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Over the past few decades, advances in approximation algorithms have enabled near-optimal
solutions to many important, but computationally hard, problems to be found efficiently. But
despite the resurgence of parallel computing in recent years, only a small number of these
algorithms have been considered from the standpoint of parallel computation. Furthermore,
among those for whi parallel algorithms do exist, the algorithms—mostly developed in the
late 80s and early 90s—follow a design principle that puts heavy emphasis on aieving poly-
logarithmic depth, with lile regard to work, generally resulting in algorithms that perform
substantially more work than their sequential counterparts. As a result, on a modest number
of processors, these highly parallel—but “heavy”—algorithms are unlikely to perform com-
petitively with the state-of-the-art sequential algorithms. is motivates the question: How
can one design a parallel approximation algorithm that obtains non-trivial speedups over its
sequential counterpart, even on a modest number of processors?

In this thesis, we explore a set of key algorithmic teniques that facilitate the design, anal-
ysis, and implementation of a wide variety of efficient parallel approximation algorithms.
is includes:

— Maximal nearly independent set. A natural generalization of maximal independent set
(MIS) solvable in linearwork, whi leads to linear-workRNC ((1+ε) lnn)-approximation
set cover, (1−1

e−ε)-approximation (prefix optimal)max cover, and (4+ε)-approximation
min-sum set cover—and a work-efficient RNC (1.861+ε)-approximation for facility lo-
cation.

— Low-diameter decomposition, low-stret spanning trees, and subgraphs. is allows
us to develop a near-linear work, O(m1/3)-depth algorithm for solving a symmetric
diagonally dominant (SDD) linear system Ax = b, with m nonzeros. e solver leads
fast parallel algorithms for max flow, min-cost flow, (spectral) sparsifier, etc.

— Probabilistic tree embeddings. An RNC O(n2 logn)-work algorithm for probabilistic
tree embeddings with expected stret O(logn), independent of the aspect ratio of the
input metric. is is a parallel version of Fakaroenphol et al.’s algorithm, providing a
building blo for algorithms for k-median and buy-at-bulk network.

— Hierarical diagonal bloing. A sparse matrix representation that exploits the small
separators property found in many real-world matrices. We also develop a low-depth
parallel algorithm for the representation, whi aieves substantial speedups over ex-
isting SpMV code.
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Chapter 1
Parallel maines have become ubiquitous in the past several years, so mu so that it
is nearly impossible to buy sequential maines today. Even the latest generation of cell
phones have multiple general-purpose cores, along with additional special-purpose parallel
hardware. Parallel maines with tens of cores are already common—and maines with
hundreds, if not thousands, of cores are expected in the mainstream in a few years, with
the number predicted to soar several orders of magnitude more in a decade. is trend,
driven in part by physical and economical constraints of processor ips’ production and
energy consumption, has had profound implications to how algorithms must be designed
and implemented to fully leverage the increasing amount of parallelism.

During a similar time frame, the computing industry haswitnessed an unprecedented growth
in data size, as well as in problem complexity, whi demands more computational power
than ever. is trend has drawn the aention of several communities to approximation algo-
rithms, whose advances over the last few decades have allowed the computation of provably
near-optimal solution (e.g., within less than 0.1% of the optimal solution) in a fraction of
the time required to compute an optimal solution. Despite significant progress made on this
front, these algorithms generally have not been considered from the standpoint of paral-
lel algorithms. For the past decades, the community has focused mainly on improving the
approximation guarantees and running time of sequential algorithms.

is thesis work lies at the interface of parallel algorithms and approximation algorithms,
initiating a principled study of the design, analysis, and implementation of efficient parallel
approximation algorithms—approximation algorithms that can efficiently take advantage of

1



2 CHAPTER 1. INTRODUCTION

parallelism. By contrast, early work on parallel approximation algorithms is less concerned
with efficiency aspects. Ba in the 80s and the early 90s, the community advocated a design
principle that puts heavy emphasis on aieving polylogarithmic depth¹ with lile regard to
work. is results in a number of beautiful algorithms that have an impressive amount of
parallelism but perform substantially more work than their sequential counterparts. Unfor-
tunately, on a modest number of processors, these highly parallel—but “heavy”—algorithms
are unlikely to perform competitively with the state-of-the-art sequential algorithms.

e present work takes a fresh look at this fascinating decades-old subject with a particular
focus on efficiency. Specifically, we are most concerned with the question:

How can one design a parallel approximation algorithm that obtains non-trivial
speedups over its sequential counterpart, even on a modest number of proces-
sors?

To answer this question, we set out to identify and develop a set of key teniques to facilitate
the development of su algorithms. We believe the right combination of parallelism and
approximation algorithms is key to geing scalable performance and is our hope in keep-
ing pace with the growing demand. We adopt a now-common design principle that strives
for low depth—and more importantly work efficiency (i.e., the algorithm cannot perform
significantly more work than its sequential counterpart does). Following this guideline, we
ask:

(1) What key teniques in approximation algorithms are efficiently parallelizable?

(2) How can they be applied to parallelize existing approximation algorithms?

(3) How can algorithmic teniques help overcomeallenges arising in the implemen-
tation of these algorithms on a modern maine aritecture?

Before we give an overview of the results in this thesis, we present a summary of prior work
on parallel approximation algorithms to put this work in perspective.

roughout the late 1980s and early 1990s, resear in the algorithms community focused
most of the efforts on developing parallel algorithms, some of whi are approximation algo-
rithms, an area whi started to gain popularity around the time interest in parallel comput-

¹By depth, we mean the longest ain of dependencies and by work, the total operation count. We formally
define these notions in Chapter 2)
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ing resear started to fade. It should be noted, however, that ba then, the primary goal
was to obtain NC and RNC algorithms (i.e., algorithms that run in polylogarithmic depth)
even at the expense of mu worse work bounds. is trend was in large part motivated
and justified by work in complexity theory that popularizes the distinction between (R)NC
and P, where polylogarithmic depth is oen thought of as fast running time and work is of
secondary concern, as long as it is kept polynomial.

During this period of time, several RNC and NC algorithms have been proposed. ere
are RNC and NC parallel approximation algorithms for set cover [BRS94, RV98], vertex
cover [KVY94, KY09], special cases of linear programs (e.g., positive LPs and cover-paing
LPs) [LN93, Sri01, You01], and k-center [WC90]. ese algorithms are typically based on
parallelizing their sequential counterparts, whi usually contain an inherently sequential
component (e.g., a greedy step whi requires piing and processing the minimum-cost el-
ement before proceeding to the next). A common idea in these parallel algorithms is that
instead of piing only the most cost-effective element, they make room for parallelism by
allowing a small sla (e.g., a (1 + ε) factor) in what can be selected. is idea oen re-
sults in a slightly worse approximation factor than the sequential version. For instance, the
parallel set-cover algorithm of Rajagopalan and Vazirani is a (2(1+ ε) lnn)-approximation,
compared to a lnn-approximation produced by the standard greedy set cover. Likewise, the
parallel vertex-cover algorithm of Khuller et al. is a 2/(1− ε)-approximation as opposed to
the optimal 2-approximation given by various known sequential algorithms. Only recently
has the approximation factor for vertex cover been improved to 2 in the parallel case [KY09].

As a starting point in understanding how teniques in approximation algorithms can be
parallelized efficiently, we revisit basic problems in approximation algorithms with well-
understood sequential algorithms. Our starting point is a small, but diverse, set of results in
approximation algorithms for problems su as facility location, set cover, and max k-cover,
with a primary goal of developing teniques for devising their efficient parallel counterparts.

Facility Location. Facility location is an ideal class of problems to begin this study. Not
only are these problems important because of their practical value, but they appeal to study
because of their special stature as “testbeds” for teniques in approximation algorithms. As
su, deriving parallel algorithms for these problems is an invaluable step in understanding
how to parallelize other algorithms. We present several algorithms based on greedy, primal-
dual, local-sear, and LP-rounding teniques. ese results are summarized in Section 1.3.
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Lessons from this study were instrumental in shaping the formulation of the maximal nearly
independent set problem, whi forms the basis for improved algorithms for set cover, max
k-cover, min-sum set cover, and even greedy facility location itself.

Maximum Cut. In addition to facility location, we consider other standard problems in
approximation algorithms, in hope that studying them will shed light on how to parallelize
similar algorithms. For this, we look at the maximum cut (MaxCut) problem: while the
simple randomized 1

2 -approximation is trivial to parallelize, it is non-trivial to obtain an
RNC factor-(αGW − ε) algorithm, where αGW is approximation ratio obtained by the state-
of-the-art Goemans and Willamson’s algorithm [GW95]. e standard GW implementation
requires solving a semidefinite program (SDP), whi in general is P-hard. We describe in
Section 1.4 an RNC near-linear work algorithm for MaxCut that aieves essentially the same
guarantees as the GW algorithm.

Advances in approximation algorithms oen result from ingenious applications of time-
tested teniques in conjunction with insightful problem-specific ideas. Refined over time,
these versatile teniques are applied to new problems time and again. For instance, te-
niques su as greedy and randomized rounding are used not only in set cover but also in
facility location; and metric-embedding teniques are applied to k-median and buy-at-bulk
network design, to name a few. is leads to the question: it possible to parallelize some of
these teniques?

Maximal Nearly Independent Set. A generalization ofMaximal Independent Set (MIS), this
formulation is inspired by greedy parallel algorithms for set cover and facility location, and
the following simple observation: while the greedy process is oen inherently sequential,
one can create opportunities for parallelism by oosing not only the best option available
but also every option roughly as good as the best option, within a threshold. is idea turns
out to be too aggressive: the osen options may interfere with one another, leading to low-
quality solutions. To rectify this, we formulate and study a combinatorial problem—called
Maximal Nearly Independent Set (MaNIS)—to capture the situation. We present a linear-
work RNC algorithm for the problem, leading to linear-work RNC algorithms for set cover,
prefix-optimal max cover, and min-sum set cover with essentially optimal approximation
guarantees, and a work-efficient RNC (1.861 + ε)-approximation for facility location.

