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Abstract
Efficient and robust robotic exploration has the potential to solve significant chal-

lenges and save lives when disasters occur underground. Cave rescues to extricate
trapped or lost spelunkers are difficult and demanding endeavors performed dozens of
times each year in the United States in environments that are often neither mapped nor
surveyed and have limited to nonexistent communications due to the convoluted nature
of underground voids. Underground nuclear waste storage facilities become inacces-
sible to humans when radiation leaks occur, so efficient pose estimation and mapping
to localize radiation leaks is of the utmost importance. Catastrophic sinkholes appear
suddenly in areas of karst terrain throughout the United States, swallowing homes, and
trapping residents in debris.

Without reliable communications, robots must operate autonomously to efficiently
explore these subterranean environments, but many Simultaneous Localization and
Mapping (SLAM) techniques do not generate maps fit for active perception. Occu-
pancy grid map techniques are typically used after solving the SLAM problem to
generate feasible trajectories. The advantage of occupancy grid maps is they may
be updated quickly, but the gains in speed come at the cost of either memory effi-
ciency or fidelity. In exploration contexts, systems maneuvering in large environments
must elect to decrease the resolution of the occupancy grid map in order to mitigate
explosive memory demands or suffer increasingly slower speeds when manipulating
occupancy grid maps with small cell sizes. For computationally constrained systems,
the latter is prohibitive, but employing low-resolution environment representations has
significant disadvantages. For example, small passageways and hazards may be ob-
scured and rich details obliterated.

Gaussian Mixture Models (GMMs) are well suited to compactly represent sensor
observations and model the structural correlations present in the environment. These
generative models are advantageous as compared to voxelized representations that as-
sume independence between cells and lose dependencies between spatially distinct
locations. GMM-based perception tasks such as registration have been studied, but
solutions are either not real-time viable or have not been evaluated with large, real-
world datasets. There are few works that address the viability of leveraging these
models for tasks such as SLAM and exploration, because a significant challenge to
overcome is the time needed to create these models.

This thesis develops information-theoretic exploration with approximate contin-
uous distributions that unifies high-resolution, low memory footprint environment
modeling with occupancy mapping techniques while remaining amenable to local and
global pose updates. This is possible through innovations in robust distribution to dis-
tribution registration, arbitrary resolution occupancy modeling, real-time information-
theoretic exploration, and simultaneous localization and mapping. These develop-
ments are evaluated in simulation, with real-world datasets, and onboard an aerial
system and tested in complex environments. The results demonstrate that leveraging
compact generative models yields substantial gains over state-of-the-art methods in
model fidelity, accuracy, and memory efficiency.
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Chapter 1

Introduction

Robotic exploration in subterranean voids demands robust operation due to the lack of global posi-

tioning systems and limited or non-exist communications. Image-based navigation techniques fail

in darkness even with active illumination as the sensor may be washed out if the robot approaches

a surface too closely or takes a turn too tightly, so alternative sensing modalities, such as depth and

LiDAR sensors, must be employed to estimate pose. In particular, cave rescue is challenging be-

cause the interiors of caves typically have not been mapped. For example, of the 4378 documented

caves in Virginia, only 1348 have been mapped [79]. Dozens of cave rescues are performed each

year when spelunkers become lost, succumb to rockfall, cold temperatures, or contaminated air,

and require rescue [79]. These rescues are difficult, demanding and require highly specialized

training to locate and extricate an injured spelunker.

Subterranean storage of nuclear waste, or nuclear waste management, is a domain that desper-

ately needs robotic solutions, because when radiation leaks occur, humans cannot be deployed to

find and seal the leaks without risking exposure. The Waste Isolation Pilot Plant (WIPP), designed

to store nuclear waste for 200,000 years, experienced a radiation leak in February 2014 that ex-

posed several workers and led to its closure for three years [17]. Robotic systems must estimate

pose and create maps with high accuracy and detail to enable localization of the source of leaks.

1
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(a) (b) (c)

Figure 1.1: (a) Cave rescue in Tennessee. (b)Waste Isolation Pilot Plant (Image Source: U.S. Dept. of En-
ergy). (c) A 330 m deep sinkhole opened up in Gautemala in 2007 killing two people and forcing evacuation
of 1000. (Image Source: National Geographic)

Sinkholes are catastrophic and sudden events that occur in karst terrain around the world, and

may be hundreds of meters deep. These events are triggered due to either natural events, such

as weaknesses in karst terrain, or man-made negligence, like aging water systems. While some

sinkholes may cause minimal damage and are only a few meters wide and deep, others have been

recorded to be hundreds of meters deep (see Fig. 1.1c) [86]. Efficient robotic exploration and

mapping of these environments can determine the cause of collapse and localize survivors.

Active perception methodologies seek to evaluate and select actions that increase the informa-

tion content derived from sensor observations. Exploration is one such active perception manifesta-

tion that selects actions to maximize coverage of an unknown environment. To enable exploration,

state-of-the-art systems are typically composed of several concurrent processes that operate on the

same pointcloud data to perform a variety of perception tasks, which results in a complex and

monolithic software system.

For example, information theoretic exploration systems must estimate pose, which typically

requires maintaining a high-resolution occupancy map that scales as the size of the environment

increases. In addition, a separate occupancy representation may be stored with similar or greater

memory demands for action evaluation and selection. Processes must also be run to identify haz-

ards along the current trajectory and re-plan safe, feasible trajectories given the most up-to-date
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representation of the environment. All perceptual tasks must be robust to uncertainty and amenable

to local and global pose updates.

Furthermore, commercial off-the-shelf sensors, that produce observations composed of hun-

dreds of thousands or millions of points per second, are ubiquitous and cheap. Processing this

data on computationally constrained autonomous systems may be intractable because the data is

too dense, contains too much noise or too many outliers, or because the points do not encode the

spatial correlations present in the environment.

1.1 Challenges

Three challenges are identified that must be overcome to enable robust, efficient exploration in

subterranean environments on computationally constrained systems:

• Efficient, high-resolution, and compact perceptual modeling: High-fidelity environment

representations that are amenable for transmission across low-bandwidth communications

channels.

• Occupancy modeling at arbitrary resolution: The perceptual model must admit a method

to derive occupancy in real-time to enable information-theoretic exploration.

• Local and global consistency in environment representation: The environment represen-

tation must remain amenable to local and global updates in pose.

High-fidelity and efficient perceptual modeling is well suited to a formulation based on Gaus-

sian mixture models (GMMs). The GMM is a generative model that represents data points as a

finite number of Gaussian distributions (see Chapter 3 for additional details). The compactness

of these models may be leveraged to enable transmission of high-resolution environment data be-

tween systems or operators in environments with limited communications.

However, applying GMMs to the problem of perceptual modeling in real-world environments is

challenged by the limited processing capabilities available onboard most small-scale, autonomous
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systems such as micro aerial vehicles. The time to train a GMM scales with the number of samples

in the dataset and desired number of mixture components. Furthermore, the availability of low-

cost, high-resolution depth sensors has exploded in recent years and low-power computing has not

kept pace. As a result, many powerful perceptual modeling techniques are not real-time viable for

compute-constrained robotic systems.

1.2 Thesis Contributions

This thesis seeks to address these challenges and enable efficient exploration through the develop-

ment and validation of a unified high-resolution perceptual and occupancy modeling framework

that leverages Gaussian Mixture Models (GMMs) to represent the environment and is amenable to

local and global pose updates. Sensor observations are encoded as generative models that require

significantly less memory than storing raw pointclouds, are more robust to noise and outliers, and

preserve geometric structure of the environment. These models may be used to estimate pose,

derive occupancy and close the loop.

The contributions of this thesis are summarized below and detailed in the subsequent chapters.

Chapter 4: Information-theoretic Exploration An exploration framework that leverages occu-

pancy grid maps for environment representation and motion primitives constructed on a state space

lattice. An information-theoretic cost function that maximizes the mutual information between fu-

ture sensor observations and the map is used to select actions. The approach yields an efficient

method for maximizing coverage of significantly rich, 3D environments [82].

Chapter 5: On-Manifold GMM Registration A robust formulation for registering pointclouds

represented as GMMs by minimizing the squared L2 norm between two distributions that outper-

forms state-of-the-art registration methods [83].

Chapter 6: Arbitrary Resolution Occupancy Modeling using GMMs A method for deriv-

ing occupancy from GMM maps that outperforms the state-of-the-art occupancy modeling ap-
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proaches [62].

Chapter 7: Local Occupancy Mapping using GMMs for Exploration A method that lever-

ages GMMs for high-fidelity perceptual modeling and from which occupancy may be derived to

enable real-time information-theoretic exploration evaluated in simulation and onboard an aerial

system equipped with a LiDAR sensor.

Chapter 8: Simultaneous Localization and Mapping using GMMs An extension of the regis-

tration approach that employs a pose graph formulation for simultaneous localization and mapping

and develops a method to close the loop.
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Chapter 2

Related Work

This thesis seeks to enable efficient exploration with respect to a high-fidelity perceptual model

that is compact, encodes occupancy, and is amenable to local and global pose updates. Techniques

from pointcloud and distribution-to-distribution registration, occupancy modeling, simultaneous

localization and mapping, and exploration are leveraged and extended. This chapter provides a

brief overview of related works in these areas.

2.1 Registration

The state-of-the-art navigation and mapping algorithms can be segregated into image-based and

depth-based pose estimation techniques. Feature-based image processing algorithms fail in en-

vironments that do not enable feature extraction and matching, particularly, in low-lighting con-

ditions and in the presence of repetitive structure. Dense methods [60, 75] operate directly on

pointclouds, but are typically more sensitive to initialization.

Direct methods may be leveraged to estimate pose from high-frame rate depth or RGB-D sensor

observations, but require motions between frames to be small and rely on the brightness constancy

assumption which does not hold in subterranean environments [40, 49]. Alismail et al. [1] seek

to overcome the limitations of feature-based and direct methods by developing a hybrid method

7
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that employs bit-plane features within a direct alignment framework, but the approach fails in

subterranean environments when taking tight turns due to washout when the light source output is

constrained to be very close to the image sensor.

The Iterative Closest Point (ICP) algorithm [7] computes point correspondences and identifies

the optimal alignment of corresponding pairs in the least-squares sense. While fast, it is sensitive to

outliers and initialization, and many variants have been proposed to overcome these limitations [25,

56]. Generalized ICP [74] increases the robustness of ICP by modeling the local structure of

the data as a disk centered on each point and normal and matching via a plane-to-plane distance

metric. A significant limitation of standard ICP approaches is the use of hard correspondences, but

while soft correspondence methodologies have been shown to yield improved performance, these

methods come at increased computational cost [84]. While one could argue that downsampling the

pointcloud is a viable method for increasing computational speed, this operation may result in loss

of information [43].

The Normal Distribution Transform (NDT) framework learns anisotropic multivariate normal

distributions over points assigned to a discrete set of bins in the observed space and performs

registration by minimizing the L2 norm between two NDT maps [80]. This approach discretizes the

space, which limits the representational power of the distributions and increases the computational

burden of the framework. The approach developed in this thesis (Chapter 5) is distinct from this

work in that the role of the determinant is explicitly accounted for and all possible correspondences

between the two distributions are considered.

Approaches have been proposed that employ GMMs to represent pointclouds [27, 28, 31, 45].

Alignment is performed by minimizing a distance metric as in [45], or integrating into the model

learning stage through an expectation-maximization (EM) framework [27, 31]. EM-based ap-

proaches assume that the pointclouds to be matched are both observations of the same scene,

which is not realistic in practice as measurements often consist of large non-overlapping regions.
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Methods that leverage probabilistic generative models to register point sets have been demon-

strated to be more robust to outliers and noise [26, 31]. However, state-of-the-art methods are

either not real-time viable [31] or tested on a single scan with varying rotations, translations and

rates of downsampling so that the data is virtually identical for every test [26]. Prior work has

demonstrated the viability of real-time GMM computation through hardware acceleration [28].

2.2 Occupancy Modeling

Occupancy grid mapping [29] is a technique used to generate volumetric 2D or 3D environment

models. The environment is modeled as a set of discrete cells with an associated probability of

occupancy so that each cell may be classified as free, occupied or unknown. The probabilistic rep-

resentation is critical for enabling a consistent map representation in the presence of sensor noise

and random measurements due to dynamic obstacles or reflective surfaces in the environment.

However, occupancy grid maps suffer from fixed grid resolution, which leads to high memory

complexity - quadratic in 2D and cubic in 3D, and an independence assumption between cells in

the grid. OctoMap [38] overcomes some of these limitations by employing a hierarchical structure

based on octrees that performs a recursive subdivision to successively smaller voxel sizes until a

minimum voxel size is reached. However, the downside of the octree approach is that the cost of

a query is O(log n), where n is the number of nodes. In contrast, the cost of performing a lookup

in an occupancy grid map, when implemented efficiently, is O(1). Osman et al. [63] propose to

overcome the independence assumption by using ray potentials and surface priors to update con-

ditionally dependent occupancy cells in a consistent manner.

The Normal Distribution Transform Occupancy Map (NDT-OM) [73] is a semi-continuous

environment modeling approach that leverages a 3D occupancy grid map and stores a uniformly

weighted Gaussian density in each occupied cell. NDT mapping mitigates against errors in dis-

cretization to a certain extent through the incorporation of the Gaussian density, but suffers from
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large memory requirements due to the need to retain the voxelized representation of the environ-

ment.

OCallaghan and Ramos [64] introduce the Gaussian Process Occupancy Map (GPOM), which

is a continuous environment model, by learning a representation of the environment using Gaus-

sian Process regression. However, the implementation proposed by OCallaghan and Ramos [64]

is not real-time viable. Kim and Kim [50] develop a more computationally tractable method by

dividing the training data into small subsets and applying a mixture of GPs and subsequently fur-

ther improve the efficiency through the application of sparse Gaussian processes [51]; however,

the training time remains too large for real-time applications. Jadidi et al. [42] develop incremen-

tal GPOM methods that efficiently learn separate models for free and occupied space, which are

combined to generate a probability of occupancy.

Doherty et al. [24] discretize the environment and store two hyper-parameters in each cell

used to calculate occupancy. When a sensor observation is received, the parameters in the cell are

recursively updated with the result from a sparse kernel. Inference is performed using a test-data

octree. Hilbert Maps [71] train a classifier in a reproducing Hilbert space and have been proposed

as an efficient method of learning continuous occupancy models.

2.3 Exploration

Planetary exploration systems to date have largely left questions about the cost of transmitting

data to operators unaddressed. Arora et al. [3] leverage Bayesian networks to create a mapping

between multi-modal sensor data and variables of interest coupled with a Monte Carlo Tree Search

planner to maximize information gathering with the goal of limiting operator interaction given the

significant delay induced by interplanetary travel. However, the cost of transmitting data to enable

information sharing with human operators and planetary scientists is not discussed.
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Hahn et al. [36] assume a tele-operated vehicle and develop a method to identify victims in a

search and rescue scenario that fuses thermal and depth observations. Bandwidth constraints of the

environment representation are not reported in the analysis of their approach. Papachristos et al.

[65] develop an aerial robot to explore visually degraded, GPS-denied environments by fusing

NIR camera and inertial data and build a high-resolution map by storing pointclouds, which is

prohibitive to transmit across low-bandwidth communications infrastructure.

Many approaches leverage voxel-based occupancy modeling strategies for information-theoretic

planning. Charrow et al. [16] develop a real-time information theoretic planning approach that

maximizes the information gain in the environment by calculating the mutual information between

a sensor observation and map represented as an occupancy grid. The occupancy grid map dis-

cretizes the environment into 3D voxels and stores a probability of occupancy in each voxel [29].

The downside of this map representation is that the memory demands become explosive as the

environment to explore becomes larger or the desired resolution of the map becomes finer.

Oleynikova et al. [61] develop Voxblox to produce Truncated Signed Distance Fields (TSDFs)

from Euclidean Signed Distance Fields (ESDFs) and demonstrate the results on an aerial robot.

The approach outperforms Octomap [38]; however, while Voxblox may be dynamically resized, it

is limited to a fixed-resolution voxel size.

2.4 Simultaneous Localization and Mapping

Whelan et al. [87] develop ElasticFusion for RGB-D simultaneous localization and mapping and

represent the environment as a set of surfels. A joint cost function is employed to estimate pose

with both geometric and photometric information from depth observations. To close the loop, the

authors employ a deformation graph and maintain a list of active and inactive surfels. The approach

does not consider LiDAR observations.

Behley and Stachniss [6] develop a SLAM formulation for 3D laser range data inspired by
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ElasticFusion. The authors opt for a frame-to-model ICP method that registers a raw pointcloud

to a surfel model. Loop closure detection proceeds by checking nearby poses against the current

laser scan with ICP and rendering a view of the current map to determine if the loop closure leads

to a consistent map given the current scan.



