesting behavior and can be efficiently solved with GPUs. Specifically, we consider
layers of the form

zi+1 = argmin
z

1

2
zTQ(zi)z + q(zi)

T z

subject to A(zi)z = b(zi)

G(zi)z ≤ h(zi)

(3.1)

where z is the optimization variable, Q(zi), q(zi), A(zi), b(zi), G(zi), and h(zi) are param-
eters of the optimization problem. As the notation suggests, these parameters can depend
in any differentiable way on the previous layer zi, and which can eventually be optimized
just like any other weights in a neural network. These layers can be learned by taking
the gradients of some loss function with respect to the parameters. In this chapter, we
derive the gradients of (3.1) by taking matrix differentials of the KKT conditions of the
optimization problem at its solution.

In order to the make the approach practical for larger networks, we develop a custom
solver which can simultaneously solve multiple small QPs in batch form. We do so by
developing a custom primal-dual interior point method tailored specifically to dense batch
operations on a GPU. In total, the solver can solve batches of quadratic programs over
100 times faster than existing highly tuned quadratic programming solvers such as Gurobi
and CPLEX. One crucial algorithmic insight in the solver is that by using a specific fac-
torization of the primal-dual interior point update, we can obtain a backward pass over
the optimization layer virtually “for free” (i.e., requiring no additional factorization once
the optimization problem itself has been solved). Together, these innovations enable pa-
rameterized optimization problems to be inserted within the architecture of existing deep
networks.

We begin by highlighting background and related work, and then present our optimiza-
tion layer itself. Using matrix differentials we derive rules for computing all the necessary
backpropagation updates. We then detail our specific solver for these quadratic programs,
based upon a state-of-the-art primal-dual interior point method, and highlight the novel
elements as they apply to our formulation, such as the aforementioned fact that we can
compute backpropagation at very little additional cost. We then provide experimental
results that demonstrate the capabilities of the architecture, highlighting potential tasks
that these architectures can solve, and illustrating improvements upon existing approaches.

3.2 Connections to related work
Optimization plays a key role in modeling complex phenomena and providing concrete
decision making processes in sophisticated environments. A full treatment of optimiza-
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tion applications is beyond our scope [BV04] but these methods have bound applicability
in control frameworks [ML99; SB11]; numerous statistical and mathematical formalisms
[SNW12], and physical simulation problems like rigid body dynamics [Löt84].

We contrast the OptNet approach to the related differentiable optimization-based in-
ference methods in Section 2.4. We do not use analytical differentiation or unrolling,
as the optimization problem we consider is constrained and does not have an explicit
closed-form solution. The argmin differentiation work we discuss in Section 2.4.3 is the
most closely related to this chapter. Johnson, Duvenaud, Wiltschko, Adams, and Datta
[Joh+16] performs implicit differentiation on (multi-)convex objectives with coordinate
subspace constraints, but don’t consider inequality constraints and don’t consider in de-
tail general linear equality constraints. Their optimization problem is only in the final
layer of a variational inference network while we propose to insert optimization problems
anywhere in the network. Therefore a special case of OptNet layers (with no inequality
constraints) has a natural interpretation in terms of Gaussian inference, and so Gaussian
graphical models (or CRF ideas more generally) provide tools for making the computation
more efficient and interpreting or constraining its structure. Similarly, the older work of
Mairal, Bach, and Ponce [MBP12] considered argmin differentiation for a LASSO problem,
deriving specific rules for this case, and presenting an efficient algorithm based upon our
ability to solve the LASSO problem efficiently.

In this chapter, we use implicit differentiation [DR09; GW08] and techniques from
matrix differential calculus [MN88] to derive the gradients from the KKT matrix of the
problem we are interested in. A notable difference from other work within ML that we
are aware of, is that we analytically differentiate through inequality as well as just equal-
ity constraints, but differentiating the complementarity conditions; this differs from e.g.,
Gould, Fernando, Cherian, Anderson, Santa Cruz, and Guo [Gou+16] where they instead
approximately convert the problem to an unconstrained one via a barrier method. We have
also developed methods to make this approach practical and reasonably scalable within
the context of deep architectures.

3.3 Solving optimization within a neural network
Although in the most general form, an OptNet layer can be any optimization problem, in
this chapter we will study OptNet layers defined by a quadratic program

minimize
z

1

2
zTQz + qT z

subject to Az = b, Gz ≤ h
(3.2)

where z ∈ Rn is our optimization variable Q ∈ Rn×n ⪰ 0 (a positive semidefinite matrix),
q ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rp×n and h ∈ Rp are problem data, and leaving out the
dependence on the previous layer zi as we showed in (3.1) for notational convenience. As is
well-known, these problems can be solved in polynomial time using a variety of methods;
if one desires exact (to numerical precision) solutions to these problems, then primal-dual
interior point methods, as we will use in a later section, are the current state of the art in
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solution methods. In the neural network setting, the optimal solution (or more generally,
a subset of the optimal solution) of this optimization problems becomes the output of our
layer, denoted zi+1, and any of the problem data Q, q, A, b,G, h can depend on the value
of the previous layer zi. The forward pass in our OptNet architecture thus involves simply
setting up and finding the solution to this optimization problem.

Training deep architectures, however, requires that we not just have a forward pass
in our network but also a backward pass. This requires that we compute the derivative
of the solution to the QP with respect to its input parameters, a general topic we topic
we discussed previously. To obtain these derivatives, we differentiate the KKT conditions
(sufficient and necessary conditions for optimality) of (3.2) at a solution to the problem us-
ing techniques from matrix differential calculus [MN88]. Our analysis here can be extended
to more general convex optimization problems.

The Lagrangian of (3.2) is given by

L(z, ν, λ) =
1

2
zTQz + qT z + νT (Az − b) + λT (Gz − h) (3.3)

where ν are the dual variables on the equality constraints and λ ≥ 0 are the dual variables
on the inequality constraints. The KKT conditions for stationarity, primal feasibility, and
complementary slackness are

Qz⋆ + q + ATν⋆ +GTλ⋆ = 0

Az⋆ − b = 0

D(λ⋆)(Gz⋆ − h) = 0,

(3.4)

where D(·) creates a diagonal matrix from a vector and z⋆, ν⋆ and λ⋆ are the optimal
primal and dual variables. Taking the differentials of these conditions gives the equations

dQz⋆ +Qdz + dq + dATν⋆+

ATdν + dGTλ⋆ +GTdλ = 0

dAz⋆ + Adz − db = 0

D(Gz⋆ − h)dλ+D(λ⋆)(dGz⋆ +Gdz − dh) = 0

(3.5)

or written more compactly in matrix form Q GT AT

D(λ⋆)G D(Gz⋆ − h) 0
A 0 0

dzdλ
dν

 =

−dQz⋆ − dq − dGTλ⋆ − dATν⋆

−D(λ⋆)dGz⋆ +D(λ⋆)dh
−dAz⋆ + db

 . (3.6)

Using these equations, we can form the Jacobians of z⋆ (or λ⋆ and ν⋆, though we don’t
consider this case here), with respect to any of the data parameters. For example, if we
wished to compute the Jacobian ∂z⋆

∂b
∈ Rn×m, we would simply substitute db = I (and

set all other differential terms in the right hand side to zero), solve the equation, and the
resulting value of dz would be the desired Jacobian.

In the backpropagation algorithm, however, we never want to explicitly form the actual
Jacobian matrices, but rather want to form the left matrix-vector product with some
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previous backward pass vector ∂ℓ
∂z⋆
∈ Rn, i.e., ∂ℓ

∂z⋆
∂z⋆

∂b
. We can do this efficiently by noting

the solution for the (dz, dλ, dν) involves multiplying the inverse of the left-hand-side matrix
in (3.6) by some right hand side. Thus, if we multiply the backward pass vector by the
transpose of the differential matrixdzdλ

dν

 = −

Q GTD(λ⋆) AT

G D(Gz⋆ − h) 0
A 0 0

−1 ∇z⋆ℓ
0
0

 (3.7)

then the relevant gradients with respect to all the QP parameters can be given by

∇Qℓ =
1

2
(dzz

T + zdTz ) ∇qℓ = dz

∇Aℓ = dνz
T + νdTz ∇bℓ = −dν

∇Gℓ = D(λ⋆)(dλz
T + λdTz ) ∇hℓ = −D(λ⋆)dλ

(3.8)

where as in standard backpropagation, all these terms are at most the size of the parameter
matrices. We note that some of these parameters should depend on the previous layer zi
and the gradients with respect to the previous layer can be obtained through the chain
rule. As we will see in the next section, the solution to an interior point method in fact
already provides a factorization we can use to compute these gradient efficiently.

3.3.1 An efficient batched QP solver
Deep networks are typically trained in mini-batches to take advantage of efficient data-
parallel GPU operations. Without mini-batching on the GPU, many modern deep learning
architectures become intractable for all practical purposes. However, today’s state-of-the-
art QP solvers like Gurobi and CPLEX do not have the capability of solving multiple
optimization problems on the GPU in parallel across the entire minibatch. This makes
larger OptNet layers become quickly intractable compared to a fully-connected layer with
the same number of parameters.

To overcome this performance bottleneck in our quadratic program layers, we have
implemented a GPU-based primal-dual interior point method (PDIPM) based on Mat-
tingley and Boyd [MB12] that solves a batch of quadratic programs, and which provides
the necessary gradients needed to train these in an end-to-end fashion. Our performance
experiments in Section 3.4.1 shows that our solver is significantly faster than the standard
non-batch solvers Gurobi and CPLEX.

Following the method of Mattingley and Boyd [MB12], our solver introduces slack
variables on the inequality constraints and iteratively minimizes the residuals from the
KKT conditions over the primal variable z ∈ Rn, slack variable s ∈ Rp, and dual variables
ν ∈ Rm associated with the equality constraints and λ ∈ Rp associated with the inequality
constraints. Each iteration computes the affine scaling directions by solving

K


∆zaff

∆saff

∆λaff

∆νaff

 =


−(ATν +GTλ+Qz + q)

−Sλ
−(Gz + s− h)
−(Az − b)

 (3.9)
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where

K =


Q 0 GT AT

0 D(λ) D(s) 0
G I 0 0
A 0 0 0

 ,

then centering-plus-corrector directions by solving

K


∆zcc

∆scc

∆λcc

∆νcc

 =


0

σµ1−D(∆saff)∆λaff

0
0

 , (3.10)

where µ = sTλ/p is the duality gap and σ is defined in Mattingley and Boyd [MB12].
Each variable v is updated with ∆v = ∆vaff + ∆vcc using an appropriate step size. We
actually solve a symmetrized version of the KKT conditions, obtained by scaling the second
row block by D(1/s). We analytically decompose these systems into smaller symmetric
systems and pre-factorize portions of them that don’t change (i.e. that don’t involve
D(λ/s) between iterations). We have implemented a batched version of this method with
the PyTorch library [Pas+17b] and have released it as an open source library at https:
//github.com/locuslab/qpth. It uses a custom CUBLAS extension that provides an
interface to solve multiple matrix factorizations and solves in parallel, and which provides
the necessary backpropagation gradients for their use in an end-to-end learning system.

Efficiently computing gradients

A key point of the particular form of primal-dual interior point method that we employ
is that it is possible to compute the backward pass gradients “for free” after solving the
original QP, without an additional matrix factorization or solve. Specifically, at each
iteration in the primal-dual interior point, we are computing an LU decomposition of the
matrix Ksym.1 This matrix is essentially a symmetrized version of the matrix needed for
computing the backpropagated gradients, and we can similarly compute the dz,λ,ν terms
by solving the linear system

Ksym


dz
ds
d̃λ
dν

 =


∇zi+1

ℓ
0
0
0

 , (3.11)

where d̃λ = D(λ⋆)dλ for dλ as defined in (3.7). Thus, all the backward pass gradients can be
computed using the factored KKT matrix at the solution. Crucially, because the bottleneck

1We actually perform an LU decomposition of a certain subset of the matrix formed by eliminating
variables to create only a p×p matrix (the number of inequality constraints) that needs to be factor during
each iteration of the primal-dual algorithm, and one m×m and one n× n matrix once at the start of the
primal-dual algorithm, though we omit the detail here. We also use an LU decomposition as this routine
is provided in batch form by CUBLAS, but could potentially use a (faster) Cholesky factorization if and
when the appropriate functionality is added to CUBLAS).
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of solving this linear system is computing the factorization of the KKT matrix (cubic time
as opposed to the quadratic time for solving via backsubstitution once the factorization
is computed), the additional time requirements for computing all the necessary gradients
in the backward pass is virtually nonexistent compared with the time of computing the
solution. To the best of our knowledge, this is the first time that this fact has been exploited
in the context of learning end-to-end systems.

3.3.2 Properties and representational power
In this section we briefly highlight some of the mathematical properties of OptNet layers.
The proofs here are straightforward and are mostly based upon well-known results in convex
analysis. The first result simply highlights that (because the solution of strictly convex
QPs is continuous), that OptNet layers are subdifferentiable everywhere, and differentiable
at all but a measure-zero set of points.
Theorem 5. Let z⋆(θ) be the output of an OptNet layer, where θ = {Q, p,A, b,G, h}.
Assuming Q ≻ 0 and that A has full row rank, then z⋆(θ) is subdifferentiable everywhere:
∂z⋆(θ) ̸= ∅, where ∂z⋆(θ) denotes the Clarke generalized subdifferential [Cla75] (an ex-
tension of the subgradient to non-convex functions), and has a single unique element (the
Jacobian) for all but a measure zero set of points θ.

Proof. The fact that an OptNet layer is subdifferentiable from strictly convex QPs (Q ≻ 0)
follows directly from the well-known result that the solution of a strictly convex QP is
continuous (though not everywhere differentiable). Our proof essentially just boils down
to showing this fact, though we do so by explicitly showing that there is a unique solution
to the Jacobian equations (3.6) that we presented earlier, except on a measure zero set.
This measure zero set consists of QPs with degenerate solutions, points where inequality
constraints can hold with equality yet also have zero-valued dual variables. For simplicity
we assume that A has full row rank, but this can be relaxed.

From the complementarity condition, we have that at a primal dual solution (z⋆, λ⋆, ν⋆)

(Gz⋆ − h)i < 0→ λ⋆
i = 0

λ⋆
i > 0→ (Gz⋆ − h)i = 0

(3.12)

(i.e., we cannot have both these terms non-zero).
First we consider the (typical) case where exactly one of (Gz⋆ − h)i and λ⋆

i is zero.
Then the KKT differential matrix Q GT AT

D(λ⋆)G D(Gz⋆ − h) 0
A 0 0

 (3.13)

(the left hand side of (3.6)) is non-singular. To see this, note that if we let I be the set
where λ⋆

i > 0, then the matrix Q GT
I AT

D(λ⋆)GI D(Gz⋆ − h)I 0
A 0 0

 =

 Q GT
I AT

D(λ⋆)GI 0 0
A 0 0

 (3.14)
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is non-singular (scaling the second block by D(λ⋆)−1 gives a standard KKT system [BV04,
Section 10.4], which is nonsingular for invertible Q and [GT

I AT ] with full column rank,
which must hold due to our condition on A and the fact that there must be less than n
total tight constraints at the solution. Also note that for any i ̸∈ I, only the D(Gz⋆− h)ii
term is non-zero for the entire row in the second block of the matrix. Thus, if we want to
solve the system  Q GT

I AT

D(λ⋆)GI D(Gz⋆ − h)I 0
A 0 0

zλ
ν

 =

ab
c

 (3.15)

we simply first set λi = bi/(Gz⋆ − h)i for i ̸∈ I and then solve the nonsingular system Q GT
I AT

D(λ⋆)GI 0 0
A 0 0

 z
λI
ν

 =

a−GT
ĪλĪ

bI
c.

 (3.16)

Alternatively, suppose that we have both λ⋆
i = 0 and (Gz⋆ − h)i = 0. Then although

the KKT matrix is now singular (any row for which λ⋆
i = 0 and (Gz⋆ − h)i = 0 will be all

zero), there still exists a solution to the system (3.6), because the right hand side is always
in the range of D(λ⋆) and so will also be zero for these rows. In this case there will no
longer be a unique solution, corresponding to the subdifferentiable but not differentiable
case.

The next two results show the representational power of the OptNet layer, specifically
how an OptNet layer compares to the common linear layer followed by a ReLU activation.
The first theorem shows that an OptNet layer can approximate arbitrary elementwise
piecewise-linear functions, and so among other things can represent a ReLU layer.
Theorem 6. Let f : Rn → Rn be an elementwise piecewise linear function with k linear
regions. Then the function can be represented as an OptNet layer using O(nk) parameters.
Additionally, the layer zi+1 = max{Wzi + b, 0} for W ∈ Rn×m, b ∈ Rn can be represented
by an OptNet layer with O(mn) parameters.

Proof. The proof that an OptNet layer can represent any piecewise linear univariate func-
tion relies on the fact that we can represent any such function in “sum-of-max” form

f(x) =
k∑

i=1

wi max{aix+ b, 0} (3.17)

where wi ∈ {−1, 1}, ai, bi ∈ R (to do so, simply proceed left to right along the breakpoints
of the function adding a properly scaled linear term to fit the next piecewise section). The
OptNet layer simply represents this function directly.

That is, we encode the optimization problem

minimize
z∈R,t∈Rk

∥t∥22 + (z − wT t)2

subject to aix+ bi ≤ ti, i = 1, . . . , k
(3.18)
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Clearly, the objective here is minimized when z = wT t, and t is as small as possible,
meaning each t must either be at its bound aix + b ≤ ti or, if aix + b < 0, then ti = 0
will be the optimal solution due to the objective function. To obtain a multivariate but
elementwise function, we simply apply this function to each coordinate of the input x.

To see the specific case of a ReLU network, note that the layer

z = max{Wx+ b, 0} (3.19)

is simply equivalent to the OptNet problem

minimize
z

∥z −Wx− b∥22
subject to z ≥ 0.

(3.20)

Finally, we show that the converse does not hold: that there are function representable
by an OptNet layer which cannot be represented exactly by a two-layer ReLU layer, which
take exponentially many units to approximate (known to be a universal function approxi-
mator). A simple example of such a layer (and one which we use in the proof) is just the
max over three linear functions f(z) = max{aT1 x, aT2 x, aT3 x}.
Theorem 7. Let f(z) : Rn → R be a scalar-valued function specified by an OptNet layer
with p parameters. Conversely, let f ′(z) =

∑m
i=1wi max{aTi z+bi, 0} be the output of a two-

layer ReLU network. Then there exist functions that the ReLU network cannot represent
exactly over all of R, and which require O(cp) parameters to approximate over a finite
region.

Proof. The final theorem simply states that a two-layer ReLU network (more specifically,
a ReLU followed by a linear layer, which is sufficient to achieve a universal function ap-
proximator), can often require exponentially many more units to approximate a function
specified by an OptNet layer. That is, we consider a single-output ReLU network, much
like in the previous section, but defined for multi-variate inputs.

f(x) =
m∑
i=1

wi max{aTi x+ b, 0} (3.21)

Although there are many functions that such a network cannot represent, for illustration
we consider a simple case of a maximum of three linear functions

f ′(x) = max{aT1 x, aT2 x, aT3 x} (3.22)

To see why a ReLU is not capable of representing this function exactly, even for x ∈ R2,
note that any sum-of-max function, due to the nature of the term max{aTi x + bi, 0} as
stated above must have “creases” (breakpoints in the piecewise linear function), than span
the entire input space; this is in contrast to the max terms, which can have creases that
only partially span the space. This is illustrated in Figure 3.1. It is apparent, therefore,
that the two-layer ReLU cannot exactly approximate the three maximum term (any ReLU
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aT1 xaT2 x

aT3 x

Figure 3.1: Creases for a three-term pointwise maximum (left), and a ReLU network
(right).

network would necessarily have a crease going through one of the linear region of the
original function). Yet this max function can be captured by a simple OptNet layer

minimize
z

z2

subject to aTi x ≤ z, i = 1, . . . , 3.
(3.23)

The fact that the ReLU network is a universal function approximator means that the
we are able to approximate the three-max term, but to do so means that we require a dense
covering of points over the input space, choose an equal number of ReLU terms, then choose
coefficients such that we approximate the underlying function on this points; however, for
a large enough radius this will require an exponential size covering to approximate the
underlying function arbitrarily closely.

Although the example here in this proof is quite simple (and perhaps somewhat limited,
since for example the function can be exactly approximated using a “Maxout” network),
there are a number of other such functions for which we have been unable to find any
compact representation. For example, projection of a point on to the simplex is easily
written as the OptNet layer

minimize
z

∥z − x∥22
subject to z ≥ 0, 1T z = 1

(3.24)

yet it does not seem possible to represent this in closed form as a simple network: the
closed form solution of such a projection operator requires sorting or finding a particular
median term of the data [Duc+08], which is not feasible with a single layer for any form of
network that we are aware of. Yet for simplicity we stated the theorem above using just
ReLU networks and a straightforward example that works even in two dimensions.

3.3.3 Limitations of the method
Although, as we will show shortly, the OptNet layer has several strong points, we also
want to highlight the potential drawbacks of this approach. First, although, with an
efficient batch solver, integrating an OptNet layer into existing deep learning architectures
is potentially practical, we do note that solving optimization problems exactly as we do here
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has has cubic complexity in the number of variables and/or constraints. This contrasts
with the quadratic complexity of standard feedforward layers. This means that we are
ultimately limited to settings where the number of hidden variables in an OptNet layer is
not too large (less than 1000 dimensions seems to be the limits of what we currently find to
the be practical, and substantially less if one wants real-time results for an architecture).