Embeddings of Distances. Another family of key tenique in approximation algorithms
is embeddings: mapping a problem instance into an “easier” space, where it is solved and
“lied” ba to the original space. Embedding teniques underlie the design of several of
the best known approximation algorithms. Of particular interest to this work are variants
of the following problems: embedding metric spaces into distributions over a simpler metric
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space (e.g. trees and ultrasparse subgraphs). We present three results related to this. In
Section 1.6 (and in details in Chapter 6), we discuss the first two results—how to embed
the distance metric of an arbitrary (sparse) graph into a spanning subtree or an ultrasparse
spanning subgraph. e laer is motivated by the problem of solving symmetric diagonally
dominant (SDD) linear systems, whi we also describe in Chapter 6.

e other embedding result is concerned with probabilistically embedding an arbitrary finite
metric space into a distribution of dominating trees (a parallel version of the FRT embed-
ding). is result is summarized in Section 1.7 (detailed description in Chapter 7). Using the
embedding result, we present algorithms for k-median and buy-at-bulk network design. We
believe there are numerous other applications of these embedding teniques.

e complexity of modern parallel maines presents opportunities for algorithmic inno-
vations to improve computing performance. As an example, it is commonly observed that
as the number of cores increases, the per-core memory bandwidth does not scale propor-
tionally, starving the individual cores in memory-intensive applications. is phenomenon
turns out to be a major limiting factor in the scalability of sparse matrix-vector multiply
(SpMV), an important subroutine in high-performance computing and other data-intensive
applications.

Low-Bandwidth Computing by Exploiting Structure in the Data. A surprising number
of real-world datasets have a certain structure that can be exploited in algorithms design.
As a prime example, real-world graphs, including the US road network, the Internet graph,
and finite-element meshes, have “small separators²,” a useful property that has led to the de-
velopment of data compression teniques that require only a linear of number of bits and
enhance locality [BBK04, BBK03]. Inspired by previous work in this area, we study how to
take advantage of the small-separator structure to lower the bandwidth requirement. As a
step in this direction, we propose a representation—called Hierarical Diagonal Bloing
(HDB)—whi can substantially enhance the performance of SpMV. is work is summa-
rized in Section 1.8. Already, improving the performance of SpMV automatically boosts the
performance of the numerous applications that use SpMV at the core.

Parallel and I/O Algorithms for Set Cover and Related Problems. Finally, building on the
results on maximal nearly independent set, we design and analyze I/O efficient and parallel
versions of algorithms for set cover, max k-cover, and min-sum set cover, with I/O cost no
more expensive than that of sorting. We demonstrate the practicality of these algorithms
by showing empirical evidence that our algorithms are substantially faster than existing
implementations. is is discussed in Section 1.9

²We give a precise definition in Section 2.2
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Studied in Chapter 3, facility location is an important and well-studied class of problems
in approximation algorithms, with far-reaing implications in many application areas. As
we discussed earlier, these problems are important from both practical and theoretical per-
spectives. For these reasons, deriving parallel algorithms for facility location problems was
our first step towards understanding how to parallelize common teniques in approxima-
tion algorithms. Previous work on facility location commonly relies on teniques su as
linear-program (LP) rounding, local sear, primal dual, and greedy, for whi no general-
purpose parallelization tenique exists.

We show how to parallelize many facility-location algorithms. Our goal was to understand
how different teniques in approximation algorithms can be parallelized. To this end, we
consider the primal-dual algorithm of Jain and Vazirani [JV01b], the greedy algorithm of Jain
et al. [JMM+03], and the LP-rounding algorithm of Shmoys et al. [STA97]. Additionally, we
study Hobaum and Shmoys’s algorithm [HS85] for k-center, and the natural local-sear
algorithms for k-median and k-means [AGK+04, GT08]. Details appear in Chapter 3. We
summarize the results of this apter in the following:

Primal-Dual Algorithm. Building on the sequential primal-dual algorithm of Jain and Vazi-
rani [JV01a], we obtain the following theorem.

eorem 1.1 Let ε > 0 be fixed. For sufficiently large m, there is a primal-dual RNC
O(m log1+εm)-work algorithm that yields a factor-(3 + ε) approximation for the metric
facility-location problem.

Greedy Algorithm. e greedy seme underlies an exceptionally simple algorithm for facil-
ity location, due to Jain et al. [JMM+03]. To describe the algorithm, we need a couple of defi-
nitions: a star (i, S) consists of facility i and a set of clients S, costing 1

|S|(fi+
∑

j∈S d(j, i)).
e greedy algorithm of Jain et al. proceeds as follows:

Until no client remains, pi the eapest star (i, C ′), open the facility i, set
fi = 0, remove all clients in C ′ from the instance, and repeat.

Parallelizing this algorithm gives the following bounds:

eorem 1.2 Let 0 < ε ≤ 1 be fixed. For sufficiently large input, there is a greedy-style
RNC O(m log21+ε(m))-work algorithm that yields a factor-(3.722 + ε) approximation for
the metric facility-location problem.
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Results on Other Facility-Location Problems. In addition to these algorithms, we are able to
obtain the following results:

• given an optimal LP solution for the standard primal LP, there is an RNC rounding
algorithm yielding a (4 + ε)-approximation with O(m logm log1+εm) work (based
on the sequential algorithm of Shmoys et al. [STA97]).

• a 2-approximation for k-center based on the algorithm ofHobaum and Shmoys [HS85].
• for k ≤ polylog(n), (5 + ε)- and (81 + ε)- approximation algorithms for k-median
and k-means, resp., based on the natural local sear algorithms [AGK+04, GT08]

Note that for the k-center result, we did not sacrifice the solution’s quality in the process.

Summary of Teniques. Common in these algorithms (except for the k-center algorithm)
is an idea we call geometric-scale bueting. Most of these algorithms proceed in multiple
rounds, where ea round can be viewed as identifying and processing the best available
option. Geometric scaling creates opportunities for parallelism by aempting to process
every option that is roughly as good as the best option (up to some multiplicative factors).
Consequently, it typically causes some notion of utility to increase in powers of (1 + ε),
resulting in a small number of rounds.

In most cases, however, this policy turns out to be too aggressive, and we need another idea
to control the solution’s quality. is is typically different for ea problem. Specifically, for
the greedy facility-location algorithm, we need an idea to manage the overlaps between the
osen stars. is process forms the starting point of the work studied in Chapter 5.

Chapter 4 presents a parallel algorithm for the maximum cut (MaxCut) problem. is basic
graph optimization problem has laid the foundation for many of the now-common te-
niques in both approximation algorithms and the theory of hardness of approximation.
Given a graph G = (V,E), the goal of this problem is to find a bipartition of the graph
so as to maximize the number of edges between the parts.

We design and analyze a parallel algorithm for MaxCut that essentially mates the approx-
imation ratio αGW ≈ 0.878 · · · of the algorithm of Goemans and Williamson [GW95]. e
algorithm runs in nearly linear work and has polylogarithmic depth. More specifically, we
show the following theorem:

eorem 1.3 For a fixed constant ε > 0, there is a (1−ε)αGW-approximation algorithm for
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MaxCut on an unweighted graph with n nodes andm edges that runs in O(m log7 n) work
and O(log5 n) depth.

emain tenical ideas include a parallel transformation and sparsification tenique (part
of it was implicit in [Tre01]) that turns an arbitrary unweighted graph into a graph with
slighter more nodes but without any high-degree node, and a parallel implementation of
Arora and Kale’s primal-dual framework for approximately solving SDPs [AK07]. We be-
lieve our parallel implementation of the AK framework will find other interesting applica-
tions, especially when the SDP has small width.

In Chapter 5, we initiate the study of maximal nearly-independent set, a generalization of
the well-known maximal independent set (MIS) problem. As motivation, we consider par-
allel greedy approximation algorithms for set cover and related problems. Sequentially, the
greedy method for set cover iteratively ooses a set that has optimal cost per element and
removes the set as well as its elements. For n ground elements, this gives a polynomial algo-
rithm with an optimal (assuming standard complexity assumptions) approximation ratio of
Hn =

∑n
k=1

1
k . Berger, Rompel, and Shor [BRS94] show that the method can be parallelized

by bueting costs by factors of (1 + ε) and processing sets within a buet in parallel. is
requires a careful subselectionwithin a buet so that the sets selected in parallel have limited
overlap. With this, they develop an algorithm that runs in polynomial work and polyloga-
rithmic depth (i.e., it is in RNC) with an approximation ratio of (1+ ε)Hn. e problem was
also studied by Rajagopalan and Vazirani[RV98], who aieve beer work-depth bounds but
worse approximation ratio of about 2(1 + ε)Hn.

We abstract out a key component in their approaes, whi we refer to as Maximal Near
Independent Set (MaNIS). e definition of MaNIS is a natural generalization of Maximal
Independent Set (MIS). In words, it offers a way to select a subcollection from a collection
of sets and give a total order on this subcollection su that (1) adding sets in this order
guarantees that ea time a new set is added, at least a “large” fraction of the set’s elements
did not appear in the existing sets; and (2) the set not osen in this subcollection has a
significant overlap with the union of those in it.

Definition 1.4 (Ranked (ε, δ)-MaNIS) Let ε, δ > 0. Given a bipartite graph G = (A ∪
B,E), we say that a set J = {s1, s2, . . . , sk} ⊆ A is a ranked (ε, δ) maximal nearly
independent set, or a ranked (ε, δ)-MaNIS for short, if
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(1) Nearly Independent. ere is an ordering (not part of theMaNIS solution) s1, s2, . . . , sk
su that ea osen option si is almost completely independent of s1, s2, . . . , si−1,
i.e., for all i = 1, . . . , k,

|N(si) \N({s1, s2, . . . , si−1})| ≥ (1− δ − ε)|N(si)|.

(2) Maximal. e unosen options have significant overlaps with the osen options, i.e.,
for all a ∈ A \ J ,

|N(a) \N(J)| < (1− ε)|N(a)|.

We derive a simple O(m) work and O(log2m) depth randomized algorithm for computing
ranked (ε, 3ε)-MaNIS, where m is the number of edges in the bipartite graph G. With
MaNIS, we develop a simpleO(m)work,O(log3m) depth randomized solution to set cover
with an approximation ratio (1 + ε)Hn. is reduces the work by O(log3m) over the
best previous known parallel (RNC) methods. In fact, the bueting tenique allows us to
improve on the Θ(m logm)-work bound for the sequential strictly greedy algorithm, albeit
at the loss of (1+ε) in the approximation ratio. Furthermore, we apply the approa to solve
several related problems in polylogarithmic depth, including a (1−1/e− ε)-approximation
for max k-cover and a (4+ε)-approximation for min-sum set cover both in linear work; and
an O(log∗ n)-approximation for asymmetric k-center for k ≤ logO(1) n and a (1.861 + ε)-
approximation for metric facility location both in essentially the same work bounds as their
sequential counterparts. ese algorithms improve on previous results for all problems, and
for asymmetric k-center and min-sum set cover are the first RNC algorithms that give a
non-trivial approximation.

