
Reconstruction and Applications
of Collective Storylines

from Web Photo Collections

Gunhee Kim

September 2013
CMU-CS-13-125

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Eric P. Xing, Chair

Takeo Kanade
Christos Faloutsos

Antonio Torralba, MIT

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright c© 2013 Gunhee Kim

This work is supported by NSF IIS-1115313, NSF IIS-0713379, NSF DBI-0640543, AFOSR FA9550010247,
ONR N000140910758, and Google to Eric P. Xing. Some parts of this research are also supported by MURI N00014-
07-1-0747 to Takeo Kanade.



Keywords: Computer Vision, Machine Learning, Optimization



Abstract

Widespread access to photo-taking devices and high speed Internet has combined with ram-
pant social networking to produce an explosion in picture sharing on Web platforms. In this en-
vironment, new challenges in image acquisition, processing, and sharing have emerged, creating
exciting opportunities for research in computer vision and multimedia data mining. In this disser-
tation, we explore one of these interesting problems, the reconstruction of collective storylines as
an efficient but comprehensive structural summary of ever-growing big image data shared online.

More specifically, the goal of this dissertation can be summarized as follows. Given large-scale
online image collections and associated meta-data, we aim to create the collective storylines by
jointly inferring the temporal trends and the overlapping contents of image collections. We also
explore novel computer vision and data mining applications taking advantage of the reconstructed
photo storylines.

In order to achieve the proposed research objective, we develop the required technologies from
three research directions, which are (1) understanding of temporal trends of image collections,
(2) discovery of overlapping contents across image collections, and (3) reconstruction and appli-
cations of collective photo storylines. The first direction of the work addresses the problems of
understanding what topics are popular when by whom in the image collections, while the second
line of the work studies the approaches for detecting salient and recurring contents across the image
collections in the form of bounding boxes or pixel-wise segmentations. Finally, based upon the re-
sults of the work in the first two directions, we propose the reconstruction algorithms of branching
storyline graphs, and explore their promising applications at the intersection of computer vision
and multimedia data mining.
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Chapter 1

Introduction

The prevalence of digital cameras and smartphones with ubiquitous high-speed Internet connec-
tion produces an explosion of pictures being uploaded, shared and communicated online, across
websites, platforms and social networks. This new phenomenon poses challenges and opportu-
nities in the research of computer vision and multimedia data mining. This dissertation aims to
explore the solutions to several interesting problems that emerge from large-scale online image
collections contributed by general public. In this introduction, we begin with describing some
notable challenges and opportunities that constitute the motivation of our research, and derive the
thesis statement that we would like to achieve through our research.

1.1 Background and Motivation

Recent technical progresses in photo-taking devices, Internet connection, and social networking
have changed the ways of image acquisition, processing, and sharing. We here summarize several
important characteristics of them as background and motivation of our research.

A picture is a memory frozen in time.

The starting point of this thesis is to view fast growing Web image collections as the socially ag-
gregated pictorial records of general users’ experiences. That is, photos are the records of personal
experiences for specific time and places with their own stories. This is a reasonable assumption be-
cause people usually take pictures on their memorable moments, and the Web is a popular medium
to share the photos with their friends and families.

Therefore, it becomes important to understand the temporal, contextual, and episodic meanings
of the pictures beyond their semantic meanings, which are traditional subjects of computer vision
research. This challenge can be better understood with an intuition from a widely accepted nomen-
clature of human and social memory studies [Halbwachs, 1992; Tulving, 1972]. We illustrate three
important types of memories in the image domain, semantic, episodic, and collective memory, with
an example of the topic keyword gun in Fig.1.1. First, the semantic memory accounts for the gen-
eral meaning and concept-based knowledge of the word. That is, in semantic memory, a gun is a
portable weapon. Fig.1.1.(a) shows some example pictures of the gun in semantic memory, which
are sampled from ImageNet [Deng et al., 2009]. Second, the episodic memory is an autobiograph-
ical record of a personal experience associated with time, place and other contextual knowledge.
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Figure 1.1: The word gun in different memory types. (a) In semantic memory, a gun is a portable weapon.
Images are obtained from the synset gun (n03467984) of ImageNet [Deng et al., 2009]. (b) A gaming scene
can be a piece of episodic memory associated with a gun for a particular user. (c) The recent Sandy Hook
Elementary School shooting accident in Connecticut may build a collective memory shared by American
people in December 2012. The photo streams in (b) and (c) are downloaded from Flickr with the query word
gun. We also present the information about owners, locations, and timestamps.

For example, as shown in Fig.1.1.(b), for a particular person, a gun may be mainly perceived as
a controller for video games, and thus a gaming scene can be a trace of his episodic memory as-
sociated with the gun. Finally, if we zoom out the memory into a social scale, another interesting
memory type is the collective memory that is constructed, shared, passed by a coherent group of
people [Halbwachs, 1992]. For example, the recent school shooting accident in Connecticut in
December 2012 comprises a piece of collective memory for people in the United States, as shown
in Fig.1.1.(c).

From such memory perspective, most previous work in computer vision has mainly focused on
the semantic memory tasks. For example, the scene and object parsing has been a core problem
in computer vision [Chum and Zisserman, 2007; Felzenszwalb et al., 2010; Kim et al., 2008a,b;
Lazebnik et al., 2006; Liu et al., 2009a]; its goal is to recognize and segment general objects or
scenes in images. In this pipeline, one may first identify a fixed-number of object categories to be
detected, train object models for each category using training data, and finally apply the learned
detectors to assign object labels to the regions of the input images. As a result of this parsing,
each image is simply interpreted as a spatial layout of semantic objects and scenes. However, very
little research has been done for episodic and collective memories in computer vision, falling short
of delivering personalized or socially aggregated understanding of images. As highly connected
information society has come, we believe episodic and collective interpretation of the images be-
comes more interesting and anticipating, which is one important motivation of this thesis.

Pictures are not alone.

One interesting characteristic of today’s photo taking is that it is hard to imagine completely iso-
lated pictures. Taking a picture is so easy and cheap, which leads people to usually take a series

2



Figure 1.2: Images on the Web change over time. (a) We present the variations of Flickr image volumes
per month from 2006 to 2011 for five luxury brands: {Chanel, Prada, Rolex, Hermes, Louis+Vuitton}. We
mark top three peaks of the Prada and the Rolex. (b) We sample one photo stream per peak for the Prada
and the Rolex. The main themes of photo streams are severely variable: concert, wedding dress, and bag for
the Prada, and car racing, yacht, and watch for the Rolex.

of pictures for their memorable moments. Moreover, nowadays photo-taking devices are not only
intended for image recording but also for editing and communication. Thus, photographers can
easily check, edit, and share their series of pictures with optionally adding some tags or comments.
This new technology convenience results in that many online pictures are grouped as a photo set
and are associated with additional contexts or meta-data surrounding the pictures. We call such
a set of pictures as a photo stream, which is roughly defined as a set of photos taken in sequence
by a single photographer for a single event within a short range of time (e.g. a single day). As an
example, the photo stream in Fig.1.1.(b) shares overlapping contents including the same persons,
objects, and background, since it is taken in series. In addition, it accompanies several meta-data,
such as the owner ID, timestamps, or GPS information. We can freely download millions of photo
streams for any topics from the Web.

Consequently, in this thesis, we seek the techniques to take advantage of such additional in-
formation to solve challenging computer vision problems. From the fact that images are taken in
sequence, we use the signal of recurring objects or scenes to identify salient contents across the
image set. From the fact that metadata are available, we leverage personal, spatial, and temporal
information to understand the context of images.

Pictures change over time.

The topical patterns of Web image corpora evolve over time. As an example, Fig.1.2.(a) shows
the variations of Flickr image volumes for five luxury brands per month from 2006 to 2011. The
popularities of five brands, which can be roughly estimated by the number of shared pictures on
Flickr, show a lot of rises and falls on the timeline. This visualization is similar to Google trends,
which summarize the temporal variation of search volumes of keywords. In addition to the image

3



Figure 1.3: Motivation for the storyline reconstruction from community photos. (a) We show three sampled
photo streams of the scuba+diving. Although they are taken by various users at different time and places,
they share common storylines (e.g. wearing equipment, riding a boat, underwater diving, dinner, and so
on). (b) We show sampled images from three competing sports brands: Nike, Adidas, and Speedo. Various
personal experiences are associated with each brand differently, and such storylines can be used for a wide
range of e-commerce applications such as brand evaluation and online multimedia advertisement.

volumes, the image contents also evolve over time according to the changes of information flows
or people’s interests at different time points, as shown in Fig.1.2.(b). We sample one photo stream
for the Prada and the Rolex topic at the top three peak months. Even though they are retrieved
with the same keyword, the main themes of photo streams are severely diverse, for example, a
concert, wedding dress, and a bag in the Prada, and car racing, yacht, and a watch in the Rolex.
Such extreme diversity of the Web images is one of well-known challenges in the Internet vision
research. We believe such diversity is largely contributed by human’s rich notion of similarities
and associations, some of which can be disambiguated by understanding of temporal trends of Web
image collections. Therefore, in this thesis, we explore the discovery of such topical evolution in
Web images to address challenging computer vision problems including image classification and
retrieval.

Every picture is a part of story.

We believe that one important challenge in recent Web-oriented computer vision research is to
infer collective storylines from millions of photo streams, and to discover the relations between
the reconstructed storylines and the photo streams of individual users. The reconstructed photo
storylines can be used as an efficient but comprehensive structural summary of large-scale and
ever-growing online pictorial data, which have led to an information overload problem; users are
often overwhelmed by the flood of pictures, and struggling to grasp various activities, events, and
stories of the pictures taken by even their close friends.

In this dissertation, we explore the two applications of photo storylines, which can be better
understood with examples of Fig.1.3, even though they are just a tip of iceberg for the impact of
this research.

First, many topics of interest usually consist of a sequence of activities or events recurred across
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the photo streams. Some typical examples include outdoor recreational activities, holidays, and
sports events. Fig.1.3.(a) shows three photo streams of the scuba+diving as an outdoor recreational
activity. Although they are independently captured by various users at different time and places,
they are likely to share common storylines, such as wearing equipment, riding a boat, underwater
diving, dinner, and so on. The construction of such photo storylines can potentiate a variety of
applications. For example, if a family decides to go to a scuba diving trip, they can make a plan
by previewing what other people usually do. After the trip, they can also review the similarities
and differences of their trip compared to others, and fill missing parts of their photo sets by others’
pictures.

Second, another interesting example includes the comparison between the photo storylines of
competing brands. Fig.1.3.(b) shows sampled images from three competing sports brands: Nike,
Adidas, and Speedo. With widespread availability of digital cameras and smartphones, people can
freely take pictures on any memorable moments, which include experiencing or purchasing prod-
ucts they like. In addition, many online tools enable people to easily share, comment, or bookmark
the images of products that they wish to buy. Hence, from large-scale online pictures of the brands
over social networking sites, we can infer the meaningful threads of stories associated with the
brands. The reconstructed storylines can reveal how people perceive the brands, what products
people particularly like, and what typical interactions take place between users and products in
natural social contexts. Consequently, the research on the storylines can lead a wide variety of
potential benefits, ranging from content-based image retrieval to online multimedia advertisement.

Therefore, in this thesis, we develop algorithms to automatically summarize and visualize a
large set of pictures in the form of storylines, which can characterize various branching narrative
structure associated with the topic in an efficient but comprehensive way. Even though the defi-
nition of storylines differs according to literature, we refer the storyline to a series of events that
have chronological or causal relations. Its more rigorous definition will be developed throughout
this dissertation.

1.2 Thesis Statement

The thesis statement can be summarized as follows:

Given large-scale online image collections and associated meta-data, we aim to create
the collective storylines by jointly inferring the temporal trends and the overlapping
contents of image collections. We also explore novel computer vision and data mining
applications taking advantage of the reconstructed photo storylines.

Consequently, this dissertation consists of three parts: (i) understanding of temporal trends of
image collections (Part I), (ii) discovery of overlapping contents across image collections (Part II),
and (iii) reconstruction and applications of collective photo storylines (Part III). Metaphorically, the
projects in Part I and Part II attempt to simultaneously see the forest for the trees and see the trees
for the forest. The trees and forest analogically correspond to individual images and the collection
of images, respectively. The underlying idea is that it is mutually rewarding to understand the
overall trends of the collection, and the contents of individual photos. Discovering the temporal
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and contextual changes of the photo collection can tell what topics are popular when by whom.
Subsequently, it helps interpret the contents of images more accurately. In the reverse direction,
understanding the contents of images can reveal statistically dominant visual information, which
can help reconstruct the overall trends more effectively. Finally, Part III proposes the reconstruction
algorithms of branching storyline graphs, and explores several applications of collective photo
storylines based upon the results of the work in Part I and Part II. In this dissertation, we mainly
focus on the storylines about outdoor recreational activities, holidays, sports events, and competing
brands, but their usefulness is not limited but promising in a wide range of other applications.

Table 1.1 summarizes the outline of this thesis. In order to achieve the proposed thesis state-
ment, we have completed the following projects.

Understanding Temporal Trends of Web Image Collections (Part I). The main objective
of the algorithms in this part is to model the temporal trends of large-scale image collections, and
help solve existing or novel computer vision problems as follows.

• (Chapter 3) We study the temporal evolution of topics in Flickr image collections. This
research enables us to detect subtopic outbreak detection, and improve image classification
performance by using temporal context.

• (Chapter 4) We develop an approach for leveraging time and optionally user information to
improve image search quality. We then extend the proposed time-sensitive image retrieval
method into solving a Web image prediction problem, in which given a query word and a
future time point, we predict the images that are likely to appear on the Web.

Discovering Overlapping Contents of Image Collections (Part II). The goal of the algo-
rithms in this part is to discover salient contents of individual images in the form of bounding

Part I – Understanding Temporal Trends Part II – Discovering overlapping image contents

• Analyzing Dynamic Behaviors of Web
Photo Sets [Kim et al., 2010] (Chapter 3)

• Time-Sensitive Image Retrieval and
Prediction [Kim et al., 2012; Kim and Xing,
2013b] (Chapter 4)

• Unsupervised Detection of Regions of Interests
(ROI) [Kim and Torralba, 2009] (Chapter 5)

• Diversity Ranking, Image Segmentation, and
Cosegmentation [Kim et al., 2011] (Chapter 6)

• Multiple Foreground Cosegmentation [Kim and
Xing, 2012] (Chapter 7)

Part III – Reconstruction and Applications of Photo Storylines

• Jointly Aligning and Segmenting Multiple Web Photo Streams [Kim and Xing, 2013a] (Chapter 8)

• Reconstructing Photo Storyline Graphs [Kim and Xing, 2014a] (Chapter 9)

• Visualizing Brand Associations from Web Photos [Kim and Xing, 2014b] (Chapter 10)

Table 1.1: Thesis outline.
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boxes or pixel-wise segmentation, by detecting the recurring regions that are shared across the
image collections.

• (Chapter 5) We present a fast and scalable method to detect rectangular regions of interest
(ROI), by searching for statistical dominance of object signals from cluttered large-scale
Web images without any labels.

• (Chapter 6) We develop a diffusion-based optimization framework that is applicable to a
wide range of computer vision problems. We show that the proposed optimization lead
to an efficient and effective solutions to diversity ranking, single-image segmentation, and
cosegmentation.

• (Chapter 7) We propose an approach to multiple foreground cosegmentation as a less restric-
tive and more practical cosegmentation algorithm so far, aiming to be directly applicable to
the Web photo streams of general users.

Reconstruction and Applications of Photo Storylines (Part III). The objective here is to
integrate the algorithms in previous two parts, and address the discovery of collective photo story-
lines and their uses for interesting Web applications as follows.

• (Chapter 8) As a first technical step to detect collective storylines, we propose an approach
to jointly aligning and segmenting large-scale Web photo streams of different users.

• (Chapter 9) We address an approach for reconstructing branching storyline graphs as a struc-
tural summary of large-scale photo streams. Our optimization algorithm can estimate sparse
time-varying directed graphs directly from photo streams with optionally other side infor-
mation such as friendship graphs.

• (Chapter 10) We develop a novel methodology to visualize brand associations as the story-
lines of competing brands from image collections contributed by general public. Our algo-
rithm can also automatically identify the regions that are associated most with brands in the
images.

Note that most chapters of this thesis have been published in [Kim et al., 2012; Kim and Tor-
ralba, 2009; Kim and Xing, 2012, 2013b, 2014b, 2013a; Kim et al., 2011, 2010; Kim and Xing,
2014a]. In order to facilitate further research in this area, we provide Matlab codes, demos, and
image data at our webpage (http://www.cs.cmu.edu/∼gunhee).
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Chapter 2

Survey of Related Work

In this chapter, we review closely related previous research that grounds the work of this disserta-
tion, and clarify important uniqueness of our work compared to them. We categorize the survey of
literature into three main directions as presented in the thesis statement.

Understanding Temporal Trends of Web Image Collections
Temporal context in computer vision: We here review important previous work using temporal
cues for image analysis. The importance of temporal context has long been recognized in neu-
roscience research [Becker, 1999; Sinha et al., 2006; Wallis and Bulthöff, 2001]. Much recent
research has supported that the temporal association (i.e. liking temporally close images) is an
important mechanism to recognize objects and generalize visual representation.

In computer vision, Paletta et al. [Paletta et al., 2000] use a POMDP framework for the mod-
eling of temporal context to disambiguate the object hypotheses. In [Boutell et al., 2005], an
HMM-based temporal context model is proposed to solve scene classification problems. The tim-
ing information is also used to organize personal photo albums.

As the Internet vision emerges as a promising research area in computer vision, time infor-
mation starts to be used to assist visual tasks for Web applications. Surprisingly, however, the
dynamics or temporal context of Web images has not yet been studied a great deal, contrary to that
such study for Web text data has been one of active research areas in data mining and machine
learning communities [Blei and Lafferty, 2006; Wang and McCallum, 2006]. We briefly review
some notable examples using the timestamps associated with the images for visual tasks. Cao
et al. [Cao et al., 2008] develop an annotation method for personal photo collections, in which
the timestamps are used for better correlation discovery between the images. Li et al. [Li et al.,
2009] propose a landmark classification that leverages temporal information as a constraint to re-
duce misclassification. Quack et al. [Quack et al., 2008] also use the timestamps as an additional
feature for the object and event retrieval of online images. Kalogerakis et al. [Kalogerakis et al.,
2009] present a method to geolocate a sequence of images taken by a single individual. Temporal
constraints between the images in sequence are used as a strong prior to improve the geolocation
accuracy.

Image retrieval and reranking: Recently, image reranking has been actively studied to im-
prove text-based image search by leveraging visual or user feedback information [Cui et al., 2008;
Jing and Baluja, 2008; Liu et al., 2011; Morioka and Wang, 2011; Wang et al., 2011; Yang and Han-
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jalic, 2010]. Most image reranking methods have exploited three sources of information, which are
human-labeled training data [Yang and Hanjalic, 2010], user relevance feedback [Cui et al., 2008;
Wang et al., 2011], and pseudo-relevance feedback [Morioka and Wang, 2011]. Given an image
database retrieved by text-based search, the user relevance feedback approach asks a user to select
a query image to clarify her search intent. The pseudo-relevance feedback approach assumes the
top images retrieved by text-based search as pseudo-positive examples and bottom ranked images
as pseudo-negative examples. Once the training data are obtained, almost all existing methods
learn ranking models relying on the semantic meaning of a query word and the feature-wise image
similarity. The uniqueness of our work beyond previous work is that we additionally emphasize
the temporal trends and user history associated with the images.

Prediction of user behaviors on the Web: Based on the fact that contents and user behaviors
on the Web change over time, building predictive models for them has been a promising direction
in Web study [Amodeo et al., 2011; Jin et al., 2010; Radinsky et al., 2008, 2012]. Some notable
examples of prediction include future likely news [Radinsky et al., 2008], peaks of topics in the
New York Times corpus [Amodeo et al., 2011], periodicity and surprise detection of queries, URLs,
and query-URL pairs [Radinsky et al., 2012], and the distribution of consumer products [Jin et al.,
2010]. In this thesis, we perform the prediction of images that are likely to appear at future time
points, which is a novel application of user behavior prediction in the image domain.

Discovering Overlapping Contents of Image Collections
Unsupervised localization: The unsupervised localization addresses the problem of localizing
objects in images without any supervision [Ahuja and Todorovic, 2007; Fergus et al., 2005; Kim
et al., 2008a; Russell et al., 2006; Sivic et al., 2005; Winn and Jojic, 2005]. They automatically
identify repetitive visual contents across the input dataset, and learn their appearance models. One
main limitation of most previous work is that they do not scale up to large-scale Web datasets. We
focus on overcoming this limitation in the second part of this dissertation.

Detection of regions of interest (ROI): The ROI detection identifies the regions of objects
that may interest users in cluttered images [Bosch et al., 2007; Chum et al., 2007; Quattoni and
Torralba, 2009; Liu et al., 2007]. The ROI detection can be used as an important building block in a
variety of computer vision problems, including object modeling for recognition [Bosch et al., 2007;
Chum et al., 2007; Russakovsky and Ng, 2010], indoor scene description [Quattoni and Torralba,
2009], segmentation prior [Lempitsky et al., 2009], and image thumbnailing [Marchesotti et al.,
2009]. In chapter 5 of this thesis, we propose a fast and scalable ROI detection method by searching
for recurring object signals from large-scale Web images.

Online image collections: The goal of online image collection methods is to collect relevant
images from highly noisy data retrieved by text keywords from the Web [Collins et al., 2008; Deng
et al., 2009; Li et al., 2007; Schroff et al., 2007]. Previous work can be classified according to
what additional metadata are used to decide which images are acceptable or not. Examples include
user-labeled seed images [Li et al., 2007; Collins et al., 2008], texts and HTML tags [Schroff et al.,
2007], and human assistance by Amazon Mechanical Turk [Deng et al., 2009]. In this thesis, we
explore the methods that identify relevant regions of objects in images without any supervision.

Image segmentation and cosegmentation: Image segmentation has long been considered as
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a complicated visual task that demands a tight integration of high-level and low-level processes in
vision [Ullman, 2000]. It involves not only the grouping of pixels based on low-level structure of
color and texture, but also the high-level knowledge about the objects of interest. Recently, coseg-
mentation has been actively studied in image segmentation research [Batra et al., 2011; Hochbaum
and Singh, 2009; Joulin et al., 2010, 2012; Kim and Xing, 2012; Kim et al., 2011; Mukherjee
et al., 2011; Rother et al., 2006; Vicente et al., 2010, 2011]; in this setting, the high-level signal
is implicitly provided as recurring objects (or foregrounds) in multiple images, out of which the
repeating objects are jointly segmented. Cosegmentation has a wide potential in web-scale appli-
cations. For example, it can guide an interactive image editing by suggesting popular regions in the
image database [Batra et al., 2010; Rother et al., 2006], or summarize personal photo collections
by automatically segmenting highly co-occurring object instances such as persons or dogs [Joulin
et al., 2010]. In this thesis, we propose novel scalable cosegmentation algorithms that can be ap-
plicable to general users’ photo streams in chapter 6 and chapter 7, in which we will clarify key
uniqueness of our methods

Combinatorial optimization for object detection: Recently, combinatorial optimization tech-
niques have been popularly used in object detection research. Some notable examples include
branch-and-bound schemes for efficient subwindow search [Lampert et al., 2009], a Steiner tree
based selection of object candidate regions [Russakovsky and Ng, 2010], and the maximum-weight
connected subgraph for the detection of non-boxy objects [Vijayanarasimhan and Grauman, 2011].
The main purpose of these methods is to efficiently enumerate candidate regions to which object
classifiers are applied. For the cosegmentation algorithm in chapter 7, we exploit welfare maxi-
mization in combinatorial auction [Cramton et al., 2005] to efficiently solve the image cosegmen-
tation problem.

Reconstruction and Applications of Photo Storylines
Story structure: The structure of story has been studied much in psychology because it plays an
important role in memory tasks and human development [Mandler and Johnson, 1977; Trabasso
and Broek, 1985]. Building the story structure is a well-known psychological mechanism facili-
tating memory and recall; higher structured stories tend to be more easily memorized or recalled.
In the developmental psychology, it is supported that as children get older, they use more sophis-
ticated story structure when telling their experiences. A story is usually conceived as a sequence
of events that are causally and temporally related one another. Thus, trees or graphs have been a
common model for story representation [Mandler and Johnson, 1977; Trabasso and Broek, 1985;
Riedl and Young, 2006].

Storylines from text data: In the recent research of web mining, much work has been done
to extract diverse threads of stories from online text collections such as news articles and scientific
papers [Ahmed et al., 2011; Gillenwater et al., 2012; Shahaf and Guestrin, 2010; Shahaf et al.,
2012]. However, Web image collections have not been explored much yet. In [Wang et al., 2012a],
images are jointly used with texts to generate storylines; however, only primitive image features
are used, and more importantly, the algorithm is tested with a cleaned small dataset of 355 images.
On the other hand, we leverage large-scale online images to reconstruct storylines. The details can
be found in chapter 8 and chapter 9.
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Storylines from landmark photo collections: The landmark photos taken by a number of
tourists have been one of most favorable uses of community photos in computer vision research.
Each photo stream is a collection of photos about one tourist’s experience, and they are used for
various purpose in computer vision, including 3D models of landmarks in Photosynth [Snavely
et al., 2010], geolocation of tourists’ image sequences [Kalogerakis et al., 2009], world-scale land-
mark recognition in [Zheng et al., 2010], and image-based location estimation [Chen and Grauman,
2011]. One contribution of our research is to broaden the applicability of community photos to the
storyline reconstruction for outdoor recreational activities and competing brands.

Storyline detection and segmentation in videos: The storyline mining has been studied much
in video analysis, including sports videos [Gupta et al., 2009] and News videos [Misra et al.,
2010]. Especially, the work of [Gupta et al., 2009] proposes a storyline model that is formed
by graph grammar to model causal relationships between visual grounds. However, since videos
usually contain only a small number of specified actors in a single scene, the model can take
advantage of strong spatio-temporal constraints and synchronized captions, which are not available
in community photo collections contributed by millions of general public.

Event detection from Web data: There has been several important previous work using com-
munity photos for event detection. Rattenbury et al. [Rattenbury et al., 2007] are interested in place
and event detection by analyzing temporal and spatial distributions of tags’ usages associated with
photos. Jin et al. [Jin et al., 2010] leverage Flickr images to discover and predict social trends in
the areas of politics, economics, and marketing. They consider image uploading and downloading
as implicit votes for the subjects of the images. Sing et al. [Singh et al., 2010] propose a method
called social pixels to visualize spatio-temporal phenomena in Twitter and Flickr posts.

Free associations: The free association is a well-known psychological technique in which
given a cue, a human subject recalls the list of words that comes to mind without any editing or
censoring [Nelson et al., 2004, 2005]. The use of free association was originally pioneered by
Sigmund Freud for the purpose of Psychotherapy; given a question, patients write down whatever
thoughts come to mind, from which therapists learn more about how patients think and feel. Since
then, the free association has been used for other practical cognitive studies.

In Psychology, the free association technique has been used for mapping the association links
between lexical concepts, in order to study memory tasks such as recall and recognition [Nelson
et al., 2004, 2005]. In NLP research, Vickrey et al. [Vickrey et al., 2008] develop an online word
game that exploits the free association technique, in order to obtain labels of semantic relationships
between pairs of words (e.g. wing is a part of dragon). Their results show that the qualities of
semantic relations mined by the free associations is higher than those of other methods.

Another interesting use of free associations is measuring brand associations in marketing [Chen,
2001; Danes et al., 2010; Till et al., 2011]. In this technique, subjects are asked to freely answer
their feelings and thoughts about a given brand name. (e.g. What comes to mind when you think
of Nike?) Our work in chapter 10 is also based on this free association idea, because we view the
Web photos tagged with a brand name by anonymous users as their candid pictorial impressions to
the brand.

Analysis of product images: Recently, with the exploding interests in electronic commerce,
computer vision techniques have widely applied to analyze product images for commercial appli-
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cations. Some notable examples include the product image search and ranking [Jing and Baluja,
2008], the logo and product detection in natural images [Gao et al., 2009; Kang et al., 2012; Kleban
et al., 2008; Sanyal and Srinivasan, 2007], the attribute discovery in product images [Berg et al.,
2010], and clothing parsing in fashion photos [Yamaguchi et al., 2012]. One important problem in
this thesis is to extract and visualize the core concepts of the brands from extremely diverse online
pictures in chapter 10. Our work differs from most of past research, which has focused on detect-
ing a fixed number of specified product models or logos in the images. In our work, it is important
to mine the visual topics that do not explicitly contain the products but reflect general public’s
thoughts, feelings, or experiences over the brands (e.g. sponsored yacht competition scenes in the
Rolex image set).

Prediction of users’ economic behaviors using Web data: Recently, many studies have
demonstrated that Web data generated by general users can predict their economic behaviors in
real world. For example, Choi and Varian [Choi and Varian, 2012] have found that Web search
volumes obtained from GOOGLE TRENDS are often correlated with various economic indicators,
such as automobile sales, unemployment claims, and consumer confidence. Goel et al. [Goel
et al., 2010] also show that online search queries can forecast consumers’ near-future behaviors in
box-office revenues, video game sales, and the ranks of songs on music charts. Similarly, Bordino
et al. [Bordino et al., 2012] study the correlation between trading volumes of stocks and their daily
query volumes. In this thesis, we study the visualization of brand associations from online pictures
contributed by general public; our work is novel in that any analysis or predication about brands
has not been explored before.
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Part I

Understanding Temporal Trends of Image
Collections
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Part I – Understanding Temporal Trends of
Image Collections

In this part, we discuss the methods to understand the temporal trends of large-scale image
collections, which are gathered by querying topic keywords from photo sharing sites such as Flickr.
Here we do not address any sub-image level analysis such as object detection or segmentation,
which will be the main theme of the next part.

This part consists of two chapters. First, we propose a nonparametric approach to modeling
and analysis of topical evolution in image collections. With experiments on more than 9 millions
of images of 47 topics from Flickr, we show that our method successfully perform the subtopic
outbreak detection to point out when the topical contents of images rapidly change, and improve
image classification performance using temporal context. We also show that the images can often
be a more reliable source of information than tag texts to detect topical evolution.

Second, we investigate a time-sensitive image retrieval problem, in which given a query key-
word, a query time point, and optionally user information, we retrieve the most relevant and tempo-
rally suitable images from the database. Inspired by recently emerging interests on query dynam-
ics in information retrieval research, our time-sensitive image retrieval algorithm can infer users’
implicit search intent better and provide more engaging and diverse search results according to
temporal trends of Web photos. Furthermore, we extend our algorithm to address the Web image
prediction problem of predicting the images that are likely to be popular on the Web at any given
future time point.
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Chapter 3

Analyzing Dynamic Behaviors of Web Photo Sets

3.1 Introduction

Suppose that we download millions of images retrieved by the query term apple from Flickr, and
distribute them on the timeline according to their associated timestamps. The apple topic consists
of various subtopics (e.g. fruit, logo, laptop, tree, and iPhone), and their popularity changes over
time. In Fig.3.1, we choose the central images of five subtopics of the apple and measure the
similarity changes with the image samples at each time step. As Google trends reveal the popularity
variation of a query term in the search volumes, we can easily obtain the affinity changes of each
subtopic in the apple image set. The fruit apple photos occur relatively stationary on the timeline,
whereas the iPhone photos show bursty occurrences according to specific events such as the release
of new models or Steve Jobs’ talks.

The main objectives of this work are as follows. First, we propose a nonparametric approach
to modeling and analysis of temporal evolution of topics in Web image collections (section 3.2.3).
Second, we show that understanding image dynamics is useful to solve novel problems such as the
subtopic tracking and the subtopic outbreak detection (section 3.3.2). Third, we present that the
images can be a more reliable and delicate source of information to detect topical evolution than

Figure 3.1: A Google trends-like visualization of the subtopic evolution in the apple Flickr images. Here
we consider five subtopics of the apple: fruit (blue), logo (red), laptop (orange), tree (green), and iphone
(purple). We choose the central images of each subtopic, and measure their average similarity with image
samples at each time step. The fruit subtopic is stable along the timeline, whereas the iphone subtopic highly
fluctuates.
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associated tag texts (section 3.3.3). Finally, we show that the classification performance can be
improved using the temporal association inspired by human vision studies [Becker, 1999; Sinha
et al., 2006; Wallis and Bulthöff, 2001] (section 3.3.4).

Our approach is motivated by the recent success of the nonparametric methods [Liu et al.,
2009a; Torralba et al., 2008] that are powered by large databases. Instead of using sophisticated
parametric topic models [Blei and Lafferty, 2006; Wang and McCallum, 2006], we represent the
images with timestamps in the form of a similarity network [Kim and Torralba, 2009], in which
vertices are images and edges connect the temporally close and visually similar images. Thus, our
approach is able to perform diverse temporal analysis without solving complex inference problems.
For example, a simple information-theoretic measure of the network can be used to detect subtopic
outbreaks, which point out when the topical evolution speed abruptly changes. The temporal con-
text is also easily integrated with the classifier training in a framework of the Metropolis-Hastings
algorithm.

The network generation is based on the sequential Monte Carlo (i.e. particle filtering) [Aru-
lampalam et al., 2002; Isard and Blake, 1998], in which, the posterior (i.e. subtopic distribution)
at a particular time step is represented by a set of weighted image samples. We track the similar
subtopics (i.e. clusters of images) in consecutive posteriors along the timeline, and create edges
between them. Our sampling based representation is practically beneficial for the following rea-
sons. First, since we deal with unordered natural images on the Web, any Gaussian or linearity
assumption does not hold and the multiple peaks of distributions are unavoidable. Second, we
can easily control the tradeoff between accuracy and speed by managing the number of samples
and parameters in the transition model. Third, our algorithm is easily parallelizable by running
multiple sequential Monte Carlo trackers with different initialization and parameters. Finally, our
approach is also scalable and fast; the run time is linear with the number of images.

For evaluation, we download more than 9 millions of images of 47 topics from Flickr. Most
standard datasets in computer vision research [Everingham et al., 2010; Russell and Torralba, 2009]
have not yet considered the importance of temporal context. While several datasets have recently
introduced spatial contexts as a fundamental cue to recognition [Russell and Torralba, 2009], the
support for the temporal context has been still largely under-addressed. Our experiments clearly
show that the proposed approach is successful to model the temporal behaviors of large-scale image
collections, and leverage them to achieve several novel or existing computer vision problems better.

3.2 Network Construction by Sequential Monte Carlo

3.2.1 Image Description and Similarity Measure

Each image is represented by two types of descriptors, which are spatial pyramids of SIFT visual
words [Liu et al., 2008] and HOG [Bosch et al., 2007]. We use the codes provided by the original
authors. A dictionary of 200 visual words is formed by applying K-means to randomly selected
SIFT descriptors [Liu et al., 2008]. Every pixel of an image is densely assigned to the nearest
visual word in the dictionary. Then visual words are binned using a two-level spatial pyramid. The
oriented gradients are computed by Canny edge detection and Sobel mask [Bosch et al., 2007]. The
HOG descriptor is then discretized into 20 orientation bins in the range of [0◦,180◦]. Finally, the

17



Figure 3.2: An overview of the SMC based network construction for the jaguar topic. The subtopic
distribution at each time step is represented by a set of weighted image samples (i.e. posterior) {st,πt}. In
this example, the posterior st−1 consists of image samples of the animal, car, and football subtopics. (a)
The transition model generates new posterior candidates s′t from st−1. (b) The observation model discovers
π′t of s′t and the resampling step obtains {st,πt} from {s′t,π′t}. Finally, the network is built by similarity
matching between two consecutive posteriors st−1 and st.

HOG descriptors are binned using a three-level spatial pyramid. The similarity measure between
a pair of images is the cosine similarity, which is calculated by the dot product of a pair of L2

normalized descriptors.

3.2.2 Problem Statement

The input of our algorithm is a set of images I = {I1, . . . , IN} and associated timestamps T =
{T1, . . . , TN}. The main goal is to generate an N × N sparse similarity network G = (V , E ,W)
by using the Sequential Monte Carlo (SMC) method. Each vertex in V is an image in the dataset.
The edge set E is created between the images that are visually similar and temporally close within
a certain interval that is defined by the transition model of the SMC tracker (Section 3.2.3). The
weight set W is discovered by the similarity between descriptors of images (Section 3.2.1). For
sparsity, each image is connected to its k-nearest neighbors with k = a logN , where a is a constant
(e.g. a =10).

3.2.3 Network Construction using Sequential Monte Carlo

Algorithm 1 summarizes the proposed SMC based Network construction. For better readability,
we follow the notation of the condensation algorithm [Isard and Blake, 1998]. The output of
each iteration of the SMC is the conditional subtopic distribution (i.e. posterior) at every step,
which is approximated by a set of images with weights denoted by {st,πt} = {s(i)

t , π
(i)
t , i =

1, . . . ,M}whereM is the number of image samples. As a notation convention, we use superscripts
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Algorithm 1: The SMC based network generation
Input: (1) A set of images I sorted by timestamps T . (2) Start time T0 and end time Te. (3)

Posterior size M . (4) Parameters for drift: (4Mµ, σ
2).

Output: Network G.

[Initialization]
1: Draw s

(i)
0 ∼ N(T0, τ

2(T0, 2M/3)), π(i)
0 = 1/M for i = 1, . . . ,M .

while µt < Te, (µ0 = T0 and µt = µt−1 + τ(µt−1,4Mµ)). do
[Transition]
foreach s(i)

t−1 ∈ st−1 starting with x(i) = ∅ do
repeat

2: Draw x ∼ N(x;µt, σ
2)× Γ(x;α

(i)
t−1, β

(i)
t−1), where α(i)

t−1 ∝ 1/π
(i)
t−1, β

(i)
t−1 = µt/α

(i)
t−1.

3: x(i) ← x with probability of w(s
(i)
t−1, x).

until |x(i)| = mi = 2M × π(i)
t−1. Then, s′t ← x(i).;

[Observation]
4: Compute self-similarity graph Wt of s′t. Row-normalize Wt to W̃t.
5: Get stationary distribution π′t by solving π′t = W̃

T
t π
′
t with ‖π′t‖1 = 1.

[Resampling]
6: Resample {st,πt}Mi=1 from {s′t,π′t} by systematic sampling. Normalize πt.
7: G← Wt(st, st),Wt−1,t(st−1, st). Then convert G into a k-NN graph.

to denote the image numbers and subscripts to denote the iterations. Note that our SMC does
not explicitly solve the data association during the tracking. In other words, we do not assign a
subtopic membership to each image in st. However, it can be easily obtained later by applying
clustering to the subgraph of st.

Fig.3.2 shows a downsampled example of a single iteration of the posterior estimation. At
every iteration, the SMC generates a new posterior {st,πt} by running transition, observation,
and resampling steps.

The image data are severely unbalanced on the timeline. (e.g. There are only a few images
within a month in 2005 but a large number of images within even a week in 2008). Thus, in our
experiments, we bin the timeline by the number of images instead of a fixed time interval. (e.g.
The timeline may be binned by every 3000 images rather than by a month). The function τ(Ti,m)
denotes the timestamp of the m-th image later from the image at time Ti.

Initialization

We first manually decide the starting time T0 for the SMC tracker. The initialization step then
samples the initial posterior s0 from the prior at T0, which is set by a Gaussian distribution
N(T0, τ

2(T0, 2M/3)) on the timeline. It means that 2M numbers of images around T0 have
nonzero probabilities to be selected as one of s0. The initial π0 is uniformly set to 1/M .
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Transition Model

The transition model generates posterior candidates s′t rightward on the timeline from the previous
{st−1,πt−1} (See Fig.3.2.(a) for an example). Each image s(i)

t−1 in st−1 recommends mi numbers
of images that are similar to itself as the members of candidates set s′t. A more weighted image
s

(i)
t−1 recommends more images for s′t. (

∑
imi = 2M and mi ∝ π

(i)
t−1). At this stage, we generate

2M candidates (i.e. |s′t| = 2M ), and the observation and resampling steps reduce it to be |st| = M
while computing weights πt.