Chapter 3

Background

This chapter provides the mathematical foundations from which later chapters build. A mathemati-

cal description of the Gaussian Mixture Model is detailed in Section 3.1 that includes a description

of the K-Means++ (Section 3.1.1) and Expectation Maximization (Section 3.1.2) algorithms to

learn a GMM from data. Section 3.1.3 describes implementation details for efficient computation

of these algorithms and Section 3.1.4 provides a performance analysis.

3.1 Gaussian Mixture Model

A GMM is a probability distribution that represents multivariate data as a weighted combination

of M Gaussian distributions. The probability density of the GMM is represented as

p(x|ξ) =
M∑
m=1

πmN (x|µm,Λm)

13
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where x ∈ RD, πm is a weight such that 0 ≤ πm ≤ 1,
M∑
m

πm = 1, and N (x|µ,Λ) is a D-

dimensional Gaussian density function with mean µ and covariance matrix Λ.

N (x|µ,Λ) =
|Λ|−1/2

(2π)D/2
exp

(
− 1

2
(x− µ)TΛ−1(x− µ)

)

The parameters of the distribution are compactly represented as ξ = {πm,µm,Λm}Mm=1. Estimat-

ing the parameters of a GMM remains an open area of research [39]. Given the density function

p(x|ξ) and observationsX = {x1, . . . ,xN}, x ∈ RD assumed to be independent and identitically

distributed with distribution p, the density for the samples is

p(X|ξ) =
N∏
n=1

p(xn|ξ) = L(ξ|X)

where L(ξ|X) is called the likelihood function and the goal is to find the ξ∗ that maximizes L [8]

ξ∗ = arg max
ξ

L(ξ|X)

It is analytically easier to maximize ln(L(ξ|X)), but the presence of the summation over m inside

the logarithm make ξ difficult to compute and taking the derivative of this log likelihood function

and setting to zero is made intractable because the resulting equations are no longer in closed

form [9]. Instead, latent variables bnm ∈ B are introduced that take a value of 1 if the sample xn

is in cluster m and 0, otherwise (called a 1-of-M coding scheme). A new likelihood function is

defined p(X,B|ξ) = L(ξ|X,B), called the complete data likelihood.

The Expectation step in Expectation Maximization finds the expected value of ln p(X,B|ξ)

by the following function [8]

Q(ξ, ξi) = E
[

ln p(X,B|ξ)|X, ξi
]
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Overview of the process to create a GMM from a sensor observation. (a) illustrates an image
taken from Rapps Cave in Greenbrier, WV. (b) is a corresponding pointcloud colored according to viewing
distance (red is further away and blue is closer to the camera). (c) Each color corresponds to a cluster
created during initialization via the K-Means++ algorithm. The cluster labels assigned by K-Means++ are
used by EM to maximize the log likelihood of the data given the parameters. The red ellipsoids in (d) and (e)
are 1-sigma and 2-sigma representations of the covariance matrices learned after running EM, respectively.
Because the GMM is a generative model, the distribution can be sampled from to obtain the model shown
in (f).

The Maximization step maximizes the expectation of the previous equation:

ξi+1 = arg max
ξ

Q(ξ, ξi)

Each iteration of these steps is guaranteed to increase the log likelihood and ensure that the algo-

rithm converges to a local maximum of the likelihood function [8].

3.1.1 Initialization

Kolouri et al. [52] find the EM algorithm to be sensitive to the choice of initial parameters and Jian
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and Vemuri [45] prove that random initialization causes the EM algorithm to converge to a bad

critical point with high probability. Because the EM algorithm does not guarantee convergence to

a global optimum, the initialization is critical for convergence to a good stationary point. The work

detailed in this thesis implements the K-Means++ algorithm [4], which differs from K-Means in

the initial centroid assignment. The K-Means++ algorithm [4] proceeds in the following manner:

1a. Choose first center c1 uniformly at random fromX .

1b. Select new center ci from x ∈X with probability D(x)2∑
x∈X

D(x)2
, where D(x) denotes the short-

est distance from x to the closest cluster center already chosen {c1, . . . , ci−1}.

1c. Repeat Step 1b. until k centers C = {c1, . . . , ck} are selected.

2. For each i ∈ 1, . . . , k set cluster Ci to the set of points in X closer to ci than they are to cj

for all j 6= i.

3. For each i ∈ 1, . . . , k set ci to be the center of mass of all points in Ci: ci = 1
|Ci|

∑
x∈Ci

x.

4. Repeat steps 2 and 3 until C no longer changes.

Steps 1a.-1c. are unique to the K-Means++ algorithm; however, steps 2-4 come from the standard

K-Means algorithm. The K-Means++ algorithm has advantages over the standard K-Means algo-

rithm in that it provides approximation guarantees for the optimality of the algorithm that improves

the speed and accuracy. Several variants of K-Means are proposed in the literature [22, 30, 37],

but the work developed in Elkan [30] is leveraged in this thesis as it was found to achieve the best

performance. Elkan [30] employs the triangle inequality and maintains lower and upper bounds

on distances between points and centers to increase efficiency by avoiding costly distance calcu-

lations. A visualization of the clustering approach on the pointcloud in Fig. 3.1b may be seen

in Fig. 3.1c.



3.1. GAUSSIAN MIXTURE MODEL 17

3.1.2 Expectation Maximization

The EM algorithm proceeds with the following steps

1. Initialize µm, Λm and πm with the method detailed in Section 3.1.1.

2. E step. Evaluate the responsibilities γnm using the current parameters µm, Λm and πm:

γnm =
πmN (xn|µm,Λm)
M∑
j=1

πjN (xn|µj,Λj)

(3.1)

3. M step. Estimate the new parameters µm, Λm and πm using the current responsibilities,

γnm.

µi+1
m =

N∑
n=1

γnmxn

N∑
n=1

γnm

(3.2)

Λi+1
m =

N∑
n=1

γnm(xn − µim)(xn − µim)T

N∑
n=1

γnm

(3.3)

πi+1
m =

N∑
n=1

γnm
N

(3.4)

4. Evaluate the log likelihood

ln p(X|ξ) =
N∑
n=1

ln

(
M∑
m=1

πmN (xn|µm,Λm)

)
(3.5)

and check for convergence of either the parameters or the log likelihood. If convergence is

not achieved, iterate again from step 2.

While the K-means algorithm performs a hard assignment of data points to clusters, the EM algo-
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rithm makes a soft assignment based on posterior probabilities [9]. A visualization of the result of

running EM on Fig. 3.1c may be seen in Figs. 3.1d and 3.1e.

3.1.3 Implementation Details

Efficient formulation of Eqs. (3.1) to (3.4) is critical for real-time viability on embedded sys-

tems. This section provides a computationally efficient formulation of the EM algorithm to enable

real-time viability. Optimizations may be made in the E step by exploiting the logarithm of the re-

sponsibilities to convert the multiplications and divisions into sums and differences. Once the log

of the responsibilities are calculated, the exponent of the result yields the correct responsibilities.

γnm =
πmN (xn|µm,Λm)
M∑
j=1

πjN (xn|µm,Λj)

(3.6)

ln γnm = lnπm + ln

(
N (xn|µm,Λm)

)
− ln

(
M∑
j=1

πjN (xn|µm,Λj)

)
(3.7)

The logarithm of the multivariate Gaussian probability density function (Eq. (3.11)) may also be

more efficiently computed by leveraging the inverse of the lower triangular cholesky decomposi-

tion (Eq. (3.9)) instead of the using the precision matrix as shown in Eq. (3.14) [14, 66].

Λm = LLT (3.8)

Pm = L−1 (3.9)

P T
mPm = Λ−1m (3.10)

lnN (xn|µm,Λm)

= ln

(
(2π)−D/2|Λm|−1/2 exp

(
− 1

2
(xn − µm)TΛ−1m (xn − µm)

))
(3.11)
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= ln

(
(2π)−D/2|Λm|−1/2 exp

(
− 1

2
(xn − µm)TP T

mPm(xn − µm)
))

(3.12)

= −1

2

(
D ln(2π) + ln(|Λm|) + (xn − µm)TP T

mPm(xn − µm)

)
(3.13)

= −1

2

(
D ln(2π) +

∑
j

(
Pm(xn − µm)

)2
j

)
+
(∑

j

ln(diag(Pm))j

)
(3.14)

ln(|Λm|−1/2) is equivalent to taking the sum of the logarithm of the diagonal entries of Pm as

shown in:
∑

ln(diag(Pm)). (xn − µm)TP T
mPm(xn − µm) is also equivalent to taking the sum

of squares of the vector entries that result after computing Pm(xn − µm).

The implementation of the M step may be made slightly more efficient by noting that both the

updated means and covariances, µi+1
m and Λi+1

m rely on the unnormalized weights. Therefore, the

calculation of the updated weights may be decomposed into two steps so that

π∗m =
N∑
n=1

γnm

µi+1
m =

N∑
n=1

γnmxn
π∗m

Λi+1
m =

N∑
n=1

(xn − µi+1
m )(xn − µi+1

m )Tγnm
π∗m

before normalizing the weights:

πi+1
m =

π∗m
N

This formulation eliminates redundant calculations when computing µi+1
m and Λi+1

m .

3.1.4 Performance Analysis

An analysis is conducted for sensor observations from three different environments illustrated

in Fig. 3.2. The Gaussian Mixture Model formulation discussed in this chapter is benchmarked
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Sensor
Obs.

Num.
Points

KMeans++
Initialization

(s)

KMeans
(Elkan)

(s)

KMeans++
Total

(s)

E
Step
(s)

M
Step
(s)

EM
Total

(s)

KMeans++
& EM Total

(s)
Cave 27764 0.248 0.924 1.172 0.734 0.502 1.236 2.408
Mine 17843 0.150 0.420 0.570 0.410 0.294 0.704 1.274
TUM 241399 2.570 3.070 5.640 13.150 5.500 18.650 24.290

Table 3.1: Runtimes for each stage of the Gaussian Mixture Model pipeline. The first column details the
dataset corresponding to the stastics in the other columns. The second column provides the number of points
in each observation. Note that the more points in the sensor observation, the longer the runtime. For all
sensor observations, the runtime of EM exceeds the runtime of the initialization procedure (i.e., KMeans++
Total).

in C++. For each sensor observation, a probability distribution is learned consisting of 100 compo-

nents. The code is profiled on a late-2013 15” Macbook Pro with a 2.60 GHz Intel Core i7-4960HQ

CPU and 16 GB RAM. All profiling is run single-threaded.

Table 3.1 illustrates the profiling results. The columns of the table consist of the sensor obser-

vation under consideration, KMeans++ profile results, EM profile results, and total time cost. For

all sensor observations, the cost of running EM exceeds the cost of initialization using KMeans++.

The time to learn a GMM from the TUM RGB-D sensor observation is larger than for the LiDAR

observations due to the significantly larger number of points in the sensor observation. The EM

algorithm is computationally expensive for a GMM with M components and a dataset with N

samples, the size of the responsibility matrix is N × M (Eq. (3.1) defines how to compute one

entry in the responsibility matrix). All N samples from the dataset are used to update the weights,

means, and covariances in the GMM (Eqs. (3.2) to (3.4)). Techniques are detailed in later chapters

to reduce the computational complexity of learning a GMM from sensor observations.
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(a) Cave LiDAR observation (b) Cave GMM

(c) Mine LiDAR observation (d) Mine GMM

(e) TUM RGB-D observation (f) TUM GMM

Figure 3.2: (a) A 3D laser scan of a cave consisting of 27,764 points and corresponding GMM (shown
in (b)). (c) illustrates a LiDAR observation taken in a mine consisting of 17,843 points and the corresponding
GMM is shown in (d). A RGB-D observation in an office environment consisting of 241,399 points and
corresponding GMM shown in (f). All GMMs consist of 100 mixture components. All sensor observations in
the left-hand column are displayed in the sensor frame, but note that the sensor frame of the RGB-D sensor
points in the direction of +z. Colors correspond to z-height.
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Chapter 4

Information-Theoretic Exploration

This chapter presents a baseline information-theoretic exploration framework that leverages oc-

cupancy grid maps to represent the environment and quantify the mutual information between

the map and potential sensor observations. A 3D state-space lattice is constructed from which

dynamically-feasible trajectories are sampled to estimate the information-theoretic reward. This

exploration formulation is designed to run in real-time on a constrained computer and serves to

demonstrate the viability of the proposed method for deployment to hardware in later chapters.

4.1 Approach

An overview of the relevant system model (a quadrotor micro air vehicle) is presented in Sec-

tion 4.1.1 and the motion planning approach is detailed in Section 4.1.2. Section 4.1.3 presents the

map representation, restates results from Charrow et al. [16] in the context of the exploration of 3D

environments, and presents a method to compress the map representation for increased computa-

tional efficiency while preserving relevant information [59]. Section 4.1.4 presents the integrated

exploration strategy toward generation of real-time trajectories that are both energy-efficient and

informative.

23
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4.1.1 System Model

A quadrotor system model is presented with reference to notation and details by Mahony et al.

[53] and used throughout this work; however, the model and proposed approach may be readily

adopted to other aerial or terrestrial vehicle models.

The quadrotor with position (r), radial velocity (ω), mass (m), and inertia (I), moves according

to the Newton-Euler equations

F = mr̈ τ = Iω̇ + ω × Iω (4.1)

where the net forces and moments acting on the system are F and τ , respectively. Here, F =

Fa + Fg is the sum of applied and gravitational forces. As the rotors are aligned with the body

z-axis, Fa = R

[
0 0 fa

]T

where R is the rotation matrix between the body and inertial frames.

The rotors have angular velocities $1:4 and spin in alternating directions. By the static thrust

assumption [12, 53] the rotors produce thrusts and torques,

ti = ct$
2
i , qi = cq$

2
i (4.2)

respectively, while ct and cq are associated scaling factors. From (4.2), the rotor torques and thrusts

are related to the body force and moments by

Φ = ΓΩ (4.3)

where Φ =

[
fa τ1:3

]T

, Ω =

[
$2

1:4

]T

, and Γ is the mixer matrix [53]. This quadrotor model is

known to be differentially flat [32].
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4.1.2 Trajectory Generation and Motion Primitive Graph Planning

The trajectories are generated as time-parameterized 5th order polynomials with boundary value

constraints that minimize the integral of jerk squared for the four flat outputs, x, y, z, and ψ using

the method developed by Mueller et al. [58].

Similar to the approach proposed by Pivtoraiko et al. [68], this work employs a state-space lat-

tice, X̂ , that consists of a collection of motion primitives,M . A motion primitive is computed given

two boundary constraints x̂i, x̂j ∈ X̂ , i, j ∈ {0, . . . , N − 1} with i 6= j. A boundary constraint x̂i

is specified with the flat outputs and their derivatives, (r, ψ, ṙ, ψ̇, r̈, ψ̈). To represent motion prim-

itives in a state-space lattice, the boundary constraints are stored in N uniquely identified nodes.

Figure 4.1a illustrates three motion primitives that form a dictionary. Each motion primitive drives

the vehicle from some initial boundary condition to some final boundary condition. Motion primi-

tives are stored as edges between nodes in the dictionary, D = (X̂,M). Feasibility of a primitive

is ensured by imposing limits on the maximum acceleration and velocity over the duration of the

primitive.

Two optimizations are made to the approach in [68]. 1) Constraints are imposed to ensure

all motion primitives begin and end at lattice states with pre-defined velocity and acceleration in

the body frame x-axis. These constraints ensure that the vehicle flies in the body-direction to

enable obstacle detection via sensors that point in the direction of forward motion. 2) The motion

primitives are formulated in the body frame with the heading at the start of each motion primitive

set to zero with respect to the body frame. These optimizations significantly reduce the size of the

search space over the motion primitives and reduce computation as the body-frame graph is reused

at every planning iteration.

Motion Primitive Graph A dictionary of motion primitives (see Fig. 4.1a) can be reused to

create 2D and 3D graphs as depicted in Figs. 4.1b and 4.1c by appending the dictionary to leaf
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(a)

(b) (c) (d)

Figure 4.1: (a) A dictionary of three motion primitives in 2D. (b) A graph with depth three constructed
from the dictionary. (c) A graph in 3D constructed from a dictionary of ten motion primitives (associated
dictionary not shown). (d) The graph from (c) after pruning. Sub-optimal and redundant edges are pruned
to decrease the number of primitives to search over during exploration.

nodes up to a specified depth. Each successive level is constructed from the same dictionary. For

example, the space covered in Fig. 4.1b is formed by repetition of the dictionary in Fig. 4.1a to a

depth of 3.