Secondly, there are many improvements to the OptNet layers that are still possible.
Our QP solver, for instance, uses fully dense matrix operations, which makes the solves
very efficient for GPU solutions, and which also makes sense for our general setting where
the coefficients of the quadratic problem can be learned. However, for setting many real-
world optimization problems (and hence for architectures that wish to more closely mimic
some real-world optimization problem), there is often substantial structure (e.g., sparsity),
in the data matrices that can be exploited for efficiency. There is of course no prohibition
of incorporating sparse matrix methods into the fast custom solver, but doing so would
require substantial added complexity, especially regarding efforts like finding minimum fill
orderings for different sparsity patterns of the KKT systems. In our open source solver
qpth, we have started experimenting with cuSOLVER’s batched sparse QR factorizations
and solves.

Lastly, we note that while the OptNet layers can be trained just as any neural network
layer, since they are a new creation and since they have manifolds in the parameter space
which have no effect on the resulting solution (e.g., scaling the rows of a constraint matrix
and its right hand side does not change the optimization problem), there is admittedly
more tuning required to get these to work. This situation is common when developing
new neural network architectures and has also been reported in the similar architecture
of Schmidt and Roth [SR14]. Our hope is that techniques for overcoming some of the
challenges in learning these layers will continue to be developed in future work.

3.4 Experimental results

In this section, we present several experimental results that highlight the capabilities of the
QP OptNet layer. Specifically we look at 1) computational efficiency over exiting solvers;
2) the ability to improve upon existing convex problems such as those used in signal
denoising; 3) integrating the architecture into an generic deep learning architectures; and
4) performance of our approach on a problem that is challenging for current approaches.
In particular, we want to emphasize the results of our system on learning the game of
(4x4) mini-Sudoku, a well-known logical puzzle; our layer is able to directly learn the
necessary constraints using just gradient information and no a priori knowledge of the
rules of Sudoku. The code and data for our experiments are open sourced in the icml2017
branch of https://github.com/locuslab/optnet and our batched QP solver is available
as a library at https://github.com/locuslab/qpth.
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Figure 3.3: Performance of Gurobi and
our QP solver.

3.4.1 Batch QP solver performance

All of the OptNet performance results in this section are run on an unloaded Titan X
GPU. Gurobi is run on an unloaded quad-core Intel Core i7-5960X CPU @ 3.00GHz.

Our OptNet layers are much more computationally expensive than a linear or convo-
lutional layer and a natural question is to ask what the performance difference is. We set
up an experiment comparing a linear layer to a QP OptNet layer with a mini-batch size
of 128 on CUDA with randomly generated input vectors sized 10, 50, 100, and 500. Each
layer maps this input to an output of the same dimension; the linear layer does this with a
batched matrix-vector multiplication and the OptNet layer does this by taking the argmin
of a random QP that has the same number of inequality constraints as the dimensionality
of the problem. Figure 3.2 shows the profiling results (averaged over 10 trials) of the for-
ward and backward passes. The OptNet layer is significantly slower than the linear layer
as expected, yet still tractable in many practical contexts.

Our next experiment illustrates why standard baseline QP solvers like CPLEX and
Gurobi without batch support are too computationally expensive for QP OptNet layers
to be tractable. We set up random QP of the form (3.1) that have 100 variables and 100
inequality constraints in Gurobi and in the serialized and batched versions of our solver
qpth and vary the batch size.2

Figure 3.3 shows the means and standard deviations of running each trial 10 times,
showing that our batched solver outperforms Gurobi, itself a highly tuned solver for rea-
sonable batch sizes. For the minibatch size of 128, we solve all problems in an average
of 0.18 seconds, whereas Gurobi tasks an average of 4.7 seconds. In the context of train-
ing a deep architecture this type of speed difference for a single minibatch can make the
difference between a practical and a completely unusable solution.

2Experimental details: we sample entries of a matrix U from a random uniform distribution and set
Q = UTU + 10−3I, sample G with random normal entries, and set h by selecting generating some z0
random normal and s0 random uniform and setting h = Gz0 + s0 (we didn’t include equality constraints
just for simplicity, and since the number of inequality constraints in the primary driver of complexity for
the iterations in a primal-dual interior point method). The choice of h guarantees the problem is feasible.
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3.4.2 Total variation denoising
Our next experiment studies how we can use the OptNet architecture to improve upon
signal processing techniques that currently use convex optimization as a basis. Specifically,
our goal in this case is to denoise a noisy 1D signal given training data consistency of noisy
and clean signals generated from the same distribution. Such problems are often addressed
by convex optimization procedures, and (1D) total variation denoising is a particularly
common and simple approach. Specifically, the total variation denoising approach attempts
to smooth some noisy observed signal y by solving the optimization problem

argmin
z

1

2
||y − z||+ λ||Dz||1 (3.25)

where D is the first-order differencing operation, which can be expressed in matrix form by
a matrix with rows Di = ei−ei+1 Penalizing the ℓ1 norm of the signal difference encourages
this difference to be sparse, i.e., the number of changepoints of the signal is small, and we
end up approximating y by a (roughly) piecewise constant function.

To test this approach and competing ones on a denoising task, we generate piecewise
constant signals (which are the desired outputs of the learning algorithm) and corrupt
them with independent Gaussian noise (which form the inputs to the learning algorithm).
Table 3.1 shows the error rate of these four approaches.

Baseline: Total variation denoising

To establish a baseline for denoising performance with total variation, we run the above
optimization problem varying values of λ between 0 and 100. The procedure performs best
with a choice of λ ≈ 13, and achieves a minimum test MSE on our task of about 16.5 (the
units here are unimportant, the only relevant quantity is the relative performances of the
different algorithms).

Baseline: Learning with a fully-connected neural network

An alternative approach to denoising is by learning from data. A function fθ(x) param-
eterized by θ can be used to predict the original signal. The optimal θ can be learned
by using the mean squared error between the true and predicted signals. Denoising is
typically a difficult function to learn and Table 3.1 shows that a fully-connected neural
network perform substantially worse on this denoising task than the convex optimization
problem. Figure 3.4 shows the error of the fully connected network on the denoising task.

Learning the differencing operator with OptNet

Between the feedforward neural network approach and the convex total variation opti-
mization, we could instead use a generic OptNet layers that effectively allowed us to solve
(3.25) using any denoising matrix, which we randomly initialize. While the accuracy here
is substantially lower than even the fully connected case, this is largely the result of learn-
ing an over-regularized solution to D. This is indeed a point that should be addressed in
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Figure 3.4: Error of the fully connected network for denoising

Figure 3.5: Initial and learned difference operators for denoising.

future work (we refer back to our comments in the previous section on the potential chal-
lenges of training these layers), but the point we want to highlight here is that the OptNet
layer seems to be learning something very interpretable and understandable. Specifically,
Figure 3.5 shows the D matrix of our solution before and after learning (we permute the
rows to make them ordered by the magnitude of where the large-absolute-value entries
occurs). What is interesting in this picture is that the learned D matrix typically captures
exactly the same intuition as the D matrix used by total variation denoising: a mainly
sparse matrix with a few entries of alternating sign next to each other. This implies that
for the data set we have, total variation denoising is indeed the “right” way to think about
denoising the resulting signal, but if some other noise process were to generate the data,
then we can learn that process instead. We can then attain lower actual error for the
method (in this case similar though slightly higher than the TV solution), by fixing the
learned sparsity of the D matrix and then fine tuning.

Fine-tuning and improving the total variation solution

To finally highlight the ability of the OptNet methods to improve upon the results of a
convex program, specifically tailoring to the data. Here, we use the same OptNet archi-
tecture as in the previous subsection, but initialize D to be the differencing matrix as in
the total variation solution. As shown in Table 3.1, the procedure is able to improve both
the training and testing MSE over the TV solution, specifically improving upon test MSE
by 12%. Figure 3.6 shows the convergence of the OptNet fine-tuned TV solution.
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Method Train MSE Test MSE
FC Net 18.5 29.8
Pure OptNet 52.9 53.3
Total Variation 16.3 16.5
OptNet Tuned TV 13.8 14.4

Table 3.1: Denoising task error rates.
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Figure 3.6: Error rate from fine-tuning the TV solution for denoising

3.4.3 MNIST
In this section we consider the integration of QP OptNet layers into a traditional fully
connected network for the MNIST problem. The results here show only very marginal
improvement if any over a fully connected layer (MNIST, after all, is very fairly well-
solved by a fully connected network, let alone a convolution network). But our main point
of this comparison is simply to illustrate that we can include these layers within existing
network architectures and efficiently propagate the gradients through the layer.

Specifically we use a FC600-FC10-FC10-SoftMax fully connected network and compare
it to a FC600-FC10-Optnet10-SoftMax network, where the numbers after each layer indi-
cate the layer size. The OptNet layer in this case includes only inequality constraints and
the previous layer is only used in the linear objective term p(zi) = zi. To keep Q ≻ 0, we
use a Cholesky factorization Q = LLT + ϵI and directly learn L (without any information
from the previous layer). We also directly learn A and G, and to ensure a feasible solution
always exists, we select some learnable z0 and s0 and set b = Az0 and h = Gz0 + s0.

Figure 3.7 shows that the results are similar for both networks with slightly lower error
and less variance in the OptNet network.
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Figure 3.7: Training performance on MNIST; top: fully connected network; bottom: Opt-
Net as final layer.)
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Figure 3.8: Example mini-Sudoku initial problem and solution.

3.4.4 Sudoku

Finally, we present the main illustrative example of the representational power of our
approach, the task of learning the game of Sudoku. Sudoku is a popular logical puzzle,
where a (typically 9x9) grid of points must be arranged given some initial point, so that
each row, each column, and each 3x3 grid of points must contain one of each number 1
through 9. We consider the simpler case of 4x4 Sudoku puzzles, with numbers 1 through
4, as shown in Section 3.4.3.

Sudoku is fundamentally a constraint satisfaction problem, and is trivial for computers
to solve when told the rules of the game. However, if we do not know the rules of the game,
but are only presented with examples of unsolved and the corresponding solved puzzle, this
is a challenging task. We consider this to be an interesting benchmark task for algorithms
that seek to capture complex strict relationships between all input and output variables.
The input to the algorithm consists of a 4x4 grid (really a 4x4x4 tensor with a one-hot
encoding for known entries an all zeros for unknown entries), and the desired output is a
4x4x4 tensor of the one-hot encoding of the solution.

This is a problem where traditional neural networks have difficulties learning the nec-
essary hard constraints. As a baseline inspired by the models at https://github.com/
Kyubyong/sudoku, we implemented a multilayer feedforward network to attempt to solve
Sudoku problems. Specifically, we report results for a network that has 10 convolutional
layers with 512 3x3 filters each, and tried other architectures as well. The OptNet layer
we use on this task is a completely generic QP in “standard form” with only positivity in-
equality constraints but an arbitrary constraint matrix Ax = b, a small Q = 0.1I to make
sure the problem is strictly feasible, and with the linear term q simply being the input
one-hot encoding of the Sudoku problem. We know that Sudoku can be approximated well
with a linear program (indeed, integer programming is a typical solution method for such
problems), but the model here is told nothing about the rules of Sudoku.

We trained these models using ADAM [KB14] to minimize the MSE (which we refer to
as “loss”) on a dataset we created consisting of 9000 training puzzles, and we then tested
the models on 1000 different held-out puzzles. The error rate is the percentage of puzzles
solved correctly if the cells are assigned to whichever index is largest in the prediction.
Figure 3.9 shows that the convolutional is able to learn all of the necessary logic for the
task and ends up over-fitting to the training data. We contrast this with the performance
of the OptNet network, which learns most of the correct hard constraints within the first
three epochs and is able to generalize much better to unseen examples.
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Figure 3.9: Sudoku training plots.

3.5 Conclusion
We have presented OptNet, a neural network architecture where we use optimization prob-
lems as a single layer in the network. We have derived the algorithmic formulation for
differentiating through these layers, allowing for backpropagating in end-to-end architec-
tures. We have also developed an efficient batch solver for these optimizations based upon
a primal-dual interior point method, and developed a method for attaining the necessary
gradient information “for free” from this approach. Our experiments highlight the potential
power of these networks, showing that they can solve problems where existing networks
are very poorly suited, such as learning Sudoku problems purely from data. There are
many future directions of research for these approaches, but we feel that they add another
important primitive to the toolbox of neural network practitioners.
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Chapter 4
Input-Convex Neural Networks

This chapter describes the input-convex neural network (ICNN) architecture that helps
make inference and learning in deep energy-based models and structured prediction more
tractable. These are scalar-valued (potentially deep) neural networks with constraints on
the network parameters such that the output of the network is a convex function of (some
of) the inputs. The networks allow for efficient inference via optimization over some inputs
to the network given others, and can be applied to settings including structured prediction,
data imputation, reinforcement learning, and others. In this chapter we lay the basic
groundwork for these models, proposing methods for inference, optimization and learning,
and analyze their representational power. We show that many existing neural network
architectures can be made input-convex with a minor modification, and develop specialized
optimization algorithms tailored to this setting. Finally, we highlight the performance
of the methods on multi-label prediction, image completion, and reinforcement learning
problems, where we show improvement over the existing state of the art in many cases.

The contents of this chapter have been previously published at ICML 2017 in Amos,
Xu, and Kolter [AXK17].

4.1 Introduction
Input-convex neural networks (ICNNs) are scalar-valued (potentially deep) neural net-
works with constraints on the network parameters such that the output of the network is
a convex function of (some of) the inputs. The networks allow for efficient inference via
optimization over some inputs to the network given others, and can be applied to settings
including structured prediction, data imputation, reinforcement learning, and others. In
this chapter we lay the basic groundwork for these models, proposing methods for infer-
ence, optimization and learning, and analyze their representational power. We show that
many existing neural network architectures can be made input-convex with a minor mod-
ification, and develop specialized optimization algorithms tailored to this setting. Finally,
we highlight the performance of the methods on multi-label prediction, image completion,
and reinforcement learning problems, where we show improvement over the existing state
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of the art in many cases.
More specifically, input-convex neural networks are scalar-valued neural networks f(x, y; θ)

where x and y denotes inputs to the function and θ denotes the parameters, built in such
a way that the network is convex in (a subset of) inputs y.1 The fundamental benefit to
these ICNNs is that we can optimize over the convex inputs to the network given some
fixed value for other inputs. That is, given some fixed x (and possibly some fixed elements
of y) we can globally and efficiently (because the problem is convex) solve the optimization
problem

argmin
y

f(x, y; θ). (4.1)

Fundamentally, this formalism lets us perform inference in the network via optimization.
That is, instead of making predictions in a neural network via a purely feedforward process,
we can make predictions by optimizing a scalar function (which effectively plays the role
of an energy function) over some inputs to the function given others. There are a number
of potential use cases for these networks.

Structured prediction As is perhaps apparent from our notation above, a key applica-
tion of this work is in structured prediction. Given (typically high-dimensional) structured
input and output spaces X ×Y , we can build a network over (x, y) pairs that encodes the
energy function for this pair, following typical energy-based learning formalisms [LeC+06].
Prediction involves finding the y ∈ Y that minimizes the energy for a given x, which is
exactly the argmin problem in Equation (4.1). In our setting, assuming that Y is a con-
vex space (a common assumption in structured prediction), this optimization problem is
convex. This is similar in nature to the structured prediction energy networks (SPENs)
[BM16], which also use deep networks over the input and output spaces, with the difference
being that in our setting f is convex in y, so the optimization can be performed globally.

Data imputation Similar to structured prediction but slightly more generic, if we
are given some space Y we can learn a network f(y; θ) (removing the additional x inputs,
though these can be added as well) that, given an example with some subset I missing,
imputes the likely values of these variables by solving the optimization problem as above
ŷI = argminyI

f(yI , yĪ ; θ) This could be used e.g., in image inpainting where the goal is to
fill in some arbitrary set of missing pixels given observed ones.

Continuous action reinforcement learning Given a reinforcement learning problem
with potentially continuous state and action spaces S ×A, we can model the (negative) Q
function, −Q(s, a; θ) as an input convex neural network. In this case the action selection
procedure can be formulated as a convex optimization problem a⋆(s) = argmina−Q(s, a; θ).

1 We emphasize the term “input convex” since convexity in machine learning typically refers to convexity
(of the loss minimization learning problem) in the parameters, which is not the case here. Note that in our
notation, f needs only be a convex function in y, and may still be non-convex in the remaining inputs x.
Training these neural networks remains a nonconvex problem, and the convexity is only being exploited
at inference time.
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4.2 Connections to related work
Energy-based learning The interplay between inference, optimization, and structured
prediction has a long history in neural networks. Several early incarnations of neural net-
works were explicitly trained to produce structured sequences (e.g. Simard and LeCun
[SL91]), and there was an early appreciation that structured models like hidden Markov
models could be combined with the outputs of neural networks [BLH94]. Much of this
earlier work is surveyed and synthesized by LeCun, Chopra, Hadsell, Ranzato, and Huang
[LeC+06], who give a tutorial on these energy based learning methods. In recent years,
there has been a strong push to further incorporate structured prediction methods like con-
ditional random fields as the “last layer” of a deep network architecture [PBX09; Zhe+15;
Che+15a]. Several methods have proposed to build general neural networks over joint
input and output spaces, and perform inference over outputs using generic optimization
techniques such as Generative Adversarial Networks (GANs) [Goo+14] and Structured Pre-
diction Energy Networks (SPENs) [BM16]. SPENs provide a deep structure over input and
output spaces that performs the inference in Equation (4.1) as a non-convex optimization
problem.

The current work is highly related to the past approaches but also differs in a particular
way. Each of these structured prediction methods based upon energy-based models oper-
ates in one of two ways, either: 1) the architecture is built in a very particular way such
that optimization over the output is guaranteed to be “easy” (e.g. convex, or the result of
running some inference procedure), usually by introducing a structured linear objective at
the last layer of the network; or 2) no attempt is made to make the architecture “easy” to
run inference over, and instead a general model is built over the output space. In contrast,
our approach lies somewhere in between: by ensuring convexity of the resulting decision
space, we are constraining the inference problem to be easy in some respect, but we specify
very little about the architecture other than the constraints required to make it convex.
In particular, as we will show, the network architecture over the variables to be optimized
over can be deep and involve multiple non-linearities. The goal of the proposed work is
to allow for complex functions over the output without needing to specify them manually
(exactly analogous to how current deep neural networks treat their input space).

Structured prediction and MAP inference Our work also draws some connection
to MAP-inference-based learning and approximate inference. There are two broad classes
of learning approaches in structured prediction: method that use probabilistic inference
techniques (typically exploiting the fact that the gradient of log likelihood is given by the
actual feature expectations minus their expectation under the learned model [KF09, Ch
20]), and methods that rely solely upon MAP inference (such as max-margin structured
prediction [Tas+05; Tso+05]). MAP inference in particular also has close connections to
optimization, as various convex relaxations of the general MAP inference problem often
perform well in theory and practice.

The proposed methods can be viewed as an extreme case of these methods where
inference is based solely upon a convex optimization problem that may not have any
probabilistic semantics at all. Finally, although it is more abstract, we feel there is a
philosophical similarity between our proposed approach and sum-product networks [PD11];
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Figure 4.1: A fully input convex neural network (FICNN).

both settings define networks where inference is accomplished “easily” either by a sum-
product message passing algorithm (by construction) or via convex optimization.

Fitting convex functions Finally, the proposed work relates to a topic less considered
in the machine learning literature, that of fitting convex functions to data [BV04, pg. 338].
Indeed our learning problem can be viewed as parameter estimation under a model that
is guaranteed to be convex by its construction. The most similar work of which we are
aware specifically fits sums of rectified half-planes to data [MB09], which is similar to one
layer of our rectified linear units. However, the actual training scheme is much different,
and our deep network architecture allows for a much richer class of representations, while
still maintaining convexity.

4.3 Convex neural network architectures
Here we more formally present different ICNN architectures and prove their convexity
properties given certain constraints on the parameter space. Our chief claim is that the
class of (full and partial) input convex models is rich and lets us capture complex joint
models over the input to a network.

4.3.1 Fully input convex neural networks
To begin, we consider a fully convex, k-layer, fully connected ICNN that we call a FICNN
and is shown in Figure 4.1. This model defines a neural network over the input y (i.e.,
omitting any x term in this function) using the architecture for i = 0, . . . , k − 1

zi+1 = gi

(
W

(z)
i zi +W

(y)
i y + bi

)
, f(y; θ) = zk (4.2)

where zi denotes the layer activations (with z0,W
(z)
0 ≡ 0), θ = {W (y)

0:k−1,W
(z)
1:k−1, b0:k−1} are

the parameters, and gi are non-linear activation functions. The central result on convexity
of the network is the following:
Proposition 1. The function f is convex in y provided that all W (z)

1:k−1 are non-negative,
and all functions gi are convex and non-decreasing.

The proof is simple and follows from the fact that non-negative sums of convex functions
are also convex and that the composition of a convex and convex non-decreasing function
is also convex (see e.g. Boyd and Vandenberghe [BV04, p. 3.2.4]). The constraint that the
gi be convex non-decreasing is not particularly restrictive, as current non-linear activation
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units like the rectified linear unit or max-pooling unit already satisfy this constraint. The
constraint that the W (z) terms be non-negative is somewhat restrictive, but because the
bias terms and W (y) terms can be negative, the network still has substantial representation
power, as we will shortly demonstrate empirically.

One notable addition in the ICNN are the “passthrough” layers that directly connect
the input y to hidden units in deeper layers. Such layers are unnecessary in traditional
feedforward networks because previous hidden units can always be mapped to subsequent
hidden units with the identity mapping; however, for ICNNs, the non-negativity constraint
subsequent W (z) weights restricts the allowable use of hidden units that mirror the identity
mapping, and so we explicitly include this additional passthrough. Some passthrough
layers have been recently explored in the deep residual networks [He+15] and densely
connected convolutional networks [HLW16], though these differ from those of an ICNN as
they pass through hidden layers deeper in the network, whereas to maintain convexity our
passthrough layers can only apply to the input directly.

