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Abstract
Neural networks in recent years have achieved great breakthroughs in natural

language processing. Though powerful, neural networks are often statistically inef-
ficient and require large quantities of labeled data to train. One potential reason is
that natural language has rich latent structure and general purpose neural architec-
tures have difficulty learning underlying patterns from limited data. In this thesis, we
aim to improve the efficiency of neural networks by exploring structural properties
of natural language in designing neural model architectures. We accomplish this by
embedding prior knowledge into the model itself as a type of inductive bias.

In the first half of this thesis, we explore supervised tasks related to natural
language—for example, visual question answering and document classification. We
find in those tasks, the inputs have salient features that provide clues to the answers.
The salient regions of inputs, however, is not directly annotated and cannot be di-
rectly leveraged for training. Moreover, the salient features must be reasoned about
and discovered according to context in a step by step manner. By building a specific
neural network module using iterative attention mechanism, we are able to localize
the most important parts from inputs gradually and use them for prediction. The
resulting systems not only achieve the state-of-the-art results, but also provide inter-
pretations for their predictions.

In the second half of this thesis, we explore several unsupervised modeling tasks
related to nature language—specifically, variational auto-encoders (VAEs) [59] and
generative adversarial networks (GANs) [33]. We find those model designed for
continuous inputs such as images do not perform well with natural languages as in-
puts. The main challenges lie in that the existing neural network modules in VAEs
and GANs are not good at dealing with discrete and sequential inputs. To overcome
the limitations, we designed network modules with input structure taken into con-
sideration. Specifically, we proposed to use dilated CNNs as decoders for VAEs to
control the contextual capacity. For GANs, we proposed to use more structured dis-
criminators to replace the binary classifiers to provide better feedback to generators.
Altogether, we have shown that by modifying architectural properties of component
modules, we can constrain unsupervised learning problems in a way that makes them
more feasible and leads to improved practical results.
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Chapter 1

Introduction

1.1 Motivation

In recent years, neural networks have achieved great breakthroughs in many areas of natural lan-
guage processing (NLP), including language modeling [90], machine translation [110], question
answering [41], dialogues systems [120]. With neural networks, we can nowadays easily build
models that translate between various pairs of languages–though, translation quality is limited
by available training data for each pair. We can also build chat bots that are able to carry on
conversations with humans—albeit only for a short duration before losing credibility. There are
two main factors underlying the success of neural networks: the unprecedented scale of datasets,
as well as unprecedented scale of model. With large scale supervised data, we can train an
extremely large neural network model with billions of parameters. When given sufficient su-
pervised training data, many such models are capable of learning the complicated structures of
natural language and generalize to new examples without over-fitting. For example, the state-
of-the-art neural machine translation models contain dozens of layers and billions of parameters
and are trained with millions of paired sequences. With the unprecedented data and model scale,
minimum human efforts are required to pre-process the natural language as inputs and neural
network models are directly resorted to optimize learning the feature representations.

Though powerful, neural networks are often statistically inefficient and require many labeled
examples to train. For some scenarios, it is very expensive to get large amount of supervised
data. Training neural networks with limited supervised data can induce over-fitting and make
the model generalize poorly on the test set. Further, for many of the most interesting tasks,
fully supervised data simply cannot be collected due to the nature of the problem. Suppose we
would like to build models for chat bots, it is very difficult to get high quality dialogues to train
a model. Human dialogues can be dramatically different in various aspects. It can be of different
types such as greeting, chit-chat, information seeking, debating, question answering and so on.
For each utterance, there are numerous ways to respond to it. It is hard to get large amount of
high quality training data to cover the diverse types of dialogues. Data scarcity problem is also
quite common in other areas such as self-driving cars. It is easy to get human experts driving
experience in normal situations while the data for emergent situations is quite rare. Training
a neural network only on safe traces can be catastrophic. The model is agnostic to emergent
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situations and it is unpredictable what actions the model will take in contingency. Deploying
such models in self-driving cars poses serious safety concerns.

When fully supervised data can be collected, it must be collected in large quantities for
current neural architectures to lead to successful results on NLP tasks. This is due to the inherent
complexity of language. For example, suppose you want to build a system to translate from
German to English. There are many levels of linguistic structure that are relevant for successful
generalization: syntactic correspondence between the two languages, lexical correspondence and
sparser phenomena such as idiomatic expressions. Suppose a system that needs to process and
classify long documents, not only must it be able to process and represent individual sentences,
it must capture how the sequence of sentences in the document compose to define the overall
meaning. A neural network trained with limited examples can hardly capture such patterns in
a way that lets it generalize successful to new data. For limited data scenarios where complex
neural models are applied, over-fitting is a common outcome.

Thesis statement

In this thesis, we aim to overcome some of the statistical efficiency concerns about neural net-
works when applied to NLP data. Specifically, we want to improve the efficiency of neural
networks for NLP with limited training data. We propose to constrain aspects of neural architec-
tures to reflect known structural aspects of various type of natural language data. In particular,
this is accomplished by embedding prior knowledge of data structure into the model itself as a
type of inductive bias. By directly incorporating the structural properties of data into the model,
we bias the model to more easily capture underlying patterns with limited training data. In some
sense, we are trading variance for bias—as long as the constraints we incorporate generalize,
we can reduce variance and learn from less data without hurting performance. The key to this
approach is in the nature of the constraints we add. The goal is to bias the model in the right
direction without making it inflexible.

For example, a common property of language data is that it is hierarchical in nature. Generic
neural models might treat language data as a simple sequence, require complex parameter setting
to capture any sort of generalizable hierarchy. However, as we will show in Chapter 3, it is possi-
ble to add simple attentional structures to such models in order to cause them to treat language as
hierarchical data from the beginning. This is just one example—we will go on to see additional
types of bias that can be added in supervised and unsupervised systems to make learning more
successful.

Incorporating structural properties of natural language into designing neural network models
has several advantages. First, as we will demonstrate in this thesis, it improves the modeling
efficiency of neural networks. The model we designed achieved the state-of-the-art results on a
series of tasks. Since the characteristic of the neural network reflects the structure of data, it is
easier for the models to learn from data and generalize to new examples. Second, incorporating
structural bias into neural networks make predictions more interpretable. Because such models
encode certain assumptions about language structure, their learned parameters can be inspected
and interpreted more easily. We will demonstrate this across several models with structural
attention.

2



1.2 Outline and contributions

Designing the model according to structure of natural language comes with its own challenges.
First of all, we have to figure out what type of structure to model. The type of inductive bias
we will investigate is mainly focused on controlling to flow of information in the model. In
some sense, these are structural bias, rather than low-level bias via manual feature engineering
or lexical constraints. Our goal is for these constraints to be highly generalizable across domains
of linguistic data, while leaving room for flexibility to fit specific aspects of data.

Part I: Supervised Learning Many supervised natural language problems require the model to
learn to identify salient aspects of input text in order to predict the correct output. The salient
regions of inputs, however, is not directly annotated and cannot be directly leveraged for training.
Moreover, in many problems, the salient features must be reasoned and discovered according
context in a step by step manner. By building a specific neural network module using iterative
attention mechanism, we are able to localize the most important parts from inputs gradually and
use them for prediction. The resulting systems not only achieved the state-of-the-art results,
but also provided interpretations for their predictions. This part consists of the following two
chapters:

Stacked Attention Networks We propose a stacked attention model to answer natural language
questions based on a reference image. Previously, a commonly used approach was to extract a
global image feature vector using a convolution neural network (CNN) and encode the corre-
sponding question as a feature vector using a long short-term memory network (LSTM) and then
combine them to infer the answer. Though impressive results have been reported, these models
often ignore an important structure of the data–the correspondence between image object and
entities names in questions. By examining the image QA data sets, we find that it is often that
case that answering a question from an image requires multi-step reasoning–identifying the en-
tities in images and then action based on the question. We propose stacked attention networks
(SANs) that captures of the structure of the input image and question pairs. The SAN first uses
the question vector to query the image vectors in the first attention layer, then combine the ques-
tion vector and the retrieved image vectors to form a refined query vector to query the image
vectors again in the second attention layer. The higher-level attention layer gives a sharper atten-
tion distribution focusing on the regions that are more relevant to the answer. In experiments, we
find our model with structure into consideration improve upon previous baseline by more than 4
percent in accuracy. This chapter is largely based on previous work published in [131].

Hierarchical Attention Networks Recent approaches used deep learning, such as convolutional
neural networks and recurrent neural networks based on long short-term memory (LSTM) to
learn text representations. In this chapter we test the hypothesis that better representations can
be obtained by incorporating knowledge of document structure in the model architecture. The
intuition underlying our model is that not all parts of a document are equally relevant for answer-
ing a query and that determining the relevant sections involves modeling the interactions of the
words, not just their presence in isolation. Our primary contribution is a new neural architecture,
the Hierarchical Attention Network (HAN) that is designed to capture two basic insights about
document structure. First, since documents have a hierarchical structure (words form sentences,
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sentences form a document), we likewise construct a document representation by first building
representations of sentences and then aggregating those into a document representation. Second,
it is observed that different words and sentences in a documents are differentially informative.
We test our model with several large scale documents classification task and find our model out-
performs previous state-of-the-art model by 4 percent. This chapter is largely based on previous
work published in [132].

Part II: Unsupervised Learning We find unsupervised learning models—including variational
auto-encoders (VAEs) [59] and generative adversarial networks (GANs) [33] —designed for con-
tinuous inputs such as images do not perform well with natural languages as inputs. The main
challenges lie in that the existing neural network modules in VAEs and GANs are not good at
dealing with discrete and sequential inputs. One view of these issues is that the unsupervised
learning objectives are under-constrained. Because these models are so complex, many deficient
local optima are available to the learning optimization. Here, we again use targeted architectural
changes in order to bias and constrain the learning problem so that unsupervised learning be-
comes more feasible. Specifically, we proposed to use dilated CNNs as decoders for VAEs to
control the contextual capacity. For GANs, we proposed to use more structured discriminators
to replace the binary classifiers to provide better feedback to generators. The improved models
achieved state-of-the-art results on text modeling and task of unsupervised text style transfer.
This part consists of the following two chapters:

Dilated CNN Decoders for VAEs The obvious choice for decoding architecture for a textual
VAE is an LSTM. However, previous work found that using an LSTM-VAE for text modeling
yields higher perplexity on held-out data than using an LSTM language model. In particular, they
observe that the LSTM decoder in VAE does not make effective use of the latent representation
during training. We hypothesize that the contextual capacity of the decoder plays an important
role in whether VAEs effectively condition on the latent representation when trained on text data.
We propose the use of a dilated CNN as a decoder in VAE. In the two extremes, depending
on the choice of dilation, the CNN decoder can reproduce a simple MLP using a bags of words
representation of text, or can reproduce the long-range dependence of recurrent architectures (like
an LSTM) by conditioning on the entire history. Thus, by choosing a dilated CNN as the decoder,
we are able to conduct experiments where we vary contextual capacity, finding a sweet spot
where the decoder can accurately model text but does not yet overpower the latent representation.
We conduct experiments on both language modeling and semi-supervised classification and find
our carefully chosen decoder architecture output perform vanilla RNN decoder. This chapter is
largely based on previous work published in [133].

Language Model Discriminator for GANs In adversarial training, a binary discriminator is
used to evaluate whether a generated sentence is real or fake. However, in practice, the error
signal from a binary classifier is sometimes insufficient to train the generator to produce fluent
language, and optimization can be unstable as a result of the adversarial training step. We propose
to use an implicitly trained language model as a new type of discriminator, replacing the more
conventional binary classifier. The language model calculates a sentence’s likelihood, which de-
composes into a product of token-level conditional probabilities. We find empirically that when
using the language model as a structured discriminator, it is possible to eliminate adversarial
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training steps that use negative samples—a critical part of traditional adversarial training. We
show that our approach, which uses only a language model as the discriminator, outperforms
a broad set of state-of-the-art approaches on the three tasks. This chapter is largely based on
previous work published in [134].
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Part I

Structural Bias for Supervised Learning
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Chapter 2

Stacked Attention Networks

2.1 Overview

In this chapter, we propose an attention model to answer natural language questions based on a
reference image. Most of the recently proposed image QA models are based on neural networks
[4, 29, 85, 86, 98]. A commonly used approach was to extract a global image feature vector
using a convolution neural network (CNN) [72] and encode the corresponding question as a
feature vector using a long short-term memory network (LSTM) [42] and then combine them to
infer the answer. Though impressive results have been reported, these models often fail to give
precise answers when such answers are related to a set of fine-grained regions in an image.

By examining the image QA data sets, we find that it is often that case that answering a
question from an image requires multi-step reasoning. Take the question and image in Fig. 2.1
as an example. There are several objects in the image: bicycles, window, street,
baskets and dogs. To answer the question what are sitting in the basket on
a bicycle, we need to first locate those objects (e.g. basket, bicycle) and concepts
(e.g., sitting in) referred in the question, then gradually rule out irrelevant objects, and
finally pinpoint to the region that are most indicative to infer the answer (i.e., dogs in the exam-
ple).

In this chapter, we propose stacked attention networks (SANs) that allow multi-step reason-
ing for image QA. SANs can be viewed as an extension of the attention mechanism that has
been successfully applied in image captioning [127] and machine translation [8]. The overall
architecture of SAN is illustrated in Fig. 2.1a. The SAN consists of three major components:
(1) the image model, which uses a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model, which uses a CNN or a LSTM to
extract a semantic vector of the question and (3) the stacked attention model, which locates, via
multi-step reasoning, the image regions that are relevant to the question for answer prediction.
As illustrated in Fig. 2.1a, the SAN first uses the question vector to query the image vectors in
the first visual attention layer, then combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors again in the second attention layer. The
higher-level attention layer gives a sharper attention distribution focusing on the regions that are
more relevant to the answer. Finally, we combine the image features from the highest attention
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Question:
What are sitting 
in the basket on 

a bicycle?

CNN/
LSTM

Softm
ax

dogs
Answer:

CNN

+
Query

+

Attention layer 1 Attention layer 2

feature vectors of different
parts of image

(a) Stacked Attention Network for Image QA

Original Image First Attention Layer Second Attention Layer

(b) Visualization of the learned multiple attention layers. The
stacked attention network first focuses on all referred concepts,
e.g., bicycle, basket and objects in the basket (dogs) in
the first attention layer and then further narrows down the focus
in the second layer and finds out the answer dog.

Figure 2.1: Model architecture and visualization of stacked attention networks

layer with the last query vector to predict the answer.
We perform comprehensive evaluations of our novel stacked attention networks on four im-

age QA benchmarks, demonstrating that the proposed multiple-layer SAN outperforms previous
state-of-the-art approaches by a substantial margin. We also perform a detailed analysis where
we visualize the outputs of different attention layers of the SAN and demonstrate the process that
the SAN takes multiple steps to progressively focus the attention on the relevant visual clues that
lead to the answer.

2.2 Related Work

Image QA is closely related to image captioning [18, 26, 55, 63, 88, 122, 127]. In [122], the
system first extracted a high level image feature vector from GoogleNet and then fed it into a
LSTM to generate captions. The method proposed in [127] went one step further to use an at-
tention mechanism in the caption generation process. Different from [122, 127], the approach
proposed in [26] first used a CNN to detect words given the images, then used a maximum en-
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tropy language model to generate a list of caption candidates, and finally used a deep multimodal
similarity model (DMSM) to re-rank the candidates. Instead of using a RNN or a LSTM, the
DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is given and the task is to learn the
relevant visual and text representation to infer the answer. In order to facilitate the research of
image QA, several data sets have been constructed in [4, 29, 86, 98] either through automatic
generation based on image caption data or by human labeling of questions and answers given
images. Among them, the image QA data set in [98] is generated based on the COCO caption
data set. Given a sentence that describes an image, the authors first used a parser to parse the
sentence, then replaced the key word in the sentence using question words and the key word
became the answer. [29] created an image QA data set through human labeling. The initial
version was in Chinese and then was translated to English. [4] also created an image QA data
set through human labeling. They collected questions and answers not only for real images, but
also for abstract scenes.