Chapter 6 presents the design and analysis of a near linear-work parallel algorithm for solv-
ing symmetric diagonally dominant (SDD) linear systems. On input of a SDD n-by-n ma-
trix A withm non-zero entries and a vector b, our algorithm computes a vector x̃ su that
‖x̃−A+b‖A ≤ ε · ‖A+b‖A in O(m logO(1) n log 1

ε ) work and O(m1/3+θ log 1
ε ) depth for

any fixed θ > 0.

e algorithm relies on a parallel algorithm for generating low-stret spanning trees or
spanning subgraphs. To this end, we first develop a parallel decomposition algorithm that
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in polylogarithmic depth and Õ(|E|) work³, partitions a graph into components with poly-
logarithmic diameter su that only a small fraction of the original edges are between the
components. is can be used to generate low-stret spanning trees with average stret
O(nα) in O(n1+α) work and O(nα) depth. Alternatively, it can be used to generate span-
ning subgraphs with polylogarithmic average stret in Õ(|E|) work and polylogarithmic
depth. We apply this subgraph construction to derive our solver. Specifically, we are able to
prove the following theorem:

eorem 1.5 For any fixed θ > 0 and any ε > 0, there is an algorithm SDDSolve that on
input an n×n SDD matrixA withm non-zero elements and a vector b, computes a vector x̃
su that ‖x̃−A+b‖A ≤ ε · ‖A+b‖A in O(m logO(1) n log 1

ε ) work and O(m1/3+θ log 1
ε )

depth.

By using the linear system solver in known applications, our results imply improved parallel
randomized algorithms for several problems, including single-source shortest paths, maxi-
mum flow, min-cost flow, and approximate max-flow.

In the general solver framework of Spielman and Teng [ST06, KMP10], near linear-time SDD
solvers rely on a suitable preconditioning ain of progressively smaller graphs. Assuming
that we have an algorithm for generating low-stret spanning trees, the algorithm as given
in Koutis et al. [KMP10] parallelizes under the following modifications: (i) perform the par-
tial Cholesky factorization in parallel and (ii) terminate the preconditioning ain with a
graph that is of size approximately m1/3. As discussed in more details later on, the con-
struction of the preconditioning ain is a primary motivation of the main tenical part
of the work in this apter, a parallel implementation of a modified version of Alon et al.’s
low-stret spanning tree algorithm [AKPW95].

More specifically, as a first step, we find a graph embedding into a spanning tree with av-

erage stret 2O(
√

logn log logn) in Õ(m) work and O(2O(
√

logn log logn) log∆) depth, where
∆ is the ratio of the largest to smallest distance in the graph. e original AKPW algo-
rithm relies on a parallel graph decomposition seme of Awerbu [Awe85], whi takes
an unweighted graph and breaks it into components with a specified diameter and few cross-
ing edges. While su semes are known in the sequential seing, they do not parallelize
readily because removing edges belonging to one component might increase the diameter
or even disconnect subsequent components. We present the first near linear-work parallel
decomposition algorithm that also gives strong-diameter guarantees. is leads a parallel
solver algorithm.

³e Õ(·) notion hides polylogarithmic factors.
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In Chapter 7, we present a parallel algorithm that embeds any n-point metric into a dis-
tribution of hierarically well-separated trees (HSTs) with O(n2 logn) (randomized) work
and O(log2 n) depth, while providing the same distance-preserving guarantees as that of
Fakaroenphol et al. (i.e., maintaining distances up to O(logn) in expectation) [FRT04].
Probabilistic tree embeddings—the general idea of embedding finite metrics into a distribu-
tion of dominating trees while maintaining distances in expectation—has proved to be an
extremely useful and general tenique in the algorithmic study of metric spaces [Bar98].
eir study has far-reaing consequences to understanding finite metrics and developing
approximation algorithms on them. e particular algorithm we parallelize is an elegant
optimal algorithm given by Fakaroenphol, Rao, and Talwar (FRT).

e main allenge arises in making sure the depth of the computation is polylogarithmic
even when the resulting tree is highly imbalanced—in contrast, the FRT algorithm, as stated,
works level by level and can have high depth. is imbalance can occur when the ratio
between themaximum andminimum distances in themetric space is large. Our contribution
lies in recognizing an alternative view of the FRT algorithm and developing an efficient
algorithm to exploit it. In addition, our analysis also implies probabilistic embeddings into
trees without Steiner nodes of heightO(logn)whp. (though not HSTs); su trees are useful
for both our algorithms and have also proved useful in other contexts.

Using this algorithm, we give an RNCO(log k)-approximation for k-median. is is the first
RNC algorithm that gives non-trivial approximation for any k ⁴. Specifically, we prove:

eorem 1.6 For k ≥ logn, the k-median problem admits a factor-O(log k) approximation
with O(nk + k(k log(nk ))

2) ≤ O(kn2) work and O(log2 n) depth. For k < logn, the
problem admits a O(1)-approximation with O(n logn + k2 log5 n) work and O(log2 n)
depth.

e algorithm is work efficient relative to previously described sequential teniques. We
also give an RNC O(logn)-approximation algorithm for buy-at-bulk network design. is
algorithm is within an O(logn) factor of being work efficient.

eorem 1.7 e buy-at-bulk network design problem with k demand pairs on an n-node
graph can be solved in O(n3 logn) work and O(log2 n) depth.

⁴ere is an RNC algorithm that give a (5 + ε)-approximation for k ≤ polylog(n) [BT10]
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Investigated in Chapter 8, sparse matrix-vector multiplication (SpMV) lies at the heart of
high performance parallel computing, from iterative numerical algorithms to shortest-path
algorithms. On modern maine aritectures, the performance of SpMV, however, is almost
always limited by the system’s memory bandwidth [WOV+07a, BKMT10]: the processors
(cores) have more computing power than the memory system can keep pace with, resulting
in the common finding that despite a substantial amount of parallelism available, the per-
formance of SpMV algorithms does not scale beyond the first few cores. Aer performing
a series of bandwidth studies, we identified the bolene: when computing the product
y = Ax, even if most of the vector’s entries reside in cae, the memory system cannot
supply the entries ofA fast enough.

is finding suggests that we should be able to improve the performance of these SpMV rou-
tines if we can representAwith a smaller memory footprint. We present a matrix represen-
tation, called Hierarical Diagonal Bloing (HDB), whi captures many of the existing
optimization teniques in a common representation. It can take advantage of symmetry
while still being easy to parallelize. It takes advantage of reordering. It also allows for sim-
ple compression of column indices. In conjunction with precision reduction (storing single-
precision numbers in place of doubles), it can reduce the overall bandwidth requirements
by more than 3x. It is particularly well-suited for problems with symmetric matrices, for
whi the corresponding graphs have reasonably small graph separators, and for whi the
effects of reduced precision arithmetic are well-understood (combinatorial multigrid solvers
are prime examples).

We give an SpMV algorithm for use with HDB representation, proving the following bounds
in the parallel cae oblivious model:

eorem 1.8 LetM be a class of matrices for whi the adjacency graphs satisfy an nα-
edge separator theorem, α < 1, and A ∈ M be an n-by-n matrix with m ≥ n nonzeros,
or m ≥ n lower triangular nonzeros for a symmetric matrix. If A is stored in the HDB
representation T then, on a maine with word size w:

(1) T can be implemented to usem+O(n/w) words.

(2) ere is a cae oblivious and runs withm/B +O(1 + n/(Bw) + n/M1−α) misses
in the ideal cae model. e algorithm runs in O(logO(1) n) depth.

e key idea of this representation is as follows: if the graph (corresponding to the matrix)
satisfies the nα-edge separator theorem, then there is a reordering that makes the matrix
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entries look like blos around the diagonal, without too many edges going across the blos.
is holds at multiple scales, forming a hierary of blo structures, whi has several
advantages. For instance, since these blos are non-interfering, they can be executed in
parallel. Furthermore, within a blo, we can perform index compression, using fewer bits
to represent the column indices.

We complement the theoretical results with a number of experiments that evaluate the per-
formance of various SpMV semes on recent multicore aritectures. e results show that
by reducing the bandwidth requirements, we not only enjoy substantial performance gain,
but are able to scale mu beer on multiple cores when the bandwidth becomes more lim-
iting. Our results show that a simple double-precision parallel SpMV algorithm saturates the
multicore bandwidth, but by reducing the bandwidth requirements—using a combination of
hierarical diagonal bloing and precision reduction—on an 8-core Nehalem maine, we
are able to obtain, on average, a 2.5x speedup over the simple parallel implementation.

Chapter 9 presents the design, analysis, and implementation of parallel and sequential I/O-
efficient algorithms for set cover, max cover, and related problems, tying together the line
of work on parallel set cover and the line of work on efficient set cover algorithms for large,
disk-resident instances.

We design and analyze a parallel cae-oblivious set-cover algorithm that offers essentially
the same approximation guarantees as the standard greedy algorithm. is algorithm is the
first efficient external-memory or cae-oblivious algorithm for when neither the sets nor
the elements fit in memory, leading to I/O cost (cae complexity) equivalent to sorting. e
algorithm also implies low cae-misses on parallel hierarical memories (again, equivalent
to sorting). More specifically, we prove the following theorem:

eorem 1.9 (Parallel and I/O Efficient Set Cover) e I/O (cae) complexity of the ap-
proximate set cover algorithm on an instance of size W is O(sort(W )) and the depth is
polylogarithmic in W . Furthermore, this implies an algorithm for prefix-optimal max cover
and min-sum set cover in the same complexity bounds.