Similarly to the condensation algorithm [Isard and Blake, 1998], the transition consists of de-
terministic drift and stochastic diffusion. The drift describes the transition tendency of the overall
s′t (i.e. how far the s′t is located from the st−1 on the timeline). The diffusion assigns a random
transition of an individual image. The drift and the diffusion are modeled by a Gaussian distribu-
tion N(µt, σ

2) and a Gamma distribution Γ(α, β), respectively. The final transition model is the
product of these two distributions [Hinton, 2002] as follows.

P
(i)∗
t (x) = N(x;µt, σ

2)× Γ(x;α
(i)
t−1, β

(i)
t−1) (3.1)

where the asterisk of P (i)∗
t (x) in Eq.(3.1) means that it is not normalized. Renormalization is not

required since we will use importance sampling to sample images on the timeline with the target
distribution (See the next subsection with Fig.3.3 for the detail).

In Eq.(3.1), the mean µt ofN(µt, σ
2) is updated at every iteration by µt = µt−1+τ(µt−1,4Mµ)

where 4Mµ is the control parameter for the speed of the tracking. The higher 4Mµ, the further
s′t is located from st−1 and the fewer iterations are executed until completion. The variance σ2 of
N(µt, σ

2) controls the spread of s′t along the timeline. A higher σ2 results in a s′t that includes
images with a longer time range.

A Gamma distribution Γ(α, β) is usually used to model the time required for α occurrences of
events that follow a Poisson process with a constant rate β. In our interpretation, given an image
stream, we assume that the occurrence of images of each subtopic follows the Poisson process with
β. Then, Γ(α

(i)
t−1, β

(i)
t−1) of Eq.(3.1) indicates the time required for the next α images that have the

same subtopic with s(i)
t−1 in the image stream. Based on this intuition, α(i)

t−1 for each s(i)
t−1 is adjusted;

a smaller α(i)
t−1 is chosen for the image s(i)

t−1 with higher π(i)
t−1 since the similar images to a more

weighted s(i)
t−1 are likely to occur more frequently in the dataset. The mean of Gamma distribution

of each s(i)
t−1 is aligned with the mean µt of N(µt, σ

2). Therefore, we set β(i)
t−1 = µt/α

(i)
t−1 given that

the mean of Gamma distribution is αβ.
The main reason to adopt the product model rather than the mixture model in Eq.(3.1) is as

follows. The product model only has a meaningful probability for an event when none of its
component distribution has a low probability. (i.e. if one of two distributions has zero probability,
their product does as well). It is useful in our application because the product with the Gaussian
of the drift sets almost zero probability for the images outside 3σ from µt, which can prevent the
sampled images from severely spreading along the timeline.

In sum, for each s(i)
t−1, we sample an image x by the distribution of Eq.(3.1), which constrains

the position of x on the timeline. In addition, x is required to be visually similar to its recommender
s

(i)
t−1. Thus, x is accepted with probability of w(s

(i)
t−1, x), which is the cosine similarity between the
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Figure 3.3: An example of sampling images on the timeline during (a) the initialization and (b) the transi-
tion. From top to bottom: The first row shows the image distributions along the timeline. The images are
regarded as the samples ({x(r)}Rr=1) from a proposal distribution Q∗(x). They are equally weighted (i.e.
Q∗(x(r)) = 1). The second row shows the target distribution P ∗(x). (e.g. Gaussian in (a) and the product
of Gaussian and Gamma in (b)). The third row shows the image samples weighted by P ∗(x(r))/Q∗(x(r)).
The fourth row shows the images chosen by systematic sampling [Arulampalam et al., 2002].

descriptors of s(i)
t−1 and x. This process is repeated until mi number of samples are accepted for

each s(i)
t−1. Algorithm 1 summarizes the major steps of the transition model.

Sampling Images with Target Distribution

During the initialization and the transition, we sample a set of images on the timeline from a given
target distribution P ∗(x). (e.g. Gaussian in the initialization and the product of Gaussian and
Gamma in the transition). Fig.3.3 shows an example of our importance sampling method [MacKay,
2002], which is particularly useful for our transition model since there is no closed form of the
product of Gaussian and Gamma distributions and its normalization is not straightforward.

Observation Model

The goal of the observation model is to compute weights π′t for s′t. First, we obtain the similarity
matrix Wt of s′t by computing pairwise cosine similarity between the images of s′t. Then, π′t is the
stationary distribution of Wt by solving π′t = W̃

T

t π
′
t with ‖π′t‖1 = 1, where W̃t is row-normalized

from Wt so that w̃ij = wij/
∑

k wik.

Resampling

The final posterior {st,πt} = {s(i)
t , π

(i)
t }Mi=1 is resampled from {s′t,π′t} by running the systematic

sampling [Arulampalam et al., 2002] on π′t. Then πt is normalized so that its sum is one. The
network G stores Wt(st, st) and Wt−1,t(st−1, st) (i.e. the similarity matrix between two consecutive
posteriors st−1 and st). As discussed in section 3.2.2, each vertex in G is connected to only its
k-nearest neighbors.
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3.3 Experiments

3.3.1 Evaluation setting
Table 3.1 shows 47 topics of our Flickr dataset. The topic name is identical to the query word. We
downloaded all the images retrieved by the query word from Flickr (i.e. all the images retrieved
when a query word is typed in Flickr’s search box without any option change). For the timestamp,
we use the date taken field of each image that Flickr provides.

We generate the similarity network of each topic by using the proposed SMC based tracking.
The runtime is O(NM) where M is the size of posterior and M � N (i.e. 1000 ≤ M ≤ 5000 in
our experiments). The network construction is so fast that, for example, it took about 4 hours for
the soccer topic with N = 1.1 × 106 and M = 5, 000 in our matlab implementation on a single
PC. The analysis of the network is also fast since most network analysis algorithms depend on the
number of nonzero elements, which is O(N logN).

3.3.2 Results on Evolution of Subtopics
Fig.3.4 shows the subtopic evolution examples of two topics, the big+ben and the korean. As
discussed in previous section, the SMC tracker iteratively generates the posterior sets {s0, . . . , sL}.
For each st, we discover five clusters from each posterior by applying spectral clustering to the
subgraph Gt(st, st). Obviously, each topic shows its own intrinsic dynamic behaviors. Some topics
such as the big+ben are stationary and coherent whereas others like the korean are highly diverse
and variant.

Subtopic Outbreak Detection

The subtopic outbreak detection is an important task in Web mining since it reflects the change
of information flows and people’s interests. We perform the outbreak detection by calculating an
information-theoretic measure of link statistics of the network. Note that the consecutive posterior

Nation brazilian (119,620), jewish (165,760), korean (254,386), swedish (94,390), spanish (322,085)
Place amazon (160,008), ballpark (340,266), big+ben (131,545), grandcanyon (286,994), pisa (174,591),

wall+street (177,181), white+house (241,353)
Animal butterfly+insect (69,947), cardinals (177,884), giraffe+zoo (53,591), jaguar (122,615), leopard

(121,061), lobster (144,596), otter (113,681), parrot (175,895), penguin (257,614), rhino (96,799),
shark(345,606)

Object classic+car (265,668), keyboard (118,911), motorbike (179,855), pagoda (128,019), pedestrian
(112,116), sunflower (165,090), television (157,033)

Activity picnic (652,539), soccer (1,153,969), yacht (225,508)
Abstract advertisement (84,521), economy (61,593), emotion (119,899), fine+art (220,615), horror (157,977),

hurt (141,249), politics (181,836)
Hot topic apple (713,730), earthquake (65,375), newspaper (165,987), simpson (106,414), starbucks (169,728),

tornado (117,161), wireless (139,390)

Table 3.1: 47 topics of our Flickr dataset. The numbers in parentheses indicate the numbers of downloaded
images per topic. 9,751,651 images are collected in total.
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Figure 3.4: The subtopic evolution of (a) the big+ben and (b) the korean topic. In each column, we show
top three out of five clusters of each st with the average images in the top, and four highest ranked images in
the cluster in the bottom. The big+ben is relatively stationary and coherent, whereas the korean is dynamic
and includes diverse subtopics such as sports, food, events, buildings, and the Korean war memorial park.

Figure 3.5: An example of the subtopic outbreak detection. (a) The variation of KL divergences for the
apple topic. The highest peak is observed at step t∗ = 63 ([May-2007, Jun-2007] with the median of 11-
Jun-2007). (b) The subtopic changes around the highest peak. We show ten subtopics (i.e. image clusters)
of st∗−1, st∗ , and st∗+1 from top to bottom. In each set, the first row shows the average images of top 15
images, and the bottom row shows top four highest ranked ones of each subtopic. Several clusters of Steve
Jobs’ presentation appear in st∗−1 and st∗ , but vanish in st∗+1. Rather, the crowds in the street (i.e. cluster
1 ∼ 4) and the iphone (i.e. cluster 6, 8, 10) newly emerge in st∗+1.

sets are linked in our network. (i.e. st−1 is connected to st, which is linked to st+1). The basic idea
of our outbreak detection is that if the subtopic distributions at step t−1 and t+1 are different each
other, then the degree distribution of st to st−1 (ft,t−1) and that of st to st+1 (ft,t+1) are dissimilar as
well. Both ft,t−1 and ft,t+1 are |st|×1 histograms, each element of which is the sum of edge weights
of a vertex in st with st−1 and st+1, respectively. In order to measure the difference between ft,t−1
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Figure 3.6: The comparison between the outbreak detection results using images and associated text tags.
(a) The variation of the KL divergence for the grandcanyon topic. The KL divergences of images are
stationary on the timeline whereas those of texts highly fluctuate. (b) The subtopic changes around the two
highest peaks A (05-Nov-2007) and B (16-Aug-2009). We show five subtopics of st∗−1, st∗ , and st∗+1,
in which very little visual variation is observed. (c) We show 15 selected images of two groups tagged by
apple+new+iphone (first row) and whitehouse+christmas (second row) in a chronological order. We observe
the gradually upgraded appearance of the iphone.

and ft,t+1, we use Kullback-Leibler (KL) divergence:

DKL(ft,t+1 ‖ ft,t−1) =
∑
i∈st

ft,t+1(i) log
ft,t+1(i)

ft,t−1(i)
(3.2)

where a higher DKL(ft,t+1 ‖ ft,t−1) indicates a higher subtopic variation from st−1 to st+1.
Fig.3.5.(a) shows an example of KL divergence changes along 142 steps of the apple track-

ing. The peaks of the KL divergence indicate the radical subtopic changes from st−1 to st+1.
We observed the highest peak at step t∗ = 63, where st∗ is distributed in [May-2007, Jun-2007].
Fig.3.5.(b) represents ten subtopics of st∗−1, st∗ , and st∗+1, which are significantly different one
another.

3.3.3 Comparison with Text Analysis

In this section, we empirically compare the image-based topic analysis with the text-based one.
One may argue that similar topical evolution can be also detected by analyzing the associated texts
with images. However, our experiments show that the associated texts cannot fully characterize
the information from the images. First of all, 13.7% of images in our dataset have no text tags. It
may be reasonable because the Flickr is a photo-sharing site, and thus its users care less about text
annotations. As a more compelling justification, we perform the outbreak detection task in previous
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section using images and their associated tags. Using the same algorithm, the only difference
between the two tests is the features: the spatial pyramids of SIFT and HOG for images and term
frequency histograms for texts. Fig.3.6.(a) shows an example of outbreak detection using images
and texts for the grandcanyon topic, which is one of the most stationary and coherent topics in our
dataset (i.e. no matter when the images are taken, the majority of them are taken for the scenes of
the Grand Canyon). The image-based analysis successfully detects its intrinsic stationary behavior.
However, the plot for text tags highly fluctuates mainly because tags are subjectively assigned by
different users with little consensus. Such mismatch between images and associated texts is a
well-known noise source of Web image search.

Another important advantage of image-based temporal analysis is that it can convey more del-
icate information that is hardly captured by text descriptions. Fig.3.6.(b) shows two typical exam-
ples from the apple and the white+house. When a new iphone is released, the emergence of the
iphone subtopic can be detected via both images and texts. However, the images can reveal more
intuitively the upgraded appearance, new features, and visual context around the new events.

3.3.4 Temporal Association for classification
As studied in neuroscience research [Sinha et al., 2006; Wallis and Bulthöff, 2001], humans can
perceive and remember better the temporally connected visual information rather than the discon-
tinuous one. Inspired by this study, we perform a preliminary test about the effect of training using
temporal consistency on the image classification task. Presumably, the subtopics that consistently
appear along the timeline are likely to be more closely connected to the first meaning of the topic
rather than the ones that are observed during only a short period of time. For example, the fruit
apple is likely to steadily exist in the apple image set, which may be a more representative subtopic
of the apple rather than a specific model of an early Mac computer. In this experiment, we compare
the classification performance between using two different training sets for the extremely diverse
Flickr images. The first training set is constructed by selecting the images that are temporally and
visually associated, and the other set is randomly chosen without using any temporal information.

Since our similarity network links temporally close and visually similar images, the dominant
subtopics and their central images correspond to large clusters and hub nodes of the graph, re-
spectively. Therefore, we choose the images with high stationary probabilities as temporally and
visually strengthened images, given that the stationary probability is a popular centrality measure
of the node for the graph analysis. However, our network may not be complete for this purpose
in that we only connect the images in the local neighborhood of temporal space. In order to cope
with such incompleteness, we generate training sets by the Metropolis-Hasting (MH) algorithm as
follows.

We first compute the stationary probability πG of the network G by solving πG = G̃
T
πG with

‖πG‖1 = 1, where G̃ is the row-normalized G. Since a general suggestion for a starting point in
the MH algorithm is to begin around the modes of the distribution, we start from an image so with
the highest πG(s). Then, from a current image s, we sample a next candidate image s∗ using a
proposal distribution q(s1, s2) that is based on a random surfer model as follows.

α = min

(
πG(s∗)q(s∗, st−1)

πG(st−1)q(st−1, s∗)
, 1

)
where q(i, j) = λw̃ij + (1− λ)πG(j). (3.3)
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In Eq.3.3, the candidate s∗ is chosen by following an outgoing edge of the st−1 in the network
G̃ with probability λ, but randomly resampling it according to the πG with probability 1 − λ. A
larger λ observes more the local link structure while a smaller λ relies on πG more. The candidate
s∗ is accepted with probability α in Eq.(3.3) where w̃ij is the element (i, j) of G̃. We repeat this
process until the desired numbers of training samples are selected.

For binary classification tests, we generate the positive training set of each topic in two different
ways. We sample 256 images by using the above MH method (called Temporal training) and
randomly choose the same number of images (called Random training). For the negative training
images, we randomly draw 256 images from the other topics of Flickr dataset. For the test sets, we
use the images retrieved from Google Image Search by querying the same query words in Table

Figure 3.7: Comparison between the binary classification performance between the Temporal training and
the Random training. (a) Classification accuracies of selected 20 topics. (b) Corresponding Precision-
Recall curves. The number (n,m) underneath the topic name indicates the average precision of (Random,
Temporal).
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3.1. The Google Image Search provides relatively clean images in the highest ranking. Since
we would like to test whether the temporally associated samples are better generalization of the
topic, the Google images are more suitable for the test sets of this experiment than the images from
the noisy Flickr dataset. Finally, the positive test set of each topic is the 256 top-ranked Google
images of the topic, and the negative test set is Google images that are randomly selected from the
other topics. Note that in each run of experiment, only the positive training samples are different
between Temporal and Random tests. As the binary classifier, we use the 128 nearest neighbor
voting [Torralba et al., 2008], because it is one of the simplest classifiers and thus it can show the
effects of training sets more directly. We repeat experiments ten times, and report the mean scores.

Fig.3.7 summarizes the comparison of classification performance between the Temporal and
the Random training. Fig.3.7.(a) shows the classification rates for the selected 20 topics. The
accuracies of Temporal training are higher by 8.05% than that of Random training on average.
Fig.3.7.(b) presents the corresponding precision-recall curves, which show that the temporal as-
sociation significantly improves the confidence of classification. The Temporal training is usually
better than the Random training in performance, but the improvement is limited in some topics. In
severely variant topics (e.g. advertisement and starbucks), the temporal consistency is hardly cap-
tured. In excessively stationary and coherent topics (e.g. butterfly+insect and parrot), the random
sampling is also acceptable.

3.4 Summary

We present a nonparametric approach for modeling and analysis of the dynamic behaviors of Web
image collections. A sequential Monte Carlo based tracker is proposed to capture the subtopic
evolution in the form of the similarity network between images. In addition to the newly developed
framework, the major empirical contributions and observations of this chapter are as follows.

• We perform the subtopic outbreak detection, which points out when the topical contents of
image sets rapidly change.

• We show that the images can be a more reliable and delicate source of information to detect
the topical evolution than tag texts.

• We show that training using the temporal association can improve image classification per-
formance especially for extremely diverse Web images.

27



Chapter 4

Time-Sensitive Image Retrieval and Prediction

4.1 Introduction

As digital images are gaining popularity as a form of communicating information online, image
search and retrieval has become an indispensable feature in our daily Web uses. Most commer-
cial Web image search engines such as Bing, Google, and Yahoo largely rely on the text-based
approach [Cui et al., 2008], in which given a query keyword, relevant pictures are retrieved and
ranked by matching textual information of images such as surrounding texts, titles, or captions. Al-
though the text-based image search has been successful as an effective and scalable image retrieval
approach, it suffers from ambiguous and noisy results due to the mismatch between images and
their surrounding texts. Moreover, it is still limited to correctly exploit visual contents of images
and identify implicit or explicit search intent of a user.

In this chapter, we study one additional aspect to improve image search quality: temporal
dynamics of image collections. In other words, given Web image collections associated with key-
words of interest, we aim at identifying their characteristic temporal patterns of occurrences on the
Web, and leveraging them to improve search relevance at a query time. This problem is closely re-
lated to one recent emerging research in information retrieval: exploring the temporal dynamics of
Web queries to improve search relevance [Dakka et al., 2008; Kulkarni et al., 2011; Metzler et al.,
2009; Radinsky et al., 2012]. Many queries are time-sensitive; the popularity of a query and its
most relevant documents change over time. For example, a statistical analysis of Web query logs in
[Metzler et al., 2009] reported that more than 7% of queries have implicitly temporal intents (e.g.
miss universe, Olympics). Moreover, many of them are connected to the events that have occurred
with predictable periodicity. This new area of research has cast a variety of interesting research
questions, for example, identifying search terms that are sensitive to time, and reranking docu-
ments according to the query time. However, much of previous work has targeted at the search of
text documents such as blogs and news archives by analyzing the query log data; the time-sensitive
Web image retrieval has yet received little attention.

With our experiments on more than seven millions of Flickr images, we have found three
good reasons why the discovery of temporal patterns in Web image collections is beneficial to
existing image retrieval systems. We present them with a query example of the cardinal in Fig.4.1.
First, knowing when search takes place is useful to infer users’ implicit search intents. Fig.4.1.(a)
shows the top ten images retrieved by Google and Bing image search engines. Seemingly, they
are reasonable because the cardinal usually refers to the red bird in America. However, the term

28



Figure 4.1: Overview of time-sensitive Web image ranking and retrieval with a query example of the
cardinal. (a)-(b) Top ten images retrieved by Google/Bing and Flickr search engines at 7/31/2012. (c) The
results of our time-sensitive image retrieval for two query time points in winter and summer. (d) The result
of our personalized image retrieval for a designated time and user.

cardinal is polysemous; it is also the names of popular sports teams (e.g. the American football
and the baseball team). Therefore, some of cardinal queries in summer and winter are likely to be
associated with the baseball and football team, respectively, according to the scheduled seasons of
the sports.

Second, the timing suitability can be used as a complementary attribute to relevance. Fig.4.1
illustrates two such cases: One is that, as shown in Fig.4.1.(a), due to explosion of images shared
on the Web, there are redundantly relevant images to popular queries like the cardinal. Timing
suitability would be a good complementary ranking attribute to improve diversity or break ties
between almost equally relevant images. The other case is that, in Fig.4.1.(b), the actual user
images in the photo-sharing site Flickr are extremely diverse, and thus it is still very challenging
to rank those images in any meaningful order. As shown in Fig.4.1.(c), the query time information
can help obtain a more focused search output, which may include the images about a cardinal bird
in snowy field in winter, but the images of baby cardinals or eggs in summer.

Third, temporal information is synergetic in personalized image retrieval. If a query word has
a broad range of concepts, its dominant usages vary much according to users. Our experiments
show that once we can identify a user’s preference, image retrieval can be further specific since the
term usages of individual users are relatively stationary. For example, as shown in Fig.4.1.(d), if
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Figure 4.2: (a) Given an image sequence of world+cup up to 12/31/2008, can we guess what images are
likely to occur at a future time point tq=6/6/2009? (c) Collective image prediction. The world+cup usually
refers to the soccer event, so a soccer scene can be a reasonable guess. However, the actual Web images are
diverse because they reflect different users’ experiences and preferences. (d) Personalized image prediction
for user u6. A user’s unique angle of seeing the topic can make the prediction more focused.

a user took or searched cardinal pictures a lot for a basketball team last winter, he tends to do the
same this winter as well.

Problem Statement: As an input, we gather a large-scale pool of Web images along with
metadata (e.g. timestamps, owners) by querying Q topic keywords from a text-based image search
engine. We use raw Flickr images since our time-sensitive image retrieval is more interesting for
extremely diverse general users’ photos rather than sufficiently cleaned-up Google or Bing images.
In this work, our objective is two-fold: Our first goal is to automatically model the temporal
properties of each topic keyword, because every topic is not necessarily time-sensitive, and has
its own characteristic temporal behaviors. The second goal is to leverage the learned temporal
models to rank the images in database according to temporal suitability when a topic keyword and
a query time are given. We also address the personalized time-sensitive image ranking, which is
customized image retrieval for a designated user.

Web image prediction: In real scenarios, the query time is usually now (i.e. the time when
the search takes place), but we assume that it can be any time even in future for generality. How-
ever, if the query time is in future, we have to learn users’ photo-taking patterns and extrapolate
likely images for the future query time. We call such time-sensitive image retrieval with a future
query time point as the image prediction task. For better understanding, Fig.4.2 shows the image
prediction task with an example of the world+cup query. Suppose that we download the image
database from Flickr for the world+cup keyword up to 12/31/2008. The objective here is to es-
timate what would be the most likely pictures that are taken in a future query time, for example,
6/6/2009, and retrieve images similar to them from the database. As Fig.4.2.(c) has shown, the
pictures actually taken at 6/6/2009 and shared on Flickr are not necessarily about the best pos-
sible world cup pictures (if the definition of best is even possible). Instead, they are the pictures
that not only reflect the semantic meaning of the keyword, but also people’s intends at that given
moment of time. Furthermore, if a user cue is supplemented, the image prediction becomes highly
personalized as shown in Fig.4.2.(d), given that individual users have their own preferences and
photo-taking styles. Although the term world+cup usually refers to the international soccer event,
it is also commonly used in other international sports and competitions (e.g. ski, skate, bicycle, or

30



horse riding, as shown in Fig.4.2.(a)), which are usually held periodically. With the majority of
Web photos now coming from hundreds of millions of general users with different experiences and
preferences, the contents of images that are associated even with the same keyword can be highly
variable according to who took the pictures when.

Proposed method: Our objectives are accomplished by a unified statistical model: regular-
ized multi-task regression on multivariate point process. We view an observed image stream as
an instance of multivariate point process, which is a stochastic process that consists of a series
of random events occurring at points in time and space [Daley and Vere-Jones, 2003]. Then, we
automatically test what temporal models or their combinations are the best to describe the image
occurrence behaviors, and formulate a regression problem to learn the historical relations between
image occurrence probabilities and various temporal factors or covariates that influence them (e.g.
seasons, dates, and other external events). From the learned models, we can easily compute the
ranking scores of images for any given time point. For a more accurate ranking, We explore the
idea of multi-task learning to incorporate multiple types of image representation. Consequently,
our algorithm offers several important advantages for large-scale image retrieval as follows: (i)
Flexibility: The image occurrence on the Web is correlated with a wide range of factors or co-
variates (e.g. season, time, user preference, and other external events). We can easily build a set
of parametric models to capture any number of possible temporal behaviors of image collections,
and automatically choose the most statistically suitable ones (Section 4.4.1). (ii) Optimality: We
can achieve a globally optimal or approximate solution to the learning of temporal models (Sec-
tion 4.4.4). (iii) Scalability: The learning is performed offline once, and the online query step is
very fast. Both processes run in a linear time with most parameters such as time steps and the
number of image descriptors (Section 4.5.3). (iv) Retrieval accuracy: We perform experiments on
more than seven millions of Flickr images over a wide range of 30 topic keywords. We demon-
strate that our image retrieval algorithm outperforms other candidate methods including Ranking
SVM [Joachims, 2002], a PageRank-based image retrieval [Jing and Baluja, 2008; Kim et al.,
2010] and a generative author-time topic model [Rosen-Zvi et al., 2004] (Section 4.6).

4.2 Problem Formulation

We assume that each of input Flickr images is assigned to topic keywords, timestamp, and owner
ID. In addition to such meta-data from Flickr, we extract two types of information modalities:
image description and user description.

4.2.1 Image Description
In this work, we extract four different image descriptors because no single descriptor can com-
pletely capture various contents of an image, and thus leveraging multiple descriptors is a widely
accepted common practice in recent computer vision research. The four descriptors that are ex-
plained below can be classified into two low-level (SIFT and HOG) and two high-level descriptors
(Tiny and Scene), all of which are extracted by using publicly available codes1.

1 We use following codes: (SIFT) at http://www.vlfeat.org, (HOG) at http://www.cs.brown.edu/∼pff/latent, (Tiny)
and (Scene) at http://people.csail.mit.edu/jxiao/SUN/.
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Color SIFT (SIFT): We densely extract HSV color SIFT on a regular grid at steps of 4 pixels.
We form 300 visual words by applying K-means to randomly selected SIFT descriptors. The
nearest word is assigned to every SIFT, and binned using a three-level spatial pyramid.

HOG2x2 (HOG): We also use the histogram of oriented edge (HOG) feature, inspired by its
recent success in object detection research [Felzenszwalb et al., 2010]. We extract HOG descriptors
on a regular grid at steps of 8 pixels by following the method called HOG2x2 in [Xiao et al., 2010].

Tiny Image: Inspired by [Torralba et al., 2008], we resize each image to a 32×32 tiny color
image, and use RGB pixel values as features. This approach not only reduces image dimensionality
to be computationally feasible, but also is discriminative enough to convey high-level statistics of
the image.

Scene description: Since a large portion of Web images contain scenes, the scene classifier
outputs can be a meaningful high-level description of an image. SUN database [Xiao et al., 2010]
is an extensive dataset of 397 scene categories. As a scene descriptor, we compute the scores of
linear one-vs-all SVM classifiers for 397 scene categories using Hog2x2 features, by following the
classification benchmark protocol in [Xiao et al., 2010].

Visual clusters: Since all the above descriptors except (Scene) are high-dimensional (e.g.
6,300 of (SIFT)), they are down-sampled further by the soft-assignment idea. For each descriptor
type k, we construct Lk(= 300) visual clusters by applying K-means to randomly sampled image
descriptors. Then, an image I is assigned to r-nearest visual clusters for each descriptor type
with the weights of an exponential function exp(−d2/2σ2), where d is the distance between the
descriptor and the visual cluster and σ is a spatial scale. Consequently, an image I is described by
four L1 normalized vectors with only r nonzero weights, which are denoted by {hk(I)}4

k=1 with
dimensions of [Lk]

4
k=1 = [300 300 300 374]. We also let L =

∑
Lk = 1274.

4.2.2 User Description

Clustering users and measuring similarity between users are important for personalization in col-
laborative filtering [Das et al., 2007]. Its basic assumption is that similar users are likely to share
common photo taking and search behaviors. For clustering users, we use the pLSA (Probabilistic
latent semantic analysis) clustering as proposed in Google News personalization [Das et al., 2007].
We first choose a fixed number of top users who have uploaded images most, and compute an
L-dimensional histogram for each user where each bin represents the count of images belonging to
the corresponding visual cluster. In pLSA, the distribution of visual cluster v in user ui’s images,
p(v|ui), is given by the following generative model:

p(v|ui) =
∑
z∈Z

p(v|z)p(z|ui). (4.1)

The latent variable z ∈ Z represents the cluster of user propensity. Thus, p(z|ui) is proportional
to the fractional membership of user i to cluster z. We use p(z|ui) as the descriptor of user ui.
The user clustering can be done by grouping users with the same z∗ = argmaxz p(z|ui) or run K-
means on the user descriptors p(z|ui). The user similarity is calculated by histogram intersection
on the user descriptors.
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Figure 4.3: A multivariate point process for a short image stream of the hornet. (a) Each image is assigned
to a timestamp and visual clusters of two different descriptors (K = 2, L1 = 3, L2 = 4). (b) The image
stream is modeled by two multivariate discrete-time point processes.

4.3 Multivariate Point Processes

In this section, we discuss the mathematical background of multivariate point process for modeling
Web photo streams. Fig.4.3 shows a toy example for a short image stream of the hornet. Suppose
that we extract K image descriptors from each image, and for each descriptor, we cluster the
images into Lk visual clusters (In this example, K = 2, L1 = 3, L2 = 4). Intuitively, one can
easily construct K multivariate point processes as shown in Fig.4.3.(b). For simplicity, we first
assume that the occurrence of each visual cluster is independently modeled. Hence, the point
process of Fig.4.3 can be regarded as a single multivariate point process with L = L1 + L2 = 7.
In section 4.4.3, we will consider an extended multi-task framework with considering correlations
between different descriptors.

Intensity functions: Since the intensity function can completely define a point process [Daley
and Vere-Jones, 2003], we first introduce its definition. Formally, a multivariate point process can
be described by a counting processN (t) = (N1(t), · · · , NL(t))T where N l(t) is the total number
of observed images assigned to visual cluster l in the interval (0, t]. Then, N l(t + ∆) − N l(t)
represents the number of images in a small interval ∆. By letting ∆ → 0, we obtain the intensity
function at t, which is the infinitesimal expected occurrence rate of visual cluster l at time t [Daley
and Vere-Jones, 2003]:

λl(t) = lim
∆→0

P [N l(t+∆)−N l(t) = 1]

∆
, l ∈ {1, . . . , L}. (4.2)

Generalized Linear Model: We assume that the intensity function λl(t) is represented by
the covariates that influence the occurrence of visual cluster l. We define the parametric form of
λl(ti|θl) as the exponential of a linear summation of the functions f lj of the covariates xj with a
parameter vector θl = (θl1, · · · , θlJ):

log λl(ti|θl) =
J∑
j=1

θljf
l
j(xj), l ∈ {1, . . . , L}. (4.3)
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Data likelihood: Suppose that we partition the interval (0, T ] by a sufficiently large number
M (i.e. ∆ = T/M ) so that in each time bin ∆ only one or zero image occurs. Then, we can denote
the sequence of images up to T by N l

1:M = nl1 · · ·nlM with nli ∈ {0, 1}. It is shown in [Truccolo
et al., 2005] that the likelihood of such a point process along with λl of Eq.(4.3) is identical to that
of the Poisson regression. Therefore, the log-likelihood of an observed image sequence is

`(N l
1:M |θl) =

M∑
i=1

(
niλ

l(ti|θl)− exp(λl(ti|θl))− log ni!
)
. (4.4)

L1 regularized likelihood: Although numerous factors or covariates can be plugged in Eq.(4.3),
each visual cluster is likely to depend on only a small subset of them. Hence, it is important to
detect a few strong covariates by encouraging a sparse estimator of θl for each visual cluster l. This
approach is also practical because we usually do not know what factors are important beforehand;
we safely include as many candidate factors as possible, and then choose only a few covariates for
each visual cluster via MLE learning. Therefore, we introduce Lasso penalty [Tibshirani, 1996]
into the likelihood of Eq.(4.4) with a regularization parameter µ controlling sparsity level:

`L(N l
1:M |θl) = `(N l

1:M |θl)− µ
J∑
j=1

|θli|. (4.5)

4.4 Temporal Modeling of Photo Streams

Our first objective is to identify the temporal properties of a given image stream. This goal is
achieved via the learning of temporal models as follows. We first represent the image stream
with a multivariate point process {N l

1:M}Ll=1 as described in previous section. Then, we define
multiple models for λl(ti|θl) by enumerating all possible temporal factors that influence the image
occurrences (section 4.4.1). Finally, for each occurrence data N l

1:M of visual cluster l, we select
a subset of most statistically plausible models (section 4.4.2), and learn the parameters θl∗ of the
models to discover which factors are actually contributing (section 4.4.4). Note that the whole
processes above can be automatically performed.

4.4.1 Models of Temporal Behaviors

In this section, we enumerate a set of models for the intensity functions, each of which is designed
to capture a particular temporal property. Thanks to the flexibility of our framework, one can freely
add or remove such models according to the characteristics of image topics unless they contradict
the definition of Eq.(4.3). In this work, we construct two groups of models: temporal attributes
and traditional time series.

Temporal attributes: Humans’ time perception and photo taking and search behaviors are not
only continuous on time but also driven by temporal attributes. For example, zoo photos may be
more frequently taken in weekend rather than in weekdays, or ski images appear more often in
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January than in June. Therefore, we build a set of intensity function models for temporal attribute-
driven covariates as follows.

log λly(ti|αl) = αl0 +
Yt∑

y=Ys

αlyIy(ti) (4.6)

log λlm(ti|βl) = βl0 +
12∑
t=1

βltg(ti − t) (4.7)

log λld(ti|γ l) = γl0 +
12∑
t=1

It(ti)
31∑
d=1

γli,dId(ti) (4.8)

log λlw(ti|ζl) = ζ l0 +
∑

w∈{M,...,S}

ζ lwIw(ti) (4.9)

log λlh(ti|ηl) = ηl0 +
∑
h∈H

ηlhIh(ti). (4.10)

In equations, λly, λ
l
m, λld, λ

l
w, and λlh are the models of intensity functions for years, months, days,

weekdays (from Monday to Sunday), and holidays2, whose lists are denoted byH. The parameter
set to be learned comprises {αl,βl,γ l, ζl,ηl}. Iy(ti) is an indicator function that is 1 if the year
of ti is y, and 0 otherwise (e.g. Iy(ti) = 1 if y = 2008 and ti= 6/3/2008). Similarly, Iw(ti) and
Ih(ti) are indicators for week and holidays. For month covariates, we use Gaussian weighting
g(ti−t) ∝ exp(−(ti−t)2/σ), which leads that if an image occurs in May, for example, some
contributions are also given to nearby months like April and June, assuming that images smoothly
change on the timeline.

Here, our models are mainly built based on calendric temporal attributes, but the models driven
by other textual or social factors (e.g. news articles) can be supplemented.

An example: Fig.4.4 is a toy example of the shark topic to intuitively show how the intensity
function models are used for fitting observed image streams. This example illustrates the intensity
function models for years (λly of Eq.(4.6)) and months (λlm of Eq.(4.7)), where the parameter
set comprises seven [αly]

2009
y=2003 and twelve [βlm]12

m=1. Fig.4.4.(a) shows four sampled images from
three visual clusters, each of which approximately corresponds to sea tour, ice hockey, diving in
aquarium. Fig.4.4.(b) presents their actual occurrence sequences. Fig.4.4.(c)-(d) show the learned
intensity functions λly and λlm. Most of intensity functions for years roughly increase every year
because the number of uploaded photos in Flickr grows yearly. The rates decrease in 2009 because
the shark dataset is gathered up to mid 2009. Interestingly, the visual clusters show different
monthly behaviors in Fig.4.4.(d). λ1

m has a higher intensity value (i.e. more frequently occurred)
in June, λ2

m peaks around January, and λ3
m is stationary all year long. This result is reasonable

because sea tours are popular in summer, the ice hockey season takes place during winter, and
visiting aquarium is favored regardless of season. The learned intensity functions can be used for
a simple time-sensitive image retrieval. For example, if the month of the query time tq is January,
then λ2

m(tq)� λ3
m(tq) > λ1

m(tq). Hence, we can rank the images of v2 (i.e. the ice hockey) as the
highest.

2We use the lists at http://vpcalendar.net/Holiday Dates/.
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Figure 4.4: Examples of intensity function models of years and months for three visual clusters (VC) of
the Shark: v1(sea tour), v2(ice hockey), v3(diving in aquarium). (a) Four images sampled from each VC.
(b) Observed image occurrences. (c)-(d) Estimated intensity functions for years and months. λ1

m and λ2
m

have different image occurrence rates peaked in summer and winter, respectively. λ3
m is stationary along the

timeline.

Autoregression: The other group of temporal models is based on autoregression, which is one
of most popular models for the analysis of time series. We present an example in Fig.4.5 for
better understanding. We assume that the occurrence of each visual cluster is affected by its own
history in Eq.(4.11), and the history of other visual clusters in Eq.(4.12). The first history model is
represented by a linear autoregressive process:

log λla(ti|φl) = φl0 +

Pd∑
p=1

φldp∆N
l
i−dp +

Pw∑
p=1

φlwp∆N
l
i−wp +

Pm∑
p=1

φlmp∆N
l
i−mp (4.11)

where ∆N l
i−dp denotes the occurrence counts of visual cluster l during [ti − dp, ti), and d is the

time window width. In Eq.(4.11), we use three different time windows: d = 1 day, and w =1
week, and m = 1 month. That is, λla is modeled by three different time-scaled (daily, weekly,
and monthly) regressors whose orders are Pd, Pw, and Pm, respectively. The history model can
capture the dynamic behavior of a visual cluster. As shown in Fig.4.5.(c), the learned parameters
of v1 (top) and v2 (middle) show the typical patterns for yearly periodic behaviors, whereas the
parameters of v3 (bottom) are biphasic, which indicates a bursty occurrence.

The second correlation model represents the influence from the history of other visual clusters.
Its mathematical form is almost identical to that of Eq.(4.11):

log λlc(ti|ψl) = ψl0 +
L∑

c=1,c 6=l

(
Qd∑
q=1

ψlcdq∆N
l
i−dq +

Qw∑
q=1

ψlcwq∆N
l
i−wq +

Qm∑
q=1

ψlcmq∆N
l
i−mq

)
. (4.12)
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Figure 4.5: Examples of the Penguin topic for the learned parameters of history and correlation compo-
nents. Visual clusters are {penguins in landscape, penguins on grass, ice hockey team}. (a) Four images
sampled from each visual cluster. (b) Observed occurrence data. For simplicity, we only consider the gran-
ularity of month. The v1 and v2 are strongly synchronized and periodically peaked in summer, whereas
the v3 has two high peaks in winter. (c)-(d) Learned parameters of history and correlation components,
respectively.

The parameter set consists of (L−1)× (Qd +Qw +Qm) + 1 number of ψ in the full model. This
correlation component is quite useful for the actual prediction in the Flickr dataset; we observe
that there are strong correlations between visual clusters, and thus the existence or absence of a
particular visual cluster gives a strong clue for others’ prediction. The learned parameters ψm∗ in
Fig.4.5.(d) clearly capture the correlations observed in Fig.4.5.(b). For example, the subfigures of
ψ12
m∗ and ψ21

m∗ in Fig.4.5.(d) show that the occurrence of v1 and v2 are highly synchronized, whereas
the subfigures of ψ13

m∗ and ψ23
m∗ illustrate the occurrence of v3 precedes those of v1 and v2 by about

four months. For fast computation, instead of using the full pairwise model, we can learn the
correlations with respect to some selected most frequent visual clusters.

4.4.2 Model Selection
In previous section, we introduce rather exhaustive seven temporal models from Eq.(4.6) to Eq.(4.12).
However, the occurrence of each visual cluster does not necessarily depend on all the above mod-
els. For example, the occurrence of the ice hockey visual cluster v2 of Fig.4.4 can be explained
sufficiently well by the month intensity function model λlm while other models may not be required
any further. Therefore, we perform a model selection procedure, to choose a subset of temporal
models by removing the ones with little or no predictive information. Mathematically, the param-
eter for visual word l can be defined by concatenating the parameters of seven temporal models
θl = [αl,βl,γ l, ζl,ηl,φl,ψl], most of which will be zeros.

Algorithm 2 summarizes the overall procedure of our model selection. It is based on the well-
known greedy forward selection scheme, in which we keep increasing models one by one by adding
at each step the one that increases the goodness-of-fit score the most, until any further addition
does not increase the score. As the goodness-of-fit test, we use Kolmogorov-Smirnov (KS) test
using time-rescaling theorem [Brown et al., 2001], which is one of most popular approaches for
statistical model assessment in point process literature. The KS statistic is a quantitative measure
for the agreement between a learned intensity function and actual image occurrence data. This
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Algorithm 2: Model selection for each visual cluster

Input: (a) A set of intensity function models in Eq.(4.6)– (4.12): Λl = {λly, λlm, λld, λlw, λlh, λla, λlc}.
(b) N l

1:M : Occurrence data of visual cluster l.
Output: The best intensity function model λl∗ with learned parameter set θl∗.