Several image QA models were proposed in the literature. [85] used semantic parsers and
image segmentation methods to predict answers based on images and questions. [29, 86] both
used encoder-decoder framework to generate answers given images and questions. They first
used a LSTM to encoder the images and questions and then used another LSTM to decode the
answers. They both fed the image feature to every LSTM cell. [98] proposed several neural
network based models, including the encoder-decoder based models that use single direction
LSTMs and bi-direction LSTMs, respectively. However, the authors found the concatenation
of image features and bag of words features worked the best. [4] first encoded questions with
LSTMs and then combined question vectors with image vectors by element wise multiplication.
[82] used a CNN for question modeling and used convolution operations to combine question
vectors and image feature vectors. We compare the SAN with these models in Sec. 3.4.

2.3 Stacked Attention Networks (SANs)
The overall architecture of the SAN is shown in Fig. 2.1a. We describe the three major com-
ponents of SAN in this section: the image model, the question model, and the stacked attention
model.

2.3.1 Image Model
The image model uses a CNN [65, 106, 112] to get the representation of images. Specifically,
the VGGNet [106] is used to extract the image feature map fI from a raw image I:

fI = CNNvgg(I). (2.1)

Unlike previous studies [29, 82, 98] that use features from the last inner product layer, we choose
the features fI from the last pooling layer, which retains spatial information of the original im-
ages. We first rescale the images to be 448× 448 pixels, and then take the features from the last
pooling layer, which therefore have a dimension of 512× 14× 14, as shown in Fig. 2.2. 14× 14
is the number of regions in the image and 512 is the dimension of the feature vector for each
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Figure 2.2: CNN based image model for SANs

region. Accordingly, each feature vector in fI corresponds to a 32× 32 pixel region of the input
images. We denote by fi, i ∈ [0, 195] the feature vector of each image region.

Then for modeling convenience, we use a single layer perceptron to transform each fea-
ture vector to a new vector that has the same dimension as the question vector (described in
Sec. 2.3.2):

vI = tanh(WIfI + bI), (2.2)

where vI is a matrix and its i-th column vi is the visual feature vector for the region indexed by i.

2.3.2 Question Model
As [26, 105, 110] show that LSTMs and CNNs are powerful to capture the semantic meaning of
texts, we explore both models for question representations in this study.

LSTM based question model

LSTM LSTM LSTM…

what are bicycle

We We We

Question:

…

…

Figure 2.3: LSTM based question model for SANs

The essential structure of a LSTM unit is a memory cell ct which reserves the state of a
sequence. At each step, the LSTM unit takes one input vector (word vector in our case) xt and
updates the memory cell ct, then output a hidden state ht. The update process uses the gate
mechanism. A forget gate ft controls how much information from past state ct−1 is preserved.
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An input gate it controls how much the current input xt updates the memory cell. An output
gate ot controls how much information of the memory is fed to the output as hidden state. The
detailed update process is as follows:

it =σ(Wxixt +Whiht−1 + bi), (2.3)
ft =σ(Wxfxt +Whfht−1 + bf ), (2.4)
ot =σ(Wxoxt +Whoht−1 + bo), (2.5)
ct =ftct−1 + it tanh(Wxcxt +Whcht−1 + bc), (2.6)
ht =ot tanh(ct), (2.7)

where i, f, o, c are input gate, forget gate, output gate and memory cell, respectively. The weight
matrix and bias are parameters of the LSTM and are learned on training data.

Given the question q = [q1, ...qT ], where qt is the one hot vector representation of word at
position t, we first embed the words to a vector space through an embedding matrix xt = Weqt.
Then for every time step, we feed the embedding vector of words in the question to LSTM:

xt =Weqt, t ∈ {1, 2, ...T}, (2.8)
ht =LSTM(xt), t ∈ {1, 2, ...T}. (2.9)

As shown in Fig. 2.3, the question what are sitting in the basket on a bicycle
is fed into the LSTM. Then the final hidden layer is taken as the representation vector for the
question, i.e., vQ = hT .

CNN based question model

unigram
bigram

trigram
max pooling 

over time

convolution

w
hat

are

sitting

bicycle
…Question:

embedding

Figure 2.4: CNN based question model for SANs

In this study, we also explore to use a CNN similar to [56] for question representation. Similar
to the LSTM-based question model, we first embed words to vectors xt = Weqt and get the
question vector by concatenating the word vectors:

x1:T = [x1, x2, ..., xT ]. (2.10)
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Then we apply convolution operation on the word embedding vectors. We use three convolution
filters, which have the size of one (unigram), two (bigram) and three (trigram) respectively. The
t-th convolution output using window size c is given by:

hc,t = tanh(Wcxt:t+c−1 + bc). (2.11)

The filter is applied only to window t : t + c − 1 of size c. Wc is the convolution weight and bc
is the bias. The feature map of the filter with convolution size c is given by:

hc = [hc,1, hc,2, ..., hc,T−c+1]. (2.12)

Then we apply max-pooling over the feature maps of the convolution size c and denote it as

h̃c = max
t

[hc,1, hc,2, ..., hc,T−c+1]. (2.13)

The max-pooling over these vectors is a coordinate-wise max operation. For convolution feature
maps of different sizes c = 1, 2, 3, we concatenate them to form the feature representation vector
of the whole question sentence:

h = [h̃1, h̃2, h̃3], (2.14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in Fig. 4.1b. The convolutional and pooling

layers for unigrams, bigrams and trigrams are drawn in red, blue and orange, respectively.

2.3.3 Stacked Attention Networks
Given the image feature matrix vI and the question feature vector vQ, SAN predicts the answer
via multi-step reasoning.

In many cases, an answer only related to a small region of an image. For example, in
Fig. 2.1b, although there are multiple objects in the image: bicycles, baskets, window,
street and dogs and the answer to the question only relates to dogs. Therefore, using the
one global image feature vector to predict the answer could lead to sub-optimal results due to
the noises introduced from regions that are irrelevant to the potential answer. Instead, reasoning
via multiple attention layers progressively, the SAN are able to gradually filter out noises and
pinpoint the regions that are highly relevant to the answer.

Given the image feature matrix vI and the question vector vQ, we first feed them through
a single layer neural network and then a softmax function to generate the attention distribution
over the regions of the image:

hA =tanh(WI,AvI ⊕ (WQ,AvQ + bA)), (2.15)
pI =softmax(WPhA + bP ), (2.16)

where vI ∈ Rd×m, d is the image representation dimension and m is the number of image
regions, vQ ∈ Rd is a d dimensional vector. Suppose WI,A,WQ,A ∈ Rk×d and WP ∈ R1×k,
then pI ∈ Rm is an m dimensional vector, which corresponds to the attention probability of each
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image region given vQ. Note that we denote by ⊕ the addition of a matrix and a vector. Since
WI,AvI ∈ Rk×m and both WQ,AvQ, bA ∈ Rk are vectors, the addition between a matrix and a
vector is performed by adding each column of the matrix by the vector.

Based on the attention distribution, we calculate the weighted sum of the image vectors, each
from a region, ṽi as in Eq. 2.17. We then combine ṽi with the question vector vQ to form a
refined query vector u as in Eq. 2.18. u is regarded as a refined query since it encodes both
question information and the visual information that is relevant to the potential answer:

ṽI =
∑
i

pivi, (2.17)

u =ṽI + vQ. (2.18)

Compared to models that simply combine the question vector and the global image vec-
tor, attention models construct a more informative u since higher weights are put on the visual
regions that are more relevant to the question. However, for complicated questions, a single at-
tention layer is not sufficient to locate the correct region for answer prediction. For example,
the question in Fig. 2.1 what are sitting in the basket on a bicycle refers
to some subtle relationships among multiple objects in an image. Therefore, we iterate the above
query-attention process using multiple attention layers, each extracting more fine-grained visual
attention information for answer prediction. Formally, the SANs take the following formula: for
the k-th attention layer, we compute:

hkA =tanh(W k
I,AvI ⊕ (W k

Q,Au
k−1 + bkA)), (2.19)

pkI =softmax(W k
Ph

k
A + bkP ). (2.20)

where u0 is initialized to be vQ. Then the aggregated image feature vector is added to the previous
query vector to form a new query vector:

ṽkI =
∑
i

pki vi, (2.21)

uk =ṽkI + uk−1. (2.22)

That is, in every layer, we use the combined question and image vector uk−1 as the query for
the image. After the image region is picked, we update the new query vector as uk = ṽkI + uk−1.
We repeat this K times and then use the final uK to infer the answer:

pans =softmax(Wuu
K + bu). (2.23)

Fig. 2.1b illustrates the reasoning process by an example. In the first attention layer, the
model identifies roughly the area that are relevant to basket, bicycle, and sitting in.
In the second attention layer, the model focuses more sharply on the region that corresponds to
the answer dogs. More examples can be found in Sec. 3.4.
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2.4 Experiments

2.4.1 Data sets
We evaluate the SAN on four image QA data sets.

DAQUAR-ALL is proposed in [85]. There are 6, 795 training questions and 5, 673 test ques-
tions. These questions are generated on 795 and 654 images respectively. The images are mainly
indoor scenes. The questions are categorized into three types including Object, Color and Num-
ber. Most of the answers are single words. Following the setting in [82, 86, 98], we exclude data
samples that have multiple words answers. The remaining data set covers 90% of the original
data set.

DAQUAR-REDUCED is a reduced version of DAQUAR-ALL. There are 3, 876 training
samples and 297 test samples. This data set is constrained to 37 object categories and uses only
25 test images. The single word answers data set covers 98% of the original data set.

COCO-QA is proposed in [98]. Based on the Microsoft COCO data set, the authors first
parse the caption of the image with an off-the-shelf parser, then replace the key components in
the caption with question words for form questions. There are 78736 training samples and 38948
test samples in the data set. These questions are based on 8, 000 and 4, 000 images respectively.
There are four types of questions including Object, Number, Color, and Location. Each type
takes 70%, 7%, 17%, and 6% of the whole data set, respectively. All answers in this data set are
single word.

VQA is created through human labeling [4]. The data set uses images in the COCO image
caption data set [78]. Unlike the other data sets, for each image, there are three questions and for
each question, there are ten answers labeled by human annotators. There are 248, 349 training
questions and 121, 512 validation questions in the data set. Following [4], we use the top 1000
most frequent answer as possible outputs and this set of answers covers 82.67% of all answers.
We first studied the performance of the proposed model on the validation set. Following [26], we
split the validation data set into two halves, val1 and val2. We use training set and val1 to train
and validate and val2 to test locally. The results on the val2 set are reported in Table. 2.6. We
also evaluated the best model, SAN(2, CNN), on the standard test server as provided in [4] and
report the results in Table. 2.5.

2.4.2 Baselines and evaluation methods
We compare our models with a set of baselines proposed recently [4, 82, 85, 86, 98] on image
QA. Since the results of these baselines are reported on different data sets in different literature,
we present the experimental results on different data sets in different tables.

For all four data sets, we formulate image QA as a classification problem since most of
answers are single words. We evaluate the model using classification accuracy as reported
in [4, 86, 98]. The reference models also report the Wu-Palmer similarity (WUPS) measure
[124]. The WUPS measure calculates the similarity between two words based on their longest
common subsequence in the taxonomy tree. We can set a threshold for WUPS, if the similar-
ity is less than the threshold, then it is zeroed out. Following the reference models, we use
WUPS0.9 and WUPS0.0 as evaluation metrics besides the classification accuracy. The evalua-
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tion on the VQA data set is different from other three data sets, since for each question there are
ten answer labels that may or may not be the same. We follow [4] to use the following metric:
min(# human labels that match that answer/3, 1), which basically gives full credit to the answer
when three or more of the ten human labels match the answer and gives partial credit if there are
less matches.

2.4.3 Model configuration and training
For the image model, we use the VGGNet to extract features. When training the SAN, the
parameter set of the CNN of the VGGNet is fixed. We take the output from the last pooling layer
as our image feature which has a dimension of 512× 14× 14 .

For DAQUAR and COCO-QA, we set the word embedding dimension and LSTM’s dimen-
sion to be 500 in the question model. For the CNN based question model, we set the unigram,
bigram and trigram convolution filter size to be 128, 256, 256 respectively. The combination of
these filters makes the question vector size to be 640. For VQA dataset, since it is larger than
other data sets, we double the model size of the LSTM and the CNN to accommodate the large
data set and the large number of classes. In evaluation, we experiment with SAN with one and
two attention layers. We find that using three or more attention layers does not further improve
the performance.

In our experiments1, all the models are trained using stochastic gradient descent with mo-
mentum 0.9. The batch size is fixed to be 100. The best learning rate is picked using grid search.
Gradient clipping technique [34] and dropout [108] are used.

2.4.4 Results and analysis
The experimental results on DAQUAR-ALL, DAQUAR-REDUCED, COCO-QA and VQA are
presented in Table. 2.1 to 2.6 respectively. Our model names explain their settings: SAN is short
for the proposed stacked attention networks, the value 1 or 2 in the brackets refer to using one or
two attention layers, respectively. The keyword LSTM or CNN refers to the question model that
SANs use.

The experimental results in Table. 2.1 to 2.6 show that the two-layer SAN gives the best re-
sults across all data sets and the two kinds of question models in the SAN, LSTM and CNN, give
similar performance. For example, on DAQUAR-ALL (Table. 2.1), both of the proposed two-
layer SANs outperform the two best baselines, the IMG-CNN in [82] and the Ask-Your-Neuron
in [86], by 5.9% and 7.6% absolute in accuracy, respectively. Similar range of improvements are
observed in metrics of WUPS0.9 and WUPS0.0. We also observe significant improvements on
DAQUAR-REDUCED (Table. 2.2), i.e., our SAN(2, LSTM) outperforms the IMG-CNN [82],
the 2-VIS+BLSTM [98], the Ask-Your-Neurons approach [86] and the Multi-World [85] by
6.5%, 10.4%, 11.5% and 33.5% absolute in accuracy, respectively. On the larger COCO-QA data
set, the proposed two-layer SANs significantly outperform the best baselines from [82] (IMG-
CNN) and [98] (IMG+BOW and 2-VIS+BLSTM) by 5.1% and 6.6% in accuracy (Table. 2.3).
Table. 2.5 summarizes the performance of various models on VQA, which is the largest among

1Our code is publicly available at https://github.com/zcyang/imageqa-san
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Methods Accuracy WUPS0.9 WUPS0.0

Multi-World: [85]
Multi-World 7.9 11.9 38.8

Ask-Your-Neurons: [86]
Language 19.1 25.2 65.1
Language + IMG 21.7 28.0 65.0
CNN: [82]
IMG-CNN 23.4 29.6 63.0

Ours:
SAN(1, LSTM) 28.9 34.7 68.5
SAN(1, CNN) 29.2 35.1 67.8
SAN(2, LSTM) 29.3 34.9 68.1
SAN(2, CNN) 29.3 35.1 68.6

Human :[85]
Human 50.2 50.8 67.3

Table 2.1: DAQUAR-ALL results, in percentage

the four data sets. The overall results show that our best model, SAN(2, CNN), outperforms the
LSTM Q+I model, the best baseline from [4], by 4.8% absolute. The superior performance of
the SANs across all four benchmarks demonstrate the effectiveness of using multiple layers of
attention.

In order to study the strength and weakness of the SAN in detail, we report performance at
the question-type level on the two large data sets, COCO-QA and VQA, in Table. 2.4 and 2.5,
respectively. We observe that on COCO-QA, compared to the two best baselines, IMG+BOW
and 2-VIS+BLSTM, out best model SAN(2, CNN) improves 7.2% in the question type of Color,
followed by 6.1% in Objects, 5.7% in Location and 4.2% in Number. We observe similar trend
of improvements on VQA. As shown in Table. 2.5, compared to the best baseline LSTM Q+I,
the biggest improvement of SAN(2, CNN) is in the Other type, 9.7%, followed by the 1.4% im-
provement in Number and 0.4% improvement in Yes/No. Note that the Other type in VQA refers
to questions that usually have the form of “what color, what kind, what are, what type, where”
etc., which are similar to question types of Color, Objects and Location in COCO-QA. The VQA
data set has a special Yes/No type of questions. The SAN only improves the performance of this
type of questions slightly. This could due to that the answer for a Yes/No question is very ques-
tion dependent, so better modeling of the visual information does not provide much additional
gains. This also confirms the similar observation reported in [4], e.g., using additional image
information only slightly improves the performance in Yes/No, as shown in Table. 2.5, Q+I vs
Question, and LSTM Q+I vs LSTM Q.