Building on this theory, our main contribution is the implementation of slight variants of
the theoretical algorithm optimized for different hardware setups. We provide extensive ex-



14 CHAPTER 1. INTRODUCTION

perimental evaluation showing non-trivial speedups over existing algorithms without com-
promising the solution’s quality.

is thesis is a compendium of the end product resulting from extensive collaboration with
various people over the years. Chapter 3 on facility-location problems is joint work with Guy
Blello and has previously appeared in SPAA’10 [BT10]. e results in thisapter represent
the starting point of this thesis, convincing us that parallelizing these algorithms requires
new ideas and is an important and interesting pursuit; the supplemented k-median proof was
extracted from joint work with Anupam Gupta [GT08]. e results on MaxCut in Chapter 4
stem from Avrim Blum’s questions aer my theory lun talk and have benefited greatly
from lectures presented in the parallel approximation algorithms reading group (PAARG)
and conversations with Guy Blello, Anupam Gupta, and Riard Peng. e body of work
in Chapter 5 on Maximal Nearly Independent Set (MaNIS) is joint work with Guy Blello
and Riard Peng; the definition of MaNIS and the presentation of the MaNIS algorithm
have been greatly simplified aer various illuminating discussions with Anupam Gupta. In
addition, Gary Miller made us think deeper about the underlying connection between MIS
and MaNIS algorithms, as well as their proof teniques, whi helped shape the current
proof. e work previously appeared in SPAA’11 [BPT11].

Chapter 6 on low-stret subgraphs and parallel SDD solvers is my biggest collaboration
project to date, expanding on the conference versionwhioriginally appeared in SPAA’11 [BGK+11].
is work is joint with Guy Blello, Anupam Gupta, Ioannis Koutis, Gary Miller, and
Riard Peng. Chapter 7 on probabilistic tree embeddings and applications results from
collaboration with Guy Blello and Anupam Gupta. Chapter 8 on hierarical diago-
nal bloing is based on my paper with Guy Blello, Ioannis Koutis and Gary Miller in
SC’10 [BKMT10]. e SpMV code was originally developed as part of the Parallel Ben-
mark Suite, and the integration was motivated by Ioannis’s prior experience with using Intel
MKL in his combinatorial multigrid solver. Finally, Chapter 9 on I/O efficient set cover and
related algorithms is joint work with Guy Blello and Harsha Simhadri.



Chapter 2
roughout this document, we denote by [k] the set {1, 2, . . . , k} and use the notation
Õ(f(n)) to hide polylog and polyloglog factors, i.e., Õ(f(n))meansO(f(n) polylog(f(n))).
We say that an event happens with high probability (w.h.p.) if it happens with probability
exceeding 1− n−Ω(1).

For a graph G, we denote by degG(v) the degree of the vertex v in G and use NG(v) to
denote the neighbor set of the node v. Furthermore, we write u ∼ v for u is adjacent to v.
Extending this notation, we write NG(X) to mean the neighbors of the vertex set X , i.e.,
NG(X) = ∪w∈XNG(w). For a vertex set S ⊆ V , we write S to denote the complement of
S, i.e., S = V \ S. Furthermore, we denote by E(S, S) the edges crossing the cut S and S,
that is, E(S, S) = {uv ∈ E : u ∈ S, v ∈ S}. We drop the subscript (i.e., writing deg(v),
N(v), and N(X)) when the context is clear. Let V (G) and E(G) denote respectively the
set of nodes and the set of edges of the graph G.

Metric Space. LetX be a set and d: X ×X → R+ ∪ {0} be a distance function onX . We
say that (X, d) is a metric space if

(i) d(x, y) = 0 iff. x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X , and
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

15
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Several parallel computing models have been proposed in the literature. roughout this
work, our low-level (multiprocessor)model ofoice is a synronous shared-memorymodel,
commonly known as the parallel random-access maine (PRAM), a generalization of the
RAMmodel for sequential computing [JáJ92]. e PRAMmodel has the advantage of a sim-
ple, formal model with well-understood connections to other models of parallel maines.
Within the PRAM model, there are variations depending on how concurrent operations are
handled. Standard variants include exclusive-read exclusive-write (EREW), concurrent-read
exclusive-write (CREW) and concurrent-read concurrent-write (CRCW).Within concurrent-
write models, there are different variations (e.g., arbitrary write, and maximum-priority
write) depending how write conflicts are handled. ese models were to shown to have sim-
ilar expressivity and power, with EREW being the most restrictive. In this work, we take
the liberty of oosing the model that eases the presentation of a particular algorithm and
discuss its implications in related models.

However, at the level of PRAM abstraction, an algorithm’s description still involves red-
herring details. Because of the nature of our algorithms, we prefer a higher level of ab-
straction, an abstraction with a primary focus on algorithms and less so on the specifics of
how they are executed. For this, we adopt the work-depth model [JáJ92]. In the work-depth
model, the performance of an algorithm is determined by examining two important param-
eters: work (W )—the total number of operations—and depth (D), also known as span—the
dependencies among the operations. It is also common to refer to work as T1 (time on one
processor) and depth as T∞ (time on infinitely many processors).

More specifically, our algorithms are presented in the nested parallel model, allowing arbi-
trary dynamic nesting of parallel loops and fork-join constructs but no other synroniza-
tions (all standard textbook parallel algorithms can be represented in this model). is cor-
responds to the class of algorithms with series-parallel dependence graphs (see Figure 2.1).
Computations can be decomposed into “tasks”, “parallel blos” and “strands” recursively:
As a base case, a strand is a serial sequence of instructions not containing any parallel con-
structs or subtasks. A task is formed by serially composing k ≥ 1 strands interleaved with
(k − 1) “parallel blos” (denoted by t = s1; b1; . . . ; sk). A parallel blo is formed by com-
posing in parallel one or more tasks with a fork point before all of them and a join point
aer (denoted by b = t1‖t2‖ . . . ‖tk). A parallel blo can be, for example, a parallel loop
or some constant number of recursive calls. e top-level computation is a task. e depth
(aka. span) of a computation is therefore the length of the longest path in the dependence
graph.
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Figure 2.1: Decomposing the computation: tasks, strands and parallel blos

e following theorem shows a relationship between the work-depth model and CREW
PRAM:

eorem 2.1 (Brent’s eorem [Bre74, JáJ92]) An algorithm with work W and depth D

can be executed on a CREW PRAM maine with p processors in O(W/p+D) time, using
a greedy seduler.

On a real computer system, the performance of an algorithm can depend heavily on its cae
performance. e cae-oblivious approa for analyzing algorithms offers a framework for
analyzing the cae cost on a simple, single-level cae, so that the resulting analysis can be
used to imply good performance bounds on a variety of hierarical caes [FLPR99]. e
ideal-cae model is used for analyzing cae costs. It is a two-level model of computation
consisting of an unboundedmemory and a cae of sizeM . Data are transferred between the
two levels using cae lines of sizeB; all computation occurs on data in the cae. emodel
can run any standard computation designed for a random access maine (RAM model) on
words of memory, and the cost is measured in terms of the number of misses incurred by the
computation. is cost, oen denoted byQ(C;M,B), is referred to as the cae complexity
for a computation C . Oen, we writeQ (n;M,B) forQ(C;M,B) when the input has size
n and the computation is clear from the context.

e model assumes an ideal cae that evicts the location that will be needed the furthest
into the future (this is the optimal policy). In reality, no real caes are ideal or can even
be ideal since future accesses are not known at the time of eviction. However, su an ideal
cae implies certain bounds on more realistic cae models. For example, an ideal cae
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complexity can be applied on a fully-associative LRU (least recently used) cae with at most
a factor of 2 increase in misses and cae size [FKL+91]. Furthermore, an ideal cae can be
simulated on set-associative caes.

An algorithm is cae oblivious in the ideal-cae model if it does not take into account the
size of M or B (or any other features of the cae). If a cae oblivious algorithm A has
cae complexityQ(A;B,M) on a maine with blo size B and cae sizeM , then on a
hierarical caewith cae parameters (Mi, Bi) at level i, the algorithmwill suffer at most
Q(A;Mi, Bi) misses at ea level i. erefore, if Q(A;Mi, Bi) is asymptotically optimal
for B andM , it is optimal for all levels of the cae.

is type of analysis has recently been extended to the parallel seing [BGS10, BFGS11].
For nested parallel computations, one can analyze the algorithm using a sequential ordering
and then use general results to bound cae misses on parallel maines with either shared
or private hierarical caes. is works well when the algorithms have low depth. In
particular, for a shared-memory parallel maine with private caes (ea processor has its
own cae) using a work-stealing seduler, Qp(A;M,B) < Q(A;M,B) + O(pMD/B)

with probability 1 − δ [ABB02], and for a shared cae using a parallel-depth-first (PDF)
seduler, Qp(A;M + pBD,B) ≤ Q(A;M,B) [BG04], whereD is the depth of the com-
putation and p the number of processors. is can be formalized and extended to a more
general seing (i.e., ireggular computation) as follows.

e Parallel Cae-Obliviousmodel is a simple, high-level model for algorithm analysis. Like
the cae-oblivious model, in the Parallel Cae-Oblivious (PCO) model, there is a memory
of unbounded size and a single cae with sizeM , line-size B (in words), and optimal (i.e.,
furthest into the future) replacement policy. e cae stateκ consists of the set of cae lines
resident in the cae at a given time. When a location in a non-resident line l is accessed and
the cae is full, l replaces in κ the line accessed furthest into the future, incurring a cae
miss.

To extend the CO model to parallel computations, one needs to define how to analyze the
number of cae misses during the execution of a parallel blo. e PCO model approaes
it by (i) ignoring any data reuse among the subtasks and (ii) flushing the cae at ea fork
and join point of any task that does not fit within the cae, as follows. Let loc(t;B) denote
the set of distinct cae lines accessed by task t, and S(t;B) = |loc(t;B)| · B denote its
size (also let s(t;B) = |loc(t;B)| denote the size in terms of number of cae lines). Let
Q(c;M,B;κ) be the cae complexity of c in the sequential CO model when starting with
cae state κ.
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Task t forks subtasks t1 and t2,
with κ = {l1, l2, l3}

t1 accesses l1, l4, l5 incurring 2 misses
t2 accesses l2, l4, l6 incurring 2 misses

At the join point: κ′ = {l1, l2, l3, l4, l5, l6}

Figure 2.2: Applying the PCO model (Definition 2.2) to a parallel blo. Here,
Q∗(t;M,B;κ) = 4.

Definition 2.2 (Parallel Cae-Oblivious Model) For cae parametersM andB the cae
complexity of a strand, parallel blo, and a task starting in cae state κ are defined re-
cursively as follows (refer to [BFGS11] for more details). For a strand, Q∗(s;M,B;κ) =

Q(s;M,B;κ). For a parallel blo, b = t1‖t2‖ . . . ‖tk,

Q∗(b;M,B;κ) =
k∑

i=1

Q∗(ti;M,B;κ).