As the expansion of nodes at run-time is computationally expensive, graphs are pre-computed

to enable fast search through many trajectories during exploration. One graph is computed for

each possible initial state consisting of velocity, acceleration, and jerk. The resulting graph may

contain tens of thousands (or millions) of vertices. Therefore, Dijkstra’s algorithm, a single-source

shortest path algorithm, is employed to prune the graph [20]. The result is a minimum spanning

tree that contains the lowest cost trajectories from the root vertex to any other vertex in the graph

(see Fig. 4.1d). The refined graph is pre-computed with linear query time lookups in the worst

case.
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4.1.3 Mutual Information and Mapping

Uncertainty in a probability distribution is quantified through entropy measures. The most common

and the only one satisfying all of Shannon’s axioms is the Shannon entropy [21],

H(X) = −
∫
p(x) log p(x)dx. (4.4)

The Shannon mutual information is the expected reduction in entropy of one random variable from

observation of another

IS(X, Y ) = H(X)−H(X|Y ). (4.5)

This can also be defined in terms of the Kullback-Leibler divergence [21, 69] which describes the

difference between two probability distributions:

DKL(p||q) =

∫
p(x) log

p(x)

q(x)
dx, (4.6)

IS(X, Y ) = DKL(p(X, Y )||p(X)p(Y )). (4.7)

This leads to the definition of mutual information measures based on other divergences such as

Cauchy-Schwarz quadratic mutual information (CSQMI)

ICS(X, Y ) = − log
(
∫∫

p(x, y)p(x)p(y)dydx)2∫∫
p(x, y)2dxdy

∫∫
p(x)2p(y)2dxdy

(4.8)

which has integrals inside the logarithm that can be computed analytically and efficiently [15, 69].

Mutual Information for Occupancy Grids The environment is modeled with a 3D occupancy

grid (OG), a computationally efficient representation (see Fig. 4.2) [29, 85]. Charrow et al. [16]
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Figure 4.2: A partially explored OG from a simulation trial with occupied (red) and free (black) cells and
0.1 m resolution.

present a closed form solution to CSQMI for a single ranging measurement with an approxi-

mate formulation ofO(n) time-complexity for sets of conditionally dependent measurements from

generic multi-beam ranging sensors where n is the number of cells intersected. Figure 4.3 depicts

a representative CSQMI reward distribution for sensor observations over a slice of the OG origi-

nally shown in Fig. 4.2. Although the distribution over the entire space is shown, the CSQMI is

only evaluated for sensor measurements generated during execution of trajectories considered dur-

ing planning. Note that the evaluation of CSQMI also considers conditional dependencies between

sensor measurements that result in a value less than or equal to the sum of the CSQMI of individual

measurements considered in isolation.

To obtain a rule for computing reduced resolution representations of OGs for use in CSQMI

calculation (not planning), Nelson and Michael [59] employ the Principle of Relevant Information

(PRI) [69], a minimization over a random variable X of (H(X) +λD(X||X0), where H is a mea-

sure of entropy and D is a divergence measure. This approach produces a probability distribution

with reduced entropy while minimizing the difference from the original distribution. Using λ = 1,

they obtain a rule that maps a set of cells to a single probability that is any of (0, 1, 1
2
) based on the

product of the odds ratios. Although initially evaluated on 2D OGs, this approach readily extends

to 3D OGs as evident when compressing the map in Fig. 4.2 and shown in Fig. 4.4. This rule is ap-
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(a) 3D OG and intersecting plane

(b) 2D OG (c) CSQMI

Figure 4.3: Illustrative cross-section (a) from the OG shown in Fig. 4.2 to form a 2D OG (b) with free (white),
occupied (black), and unknown (gray) cells. (c) The CSQMI reward is evaluated for a planar sensor at
different positions over this cross section to create a heat map (brighter colors corresponding to increased
reward). This reward surface is non-smooth and sometimes flat due to occlusions and the limited sensor
range.
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(a) n = 1 (b) n = 2

Figure 4.4: The OG from Fig. 4.2 with resolution reduced (a) one and (b) two times. Free cells are dark and
occupied cells are colored while unknown cells are not shown.

plied recursively such that the cell dimension at reduction level n increases by a factor of α = 2n.

To encourage similar behavior between compression levels, we normalize the map prior, p, such

that the expected penetration distance of a ray into a row of unknown cells remains constant on a

reduced resolution OG. By equating the expected penetration distance in the base and compressed

maps

∞∑
n=1

αpαn(1− pα)n =
∞∑
n=1

pn(1− p)n (4.9)

a formula is obtained that relates the occupancy prior of the compressed map, pα to the prior of the

base map, p0,

pα =
αp0

1− p0 + αp0
. (4.10)

4.1.4 Integrated Exploration Approach

To evaluate plans, two objectives are considered: 1) time-efficient exploration, VT = I
T

, and

2) energy-efficient exploration, VE = I
E

. Both objectives compute information reward with respect
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(a)

(b)

Figure 4.5: (a) Angled view of the Indian Tunnel skylight and (b) sensor measurements taken during explo-
ration (shown in white).
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(b) Reduced Resolution

Figure 4.6: Information gained (reduction in Shannon entropy) versus time and energy costs. (a) Energy-
and time-efficient objectives are roughly equivalent for the operational domain. (b) Evaluation of mutual
information on reduced resolution maps leads to improved exploration performance. Dotted lines indicate
individual runs and solid lines represent mean values.

to the total duration of a plan, T, or the integral of power usage, Pe denoted by E.1 It will be shown

that these objectives produce nearly identical performance for the operating conditions detailed in

this paper as power usage remains roughly constant. As the calculation of information reward, I,

is computationally expensive, we refer to the heuristic proposed in earlier work [16] and compute

the mutual information at motion primitive endpoints on the compressed map.

At each exploration update, the information reward and expenditure cost are computed for a

subset of plans in the graph given available computation time, typically on the order of 105 plans

per exploration cycle (e.g., 1 Hz). Each motion primitive evaluation consists of referencing pre-

computated traversal costs, collision-checking, as well as computation of associated information

gain. A trajectory is selected according to the objectives noted above in order to yield a maximally

1 The total energy consumption for the system is defined as

Pe =

4∑
i=1

(
cq$

3
i +

rc2q
k2e
$4

i

)
+ Pa

where r is the motor internal resistance, ke the motor torque and voltage constant, and Pa a lumped parasitic term.
We defer to the works of Bangura et al. [5] and Morbidi et al. [57] for more extensive discussion of quadrotor power
models.
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informative and efficient exploratory motion plan.

4.2 Results

Simulation design The approach is tested with a simulated quadrotor exploring the Indian Tun-

nel skylight environment. The simulation captures the power model and rotor dynamics of the

vehicle.

The quadrotor model parameters are reported in Table 4.1. Parameters of the motion primitive

graph are detailed in Table 4.2 and specify the range and discretization of each value. The motion

primitive state-space lattice specifies 3D motions and has a depth of 4. The set of motion primitives

used to build the graph requires 33MB of space and is thus large enough that the graph must be

pre-computed but small enough that it can be computed in under 10 minutes on a desktop class

processor. The approach applies generally to systems with one or more ranging sensors. A time-

of-flight camera is simulated that produces a 24 × 38 (reduced to 6 × 9 = 54 beams for CSQMI

calculation) depth-image with a 43.6◦ × 34.6◦ field-of-view and 10 m range. The sensor is aligned

with the x-axis with the longer dimension of the field-of-view aligned vertically for more effective

scanning (yaw) behavior. The implementation of the CSQMI computation is optimized but remains

the most expensive operation during planning.

The approach is evaluated by rate and quantity of of information gain (reduction in Shannon

entropy, (4.4)). versus energy expended. These metrics are appropriate for planetary robots that

explore an environment given finite energy reserves rather than complete exploration.

Results Trials comparing objectives VT and VE are shown in Fig. 4.6a. In all of the exper-

iments, results are shown for ten minutes of exploration that expend roughly the capacity of a

single 2250 mA h battery. The choice of primitives limits linear acceleration to 0.5m s−2 to en-

sure feasibility and sensing such that the control inputs are dominated by gravity compensation.

Power usage is constant, making the choice of objective inconsequential. Thus, time cost is an ap-
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propriate substitute for energy cost under typical conditions barring sufficiently aggressive flight.

In Fig. 4.6b results are shown for reduced resolutions as shown in Fig. 4.4. Performance benefits

are observed (summarized in Table 4.3) primarily for n = 1 which performs consistently well

throughout the duration of the experimental trials. For n = 2, degradation in performance appears

due to aggressive reduction in the resolution of the OG signifying a trade-off between the trajec-

tory evaluation rate and fidelity. These results are summarized in Table 4.3. Figure 4.5 shows the

pit mesh and cloud of empty points after exploration and highlights the extent of coverage for a

typical experimental trial.

Table 4.1: System Parameters

m 0.507 kg ke 4.0 · 10−3 V s rad−1

ct 1.158 · 10−6 N m s2 rad−2 r 0.125 Ω
cq 1.969 · 10−8 N m s2 rad−2 Pa 8.4 W

Table 4.2: State-Space Lattice Parameterization

start end ∆ start end ∆
x (m) 0 1 1 ψ (rad) −π

2
π
2

π
4

y (m) -1 1 1 ||v|| (m/s) 0 0.5 0.25
z (m) -1 1 1 ||a||, ż, z̈, ψ̇, ψ̈ 0 0 -

CSQMI Rates (kHz) Information (kilo-bits)
n View Plan 20kJ 40kJ 60kJ
0 2.03 0.58 397 633 771
1 3.11 0.90 438 665 776
2 5.42 1.55 393 614 716

Table 4.3: Reduced Resolution Exploration Performance

4.3 Conclusions

This chapter demonstrated an autonomous, exploration and mapping framework for unstructured

cave and pit environments that operates quickly and efficiently in 3D while avoiding hazards. Real-

time motion planning is achieved via a finite-horizon approach in the form of multiple state-space
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lattice graphs. A computationally tractable, information-theoretic objective function based on the

evaluation of CSQMI at each lattice state combined with compression techniques enables the eval-

uation of thousands of views per second. The framework is viable for real-time exploration and,

given the presented operating conditions, that the time-efficient and energy-efficient approaches

yield equivalent performance. The compression strategy ensures real-time viability and enables

computationally tractable, real-time exploration.
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Chapter 5

On-Manifold GMM Registration

While the previous chapter enables real-time exploration performance given known estimates of

state, there are several limitations in converting the raw sensor observations into a grid map. First,

the discretization of the imposed grid structure reduces the fidelity of the resulting model. Fur-

thermore, real-world deployment of these algorithms must mitigate the effects of pose estimation

drift and enable local and global consistency in the map. To overcome the limitations of grid-based

mapping techniques, this chapter presents a method to model sensor observations as Gaussian Mix-

ture Models (GMMs) and estimate pose via an on-manifold distribution to distribution registration

formulation that computes an optimal transform between two GMMs by minimizing the squared

L2 norm. The method is evaluated with real-world datasets of LiDAR observations in subterranean

environments and RGB-D observations of a cluttered office environment.

5.1 Approach

Figure 5.1 illustrates the proposed approach. First, pointclouds (Fig. 5.1a) are converted to full

anisotropic GMMs (Fig. 5.1b). Next, Section 5.1.1 formulates an objective function for registration

from the correlation integral that maximizes the overlap between two distributions. Section 5.1.2

derives the closed-form equations for the gradient and Hessian. Section 5.1.3 details the optimiza-

37
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(a) (b) (c) (d) (e)

xoptxopt

Figure 5.1: Overview of methodology: (a) Pointclouds taken at two different poses (shown in red and
blue) are converted into (b) GMMs with anisotropic covariances. The covariances are converted to (c)
isotropic-planar (isoplanar) and an optimization is run that minimizes the squared L2 norm between the
two distributions. The output of the optimization xopt is used to seed a second optimization with anisotropic
covariances. The results are rigid transformation parameters that align the GMMs (shown in (e)).

tion framework that optimizes first with GMMs with isoplanar covariances (Fig. 5.1c) that serves

to smooth the cost function and reduce local minima followed by a refinement optimization using

the original anisotropic covariances (Fig. 5.1d) to obtain accurate registration parameters and align

the distributions (Fig. 5.1e).

5.1.1 Registration

GMM to GMM registration, commonly referred to as distribution to distribution (D2D) registra-

tion, is achieved by aligning modeled probability densities. Given two GMMs, G0(x) and G1(x),

with potentially different numbers of components, the transformation parameters θ, are sought that

minimize the distance between G0(x) and T (G1(x),θ). G0(x) and G1(x) are defined as:

G0(x) =
M∑
m

πmN (x|µm,Λm)

G1(x) =
K∑
k

τkN (x|νk,Ωk)
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and T (·,θ) is the rigid transformation function consisting of a rotation R and translation t. A

transformed GMM with parameters {τk,νk,Ωk} is expressed as

T (G1(x),θ) =
K∑
k=1

τkN (x|Rνk + t,RΩkR
T ) (5.1)

Following the success of D2D alignment for NDT-map [80] and in the original work demonstrating

GMMs for point set alignment [45], the squared L2 norm is employed as the measure of distance

between the target GMM G0(x) and the transformed source GMM T (G1(x),θ). The cost function

to minimize may be written as:

θ∗ = arg min
θ

∫
‖G0(x)− T (G1(x),θ)‖22dx

= arg min
θ

∫ (
‖G0(x)‖22 + ‖T (G1(x),θ)‖22 − 2G0(x)T (G1(x),θ)

)
dx

(5.2)

Eqn. (5.2) may be simplified by noting that the first term does not depend on the transformation

parameters θ and that energy in a distribution (which is given by the second term) is invariant

under rigid transformation. Intuitively, this means that application of the transformation parameters

does not change the shape of the distribution. Thus, the minimization of the squared L2 distance

corresponds to maximization of the correlation of the two distributions:

θ∗ = arg max
θ

∫
2G0(x)T (G1(x),θ)dx (5.3)

The objective function (5.3) has the same extrema as that of the Cauchy-Schwarz divergence [48],

due to the monotonicity of the log function. In the case of two GMMs, the correlation integral of

(5.3) has a closed-form solution given by [48]

θ∗ = arg max
θ

M∑
m=1

K∑
k=1

πmτkN (µm|Rνk + t,Λm +RΩkR
T ) (5.4)
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which may be written as

θ∗ = arg min
θ
−F, (5.5)

where

F =
M∑
m=1

K∑
k=1

fmk

fmk = πmτk
|Σmk|−1/2

(2π)3/2
exp

(
− 1

2
yTmkΣ

−1
mkymk

)

ymk = µm −Rνk − t

Σmk = Λm +RΩkR
T

The goal is to maximize the correlation, which is an integral whose value depends on the trans-

formation parameters θ. Using [45, 48], the correlation integral may be cast as the minimization

problem in (5.5) that finds the alignment that maximizes the overlap between the distributions.

The optimal rigid transformation parameters may be solved for by setting the gradient of (5.5) to

zero. The Hessian contains information about the local curvature of the function, so it increases

the rate of convergence of the optimization. The gradient and Hessian are derived in closed-form

in Section 5.1.2. An unconstrained optimization problem is cast that optimizes objective (5.5) via

a trust-region method (Section 5.1.3).

The cost function is distinct from that of [80], in that the role of the determinant is explicitly

accounted for in the cost function. That is, fmk becomes

πmτk
1

(2π)3/2
exp

(
− 1

2
yTmkΣ

−1
mkymk

)
(5.6)

when the determinant is removed. The determinant acts to increase the weight applied to compo-
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(a) (b)

Figure 5.2: The non-convexity of the cost function is evident. The cost function with the determinant (a)
exhibits a wider basin of attraction than the cost function without (b).

nents that have high certainty such that these components have greater attractive forces. The effect

of the determinant on the shape of the cost function is shown in Fig. 5.2. Retaining the determinant

in the cost function increases the complexity of the expression derived for both the gradient and the

Hessian, however, empirical results suggest that inclusion of the determinant increases robustness.

The objective (5.5) is highly non-convex due the the nature of the GMM, as is demonstrated

empirically in Fig. 5.2. Furthermore, the optimization domain SE(3), which is the product mani-

fold SO(3) × R3, is non-convex due to the non-convexity of SO(3). The structure of the manifold

can be better captured by leveraging a minimal axis-angle parameterization that uniquely defines

a rotation through the exponential map. This reparmeterization enables the use of more straight-

forward, unconstrained optimization techniques. Details of the rotation parameterization may be

found in Appendix A.