1: Define θi ← param est (λi, N l
1:M ) to be the function that computes the MLE solution of

parameters for a given λi and N l
1:M . This will be discussed in section 4.4.4.

2: For λla and λlc, decide the AR orders using AIC measure: AIC(P ) = −2 log `(N l
1:M |θt) + 2P

where P is the total number of parameters.
foreach λi ∈ Λl. do

3: Compute θi ← param est (λi, N l
1:M ).

4: Compute KS static di by applying time rescaling theorem to the learned λi(θi) and N l
1:M .

5: Sort λi in an increasing order. Let o to be this order. Initialize λl∗ = argminλi∈Λl di and
dl∗ = min di.
repeat

foreach λi ∈ Λl and λi /∈ λl∗ in the order of o. do
6: Set λt = λl∗i · λi. θt ← param est (λt, N l

1:M ).
7: Compute KS static dt as done in step 4.
if dt < dl∗ then λl∗ ← λt, dl∗ = dt, and θl∗ = θt.

until λl∗ is not updated;

value is a distance metric, and thus a smaller value indicates a better model. In step 2 of Algorithm
2, the orders of the autoregressive models, λla of Eq.(4.11) and λlc of Eq.(4.12), are decided by
Akaike’s information criterion (AIC). We choose the order parameters that lead to the smallest
AIC, implying that the approximate distance between the model and the true process generating
the data is the smallest. In practice, this step is important because temporal behaviors of visual
clusters can operate at different time scales (i.e. monthly, weekly, or daily).

4.4.3 Regularized Multi-Task Regression

Until now, each visual cluster is independently modeled and learned without considering which
description it is derived from. In order to fully take advantage of any arbitrary number of image
descriptions, we introduce the idea of multi-task learning [Chen et al., 2011; Liu et al., 2009b], in
which multiple related tasks are jointly learned by analyzing data from all of the tasks at the same
time. This framework is powerful when the multiple tasks of interest are different enough to be
specified by separate models, but are at the same time similar enough to be jointly learned.

We treat each descriptor as a task. Since each descriptor characterizes an image from a dif-
ferent perspective, it should be separately expressed. However, at the same time, it is likely that
the descriptors from the same image share enough correlation that makes simultaneous learning
beneficial. For example, suppose that a large portion of images of visual cluster 35 of HOG are
also assigned to visual cluster 27 of Scene descriptors. It indicates that these two visual clus-
ters are highly correlated, and thus are likely to share common covariates affecting their occur-
rences. Algorithm 3 discovers the set of frequently co-occurred visual cluster pairs as E , where
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Algorithm 3: Build the correlation set E .
Input: (1) A set of images I, each of which is assigned to the closest visual clusters of K descriptors.
Output: The correlation set E .

1: Initialize K(K−1)/2 number of co-occurrence matrices C, where Cab ∈ C is an (La×Lb) zero
matrix between descriptor a and b.
foreach I ∈ I. Let visual cluster of I be (v1, . . . , vK) do

foreach a, b ∈ {1, . . . ,K} with a 6= b do
2: Cab(va, vb)← Cab(va, vb) + 1.

foreach a, b ∈ {1, . . . ,K} with a 6= b do
3: Cab = row normalize(Cab) + column normalize(Cab).

3: Select top R highest edges (va, vb) from C. The weight of a pair is rab ∝ Cab(a, b)/|I|. Set
E ← (va, vb, rab).

e = (va, vb, rab) ∈ E consists of three tuples: a pair of visual clusters va and vb with correlation
weight rab > 0. We can model this dependency structure across multiple tasks (e.g. the correla-
tions between the visual clusters of different image descriptors) by introducing regularization term
Ω(ΘE) to the log-likelihood:

L =
∑
l∈E

`(N l
1:M |θlk)− Ω(ΘE) (4.13)

Ω(ΘE) = µ
∑
l∈E

‖θlk‖1 + ν
∑

(a,b)∈E

rab

J∑
j=1

|θaj − θbj |. (4.14)

The regularization term Ω(ΘE) consists of two different types of penalties, which are the Lasso
penalty [Tibshirani, 1996] and graph-guided fusion penalty [Chen et al., 2011]. µ and ν are reg-
ularization parameters that control sparsity and fusion levels. The overall effect of graph-guided
fusion penalty is that each subgraph of visual clusters in E tends to share common relevant covari-
ates, and the degree of commonality is proportional to the correlation strength rab.

4.4.4 Optimization for Parameter Learning
The goal of parameter learning is to obtain the MLE solution θl∗ that maximizes the likelihood with
respect to an intensity function model λl and an observed image sequenceN l

1:M for all l = 1, . . . , L.
Alternatively, if we explicitly represent the descriptor k as subscript, the set of parameters is de-
noted by Θ∗ = {Θ∗1, . . . ,Θ∗K} where Θ∗k = {θ1∗

k , · · · ,θ
Lk∗
k } is the set of learned parameters for

all visual clusters of descriptor k. We have introduced three likelihoods with different regulariza-
tions, which are optimized differently. First, the likelihood of Eq.(4.4) with no regularization term
reduces to that of Poisson regression, and the globally-optimal solution can be attained by an itera-
tively reweighted least square algorithm [Daley and Vere-Jones, 2003]. Second, for the likelihood
of Eq.(4.5) with the Lasso penalty, the globally-optimal MLE solution can be achieved by using
the cyclical coordinate descent in [Friedman et al., 2010]. Finally, for the likelihood of Eq.(4.13)
with the graph-guided fusion penalty, we obtain an approximate MLE solution by modifying the
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Figure 4.6: A toy example of computing ranking scores of two mountain+camping images I1 and I2 for
tq = (01/01/2009) with (K = 2, L1 = 10, L2 = 15). (a) Two membership vectors p1(tq) and p2(tq)
are computed from the learned intensity functions. (b) Two descriptor vectors h1 and h2 are extracted from
each image, and the ranking scores s(I1; tq) and s(I2; tq) are computed by Eq.(4.15). I1 has a higher ranking
value (0.9404) than I2 (0.3071) for the tq.

Proximal-gradient method [Chen et al., 2011], which is a scalable first-order method (i.e. using
only gradient) with a fast convergence rate. We extend this method that was originally developed
for linear regressions to be applicable to the regularized Poisson regressions.

4.5 Time-Sensitive Image Retrieval

In this section, we discuss our second goal, which is to perform image ranking using the learned
temporal models.

4.5.1 Predictive Ranking

Computing intensity functions: As a result of optimization, we have the learned parameters of
all visual clusters of all K descriptors: Θ∗ = {Θ∗1, . . . ,Θ∗K}.

In the retrieval step, given a query time tq, we first obtain Λ(tq|Θ∗) = {Λ1(tq|Θ∗1), . . . ,
ΛK(tq|Θ∗K)}, which is the set of intensity functions of all visual clusters of all K descriptors
for tq. (|Λ(tq|Θ∗)| =

∑K
k=1 Lk). Each λlk(tq|θ

l∗
k ) ∈ Λk(tq|Θ∗k) is computed by gathering covariate

values for tq, and plugging them along with learned θl∗k into Eq.(4.3). Here, let us remind that
λlk(tq|θ

l∗
k ) ∝ P (N l

k(tq + ∆)−N l
k(tq)|N l

1:M)3. That is, the intensity function of a visual cluster at
tq is proportional to its occurrence probability at tq. Therefore, for each k ∈ K, we can define a
membership vector: pk(tq) = Λk(tq|Θ∗k)/‖Λk(tq|Θ∗k)‖1(∈ RLk×1), where each pl ∈ pk(tq) is the
membership probability that an image occurred at tq belongs to visual cluster l of descriptor k.

Ranking: The next step is to compute the ranking score of any given image I for tq. We use
the idea of continuous error-correcting output codes (ECOC) [Crammer and Singer, 2002]. We
first extract K image descriptors {hk(I)}Kk=1 by the feature extraction methods in section 4.2.1.

3 It can be easily shown by that λlk is an infinitesimal expected occurrence rate at tq and a series of images is
modeled by a sequence of conditionally independent Bernoulli trials during the derivation of the likelihood function
of Eq.(4.4).
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Then, the ranking score of image I at tq is defined by the histogram intersection4

s(I; tq) =
K∑
k=1

‖min(hk(I),pk(tq))‖1. (4.15)

Fig.4.6 illustrates a toy example of computing ranking scores for two images of the mountain+camping
with K = 2, L1 = 10, L2 = 15. Fig.4.6.(a) shows two membership vectors pk(tq) that are com-
puted from the learned intensity functions for tq=(01/01/2009), and Fig.4.6.(b) illustrates four de-
scriptor vectors for I1 and I2. The pk(tq) are more similar to the descriptors hk(I1) of image I1

(snowy mountain) than hk(I2) of I2 (tracking in woods), and thus image I1 is ranked higher.
The computation of our ranking score is very fast; the histogram intersection requires only

element-wise min operations between K vector pairs. It is also easy to organize the descriptor
vectors of images in the database by using any data structure such as trees or hashes for fast
retrieval.

4.5.2 Personalization

The key idea of personalization is, given a query user uq, to assign more weights to the pictures
taken by uq and similar users to uq during learning. In a normal setting, one image occurrence is
equally counted by one for N l

1:M (See an example in Fig.4.4.(b)). However, for personalization,
the images by uq and the users in the same user cluster with uq are weighted by larger values so
that model fitting is more biased to their images. We implement the personalization by using the
locally weighted learning framework [Atkeson et al., 1997], which is a form of lazy learning for a
regression to adjust the weighting of data samples according to a query.

In order for personalization to be done offline, we exploit this idea at the user cluster level.
Suppose that there are Z user clusters as a result of pLSA based user clustering in section 4.2.2.
We then compute Z×Z pairwise user similarity matrix U by U(x, y) =

√
exp(−(ux − uy)2/σ),

where ux and uy are the user descriptors of cluster centers of Ux and Uy, respectively5. We
separately learn the personalized model for each user cluster Uz, in which the weights of image
occurrences are adjusted by U(z, ∗) (i.e. the z-th row of U). That is, if the owner of an image
I is in user cluster Ux, then the occurrence of image I is reweighted by U(z, x). At the query
stage, given a query user uq, we identify the user cluster to which uq belongs, and then use the
pre-computed learned model of that cluster.

4.5.3 Computation time

Learning: The learning step performs offline only once. The learning time without the graph-
guided fusion penalty isO(L|T |J) while that with the fusion penalty isO(L|T |J2) where |T | is the
number of time steps (e.g. discretized by day), J is the number of covariates, and L =

∑K
k=1 Lk.

For a linear model, our Matlab implementation takes about less than one hour to learn the model
for the 553K of world+cup images with L = 1, 050, |T | = 2, 000, and J = 32.

4 In the ECOC terminology, Eq.(4.15) means that the histogram intersection is chosen as the decoding metric.
5 We use the Gaussian kernel function for user weighting.
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SR(spider), PO(potato), BB(blackberry), GC(grandcanyon), WH(white +house), FA(fine+art), GP(grape), SH(shark), PE(penguin), CA(cardinal),
RA(raptor), CO(coyote), HO(hornet), JA(jaguar), GR(grizzly), SB(snowboarding), YA(yacht), HR(horse+riding), SD(scuba+diving),
MC(mountain+camping), RC(rock+climbing), SP(safari+park), FF(fly+fishing), WC(world+cup), ID(independence+day), FO(formula+one),
TF(tour+de+france), WI(wimbledon), ES(easter+sunday), LM(london+marathon)

Figure 4.7: 30 topics of our Flickr dataset. The topic words are classified into four categories. The total
numbers of images and users are (7,592,426, 1,434,749). The Y -axis is the number of images (×105).

Querying: At the online querying stage, computing the intensity functions for a given query
time tq (and optionally a user uq) runs in O(LJ), and calculating the ranking scores of N images
takes O(LN). The overall querying step takes less than 0.5 second with N = 1K in the same
experiment. Querying is fast enough to run online, but it can be also pre-computed offline, for
example, processing queries for next one year (365 days) can be done within a couple of hours.

4.6 Experiments

We evaluate the performance of our time-sensitive image retrieval algorithm using Flickr datasets.

4.6.1 Evaluation Setting
Datasets: Fig.4.7 summarizes our dataset that consists of more than seven million images of 30
topics from Flickr. We download all images that are retrieved by topic names as search keywords
from Flickr without any filtering. The date taken field of each image provided by Flickr is used
for the timestamp.

Tasks: We first divide each image set into training and test set by time TT = Te−(1 year)
where Te is the end time point of the dataset. That is, for each topic, the test set consists of the
images in the last one year of the database, and the training set IB comprises the other images,
which are used to learn the image occurrence patterns.

Our tasks for experiments are similar to those of other image ranking and retrieval papers [Cui
et al., 2008; Liu et al., 2011; Wang et al., 2011] except that time suitability of retrieved images
is the key performance index to be evaluated. We perform the image retrieval task as follows;
a topic name and a query time point tq > TT are given. That is, tq is a future time point with
respect to training data since TT is the time threshold that separates the training set from the test
set. The images that are actually taken in tq are the positive test set IP . The negative test set IN
is gathered by randomly selecting the same number images outside of [tq±3 months] from the test
set. The algorithm is supposed to rank the test images IP ∪ IN from which average precisions are
computed. The personalized retrieval is the same except that a query user uq is specified at the test.
uq is randomly chosen from a set of users who have at least 100 images in both training and test
sets. For each topic, we randomly generate 36 tq test cases (i.e. three random choices per month)
for normal retrieval, and 20 (tq, uq) test pairs on average for personalized retrieval. That is, we
examine more than 1, 500 test instances in total to evaluate the performance of our algorithm.
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Figure 4.8: Quantitative comparison of image retrieval between our method and three baselines
(RSVM, PageR, Topic) using mAP@40(top) and mAP@80(bottom) metrics. The average performances
for mAP@(40,80) in the left-most bar set are ours: (69.1%,66.7%), RSVM: (58.0%,57.6%), PageR:
(60.1%,58.6%), Topic: (63.5%,59.7%).

Baselines: The time-sensitive image retrieval is relatively new, and thus there are few existing
methods to be compared. Hence, we select and adapt three baselines from popular image ranking
methods for quantitative comparison with our algorithm. Below we summarizes the baselines,
each of which is denoted by (RSVM) [Joachims, 2002], (PageR) [Jing and Baluja, 2008; Kim
et al., 2010], and (Topic) [Rosen-Zvi et al., 2004]. In the personalized retrieval, the locally
weighted learning is also applied to all the baselines.

• Ranking SVM(RSVM) [Joachims, 2002]: We obtain pseudo-relevant and pseudo-irrelevant
training data by sampling images from the training set IT based on their timestamps. The
pseudo-relevant images are randomly sampled from Normal distributions whose mean are
the same dates (m/d) of tq in previous years. The pseudo-irrelevant images are randomly
chosen from the images whose timestamps are outside [date(m/d) of tq± 3 months] at every
year. Then, we learn the Ranking SVM using the code provided by the authors of [Joachims,
2002].

• PageRank-based model(PageR) [Hsu et al., 2007; Kim et al., 2010]: Given the same training
data above, we build a similarity graph between training and test data by using HOG and
SIFT features, and compute ranking scores using the random walk with restart [Tong et al.,
2006] (i.e. a query-specific PageRank).

• Author-Time Topic Model(Topic) [Rosen-Zvi et al., 2004]: We modify the Author-Topic
model [Rosen-Zvi et al., 2004] to jointly model users, months, and visual clusters of images.
Using the same training data above, we estimate the subtopic distribution of each month and
the subtopic assignments of visual clusters, from which we compute the ranking scores of
test images for tq.

4.6.2 Quantitative Results
Fig.4.8 and Fig.4.9 show the quantitative comparison of normal and personalized image retrieval
between our approach and three baselines, respectively. We report the mean average precision at
top 40 and 80 ranked images, which are denoted by mAP@40 and mAP@80. In each figure, the
leftmost bar set is the average performance of 30 topics, and the results of all 30 topics follow.
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Figure 4.9: Quantitative comparison of personalized image retrieval between our method and three base-
lines using mAP@40(top) and mAP@80(bottom) metrics. The average performances for mAP@(40,80)
in the left-most bar set are ours: (82.1%,79.2%), RSVM: (74.3%,72.8%), PageR: (77.4%,75.0%), Topic:
(71.4%,68.7%).

Our algorithm significantly outperformed all the competitors in most topic classes for both tasks.
In the average accuracy of normal retrieval, our mAP@40(80) values are higher by 5.6% (8.0%)
points than the best baseline (Topic). In the average accuracy of personalized retrieval, our
method also outperforms the best baseline (PageR) by 4.7% (4.2%) points for mAP@40(80). The
personalized retrieval is more accurate to rank the images than the normal one, because knowing
the user at query time provides a strong clue to correctly narrow down the search space.

4.6.3 Qualitative Results

Fig.4.10 shows some examples of retrieval comparison between our method in the top row and the
best baseline in the bottom row. We illustrate top eight ranked images by each method, along with
the average images of top 100 images to show the mean statistics of the two output sets. In these
examples, our method reports fewer false positives (i.e. the images with red boundaries) than the
best baselines.

As another qualitative result, Fig.4.11 shows the prediction power of our algorithm for unseen
future images. Fig.4.11.(a) illustrates retrieval results for the independence+day at four tq from
different months. In each set, the top row shows five images that are sampled out of ten highest
ranked predicted images for tq, and the bottom row presents their best-matched actually taken im-
ages. The matched pairs are obtained from one-to-one correspondences by feature-wise distances.
If the matched pairs are similar each other, it means that our algorithm can predict unseen future
images very well. The independence+day is national holidays for many countries with different
dates. Hence, according to four different tq, we can observe various views of the events in different
countries. For example, the second tq (top-right) of Fig.4.11.(a) is near to the US independence
day; the high ranked images show its common storyline: parades, parties with children, and fire-
works at night. They are distinctive with the scenes in the Independence day of India (bottom-left)
and an African country (bottom-right) of Fig.4.11.(a). The mountain+camping in Fig.4.11.(b) is
a relatively stationary topic, in which the majority of pictures contain mountains, rock faces, and
climbers. However, our ranking method can correctly capture the seasonal variation in the scenes,
activities, and people’s outfits. We can make similar observations in the white+house and the
wimbledon topics as well, as shown in Fig.4.11.(c)–(d).

Fig.4.12 illustrates examples of the importance of personalization with four topic keywords.
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Figure 4.10: Comparison of eight top-ranked images for normal image retrieval in (a)–(c) and for personal-
ized image retrieval in (d)–(f), between our method in the top row and the best baseline in bottom row. The
pictures with red boundaries are false positives. We also present average image of top 100 retrieved images
in the left-most of each row.

For example, the raptor topic in Fig.4.12.(a) shows the variation of the term usages including a
basketball team, a fighter aircraft, an eagle, and an ice hockey team, most of which are seemingly
irrelevant to its first semantic meaning as a dinosaur. Each user perceives the term raptor narrowly
for his or her interests, which are relatively stationary and predictable once they are learned. Other
examples in Fig.4.12, including grizzly, jaguar, and hornet, also show that this personal variation
is quite common in online user photo sets, and it can be correctly treated once the user history is
learned.

Our experimental results conclude that some topics follow periodical patterns that are pre-
dictable, and our algorithm can enhance the image retrieval quality according to the temporal
trends. Specifically, our method is successful for polysemous topics that show strong annual or pe-
riodic trends (e.g. sports related topics such as the shark and the hornet), and event topics that many
people share but experience in different ways (e.g. outdoor activities such as mountain+camping).
Moreover, we observe that the time-sensitive personalization is promising for image retrieval when
a query keyword has a broad range of concepts, which are differently recognized according to
people’s thoughts and interests. Although the personalized search has been studied much in text
retrieval research, our results reveal that images can convey more subtle information about user
preferences that are hardly captured by texts.

4.7 Summary

In this chapter, we propose an approach for time-sensitive image ranking and retrieval using multi-
task regression on multivariate point processes. With experiments on more than seven millions of
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Figure 4.11: Examples of normal image prediction at four tq in different months for the topics of (a)
independence+day, (b) mountain+camping, (c) white+house, and (d) wimbledon. In all sets, we first find
one-to-one correspondences between the estimated images Ie and the actual images I+ by the L2 measure,
and then sample five image pairs per month. The first row shows the estimated images by our method,
and the second row depicts their matched actual images. We also present the average images of top 100
estimated images (left) and their best-matched actual images (right).

Flickr images for 30 topic keywords, we show the superiority of the proposed approach over other
candidate methods. The main contributions of this chapter can be summarized as follows.

• We develop an approach for time and optionally user sensitive image ranking and retrieval.
To the best of our knowledge, our work is the first attempt so far on such retrieval algorithms
that leverage the temporal aspects of large-scale Web photo collections.

• We design our image retrieval algorithm using multi-task regression on multivariate point
processes. Although the point process models have been employed for analysis of neural
spiking activities [Truccolo et al., 2005], and for event detection in video [Prabhakar et al.,
2010], no attempt has been made for image retrieval and ranking so far. Consequently, our
algorithm can automatically select and learn stochastic temporal models while satisfying
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Figure 4.12: Examples of personalized image prediction at four different (tq, uq) pairs for the topics of (a)
raptor, (b) grizzly, (c) jaguar, and (d) hornet. In all sets, we first find one-to-one correspondences between
the estimated images Ie and the actual images I+ by the L2 measure, and then sample five image pairs per
month. The first row shows the estimated images by our method, and the second row depicts their matched
actual images. We also present the average images of top 100 estimated images (left) and their best-matched
actual images (right). Although the images are associated with the same keyword, their contents extremely
vary according to users’ interests.

a number of key challenges of Web image ranking, including flexibility, scalability, and
retrieval accuracies.
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Part II

Discovering Overlapping Contents of Image
Collections
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Part II – Discovering Overlapping Contents
of Image Collections

Now we turn our attention to the unsupervised algorithms to detect the recurring contents of
individual images across large-scale image sets. The online photos shared by general users are
extremely diverse, but at the same time, they often share overlapping contents, which are likely to
be statistically meaning visual information. Our methods in this part aim to quickly detect such
repeating contents from the image set in the form of bounding boxes or pixel-wise segmentations.

This part consists of three chapters. First, we propose a fast and scalable alternating optimiza-
tion technique to detect regions of interest (ROIs) in cluttered Web images without any supervision.
The proposed approach discovers highly probable regions of object instances by iterating the fol-
lowing two functions: (i) finding the exemplar set (i.e. a small number of highly ranked reference
ROIs) across the dataset and (ii) refining the ROIs of each image with respect to the exemplar set.

Second, we propose CoSand, a distributed cosegmentation approach for a highly variable
large-scale image collection. The segmentation task is modeled by temperature maximization on
anisotropic heat diffusion. We show that our method takes advantage of a strong theoretic property
in that the temperature under linear anisotropic diffusion is a submodular function; therefore, a
greedy algorithm guarantees at least a constant factor approximation to the optimal solution for
temperature maximization. Our theoretic result is successfully applied to scalable cosegmentation
as well as diversity ranking and single-image segmentation.

Third, we address a challenging image cosegmentation problem called multiple foreground
cosegmentation (MFC), which concerns a realistic scenario in general users’ photo sets over which
a finite number of foregrounds repeatedly occur, but only an unknown subset of them is presented
in each image. Our method builds on an iterative scheme that alternates between a foreground
modeling module and a region assignment module, both of which are highly efficient and scal-
able. In particular, our approach is flexible enough to integrate any advanced region classifiers for
foreground modeling, and our region assignment employs a combinatorial auction framework that
enjoys several important properties for the large-scale cosegmentation such as optimality guarantee
and linear complexity.
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Chapter 5

Unsupervised Detection of Regions of Interests (ROI)

5.1 Introduction

In this chapter, based on our previous unsupervised object modeling and detection studies [Kim
et al., 2008a,b], we explore the problem of detecting regions of interest (ROI) from large-scale
image collections without relying on any supervision (Fig.5.1). We define the regions of interest
as highly probable rectangular regions of object instances in the images. The extraction of ROIs
is extremely helpful for recognition and Web user interfaces. For example, comparative studies
in [Bosch et al., 2007; Chum and Zisserman, 2007] show that the ROI detection is useful to learn
more accurate object models, which lead to nontrivial improvement of classification and localiza-
tion performance. In the recognition of indoor scenes [Quattoni and Torralba, 2009], the local
regions that contain objects may have special meaning to characterize the scenes. In addition,
ROI detection can be exploited as a useful building block in addressing several computer vision
problems, including segmentation prior design [Lempitsky et al., 2009], and image thumbnail-
ing [Marchesotti et al., 2009]. As a user interaction tool, many Web applications allow a user to
attach notes on user-specified rectangular regions in a cluttered image (e.g. Flickr and Facebook).
Our algorithm can ease this cumbersome annotation by automatically suggesting the regions that
a user may be interested in.

Our solution to the problem of unsupervised ROI detection is inspired by alternating optimiza-
tion, which is one of widely used heuristics where optimization over two sets of variables is not
straightforward, but optimization with respect to one while keeping the other fixed is much easier
and solvable. This approach has been successful to solve a wide range of problems such as K-
means, Expectation-Maximization, and Iterative Closest Point algorithm [Besl and McKay, 1992].

Figure 5.1: Detection of regions of interest (ROIs). Given a Web-sized dataset, our algorithm detects
bounding boxed ROIs that are statistically significant across the dataset in an unsupervised manner. The
yellow boxes are groundtruth labels, and the red and blue ones are ROIs detected by the proposed method.
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The unsupervised ROI detection can be thought of as a chicken-and-egg problem between (1)
finding exemplars of objects in the dataset and (2) localizing object instances in each image. If
class-representative exemplars are given, the detection of objects in images is solvable (i.e. a con-
ventional detection or localization problem). Conversely, if object instances are clearly annotated
beforehand, the exemplars can be easily obtained (i.e. a modeling or ranking problem).

Given an image set, we first assume that each image itself is the best ROI (i.e. the most
confident object region). Then a small number of highly ranked ones among the selected ROIs
are chosen as exemplars (called hub seeking), which serve as references to refine the ROIs of each
image (called ROI refinement). We repeat these two updates until convergence. The two steps are
formulated as ranking in two different similarity networks of ROI hypotheses by link analysis. The
hub seeking corresponds to finding a central and diverse hub set in a network of the selected ROIs
(i.e. inter-image level). The ROI refinement is the ranking in a bipartite graph between the hub sets
and all possible ROI hypotheses of each image (i.e. intra-image level).

The main advantages of our approach are summarized as follows. First, the proposed method
is extremely simple and fast, with compelling performance. Our approach shows superior results
over a state-of-the-art unsupervised localization method [Russell et al., 2006] for the PASCAL 06
dataset. We proposed a simple heuristic for scalability to make the computation time linear with
the data size without severe performance drop. For example, the localization of about 200K images
took only 4.5 hours with naive matlab implementation on a single PC equipped with Intel Xeon
2.83 GHz CPU (once image oversegmentation and feature extraction were done). Second, our
approach is dynamic thanks to the evolving network representation. At every iteration, new ROI
hypotheses are added and trivial ones are removed from the network while reusing a large portion
of previously computed information. Third, unlike most previous work, our approach requires
neither human annotation, meta-data, nor initial seed images. Finally, we evaluate our approach
with a challenging Flickr dataset of up to 200K images. Although some work [Torralba et al., 2008]
in image retrieval uses millions of images, this work has a different goal from ours. The objective
of image retrieval is to quickly index and search the nearest images to a given query. On the other
hand, our goal is to localize objects in every single image of a dataset without supervision.

5.2 ROI Candidates and Description

The input to our algorithm is a set of images I = {I1, . . . , IN}, where N is the size of the image
set. The first task is to define a set of ROI hypotheses R = {R1, . . . , RN} from the image set I.
Ideally, the set of ROI hypotheses Ra = {ra1, . . . , ram} of an image Ia enumerates all plausible
bounding boxes, and at least one of them is supposed to be a good object annotation. Fig.5.2
shows the procedure of ROI hypotheses generation. Given an image, 15 segments are extracted
by Normalized cuts [Shi and Malik, 2000]. The minimum rectangle to enclose each segment is
defined as initial ROI hypotheses. Since the over-segmentation is unavoidable in most cases, the
combinations of the initial hypotheses are also considered. We first compute pairwise minimum
paths between the initial hypotheses using the Dijkstra algorithm. Then the bounding boxes to
enclose those minimum paths are added to the set of ROI hypotheses. Finally, a largely overlapped
pair of ROIs is merged if rai∩raj

rai∪raj > 0.8. Note that the hypothesis set always includes the image
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Figure 5.2: An example of ROI extraction and description. From left to right: (a) An input image. (b) 15
segments. (c) 43 ROI hypotheses. (d) Distribution of visual words. (e) Edge gradients.

itself as the largest candidate, and the average set size is about 50. One drawback of this simple
heuristics is that it cannot detect under-segmented objects. Thus, the granularity of ROI candidates
is a trade-off with computation speed.

Each ROI hypothesis is represented by two types of descriptors, which are spatial pyramids
of SIFT visual words [Quattoni and Torralba, 2009] and HOG [Bosch et al., 2007]. As usual,
the visual words are generated by vector quantization to randomly selected SIFT descriptors. K-
means is applied to form a dictionary of 200 visual words. A visual word is assigned to each pixel
of an image by finding nearest cluster center in the dictionary, and then binned using a two-level
spatial pyramid. The oriented gradients are computed by Canny edge detection, and then the HOG
descriptor is discretized into 20 orientation bins in the range of [0◦,180◦] by following [Bosch
et al., 2007]. The pyramid level is up to three. The similarity between a pair of ROIs is measured
by cosine similarity, which is simply calculated by dot product of two L2 normalized histograms.
Here both descriptors are equally weighted.

5.3 Iterative Detection of Regions of Interest

5.3.1 Similarity Networks and Link Analysis Techniques

All inferences in our approach are based on the link analysis of k-nearest neighbor similarity
network between ROI hypotheses. The similarity network is a weighted graph G = (V , E ,W),
where V is the set of vertices that are ROI hypotheses. E andW are edge and weight sets discovered
by the similarity measure in the previous section. Each vertex is only connected to its k-nearest
neighbors with k = a · log |V| [von Luxburg, 2007], where a is a constant set to 10. It results in
a sparse network, which is more advantageous in terms of computational speed and accuracy. It
guarantees that the complexity of network analysis is O(|V| log |V|) at worst. The network is row
normalized so that the edge weight from note i and j indicates the probability of a random surfer
jumping from i to j. The link analysis technique we use is the PageRank algorithm [Brin and Page,
1998]. Given a similarity matrix G (i.e. the adjacency matrix of G), it computes the same length
of PageRank vector p, which assigns a ranked score to each vertex of the network. Intuitively, the
PageRank scores of the network of ROI hypotheses are indices of the goodness of hypotheses.

53



Figure 5.3: Examples of exemplars (i.e. hub images). The pictures illustrate highest-ranked images in
10,000 randomly selected images from five objects of our Flickr datasets and all {train+val} images from
two objects of the PASCAL06.

Algorithm 4: The Algorithm
Input: The set of ROI hypothesesR for the input image set I.
Output: The set of selected ROIs S∗(⊂ R) and the exemplar setH∗(⊂ S∗) when converged at T .

1: S(0) ← largest ROI hypothesis in each image.
while S(t−1) 6= S(t) or maximum iterations are not reached yet. do

2: Generate k -NN similarity network G(t) of S(t).
3: H(t) ← Hub seeking(G(t)), where the hub setH(t) ⊂ S(t)

foreach Ia ∈ I unless ROI selection of Ia is not changed for several consecutive times do
4: s(t)

a ← ROI refinement(H(t), Ra), where s(t)
a : ROI selection of Ia, Ra: ROI hypothesis

set of Ia.
5: S(t) ← S(t) ∪ s(t)

a \s(t−1)
a .

Algorithm 5: Hub seeking function
Input: (1) Network G(t). (2) Window size: d.
Output: (1) Hub setH(t).

1: Compute PageRank vector p of G(t).
foreach vertex v ∈ G(t) do

2: Find the neighbor set of v: Nv = {u|
max reachable probability from v to
u > d}.
3: Find local maxima node of v:
m(v) = arg maxu p(Nv) where u ∈ Nv.
4: H(t) ← v if v = m(v).

Algorithm 6: ROI refinement function
Input: (1) Hub setH(t). (2) Ra, ROI

hypotheses of Ia.
Output: (1) The selected ROIs s(t)

a (⊂ Ra).

1: Generate k-NN self-similarity matrix Wi of
Ra and k-NN similarity matrix Wo between Ra
andH(t). Both of them are row-normalized.
2: Generate augmented bipartite graph

W =

(
αWi (1− α)Wo

WT
o 0

)
.

3: Compute PageRank vector p of W. 4:
s∗a = arg maxraj p(raj) where raj ∈ Ra.

5.3.2 Overview of Algorithm

Algorithm 4 summarizes the proposed algorithm. The main input is the set of ROI hypotheses R
generated by the method of section 5.2. The output is the set of selected ROIs S∗(⊂ R). In each
image, usually one or two, and rarely more than three, of the most promising ROIs are chosen.

The basic idea of our approach is to jointly optimize the ROI selection of each image and the
exemplar detection among the selected ROIs. Exemplars correspond to hubs in our network repre-
sentation. We begin with images themselves as an initial set of ROI selection S(0) (Step 1). Even
though this initialization may be poor for many images, highly ranked hubs among the ROIs are
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likely to be much more reliable. They are detected by the function Hub seeking (Step 3). Then,
the hub sets are exploited to refine the ROIs of each image by the function ROI refinement (Step
4). In turn, those refined ROIs are likely to lead to a better hub set at next iteration. The alternating
iterations of those two functions are expected to reach a convergence for not only the best ROI
selection of each image but also the most representative ROIs of the data set as the exemplar set.
Fig.5.4.(c) shows an example of refining ROI selections at every iteration. Although our algorithm
forces to select at least one ROI for each image, the PageRank vector by ROI refinement can
indicate the confidence of each ROI, which can be used to filter out wrongly selected ROIs later.
Conceptually, both functions share a similar ranking problem to select a small subset of highly
ranked nodes from the input networks of ROI hypotheses. They will be discussed in the following
subsections in detail.

Inherently, a good initialization is essential for alternating optimization. Our key assumption
here is as follows: Provided that the similarity network is built from a sufficiently large number
of images, the hub images are likely to be good references. This is based on the finding of our
previous work [Kim et al., 2008a]. If each visual entity votes for others that are similar to itself, this
democratic voting can reveal the dominant statistics of the image set. The more repetitive visual
information may get more similarity votes, which can be easily and quickly discovered as hubs
by link analysis. Fig.5.3 supports this argument in our dataset. Although images in our datasets
are highly variable, majority of pictures are taken from canonical views. Therefore, top-ranked
images of our dataset clearly show the objects in the center with a significant size. Obviously, they
are excellent initialization candidates.

Since we deal with discrete patches from unordered natural images on the Web, it is extremely
difficult to analytically understand several important behaviors of our algorithm such as convexity,
convergence, sensitivity to initial guess, and quality of our solution. One widely used assump-
tion in the optimization with image patches is linearity with small incremental displacement (e.g.
AAM [Cootes et al., 2001]). However, it is not the case in our problem and causes severe com-
putation increase. These issues may be open challenges for the optimization of large-scale image
analysis.

5.3.3 Hub Seeking with Centrality and Diversity

The goal of this step is to detect a hub set H(t) from S(t) by analyzing the network G(t). The main
criteria are centrality and diversity. In other words, the selected hub set should be not only highly
ranked but also diverse enough not to lose various aspects of the dataset. To meet this requirement,
we design the hub seeking inspired by Mean Shift [Comaniciu and Meer, 2002]; given data points,
the algorithm creates a fixed-radius window at each point. Then each window iteratively moves
into the direction of the maximum increase in the local density function until it reaches a local
maximum. Those local maxima become the modes, and the data points that converge to the same
maxima are clustered.

The proposed algorithm 5 works in the same manner. For each vertex, we define the search
window in the form of maximum reachable probability d (Step 2). The window covers the ver-
tices whose maximum reachable probability is larger than d. For example, given d = 0.1, wij =
0.6, wjk = 0.2, the probability of vertices i to k is 0.6 × 0.2 = 0.12 > d. Thus, k is considered
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inside the search window of i. For the density function, we use the PageRank vector, whose values
are proportional to the vertex degrees if the graph is symmetric and connected [Zhou et al., 2004].
In Step 3, we compute the vector m that assigns the local maximum vertex within the window of
each vertex. If v = m(v), the v is a local maximum, and it is added to H(t). Additionally, we can
easily perform the clustering from m. For each node, the search window keeps moving the maxi-
mum direction indicated by m until it reaches the local maximum. Then the nodes that converge
to the same maxima are clustered.

5.3.4 ROI Refinement

Formally, this step is to define a nonparametric function for each image fa : Ra → R+ (positive
real number) with respect to the hub set H(t). Then the hypothesis with maximum ranked value is
chosen as the best ROI. In order to solve this problem, we first construct an augmented bipartite
graph W between the hub setH(t) and all possible ROIs Ra as shown in Step 2 of Algorithm 3 (see
Fig.5.4(a)). For better understanding, let us first consider a pure bipartite graph with α = 0. Then
the matrix W represents the similarity voting between the ROI candidates and the hub set. If the
PageRank vector p of W is computed, then p(Ra) summarizes the relative importance of each ROI
hypothesis with respect to the H(t), which is exactly what we require. Rather than a pure bipartite
graph (α = 0), we augment it by nonzero α. Fig.5.4.(b) explains the effects of α. The left image
shows the result of α = 0. Even though the red hypothesis is the maximum, several hypotheses
near the dark gray car have significant values. With nonzero α = 0.1, those hypotheses are allowed
to augment each other, so the maximum ROI is changed to a hypothesis on the car. In terms of
link analysis, if a random surfer visits nodes of ROI hypotheses (Ra), it jumps to other hypotheses
with probability α or other hubs with 1 − α. Since the nearby hypotheses share large portions of
rectangles, they have higher similarity, which results in more votes for nearby hypotheses.

5.3.5 Scalability Setting

The bottleneck of our approach is the Step 3 of Algorithm 4. The network generation requires
quadratic computation of cosine similarity of S(t). In order to bound the computational complexity,
we limit the maximum number of images to be considered each run of Algorithm 4 by constant
number N . N should be small enough not to suffer from computational burden. Simultaneously, it
should be large enough to successfully detect the meaningful statistics from an extremely variable
dataset. (In experiments, N is set to 10,000.) If the dataset size |I| > N , we randomly sample N
images from I and construct initial consideration set Ic ⊂ I. Algorithm 4 is applied to the image
set Ic to obtain S∗c . Then we generate new Ic by sampling from unvisited images of I. In order to
reuse the result of S∗c for the new Ic, we sample x% of N from previous S∗c based on the PageRank
values of the network G∗ of S∗c . In other words, the highly ranked (i.e. highly confident) ROIs
in the previous step are reused to expedite the convergence of next iteration. We iterate the above
strategy until all images are examined. This simple heuristic allows our technique to analyze an
extremely large dataset in a linear time without significant performance drop.
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Figure 5.4: (a) An example of a bipartite graph between the hub set and ROI hypotheses of an image. The
similarity between hubs and hypotheses is captured by Wo and the affinity between hypotheses by Wi. The
hub set is sorted by PageRank values from left and right. The values of leftmost and rightmost are 0.0081
and 0.0024, respectively. The hub set successfully covers various views of the car class. (b) The effect of
the augmented bipartite graph. The left image is with α = 0 and the right with α = 0.1. The ranking of
hypotheses is represented by jet colormap from red (high) to blue (low). In the left, the weights from the red
box to the blue one are (0.052, 0.050, 0.049, 0.049, 0.049); in the right, (0.060, 0.060, 0.059, 0.059, 0.057).
(c) An example of ROI evolution. At T = 0, the selected ROI is an image itself and is converged to the real
object after T = 5.