For a task t = c1; c2; . . . ; ck,

Q∗(t;M,B;κ) =
k∑

i=1

Q∗(ci;M,B;κi−1),

where κi = ∅ if S(t;B) > M , and

κi = κ ∪ij=1 loc(cj ;B)

if S(t;B) ≤M .

We useQ∗(c;M,B) to denote a computation c starting with an empty cae,Q∗(n;M,B)

when n is a parameter of the computation. We note thatQ∗(c;M,B) ≥ Q(c;M,B). When
applied to a parallel maineQ∗ is a “work-like” measure and represents the total number of
cae misses across all processors. An appropriate seduler is used to evenly balance them
across the processors.

As a general guideline: being able to design an algorithm with reasonably low depth is a big
win as the bounds indicate. We note that recursive matrix multiplication, FFT, Barnes-Hut
n-body code, merging, mergesort, quisort, k-nearest neighbors, direct solvers using nested
dissection, all have low depth and are reasonably efficient under the cae oblivious model.
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Informally, a graph has nα, α < 1 edge separators if there is a cut that partitions the graph
into two almost equal-sized parts su that the number of edges between the two parts is
no more than nα, within a constant. To properly deal with asymptotics and what it means
to be “within a constant,” separators are typically defined with respect to an infinite class of
graphs. Formally, let S be a class of graphs that is closed under the subgraph relation (i.e.,
forG ∈ S , every subgraph ofG is also in S). We say that S satisfies an f(n)-edge separator
theorem if there are constants α < 1 and β > 0 su that every graph G = (V,E) in S
with n vertices can be partitioned into two sets of vertices Va, Vb su that

cutSize(Va, Vb) :
def
= |E ∩ (Va × Vb)| ≤ βf(n),

where |Va|, |Vb| ≤ αn [LT79]. It is well-known that bounded-degree planar graphs and
graphs with bounded genus satisfy ann1/2-edge separator theorem. It is also known that cer-
tainwell-shapedmeshes in d dimensions satisfy an(d−1)/d-edge separator theorem [MTV91].
We note that sumeshes allow for features that vary in size by large factors (e.g. small near
a singularity and large where nothing is happening), but require a smooth transition from
small features to large features. In addition, many other types of real-world graphs have
good separators, including, for example, a link graph from Google [BBK04].

Edge separators are oen applied recursively to generate a separator tree with the vertices
at the leaves and the cuts at internal nodes. Su a separator tree can be used to reorder the
vertices based on an in- or post- order traversal of the tree. It is not hard to show that for
graphs satisfying an nα separator theorem, the tree can be fully balanced while maintaining
the O(nα) separator sizes at ea node.

Separators have been used for many applications. e seminal work of Lipton and Tar-
jan showed how separators can be used in nested dissection to generate efficient direct
solvers [LT79]. Another common application is to partition data structures across paral-
lel maines to minimize communication. It has also been used to compress graphs [BBK03]
down to a linear number of bits. e idea is that if the graph is reordered using separators,
then most of the edges are “short” and can thus be encoded using fewer bits than other edges.

ere are a number of teniques we can learn from RNC and NC algorithms that have been
developed over the years. ese teniques provide invaluable lessons in developing the



2.3. EXISTING TECHNIQUES IN PARALLEL APPROXIMATION ALGORITHMS 21

results in this thesis.

Geometric-Scaling Approximation. To create opportunities for parallelism, many algo-
rithms resort to bulk processing by grouping similar items together. A common idea is that
instead of piing only the “best” option, they make room for parallelism by allowing a
small sla (e.g., a (1 + ε) factor) in what can be selected. Oen used in conjunction with
a filter step, this allows multiple options to be selected together in bulk, whi reduces the
depth. is idea oen results in a slightly worse approximation factor than the sequen-
tial version. For instance, the parallel set-cover algorithm of Rajagopalan and Vazirani is a
(2(1+ε) lnn)-approximation, compared to a lnn-approximation produced by the standard
greedy set cover. Likewise, the parallel vertex-cover algorithm of Khuller et al. is a 2/(1−ε)-
approximation as opposed to the optimal 2-approximation given by various known sequen-
tial algorithms. Only recently has the approximation factor for vertex cover been improved
to 2 in the parallel case [KY09], whi avoids the geometric-scaling approximation. In gen-
eral, geometric scaling makes the number of groups that have to be processed sequentially
a logarithmic function of the ratio between the most costly option and the least inexpensive
option under some valuation.

Subselecting Nearly Non-Overlapping Set. Many optimization problems deal with sets,
and one of the major obstacles in parallelizing algorithms for these problems is in ensur-
ing that the sets that the algorithm ends up oosing do not have significant overlap with
ea other. A prime example is the situation that happens in the set cover problem, whi
was our initial motivation for the work on Maximal Nearly-Independent Sets (MaNIS) in
Chapter 5. Applying a geometric-scaling approximation to set cover creates the following
scenario: faced with a number of sets of roughly equal size (i.e., between, say, (1− ε)s and
s), we want to oose some of these sets to ensure that the selected sets taken together cover
approximately as many elements as the sum of the individual set sizes.

Berger, Rompel, and Shor [BRS94] developed a clever tenique, whi we call independent
sampling, that takes care of this situation. is sampling tenique should be compared
with Luby’s Maximal Independent Set (MIS) algorithm that flips a coin for ea vertex. Here
the idea is that if we oose a set with small enough probability, proportional to how mu
overlap there is but independently for all sets, the osen sets are unlikely to “collide” in too
many places. Later, Rajagopalan and Vazirani [RV98] proposed a different tenique, whi
we call permutation sampling. is bears mu similarity to Luby’s MIS algorithm where a
random number is pied for ea node. e key idea in this case is to select a set if the set
“wins” most of its elements aer assigning ea element to the set whi the element belongs
to that has the highest ranking in the permutation order. e work in Chapter 5 formalizes,
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generalizes, and simplifies the crucial steps in these results.

Linear Programs Approximation. Linear programs (LPs) play an important role in the
design and analysis of sequential approximation algorithms, in part because there are fast
algorithms for solving LPs. e problem in the parallel seing is that none of these algorithms
have small depth. In fact, solving a general LP or even approximating the optimal value to
any constant factor is P-complete, making it unlikely that an (R)NC algorithm is possible.
ere is, however, a class of LPs that can be approximated to any constant ε accuracy in
RNC.

Positive linear programs (PLPs) are a class of linear programs in whi all coefficients both
in the objective and the constraints, if non-zero, are positive. e most general form, also
known asmixed covering and paing programs, is either minimizing or maximizing c1x1+
c2x2 + · · · + cnxn subject to Cx ≥ b and Px ≤ d, where we require x ∈ Rn

+, ci ≥ 0,
Ci,j ≥ 0, Di,j ≥ 0, bi > 0 and di > 0. e constraints Cx ≥ b are covering constraints
and Px ≤ d, paing constraints.

For the covering version (or its dual paing version), Luby and Nisan [LN93] presented an
NCO( 1

ε4
logn logN log(m/ε))-depthO( 1

ε4
N logn logN log(m/ε))-work algorithm, where

n is the number of variables,m the number of constraints, andN the number of non-zero co-
efficients in the matrixC . is result implies that we can obtain anO(logn)-approximation
to set cover in Õ(N), where N here is the sum of the set sizes. But this would not be work
efficient relative the sequential greedy algorithm.

Subsequently, Young [You01] presented a parallel algorithm that can approximate programs
that are both covering and paing (aka. mixed covering and paing programs) in essentially
the same work-depth bounds—but the dependence on ε was still 1/ε4.

SDPs Approximation. Very recently, Jain and Yao [JY11] announced a parallel algorithm
for approximating positive SDPs up to an arbitrary constant accuracy in polylogarithm depth
and poly(N) work. is directly implies an SDP-based algorithm for MaxCut; however, the
generality of this approa comes at a cost. We believe the MaxCut algorithm derived via
this route does significantly more work than our algorithm for MaxCut from Chapter 4.



Chapter 3
Facility location is an important and well-studied class of problems in approximation algo-
rithms, with far-reaing implications in areas as diverse as maine learning, operations
resear, and networking: the popular k-means clustering and many network-design prob-
lems are all examples of problems in this class. Not only are these problems important
because of their practical value, but they appeal to study because of their special stature as
“testbeds” for teniques in approximation algorithms. Recent resear has focused primar-
ily on improving the approximation guarantee, producing a series of beautiful results, some
of whi are highly efficient—oen, with the sequential running time within constant or
polylogarithmic factors of the input size.

Despite significant progress on these fronts, work on developing parallel approximation al-
gorithms for these problems remains virtually non-existent. Although variants of these prob-
lems have been considered in the the distributed computing seing [MW05, GLS06, PP09],
to the best our of knowledge, almost no prior work has looked directly in the parallel seing
where the total work and parallel time (depth) are the parameters of concern. e only prior
work on these problems is due to Wang and Cheng, who gave a 2-approximation algorithm
for k-center that runs in O(n log2 n) depth and O(n3) work [WC90], a result whi we
improve upon in this work.

Deriving parallel algorithms for facility location problems is a non-trivial task and will be
a valuable step in understanding how common teniques in approximation algorithms can
be parallelized efficiently. Previous work on facility location commonly relies on teniques
su as linear-program (LP) rounding, local sear, primal dual, and greedy. Unfortunately,

23
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LP rounding relies on solving a class of linear programs not known to be solvable effi-
ciently in polylogarithmic time. Neither do known teniques allow for parallelizing local-
sear algorithms. Despite some success in parallelizing primal-dual and greedy algorithms
for set-covering, vertex-covering, and related problems, these algorithm are obtained using
problem-specific teniques, whi are not readily applicable to other problems.

Summary of Results

In this apter, we explore the design and analysis of several algorithms for (metric) facility
location, k-median, k-means and k-center problems, focusing on parallelizing a diverse set
of teniques in approximation algorithms. We study the algorithms on the EREW PRAM and
the Parallel Cae Oblivious model [BGS10, BFGS11]. e laer model is a generalization
of the cae-oblivious model, whi captures memory locality. We are primarily concerned
with minimizing the work (or cae complexity) while aieving polylogarithmic depth in
these models. We are less concerned with polylogarithmic factors in the depth since su
measures are not robust across models. By work, we mean the total operation count. All
algorithms we develop are in NC or RNC, so they have polylogarithmic depth.