Our results demonstrate clearly the positive impact of using multiple attention layers. In all
four data sets, two-layer SANs always perform better than the one-layer SAN. Specifically, on
COCO-QA, on average the two-layer SANs outperform the one-layer SANs by 2.2% in the type
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Methods Accuracy WUPS0.9 WUPS0.0

Multi-World: [85]
Multi-World 12.7 18.2 51.5

Ask-Your-Neurons: [86]
Language 31.7 38.4 80.1
Language + IMG 34.7 40.8 79.5

VSE: [98]
GUESS 18.2 29.7 77.6
BOW 32.7 43.2 81.3
LSTM 32.7 43.5 81.6
IMG+BOW 34.2 45.0 81.5
VIS+LSTM 34.4 46.1 82.2
2-VIS+BLSTM 35.8 46.8 82.2

CNN: [82]
IMG-CNN 39.7 44.9 83.1

Ours:
SAN(1, LSTM) 45.2 49.6 84.0
SAN(1, CNN) 45.2 49.6 83.7
SAN(2, LSTM) 46.2 51.2 85.1
SAN(2, CNN) 45.5 50.2 83.6

Human :[85]
Human 60.3 61.0 79.0

Table 2.2: DAQUAR-REDUCED results, in percentage
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Methods Accuracy WUPS0.9 WUPS0.0

VSE: [98]
GUESS 6.7 17.4 73.4
BOW 37.5 48.5 82.8
LSTM 36.8 47.6 82.3
IMG 43.0 58.6 85.9
IMG+BOW 55.9 66.8 89.0
VIS+LSTM 53.3 63.9 88.3
2-VIS+BLSTM 55.1 65.3 88.6

CNN: [82]
IMG-CNN 55.0 65.4 88.6
CNN 32.7 44.3 80.9

Ours:
SAN(1, LSTM) 59.6 69.6 90.1
SAN(1, CNN) 60.7 70.6 90.5
SAN(2, LSTM) 61.0 71.0 90.7
SAN(2, CNN) 61.6 71.6 90.9

Table 2.3: COCO-QA results, in percentage

Methods Objects Number Color Location

VSE: [98]
GUESS 2.1 35.8 13.9 8.9
BOW 37.3 43.6 34.8 40.8
LSTM 35.9 45.3 36.3 38.4
IMG 40.4 29.3 42.7 44.2
IMG+BOW 58.7 44.1 52.0 49.4
VIS+LSTM 56.5 46.1 45.9 45.5
2-VIS+BLSTM 58.2 44.8 49.5 47.3

Ours:
SAN(1, LSTM) 62.5 49.0 54.8 51.6
SAN(1, CNN) 63.6 48.7 56.7 52.7
SAN(2, LSTM) 63.6 49.8 57.9 52.8
SAN(2, CNN) 64.5 48.6 57.9 54.0

Table 2.4: COCO-QA accuracy per class, in percentage
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test-dev test-std

Methods All Yes/No Number Other All

VQA: [4]
Question 48.1 75.7 36.7 27.1 -
Image 28.1 64.0 0.4 3.8 -
Q+I 52.6 75.6 33.7 37.4 -
LSTM Q 48.8 78.2 35.7 26.6 -
LSTM Q+I 53.7 78.9 35.2 36.4 54.1

SAN(2, CNN) 58.7 79.3 36.6 46.1 58.9

Table 2.5: VQA results on the official server, in percentage

Methods All
Yes/No

36%
Number

10%
Other
54%

SAN(1, LSTM) 56.6 78.1 41.6 44.8
SAN(1, CNN) 56.9 78.8 42.0 45.0
SAN(2, LSTM) 57.3 78.3 42.2 45.9
SAN(2, CNN) 57.6 78.6 41.8 46.4

Table 2.6: VQA results on our partition, in percentage

of Color, followed by 1.3% and 1.0% in the Location and Objects categories, and then 0.4% in
Number. This aligns to the order of the improvements of the SAN over baselines. Similar trends
are observed on VQA (Table. 2.6), e.g., the two-layer SAN improve over the one-layer SAN by
1.4% for the Other type of question, followed by 0.2% improvement for Number, and flat for
Yes/No.

2.4.5 Visualization of attention layers
In this section, we present analysis to demonstrate that using multiple attention layers to perform
multi-step reasoning leads to more fine-grained attention layer-by-layer in locating the regions
that are relevant to the potential answers. We do so by visualizing the outputs of the attention
layers of a sample set of images from the COCO-QA test set. Note the attention probability
distribution is of size 14 × 14 and the original image is 448 × 448, we up-sample the attention
probability distribution and apply a Gaussian filter to make it the same size as the original image.

Fig. 2.5 presents six examples. More examples are presented in the appendix. They cover
types as broad as Object, Numbers, Color and Location. For each example, the three images
from left to right are the original image, the output of the first attention layer and the output
of the second attention layer, respectively. The bright part of the image is the detected atten-
tion. Across all those examples, we see that in the first attention layer, the attention is scattered
on many objects in the image, largely corresponds to the objects and concepts referred in the
question, whereas in the second layer, the attention is far more focused on the regions that lead
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to the correct answer. For example, consider the question what is the color of the
horns, which asks the color of the horn on the woman’s head in Fig. 2.5(f). In the output of the
first attention layer, the model first recognizes a woman in the image. In the output of the second
attention layer, the attention is focused on the head of the woman, which leads to the answer of
the question: the color of the horn is red.

2.4.6 Errors analysis
We randomly sample 100 images from the COCO-QA test set that the SAN make mistakes.
We group the errors into four categories: (i) the SANs focus the attention on the wrong regions
(22%), e.g., the example in Fig. 2.6(a); (ii) the SANs focus on the right region but predict a wrong
answer (42%), e.g., the examples in Fig. 2.6(b)(c)(d); (iii) the answer is ambiguous, the SANs
give answers that are different from labels, but might be acceptable (31%). E.g., in Fig. 2.6(e),
the answer label is pot, but out model predicts vase, which is also visually reasonable; (iv) the
labels are clearly wrong (5%). E.g., in Fig. 2.6(f), our model gives the correct answer trains
while the label cars is wrong.

2.5 Recent development
Since its publication, this work has attracted a lot of attention and been frequently cited and
expanded upon. These works are divided into two main categories. The first category of works
embedded more prior knowledge to design the attention models. [81] improved upon our work
by using attention both on the image and question. [125] used dynamic memory network for this
task, in which a RNN was used to model the iterative attention steps. [142] added Conditional
Random Field over the attention maps as regularization to ensure attention maps in different
layers are different. The other category of work used knowledge from other data and model
sources. For example, [3] used semantic parsing to get the tree structure of the question. They
then defined operations based on parsing tree results to build modular network for each question
and then executed the network on the image input. Similarly, [2] used an object detection model
to segment the objects from the images. They then applied our model on the object outputs and
found significant improvement.
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Figure 2.5: Visualization of two attention layers

Figure 2.6: Examples of mistakes
21



Chapter 3

Hierarchical Attention Networks

3.1 Overview

The idea from previous chapter can be generalized to many other supervised tasks, such as docu-
ment classification. Documents are quite long with very rich semantic structure. However, there
are some key sentences or words that deliver the main meaning of the document. The key parts
have to be discovered through reasoning according to the document context. To achieve that goal,
we propose an attention model for document classification in this chapter. We build a model with
attention mechanism that can automatically extract the most relevant words and sentences out of
documents.

Traditional approaches of text classification represent documents with sparse lexical features,
such as n-grams, and then use a linear model or kernel methods on this representation [51, 123].
More recent approaches used deep learning, such as convolutional neural networks [10] and
recurrent neural networks based on long short-term memory (LSTM) [42] to learn text represen-
tations.

pork belly = delicious . || scallops? || I don’t even like scallops, and

these were a-m-a-z-i-n-g . || fun and tasty cocktails. || next time I in

Phoenix, I will go back here. || Highly recommend.

Figure 3.1: A simple example review from Yelp 2013 that consists of five sentences, delimited
by period, question mark. The first and third sentence delivers stronger meaning and inside, the
word delicious, a-m-a-z-i-n-g contributes the most in defining sentiment of the two sentences.

Although neural-network–based approaches to text classification have been quite effective
[52, 56, 115, 139], in this chapter we test the hypothesis that better representations can be ob-
tained by incorporating knowledge of document structure in the model architecture. The intuition
underlying our model is that not all parts of a document are equally relevant for answering a query
and that determining the relevant sections involves modeling the interactions of the words, not
just their presence in isolation.
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Our primary contribution is a new neural architecture (§3.3), the Hierarchical Attention Net-
work (HAN) that is designed to capture two basic insights about document structure. First, since
documents have a hierarchical structure (words form sentences, sentences form a document),
we likewise construct a document representation by first building representations of sentences
and then aggregating those into a document representation. Second, it is observed that different
words and sentences in a documents are differentially informative. Moreover, the importance
of words and sentences are highly context dependent, i.e. the same word or sentence may be
differentially important in different context (§3.4.5). To include sensitivity to this fact, our model
includes two levels of attention mechanisms [8, 127] — one at the word level and one at the
sentence level — that let the model to pay more or less attention to individual words and sen-
tences when constructing the representation of the document. To illustrate, consider the example
in Fig. 3.1, which is a short Yelp review where the task is to predict the rating on a scale from
1–5. Intuitively, the first and third sentence have stronger information in assisting the prediction
of the rating; within these sentences, the word delicious, a-m-a-z-i-n-g contributes
more in implying the positive attitude contained in this review. Attention serves two benefits:
not only does it often result in better performance, but it also provides insight into which words
and sentences contribute to the classification decision which can be of value in applications and
analysis [30, 105].

The key difference to previous work is that our system uses context to discover when a se-
quence of tokens is relevant rather than simply filtering for (sequences of) tokens, taken out of
context. To evaluate the performance of our model in comparison to other common classification
architectures, we look at six data sets (§3.4). Our model outperforms previous approaches by a
significant margin.

3.2 Related Work
[56] use neural networks for text classification. The architecture is a direct application of CNNs,
as used in computer vision [72], albeit with NLP interpretations. [52] explores the case of di-
rectly using a high-dimensional one hot vector as input. They find that it performs well. Un-
like word level modelings, [139] apply a character-level CNN for text classification and achieve
competitive results. [107] use recursive neural networks for text classification. [113] explore the
structure of a sentence and use a tree-structured LSTMs for classification. There are also some
works that combine LSTM and CNN structure to for sentence classification [67, 141]. [115]
use hierarchical structure in sentiment classification. They first use a CNN or LSTM to get a
sentence vector and then a bi-directional gated recurrent neural network to compose the sentence
vectors to get a document vectors. There are some other works that use hierarchical structure in
sequence generation [73] and language modeling [77].

The attention mechanism was proposed by [8] in machine translation. The encoder decoder
framework is used and an attention mechanism is used to select the reference words in original
language for words in foreign language before translation. [127] uses the attention mechanism in
image caption generation to select the relevant image regions when generating words in the cap-
tions. Further uses of the attention mechanism include parsing [121], natural language question
answering [41, 66, 109], and image question answering [130]. Unlike these works, we explore a
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hierarchical attention mechanism (to the best of our knowledge this is the first such instance).

3.3 Hierarchical Attention Networks
The overall architecture of the Hierarchical Attention Network (HAN) is shown in Fig. 3.2.
It consists of several parts: a word sequence encoder, a word-level attention layer, a sentence
encoder and a sentence-level attention layer. We describe the details of different components in
the following sections.

3.3.1 GRU-based sequence encoder

The GRU [8] uses a gating mechanism to track the state of sequences without using separate
memory cells. There are two types of gates: the reset gate rt and the update gate zt. They
together control how information is updated to the state. At time t, the GRU computes the new
state as

ht = (1− zt)� ht−1 + zt � h̃t. (3.1)

This is a linear interpolation between the previous state ht−1 and the current new state h̃t com-
puted with new sequence information. The gate zt decides how much past information is kept
and how much new information is added. zt is updated as:

zt = σ(Wzxt + Uzht−1 + bz), (3.2)

where xt is the sequence vector at time t. The candidate state h̃t is computed in a way similar to
a traditional recurrent neural network (RNN):

h̃t = tanh(Whxt + rt � (Uhht−1) + bh), (3.3)

Here rt is the reset gate which controls how much the past state contributes to the candidate state.
If rt is zero, then it forgets the previous state. The reset gate is updated as follows:

rt = σ(Wrxt + Urht−1 + br) (3.4)

3.3.2 Hierarchical Attention

We focus on document-level classification in this work. Assume that a document has L sentences
si and each sentence contains Ti words. wit with t ∈ [1, T ] represents the words in the ith
sentence. The proposed model projects the raw document into a vector representation, on which
we build a classifier to perform document classification. In the following, we will present how
we build the document level vector progressively from word vectors by using the hierarchical
structure.
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Word Encoder Given a sentence with words wit, t ∈ [0, T ], we first embed the words to
vectors through an embedding matrix We, xij = Wewij . We use a bidirectional GRU [8] to get
annotations of words by summarizing information from both directions for words, and therefore
incorporate the contextual information in the annotation. The bidirectional GRU contains the
forward GRU

−→
f which reads the sentence si from wi1 to wiT and a backward GRU

←−
f which

reads from wiT to wi1:

xit =Wewit, t ∈ [1, T ],
−→
h it =

−−−→
GRU(xit), t ∈ [1, T ],

←−
h it =

←−−−
GRU(xit), t ∈ [T, 1].

We obtain an annotation for a given word wit by concatenating the forward hidden state
−→
h it

and backward hidden state
←−
h it, i.e., hit = [

−→
h it,
←−
h it], which summarizes the information of the

whole sentence centered around wit.
Note that we directly use word embeddings. For a more complete model we could use a GRU

to get word vectors directly from characters, similarly to [79]. We omitted this for simplicity.

Word Attention Not all words contribute equally to the representation of the sentence mean-
ing. Hence, we introduce attention mechanism to extract such words that are important to the
meaning of the sentence and aggregate the representation of those informative words to form a
sentence vector. Specifically,

uit =tanh(Wwhit + bw) (3.5)

αit =
exp(u>ituw)∑
t exp(u

>
ituw)

(3.6)

si =
∑
t

αithit. (3.7)

That is, we first feed the word annotation hit through a one-layer MLP to get uit as a hidden
representation of hit, then we measure the importance of the word as the similarity of uit with
a word level context vector uw and get a normalized importance weight αit through a softmax
function. After that, we compute the sentence vector si (we abuse the notation here) as a weighted
sum of the word annotations based on the weights. The context vector uw can be seen as a high
level representation of a fixed query “what is the informative word” over the words like that used
in memory networks [66, 109]. The word context vector uw is randomly initialized and jointly
learned during the training process.

Sentence Encoder Given the sentence vectors si, we can get a document vector in a similar
way. We use a bidirectional GRU to encode the sentences:

−→
h i =

−−−→
GRU(si), i ∈ [1, L],

←−
h i =

←−−−
GRU(si), t ∈ [L, 1].
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We concatenate
−→
h i and

←−
h j to get an annotation of sentence i, i.e., hi = [

−→
h i,
←−
h i]. hi summarizes

the neighbor sentences around sentence i but still focus on sentence i.

Sentence Attention To reward sentences that are clues to correctly classify a document, we
again use attention mechanism and introduce a sentence level context vector us and use the
vector to measure the importance of the sentences. This yields

ui =tanh(Wshi + bs), (3.8)

αi =
exp(u>i us)∑
i exp(u

>
i us)

, (3.9)

v =
∑
i

αihi, (3.10)

where v is the document vector that summarizes all the information of sentences in a document.
Similarly, the sentence level context vector can be randomly initialized and jointly learned during
the training process.