Other linear operators like convolutions can be included in ICNNs without changing the
convexity properties. Indeed, modern feedforward architectures such as AlexNet [KSH12],
VGG [SZ14], and GoogLeNet [Sze+15] with ReLUs [NH10] can be made input convex
with Proposition 1. In the experiments that follow, we will explore ICNNs with both fully
connected and convolutional layers.

4.3.2 Convolutional input-convex architectures
Convolutional architectures are important for many vision tasks and can easily be made
input-convex because the convolution is a linear operator. The construction of convo-
lutional layers in ICNNs depends on the type of input and output space. If the input
and output space are similarly structured (e.g. both spatial), the jth feature map of a
convolutional PICNN layer i can be defined by

zji+1 = gi

(
zi ∗W (z)

i,j + (Sx) ∗W (x)
i,j + (Sy) ∗W (y)

i,j + bi,j

)
(4.3)

where the convolution kernels W are the same size and S scales the input and output to
be the same size as the previous feature map, and were we omit some of the Hadamard
product terms that can appear above for simplicity of presentation.

If the input space is spatial, but the output space has another structure (e.g. the sim-
plex), the convolution over the output space can be replaced by a matrix-vector operation,
such as

zji+1 = gi

(
zi ∗W (z)

i,j + (Sx) ∗W (x)
i,j +B

(y)
i,j y + bi,j

)
(4.4)

where the product B
(y)
i,j y is a scalar.

4.3.3 Partially input convex architectures
The FICNN provides joint convexity over the entire input to the function, which indeed
may be a restriction on the allowable class of models. Furthermore, this full joint convexity
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Figure 4.2: A partially input convex neural network (PICNN).

is unnecessary in settings like structured prediction where the neural network is used to
build a joint model over an input and output example space and only convexity over the
outputs is necessary.

In this section we propose an extension to the pure FICNN, the partially input convex
neural network (PICNN), that is convex over only some inputs to the network (in general
ICNNs will refer to this new class). As we will show, these networks generalize both tra-
ditional feedforward networks and FICNNs, and thus provide substantial representational
benefits. We define a PICNN to be a network over (x, y) pairs f(x, y; θ) where f is convex
in y but not convex in x. Figure 4.2 illustrates one potential k-layer PICNN architecture
defined by the recurrences

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi

(
W

(z)
i

(
zi ◦ [W (zu)

i ui + b
(z)
i ]+

)
+

W
(y)
i

(
y ◦ (W (yu)

i ui + b
(y)
i )
)
+W

(u)
i ui + bi

)
f(x, y; θ) = zk, u0 = x

(4.5)

where ui ∈ Rni and zi ∈ Rmi denote the hidden units for the “x-path” and “y-path”, where
y ∈ Rp, and where ◦ denotes the Hadamard product, the elementwise product between two
vectors. The crucial element here is that unlike the FICNN, we only need the W (z) terms
to be non-negative, and we can introduce arbitrary products between the ui hidden units
and the zi hidden units. The following proposition highlights the representational power
of the PICNN.
Proposition 2. A PICNN network with k layers can represent any FICNN with k layers
and any purely feedforward network with k layers.

Proof. To recover a FICNN we simply set the weights over the entire x path to be zero
and set b(z) = b(y) = 1. We can recover a feedforward network by noting that a traditional
feedforward network f̂(x; θ) where f : X → Y , can be viewed as a network with an inner
product f(x; θ)Ty in its last layer (see e.g. LeCun, Chopra, Hadsell, Ranzato, and Huang
[LeC+06] for more details). Thus, a feedforward network can be represented as a PICNN
by setting the x path to be exactly the feedforward component, then having the y path be
all zero except W

(yu)
k−1 = I and W

(y)
k−1 = 1T .
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4.4 Inference in ICNNs
Prediction in ICNNs (which we also refer to as inference), requires solving the convex
optimization problem

minimize
y∈Y

f(x, y; θ) (4.6)

While the resulting tasks are convex optimization problems (and thus “easy” to solve
in some sense), in practice this still involves the solution of a potentially very complex
optimization problem. We discuss here several approaches for approximately solving these
optimization problems. We can usually obtain reasonably accurate solutions in many
settings using a procedure that only involves a small number of forward and backward
passes through the network, and which thus has a complexity that is at most a constant
factor worse than that for feedforward networks. The same consideration will apply to
training such networks, which we will discuss in Section 4.5.

4.4.1 Exact inference in ICNNs
Although it is not a practical approach for solving the optimization tasks, we first highlight
the fact that the inference problem for the networks presented above (where the non-linear
are either ReLU or linear units) can be posed as as linear program. Specifically, considering
the FICNN network in (4.2) can be written as the optimization problem

minimize
y,z1,...,zk

zk

subject to zi+1 ≥ W
(z)
i zi +W

(y)
i y + bi, i = 0, . . . , k − 1

zi ≥ 0, i = 1, . . . , k − 1.

(4.7)

This problem exactly replicates the equations of the FICNN, with the exception that we
have replaced ReLU and the equality constraint between layers with a positivity constraint
on the zi terms and an inequality. However, because we are minimizing the final zk term,
and because each inequality constraint is convex, at the solution one of these constraints
must be tight, i.e., (zi)j = (W

(z)
i zi + W

(y)
i y + bi)j or (zi)j = 0, which recovers the ReLU

non-linearity exactly. The exact same procedure can be used to write to create an exact
inference procedure for the PICNN.

Although the LP formulation is appealing in its simplicity, in practice these optimiza-
tion problems will have a number of variables equal to the total number of activations
in the entire network. Furthermore, most LP solution methods to solve such problems
require that we form and invert structured matrices with blocks such as W T

i Wi — the
case for most interior-point methods [Wri97] or even approximate algorithms such as the
alternating direction method of multipliers [Boy+11] — which are large dense matrices or
have structured forms such as non-cyclic convolutions that are expensive to invert. Even
incremental approaches like the Simplex method require that we form inverses of subsets
of columns of these matrices, which are additionally different for structured operations like
convolutions, and which overall still involve substantially more computation than a sin-
gle forward pass. Furthermore, such solvers typically do not exploit the substantial effort
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that has gone in to accelerating the forward and backward computation passes for neural
networks using hardware such as GPUs. Thus, as a whole, these do not present a viable
option for optimizing the networks.

4.4.2 Approximate inference in ICNNs
Because of the impracticality of exact inference, we focus on approximate approaches to
optimizing over the inputs to these networks, but ideally ones that still exploit the convexity
of the resulting problem. We specifically focus on gradient-based approaches, which use
the fact that we can easily compute the gradient of an ICNN with respect to its inputs,
∇yf(x, y; θ), using backpropagation.

Gradient descent. The simplest gradient-based methods for solving Equation (4.6) is
just (projected sub-) gradient descent, or modifications such as those that use a momentum
term [Pol64; RHW88], or spectral step size modifications [BB88; BMR00]. That is, we start
with some initial ŷ and repeat the update

ŷ ← PY (ŷ − α∇yf(x, ŷ; θ)) (4.8)

This method is appealing in its simplicity, but suffers from the typical problems of gradient
descent on non-smooth objectives: we need to pick a step size and possibly use a sequence
of decreasing step sizes, and don’t have an obvious method to assess how accurate of a
current solution we have obtained (since an ICNN with ReLUs is piecewise linear, it will
not have zero gradient at the solution). The method is also more challenging to integrate
with some learning procedures, as we often need to differentiate through an entire chain of
the gradient descent algorithm [Dom12]. Thus, while the method can sometimes work in
practice, we have found that other approaches typically far outperform this method, and
we will focus on alternative approximate approaches for the remainder of this section.

4.4.3 Approximate inference via the bundle method
We here review the basic bundle method [SVL08] that we build upon in our bundle entropy
method. The bundle method takes advantage of the fact that for a convex objective, the
first-order approximation at any point is a global under-estimator of the function; this
lets us maintain a piecewise linear lower bound on the function by adding cutting planes
formed by this first order approximation, and then repeatedly optimizing this lower bound.
Specifically, the process follows the procedure shown in Algorithm 1. Denoting the iterates
of the algorithm as yk, at each iteration of the algorithm, we compute the first order
approximation to the function

f(x, yk; θ) +∇yf(x, y
k; θ)T (y − yk) (4.9)

and update the next iteration by solving the optimization problem

yk+1 := argmin
y∈Y

max
1≤i≤k

{f(x, yi; θ) +∇yf(x, y
i; θ)T (y − yi)}. (4.10)
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A bit more concretely, the optimization problem can be written via a set of linear inequality
constraints

yk+1, tk+1 := argmin
y∈Y,t

{t | Gy + h ≤ t1} (4.11)

where G ∈ Rk×n has rows equal to

gTi = ∇yf(x, y
i; θ)T (4.12)

and h ∈ Rk has entries equal to

hi = f(x, yi; θ)−∇yf(x, y
i; θ)Tyi. (4.13)

Algorithm 1 A typical bundle method to optimize f : Rm×n → R over Rn for K iterations
with a fixed x and initial starting point y1.

function BundleMethod(f , x, y1, K)
G ← 0 ∈ RK×n

h ← 0 ∈ RK

for k = 1, K do
GT

k ← ∇yf(x, y
k; θ)T ▷ kth row of G

hk ← f(x, yk; θ)−∇yf(x, y
k; θ)Tyk

yk+1, tk+1 ← argminy∈Y,t {t | G1:ky + h1:k ≤ t1}
end for
return yK+1

end function

4.4.4 Approximate inference via the bundle entropy method
An alternative approach to gradient descent is the bundle method [SVL08], also known as
the epigraph cutting plane approach, which iteratively optimizes a piecewise lower bound
on the function given by the maximum over a set of first-order approximations. However,
as, the traditional bundle method is not well suited to our setting (we need to evaluate a
number of gradients equal to the dimension of x, and solve a complex optimization problem
at each step) we have developed a new optimization algorithm for this domain that we
term the bundle entropy method. This algorithm specifically applies to the (common) case
where Y is bounded, which we assume to be Y = [0, 1]n (other upper or lower bounds can
be attained through scaling). The method is also easily extensible to the setting where
elements of Y belong to a higher-dimensional probability simplex as well.

For this approach, we consider adding an additional “barrier” function to the optimiza-
tion in the form of the negative entropy −H(y), where

H(y) = −
n∑

i=1

(yi log yi + (1− yi) log(1− yi)). (4.14)
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In other words, we instead want to solve the optimization problem argminy f(x, y; θ) −
H(y) (with a possible additional scaling term). The negative entropy is a convex function,
with the limits of limy→0H(y) = limy→1H(y) = 0, and negative values in the interior of
this range. The function acts as a barrier because, although it does not approach infinity as
it reaches the barrier of the feasible set, its gradient does approach infinity as it reaches the
barrier, and thus the optimal solution will always lie in the interior of the unit hypercube
Y .

An appealing feature of the entropy regularization comes from its close connection
with sigmoid units in typical neural networks. It follows easily from first-order optimality
conditions that the optimization problem

minimize
y

cTy −H(y) (4.15)

is given by y⋆ = 1/(1 + exp(c)). Thus if we consider the “trivial” PICNN mentioned in
Section 4.3.3, which simply consists of the function f(x, y; θ) = yT f̃(x; θ) for some purely
feedforward network f̃(x; θ), then the entropy-regularized minimization problem gives a
solution that is equivalent to simply taking the sigmoid of the neural network outputs.
Thus, the move to ICNNs can be interpreted as providing a more structured joint energy
functional over the linear function implicitly used by sigmoid layers.

At each iteration of the bundle entropy method, we solve the optimization problem

yk+1, tk+1 := argmin
y,t

{t−H(y) | Gy + h ≤ t1} (4.16)

where G ∈ Rk×n has rows equal to

gTi = ∇yf(x, y
i; θ)T (4.17)

and h ∈ Rk has entries equal to

hi = f(x, yi; θ)−∇yf(x, y
i; θ)Tyi. (4.18)

The Lagrangian of the optimization problem is

L(y, t, λ) = t−H(y) + λT (Gy + h− t1) (4.19)

and differentiating with respect to y and t gives the optimality conditions

∇yL(y, t, λ) = 0 =⇒ y =
1

1 + exp(GTλ)

∇tL(y, t, λ) = 0 =⇒ 1Tλ = 1

(4.20)

which in turn leads to the dual problem

maximize
λ

(G1 + h)Tλ− 1T log(1 + exp(GTλ))

subject to λ ≥ 0, 1Tλ = 1.
(4.21)
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This is a smooth optimization problem over the unit simplex, and can be solved using
a method like the Projected Newton method of [Ber82, pg. 241, eq. 97]. A complete
description of the bundle entropy method is given in Algorithm 2. For lower dimensional
problems, the bundle entropy method often attains an exact solution after a relatively
small number of iterations. And even for larger problems, we find that the approximate
solutions generated by a very small number of iterations (we typically use 5 iterations),
still substantially outperform gradient descent approaches. Further, because we maintain
an explicit lower bound on the function, we can compute an optimality gap of our solution,
though in practice just using a fixed number of iterations performs well.

Algorithm 2 Our bundle entropy method to optimize f : Rm × [0, 1]n → R over [0, 1]n

for K iterations with a fixed x and initial starting point y1.
function BundleEntropyMethod(f , x, y1, K)

Gℓ ← [ ]
hℓ ← [ ]
for k = 1, K do

Append(Gℓ, ∇yf(x, y
k; θ)T )

Append(hℓ, f(x, yk; θ)−∇yf(x, y
k; θ)Tyk)

ak ← Length(Gℓ) ▷ The number of active constraints.
Gk ← Concat(Gℓ)∈ Rak×n

hk ← Concat(hℓ)∈ Rak

if ak = 1 then
λk ← 1

else
λk ← ProjNewtonLogistic(Gk, hk)

end if
yk+1 ← (1 + exp(GT

k λk))
−1

Delete(Gℓ[i] and hℓ[i] where λi ≤ 0) ▷ Prune inactive constraints.
end for
return yK+1

end function

4.5 Learning in ICNNs
Generally speaking, ICNN learning shapes the objective’s energy function to produce the
desired values when optimizing over the relevant inputs. That is, for a given input output
pair (x, y⋆), our goal is to find ICNN parameters θ such that

y⋆ ≈ argmin
y

f̃(x, y; θ) (4.22)

where for the entirely of this section, we use the notation f̃ to denote the combination of
the neural network function plus the regularization term such as −H(y), if it is included,
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i.e.
f̃(x, y; θ) = f(x, y; θ)−H(y). (4.23)

Although we only discuss the entropy regularization in this work, we emphasize that other
regularizers are also possible. Depending on the setting, there are several different ap-
proaches we can use to ensure that the ICNN achieves the desired targets, and we consider
three approaches below: direct functional fitting, max-margin structured prediction, and
argmin differentiation.

Direct functional fitting. We first note that in some domains, we do not need
a specialized procedure for fitting ICNNs, but can use existing approaches that directly
fit the ICNN. An example of this is the Q-learning setting. Given some observed tuple
(s, a, r, s′), Q learning updates the parameters θ with the gradient(

Q(s, a)− r − γmax
a′

Q(s′, a′)
)
∇θQ(s, a), (4.24)

where the maximization step is carried out with gradient descent or the bundle entropy
method. These updates can be applied to ICNNs with the only additional requirement
that we project the weights onto their feasible sets after this update (i.e., clip or project
any W terms that are required to be positive). Algorithm 3 gives a complete description
of deep Q-learning with ICNNs.

4.5.1 Max-margin structured prediction
In the more traditional structured prediction setting, where we do not aim to fit the energy
function directly but fit the predictions made by the system to some target outputs, there
are different possibilities for learning the ICNN parameters. One such method is based
upon the max-margin structured prediction framework [Tso+05; Tas+05]. Given some
training example (x, y⋆), we would like to require that this example has a joint energy that
is lower than all other possible values for y. That is, we want the function f̃ to satisfy the
constraint

f̃(x, y⋆; θ) ≤ min
y

f̃(x, y; θ) (4.25)

Unfortunately, these conditions can be trivially fit by choosing a constant f̃ (although the
entropy term alleviates this problem slightly, we can still choose an approximately constant
function), so instead the max-margin approach adds a margin-scaling term that requires
this gap to be larger for y further from y⋆, as measured by some loss function ∆(y, y⋆).
Additionally adding slack variables to allow for potential violation of these constraints, we
arrive at the typical max-margin structured prediction optimization problem

minimize
θ,ξ≥0

λ

2
∥θ∥22 +

m∑
i=1

ξi

subject to f̃(xi, yi; θ) ≤ min
y∈Y

(
f̃(xi, y; θ)−∆(yi, y)

)
− ξi

(4.26)

As a simple example, for multiclass classification tasks where y⋆ denotes a “one-hot” en-
coding of examples, we can use a multi-variate entropy term and let ∆(y, y⋆) = y⋆T (1− y).
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Training requires solving this “loss-augmented” inference problem, which is convex for
suitable choices of the margin scaling term.

The optimization problem (4.26) is naturally still not convex in θ, but can be solved
via the subgradient method for structured prediction [RBZ07]. This algorithm iteratively
selects a training example xi, yi, then 1) solves the optimization problem

y⋆ = argmin
y∈Y

f(xi, y; θ)−∆(yi, y) (4.27)

and 2) if the margin is violated, updates the network’s parameters according to the sub-
gradient

θ := P+ [θ − α (λθ +∇θf(xi, yi, θ)−∇θf(xi, y
⋆; θ))] (4.28)

where P+ denotes the projection of W (z)
1:k−1 onto the non-negative orthant. This method can

be easily adapted to use mini-batches instead of a single example per subgradient step, and
also adapted to alternative optimization methods like AdaGrad [DHS11] or ADAM [KB14].
Further, a fast approximate solution to y⋆ can be used instead of the exact solution.

4.5.2 Argmin differentiation
In our final proposed approach, that of argmin differentiation, we propose to directly
minimize a loss function between true outputs and the outputs predicted by our model,
where these predictions themselves are the result of an optimization problem. We explicitly
consider the case where the approximate solution to the inference problem is attained via
the previously-described bundle entropy method, typically run for some fixed (usually
small) number of iterations. To simplify notation, in the following we will let

ŷ(x; θ) = argmin
y

min
t
{t−H(y) | Gy + h ≤ t1}

≈ argmin
y

f̃(x, y; θ)
(4.29)

refer to the approximate minimization over y that results from running the bundle entropy
method, specifically at the last iteration of the method.

Given some example (x, y⋆), our goal is to compute the gradient, with respect to the
ICNN parameters, of the loss between y⋆ and ŷ(x; θ): ℓ(ŷ(x; θ), y⋆). This is in some sense
the most direct analogue to traditional neural network learning, since we typically optimize
networks by minimizing some loss between the network’s (feedforward) predictions and
the true desired labels. Doing this in the predictions-via-optimization setting requires that
we differentiate “through” the argmin operator, which can be accomplished via implicit
differentiation of the KKT optimality conditions. Although the derivation is somewhat
involved, the final result is fairly compact, and is given by the following proposition (for
simplicity, we will write ŷ below instead of ŷ(x; θ) when the notation should be clear):
Proposition 3. The gradient of the neural network loss for predictions generated through
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the minimization process is

∇θℓ(ŷ(x; θ), y
⋆) =

k∑
i=1

(cλi∇θf(x, y
i; θ) +∇θ

(
∇yf(x, y

i; θ)T
(
λic

y + cλi
(
ŷ(x; θ)− yi

)))
)

(4.30)
where yi denotes the solution returned by the ith iteration of the entropy bundle method, λ
denotes the dual variable solution of the entropy bundle method, and where the c variables
are determined by the solution to the linear system H GT 0

G 0 −1
0 −1T 0

 cy

cλ

ct

 =

 −∇ŷℓ(ŷ, y
⋆)

0
0

 . (4.31)

where H = diag
(

1
ŷ
+ 1

1−ŷ

)
.

Proof (of Proposition 3). We have by the chain rule that

∂ℓ

∂θ
=

∂ℓ

∂ŷ

(
∂ŷ

∂G

∂G

∂θ
+

∂ŷ

∂h

∂h

∂θ

)
. (4.32)

The challenging terms to compute in this equation are the ∂ŷ
∂G

and ∂ŷ
∂h

terms. These can
be computed (although we will ultimately not compute them explicitly, but just compute
the product of these matrices and other terms in the Jacobian), by implicit differentiation
of the KKT conditions. Specifically, the KKT conditions of the bundle entropy method
(considering only the active constraints at the solution) are given by

1 + log ŷ − log(1− ŷ) +GTλ = 0

Gŷ + h− t1 = 0

1Tλ = 1.

(4.33)

For simplicity of presentation, we consider first the Jacobian with respect to h. Taking
differentials of these equations with respect to h gives

diag

(
1

ŷ
+

1

1− ŷ

)
dy +GTdλ = 0

Gdy + dh− dt1 = 0

1Tdλ = 0

(4.34)

or in matrix form  diag
(

1
ŷ
+ 1

1−ŷ

)
GT 0

G 0 −1
0 −1T 0


 dy

dλ
dt

 =

 0
−dh
0

 . (4.35)

To compute the Jacobian ∂ŷ
∂h

we can solve the system above with the right hand side given
by dh = I, and the resulting dy term will be the corresponding Jacobian. However, in our
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ultimate objective we always left-multiply the proper terms in the above equation by ∂ℓ
∂ŷ

.
Thus, we instead define

 cy

cλ

ct

 =

 diag
(
1
ŷ + 1

1−ŷ

)
GT 0

G 0 −1
0 −1T 0


−1  −( ∂ℓ∂ŷ )T0

0

 (4.36)

and we have the the simple formula for the Jacobian product

∂ℓ

∂ŷ

∂ŷ

∂h
= (cλ)T . (4.37)

A similar set of operations taking differentials with respect to G leads to the matrix
equations  diag

(
1
ŷ + 1

1−ŷ

)
GT 0

G 0 −1
0 −1T 0


 dy

dλ
dt

 =

 −dGTλ
−dGy

0

 (4.38)

and the corresponding Jacobian products / gradients are given by

∂ℓ

∂ŷ

∂ŷ

∂G
= cyλT + ŷ(cλ)T . (4.39)

Finally, using the definitions that

gTi = ∇yf(x, y
i; θ)T , hi = f(x, yk; θ)−∇yf(x, y

i; θ)Tyi (4.40)

we recover the formula presented in the proposition.