We first present a parallel algorithmmimiing the greedy algorithm of Jain et al. [JMM+03].
is is the most allenging algorithm to parallelize because the greedy algorithm is inher-
ently sequential. We show the algorithm gives a (6+ε)-approximation and doesO(m log21+εm)

work, whi is within a logarithmic factor of the serial algorithm. en, we present a simple
RNC algorithm using the primal-dual approa of Jain and Vazirani [JV01b] whi leads to
a (3 + ε)-approximation and for input of sizem runs in O(m log1+εm) work, whi is the
same as the sequential work. e sequential algorithm is a 3-approximation. Following that,
we present a local-sear algorithm for k-median and k-means, with approximation factors
of 5+ε and 81+ε, mating the guarantees of the sequential algorithms. For constant k, the
algorithm does O(n2 logn) work, whi is the same as the sequential counterpart. Further-
more, we present a 2-approximation algorithm for k-center withO((n logn)2) work, based
on the algorithm of Hobaum and Shmoys [HS85]. Finally, we show a O(m log21+ε(m))-
work randomized rounding algorithm, whi yields a (4 + ε)-approximation, given an op-
timal linear-program solution as input. e last two algorithms run in work within a loga-
rithmic factor of the serial algorithm counterparts.

Remarks: egreedy parallel facility location has since been improved to a (3+ε)-approximation,
with the introduction of a new tenique for resolving conflicts between competing options.
is improved result is presented Chapter 5.
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Facility-location problems have had a long history. Because of space consideration, we men-
tion only some of the results here, focusing on those concerning metric instances. For the
(uncapacitated) metric facility location, the first constant factor approximation was given by
Shmoys et al. [STA97], using an LP-rounding tenique, whi has subsequently been im-
proved [Chu98, GK99]. A different approa, based on local-sear teniques, has been used
to obtain a 3-approximation [KPR00, AGK+04, GT08]. Combinatorial algorithms based on
primal-dual and greedy approaeswith constant approximation factors are also known [JMM+03,
JV01b, PT03]. Other approximation algorithms and hardness results have also been given
by [Svi02, CS03, Byr07, CG05, MMSV01, MYZ02, KPR00, CG05, GK99]. An open problem
is to close the gap between the best known approximation factor of 1.5 [Byr07] and the
hardness result of 1.463 [GK99].

At FOCS’99, the first constant factor approximation for k-median problem was presented by
Charikar et al. [CGTS02], whiwas subsequently improved by [CG05] and [AGK+04] to the
current best factor of 3+ε. For k-means, constant-factor approximations are known for this
problem [JV01b, GT08]; a special case when the metric space is the Euclidean space has also
been studied [KMN+04]. For k-center, tight bounds are known: there is a 2-approximation
algorithm due to [Gon85, HS86], and this is tight unless P = NP.

Let F denote a set of facilities and C denote a set of clients. For convenience, let nc = |C|,
nf = |F |, and m = nc × nf . Ea facility i ∈ F has a cost of fi, and ea client j ∈ C

incurs a cost (“distance”) d(j, i) to use the facility i. We assume throughout that there is
a metric space (X, d) with F ∪ C ⊆ X that underlies our problem instances. us, the
distance d is symmetric and satisfies the triangle inequality. As a shorthand, denote the cost
of the optimal solution by opt, the facility set of the optimal solution by F ∗, and the facility
set produced by our algorithm by FA. Furthermore, we write d(u, S) to mean the minimum
distance from u to a member of S, i.e., d(u, S) = min{d(u,w) : w ∈ S}.

Parallel Primitives. All the parallel algorithms in this apter can be expressed in terms of
a set of simple operations on vectors and dense matrices, making it easy to analyze costs on
a variety of parallel models. In particular, the distances d(·, ·) can be represented as a dense
n × n matrix, where n = nc + nf , and any data at clients or facilities can be represented
as vectors. e only operations we need are parallel loops over the elements of the vector or
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matrix, transposing thematrix, sorting the rows of amatrix, and summation, prefix sums and
distribution across the rows or columns of a matrix or vector. A prefix sum returns to ea
element of a sequence the sum of previous elements. e summation or prefix sum needs to
be applied using a variety of associative operators, including min, max, and addition.

We refer to all the operations other than sorting as the basic matrix operation. e basic
matrix operations on m elements can all be implemented with O(m) work and O(logm)

time on the EREW PRAM [JáJ92], and with O(m/B) cae complexity and O(logm) depth
in the parallel cae oblivious model. For the parallel cae oblivious model, we assume a tall
caeM > B2, whereM is the size of the cae andB is the blo size. Sortingm elements
takesO(m logm)work andO(logm) time on an EREWPRAM [Col88], andO(mB logM/B m)

cae complexity and O(log2m) depth on the parallel cae oblivious model [BGS10]. All
algorithms described in this apter are cae efficient in the sense that the cae complexity
in the cae obliviousmodel is bounded byO(w/B)wherew is the work in the EREWmodel.
All algorithms use a polylogarithmic number of calls to the basic matrix operations and
sorting and are thus in RNC—do polynomial work with polylogarithmic depth and possibly
use randomization.

Given this set up, the problems considered in this apter can be defined as follows:

Facility Location. egoal of this problem is to find a set of facilitiesFS ⊆ F thatminimizes
the objective function

FL(FS) =
∑
i∈FS

fi +
∑
j∈C

d(j, FS) (3.1)

Note that we do not need an explicit client-to-facility assignment because given a set of
facilities FS , the cost is minimized by assigning ea client to the closest open facility.

Non-trivial upper- and lower-bounds for the cost of the optimal solution are useful objects
in approximation algorithms. For ea client j ∈ C , let γj = mini∈F (fi + d(j, i)) and
γ = maxj∈C γj . e following bounds can be easily established:

γ ≤ opt ≤
∑
j∈C

γj ≤ γnc. (3.2)

Furthermore, metric facility location has a natural integer-program formulation for whi
the relaxation yields the pair of primal and dual programs shown in Figure 3.1.

k-Median and k-Means. Unlike facility location, the k-median objective does not take into
consideration facility costs, instead limiting the number of opened centers (facilities) to k.
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Minimize
∑

i∈F,j∈C
d(j, i)xij +

∑
i∈F

fiyi

Subj. to:


∑

i∈F xij ≥ 1 for j ∈ C
yi − xij ≥ 0 for i ∈ F, j ∈ C
xij ≥ 0, yi ≥ 0

(Primal LP)

Maximize
∑
j∈C

αj

Subj. to:


∑

j∈C βij ≤ fi for i ∈ F

αj − βij ≤ d(j, i) for i ∈ F, j ∈ C
βij ≥ 0, αj ≥ 0

(Dual DP)

Figure 3.1: e primal and dual programs for metric (uncapacitated) facility location.

Moreover, in these problems, we typically do not distinguish between facilities and clients;
every node is a client, and every node can be a facility. Formally, let V ⊆ X be the set of
nodes, and the goal is to find a set of at most k centers FS ⊆ V that minimizes the objective
M(FS) =

∑
j∈V d(j, FS). Almost identical to k-median is the k-means problem with

the objective M(FS) =
∑

j∈C d2(j, FS).

k-Center. Another type of facility-location problem whi has a hard limit on the number
of facilities to open is k-center. e k-center problem is to find a set of at most k centers
FS ⊆ V that minimizes the objective C(FS) = maxj∈V d(j, FS). In these problems,
we will use n to denote the size of V .

We describe two variants of the maximal independent set (MIS) problem, whi will prove
to be useful in nearly all algorithms described in this work. e first variant, called the
dominator set problem, concerns finding a maximal set I ⊆ V of nodes from a simple graph
G = (V,E) su that none of these nodes share a common neighbor (neighboring nodes ofG
cannot both be selected). e second variant, called the U -dominator set problem, involves
finding a maximal set I ⊆ U of the U -side nodes of a bipartite graph H = (U, V,E) su
that none of the nodes have a common V -side neighbor. We denote by MD(G) and
MUD(H) the solutions to these problems, resp.
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Both variants can be equivalently formulated in terms of maximal independent set. e first
variant amounts to finding a maximal independent set on

G2 = (V, {uw : uw ∈ E or ∃z s.t. uz, zw ∈ E}),

and the second variant a maximal independent set on

H ′ = (U, {uw : ∃z ∈ V s.t. uz, zw ∈ E}).

Because of this relationship, on the surface, it may seem that one could simply compute
G2 or H ′ and run an existing MIS algorithm. Unfortunately, computing graphs su as G2

andH ′ appears to need O(nω) work, where ω is the matrix-multiply constant, whereas the
naïve greedy-like sequential algorithms for the same problems run inO(|E|) = O(n2). is
difference makes it unlikely to obtain work efficient algorithms via this route.

In this section, we develop near work-efficient algorithms for these problems, bypassing the
construction of the intermediate graphs. e key idea is to compute a maximal independent
set in-place. Numerous parallel algorithms are known for maximal independent set, but the
most relevant to us is an algorithm of Luby [Lub86], whi we now sket.

e input to the algorithm is a graph G = (V,E). Luby’s algorithm constructs a maximal
independent set I ⊆ V by proceeding in multiple rounds, with ea round performing the
following computation:

Algorithm 3.2.1e select step of Luby’s algorithm for maximal independent set.

1. For ea i ∈ V , in parallel, π(i) = a number osen u.a.r. from {1, 2, . . . , 2n4}.
2. Include a node i in the maximal independent set I if π(i) < min{π(j) : j ∈ N(i)},

where N(i) is the neighborhood of i in G.

is process is termed the select step in Luby’s work. Following the select step, the newly
selected nodes, together with their neighbors, are removed from the graph before moving on
to the next round.

Implementing the select step: We describe how the select step can be performed in-place
for the first variant; the tenique applies to the other variant. Wewill be simulating running
Luby’s algorithm on G2, without generating G2. Since G2 has the same node set as G, step
1 of Algorithm 3.2.1 remains unanged. us, the crucial computation for the select step is
to determine efficiently, for ea node i, whether π(i) holds the smallest number among its
neighbors in G2, i.e., computing efficiently the test in step 2. To accomplish this, we simply
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pass the π(i) to their neighbors taking a minimum, and then to the neighbors again taking
a minimum. ese can be implemented with a constant number of basic matrix operations,
in particular distribution and summation using minimum over the rows and columns of the
|V |2 matrix.

Lemma 3.1 Given a graph G = (V,E), a maximal dominator set I ⊆ V can be found in
expectedO(log2 |V |) depth andO(|V |2 log |V |) work. Furthermore, given a bipartite graph
G = (U, V,E), a maximal U -dominator set I ⊆ U can be found in expected O((log |U |) ·
max{log |U |, log |V |}) depth and O(|V ||U |max{log |U |, log |V |}) work.