5.4 Experiments

We evaluate our approach with two different experiments, (1) performance tests with PASCAL
VOC 20061 and (2) scalability tests with Flickr images. The PASCAL dataset provides groundtruth
labels, so our approach is quantitatively evaluated and compared with other approaches. Using
Flickr dataset, we examine the scalability of our method in a real-world problem. The images are
collected by a query that consists of one object word and one context word. We downloaded im-
ages of the objects {butterfly+insect(69,990), classic+car(265,731), motorcycle+bike(106,590),
sunflower(165,235), giraffe+zoo(53,620)}. The numbers in parentheses are dataset sizes.

5.4.1 Performance Tests

The input of our algorithm consists of unlabeled images, which may include a single object (called
as weakly supervised) or multiple objects (called unsupervised). For unsupervised cases, we per-
form not only localization but also classification according to object types. The PASCAL 06 dataset
is challenging so that only very rare previous work has used it for unsupervised localization. For
comparison, we ran publicly available code of one of the state-of-the-art techniques proposed by
Russell et al in the identical setting with ours.

The PASCAL dataset consists of {train+val+test}. However, our approach requires only im-
ages as an input, and thus all of the {train+val+test} images are used without discrimination
between them. Note that our task is an image annotation not a learning problem that requires train-
ing and test steps. The performance is evaluated by following the protocol of PASCAL evaluation:

1The dataset is available at http://www.pascal-network.org/challenges/VOC/.
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Figure 5.5: Results of weakly supervised localization. PR curves for the {test} sets of all objects in the
PASCAL 06 dataset for ours (blue), [Russell et al., 2006] (red), and the best of VOC06 (green). Note
that our localization and that of [Russell et al., 2006] are unsupervised, whereas the VOC06 localization is
supervised. (X-axis: recall; Y-axis: precision).

(1) The accuracies are measured from only the {test} set. In practice, there is very little perfor-
mance difference between analysis of all {train+val+test} and {test} only. (2) The detection is
considered correct if the overlap between the prediction and ground truth exceeds 50%.

Weakly supervised localization. Fig.5.5 shows the detection performance as Precision-Recall
(PR) curves. For [Russell et al., 2006], we iterate experiments by changing the number of topics
from two to six, and report the best results. For fair comparison between our results and [Russell
et al., 2006], we select only the single best bounding box in each image. We also present the
best result of each object in VOC06 competition. Strictly speaking, it is not a fair comparison
because the experimental setup of VOC06 competition is supervised while ours are unsupervised.
However, we include them as references to show how closely our approach can reach the best
supervised methods in VOC 06 for the localization. Although the performance varies according to
objects, our approach significantly outperformed [Russell et al., 2006] except in cow. Promisingly,
the performances of our approach for bicycle and motorbike are comparable, and those for bus,
cat, and dog objects are superior to the bests of the supervised methods in VOC06.

Unsupervised classification and localization. Here we evaluate how well our approach works
for unsupervised classification and localization tasks (i.e. images of multiple objects are given
without any annotation). Since both our method and [Russell et al., 2006] aim at sub-image level
classification and detection, we first find out the most confident region of each image, and run
the LDA clustering for [Russell et al., 2006] and spectral clustering [Shi and Malik, 2000] for our
method. Fig.5.6 shows ROC curves as the evaluation of classification by following the VOC06
protocol. We also show the best of the VOC06 submissions for supervised classification as ref-
erence. As shown in Fig.5.6.(a)−(c), our method and [Russell et al., 2006] present similar ROC
performance. In other words, both methods are quite good at ranking for classification. How-
ever, the classification rates of our method are better by about 10% for both 3-object and 4-object
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Figure 5.6: Results of unsupervised classification and localization. (a)−(c) ROC curves for the {test} set of
{bicycle, car, dog} for ours (blue), [Russell et al., 2006] (red), and the best of VOC06 (green). The AUCs of
ours, [Russell et al., 2006], and the best of VOC06 are as follows; bicycle: (0.892, 0.869, 0.948), car: , and
dog: (0.932, 0.954, 0.876), respectively. (X-axis: false positive rates, Y-axis: true positive rates). (d)−(f)
PR curves for unsupervised localization of ours (blue) and [Russell et al., 2006] (magenta). As references,
we also represent the results of our weakly supervised localization (red) and the best of VOC 06 (green).
(X-axis: recall, Y-axis: precision).

cases. (Ours: 69.08%; [Russell et al., 2006]: 59.05% for {bicycle, car, dog}. Ours: 59.51%; [Rus-
sell et al., 2006]: 50.99% for {bicycle, car, dog, sheep}.) We show the unsupervised localization
performance as PR-curves in Fig.5.6.(d)−(f). As references, we also represent the results of our
weakly supervised experiments and the bests of VOC 06 for corresponding objects. We observe a
nontrivial performance drop because the unsupervised setting is more challenging than the weakly
supervised one due to the classification errors and distraction by other objects in the dataset.

5.4.2 Scalability Tests
It is an open question how to evaluate the results of a large number of Web images that have
no ground-truth. For a quantitative evaluation, we manually annotated 0.5% randomly selected
images of datasets, and they are used as limited but approximate indices of performance measures.
According to the data sizes used in experiments, we randomly pick x% from the annotated set and
(100 − x)% from the non-annotated set. The x is {20, 10, 5, 1, 0.5, 0.5} for the dataset sizes of
{500, 5K, 10K, 50K, 100K, 200K}.

Weakly supervised localization. One interesting question we address here is how perfor-
mances and computation times vary as a function of data sizes. The experiments are repeated ten
times for each dataset size, and the median (i.e. fifth-best) performance scores are reported. Sim-
ilarly to previous tests, we select only the single best ROI per image. As shown in Fig.5.7, the
performances of 500 images highly fluctuate, but those of the dataset sizes above 5K are stable. As
dataset sizes increase, a small performance improvement is observed. Since the maximum number
of images at each execution of the algorithm is bounded by N(= 10, 000), the computation times
are linear to the number of images, and the performances of the data sizes above N are similar one
another.

Perturbation tests. Here we test the goodness of selected ROIs from a different view: ro-
bustness of ROI detection against random network formation. For example, given an image Ia,
we can generate 100 sets of 200 randomly selected images including Ia. If the ROI selection for
Ia is repetitive across 100 different sets, we can say the ROI estimator for Ia is confident. This
procedure is similar to bootstrapping or cross-validation.
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Figure 5.7: Weakly supervised localization. (a) PR curves for five objects of our Flickr dataset by varying
dataset sizes from 500 to 200K. (b) The log-log plot between the number of images and the computation time
for the car object. The slope of each range is {1.23, 2.05, 0.95, 1.05, 1.28} from left to right, respectively.

Figure 5.8: Examples of perturbation tests. The histograms summarize how many times each ROI is
selected in 100 random sets. The frequencies of ROIs are represented in the images by the thickness of
bounding boxes and the jet colormap from red (high) to blue (low). From left to right, the entropies of the
distributions are {0.2419, 1.6846, 2.4331}, respectively. (X-axis: ROI hypotheses; Y-axis: frequencies).

Fig.5.8 shows some examples of the perturbation tests. The histogram indicates how many
times each ROI hypothesis is chosen among 100 random sets. From the left image to the right,
one can see the increase of the difficulty of ROI detection. A peak is observed for the obvious left
image, but the distribution is wider for the challenging right image. The entropy of the distribution
in the caption of Fig.5.8 can be an index of the measure of difficulty or the confidence of the
estimator for the image.

More localization examples. Fig.5.9 shows more examples of localization by our approach.
The third row illustrates some typical examples of failure. Frequently co-occurred objects can
be detected instead, such as insects on flowers, many different animals in the zoo, and persons
everywhere. Another common case of failure is that our approach sometimes detects small multiple
instances or a part of an object as a single ROI (e.g. a giraffe’s face instead of the whole body).

5.5 Summary

We develop an alternating optimization approach for scalable unsupervised ROI detection by an-
alyzing the statistics of similarity links between ROI hypotheses. The main contributions of this
chapter can be summarized as follows.

• We propose an alternating optimization approach based on iterative link analysis. The un-
supervised ROI detection is achieved by alternating between solving two sub-problems: (i)
finding exemplars of objects in the dataset and (ii) localizing object instances in each image.
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Figure 5.9: More examples of the ROI discovery. The first and second rows represent successful detections,
and the third row illustrates some typical failures. The yellow boxes are groundtruth labels, and the red and
blue ones are ROIs detected by the proposed method.

• This idea enables the ROI detection to be extremely simple and fast, with compelling perfor-
mance on both PASCAL06 and Flickr datasets. (e.g. The ROI detection takes only 4.5 hours
for about 200K images on a single machine).

• Unlike most previous work, our approach requires neither human annotation, meta-data, nor
initial seed images. We take advantage of statistical consistency in the very large image sets.
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Chapter 6

Diversity Ranking, Image Segmentation, and
Cosegmentation

6.1 Introduction

In this chapter, we investigate an optimization problem connected to the anisotropic diffusion,
which is potentially useful for efficiently solving a wide range of computer vision problems such
as image segmentation [Zhang et al., 2010], optical flow estimation [Bruhn et al., 2005], and image
smoothing [Weickert, 1998]. This optimization problem can be summarized in a single sentence as
follows: given a system under heat diffusion and finite K heat sources, where should one place all
the sources in order to maximize the temperature of the system? In terms of image segmentation,
the optimization corresponds to finding the K segment centers that maximize the segmentation
confidence of every pixel in the image1. (e.g. the ideal segmentation is that every pixel has confi-
dence one to be clustered with one of K segment centers).

Since a naive combinatorial approach to this optimization is NP-hard, we seek a much more
efficient and scalable approximate solution by taking advantage of a strong theoretical property
known as submodularity underlying our problem. We first prove that, the temperature, which is to
be optimized in our problem, is a submodular function if the system is under anisotropic diffusion.
It is a well-known beneficial property of submodular functions that one can achieve at least a
constant factor of the optimal by a greedy algorithm, which iteratively chooses K locations that
maximize the marginal gain of the temperature. Such a greedy solution is particularly promising
for tasks on large-scale image collections.

For better understanding of the proposed optimization, we first show that our method is able
to effectively solve the diversity ranking [Zhu et al., 2007], which is to re-rank the items to reduce
redundancy while maintaining their centrality. Intuitively, in order to maximize the temperature of
the system with limited sources, the sources should be located in the center-of-gravity regions that
are densely connected to other elements of the system with high conductivity. At the same time,
the sources should be sufficiently distant from one another to have a broad and balanced coverage
of the system. These two objectives are universal to a wide variety of machine learning and pattern
recognition problems. Then, this temperature optimization idea is extended into the segmentation

1We use the following terminological correspondences between temperature maximization and image segmenta-
tion: temperature ≡ segmentation confidence, heat sources≡ segment centers, conductance or diffusivity ≡ similarity
between feature vectors of pixels.
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Work Models / Algorithms M K

Ours Diffusion/ Submodularity ≥103 Any
[Joulin et al., 2010] Discriminative clustering ≤30 2

[Mukherjee et al., 2011] MRF+ Rank-1 global / Iterative opt. ≤20 2
[Hochbaum and Singh, 2009] MRF+Reward global / Graph Cuts 2 2

[Rother et al., 2006] MRF+L1 global / Trust Region GC 2 2
[Vicente et al., 2010] Boykov-Jolly / Dual Decomposition 2 2

Table 6.1: Comparison between our approach and existing unsupervised cosegmentation methods. Models
and optimization algorithms are summarized. Let M and K denote the number of images and segments,
respectively. Most previous work has mainly focused on binary figure-ground segmentation of small-sized
image sets.

of a single image and the cosegmentation problem, in which largely co-occurred regions in the
image set are jointly segmented out. We name our cosegmentation algorithm as CoSand, standing
for CoSegmentation via anisotropic diffusion.

6.1.1 Background

We first briefly review some background research that related to our work.
Anisotropic diffusion: The heat diffusion is represented by a partial differential equation

called heat equation, which describes how the distribution of heat (or temperature variation)
changes to achieve an equilibrium state in the system. It has been a successful technique in im-
age processing and computer vision; notable examples include image segmentation [Zhang et al.,
2010], optical flow estimation [Bruhn et al., 2005], and image smoothing [Weickert, 1998]. In
these applications, the temperature corresponds to various objectives, which are the clustering con-
fidence in segmentation, the optical flow in motion analysis, or the RGB value in image smoothing.
In this chapter, we focus on image segmentation, but our optimization is also easily extendible to
those problems such as large-scale edge-preserving image smoothing or layered motion segmen-
tation in video.

Submodular optimization: In recent years, submodular optimization has emerged as a use-
ful optimization tool in a variety of machine learning problems such as active learning, structure
learning, clustering, and ranking [Krause and Guestrin, 2008; Leskovec et al., 2007]. The submod-
ular function is characterized as a diminishing return property that states that, the marginal gain of
adding an element to a smaller subset of S is higher than that of adding it to a larger subset of S.
Some typical submodular functions explored in machine learning include a cut function in a graph
and the entropy and the information gain of Gaussian random variables [Krause and Guestrin,
2008]. To the best of our knowledge, our work is the first to address submodular optimization on
diffusion in physics2.

Cosegmentation: Since we already survey the existing work of image cosegmentation, we here
present Table 6.1 to summarize the comparison of our work and other unsupervised cosegmentation

2Diffusion is a heavily overloaded term that is used with different meanings in diverse fields. Here it refers to
diffusion in physics that is described by a partial differential equation such as heat diffusion or electric current.
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methods. Simply put, cosegmentation is the problem of jointly segmenting each of M images into
K different regions. Our approach is unique in terms of M and K. Most previous work has dealt
with binary figure-ground segmentation (K=2) of small sized image sets (mostlyM=2 butM≤30
in [Joulin et al., 2010]). On the other hand, our algorithm is able to segment a large-scale dataset
with any arbitrary K. We tested with M≥103 images in our experiments, but a more scalable
setup is also applicable. That is, the magnitude of the dataset sizes in our experiments exceeds
those of previous work by orders of magnitude. The optimization methods for cosegmentation in
most previous work, except [Joulin et al., 2010], are based on the graph-cut algorithm. Hence, it
is not straightforward for them to be extended to arbitrary K-way cuts. In theory, the method of
[Joulin et al., 2010] can perform cosegmentation with K>2, but it was not evaluated in the paper.
On the other hand, our algorithm can attain a constant factor approximation to the optimum with
any arbitrary K. The computation time is at worst linear with K.

In addition, our approach is easily parallelizable; most computations occur independently on
individual images, and then an integration step quickly merges all outputs from individual images
into a coherent cosegmentation result. Our approach also supports the automatic selection of K
and robustness against a wrong choice of K, which will be shown in experiments of Section 6.4.

6.2 Submodularity and Diffusion

6.2.1 Optimization on Anisotropic Diffusion
We begin with a general theory of anisotropic diffusion [Weickert, 1998]. Let Ω denote the domain
of a system and x be a point in Ω ∈ Rd (x ∈ Ω). Since we are usually interested in discrete
systems (e.g. images or graphs), let us assume that Ω is a discrete set of points3. The u(x, t) is the
temperature at position x at time t andD(x) is a d×d positive symmetric tensor called the diffusion
tensor. The linearity of diffusion indicates that D is not a function of u or Ou. The anisotropy
means that the flux −D(x)Ou(x, t) and the gradient Ou(x, t) are not parallel in an image domain.
The diffusion equation of such a system is as follows:

∂u(x, t)

∂t
= div

(
D(x)Ou(x, t)

)
. (6.1)

Our optimization problem is that of maximizing the sum of temperature of the system that is
under anisotropic diffusion by choosing the locations of K heat sources. Formally,

max

∫
x∈Ω

u(x, t)dx (6.2)

s.t.
∂u(x, t)

∂t
= div

(
D(x)Ou(x, t)

)
u(g) = 0, u(s) = 1 for s ∈ S ⊂ Ω, |S| ≤ K

3It is not difficult to obtain the corresponding results of following arguments for the continuous (i.e. Ω and t:
continuous) and semi-discrete (i.e. Ω: discrete, t: continuous) cases [Weickert, 1998].
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where we assume that the temperature of environment (i.e. outside of the system Ω) is zero (i.e.
u(g) = 0), and the source temperature is one at any time (i.e. u(s) = 1)4.

For physical analogy, one may imagine a metal plate in open air, and its temperature is to be
maximized with K point heat sources. Without loss of generality, we explicitly decompose the
heat flux at every point into two parts - a flux within the system and a dissipation flux to out of the
system. Let z(x) be a positive scalar diffusivity to the environment at x, and then the dissipation
heat loss is−z(x)(u(x)−u(g)). If z(x) = 0 for ∀x ∈ Ω, the system is insulated. From now on, we
assume that −D(x)Ou(x, t) solely contributes to the diffusion within the system.

In order to efficiently solve the optimization of Eq.(6.2) for arbitrary K, we first prove that the
temperature under the linear anisotropic diffusion is submodular.

Theorem 1 (Submodularity on Anisotropic Diffusion). Suppose that the system undergoes lin-
ear anisotropic diffusion. Let u(x, t;S) be the temperature at position x at time t when identical
heat sources are attached to S(⊂ Ω). Then, the following statements hold for ∀x ∈ Ω,∀t ∈ [0,∞].

(T1) u(x, t; ∅) = 0
(T2) u(x, t;S) is nondecreasing and submodular.

Proof. Here we consider the discrete case where time and space are discretized; it is not difficult
to draw the same conclusion for the continuous case. Without loss of generality, we assume that
the source temperature is one and the environment temperature is zero. Then, the temperature can
be interpreted as a probability. During the proof we drop t in the notation because the following
arguments always hold for any t.

Note that the system is under linear anisotropic diffusion, which means that the system Ω and
the diffusivity D(x) including the dissipation diffusivity z(x) are invariant for any t.

(T1) u(x; ∅) = 0 is obvious because without a source the system has zero temperature (i.e. the
same temperature with that of environment).

(T2) u(x;A) is nondecreasing (i.e. u(x;A) ≤ u(x;B) for all A ⊆ B ⊆ V) because the tem-
perature of the system is always higher with more heat sources. Physically, it means the energy
conservation law.

The u(x;A) is submodular if Eq.(6.3) holds for all placements A ⊆ B ⊆ V and a new source
s ∈ V\B :

u(x;A ∪ {s})− u(x;A) ≥ u(x;B ∪ {s})− u(x;B). (6.3)

We shall prove the submodularity of u by induction on the distance d(x, s). The induction
proof consists of two steps, which are (a) base step showing that Eq.(6.3) holds for d(x, s)=0, and
(b) induction step showing that if Eq.(6.3) holds for d(x, s) ≤ r, then it is true for d(x, s) ≤ r+δr
with a small δr > 0 as well.

(a) Base step: For x with d(x, s) = 0 (i.e. x = s), u(x;A∪ {s})− u(x;A) ≥ u(x;B ∪ {s})−
u(x;B) because (i) u(s;A∪ {s}) = u(s;B ∪ {s}) = 1 and (ii) u(s;A) ≤ u(s;B) since u(x;A) is
nondecreasing for all x ∈ V .

4Here we consider only Dirichlet boundary conditions.
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(b) Induction step: Suppose that for all x with d(x, s) ≤ r, Eq.(6.3) holds. We need to show
that Eq.(6.3) is true for all x′ with d(x′, s) = r + δr with a small δr > 0 as well.

If the system undergoes diffusion, as shown in Eq.(6.4), the temperature at point x is repre-
sented by the weighted sum of the temperatures of its neighborsN (x) [Tschumperle and Deriche,
2005; Weickert, 1998]. It is based on the physical fact that the heat diffusion is driven by thermal
non-equilibrium and converges to local energy balance.

u(x) =
∑

p∈N (x)

g(p)u(p) for ∀x ∈ Ω (6.4)

where p ∈ N (x) is a point of the neighbor set of x and g(p) is a Kernel function describing how
much the temperature at p (u(p)) contributes to the temperature at x (u(x)). g(p) is the function of
the diffusivity and the distance between p and x5. Therefore, g(p) is invariant for any t under the
linear anisotropy assumption (i.e. the system and the diffusivity are fixed for any t).

For a position x′ with d(x′, s) = r + δr, N (x′) can be divided into two sets P = {p|p ∈
N (x′), d(p, s) ≤ r} andQ = {q|q ∈ N (x′), d(q, s) > r}. Therefore, u(x′;A∪{s})− u(x′;A) ≥
u(x′;B∪{s})−u(x′;B) holds by Eq.(6.4) and induction hypotheses of (i) u(p;A∪{s})−u(p;A) ≥
u(p;B∪{s})−u(p;B) for all p ∈ P and (ii) u(q;A∪{s}) = u(q;A) and u(q;B∪{s}) = u(q;B)
for all q ∈ Q. �

Let U(t;S)=
∫
x∈Ω

u(x, t;S)dx be the temperature sum of the system at t. Intuitively, U(t,S) is
also submodular since it is the sum of submodular functions [Krause and Guestrin, 2008]. Theorem
2 below states that a simple greedy algorithm achieves a near optimal solution for the maximization
of a submodular function.

Theorem 2 ([Nemhauser et al., 1978]). Let u be a submodular, nondecreasing set function and
u(∅)=0. Then, the greedy algorithm finds a set SG such that u(SG) ≥ C·max|S|≤K u(S) where
C = (1−1/e) ≈ 0.632.

6.2.2 Diversity ranking and clustering

For better understanding of the above diffusion formulation, let us first examine a simple case −
diversity ranking in a graph. Diversity ranking [Zhu et al., 2007] aims to re-rank items to reduce
redundancy while maintaining their centrality, which is highly relevant to the goal of segmentation.
In the next section, we extend this idea into the cosegmentation problem.

Suppose the following; (1) The system Ω is a graph G = (V , E). (2) We are interested in
the steady state (i.e. when t→∞), thus we can drop t in our notation. (3) The diffusivity (i.e.
conductance) is defined by Gaussian similarity between the features of vertices:

5The simplest discrete form of Eq.(6.4) with a 2D regular grid is u(i, j) =
(
u(i−1, j) + u(i+1, j) + u(i, j−1) +

u(i, j+1)
)
/4 with x = (i, j). In this case, N (x) = {(i, j−1), (i, j+1), (i−1, j), (i+1, j)} and g(p) = 1/4 for

∀p ∈ N (x). In a more accurate discretization [Tschumperle and Deriche, 2005], the Gaussian Kernel is used: g(p) =
exp

(
− (x−p)TD(p)(x−p)/σp

)
where σp is a normalization constant so that

∑
p∈N (x) g(p) = 1.
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Figure 6.1: Two toy examples of diversity ranking. The data points are randomly generated from three
Gaussian distributions in (a) and three co-centric circles in (g). In (b)-(e) and (h)-(k), the marginal temper-
ature gain of each point U(S ∪ {x}) − U(S) is shown along z-axis. sk(∈ S) are iteratively selected by
solving Eq.(6.7). Once a point is selected, the marginal gains of its neighbors largely drop because they al-
ready get high temperatures. In (f)(l),final three clusters are shown. The clustering from S will be discussed
in Algorithm 7.

dxy =

{
exp(−β||g(x)− g(y)||2), if (x, y) ∈ E
0 otherwise

(6.5)

where g(x) is the feature vector at node x ∈ V . (4) The dissipation conductance at a vertex x
is constant in time, denoted by zx. That is, each node x is connected to an environment node g
with conductance of zx. With these assumptions, diffusion reduces to the famous random walk
model [Grady, 2006] or Gaussian random fields [Zhu et al., 2003]. The optimization problem in
Eq.(6.2) grounds to a more specific form below6:

max
∑
x∈V

u(x) (6.6)

s.t. u(x) =
1

ax

∑
(x,y)∈E

dyxu(y) for ax =
∑

(x,y)∈E

dyx + zx

u(g) = 0, u(s) = 1 for s ∈ S ⊂ V , |S| ≤ K

where ax is the degree of x. In terms of random walks, the optimization of Eq.(6.6) corresponds to
selecting K nodes as absorbing nodes to maximize the sum of absorbing probabilities of a random
walker in a given network G. In terms of linear electric circuits, the first constraint of Eq.(6.6)
is the Kirchhoff equation, and the problem is locating K voltage sources to maximize the electric
potential of the circuit.

6Refer to [Grady, 2006; Zhang et al., 2010] for the derivation from Eq.(6.2) to Eq.(6.6).
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Since the objective u(x;S) is submodular, we can obtain a near-optimal solution by a greedy al-
gorithm, which starts with an empty S and iteratively adds the item sk that maximizes the marginal
temperature gain, U(Sk-1∪ {sk})−U(Sk-1), as shown in Eq.(6.7). The details of the greedy algo-
rithm will be discussed in Section 6.3.

sk = argmax
x∈V

U(Sk-1 ∪ {x})− U(Sk-1) where U(Sk) =
∑
x∈V

u(x;Sk) (6.7)

The dissipation conductance z is a parameter to control trade-off between centrality and diver-
sity. With a larger z, the heat loss to the environment is larger as well, and only the neighbors
within a shorter range of a source will get high temperatures. Hence, a point to be closer to the
already ranked set Sk-1 is likely to be chosen as a next sk.

Fig.6.1 shows two toy examples of diversity ranking and clustering. Here, the location of a
point is used as the feature g(i)=[x y]T to compute the similarity of Eq.(6.5). Therefore, a closer
point pair (i, j) has a larger diffusivity dij . In the first example of three Gaussian distributions
(Fig.6.1.(a)-(f)), our intuition tells that the center point in the largest blob should be selected as the
first item s1, and it actually has the highest marginal gain in Fig.6.1.(b). In the next iteration, since
the points near s1 already have high temperature, the second choice to maximize the marginal gain
should be not only distant enough from s1 (diversity) but also densely linked by other points with
high diffusivity dij (centrality), which is s2 in Fig.6.1.(c). In sum, sk is chosen as the most central
but distant enough from already selected items Sk-1.

In the second example of three co-centric circles (Fig.6.1.(g)-(l)), one interesting behavior is
that among the points in each circle, the point at the opposite side of the circle to the selected point
has the highest marginal gain. Thus, if the fourth s4 is chosen in Fig.6.1.(k), it is the exact opposite
of s3 in the circle. That is, the largest circle in Fig.6.1.(l) will be divided as two exact half circles
with K=4.

This algorithm may seem to be similar to the Grasshopper algorithm [Zhu et al., 2007], a greedy
algorithm for diversity ranking. However, the objective function is different, and our main contri-
bution over [Zhu et al., 2007] is that our method is not ad-hoc, but a constant-factor approximation
based on the submodularity.

6.3 Image CoSegmentation

In this section, we present our scalable cosegmentation algorithm. Below, we begin with the
segmentation of a single image to illustrate the basic behavior of the algorithm.

6.3.1 Segmentation of a Single Image

The segmentation of a single image aims to find K segment centers to maximize the sum of seg-
mentation confidence of every pixel in an image. This can be achieved via the following procedure.

Building the intra-image graph of an image: For faster computational speed, we first extract
superpixels from an image as shown Fig.6.2.(b). Any edge-preserving superpixel methods can be
applied, and TurboPixels [Levinshtein et al., 2009] is used in our implementation. Then we build

68



Figure 6.2: An example of segmenting a single image. (a) An input image. (b) 1000 super-pixels and col-
ored evaluation locations L. (c) Image segmentation with red boundaries. (d)-(g) Color-coded segmentation
outputs by ranging K from 2 to 8. As K increases, the following regions are detected in turn: {sky, tree,
wall (center), roof (left), windows (left), building (left), and trash container}.

the intra-image graph Gi = (Vi, Ei,Di) where the vertex set Vi is the set of superpixels and the
edge set Ei connects all pairs of adjacent superpixels. Let Ni denote the number of superpixels of
an image i. In each superpixel, 3-D CIE Lab color and 4-D texture features7 are extracted. The
diffusivity Di is computed by Gaussian similarity in Eq.(6.5) on the features of superpixels. The
adjacency matrix Gi of Gi is a sparse Ni×Ni matrix, in which the number of nonzero elements of
each superpixel is the same with the number of its neighbors. In most cases, it is less than 10.

Construction of evaluation set: In the diversity ranking discussed earlier, we compute the
marginal gain at every datapoint to find the maximum (Fig.6.1). However, this search is inefficient
since the actual distinctive regions in an image are usually much fewer than Ni. For example, in
Fig.6.2, there are a lot of sky superpixels and there is little difference in the segmentation results
no matter which sky superpixel is chosen as a segment center. Thus, we first run agglomerative
clustering on Gi to find out the set of evaluation points Li. (|Li| ≤ 100 in our experiments). The
marginal gain is only computed at Li. That is, segment centers are limited to be placed in a subset
of Li. (i.e. Si ⊂ Li ⊂ Vi in the third constraint of Eq.(6.8)). Fig.6.2.(b) shows an example of Li
as colored superpixels.

Basic behavior of segmentation: In summary, our segmentation algorithm greedily selects the
largest and most coherent regions. As shown in Fig.6.2.(d), the sky is first chosen with K=2. As
K increases, the regions of the tree, the house in the center, and the building in the left are chosen
in the decreasing order of their sizes and coherence in Fig.6.2.(d)-(g). This desirable trend comes
from the greedy nature of our algorithm. This behavior is quite helpful for automatic selection
of K. We can keep increasing K until the detected segment is not significant any more (i.e.
temperature increase by adding a new source is not significant any more). As iteration goes, we
re-use the previous results of a lower K, which significantly reduce the computation time (e.g. the
lazy greedy approach in [Leskovec et al., 2007]).

6.3.2 Cosegmentation

The input of cosegmentation is an image set I and the number of segments K. The optimiza-
tion formulation for cosegmentation in Eq.(6.8) is an extension of that of the diversity ranking
(Eq.(6.6)).

7http://www.robots.ox.ac.uk/∼vgg/research/texclass/.
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max
∑
i∈I

∑
x∈Vi

ui(x) (6.8)

s.t. ui(x) =
1

ax

∑
(x,y)∈Ei

dyxui(y) for ax =
∑

(x,y)∈Ei

dyx + zx

ui(g) = 0, ui(sik) =
1

|N (i)|
∑
j∈N (i)

f(g(sik),g(sjk))

where sik ∈ Si ⊂ Li ⊂ Vi, |Si| ≤ K, for ∀i ∈ I.

The objective in Eq.(6.8) is the sum of temperature (i.e. segmentation confidence) of every
image in the dataset. Thus, it encourages each image to be segmented as K largest and most
coherent regions that are nevertheless content-wise diverse with respect to one another. In order
to enforce inter-image similarity between chosen clusters, the second constraint of Eq.(6.8) is
introduced. The f(g(sik),g(sjk)) is an increasing function of the feature affinity between the k-th
sources of an image i (sik) and an image j (sjk). More visually similar the features of sik and
sjk are, a higher value f(g(sik),g(sjk)) has. It is intuitive that the system temperature is linear
with the source temperature. (e.g. if the source temperature is halved, then the temperatures of
all points in the system are halved as well). Hence, the second constraint pushes the k-th source
placement of image i to be similar to its corresponding placement in other images of N (i), which
is the neighborhood image set of i to be jointly cosegmented. If N (i) = I\i, then each image
is cosegmented with respect to all the other images in I. Meanwhile, the affinity function f
controls how strongly the inter-image similarity is imposed. If f(g(sik),g(sjk)) is constant, the
optimization of Eq.(6.8) reduces to independent segmentation of each image. Otherwise, if it is
a fast increasing function, the inter-image similarity is highly weighted. We use the Gaussian
similarity in Eq.(6.5) for f .

Algorithm 7 presents the greedy algorithm to solve Eq.(6.8). Note that Algorithm 7 is easily
parallelizable. All steps except step 5 can be computed individually in each image. The computa-
tion complexity of step 5 is O(|I||N |)8.

Once we obtain K source placement Si for each image, the segmentation is straightforward.
Here we use the method of [Grady, 2006], which is summarized in step 7-8 of Algorithm 7. It first
calculates (Ni−K)×K matrix X in which X(j, k) is the probability that a random walker starting
at an unselected j-th point (i.e. xj ∈ Vi\Si) reaches the k-th source points. Then, we cluster the
superpixels that share the same source point as the most probable destination.

Fig.6.3 shows an example of our cosegmentation on three MSRC cow images withK=4. Since
our algorithm can handle arbitrary K, the brown and black cows and the river in the first image
can be detected as individual clusters.

Optimality: The constant factor approximation of our algorithm is guaranteed if the element
with the maximum marginal gain is chosen in each round (step 5). In diversity ranking and single-

8 In our Matlab implementation, the major independent computation, step 3-4, took about 2 second per image of
1,000 superpixels. Step 5 took about 6-8 minutes for 1000 images with full dependency (i.e. |I|=1000, |N |=999).
The other steps took much less than 1 second per image.
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Algorithm 7: CoSand Cosegmentation.
Input: (1) Intra-image matrix Gi for all Ii∈ I. (2) Number of segments K. (3) Evaluation set size

|L|.
Output: Cluster centers Si and segmented images for Ii∈ I.

1: foreach Ii ∈ I do Si ← ∅ end
2: foreach Ii ∈ I do Li ← AggloClust(Gi, |L|) end
while |Si| ≤ K do

foreach Ii ∈ I do
foreach lj ∈ Li do

3: Solve u = Liu where Li is the Laplacian of Gi and u is an Ni×1 vector with the
constraints of u({Si∪ lj}) = 1 and u(g) = 0.
4: Obtain the gain ∆Ui(lj)=|u|1 (l-1 norm of u).

5: Solve the energy maximization by belief propagation
E(l)=

∑
i∈I ∆Ui(li)

(
1

|N (i)|
∑

j∈N (i) f(g(li),g(lj))
)
. {s1, · · · , sI} ← argmaxl1,··· ,lI E(l).

6: foreach Ii ∈ I do Si ← Si ∪ si end
foreach Ii ∈ I do

7: Compute (Ni−K)×K matrix X by solving LuX = −BT Is where if we let Xi = Vi\Si,
Lu = Li(Xi, Xi), B = Li(Si,Xi), and Is is a K×K identity matrix.
8: A superpixel vj(∈Vi) is clustered cj= argmaxkX(j, k).

Figure 6.3: An example of cosegmentation on MSRC cow images (M=3, K=4). (a) Input images. (b)
Likelihood of each segment from white (high) to black (low). (c) Color-coded cosegmentation outputs. (d)
The 3rd and 4th segments from input images.

image segmentation, we compute the exact solution for this step. However, we use belief propa-
gation, which is an approximate maximization, for a large-scale cosegmentation with full depen-
dency. In practice, this relaxed solution is good enough to obtain a high-quality segmentation.

71



A more scalable setting: In practice, a large-scale image set is likely to contain various noisy
information as well. If heterogeneous images are cosegmented, then the results would be worsen
than those of individual image segmentation. Thus, one can first decompose I into disjoint sets
I = I1 ∪ · · · ∪ IO so that each subset Io consists of similar images. Then, Algorithm 7 can be
applied to each Io separately. This decomposition can be done by the proposed diversity ranking
and clustering of Eq.(6.6) on the similarity graph of I, which can be constructed by applying
Gaussian similarity to image descriptors (e.g. dense SIFT or GIST).

6.4 Experiments

We evaluate our approach with two different experiments: (1) figure-ground segmentation with a
pair of images (M=2 andK=2), and (2) scalability tests with a large number of images (M∼1000).
The figure-ground tests are performed to quantitatively compare our method with other state-of-
the-art cosegmentation techniques that are only applicable in this setting. The scalability tests
evaluate how well our algorithm works with real-world data.

6.4.1 Results on Figure-ground Cosegmentation

In the figure-ground tests, we use MSRC dataset [Winn et al., 2005], which provides 30 pixel-wise
labeled images per object. Two recent cosegmentation methods, [Hochbaum and Singh, 2009]

Class (%) Ours (Co-Seg) (DC)
Aeroplane 37.6 ± 10.6 25.6 ± 9.9 26.5 ± 7.9

Bike 68.4 ± 12.6 66.8 ± 13.9 58.4 ± 11.6
Bird 57.0 ± 18.2 30.4 ± 19.3 50.3 ± 19.2
Car 57.7 ± 9.4 55.8 ± 16.6 52.5 ± 13.3
Cat 73.1 ± 12.2 75.9 ± 16.9 65.6 ± 13.9

Chair 64.4 ± 12.6 62.2 ± 21.8 61.6 ± 15.4
Cow 66.1 ± 18.5 72.4 ± 11.9 67.3 ± 11.9
Dog 55.5 ± 3.9 47.7 ± 18.9 48.3 ± 22.9
Face 78.5 ± 11.4 72.1 ± 18.4 60.9 ± 12.0

Flowers 75.6 ± 2.2 70.0 ± 14.44 71.6 ± 16.4
Sheep 69.2 ± 16.6 43.7 ± 19.3 70.5 ± 16.1
Sign 68.7 ± 12.9 58.8 ± 17.9 64.1 ± 17.5
Tree 67.6 ± 1.1 60.2 ± 13.0 60.8 ± 13.1

(a)

Class (%) Ours (MNcut) (LDA)
Ban spider 48.6 ± 24.1 35.3 ± 13.0 32.4 ± 10.0
Hognose 55.3 ± 22.0 47.2 ± 17.0 44.7 ± 17.1

Coral 79.3 ± 20.1 66.4 ± 22.0 52.6 ± 14.7
St Bernard 68.2 ± 21.3 50.5 ± 13.7 45.7 ± 12.3

Basenji 58.8 ± 23.1 46.3 ± 15.8 42.2 ± 14.9
Tabby 67.2 ± 22.1 51.3 ± 16.6 49.6 ± 14.6
Jaguar 67.8 ± 21.0 50.2 ± 14.7 49.4 ± 14.5
Lion 63.6 ± 22.4 50.7 ± 17.7 47.6 ± 16.8

Starfish 50.2 ± 25.9 41.6 ± 18.7 40.1 ± 16.4
Polecat 58.3 ± 21.5 47.6 ± 15.7 44.7 ± 13.4
Badger 51.6 ± 24.6 43.0 ± 17.9 41.3 ± 16.3

Orangutan 61.3 ± 26.0 49.5 ± 19.8 48.0 ± 18.3
Guenon 58.8 ± 24.8 47.8 ± 16.9 46.4 ± 16.2

(b)

Table 6.2: Cosegmentation accuracies. (a) Comparison between our method and baselines (Co-Seg)
[Hochbaum and Singh, 2009] and (DC) [Joulin et al., 2010] for figure-ground cosegmentation for 100
random pairs of images per object from the MSRC dataset. (b) Comparison between our method and
baselines (MNcut)[Cour et al., 2005] and (LDA)[Russell et al., 2006] for scalable cosegmentation with
13 selected synsets from the ImageNet dataset. Synset Wordnet IDs = {Ban spider (n01773549), Hog-
nose snake (n01729322), Coral (n09256479), St Bernard (n02109525), Basenji (n02110806), Tabby (n02123045),
Jaguar (n02128925), Lion (n02129165), Starfish (n02317335), Polecat (n02443114), Badger (n02447366), Orangutan
(n02480495), Guenon monkey (n02484975)}.
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Figure 6.4: Four cosegmentation examples on the MSRC dataset. (a) Pairs of input images. (b) Our
cosegmentation results withK=8. The cosegmented pairs are presented by the same colors. Some segments
are too small to be shown. (c) Figure-ground segmentation results that are induced from the eight pairs of
cosegments.

and [Joulin et al., 2010], are compared using the original authors’ implementation with the default
parameter setting9. We run [Hochbaum and Singh, 2009], [Joulin et al., 2010], and our method on
randomly generated 100 pairs in each class.

Unlike the others, the method of [Hochbaum and Singh, 2009] requires priori labels of fore-
ground (fg) and background (bg) RGB colors. In order to obtain labels, we fist identify the fg and
bg regions of each image from the groundtruth. Then, we apply K-means to the RGB space of fg
and bg pixels to compute three cluster centers each, which are used as labels (i.e. total 6 fg and
6 bg RGB labels in each pair). These labels can be regarded as strong supervision, but they were
used because the performance of [Hochbaum and Singh, 2009] was highly sensitive to the labels.

Since our method is not designed to aim at figure-ground segmentation, we add an additional
step to generate the binary segmentation results. Our approach iteratively chooses large and co-
herent regions across input images in a bottom-up way. Thus, if the foreground object consists of
several distinct regions, it is likely to segment them into multiple regions. For binary segmentation,
we first safely cosegment a pair of images with a large K (K=8 in our experiments). Then, we
apply Normalized cuts to the similarity graph of eight pairs of cosegments to obtain two balanced
and discriminative partitions. We observed that our approach showed excellent performance for
detecting a moderate number of cosegments but the final figure-ground segmentation accuracy was
dependent much on this binarization.