5.1.2 Gradient and Hessian

The gradient on the manifold R3 × SO(3) is derived and has coordinates ξ = (t,u). For brevity,

the partial derivative is expressed as Rξa = ∂R
∂ξa

. The derivatives Rua and Rubua are given in

Appendix A. For the remaining derivatives, Rta = 0, tua = 0, tta = ea, ttbta = 0 and both mixed
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second derivatives are zero. The gradient is given by

∂F

∂ξa
=

M∑
m=1

K∑
k=1

fmk(d
(a)
mk + q

(a)
mk) (5.7)

where

d
(a)
mk = −Tr

{
ΩkR

TΣ−1mkRξa

}
(5.8)

q
(a)
mk = yTmkΣ

−1
mk(Rξaνk+tξa)+yTmkΣ

−1
mkRΩkR

T
ξaΣ

−1
mkymk (5.9)

Using the compact representation of the gradient (5.7), the Hessian is expressed as

∂2F

∂ξb∂ξa
=

M∑
m=1

K∑
k=1

fmk

[
(d

(a)
mk + q

(a)
mk)(d

(b)
mk + q

(b)
mk) + (D

(ba)
mk +Q

(ba)
mk )

]
(5.10)

where D(ba)
mk = ∂

∂ξb
d
(a)
mk, Q

(ba)
mk = ∂

∂ξb
q
(a)
mk, and d(b)mk and q(b)mk are the same as d(a)mk and q(a)mk, but refer to

elements of ξb instead of ξa. The expressions are expanded as

D
(ba)
mk = −Tr

{
Ωk

(
RT
ξb

Σ−1mkRξa −RTΣ−1mkZ
(b)
mkΣ

−1
mkRξa +RTΣ−1mkRξbξa

)}
(5.11)

Q
(ba)
mk = −

(
j
(b)T

mk Σ−1mkj
(a)
mk − y

T
mkΣ

−1
mkZ

(b)
mkΣ

−1
mkj

(a)
mk + yTmkΣ

−1
mkH

(ba)
mk − y

T
mkΣ

−1
mkZ

(a)
mkΣ

−1
mkj

(b)
mk

+ yTmkΣ
−1
mkZ

(b)
mkΣ

−1
mkZ

(a)
mkΣ

−1
mkymk −

1

2
yTmkΣ

−1
mkZ

(ba)
mk Σ−1mkymk

)
(5.12)

where

j
(a)
mk = −Rξaνk − tξa

Z
(a)
mk = RξaΩkR

T +RΩkR
T
ξa
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(a) (b)

(c) (d)

Figure 5.3: Natural environments typically have sparse features, rendering feature based matching difficult.
Target (red) and source (blue-yellow) point clouds are initially misaligned in (a) and the goal is to align
them as in (b). When the pointclouds are represented as GMMs with fully anisotropic covariances the
resulting cost function has the steep and non-convex form of (c). Converting the anisotropic covariances
into isotropic-planar covariances yields a cost function that is almost completely convex as shown in (d)
and enables the accurate registration shown in (b).

H
(ba)
mk =

∂jmka
∂ξb

= −Rξbξaνk

Z
(ba)
mk = RξbξaΩkR

T+RξaΩkR
T
ξb

+RξbΩkR
T
ξa+RΩkR

T
ξbξa

Please see Appendix B for the detailed derivation of both the gradient and the Hessian.

5.1.3 Optimization Framework

As stated in Section 5.1.1, the cost function to minimize is highly non-convex, which may result

in a poor quality registration unless the initialization is close to the actual solution. A technique
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similar to that of GICP [74] is employed to smooth the cost function and prevent the optimizer from

becoming trapped in local minima. Segal et al. [74] note that pointclouds taken from two different

positions sample a two-dimensional manifold in three-dimensional space, so each measured point

only provides a constraint along its surface normal. When the sampled points are represented as

a probabilistic generative model, the covariance about the mean is modified to model the high

certainty about the surface normal direction and low certainty along the local plane. The modified

covariance is computed as the eigen decomposition Λm = UmDmU
T
m and Λm is replaced with

Λm = Um


1 0 0

0 1 0

0 0 ε

UT
m (5.13)

where ε is a small constant representing the covariance along the normal. This has the effect of

smoothing the cost function (see Fig. 5.3d for a representative example). However, this change

in cost function is not guaranteed to preserve the minimum at the same location. Therefore, the

optimization is run twice: once with the modified isotropic-planar (isoplanar) covariances specified

in [74] to smooth the cost function followed by a second run with the original cost function seeded

with the results from the first run. The second optimization quickly converges.

The cost function proposed by Stoyanov et al. [80] to remove the contribution of the deter-

minant (see (5.6)) is compared to the proposed approach, called the Isoplanar Hybrid approach,

in Section 5.2.1.

An unconstrained optimization problem is realized through the on-manifold parameterization

of the objective function (5.5). The Riemannian trust-region method with conjugate gradients

is used to optimize the objective, which is implemented in the MATLAB manifold optimization

toolbox, manopt [13].
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(a) TUM (b) Mine (c) Cave

Figure 5.4: (a) An RGB-D dataset of a cluttered office environment and laser datasets of a (b) mine (Image
credit: Near Earth Autonomy) and (c) unstructured cave environment are employed to evaluate the proposed
approach. The top row of images are from left-to-right a reconstruction of depth observations from the TUM
RGB-D SLAM dataset and benchmark, laser observations of a mine environment, and Faro scans of the
undeveloped cave. The bottom row consists of images of the environments.

5.2 Results

The selection of the Isoplanar Hybrid approach as the proposed approach is first motivated by

comparing to variants of the GMM registration in Section 5.2.1 and then by comparing to the

state-of-art registration methods, NDT D2D1 [80], GICP2 [74], and NICP3 [75], in Section 5.2.2.

The performance is evaluated with three datasets consisting of RGB-D and Velodyne VLP-16 laser

observations illustrated in Fig. 5.4.

The GMM registration algorithms consider all pairs of components instead of just the closest

pairs as is done in [80]. Preliminary tests that incorporate a dmax parameter analogous to GICP’s

to limit the number of component pairs considered during registration suggests a considerable

increase in speed; however, the dmax parameter is highly dependent on the observed environment

1https://github.com/OrebroUniversity/perception oru-release
2https://github.com/PointCloudLibrary/pcl
3https://github.com/yorsh87/nicp
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and correct selection of this parameter is a challenge in its own right so the timing results are not

reported.

The metrics used to evaluate the proposed method are the Root Mean Square Error (RMSE) as

detailed in [81] and the odometric error between consecutive frames. The RMSE is defined as the

relative pose error at time step i:

Ei :=
(
Q−1i Qi+1

)−1(
P−1i Pi+1

)
(5.14)

RMSE(E1:n) :=

(
1

n− 1

n−1∑
i=1

‖trans(Ei)‖2
)1/2

(5.15)

where trans(Ei) refers to the translational components of the relative pose error Ei, the estimated

trajectory P1, . . .Pn ∈ SE(3) and the ground truth trajectory Q1, . . . ,Qn ∈ SE(3). The odomet-

ric error is computed as the translation and rotation error between frames 1 and j where j ∈ [1, n]:

Ej :=
(
Q−11 Qj

)−1(
P−11 Pj

)
(5.16)

OE(E1:n) := ‖trans(Ej)‖ (5.17)

For both RMSE and odometric errors, the rotation errors are similarly computed.

5.2.1 Evaluation of GMM Registration Variants

Two evaluations are conducted that motivate the selection of the Isoplanar Hybrid approach as the

proposed approach. Each evaluation highlights the strengths and weaknesses of the GMM regis-

tration variants. There are five variations considered: the m-GMM Isoplanar method leverages the

isoplanar covariances of (8.5) with cost function (5.5); the proposed m-GMM Isoplanar Hybrid ap-

proach performs an optimization with cost function (5.5) and isoplanar covariances (8.5) followed

by a refinement optimization using (5.5) and anisotropic covariances seeded with the results from

the first optimization; the m-GMM No Det. variant performs a single optimization using the cost
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function from (5.6) and anisotropic covariances; the m-GMM No Det. Hybrid approach first per-

forms an optimization using the cost function from (5.6) and anisotropic covariances followed by

a second optimization with the cost function from (5.5) and anisotropic covariances seeded with

the results from the first optimization; and the m-GMM Anisotropic approach performs a single

optimization using the cost function from (5.5) and anisotropic covariances. In each case the m

stands for the number of components in the GMMs.

TUM Dataset

The first evaluation is performed with a complete TUM RGB-D SLAM benchmark dataset con-

sisting of over 2500 depth images shown in Fig. 5.4a. The RMSE results are shown in Fig. 5.5.

The Isoplanar approach yields poorer registration results as compared to the other approaches be-

cause the cost function changes the shape of the covariances to bias certainty along the direction of

the normal, which has the effect of making the optimization more robust to large pose differences

between consecutive scans but introduces some error in the final registration results for this dataset

where the difference in pose is small (approximately 1-2 cm and 1-2 degrees between consecu-

tive scans). Note that the Isoplanar Hybrid approach overcomes this problem by running a second

optimization with the anisotropic covariances.

Mine Dataset

The second evaluation is performed with more than 300 laser observations from a mine environ-

ment shown in Fig. 5.4b. The RMS errors are shown in Fig. 5.6. The translation and rotation

differences between successive observations is much larger in this dataset than the TUM dataset

(20-60 cm and 2-10 degrees, respectively). In this case the Isoplanar approaches perform best be-

cause the effect of biasing the covariances to have higher certainty in the direction of the normal

is to make the optimization more robust to larger translations and rotations between successive

observations. The Anisotropic registration is unable to overcome local minima (representative ex-
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(a) TUM Translation RMSE
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(b) TUM Rotation RMSE

Figure 5.5: RMS errors for translation and rotation for each pair of consecutive observations in the TUM
dataset consisting of more than 2500 depth images. The Isoplanar Hybrid approach overcomes the poor
registration results of the Isoplanar variant by running a refinement optimization with anisotropic covari-
ances.
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(a) Mine Frame-to-frame Translation RMSE
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(b) Mine Frame-to-frame Rotation RMSE

Figure 5.6: RMS errors for translation and rotation for each pair of consecutive observations in the Mine
dataset consisting of more than 300 laser scans. The Isoplanar approaches have the best performance
because biasing the covariances along the normal direction makes makes the optimization more robust to
large translations and rotations.
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ample shown in Fig. 5.3) which results in poor registration performance and the approaches that

remove the determinant have a much narrower basin of attraction (representative example shown

in Fig. 5.2) as compared to the Isoplanar approaches, which yields an optimization that is much

more sensitive to initialization.

Because the Isoplanar Hybrid registration approach obtains accurate registration results in both

evaluations, it is used to evaluate against state-of-art registration approaches.

5.2.2 Evaluation against State-of-the-art Methods

The Isoplanar Hybrid GMM approach is compared to NDT D2D, GICP, and NICP. The cell size

of the NDT D2D registration and Isoplanar Hybrid GMM registration approaches is varied in the

evaluations to determine the cell sizes and numbers of components that produce the best perfor-

mance for each dataset. Varying the dmax parameter of GICP, which is the maximum matching

threshold, does not significantly affect accuracy or timing performance so the parameter is conser-

vatively set to be 100 for all tests. NICP provides optimized parameters for depth and laser sensors

so the appropriate configuration file is used depending on the sensor used in the dataset.

Timing results are reported in Table 5.1. All of the tests are run with a single thread on an

Intel i7-6700K CPU with 32GB of RAM. The evaluations assume that GMMs and NDT maps are

pre-computed so only the time taken to register the distributions is counted. Hardware acceler-

ated methods exist to create GMMs (e.g., [28, 77]) so the time to create these distributions is not

counted. In addition, the NICP algorithm operates in image space, so to test the laser pointcloud

datasets, the pointclouds are projected to a spherical 1000×1500 depth image per the parameters

checked into the NICP codebase. One may note that the reported timing results are much larger

than what is advertised in [75], and the reason for this is this work operates on the full-resolution

480×640 depth images to analyze the effectiveness of the registration algorithms, whereas the im-

ages in [75] are 120×160—a factor of 16× fewer points—which accounts for the difference in
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GICP NDT NICP GMM
Dataset (s) (s) (s) (s)

TUM 3.3565 0.0357 0.3703 0.2959
Mine 0.3238 0.0045 0.3754 0.3810
Cave 0.5536 0.0030 0.4904 0.3905

Table 5.1: Timing results for each method. The 100-GMM Isoplanar Hybrid approach remains within
reasonable bounds of timing as compared to the state of the art.

timing results.

TUM Dataset

Each method is evaluated with the approximately 2500 sensor observations from the TUM dataset

shown in Fig. 5.4a. The RMSE values shown in Fig. 5.7 are used to determine the optimal pa-

rameters for the NDT cell size and number of GMM components to use to compute the odometric

error.

Figure 5.7 illustrates that for the TUM dataset, an NDT cell size of 0.05 m produces the best

performance and 100 components in the Isoplanar Hybrid registration method is sufficient. The

odometric error is shown in Fig. 5.8 and two views of the reconstructed paths are shown in Fig. 5.9.

GICP produces the poorest performance for this dataset, which is similar to the behavior of the m-

GMM Isoplanar variant from Fig. 5.5 that also uses the isoplanar covariances without a refinement

optimization. The NDT approach fares slightly better in terms of translation performance which

aligns with the behavior of the m-GMM No Det. registration variant from Fig. 5.5. NICP performs

better than the NDT approach but has about 0.9 m more error in translation and 0.26 rad. error

than the 100-GMM Isoplanar Hybrid approach by the end of the trajectory.
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(b) TUM Rotation RMSE

Figure 5.7: The RMS error for (a) translation and (b) rotation demonstrate the 100-GMM Isoplanar Hybrid
approach is sufficient to outperform the other approaches for frame-to-frame RMSE.
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Figure 5.8: The (a) translation and (b) rotation error statistics are plotted as a function of distance traveled.
The proposed approach has lower odometric error compared to the state of the art.
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Figure 5.9: Two views of the reconstructed paths for the TUM dataset. The trajectories begin at (0,0,0) and
end at the colored dots. Note the 100-GMM Isoplanar Hybrid approach closely matches the ground truth
trajectory as compared to the other approaches.

Mine Dataset

The next dataset is the Mine dataset consisting of more than 300 laser scans, and exhibits signif-

icantly larger rotations and translations as compared to the TUM dataset (20-60 cm and 2-10 de-

gree differences between consecutive observations). The RMS errors for each method are shown

in Fig. 5.10. The NDT with cell size equal to 0.5 m performs best and 100 components for the

GMM registration are sufficient to outperform the state of the art in terms of translation RMSE.

While NDT outperformed the GICP results for the TUM dataset, GICP outperforms NDT for the

mine dataset as shown in Fig. 5.11. The estimated trajectories using each of the methods are shown

in Fig. 5.12.
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Figure 5.10: The (a) translation and (b) rotation RMSE for the Mine dataset are shown. A cell size of 0.5m
performs best for the NDT map. The GMM registration approach performs well with 100 components.
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Figure 5.11: The (a) translation and (b) rotation odometric error statistics for the Mine dataset demonstrate
that the 100-GMM Isoplanar Hybrid approach significantly outperforms the other approaches.
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Figure 5.12: Two views of the estimated trajectories for the Mine dataset. The trajectories begin at (0,0,0)
and end at the colored dots. Note the 100-GMM Isoplanar Hybrid approach closely matches the ground
truth trajectory.

Cave Dataset

The last dataset is the Cave dataset consisting of more than 350 laser scans from Rapps Cave in

Greenbrier County, WV. The terrain exhibits complex concavities and disjoint objects, which are

visible in the bottom image of Fig. 5.4c. An aerial robot equipped with a VLP-16 laser scanner

was used to obtain data in the cave. A FARO4 laser scanner was used to collect ground truth.

The translation and rotation RMS errors may be found in Fig. 5.13, which illustrates that the

100-Isoplanar Hybrid GMM approach is sufficient for this dataset and NDT D2D performs best

with a cell size of 2 m. The odometric errors are shown in Fig. 5.14. While the NICP approach

initially does well, the performance deteriorates towards the end of the trajectory. The 100-GMM

Isoplanar Hybrid approach most closely follows the ground truth trajectory for this dataset. The

trajectories of each of the approaches is shown in Fig. 5.15.

4https://www.faro.com
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Figure 5.13: The (a) translation and (b) rotation RMSE for each approach with the Cave dataset.
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Figure 5.14: The (a) translation and (b) rotation error statistics demonstrate that the 100-GMM Isoplanar
Hybrid approach outperforms the other approaches.
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Figure 5.15: Two views of the estimated trajectories for the Cave dataset. The trajectories begin at (0,0,0)
and end at the colored dots. Note the 100-GMM Isoplanar Hybrid approach outperforms the NICP, 2 m
NDT Map and GICP approaches, particularly towards the end of the trajectory.

5.3 Conclusions

This chapter demonstrated a real-time viable method for registering GMMs in feature-deprived

and dark environments such as mines and caves. The approach minimizes the squared L2 norm

between the two distributions and considers all possible correspondences between mixture com-

ponents. The compactness of the GMM representation is leveraged to decrease the runtime of

the algorithm. Superior results compared to the state of the art are obtained in a degraded mine,

unstructured cave, and cluttered office environments.



Chapter 6

Arbitrary Resolution Occupancy Modeling

using GMMs

The previous chapter developed a method to determine the rotation and translation parameters that

would transform one GMM into the frame of another. To enable information-theoretic planning,

occupancy must be derived from these models. Occupancy modeling enables reasoning about

known and unknown regions of the environment and forms a fundamental capability for active

perception systems. Most occupancy mapping approaches model the environment as a discrete

set of cells of fixed resolution that limits the environment representational fidelity. This chapter

overcomes these limitations by proposing to learn approximate continuous representations for the

evidence of occupied and free space from which the probability of occupancy may be derived at

arbitrary resolution. The methods presented enable efficient and accurate derivation of occupancy

within a local area and at multiple resolutions.