The complexity of computing this gradient will be linear in k, which is the number of
active constraints at the solution of the bundle entropy method. The inverse of this matrix
can also be computed efficiently by just inverting the k× k matrix GH−1GT via a variable
elimination procedure, instead of by inverting the full matrix. The gradients ∇θf(x, yi; θ)
are standard neural network gradients, and further, can be computed in the same for-
ward/backward pass as we use to compute the gradients for the bundle entropy method.
The main challenge of the method is to compute the terms of the form ∇θ(∇yf(x, yi; θ)

Tv)
for some vector v. This quantity can be computed by most autodifferentiation tools (the
gradient inner product ∇yf(x, yi; θ)

Tv itself just becomes a graph computation than can
be differentiated itself), or it can be computed by a finite difference approximation. The
complexity of computing this entire gradient is a small constant multiple of computing k
gradients with respect to θ.

Given this ability to compute gradients with respect to an arbitrary loss function, we
can fit the parameter using traditional stochastic gradient methods examples. Specifically,
given an example (or a minibatch of examples) xi, yi, we compute gradients∇θℓ(ŷ(xi; θ), yi)
and update the parameters using e.g. the ADAM optimizer [KB14].

51



Figure 4.3: FICNN (top) and PICNN (bottom) classification of synthetic non-convex de-
cision boundaries. Best viewed in color.

4.6 Experiments

Our experiments study the representational power of ICNNs to better understand the
interplay between the model’s restrictiveness and accuracy. Specifically, we evaluate the
method on multi-label classification on the BibTeX dataset [KTV08], image completion
using the Olivetti face dataset [SH94], and continuous action reinforcement learning in
the OpenAI Gym [Bro+16]. We show that the methods compare favorably to the state
of the art in many situations. The full source code for all experiments is available in
the icml2017 branch at https://github.com/locuslab/icnn and our implementation is
built using Python [VD95] with the numpy [Oli06] and TensorFlow [Aba+16] packages.

4.6.1 Synthetic 2D example

We begin with a simple example to illustrate the classification performance of a two-hidden-
layer FICNN and PICNN on two-dimensional binary classification tasks from the scikit-
learn toolkit [Ped+11]. Figure 4.3 shows the classification performance on the dataset.
The FICNN’s energy function which is fully convex in X × Y jointly is able to capture
complex, but sometimes restrictive decision boundaries. The PICNN, which is nonconvex
over X but convex over Y overcomes these restrictions and can capture more complex
decision boundaries.
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Method Test Macro-F1
Feedforward net 0.396
ICNN 0.415
SPEN [BM16] 0.422

Table 4.1: Comparison of approaches on BibTeX multi-label classification task. (Higher is
better.)

4.6.2 Multi-Label Classification
We first study how ICNNs perform on multi-label classification with the BibTeX dataset
and benchmark presented in Katakis, Tsoumakas, and Vlahavas [KTV08]. This bench-
mark maps text classification from an input space X of 1836 bag-of-works indicator (bi-
nary) features to an output space Y of 159 binary labels. We use the train/test split of
4880/2515 from [KTV08] and evaluate with the macro-F1 score (higher is better). We
use the ARFF version of this dataset from Mulan [Tso+11]. Our PICNN architecture for
multi-label classification uses fully-connected layers with ReLU activation functions and
batch normalization [IS15] along the input path. As a baseline, we use a fully-connected
neural network with batch normalization and ReLU activation functions. Both architec-
tures have the same structure (600 fully connected, 159 (#labels) fully connected). We
optimize our PICNN with 30 iterations of gradient descent with a learning rate of 0.1 and
a momentum of 0.3.

Table 4.1 compares several different methods for this problem. Our PICNN’s final
macro-F1 score of 0.415 outperforms our baseline feedforward network’s score of 0.396,
which indicates PICNNs have the power to learn a robust structure over the output space.
SPENs obtain a macro-F1 score of 0.422 on this task [BM16] and pose an interesting
comparison point to ICNNs as they have a similar (but not identical) deep structure that is
non-convex over the input space. The difference of 0.007 between ICNNs and SPENs could
be due to differences in our experimental setups, architectures, and random experimental
noise. Figure 4.4 shows the training progress of the feed-forward and PICNN models.

Figure 4.4: Training (blue) and test (red) macro-F1 score of a feedforward network (left)
and PICNN (right) on the BibTeX multi-label classification dataset. The final test F1
scores are 0.396 and 0.415, respectively. (Higher is better.)
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Figure 4.5: Example Olivetti test set image completions of the bundle entropy ICNN.

4.6.3 Image completion on the Olivetti faces

As a test of the system on a structured prediction task over a much more complex out-
put space Y , we apply a convolutional PICNN to face completion on the sklearn version
[Ped+11] of the Olivetti data set [SH94], which contains 400 64x64 grayscale images. IC-
NNs for face completion should be invariant to translations and other transformations in
the input space. To achieve this invariance, our PICNN is inspired by the DQN architec-
ture in Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland,
Ostrovski, et al. [Mni+15], which preserves this invariance in the different context of rein-
forcement learning. Specifically, our network is over (x, y) pairs where x (32x64) is the left
half and y (32x64) is the right half of the image. The input and output paths are: 32x8x8
conv (stride 4x2), 64x4x4 conv (stride 2x2), 64x3x3 conv, 512 fully connected.

This experiment uses the same training/test splits and minimizes the mean squared
error (MSE) as in Poon and Domingos [PD11]. We report the sum-product network results
from Poon and Domingos [PD11] and have also implemented dilated CNN [YK15] and fully
convolutional network (FCN) [LSD15] baselines. We also explore the tradeoffs between the
bundle entropy method and gradient descent and compare to the non-convex variant to
better understand the impacts of convexity. We use a learning rate of 0.01 and momentum
of 0.9 with gradient descent for the inner optimization in the ICNN.

Table 4.2 shows the test MSEs for the different approaches and example image com-
pletions are shown in Figure 4.5. We note that as future work, an ICNN variant of the
baseline dilated CNN and FCN architectures could be made in addition to the DQN archi-
tecture the ICNN in this experiment uses. For ICNNs, these results show that the bundle
entropy method can leverage more information from these five iterations than gradient
descent, even when the convexity constraint is relaxed. The PICNN trained with back-
optimization with the relaxed convexity constraint slightly outperforms the network with
the convexity constraint, but not the network trained with the bundle-entropy method.
This shows that for image completion with PICNNs, convexity does not seem to inhibit
the representational power. Furthermore, this experiment suggests that a small number of
inner optimization iterations (five in this case) is sufficient for good performance.
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Method MSE
Sum-Product Network Baseline [PD11] 942.0
Dilated CNN Baseline [YK15] 800.0
FCN Baseline [LSD15] 795.4
ICNN - Bundle Entropy 833.0
ICNN - Gradient Decent 872.0
ICNN - Nonconvex 850.9

Table 4.2: Olivetti image completion test reconstruction errors.

4.6.4 Continuous Action Reinforcement Learning

Finally, we present standard benchmarks in continuous action reinforcement learning from
the OpenAI Gym [Bro+16] that use the MuJoCo physics simulator [TET12]. We consider
the environments shown in Table 4.3. We model the (negative) Q function, −Q(s, a; θ) as an
ICNN and select actions with the convex optimization problem a⋆(s) = argmina−Q(s, a; θ).
We use Q-learning to optimize the ICNN as described in Section 4.5 and Algorithm 3. At
test time, the policy is selected by optimizing Q(s, a; θ). All of our experiments use a
PICNN with two fully-connected layers that each have 200 hidden units. We compare to
Deep Deterministic Policy Gradient (DDPG) [Lil+15] and Normalized Advantage Func-
tions (NAF) [Gu+16b] as state-of-the-art off-policy learning baselines.2

Environment # State # Action
InvertedPendulum-v1 4 1

InvertedDoublePendulum-v1 11 1
Reacher-v1 11 2

HalfCheetah-v1 17 6
Swimmer-v1 8 2

Hopper-v1 11 3
Walker2d-v1 17 6

Ant-v1 111 8
Humanoid-v1 376 17

HumanoidStandup-v1 376 17

Table 4.3: State and action space sizes in the OpenAI gym MuJoCo benchmarks.

2Because there are not official DDPG or NAF implementations or results on the OpenAI gym tasks, we
use the Simon Ramstedt’s DDPG implementation from https://github.com/SimonRamstedt/ddpg and
have re-implemented NAF.
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Task DDPG NAF ICNN
Ant 1000.00 999.03 1056.29
HalfCheetah 2909.77 2575.16 3822.99
Hopper 1501.33 1100.43 831.00
Humanoid 524.09 5000.68 433.38
HumanoidStandup 134265.96 116399.05 141217.38
InvDoubPend 9358.81 9359.59 9359.41
InvPend 1000.00 1000.00 1000.00
Reacher -6.10 -6.31 -5.08
Swimmer 49.79 69.71 64.89
Walker2d 1604.18 1007.25 298.21

Table 4.4: Maximum test reward for ICNN algorithm versus alternatives on several OpenAI
Gym tasks. (All tasks are v1.)

Algorithm 3 Deep Q-learning with ICNNs. Opt-Alg is a convex minimization algorithm
such as gradient descent or the bundle entropy method. Q̃θ is the objective the optimization
algorithm solves. In gradient descent, Q̃θ(s, a) = Q(s, a|θ) and with the bundle entropy
method, Q̃θ(s, a) = Q(s, a|θ) +H(a).

Select a discount factor γ ∈ (0, 1) and moving average factor τ ∈ (0, 1)
Initialize the ICNN −Q(s, a|θ) with target network parameters θ′ ← θ and a replay
buffer R← ∅
for each episode e = 1, E do

Initialize a random process N for action exploration
Receive initial observation state s1
for i = 1, I do

ai ← Opt-Alg(−Qθ, si, ai,0)+Ni ▷ For some initial action ai,0
Execute ai and observe ri+1 and si+1

Insert(R, (si, ai, si+1, ri+1))
Sample a random minibatch from the replay buffer: RM ⊆ R
for (sm, am, s

+
m, r

+
m) ∈ RM do

a+m ← Opt-Alg(−Qθ′ ,s+m,a+m,0) ▷ Uses the target parameters θ′

ym ← r+m + γQ(s+m, a
+
m|θ′)

end for
Update θ with a gradient step to minimize L = 1

|RM |
∑

m

(
Q̃(sm, am|θ)− ym

)2
θ′ ← τθ + (1− τ)θ′ ▷ Update the target network.

end for
end for

Table 4.4 shows the maximum test reward achieved on these tasks and, shows the
ICNNs can be used as a drop-in replacement for a function approximator in Q-learning.
Comparing the performance of the algorithms does not give a clear winner, as no algorithm
strictly outperforms the others and there are non-deterministic and high-variance issues in
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evaluating deep RL agents [Hen+18].
NAF poses a particularly interesting comparison point to ICNNs. In particular, NAF

decomposes the Q function in terms of the value function an an advantage function
Q(s, a) = V (s)+A(s, a) where the advantage function is restricted to be concave quadratic
in the actions, and thus always has a closed-form solution. In a sense, this closely mirrors
the setup of the PICNN architecture: like NAF, we have a separate non-convex path for
the s variables, and an overall function that is convex in a; however, the distinction is that
while NAF requires that the convex portion be quadratic, the ICNN architecture allows
any convex functional form.

4.7 Conclusion and future work
This chapter laid the groundwork for the input convex neural network model. By incor-
porating relatively simple constraints into existing network architectures, we can fit very
general convex functions and the apply optimization as an inference procedure. Since
many existing models already fit into this overall framework (e.g., CRF models perform an
optimization over an output space where parameters are given by the output of a neural
network), the proposed method presents an extension where the entire inference procedure
is “learned” along with the network itself, without the need for explicitly building typical
structured prediction architectures. This work explored only a small subset of the possi-
ble applications of these network, and the networks offer promising directions for many
additional domains.
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Part II

Extensions and Applications
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Chapter 5
Differentiable MPC for End-to-end Planning
and Control

We present foundations for using Model Predictive Control (MPC) as a differentiable policy
class for reinforcement learning in continuous state and action spaces. This provides one
way of leveraging and combining the advantages of model-free and model-based approaches.
Specifically, we differentiate through MPC by using the KKT conditions of the convex
approximation at a fixed point of the controller. Using this strategy, we are able to learn
the cost and dynamics of a controller via end-to-end learning. Our experiments focus on
imitation learning in the pendulum and cartpole domains, where we learn the cost and
dynamics terms of an MPC policy class. We show that our MPC policies are significantly
more data-efficient than a generic neural network and that our method is superior to
traditional system identification in a setting where the expert is unrealizable.

The contents of this chapter have been previously published at NeurIPS 2018 in Amos,
Jimenez, Sacks, Boots, and Kolter [Amo+18b].

5.1 Introduction
Model-free reinforcement learning has achieved state-of-the-art results in many challenging
domains. However, these methods learn black-box control policies and typically suffer from
poor sample complexity and generalization. Alternatively, model-based approaches seek
to model the environment the agent is interacting in. Many model-based approaches uti-
lize Model Predictive Control (MPC) to perform complex control tasks [Gon+11; LKS15;
LDM14; Kam+15; ETT12; Ale+11; BAT12; Neu+16]. MPC leverages a predictive model
of the controlled system and solves an optimization problem online in a receding horizon
fashion to produce a sequence of control actions. Usually the first control action is applied
to the system, after which the optimization problem is solved again for the next time step.

Formally, MPC requires that at each time step we solve the optimization problem:

argmin
x1:T∈X ,u1:T∈U

T∑
t=1

Ct(xt, ut) subject to xt+1 = f(xt, ut), x1 = xinit, (5.1)
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States Policy Actions Loss

Learnable MPC Module
Submodules: Cost and Dynamics

Backprop

Figure 5.1: Illustration of our contribution: A learnable MPC module that can be
integrated into a larger end-to-end reinforcement learning pipeline. Our method allows the
controller to be updated with gradient information directly from the task loss.

where xt, ut are the state and control at time t, X and U are constraints on valid states and
controls, Ct : X ×U → R is a (potentially time-varying) cost function, f : X ×U → X is a
dynamics model, and xinit is the initial state of the system. The optimization problem in
Equation (5.1) can be efficiently solved in many ways, for example with the finite-horizon
iterative Linear Quadratic Regulator (iLQR) algorithm [LT04]. Although these techniques
are widely used in control domains, much work in deep reinforcement learning or imitation
learning opts instead to use a much simpler policy class such as a linear function or neural
network. The advantages of these policy classes is that they are differentiable and the loss
can be directly optimized with respect to them while it is typically not possible to do full
end-to-end learning with model-based approaches.

In this chapter, we consider the task of learning MPC-based policies in an end-to-end
fashion, illustrated in Figure 5.1. That is, we treat MPC as a generic policy class u =
π(xinit;C, f) parameterized by some representations of the cost C and dynamics model f .
By differentiating through the optimization problem, we can learn the costs and dynamics
model to perform a desired task. This is in contrast to regressing on collected dynamics
or trajectory rollout data and learning each component in isolation, and comes with the
typical advantages of end-to-end learning (the ability to train directly based upon the task
loss of interest, the ability to “specialize” parameter for a given task, etc).

Still, efficiently differentiating through a complex policy class like MPC is challenging.
Previous work with similar aims has either simply unrolled and differentiated through a
simple optimization procedure [Tam+17] or has considered generic optimization solvers
that do not scale to the size of MPC problems [AK17]. This chapter makes the following
two contributions to this space. First, we provide an efficient method for analytically
differentiating through an iterative non-convex optimization procedure based upon a box-
constrained iterative LQR solver [TMT14]; in particular, we show that the analytical
derivative can be computed using one additional backward pass of a modified iterative
LQR solver. Second, we empirically show that in imitation learning scenarios we can
recover the cost and dynamics from an MPC expert with a loss based only on the actions
(and not states). In one notable experiment, we show that directly optimizing the imitation
loss results in better performance than vanilla system identification.
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5.2 Connections to related work
All of the methods discussed in Section 2.5 require differentiating through planning proce-
dures by explicitly “unrolling” the optimization algorithm itself. While this is a reasonable
strategy, it is both memory- and computationally-expensive and challenging when un-
rolling through many iterations because the time- and space-complexity of the backward
pass grows linearly with the forward pass. In contrast, we address this issue by show-
ing how to analytically differentiate through the fixed point of a nonlinear MPC solver.
Specifically, we compute the derivatives of an iLQR solver with a single LQR step in the
backward pass. This makes the learning process more computationally tractable while still
allowing us to plan in continuous state and action spaces. Unlike model-free approaches,
explicit cost and dynamics components can be extracted and analyzed on their own. More-
over, in contrast to pure model-based approaches, the dynamics model and cost function
can be learned entirely end-to-end.

5.3 Differentiable LQR
Discrete-time finite-horizon LQR is a well-studied control method that optimizes a convex
quadratic objective function with respect to affine state-transition dynamics from an initial
system state xinit. Specifically, LQR finds the optimal nominal trajectory τ ⋆1:T = {xt, ut}1:T
by solving the optimization problem

τ ⋆1:T = argmin
τ1:T

∑
t

1

2
τ⊤t Ctτt + c⊤t τt subject to x1 = xinit, xt+1 = Ftτt + ft. (5.2)

From a policy learning perspective, this can be interpreted as a module with unknown
parameters θ = {C, c, F, f}, which can be integrated into a larger end-to-end learning
system. The learning process involves taking derivatives of some loss function ℓ, which are
then used to update the parameters. Instead of directly computing each of the individual
gradients, we present an efficient way of computing the derivatives of the loss function with
respect to the parameters

∂ℓ

∂θ
=

∂ℓ

∂τ ⋆1:T

∂τ ⋆1:T
∂θ

. (5.3)

By interpreting LQR from an optimization perspective [Boy08], we associate dual variables
λ1:T with the state constraints. The Lagrangian of the optimization problem is then given
by

L(τ, λ) =
∑
t

1

2
τ⊤t Ctτt + c⊤t τt +

T−1∑
t=0

λ⊤
t (Ftτt + ft − xt+1), (5.4)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit.
Differentiating Equation (5.4) with respect to τ ⋆t yields

∇τtL(τ ⋆, λ⋆) = Ctτ
⋆
t + ct + F⊤

t λ⋆
t −

[
λ⋆
t−1

0

]
= 0, (5.5)
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Algorithm 4 LQRT (xinit;C, c, F, f) Solves Equation (5.2) as described in [Lev17b]
The state space is n-dimensional and the control space is m-dimensional.
T ∈ Z+ is the horizon length, the number of nominal timesteps to optimize for in the future.
xinit ∈ Rn is the initial state
C ∈ RT×n+m×n+m and c ∈ RT×n+m are the quadratic cost terms. Every Ct must be PSD.
F ∈ RT×n×n+m f ∈ RT×n are the affine cost terms.
▷ Backward Recursion
VT = vT = 0
for t = T to 1 do

Qt = Ct + F⊤
t Vt+1Ft

qt = ct + F⊤
t Vt+1ft + F⊤

t vt+1

Kt = −Q−1
t,uuQt,ux

kt = −Q−1
t,uuqt,u

Vt = Qt,xx +Qt,xuKt +K⊤
t Qt,ux +K⊤

t Qt,uuKt

vt = qt,x +Qt,xukt +K⊤
t qt,u +K⊤

t Qt,uukt
end for

▷ Forward Recursion
x1 = xinit

for t = 1 to T do
ut = Ktxt + kt

xt+1 = Ft

[
xt

ut

]
+ ft

end for

return x1:T , u1:T

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion
can be viewed as an efficient way of solving the KKT system

K︷ ︸︸ ︷
τt λt τt+1 λt+1

. . .
Ct F⊤

t

Ft [−I 0][
−I
0

]
Ct+1 F⊤

t+1

Ft+1

. . .





...
τ ⋆t
λ⋆
t

τ ⋆t+1

λ⋆
t+1
...


= −



...
ct
ft
ct+1

ft+1
...


. (5.6)

Given an optimal nominal trajectory τ ⋆1:T , Equation (5.5) shows how to compute the
optimal dual variables λ with the backward recursion

λ⋆
T = CT,xτ

⋆
T + cT,x λ⋆

t = F⊤
t,xλ

⋆
t+1 + Ct,xτ

⋆
t + ct,x, (5.7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that
we have the optimal trajectory and dual variables, we can compute the gradients of the loss
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Module 1 Differentiable LQR (The LQR algorithm is defined in Algorithm 4)
Input: Initial state xinit

Parameters: θ = {C, c, F, f}

Forward Pass:
1: τ⋆1:T = LQRT (xinit;C, c, F, f) ▷ Solve (5.2)
2: Compute λ⋆

1:T with (5.7)

Backward Pass:
1: d⋆τ1:T = LQRT (0;C,∇τ⋆ℓ, F, 0) ▷ Solve (5.9), ideally reusing the factorizations from the forward pass
2: Compute d⋆λ1:T

with (5.7)
3: Compute the derivatives of ℓ with respect to C, c, F , f , and xinit with (5.8)

with respect to the parameters. Since LQR is a constrained convex quadratic argmin, the
derivatives of the loss with respect to the LQR parameters can be obtained by implicitly
differentiating the KKT conditions. Applying the approach from Section 3 of Amos and
Kolter [AK17], the derivatives are

∇Ctℓ =
1

2

(
d⋆τt ⊗ τ ⋆t + τ ⋆t ⊗ d⋆τt

)
∇ctℓ = d⋆τt ∇xinit

ℓ = d⋆λ0

∇Ftℓ = d⋆λt+1
⊗ τ ⋆t + λ⋆

t+1 ⊗ d⋆τt ∇ftℓ = d⋆λt

(5.8)

where ⊗ is the outer product operator, and d⋆τ and d⋆λ are obtained by solving the linear
system

K


...
d⋆τt
d⋆λt...