Table 6.2.(a) summarizes the segmentation accuracies on the random test pairs of MSRC
dataset. The accuracy is measured by the intersection-over-union metric that is a standard in PAS-
CAL challenges (i.e. For each image, Ac = GTi∩Ri

GTi∪Ri
). We observed that our method outperformed

both [Hochbaum and Singh, 2009] and [Joulin et al., 2010] in most objects of the MSRC dataset.
Our algorithm was also significantly faster than both competitors; it took less than 10 seconds for
a pair of images with a [320×213] dimension, 750 superpixels, and K=8.

9Codes are available at [Hochbaum and Singh, 2009]: http://www.biostat.wisc.edu/∼vsingh/, [Joulin et al., 2010]:
http://www.di.ens.fr/∼joulin/.
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Figure 6.5: Examples of scalable cosegmentation on the ImageNet dataset. (a) Decomposition of the Go-
rilla Synset by the proposed diversity ranking and clustering. Three cluster centers and their three closest
images are shown. (b) Examples of cosegmentation on green lizard, siamang, ferret, and nymphalid butter-
fly. In each set, 20∼60 images are simultaneously cosegmented and five selected images are shown.

6.4.2 Results on Scalable Cosegmentation

For scalability tests, we use ImageNet10 [Deng et al., 2009]. We compute segmentation accuracies
by using its bounding box annotations. The bounding boxes may not be a perfect groundtruth for
segmentation evaluation, but in practice it is difficult to obtain pixel-wise labels for large-scale
datasets.

We compare our algorithm to (MNcut) [Cour et al., 2005] and the method of [Russell et al.,
2006], which are publicly available11. As a baseline, the (MNcut) [Cour et al., 2005] independently
segments each image with K=2 and the fg and bg are assigned so that the segmentation accuracy
is maximized. For [Russell et al., 2006], we apply the algorithm several times by changing the
number of topics from two to eight, and the best results are reported. Note that most previous
cosegmentation methods including [Hochbaum and Singh, 2009] and [Joulin et al., 2010] cannot
run well with a large number of images. ([Joulin et al., 2010] reported that their algorithm took
between 4 and 9 hours for 30 images).

For ImageNet tests, we select 50 synsets that provide bounding box labels. We randomly select
up to 1000 images per synset. Since the ImageNet images are too diverse to be jointly cosegmented
at once, we first split each synset into 100 disjoint sets I = I1∪ · · · ∪I100 by our diversity ranking
and clustering. Then, our cosegmentation is separately applied into each Io. This decomposition is
much more favorable for the performance. We tested a simultaneous cosegmentation of all 1,000

10http://www.image-net.org/challenges/LSVRC/2010.
11 Codes are available at [Cour et al., 2005]: http://www.seas.upenn.edu/∼timothee, [Russell et al., 2006]:

http://www.cs.washington.edu/homes/ bcr/projects/mult seg discovery/
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images with full dependency, in which both accuracy and speed were much worse.
Fig.6.5.(a) shows an example of synset decomposition. A single synset has several different

aspects, which were successfully detected by our diversity ranking and clustering. Table 6.2.(b)
shows the segmentation accuracies for 13 selected synsets. Our algorithm significantly outper-
formed the two competitors by more than 10%. Our algorithm took 60-70 minutes for 1,000
images on a single machine. Note that this computation time can be significantly reduced by
parallelization as discussed in section 6.3.2.

Fig.6.4 and Fig.6.5.(b) show some examples of cosegmentation on the MSRC and ImageNet
datasets. We made two interesting observations here: (i) Our method can easily segment multiple
instances in the images. (ii) Our algorithm is robust against an incorrect selection of K. In the
duck example of the second column of Fig.6.4, the best choice of K would be four, but a faulty
guess with K=8 did little harm. The four significant segments are successfully detected (e.g. three
ducks and grass) and the other four overestimated segments were trivially selected as tiny dots.

6.5 Summary

In summary, the main contributions of this chapter are as follows.

• We propose a diffusion-based optimization framework that is applicable to a wide range of
computer vision problems. In this work, we show that our optimization leads to an effective
solution to diversity ranking, single-image segmentation, and cosegmentation.

• We prove that the temperature of a linear anisotropic diffusion system, which corresponds
to many important objectives in computer vision tasks, including the cosegmentation score
concerned in this work, is a submodular function. This is a new result that widens the
applicability of submodular optimization in computer vision research.

• We present CoSand, a distributed cosegmentation exploiting the submodularity of our diffusion-
inspired segmentation objective. As compared in Table 6.1, our approach has some unique
benefits including compelling performance over previous methods, superior scalability, and
a desirable ability of automatically deciding the number of segments.
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Chapter 7

Multiple Foreground Cosegmentation

7.1 Introduction

In this chapter, we discuss the cosgementation algorithm in the same line with the previous chapter.
However, we aim at more practical approach to be applicable to the photo sets of general users
by overcoming some limitations from which existing cosegmentation methods still suffer. The
arguably most limiting one is that every input image would need to contain all the foregrounds
for the cosegmentation algorithms to be applicable. Fig.7.1 shows a typical example that violates
this condition. This is an apple+picking photo stream downloaded from Flickr, and it follows
an ordinary photo-taking pattern of a general photographer: a series of pictures about a specific
event are taken; the number of objects in a photo stream is finite, but they do not appear in every
single image. For example, in Fig.7.1, two girls, one baby, and an apple bucket repeatedly appear
in the photo stream, but each image includes only an unknown subset of them. Such a content-
misaligned set of images would not be correctly addressed by existing cosegmentation algorithms.
The objective functions in most existing methods were built on the assumption that all input images
contain the same objects, without explicitly considering the cases where foregrounds irregularly
occur across the images. In order to apply a traditional cosegmentation method to such a photo set,
a user is required to first divide her photo stream into several groups so that each group contains
only photos that have the same foregrounds. This manual preprocessing can be cumbersome,

Figure 7.1: Motivation for multiple foreground cosegmentation. (a) Input images are 20 photos of an ap-
ple+picking photo stream of Flickr. Two girls, one baby, and an apple bucket repeatedly occur in the images,
but only a subset of them is shown in each image. (b) The first row shows the color-coded cosegmentation
output in which the same colored regions are identified as the same foreground. The second row shows the
segmented foregrounds.
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especially when the number of photos is very large (e.g. hundreds or more).
In this chapter, we propose a combinatorial optimization method, MFC, for cosegmentation

that does not suffer from the aforementioned restriction. It allows irregularly occurring multiple
foregrounds with varying contents to be present in the image collection, and directly cosegment
them. More precisely, we consider the following task:

Definition 1 (Multiple Foreground Cosegmentation). The multiple foreground cosegmentation
(MFC) refers to the task of jointly segmenting K different foregrounds F={F1, · · · ,FK} from M
input images, each of which contains a different unknown subset of K foregrounds.

Given the number of foregrounds K and an input image set, our approach automatically finds the
most frequently occurring K foregrounds across the image set. Optionally, a user may select the
example foregrounds of interest in a couple of images in the form of bounding boxes or pixel-wise
annotations. Subsequently, our algorithm segments out every instance of K foregrounds in the
input image set.

More specifically, our approach is based on an iterative optimization procedure that alternates
between two subtasks: foreground modeling, and region assignment. Given an initialization for the
regions of K foregrounds, the foreground modeling step learns the appearance models of K fore-
grounds and the background, which can be accomplished by using any existing advanced region
classifiers or their combinations. During the region assignment step, we allocate the regions of
each image to one of K foregrounds or the background. This is done via a combinatorial auction
style optimization algorithm; every foreground and the background bid the regions along with their
values of how much the regions are relevant to them. These values are computed by the learned
foreground models. Finally, an optimal solution (i.e. the allocation of the regions that maximizes
the overall value) is achieved in O(MK) time, by leveraging the fact that the candidate regions
bidden by foregrounds and the final region assignment can be represented by subtrees of a connec-
tivity graph of regions in the image space. Iteratively, after the region assignment, each foreground
model is updated by learning from the newly assigned segments (i.e., regions) to the foreground.

The concept of such an iterative segmentation scheme has been used in some previous work
such as [Kim and Torralba, 2009] and [Rother et al., 2004]. But the allowance of arbitrary clas-
sifiers and their combinations to be plugged in during foreground modeling, and the use of a
linear-time algorithm motivated by combinatorial auction for region assignment make our method
unique and far more efficient and flexible than earlier ones.

We test our method on a newly created benchmark dataset, called FlickrMFC, with pixel-level
groundtruth. Each group consists of photos from a Flickr photo stream taken by a single user, and
contains a finite number of subjects that irregularly appear across the images. Our experiments in
Section 7.4 show that our approach successfully solves the multiple foreground cosegmentation in
a scalable way. Moreover, the cosegmentation accuracies are compelling over the state-of-the-art
techniques [Joulin et al., 2010; Kim et al., 2011; Russell et al., 2006] on our novel FlickrMFC
dataset and the standard ImageNet dataset [Deng et al., 2009].

To conclude the introduction, we present Table 7.1 that summarizes the comparison of our work
with previous cosegmentation methods, as done in previous chapter. Our approach has several
important features that are beneficial for the cosegmentation of general users’ photo sets. Our
algorithm is able to handle a largeM for scalability and an arbitraryK for highly variable contents
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Methods M K+1 MFC Hetero-FG
Ours (MFC) ≥ 103 Any O O

SO [Kim et al., 2011] ≥ 103 Any X X
UGC [Rother et al., 2006; Vicente et al., 2010] 2 2 X O

SGC [Batra et al., 2011; Mukherjee et al., 2011] ≤ 30 2 X O
[Hochbaum and Singh, 2009]

DC [Joulin et al., 2010] ≤ 30 2 X O

Table 7.1: Comparison of our algorithm with previous cosegmentation methods. M and K de-
note the number of images and foregrounds, respectively. MFC indicates whether an algorithm is
designed to solve the MFC problem in Definition 1. Hetero-FG means whether an algorithm can
identify a heterogeneous object (e.g. a person) as a single foreground. (SO: submodular optimization,
UGC: Graph-cuts (unsupervised), SGC: Graph-cuts (supervised), DC: Discriminative clustering).

of user images. This advantage is also shared with CoSand [Kim et al., 2011] in previous chapter,
but the key differences are as follows. First, the CoSand is a bottom-up approach that relies on
only low-level color and texture features, whereas our technique can be merged with any region
classification algorithms. Second, the CoSand cannot model a heterogeneous object that consists
of multiple distinctive regions (e.g. a person) as a single foreground. It can be a limitation to be
used for consumer photos because they are likely to contain persons as subjects, which are often
required to be segmented as a single foreground. However, our approach does not suffer from these
issues. In conclusion, our approach can correctly account for multiple foreground cosegmentation
in Definition 1, which has not been explicitly addressed by the optimization methods of most
previous work [Batra et al., 2011; Hochbaum and Singh, 2009; Joulin et al., 2010; Kim et al.,
2011; Mukherjee et al., 2011; Rother et al., 2006; Vicente et al., 2010], as shown in Table 7.1.

7.2 Problem Formulation

We denote the set of input images by I = {I1, · · · , IM}. According to Definition 1, we are
interested in segmenting out K different foregrounds F={F1, · · · ,FK} from all images in I,
each with an unknown subset of F . Our algorithm deals with two different scenarios. In the
unsupervised scenario, a user solely inputs the number K, and our algorithm automatically infers
K distinctive foregrounds that are most dominant in I. In the supervised scenario, a user can
provide bounding-box or pixel-wise annotations for K foregrounds of interest in some selected
images.

In our approach, we break the MFC problem defined above into two subproblems, which we
solve iteratively: foreground modeling and region assignment. Foreground modeling learns the
appearance models of K foregrounds or background, and region assignment allocates the regions
of each image to one of K foregrounds or the background. Intuitively, given a solution to one of
the two subproblems, the other is solvable. From an initial region assignment, one can learn K+ 1
foreground models, which in turn improve region assignment in every image. These two processes
alternate until achieving a converging solution.
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Figure 7.2: An example of the baby foreground (FG) model. (a) A FG model is a parametric
function that maps any region to a value to the foreground. (b) After the region assignment, the FG
model is updated by learning from the segments assigned to the FG.

7.2.1 Foreground Models

Without loss of generality, we define the k-th foreground (or the background) model as a paramet-
ric function vk : S → R that maps any region S ∈ S in an image to its fitness value to the k-th
foreground (i.e. how closely the region is relevant to the k-th foreground). If an image Ii is over-
segmented as Si, then vk : 2|Si| → R takes any subset S ⊂ Si as input and returns its value to the
k-th foreground. During the region assignment, each foreground model assesses how fit a region
(or a set of regions) to the foreground, as shown in Fig.7.2.(a). During the foreground modeling,
each foreground model is updated by learning from the segments allocated to the foreground, as
shown in Fig.7.2.(b).

One important objective of our approach is to enable adaptability to any choice or combination
of foreground models as plug-ins. Any classifiers or ranking algorithms can be used as foreground
models so long as they can evaluate a region and be updated by learning from the assigned regions.
(If we view the foreground model as a classifier, the former is a testing step and the latter is
a training step). In this work, we use two different foreground models - the Gaussian mixture
model (GMM) (i.e. Boykov-Jolly model [Boykov and Jolly, 2001; Rother et al., 2004]) and spatial
pyramid matching (SPM) with linear SVM [Lazebnik et al., 2006]. The former has been a popular
appearance model in cosegmentation [Batra et al., 2011; Vicente et al., 2010], and the latter is one
of baselines for object classification and detection. Table 7.2 summarizes the region descriptors,
model parameters, learning methods, and region valuation of the two foreground models. For both
GMM and SPM models, we follow the algorithms proposed in the original papers [Boykov and
Jolly, 2001; Rother et al., 2004] and [Lazebnik et al., 2006]. In experiments, the final region score
is computed by vk(S) = α · vkGMM(S) + (1− α) · vkSPM(S) by changing α from 0 to 1. Note that
thanks to our flexible definition of the foreground model, the simple SPM model can be replaced
by the state-of-the-arts deformable part models [Felzenszwalb et al., 2010] for better performance.

7.2.2 Region Assignment

Given the foreground models, the region assignment is performed on individual images separately.
The goal of this step is to divide Si (i.e. the segment set of each image Ii) into disjoint subsets
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GMM SPM

Region A set of RGB colors extracted at every
A spatial pyramid h(S) (2 levels, 200 visual words

features pixel of region S.
of gray/HSV SIFT). The minimum rectangle
enclosing S is used as the based pyramid.

Model
A Gaussian mixture with C components.

A linear SVM is learned using Fk as positive
and

Parameters θk = {πkc , µkc , σkc }Cc=1 are the
data and randomly chosen regions from other

learning
prior probability, mean, and covariance.

foregrounds or background as negative data.
The standard EM is used for learning.

vk(S)

The mean log-likelihood of the RGB
vk(S) =

∑T
t=1 ytαtK(h(S), h(t)) where h(t) is

descriptors of S to the k-th learned
the histogram of training region t, yt ∈ {+1, –1}

GMM models.
is the positive/negative label, K(·, ·) is the histogram
intersection kernel, αt is the weight of the support
vector for t, and T is the number of training regions.

Table 7.2: Description of two foreground models – GMM and SPM models.

of foregrounds Fki (k = {1, · · · , K}) and background (For notational simplicity, we use FK+1
i

for background). Since all foregrounds do not appear in every image, some foregrounds (Fki ) are
empty sets.

Naively, we may distribute each segment s ∈ Si to one ofFki that has the maximum value vk(s)
for it. However, in image segmentation, the value of a segment bundle (i.e. a subset of Si) can be
worth more than or less than the sum of values of individual segments. For example, suppose that
a black patch is the most valuable to the cow foreground. But, if the black patch is combined with
a skin-colored patch, this bundle would be more valuable to the person foreground than to the cow
foreground.

Consequently, the region assignment reduces to finding a disjoint partition Si =
⋃K+1
k=1 Fki

with Fki ∩ F li=∅ if k 6=l, to maximize
∑K+1

k=1 vk(Fki ). More formally, it corresponds to the integer
program (IL) problem below:

max
K+1∑
k=1

∑
S⊆Si

vk(S)xk(S) (7.1)

s.t.
K+1∑
k=1

∑
s∈S,S⊆Si

xk(S) ≤ 1, ∀s ∈ Si,

xk(S) ∈ {0, 1}

where variables xk(S) describe the allocation of bundle S to k-th foreground Fki . (i.e. xk(S) = 1
if and only if the k-th foreground takes the bundle S). The first constraint checks whether the
assignment is feasible; any segment s ∈ Si cannot be assigned more than once.

The region assignment in Eq.(7.1) requires to check all possible subset S ⊆ Si. Unfortunately,
there are 2|Si| possible subsets, so enumerating them is infeasible. It is proven in [Cramton et al.,
2005] that Eq.(7.1) is identical to the weighted set packing problem, and thus it is NP-complete
and inapproximable.
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Figure 7.3: An example of region assignment with apple bucket and baby foregrounds (FG) and
background (BG). (a) An input image Ii. (b) Segment set Si. (c) Adjacency graph Gi. (d) The
set of FG candidates Bi that are submitted by two FGs and BG. Each candidate is a subtree of Gi,
associated with its value. (e) The most likely tree T ∗i given Bi. (f) The optimal assignment is a
forest of subtrees in Bi. (g) The segmentation of two FGs.

7.3 Tractable Multiple Foreground Cosegmentation

In this section, we propose a tractable MFC method that iteratively solves the two subproblems
defined in the previous section. The foreground modeling is straightforward, but the region assign-
ment is intractable. Hence, we here focus on developing a polynomial time algorithm to solve the
region assignment by taking advantage of structural properties that are commonly observed in the
image space.

7.3.1 Tree-Constrained Region Assignment

Given the K+1 foreground models, the region assignment module progresses as follows. First,
each image Ii is oversegmented as Si as shown in Fig.7.3.(b). Any segmentation algorithm can
be used, and we apply the submodular image segmentation [Kim et al., 2011] to each image.
Given the segment set Si of image Ii, each foreground in F creates a set of foreground candidates
Bki = {Bk

1 , · · · , Bk
n}, where every candidate is a tuple Bk

j = 〈kj, Cj, wj〉, where kj is the index
of the foreground that submits candidate j, Cj ⊆ Si is a bundle of segments and wj is its value
wj=v

k(Cj) (See an example in Fig.7.3.(d)). In this step, we allow each foreground to submit as
many candidates as it is willing to take (Section 7.3.2). Finally, solving the region assignment
in Eq.(7.1) corresponds to choosing some feasible foreground candidates among all submitted
Bi={B1

i , · · · ,BK+1
i } in order to maximize the overall values1 (Section 7.3.3).

There are two possible approaches to make the region assignment problem in Eq.(7.1) tractable:
putting a restriction on value function vk or a restriction on generating foreground candidates Bi.

1Our region assignment is closely related to combinatorial auction [Cramton et al., 2005] with following termino-
logical correspondences: Given a set of segments (items) Si, K+1 foreground models (bidders or buyers) submit a
set of foreground candidates (package bids) Bi. The region assignment in Eq.(7.1) is commonly referred to a Winner
determination problem or a Welfare problem in combinatorial auction literature.
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We explore the latter approach (i.e. restriction on Bi) because one of our design goals is to enable
flexible choice of foreground models. (e.g. it is hard to define any regularity constraints on the
output scores of the SPM model for arbitrary segment bundles). In the following sections, we will
discuss how to achieve the tractability.

Assumption: We assume that a foreground instance in an image is represented by a set of
adjacent segments. A pair of segments is considered as adjacent if its minimum spatial distance
in an image is less than or equal to ρ. This is a reasonable assumption because most foregrounds
of interest occupy connected regions in an image. Our approach allows multiple instances (e.g.
several apple buckets in an image), which are regarded as multiple connected regions.

Suppose that we build an adjacency graph Gi=(Si, Ei) where every segment is a vertex and
(sl, sm) ∈ Ei if min d(sl, sm) ≤ ρ (e.g. ρ=5 pixels) for all sl, sm∈Si (See an example in Fig.7.3.(c)).
Then, any connected regions in the image can be represented by subtrees of Gi, and thus the final
region assignment {F1

i , · · · ,FK+1
i } should be a forest (i.e. set) of subtrees (See an example in

Fig.7.3.(f)). Consequently, without loss of generality, we restrict any foreground candidateBi ∈ Bi
to be a subtree of the Gi, and our goal of region assignment is to select some Bi that are not only
feasible but also maximize the objective of Eq.(7.1).

7.3.2 Generating Candidate Sets

In this section, we discuss how each foreground generates a set of foreground candidates Bki , each
of which is a subtree of Gi (i.e. generating candidates in Fig.7.3.(d) from Gi of Fig.7.3.(c)). In this
step, each foreground does not care for the winning chances of its proposals by competing the ones
submitted by the other foreground models.

Given the adjacency graph Gi, each foreground samples highly valued subtrees as candidates
Bki by using beam search with vk as a heuristic function and a beam width D [Russell and Norvig,
2009] (e.g. D=10 in our tests). Algorithm 8 summarizes this process. We start with all unit
segments ∀s ∈ Si to be added to Bki . In every round, we enumerate all subtrees that can be
obtained by adding one edge from previous candidates. The beam width D specifies the maximum
number of subtrees to be retained at each round. We only keep top D highly valued subtrees as Bki
without consuming too much time on poorly valued ones (See step 3 of Algorithm 8). In practice,
this beam search selects good and sufficiently many candidates, because each foreground usually
occupies only a part of an image. The computation time of this step per foreground is at most
O(D|Si|2), and the number of foreground candidates |Bi| is at most (D|Si|).

7.3.3 Tractable Region Assignment

Given Bi, we are ready to solve Eq.(7.1) by choosing some feasible candidates among Bi. For a
tractable solution, we first introduce a theorem in [Sandholm and Suri, 2003], which is reformu-
lated to be fit to our context as follows.

Theorem 3 ([Sandholm and Suri, 2003]). Dynamic programming is able to solve Eq. (7.1) in
O(|Bi||Si|) worst time if every candidate in Bi can be represented by a connected subgraph of a
tree T ∗i .
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Algorithm 8: Build candidates Bki from Gi by beam search.

Input: (1) Adjacency graph Gi = (Si, Ei). (2) Value function vk of the k-th foreground model. (3)
D: Beam width.

Output: k-th foreground candidates Bki .

1: Set the initial open set to be O←∀s ∈ Si. Bi←∀s ∈ Si.
for i = 1 to |Si|−1 do

foreach o ∈ O do
2: Enumerate all subgraphs Oo that can be obtained by adding an edge to o. O ← Oo and
O ← O\o.

3: Compute values vo ← vk(o) for all o ∈ O and remove o from O if it is not top D highly
valued. Bi ← O.

Theorem 3 suggests a linear-time algorithm for region assignment, if Bi can be organized as a
tree. In the foreground candidate set Bi, each Bi ∈ Bi is a subtree but its aggregation Bi may not.
Therefore, we reject some Bi that cause cycles but are not highly valued, because the final solution
is a forest of candidate subtrees. The pruned Bi is denoted by B∗i . Now we discuss how to obtain
T ∗i and B∗i from Bi.

Inferring the tree from the candidate set: Given candidate set Bi (i.e. a set of subtrees)
of image i, our objective here is to infer the most probable tree T ∗i . It can be formulated as the
following maximum likelihood estimation (MLE) in a similar way to tree structure learning (e.g.
Chow-Liu tree [Chow and Liu, 1968]).

T ∗i = argmax
T ∈T (Gi)

P (Bi|T ) (7.2)

where P (Bi|T ) is the data likelihood of the given Bi and T (Gi) is the set of all possible spanning
trees on Gi. The probability of a candidate set Bi in tree T is

P (Bi|T ) =
∏
Bl∈Bi

P (Bl|T ) (7.3)

where we assume the conditional independence between candidates given the tree T . The proba-
bility of observing a candidate in a particular tree structure is defined as:

P (Bl|T ) =
∏

(u,v)∈T

exp
(
PBl

(u, v)
)

=
∏

(u,v)∈T

exp
(
P (u, v) · δ((u, v)∈Bl)

)
(7.4)

where the P (u, v) is the probability of an edge between u and v and δ((u, v)∈Bl) is an indicator
whether the edge (u, v) is in the Bl or not. Hence, from Eq.(7.3) and Eq.(7.4), the log-likelihood
L is defined as follows.

L =
∑
Bl∈Bi

logP (Bl|T ) =
∑
B∈Bi

∑
(u,v)∈T

δ((u, v) ∈ Bl) logP (u, v) (7.5)
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Algorithm 9: Infer the most probable T ∗i from Bi
Input: (1) Candidate set Bi (Bl = 〈kl, Cl, wl〉 where Cl is a subtree of Gi and wl is the value to its

foreground).
Output: (1) Candidate tree T ∗i and (2) Pruned B∗i (⊂ Bi).
1: Set A be an N×N zero matrix where N=|Si|. Set B∗i←∅.
foreach Bl = 〈kl, Cl, wl〉 ∈ Bi do

foreach s ∈ Cl do
foreach t ∈ Cl, t 6= s do A(s, t)← A(s, t) + wl end

2: Let T ∗i be the maximum spanning tree of A.
foreach Bl = 〈kl, Cl, wl〉 ∈ Bi do

if all edges (u, v) ∈ Cl is in T ∗i then B∗i ← Bl. end

Note that the sample proportions are the maximum likelihood estimates of the parameters of
discrete distributions.

P̂ML(u, v) = P̃ (u, v) ∝ exp
(∑Bl∈Bi wlδ((u, v) ∈ Bl)∑

Bl∈Bi wl

)
(7.6)

Therefore, from Eq.(7.5) and Eq.(7.6), the maximum likelihood is as follows by maximizing
over the parameters for a fixed structure:

L∗ =
∑

(u,v)∈T

∑
B∈Bi

δ((u, v) ∈ Bl) log P̃ (u, v) ∝
∑

(u,v)∈T

∑
Bl∈Bi

wlδ((u, v) ∈ Bl). (7.7)

As shown in Eq.(7.7), the likelihood of a tree is the sum of the weight values associated with
the edges of each candidate Bl ∈ Bi. According to [Chow and Liu, 1968], we see that the maxi-
mum likelihood tree is a maximal spanning tree (MST). The above whole steps are summarized in
Algorithm 9, which computes the most likely tree T ∗i given Bi. Once we obtain T ∗i , we retain only
the candidates B∗i (⊂ Bi) that are subgraphs of T ∗i .

It is easy to see that Algorithm 9 runs in O(|Bi||S|2) time. Algorithm 9 first generates a
complete undirected graph over Si in which each edge (u, v) has the sum of values of Bl ∈ Bi
such that (u, v) ∈ Bl. Its running time is O(|Bi||S|2). Then, the maximum spanning tree is
obtained in O(|S|2), and the final pruning step is performed in O(|Bi||S|) at worst.

As another interpretation, we can also easily prove that Algorithm 9 minimizes the values of
rejected Bl ∈ Bi under the constraint of the tree structure as shown in

T ∗i = argmin
T ⊂T (Gi)

∑
Bl∈Bi,Bl 6⊂Ti

v(Bl). (7.8)

Search Algorithm: According to Theorem 3, given the B∗i that are organized in the tree T ∗i , the
optimal solution to Eq.(7.1) can be achieved in O(|B∗i ||Si|) by Algorithm 10. We implement the
dynamic programming (DP) based search algorithm by modifying the CABOB algorithm [Sand-
holm and Suri, 2003].
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Algorithm 10: Solve region assignment (Eq.(7.1)) from B∗i
Input: (1) The pruned candidate set B∗i (for each Bl = 〈kl, Cl, wl〉 where kl is the index of the

foreground, Cl is a sub- tree of Gi and wl is the value to its foreground). (2) T ∗i .
Output: (1) Foreground assignment {Fk1 , · · · ,F

K+1
1 }.

1: Randomly choose the root r of the tree T ∗i .
2: Assign each node of T ∗i a level, which is its distance from the root r. (e.g. The level of r is 0).
3: Compute the level of each candidate Bl in B∗i , where level(Bl) is the smallest level of any item in
Bl.
foreach A node i in T ∗i in a decreasing order of level do

4: Let Ci be the set of candidates Bl in Bi, each of which includes i and whose level is the same
as the level of i.
5: Let opt(i) be the optimal solution for the problem considering only those candidates that
contain items in the subtree below i.
6: Compute opt(i) recursively as follows

opt(i) = max

(
max
Bl∈Ci

(
wl +

∑
j∈UB

opt(j)
)
,
∑

j∈ch(i)

opt(j)

)
(7.9)

where wl is the value of candidate Bl and ch(i) is the children nodes of i. UB be the set of the
roots of the forest of subtrees that are obtained by removing all nodes in Bl from T ∗i , while
ignoring the subtree containing r.

7: The final solution is a set of candidates Bopti associated with opt(r). Finally, FKi ← ∀Bl ∈ B
opt
i

where kl of Bl is k.

7.3.4 The MFC Algorithm

Algorithm 11 summarizes the overall algorithm. We repeat the two main procedures, foreground
modeling and region assignment, until the objective score of a new region assignment in Eq.(7.1)
does not increase or the iterations reach a pre-defined number. Since we deal with free-formed
patches of natural images and consider the foreground models as black boxes, it is difficult to
analytically understand the convergence property. However, if we use only the GMM model as our
foreground model, our algorithm is guaranteed to converge at least to a local minimum [Rother
et al., 2004].

The initializations for region assignment are different between supervised and unsupervised
settings. In the supervised scenario, we initialize the foreground models from the foreground
regions labeled by users: A = {A1, · · · ,AK} where Ak is the regions annotated as the k-th
foreground. In the unsupervised setting, we apply the diversity ranking method of [Kim et al.,
2011] to the similarity graph of S = {S1, · · · ,SM} to discover the most repeated K regions that
are diverse with respect to one another. Note that in the unsupervised setting, commonality of the
regions is favored. Hence, when we apply the unsupervised cosegmentation to the images like
Fig.7.3, it is unavoidable to detect grass regions as one of K foregrounds because it is dominant
across the input images.
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Algorithm 11: Multiple foreground cosegmentation
Input: (1) Input image set I. (2) Number of foregrounds (FGs) K. (3) (In supervised case)

annotations A = {A1, · · · ,AK}.
Output: Foregrounds Fi = {F1

i , · · · ,FKi } for all Ii ∈ I.

Initialization
foreach Ii ∈ I do

1: Oversegment Ii to Si and build adjacency graph Gi = (Si, Ei) where (sl, sm) ∈ Ei if
min d(sl, sm) ≤ ρ.

if unsupervised then
2: Apply diversity ranking of [Kim et al., 2011] to the similarity graph of S=

⋃M
i=1 Si to find K

regions A={A1, · · · ,AK} that are highly repeated in S and diverse with respect to one another.
3: Set F ← A.

Iterative Optimization
/* Stopping condition. */
We stop the iteration if a new region assignment does not increase the objective value (i.e.∑M

i=1

∑K+1
k=1 vk(Fki ) from Eq.(7.1)).

/* Foreground Modeling (Any methods can be used). */
foreach k = 1:K do

1: Learn GMM and SPM FG models from Fk (See Table 7.2).

/* Region assignment */
foreach Ii ∈ I do

foreach k = 1: + 1K do
2: Generate FG candidates Bki by Alg.8 as a set of Bk

i = 〈kj , Cj , wj〉, where kj is the
foreground index, Cj ⊆ Si is a subtree of Gi, and wj=vk(Cj).

3: Compute the most probable candidate tree T ∗i and pruned B∗i by Eq.(7.2) from Bi=
⋃K+1
k=1 Bki .

4: Obtain Fi to solve region assignment in Eq.(7.1) by using Algorithm 10 on B∗i .

7.4 Experiments

We evaluate the proposed MFC algorithm using the FlickrMFC dataset and the ImageNet dataset [Deng
et al., 2009].

7.4.1 Results over FlickrMFC Dataset

Datasets: We introduce a new dataset called FlickrMFC for the benchmark purpose of multiple
foreground cosegmentation. They are sampled images from Flickr photo streams, each of which
is taken by a single user for a specific event in a single day. Hence, a fixed number of subjects (or
foregrounds) frequently occur across the photo stream, but an unknown subset of them appears in
every single image. We also provide hand-labeled pixel-level groundtruths.

The FlickrMFC consists of 14 groups, each of which contains 12∼20 images. Table 7.3 sum-
marizes some key information about the collected groups including the number of images and the
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Group M K Foreground names
apple+picking 20 6 apple+bucket, baby, boy+blue, girl+blue, girl+red, pumpkin
baseball+kids 18 5 ball, boy+black, boy+gray, coach, glove

butterfly+blossom 18 8 beetle, butterfly+orange, butterfly+tiger, butterfly+yellow, flower+pink,
flower+red, ladybug, leaf

cheetah+ safari 20 5 cheetah, eagle, elephant, lion, monkey
cow+pasture 20 5 cow+black, cow+brown, man+blue, man+red+cap, truck

dog+park 20 4 dog+black, dog+brown, dog+white, woman
dolphin+aquarium 18 3 killer+whale, dolphin+gray, seal

fishing+alaska 18 5 flower, man+gray, man+white, salmon, woman+gray
gorilla+zoo 18 4 boy, girl, gorilla+black, orangutan+brown

liberty+statue 18 4 boat+blue, boat+red, empire+state+building, liberty+statue
parrot+zoo 18 5 hand, parrot+green, parrot+red, parrot+white, parrot+yellow
stonehenge 20 5 bird, cow+black, cow+white, person, stonehenge
swan+zoo 20 3 flower+yellow, swan+black, swan+gray

thinker+Rodin 17 4 sculpture+thinker, sculpture+venus, van+gogh, woman

Table 7.3: Summary of 14 groups of FlickrMFC dataset. M and K denote the number of images
and foregrounds, respectively.

Figure 7.4: The FlickrMFC dataset. We show all images of four groups (apple+picking+fall,
cow+pasture, stonehenge+england, and parrot+zoo+bird) from top to bottom. In each group, the
first row shows input images, and the second row illustrates hand-labeled pixel-level groundtruths.

description of foregrounds. The group names are identical to the search keywords that are used for
image downloading from Flickr. Fig.7.4 shows all images of four selected groups.

Baselines: As baselines, we use one LDA-based unsupervised localization method [Russell
et al., 2006] (LDA) and two cosegmentation algorithms: CoSand [Kim et al., 2011] (COS) and
discriminative clustering method [Joulin et al., 2010] (DC). Since the two cosegmentation methods
are not intended to handle irregularly appearing multiple foregrounds, we first manually divide the
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Figure 7.5: Examples of multiple foreground cosegmentation on selected groups of FlickrMFC
dataset. We sampled 5∼7 images per group. Each set presents input images, color-coded coseg-
mentation output, and segmented foregrounds, from top to bottom. The color bars below each set
indicate which foregrounds are assigned to colored regions.

images into several subgroups so that the images of each subgroup share the same foregrounds.
If an image contains multiple foregrounds, it belongs to multiple subgroups. Then, we apply the
methods to each subgroup separately to segment out the common foreground. This is an exact sce-
nario where a conventional cosegmentation is applied to the image sets of multiple foregrounds.
The (LDA) [Russell et al., 2006] was not originally developed for cosegmentation, but it can seg-
ment multiple object categories without any annotation input. We use the source codes provided
by original authors.

Results: Our algorithm is tested in both supervised (MFC-S) and unsupervised (MFC-U) set-
tings. In (MFC-S), we randomly choose 20% of input images (i.e. 2∼4 images) to obtain annotated
labels for the foregrounds of interest. For the unsupervised algorithms, (MFC-U) and (LDA), it is
hard to know the best K beforehand. Thus, we run them by changing K from two to eight, and
report the best results.
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Figure 7.6: Comparison of segmentation accuracies between our supervised (MFC-S) and unsu-
pervised (MFC-U) approaches and other baselines (COS, DC, LDA) for the FlickrMFC dataset. The
S and U indicate whether any annotation input is required (S) or not (U).

Fig.7.6 summarizes the segmentation accuracies on the 14 groups of the FlickrMFC dataset. In
the figure, the leftmost bar set is the average performance on 14 groups. The accuracy is measured
by the intersection-over-union metric (GTi∩Ri

GTi∪Ri
), the standard metric of PASCAL challenges. We

observed that the performance of our (MFC-U) is slightly worse than (COS) and (DC) by 2∼3%.
Note that (COS) and (DC) are applied to the images of each separate subgroup that shares the same
foregrounds. It allows the algorithms to know what foregrounds exist in the images beforehand,
which is a strong supervision. On the other hand, (MFC-U) is a completely unsupervised; it is
applied to the entire dataset without splitting. Our supervised (MFC-S) algorithm, even with a
very small number of labeled images, significantly outperformed the competitors by more than
11% over the best of baselines (COS).

Fig.7.5 shows some examples of cosegmentation from six groups of the FlickrMFC dataset. In
each set, we show input images, color-coded cosegmentation output, and segmented foregrounds
from top to bottom. The same colored regions in the second row are identified as the same fore-
grounds, and the meanings of the colors are described below each set. We made several interesting
observations in these examples: First of all, our algorithm correctly treated the multiple foreground
cosegmentation in Definition 1. In Fig.7.5.(a), two girls, a boy, a baby, an apple bucket, pumpkins
are intended foregrounds, which are irregularly presented in each image. This is a challenging
situation for traditional cosegmentation methods, but our algorithm could successfully segment
the foregrounds. As shown in the fourth image of Fig.7.5.(d), some input images include no fore-
grounds, which were successfully identified as well. One main source of errors in our experiments
was the similarly looking regions; for example, in the first image in Fig.7.5.(a), the face region of
the girl+red is allocated to the girl+blue foreground (depicted in red), which makes sense in that
the two foregrounds are the girls with similar skin and hair colors but their main difference lies in
their clothes.

7.4.2 Results over ImageNet Dataset

Dataset: ImageNet [Deng et al., 2009] may not be a perfect dataset for the evaluation of multiple
foreground segmentation because each image contains only a single object class with a significant
size. Instead, the main objectives of the evaluation with ImageNet [Deng et al., 2009] are to show
(i) the scalability of our method, and (ii) the performance evaluation for the single foreground
cosegmentation as a simplified task.

Baselines: We follow the experiment setting of [Kim et al., 2011] in order to compare our
segmentation performance with those of (COS) [Kim et al., 2011], (LDA) [Russell et al., 2006],
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Figure 7.7: Comparison of segmentation accuracies between our approach and other baselines for
the ImageNet dataset.

Figure 7.8: Examples of scalable cosegmentation on the ImageNet dataset. We sample six images
from each synset. In each set, the first row shows input images, and the second row illustrates
segmented foregrounds.

and MNcut [Cour et al., 2005] that are reported in [Kim et al., 2011]. We select 50 synsets that
provide bounding box labels, and apply our technique to 1000 randomly selected images per synset
in both supervised (MFC-S) and unsupervised (MFC-U) ways. In (MFC-S), the foreground models
are initialized from the labels of 50 randomly chosen images. Finally, we compute segmentation
accuracies by using the provided bounding box annotations.

Results: Fig.7.7 shows the segmentation accuracies for 13 selected synsets. The accuracies of
(MFC-U) and (MFC-S) are higher than those of the best baselines (COS) by more than 3% and 8%,
respectively. As discussed before, our algorithm is linear to M and it took about 20 min for 1,000
images on a single machine.

Fig.7.8 illustrates six segmented images for following synsets: orangutan, snail, lion, gar-
den+spider, otter, kit+ fox, Australian terrier, and Nymphalid butterfly. Most ImageNet images
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contain only a single object class with a significant size, and thus we here sample some challenging
images that contain a relatively small foreground in cluttered background. The results show that
the proposed approach has been also successful to the single foreground cosegmentation, which is
a simper task than the multiple foreground cosegmentation defined in this chapter.

7.5 Summary

In summary, the main contributions of this chapter can be summarized as follows.

• We develop an approach to multiple foreground cosegmentation, which is a less restrictive
and more practical cosegmentation so far, in order to be directly applicable to general users’
photos. To the best of our knowledge, such cosegmentation tasks remain an under-addressed
topic in the computer vision literature.