6.1 Approach

This section presents a method to model occupancy at arbitrary resolution from GMMs (see Sec-

tion 3.1 for a mathematical description of the GMM) learned from pointcloud sensor observations.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Overview of the proposed methodology via a representative example of pointcloud data from
a mine environment. (a) Occupied points within a 15 m range are shown in red and (b) points outside this
range are projected to 15 m and shown in blue. (c) illustrates a 200-component GMM created from the
occupied points and (d) illustrates a 200-component GMM created from the projected free space points.(e)
100 points are sampled from the occupied and free-space GMMs, where the number 100 is chosen for
illustration purposes, only. In practice, a larger number of points would need to be used (see Fig. 6.2d for
an example of the effect of varying the number of sampled points). These points are used to update the
occupancy values in the occupancy grid shown in grey. (f) The points are projected to the sensor origin and
all voxels along the beam are updated to incorporate the observed free space.
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Given points representing the occupied and free space in the environment (representative exam-

ple shown in Fig. 6.1b), two GMMs may be separately learned from the poinclouds (shown in

Fig. 6.1d). Occupancy may be recovered by Monte Carlo sampling from the distributions and

raytracing through a grid map to the sensor origin (shown in Fig. 6.1f).

6.1.1 Occupied Space Modeling

3D LiDAR sensors estimate the distance to objects by illuminating the target with light and mea-

suring the reflected pulses. Because the origin of the beam of light is known, 3D points may be

recovered from distances. An example of the returns from a LiDAR sensor taken in a mine environ-

ment is shown in Fig. 6.1a. A GMM G(x) encodes the spatial density of points (shown in Fig. 6.1c)

and implicitly encodes sensor noise within the surface model. These points sample a 2-manifold

in 3D space so the resulting GMM will typically have near degenerate dimension directed along

the normal vector to the surface. The variance of the data along this dimension is captured in the

component covariance and describes the sensor noise. As each component corresponds to an in-

dividual measurement and each measurement is invariant to pose uncertainty, corrections may be

applied on a component-wise basis via the following equations that transform the density through

a rotation matrixR ∈ R3×3 and translation vector t ∈ R3×1.

µ′ = Rµ+ t (6.1)

Λ′ = RΛRT (6.2)

6.1.2 Free Space Modeling

The GMM G(x) does not explicitly model the information contained in the beam between the

sensor and endpoint. To overcome this limitation, a separate GMM can be learned over the free

space points by projecting observations that exceed the sensor’s max range to either the sensor’s
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max range or some other pre-determined max range. Figure 6.1b illustrates the points that exceed

a 15 m range projected to 15 m and shown in blue. Figure 6.1d illustrates the corresponding GMM

for free space F(x).

6.1.3 Occupancy Modeling

It is possible to determine the number of observed points in any volume by solving the integral

NO
V = Ns

M∑
m=1

πm

∫
V

N (x|µm,Λm) (6.3)

where Ns is the support size, or number of points the GMM is trained from. However, this integral

cannot be computed in closed form, so Eq. (6.3) is evaluated for G(x) using Monte Carlo sampling.

The free space evidence NH
V is then determined by performing ray casting using the resampled

points as described in Section 6.1.2. The probability of occupancy is modeled as a Bernoulli

distribution over every volume V in space. The maximum a posteriori estimate of the distribution

parameters is given by

θMAP =
NH
V +Np

NH
V +NM

V + 2Np

(6.4)

where Np is the contribution due to the prior and is user-defined to control the sensitivity of the

distribution to new observations. The prior model forces all unobserved points to have a probability

of occupancy of 0.5.

Algorithm 6.1 provides pseudocode for deriving occupancy from resampled points in an occu-

pied GMM. Line 1 samples N points from the GMM G(x). The list of cells between the sensor

origin s and the endpoint pn are obtained as CM , where m ∈ [1, . . . ,M ] in line 3. If m < M , the

number of miss points, NM
V , is incremented as shown on line 6. cM is the cell corresponding to

the occupied point pN , so the contents of the cell are updated by incrementing NH
V shown on line

8. Removing lines 5 and 7-9 yields the algorithm for updating the cells via a max-range GMM. In
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this work, the getRayCells function is implemented via the approach proposed by Amanatides and

Woo [2].

Algorithm 6.1 Pseudocode to update the probability of occupancy of occupied GMM G(x) given
sensor location s ∈ SE(3) and number of points to sample N

1: PN = samplePoints(G(x), N )
2: for pn ∈ PN do
3: CM = getRayCells(s, pn)
4: for cm ∈ CM do
5: if m != M then
6: updateMiss(cm) . increment NM

V for cell cm
7: else
8: updateHit(cm) . increment NH

V for cell cm

It is important to note that the voxelization presented here is not the same as standard voxel grid

mapping, since the voxel grid is used as a convenient interpretation of the underlying, continuous

GMM. The occupancy in an arbitrary discretization space could be computed; however, this would

likely preclude the use of the proposed efficient Monte Carlo ray tracing strategy and would instead

require computation of the intersection between the discretized shapes and the sampled beams.

6.2 Results

6.2.1 3D Occupancy Modeling

The GMM implementation used to evaluate this work is derived from the scikit-learn1 toolkit and

ported to C++ to decrease the runtime. The runtimes are collected on a late 2013 15” Macbook Pro

with 2.60GHz Intel Core i7-4960HQ and 16GB RAM. All approaches are tested single-threaded.

The GMM occupancy model is evaluated with two datasets: a mine dataset (reconstruction

shown in Fig. 6.2c) and the Freiburg campus dataset (raw pointcloud shown in Fig. 6.3a). For

each pose and pointcloud, a free and occupied GMM are computed to represent the environment.

106 points are sampled from the distribution and raytraced to the sensor origin and the proba-

1http://scikit-learn.org/stable/modules/mixture.html

http://scikit-learn.org/stable/modules/mixture.html
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bility of occupancy is updated for each 25 cm voxel along the ray. To determine the accuracy

of reconstruction, the Area under ROC (AUROC) is computed while varying the percentage of

observations removed. The proposed approach is compared against the standard occupancy grid

map and Bayesian Generalized Kernel Inference for occupancy map prediction [24] (BGK-OM)

approaches in Fig. 6.2a, and demonstrates superior results in terms of inferring probability as the

number of training points decreases. Timing results shown in Fig. 6.2b demonstrate the superior

performance of the proposed approach. While the times reported in [24] are significantly lower,

than what is reported here, the discrepancy can be accounted for by the following: 1. BGK-OM is

highly parallelized with 8 threads so for a fair comparison the multi-threading is disabled; 2. the

max range of the sensor in these tests is higher (15 m) than what is reported in [24] (4 and 8 m);

3. the environment is larger (100m×100m×8m) as compared to the largest environment reported

in [24] (43.8m×18.2m×3.3m); 4. the maximum number of points used per scan reported in [24] is

7601 but the tests in Fig. 6.2b contain between 15,000-20,000 points when 0% of the observations

are removed and after downsampling with the voxel grid filter. The dense voxel filter resolution

is left unchanged from the default parameters (0.1 m) but when the sensor observations are sparse

and the environment is large, few points can be removed. The priors are set to 0.5, block size is

set to 1, and the resolution is 0.25 in keeping with the other approaches. The other parameters are

unchanged.

The key advantages of the GMM occupancy model over state-of-the-art occupancy mapping

approaches like the occupancy grid map, Octomap, or BGK-OM is the ability to correct for small

or large changes in pose without the need to regenerate the entire map via Eqs. (6.1) and (6.2).

BGK-OM requires significantly more data storage to obtain the same level of accuracy as can be

seen in the results from the Freiburg Campus Dataset in Table 6.1. Because the standard occupancy

grid map under performs as compared to both the proposed and BGK-OM approaches in Fig. 6.2,

the memory requirements would be larger to achieve the same AUC. Furthermore, the timing needs
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Figure 6.2: (a) The effect of data sparsity on the fidelity of the map is measured by computing the area under
curve for several models constructed by increasingly reducing the percentage of observations removed from
the original data. (b) provides timing analysis for each method along with variance in the lighter shaded
region. (c) illustrates the reconstruction of the map after sampling from the GMM. 100-component GMMs
were used to generate these results. (d) illustrates the effect of varying the number of sampled points for the
GMM Occupancy Modeling approach. As the number of samples increases, the accuracy of the resulting
occupancy model increases.
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(a)

(b) (c)

Figure 6.3: (a) Raw pointcloud from Freiburg campus dataset with coloring according to location along
the z-axis (total is 447,528 points and approximately 5.12MB of data assuming 32-bit floats). (b) Recon-
struction of occupied regions with BGK inference for occupancy maps using 9472 points (111 KB data
storage requirement). The voxels displayed are those with a probability of occupancy greater than or equal
to 0.65. The AUC is 0.72. (c) Reconstruction of GMM map using 1000 components (40 KB data storage
requirement). The AUC is 0.82.

(a) (b) (c) (d)

Figure 6.4: (a) A pointcloud of a courtyard from the Freiburg campus dataset with (b) a railing outlined in
red. (c) The occupied points from the grid map derived by Monte Carlo sampling a 200-component GMM
and (d) 850-component GMM are shown after applying a threshold using variance = 0.06. The AUC for (c)
is 0.79 and the AUC for (d) is 0.82. In both cases the railing is properly reconstructed.
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AUC Memory Usage (Bytes)
GMM Number of Components

0.8179 40,000 1000
0.8072 20,000 500
0.8055 10,000 250
0.7849 4,000 100

BGK Number of Points
0.7603 204,132 17,011
0.7182 113,664 9,472
0.6338 60,120 5,010
0.5845 37,140 3,095
0.5428 18,660 1,555

Table 6.1: AUC for given memory usage of GMM occupancy model compared to the performance of
BGK inference occupancy maps. The GMM is better able to reconstruct the occupancy information in the
environment with 50× less data than the Bayesian Generalized Kernel inference approach for occupancy
mapping.

for regenerating the entire map are prohibitive for real-time applications. Individual voxels cannot

be meaningfully rotated and translated; however, individual components of a GMM are easily

translated and rotated to correct for errors in pose [72].

The GMM infers the presence of occupied space in the neighborhood of observed points. How-

ever, the inferred occupied space may be unobservable from the sensor location due to occlusions

from other surfaces. As a result, the inferred density may contribute erroneous free space evidence.

For example, Fig. 6.4a depicts a laser scan from the Freiburg campus dataset that exhibits clutter

and challenging surfaces to model in the form of a railing outlined in Fig. 6.4b. The inferred, but

unobserved, portion of the wall contributes free space evidence to the voxels containing the rail-

ing, resulting in the probability of occupancy dropping for the railing voxels. To account for such

situations, the variance of the voxels is leveraged to determine the occupancy classification levels.

The variance of a voxel is the variance of a Bernoulli random variable

σ2 = p(xi)(1− p(xi)) (6.5)

The variance quantifies the uncertainty in the occupancy value of the cell and introduces a dead-

band region in which voxels remain unclassified. The occupied and free thresholds are given

by 1
2
(1 ±

√
1− 4σ2). Appropriate selection of σ2 ∈ [0, 0.25] enables a threshold to be applied



66 CHAPTER 6. ARBITRARY RESOLUTION OCCUPANCY MODELING USING GMMS

depending on desired conservativeness for a given application. Fig. 6.4c illustrates the occupied

cells when a variance thresholding is applied when reconstructing a GMM with 200 components.

The railing is well represented in the reconstruction and the AUC is 0.79. Fig. 6.4d illustrates the

same result with 850 GMM components and an AUC of 0.82.

6.2.2 Component Selection

Selecting the right number of components to model a GMM is an open area of research. A hierar-

chical, top-down strategy is developed by Eckart et al. [28] that produces a GMM by successively

partitioning the data into J leaf nodes such that each leaf is a Gaussian density and J � N ,

where N is the number of points in the pointcloud. The downside of this approach is that user-

defined convergence criterion must be set to determine when the point cloud has been sufficiently

segmented. Srivastava and Michael [78] propose a bottom-up strategy that successively merges

components until a knee-point is achieved. In addition, information-theoretic criterion such as the

Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) have also been used

to determine the elbow-point where adding an additional component does not significantly add in-

formation; however, the elbow-point cannot always be unambiguously identified. The plots of BIC

and AIC for a pointcloud shown in Fig. 6.5e are shown in Fig. 6.5a and Fig. 6.5b, respectively, for

numbers of components between 1 and 200.

This work proposes another method to determine the number of components to ensure max-

imum resolution inspired by the work of Isler et al. [41] that measures surface coverage by dis-

cretizing the space into a voxel grid with very small cell size and counting the number of rays that

collide with a surface in the voxel. For a given desired maximum resolution, the number of com-

ponents needed to achieve that resolution may be determined by computing a GMM, resampling

from the distribution a number of points equal to the support size, and raytracing through an oc-

cupancy grid map (note: not a Bernoulli grid). The AUC is computed by comparing the resulting
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Figure 6.5: (a) The BIC and (b) AIC are often used to determine the number of components to represent a
distribution. The proposed approach (c) ensures max resolution through comparison to an occupancy grid
map. (d) Timing results for the occupied and free space GMMs as the number of components increases. A
visualization of the pointcloud may be seen in (e) and the 200-component GMMs in (f).
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occupancy grid map with a ground truth occupancy grid map whose values are determined by ray-

tracing the original point cloud. Figure 6.5c illustrates the AUC scores when varying the number

of components in the GMMs for free and occupied points.

The intuition behind this approach is that as the number of components in the model approaches

the number of points in the sensor observation, the resulting AUC score will approach 1. It will

be 1 only when the number of components exactly matches the number of points in the sensor

observation. This representation also gives a more intuitive understanding of how selecting the

number of components will affect the reconstruction. For example, when the desired cell size

is 0.6 m, 50 components may be sufficient, but when increasing the resolution to 0.3m cell size,

200 components would be needed to obtain similar AUC accuracy. To obtain good performance

a trade-off must occur between the time it takes to calculate the GMM and the desired maximum

resolution. Figure 6.5d illustrates the time to compute a GMM as the number of components in-

creases.The times may be significantly reduced by employing the hierarchical strategy of [28].

This is left as future work discussed in the next section.

6.3 Conclusions

This chapter presented a continuous occupancy modeling methodology to enable efficient storage

of a high-fidelity model of observed occupied and free space while remaining amenable to local

or global updates in pose. The Monte Carlo sampling and ray-tracing approach is quantitatively

evaluated against state-of-the-art occupancy modeling approaches which demonstrates superior

modeling accuracy while substantially reducing the complexity of the representation.



Chapter 7

Local Occupancy Mapping using GMMs for

Exploration

To enable information-theoretic exploration, occupancy must be derived from GMMs in real-time.

This chapter leverages and extends the occupancy modeling techniques of the previous chapter to

generate GMMs and update an occupancy grid map in real-time to enable information-theoretic

exploration on constrained aerial systems. The method is evaluated in simulation, deployed to an

aerial system, and tested in a complex, real-world environment.

7.1 Approach

The exploration system consists of mapping, information-theoretic planning, and a monocular

visual-inertial navigation system (Fig. 7.2). Section 7.1.1 develops a local grid mapping strategy

that leverages GMMs and Section 7.1.2 details the planning approach that generates continuous

trajectories that maximize the mutual information between potential sensor observations and the

map. The visual-inertial navigation and control subsystems are detailed in Section 7.2.2 and results

are presented in Section 7.2.

69
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(a) (b)

Figure 7.1: (a) An autonomous aerial robot equipped with a 3D LiDAR explores an outdoor environment. (b)
The exploration environment (top-down view) is a red volleyball court covered in snow.
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Figure 7.2: Overview of the autonomous exploration system presented in this work. Using pose estimates
from a visual-inertial navigation system (Section 7.2.2) and 3D laser scans, the proposed mapping method
(Section 7.1.1) builds a memory-efficient approximate continuous belief representation of the environment
and generates local occupancy grid maps in real-time. A motion primitives-based information-theoretic
planner (Section 7.1.2) uses the local occupancy map to generate snap-continuous forward-arc motion
primitive trajectories that maximize the information gain over time.
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7.1.1 Mapping

Gaussian Mixture Models for Perception

The proposed approach leverages GMMs to compactly encode sensor observations for transmis-

sion over low-bandwidth communications channels. The GMM provides a generative model of the

sensor observations from which occupancy may be reconstructed by resampling from the distribu-

tion and raytracing through a local occupancy grid map. Please see Section 3.1 for a mathematical

description of the GMM.

The performance analysis of Table 3.1 highlights the computational challenges associated with

learning a Gaussian Mixture Model from pointcloud observations for real-time active perception.