 = −


...
∇τ⋆t

ℓ
0
...

 . (5.9)

We observe that Equation (5.9) is of the same form as the linear system in Equation (5.6)
for the LQR problem. Therefore, we can leverage this insight and solve Equation (5.9)
efficiently by solving another LQR problem that replaces ct with ∇τ⋆t

ℓ and ft with 0.
Moreover, this approach enables us to re-use the factorization of K from the forward pass
instead of recomputing. Module 1 summarizes the forward and backward passes for a
differentiable LQR module.

5.4 Differentiable MPC
While LQR is a powerful tool, it does not cover realistic control problems with non-linear
dynamics and cost. Furthermore, most control problems have natural bounds on the control
space that can often be expressed as box constraints. These highly non-convex problems,
which we will refer to as model predictive control (MPC), are well-studied in the control
literature and can be expressed in the general form

τ ⋆1:T = argmin
τ1:T

∑
t

Cθ,t(τt) subject to x1 = xinit, xt+1 = fθ(τt), u ≤ u ≤ u, (5.10)
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where the non-convex cost function Cθ and non-convex dynamics function fθ are (po-
tentially) parameterized by some θ. We note that more generic constraints on the control
and state space can be represented as penalties and barriers in the cost function. The
standard way of solving the control problem Equation (5.10) is by iteratively forming and
optimizing a convex approximation

τ i1:T = argmin
τ1:T

∑
t

C̃i
θ,t(τt) subject to x1 = xinit, xt+1 = f̃ i

θ(τt), u ≤ u ≤ u, (5.11)

where we have defined the second-order Taylor approximation of the cost around τ i as

C̃i
θ,t = Cθ,t(τ

i
t ) + (pit)

⊤(τt − τ it ) +
1

2
(τt − τ it )

⊤H i
t(τt − τ it ) (5.12)

with pit = ∇τ it
Cθ,t and H i

t = ∇2
τ it
Cθ,t. We also have a first-order Taylor approximation of

the dynamics around τ i as

f̃ i
θ,t(τt) = fθ,t(τ

i
t ) + F i

t (τt − τ it ) (5.13)

with F i
t = ∇τ it

fθ,t. In practice, a fixed point of Equation (5.11) is often reached, especially
when the dynamics are smooth. As such, differentiating the non-convex problem Equa-
tion (5.10) can be done exactly by using the final convex approximation. Without the
box constraints, the fixed point in Equation (5.11) could be differentiated with LQR as
we show in Section 5.3. In the next section, we will show how to extend this to the case
where we have box constraints on the controls as well.

66



5.4.1 Differentiating Box-Constrained QPs

First, we consider how to differentiate a more generic box-constrained convex QP of the
form

x⋆ = argmin
x

1

2
x⊤Qx+ p⊤x subject to Ax = b, x ≤ x ≤ x. (5.14)

Given active inequality constraints at the solution in the form G̃x = h̃, this problem turns
into an equality-constrained optimization problem with the solution given by the linear
system

Q A⊤ G̃⊤

A 0 0

G̃ 0 0

x⋆

λ⋆

ν̃⋆

 = −

pb
h̃

 (5.15)

With some loss function ℓ that depends on x⋆, we can use the approach in Amos and Kolter
[AK17] to obtain the derivatives of ℓ with respect to Q, p, A, and b as

∇Qℓ =
1

2
(d⋆x⊗x⋆+x⋆⊗d⋆x) ∇pℓ = d⋆x ∇Aℓ = d⋆λ⊗x⋆+λ⋆⊗d⋆x ∇bℓ = −d⋆λ (5.16)

where d⋆x and d⋆λ are obtained by solving the linear system

Q A⊤ G̃⊤

A 0 0

G̃ 0 0

d⋆xd⋆λ
d⋆ν̃

 = −

∇x⋆ℓ
0
0

 (5.17)

The constraint G̃d⋆x = 0 is equivalent to the constraint d⋆xi
= 0 if x⋆

i ∈ {xi, xi}. Thus
solving the system in Equation (5.17) is equivalent to solving the optimization problem

d⋆x = argmin
dx

1

2
d⊤xQdx + (∇x⋆ℓ)⊤dx subject to Adx = 0, dxi

= 0 if x⋆
i ∈ {xi, xi} (5.18)
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Algorithm 5 MPCT,u,u(xinit, uinit;C, f) Solves Equation (5.10) as described in [TMT14]
The state space is n-dimensional and the control space is m-dimensional.
T ∈ Z+ is the horizon length, the number of nominal timesteps to optimize for in the future.
u, u ∈ Rm are respectively the control lower- and upper-bounds.
xinit ∈ Rn, uinit ∈ RT×m are respectively the initial state and nominal control sequence
C : Rn×m → R is the non-convex and twice-differentiable cost function.
F : Rn×m → Rn is the non-convex and once-differentiable dynamics function.
x1
1 = xinit

for t = 1 to T-1 do
x1
t+1 = f(xt, uinit,t)

end for
τ1 = [x1, uinit]

for i = 1 to [converged] do
for t = 1 to T do

▷ Form the second-order Taylor expansion of the cost as in Equation (5.12)
Ci

t = ∇2
τ i
t
C(τ it )

cit = ∇τ i
t
C(τ it )− (Ci

t)
⊤τ it

▷ Form the first-order Taylor expansion of the dynamics as in Equation (5.13)
F i
t = ∇τ i

t
f(τ it )

f i
t = f(τ it )− F i

t τ
i
t

end for
τ i+1
1:T = MPCstepT,u,u(xinit, C, f, τ

i
1:T , C

i, ci, F i, f i)
end for

function MPCstepT,u,u( xinit, C, f, τ1:T , C̃, c̃, F̃, f̃)
▷ C, f are the true cost and dynamics functions. τ1:T is the current trajectory iterate.
▷ C̃, c̃, F̃, f̃ are the approximate cost and dynamics terms around the current trajectory.

▷ Backward Recursion: Over the linearized trajectory.
VT = vT = 0
for t = T to 1 do

Qt = C̃t + F̃⊤
t Vt+1F̃t

qt = c̃t + F̃⊤
t Vt+1f̃t + F̃⊤

t vt+1

kt = argminδu
1
2δu

⊤Qt,uuδu+Q⊤
x δu s.t. u ≤ u+ δu ≤ u

▷ Can be solved with a Projected-Newton method as described in [TMT14].
▷ Let f, c respectively index the free and clamped dimensions of this optimization problem.

Kt,f = −Q−1
t,uu,fQt,ux

Kt,c = 0

Vt = Qt,xx +Qt,xuKt +K⊤
t Qt,ux +K⊤

t Qt,uuKt

vt = qt,x +Qt,xukt +K⊤
t qt,u +K⊤

t Qt,uukt
end for

▷ Forward Recursion and Line Search: Over the true cost and dynamics.
repeat

x̂1 = τx1

for t = 1 to T do
ût = τut

+ αkt +Kt(x̂t − τxt
)

x̂t+1 = f(x̂t, ût)
end for
α = γα

until
∑

t C([x̂t, ût]) ≤
∑

t C(τt)

return x̂1:T , û1:T

end function
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Module 2 Differentiable MPC (The MPC algorithm is defined in Algorithm 5)
Given: Initial state xinit and initial control sequence uinit

Parameters: θ of the objective Cθ(τ) and dynamics fθ(τ)

Forward Pass:
1: τ⋆1:T = MPCT,u,u(xinit, uinit;Cθ, Fθ) ▷ Solve Equation (5.10)
2: The solver should reach the fixed point in (5.11) with approximations to the cost Hn

θ and dynamics Fn
θ

3: Compute λ⋆
1:T with (5.7)

Backward Pass:
1: F̃n

θ is Fn
θ with the rows corresponding to the tight control constraints zeroed

2: d⋆τ1:T = LQRT (0;H
n
θ ,∇τ⋆ℓ, F̃n

θ , 0) ▷ Solve (5.19), ideally reusing factorizations from the forward pass
3: Compute d⋆λ1:T

with (5.7)
4: Differentiate ℓ with respect to the approximations Hn

θ and Fn
θ with (5.8)

5: Differentiate these approximations with respect to θ and use the chain rule to obtain ∂ℓ/∂θ

5.4.2 Differentiating MPC with Box Constraints
At a fixed point, we can use Equation (5.16) to compute the derivatives of the MPC
problem, where d⋆τ and d⋆λ are found by solving the linear system in Equation (5.9) with
the additional constraint that dut,i

= 0 if u⋆
t,i ∈ {ut,i, ut,i}. Solving this system can be

equivalently written as a zero-constrained LQR problem of the form

d⋆τ1:T = argmin
dτ1:T

∑
t

1

2
d⊤τtH

n
t dτt + (∇τ⋆t

ℓ)⊤dτt

subject to dx1 = 0, dxt+1 = F n
t dτt , dut,i

= 0 if u⋆
i ∈ {ut,i, ut,i}

(5.19)

where n is the iteration that Equation (5.11) reaches a fixed point, and Hn and F n are
the corresponding approximations to the objective and dynamics defined earlier. Mod-
ule 2 summarizes the proposed differentiable MPC module. To solve the MPC problem in
Equation (5.10) and reach the fixed point in Equation (5.11), we use the box-DDP heuris-
tic [TMT14]. For the zero-constrained LQR problem in Equation (5.19) to compute the
derivatives, we use an LQR solver that zeros the appropriate controls.

5.4.3 Drawbacks of Our Approach
Sometimes the controller does not run for long enough to reach a fixed point of Equa-
tion (5.11), or a fixed point doesn’t exist, which often happens when using neural net-
works to approximate the dynamics. When this happens, Equation (5.19) cannot be used
to differentiate through the controller, because it assumes a fixed point. Differentiating
through the final iLQR iterate that’s not a fixed point will usually give the wrong gradients.
Treating the iLQR procedure as a compute graph and differentiating through the unrolled
operations is a reasonable alternative in this scenario that obtains surrogate gradients to
the control problem. However, as we empirically show in Section 5.5.1, the backward pass
of this method scales linearly with the number of iLQR iterations used in the forward.
Instead, fixed-point differentiation is constant time and only requires a single iLQR solve.
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Figure 5.3: Model and imitation losses for
the LQR imitation learning experiments.

5.5 Experimental Results
In this section, we present several results that highlight the performance and capabilities of
differentiable MPC in comparison to neural network policies and vanilla system identifica-
tion (SysId). We show 1) superior runtime performance compared to an unrolled solver, 2)
the ability of our method to recover the cost and dynamics of a controller with imitation,
and 3) the benefit of directly optimizing the task loss over vanilla SysId.

We have released our differentiable MPC solver as a standalone open source pack-
age that is available at https://github.com/locuslab/mpc.pytorch and our experi-
mental code for this chapter is also openly available at https://github.com/locuslab/
differentiable-mpc. Our experiments are implemented with PyTorch [Pas+17b].

5.5.1 MPC Solver Performance
Figure 5.2 highlights the performance of our differentiable MPC solver. We compare to an
alternative version where each box-constrained iLQR iteration is individually unrolled, and
gradients are computed by differentiating through the entire unrolled chain. As illustrated
in the figure, these unrolled operations incur a substantial extra cost. Our differentiable
MPC solver 1) is slightly more computationally efficient even in the forward pass, as it does
not need to create and maintain the backward pass variables; 2) is more memory efficient
in the forward pass for this same reason (by a factor of the number of iLQR iterations);
and 3) is significantly more efficient in the backward pass, especially when a large number
of iLQR iterations are needed. The backward pass is essentially free, as it can reuse all the
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factorizations for the forward pass and does not require multiple iterations.

5.5.2 Imitation Learning: Linear-Dynamics Quadratic-Cost (LQR)
In this section, we show results to validate the MPC solver and gradient-based learning
approach for an imitation learning problem. The expert and learner are LQR controllers
that share all information except for the linear system dynamics f(xt, ut) = Axt+But. The
controllers have the same quadratic cost (the identity), control bounds [−1, 1], horizon (5
timesteps), and 3-dimensional state and control spaces. Though the dynamics can also be
recovered by fitting next-state transitions, we show that we can alternatively use imitation
learning to recover the dynamics using only controls.

Given an initial state x, we can obtain nominal actions from the controllers as u1:T (x; θ),
where θ = {A,B}. We randomly initialize the learner’s dynamics with θ̂ and minimize the
imitation loss

L = Ex

[
||τ1:T (x; θ)− τ1:T (x; θ̂)||22

]
, .

We do learning by differentiating L with respect to θ̂ (using mini-batches with 32 examples)
and taking gradient steps with RMSprop [TH12]. Figure 5.3 shows the model and imitation
loss of eight randomly sampled initial dynamics, where the model loss is MSE(θ, θ̂).
The model converges to the true parameters in half of the trials and achieves a perfect
imitation loss. The other trials get stuck in a local minimum of the imitation loss and
causes the approximate model to significantly diverge from the true model. These faulty
trials highlight that despite the LQR problem being convex, the optimization problem of
some loss function w.r.t. the controller’s parameters is a (potentially difficult) non-convex
optimization problem that typically does not have convergence guarantees.

5.5.3 Imitation Learning: Non-Convex Continuous Control
We next demonstrate the ability of our method to do imitation learning in the pendulum
and cartpole benchmark domains. Despite being simple tasks, they are relatively challeng-
ing for a generic policy to learn quickly in the imitation learning setting. In our experiments
we use MPC experts and learners that produce a nominal action sequence u1:T (x; θ) where
θ parameterizes the model that’s being optimized. The goal of these experiments is to op-
timize the imitation loss L = Ex

[
||u1:T (x; θ)− u1:T (x; θ̂)||22

]
, again which we can uniquely

do using only observed controls and no observations. We consider the following methods:
Baselines: nn is an LSTM that takes the state x as input and predicts the nominal

action sequence. In this setting we optimize the imitation loss directly. sysid assumes
the cost of the controller is known and approximates the parameters of the dynamics by
optimizing the next-state transitions.

Our Methods: mpc.dx assumes the cost of the controller is known and approximates
the parameters of the dynamics by directly optimizing the imitation loss. mpc.cost assumes
the dynamics of the controller is known and approximates the cost by directly optimizing
the imitation loss. mpc.cost.dx approximates both the cost and parameters of the dynamics
of the controller by directly optimizing the imitation loss.
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In all settings that involve learning the dynamics (sysid, mpc.dx, and mpc.cost.dx) we
use a parameterized version of the true dynamics. In the pendulum domain, the parameters
are the mass, length, and gravity; and in the cartpole domain, the parameters are the cart’s
mass, pole’s mass, gravity, and length. For cost learning in mpc.cost and mpc.cost.dx we
parameterize the cost of the controller as the weighted distance to a goal state C(τ) =
||wg ◦ (τ − τg)||22. We have found that simultaneously learning the weights wg and goal
state τg is instable and in our experiments we alternate learning of wg and τg independently
every 10 epochs. We collected a dataset of trajectories from an expert controller and vary
the number of trajectories our models are trained on. A single trial of our experiments
takes 1-2 hours on a modern CPU. We optimize the nn setting with Adam [KB14] with
a learning rate of 10−4 and all other settings are optimized with RMSprop [TH12] with a
learning rate of 10−2 and a decay term of 0.5.

Figure 5.5 shows that in nearly every case we are able to directly optimize the imitation
loss with respect to the controller and we significantly outperform a general neural network
policy trained on the same information. In many cases we are able to recover the true
cost function and dynamics of the expert. We show the training and validation losses in
Figure 5.4. The comparison between our approach mpc.dx and SysId is notable, as we are
able to recover equivalent performance to SysId with our models using only the control
information and without using state information.
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Figure 5.4: Learning results on the (simple) pendulum and cartpole environments. We
select the best validation loss observed during the training run and report the corresponding
train and test loss. Every datapoint is averaged over four trials.

Again, while we emphasize that these are simple tasks, there are stark differences
between the approaches. Unlike the generic network-based imitation learning, the MPC
policy can exploit its inherent structure. Specifically, because the network contains a
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Figure 5.5: Learning results on the (simple) pendulum and cartpole environments. We
select the best validation loss observed during the training run and report the best test
loss.

well-defined notion of the dynamics and cost, it is able to learn with much lower sample
complexity that a typical network. But unlike pure system identification (which would be
reasonable only for the case where the physical parameters are unknown but all other costs
are known), the differentiable MPC policy can naturally be adapted to objectives besides
simple state prediction, such as incorporating the additional cost learning portion.

5.5.4 Imitation Learning: SysId with a non-realizable expert
All of our previous experiments that involve SysId and learning the dynamics are in the
unrealistic case when the expert’s dynamics are in the model class being learned. In this
experiment we study a case where the expert’s dynamics are outside of the model class
being learned. In this setting we will do imitation learning for the parameters of a dynamics
function with vanilla SysId and by directly optimizing the imitation loss (sysid and the
mpc.dx in the previous section, respectively).

SysId often fits observations from a noisy environment to a simpler model. In our
setting, we collect optimal trajectories from an expert in the pendulum environment that
has an additional damping term and also has another force acting on the point-mass
at the end (which can be interpreted as a “wind” force). We do learning with dynamics
models that do not have these additional terms and therefore we cannot recover the expert’s
parameters. Figure 5.6 shows that even though vanilla SysId is slightly better at optimizing
the next-state transitions, it finds an inferior model for imitation compared to our approach
that directly optimizes the imitation loss.

We argue that the goal of doing SysId is rarely in isolation and always serves the purpose
of performing a more sophisticated task such as imitation or policy learning. Typically
SysId is merely a surrogate for optimizing the task and we claim that the task’s loss signal
provides useful information to guide the dynamics learning. Our method provides one way
of doing this by allowing the task’s loss function to be directly differentiated with respect
to the dynamics function being learned.
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Figure 5.6: Convergence results in the non-realizable Pendulum task.
5.6 Conclusion
This chapter lays the foundations for differentiating and learning MPC-based controllers
within reinforcement learning and imitation learning. Our approach, in contrast to the
more traditional strategy of “unrolling” a policy, has the benefit that it is much less com-
putationally and memory intensive, with a backward pass that is essentially free given
the number of iterations required for a the iLQR optimizer to converge to a fixed point.
We have demonstrated our approach in the context of imitation learning, and have high-
lighted the potential advantages that the approach brings over generic imitation learning
and system identification.

We also emphasize that one of the primary contributions of this chapter is to define
and set up the framework for differentiating through MPC in general. Given the recent
prominence of attempting to incorporate planning and control methods into the loop of
deep network architectures, the techniques here offer a method for efficiently integrating
MPC policies into such situations, allowing these architectures to make use of a very pow-
erful function class that has proven extremely effective in practice. The future applications
of our differentiable MPC method include tuning model parameters to task-specific goals
and incorporating joint model-based and policy-based loss functions; and our method can
also be extended for stochastic control.
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Chapter 6
The Limited Multi-Label Projection Layer

We present the Limited Multi-Label (LML) projection layer as a new primitive operation
for end-to-end learning systems. The LML layer provides a probabilistic way of modeling
multi-label predictions limited to having exactly k labels. We derive efficient forward
and backward passes for this layer and show how the layer can be used to optimize the
top-k recall for multi-label tasks with incomplete label information. We evaluate LML
layers on top-k CIFAR-100 classification and scene graph generation. We show that LML
layers add a negligible amount of computational overhead, strictly improve the model’s
representational capacity, and improve accuracy.

The content of this chapter is joint work with J. Zico Kolter and Vladlen Koltun.

6.1 Introduction
Multi-label prediction tasks show up frequently in computer vision and language processing.
Multi-label predictions can arise from a task being truly multi-label, as in language and
graph generation tasks, or by turning a single-label prediction task into a multi-label
prediction task that predicts a set of top-k labels, for example. In high-dimensional cases,
such as scene graph generation, annotating multi-label data is difficult and often results
in datasets that have an incomplete labeling. In these cases, models are typically limited
to predicting k labels and are evaluated on the recall, the proportion of known labels that
are present in the model’s predicted set. As we will show later, the standard approaches
of using a softmax or sigmoid functions are not ideal here as they have no way of allowing
the model to capture labels that are unobserved.

In this chapter, we present the LML layer as a new way of modeling in multi-label
settings where the model needs to make a prediction of exactly k labels. We derive how
to efficiently implement and differentiate through LML layers in Section 6.3. The LML
layer has a probabilistic interpretation and can be trained with a standard maximum-
likelihood approach that we show in Section 6.4, where we also highlight applications to
top-k image classification and scene graph generation. We show experiments in Section 6.5
on CIFAR-100 classification and scene graph generation.
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Figure 6.1: The LML polytope Ln,k is the set of points in the unit n-hypercube with
coordinates that sum to k. Ln,1 is the (n− 1)-simplex. The L3,1 and L3,2 polytopes
(triangles) are on the left in blue. The L4,2 polytope (an octahedron) is on the right.

6.2 Background and Related Work
Our work is motivated by the ubiquity of projections onto polytopes in machine learning.
We showed in Section 2.4.4 how the ReLU, sigmoid, and softmax layers can be interpreted
as explicit closed-form solutions to a projection optimization problem. Similar projections
are also done onto more complex polytopes such as the marginal polytope for structured
inference [Nic+18] or the Birkhoff polytope for permutations [AZ11; San+18; Men+18].