3.3.3 Document Classification
The document vector v is a high level representation of the document and can be used as features
for document classification:

p = softmax(Wcv + bc). (3.11)

We use the negative log likelihood of the correct labels as training loss:

L = −
∑
d

log pdj, (3.12)

where j is the label of document d.

3.4 Experiments

3.4.1 Data sets
We evaluate the effectiveness of our model on six large scale document classification data sets.
These data sets can be categorized into two types of document classification tasks: sentiment
estimation and topic classification. The statistics of the data sets are summarized in Table 4.1.
We use 80% of the data for training, 10% for validation, and the remaining 10% for test, unless
stated otherwise.
Yelp reviews are obtained from the Yelp Dataset Challenge in 2013, 2014 and 2015 [115]. There

are five levels of ratings from 1 to 5 (higher is better).
IMDB reviews are obtained from [23]. The ratings range from 1 to 10.
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Data set classes documents average #s max #s average #w max #w vocabulary

Yelp 2013 5 335,018 8.9 151 151.6 1184 211,245
Yelp 2014 5 1,125,457 9.2 151 156.9 1199 476,191
Yelp 2015 5 1,569,264 9.0 151 151.9 1199 612,636
IMDB review 10 348,415 14.0 148 325.6 2802 115,831
Yahoo Answer 10 1,450,000 6.4 515 108.4 4002 1,554,607
Amazon review 5 3,650,000 4.9 99 91.9 596 1,919,336

Table 3.1: Data statistics: #s denotes the number of sentences (average and maximum per docu-
ment), #w denotes the number of words (average and maximum per document).

Yahoo answers are obtained from [139]. This is a topic classification task with 10 classes:
Society & Culture, Science & Mathematics, Health, Education & Reference, Computers &
Internet, Sports, Business & Finance, Entertainment & Music, Family & Relationships and
Politics & Government. The document we use includes question titles, question contexts
and best answers. There are 140,000 training samples and 5000 testing samples. The
original data set does not provide validation samples. We randomly select 10% of the
training samples as validation.

Amazon reviews are obtained from [139]. The ratings are from 1 to 5. 3,000,000 reviews are
used for training and 650,000 reviews for testing. Similarly, we use 10% of the training
samples as validation.

3.4.2 Baselines
We compare HAN with several baseline methods, including traditional approaches such as linear
methods, SVMs and paragraph embeddings using neural networks, LSTMs, word-based CNN,
character-based CNN, and Conv-GRNN, LSTM-GRNN. These baseline methods and results are
reported in [115, 139].

Linear methods

Linear methods [139] use the constructed statistics as features. A linear classifier based on
multinomial logistic regression is used to classify the documents using the features.
BOW and BOW+TFIDF The 50,000 most frequent words from the training set are selected

and the count of each word is used features. Bow+TFIDF, as implied by the name, uses
the TFIDF of counts as features.

n-grams and n-grams+TFIDF used the most frequent 500,000 n-grams (up to 5-grams).
Bag-of-means The average word2vec embedding [91] is used as feature set.

SVMs

SVMs-based methods are reported in [115], including SVM+Unigrams, Bigrams, Text Fea-
tures, AverageSG, SSWE. In detail, Unigrams and Bigrams uses bag-of-unigrams and bag-of-
bigrams as features respectively.
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Text Features are constructed according to [62], including word and character n-grams, senti-
ment lexicon features etc.

AverageSG constructs 200-dimensional word vectors using word2vec and the average word
embeddings of each document are used.

SSWE uses sentiment specific word embeddings according to [114].

Neural Network methods

The neural network based methods are reported in [115] and [139].

CNN-word Word based CNN models like that of [56] are used.
CNN-char Character level CNN models are reported in [139].
LSTM takes the whole document as a single sequence and the average of the hidden states of

all words is used as feature for classification.
Conv-GRNN and LSTM-GRNN were proposed by [115]. They also explore the hierarchical

structure: a CNN or LSTM provides a sentence vector, and then a gated recurrent neural
network (GRNN) combines the sentence vectors from a document level vector representa-
tion for classification.

3.4.3 Model configuration and training
We split documents into sentences and tokenize each sentence using Stanford’s CoreNLP [87].
We only retain words appearing more than 5 times in building the vocabulary and replace the
words that appear 5 times with a special UNK token. We obtain the word embedding by training
an unsupervised word2vec [91] model on the training and validation splits and then use the word
embedding to initialize We.

The hyper parameters of the models are tuned on the validation set. In our experiments, we
set the word embedding dimension to be 200 and the GRU dimension to be 50. In this case a
combination of forward and backward GRU gives us 100 dimensions for word/sentence annota-
tion. The word/sentence context vectors also have a dimension of 100, initialized at random.

For training, we use a mini-batch size of 64 and documents of similar length (in terms of
the number of sentences in the documents) are organized to be a batch. We find that length-
adjustment can accelerate training by three times. We use stochastic gradient descent to train all
models with momentum of 0.9. We pick the best learning rate using grid search on the validation
set.

3.4.4 Results and analysis
The experimental results on all data sets are shown in Table 3.2. We refer to our models as HN-
{AVE, MAX, ATT}. Here HN stands for Hierarchical Network, AVE indicates averaging, MAX
indicates max-pooling, and ATT indicates our proposed hierarchical attention model. Results
show that HN-ATT gives the best performance across all data sets.

The improvement is regardless of data sizes. For smaller data sets such as Yelp 2013 and
IMDB, our model outperforms the previous best baseline methods by 3.1% and 4.1% respec-
tively. This finding is consistent across other larger data sets. Our model outperforms previous
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Methods Yelp’13 Yelp’14 Yelp’15 IMDB Yahoo Answer Amazon

Zhang et al., 2015 BoW - - 58.0 - 68.9 54.4
BoW TFIDF - - 59.9 - 71.0 55.3
ngrams - - 56.3 - 68.5 54.3
ngrams TFIDF - - 54.8 - 68.5 52.4
Bag-of-means - - 52.5 - 60.5 44.1

Tang et al., 2015 Majority 35.6 36.1 36.9 17.9 - -
SVM + Unigrams 58.9 60.0 61.1 39.9 - -
SVM + Bigrams 57.6 61.6 62.4 40.9 - -
SVM + TextFeatures 59.8 61.8 62.4 40.5 - -
SVM + AverageSG 54.3 55.7 56.8 31.9 - -
SVM + SSWE 53.5 54.3 55.4 26.2 - -

Zhang et al., 2015 LSTM - - 58.2 - 70.8 59.4
CNN-char - - 62.0 - 71.2 59.6
CNN-word - - 60.5 - 71.2 57.6

Tang et al., 2015 Paragraph Vector 57.7 59.2 60.5 34.1 - -
CNN-word 59.7 61.0 61.5 37.6 - -
Conv-GRNN 63.7 65.5 66.0 42.5 - -
LSTM-GRNN 65.1 67.1 67.6 45.3 - -

This work HN-AVE 67.0 69.3 69.9 47.8 75.2 62.9
HN-MAX 66.9 69.3 70.1 48.2 75.2 62.9
HN-ATT 68.2 70.5 71.0 49.4 75.8 63.6

Table 3.2: Document Classification results, in percentage

best models by 3.2%, 3.4%, 4.6% and 6.0% on Yelp 2014, Yelp 2015, Yahoo Answers and
Amazon Reviews. The improvement also occurs regardless of the type of task: sentiment clas-
sification, which includes Yelp 2013-2014, IMDB, Amazon Reviews and topic classification for
Yahoo Answers.

From Table 3.2 we can see that neural network based methods that do not explore hierarchical
document structure, such as LSTM, CNN-word, CNN-char have little advantage over traditional
methods for large scale (in terms of document size) text classification. E.g. SVM+TextFeatures
gives performance 59.8, 61.8, 62.4, 40.5 for Yelp 2013, 2014, 2015 and IMDB respectively,
while CNN-word has accuracy 59.7, 61.0, 61.5, 37.6 respectively.

Exploring the hierarchical structure only, as in HN-AVE, HN-MAX, can significantly im-
prove over LSTM, CNN-word and CNN-char. For example, our HN-AVE outperforms CNN-
word by 7.3%, 8.8%, 8.5%, 10.2% than CNN-word on Yelp 2013, 2014, 2015 and IMDB respec-
tively. Our model HN-ATT that further utilizes attention mechanism combined with hierarchical
structure improves over previous models (LSTM-GRNN) by 3.1%, 3.4%, 3.5% and 4.1% respec-
tively. More interestingly, in the experiments, HN-AVE is equivalent to using non-informative
global word/sentence context vectors (e.g., if they are all-zero vectors, then the attention weights
in Eq. 3.6 and 3.9 become uniform weights). Compared to HN-AVE, the HN-ATT model gives
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superior performance across the board. This clearly demonstrates the effectiveness of the pro-
posed global word and sentence importance vectors for the HAN.

3.4.5 Context dependent attention weights
If words were inherently important or not important, models without attention mechanism might
work well since the model could automatically assign low weights to irrelevant words and vice
versa. However, the importance of words is highly context dependent. For example, the word
good may appear in a review that has the lowest rating either because users are only happy
with part of the product/service or because they use it in a negation, such as not good. To
verify that our model can capture context dependent word importance, we plot the distribution
of the attention weights of the words good and bad from the test split of Yelp 2013 data set as
shown in Figure 3.3(a) and Figure 3.4(a). We can see that the distribution has a attention weight
assigned to a word from 0 to 1. This indicates that our model captures diverse context and assign
context-dependent weight to the words.

For further illustration, we plot the distribution when conditioned on the ratings of the review.
Subfigures 3.3(b)-(f) in Figure 3.3 and Figure 3.4 correspond to the rating 1-5 respectively. In
particular, Figure 3.3(b) shows that the weight of good concentrates on the low end in the
reviews with rating 1. As the rating increases, so does the weight distribution. This means that
the word good plays a more important role for reviews with higher ratings. We can observe the
converse trend in Figure 3.4 for the word bad. This confirms that our model can capture the
context-dependent word importance.

3.4.6 Visualization of attention
In order to validate that our model is able to select informative sentences and words in a docu-
ment, we visualize the hierarchical attention layers in Figures 3.5 and 3.6 for several documents
from the Yelp 2013 and Yahoo Answers data sets.

Every line is a sentence (sometimes sentences spill over several lines due to their length). Red
denotes the sentence weight and blue denotes the word weight. Due to the hierarchical structure,
we normalize the word weight by the sentence weight to make sure that only important words
in important sentences are emphasized. For visualization purposes we display

√
pspw. The

√
ps

term displays the important words in unimportant sentences to ensure that they are not totally
invisible.

Figure 3.5 shows that our model can select the words carrying strong sentiment like delicious,
amazing, terrible and their corresponding sentences. Sentences containing many words
like cocktails, pasta, entree are disregarded. Note that our model can not only se-
lect words carrying strong sentiment, it can also deal with complex across-sentence context. For
example, there are sentences like i don’t even like scallops in the first document of
Fig. 3.5, if looking purely at the single sentence, we may think this is negative comment. How-
ever, our model looks at the context of this sentence and figures out this is a positive review and
chooses to ignore this sentence.

Our hierarchical attention mechanism also works well for topic classification in the Yahoo
Answer data set. For example, for the left document in Figure 3.6 with label 1, which de-
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Figure 3.3: Attention weight distribution of good. (a) — aggregate distribution on the test split;
(b)-(f) stratified for reviews with ratings 1-5 respectively. We can see that the weight distribution
shifts to higher end as the rating goes higher.
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Figure 3.4: Attention weight distribution of the word bad. The setup is as above: (a) contains
the aggregate distribution, while (b)-(f) contain stratifications to reviews with ratings 1-5 respec-
tively. Contrary to before, the word bad is considered important for poor ratings and less so for
good ones.

notes Science and Mathematics, our model accurately localizes the words zebra, strips,
camouflage, predator and their corresponding sentences. For the right document with
label 4, which denotes Computers and Internet, our model focuses on web, searches,
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browsers and their corresponding sentences. Note that this happens in a multiclass setting,
that is, detection happens before the selection of the topic!

GT: 4 Prediction: 4
pork belly = delicious .
scallops ?
i do n’t .
even .
like .
scallops , and these were

a-m-a-z-i-n-g .
fun and tasty cocktails .
next time i ’m in phoenix , i will

go back here .
highly recommend .

GT: 0 Prediction: 0
terrible value .
ordered pasta entree .
.
$ 16.95 good taste but size was an

appetizer size .
.
no salad , no bread no vegetable .
this was .
our and tasty cocktails .
our second visit .
i will not go back .

Figure 3.5: Documents from Yelp 2013. Label 4 means star 5, label 0 means star 1.
GT: 1 Prediction: 1

why does zebras have stripes ?
what is the purpose or those stripes

?
who do they serve the zebras in the

wild life ?
this provides camouflage - predator

vision is such that it is usually

difficult for them to see complex
patterns

GT: 4 Prediction: 4
how do i get rid of all the old

web searches i have on my web

browser ?
i want to clean up my web browser

go to tools > options .
then click “ delete history ” and “

clean up temporary internet files . ”

Figure 3.6: Documents from Yahoo Answers. Label 1 denotes Science and Mathematics and
label 4 denotes Computers and Internet.

3.5 Recent development
Our work is the first to apply attention mechanism on text classification problem. Since the
publication of our work, it has attracted a lot of attention and the idea of the model has been
adopted and applied in many other applications. For example, [116] applied our framework to
aspect level sentiment classification. [93] generalized our model to the multilingual setting. [14]
introduced a context vector for each user and then used user-product attention to predict the
rating from each user. [96] applied the idea of our model to time series predictions. The authors
from [137] adopted our idea to the task of referring expression comprehension.
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Part II

Structural Bias for Unsupervised Learning
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Chapter 4

Dilated CNN Decoders for VAEs

4.1 Overview
In this part, we are going to investigate generative models for text modeling, showing better
model priors and learning objective makes generative models work better. Generative models
play an important role in NLP, both in their use as language models and because of their ability
to effectively learn from unlabeled data. By parameterzing generative models using neural nets,
recent work has proposed model classes that are particularly expressive and can pontentially
model a wide range of phenomena in language and other modalities. When designing generative
models for NLP, there are some challenges due to its discrete and sequential structure. Hence the
progress of the two classes of generative models—Variational Auto-Encoder (VAE) and Gener-
ative Adversarial Network (GAN)—on NLP is very limited. In this part of the thesis, we are
going to investigate these problems and propose new models to overcome these difficulties.

In this chapter, we focus on a specific instance of this class: the variational autoencoder1

(VAE) [59]. The generative story behind the VAE (to be described in detail in the next section) is
simple: First, a continuous latent representation is sampled from a multivariate Gaussian. Then,
an output is sampled from a distribution parameterized by a neural decoder, conditioned on the
latent representation. The latent representation (treated as a latent variable during training) is
intended to give the model more expressive capacity when compared with simpler neural gen-
erative models–for example, conditional language models. The choice of decoding architecture
and final output distribution, which connect the latent representation to output, depends on the
kind of data being modeled. The VAE owes its name to an accompanying variational technique
[59] that has been successfully used to train such models on image data [35, 101, 128].

The application of VAEs to text data has been far less successful [11, 89]. The obvious choice
for decoding architecture for a textual VAE is an LSTM, a typical workhorse in NLP. However,
Bowman et al. [11] found that using an LSTM-VAE for text modeling yields higher perplexity
on held-out data than using an LSTM language model. In particular, they observe that the LSTM
decoder in VAE does not make effective use of the latent representation during training and,
as a result, VAE collapses into a simple language model. Related work [70, 89, 92] has used
simpler decoders that model text as a bag of words. Their results indicate better use of latent

1The name VAE is often used to refer to both a model class and an associated inference procedure.
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representations, but their decoders cannot effectively model longer-range dependencies in text
and thus underperform in terms of final perplexity.

Motivated by these observations, we hypothesize that the contextual capacity of the decoder
plays an important role in whether VAEs effectively condition on the latent representation when
trained on text data. We propose the use of a dilated CNN as a decoder in VAE, inspired by
the recent success of using CNNs for audio, image and language modeling [53, 117, 118]. In
contrast with prior work where extremely large CNNs are used, we exploit the dilated CNN for
its flexibility in varying the amount of conditioning context. In the two extremes, depending on
the choice of dilation, the CNN decoder can reproduce a simple MLP using a bags of words
representation of text, or can reproduce the long-range dependence of recurrent architectures
(like an LSTM) by conditioning on the entire history. Thus, by choosing a dilated CNN as
the decoder, we are able to conduct experiments where we vary contextual capacity, finding a
sweet spot where the decoder can accurately model text but does not yet overpower the latent
representation.