We note that for sparse matrices, whi we do not use in this apter, this can be easily
improved to O(|E| log |V |) work.

e greedy seme underlies an exceptionally simple algorithm for facility location, due to
Jain et al. [JMM+03]. Despite the simplicity, the algorithm offers one of the best known
approximation guarantees for the problem. To describe the algorithm, we will need some
definitions.

Definition 3.2 (Star, Price, and Maximal Star) A star S = (i, C ′) consists of a facility i

and a subset C ′ ⊆ C . e price of S is price(S) = (fi +
∑

j∈C′ d(j, i))/|C ′|. A star S
is said to be maximal if all strict super sets of C ′ have a larger price, i.e., for all C ′′ ) C ′,
price((i, C ′′)) > price((i, C ′)).

e greedy algorithm of Jain et al. proceeds as follows:

Until no client remains, pi the eapest star (i, C ′), open the facility i, set
fi = 0, remove all clients in C ′ from the instance, and repeat.

is algorithm has a sequential running time of O(m logm) and using teniques known
as factor-revealing LP, Jain et al. show that the algorithm has an approximation factor of
1.861 [JMM+03]. From a parallelization point of view, the algorithm is highly sequential—at
ea step, only the minimum-cost option is osen, and every subsequent step depends on
the preceding one. In this section, we describe how to overcome this sequential nature and
obtain an RNC algorithm inspired by the greedy algorithm of Jain et al. We show that the
parallel algorithm is a (3.722 + ε)-approximation.
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e key idea to parallelization is that mu faster progress will be made if we allow a small
sla in what can be selected in ea round; however, a subselection step is necessary to
ensure that facility and connection costs are properly accounted for.

Algorithm 3.3.1 Parallel greedy algorithm for metric facility location.

In rounds, the algorithm performs the following steps until no client remains:

1. For ea facility i, in parallel, compute Si = (i, C(i)), the lowest-priced maximal star
centered at i.

2. Let τ = mini∈F price(Si), and let I = {i ∈ F : price(Si) ≤ τ(1 + ε)}.
3. Construct a bipartite graphH = (I, C ′, {ij : d(i, j) ≤ τ(1+ ε)}), where C ′ = {j ∈

C : ∃i ∈ I s.t. d(i, j) ≤ τ(1 + ε)}.
4. Facility Subselection: while (I 6= ∅):

(a) Let Π : I → {1, . . . , |I|} be a random permutation of I .
(b) For ea j ∈ C ′, let ϕj = argmini∈NH(j)Π(i).
(c) For ea i ∈ I , if |{j : ϕj = i}| ≥ 1

2(1+ε) deg(i), add i to FA (open i), set
fi = 0, remove i from I , and remove NH(i) from both C and C ′.
Note: In the analysis, the clients removed in this step have πj set as follows. If
the facility ϕj is opened, let πj = ϕj ; otherwise, πj is set to any facility i we
open in this step su that ij ∈ E(H). Note that any facility that is opened is
at least 1/(2(1 + ε)) paid for by the clients that select it, and that since every
client is assigned to at most one facility, they only pay for one edge.

(d) Remove i ∈ I (and the incident edges) from the graph H if on the remaining

graph,
fi+

∑
j∈NH (i) d(j,i)

deg(i) > τ(1 + ε). ese facilities will show up in the next
round (outer-loop).

Note: Aer fi is set to 0, facility i will still show up in the next round.

We present the parallel algorithm in Algorithm 3.3.1 and now describe step 1 in greater de-
tail; steps 2 – 3 can be implemented using standard teniques [JáJ92, Lei92]. As observed in
Jain et al. [JMM+03] (see also Fact 3.3), for ea facility i, the lowest-priced star centered at i
consists of the κi closest clients to i, for some κi. Following this observation, we can presort
the distance between facilities and clients for ea facility. Let i be a facility and assume
without loss of generality that d(i, 1) ≤ d(i, 2) ≤ · · · ≤ d(i, nc). en, the eapest max-
imal star for this facility can be found as follows. Using prefix sum, compute the sequence
p(i) = {(fi +

∑
j≤k d(i, k))/k}

nc
k=1. en, find the smallest index k su that p(i)k < p

(i)
k+1

or use k = nc if no su index exists. It is easy to see that the maximal lowest-priced star
centered at i is the facility i together with the client set {1, . . . , k}.
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Crucial to this algorithm is a subselection step, whi ensures that every facility and the
clients that connect to it are adequately accounted for in the dual-fiing analysis. is subs-
election process can be seen as scaling ba on the aggressiveness of opening up the facilities,
mimiing the greedy algorithm’s behavior more closely.

We present a dual-fiing analysis of the above algorithm. e analysis relies on the client-
to-facility assignment π, defined in the description of the algorithm. e following easy-to-
e facts will be useful in the analysis.

Fact 3.3 For ea iteration of the execution, the following holds: (1) If Si is the eapest
maximal star centered at i, then j appears in Si if and only if d(j, i) ≤ price(Si). (2) If
t = price(Si), then

∑
j∈C max(0, t− d(j, i)) = fi.

Now consider the dual program in Figure 3.1. For ea client j, set αj to be the τ seing in
the iteration that the client was removed. We begin the analysis by relating the cost of the
solution that the algorithm outputs to the cost of the dual program.

Lemma 3.4 e cost of the algorithm’s solution
∑

i∈FA
fi+
∑

j∈C d(j, FA) is upper-bounded
by 2(1 + ε)2

∑
j∈C αj .

Proof : Consider that in step 4(c), a facility i is opened if at least a 1
2(1+ε) fraction of the

neighbors “ose” i. Furthermore, we know from the definition of H that, in that round,
fi +

∑
j∈NH(i) d(j, i) ≤ τ(1 + ε) deg(i). By noting that we can partition C by whi

facility the client is assigned to in the assignment π, we establish∑
j∈C

αj · 2(1 + ε)2 ≥
∑
i∈FA

(
fi +

∑
j:πj=i

d(j, i)
)

≥
∑
i∈FA

fi +
∑
j∈C

d(j, FA),

as desired. �

In the series of claims that follows, we show that when scaled down by a factor of γ = 1.861,
the α seing determined above is a dual feasible solution. We will assume without loss of
generality that α1 ≤ α2 ≤ · · · ≤ αnc . Let Wi = {j ∈ C : αj ≥ γ · d(j, i)} for all i ∈ F

andW = ∪iWi.
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Claim 3.5 For any facility i ∈ F and client j0 ∈ C ,∑
j∈W:j≥j0

max(0, αj0 − d(j, i)) ≤ fi.

Proof : Suppose for a contradiction that there exist client j and facility i su that the in-
equality in the claim does not hold. at is,∑

j∈W:j≥j0

max(0, αj0 − d(j, i)) > fi. (3.3)

Consider the iteration in whi τ is αj0 ; call this iteration `. By Equation (3.3), there exists a
client j ∈W ∩ {j ∈ Z+ : j ≥ j0} su that αj0 − d(j, i) > 0; thus, this client participated
in a star in an iteration prior to ` and was connected up. erefore, it must be the case that
αj < αj0 , whi is a contradiction to our assumption that j0 ≤ j and α1 ≤ α2 ≤ .. . . . αnc .
�

Claim 3.6 Let i ∈ F , and j, j′ ∈W be clients. en, αj ≤ αj′ + d(i, j′) + d(i, j).

e proof of this claim closely parallels that of Jain et al. [JMM+03] and is omied. ese
two claims form the basis for the set up of Jain et al.’s factor-revealing LP. Hence, combining
them with Lemmas 3.4 and 3.6 of Jain et al. [JMM+03], we have the following lemma:

Lemma 3.7 e seing α′
j =

αj

γ and β′
ij = max(0, α′

j − d(j, i)) is a dual feasible solution,
where γ = 1.861.

An Alternative Proof Without Factor-Revealing LP.We note that a slightly weaker result
can be derived without the use of factor-revealing LP. Claims 3.6 and 3.5 can be combined
to prove the following lemma:

Lemma 3.8 e seingα′
j = αj/3 and β′

ij = max(0, α′
j−d(j, i)) is a dual feasible solution.

Proof: We will show that for ea facility i ∈ F ,∑
j∈Wi

(
αj − 3 · d(j, i)

)
≤ 3 · fi. (3.4)
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Note that ifWi is empty, the lemma is trivially true. us, we assumeWi is non-empty and
define j0 to be minWi. Since j0 ∈ Wi, d(j0, i) ≤ αj0 by the definition of Wi. Now let
T = {j ∈Wi : αj0 ≥ d(j, i)}. Applying Claims 3.6 and 3.5, we have

∑
j∈Wi

(αj − d(j, i)) ≤
∑
j∈Wi

(αj0 + d(j0, i)) ≤
∑
j∈Wi

2 · αj0

≤ 2fi +
∑
j∈T

2 · d(j, i) +
∑

j∈Wi\T

2 · d(j, i) ≤ 2fi +
∑
j∈Wi

2 · d(j, i),

whi proves inequality (3.4). With this, it is easy to see that our oice of β′
ij ’s ensures

that all constraints of the form αj − βij ≤ d(j, i) are satisfied. en, by inequality (3.4),
we have

∑
j∈C max(0, αj − 3 · d(j, i)) =

∑
j∈Wi

[αj − 3 · d(j, i)] ≤ 3 · fi, whi implies
that

∑
j∈C max(0, αj − 3 · d(j, i)) ≤ 3 · fi. Hence, we conclude that for all facility i ∈ F ,∑

j∈C β′
ij ≤ fi, proving the lemma. �

Running Time Analysis

Consider the algorithm’s description in Algorithm 3.3.1. e rows can be presorted to give
ea client its distances from facilities in order. In the original order, ea element can be
marked with its rank. Step 1 then involves a prefix sum on the sorted order to determine how
far down the order to go and then selection of all facilities at or below that rank. Steps 2–3
require reductions and distributions across the rows or columns of the matrix. e subset
I ⊂ F can be represented as a bit mask over F . Step 4 is more interesting to analyze; the
following lemma bounds the number of rounds facility subselection is executed, the proof
of whi is analogous to Lemma 4.1.2 of Rajagopalan and Vazirani [RV98]; we present here
for completeness a simplified version of their proof, whi suffices for our lemma.