The remainder of this section reviews related work on cardinality modeling, top-k
optimization, ranking-based loss functions, and scene graph generation.

6.2.1 Cardinality Potentials and Modeling
Cardinality potentials and modeling are a closely related line of work typically found in the
structured prediction and constraint programming literature. Régin [Rég96] shows how to
add constraints to models for worker scheduling. Tarlow, Swersky, Zemel, Adams, and
Frey [Tar+12] and Globerson, Lazic, Chakrabarti, Subramanya, Ringaard, and Pereira
[Glo+16] propose ways of performing structured prediction with cardinality potentials,
and Brukhim and Globerson [BG18] propose a soft projection operation that integrate
cardinality modeling into deep structured prediction architectures like SPENs [BM15].
In contrast to all of these methods, our projection and constraint is exact and can be
integrated in the standard forward pass of a deep model outside of structured prediction.
None of our experiments use structured prediction techniques and we instead do standard
supervised learning of vanilla feedforward models that use our LML layer. In contrast to
Brukhim and Globerson [BG18], we show that the backward pass of our soft projection
can be exactly computed instead of unrolled as part of a structured prediction procedure.

6.2.2 Top-k and Ranking-Based Loss Functions
There has been a significant amount of work on creating specialized loss functions for
optimizing the model’s top-k prediction error [GBW14; LJZ14; Liu+15; LHS15; Liu+15;
LHS16; BZK18] and ranking error [Aga11; Rud09; Boy+12; Rak12].
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Most relevant to our contributions are the smooth top-k loss functions discussed in
Lapin, Hein, and Schiele [LHS16] and the Smooth SVM [BZK18]. Among other loss func-
tions, Lapin, Hein, and Schiele [LHS16] propose the truncated top-k entropy loss, which we
review in Section 6.2.2 and extend to cases when multiple ground-truth labels are present
in Section 6.2.2.

In contrast to all of these methods, our approach does not hand-craft a loss function
and instead puts the top-k knowledge into the modeling part of the pipeline, which is
then optimized as a likelihood maximization problem. We show in Section 6.5.2 that LML
layers are competitive in the top-k prediction task from Berrada, Zisserman, and Kumar
[BZK18].

Truncated Top-k Entropy Derivation

This section reviews the truncated top-k entropy derivation from Section 2.5 of Lapin,
Hein, and Schiele [LHS16]. We start with the standard likelihood

P (y | x) = exp{fy(x)}∑
j exp{fj(x)}

(6.1)

and then consider the negative log-likelihood

− logP (y | x) = − log
exp{fy(x)}∑
j exp{fj(x)}

= log

∑
j exp{fj(x)}
exp{fy(x)}

= log

(
1 +

∑
j ̸=y

exp{fj(x)− fy(x)}

) (6.2)

Truncating the index set of the last sum gives the truncated top-k entropy loss

log

1 +
∑
j∈Jy

exp{fj(x)− fy(x)}

 (6.3)

where Jy are the indices of the m−k smallest components of (fj(x))j ̸=y. This loss is small
whenever the top-k error is zero.

Multi-Label Truncated Top-k Entropy Derivation

The truncated top-k entropy loss from Lapin, Hein, and Schiele [LHS16] is a competitive
and simple loss function for optimizing the model’s top-k predictions in single-label clas-
sification tasks. In this section, we show how it can be extended to optimizing the top-k
predictions in multi-label classification tasks, such as scene graph generation.
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We start by making an independence assumption between the observed labels and
decomposing the likelihood as

P (Y | x) =
∏
i

P (Yi|x). (6.4)

Then, we can assume the likelihood of each label is obtained with a softmax as

P (Yi | x) =
exp{fyi(x)}∑
j exp{fj(x)}

. (6.5)

We note that in general, maximum-likelihood estimation of the form Equation (6.5) will
never achieve perfect likelihood as the softmax restricts the likelihoods over all of the labels.
However following the approach from Lapin, Hein, and Schiele [LHS16], we can rearrange
the terms of the negative log-likelihood and truncate parts of to obtain a reasonable loss
function.

− logP (Y | x) = −
∑
i

log
exp{fyi(x)}∑
j exp{fj(x)}

=
∑
i

log

∑
j exp{fj(x)}
exp{fyi(x)}

=
∑
i

log

(
1 +

∑
j ̸=yi

exp{fj(x)− fyi(x)}

) (6.6)

Truncating the index set of the last sum gives the multi-label truncated top-k entropy loss

∑
i

log

1 +
∑
j∈Jy

exp{fj(x)− fyi(x)}

 (6.7)

where Jy are the indices of the m− k smallest components of (fj(x))j ̸∈y. This loss is small
whenever the top-k recall is zero.

6.2.3 Scene Graph Generation
Scene graph generation is the task of generating a set of objects and relationships between
them from an input image and has been extensively studied recently [Joh+15; Yan+17;
Plu+17; LLX17; Rap+17; ND17; Xu+17; Li+18b; Her+18; Zel+18; Woo+18]. Most
relevant to our work are the methods that score all of the possible relationships between
objects and select the top-scoring relationships [Xu+17; Li+18b; Her+18; Woo+18]. These
methods include the near-state-of-the-art Neural Motifs model [Zel+18] that generates a
scene graph by creating object- and edge-level contexts.

We propose a way of improving the relationship prediction portion of methods that
fully enumerate all of the possible relationships, and we empirically demonstrate that this
improves the representational capacity of Neural Motifs.
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Module 3 The Limited Multi-Label Projection Layer
Input: x ∈ Rn

Forward Pass (Described in Section 6.3.1)
1: Compute ν⋆ with Algorithm 6
2: return y⋆ = σ(x+ ν⋆)

Backward Pass (Described in Section 6.3.2)
1: h = (y⋆)−1 + (1− y⋆)−1

2: dν = (1⊤h−1)−1h−⊤ (∇y⋆ℓ)
3: dy = h−1 ◦ (dν −∇y⋆ℓ)
4: return ∇xℓ = −dy

6.3 The Limited Multi-Label Projection Layer
We propose the Limited Multi-Label projection layer as a way of projecting onto the set of
points in the unit n-hypercube with coordinates that sum to exactly k. This space can be
represented as a polytope, which we define as the (n,k)-Limited Multi-Label polytope

Ln,k = {p ∈ Rn | 0 ≤ p ≤ 1 and 1⊤p = k}.

When k = 1, the LML polytope is the (n− 1)-simplex. Notationally, if n is implied by the
context we will leave it out and write Lk. Figure 6.1 shows three low-dimensional examples
of this polytope.

We consider projections onto the interior of the LML polytope of the form

ΠLk
(x) = argmin

0<y<1
−x⊤y −Hb(y) s. t. 1⊤y = k (6.8)

where Hb(y) = −
∑

i yi log yi + (1 − yi) log(1 − yi) is the binary entropy function. The
entropy-based regularizer in the objective helps prevent sparsity in the gradients of this
projection, which is important for learning and the same reason it is useful in the softmax.
We note that other projections could be done by changing the regularizer or by scaling the
entropy term with a temperature parameter. The following is one useful property of the
LML projection when x is the output of a function such as a neural network.
Proposition 4. ΠLk

(x) preserves the (magnitude-based) order of the coordinates of x.
The intuition is that ΠLk

(x) can be decomposed to applying a monotonic transformation
to each element of x, which we show in Equation (6.9). Thus, this preserves the (magnitude-
based) ordering of x.

The LML projection layer does not have an explicit closed-form solution like the layers
discussed in Section 2.4.4, despite the similarity to the softmax layer. We show how to
efficiently solve the optimization problem for the forward pass in Section 6.3.1 and how to
backpropagate through the LML projection in Section 6.3.2 by implicitly differentiating
the KKT conditions. Module 3 summarizes the implementation of the layer.
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6.3.1 Efficiently computing the LML projection
The LML projection in Equation (6.8) is a convex and constrained optimization problem.
In this section we propose an efficient way of solving it that is GPU-amenable.
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Figure 6.2: Example of finding the optimal dual variable ν with x ∈ R6 and k = 2 by
solving the root-finding problem g(ν) = 0 in Equation (6.10), which is shown on the left.
The right shows the decomposition of the individual logistic functions that contribute to
g(ν). We show the initial lower and upper bounds described in Section 6.3.1.

Introducing a dual variable ν ∈ R for the constraint k − 1⊤y = 01, the Lagrangian of
Equation (6.8) is

L(y, ν) = −x⊤y −Hb(y) + ν(k − 1⊤y).

Differentiating this gives

∇yL(y, ν) = −x+ log
y

1− y
− ν

and the first-order optimality condition ∇yL(y
⋆, ν⋆) = 0 gives

y⋆ = σ(x+ ν⋆) (6.9)

where σ is the logistic function. To find the optimal dual variable ν⋆, we can substitute
Equation (6.9) into the constraint

g(ν) ≜ 1⊤σ(x+ ν)− k = 0. (6.10)

Thus the LML projection can be computed by solving g(ν) = 0 for the optimal dual
variable and then using Equation (6.9) for the projection.

Solving g(ν) = 0

g(ν) = 0 is a scalar-valued root-finding problem of a differentiable, continuous, non-convex
function that is monotonically increasing. Despite the differentiability, we advocate for
solving g(ν) = 0 with a bracketing method that maintains an interval of lower and upper
bounds around the solution ν⋆ and is amenable to parallelization, instead of a Newton

1 We unconventionally negate the equality constraint to make analyzing g(ν) easier.
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Algorithm 6 Bracketing method to find g(ν) = 0

Input: x ∈ Rn

Parameters: d: the number of per-iteration samples
∆: the saturation offset

1: Initialize νℓ = −π(x)k −∆ and νu = −π(x)k+1 +∆
2: while |νℓ − νu| > ϵ do
3: Sample ν1:d linearly from the interval [νℓ, νu]
4: g1:d = (g(νi))

d
i=1 ▷ Ideally parallelized

5: ▷ Return the corresponding νi early if any gi = 0
6: iℓ = max{i | gi < 0} and iu = iℓ + 1
7: νℓ = νiℓ and νu = νiu
8: end while
9: return (νℓ + νu)/2

method that would use the derivative information but is not as amenable to parallelization.
Our method generalizes the bisection bracketing method by sampling g(ν) for d values of
ν per iteration instead of a single point. On the GPU by default, we sample d = 100
points in parallel for each iteration, which usually reaches machine epsilon in less than 10
iterations, and on the CPU we sample d = 10 points. We present our bracketing method
in Algorithm 6 and show an example of g(ν) and the component functions in Figure 6.2.

The initial lower bound νℓ and upper bound νu on the root can be obtained by observing
that g(ν) takes a sum of logistic functions that are offset by the entries of x ∈ Rn as
σ(xj + ν). With high probability, we can use the saturated areas of the logistic functions
to construct the initial bounds.

Let π(x) sort x ∈ Rn in descending order so that

π(x)1 ≥ π(x)2 ≥ . . . ≥ π(x)n

and ∆ be a sufficiently large offset that causes the sigmoid units to saturate. We use ∆ = 7
in all of our experiments.

Use νℓ = −π(x)k − ∆ for the initial lower bound. This makes σ(xj + νℓ) ≈ 0 for
xj ∈ π(x)k,...,n and 0 < σ(xj + νℓ) < 1 for xj ∈ π(x)1,...,k−1, and thus g(νℓ) ≤ −1 ≤ 0.

Use νu = −π(x)k+1 +∆ for the initial upper bound. This makes σ(xj + νu) ≈ 1 for
every xj ∈ π(x)1,...,k+1 and thus g(νu) ≥ 1 ≥ 0.

6.3.2 Backpropagating through the LML layer
Let y⋆ = ΠLk

(x) be outputs of the LML layer from Equation (6.8). Integrating this layer
into a gradient-based end-to-end learning system requires that we compute the derivative

∂ℓ

∂x
=

∂ℓ

∂y⋆
∂y⋆

∂x
,

where ℓ is a loss function. The LML projection ΠLk
(x) does not have an explicit closed-

form solution and we therefore cannot use an autodiff framework to compute the gradient
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Algorithm 7 Maximizing top-k recall via maximum likelihood with the LML layer.
Model: fθ : X → Rn

Model Predictions: Ŷi = {j | fθ(xi)j ≥ π (fθ(xi))k}
Training Procedure:

1: while unconverged do
2: Sample (xi, Yi) ∼ D
3: p̂ = ΠLk

(fθ(xi))
4: Update θ with a gradient step ∇θℓ(Yi, p̂) where

ℓ(Yi, p̂) = −
∑
j∈Yi

log p̂j

5: end while

∂y⋆/∂x. We note that even though the solution can be represented as y⋆ = σ(x + ν⋆),
differentiating this form is still difficult because ν⋆ is also a function of x. We instead im-
plicitly differentiate the KKT conditions of Equation (6.8). Using the approach described,
e.g., in OptNet [AK17], we can solve the linear system[

H −1
−1⊤ 0

] [
dy
dν

]
= −

[
∇y⋆ℓ
0

]
(6.11)

where H = ∇2
yL(y, ν) is defined by H = diag(h) and

h =
1

y⋆
+

1

1− y⋆
. (6.12)

The system in Equation (6.11) can be solved analytically with

dν =
1

1⊤h−1
h−⊤ (∇y⋆ℓ) and dy = h−1 ◦ (dν −∇y⋆ℓ) (6.13)

where ◦ is the elementwise product and h−1 is the elementwise inverse. Finally, we have
that ∇xℓ = −dy.

6.4 Maximizing Top-k Recall via Maximum Likelihood
with The LML layer

In this section, we highlight one application of the LML layer for maximizing the top-k
recall. We consider a multi-label classification setting where the data has an incomplete
(strict) subset of the true labels and we want to model the task by predicting a set of
exactly k labels. This setting comes up in practice for predicting the top-k labels in image
classification and in predicting a set of k relationships in a graph for scene graph generation,
which we discuss in Sections 6.4.1 and 6.4.2, respectively.
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Formally, we have samples (xi, Yi) ∼ D from some data generating process D with
features xi ∈ Xi and labels Yi ⊆ Y ⋆

i ⊆ Y ≜ {1, . . . , n}, where Y ⋆
i are the ground-truth

labels and Yi are the observed labels. There is typically some k ≪ n such that |Y ⋆
i | ≤ k

for all i. We will model this by predicting exactly k labels Ŷi ⊆ {1, . . . n} where |Ŷi| = k.
The model’s predictions should have high recall on the observed data, which for a single

sample is defined by
recall(Y, Ŷ ) =

1

|Y |
∑
j∈Y

Jyj ̸∈ Ŷ K,
where the Iverson bracket JP K is 1 if P is true and 0 otherwise. We note that the 0-1 error,
defined as

error(Y, Ŷ ) = JY ̸= Ŷ K,
or smooth variants thereof, are not a reasonable proxy for the recall as it incorrectly
penalizes the model when it makes a correct prediction Ŷ that is in the ground truth
labels Y ⋆ but not in the observation Y .

We will next use a probabilistic approach to motivate the use of LML layers for max-
imum recall. Given access to the ground-truth data in addition to the observation and
assuming label independence, we could maximize the likelihood of a parametric model
with

P (Y, Y ⋆ | x) =
∏
j∈Y

P (j ∈ Y ⋆ | x). (6.14)

We can decompose P (Y, Y ⋆ | x) as

P (Y, Y ⋆ | x) =
∏
j∈Y ⋆

P (j ∈ Y ⋆ | x)
∏

j∈Y−Y ⋆

P (j ̸∈ Y ⋆ | x).

︷ ︸︸ ︷∏
j∈Y

P (j ∈ Y ⋆ | x)
∏

j∈Y ⋆−Y

P (j ∈ Y ⋆ | x)

The difficulty in modeling this problem given only the observed labels Y comes from not
knowing which of the unobserved labels should be active or inactive. In the case when all
|Y ⋆| = k, then the ground-truth labels can be interpreted as vertices of the LML polytope
that have a value of 1 if the label is present and 0 otherwise. Thus, we can use a model
that makes a prediction on the LML polytope fθ : X → Lk. The outputs of this model
p̂ = fθ(x) are then the likelihoods p̂j ≜ P (j ∈ Y ⋆ | x). For example, fθ can be modeled
with a standard deep feed-forward network with an LML layer at the end. The set of
predicted labels can be obtained with

Ŷ (x) = {j | fθ(x)j ≥ π (fθ(x))k},

breaking ties if necessary in the unlikely case that multiple fθ(x)j = π (fθ(x))k. We next
state assumptions under which we can reason about maximum-likelihood solutions.

Assumptions. For the following, we assume that 1) in the infinite data setting, the
ground-truth labels are able to be reconstructed from the observed labels (e.g. for a fixed
feature, the observed labels are sampled from the ground-truth labels with a non-zero
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weight on each label), 2) there is no noise in the data generating process, 3) the true
model is realizable and therefore maximizing the likelihoods can be done exactly, and 4)
all |Y ⋆

i | = k. We claim that all of these assumptions can be reasonably relaxed and we
empirically show that LML layers are effective in settings where these don’t hold.
Proposition 5. Maximizing the likelihood of fθ(xi) : X → Lk on only the observed data

max
θ

E

[∏
j∈Yi

(fθ(xi))j

]
≜ E

[∏
j∈Yi

P (j ∈ Y ⋆
i | xi)

]

implicitly maximizes E [P (Y ⋆
i | xi)]. All expectations are done over samples from the data

generating process (xi, Yi) ∼ D.
This can be proven by observing that the model’s LML output space will allow the

unobserved positive labels to have high likelihood∏
j∈Y ⋆−Y

P (j ∈ Y ⋆ | x)

while forcing all the true negative data to have low likelihood∏
j∈Y−Y ⋆

P (j ∈ Y ⋆ | x).

We note that Proposition 5 does not hold for a standard multi-label prediction model
that makes predictions onto the unit hypercube fθ : X → [0, 1]n where

p̂j = fθ(xi) ≜ P (j ∈ Y ⋆ | x)

as only maximizing ∏
j∈Yi

P (j ∈ Y ⋆ | x)

will result in a collapsed model that predicts p̂j = 1 for every label j ∈ Y .
Corollary 2. Maximizing the likelihood of fθ : X → Lk on the observed data E [P (Yi | xi)]

maximizes the recall of the observed data E
[
recall(Y, Ŷ )

]
.

The ground-truth data are vertices of the LML polytope and fθ approaches the ground-
truth likelihoods. Thus the model’s prediction Ŷ (x) is the ground-truth and the recall of
the observed data is maximized. We again note that the model’s 0-1 error on the observed
data error(Y, Ŷ ) is in general not minimized, but that the error on the ground-truth data
error(Y ⋆, Ŷ ) is minimized, as the observed data may not have all of the labels that are
present in the ground-truth data.

We propose a gradient-based approach of solving this maximum likelihood problem in
Algorithm 7 that we use for all of our experiments.
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6.4.1 Top-k Image Classification
In top-k image classification, the dataset consists of images xi with single labels yi and
the task is to predict a set of k labels Ŷ that maximizes recall({yi}, Ŷ ). We show in
Section 6.5.2 that LML models are competitive with the state-of-the-art methods for top-
k image classification on the noisy variant of CIFAR-100 from Berrada, Zisserman, and
Kumar [BZK18].

6.4.2 Scene Graph Generation
As briefly introduced in Section 6.2.3, scene graph generation methods take an image as
input and output a graph of the objects in the image (the nodes of the graph) and the
relationships between them (the edges of the graph). One of the recent state-of-the-art
methods that is characteristic of many of the other methods is Neural Motifs [Zel+18].
Neural Motifs and related models such as Xu, Zhu, Choy, and Fei-Fei [Xu+17] make an
assumption that the relationships on separate edges are independent from each other. In
this section, we show how we can use the maximum recall training with an LML layer
to make a minor modification to the training procedure of these models that allows us to
relax this assumption with negligible computational overhead.

Specifically, the Neural Motifs architecture decomposes the scene graph generation task
as

P (G | I) = P (B | I) P (O | B, I)P (R | B,O, I)

where G is the scene graph, I is the input image, B is a set of region proposals, and O
is a set of object proposals. The relationship generation process P (R | B,O, I) makes an
independence assumption that, given a latent variable z that is present at each edge as zij,
the relationships on each edge are independent. That is,

P ([xi→j]ij | z, B,O, I) =
∏
i,j

P (xi→j | zij, B,O, I),

where the set of relationships between all of the nodes is R = [xi→j]ij.
Neural Motifs models these probabilities with

P (xi→j | B,O, I) = p̂ij ≜ softmax(zij) ∈ ∆n, (6.15)

where n is the number of relationships for the task. The predictions are made in the n-
simplex instead of the (n−1)-simplex because an additional class is added to indicate that
no relationship is present on the edge. For inference, graphs are generated by selecting
the relationships that have the highest probability by concatenating all pij and selecting
the top k. Typical values of k are 20, 50, and 100. The method is then evaluated on the
top-k recall of the scene graphs; i.e. the number of ground-truth relationships that are in
the model’s top-k relationship predictions.

Two drawbacks of the vanilla Neural Motif model of treating the edge relationships
as independent softmax functions are that 1) edges with multiple relationships will never
achieve perfect likelihood because the softmax function is being used to make a prediction
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at each edge. If multiple relationships are present on a single edge, the training code for
Neural Motifs randomly samples a single one to use for the update in that iteration. For
inference, multiple relationships on a node can be predicted if their individual probabilities
are within the top-k threshold, although they are still subject to the simplex constraints
and therefore may be unreasonably low; and 2) the evaluation metric of generating a graph
with k relationships is not part of the training procedure that just treats each edge as a
classification problem that maximizes the likelihood of the observed relationships.