We demonstrate that when this trade-off is correctly managed, textual VAEs can perform
substantially better than simple LSTM language models, a finding consistent with recent image
modeling experiments using variational lossy autoencoders [17]. We go on to show that VAEs
with carefully selected CNN decoders can be quite effective for semi-supervised classification
and unsupervised clustering, outperforming several strong baselines (from [21]) on both text
categorization and sentiment analysis.

In this chapter, we empirically evaluate several dilation architectures with different capacities,
finding that reduced contextual capacity leads to stronger reliance on latent representations. By
picking a decoder with suitable contextual capacity, we find our VAE performs better than LSTM
language models on two data sets. We also explore the use of dilated CNN VAEs for semi-
supervised classification and find they perform better than strong baselines from [21]. Finally,
we verify that the same framework can be used effectively for unsupervised clustering.

4.2 Related work
Variational inference via the re-parameterization trick was initially proposed by [59, 100] and
since then, VAE has been widely adopted as generative model for images [35, 36, 45, 101, 128].

Our work is in line with previous works on combining variational inferences with text mod-
eling [11, 43, 89, 103, 138]. [11] is the first work to combine VAE with language model and they
use LSTM as the decoder and find some negative results. On the other hand, [89] models text as
bag of words, though improvement has been found, the model can not be used to generate text.
Our work fills the gaps between them. [103, 138] applies variational inference to dialogue mod-
eling and machine translation and found some improvement in terms of generated text quality,
but no language modeling results are reported. [9, 20, 27] embedded variational units in every
step of a RNN, which is different from our model in using global latent variables to learn high
level features.

Our use of CNN as decoder is inspired by recent success of PixelCNN model for images [118],
WaveNet for audios [117], Video Pixel Network for video modeling [54] and ByteNet for ma-
chine translation [53]. But in contrast to those works showing using a very deep architecture
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leads to better performance, CNN as decoder is used in our model to control the contextual
capacity, leading to better performance.

Our work is closed related the recently proposed variational lossy autoencoder [17] which is
used to predict image pixels. They find that conditioning on a smaller window of a pixels leads
to better results with VAE, which is similar to our finding. Much [17, 61, 99] has been done
to come up more powerful prior/posterior distribution representations with techniques such as
normalizing flows. We treat this as one of our future works. This work is largely orthogonal and
could be potentially combined with a more effective choice of decoder to yield additional gains.

There is much previous work exploring unsupervised sentence encodings, for example skip-
thought vectors [64], paragraph vectors [71], and sequence autoencoders [21]. [21] applies a
pretrained model to semi-supervised classification and find significant gains, we use this as the
baseline for our semi-supervised VAE.

4.3 Model
In this section, we begin by providing background on the use of variational autoencoders for
language modeling. Then we introduce the dilated CNN architecture that we will use as a new
decoder for VAE in experiments. Finally, we describe the generalization of VAE that we will use
to conduct experiments on semi-supervised classification.

4.3.1 Background on Variational Autoencoders
Neural language models [90] typically generate each token xt conditioned on the entire history
of previously generated tokens:

p(x) =
∏
t

p(xt|x1, x2, ..., xt−1). (4.1)

State-of-the-art language models often parametrize these conditional probabilities using RNNs,
which compute an evolving hidden state over the text which is used to predict each xt. This
approach, though effective in modeling text, does not explicitly model variance in higher-level
properties of entire utterances (e.g. topic or style) and thus can have difficulty with heterogeneous
datasets.

Bowman et al. [11] propose a different approach to generative text modeling inspired by
related work on vision [59]. Instead of directly modeling the joint probability p(x) as in Equa-
tion 4.1, we specify a generative process for which p(x) is a marginal distribution. Specifically,
we first generate a continuous latent vector representation z from a multivariate Gaussian prior
pθ(z), and then generate the text sequence x from a conditional distribution pθ(x|z) parame-
terized using a neural net (often called the generation model or decoder). Because this model
incorporates a latent variable that modulates the entire generation of each whole utterance, it may
be better able to capture high-level sources of variation in the data. Specifically, in contrast with
Equation 4.1, this generating distribution conditions on latent vector representation z:

pθ(x|z) =
∏
t

pθ(xt|x1, x2, ..., xt−1, z). (4.2)
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To estimate model parameters θ we would ideally like to maximize the marginal probability
pθ(x) =

∫
pθ(z)pθ(x|z)dz. However, computing this marginal is intractable for many decoder

choices. Thus, the following variational lower bound is often used as an objective [59]:

log pθ(x) = log

∫
pθ(z)pθ(x|z)dz

≥ Eqφ(z|x)[log pθ(x|z)]− KL(qφ(z|x)||pθ(z)).

Here, qφ(z|x) is an approximation to the true posterior (often called the recognition model or
encoder) and is parameterized by φ. Like the decoder, we have a choice of neural architecture to
parameterize the encoder. However, unlike the decoder, the choice of encoder does not change
the model class – it only changes the variational approximation used in training, which is a
function of both the model parameters θ and the approximation parameters φ. Training seeks to
optimize these parameters jointly using stochastic gradient ascent. A final wrinkle of the training
procedure involves a stochastic approximation to the gradients of the variational objective (which
is itself intractable). We omit details here, noting only that the final distribution of the posterior
approximation qφ(z|x) is typically assumed to be Gaussian so that a re-parametrization trick can
be used, and refer readers to [59].

4.3.2 Training Collapse with Textual VAEs

Together, this combination of generative model and variational inference procedure are often re-
ferred to as a variational autoencoder (VAE). We can also view the VAE as a regularized version
of the autoencoder. Note, however, that while VAEs are valid probabilistic models whose likeli-
hood can be evaluated on held-out data, autoencoders are not valid models. If only the first term
of the VAE variational bound Eqφ(z|x)[log pθ(x|z)] is used as an objective, the variance of the
posterior probability qφ(z|x) will become small and the training procedure reduces to an autoen-
coder. It is the KL-divergence term, KL(qφ(z|x)||pθ(z)), that discourages the VAE memorizing
each x as a single latent point.

While the KL term is critical for training VAEs, historically, instability on text has been
evidenced by the KL term becoming vanishingly small during training, as observed by Bowman
et al. [11]. When the training procedure collapses in this way, the result is an encoder that has
duplicated the Gaussian prior (instead of a more interesting posterior), a decoder that completely
ignores the latent variable z, and a learned model that reduces to a simpler language model.
We hypothesize that this collapse condition is related to the contextual capacity of the decoder
architecture. The choice encoder and decoder depends on the type of data. For images, these are
typically MLPs or CNNs. LSTMs have been used for text, but have resulted in training collapse
as discussed above [11]. Here, we propose to use a dilated CNN as the decoder instead. In one
extreme, when the effective contextual width of a CNN is very large, it resembles the behavior
of LSTM. When the width is very small, it behaves like a bag-of-words model. The architectural
flexibility of dilated CNNs allows us to change the contextual capacity and conduct experiments
to validate our hypothesis: decoder contextual capacity and effective use of encoding information
are directly related. We next describe the details of our decoder.
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(a) VAE training graph using a dilated CNN decoder.
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(b) Digram of dilated CNN decoder.

Figure 4.1: Our training and model architectures for textual VAE using a dilated CNN decoder.

4.3.3 Dilated Convolutional Decoders
The typical approach to using CNNs used for text generation [53] is similar to that used for
images [40, 65], but with the convolution applied in one dimension. We take this approach here
in defining our decoder.

One dimensional convolution: For a CNN to serve as a decoder for text, generation of xt
must only condition on past tokens x<t. Applying the traditional convolution will break this
assumption and use tokens x≥t as inputs to predict xt. In our decoder, we avoid this by simply
shifting the input by several slots [118]. With a convolution with filter size of k and using n
layers, our effective filter size (the number of past tokens to condition to in predicting xt) would
be (k − 1)× n+ 1. Hence, the filter size would grow linearly with the depth of the network.

Dilation: Dilated convolution [135] was introduced to greatly increase the effective receptive
field size without increasing the computational cost. With dilation d, the convolution is applied
so that d − 1 inputs are skipped each step. Causal convolution can be seen a special case with
d = 1. With dilation, the effective receptive size grows exponentially with network depth. In
Figure 4.1b, we show dilation of sizes of 1 and 2 in the first and second layer, respectively.
Suppose the dilation size in the i-th layer is di and we use the same filter size k in all layers, then
the effective filter size is (k − 1)

∑
i di + 1. The dilations are typically set to double every layer
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+

conv

conv

Figure 4.2: Residual connection for dilated CNN decoders.

di+1 = 2di, so the effective receptive field size can grow exponentially. Hence, the contextual
capacity of a CNN can be controlled across a greater range by manipulating the filter size, dilation
size and network depth. We use this approach in experiments.

Residual connection: We use residual connection [40] in the decoder to speed up convergence
and enable training of deeper models. We use a residual block (shown to the right) similar to that
of [53]. We use three convolutional layers with filter size 1 × 1, 1 × k, 1 × 1, respectively, and
ReLU activation between convolutional layers.

Overall architecture: Our VAE architecture is shown in Figure 4.1a. We use LSTM as the
encoder to get the posterior probability q(z|x), which we assume to be diagonal Gaussian. We
parametrize the mean µ and variance σ with LSTM output. We sample z from q(z|x), the decoder
is conditioned on the sample by concatenating z with every word embedding of the decoder input.

4.3.4 Semi-supervised VAE
In addition to conducting language modeling experiments, we will also conduct experiments on
semi-supervised classification of text using our proposed decoder. In this section, we briefly
review semi-supervised VAEs of [60] that incorporate discrete labels as additional variables.
Given the labeled set (x, y) ∼ DL and the unlabeled set x ∼ DU , [60] proposed a model whose
latent representation contains continuous vector z and discrete label y:

p(x,y, z) = p(y)p(z)p(x|y, z). (4.3)

The semi-supervised VAE fits a discriminative network q(y|x), an inference network q(z|x,y)
and a generative network p(x|y, z) jointly as part of optimizing a variational lower bound similar
that of basic VAE. For labeled data (x,y), this bound is:

log p(x,y) ≥Eq(z|x,y)[log p(x|y, z)]
− KL(q(z|x,y)||p(z)) + log p(y)

=L(x,y) + log p(y).
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For unlabeled data x, the label is treated as a latent variable, yielding:

log p(x) ≥U(x)

=Eq(y|x)
[
Eq(z|x,y)[log p(x|y, z)]

− KL(q(z|x,y)||p(z)) + log p(y)− log q(y|x)
]

=
∑
y

q(y|x)L(x,y)− KL(q(y|x)||p(y)).

Combining the labeled and unlabeled data terms, we have the overall objective as:

J =E(x,y)∼DL [L(x,y)] + Ex∼DU [U(x)]

+ αE(x,y)∼DL [log q(y|x)],

where α controls the trade off between generative and discriminative terms.

Gumbel-softmax: Jang et al. [50], Maddison et al. [83] propose a continuous approximation to
sampling from a categorical distribution. Let u be a categorical distribution with probabilities
π1, π2, ..., πc. Samples from u can be approximated using:

yi =
exp((log(πi) + gi)/τ)∑c
j=1 exp((log(πj) + gj)/τ)

, (4.4)

where gi follows Gumbel(0, 1). The approximation is accurate when τ → 0 and smooth when
τ > 0. In experiments, we use Gumbel-Softmax to approximate the samples from p(y|x) to
reduce the computational cost. As a result, we can directly back propagate the gradients of U(x)
to the discriminator network. We anneal τ so that sample variance is small when training starts
and then gradually decrease τ .

Unsupervised clustering: In this section we adapt the same framework for unsupervised
clustering. We directly minimize the objective U(x), which is consisted of two parts: recon-
struction loss and KL regularization on q(y|x). The first part encourages the model to assign x
to label y such that the reconstruction loss is low. We find that the model can easily get stuck in
two local optimum: the KL term is very small and q(y|x) is close to uniform distribution or the
KL term is very large and all samples collapse to one class. In order to make the model more
robust, we modify the KL term by:

KLy = max(γ,KL(q(y|x)|p(y)). (4.5)

That is, we only minimize the KL term when it is large enough.

4.4 Experiments

4.4.1 Data sets
Since we would like to investigate VAEs for language modeling and semi-supervised classifi-
cation, the data sets should be suitable for both purposes. We use two large scale document

41



classification data sets: Yahoo Answer and Yelp15 review, representing topic classification and
sentiment classification data sets respectively [115, 132, 139]. The original data sets contain
millions of samples, of which we sample 100k as training and 10k as validation and test from
the respective partitions. The detailed statistics of both data sets are in Table 4.1. Yahoo Answer
contains 10 topics including Society & Culture, Science & Mathematics etc. Yelp15 contains 5
level of rating, with higher rating better.

4.4.2 Model configurations and Training details

We use an LSTM as an encoder for VAE and explore LSTMs and CNNs as decoders. For
CNNs, we explore several different configurations. We set the convolution filter size to be 3 and
gradually increase the depth and dilation from [1, 2, 4], [1, 2, 4, 8, 16] to [1, 2, 4, 8, 16, 1, 2, 4,
8, 16]. They represent small, medium and large model and we name them as SCNN, MCNN and
LCNN. We also explore a very large model with dilations [1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4,
8, 16] and name it as VLCNN. The effective filter size are 15, 63, 125 and 187 respectively. We
use the last hidden state of the encoder LSTM and feed it though an MLP to get the mean and
variance of q(z|x), from which we sample z and then feed it through an MLP to get the starting
state of decoder. For the LSTM decoder, we follow [11] to use it as the initial state of LSTM and
feed it to every step of LSTM. For the CNN decoder, we concatenate it with the word embedding
of every decoder input.

The architecture of the Semi-supervised VAE basically follows that of the VAE. We feed the
last hidden state of the encoder LSTM through a two layer MLP then a softmax to get q(y|x). We
use Gumbel-softmax to sample y from q(y|x). We then concatenate y with the last hidden state
of encoder LSTM and feed them throught an MLP to get the mean and variance of q(z|y,x). y
and z together are used as the starting state of the decoder.

We use a vocabulary size of 20k for both data sets and set the word embedding dimension to
be 512. The LSTM dimension is 1024. The number of channels for convolutions in CNN de-
coders is 512 internally and 1024 externally, as shown in Section 4.3.3. We select the dimension
of z from [32, 64]. We find our model is not sensitive to this parameter.