• We formulate the proposed cosegmentation as an iterative combinatorial auction in which
image regions are optimally allocated to one of foregrounds or background to maximize the
total relevance values of the regions to the assigned foreground or background. Our approach
is flexible enough to be integrated with any advanced region classification algorithms, and
achieves an optimal solution to region assignment in O(MK), where M and K are the
number of images and foregrounds, respectively.

91



Part III

Reconstruction and Applications of Photo
Storylines
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Part III – Reconstruction and Applications
of Photo Storylines

In this part, we discuss the discovery of collective photo storylines and their potential uses for
several interesting Web applications. This part consists of three chapters.

First, we propose an approach to jointly aligning and segmenting uncalibrated multiple photo
streams of outdoor recreational activities, as a first technical step to detect the collective storylines.
The alignment task discovers the matched images between different photo streams, and the image
segmentation task parses the images into multiple meaningful regions to facilitate the image un-
derstanding. We integrate the two tasks so that solving one task helps enhance the performance
of the other. To this end, we design scalable message-passing based optimization framework to
jointly achieve both tasks for the whole input image set at once.

Second, we investigate an approach for reconstructing storyline graphs from large-scale photo
collections, and optionally other side information such as friendship graphs. The storyline graphs
can be used as an effective structural summary that visualizes various events or activities recurring
across the input photo sets, which otherwise are too overwhelming for users to grasp any un-
derlying big picture. We formulate the storyline reconstruction problem as an inference of sparse
time-varying directed graphs, and develop an optimization algorithm that achieves a number of key
challenges of Web-scale storyline reconstruction, including global optimality, linear complexity,
and easy parallelization.

Third, we propose to leverage large-scale online photo collections contributed by the general
public, for the analysis of brand associations, given that photos are gaining popularity as an impor-
tant information modality on the Web. More specifically, we aim to jointly achieve the following
two visualization tasks in a mutually-rewarding way: (i) detecting and visualizing core visual con-
cepts associated with brands, and (ii) localizing the regions of brand in images.
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Chapter 8

Jointly Aligning and Segmenting Multiple Photo
Streams

8.1 Introduction

The work in this chapter is closely related to the main theme of this dissertation: building col-
lective photo storylines from the photo streams of millions of users, and discovering the relations
between the reconstructed storylines and the photo streams of individual users. As a first technical
step to achieve this goal, in this chapter, we propose a method to jointly perform alignment of
multiple photo streams and cosegmentation of aligned images, as shown in Fig.8.1. In the align-
ment step, images of different photo sets are matched based on visual contents and associated
meta-data. The alignment is a core task to build a big picture of storylines from a large number
of fragmented photo streams of individual users. In the cosegmentation step, the aligned images
are segmented together in order to facilitate image understanding such as pixel-level classification
in the images. It is important to note that solving these two tasks are mutually rewarding. The
main challenge of cosegmenting multiple photo streams is that the Web images by general users
are too diverse to segment all at once. Jointly segmenting images with no commonality, which
contradicts the basic assumption of cosegmentation, could be worse than individually segmenting
each image. Therefore, the alignment step fills in the role of enabling grouping of images that
share sufficient commonality, which provides a high-level clue for cosegmentation. Conversely,
once we parse each image into multiple segments, image matching, a basic operation for the photo
stream alignment can be improved. We can iterate these two steps in multiple rounds.

In our approach, photo stream alignment and image cosegmentation are achieved in a similar
way. For the alignment, we first establish a sparse graph that connects similar photo streams to
be aligned together as a Markov random field. Then, we perform belief propagation to jointly
align all photo steams at once. Likewise, for image cosegmentation, we build a graph linking the
coherent images that are beneficial to be segmented together, based on the output of the alignment
step. Then, we perform cosegmentation of the entire image set all at once under the guidance of
the graph by a message-passing style optimization.

For evaluation, we collect about 1.5 millions of images of 13 thousands of photo streams re-
garding 15 outdoor recreational activities from Flickr. Our experiments in Section 8.5 demonstrate
that our approach outperforms other candidate methods on both photo stream alignment and image
cosegmentation.

95



Figure 8.1: Motivation for jointly aligning and segmenting multiple photo streams with an example of three
photo streams of scuba+diving. The input is any number of photo streams of an activity class that are taken
by various users at different time and places. The outputs are two fold: (a) Photo stream alignment. The
images in different photo streams are matched (as shown in the same colors). (b) Image cosegmentation. The
shared regions in the aligned images are jointly segmented. Photo stream info. = {PS2: u1 at 10/19/2008
(Cayman Islands), PS3: u2 at 03/19/2005 (Phuket, Thailand), PS14: u3 at 08/27/2008 (Cozumel, Mexico)}.

Our problem involves segmenting aligned photo streams together. It resembles the cosegmen-
tation problem [Batra et al., 2011; Joulin et al., 2012; Kim and Xing, 2012; Kim et al., 2011;
Rother et al., 2006; Vicente et al., 2011], in which the objective is to jointly segment recurring
objects (or foregrounds) that are shared in multiple images. Since we already survey the recent
literature about cosegmentation in previous chapters, we briefly discuss the unique features of our
work comparing to the large body of previous cosegmentation research. First, we focus on seg-
mentation of unordered multiple web photo streams. The cosegmentation of Flickr photo streams
was discussed in the MFC method in chapter 7 [Kim and Xing, 2012], but it was applied to at most
20 images that are manually selected out of hundreds of pictures of a single Flickr photo stream. In
contrast, here we can handle an arbitrary number of uncalibrated Web photo streams by closing the
loop between segmentation and photo stream alignment. Second, in our experiments, we perform
scalable segmentation with more than 100K images of 1K photo streams, which exceeds those of
previous work by two orders of magnitude. To our knowledge, the largest dataset sizes in previous
work are about 1K [Kim and Xing, 2012; Kim et al., 2011].

Another interesting thread of research related to our work is large-scale image alignment. Im-
age alignment has been one of fundamental tasks in a variety of computer vision problems. Re-
cently, with the explosion of pictures available online, image alignment has become a key building
block to solve several large-scale novel problems. Some notable examples include the reconstruc-
tion of 3D models of landmarks [Snavely et al., 2010], the localization of tourists’ photos [Chen
and Grauman, 2011], spatio-temporal reconstruction of time-varying 3D city models [Schindler
and Dellaert, 2010], and nonparametric object recognition and scene parsing [Liu et al., 2009a].
However, their objectives of the image alignment are quite different from ours, which is to inte-
grate with a subsequent image segmentation to infer common storylines of outdoor activities. As
far as we know, [Yang et al., 2011] is one of the very few papers that involve the alignment of
multiple photo streams. However, their algorithm is tested with relatively small datasets (i.e. 12
classes with less than 10 photo streams per class) compared to ours (i.e. 15 outdoor activities with
1K photo streams per activity) by orders of magnitude. More importantly, they did not explore any
sub-image level analysis; no image segmentation is performed.
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8.2 Problem Formulation

In this section, we describe the problem definition and the overview of our solution to the problem.

8.2.1 Input and Output

The input of our algorithm is the set of photo streams of a particular activity denoted by P =
{P 1, · · · , PL}, where L is the number of input photo streams. Each photo stream is a set of photos
taken in sequence by a single photographer within a certain period of time, which is set to a single
day in this work. Without loss of generality, we assume that each photo stream is sorted by taken
time. We also use I = {I1, · · · , IN} to denote the whole image set without distinguishing the
membership of photo streams. As a notation convention, we use superscripts to denote photo
stream numbers and subscripts to denote image numbers.

Another input is related to the segmentation task; a user can provide the maximum number
of foregrounds of interest per image K. Then, our algorithm automatically identifies K most
dominant regions that are distinctive one another from the image and its aligned neighbors1. The
background is defined as all the other regions that are not included in any of K foregrounds. For
notational simplicity, we interchange the term background and foreground K+1.

The output of our algorithm is two-fold. The first output for the alignment is the set of corre-
spondences between the images of different photo streams. If we represent each image as a vertex
and each correspondence as an edge, the output can be summarized as an L-partite graph. The
second output for the segmentation is assigning every pixel of each image to one of K foregrounds
or background.

8.2.2 Overview of Algorithm

Our approach alternates between solving the two target tasks, photo stream alignment and image
cosegmentation. Given a large set of uncalibrated photo streams, we first build a nearest neighbor
similarity graph that connects the photo streams to be aligned (see section 8.3.4). We formulate the
alignment of the whole photo streams as an energy minimization problem, which can be solved by
belief propagation on the graph. Its detailed procedure will be explained in section 8.3.3 and 8.3.4.
As a result of the alignment, we can obtain the correspondences between the images of different
photo streams, from which we establish an image graph connecting the similar images that are
likely to share common foregrounds (see section 8.4.1). We perform large-scale cosegmentation
for all images at once under the guidance of the image graph in a message-passing way, which will
be discussed in section 8.4.2. The segmentation of images can enhance the similarity measurement
between images, which subsequently contributes to a better photo stream alignment. This will be
justified in section 8.3.2 with an intuitive example. Finally, we can return to the photo stream
alignment step with the new segmentation-based image similarity.

1 In segmentation literature, it is called an unsupervised setting. A user may provide some foreground examples in
the form of bounding-boxes or pixel-wise annotations, which is called a supervised setting. In this work, we focus on
the unsupervised case because it is more challenging. Also, it is trivial to adapt our approach to the supervised setting.
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Figure 8.2: The benefit of segmentation for measuring image similarity. In this example, the same objects
appear in different locations with different poses across the image pair. (a) When images are not yet seg-
mented, we compute the image similarity using the spatial pyramid histograms on the whole images. (b)
Once images are segmented, we find the best assignment between the segments of two images, and compute
the mean of segment similarities.

8.3 Alignment of Photo Streams

We begin with our image description and similarity measure, and then discuss the proposed align-
ment algorithm.

8.3.1 Image Description

We use the dense feature extraction with vector quantization, which is one of standard methods
in recent computer vision research. We densely extract two features from each image: HSV color
SIFT and histogram of oriented edge (HOG) feature on a regular grid at steps of 4 and 8 pixels,
respectively. Then, we form 300 visual words for each feature type by applying K-means to ran-
domly selected descriptors. Finally, the nearest word is assigned to every node of the grid. As
image and segment descriptors, we build L1 normalized spatial pyramid histograms to count the
frequency of each visual word in multiple levels of regular grids.

8.3.2 Image Similarity Measure

It is vital to design a reliable similarity metric between images for an accurate alignment of photo
streams. Our alternating approach is based on the assumption that the segmentation is helpful to
enhance the measurement of image similarity. Fig.8.2 shows a typical example of such intuition
where the same objects appear in different locations with different poses across the images. When
images are not segmented yet, the image similarity is calculated from two-level spatial pyramid
histograms on the whole images, which are not robust against location and pose variations. How-
ever, this issue can be largely alleviated even with an imperfect segmentation. Given the segment
sets of two images I1 and I2, denoted by F1 and F2, we first solve the linear assignment problem
(i.e. finding the best assignment between the segments of two images), and then compute the mean
of total similarity values as an image similarity metric. Formally, given a similarity metric between
segments σs : F1 ×F2 → R, the image similarity σ is defined by
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σ(I1, I2) = max

(∑
s∈F1

σs(s, fs(s))

)
/M (8.1)

where fs : F1 → F2 is a bijection and M is the number of segments. We use as σs the histogram
intersection on the spatial pyramid histograms of the segments.

8.3.3 Pairwise Photo Stream Alignment
For a better understanding, our discussion starts from the alignment of a pair of photo streams
P 1 and P 2. That is, the objective is to establish the correspondences between two photo streams
through image matching. Our alignment objective is formulated based on the MRF energy func-
tion that has been applied to many computer vision problems such as deformable image match-
ing [Shekhovtsov et al., 2007] and SIFT flow [Liu et al., 2009a]. Its strength lies in its flexibility
to easily incorporate various energy terms related to alignment. It is of particular interest for our
applications since we can easily incorporate various energy terms related to the alignment using
any meta-data associated with the images.

The goal of alignment is to find a matching f : P 1 → P 2 ∪ {∅} where ∅ is the null, meaning
that if f(pi) = ∅ for an image pi ∈ P 1, pi has no correspondence in P 2. Let p̂i ∈ P 2 ∪ {∅} denote
the matched image to pi ∈ P 1. The pairwise alignment is performed by minimizing the energy
function as follows.

E(P 1, P 2) =−
∑
pi∈P 1

σ(pi, p̂i) +
∑
pi∈P 1

ηmin(|t(pi)− t(p̂i)|, τ)

+
∑

(pi,pj)∈∆

ρ σ(pi, pj) min(|t(p̂i)− t(p̂j)|, ν) (8.2)

where τ and ν are the thresholds for truncated L1 norms, and η and ρ are term weights. We
let t(pi) be the timestamp of image pi. The σ(pi, p̂i) is the image similarity between pi and p̂i.
We let σ(pi, ∅) = 0 and t(∅) = ∞, which means that if minpj∈P 2 σ(pi, pj) < ητ + ρν, then pi
matches no image in P 2. The ∆ contains the entire temporal neighborhood in a photo stream (i.e.
(pi, pj) ∈ ∆ means |t(pi) − t(pj)| ≤ δ). The first term accounts for the maximization of image
similarity between the matched pairs, and the second term penalizes the time difference between
the matched pairs. It is useful for tie-breaking of equally visually similar pairs using temporal
information. The third one is the smoothness term to encourage that the matched images to the
neighbors in P 1 are also neighbors in P 2. This regularization is more strongly imposed for a pair of
images that are more visually similar by weighting σ(pi, pj). The optimization of Eq.(8.2) can be
achieved by using the belief propagation [Felzenszwalb and Huttenlocher, 2006; Liu et al., 2009a].

8.3.4 Multiple Photo Stream Alignment
We extend the pairwise alignment of Eq.(8.2) to that of an arbitrary number of photo streams P .
One naive approach may be to incrementally combine pairwise alignments starting from the most
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similar photo stream pair and progressing to the most distant one. However, this approach has
two significant drawbacks [Crandall et al., 2011]. First, it tends to be computationally intensive.
Second, more importantly, this method does not treat all photo streams equally, which may lead to
local minima according to the order of consideration.

To circumvent these issues, we jointly align all photo streams at once after constructing a graph
between photo streams GP = (P , EP ). For each photo stream P i ∈ P , we first find a set of photo
streams that are sufficiently overlapped on timeline (i.e. the photo streams P j such that (# of
images of P j within the time range of P i)/ (total # of images P j) ≥ γ). Among them, we obtain
KP -nearest neighbors in terms of visual similarity, which is calculated using the idea of Naive-
Bayes Nearest-Neighbor [Boiman et al., 2008] as follows. Given two photo streams P i and P j ,
for each image p ∈ P i, we obtain the first nearest neighbor in P j denoted by NN(p). Then, the
similarity from P i to P j is computed by

∑
p∈P i ‖σ(p,NN(p))‖2. Finally, EP includes all pairs of

nearest neighbor photo streams.
The objective of multiple photo stream alignment reduces to find a matching f : P i → P j∪{∅}

for all pairs (P i, P j) ∈ EP , which can be accomplished by minimizing

E =
∑

(P i,P j)∈EP

E(P i, P j) (8.3)

where E(P i, P j) is defined by Eq.(8.2). The optimization can be achieved by the belief propa-
gation on the graph of photo streams GP , in such a way that we repeat a pairwise alignment of
previous section by following the edges of EP until convergence.

8.4 Large-Scale Cosegmentation

In this section, we explain our algorithm to construct an image graph and jointly segment the whole
image set.

8.4.1 Building Image Graphs

For large-scale cosegmentation, we establish an image graph GI = (I, EC) where I is the set of
images of all photo streams, and EC is the set of edges that connect the images that share enough
commonality to be segmented together. The edge set consists of two groups: EC = EB ∪EW where
EB defines the edges between the images of different photo streams while EW connects the images
within the same photo stream. EB is trivially obtained from the output of photo stream alignment;
simply, all correspondences of image pairs are added to EB. EW is useful for cosegmentation
because the images in the same photo stream are consecutively taken by the same camera, and thus
they are likely to share common objects and scenes. In order to define EW , we find KW -nearest
neighbors for each image Ii among its temporal neighborhood in the same photo stream, which
includes all images I such that |t(I)− t(Ii)| ≤ δ. In our experiments, δ is set to 2 hours.
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8.4.2 Scalable Cosegmentation
We begin with some basic ingredients of our cosegmentation algorithm. We first oversegment
every image of I by using the submodular image segmentation in chapter 6 [Kim et al., 2011]. Let
Si denote the set of oversegments of image Ii. Then, the goal of segmentation reduces to finding
an optimal disjoint partition Si =

⋃K+1
k=1 Fki with Fki ∩ F li = ∅ if k 6= l, where Fki denotes the

regions of foreground k in image Ii.
MFC algorithm: In our approach, we select the MFC in chapter 7 [Kim and Xing, 2012]

as our base cosegmentation algorithm, since it is scalable and has been successfully tested with
Flickr user images. More specifically, we exploit two procedures of the MFC algorithm as our
basic operations: foreground modeling and region assignment steps. The foreground models retain
the appearance models ofK foregrounds and the background. Formally, the k-th foreground model
is defined as a parametric function vk : 2|Si| → R that takes any subset S ⊂ Si as input and returns
its value to foreground k (i.e. how closely region S is relevant to foreground k). Each foreground
model is learned from the regions that are allocated to the foreground after the region assignment
step. Therefore, the foreground model can be accomplished by using any region classifiers or their
combinations. In this work, we use the Gaussian mixture model (GMM) on the RGB color and
HSV SIFT spaces. Thus, vk(S) is defined as the mean log-likelihood of the descriptors of S to the
k-th learned GMM model [Rother et al., 2004].

The role of the region assignment step is, given a set of learned foreground models {vk}K+1
k=1 ,

to discover the optimal partition of Si into {Fki }K+1
k=1 that maximizes the overall allocation values.

We let ci denote one such partition instance of image Ii. Generally, the set partition problem is
NP-complete, but the region assignment of the MFC can solve it in a very efficient way by using
combinatorial auction idea. We do not discuss its details, which can be found in [Kim and Xing,
2012]. Instead, we denote the region assignment procedure by {Fki }K+1

k=1 = RegAss(Si, {vk}K+1
k=1 ).

In the following, we use the abbreviated notation of {v} for {vk}K+1
k=1 .

Message Passing based Cosegmentation: The basic idea of our large-scale cosegmentation is
to iteratively perform foreground modeling and region assignment based on image graph GI . We
view the image graph GI as a MRF with hidden variables corresponding to the partition ci of each
image Ii. Consequently, we formulate the cosegmentation of whole image set I as the following
energy maximization:

D(I;GI) = α
∑
Ii∈I

ψ (ci; {v}) +
∑

(Ii,Ni)∈EC

φ (ci; {vNi
}) (8.4)

whereNi denotes the neighborhood of image Ii in image graph GI , and α is a term weight. {v} and
{vNi
} indicate the global and local foreground models, respectively. Both of them are implemented

by the same region classifiers (e.g. GMM models), and only difference is the training data; {vNi
}

is learned from the regions of foregrounds only in Ni, whereas {v} is obtained without imposing
such local restriction.

The objective of Eq.(8.4) consists of a unary term ψ and a pairwise term φ; it means that ci is
achieved by searching for the best partition not only for {v} in the unary term ψ but also for {vNi

}
in the pairwise term φ. For a partition ci of Si into {Fi}, the unary term is defined as the sum of
assignment scores by {v}:
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Figure 8.3: An intuition of our message-passing based cosegmentation at round t. (a) We show an image Ii
to be segmented, and its three neighbors Ni in the image graph GI . We also present color-coded partitions
of best beliefs of Ni at t−1, denoted by ct−1∗

Ni
. (b) The message passing from Ni to Ii at round t ends up

performing the region assignment for Ii by using the foreground models {vNi} learned from ct−1∗
Ni

. As a
result, we obtain the partition of the best belief of image Ii at t, denoted by ct∗i .

ψ (ci; {v}) =
K+1∑
k=1

vk(Fki ). (8.5)

The pairwise term φ (ci; {vNi
}) is defined as the exact same form of Eq.(8.5) only except replacing

{v} by {vNi
}.

Optionally, the unary term ψ can be reasonably ignored by setting α to 0, if it is hard to define
a single set of globally applicable foreground models. For example, the person foregrounds are
ubiquitous in all photo sets but their appearances can severely vary in different photo sets. In this
case, using only local models may be more robust.

Messages and beliefs: The energy maximization in Eq.(8.4) can be solved by the belief prop-
agation, which proceeds by iteratively computing new messages for each edge in graph GI . Using
the max-product algorithm (i.e. equivalently, the min-sum algorithm with negative log probabili-
ties), the message from Ni to Ii at round t is defined by [Felzenszwalb and Huttenlocher, 2006]

mt
Ni→Ii(ci) = max

cNi

(
φ (ci; {vNi

}) + ψ (cNi
; {v})+

∑
s∈N (Ni)\Ii

mt−1
s→Ni

(cNi
)
)

(8.6)

where N (Ni)\Ii denotes the neighbors of Ni except Ii. According to Eq.(8.6), the message com-
putation involves the search for the best cNi

(i.e. the partitions of neighbors) for every possible ci.
It results in an exponential explosion of the search space, which is largely unnecessary in practice.
Therefore, we introduce an assumption that is reasonable for image cosegmentation as follows.
The best partitions cNi

for the message mt
Ni→Ii(ci) at round t is the same with those of the best

beliefs of Ni at round t− 1.
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Algorithm 12: Jointly aligning and segmenting multiple Web photo streams.

Input: (1) A set of photo streams P = {P}Ll=1 (interchangeably denoted by I) with timestamps. (2)
Unsupervised: Number of foregrounds K. Supervised: labeled foreground examples in some
selected images.

Output: (1) As result of photo stream (PS) alignment L-partite matching graph (I, EB), where EB
include all matched pairs of images. (2) Image segmentation {Fi} for all Ii ∈ I.

1: Perform feature extraction (section 8.3.1) and oversegmentation (section 8.4.2) for all Ii ∈ I.
repeat

2: Define the image similarity σ: At round 1, use the histogram intersection on the two-level
pyramid histograms. After that, when images are segmented, use Eq.(8.1) instead.
3: Build a photo stream graph GP = (P, EP ), where EP is the set of all pairs of nearest PS, using
the method of section 8.3.4 (i.e. For each PS, find KP nearest ones by using NBNN method).
4: Run multiple photo stream alignment by solving Eq.(8.3) on EN (section 8.3.4). The output is
an L-partite graph (I, EB).
5: Build an image graph GI = (I, EC) using the method of section 8.4.1.
6: Run large-scale cosegmentation by solving Eq.(8.4) as described in section 8.4.2. The output
is the image segmentation {Fi} for all Ii ∈ I.

until EB converges or maximum iterations reach;

Fig.8.3 shows an intuitive example of how our message passing works with this assumption.
Fig.8.3.(a) shows the image Ii to be segmented at round t and its three neighbors Ni in image
graph GI . We also illustrate the color-coded partitions of the best beliefs of Ni at round t−1,
which are denoted by ct−1∗

Ni
. As shown in Fig.8.3.(b), when we compute the message mt

Ni→Ii(ci),
the assumption allows us to simply learn foreground models {vNi

} from ct−1∗
Ni

of Fig.8.3.(a), and
to evaluate each possible ci. By running {Fi} = RegAss(Si, {vNi

}), we can obtain the partition ct∗i
(i.e. the partition of the best belief of Ii at round t) as a result, which is shown in Fig.8.3.(b).

Consequently, the implementation of our message-passing based cosegmentation is straightfor-
ward; at every round, we iteratively segment each image Ii by using the learned foreground models
from the partitioned regions of its neighbors Ni at previous round. Then, the segmented image Ii
is subsequently used to learn the foreground models for its neighbors’ segmentation. That is, we
iteratively run foreground modeling and region assignment steps by following the edges of image
graph GI .

Initialization: In order to proceed our iterative cosegmentation algorithm, we need initial im-
age partitions as starting points of belief propagation. In the supervised scenario, we trivially
begin from the labeled images. In an unsupervised setting, we apply the diversity ranking method
of [Kim et al., 2011] to image graph GI to discover a small number of central images and their
neighbors. Then, the unsupervised version of MFC algorithm in [Kim and Xing, 2012] initially
segments the images of each group, from which message passing begins.

103



SB: surfing+beach, HR: horse+riding, RA: rafting, YA: yacht, AB: air+ballooning, RO: rowing, SD:
scuba+diving, FO: formula+one, SN: snowboarding, SP: safari+park, MC: mountain+camping, RC:
rock+climbing, TF: tour+de+france, LM: london+marathon, FF: fly+fishing.

Figure 8.4: Our Flickr datasets of 15 outdoor recreational activities. The number of images and photo
streams are shown in (a) and (b), respectively. The dataset sizes are (1,514,976, 13,157) in total.

8.4.3 Analysis of Algorithm

We summarize the overview of our approach in Algorithm 12. The step 2–3 describe the alignment
of multiple photo streams, and the step 4–6 outline the large-scale cosegmentation. We can iterate
running these two major procedures until the output converges or maximum iterations reach.

The core procedures of our approach are the two belief propagation (BP) techniques for align-
ment and cosegmentation. The alignment BP works on the graph of photo streams while the
cosegmentation BP runs on the image graph. Generally, the BP algorithm runs in O(T |E|) where
T is the number of iterations and |E| is the number of edges. Since we use only sparse KNN
graphs where each vertex is connected to a constant number of neighbors, the alignment BP runs
in O(TL) and the cosegmentation BP does in O(TN) where L and N are the number of photo
streams and images, respectively. Moreover, the BP algorithm has been studied much for paral-
lelization [Gonzalez et al., 2009], which can further improve the speed of our algorithm.

8.5 Experiments

We evaluate the proposed approach from two technical perspectives: the photo stream alignment
in section 8.5.1 and the image cosegmentation in section 8.5.2.

Flickr Dataset: Fig.8.4 summarizes our Flickr dataset that consists of 1,514,976 images of
13,157 photo streams for 15 outdoor recreational activity classes. Flickr is one of the best image
sources to test our algorithm since a large number of photo streams of different users are freely
available with rich associated meta-data. We use the class names as search keywords, and down-
load all the photo streams that contain more than 50 images. We use all pictures of each photo
stream without any filtering. For a quantitative segmentation evaluation, we manually annotate
100 images per class, from which we obtain approximate performance measures of algorithms.
Although the labeled images are relatively few compared to dataset sizes, in practice the sampled
annotation is widely adopted in standard large-scale benchmark datasets such as ImageNet [Deng
et al., 2009].
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Figure 8.5: Comparison of temporal localization between our methods (BPS) and (BP) and the baselines
(HMM), (DTW), and (KNN). In (a), we show the accuracies of all algorithms for 15 outdoor activity classes
with ε = 60 minutes. In (b), we show the variation of average localization accuracies by changing time
thresholds ε from 30 minutes to 180 minutes. The acronyms of activities are referred to Fig.8.4.

8.5.1 Results on Alignment

Tasks: The performance of photo stream alignment is evaluated by a temporal localization task.
It is inspired by the studies of geolocation estimation [Chen and Grauman, 2011; Kalogerakis
et al., 2009], whose goal is to estimate the geolocations of individual pictures for a given sequence
of a tourist’s photos. We carry out our experiments similarly only except that the geolocation is
replaced by the timestamp. We first randomly select 80% of photo streams of each class as training
set and the others as test set. Then, the goal is to estimate the timestamps of all the images of the
test photo streams by aligning them with training photo streams whose timestamps are known.
Such temporal localization task is also important to achieve our ultimate goal, the picture-based
storyline construction, which requires correctly locating each photo stream on the timeline to relate
it with other photo streams.

Baselines: For the alignment tests, we compare our algorithm with four baselines. As one of
the simplest baselines, the (KNN) performs image matching by using only image similarity. We
also choose two alternatives of image sequence alignment. The (HMM) is the hidden Markov model
method that has been widely applied for localizing tourists’ photo sets [Chen and Grauman, 2011;
Kalogerakis et al., 2009]. The (DTW) is dynamic time warping, one of most popular algorithms for
multiple sequence alignment [Rath and Manmatha, 2003]. Our algorithm is tested in two different
ways, according to whether image segmentation is in a loop or not. The (BP) does not exploit the
image segmentation output whereas the (BPS) is our fully geared approach. That is, this compari-
son can justify the usefulness of our alternating approach between alignment and segmentation. In
Table 8.1, we elaborate the application of our algorithms and baselines for the experiments.

Quantitative results: To compare the performances of algorithms, we use the similar evalu-
ation metric to those of image geolocalization research [Chen and Grauman, 2011; Kalogerakis
et al., 2009]. Given the estimated timestamps of all test images by each algorithm, we compute
the percentage of images for which the estimated timestamps are within ε minutes of the ground-
truths. Fig.8.5.(a) reports the accuracy rates of our algorithms and baselines across 15 activity
classes with ε = 60 minutes. The leftmost bar set is the average performance of 15 classes. Our
algorithm significantly outperforms all the baselines in most classes. The average accuracy of our
method (BPS) is 39.1%, which is notably higher than 23.7% of the best baseline (HMM). Fig.8.5.(b)
compares the average accuracies of all algorithms according to different ε values from 30 to 180
minutes. In all ranges of ε, our (BPS) consistently outperforms the best baseline (HMM) by 17.1%
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Method Description
Overall, our alignment algorithms are applied as described in this chapter. However, the
alignment objective of Eq.(8.2) assumes that the timestamps of all photo streams are known,
which is not the case for the test images in our experiments. Therefore, we use ordering

(BP) / information instead of the time information for Eq.(8.2).
(BPS) Our algorithm (BP) and (BPS) differ from each other according to whether the segmentation

is in a loop or not. The (BP) does not use the image segmentation output, so we compute
the image similarity from two-level spatial pyramid histograms on the whole images. On the
other hand, for the (BPS), we run one complete loop of alignment and cosegmentation, and
repeat the alignment again using the segmentation-based image similarity metric of Eq.(8.1).
For each test photo stream P t, we first find KT closest photo streams Pr from the training

(KNN) set by using the NBNN method in section 8.3.4. Then, for each test image p ∈ P t, we search
for Kp visually nearest images from Pr. Finally, as an estimated timestamp of p, we compute
the average of timestamps of Kp retrieved nearest images.
For each test photo stream P t, we find KT closest photo streams Pr, as done in the (KNN).

(DTW) Then, we perform the pairwise alignment between P t and each photo stream in Pr by using
the dynamic time warping algorithm. Finally, as an estimated timestamp of p, we compute
the average of timestamps of the images that are matched to p.
For each test photo stream P t, we find KT closest photo streams Pr, as done in the (KNN).
We run K-means clustering to the descriptors of randomly chosen images from {P t ∪ Pr},
in order to define observation alphabets. By assigning the closest alphabet to each image, we
represent each photo stream as a sequence of alphabets. Then, we run Baum-Welch algorithm

(HMM) to estimate the most likely set of HMM parameters, including the state transition matrix, the
observation probability matrix, and the initial probabilities. Next, we carry out the Viterbi
algorithm to find the single best state sequence for each photo stream. That is, all images in
{P t ∪ Pr} are assigned to most probable state IDs. Finally, as an estimated timestamp of p,
we compute the average timestamps of the training images that share the same state ID with p.

Table 8.1: Application of our algorithms ((BP) and (BPS)) and three baselines ((KNN), (DTW), and (HMM))
for the alignment evaluation.

points on average. Moreover, the accuracies of (BPS) is higher than those of (BP) by 3.6% points
on average, which supports that segmentation can improve alignment.

8.5.2 Results on Segmentation

Tasks: The task of image cosegmentation is to identify frequently recurring foregrounds in the
image set. The accuracy is measured by the intersection-over-union metric (GTi∩Ri)/(GTi∪Ri),
where GTi is the groundtruth of image i and Ri is the estimated regions by an algorithm. It is also
a standard metric in PASCAL challenge. We compute the average value of this metric from all
annotated images.

Baselines: We select three baselines of unsupervised segmentation methods that can discover
multiple objects from a large-scale dataset (i.e. at least more than tens of thousands of images).
The (LDA) [Russell et al., 2006] is an LDA-based unsupervised localization method, and the
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Figure 8.6: Cosegmentation accuracies between our method (BP+MFC) and the baselines (MFC), (COS),
and (LDA) for 15 outdoor activities classes. The leftmost bar set shows the average accuracies. The acronyms
of activities are referred to Fig.8.4.

(COS) [Kim et al., 2011] is a state-of-art cosegmentation algorithm based on submodular opti-
mization. The (LDA) is applied to each photo stream separately. We also test the MFC algorithm
(MFC) without involving the alignment step; this comparison can quantify the contribution of align-
ment to cosegmentation. For (COS) and (MFC), we cluster the images into multiple subgroups by
K-means on visual features, and apply the methods to each subgroup independently. This decom-
position improves not only segmentation accuracy but also computation speed. We run our method
and all the baselines in an unsupervised manner (i.e. without any seed labels) for a fair comparison.
Since it is hard to know the best K beforehand (e.g. multiple foregrounds may exist in an image),
we repeat each method by changingK from one to five, and report the best results. In all baselines,
we use the source codes provided by the original authors.

Quantitative results: Fig.8.6 compares the segmentation performance between our method
and the three baselines. In almost all classes, the accuracies of our algorithm (BP+MFC) are far
better than those of the best baselines. Especially, our average accuracy is 43.5%, which is signif-
icantly higher than 34.3% of the best baseline (MFC), which indicates that our alignment step is
more successful than simple clustering such as K-means for cosegmenting extremely diverse Web
user images.

Segmentation examples: Fig.8.7 shows some selected examples of cosegmentation. We ob-
serve that the subjects and their appearances are severely variable even in the images that are
collected with the same keyword. For example, in the safari+park class, tens of different ani-
mals occur, and in all classes, people are ubiquitously shown with different appearance, poses, and
clothes. Moreover, a single class may include multiple other activities; for example, the moun-
tain+camping class contains the pictures of skiing, trekking, fishing, rock climbing, and hunting.
Evidently, for the analysis of Web user images, it is extremely hard to pre-define the objects of in-
terest and learn the classifiers beforehand. In contrast, our approach is greatly successful to quickly
align a large-scale image set and segment out common regions in an unsupervised and bottom-up
way, which can be a useful function for various Web applications.

Fig.8.8 illustrates some typical examples of failure. If the foreground consists of several dis-
tinctive regions, they can be split into multiple parts (e.g. multi-colored balloons and persons in
the first two examples of Fig.8.8). Especially, persons may need special treatment because they
are ubiquitous in almost all topics and highly variable according to clothing. The output in the
other examples of Fig.8.8 is relatively reasonable but not perfect. In some cases, the foreground
and background regions can be merged as a single segment if they are visually similar one another.
One possible future direction to overcome these issues may be using more sophisticated region
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Figure 8.7: Cosegmentation examples of the Flickr outdoor recreational activity dataset.

Figure 8.8: Four typical failure cases of cosegmentation.

classifiers as foreground models. Since our approach can be regarded as an unsupervised bottom-
up approach, it can by synergetic to integrate with the learned region classifiers that can provide
high-level knowledge about the objects of interest.

8.5.3 Preliminary Results on Photo Storylines
In this section, we present very preliminary results of photo storyline construction, some of which
are shown in Fig.8.9. We create these examples using the similar method as described in [Kim
et al., 2010]. As we discussed in section 8.4.1 of the main draft, we build an image graph GI =
(I, EC) to facilitate large-scale cosegmentation from the output of photo stream alignment. We
first apply the affinity propagation [Frey and Dueck, 2007] to the image graph, in order to detect
exemplars and clusters in the graph. Then, we find top five highest ranked clusters in every hour
on the timeline. In order to compute the ranking values of clusters, we first obtain the stationary
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distribution of each node (i.e. image) by applying PageRank algorithm to the image graph G. Then,
we compute the ranking scores of clusters as the sum of stationary distribution of the nodes in each
cluster, which means the portion of time that a random walker traversing the graph stays in the
cluster. Finally, each picture in Fig.8.9 is drawn by averaging the 30 nearest neighbors of each
exemplar.

8.6 Summary

We propose a scalable approach to jointly aligning and segmenting multiple uncalibrated Web
photo streams of different users. The empirical results assured that our approach can be key com-
ponents to achieve our ultimate goal: inferring collective photo storylines from Web images. To
conclude this chapter, we summarize the main contributions of this work as follows.

• We propose an approach to jointly aligning and segmenting large-scale Web photo streams
of different users. Compared to previous cosegmentation research, our approach can handle
any number of uncalibrated photo streams. Compared to existing image alignment research,
our work can widen its applicability for reconstructing collective storylines from multiple
photo streams by closing the loop with cosegmentation in a mutually rewarding way.

• We propose large-scale alignment and cosegmentation algorithms that jointly work on the
whole dataset by using message-passing based optimization. The algorithms are scalable;
they run in a linear time with the number of photo streams and images, respectively.

• In experiments, we evaluate the proposed approach with our new Flickr dataset of 16 outdoor
activities. Our largest experiments run on more than 100K images of 1K photo streams,
which exceed those of previous work by orders of magnitude. We also show the superiority
of our approach over other candidate methods for both tasks.
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Figure 8.9: Examples of preliminary photo storyline reconstruction for three selected activity classes. Top
five highest ranked image clusters are shown at every hour on the timeline. Each picture is the average of
top 30 highest ranked images in each cluster.
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Chapter 9

Reconstructing Photo Storyline Graphs

9.1 Introduction

The widespread access to photo-taking devices and high speed Internet has combined with rampant
social networking to produce an explosion in picture sharing on web platforms. Such large-scale
and ever-growing pictorial data have led to an information overload problem; users are often over-
whelmed by the flood of pictures, and struggling to grasp various activities, events, and stories
of the pictures taken by even their close friends. It is becoming increasingly more difficult but
necessary to automatically summarize a large set of pictures in an efficient but comprehensive
way.

In this chapter, as shown in Fig.9.1, we investigate an approach for inferring storyline graphs
from a large set of photo streams contributed by multiple users for a particular topic (e.g. inde-
pendence+day), of which a photo stream is a set of images that are taken in sequence by a single
photographer within a fixed period of time (e.g. one day). A storyline usually refers to a series of
events that have chronological or causal relations, which are commonly represented by a directed
graph [Mandler and Johnson, 1977; Riedl and Young, 2006]. Likewise, our goal is to infer such

Figure 9.1: Motivation for reconstructing storyline graphs from large-scale Web photo streams with an
independence+day example. The input is two-fold: (a) A set of photo streams that are independently taken
by multiple users at different time and places, and (b) optionally a friendship graph. (c) The output is the
storyline graph as a structural summary. The vertices are the exemplars of image clusters, and the edges
connect sequentially recurring nodes across photo streams. We show the average images of nine selected
node clusters in the bottom.
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directed storyline graphs from a large set of photo streams automatically. Conceptually, the ver-
tices in the graph correspond to dominant image clusters across the dataset, and the edges connect
the vertices that sequentially recur in many photo streams. Its more rigorous definition will be
developed throughout this chapter.

The representation of storyline graphs conveys several unique advantages as a structural sum-
mary of image database as follows. First, many topics of interest usually consist of a sequence
of activities or events repeated across the photo streams. Some typical examples include recre-
ational activities, holidays, and sports events. For example, various events and activities in the
independence+day are captured by millions of people across the U.S as the sets of photo streams,
which are likely to share common storylines: parades in the morning, barbeque parties in the after-
noon, and fireworks at night. Such storylines can be described better by a graph of images rather
than a set of independently retrieved images. Second, the storyline graph can characterize various
branching narrative structure associated with the topic. The photo stream of a single user usually
consists of a single linear thread of story as an image sequence on timeline. On the other hand,
by aggregating multiple photo streams of different users, our algorithm can reveal various possible
threads of storylines, which help users understand the underlying big picture surrounding the topic.

Note that our objective differs from the private storyline [Obrador et al., 2010], which is a sum-
mary of a single user’s photo albums only. In this scenario, the face identification is important so
that the storyline lays out in the center of herself or her close friends. Even though such private sto-
ryline is also interesting and demanding, we here explore the reconstruction of collective storyline
graphs by leveraging all available photo sets of multiple users without identifying any particular
actors. In addition, we also discuss weakly personalized storyline graphs, in which we leverage a
friendship graph so that we weight more on the photo streams of a particular user’s close friends.