Using an LML layer to predict all of the relationship probabilities jointly overcomes
these drawbacks. We model the joint probability with

P ([xi→j]ij | z, B,O, I) = ΠLk
(cat([zij]ij)) (6.16)

where cat is the concatenation function. This is now a top-k recall problem that we train by
maximizing the likelihood of the observed relationships with Algorithm 7. We have added
the LML training procedure to the official Neural Motifs codebase in ≈20 lines of code to
project [zij]ij onto the LML polytope instead of projecting each zij onto the simplex, and
to optimize the likelihood of the data jointly instead of independently.

The LML approach for scene graph generation overcomes both of the drawbacks of the
vanilla approach by 1) allowing the ground-truth data to achieve near-perfect likelihood
as multiple relationships are allowed to be present between the edges, and 2) introducing
the knowledge predicting k nodes into the training procedure. One downside of the LML
approach for scene graph generation is that the training procedure now depends on k
while the vanilla training procedure does not. We empirically show that it is typically
competitive to train with a fixed k and evaluate for others.

6.5 Experimental Results
In this section we study the computational efficiency of the LML layer and show that it
performs competitively with other methods for top-k image classification. When added to
the Neural Motifs model for scene graph generation, LML layers significantly improve the
modeling capability with almost no computational overhead.

6.5.1 Performance Comparisons
The LML layer presented in Module 3 has a non-trivial forward and backward pass that
may be computationally expensive if not implemented efficiently. To better understand the
computational costs of the LML layer, we have measured the timing performance of our
layer in comparison to the Smooth SVM loss from [BZK18] and the truncated top-k entropy
Enttr from [LHS16], which we review in Section 6.2.2. The Summation Algorithm (SA) and
Divide-and-Conquer (DC) algorithms for the Smooth SVM loss are further described in
Berrada, Zisserman, and Kumar [BZK18]. We use the official Smooth SVM implementation
and have re-implemented the truncated top-k entropy in PyTorch for our experiments. The
truncated top-k entropy loss function is only bottlenecked by a sorting operation, which
we implemented using PyTorch’s sort function.
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Figure 6.3: Timing performance results. Each point is from 50 trials on an unloaded
system.
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Figure 6.4: Testing performance on CIFAR-100 with label noise.

We use the experimental setup from Berrada, Zisserman, and Kumar [BZK18] to mea-
sure the performance, which uses a minibatch size of 256 and runs 50 trials for each data
point. We ran all of the experiments on an unloaded NVIDIA GeForce GTX 1080 Ti GPU.

Figure 6.3 shows the performance results on problems with a minibatch size of 256 and
highlights the minimal overhead of the LML layer. In nearly all instances, the LML layer
outperforms the Smooth SVM forward and backward passes. Notably, the LML backward
pass is significantly faster in all cases. The forward pass of the smooth SVM becomes
computationally expensive as k grows while the LML layer’s performance remains con-
stant. The top-k entropy loss is only bottlenecked by a sorting operation and significantly
outperforms both the Smooth SVM and LML layers.

6.5.2 Top-k Image Classification on CIFAR-100
We next evaluate the LML layer on the noisy top-5 CIFAR-100 task from Berrada, Zis-
serman, and Kumar [BZK18] that uses the DenseNet 40-40 architecture [Hua+17]. The
CIFAR-100 labels are organized into 20 “coarse” classes, each consisting of 5 “fine” labels.
With probability p, noise is added to the labels by resampling from the set of “fine” labels.

Figure 6.4 shows that the LML model is competitive with the other baseline methods for
this task: standard cross-entropy training, the Smooth SVM models, and the truncated
entropy loss. We used the experimental setup and code from Berrada, Zisserman, and
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Figure 6.5: (Constrained) Scene graph generation on the Visual Genome: Training and
validation progress comparing the vanilla Neural Motif model to the Enttr and LML ver-
sions.

Predicate Classification (Constrained) Predicate Classification (Unconstrained)

Model R@20 R@50 R@100 R@20 R@50 R@100

[Zel+18] 58.5 65.2 67.1 66.6 81.1 88.2

+Enttr 59.4 66.1 67.8 60.8 70.7 75.6
+LML 58.5 66.0 67.9 64.2 79.4 87.6

Table 6.1: Scene graph generation on the Visual Genome: Test Dataset Results.

Kumar [BZK18] and added the LML experiments with a few lines of code. Notably, we
also re-implemented the truncated entropy loss from Lapin, Hein, and Schiele [LHS16] as
another reasonable baseline for this task. Following the method of Berrada, Zisserman,
and Kumar [BZK18], we ran four seeds for the truncated entropy and LML models and
report the average test performance. For reference, a model making random predictions
would obtain 1% top-1 accuracy and 5% top-5 accuracy.

The results show that relative to the cross-entropy, the smooth SVM, truncated entropy,
and LML losses perform similarly. Relative to each other the best method is not clear,
which is consistent with the experimental results on other tasks in Lapin, Hein, and Schiele
[LHS16]. We interpret these results as showing that all of the methods evaluated for top-
k optimization provide nearly identical gradient information to the model and only have
small differences.

6.5.3 Scene Graph Generation
For our scene graph generation experiments we use the MotifNet-LeftRight model,
experimental setup, and official code from Zellers, Yatskar, Thomson, and Choi [Zel+18].
We added the LML variant with ≈20 lines of code. This experiment uses the Visual
Genome dataset [Kri+17], using the the publicly released preprocessed data and splits
from Xu, Zhu, Choy, and Fei-Fei [Xu+17]. In this chapter, we focus solely on the Predicate
Classification evaluation mode PredCls which uses a pre-trained detector and classifier
and only measures improvements to the relationship predicate model P (R | B,O, I). Our

88



0 5 10 15 20 25 30
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

Re
ca

ll

Train Recall (Unconstrained)

0 5 10 15 20 25 30
Epoch

0.70

0.75

0.80

0.85

0.90

Re
ca

ll

Val Recall (Unconstrained)

[Zel+18] R@( 20 50 100) +Enttr R@( 20 50 100) +LML R@( 20 50 100)

Figure 6.6: (Unconstrained) Scene graph generation on the Visual Genome: Training
and validation progress comparing the vanilla Neural Motif model to the Enttr and LML
versions.

methods can also be extended to the other evaluation modes that jointly learn models
for the detection and object classification portions P (G | I) and we believe that our
improvements on the PredCls mode upper-bound the improvements an LML layer would
add to the other evaluation modes. Constrained graph generation constrains the graphs
to have at most a single relationship present at each edge, and is more common in the
literature.

We also consider using a modified version of the truncated top-k entropy loss that we
derive in Section 6.2.2. We do not consider modifications of the Smooth SVM because
the performance results in Section 6.5.1 show that the approach is nearly computationally
infeasible when scaling to the size necessary for scene-graph generation. An image with
20 objects and 50 possible relationships generates 20(19)(50) = 19000 possible relationship
candidates.

All of the LML and truncated top-k entropy (Enttr) models we evaluate in this section
are trained on predicting graphs with 20 relationships, which perform competitively on
the validation dataset. Figure 6.6 shows the training progress for unconstrained graph
generation. Table 6.2 shows the validation performance for the truncated top-k entropy and
LML layers when trained for k ∈ {20, 50, 100}. Figure 6.5 shows that the truncated top-k
entropy and LML approach both add significant representational capacity and improve
the training recall by 5-10% for all evaluation modes for constrained graph generation.
This behavior is also present for unconstrained graph generation in Figure 6.6. These
improvements are not as significant on the validation dataset, or on the test dataset in
Table 6.1. In the unconstrained evaluation mode, the LML layers outperform the truncated
top-k entropy and almost reach the performance of the baseline. This performance gap is
likely because the Visual Genome dataset has a lot of noise from the human-generated scene
graph annotations, and the LML model fits to more noise in the training dataset that does
not generalize to the noise present in the validation or test datasets. Surprisingly, the LML
model improves the constrained graph generation test performance but slightly decreases
the unconstrained graph generation performance. We theorize this is again because of
noise that the model starts to overfit to and that constraining the model to only make a
single prediction at each edge is a reasonable heuristic.
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Predicate Classification (Constrained) Predicate Classification (Unconstrained)

Model R@20 R@50 R@100 R@20 R@50 R@100

[Zel+18] 61.5 66.7 68.2 70.1 82.6 89.2

+LML-20 62.6 67.9 69.2 71.9 84.3 90.7
+LML-50 62.5 67.8 69.1 71.6 84.1 90.5
+LML-100 61.2 66.3 67.7 70.4 83.3 90.7

+Enttr-20 62.1 67.1 68.6 71.5 83.9 90.1
+Enttr-50 61.7 66.9 68.4 71.1 84.0 90.3
+Enttr-100 60.7 66.3 67.8 69.7 83.5 90.1

Table 6.2: Scene graph generation on the Visual Genome: Best Validation Recall Scores

6.6 Conclusions
We have presented the LML layer for top-k multi-label learning. The LML layer has
a forward pass that can be efficiently computed with a parallel bracketing method and
a backward pass that can be efficiently computed by perturbing the KKT conditions of
the optimization problem. We have empirically demonstrated that the LML layer adds
significant representational capacity for top-k optimization and in many cases can be added
to existing code with ≈20 additional lines of code. As a compelling future research direction
for these layers, these layers can also enable deep structured prediction models to be used
for top-k prediction.
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Chapter 7
Differentiable cvxpy Optimization Layers

In this chapter, we show how to turn the cvxpy modeling language [DB16] into a differen-
tiable optimization layer and implement our method in PyTorch [Pas+17b]. This allows
users to express convex optimization layers in the intuitive cvxpy modeling language with-
out needing to manually implement the backward pass.

7.1 Introduction
This thesis has presented differentiable optimization layers as a powerful class of operations
for end-to-end learning that allow more specialized domain knowledge to be integrated
into the modeling pipeline in a differentiable way. Convex optimization layers can be
represented as

zi+1 = argmin
z

fθ(z, zi) s.t. z ∈ Cθ(zi) (7.1)

where zi is the previous layer, f is a convex objective function parameterized by θ, and C is
a convex constraint set. From the perspective of end-to-end learning, convex optimization
layers can be seen as a module that outputs zi+1 and has parameters θ that can be learned
with gradient descent. We note that the convex case captures many of the applications
above, and can be used as a building block for differentiable non-convex optimization
problems.

Implementing optimization layers can be non-trivial as explicit closed-form solutions
typically do not exist. The forward pass needs to call into an optimization problem solver
and the backward pass typically cannot leverage automatic differentiation. The backwards
pass is usually implemented by implicitly differentiating the KKT conditions of the op-
timization problem as done in bilevel optimization [Gou+16; KP13], sensitivity analysis
[Ber99; FI90; BS13], and in our OptNet approach Chapter 3. Thus to implement an opti-
mization layer, users have to manually implement the backwards pass, which is cumbersome
and error-prone, or use an existing optimization problem layer such as the differentiable
QP layer from Chapter 3, which is not capable of exploiting problem-specific structures,
uses dense operations, and requires the user to manually transform their problem into a
standard form.
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We make cvxpy differentiable with respect to the Parameter objects provided to the
optimization problem by making internal cvxpy components differentiable. This involves
differentiating the reduction from the cvxpy language to the problem data of a cone pro-
gram in standard form and then differentiating through the cone program. We show how
to differentiate through cone programs by implicitly differentiating the residual map from
Busseti, Moursi, and Boyd [BMB18], which is of standalone interest as this shows how to
differentiate through optimization problems with non-polytope constraints.

7.2 Background

7.2.1 The cvxpy modeling language
cvxpy [DB16] is a domain-specific modeling language based on disciplined convex pro-
gramming [GBY06] that allows users to express optimization problems in a more natural
way than the standard form required my most optimization problem solvers. cvxpy works
by transforming the optimization problem from their domain-specific language to a stan-
dard (or canonical) form that is passed into a solver. This inner canonicalized problem
is then solved and the results are returned to the user. In this chapter, we focus on the
canonicalization to a cone program, which is one of the most commonly used modes as
most convex optimization problems can be expressed as a cone program, although we note
that our method can be applied to other cvxpy solvers. Figure 7.1 overviews the relevant
cvxpy components.

7.2.2 Cone Preliminaries
A set K is a cone if for all x ∈ K and t > 0, tx ∈ K. The dual cone of a cone K is

K∗ =
{
y
∣∣ inf
x∈K

y⊤x ≥ 0
}
.

Commonly used cones include the nonnegative orthant
{
x
∣∣ x ≥ 0

}
, second-order cone{

(x, t) ∈ Rn
+

∣∣ t ≥ ||x||2}, positive semidefinite cone {X = X⊤ ⪰ 0}, and exponential cone{
(x, y, z)

∣∣ y > 0, yex/y ≤ z
}
∪
{
(x, 0, z)

∣∣ x ≤ 0, z ≥ 0
}

(7.2)

We can also create a cone from the Cartesian products of simpler cones as K = K1×. . .×Kp.

7.2.3 Cone Programming
Most convex optimization problems can be represented and efficiently solved as a cone
program that uses the nonnegative orthant, second-order cone, positive semidefinite cone,
and exponential cones. This applicability makes them a commonly used internal solver for
cvxpy, which implements many of the well-known transformations from problems to their
conic form. In the following we state properties of cone programs and useful definitions
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for this chapter. More details about cone programming can be found in Boyd and Van-
denberghe [BV04], Ben-Tal and Nemirovski [BN01], Busseti, Moursi, and Boyd [BMB18],
O’Donoghue, Chu, Parikh, and Boyd [ODo+16], Lobo, Vandenberghe, Boyd, and Lebret
[Lob+98], and Alizadeh and Goldfarb [AG03].

In their primal (P) and dual (D) forms, cone programs can be represented as

(P) x⋆, s⋆ = argminx,s c⊤x
subject to Ax+ s = b

s ∈ K

(D) y⋆ = argmaxy b⊤y
subject to A⊤y + c = 0

y ∈ K∗
(7.3)

where x ∈ Rn is the primal variable, s ∈ Rm is the primal slack variable, y ∈ Rm is the
dual variable. and K is a nonempty, closed, convex cone with dual cone K∗.

The KKT optimality conditions. The Karush–Kuhn–Tucker (KKT) conditions
for the cone program in Equation (7.3) provide necessary and sufficient conditions for
optimality and are defined by

Ax+ s = b, A⊤y + c = 0, s ∈ K, y ∈ K∗, s⊤y = 0. (7.4)

The complimentary slackness condition s⊤y = 0 can alternatively be captured with a
condition that makes the duality gap zero c⊤x+ b⊤y = 0.

The homogenous self-dual embedding. Ye, Todd, and Mizuno [YTM94] converts
the primal and cone dual programs in Equation (7.3) into a single feasibility problem called
the homogenous self-dual embedding, which is defined by

Qu = v, u ∈ K, v ∈ K∗, um+n+1 + vm+n+1 > 0, (7.5)

where
K = Rn ×K∗ × R+, K∗ = {0}n ×K × R+,

and Q is the skew-symmetric matrix

Q =

 0 A⊤ c
−A 0 b
−c⊤ −b⊤ 0

 .

A solution to this embedding problem (u⋆, v⋆) can be used to determine the solution of a
conic problem, or to certify the infeasibilty of the problem if a solution doesn’t exist. If a
solution exists, then u⋆ = (x⋆/τ, y⋆/τ, τ) and v⋆ = (0, s⋆/τ, 0).

The conic complementarity set. The conic complementarity set is defined by

C =
{
(u, v) ∈ K×K∗ ∣∣ u⊤v = 0

}
. (7.6)

We denote the Euclidean projection onto K with Π and the Euclidean projection onto −K∗

with Π∗. Moreau [Mor61] shows that Π∗ = I − Π.
Minty’s parameterization of the complementarity set. Minty’s parameterization

M : Rm+n+1 → C of C is defined by M(z) = (Πz,−Π∗z). This parameterization is invert-
ible with M−1(u, v) = u− v. See Rockafellar [Roc70, Corollary 31.5.1] and Bauschke and
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Combettes [BC17, Remark 23.23(i)] for more details. The homogeneous self-dual embed-
ding can be expressed using Minty’s parameterization as −Π∗z = QΠz where zm+n+1 ̸= 0.

The residual map of Minty’s parameterization. Busseti, Moursi, and Boyd
[BMB18] defines the residual map of Minty’s parameterization R : Rm+n+1 → Rm+n+1 as

R(z) = QΠz +Π∗z = ((Q− I)Π + I)z. (7.7)

and shows how to compute the derivative of it when Π is differentiable at z as

DzR(z) = (Q− I)DzΠ(z) + I, (7.8)

where z ∈ Rm+n+1. The cone projection differentiation DzΠ(z) can be computed as de-
scribed in Ali, Wong, and Kolter [AWK17].

The Splitting Conic Solver (SCS). SCS [ODo+16] is an efficient way of solving
general cone programs by using the alternating direction method of multipliers (ADMM)
[Boy+11] and is a commonly used solver with cvxpy. In the simplified form, each iteration
of SCS consists of the following three steps:

ũk+1 = (I +Q)−1(uk + vk)

uk+1 = Π
(
ũk+1 − vk

)
vk+1 = vk − ũk+1 + uk+1.

(7.9)

The first step projects onto an affine subspace, the second projects onto the cone and
the last updates the dual variable. In this paper we will mostly focus on solving the affine
subspace projection step. O’Donoghue, Chu, Parikh, and Boyd [ODo+16, Section 4.1]
shows that the affine subspace projection can be reduced to solving linear systems of the
form [

I −A⊤

−A −I

] [
zx
−zy

]
=

[
wx

wy

]
, (7.10)

which can be re-written as

zx = (I + A⊤A)−1(wx − A⊤wy), zy = wy + Azx. (7.11)

7.3 Differentiating cvxpy and Cone Programs
We have created a differentiable cvxpy layer by making the relevant components differ-
entiable, which we visually show in Figure 7.1. We make the transformation from the
problem data in the original form to the problem data of the canonicalized cone prob-
lem differentiable by replacing the numpy operations for this component with PyTorch
[Pas+17b] operations. We then pass this data into a differentiable cone program solver,
which we show how to create in Section 7.3.1 by implicitly differentiating the residual map
of Minty’s parameterization for the backward pass. The solution of this cone program can
then be mapped back up to the original problem space in a differentiable way and returned.
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Figure 7.1: Summary of our differentiable cvxpy layer that allows users to easily turn most
convex optimization problems into layers for end-to-end machine learning.

7.3.1 Differentiating Cone Programs
We consider the argmin of the primal cone program in Equation (7.3) as a function that
maps from the problem data θ = {c, A, b} to the solution x⋆. The approach from Chap-
ter 3 that differentiates through convex quadratic programs by implicitly differentiating
the KKT conditions is difficult to use for cone programs. This is because the cone con-
straints in the KKT conditions in Equation (7.4) make it difficult to form a set of implicit
functions. Instead of implicitly differentiating the KKT conditions, we show how to simi-
larly apply implicit differentiation to the residual map of Minty’s parameterization shown
in Busseti, Moursi, and Boyd [BMB18] to compute the derivative ∂x⋆/∂θ. Furthermore
for backpropagation, the full Jacobian is expensive and unnecessary to form and we show
how to efficiently compute ∂ℓ/∂θ given ∂ℓ/∂x⋆.

Implicit differentiation of the residual map

We assume that we have solved the forward pass of the cone program in Equation (7.3)
and have a solution x⋆, s⋆, y⋆. We now show how to compute ∂x⋆/∂θ. This derivation
was concurrently considered and done by Agrawal, Barratt, Boyd, Busseti, and Moursi
[Agr+19].

We construct u⋆ = (x⋆, y⋆, 1), and v⋆ = (0, s⋆, 0), and z⋆ = u⋆ − v⋆. The residual
map of Minty’s parameterization is zero, R(z⋆) = 0, and forms a set of implicit equations
that describe the solution mapping. Implicit differentiation can be done as described in
Dontchev and Rockafellar [DR09] with

Dθz
⋆ = − (DzR(z⋆))−1DθR(z⋆). (7.12)

(DzR(z⋆))−1 can be computed as described in [BMB18] and DθR(z⋆) can be analytically
computed. We consider the scaling factor τ = zm+n+1 = 1 to be a constant because a
solution to the cone program exists. Finally, applying the chain rule to u⋆ = Πz⋆ gives

Dθu
⋆ = (DzΠz)Dθz

⋆. (7.13)
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We note that implicitly differentiating the residual map captures implicit differentiation
of the KKT conditions as a special case for simple cones such as the zero cone and non-
negative orthant.

The linear system in Equation (7.12) can be expensive to solve. In special cases such
as quadratic programs and LQR problems that we discussed in Chapter 3 and Chapter 5,
respectively, this system can be interpreted as the solution to another convex optimization
problem and efficiently solved with a method similar to the forward pass. This connection
is made by interpreting the linear system solve as a KKT system solve that represents
another optimization problem. However for general cone programs it is more difficult to
interpret this linear system as a KKT system because of the cone projections and therefore
it is more difficult to interpret this linear system solve as an optimization problem.

7.4 Implementation

7.4.1 Forward Pass: Efficiently solving batches of cone programs
with SCS and PyTorch

Naïvely implemented optimization layers can become computational bottlenecks when used
in a machine learning pipeline that requires efficiently processing minibatches of data. This
is because most other parts of the modeling pipeline involve operations such as linear maps,
convolutions, and activation functions that can quickly be executed on the GPU to exploit
data parallelism across the minibatch. Most off-the-shelf optimization problem solvers are
designed for the setting of solving a single problem at a time and are not easily able to be
plugged into the batched setting required when using optimization layers.

To overcome the computational challenges of solving batches of cone programs con-
currently, we have created a batched PyTorch and potentially GPU-backed backend for
the Splitting Conic Solver (SCS) [ODo+16]. The bottleneck of the SCS iterates in Equa-
tion (7.9) is typically in the subspace projection part that solves linear systems of the form

ũk+1 = (I +Q)−1(uk + vk) (7.14)

We have added a new linear system solver backend to the official SCS C implementation
that calls back up into Python to solve this linear system.