We use Adam [58] to optimize all models and the learning rate is selected from [2e-3, 1e-3,
7.5e-4] and β1 is selected from [0.5, 0.9]. Empirically, we find learning rate 1e-3 and β1 = 0.5 to
perform the best. We select drop out ratio of LSTMs (both encoder and decoder) from [0.3, 0.5].
Following [11], we also use drop word for the LSTM decoder, the drop word ratio is selected
from [0, 0.3, 0.5, 0.7]. For the CNN decoder, we use a drop out ratio of 0.1 at each layer. We do
not use drop word for CNN decoders. We use batch size of 32 and all model are trained for 40
epochs. We start to half the learning rate every 2 epochs after epoch 30. Following [11], we use
KL cost annealing strategy. We set the initial weight of KL cost term to be 0.01 and increase it

Data classes documents average #w vocabulary

Yahoo 10 100k 78 200k
Yelp15 5 100k 96 90k

Table 4.1: Data statistics for experiments of VAEs
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Model Size NLL (KL) PPL

LSTM-LM < i 334.9 66.2
LSTM-VAE∗∗ < i 342.1 (0.0) 72.5
LSTM-VAE∗∗ + init < i 339.2 (0.0) 69.9

SCNN-LM 15 345.3 75.5
SCNN-VAE 15 337.8 (13.3) 68.7
SCNN-VAE + init 15 335.9 (13.9) 67.0

MCNN-LM 63 338.3 69.1
MCNN-VAE 63 336.2 (11.8) 67.3
MCNN-VAE + init 63 334.6 (12.6) 66.0

LCNN-LM 125 335.4 66.6
LCNN-VAE 125 333.9 (6.7) 65.4
LCNN-VAE + init 125 332.1 (10.0) 63.9

VLCNN-LM 187 336.5 67.6
VLCNN-VAE 187 336.5 (0.7) 67.6
VLCNN-VAE + init 187 335.8 (3.8) 67.0

(a) Yahoo

Model Size NLL (KL) PPL

LSTM-LM < i 362.7 42.6
LSTM-VAE∗∗ < i 372.2 (0.3) 47.0
LSTM-VAE∗∗ + init < i 368.9 (4.7) 46.4

SCNN-LM 15 371.2 46.6
SCNN-VAE 15 365.6 (9.4) 43.9
SCNN-VAE + init 15 363.7 (10.3) 43.1

MCNN-LM 63 366.5 44.3
MCNN-VAE 63 363.0 (6.9) 42.8
MCNN-VAE + init 63 360.7 (9.1) 41.8

LCNN-LM 125 363.5 43.0
LCNN-VAE 125 361.9 (6.4) 42.3
LCNN-VAE + init 125 359.1 (7.6) 41.1

VLCNN-LM 187 364.8 43.7
VLCNN-VAE 187 364.3 (2.7) 43.4
VLCNN-VAE + init 187 364.7 (2.2) 43.5

(b) Yelp

Table 4.2: Language modeling results on the test set. ∗∗ is from [11]. We report negative log
likelihood (NLL) and perplexity (PPL) on the test set. The KL component of NLL is given in
parentheses. Size indicates the effective filter size. VAE + init indicates pretraining of only the
encoder using an LSTM LM.

linearly until a given iteration T . We treat T as a hyper parameter and select it from [10k, 40k,
80k].

4.4.3 Language modeling results

The results for language modeling are shown in Table 4.2. We report the negative log likeli-
hood (NLL) and perplexity (PPL) of the test set. For the NLL of VAEs, we decompose it into
reconstruction loss and KL divergence and report the KL divergence in the parenthesis. To better
visualize these results, we plot the results of Yahoo data set (Table 4.2a) in Figure 4.3.

We first look at the LM results for Yahoo data set. As we gradually increase the effective filter
size of CNN from SCNN, MCNN to LCNN, the NLL decreases from 345.3, 338.3 to 335.4. The
NLL of LCNN-LM is very close to the NLL of LSTM-LM 334.9. But VLCNN-LM is a little bit
worse than LCNN-LM, this indicates a little bit of over-fitting.

We can see that LSTM-VAE is worse than LSTM-LM in terms of NLL and the KL term is
nearly zero, which verifies the finding of [11]. When we use CNNs as the decoders for VAEs, we
can see improvement over pure CNN LMs. For SCNN, MCNN and LCNN, the VAE results im-
prove over LM results from 345.3 to 337.8, 338.3 to 336.2, and 335.4 to 333.9 respectively. The
improvement is big for small models and gradually decreases as we increase the decoder model
contextual capacity. When the model is as large as VLCNN, the improvement diminishes and the
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Figure 4.3: NLL decomposition of Table 4.2a. Each group consists of three bars, representing
LM, VAE and VAE+init. For VAE, we decompose the loss into reconstruction loss and KL
divergence, shown in blue and red respectively. We subtract all loss values with 300 for better
visualization.

VAE result is almost the same with LM result. This is also reflected in the KL term, SCNN-VAE
has the largest KL of 13.3 and VLCNN-VAE has the smallest KL of 0.7. When LCNN is used
as the decoder, we obtain an optimal trade off between using contextual information and latent
representation. LCNN-VAE achieves a NLL of 333.9, which improves over LSTM-LM with
NLL of 334.9.

We find that if we initialize the parameters of LSTM encoder with parameters of LSTM
language model, we can improve the VAE results further. This indicates better encoder model
is also a key factor for VAEs to work well. Combined with encoder initialization, LCNN-VAE
improves over LSTM-LM from 334.9 to 332.1 in NLL and from 66.2 to 63.9 in PPL. Similar
results for the sentiment data set are shown in Table 4.2b. LCNN-VAE improves over LSTM-LM
from 362.7 to 359.1 in NLL and from 42.6 to 41.1 in PPL.

Latent representation visualization: In order to visualize the latent representation, we set the
dimension of z to be 2 and plot the mean of posterior probability q(z|x), as shown in Figure 4.4.
We can see distinct different characteristics of topic and sentiment representation. In Figure 4.4a,
we can see that documents of different topics fall into different clusters, while in Figure 4.4b,
documents of different ratings form a continuum, they lie continuously on the x-axis as the review
rating increases.

4.4.4 Semi-supervised VAE results

Motivated by the success of VAEs for language modeling, we continue to explore VAEs for
semi-supervised learning. Following that of [60], we set the number of labeled samples to be
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Model ACCU NLL (KL)

LSTM-VAE-Semi 51.9 345.5 (9.3)
SCNN-VAE-Semi 65.5 335.7 (10.4)
MCNN-VAE-Semi 64.6 332.8 (7.2)
LCNN-VAE-Semi 57.2 331.3 (2.7)

Table 4.3: Semi-supervised VAE ablation results on Yahoo. We report both the NLL and classi-
fication accuracy of the test data. Accuracy is in percentage. Number of labeled samples is fixed
to be 500.

Model 100 500 1000 2000

LSTM 10.7 11.9 14.3 23.1
LA-LSTM [21] 20.8 42.2 50.4 54.7
LM-LSTM [21] 46.9 61.3 63.9 65.6

SCNN-VAE-Semi 55.4 65.6 66.0 65.8
SCNN-VAE-Semi+init 63.8 65.4 66.6 67.4

(a) Yahoo
Model 100 500 1000 2000

LSTM 22.6 25.4 27.9 29.9
LA-LSTM [21] 35.2 46.4 49.8 52.2
LM-LSTM [21] 46.9 54.1 57.2 57.7

SCNN-VAE-Semi 51.4 53.5 55.3 57.4
SCNN-VAE-Semi+init 52.6 57.3 58.9 59.8

(b) Yelp

Table 4.4: Semi-supervised VAE results on the test set, in percentage. LA-LSTM and LM-
LSTM come from [21], they denotes the LSTM is initialized with a sequence autoencoder and
a language model.
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(a) Yahoo (b) Yelp

Figure 4.4: Visualizations of learned latent representations.

100, 500, 1000 and 2000 respectively.

Ablation Study: At first, we would like to explore the effect of different decoders for semi-
supervised classification. We fix the number of labeled samples to be 500 and report both clas-
sification accuracy and NLL of the test set of Yahoo data set in Table. 4.5. We can see that
SCNN-VAE-Semi has the best classification accuracy of 65.5. The accuracy decreases as we
gradually increase the decoder contextual capacity. On the other hand, LCNN-VAE-Semi has
the best NLL result. This classification accuracy and NLL trade off once again verifies our con-
jecture: with small contextual window size, the decoder is forced to use the encoder information,
hence the latent representation is better learned.

Comparing the NLL results of Table 4.5 with that of Table 4.2a, we can see the NLL im-
proves. The NLL of semi-supervised VAE improves over simple VAE from 337.8 to 335.7 for
SCNN, from 336.2 to 332.8 for MCNN, and from 333.9 to 332.8 for LCNN. The improvement
mainly comes from the KL divergence part, this indicates that better latent representations de-
crease the KL divergence, further improving the VAE results.

Comparison with related methods: We compare Semi-supervised VAE with the methods from
[21], which represent the previous state-of-the-art for semi-supervised sequence learning. Dai
and Le [21] pre-trains a classifier by initializing the parameters of a classifier with that of a lan-
guage model or a sequence autoencoder. They find it improves the classification accuracy signif-
icantly. Since SCNN-VAE-Semi performs the best according to Table 4.5, we fix the decoder to
be SCNN in this part. The detailed comparison is in Table 4.4. We can see that semi-supervised
VAE performs better than LM-LSTM and LA-LSTM from [21]. We also initialize the encoder of
the VAE with parameters from LM and find classification accuracy further improves. We also see
the advantage of SCNN-VAE-Semi over LM-LSTM is greater when the number of labeled sam-
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ples is smaller. The advantage decreases as we increase the number of labeled samples. When
we set the number of labeled samples to be 25k, the SCNN-VAE-Semi achieves an accuracy of
70.4, which is similar to LM-LSTM with an accuracy of 70.5. Also, SCNN-VAE-Semi performs
better on Yahoo data set than Yelp data set. For Yelp, SCNN-VAE-Semi is a little bit worse than
LM-LSTM if the number of labeled samples is greater than 100, but becomes better when we
initialize the encoder. Figure 4.4b explains this observation. It shows the documents are coupled
together and are harder to classify. Also, the latent representation contains information other
than sentiment, which may not be useful for classification.

4.4.5 Unsupervised clustering results

Model ACCU

LSTM + GMM 25.8
SCNN-VAE + GMM 56.6
SCNN-VAE + init + GMM 57.0

SCNN-VAE-Unsup + init 59.9

Table 4.5: Unsupervised clustering results for Yahoo data set. We run each model 10 times
and report the best results. LSTM+GMM means we extract the features from LSTM language
model. SCNN-VAE + GMM means we use the mean of q(z|x) as the feature. SCNN-VAE + init
+ GMM means SCNN-VAE is trained with encoder initialization.

1 star the food was good but the service was horrible . took forever to get our food .
we had to ask twice for our check after we got our food . will not return .

2 star the food was good , but the service was terrible . took forever to get someone
to take our drink order . had to ask 3 times to get the check . food was ok ,
nothing to write about .

3 star came here for the first time last night . food was good . service was a little
slow . food was just ok .

4 star food was good , service was a little slow , but the food was pretty good . i had
the grilled chicken sandwich and it was really good . will definitely be back !

5 star food was very good , service was fast and friendly . food was very good as
well . will be back !

Table 4.6: Text generated by conditioning on sentiment label.

We also explored using the same framework for unsupervised clustering. We compare with
the baselines that extract the feature with existing models and then run Gaussian Mixture Model
(GMM) on these features. We find empirically that simply using the features does not perform
well since the features are high dimensional. We run a PCA on these features, the dimension
of PCA is selected from [8, 16, 32]. Since GMM can easily get stuck in poor local optimum,
we run each model ten times and report the best result. We find directly optimizing U(x) does
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not perform well for unsupervised clustering and we need to initialize the encoder with LSTM
language model. The model only works well for Yahoo data set. This is potentially because
Figure 4.4b shows that sentiment latent representations does not fall into clusters. γ in Equa-
tion 4.5 is a sensitive parameter, we select it from the range between 0.5 and 1.5 with an interval
of 0.1. We use the following evaluation protocol [84]: after we finish training, for cluster i, we
find out the validation sample xn from cluster i that has the best q(yi|x) and assign the label of
xn to all samples in cluster i. We then compute the test accuracy based on this assignment. The
detailed results are in Table 4.5. We can see SCNN-VAE-Unsup + init performs better than other
baselines. LSTM+GMM performs very bad probably because the feature dimension is 1024 and
is too high for GMM, even though we already used PCA to reduce the dimension.

Conditional text generation With the semi-supervised VAE, we are able to generate text con-
ditional on the label. Due to space limitation, we only show one example of generated reviews
conditioning on review rating in Table 4.6. For each group of generated text, we fix z and vary
the label y, while picking x via beam search with a beam size of 10.

4.5 Recent development
Following our work, there are many other works that investigated this posterior collapse prob-
lem. [57] pointed out the amortized variational inference (AVI) was the potential problem and
proposed to use AVI to initialize the variational parameters and run stochastic variational to re-
fine them. With the new approach they were able to train a model without posterior collapse.
[24] added a skip connection between the latent variable and the final output to enforce that the
latent variables were used. [126] used von Mises-Fisher (vMF) distribution to replace the tradi-
tional Gaussian distribution and found better performance. [39] found that the encoder network
was not properly trained in variational inference procedure and proposed to update the encoder
network multiple times before updating the decoder network.

48



Society do you think there is a god ?
Science how many orbitals are there in outer space ? how many orbitals are there in the

solar system ?
Health what is the difference between UNK and UNK

Education what is the difference between a computer and a UNK ?
Computers how can i make flash mp3 files ? i want to know how to make a flash video so

i can upload it to my mp3 player ?
Sports who is the best soccer player in the world ?

Business what is the best way to make money online ?
Music who is the best artist of all time ?

Relationships how do i know if a guy likes me ?
Politics what do you think about Iran ?

Society what is the meaning of life ?
Science what is the difference between kinetic energy and heat ?
Health what is the best way to get rid of migraine headaches ?

Education what is the best way to study for a good future ?
Computers what is the best way to install windows xp home edition ?

Sports who do you think will win the super bowl this year ?
Business i would like to know what is the best way to get a good paying job ?

Entertainment what do you think is the best movie ever ?
Relationships what is the best way to get over a broken heart ?

Politics what do you think about the war in iraq ?

Society what would you do if you had a million dollars ?
Mathematics i need help with this math problem !

Health what is the best way to lose weight ?
Education what is the best college in the world ?

Computers what is the best way to get a new computer ?
Sports who should i start ?

Business what is the best way to get a good paying job ?
Entertainment who do you think is the hottest guy in the world ?
Relationships what should i do ?

Politics who do you think will be the next president of the united states ?

Society do you believe in ghosts ?
Science why is the sky blue ?
Health what is the best way to get rid of a cold ?

Reference what do you do when you are bored ?
Computers why ca n’t i watch videos on my computer ? when i try to watch videos on my

computer , i ca n’t get it to work on my computer . can anyone help ?
Sports what do you think about the UNK game ?

Business what is the best way to get a job ?
Entertainment what is your favorite tv show ?
Relationships how do you know when a guy likes you ?

Politics what do you think about this ?

Table 4.7: Text generated by conditioning on topic label.
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1 star the food is good , but the service is terrible . i have been here three times and
each time the service has been horrible . the last time we were there , we had
to wait a long time for our food to come out . when we finally got our food ,
the food was cold and the service was terrible . i will not be back .

2 star this place used to be one of my favorite places to eat in the area .
3 star i ’ve been here a few times , and the food has always been good .
4 star this is one of my favorite places to eat in the phoenix area . the food is good ,

and the service is friendly .
5 star my husband and i love this place . the food is great , the service is great , and

the prices are reasonable .

1 star this is the worst hotel i have ever been to . the room was dirty , the bathroom
was dirty , and the room was filthy .

2 star my husband and i decided to try this place because we had heard good things
about it so we decided to give it a try . the service was good , but the food was
mediocre at best .

3 star we came here on a saturday night with a group of friends . we were seated
right away and the service was great . the food was good , but not great . the
service was good and the atmosphere was nice .

4 star my husband and i came here for brunch on a saturday night . the place was
packed so we were able to sit outside on the patio . we had a great view of the
bellagio fountains and had a great view of the bellagio fountains . we sat at the
bar and had a great view of the bellagio fountains .

5 star my husband and i came here for the first time last night and had a great time !
the food was amazing , the service was great , and the atmosphere was perfect
. we will be back !

1 star this is the worst place i have ever been to . i will never go back .
2 star i was very disappointed with the quality of the food and the service . i will not

be returning .
3 star this was my first time at this location and i have to say it was a good experience

.
4 star this is a great place to grab a bite to eat with friends or family .
5 star i am so happy to have found a great place to get my nails done .

1 star my wife and i have been going to this restaurant for years . the last few times i
have been , the service has been terrible . the last time we were there , we had
to wait a long time for our food to arrive . the food is good , but not worth the
wait .

2 star the food is good , but the service leaves something to be desired .
3 star i have been here a few times . the food is consistently good , and the service is

good .
4 star my wife and i have been here a few times . the food is consistently good , and

the service is friendly .
5 star my husband and i have been coming here for years . the food is consistently

good and the service is always great .