We formulate the reconstruction of storyline graphs as an inference problem of sparse time-
varying directed graphs. Our approach is based on the TV-DBN algorithm [Song et al., 2009],
which was originally proposed to infer time-varying dynamic Bayesian networks from non-stationary
biological time series such as gene expression and EEG signals. We significantly extend the TV-
DBN algorithm so that we infer a directed graph from image database represented by multiple de-
scriptors along with different types of side information. Consequently, our method enjoys several
intuitively appealing properties such as optimality guarantee, linear complexity, easy paralleliza-
tion, and asymptotic consistency.

For evaluation, we collect more than 3.3 millions of Flickr images of 42 thousands of photo
streams for 24 topic classes. Qualitatively, we first illustrate the examples of the storyline graphs, in
order to show that the proposed algorithm effectively summarizes and visualizes millions of photo
streams, which are too overwhelming for a human to grasp any underlying big picture. Then,
we quantitatively demonstrate that the reconstructed storylines help solve two image sequential
prediction tasks: (i) predicting next likely pictures given a short sequence of pictures, and (ii) filling
in missing parts of a photo stream. In our experiments, our approach outperforms other candidate
methods such as an HMM-based model and a graph-based temporal topic modeling of chapter
3 [Kim et al., 2010]. We choose these two tasks as indirect ways to evaluate the resultant storylines
due to two practical reasons. First, the storyline reconstruction of large-scale Web images is a
novel problem, and thus no groundtruth of storylines is available. Second, the two prediction tasks

112



are directly connected to the photo recommendation applications, which can be regarded as one
of foremost uses of storylines. For example, if a user is about to start his own snowboarding trip,
our algorithm can preview the pictures of the most likely storylines reconstructed from the photo
sets of other users, including his friends, who have experienced the snowboarding before. This is
analogous to the Amazon’s function of Customers Who Bought This Item Also Bought.

9.2 Problem Formulation

The input of our algorithm is two-fold. The first input is the set of photo streams of a particular
topic. It is denoted by P = {P 1, · · · , PL}, where L is the number of photo streams. Each photo
stream, P l = {I l1, · · · , I lN l}, is a set of sequential images taken by a single photographer within a
period of time [0, T ], which is set to one day in our experiments. Therefore, the resultant storyline
graph is defined in the range of [0, T ]. Each image I li is associated with owner ID ul and timestamp
tli. The second input is the friendship graph GF = (U , EF ), which is a weighted symmetric graph.
The vertex set is the set of users, and the edge weights indicate the degrees of friendship.

Since the image set is too large and much of images are highly overlapped, it is inefficient to
build a storyline graph over individual images. Preferentially, the vertices of storyline graphs cor-
respond to the clusters of images that recur in the image set. We implement such image clusters by
using the idea of encoding and decoding of neural coding [Olshausen and Field, 1997]. Concep-
tually, the encoding represents each image by a small set of codewords. Then the storyline graph
is created over the codewords. The decoding can transform the graph over the codewords into the
graph over images.

We perform the image encoding as follows. Each image I is first applied by J different image
classifiers, each of which assigns a classification score vj ∈ RCj to image I . We defer the details
of our J classifiers to section 9.4.1. By concatenating J scores, an image I is described by a vector
v, where |v| =

∑J
j=1Cj . Then we run the dictionary learning for sparse coding [Mairal et al.,

2009], in order to jointly learn the dictionary of D codewords, and represent an image I by a linear
combination of r best codewords while minimizing the reconstruction error. Finally, each image I
is associated with a vector x ∈ RD with r nonzero elements.

The storyline graph G = (V , E) is defined as follows. Each node in the vertex set V corresponds
to a codeword (i.e. |V| = D), and the edge set E ⊆ V × V includes directed edges between them.
In our approach, we let the storyline graph be sparse and time-varying [Kolar et al., 2010; Song
et al., 2009]. The sparsity is encouraged in order to avoid an unnecessarily complex storyline graph
in which any images can follow any images. The time-varying graph means that we allow E t to
smoothly change over time in t ∈ [0, T ]. It is based on the fact that the popular transition between
image codewords can vary over time; for example, in the scuba+diving class, the underwater
images may be followed by lunch images around noon but sunset images in the evening.

Consequently, the output of our algorithm is a set of storyline graphs {At} for t ∈ [0, T ],
where At is the adjacency matrix of Gt. Although we can compute At at any point t, in practice,
we uniformly split [0, T ] into τ time points (e.g. every 30 minutes), at which the At is estimated.

Finally, the decoding step retrieves the most suitable images for the transitions between (sets
of) codewords for a given At at time t. We adopt the approach of continuous error-correcting
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output codes (ECOC) [Crammer and Singer, 2002], with the histogram intersection as the decoding
metric. A codeword or its combination of At can be represented by h ∈ RD, and thus we can rank
images near t by calculating

∑D
d=1 min(hd,xd) (i.e. sum of the element-wise minimum).

9.3 Estimating Photo Storyline Graphs

By following the general procedure of the graph learning, we first perform structure learning to
discover the topology of the storyline graph, and then carry out parameter learning while fixing
the topology of the graph. Mathematically, the former is to identify the nonzero elements of {At},
and the latter is to estimate their associated weights.

For statistical tractability and scalability, our algorithm builds on four assumptions about photo
streams that are reasonable in practice. Three of them are introduced in the following, and the
fourth one is presented later in this section. (A1) All photo streams are assumed to be taken
independently of one another. (A2) We employ the k-th order Markovian assumption between the
consecutive images in the photo stream. (A3) The graph is sparse and varies smoothly across time.

As a result of image encoding, each image Ii is associated with a descriptor vector xi ∈ RD.
Thus, we denote a photo stream by P l = {(xl1, tl1), . . . , (xl

N l , t
l
N l)}. We begin our model by

deriving the likelihood f(P) of an observed set of photo streams P = {P 1, · · · , PL}. Based on
the assumption (A1) and (A2), the likelihood f(P) is defined as follows1.

f(P) =
L∏
l=1

f(P l), where f(P l) = f(xl1, t
l
1)

N l∏
i=2

f(xli, t
l
i|xli−1, t

l
i−1) (9.1)

where f(xli, t
l
i|xli−1, t

l
i−1) is the conditional likelihood of consecutive occurrence from image xli−1

at time tli−1 to xli at tli in the photo stream l. Our forth assumption is imposed on the transi-
tion model. (A4) The codewords of xli are conditional independent one another given xli−1. In
other words, the transition likelihood factors over individual codewords: f(xli, t

l
i|xli−1, t

l
i−1) =∏D

d=1 f(xli,d, t
l
i|xli−1, t

l
i−1). As a simple transition model f(xli, t

l
i|xli−1, t

l
i−1), we use a linear dy-

namics model

xli = Aex
l
i−1 + ε, where ε ∼ N (0, σ2I) (9.2)

where ε is a vector of Gaussian noise with zero mean and variance σ2. In order to encode temporal
information between tli−1 and tli into Ae ∈ RD×D, we use two parametric rate models, the expo-
nential and the Rayleigh model, which have been widely used to represent temporal dynamics of
diffusion networks [Rodriguez et al., 2011]. With ∆ = tli − tli−1, the (x, y) element axy of Ae is
defined as follows.

axy =

{
αxy exp(−αxy∆) (Exponential)
αxy∆ exp(−αxy(∆2/2)) (Rayleigh)

(9.3)

1 Here we use the first-order Markovian assumption for simplicity of our discussion. Extending to the k-th order
Markovian assumption is straightforward, and will be discussed later.
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where αxy is the transmission rate from codeword x to y. Since we are interested in time-varying
graphs, the αxy is a function of time tli−1. But, for simplicity, we here let αxy stationary, and its
dynamics will be discussed in next section. Note that αxy ≥ 0. As αxy → 0, the consecutive
occurrence from codeword x to y is very unlikely. By plugging Eq.(9.3) into Eq.(9.2), and letting
A = {αxy exp(αxy)}D×D, the transition model of Eq.(9.2) reduces to

xli = giAxli−1 + ε, where gi =

{
exp(−∆) (Exponential)
∆ exp(−(∆2/2)) (Rayleigh)

(9.4)

From Eq.(9.4), we can express the transition likelihood in the form of Gaussian distribution:
f(xli,d, t

l
i|xli−1, t

l
i−1) = N (xli,d; giAd∗x

l
i−1, σ

2), where Ad∗ denotes the d-th row of the matrix A.
Finally, the log-likelihood log f(P) in Eq.(9.1) can be written

log f(P) =
L∑
l=1

N l∑
i=2

D∑
d=1

(
−N

l

2
log(2πσ2)− 1

2σ2
(xli,d − giAd∗x

l
i−1)2

)
(9.5)

9.3.1 Optimization

In this section, we discuss the optimization method to discover nonzero elements of At for any
t ∈ [0, T ], by maximizing the log-likelihood of Eq.(9.5). One difficulty here is that for a fixed t,
the learning data (i.e. images occurring at a particular t) may be scarce, and thus the estimator may
suffer from extremely high variance. To overcome this difficulty, we take advantage of the assump-
tion (A3), which allows to estimate At by re-weighting the observation data near t accordingly.
Furthermore, to make the estimation problem trivially parallelizable, we adopt the assumption
(A4), which let us to separately perform an optimization for each codeword d (d = 1, . . . , D).
(This approach is known as neighborhood selection in graph inference literature [Meinshausen
and Bühlmann, 2006]). As a result of the two assumptions, we iteratively solve the following
optimization problem D times:

Ât
d∗ = argmin

L∑
l=1

N l∑
i=2

wt(i)(xli,d − giAt
d∗x

l
i−1)2 + λ‖At

d∗‖ (9.6)

wherewt(i) is the weighting of an observation of image Ii in photo stream l at time t. That is, when
the timestamp of image Ii (i.e. tli) is close to t, wt(i) is large so that the observation contributes
more on the graph estimation at t. Naturally, we can define

wt(i) =
Kh(t− tli)∑L

l=1

∑Nl

i=2 Kh(t− tli)
, where Kh(u) =

exp(−u2/2h2)√
2πh

(9.7)

where Kh(u) is a Gaussian symmetric nonnegative kernel function and h is the kernel bandwidth.
In Eq.(9.6), we include `1-regularization for a sparse graph structure, where λ is a parameter

that controls the sparsity of Ât
d∗. This approach not only avoids overfitting but also is practical
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Algorithm 13: Inferring the topology of storyline graphs.

Input: (1) A set of photo streams P = {P 1, . . . , PL}. (2) A friendship graph GF = (U , EF ) (3) `1
penalty λ.

Output: (1) Time-varying storyline graph {A1, . . . ,AT }.
1: Randomly initialize A0.
foreach d = 1 . . . , D do

foreach t = 1 . . . T do
2: Initialize At

d∗ → At−1
d∗ .

3: Compute wt(i) using Eq.(9.8) for the personalized storyline or Eq.(9.7) otherwise.
4: Scale x̃l (d)

i+1 ←
√
wt(i)x

l (d)
i+1 , x̃li ←

√
wt(i)xli for all i = 1, . . . ,Ml − 1 and l = 1, . . . , L

while At
d∗ does not converge. do

foreach j = 1 . . . , D do
5: Sj ←

∑L
l=1

2
T

∑T
t=1(

∑
k 6=j A

t
dkx̃

l (d)
i+1 − x̃td)x̃

t−1
j . bj ← 2

T

∑T
t=1(x̃t−1

j )2.
6: At

dj ← (sign(Sj − λ)λ− Sj)/bj , if |Sj | > λ, otherwise 0.

because the branches of storylines at each node are simple enough to be easily understood. Conse-
quently, our graph inference reduces to iteratively solving a weighted standard `1-regularized least
square problem, whose global optimum solution can be attained by highly scalable techniques
such as shooting algorithm [Fu, 1998]. Algorithm 13 summarizes the overall procedure. Since the
graphs smoothly change over time, we can use the warm start for further speedup; A1 is used as
an initialization for A2.

It is straightforward to extend the above optimization to the k-th order Markovian assump-
tion. Simply, Eq.(9.4) is extended to an autoregressive model with the k-th order (i.e. xli =∑k

q=1 gi(q)A(q)xli−q + ε), and the square loss function of Eq.(9.6) is changed accordingly.

The graph inference can be performed in a linear time with respect to all parameters, including
the number of images and the number of codewords D. Our MATLAB code takes less than one
hour to obtain the set of {A} for 245K images of the surfing+beach topic with D = 1, 000 and
τ = 40.

We can prove the asymptotic statistical consistency of the graph estimation procedure in Algo-
rithm 13, which guarantees that true graph can be discovered as the number of data points increases
indefinitely [Song et al., 2009]. Its detailed proof can be found in [Kolar and Xing, 2013].

Once {A} is discovered, the parameter learning updates the associated weights of nonzero
entries of each At ∈ {A}, while unchanging zero elements. Since the structure of each graph is
known and observations are independent one another from (A1) and (A4), we can trivially solve
the maximum likelihood estimation of Ât, which is similar to that of the transition matrix of k-th
Markovian chains. For example, the MLE of Ât

xy with the first-order Markovian assumption is the
fraction of observed transitions from x to y at time step t.
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Outdoor activities (12): SB (surfing+beach), HR (horse+riding), RA (rafting), SN (snowboarding), AB
(air+ballooning), SD (scuba+div- ing), YA (yacht), RO (rowing), MC (mountain+camping), RC (rock+climbing), SP
(safari+park), FF (fly+fishing). Holidays (6): CN (chinese +new+year), IN (inauguration), ID (independence+day),
MD (memorial+day), PD (st+patrick+ day), ES (easter+sunday). Sports events (6): OL (olympic+london), FO
(formula+one), OV (olympic+vancouver), TF (tour+de+france), WI (wimbledon), LM (london+marathon).

Figure 9.2: The Flickr datasets of 24 classes of three categories. The number of images and photo streams
are shown in (a) and (b), respectively. The dataset sizes are (3,320,080, 42,744) in total.

9.3.2 Incorporating Side Information

When side information is available such as a friendship graph, GPS data, and other types of tempo-
ral information, we can customize the storyline graphs accordingly. For example, given a particular
user uq, the storyline graph can be recast by weighting more the photo streams of uq’s neighbors in
the friendship graph GF . Another example is a season-specific storyline graph, given that the pop-
ular activities or events of outdoor activities (e.g. fly+fishing) would change much from summer to
winter. We utilize the product kernel as a unified framework to incorporate such side information
for graph inference. For example, if a particular user uq and a month mq is given, the weighting
function of Eq.(9.6) is replaced by

wt(i, uq,mq) =
Kh(t− tli)Ks(mq −ml

i)Ku(ρ(uq, u
l))∑L

l=1

∑N l

i=2 Kh(t− tli)Ks(mq −ml
i)Ku(ρ(uq, ul))

(9.8)

where ρ(uq, u
l
i) is the distance between user uq and uli in the friendship graph. As the user distance,

we use the inverse of the score of random walk with restart [Sun et al., 2005]. Consequently, the
kernel weighting technique in Eq.(9.8) is flexible; we can easily extend the product kernel by
including other continuous side information to enforce the smooth variation effect.

9.4 Experiments

In our experiments, we qualitatively present some examples of reconstructed storyline graphs, and
quantitatively evaluate its usefulness to perform two sequence prediction tasks.

9.4.1 Evaluation Setting

Flickr Dataset: Fig.9.2 summarizes our Flickr dataset that consists of about 3.3M of images of
42K photo streams for 24 classes, which are classified into three categories: outdoor recreational
activities, holidays, and sports events. We use the topic names as search keywords and download
all queried photo streams of more than 30 images with correct timestamps and user information.
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Since Flickr does not officially provide any friendship graphs between users, we indirectly
build from user information. We crawl the list of groups each user is a member of, using the Flickr
API. Then we connect a pair of users if they are the members of the same group. Of the friendship
graph GF = (U , EF ), the edge weight indicates the number of groups that both users join together.

Image description: In our experiments, we use four different image description methods to
capture various visual information of an image. We first extract three types of image features
denoted by (SIFT), (HOG), and (Tiny). The (SIFT) and the (HOG) indicates the three-level
spatial pyramid histograms of HSV color SIFTs and HOG features, respectively. We use the code
provided by [Xiao et al., 2010]. The (Tiny) is the RGB values of 32×32 resized tiny images as
proposed in [Torralba et al., 2008]. Using the soft vector quantization, for each of three feature
types, we construct Cj(= 300) image clusters by applying K-means to randomly sampled image
features, and then each image I is assigned to the c nearest image clusters with Gaussian weighting.
In addition, we also use the scores of linear one-vs-all SVM classifiers for 397 scene categories
of the SUN dataset [Xiao et al., 2010], which can convey a meaningful high-level description of
an image since much of Web images contain scenes. Finally, we apply the dictionary learning in
section 9.2 over the four descriptor vectors. Note that our graph inference algorithm is independent
on the numbers and types of image description methods.

Tasks: The quantitative evaluation on the reconstructed storyline graphs is inherently difficult
because the storyline graphs have no available groundtruth and the evaluation by human labelers
can be subjective. Therefore, we instead demonstrate that the storylines reconstructed by the pro-
posed algorithm can improve the performance of the two image sequence prediction tasks over
other candidate methods. The two tasks are (I) predicting next likely images and (II) filling in
missing parts of a photo stream. These two tasks are chosen based on the assumption that one
foremost practical use of storylines should be the photo recommendation. For example, if we have
a pictorial summary of what people usually do during fly+fishing from millions of images, we can
recommend a part of their experiences to a user who is about to start her own fly+fishing.

For experiments, we first randomly select 80% of photo streams of each class as a training
set and the others as a test set. For the task (I), we randomly divide each test photo stream into
two disjoint parts. Then, given the first part of the photo stream and next 20 query time points
tq = {tq1, . . . , tq20}, we predict the likely images at tq. Likewise, for the task (II), we randomly
crop out a portion of images in the middle of each test photo stream. Then, our goal is to predict
the likely images for the missing part given its time points tq. We also perform the tests for weakly
personalized storyline graphs; the tests are the same only except that a pair of query user and month
(uq,mq) is specified. In this setting, test photo streams to be predicted are taken by user uq at mq,
and the algorithms can leverage month data of photo streams and a friendship graph. Consequently,
we examine more than 20K test instances in total to evaluate the performance of our algorithm.

The performance measures of both tasks are obtained as follows. Obviously, the actual image at
each tq ∈ tq that is removed from the test photo stream is a positive test image IP (i.e. groundtruth).
We randomly sample 10 images from the other test photo streams as negative test images IN . The
goal of each algorithm is to assign scores to IP ∪IN , from which average precisions are computed.
Ideally, the algorithm is supposed to rank IP the first against distracting IN .
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Method Description
We build the storyline graph by applying the proposed algorithm to the training photo
streams only. As a result of, we obtain a set of {At} at each time point t, which can be
regarded as a transition matrix between codewords. Let Pq be a test photo stream, which

Our consists of known images Ig and unknown images Iq to be estimated. We also build the
algorithm transition matrix Ag using the Ig. For each query image Iq ∈ Iq of the Pq, we choose the

At that is the closest to tq, and perform the inference algorithms using both At and Ag.
We use the forward algorithm for the task (I) and the forward-backward algorithm with
EM iterations for the task (II), since the observations in the middle of photo streams are
missing.
This is a Page-Rank based image retrieval without using any structural information. For

(PAGE) each Iq ∈ Iq of the Pq, we first sample the training images Itq whose timestamps are
within [tq ± δ]. Then, we build a similarity graph between Itq ∪ Ig ∪ Iq ∪ IN , and
compute ranking scores Iq ∪ IN using the PageRank algorithm.
For each test photo stream Pq, we first find the training photo streams that are sufficiently
overlapped with Pq on timeline. Then, we apply the HMM learning to estimate the most

(HMM) likely set of HMM parameters, including the state transition matrix, the observation
probability matrix, and the initial probabilities. Similarly to our algorithm, we can use the
forward algorithm for the task (I) and the forward-backward algorithm with EM iterations
for the task (II).
The basic idea of temporal topic modeling for Web images in [Kim et al., 2010] is to
distribute the images on the timeline, and build a large similarity graph by connecting
visually similar and temporally close images. We first build such an image graph, and

(NET) then count which codewords of images consequently occur near the query time point tq,
from which we can compute the transition matrix between codewords, denoted by A

tq
net.

Next, we can run the same inference algorithm with the (HMM) to perform the two
prediction tasks.

Table 9.1: Application of our algorithm and three baselines (PAGE), (HMM), and (NET).

Our approach and Baselines: We simply outline the underlying rationale of our algorithm
and three baselines in the following. The details of their application are summarized in Table 9.1.
The three baselines that we compare with our method are as follows. The (Page) is a Page-Rank
based image retrieval without using any structural information. It is compared to show that the
importance of sequential structure modeling. The (HMM) is an HMM based method that has been
popularly applied for modeling tourists’ sequential photo sets [Chen and Grauman, 2011; Kaloger-
akis et al., 2009]. The (NET) is a temporal topic modeling method for Web image collections [Kim
et al., 2010]. The (HMM) and the (NET) were not originally developed for the storyline reconstruc-
tion, but they are appealing candidate methods to visualize the topic evolution of image collections
and perform the sequence prediction tasks. In our algorithm, we build the storyline graphs by
applying the proposed algorithm to the training photo streams only. Likewise, (HMM) and (NET)
learn their own models from the same training data. For the two prediction tasks, all of them use
similar forward-backward algorithm with EM iterations, as shown in Table 9.1.
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Figure 9.3: Comparison between our method and three baselines for the task (I) in the top (i.e. predicting
likely next images) and the task (II) in the bottom (i.e. filling in missing parts). The average mAP (%) in the
left-most bar set are ours (32.0, 36.8), NET (25.6, 30.4), HMM (23.9, 28.8), Page (21.4, 24.5).

Figure 9.4: Comparison of the weakly supervised prediction for the task (I) in the top (i.e. predicting likely
next images) and the task (II) in the bottom (i.e. filling in missing parts). The average mAP (%) in the
left-most bar set are ours (33.1, 37.3), NET (27.8, 31.5), HMM (27.4, 30.4), Page (23.0, 26.2).

9.4.2 Results on Storyline graphs

Quantitative Results: Fig.9.3 and Fig.9.4 show the quantitative comparison between our method
and three baselines for the normal and weakly personalized prediction, respectively. In each figure,
we report the results of task (I) in the top and task (II) in the bottom. The leftmost bar set is the
average performance of 24 classes, and the mean average precision (mAP) of all 24 classes follow.
Our algorithm significantly outperforms all the competitors in most topic classes for the both tasks.
In the average accuracy of normal prediction, our mAP values are higher by 6.4% and 6.3% points
than the best baseline (NET) for the task (I) and task (II), respectively. In the average accuracy of
weakly personalized prediction, our method also outperforms the best baseline (NET) by 5.3% and
5.9% points for the two tasks. We observe that the performance of the (Page) is the worst since
it does not take advantage of any structural information. In almost all algorithms, the accuracies
of the task (II) are higher than those of the task (I), since we can leverage the given data of test
photo streams before and after the missing part. Interestingly, the weakly personalized prediction
leads only a slight increase of prediction accuracies. It may be because the photo-taking styles of
the users in neighborhood are not always similar one another, given that our friendship graph is
built from users’ Flickr group memberships, and thus most of them are likely to be professional
photographers.

Examples of storyline graphs: Fig.9.5 shows two examples of storyline graphs for the fly+fishing
class. We present them on the time horizon of 12 hours, although we can freely choose the tempo-
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Figure 9.5: Examples of weakly personalized storyline graphs for the fly+fishing class with two different
users. We show the central images of 12 selected clusters in the bottom.

Figure 9.6: Examples of storyline graphs for the olympic+london class with two different months: August
in the top and May in the bottom.

ral granularity to zoom in or out the storylines. We first select a fixed number of the most dominant
image clusters, each of which is represented by its exemplar (i.e. cluster center). A fixed number
of edges are chosen among the strongest edges between the selected image clusters from the At at
each corresponding time point. The two storyline graphs in Fig.9.5 are weakly personalized ones
for two different users at two different months. Interestingly, they share similar objects, activities,
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Figure 9.7: Examples of storyline graphs for the mountain+camping class with two different months:
September in the top and February in the bottom.

and scenes at the basic-level (e.g. birds, boats, fish, mountains, and rivers), while they differ at
the subordinate-level (e.g. different fish species at different places by different people with unique
styles and preferences).

Fig.9.6 shows the two storyline graphs for the olympic+london class with two different months:
mq = August in the top and mq = May in the bottom. Since the London Olympic were held from
July to August in 2012, the graph for mq = August depicts a variety of sports events that actually
occurred during the Olympic. On the other hand, most images of the graph for mq = May were
taken after the Olympic event, but they still show the contents that are strongly associated with the
Olympic such as sports, stadiums, and other related activities.

Fig.9.7 shows two examples of storyline graphs for the mountain+camping class with two
different seasons: mq = September (Summer) in the top and mq = February (winter) in the
bottom. The mountain+camping is one of typical examples in the category of outdoor recreational
activities, which show dramatic variations of popular activities or scenes according to seasons.
However, for more accurate storyline reconstruction, it would be encouraging to include spatial
information like GPS data since the scenic views and weather vary much according to the places
where the pictures are taken. For example, snow can be observed in some places even in summer,
and the season is reversed in the northern and the southern hemisphere.

Fig.9.8 shows two typical examples of coherent and stationary topics: the safari+park class
in the top and the rafting class in the bottom. The storylines are roughly similar no matter when
they are taken by whom. In the safari+park storylines, almost all pictures are close-ups of various
animals. In the rafting storylines, most of images depict similar activities on boats in the river,
because the rafting is a rather standardized recreation.

Fig.9.9 shows the variation of popular transitions from the same codeword according to time
and season. At four different time points from spring to winter, we illustrate the pictures of the
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Figure 9.8: Examples of storyline graphs for the safari+park in the top and the rafting in the bottom.

Figure 9.9: Variation of popular transition from the codeword 205 of the fly+fishing at four different time
points from (a) spring to (d) winter. We find out the four most likely next codewords per time point, and
sample one image from each numbered codeword.

four most likely next codewords from the word 205 of the fly+fishing (i.e. a man with fish).
The popular transitions change dramatically; for example, in winter (Fig.9.9.(d)), the next likely
codewords are the ones with snowy background, which differ much from those of the other seasons.
At late evening in Fig.9.9.(b), the same codeword is likely to be followed by the sunset or dinner
codewords. These examples justify that the time-varying nature of storyline graphs is important in
practice, and our algorithm can correctly capture such temporal variations.

9.5 Summary

We propose an approach for reconstructing storyline graphs from large-scale community photos
available on the Web. Our empirical results validate that the storyline graph provides an effec-
tive structural summary of large image collections, which otherwise are hardly understandable for
users. We also qualitatively show the usefulness of storyline graphs for the two prediction tasks.
To conclude this chapter, we summarize the main contributions of this work as follows.

• To the best of our knowledge, our work is the first attempt so far to address the reconstruction
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of storyline graphs from large-scale community photo collections, especially for the topics
of recreational activities, holidays, and sports events. Our method delivers a novel structural
summary, which can not only visualize various events or activities associated with the topic
in a form of branching networks, but also potentiate Web services such as image prediction
and recommendation.

• We develop an inference algorithm for sparse time-varying directed graphs from photo
streams with optionally other side information. Our approach achieves several key chal-
lenges of Web-scale storyline reconstruction, including global optimality, asymptotic con-
sistency, linear complexity, and easy parallelization. With experiments on more than 3.3
millions of images of 24 classes, we show that the proposed algorithm is more successful for
the two structural prediction tasks over other candidate methods.
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Chapter 10

Visualizing Brand Associations from Web Photos

10.1 Introduction

Brand equity describes a set of values or assets linked to a brand [Aaker, 1996; Keller, 1993]. It
is one of core concepts in marketing since it is a key source of bearing the competitive advantage
of a company over its competitors, boosting efficiency and effectiveness of marketing programs,
and attaining the price premium due to increased customer satisfaction and loyalty, to name a few.
A central component of brand equity is brand associations, which are the set of associations that
consumers perceive with the brand [Keller, 1993]. For example, the brand associations of Nike may
include Tiger Woods, shoes, and basketball. Its significance lies in that it is a customer-driven brand
equity; that is, the brand associations are directly connected to customers’ top-of-mind attitudes or
feelings toward the brand, which provoke the reasons to preferentially purchase the products or
services of the brand. For instance, if a customer strongly associates Nike with golf shirts, he may
tend to first consider Nike products over other competitors’ ones when he needs one.

Traditionally, measuring brand associations is a challenging task because it is required to be
built from direct consumer responses to carefully designed questionnaires [Chen, 2001; Danes
et al., 2010; Schnittka et al., 2012; Till et al., 2011; Keller, 1993]. Surveys over human subjects
are usually time-consuming and prone to suffer from sampling bias and common methods bias. To
circumvent these issues, with the recent emergence of online social media, it has become popular
to indirectly leverage consumer-generated data on online communities such as Weblogs, boards,
and Wiki. Beneficially, resources on such social media are obtainable inexpensively and almost
instantaneously from a large crowd of potential customers. One typical example of such practice
is the Brand Association Map developed by Nielsen Online [Akiva et al., 2008; Online, 2010],
in which important concepts and themes correlated with a given brand name are automatically
extracted from billions of online conversations.

In this chapter, for the study of brand associations, we propose to go beyond textual media,
and take advantage of large-scale online photo collections, which have not been explored so far.
Admittedly, pictures can be inferior to mine subjective sentiments than texts (e.g. Nike is too
expensive). However, pictures can be a complementary information modality to show customers’
experiences regarding brands within a natural context. With widespread availability of digital
cameras and smartphones, people can freely take pictures on any memorable moments, which
include experiencing or purchasing products they like. In addition, many online tools enable people
to easily share, comment, or bookmark the images of products that they wish to buy.
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Figure 10.1: Motivation for two visualization tasks toward brand association study from Web community
photos with two competing brands of Nike and Adidas. (a) Task1: we perform exemplar detection and
clustering to reconstruct brand association maps (BAM). A more strongly associated cluster with the brand
appears closer to the center of the map. A higher correlated pair of clusters has a smaller angular distance.
We show top 20 exemplars (i.e. cluster centers) in the map. On the right, for some selected exemplars, we
show the average images of 40 nearest neighbors in their corresponding clusters. (b) Task2: we segment the
most likely regions of brand in the images.

As an initial technical step toward the study of photo-based brand associations, we develop
an approach to jointly achieving the following two levels of visualization tasks regarding brand
associations. (See the examples in Fig.10.1).

(1) Visualizing core pictorial concepts associated with brands: It has been a key problem in
brand association research to concisely visualize important concepts associated with brands in a
form of networks or maps [Akiva et al., 2008; Danes et al., 2010; Schnittka et al., 2012; Till et al.,
2011]. Therefore, our first task is, as shown in Fig.10.1.(a), to visualize core visual concepts of
brands by summarizing online photos that are tagged and organized by general users. This goal
involves three sub-problems: identifying a small number of image clusters and exemplars (i.e.
cluster centers), discovering the similarity relations between clusters, and projecting them into a
low-dimensional space.

(2) Localizing the regions of brand in images: Our second task is the sub-image level visualiza-
tion of brand associations, while the first task addresses the image-level one. We aim to localize the
regions that are most associated with the brand in each image in an unsupervised way (i.e. without
any pre-defined models), as shown in Fig.10.1.(b). In our algorithm, we perform pixel-level image
segmentation to delineate the regions of brand. Even though bounding boxes may be better as
the final output to the general users, they can be trivially derived from segmentation results, by
defining the minimum rectangle that encloses the segment while ignoring tiny unconnected dots.

We choose the above two tasks as the most fundamental building blocks for the study of photo-
based brand associations for following reasons. The first task can provide a structural summary of
large-scale and ever-growing online image data of brands, which otherwise are too overwhelming
for human to grasp any underlying big picture. The second task can not only suppress back-
ground clutters, but also help reveal typical interactions between users and products in natural
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Figure 10.2: The dataset of 48 brands crawled from five photo sharing sites of Table 10.1. The brands are
classified into four categories: (a) luxury, (b) sports, (c) beer, and (d) fastfood. The total number of images
is 4,720,724.

social scenes, which can lead a wide variety of potential benefits, ranging from content-based
image retrieval to online multimedia advertisement.

Besides the individual usefulness of these two visualization tasks, it is important to note that
jointly solving these two tasks are mutually rewarding. The exemplar detection/clustering can
group similar images, which can promote the brand localization since we can leverage the re-
curring foreground signals. In the reverse direction, localizing brand regions can enhance the
similarity measurement between images, which subsequently contributes to better exemplar detec-
tion/clustering.

For evaluation, we collect about five millions of images of 48 brands of four categories (i.e.
sports, luxury, beer, and fastfood) from five popular photo sharing sites, including FLICKR, PHO-
TOBUCKET, DEVIANTART, TWITPIC, and PINTEREST. In our experiments, we present the picture-
driven brand association maps for some selected brands. We also demonstrate that our approach
outperforms other candidate methods on both exemplar detection/clustering and brand localization
tasks. Finally, we also compare between the results of our picture-based brand associations and
actual sales data of the brands.

In almost all previous research for brand associations, the surveys on customers are the main
approach to collect source data. Among many ways to conduct the survey, the free association
procedure has been one of the simplest but often most powerful ways to profile brand associa-
tions [Chen, 2001; Danes et al., 2010; Till et al., 2011]. In this technique, subjects are asked to
freely answer their feelings and thoughts about a given brand name without any editing or censor-
ing [Nelson et al., 2004]. (e.g. What comes to mind when you think of Nike?) Our research is also
based on this free association idea, because we view the Web photos tagged with a brand name by
anonymous users as their candid pictorial impressions to the brand. Therefore, from a viewpoint of
brand association research, the contribution of our work is to introduce a novel source of data for
the analysis. In this line of research, the brand association map of Nielsen Online [Online, 2010;
Akiva et al., 2008] is closely related to our work because both approaches explore online data of
general users. However, the uniqueness of our research lies in exploring online image data, which
convey complementary views on the associations that can be missed by textual data. In addition,
we localize the most brand-related regions in all images, which is another important novel feature
of our work.
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Web sites Characteristics
FLICKR/ Two largest and most popular photo sharing

PHOTOBUCKET sites in terms of volumes of photos.
PINTEREST Image collections bookmarked by users

DEVIANTART Various forms of artwork created by users.
TWITPIC Photos shared via Twitter.

Table 10.1: Five Web sites for crawling photos.

Figure 10.3: The overview of the proposed approach with an example of the Louis+Vuitton. (a) As an input,
we crawl the photos of the brand from the five photo sharing sites. (b) Next, we build a K-nearest neighbor
(KNN) similarity graph between images. (c) We perform the graph-based exemplar detection/clustering.
(d) Finally, we cosegment the images in the same cluster in order to discover the regions of a brand in each
image. As a closed-loop solution, we can return to the KNN graph construction with the new segmentation-
based image similarity metric.

10.2 Problem Formulation
10.2.1 Image Data Crawling
Since we are interested in consumer-driven views on the brands, we use the online photos that
are contributed and organized by general Web users. As source data, we crawl images from the
five popular photo sharing sites in Table 10.1. The characteristics of the pictures on the five sites
are different from one another as shown in Table 10.1. We exclude the GOOGLE IMAGE SEARCH

because much of the pictures are originated from online shopping malls or news agencies.
We query the brand names via the built-in search engines of the above sites to search for the

pictures tagged with brand names. We download all retrieved images without any filtering. We
also crawl meta-data of the pictures (e.g. timestamps, titles, user names, texts), if available.

Fig.10.2 summarizes our dataset of 4,783,345 images for 48 brands, which can be classified
into four categories: luxury, sports, beer, and fastfood. The number of images per brand varies
much according to the popularity of the brand.

10.2.2 Overview of Algorithm
Fig.10.3 presents an overview of our approach. The input of our algorithm is a set of photos for
a brand of interest. Let I = {I1, · · · , IN} be the set of input images, where N is the number
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of images. As shown in Fig.10.3.(b), our first step is to build a K-nearest neighbor (KNN) graph
G = (I, E) in which each image I is connected with its K most similar images in I. We will
present our image descriptors in section 10.3.1, similarity measures in section 10.3.2, and KNN
graph construction in section 10.3.3.

The next step is to perform exemplar detection and clustering on the KNN graph G, which will
be discussed in section 10.3.4. Its goal is to discover a small set of representative images called
exemplarsA(⊂ I), and to partition I so that each image is associated with its closest exemplar, as
shown in Fig.10.3.(c). Therefore, the clusters are the groups of contextually and visually similar
images, and the exemplars are the most prototypical images of the clusters.

The clustering helps discover the coherent groups of images from extremely diverse Web im-
ages, which is subsequently beneficial to detect the regions of a brand in the images (see examples
in Fig.10.3.(d)). In our setting, the brand localization is formulated as the problem of cosegmen-
tation [Batra et al., 2011; Rother et al., 2006; Kim and Xing, 2012; Kim et al., 2011], which has
been actively studied in image segmentation research. Its goal is to simultaneously segment out
recurring objects or foregrounds across the multiple images. Obviously, the images in the same
cluster are likely to share the same themes of the brand (e.g. bags in Fig.10.3.(d)), which can be
discovered by the cosegmentation approach. We summarize the procedure of cosegmentation in
section 10.3.5.

In our closed-loop approach, the segmentation can enhance the exemplar detection/clustering
by promoting a more accurate image similarity measure, which will be justified in section 10.3.2
with an intuitive example. Hence, after finishing the cosegmentation step, we can return to the
KNN graph construction and repeat the whole algorithm again with the new segmentation-based
image similarity metric.

The brand association map like Fig.10.1 can be constructed from the exemplar detection/clustering
output. The algorithm will be presented in section 10.4.

10.3 Exemplar Detection/Clustering and Brand Localization

10.3.1 Image Description

For image description, we use one of common practices in recent computer vision research: the
dense feature extraction with vector quantization. We densely extract two most popular features
from each image: HSV color SIFT and histogram of oriented edge (HOG) feature on a regular
grid at steps of 4 and 8 pixels, respectively. Then, we form 300 visual words for each feature type
by applying K-means to randomly selected features. Finally, the nearest word is assigned to every
node of the grid. We use publicly available codes1 for the whole process of feature extraction.

10.3.2 Image Similarity Measure

One prerequisite to accurate clustering is an appropriate similarity measure between images, de-
noted by σ : I × I → R. We assert that even imperfect segmentation helps enhance the measure-

1 The SIFT and HOG feature extraction codes are available at http://www.vlfeat.org, and at http://www.cs.brown.
edu/∼pff/latent, respectively.
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Figure 10.4: The benefit of segmentation for image similarity measurement. (a) For an unsegmented image
pair, the spatial pyramid histograms are constructed on the whole images, which may not correctly reflect
the location and scale variations. (b) After segmentation, the image similarity is computed as the mean of
the best assigned segment similarities.

ment of image similarity, which can justify our closed-loop approach. Fig.10.4 shows a typical
example, in which the two images are similar in that both include persons with glasses of Guinness
beer. For an unsegmented image pair, the image similarity is calculated from two-level spatial pyra-
mid histograms on the whole images [Lazebnik et al., 2006], which are not robust against location,
scale, and pose variation as shown in Fig.10.4.(a). On the other hand, as shown in Fig.10.4.(b),
this issue can be largely alleviated even with an imperfect segmentation. Given the two sets of
segments of the images, we find the best matches between them by solving the linear assignment
problem. Then, we compute the mean of similarities between corresponding segments, which is
used as the image similarity metric. For the segment similarity, we use the histogram intersection
kernel on the spatial pyramids of the segments.