As noted in Section 3.1.4, the Expectation step is computationally expensive because the respon-

sibility matrix is of size RN×M , where N denotes the number of points in the data set and M

denotes the number of desired mixture components. The Maximization step is expensive because

every point in the data set is used to update the parameters. The time required to initialize clusters

via the KMeans++ [4] algorithm also scales with the size of the dataset (see Table 3.1).

To enable real-time performance, a hard partitioning of the data intoW windows (see Figs. 7.3c

and 7.3d) is performed. The windowing reduces computational cost by reducing the size of the re-

sponsibility matrix, where the entries of the responsibility matrix are denoted as γnm in Eq. (3.1).

The effect of this windowing strategy is discussed in greater detail in Section 7.2 and, in par-

ticular, Fig. 7.7. Let Gi(x) be a GMM trained from Ni points in window i and let Gj(x) be a

GMM trained from Nj points in window j, where
W∑
w=1

Nw = N and N is the total number of

points in sensor observation Zt taken at time t. Gj(x) =
K∑
k=1

τkN (x|νk,Ωk) may be merged into

Gi(x) =
M∑
m=1

πmN (x|µm,Λm) by concatenating the means, covariances, and weights. However,

care must be taken when merging the weights as they must be renormalized to sum to 1 [77]. The
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(a) pointcloud (b) Windowless GMM

(c) Windowed Occupied Data (d) Windowed Free Data

(e) Windowed GMM (f) Resampled Pointcloud

Figure 7.3: Overview of the windowing technique for learning GMMs from a sensor observation. (a) 3D
LiDAR scan from Rapps Cave in Greenbrier, WV. Points at a distance larger than 5 m are normalized
to a unit vector and projected to 5 m (dark blue) to represent free space. Points with a norm less than
5 m represent occupied space. (b) A 100-component GMM F(x) is learned over the free space points
(dark blue) and 100-component GMM G(x) is learned over the occupied points (red). (c) and (d) illustrate
the windowing technique on the occupied and free space points, respectively, by coloring each window
in a different color. The GMM learned with windowed pointcloud data is shown in (e). The windowless
GMM produces a tighter fit to the data than the windowed GMM which is exemplified in the occupied point
component closest to the viewer. The resampled model produced by sampling 1× 106 points from (e) is
shown in (f). The number of points to resample is selected for illustration purposes and to highlight that the
resampling process yields a map reconstruction with an arbitrary number of points.
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weights are renormalized via Eqs. (7.1) and (7.2):

N∗ = Ni +Nj (7.1)

π∗ =

[
Niπ1
N∗

Niπ2
N∗

. . . Niπm
N∗

Njτ1
N∗

Njτ2
N∗

. . .
Njτk
N∗

]T
(7.2)

where m ∈ [1, . . . ,M ] and k ∈ [1, . . . , K] denote the mixture component in GMMs Gi(x) and

Gj(x), respectively. N∗ ∈ R1 is the sum of the support sizes of Gi(x) and Gj(x). π∗ ∈ RM+K are

the renormalized weights. The means and covariances are merged by concatenation.

Distinct free F(x) and occupied G(x) GMMs are maintained to compactly represent the den-

sity of points observed in the environment. The process by which F(x) and G(x) are created is

illustrated in Figs. 7.3a and 7.3e. Because the GMM is a generative model, one may sample from

the surface model to generate points and reconstruct occupancy. A point p̂ ∈ R3 is sampled from

component m of GMM G(x) ∝ πm by decomposing the covariance Λm into the eigenvectors U

and a diagonal matrix consisting of the eigenvaluesD (shown in Eq. (7.3)). The entries of a point

p ∈ R3 are drawn from the univariate Gaussian probability density function with mean µ = 0

and unit variance σ2 = 1, N (0, 1). All entries larger than three-sigma are discarded so that the

sensor observation accurately represents 97% of the distribution. The point p is then transformed

via Eq. (7.4).

UDUT = Λm (7.3)

p̂ = UD1/2p+ µm (7.4)

Figure 7.3 illustrates the model used to compactly represent the sensor observation.
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(a) Overlapping bounding boxes (b) Set difference bt+1 \ bt

Figure 7.4: (a) The blue bounding box bt+1 is centered around Xt+1 and red bounding box bt is centered
at Xt. (b) illustrates the bounding boxes contained in bt+1 and not in bt in solid magenta, teal, and yellow
colors. The magenta, teal, and yellow bounding boxes represent the set difference bt+1 \ bt.

Local Occupancy Grid Map

The occupancy grid map [85] is a probabilistic representation that discretizes 3D space into finitely

many grid cells o = {o1, ..., o|o|}. Each cell is assumed to be independent and the probability of

occupancy for an individual cell is denoted as p(oi|X1:t,Z1:t) where X1:t denotes all vehicle states

up to and including time t and Z1:t denotes the corresponding observations. Unobserved grid cells

are assigned a uniform prior of 0.5 and the occupancy value of the grid cell oi at time t is expressed

using log odds notation for numerical stability.

lt,i , log

(
p(oi|Z1:t,X1:t)

1− p(oi|Z1:t,X1:t)

)

When a new measurement Zt is obtained, the occupancy value of cell oi is updated as

lt,i , lt−1,i + L(oi|Zt)− l0
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(a) (b)

Figure 7.5: Given a sensor observation at the origin, the resampled pointcloud shown in Fig. 7.3f, and the
novel bounding box shown in yellow, each ray from the sensor origin to the point is tested to determine if it
intersects the bounding box. (a) illustrates the endpoints of rays that intersect the bounding box in red. (b)
illustrates how the bounding box occupancy values are updated. Endpoints inside the yellow volume update
cells with an occupied value. All other cells along the ray are updated to be free.

where L(oi|Zt) denotes the inverse sensor model of the robot and l0 is the prior of occupancy [85].

Let ōt denote a local occupancy grid map centered at the robot’s pose, Xt. ōt may be repre-

sented as a vector of fixed size such that every entry corresponds to a voxel within a 3D bounding

box. ō represents a significantly smaller area than the environment. If the robot moves a small

amount between times t and t + 1, the maps at times ōt and ōt+1 will not cover exactly the same

region but may overlap. Given bounding boxes bt and bt+1, the set difference bt+1 \ bt is used

to compute at most three non-overlapping bounding boxes (see Fig. 7.4). The intersection of the

bounding boxes remains up-to-date, but the occupancy of the novel bounding boxes must be re-

constructed using the surface models G(x) and F(x). Raytracing is an expensive operation [2], so

eliminating the voxels at the intersection of bt and bt+1 by using three novel bounding boxes avoids

unnecessary calculations and saves time.

The local occupancy grid map at time t + 1, ōt+1, is initialized by copying the voxels from

bt that lie at the intersection of bt+1 and bt. In practice, the time to copy the local occupancy
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grid map is very low (on the order of a few tens of milliseconds) as compared to the cost of

raytracing through the grid. In order to identify the GMM components that intersect the bounding

boxes, a KDTree [11] stores the means of the densities. A radius equal to twice the sensor’s

max range is used to identify the components that could affect the occupancy value of the cells

in the bounding box. A ray-bounding box intersection algorithm [88] checks for intersections

between the bounding box and the ray from the sensor origin to density mean. Densities that

intersect the bounding box are extracted into local submaps Ḡ(x) and F̄(x) via Eqs. (7.1) and (7.2).

Points are sampled from each distribution by following Eqs. (7.3) and (7.4) and raytraced to their

corresponding sensor origin to update the local grid map.

As the number of mixture components in the distribution increases over time in one region, up-

dating the occupancy becomes increasingly expensive as the number of points needed to resample

and raytrace increases. To limit this potentially unbounded number of points, a small, fixed-size

bounding box around the current pose with half-lengths hx, hy and hz are used to determine if a

prior observation was made within the confines of the bounding box. This bounding box approach

works for sensors that have a 360◦ field of view such as the 3D LiDAR used in this work, but does

not readily extend to depth sensors with smaller fields of view. If a prior observation was made

within the bounding box, the current observation, Zt is not stored as a GMM.

7.1.2 Planning for Exploration

The planning framework consists of action generation and action selection. Action generation

refers to the design of candidate actions for the planner, while action selection in the exploration

context refers to the planning policy that selects safe, feasible trajectories to minimize the uncer-

tainty of the map over time.
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Action Generation

Accurate position control of multirotors presumes continuity in supplied references up to high-

order derivatives of position [54]. Actions that satisfy continuity requirements must be computable

in real-time. Forward arc motion primitives [90], generated via forward propagation of unicycle

kinematics with higher-order endpoint constraints, have been successfully demonstrated in high-

speed multirotor exploration and teleoperation scenarios [34, 76]. An action representation similar

to the one proposed in [34] is employed in this work. For the differentially-flat multirotor state at

time t, ξt, denote the action parameterization as a = [vx, vz, ω] where vx and vz are velocities in the

body frame xB and zB directions, and ω is the body frame angular rate about zB axis. Actions are

discretized using the user-specified maximum velocity bounds in xB − yB plane (ω variation, Nω

primitives) and zB plane (vz variation, Nz primitives) to obtain a motion primitive library (MPL)

Γξt given by (Figs. 7.6a and 7.6b):

Γξt = {γjkξt | j ∈ [1, Nω], k ∈ [1, Nz], |v| ≤ Vmax, |ω| ≤ Ωmax} (7.5)

where |v| is the norm of vx and vz, and Vmax and Ωmax are user-specified bounds on linear and

angular velocities respectively.

For a given action discretization, the motion primitive γjkξt is generated as an 8th order poly-

nomial in time using start- and end-point velocities, keeping position unconstrained. End-point

velocity is obtained by forward propagating a unicycle kinematics model using the current state,

maximum duration of the motion primitive (τ ), and the available action parameterization. Higher-

order derivatives from acceleration to snap are constrained to zero at endpoints:



78 CHAPTER 7. LOCAL OCCUPANCY MAPPING USING GMMS FOR EXPLORATION

(a) ω variation (b) vz variation (c) Frontier Distance Field

Figure 7.6: Forward-arc motion primitives from the multirotor state ξt [76] are obtained after varying
yaw rate (a) and vertical velocity (b). Stopping trajectories γstop

ξt
are always computed for each primitive

(green, dashed) to ensure safety. An explored local occupancy map is used to construct a distance field for
frontiers (c) [19], which enables computation of global reward as detailed in Section 7.1.2.

ξ̇τ = [vx cos θ, vx sin θ, vz, ω]

ξ(n)τ = 0 for n = 2, 3, 4

(7.6)

where {.}(n) denotes the nth time derivative.

For each MPL Γξt , an additional MPL containing stopping trajectories at any ξt can be sampled

by fixing ξ̇τ = 0 (Γstop
ξt

, Fig. 7.6a). These stopping trajectories are appended to the motion prim-

itives in Γξt at a timestep one planning round away from the starting time. These actions ensure

safety if the planner fails to compute an optimal action. The final action space χact available for

the motion planner is composed of the MPLs shown in Table 7.1 1. The total number of actions

available in this configuration of MPLs is chosen such that computation of rewards is real-time

feasible.

1This design is dependent on the sensor model and SWaP constraints of the aerial robot. We follow the analysis
of [34] for the selection of these design parameters.
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MPL ID Velocity and Duration Direction Nω Nz Nprim

1 vx, τ xB 3 5 15
2 vx, 2τ xB 3 5 15
3 vx, τ −xB 3 5 15
4 vx, 2τ −xB 3 5 15
5 vz zB 1 5 5

Table 7.1: Discretization used to construct action space χact for our simulation and hardware experiments.
Total number of primitives for a MPL are denoted by Nprim = Nω ·Nz.

Information-Theoretic Objective

The action selection policy uses an information-theoretic objective to maximize the information

gain over time. The choice of this objective is motivated by computational feasibility onboard a

compute-constrained platform. This work leverages the Cauchy-Schwarz Quadratic Mutual In-

formation (the CSQMI is defined in Eq. (4.8)) [16] to calculate the information reward, Iγ . To

minimize redundant computation, Iγ is computed only at the end point of the primitive γξt . The

planner uses the CSQMI to measure the information gain a candidate action will return locally,

however, this design may result in myopic decision-making and only reason locally. Therefore, an

additional global distribution of information is incorporated via frontiers [89]. This global reward,

denoted by Vγ , is calculated based on the change in distance towards a frontier along a candidate

action. Using the node state ξ0, endpoint state ξτ , and a distance field constructed based on the

position of the frontiers (see Fig. 7.6c), this reward can be calculated as Vγ = d(ξ0)−d(ξτ ), where

d(ξt) denotes the distance to the nearest voxel in the distance field from state ξt [19].

Action Selection

Using the rewards described in the preceding section, the objective for the motion planner is defined

as follows [19, 34]:
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Algorithm 7.1 Overview of Action Selection for Exploration
1: input: χact, χfree
2: output: γ∗ξt . best action
3: for Γξt ∈ χact do
4: for γξt ∈ Γξt do
5: feasible← SAFETYCHECK(γξt , γ

stop
ξt

, χfree)
6: if feasible then
7: Iγ ← INFORMATIONREWARD(γξt)
8: Vγ ← FRONTIERDISTANCEREWARD(γξt)
9: else

10: Iγ ← 0.0, Vγ ← 0.0

11: return γ∗ξt ← arg max
γξt∈χact

[Iγ + Vγ ]

arg max
γξt

Iγ + αVγ

s.t. γξt ∈ χact

(7.7)

where α is a positive factor used to scale the frontier distance reward. As stated earlier, the goal is

to maximize this reward function in real-time on a compute-constrained aerial platform. Previous

information-theoretic approaches that construct a tree and use a finite-horizon planner either do not

use a global heuristic [82] or are not known to be amenable for operation on compute-constrained

platforms [19]. Keeping real-time operation as a key goal in this work, a single-step planner is used

with the action space χact consisting of motion primitives of varying duration (see Table 7.1). Due

to this design of candidate actions, the planner is able to compute rewards over candidate actions

further into the explored map from the current position. This way, even in a single-step planning

formulation, longer duration candidate actions provide a longer lookahead than the case when all

candidate actions are of the same duration. For both simulation and hardware experiments in this

work, τ = 3 s and 2τ = 6 s are used as candidate action durations (see Table 7.1).

The action selection procedure is detailed in Algorithm 7.1. For every candidate action γξt in

the action space χact, a safety check procedure is performed to ensure that this candidate and the
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associated stopping action (γstop
ξt

) are dynamically feasible and lie within free space χfree (Line 5).

The free space check is performed using a Euclidean distance field created from locations of oc-

cupied and unknown spaces in the robot’s local map given a fixed collision radius [18]. Checking

that the stopping action is also feasible ensures that the planner never visits an inevitable collision

state, which is essential for safe operation, as shown in [44]. If the action is feasible, the local in-

formation reward (Iγ , Line 7) and frontier distance reward (Vγ , Line 8) are calculated. The planner

returns the action with the best overall reward (Line 11).

7.2 Results

This section details the experimental design to validate the proposed approach. Results are shown

for 25 hours of real-time simulation trials in unstructured, 3D rich environments, as well as for

field test experiments where the approach is deployed on hardware. The following shorthand is

introduced for this section only: MCG will refer to the Monte Carlo GMM mapping approach

and OG mapping will refer to the Occupancy Grid mapping approach. The mapping and planning

software is run on an embedded Gigabyte Brix 6500U with four cores. The simulation computer

has 8GB RAM and the hardware computer has 16GB RAM. All other technical specifications are

identical for the simulation and hardware setups.

All simulation and hardware experiments use 10 windows each with 10 mixture components

for the occupied- and free- space GMMs (200 mixture components total) with hx = hy = 2 m and

hz = 1 m. The LiDAR has a max range of 5.0 m and operates at 10 Hz for both simulation and

hardware. The local occupancy grid maps for both MCG and OG mapping span 20 m × 20 m ×

12 m at a 0.2 m resolution. To calculate memory requirements for the OG mapping approach,

the incremental OG map is transmitted as a changeset pointcloud where each point consists of 4

floating point numbers: {x, y, z, logodds}. The changeset is computed after incorporating each

pointcloud in the occupancy grid map. A floating point number is assumed to be 4 bytes, or 32
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bits. For the MCG approach, the cumulative data transferred is computed by summing the cost

of transmitted GMMs. Each mixture component is transmitted as 10 floating point numbers: 6

numbers for the covariance matrix (because the covariance matrix is symmetric), three numbers

for the mean, and one number for the mixture component weight. One additional number is also

stored per GMM that represents the number of points from which the GMM was learned.

Before discussing the results of the exploration approaches, the choice of the windowing strat-

egy presented in Section 7.1.1 is analyzed for reconstruction accuracy. Fig. 7.7 employs the Area

under the ROC Curve (AUROC) to evaluate the accuracy of the occupancy reconstruction using

the windowed and windowless GMM approaches. Ground truth probabilities for the occupancy

grid map are computed by raytracing the sensor observation through a traditional occupancy grid

map and updating the probabilities of occupancy via the inverse sensor model.

Given the pointcloud in Fig. 7.3a consisting of N points, the No occupied space points shown

in colors varying from red to green are separated into 10 windows of points (shown in Fig. 7.3c).