Table 4.8: Text generated by conditioning on sentiment label.
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Chapter 5

Language Model Discriminators for GANs

5.1 Overview

In the previous chapter, we designed specific decoders for VAEs for text modeling according to
the characteristics of language data to avoid the posterior collapse problem. In this chapter, we
are going to investigate another type of generative model–Generative Adversarial Networks [33]–
for text modeling and apply it on the task of unsupervised text style transfer. We first point out
the problems of directly applying the binary classifiers as discriminators on text and then propose
our solution of making the discriminator more structured. Before introducing the model in detail,
we first review some background of unsupervised text style transfer task.

Unsupervised text style transfer requires learning disentangled representations of attributes
(e.g., negative/positive sentiment, plaintext/ciphertext orthography) and underlying content. This
is challenging because the two interact in subtle ways in natural language and it can even be hard
to disentangle them with parallel data. The recent development of deep generative models like
variational auto-encoders (VAEs) [59] and generative adversarial networks(GANs) [33] have
made learning disentangled representations from non-parallel data possible. However, despite
their rapid progress in computer vision—for example, generating photo-realistic images [97],
learning interpretable representations [16], and translating images [143]—their progress on text
has been more limited. For VAEs, the problem of training collapse can severely limit effective-
ness [11, 133], and when applying adversarial training to natural language, the non-differentiability
of discrete word tokens makes generator optimization difficult. Hence, most attempts use RE-
INFORCE [111] to finetune trained models [74, 136] or uses professor forcing [68] to match
hidden states of decoders.

Previous work on unsupervised text style transfer [44, 104] adopts an encoder-decoder ar-
chitecture with style discriminators to learn disentangled representations. The encoder takes a
sentence as an input and outputs a style-independent content representation. The style-dependent
decoder takes the content representation and a style representation and generates the transferred
sentence. [44] use a style classifier to directly enforce the desired style in the generated text.
[104] leverage an adversarial training scheme where a binary CNN-based discriminator is used
to evaluate whether a transferred sentence is real or fake, ensuring that transferred sentences
match real sentences in terms of target style. However, in practice, the error signal from a bi-
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nary classifier is sometimes insufficient to train the generator to produce fluent language, and
optimization can be unstable as a result of the adversarial training step.

We propose to use an implicitly trained language model as a new type of discriminator, re-
placing the more conventional binary classifier. The language model calculates a sentence’s
likelihood, which decomposes into a product of token-level conditional probabilities. In our ap-
proach, rather than training a binary classifier to distinguish real and fake sentences, we train the
language model to assign a high probability to real sentences and train the generator to produce
sentences with high probability under the language model. Because the language model scores
sentences directly using a product of locally normalized probabilities, it may offer more stable
and more useful training signal to the generator. Further, by using a continuous approximation
of discrete sampling under the generator, our model can be trained using back-propagation in an
end-to-end fashion.

We find empirically that when using the language model as a structured discriminator, it is
possible to eliminate adversarial training steps that use negative samples—a critical part of tradi-
tional adversarial training. Language models are implicitly trained to assign a low probability to
negative samples because of its normalization constant. By eliminating the adversarial training
step, we found the training becomes more stable in practice.

To demonstrate the effectiveness of our new approach, we conduct experiments on three
tasks: word substitution decipherment, sentiment modification, and related language translation.
We show that our approach, which uses only a language model as the discriminator, outperforms
a broad set of state-of-the-art approaches on the three tasks.

5.2 Related Work
Non-parallel transfer in natural language: [32, 44, 95, 104] are most relevant to our work. [44]
aim to generate sentences with controllable attributes by learning disentangled representations.
[104] introduce adversarial training to unsupervised text style transfer. They apply discriminators
both on the encoder representation and on the hidden states of the decoders to ensure that they
have the same distribution. These are the two models that we mainly compare with. [95] use
the back-translation technique in their model, which is complementary to our method and can
be integrated into our model to further improve performance. [32] use GAN-based approach
to decipher shift ciphers. [6, 69] propose unsupervised machine translation and use adversarial
training to match the encoder representation of the sentences from different languages. They also
use back-translation to refine their model in an iterative way.

GANs: GANs have been widely explored recently, especially in computer vision [16, 22,
49, 97, 102, 111, 143]. The progress of GANs on text is relatively limited due to the non-
differentiable discrete tokens. Lots of papers [13, 74, 129, 136] use REINFORCE [111] to fine-
tune a trained model to improve the quality of samples. There is also prior work that attempts to
introduce more structured discriminators, for instance, the energy-based GAN (EBGAN) [140]
and RankGAN [76]. Our language model can be seen as a special energy function, but it is
more complicated than the auto-encoder used in [140] since it has a recurrent structure. [46] also
proposes to use structured discriminators in generative models and establishes its the connection
with posterior regularization.
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Computer vision style transfer: Our work is also related to unsupervised style transfer in
computer vision [31, 48]. [31] directly uses the covariance matrix of the CNN features and tries
to align the covariance matrix to transfer the style. [48] proposes adaptive instance normalization
for an arbitrary style of images. [143] uses a cycle-consistency loss to ensure the content of the
images is preserved and can be translated back to original images.

Language model for reranking: Previously, language models are used to incorporate the
knowledge of monolingual data mainly by reranking the sentences generated from a base model
such as [12, 37, 38]. [15, 80] use a language model as training supervision for unsupervised
OCR. Our model is more advanced in using language models as discriminators in distilling the
knowledge of monolingual data to a base model in an end-to-end way.

5.3 Unsupervised Text Style Transfer
We start by reviewing the current approaches for unsupervised text style transfer [44, 104],
and then go on to describe our approach in Section 5.4. Assume we have two text datasets
X = {x(1),x(2), . . . ,x(m)} and Y = {y(1),y(2), . . . ,y(n)} with two different styles vx and vy,
respectively. For example, vx can be the positive sentiment style and vy can be the negative sen-
timent style. The datasets are non-parallel such that the data does not contain pairs of (x(i),y(j))
that describe the same content. The goal of style transfer is to transfer data x with style vx to
style vy and vice versa, i.e., to estimate the conditional distribution p(y|x) and p(x|y). Since
text data is discrete, it is hard to learn the transfer function directly via back-propagation as in
computer vision [143]. Instead, we assume the data is generated conditioned on two disentangled
parts, the style v and the content z1 [44].

Consider the following generative process for each style: 1) the style representation v is
sampled from a prior p(v); 2) the content vector z is sampled from p(z); 3) the sentence x is
generated from the conditional distribution p(x|z,v). This model suggests the following para-
metric form for style transfer where q represents a posterior:

p(y|x) =
∫
zx

p(y|zx,vy)q(zx|x,vx)dzx.

The above equation suggests the use of an encoder-decoder framework for style transfer prob-
lems. We can first encode the sentence x to get its content vector zx, then we switch the style
label from vx to vy. Combining the content vector zx and the style label vy, we can generate a
new sentence x̃ (the transferred sentences are denotes as x̃ and ỹ).

One unsupervised approach is to use the auto-encoder model. We first use an encoder model
E to encode x and y to get the content vectors zx = E(x,vx) and zy = E(y,vy). Then we
use a decoder G to generate sentences conditioned on z and v. The E and G together form an
auto-encoder and the reconstruction loss is:

Lrec(θE, θG) = Ex∼X[− log pG(x|zx,vx)] + Ey∼Y[− log pG(y|zy,vy)],

where vx and vy can be two learnable vectors to represent the label embedding. In order to make
sure that the zx and zy capture the content and we can deliver accurate transfer between the

1We drop the subscript in notations wherever the meaning is clear.
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style by switching the labels, we need to guarantee that zx and zy follow the same distribution.
We can assume p(z) follows a prior distribution and add a KL-divergence regularization on zx,
zy. The model then becomes a VAE. However, previous works [11, 133] found that there is a
training collapse problem with the VAE for text modeling and the posterior distribution of z fails
to capture the content of a sentence.

To better capture the desired styles in the generated sentences, [44] additionally impose a
style classifier on the generated samples, and the decoder G is trained to generate sentences that
maximize the accuracy of the style classifier. Such additional supervision with a discriminative
model is also adopted in [104], though in that work a binary real/fake classifier is instead used
within a conventional adversarial scheme.

Adversarial Training [104] use adversarial training to align the z distributions. Not only do
we want to align the distribution of zx and zy, but also we hope that the transferred sentence x̃
from x to resemble y and vice versa. Several adversarial discriminators are introduced to align
these distributions. Each of the discriminators is a binary classifier distinguishing between real
and fake. Specifically, the discriminator Dz aims to distinguish between zx and zy:

Lz
adv(θE, θDz) = Ex∼X[− logDz(zx)] + Ey∼Y[− log(1−Dz(zy))].

Similarly, Dx distinguish between x and ỹ, yielding an objective Lx
adv as above; and Dy distin-

guish between y and x̃, yielding Ly
adv. Since the samples of x̃ and ỹ are discrete and it is hard to

train the generator in an end-to-end way, professor forcing [68] is used to match the distributions
of the hidden states of decoders. The overall training objective is a min-max game played among
the encoder E/decoder G and the discriminators Dz, Dx, Dy [33]:

min
E,G

max
Dz,Dx,Dy

Lrec − λ(Lz
adv + Lx

adv + Ly
adv)

The model is trained in an alternating manner. In the first step, the loss of the discriminators are
minimize to distinguish between the zx,x,y and zy, x̃, ỹ, respectively; and in the second step
the encoder and decoder are trained to minimize the reconstruction loss while maximizing loss
of the discriminators.

5.4 Language Models as Discriminators
In most past work, a classifier is used as the discriminator to distinguish whether a sentence is
real or fake. We propose instead to use locally-normalized language models as discriminators.
We argue that using an explicit language model with token-level locally normalized probabilities
offers a more direct training signal to the generator. If a transfered sentence does not match the
target style, it will have high perplexity when evaluated by a language model that was trained
on target domain data. Not only does it provide an overall evaluation score for the whole sen-
tence, but a language model can also assign a probability to each token, thus providing more
information on which word is to blame if the overall perplexity is very high.

The overall model architecture is shown in Figure 5.1. Suppose x̃ is the output sentence from
applying style transfer to input sentence x, i.e., x̃ is sampled from pG(x̃|zx,vy) (and similary for
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Figure 5.1: The overall model architecture consists of two parts: reconstruction and transfer.
For transfer, we switch the style label and sample an output sentence from the generator that is
evaluated by a language model.

ỹ and y). Let pLM(x) be the probability of a sentence x evaluate against a language model, then
the discriminator loss becomes:

Lx
LM(θE, θG, θLMx) = Ex∼X[− log pLMx(x))] + γEy∼Y,ỹ∼pG(ỹ|zy,vx)[log pLMx(ỹ)], (5.1)
Ly

LM(θE, θG, θLMy) = Ey∼Y[− log pLMy(y))] + γEx∼X,x̃∼pG(x̃|zx,vy)[log pLMy(x̃)]. (5.2)

Our overall objective becomes:

min
E,G

max
LMx,LMy

Lrec − λ(Lx
LM + Ly

LM) (5.3)

Negative samples: Note that Equation 5.1 and 5.2 differs from traditional ways of training
language models in that we have a term including the negative samples. We train the LM in
an adversarial way by minimizing the loss of LM of real sentences and maximizing the loss
of transferred sentences. However, since the LM is a structured discriminator, we would hope
that a language model trained on the real sentences will automatically assign high perplexity
to sentences not in the target domain, hence negative samples from the generator may not be
necessary. To investigate the necessity of negative samples, we add a weight γ to the loss of
negative samples. The weight γ adjusts the negative sample loss in training the language models.
If γ = 0, we simply train the language model on real sentences and fix its parameters, avoiding
potentially unstable adversarial training steps. We investigate the necessity of using negative
samples in the experiment section.

Training consists of two steps alternatively. In the first step, we train the language models
according to Equation 5.1 and 5.2. In the second step, we minimize the reconstruction loss as
well as the perplexity of generated samples evaluated by the language model. Since x̃ is discrete,
one can use the REINFORCE [111] algorithm to train the generator:

∇θGLy
LM = Ex∼X,x̃∼pG(x̃|zx,vy)[log pLM(x̃)∇θG log pG(x̃|zx,vy)]. (5.4)

However, using a single sample to approximate the expected gradient leads to high variance in
gradient estimates and thus unstable learning.
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Figure 5.2: Continuous approximation of language model loss. The input is a sequence of
probability distributions {p̃x

t }Tt=1 sampled from the generator. At each timestep, we compute
a weighted embedding as input to the language model and get the sequence of output distribu-
tions from the LM as {p̂x

t }Tt=1. The loss is the sum of cross entropies between each pair of p̃x
t

and p̂x
t .

Continuous approximation: Instead, we propose to use a continuous approximation to the
sampling process in training the generator, as demonstrated in Figure 5.2. Instead of feeding a
single sampled word as input to the next timestep of the generator, we use a Gumbel-softmax [50]
distribution as a continuous approximation to sample instead. Let u be a categorical distribution
with probabilities π1, π2, . . . , πc. Samples from u can be approximated using:

pi =
exp((log πi) + gi)/τ∑c
j=1 exp((log πj + gj)/τ)

,

where the gi’s are independent samples from Gumbel(0, 1).
Let the tokens of the transferred sentence be x̃ = {x̃t}Tt=1. Suppose the output of the logit at

timestep t is vx
t , then p̃x

t = Gumbel-softmax(vx
t , τ), where τ is the temperature. When τ → 0,

p̃x
t becomes the one hot representation of token x̃t. Using the continuous approximation, then

the output of the decoder becomes a sequence of probability vectors p̃x = {p̃x
t }Tt=1.

With the continuous approximation of x̃, we can calculate the loss evaluated using a language
model easily, as shown in Figure 5.2. For every step, we feed p̃x

t to the language model of y
(denoted as LMy) using the weighted average of the embedding Wep̃

x
t , then we get the output

from the LMy which is a probability distribution over the vocabulary of the next word p̂x
t+1. The

loss of the current step is the cross entropy loss between p̃x
t+1 and p̂x

t+1: (p̃x
t+1)

ᵀ log p̂x
t+1. Note

that when the decoder output distribution p̃x
t+1 aligns with the language model output distribution

p̂x
t+1, the above loss achieves minimum. By summing the loss over all steps and taking the

gradient, we can use standard back-propagation to train the generator:

∇θGLy
LM ≈ Ex∼X,p̃x∼pG(x̃|zx,vy)[∇θG

T∑
t=1

(p̃x
t )

ᵀ log p̂x
t ]. (5.5)
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The above Equation is a continuous approximation of Equation 5.4 with Gumbel softmax distri-
bution. In experiments, we use a single sample of p̃x to approximate the expectation.

Note that the use of the language model discriminator is a somewhat different in each of the
two types of training update steps because of the continuous approximation. We use discrete
samples from the generators as negative samples in training the language model discriminator
step, while we use a continuous approximation in updating the generator step according to Equa-
tion 5.5.

Overcoming mode collapse: It is known that in adversarial training, the generator can suffer
from mode collapse [5, 45] where the samples from the generator only cover part of the data
distribution. In preliminary experimentation, we found that the language model prefers short
sentences. To overcome this length bias, we use two tricks in our experiments: 1) we normalize
the loss of Equation 5.5 by length and 2) we fix the length of x̃ to be the same of x. We find these
two tricks stabilize the training and avoid generating collapsed overly short outputs.

5.5 Experiments

In order to verify the effectiveness of our model, we experiment on three tasks: word substitu-
tion decipherment, sentiment modification, and related language translation. We mainly com-
pare with the most comparable approach of [104] that uses CNN classifiers as discriminators2.
Note that [104] use three discriminators to align both z and decoder hidden states, while our
model only uses a single language model as a discriminator directly on the output sentences
x̃, ỹ. Moreover, we also compare with a broader set of related work [28, 44, 75] for the tasks
when appropriate. Our proposed model provides substantiate improvements in most of the cases.
We implement our model with the Texar [47] toolbox based on Tensorflow [1].