10.3.3 Constructing K-Nearest Neighbor Graphs

Given the image descriptors and similarity measures, the construction of a KNN graph is straight-
forward. However, if we naively compare all pairwise similarity by brute-force, it takes O(N2),
which can be prohibitively slow for a large I. Fortunately, a large number of algorithms have
been proposed to construct exact or approximate KNN graphs without suffering from the quadratic
complexity (e.g. [Dong et al., 2011; Wang et al., 2012b]). In this work, we exploit the idea of
multiple random divide-and-conquer [Wang et al., 2012b], which allows to create an approximate
KNN graph of high accuracy in O(N logN) time. The method is simple: the dataset is randomly
and recursively partitioned into subsets, and build an exact neighborhood graph over each subset.
This random divide-and-conquer process repeats for several times, and then the aggregation of all
neighborhood graphs of subsets can create a more accurate approximate KNN graph with a high
probability. The details of procedures, theoretic analyses, and several heuristics to further enhance
accuracy can be found in [Wang et al., 2012b]. In our application, meta-data of images are also
exploited for recursive random division. We repeat partitioning the image set into subsets accord-
ing to each type of meta-data (e.g. image sources, owners, titles, or taken times, if available). For
example, in one partition, the subsets includes the images that are taken at similar time; in another

130



Algorithm 14: Exemplar detection and clustering.
Input: (1) Image graph G. (2) Number of exemplars L.
Output: (1) Exemplar set A and cluster set C.

1: Append a constant vector z ∈ R(N+1)×1 to the end column of G and zT to the end row of G.
(N = |G|).
2: A = SubmDiv(G, M).
3: {Cl}Ll=1 = ClustSrc(G, A).

/* Select M number of central and diverse exemplars A.
Function [A] = SubmDiv(G, M)

1: A ← ∅. u = 0 ∈ RN×1.
while |A| ≤ L do

2: for i = 1 : N do u(i) = TempSrc(G, {A ∪ i}).
3: A ← A∪ argmaxi u. Set u = 0.

/* Get marginal gain u from the G and the node set P .
Function [u] = TempSrc(G, P)

1: Solve u = Lu where L is the Laplacian of G under constraints of u(P) = 1 and
u(N + 1) = 0.
2: Compute the marginal gain u = |u|1.

/* Get cluster set C from the graph G and exemplars A.
Function C = ClustSrc(G, A)

1: Let L = |A| and L = |G|. V is vertext set of G.
2: Compute the matrix X ∈ R(L−L)×L by solving LuX = −BT Is where if we let X = V\A,
Lu = L(X , X ), B = L(A,X ), and Is is an L× L identity matrix.
3: Each vertex v∈V is clustered cv= argmaxkX(j, k).

partition, the subset comprises the images that are owned by the same user, and so on. The basic
assumption is that if images are taken at similar time or by the same user, they are likely to share
similar visual contents. In our experiments, this meta-data based heuristics is efficient and effective
for the KNN graph construction.

10.3.4 Exemplar detection and clustering

Given a KNN graph G, our next step is to perform exemplar detection. As a base algorithm, we
use the diversity ranking algorithm of chapter 6 [Kim et al., 2011], which can choose L number of
exemplars that are not only most central but also distinctive one another, by solving submodular
optimization on the similarity graph G. Since the L exemplars are discovered in a decreasing
order of ranking scores, one can set L to an arbitrary large number. We here do not discuss
the details of the algorithm, which can be found in chapter 6. Instead, we denote the exemplar
detection procedure by A = SubmDiv(G, L) where A is the set of exemplars and G ∈ RN×N is
the adjacency matrix of graph G. The pseudocode is summarized in the step 1–2 of Algorithm 14.

Next, the clustering is performed using the random walk model [Grady, 2006]; each image
i is associated with the exemplar that a random walker starting at i is most likely to reach first.
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Algorithm 15: Brand localization via cosegmentation.

Input: (1) Cluster set C = {Cl}Ll=1. (2) Image graph G.
Output: (1) Set of segmented images F for each i ∈ I.

foreach Cl ∈ C do
1: Find central image c = SubmDiv(Gl, 1) where Gl = G(Cl) is the subgraph of Cl.
2: Apply the unsupervised MFC algorithm in chapter 7 to {c ∪Nc} where Nc is the neighbor of
c in the graph Gl. As a result, we obtain segmented images Fc∪Nc .
3: Let Ul ← Cl\{c ∪Nc}. F ← Fc∪Nc .
while Ul 6= ∅ do

4: Sample an image i from {Ul ∩NF}.
5: Get foreground model {vi} = FM ({Ni ∩ F}).
6: Segment the image Fi = RA (i, {vi}).
7: Ul ← Ul\i. F ← F ∪ Fi.

/* {vi} = FM (Fi) is the function to learn foreground model {vi} of MFC from the segmented images
Fi. /* Fi = RA (i, {vi}) is the function to run region assign- ment of MFC on image i using {vi}.

Then, we cluster the images that share the same exemplar as the most probable destination. This
procedure is implemented as a function ClustSrc of Algorithm 14.

10.3.5 Brand Localization via Cosegmentation

As the output of clustering, we obtain the groups of coherent images out of extremely diverse Web
photos. The brand localization is achieved by applying the cosegmentation algorithm to each of
C = {Cl}Ll=1 separately. Such separate cosegmentation scheme is more beneficial not only for par-
allel computation but also for performance. Especially, for performance, it prevents cosegmenting
the images of no commonality, which contradicts the basic assumption of cosegmentation algo-
rithms. For examples, given the Prada brand, jointly segmenting bag and fashion model images
could be worsen than individually segmenting each image.

The goal of cosegmentation is to partition each image into foreground (i.e. the regions recurring
across the images like bags in Fig.10.3.(d)) and background (i.e. the other regions). We select the
MFC method in chapter 7 [Kim and Xing, 2012] as our base cosegmentation algorithm, since it is
scalable and has been successfully tested with Flickr user images. The MFC algorithm consists of
two procedures, which are foreground modeling and region assignment. The foreground modeling
step learns the appearance models for foreground and background, which are accomplished by
using any region classifiers or their combinations. We use the Gaussian mixture model (GMM)
on the RGB color space. The foreground models can compute the values of any given regions
with respect to the foregrounds and background, based on which the region assignment allocates
the regions of an image via a combinatorial-auction style optimization to maximize the overall
allocation values. More details of the algorithm can be referred to chapter 7.

For each cluster Cl, we perform the cosegmentation by iteratively applying the foreground
modeling and region assignment steps under the guidance of the subgraph G(Cl) whose vertex set
is Cl. Its basic idea is that the neighboring images in G(Cl) are visually similar, and thus they are
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likely to share enough commonality to be segmented together. Therefore, we iteratively segment
each image i by using the learned foreground models from its neighbors in the graph. Then,
the segmented image i is subsequently used to learn the foreground models for its neighbors’
segmentation. That is, we iteratively run foreground modeling and region assignment by following
the edges of G(Cl). The overall algorithm is summarized in Algorithm 15. For initialization, as
shown in step 1–2 of Algorithm 15, we run the unsupervised version of the MFC algorithm to the
exemplar of Cl and its neighbors, from which the above iterative cosegmentation starts.

10.4 Embedding Brand Association Maps

We visualize the clusters (or exemplars) in a circular layout in order to concisely represent both
short-range and long-range interactions between them. We place the visual clusters by using two
different metrics, the radial distance and angular distance, inspired by the Nielsen’s method [Akiva
et al., 2008]:

1. The radial distance of a cluster reflects how strongly it associates with the brand. A larger
cluster appears closer to the center of the map.

2. The angular distance between a cluster pair shows their closeness. The smaller the angular
distance between the two is, the higher the correlation is.

Since Nielsen’s mapping algorithm is unknown and no photo-based brand association mapping
has been developed yet, we design a new embedding algorithm that satisfies the above require-
ments. Our objective is to calculate (r,θ) ∈ RL×2, which are the polar coordinates of all clusters
of C. Algorithm 16 summarizes the whole mapping procedure.

Radial distances of clusters: According to the requirement 1, a larger cluster has a smaller
radial distance (i.e. closer to the center). In order to estimate the cluster sizes, we first compute the
stationary distribution π ∈ RN×1 of the graph G, where π(i) indicates a random walker’s visiting
probability of node i. We assume that the size of cluster Ca is proportional to the sum of stationary
distribution of the nodes in Ca, which means the portion of time that a random walker traversing
the graph stays in the cluster Ca. That is, in a larger cluster, a random walker stays longer.

Given the transition matrix P obtained by normalizing the rows of G, the stationary probability
vector π can be computed by solving π = PTπ with ‖π‖1 = 1. However, it is well known
from the success of PageRank that a regularized stationary distribution is more robust and can
incorporate a prior knowledge; it can be obtained by solving

π = P̃Tπ where P̃ = λP + (1− λ)1vT (10.1)

where v ∈ RN×1 is the teleporting probability such that vi ≥ 0, ‖v‖1 = 1. It can supply a prior
ranking to each node; without it, one can let v = [1/N, · · · , 1/N ]T be uniform. 1 is an all-one
vector, and λ is a regularization parameter to weight the random walker’s behavior between edge
following and random transporting. We set λ = 0.9 in all experiments.

Once we have π, then we compute the stationary probability πa of each cluster Ca by summing
over the values of vertices in the cluster: πa =

∑
i∈Ca π(i). Let rmax and rmin be max and min
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Algorithm 16: Computing polar coordinates of clusters.

Input: (a) Cluster set C = {Cl}Ll=1. (b) Image graph G. (c) Image sizes to be drawn t ∈ RL×1.
Output: Polar coordinates (r,θ) ∈ RL×2 of C.

/* Radial coordinates. */
1: Compute transition matrix P by row-normalizing G.
2: Solve Eq.(10.1) to get stationary distribution π ∈ RN×1.
3: foreach Ca ∈ C do compute πa =

∑
i∈Ca π(i).

4: Let πmin = mina∈C πa and πmax = maxa∈C πa.
5: foreach Ca ∈ C do obtain r(a) by solving Eq.(10.2).
/* Angular coordinates. */
6: Obtain the cluster similarity S ∈ RL×L from Eq.(10.4).
7: Initialize θ by polar dendrogram of hierarchical clustering on S, J = 0, Jold = a large number.
while |J − Jold| > ε do

8: Calculate ∂
∂θJ ∈ RL×1. For each a ∈ C, ∂

∂θa
J =

∑
b∈C
(
S(a, b)− γ|θa − θb|γ−1

)
G where

G = −2(1− cos(θa − θb))−1/2(− sin θa cos θb + cos θa sin θb).
9: θnew = θ + µ ∂

∂θJ .
10: Jnew =

∑
a

∑
b S(a, b)|θa − θb| −

∑∑
|θa − θb|γ .

11: Update Jold = J, J = Jnew,θ = θnew.
/* Force-directed refinement. */
12: Obtain Cartesian coordinates x ∈ RL×2 from (r,θ) and a pariwse distance matrix D. Store the
original x0.
while x is updated do

13: Set the displacement vector d = 0. Set attractive and repulsive forces: fa(x) = x2/k and
fr(x) = k2/x.
foreach pair (a, b) if D(a, b) < γ(t(a) + t(b)) do

14: d(b)+ = fr(|x(b)− x(a)|).
15: foreach a ∈ C do d(a)− = fa(|x(a)− x0(a)|).
16: foreach a ∈ C do x(a)+ = d(a).

17: Obtain the final (r,θ) from x.

radius of the circular layout, and πmax and πmin be max and min cluster stationary probability,
respectively. Finally, the radial coordinate r(c) of cluster Ca is

r(a) =
rmax − rmin
πmax − πmin

(πmax − πa) + rmin. (10.2)

Angular coordinates of clusters: In order to obtain the angular coordinates θ of clusters C, we
first compute all pairwise similarities S ∈ RL×L between the clusters, and then apply the modified
spherical Laplacian Eigenmap technique [Belkin and Niyogi, 2003; Carter et al., 2009] to project
the clusters on a circular manifold.

We use the random walk with restart (RWR) algorithm [Sun et al., 2005] to define the cluster
similarity on a graph. The similarity values of all nodes sa with respect to cluster Ca is defined as
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sa = λPsa + (1− λ)vTa with va(i) =

{
1/|Ca| if i ∈ Ca
0 otherwise

(10.3)

The score sa(i) means the probability that a random walker stays at node i when the walker
follows the edge of graph with probability λ and return to uniformly random nodes of cluster Ca
with 1− λ. It is straightforward to compute the similarity score from Ca to Cb, denoted by S(a, b),
as follows:

S(a, b) =
∑
i∈Cb

sa(i)/Sa where Sa = 1−
∑
i∈Ca

sa(i). (10.4)

The next step is to project the clusters on a unit circle from the pairwise cluster similarity matrix
S. Our circular embedding is based on the Spherical Laplacian Information Maps (SLIM) [Carter
et al., 2009], which extends the Laplacian eigenmap (LEM) optimization [Belkin and Niyogi,
2003] with an additional constraint of embedding data on the surface of a sphere.

Conceptually, if a pair of clusters is similar to each other, then their angular difference in
embedding should be small. Hence, the LEM is formulated as finding θ to minimize

θ = argmin
∑
a

∑
b

S(a, b)|θa − θb| − Ω(θ). (10.5)

As a consequence of the LEM objective (i.e. the first term of Eq.(10.5)), nearby points in the
graph are as close together as possible in the angular representation. However, the optimization of
the LEM objective attains a trivial solution to collapse all data to the same point. Therefore, the
regularization term Ω(θ) is included in order to spread the embedded clusters on a circle:

Ω(θ) =
∑
a

∑
b

|θa − θb|γ (10.6)

where γ is a power-weighting constant (e.g. γ = 0.5 in our experiments). Ω(θ) leads the optimiza-
tion to prefer large angular distances between all pairs of clusters on a circle.

Since the optimization problem in Eq.(10.5) has no closed-form solution, we employ a gradient
descent procedure, as summarized in step 7–11 of Algorithm 16. By nature, the final embedding
highly depends on the initialization, for which we first perform hierarchical clustering on the S,
and then use its polar dendrogram. This initialization enables similar nodes to have small geodesic
distances.

Layout refinement: Once we obtain the coordinates of clusters (r,θ), we slightly change
them so that the final visualization is more aesthetic. One modification is to separate any pair
of exemplars that are too much overlapped. To this end, we use Fruchterman and Reingold’s
method, one of popular force-directed drawing algorithms. The positions of exemplars are updated
to reach equilibrium states by the attractive and repulsive forces. The attractive forces encourage
the updated positions to be as similar to the original (r,θ) as possible, while the repulsive forces
take part severely overlapped exemplars. This refinement step is summarized in step 12–17 of
Algorithm 16.
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Figure 10.5: Examples of brand association maps for six brands of the luxury category.

10.5 Experiments

In our experiments, we first present the brand association maps for several competing brands in
section 10.5.1. Then, we quantitatively evaluate the proposed approach from two technical per-
spectives: exemplar detection/clustering in section 10.5.2, and brand localization via image coseg-
mentation in section 10.5.3. Since the main goal here is to achieve the two technical visualization
tasks for brand associations, we focus on the validating the algorithmic performance over other
candidate methods instead of user study. Finally, we examine the correlation between our findings
from community photos and the sales data of brands in section 10.5.4.

10.5.1 Results on Brand Association Maps

We present six competing brands of the luxury and sports categories in Fig.10.5 and Fig.10.6,
respectively. For each brand, we first find the 25 largest clusters, from which we manually select
20 ones. Such manual selection is due to remove some noisy or highly redundant ones. We have
made several interesting observations as follows. First of all, our algorithm successfully discover
brands’ characteristic visual themes that are distinctive one another. For example, we can see
several watch clusters in the Rolex, and the iconic check patterns of the Burberry. Second, much
of highly ranked clusters attribute to some specific scenes or circumstances where photo-taking is
much more preferable. For example, we detect a lot of fashion show clusters in almost all brands.
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Figure 10.6: Examples of brand association maps for six brands of the sports category.

In the Rolex, the clusters of some events that are sponsored by the Rolex (e.g. horse-riding and auto-
racing) are as dominant as those of its products (e.g. watches). Such topics are more favorable to
be recorded as pictures rather than texts. In the Louis+Vuitton, there are a lot of wedding related
clusters, which makes sense because the wedding is not only an event where the products of luxury
brands are purchased the most, but also a memorable moment where the photos are taken much.

Although our photo-based brand association map is novel and promising, there are several
issues to be explored further. First, we may need to correctly handle highly redundant or noisy
clusters, which are mainly caused by the imperfection of image processing and clustering. Second,
we also need to deal with polysemous brand names; for example, the Mont+Blanc is also the
name of the mountain, and the Corona indicates the astronomical phenomenon as well. This
confusion may hinder the correct brand analysis. If we supplement additional keywords during
image crawling to filter them out, the retrieved images can decrease severely.

10.5.2 Results on Clustering

Task: We evaluate the performance of our algorithm for the exemplar detection/clustering task, by
comparing with several candidate methods. For quantitative evaluation, we first choose 20 brands
(i.e. five brands per category), and generate 100 sets of groundtruth per brand as follows. We
randomly sample three images (i, j, k) from the image set of a brand, and manually label which of
j and k is more similar to image i. We denote j � k|i if j is more similar to i than k. Although the
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Figure 10.7: Clustering accuracies of two variants of our approach (Sub-*) and four baselines for the 20
selected brands. The average accuracies over the 20 brands, shown in the leftmost bar set, are (Sub-M):
62.0%, (Sub): 57.8%, (Kmean): 50.5%, (Spect): 49.2%, (LP): 51.4%, and (AP): 51.7%.

labeled sets are relatively few compared to the dataset size, in practice this sampling-based anno-
tation is commonly adopted in standard large-scale benchmark datasets such as ImageNet [Deng
et al., 2009] and LabelMe [Russell et al., 2008].

After applying each algorithm, suppose that Ci, Cj , and Ck denote the clusters that include
image i, j, and k, respectively. Then, we compute the similarity between clusters σ(Cj, Ci) and
σ(Ck, Ci) by using the RWR algorithm in section 10.4. Finally, we compute the accuracy of the
algorithm using the Wilcoxon–Mann–Whitney statistics:

ACC :=

∑
(i,j,k) I(j � k|i ∧ σ(Cj, Ci) > σ(Ck, Ci))∑

(i,j,k) I(j � k|i)
(10.7)

where I is an indicator function. The accuracy increases only if the algorithm can partition the
image set into coherent clusters, and the similarities between clusters coincide well with human’s
judgment on the image similarity.

Baselines: We compare our algorithm with four baselines. The (KMean) and the (Spect)
are the two popular clustering methods, K-means and spectral clustering, respectively. The (LP)
is a label propagation algorithm for community detection [Raghavan et al., 2007], and the (AP)
is the affinity propagation [Frey and Dueck, 2007], which is a message-passing based clustering
algorithm. Our algorithm is tested in two different ways, according to whether image segmentation
is in a loop or not. The (Sub) does not exploit the image cosegmentation output, whereas the
(Sub-M) is our fully geared approach. That is, this comparison can justify the usefulness of our
alternating approach between clustering and cosegmentation. We set L = 300, and use the same
image features in section 10.3.1 for all the algorithms.

Quantitative results: Fig.10.7 reports the results of our algorithm and four baselines across 20
brand classes. The leftmost bar set is the average accuracies of 20 classes. In most brand classes,
the accuracies of our method (Sub-M) are better than those of all the baselines. The average
accuracy of our (Sub-M) is 62.0%, which is much higher than 51.7% of the best baseline (AP). In
addition, the average accuracies of the (Sub-M) are notably better than (Sub), which implicates
the segmentation for brand localization can improve the clustering performance as expected.

10.5.3 Results on Brand Localization
Task: The brand localization task is evaluated as follows. As groundtruths, we perform pixel-
wise manual annotation for 50 randomly sampled images per brand, for the same 20 brands in the
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Figure 10.8: Brand localization accuracies of three variants of our approach (MFC-*) and two baselines.
The average accuracies of the leftmost bar set are (MFC-M): 49.5%, (MFC-S): 46.8%, (MFC): 41.7%, (COS):
36.7%, and (LDA): 30.6%.

previous section. We do not label too obvious images depicting products on white background,
since they cannot correctly measure the performances of algorithms. The accuracy is measured by
the intersection-over-union metric (GTi ∩Ri)/(GTi ∪Ri), where GTi is the groundtruth of image
i and Ri is the regions detected by the algorithm. It is a standard metric in object localization and
segmentation literature. We compute the average of the metric from all annotated images for each
brand.

Baselines: We select three baselines that can discover the regions of multiple objects from
a large-scale image set in an unsupervised manner (i.e. without any labeled seed images). The
(LDA) [Russell et al., 2006] is an LDA-based unsupervised localization method, and the (COS) is a
state-of-art submodular optimization based cosegmentation algorithm in chapter 6. For (COS), we
first partition the images into multiple groups, and separately apply the cosegmentation algorithm
to each group, as proposed in chapter 6. Our algorithm is tested with three different versions,
according to whether exemplar detection/clustering is in a loop or not. The (MFC) runs our coseg-
mentation without involving our clustering output (but using a random partitioning instead), in
order to show the importance of the clustering step when segmenting highly diverse Web images.
The (MFC-S) is a single run of our proposed exemplar detection/clustering and cosegmentation,
and (MFC-M) iterates this process more than twice. In almost all cases, it converges in two itera-
tions. Hence, this comparison can quantify the accuracy improvement by the iterative algorithm.
We run all baselines and our methods in an unsupervised way for a fair comparison. Since it is
hard to know the best K beforehand (e.g. multiple foregrounds may exist in an image), we repeat
each method by changing K from one to five, and report the best results.

Quantitative results: Fig.10.8 shows that our method outperforms other candidate localiza-
tion methods in almost all classes. Especially, our average accuracy is 49.5%, which is notably
higher than 36.7% of the best baseline (COS), In addition, the average accuracies of the (MFC-M)
are higher than those of (MFC-S) and (MFC), which demonstrates that the clustering and coseg-
mentation are mutually-rewarding.

Qualitative analysis: Fig.10.9 shows 12 sets of brand localization examples. The images of
each set belong to the same cluster, and thus are cosegmented. We show our pixel-level segmenta-
tion output, from which bounding boxed regions can be trivially obtained as well.

We observe that the subjects of pictures and their appearances severely vary even though
they are associated with the same brands. However, if we have sufficiently large photo sets, we
can leverage the overlapping contents across the datasets. Consequently, our approach is able
to quickly cluster a large-scale image set and segment common regions in an unsupervised and
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Figure 10.9: 12 groups of brand localization examples. We sample four or five images per group that belong
to the same cluster, and thus are jointly segmented. We show input images (top) and their segmentation
output (bottom).

bottom-up way, which can be an useful function for various Web applications, including detecting
regions of brand for online multimedia advertisement.

Fig.10.10 illustrates three groups of typical failure cases. As we already discussed in chap-
ter 8, our approach has room for improvement by integrating with the learned region classifiers
as foreground models, which can provide high-level knowledge about the objects of interest. For
example, we can alleviate the issue that a foreground of several distinctive regions is split into mul-
tiple parts (e.g. McDonalds’ mascot in Fig.10.10.(b), and person in Fig.10.10.(c)). In Fig.10.10.(a),
some visually-similar background regions are merged with the foreground (i.e. cars), which might
be relieved by introducing the context model of the scenes [Malisiewicz and Efros, 2009].

10.5.4 Correlations between Image data and Sales Data

Since our work is the first attempt on exploring online photo collections for the study of brand
associations, we additionally investigate some correlations between the image data and sales data
of the brands. We conduct two different comparisons. First, we observe how the photo popularity
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Figure 10.10: 3 groups of examples for typical failure cases. We sample four or five images per group
that belong to the same cluster, and thus are jointly segmented. We show input images (top) and their
segmentation output (bottom).

Figure 10.11: Comparison between the market shares (left) and the portions of photo volumes (right)
for the brands of four categories: (a) luxury, (b) sports, (c) beer, and (d) fastfood. The numbers indicate
percentage values.

is correlated with the market share of brands. For example, the average annual revenue of the
Nike is higher than that of the Adidas by about 40% from 2006 to 2011. We examine whether the
Nike is also dominant over the Adidas in the volumes of Web photos. Second, we study in-depth
correlation between the product groups of each brand. For example, the annual reports of the
Louis+Vuitton classify their business into several product groups such as leather goods, perfume,
jewelry, and wine. We compare between the proportions of product groups in image data and sales
data of the brand.

We obtain the sales data from the annual reports that are publicly available on the com-
panies’ webpages. We ignore some brands that are held by private companies (e.g. Chanel,
New+Balance), because it is often hard to obtain accurate financial information. In this analy-
sis, we use images and sales data from 2006 to 2011.

Correlation between photo popularity and market share: Fig.10.11 summarizes the pro-
portions of photo volumes and market shares for the brands per category, which can be computed
from the dataset sizes of Fig.10.2 and revenue data of annual reports. As shown in Fig.10.11, the
ranking of the brands in the two data modalities are roughly similar, but the percentage values
do not necessarily agree each other because the preferred scenes or situations of photo taking are
different from those of product purchase. For example, the Guinness has a larger percentage value
in the photo volumes than in the sales data thanks to its positioning as premium beer. An example
of its opposite may be the Taco+Bell, which occupies a small portion of photo volumes. It may be
because the Taco+Bell is a cheap fastfood brand, which may not attract people to take pictures for
the brand.
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Figure 10.12: Results of the product group analysis for four luxury brands. Each pie chart shows the
proportions of three groups in the image volume: product, company, and personal. In the bottom, the
images of the company group are further classified into one of advertisement, logo, shop, and event. In the
right, bar charts show the proportions of the images (top) and the actual revenues (bottom) for the product
group. The classification of product groups is based on the brand’s annual reports. The numbers indicate
percentage values.

Figure 10.13: Results of the product group analysis per year for two competing sports brands, Adidas and
Nike. The figure illustrates the same information to Fig.10.12 only except showing the temporal variations
from 2006 to 2011.

Correlation between product groups: While the first analysis compares between different
brands in the same category, now we turn to the comparison between product groups in each brand.
The main challenge here is that it is extremely difficult for both human and computers to correctly
classify millions of images into the predefined product groups. For human, the dataset sizes are
too large to manually classify them. For computers, there is no classification algorithm that is
applicable to noisy Web images with high accuracies. Thus, we take advantage of our exemplar
detection/clustering results. We manually classify each exemplar into one of predefined groups,
and all the images in the same cluster are labeled as the same.

Fig.10.12 shows the results of product group analysis for four luxury brands: Gucci, Her-
mes, Prada, and Louis+Vuitton. We first label exemplar images by one of three groups: product,
company, and personal. The product group comprises the photos whose main contents are the
products of the brand. The company group includes the images that are relevant to the brand but
do not associate with any particular products. It consists of four subgroups: advertisement, logo,
shop, and event. The final one is the personal group for the private pictures that are not explic-
itly associated with brands. In Fig.10.12, each pie chart shows the proportion of photos for three
product, company, and personal groups. In the bottom, we represent the sub-classification results
of the company group. In the right, bar charts show the proportions of the images (top) and the
actual revenues (bottom) for the product group. The classification of product groups is based on
the brand’s annual reports.
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We summarize several observations as follows. First, in most brands, the personal group is
the first or second largest among the three groups, which may result from that people usually take
pictures on personal matters (e.g. their dogs, cars, or portraits) and much of them are likely to be
poorly labeled as brand names. Second, the company group is also very popular; for examples,
people enjoy taking pictures on the Louis+Vuitton’s stores, and bookmarking their advertisements.
Moreover, the events hosted by brands are also popularly taken such as fashion shows, music
concerts, and sports activities. Third, in the product group, one or two leading product types per
brand take the majority of photo volumes while some product segments like wines, perfume, and
jewelry rarely appear.

Fig.10.13 shows the results of the same analysis for two competing sports brands, Adidas and
Nike. Only difference is that we conduct the analysis separately per year from 2006 to 2011,
in order to observe temporal variation of popularity of photo groups. The fourth graph in each
set shows the sales data of three product types, footwear, apparel, and hardware, which are very
consistent all years of the range. On the other hand, image data show a lot of fluctuation, which
may be caused by other external sports events like World cups, NBA finals, or Olympics. The
study on the correlation between popularity of brand images and external events could be another
intriguing future project.

10.6 Summary

In this chapter, we develop important building blocks toward the study of photo-based brand asso-
ciations. The main contributions of this chapter are summarized as follows.

• We study the problem of visualizing brand associations in both image and sub-image levels
by leveraging large-scale online pictures. To the best of our knowledge, our work is the first
attempt so far on such photo-based brand association analysis. Our work can provide another
novel and complementary way to visualize general public’s impressions or thoughts on the
brands.

• We develop an algorithm to jointly achieve exemplar detection/clustering and brand localiza-
tion tasks in a mutually-rewarding way. In addition, we design a novel embedding algorithm
to visualize the top exemplars/clusters in a circular layout.

• With experiments on about five million images of 48 brands, we have found that the proposed
algorithms can comprehensively but succinctly visualize key concepts of large-scale brand
image collections. We also quantitatively demonstrate that our approach outperforms other
candidate methods on both visualization tasks.
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Part IV

Conclusion
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Chapter 11

Discussion

This dissertation presents a considerable step towards reconstructing collective storylines from
huge image collections shared online, and leveraging them to explore novel applications at the
intersection of computer vision and multimedia data mining. We believe that this direction of
research becomes more important and anticipating in prevailing Internet era. In this chapter, we
summarize the contributions and key observations of our work again, and discuss future research
directions that go beyond our current achievement.

11.1 Key Observations and Contributions

As the concluding remarks of this thesis, we recapitulate the key observations and contributions.

Understanding Temporal Trends of Web Image Collections

• Our work is one of very few early studies in computer vision literature to model temporal
topic evolution of Web image collections. With experiments on 9 millions of images of 47
topics from Flickr, we demonstrate that the dynamic models help solve better three existing
or novel computer vision problems. First, we perform subtopic outbreak detection to point
out when the topical contents of images rapidly change. Second, we present that the images
can be a complementary source of information beyond tag texts for discovering topical evo-
lution. Finally, we empirically show that training using temporal context can improve object
classification performance for extremely diverse Web images.

• We then take advantage of the temporal models of image collections to improve the perfor-
mance of image ranking and retrieval. On the technical aspect, we design novel scalable
algorithm using multi-task regression on multivariate point processes, on which we build the
temporal models to rank images based on temporal suitability. We also extend this frame-
work into collective and personalized Web image prediction, which can estimate likely pic-
tures at any future time point.

Discovering Overlapping Contents of Image Collections

• We develop a scalable method for discovering regions of interest (ROI) in the form of bound-
ing boxes from large-scale Web image collections (e.g. up to 200K Flickr images). The
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unsupervised ROI detection is achieved by alternating optimization based on link analysis
techniques, in which we iteratively solve two sub-problems: (1) finding exemplars of objects
in the dataset and (2) localizing object instances in each image. Through experiments, we
show that our scalable approach achieves compelling performance for variable Flick images
without any human annotation or initial seed images.

• We propose a diffusion-based optimization framework that is applicable to a wide range of
computer vision problems. We prove that the temperature of a linear anisotropic diffusion
system, which corresponds to many important objectives in computer vision tasks, is a sub-
modular function. We show that our optimization leads to an effective solution to diversity
ranking, single-image segmentation, and cosegmentation. Finally, we present a distributed
cosegmentation CoSand, which has some unique benefits including compelling performance
over previous methods, superior scalability, ability to automatically decide the number of
foregrounds K, and robustness against a wrong choice of K.

• We then develop a less restrictive and more practical cosegmentation algorithm in order to
be applicable to general users’ photo streams, in which a finite number of foregrounds (i.e.
subjects of interest) irregularly occur in each of input images. Our approach alternates be-
tween solving two subtasks: foreground modeling and region assignment. In particular, our
approach is flexible enough to integrate any advanced region classifiers for foreground mod-
eling, and our region assignment employs a combinatorial auction framework that enjoys
several intuitively good properties such as optimality guarantee and linear complexity.

Reconstruction and Applications of Photo Storylines

• As a first technical step to achieve the goal of inferring collective photo storylines, we pro-
pose a method to jointly perform alignment of multiple photo streams and cosegmentation
of aligned images. The alignment is a core task to build a big picture of storylines from
a large number of fragmented photo streams of individual users. The cosegmentation can
facilitate image understanding such as pixel-level classification in the images by segmenting
the aligned images together. We close a loop between solving the two tasks so that solving
one task enhances the performance of the other in a mutually-rewarding way. To this end,
we design scalable message-passing based optimization framework to jointly achieve both
tasks for the whole input image set at once. We show the superior performance and scala-
bility of our approach with experiments on the new Flickr dataset of 15 outdoor recreational
activities.

• We then investigate the problem of reconstructing storyline graphs from large-scale photo
collections, and optionally other side information such as friendship graphs. We formulate
the storyline reconstruction problem as an inference of sparse time-varying directed graphs,
and develop an optimization algorithm that achieves a number of key challenges of Web-
scale applications, including global optimality, linear complexity, and easy parallelization.
We qualitatively show that the storyline graphs can visualize various events or activities
recurring across the input photo sets, which otherwise are too overwhelming for users to
grasp any underlying big picture. In addition, we quantitatively validate that the storyline
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graphs help solve better two image sequence prediction tasks, which are predicting next
likely images and filling in missing parts of photo streams.

• Finally, we discover brand associations in both image and sub-image levels by leveraging
large-scale online photo collections. Brand associations, one of central concepts in market-
ing, describe customers’ top-of-mind attitudes or feelings to a brand. While brand associ-
ations are traditionally measured by analyzing the text data from consumers’ responses to
the survey or their online conversation logs, our work is the first attempt so far on picture-
based brand association study. We first detect core visual concepts associated with brands
and visualize them in a circular layout. We then identify the regions of brand in each image,
which can potentiate several interesting applications such as content-based image retrieval
and online multimedia advertisement. With experiments on about five million images of 48
brands, we have found that the proposed algorithms provide complementary way to visualize
general public’s impressions or thoughts on the brands. Moreover, We quantitatively show
that our approach outperforms other candidate methods on both visualization tasks.

11.2 Future Directions

In this dissertation, we have proposed a set of algorithms that are required to reconstruct collective
storylines from Web image collections. In spite of their significant achievement for a wide range of
novel and challenging problems, we believe much remains to be done along this line of research.
Here, we propose several ideas for future projects to explore further the extension of our approach.

Time-Sensitive image retrieval for real web search

In Chapter 4, we developed the regression-based algorithms for time-sensitive image retrieval and
Web image prediction. Since it is the first work to use the temporal dimension for Web image
search and prediction, we mainly focused on demonstrating the feasibility of our algorithms. Al-
though the proposed temporal modeling is shown to be interesting and convincing, there are still
several points of improvement for the actual implementation of Web image search. In the follow-
ing, we enumerate several ideas that can push our algorithms to be more realistic.

First of all, we may need to perform more in-depth statistical analysis for the temporal aspects
of Web image corpus. In Chapter 4, we tested less than 50 topic keyboards, which are still limited
in the coverage of topics. We can carry out the experiments on much more topic keywords (e.g.
at least hundreds), in order to systemically analyze what types of queries are time-sensitive in
actual Web image search. Moreover, it is very common in real-world image retrieval that multiple
query terms are correlated one another or a single image can be associated with multiple keywords.
Therefore, the correlation studies are encouraged; our framework can be easily extended for that
purpose, because it builds on one of widely studied statistical models: the multi-task regression on
multivariate point processes.

One intriguing work in recent information retrieval is recency ranking, which refers to ranking
documents by relevance that takes freshness into account [Dong et al., 2010]. This is relevant to
our work because the query time is usually now for general users, and the freshness can be an
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important temporal attribute for buzz keywords or breaking news queries. Therefore, introducing
the recency factor into our framework can be another interesting extension.

For the technical improvement, we may exploit the idea of the reduced rank regression [Chen
and Huang, 2012], which can be easily integrated with our current formulation. It is one of popular
latent space based regression methods that can naturally take advantage of correlations among
multiple descriptors, and provide very fast online learning especially for personalized models. As
an example, the reduced rank regressions have been successfully used in the recommendation of
News articles [Agarwal et al., 2010], in order to significantly reduce computational complexity in
the online learning phase.

Finally, we may boost the performance of Web image prediction by jointly learn the temporal
models along with other meta-data that were not used yet. They include GPS information, associ-
ated text data (e.g. titles, comments, favs in Flickr), social networks of users, and user click data,
to name a few.

Understanding the economic behaviors of Web users using computer vision techniques

Recently, the Web has become a new medium where a variety of economic phenomena interplay,
such as Web advertising, Internet auctions, markets and exchanges, and social and crowdsourcing
commerce. In Chapter 10, we solved the problem to visualize the brand associations from Web
photo collections, as one of very few early attempts that analyze the economic behaviors of Web
users by leveraging online images. We believe that there are many interesting research problems
to be explored along this line of work, given that online commerce and advertising are emerging
fields in data mining but images have drawn less attention compared to text data yet.

The first possible extension of our work in Chapter 10 may be image based brand profiling,
in which we identify a list of customer-facing qualities of brands in competitive marketplaces.
The images of brand that are taken by general users can describe natural scenes of interactions
between users and products of brand, including how customers generally use the products in real
lives, and what benefits users enjoy with the products, and so on. The reconstructed brand profiles
from images can be used in a wide range of applications toward online brand advertising such as
improving audience identification and ad selection.

One limitation of our brand association method is lack of competitiveness analysis. We simply
visualized the key associations of several competing brands, but did not perform any in-depth
comparative studies: for example, which of Nike and Adidas is more popular for running shoes?
What are the features of bags of Louis Vuitton that most affect its competitiveness over other luxury
brands? Such comparative research of brands has not been explored much especially in the image
domain, but some recent work in competitor mining can be remotely relevant reference to provide
some intuitions [Wan et al., 2011; Lappas et al., 2012].

Finally, another interesting area of work related to ours is contextual image advertising [Mei
et al., 2012], whose goal is, given an image, to generate keywords or categories that describe the
image best and find out the most relevant advertisements, as the sponsored search does with text
queries (e.g. Google AdWords and Bing Ads). Since this area is still largely under-addressed, our
work can be extended to this end, especially for multimedia brand advertising.
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Story reconstruction and Visualization

We believe that the storyline reconstruction, the main theme of this thesis, can be extended into
many different directions.

First of all, we can improve the photo-based storyline reconstruction of Chapter 8–9 using
other information modalities available on the Web. Especially, using both pictures and videos can
be synergetic for several reasons. First, today’s photo taking devices also include the functions
of camcorders, so users can seamlessly record their memorable moments via both pictures and
videos. Second, more importantly, the pictures and videos have different characteristics as media,
which can be complementary each other for the purpose of storyline reconstructions. The strength
of images over videos lies in that people usually pay more attention to take pictures so that they
can capture the objects and events from canonical viewpoints in a maximally informative way. On
the other hand, when general users record their events with videos, they include much noisy infor-
mation with only a smaller faction of frames where interesting events really happen. Therefore,
the images can clean up noisy parts of videos, and efficiently summarize the videos by selecting
only most important frames. In the reverse direction, videos can convey sequential information
between frames, which are not available in images. Thus, the videos can be used to glue a set of
fragmented images into coherent threads of storylines.

Another most demanding future directions for the storyline reconstruction research would be
to develop its real applications under more specific and practical scenarios. We believe that one
promising and interesting example is the storylines for the theme parks. The popular storylines
in the theme parks vary much according to visitor types and visiting time. For example, families
with kids may move slowly stroll through the park and prefer to visit character attractions that
children like, which will be quite different from those that groups of young people do. Since most
of theme parks are too large for visitors to explore in a single day, the reconstructed storylines can
be useful to recommend temporally and spatially personalized visiting paths according to types
of the visitors. From the technical perspective, theme parks are heavily recorded by millions of
visitors and pre-installed surveillance videos, which can provide sufficient amount of image and
video data for storyline reconstruction. In addition, theme parks are open spaces with no geometric
constraints available to organize all the pictures, which is another important technical challenge to
be addressed.

11.3 Conclusion

In this dissertation, we first identify several important characteristics of today’s image acquisi-
tion, processing, and sharing, which are attributed by recent technical progresses in photo-taking
devices, ubiquitous high-speed Internet connection, and social networking. From these new chal-
lenges, we derive the thesis statement, which we would like to restate here as follows.

Given large-scale online image collections and associated meta-data, we aim to create
the collective storylines by jointly inferring the temporal trends and the overlapping
contents of image collections. We also explore novel computer vision and data mining
applications taking advantage of the reconstructed photo storylines.
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We categorize the required technologies into three research directions, which are (i) under-
standing of temporal trends of image collections, (ii) discovery of overlapping contents across
image collections, and (iii) reconstruction and applications of collective photo storylines. All de-
veloped algorithms are aligned to accomplish the proposed research goal. We hope that this thesis
can inspire others to pursue more interesting and practical projects at the intersection of computer
vision and Web data mining.
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