For each window i ∈ [1, . . . , 10], a GMM Gi(x) consisting of 10 mixture components is learned

and merged into a single GMM G(x) consisting of a total of 100 mixture components (shown in

red in Fig. 7.3e). The same process is repeated to generate a free space GMM F(x) with free

space points (illustrated in blue in Fig. 7.3e). The occupancy is reconstructed by sampling and

raytracing No points from G(x) and Nf points from F(x) such that N = No + Nf through an

occupancy grid map. Figure 7.7 illustrates the occupancy reconstruction accuracy for varying cell

sizes (0.1 m, 0.2 m, and 0.4 m). All simulation and hardware experiments in this chapter use 0.2 m

voxel sizes. The windowing approach results in a 1.4% performance decrease and a 10× speed

up in calculation (1.22 s for the windowless approach vs. 0.12 s for the windowed approach) for

100-component G(x) and 100-component F(x), reducing computation time from seconds to mil-

liseconds. Exploiting the spatial locality through windowing reduces the computational complexity

associated with learning the distribution. For example, the responsibility matrix learned on all of
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Figure 7.7: The quality of reconstruction when opting for the windowed strategy (dashed lines) shown
in Fig. 7.3e as opposed to learning a distribution on all of the data (solid lines) as in Fig. 7.3b is presented.
The effect of partitioning data into 10 windows, learning a distribution on each of the windows, and merging
the result does not significantly reduce the quality of the reconstruction. The gains in speed are significant
enough to motivate deploying the windowing strategy for real-time operations. The legend illustrates the
size of the voxel used in the occupancy grid map. As expected, the reconstruction accuracy increases as the
size of the voxel increases.

the occupied data is of size No ×M but each windowed GMM has a responsibility matrix of size

No

10
× M

10
.

7.2.1 Simulation Design and Experiments

Simulation Setup

The proposed exploration strategy is evaluated with 60 real-time simulation trials over approxi-

mately 25 hours in a 30 m × 40 m × 6 m environment constructed from colorized FARO2 point-

clouds of Rapps Cave, located in Greenbrier, West Virginia (see Fig. 7.9a). In each simulation,

the multirotor robot begins exploration from one of three pre-determined starting positions and

explores for 1500 s.

2A FARO is a survey grade 3D laser that emits pointclouds with color. https://www.faro.com/

https://www.faro.com/
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Figure 7.8: Exploration statistics for simulation experiments. (a) Map entropy over time for 30 trials, (b)
mean map entropy over time for each method, and (c) three different starting positions (10 trials per starting
position per method). Although both methods achieve similar entropy reduction, MCG uses significantly less
memory according to the average cumulative data transferred shown in (d). The total amount of transmitted
map data after 1500 s is 1.3 MB for MCG, 204 MB for OG, and 4.5 GB (not shown) for raw pointclouds.
The maximum variance for the MCG approach is 4.2× 10−3 MB2 and 1.2× 102 MB2 for the OG approach.
The proposed MCG method represents a decrease of two orders of magnitude as compared to the OG
method.
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(a) Simulated Cave Environment (b) Resulting GMM after 1500 seconds

(c) Resampled map from GMM (d) Dense voxel map after 1500 seconds

Figure 7.9: Environment used for simulation experiments, shown in (a), is based on a real cave environment
in West Virginia. After 1500 seconds of autonomous exploration, the resulting MCG map (b) is densely
resampled to 10 million points to obtain the reconstruction shown in (c). The output of the OG mapping
strategy consists of 50,398 voxels and is shown in (d). Both mapping strategies leverage voxels with 20 cm
resolution. (c) and (d) are colored according to z height.
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Results

Map entropy reduction over time is used to compare exploration performance of the MCG and

OG approaches over 30 simulation trials (see Fig. 7.8a). Map entropy is measured from a global

occupancy grid map that is maintained separately from the simulated robot’s onboard map [21].

The simulation trials demonstrate that MCG achieves similar performance as OG, which indicates

that the approximations made by the former enables real-time performance without compromising

exploration or map reconstruction quality.

Figure 7.8d depicts the cumulative amount of data that must be transferred to reproduce the OG

and MCG maps remotely. After 1500 s, transferring the MCG map requires 1.3MB as compared to

204MB to incrementally transfer the OG map and 4.5GB to transfer the raw pointcloud data. The

MCG approach significantly outperforms the other approaches in terms of cumulative data transfer

requirements.

A representative example of the reconstructed GMM map for one trial from Fig. 7.8b is shown

in Fig. 7.9b. Resampling one million points from this distribution yields the map shown in Fig. 7.9c.

Note that the MCG reconstruction is smoother and has a higher fidelity than the OG reconstruction

because the generative model used by the former does not assume independence between voxels.

7.2.2 Hardware Design and Experiments

A 6.7 kg aerial robot (see Fig. 7.10b) equipped with a downward-facing color camera, IMU, and

3D LiDAR aerial is used to conduct field experiments.

Visual-Inertial Navigation and Control

State estimates are computed from IMU and downward facing camera observations via VINS-

Mono [70], a tightly-coupled visual-inertial odometry framework that jointly optimizes vehicle

motion, feature locations, camera time delay, and IMU biases over a sliding window of monocular

images and pre-integrated IMU measurements. An auxiliary state estimator runs during takeoff to
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(a) Robot trajectory

(b) Aerial robot with 3D LiDAR (c) GMM Map constructed during flight

Figure 7.10: Experimental setup for hardware trials. (a) Test site for outdoor exploration experiments with
robot trajectory highlighted in red. (b) Hexrotor aerial robot used in field tests. (c) Top-down view of the
GMM map (blue) constructed during the 60 s flight and the estimated trajectory (red).
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Figure 7.11: Exploration statistics for hardware experiments. (a) illustrates the map entropy reduction
for two trials of each approach. (b) represents the average cumulative data transferred at a given time in
a semi-logarithmic plot where the vertical axis is logarithmic labeled with successive powers of 10. The
maximum variance is 2.9× 10−5 MB2 and 7.2 MB2 for the MCG and OG approaches, respectively. The
total amount of data transferred at the end of each hardware trial on average is approximately 78 kB for the
MCG mapping approach, 9.7 MB for the OG approach, and 154 MB when transmitting raw pointclouds
(not shown). (c) illustrates the bit rate for each approach in a semi-logarithmic plot where the vertical axis
is logarithmic labeled with successive powers of 10. The communications bandwidth required for the MCG
approach is just under the upper bound on the available Earth-to-Mars bit rate.
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provide smooth odometry when the vehicle has not yet experienced sufficient motion excitation

for VINS-Mono to initialize. The auxiliary state estimator is an unscented Kalman filter that fuses

downward rangefinder altitude observations, downward optical flow, and IMU measurements to

estimate vehicle velocity, position, and attitude. The loop closure functionality of VINS-Mono is

disabled to avoid having relocalization-induced discontinuities in the trajectory estimate, which

would have significant implications for occupancy mapping and is left as future work.

For accurate trajectory tracking, a cascaded Proportional-Derivative (PD) controller is used

with a nonlinear Luenberger observer to compensate for external acceleration and torque distur-

bances acting on the system [55]. To improve trajectory tracking, the controller uses angular feed-

forward velocity and acceleration terms computed from jerk and snap references sampled from

the reference trajectory’s 8th order polynomial (Fig. 7.2). The multirotor achieves a mean absolute

position tracking error of less than 3 cm when flying outdoors with wind speeds of up to 29 km/h.

Additionally, a state machine moderates the control architecture, and, by providing access to

future controller references, enables seamless transitions between modes of flight operation. For

example, during the hardware experiments conducted in this work, the vehicle can be in one of the

five modes: (1) take-off, (2) hover, (3) tele-operation, (4) autonomous exploration, and (5) landing.

The state machine also allows for an intuitive joystick interface for the operator to switch between

these modes. The results presented in the next section are for the autonomous exploration mode.

Results

Four experimental trials are conducted and evaluated outdoors in inclement weather with duration

of 50 s. Given that re-localization is not enabled in state estimation, the pose estimates drift over

time. To compensate for this in the analysis of exploration quality, raw sensor observations are

logged onboard and post-processed to estimate ground truth poses using a FARO ground truth

map (shown in Fig. 7.1b). Ground truth estimates are computed by manually aligning the first

LiDAR sensor observation with the FARO map to obtain an initial pose estimate Tfz1 ∈ SE(3),
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where f denotes the FARO frame and z1 denotes the sensor frame of the first LiDAR observation.

Successive LiDAR observations are registered using GICP [74] to estimate Tztzt+1 ∈ SE(3) and

the transform TfztTztzt+1 is used to seed the GICP registration between the sensor observation

at time t + 1 and the FARO map. The ground truth pose estimates are used to provide a fair

comparison between the two exploration approaches and generate the map entropy reduction plots

shown in Fig. 7.11a. These plots illustrate almost equivalent performance between the MCG and

OG mapping approaches, however, Fig. 7.11b demonstrates the MCG approach requires 100×

less memory as compared to the OG approach. Furthermore, Fig. 7.11c shows the reduction in the

communication bandwidth required by the MCG approach compared to the OG approach, which

brings the former just under the upper bound on Earth-to-Mars bit rate [46].

7.3 Conclusions

This chapter presented a method of high-fidelity perceptual modeling that is amenable to trans-

mission across low-bandwidth communications channels. In analyzing the results of the hardware

trials in the context of the Mars-to-Earth lowest communications bit rate (500 bits per second), it

would take almost 30 days to transmit the raw pointcloud data, 45 hours to transmit the the occu-

pancy grid map incrementally, and 21 minutes to transmit the GMM map [46]. At the highest bit

rate of 32,000 bits per second, those numbers are changed to 0.5 days, 42 minutes, and 20 seconds,

respectively. This mapping capability is an enabling technology for search and rescue, planetary

exploration, and tactical operations where humans and robots must share information in real-time.



Chapter 8

Simultaneous Localization and Mapping

using GMMs

The previous chapter demonstrates that there are significant advantages in representational fidelity

and memory efficiency when using GMMs for perceptual and occupancy modeling without losing

exploration performance. However, to enable consistent mapping in substantially unstructured

and 3D environments, a method to close the loop and enable global pose updates is critical for

real-time exploration. This chapter develops a GMM-based pose graph simultaneous localization

and mapping framework to bridge this gap in the state of the art. The on-manifold distribution

to distribution registration approach from Chapter 5 is used to estimate pose between consecutive

GMMs and the Cauchy-Schwarz divergence is employed to calculate the similarity between the

distributions and identify loop closures.

To enable accurate pose estimate, this chapter also presents a real-time viable method to learn

GMMs by exploiting the insight that although Gaussian distributions have infinite support, a sub-

stantial amount of the support is contained within a finite region.

91
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8.1 Approach

The chapter proceeds with a description of a reformulation of the EM algorithm to enable real-

time viable calculation of GMMs. Section 8.1.2 details the distribution to distribution registration,

SLAM, and loop closure approaches. Section 8.2 provides an analysis of the proposed work as

compared to the state of the art and Section 8.3 concludes the chapter with a discussion of the

limitations of the method.

8.1.1 Expectation Maximization

Recall the discussion of Section 3.1.2 that the K-Means algorithm is similar to the EM algorithm

except that it performs a hard assignment of data points to clusters whereas the EM algorithm

makes a soft assignment based on the posterior probabilities. The intuition behind the soft assign-

ment yields one of the contributions of this chapter which is that because Gaussian densities fall off

quickly, points far away from an initialized density will have a small effect on the updated param-

eters for that density. The responsibility matrix Γ ∈ RN×M scales with the number of samples N

and the number of components M , so to reduce the computation time, an approximation is made

to ignore points that lie outside a Mahalanobis distance greater than λ for the initialized density.

EM is modified to reduce the size of the responsibility matrix:

1. Initialize µ1
m, Λ1

m and π1
m with the method detailed in Section 3.1.1.

2. For a given component m, evaluate only the γnm (from Eq. (3.1)) that satisfy Mahalanobis-

bound:

λ <

√
(xn − µ1

m)T (Λ1
m)−1(xn − µ1

m) (8.1)

3. Estimate the updated parameters µi+1
m , Λi+1

m , and πi+1
m with the current responsibilities γnm

and Eqs. (3.2) to (3.4).
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4. Evaluate the log likelihood (Eq. (3.5)) and iterate again from step 2 if convergence is not

achieved.

8.1.2 Pose Graph SLAM via GMM Registration

Each sensor observation is represented as a GMM and successive GMMs are registered together

using one of the approaches detailed in Chapter 5. Loop closures are detected by aligning ob-

servations within a given radius r of the current pose until a match is found that achieves a pre-

determined fitness threshold.

The pose graph is formulated as a factor graph [47] where factors represent constraints between

poses, or nodes. The factor graph G = (F ,V , E) is composed of factor nodes fi ∈ F and variable

nodes vj ∈ V with edges eij ∈ E connecting the factor nodes and variable nodes. The factor graph

finds the variable assignment V∗ that maximizes

V∗ = arg max
V

∏
i

fi(Vi) (8.2)

where Vi is the set of variables adjacent to the factor fi and independence relationships are encoded

by the edges eij such that each factor fi is a function of the variables in Vi. The pose graph uses

relative constraints from GMM registration with a covariance based on the depth sensor model.

Registration

Let Gi(x) and Gj(x) denote GMMs trained from sensor observations Zi and Zj , respectively,

Gi(x) =
M∑
m

πmN (x|µm,Λm)

Gj(x) =
K∑
k

τkN (x|νk,Ωk)
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and let T (·,θ) denote the rigid transformation consisting of a rotation R and translation t. To

register Gj(x) into the frame of Gi(x), optimal rotation and translation parameters must be found

such that the squared L2 norm between the distributions Gi(x) and T (Gj(x),θ) is minimized. A

rigid transformation may be applied to the GMM Gj(x) by the following equation

T (Gj(x),θ) =
K∑
k=1

τkN (x|Rν + t,RΩkR
T ).

The cost function is

θ∗ = arg min
θ

∫
||Gi(x)− T (Gj(x),θ)||22 dx (8.3)

= arg min
θ
−
∫

2Gi(x)T (Gj(x),θ) dx (8.4)

which has a closed form solution as shown in Eq. (5.4) and reproduced below:

θ∗ = arg min
θ
−

M∑
m=1

K∑
k=1

πmτkN (µm|Rνk + t,Λm +RΩkR
T )

Following the approach of Section 5.1.3, the optimal rigid transformation parameters may be

solved for by employing a Riemannian trust-region method with conjugate gradients [13]. The reg-

istration method used in this work is the Isoplanar variant that modifies the covariances prior to reg-

istration to smooth the cost function as sensor observations are assumed to be taken far apart from

one another. The modified covariance is computed as the eigen decomposition Λm = UmDmU
T
m

and Λm is replaced with

Λm = Um


1 0 0

0 1 0

0 0 ε

UT
m (8.5)
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where ε is a small constant representing the covariance along the normal.

The compactness of the GMM enables fast and robust registration. Because the sensor ob-

servation is represented by a small number of mixture components (several tens or hundreds) as

opposed to several tens of thousands or hundreds of thousands of points, every mixture component

in the source distribution may be compared to all other mixture components in the target distribu-

tion. This is in contrast to methods like ICP [7] and GICP [74] that consider the sum of squared

distances between corresponding points, only.

Loop Closure

When the current estimated pose j is within a fixed radius r away from a previously visited pose i

represented in the factor graph, the poses are considered candidates for loop closure. The estimated

pose difference is used to seed the registration between GMMs Gi(x) and Gj(x) associated with

poses i and j in the factor graph. After registration, the updated pose θ is used to transform

Gj(x) into the frame of Gi(x) by applying the transform T (Gj(x),θ). To determine if the GMMs

partially overlap the same scene, the Cauchy-Schwarz divergence [48] is used to measure the

similarity between T (Gj(x),θ) and Gi(x). This measure is developed by Kampa et al. [48] as an

entropic measure for classification for distributions. The loop closure problem may be viewed as

a classification problem where the goal is to determine whether the scene under consideration by

the current view has been previously observed. Kampa et al. [48] derive a closed-form expression

for the Cauchy-Schwarz divergence (shown in Eq. (8.6)).