Our cone program layer implementation offers the following modes for solving a batch of
N cone programs represented in standard form as in Equation (7.3) with as θi = {Ai, bi, ci}
for i ∈ {1, . . . , N} with SCS. As common in practice, we assume that the cone programs
have the structure and use the same cones but have different problem data θi. We empiri-
cally compare these modes in Section 7.6.

Vanilla SCS, serialized. This is a baseline mode that is the easiest to implement and
sequentially iterates through the problems θi. This lets us use the vanilla SCS sparse direct
and indirect linear system solvers on the CPU and CUDA, but does not take advantage of
data parallelism.
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Vanilla SCS, batched. This is another baseline mode that comes from observing that
a batch of cone programs can be represented as a single cone program in standard form
as in Equation (7.3) with variables x = [x⊤

1 , . . . , x
⊤
N ]

⊤ and data A = diag(A1, . . . , AN),
b = [b⊤1 , . . . , b

⊤
N ]

⊤, and c = [c⊤1 , . . . , c
⊤
N ]

⊤. This exploits the knowledge that all of the cone
programs can be solved concurrently. The bottleneck of this mode is still typically in the
linear system solve portion of SCS, which happens using sparse operations on the CPU or
GPU.

SCS+PyTorch, batched. In this mode we represent the batch of cone programs as
a single batched cone program use SCS will callbacks up into Python so that we can
use PyTorch to efficiently solve the linear system. This allows us to keep the A data
in PyTorch and potentially on the GPU without converting/transferring it and passing
it into the SCS. Specifically we use dense operations and have implemented direct and
indirect methods to solve Equation (7.11) in PyTorch and then pass the result back down
into SCS for the rest of the operations. Our direct method uses PyTorch’s batched LU
factorizations and solves and our indirect method uses a batched conjugate gradient (CG)
implementation. These custom linear system solvers are able to explicitly take advantage
of the independence present in the linear systems that the sparse linear system solvers may
not recognize automatically, and the dense solvers are also useful for dense cone programs,
which come up in the context of differentiable optimization layers when large portions of
the constraints are being learned.

7.4.2 Backward pass: Efficiently solving the linear system
When using cone programs as layers in end-to-end learning systems with some scalar-
valued loss function ℓ, the full Jacobian Dθx

⋆ is expensive and unnecessary to form and
requires solving |θ| linear systems. The Jacobian is only used when applying the chain
rule to obtain Dθℓ = (Dx⋆ℓ)Dθx

⋆. We can directly compute Dθℓ without computing the
intermediate Jacobian by solving a single linear system. Following the method of Chapter 3,
we set up the system

DzR(z⋆)

dz1dz2
0

 = −

∇x⋆ℓ
0
0

 . (7.15)

Applying the chain rule to u⋆ = Πz⋆ gives dx = dz1 and dy = (DzΠz)dz2 . We then compute
the relevant backpropagation derivatives as

∇cℓ = dx ∇Aℓ = dy ⊗ x⋆ + y⋆ ⊗ dx ∇bℓ = −dy (7.16)
Solving Equation (7.15) is still challenging to implement in practice as DzR(z⋆) can

be large and sparse and doesn’t have obviously exploitable properties such as symmetry
or anti-symmetry. In addition to directly solving this linear system, we also explore the
use of LSQR [PS82] as an iterative indirect method of solving this system in Section 7.6.2.
Our LSQR implementation uses the implementation from Ali, Wong, and Kolter [AWK17]
to compute DzΠ(z) in the form of an abstract linear operator so the full matrix does not
need to be explicitly formed.
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7.5 Examples
This section provides example use cases of our cvxpy optimization layer. All of these use
the preamble

1 import cvxpy as cp
2 from cvxpyth import CvxpyLayer

7.5.1 The ReLU, sigmoid, and softmax
We will start with basic examples and revisit the optimization views of the ReLU, sigmoid,
and softmax from Section 2.4.4. These can be implemented with our cvxpy layer in a few
lines of code.

The ReLU. Recall from Equation (2.2) that the optimization view is

f(x) = argmin
y

1

2
||x− y||22 s. t. y ≥ 0.

We can implement this layer with:
1 x = cp.Parameter(n)
2 y = cp.Variable(n)
3 obj = cp.Minimize(cp.sum_squares(y-x))
4 cons = [y >= 0]
5 prob = cp.Problem(obj, cons)
6 layer = CvxpyLayer(prob, params=[x], out_vars=[y])

This layer can be used and differentiated through just as any other PyTorch layer.
Here is the output and derivative for a single dimension, illustrating that this is indeed
performing the same operation as the ReLU.
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The sigmoid. Recall from Equation (2.4) that the optimization view is

f(x) = argmin
0<y<1

−x⊤y −Hb(y).

We can implement this layer with:
1 x = cp.Parameter(n)
2 y = cp.Variable(n)
3 obj = cp.Minimize(-x.T*y - cp.sum(cp.entr(y) + cp.entr(1.-y)))
4 prob = cp.Problem(obj)
5 layer = CvxpyLayer(prob, params=[x], out_vars=[y])

We can also check that the output and derivative matches what we expect from the usual
sigmoid function:

The softmax. Lastly recall from Equation (2.5) that the optimization view is

f(x) = argmin
0<y<1

−x⊤y −H(y) s. t. 1⊤y = 1

We can implement this layer with:
1 x = cp.Parameter(d)
2 y = cp.Variable(d)
3 obj = cp.Minimize(-x.T*y - cp.sum(cp.entr(y)))
4 cons = [sum(y) == 1.]
5 prob = cp.Problem(obj, cons)
6 layer = CvxpyLayer(prob, params=[x], out_vars=[y])
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7.5.2 The OptNet QP
We can re-implement the OptNet QP layer from Chapter 3 with our differentiable cvxpy
layer in a few lines of code. The OptNet layer is represented as a convex quadratic program
of the form

x⋆ = argmin
x

1

2
x⊤Qx+ p⊤x

subject to Ax = b

Gx ≤ h

(7.17)

where x ∈ Rn is our optimization variable Q ∈ Rn×n ⪰ 0 (a positive semidefinite matrix),
p ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rp×n and h ∈ Rp are problem data. We can implement
this with:

1 Q = cp.Parameter((n, n), PSD=True)
2 p = cp.Parameter(n)
3 A = cp.Parameter((m, n))
4 b = cp.Parameter(m)
5 G = cp.Parameter((p, n))
6 h = cp.Parameter(p)
7 x = cp.Variable(n)
8 obj = cp.Minimize(0.5*cp.quad_form(x, Q) + p.T * x)
9 cons = [A*x == b, G*x <= h]

10 prob = cp.Problem(obj, cons)
11 layer = CvxpyLayer(prob, params=[Q, p, A, b, G, h], out=[x])

This layer can then be used by passing in the relevant parameter values:
1 Lval = torch.randn(nx, nx, requires_grad=True)
2 Qval = Lval.t().mm(Lval)
3 pval = torch.randn(nx, requires_grad=True)
4 Aval = torch.randn(ncon_eq, nx, requires_grad=True)
5 bval = torch.randn(ncon_eq, requires_grad=True)
6 Gval = torch.randn(ncon_ineq , nx, requires_grad=True)
7 hval = torch.randn(ncon_ineq , requires_grad=True)
8 y = layer(Qval, pval, Aval, bval, Gval, hval)
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True Polytope Approximate Polytope

Figure 7.2: Learning polyhedrally constrained problems.

7.5.3 Learning Polyhedral Constraints
We demonstrate how gradient-based learning can be done with a cvxpy layer in this syn-
thetic example. Consider the polyhedrally constrained projection problem

ŷ = argmin
y

1

2
||p− y||22

s.t. Gy ≤ h

Suppose we don’t know the polytope’s parameters θ = {G, h} and want to learn them from
data. Then using the MSE for ℓ, we can randomly initialize ellipsoids θ and learn them
with gradient steps ∇θℓ. We note that this problem is meant for illustrative purposes and
could be solved by taking the convex hull of the input data points. However our approach
would still work if this was over a latent and unobserved part of the model, of if you want
to take an approximate convex hull that limits the number of polytope edges.

We can implement this layer with the following code. Figure 7.2 shows the results
of learning on two examples. Each problem has a true known polytope that we show in
blue and the model’s approximation is in red. Learning starts on the left with randomly
initialized polytopes that are updated with gradient steps, which are shown in the images
progressing to the right.

1 G = cp.Parameter((m, n))
2 h = cp.Parameter(m)
3 p = cp.Parameter(n)
4 y = cp.Variable(n)
5 obj = cp.Minimize(0.5*cp.sum_squares(y-p))
6 cons = [G*y <= h]
7 prob = cp.Problem(obj, cons)
8 layer = CvxpyLayer(prob, params=[p, G, h], out=[y])
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Figure 7.3: Learning ellipsoidally constrained problems.

7.5.4 Learning Ellipsoidal Constraints
In addition to learning polyhedral constraints, we can easily learn any parameterized convex
constraint set. Suppose instead that we want to learn an ellipsoidal projection of the form

ŷ = argmin
y

1

2
||p− y||22

s.t.
1

2
(y − z)⊤A(y − z) ≤ 1

with ellipsoid parameters θ = {A, z} This is an interesting optimization problem to consider
because it is an example of doing learning with a non-polytope cone program (a SOCP),
which prior approaches such as OptNet could not easily handle.

We can implement this layer with the following code. Figure 7.3 visualizes the learning
process on two examples. As before, each problem has a true known ellipsoid that we show
in blue and the model’s approximation is in red. Learning starts on the left with randomly
initialized ellipsoids that are updated with gradient steps, which are shown in the images
progressing to the right.

1 A = cp.Parameter((n, n), PSD=True)
2 z = cp.Parameter(n)
3 p = cp.Parameter(n)
4 y = cp.Variable(n)
5 obj = cp.Minimize(0.5*cp.sum_squares(y-p))
6 cons = [0.5*cp.quad_form(y-z, A) <= 1]
7 prob = cp.Problem(obj, cons)
8 layer = CvxpyLayer(prob, params=[p, A, z], out=[y])
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7.6 Evaluation
In this section we analyze the runtime of our layer’s forward and backward passes compared
to hand-written implementations for commonly used optimization layers. We will focus on
three tasks:

Task 1: Dense QP. We consider a QP layer of the form Equation (7.17) with a dense
quadratic objective and dense inequality constraints. Our default experiment uses a QP
with 100 latent variables, 100 inequality constraints, and a minibatch size of 128 examples.
We chose this task to understand how the performance of our cvxpy layer compares to the
qpth implementation from Chapter 3, which we use as a comparison point. The problem
size we consider here is comparable to the QP problem sizes considered in Chapter 3. The
backwards pass of qpth is optimized to use a single batched, pre-factorized linear system
solve.

Task 2: Box QP. We consider a QP layer of the form Equation (7.17) with a dense
quadratic objective constrained to the box [−1, 1]n. Our default experiment uses a QP
with 100 latent variables and a minibatch size of 128 examples. We chose this task to
study the impacts of sparsity on the runtime. We again use qpth as the comparison point
for these experiments.

Task 3: Linear Quadratic Regulator (LQR). We consider a continuous-state-action,
discrete-time, finite-horizon LQR problem of the form

τ ⋆1:T = argmin
τ1:T

∑
t

1

2
τ⊤t Ctτt + c⊤t τt subject to x1 = xinit, xt+1 = Ftτt + ft. (7.18)

where τ1:T = {xt, ut}1:T is the nominal trajectory, T is the horizon, xt, ut are the state and
control at time t, {Ct, ct} parameterize a convex quadratic cost, and {Ft, ft} parameterize
an affine system transition dynamics. We consider a control problem with 10 states, 2
actions, and a horizon of 5. We compare to the differentiable model predictive control
(MPC) solver from [Amo+18b], which uses batched PyTorch operations to solve a batch
of LQR problems with the Riccati equations, and then implements the backward pass with
another, simpler, LQR solve with the Riccati equations.

For each of these tasks we have measured the forward and backward pass execution
times for our layer in comparison to the specialized solvers. We have run these experiments
on an unloaded system with an NVIDIA GeForce GTX 1080 Ti GPU and a four-core
2.60GHz Intel Xeon E5-2623 CPUs hyper-threaded to eight cores. We set the number of
OpenMP threads to 8 for our experiments. For numerical stability, we use 64-bits for all of
our implementations and baselines. For qpth and our implementation, we use an iteration
stopping condition of ϵ = 10−3.
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Figure 7.4: Forward pass execution times. For each task we run ten trials on an unloaded
system and normalize the runtimes to the CPU execution time of the specialized solver.
The bars show the 95% confidence interval. For our method, we show the best performing
mode.

7.6.1 Forward pass profiling
Figure 7.4 summarizes our main forward pass execution times. Figure 7.6 shows the run-
times of all of the modes and batch sizes, and Figure 7.5 illustrates the speedup of our
best mode compared to the specialized solvers. We have implemented and run every mode
from Section 7.4.1 and our summary presents the best-performing mode, which in every
case on the GPU is our block direct solver. On the CPU, serializing SCS calls is compet-
itive for problems with more sparsity. For dense and sparse QPs on the CPU and GPU,
our batched SCS+PyTorch direct cone solver is faster than the qpth solver, which likely
comes from the acceleration, convergence, and normalization tricks in SCS that are not
present in qpth. The LQR task presents a sparse problem that illustrates the challenges to
using a general cone program formulation. Our specialized solver that solves the Riccati
equations in batched form exploits the sparsity pattern of the problem that is extremely
difficult for the general cone program formulation we consider here to take advantage of. If
the correct mappings to the cone program exist, our layer could be modified to accept an
optimized user-provided solver for the forward pass so that users can still take advantage
of our backward pass implementation.
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Figure 7.7: Sample linear system coefficients for the backward pass system in Equa-
tion (7.15) on smaller versions of the tasks we consider. The tasks we consider are ap-
proximately five times larger than these systems.

7.6.2 Backward pass profiling
In this section we compare the backward pass times of our layer in comparison to the
specialized solvers on the same three tasks as before: the dense QP, the box QP, and LQR.
We show that differentiating through our conic solver is competitive in comparison to the
specialized solver. As a comparison point, the qpth solver exploits the property that the
linear system for the backward pass is the same as the linear system in the forward pass
and can therefore do the backward pass with a single pre-factorized solve. The LQR solver
exploits the property that the backward pass for LQR can be interpreted as another LQR
problem that can efficiently be solved with the Riccati recursion.

These comparisons are important because the linear system for differentiating cone
programs in Equation (7.15) is a more general form and cannot leverage the same exploits
as the specialized solvers. To get an intuition of what these linear systems look like on our
tasks, we plot sample maps on smaller problems of the coefficient matrix in Figure 7.7.
This illustrates the sparsity that is typically present in the linear system that needs to be
solved, but also illustrates that beyond sparsity, there is no other common property that
can be exploited between the tasks.

To understand how many LSQR iterations are necessary to solve our task, we compare
the approximate derivatives computed by LSQR to the derivatives obtained by directly
solving the linear system in Figure 7.8. This shows that typically 500-1000 LSQR iterations
are necessary for the tasks that we consider. In some cases such as ∂x⋆/∂A for LQR, the
approximate gradient computed by LSQR does never converges exactly to the true gradient.
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Figure 7.9 compares our backward pass times to the specialized solvers for the QP and
LQR tasks. This shows that there is a slight computational overhead in comparison to
the specialized solvers, but that solving the linear system is still tractable for these tasks.
The LSQR runtime is serialized across the batch, and is currently only implemented on the
CPU. We emphasize that if the backward pass time becomes a bottleneck, the runtime can
be further improved by further exploiting the sparsity by investigating other direct and
indirect solvers for the systems, or by exploiting the property that we mentioned earlier in
Section 7.3.1 that for simple cones like the free and non-negative cones, parts of the system
become the same as parts of the KKT system.

7.7 Conclusion
This section has presented a way of differentiating through cone programs that enabled us
to create a powerful prototyping tool for differentiable convex optimization layers. Prac-
titioners can use this library in place of hand-implementing a solver and implicitly dif-
ferentiating the KKT conditions. The speed of our tool is competitive with the speed of
specialized solvers, even in the batched setting required for machine learning.
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Chapter 8
Conclusions and Future Directions

In this thesis we have introduced new building blocks and fundamental components for
machine learning that enable optimization-based domain knowledge to be injected into the
modeling pipeline. We have presented the OptNet architecture as a foundation for convex
optimization layers and the input-convex neural network architecture as a foundation for
deep convex energy-based learning. We have shown how the OptNet approach can be
applied to differentiable model-predictive control and top-k learning. To enable rapid
prototyping in this space, we have shown how cvxpy can be turned into a differentiable
layer. Differentiable optimization provides an expressive set of operations and have a
promising set of future directions. In the following we provide a brief outlook of how
optimization-based modeling benefits seven application areas, and we highlight a few key
references in this space.

1. Game theory. The game theory literature typically focuses on finding optimal
strategies of playing games with known rules. While the rules of a lot of games
are known explicitly, scenarios could come up where it’s useful to learn the rules
of a game and to have a “game theory” equilibrium-finding layer. For example in
reinforcement learning, an agent can have an arbitrary differentiable “game theory”
layer that is able of representing complex tasks, state spaces, and problems as an
equilibrium-finding problem in a game where the rules are automatically extracted.
This is explored in Ling, Fang, and Kolter [LFK18].

2. Stochastic optimization and end-to-end learning. Typically probabilistic mod-
els are used in the context of larger systems. When these systems have an objective
that is being optimized, it is usually ideal to incorporate the knowledge of this objec-
tive into the probabilistic modeling component. If the downstream systems involve
solving stochastic optimization problems, as in power-systems, creating an end-to-end
differentiable architecture is more difficult and can be done by using differentiable
optimization as in Donti, Amos, and Kolter [DAK17].
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3. Reinforcement learning and control.
• Safety. RL agents may be deployed in scenarios when the agent should avoid

parts of the state space, e.g. in safety-critical environments. Differentiable op-
timization layers can be used to help constrain the policy class so that these re-
gions are avoided. This is explored in Dalal, Dvijotham, Vecerik, Hester, Padu-
raru, and Tassa [Dal+18] and Pham, De Magistris, and Tachibana [PDT18].

• Differentiable control and planning. The differentiable MPC approach we
presented in Chapter 5 is just one step towards a significantly broader vision of
integrating control and learning for doing imitation or policy learning.

• Physics-based modeling. When RL environments involve physical systems,
it may be useful to have a physics-based modeling. This can be done with a dif-
ferentiable physics engines as in Avila Belbute-Peres, Smith, Allen, Tenenbaum,
and Kolter [Avi+18].

• Inverse cost and reward learning. Given observed trajectories in an imita-
tion learning setup, modeling agents as controllers that are optimizing an ob-
jective is a powerful paradigm [NR+00; FLA16]. Differentiable controllers are
useful when trying to reconstruct an optimization problem that other agents are
solving. This is done in the context of cost shaping in Tamar, Thomas, Zhang,
Levine, and Abbeel [Tam+17].

• Multi-agent environments. In multi-agent environments, other agents can
be modeled as entities that are solving control optimization or other learning
problems. This knowledge can be integrated into the learning procedure as in
Foerster, Chen, Al-Shedivat, Whiteson, Abbeel, and Mordatch [Foe+18].

• Control in high-dimensional state spaces. Control in high-dimensional
state spaces such as visual spaces is challenging and it is typically useful to
extract a lower-dimensional latent space from the original feature space. This is
typically done by either hand-engineering a feature extractor, or by learning an
embedding with an unsupervised learning method as in Watter, Springenberg,
Boedecker, and Riedmiller [Wat+15] and Kurutach, Tamar, Yang, Russell, and
Abbeel [Kur+18]. Viewing controllers as differentiable entities is reasonable for
embedding states because the cost function of the controller can be parameter-
ized to learn a cost associated with the latent representation.

4. Discrete, combinatorial, and submodular optimization. The space of discrete,
combinatorial, and mixed optimization problems captures an even more expressive
set of operations than the continuous and convex optimization problems we have
considered in this thesis. Similar optimization components can be made for some of
these types of problems and is explored in Djolonga and Krause [DK17], Tschiatschek,
Sahin, and Krause [TSK18], Mensch and Blondel [MB18], Niculae, Martins, Blondel,
and Cardie [Nic+18], and Niculae and Blondel [NB17].
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5. Meta-learning. Some meta-learning formulations such as Finn, Abbeel, and Levine
[FAL17] and Ravi and Larochelle [RL16] involve learning through an unrolled opti-
mizer that typically solve an unconstrained, continuous, and non-convex optimization
problem. In some cases, unrolling through a solver with many iterations may require
inefficient amounts of compute or memory. Meta-learning methods can be improved
by using differentiable closed-form solvers, as done in MetaOptNet [Lee+19] with a
differentiable SVM layer and in Bertinetto, Henriques, Torr, and Vedaldi [Ber+18]
with differentiable ridge and logistic regression.

6. Optimization viewpoints of standard components. A motivation behind this
thesis work has been the optimization viewpoints of standard layers we discussed
in Section 2.4.4. Many other directions can be taken with the viewpoints, such as
the proximal operator viewpoint in Bibi, Ghanem, Koltun, and Ranftl [Bib+18] that
interprets deep layers as stochastic solvers.

7. Hyper-parameter and generalization optimization. The learning procedure
for many linear machine learning models can be interpreted as the solution to a
convex optimization problem over the loss function. This convex learning process can
therefore also be made differentiable and used for optimizing the hyper-parameters
of these algorithms. This is done in Barratt and Sharma [BS18] to optimize the
cross-validation risk of convex formulations, including logistic regression, SVMs, and
elastic net regression; for least squares in Barratt and Boyd [BB19]; and SVMs in
Lee, Maji, Ravichandran, and Soatto [Lee+19].
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