Model Configurations: Similar model configuration to that of [104] is used for a fair com-
parison. We use one-layer GRU [19] as the encoder and decoder (generator). We set the word
embedding size to be 100 and GRU hidden size to be 700. v is a vector of size 200. For the
language model, we use the same architecture as the decoder. The parameters of the language
model are not shared with parameters of other parts and are trained from scratch. We use a batch
size of 128, which contains 64 samples from X and Y respectively. We use Adam [58] optimiza-
tion algorithm to train both the language model and the auto-encoder and the learning rate is set
to be the same. Hyper-parameters are selected based on the validation set. We use grid search to
pick the best parameters. The learning rate is selected from [1e− 3, 5e− 4, 2e− 4, 1e− 4] and λ,
the weight of language model loss, is selected from [1.0, 0.5, 0.1]. Models are trained for a total
of 20 epochs. We use an annealing strategy to set the temperature of τ of the Gumbel-softmax
approximation. The initial value of τ is set to 1.0 and it decays by half every epoch until reaching
the minimum value of 0.001.

Training Algorithms:

2We use the code from https://github.com/shentianxiao/language-style-transfer.
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Algorithm 1 Unsupervised text style transfer.
Input: Data set of two different styles X, Y.

Parameters: weight λ and γ, temperature τ .
Initialized model parameters θE, θG, θLMx , θLMy .
repeat

Update θLMx and θLMy by minimizing Lx
LM(θLMx) and Ly

LM(θLMy) respectively.
Update θE, θG by minimizing: Lrec − λ(Lx

LM + Ly
LM) using Equation 5.5.

until convergence
Output: A text style transfer model with parameters θE, θG.

Model 20% 40% 60% 80% 100%

Copy 64.3 39.1 14.4 2.5 0
[104]∗ 86.6 77.1 70.1 61.2 50.8

Our results:
LM 89.0 80.0 74.1 62.9 49.3
LM + adv 89.1 79.6 71.8 63.8 44.2

Table 5.1: Decipherment results measured in BLEU. Copy is directly measuring y against x.
LM + adv denotes we use negative samples to train the language model.∗We run the code open-
sourced by the authors to get the results.

5.5.1 Word substitution decipherment
As the first task, we consider the word substitution decipherment task previous explored in the
NLP literature [25]. We can control the amount of change to the original sentences in word sub-
stitution decipherment so as to systematically investigate how well the language model performs
in a task that requires various amount of changes. In word substitution cipher, every token in
the vocabulary is mapped to a cipher token and the tokens in sentences are replaced with cipher
tokens according to the cipher dictionary. The task of decipherment is to recover the original text
without any knowledge of the dictionary.

Data: Following [104], we sample 200K sentences from the Yelp review dataset as plain
text X and sample other 200K sentences and apply word substitution cipher on these sentences
to get Y. We use another 100k parallel sentences as the development and test set respectively.
Sentences of length more than 15 are filtered out. We keep all words that appear more than 5
times in the training set and get a vocabulary size of about 10k. All words appearing less than
5 times are replaced with a ¡unk¿ token. We random sample words from the vocabulary and
replace them with cipher tokens. The amount of ciphered words ranges from 20% to 100%. As
we have ground truth plain text, we can directly measure the BLEU 3 score to evaluate the model.

Results: The results are shown in Table 5.1. We first investigate the effect of using negative
samples in training the language model, as denotes by LM + adv in Table 5.1. We can see that
using adversarial training sometimes improves the results. However, we found empirically that

3BLEU score is measured with multi-bleu.perl.
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Model Accu BLEU PPLX PPLY

[104] 79.5 12.4 50.4 52.7
[44] 87.7 65.6 115.6 239.8

Our results:
LM 83.3 38.6 30.3 42.1
LM + Classifier 91.2 57.8 47.0 60.9

Table 5.2: Results for sentiment modification. X = negative,Y = positive. PPLx denotes
the perplexity of sentences transferred from positive sentences evaluated by a language model
trained with negative sentences and vice versa.

using negative samples makes the training very unstable and the model diverges easily. This
is the main reason why we did not get consistently better results by incorporating adversarial
training.

Comparing with [104], we can see that the language model without adversarial training is
already very effective and performs much better when the amount of change is less than 100%.
This is intuitive because when the change is less than 100%, a language model can use context
information to predict and correct enciphered tokens. It’s surprising that even with 100% token
change, our model is only 1.5 BLEU score worse than [104], when all tokens are replaced and
no context information can be used by the language model. We guess our model can gradually
decipher tokens from the beginning of a sentence and then use them as a bootstrap to decipher
the whole sentence. We can also combine language models with the CNNs as discriminators. For
example, for the 100% case, we get BLEU score of 52.1 when combing them. Given unstableness
of adversarial training and effectiveness of language models, we set γ = 0 in Equation 5.1 and 5.2
in the rest of the experiments.

5.5.2 Sentiment Manipulation
We have demonstrated that the language model can successfully crack word substitution cipher.
However, the change of substitution cipher is limited to a one-to-one mapping. As the second
task, we would like to investigate whether a language model can distinguish sentences with pos-
itive and negative sentiments, thus help to transfer the sentiments of sentences while preserving
the content. We compare to the model of [44] as an additional baseline, which uses a pre-trained
classifier as guidance.

Data: We use the same data set as in [104]. The data set contains 250K negative sentences
(denoted as X) and 380K positive sentences (denoted as Y), of which 70% are used for training,
10% are used for development and the remaining 20% are used as test set. The pre-processing
steps are the same as the previous experiment. We also use similar experiment configurations.

Evaluation: Evaluating the quality of transferred sentences is a challenging problem as there
are no ground truth sentences. We follow previous papers in using model-based evaluation.
We measure whether transferred sentences have the correct sentiment according to a pre-trained
sentiment classifier. We follow both [44] and [104] in using a CNN-based classifier. However,
simply evaluating the sentiment of sentences is not enough since the model can output collapsed
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output such as a single word “good” for all negative transfer and “bad” for all positive transfer.
We not only would like transferred sentences to preserve the content of original sentences, but
also to be smooth in terms of language quality. For these two aspects, we propose to measure
the BLEU score of transferred sentences against original sentences and measure the perplexity
of transferred sentences to evaluate the fluency. A good model should perform well on all three
metrics.

Results: We report the results in Table. 5.2. As a baseline, the original corpus has perplexity
of 35.8 and 38.8 for the negative and positive sentences respectively. Comparing LM with [104],
we can see that LM outperforms it in all three aspects: getting higher accuracy, preserving the
content better while being more fluent. This demonstrates the effectiveness of using LM as the
discriminator. [44] has the highest accuracy and BLEU score among the three models while the
perplexity is very high. It is not surprising that the classifier will only modify the features of the
sentences that are related to the sentiment and there is no mechanism to ensure that the modified
sentence being fluent. Hence the corresponding perplexity is very high. We can manifest the
best of both models by combing the loss of LM and the classifier in [44]: a classifier is good at
modifying the sentiment and an LM can smooth the modification to get a fluent sentence. We
find improvement of accuracy and perplexity as denoted by LM + classifier compared to classifier
only [44].

Comparing with other models: Recently there are other models that are proposed specifi-
cally targeting the sentiment modification task such as [75]. Their method is feature based and
consists of the following steps: (Delete) first, they use the statistics of word frequency to delete
the attribute words such as “good, bad” from original sentences, (Retrieve) then they retrieve
the most similar sentences from the other corpus based on nearest neighbor search, (Generate)
the attribute words from retrieved sentences are combined with the content words of original sen-
tences to generate transferred sentences. The authors provide 500 human annotated sentences as
the ground truth of transferred sentences so we measure the BLEU score against those sentences.
The results are shown in Table 5.3. We can see our model has similar accuracy compared with
DeleteAndRetrieve, but has much better BLEU scores and slightly better perplexity.

We list some examples of transferred sentences in Table 5.5 in the appendix. We can see that
[104] does not keep the content of the original sentences well and changes the meaning of the
original sentences. [44] changes the sentiment but uses improper words, e.g. “maintenance is
equally hilarious”. Our LM can change the change the sentiment of sentences. But some-
times there is an over-smoothing problem, changing the less frequent words to more frequent
words, e.g. changing “my goodness it was so gross” to “my food it was so good.”. In general
LM + classifier has the best results, it changes the sentiment, while keeps the content and the
sentences are fluent.

5.5.3 Related language translation
In the final experiment, we consider a more challenging task: unsupervised related language
translation [94]. Related language translation is easier than normal pair language translation
since there is a close relationship between the two languages. Note here we don’t compare
with other sophisticated unsupervised neural machine translation systems such as [6, 69], whose
models are much more complicated and use other techniques such as back-translation, but simply
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Model ACCU BLEU PPLX PPLY

[104] 76.2 6.8 49.4 45.6
[28]:
StyleEmbedding 9.2 16.65 97.51 142.6
MultiDecoder 50.9 11.24 111.1 119.1

[75]:
Delete 87.2 11.5 75.2 68.7
Template 86.7 18.0 192.5 148.4
Retrieval 95.1 1.3 31.5 37.0
DeleteAndRetrieval 90.9 12.6 104.6 43.8

Our results:
LM 85.4 13.4 32.8 40.5
LM + Classifier 90.0 22.3 48.4 61.6

Table 5.3: Results for sentiment modification based on the 500 human annotated sentences as
ground truth from [75].

compare the different type of discriminators in the context of a simple model.
Data: We choose Bosnian (bs) vs Serbian (sr) and simplified Chinese (zh-CN) vs traditional

Chinese (zh-TW) pair as our experiment languages. Due to the lack of parallel data for these
data, we build the data ourselves. For bs and sr pair, we use the monolingual data from Leipzig
Corpora Collections4. We use the news data and sample about 200k sentences of length less
than 20 for each language, of which 80% are used for training, 10% are used for validation and
remaining 10% are used for test. For validation and test, we obtain the parallel corpus by using
the Google Translation API. The vocabulary size is 25k for the sr vs bs language pair. For zh-CN
and zh-TW pair, we use the monolingual data from the Chinese Gigaword corpus. We use the
news headlines as our training data. 300k sentences are sampled for each language. The data is
partitioned and parallel data is obtained in a similar way to that of sr vs bs pair. We directly use
a character-based model and the total vocabulary size is about 5k. For evaluation, we directly
measure the BLEU score using the references for both language pairs.

Note that the relationship between zh-CN and zh-TW is simple and mostly like a decipher-
ment problem in which some simplified Chinese characters have the corresponding traditional
character mapping. The relation between bs vs sr is more complicated.

Results: The results are shown in Table. 5.4. For sr–bos and bos–sr, since the vocabulary
of two languages does not overlap at all, it is a very challenging task. We report the BLEU1
metric since the BLEU4 is close to 0. We can see that our language model discriminator still
outperforms [104] slightly. The case for zh–tw and tw–zh is much easier. Simple copying
already has a reasonable score of 32.3. Using our model, we can improve it to 81.6 for cn–tw
and 85.5 for tw–cn, outperforming [104] by a large margin.

4http://wortschatz.uni-leipzig.de/en
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Model sr–bs bs–sr cn–tw tw–cn

Copy 0 0 32.3 32.3
[104] 29.1 30.3 60.1 60.7

Our results:
LM 31.0 31.7 81.6 85.5

Table 5.4: Related language translation results measured in BLEU. The results for sr vs bs in
measured in BLEU1 while cn vs tw is measure in BLEU.
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Model Negative to Positive

Original it was super dry and had a weird taste to the entire slice .
[104] it was super friendly and had a nice touch to the same .
[44] it was super well-made and had a weird taste to the entire slice .
LM it was very good , had a good taste to the food service .
LM + classifier it was super fresh and had a delicious taste to the entire slice .

Original my goodness it was so gross .
[104] my server it was so .
[44] my goodness it was so refreshing .
LM my food it was so good .
LM + classifier my goodness it was so great .

Original maintenance is equally incompetent .
[104] everything is terrific professional .
[44] maintenance is equally hilarious .
LM maintenance is very great .
LM + classifier maintenance is equally great .

Original if i could give them a zero star review i would !
[104] if i will give them a breakfast star here ever !
[44] if i lite give them a sweetheart star review i would !
LM if i could give them a num star place i would .
LM + classifier if i can give them a great star review i would !

Model Positive to Negative

Original did n’t know this type cuisine could be this great !
[104] did n’t know this old food you make this same horrible !
[44] did n’t know this type cuisine could be this great !
LM did n’t know this type , could be this bad .
LM + classifier did n’t know this type cuisine could be this horrible .

Original besides that , the wine selection they have is pretty awesome as well .
[104] after that , the quality prices that does n’t pretty much well as .
[44] besides that , the wine selection they have is pretty borderline as atrocious .
LM besides that , the food selection they have is pretty awful as well .
LM + classifier besides that , the wine selection they have is pretty horrible as well .

Original uncle george is very friendly to each guest .
[104] if there is very rude to our cab .
[44] uncle george is very lackluster to each guest .
LM uncle george is very rude to each guest .
LM + classifier uncle george is very rude to each guest .

Original the food is fresh and the environment is good .
[104] the food is bland and the food is the nightmare .
[44] the food is atrocious and the environment is atrocious .
LM the food is bad , the food is bad .
LM + classifier the food is bland and the environment is bad .

Table 5.5: Sentiment transfer examples.
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Chapter 6

Conclusions and future work

This thesis has investigated several models designed with new structural priors to address both
supervised and unsupervised tasks. For supervised tasks, we demonstrated a model with iterative
attention mechanism can effectively answer natural questions according to content of reference
images. The attention maps learned in the model are not only interpretable, but also reflect the
prior structures we injected into the model. We also introduced a new model to classify the doc-
uments that surpasses previous state-of-the-art. The new model has two main structural priors,
the documents have a hierarchical structure and different words and sentences are differently
informative. We showed the new structured model not only significantly improves accuracy, but
also extracts the informative words and sentences out of documents.

For unsupervised learning, we designed specific modules for VAEs and GANs to deal with
discrete and sequential inputs. We investigated the posterior collapse problems of VAEs for
text modeling. By using a more structured decoder to control the contextual capacity, we are
able to overcome the posterior collapse problem and make the model generate text according to
desired attributes. The structured decoder can also be used in the semi-supervised learning setting
and help supervised learning with large scale unsupervised data. Additionally, we introduced
a structured discriminator—language model—for GAN-based unsupervised text style transfer.
We find empirically a structured discriminator provides richer supervision signal to guide the
generator in producing fluent and rich sentences.

There are several directions to explore in the future to further improve upon the work in
this thesis. First of all, as we showed in Chapter 2, using more layers of attention (greater than
two) was not helpful to improve the results. We can try to add residual connection [40] between
the attention layers so that we can try deeper attention models. Other techniques such as layer
normalization [7] can also be added to the current model. Combing our model with the recent
self-attention mechanism [119] is another interesting direction to explore. Currently our model
does not capture the relationship between the objects in the images, using self-attention from
[119] may be helpful to improve the representation of images features, hence boosting the model
performance.

The idea from Chapter 2 and Chapter 3 can be combined to improve our document classifica-
tion model. Iterative attention mechanism can be used for word attention and sentence attention
to find out the most relevant information in multiple steps. The RNN word encoders and sen-
tence encoders can also be replaced by the Transformer encoder [119]. Our hierarchical attention
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network can extract the most important information out of documents. Some quantitative exper-
iments can be done in the future to investigate the accuracy of those attention maps. If supported
by quantitative evidence, our framework has potential application in the task of extractive sum-
marization.

We can improve our work of Chapter 4 by using more powerful decoder architectures such
as the Transformer decoder [119]. The Transformer decoder is similar to a CNN which is non-
recurrent hence satisfies our need for contextual capacity control. Our new variational auto-
encoder model can be generalized to the setting with conditional inputs, which has very broad
applications such as dialogues modeling. We can use our model to generate diverse responses
to each utterance. It can also be applied in machine translation systems to generate diverse
translation outputs for a given input sentence.

The model from Chapter 5 is a preliminary framework and can be made more powerful by
adding multiple losses. One loss to add is the cycle-consistency constraint [143] to ensure that
the content is preserved during the transfer. Our framework also has broad potential applications.
One direction is to extend it to the semi-supervised setting and use it to help with many other
sequence level tasks such as machine translation, summarization etc. With large amount of
monolingual data, we can improve upon the state-of-the-art machine translation systems with
our language model discriminators framework. It also can be applied to multi-modal settings
with image, text or speech as inputs and outputs.
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