DCS

(
Gi(x), T (Gj(x),θ)

)
= − log

( ∫
Gi(x)T (Gj(x),θ)dx√∫
Gi(x)2dx

∫
T (Gj(x),θ)2dx

)
(8.6)
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Equation (8.6) may be efficiently calculated by distributing the integral into the summation and

using the Gaussian identity:

DCS(Gi(x), T (Gj(x),θ)) =

− log

(
M∑
m=1

K∑
k=1

πmτkN (µm|Rνm + t,Λm +RΩkR
T )

)

+
1

2
log

(
M∑
m=1

π2
m|2Λm|−1/2

(2π)D/2
+ 2

M∑
m=1

∑
m′<m

πmπm′N (µm|µm′ ,Λm + Λm′)

)

+
1

2
log

(
K∑
k=1

τ 2k |2RΩkR
T |−1/2

(2τ)D/2
+ 2

K∑
k=1

∑
k′<k

τkτk′N (Rνk + t|Rνk′ + t,RΩkR
T +RΩk′R

T )

)

This measure of similarity is not a metric because it does not satisfy the triangle inequality, but 0 ≤

DCS ≤ ∞ and the measure satisfies the symmetry property, meaning that DCS(Gi(x),Gj(x)) =

DCS(Gj(x),Gi(x)). Furthermore, the distributions Gi(x) and Gj(x) are the same only when

DCS = 0. The Cauchy-Schwarz divergence has the same extrema as the cost function used for

registration under optimization, but has some nice additional properties useful for closing the loop.

Note that because the score is always bounded to be between 0 and ∞, it must be the case that

the value inside the logarithm is always between 0 and 1. Thresholding on this value is used for

determining when a location has been previously visited.

If DCS(Gi(x), T (Gj(x),θ)) is less than a pre-defined threshold, an edge is added between the

poses i and j in the factor graph. Measuring the similarity of the distributions provides a robust

threshold for determining the existence of loop closures because the distribution represents the

spread of the samples in the environment. Points sample the 3D world but there is no guaran-

tee that exactly the same point is observed from consecutive observations. Because observations

are composed of thousands of points, point-based registration techniques like ICP typically only
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consider distances between nearest points to remain real-time viable. By exploiting the compact-

ness of the GMM, the similarity between all pairs of components is considered, which increases

robustness.

8.2 Results

8.2.1 Experimental Design

The proposed approach is compared to the Surfel Mapping (SuMa) approach developed by [6],

which is a highly optimized, parallelized implementation for GPU. The GMM formulation is run

single-threaded so the timing performance is not one-for-one comparable. 450 LiDAR1 observa-

tions are collected from a ground vehicle in a mine and 420 observations are collected from an

aerial system (shown in Fig. 8.1b) in a cave.

All of the experiments are run on a low-power, embedded Gigabyte Brix with an Intel i7 8550U

CPU, four cores (8 hyperthreads), and 32GB of RAM suitable for use on a SWaP-constrained

robotic system. The Cauchy-Schwarz divergence loop closure threshold is set to− log(1× 10−6 ).

Both SLAM implementations employ the GTSAM framework [23]. 100-component GMMs are

used in both experiments and the parameters are kept constant for both experiments.

SuMa is originally developed for the Velodyne HDL-64E2 so the following parameters are

updated to work with the Velodyne VLP-16. The data width and height are changed to 500 and

16, respectively. The model width and model height are changed to 500 and 16, respectively. The

fields of view up and down are changed to 15 and -15. The map max. angle is changed to 30,

sigma angle to 2, and sigma distance to 2. The loop closure distance is also changed to match the

setting of the GMM approach.

Two measures are used to evaluate the SLAM results. The Root Mean Square Error (RMSE)

1https://velodynelidar.com/vlp-16.html
2https://velodynelidar.com/hdl-64e.html
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(a) Aerial system flies in Rapps Cave

(b) Aerial system (c) Narrow passageway

Figure 8.1: (a) A custom-built aerial system collects data in an expansive cavern of Rapps Cave in Green-
brier, WV. (b) The aerial system is equipped with a VLP-16 laser scanner. (c) The cave exhibits both
expansive caverns and narrow passageways with unstructured 3D features.
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Figure 8.2: Results for Mine dataset. (a) and (b) illustrate the odometric error as a function of distance
traveled. (c) and (d) present two views of the ground truth trajectory in black with each approach overlaid
in different colors. (e) presents the RMSE values to evaluate the relative pose error between consecutive
sensor observations. (f) presents the registration times and (g) illustrates the timing comparison from the
second column of Table 8.1 as a bar chart.



100 CHAPTER 8. SIMULTANEOUS LOCALIZATION AND MAPPING USING GMMS

as detailed in [81] and the odometric error. The RMSE is defined as the relative pose error at time

step i:

Ei :=
(
Q−1i Qi+1

)−1(
S−1i Si+1

)
(8.7)

RMSE(E1:n) :=

(
1

n− 1

n−1∑
i=1

‖trans(Ei)‖2
)1/2

(8.8)

where trans(Ei) refers to the translational components of the relative pose error Ei, the esti-

mated trajectory S1, . . .Sn ∈ SE(3) and the ground truth trajectory Q1, . . . ,Qn ∈ SE(3). The

odometric error is computed as the translation and rotation error between frames 1 and j where

j ∈ [1, n]:

Ej :=
(
Q−11 Qj

)−1(
S−11 Sj

)
(8.9)

OE(E1:n) := ‖trans(Ej)‖ (8.10)

For both relative pose and odometric errors, the rotation errors are similarly computed.

Ground truth for the mine dataset is provided by Near Earth Autonomy3. GPS is unavailable in

the cave so ground truth estimates are obtained using a map generated from a survey-grade, high

accuracy FARO scanner4.

A timing analysis for training the GMM is provided in Table 8.1. The table illustrates that

the Mahalanobis variant of EM from Eq. (8.1) reduces the timing by a factor of approximately

2.25. The remaining time for the Mahalanobis EM is due in large part to initialization. In order

to decrease the time even further, points outside of a 15 m range are removed for both GMM

initialization and training. This is not done for the SuMA approaches because it negatively impacts

the quality of the pose estimates. The time for GMM initialization is further reduced by using a

3https://www.nearearth.aero/
4https://www.faro.com/
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EM Variant Mine Avg. Train. Time (s) Cave Avg. Train. Time (s)
Standard EM 1.888 2.365
Mahalanobis EM 0.848 1.054
Mahalanobis EM & KMeans++ Redux 0.2406 0.322

Table 8.1: Timing analysis for the Mine (also shown in the bar graph in Fig. 8.2g) and Cave (also shown in
the bar graph in Fig. 8.4g) datasets. The Mahalanobis EM variant is approximately 2.25 times faster than
the standard EM approach. With the K-Means++ reduction and point filtering detailed in Section 8.2.1, the
runtime reduces approximately by a factor of 7.

downsampled set of points (every fifth point) for initialization and then assigning all remaining

points to the closest cluster. Processing the data in this way leads to the training times labeled

Mahalanobis EM & KMeans++ Redux in Table 8.1, which is approximately 7 times faster than

the standard EM. This initialization and EM approach are used for training GMMs in the mine and

cave experiments. Registration times are also provided in Figs. 8.2f and 8.4f. The frame-to-frame

registration times for SuMa are reported for timing to compare fairly; however, the more accurate

frame-to-model SLAM approach is used in all other plots and tables.

8.2.2 Mine

The experiment consists of 450 LiDAR observations in a mine environment taken from a ground

vehicle. Figures 8.2a and 8.2b illustrate the error between the estimated pose as a function of dis-

tance traveled for the path taken by the vehicle shown in Figs. 8.2c and 8.2d. Figure 8.2e presents

the RMS errors for consecutive pose estimates as a table. The translation RMSE values are slightly

lower for the GMM approach and the rotation RMSE values are slightly lower for the SuMa ap-

proach. The odometric errors approximately follow the trends of the RMSE values.

The timing results in Figs. 8.2f and 8.2g demonstrate that the Mahalanobis EM with the

KMeans++ reduction approach is able to significantly reduce the time to create a GMM. SuMa

takes the least time but this approach is parallelized on the integrated GPU in the 8550U.
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(a) Ground Truth Reconstruction (Top-Down) (b) GMM Reconstruction (Top-Down)

Figure 8.3: Reconstruction for the cave dataset. (a) and (b) illustrate the ground truth and GMM recon-
struction of the environment model.
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Figure 8.4: Results for Cave dataset. (a) and (b) illustrate the odometric error as a function of distance
traveled. (c) and (d) present two views of the ground truth trajectory in black with each approach overlaid
in different colors. (e) presents the RMSE values for consecutive sensor observations for each approach
after running SLAM. (f) and (g) present a timing comparison for the registration times and EM variants,
respectively.
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8.2.3 Cave

Figure 8.3a illustrates a cross section of the ground truth environment model created from LiDAR

observations taken from an aerial system (shown in Fig. 8.1). The path taken by the vehicle is

shown in Figs. 8.4c and 8.4d. In this trial, the distance to close the loop is too large for SuMa

and the error over the length of the trajectory is not decreased. This is due to one of the limi-

tations of ICP where the cost function exhibits many local minima that are difficult to overcome

when registering point-based sensor observations. Behley and Stachniss [6] attempt to overcome

this limitation by trying multiple different initializations for frame-to-model ICP, but the GMM

approach is better able to overcome this problem by modifying the covariances to be isoplanar (as

opposed to anisotropic) which smooths the cost function and enables registration tolerant to larger

changes in translation and rotation [74, 83].

Figures 8.4f and 8.4g illustrates the almost 7× reduction in training time for the GMM as

opposed to the standard EM method. SuMa runs on the integrated GPU in a highly optimized and

parallelized way to achieve the reported runtimes. Figure 8.3b illustrates the GMM reconstruction

of the environment by sampling points from the distribution.

8.3 Conclusions

While the results for the GMM approach presented in Section 8.2 cannot be run in real-time on a

single thread, there is promise for a multi-threaded implementation. The distance calculations in

K-Means++, responsibilities in EM, and the correspondence between pairs of mixture components

in the GMM registration are all readily parallelizable. Offloading these calculations to a GPU is

left as future work to enable real-time performance. This chapter demonstrated a real-time viable

method for GMM SLAM for compute-constrained systems by formulating an EM algorithm that

exploits sparsity to significantly reduce GMM calculation time. GMMs are trained from pointcloud
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data, used to estimate pose, and build a map of the environment. A method to close the loop is

presented and the approach is evaluated with real-world data of challenging mine and unstructured

cave environments.
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Chapter 9

Conclusion

This thesis addresses the problem of efficient exploration in subterranean environments with re-

spect to a high-fidelity perceptual model that is compact, encodes occupancy, and is amenable

to local and global pose updates. Gaussian Mixture Models are well-suited to address the chal-

lenges of operating in domains with limited communications, but are computationally intensive to

learn aboard SWaP-constrained micro aerial vehicles. Theoretical limitations have prevented their

use in fundamental perception tasks such as occupancy modeling and real-time pose estimation.

Therefore, this thesis introduces a series of perception techniques to

1. Enable efficient exploration with respect to a high-fidelity, compact perceptual model

2. Enable accurate, real-time local and global pose updates

3. Model occupancy at arbitrary resolution

9.1 Summary of Contributions

Chapters 4 to 8 present perception techniques that achieve these objectives. Thus, the five contri-

butions of this thesis are:

• Information-theoretic Exploration: A real-time, baseline information-theoretic exploration

107
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formulation that selects actions represented on a 3D state space lattices by maximizing the

mutual information between potential sensor observations and the map. (Chapter 4).

• On-Manifold GMM Registration: A distribution to distribution registration method to en-

able computationally efficient, real-time pose estimation from successive sensor observa-

tions. The approach minimizes the squared L2 norm between distributions and considers

all pairs of components. For sensor observations taken far apart from one another, methods

are presented to modify and smooth the cost function to enable robust registration for both

LiDAR and RGB-D sensors. (Chapter 5).

• Arbitrary Resolution Occupancy Modeling using GMMs: An approach to derive occu-

pancy from the perceptual model at arbitrary resolution by Monte Carlo sampling from the

distribution and rayracing through a grid map to the sensor origin. Methods are presented to

select the number of components for a given application and evaluate the occupancy model

reconstruction performance. (Chapter 6).

• Local Occupancy Mapping using GMMs for Exploration: An information-theoretic ex-

ploration approach that leverages local occupancy grid maps derived from GMMs. Spatial

locality is exploited to enable real-time GMM learning through a windowing strategy. Envi-

ronment representation with GMMs yields substantial improvements in memory efficiency

over state-of-the-art techniques. (Chapter 7).

• Simultaneous Localization and Mapping using GMMs: Exploiting spatial locality through

the windowing technique is insufficient to enable accurate pose estimation so a method is

devised to exploit the compact support during the GMM learning phase. By reducing the

number of calculations during learning, a real-time viable method for simultaneous local-

ization and mapping is realized that is amenable to global updates in pose by measuring the

similarity of two distributions via the Cauchy-Schwarz divergence for GMMs. (Chapter 8).
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9.2 Future Work

Several new avenues for future work have opened as a result of this work. While this work pri-

marily develops methods for spatial and geometric information, there is promise for incorporating

additional modalities not just for perceptual modeling, but also to ameliorate pose estimates. Ex-

tending the techniques proposed in this thesis to multi-robot scenarios or human-robot collabora-

tive mapping could significantly increase performance for active perception tasks.
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Appendix A

Rotation Parameterization

To remove the need for the explicit SO(3) constraint, the minimal axis-angle parameterization is

employed that uniquely defines a rotation through the exponential map [10]. In the axis-angle

formulation, a vector u is constructed from a rotation angle α = |u| and a rotation axis ū = α−1u.

Care must be taken with this representation as α approaches π, since the cost-function wraps

around at this point. In the applications discussed in this paper, the rotation angles observed are

typically sufficiently small so as to avoid this issue, but in other applications explicit reasoning

about this edge case may be necessary [35].

The exponential map utilized to reconstruct a rotation matrix from the axis-angle representation

matrix is defined in terms of the matrix exponential as

R(u) = e[u]× , [u]× =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 (A.1)

The compact form of the Jacobian of the exponential map is given by [33] from which the Hessian

113
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is derived as

Rui =
ui[u]× + [u× (I3 −R)ei]×

‖u‖2
R (A.2)

Rujui =

[
δiju+ uiej + [ej]×(I3 −R)ei

− [u]×Rujei

]
×

R

‖u‖2
+Rui

(
RTRuj −

2ujI3
‖u‖2

) (A.3)
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Derivation of Gradient and Hessian

Starting from the cost function F =
∑

m

∑
k fmk, we note that the terms d(a)mk and q(a)mk are derived

from d
(a)
mk = |Σmk|1/2 ∂

∂ξa
|Σ−1mk|1/2, which is the partial derivative of the determinant of the precision

matrix and q(a)mk = −1
2
∂
∂ξa
yTmkΣ

−1
mkymk, which is the partial derivative of the scaled Mahalanobis

distance in the Gaussian.

In order to expand these expressions further, we make use of the determinant identity det(An) =

det(A)n (Eqn. (23) [67]), the determinant derivative ∂det(Xk)
∂X

= kdet(Xk)X−T (Eqn. (58), [67]),

and the matrix chain rule ∂g(U)
∂vi

= Tr

[(
∂g(U)
∂U

)T
∂U
∂vi

]
(Eqn. (137), [67]). Beginning with d(a)mk

d
(a)
mk = |Σmk|1/2Tr

{(
∂

∂Σmk

|Σ−1/2mk |
)T

∂Σmk

∂ξa

}

= −1

2
Tr
{
|Σmk|−1/2Σ−1/2mk (RξaΩkR

T +RΩkR
T
ξa)
}

= −Tr
{

Σ
−1/2
mk RξaΩkR

T
}

For q(a)mk we need the derivative of the matrix inverse ∂A−1(x)
∂x

= −A−1 ∂A
∂x
A−1 (Eqn. (59), [67]).

q
(a)
mk =

∂

∂ξa
yTmkΣ

−1
mkymk
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= −yTmkΣ−1mk
∂ymk
∂ξa

− 1

2
yTmk

∂Σ−1mk
∂ξa

ymk

= −yTmkΣ−1mk
∂ymk
∂ξa

− 1

2
yTmkΣ

−1
mkZaΣ

−1
mkymk

Where j(a)mk = − ∂R
∂ξa
νk − ∂t

∂ξa
and Z(a)

mk = ∂
∂ξa

Σmk = ∂
∂ξa
RΩkR

T = RξaΩkR
T +RΩkR

T
ξa . Using

these identities and noting that the second term in q(a)mk is of the form xT (P + P T )x = 2xTPx,

we arrive at (5.9)

q
(a)
mk = yTmkΣ

−1
mk(Rξaνk + tξa) + ymkΣ

−1
mkRΩkR

T
ξaΣ

−1
mkymk

In order to derive D(ba)
mk , we require the trace identity ∂Tr(XA)

∂X
= AT (Eqn. (100), [67])

D
(ba)
mk = − ∂

∂ξb
Tr
{
ΩkR

TΣ−1mkRξa

}
= −Tr

{(
∂Tr{ΩkR

TΣ−1mkRξa}
∂RTΣ−1mkRξa

)T
∂RTΣ−1mkRξa

∂ξb

}

= −Tr
{
Ωk

(
RT
ξb

Σ−1mkRξa −RΣ−1mkZbΣ
−1
mkRξa

+RΣ−1mkRξbξa

)}

Q
(ba)
mk follows from q

(a)
mk using the same rules employed to derive q(a)mk.
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