Lemma 3.9 With probability 1−o(1), the subselection step terminates withinO(log1+εm)

rounds.

Proof : Let Φ = |E|. We will show that if Φ′ is the potential value aer an iteration of the
subselection step, then E [Φ− Φ′] ≥ cΦ, for some constant c > 0. e lemma then follows
from standard results in probability theory. To proceed, define choseni = |{j ∈ C ′ : ϕj =

i}|. Furthermore, we say that an edge ij is good if at most θ = 1
2(1 −

1
1+ε) fraction of

neighbors of i have degree higher than j.
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Consider a good edge ij. We will estimate E [choseni|ϕj = i]. Since ij is good, we know
that ∑

j′∈NH(i)

1{deg(j′)≤deg(j)} ≥ (1− θ) deg(i).

erefore, E [choseni|ϕj = i] ≥ 1
2(1−θ) deg(i), as it can be shown thatPr

[
ϕj′ = i|ϕj = i

]
≥

1
2 for all j′ ∈ NH(i) and deg(j′) ≤ deg(j). By Markov’s inequality and realizing that
choseni ≤ deg(i), we have

Pr
[
choseni ≥

1

2(1 + ε)
deg(i)

∣∣∣ ϕj = i

]
= p0 > 0.

Finally, we note that E [Φ− Φ′] is at least∑
ij∈E

Pr
[
ϕj = i and choseni ≥

1

2(1 + ε)
deg(i)

]
· deg(j)

≥
∑

good ij∈E

1

deg(j)
p0 deg(j)

≥ p0
∑
ij∈E

1{ij is good}.

Since at least θ fraction of the edges are good, E [Φ− Φ′] ≥ p0θΦ. Since ln(1/(1− p0θ)) =

Ω(log(1 + ε)), the lemma follows from standard results in probability [MR95]. �

It is easy to see that ea subselection step can be performed with a constant number of
basic matrix operations over the D matrix. erefore, if the number of rounds the main
body is executed is r, the algorithmmakesO(r log1+εm) calls to the basic matrix operations
described in Section 3.1 with probability exceeding 1− o(1). It also requires a single sort in
the preprocessing. is means a total of O(rm log1+εm) work (with probability exceeding
1−o(1)) on the EREW PRAM. Furthermore, it is cae efficient (cae complexity isO(w/B))
since the sort is only applied once and does not dominate the cae bounds.

Bounding the number of rounds

Before describing a less restrictive alternative, we point out that the simplest way to bound
the number of rounds by a polylogarithm factor is to rely on the common assumption that the
facility cost, as well as the ratio between the minimum (non-zero) and the maximum client-
facility distance, is polynomially bounded in the input size. As a result of this assumption,
the number of rounds is upper-bounded by log1+ε(m

c) = O(log1+εm), for some c ≥ 1.
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Alternatively, we can apply a preprocessing step to ensure that the number of rounds is
polylogarithm in m. e basic idea of the preprocessing step is that if a star is “relatively
eap,” opening it right away will harm the approximation factor only slightly. Using the
bounds in Equation (3.2), if Si is the lowest-priced maximal star centered at i, we know we
can afford to open i and discard all clients aaed to it if price(Si) ≤ γ

m2 . erefore, the
preprocessing step involves: (1) computing Si, the lowest-priced maximal star centered at i,
for all i ∈ F , (2) opening all i su that price(Si) ≤ γ

m2 , (3) seing fi of these facilities to 0
and removing all clients aaed to these facilities.

Computing γ takes O(lognc + lognf ) depth and O(m) work. e rest of the preprocess-
ing step is at most as costly as a step in the main body. us, the whole preprocessing
step can be accomplished inO(logm) depth and O(m) work. With this preprocessing step,
three things are clear: First, τ in the first iteration of the main algorithm will be at least
γ
m2 , because eaper stars have already been processed in preprocessing. Second, the cost
of our final solution is increased by at most nc × γ

m2 ≤ γ
m ≤ opt/m, because the facilities

and clients handled in preprocessing can be accounted for by the cost of their correspond-
ing stars—specifically, there can be most nc stars handled in preprocessing, ea of whi
has price ≤ γ/m2; and the price for a star includes both the facility cost and the con-
nection cost of the relevant clients and facilities. Finally, in the final iteration, τ ≤ ncγ.
As a direct consequence of these observations, the number of rounds is upper-bounded by
log1+ε(

ncγ
γ/m2 ) ≤ log1+ε(m

3) = O(log1+εm), culminating in the following theorem:

eorem 3.10 Let 0 < ε ≤ 1 be fixed. For sufficiently large input, there is a greedy-style
RNC O(m log21+ε(m))-work algorithm that yields a factor-(3.722 + ε) approximation for
the metric facility-location problem.

e primal-dual seme is a versatile paradigm for combinatorial algorithms design. In
the context of facility location, this seme underlies the Lagrangian-multiplier preserving¹
(LMP) 3-approximation algorithm of Jain and Vazirani, enabling them to use the algorithm
as a subroutine in their 6-approximation algorithm for k-median [JV01b].

e algorithm of Jain and Vazirani consists of two phases, a primal-dual phase and a post-
processing phase. To summarize this algorithm, consider the primal and dual programs in
Figure 3.1. In the primal-dual phase, starting with all dual variables set to 0, we raise the

¹is means α
∑

i∈FA
fi +

∑
j∈C d(j, FA) ≤ α · opt, where α is the approximation ratio.
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dual variables αj ’s uniformly until a constraint of the form αj − βij ≤ d(j, i) becomes
tight, at whi point βij will also be raised, again, uniformly to prevent these constraints
from becoming overtight. When a constraint

∑
j βij ≤ fi is tight, facility i is tentatively

opened and clients with αj ≥ d(j, i) are “frozen,” i.e., we stop raising their αj values from
this point on. e first phase ends when all clients are frozen. In the postprocessing phase,
we compute and output a maximal independent set on a graph G of tentatively open facil-
ities; in this graph, there is an edge between a pair of facilities i and i′ if there is a client j
su that αj > d(j, i) and αj > d(j, i′). us, the maximal independent set ensures proper
accounting of the facility cost (i.e., ea client “contributes” to at most one open facility, and
every open facility has enough contribution). Informally, we say that a client j “pays” for
or “contributes” to a facility i if βij = αj − d(j, i) > 0.

Remarks. Wenote that in the parallel seing, the description of the postprocessing step above
does not directly lead to an efficient algorithm, because constructing G in polylogarithmic
depth seems to need O(mnf ) work, whi is mu more than one needs sequentially.

In this section, we show how to obtain a work-efficient RNC (3+ε)-approximation algorithm
for facility location, based on the primal-dual algorithm of Jain and Vazirani. Critical to
bounding the number of iterations in themain algorithm byO(logm) is a preprocessing step,
whi is similar to that used by Pandit and Pemmaraju in their distributed algorithm [PP09].

Preprocessing: Assuming γ as defined in Equation (3.2), we will open every facility i that
satisfies ∑

j∈C
max

(
0,

γ

m2
− d(j, i)

)
≥ fi.

Furthermore, for all clients j su that there exists an opened i and d(j, i) ≤ γ/m2, we
declare them connected and set αj = 0. e facilities opened in this step will be called free
facilities and denoted by the set F0.

Main Algorithm: e main body of the algorithm is described in Algorithm 3.4.1. e
algorithm outputs a bipartite graphH = (FT , C,E), constructed as the algorithm executes.
Here FT is the set of facilities declared open during the iterations of the main algorithm and
E is given by E = {ij : i ∈ F, j ∈ C, and (1 + ε)αj > d(j, i)}.

Post-processing. As a post-processing step, we compute I = MUD(H). us, the set
of facilities I ⊆ FT has the property that ea client contributes to the cost of at most one
facility in I . Finally, we report FA = I ∪ F0 as the set of facilities in the final solution.



3.4. FACILITY LOCATION: PRIMAL-DUAL 37

Algorithm 3.4.1 Parallel primal-dual algorithm for metric facility location

For iteration ` = 0, 1, . . . , the algorithm performs the following steps until all facilities are
opened or all clients are frozen, whiever happens first.

1. For ea unfrozen client j, in parallel, set αj to
γ
m2 (1 + ε)`.

2. For ea unopened facility i, in parallel, declare it open if∑
j∈C

max(0, (1 + ε)αj − d(j, i)) ≥ fi.

3. For ea unfrozen client j, in parallel, freeze this client if there exists an opened
facility i su that (1 + ε)αj ≥ d(j, i).

4. Update the graphH by adding edges between pairs of nodes ij su that (1+ε)αj >
d(j, i).

Aer the last iteration, if all facilities are opened but some clients are not yet frozen, we
determine in parallel the αj seings of these clients that will make them rea an open
facility (i.e., αj = mini d(j, i)). Finally, update the graphH as necessary.

To analyze approximation guarantee of this algorithm, we start by establishing that the αj

seing produced by the algorithm leads to a dual feasible solution.

Claim 3.11 For any facility i,∑
j∈NH(i)

max(0, αj − d(j, i)) ≤ fi.

Proof: Let α(`)
j denote the αj value at the end of iteration `. Suppose for a contradiction that

there is a facility i whi is overtight. More formally, there exists i ∈ F and the smallest `
su that

∑
j∈NF (i)max(0, α(`)

j − d(j, i)) > fi. Let J be the set of unfrozen neighboring
clients of i in iteration `− 1. e reason facility i was not opened in iteration `− 1 and the
surrounding clients were not frozen is

raisedi
def
=

∑
j∈NF (i)\J

max(0, (1+ε)α
(`−1)
j −d(j, i))+

∑
j∈J

max(0, (1+ε)t`−1−d(j, i)) < fi.

However, we know that t` = (1 + ε)t`−1, and for ea frozen neighboring client j (i.e.,
j ∈ NF (i) \ J ), α(`)

j = α
(`−1)
j , so

raisedi ≥
∑

j∈N(i)\J

max(0, α(`)
j −d(j, i))+

∑
j∈J

max(0, t`−d(j, i)) =
∑

j∈N(i)

max(0, α(`)
j −d(j, i)),
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whi is a contradiction. �

It follows from this claim that seing βij = max(0, αj − d(j, i)) provides a dual feasible
solution. Next we relate the cost of our solution to the cost of the dual solution. To ease the
following analyses, we use a client-to-facility assignment π : C → F , defined as follows:
For all j ∈ C , let ϕ(j) = {i : (1 + ε)αj ≥ d(j, i)}. Now for ea client j, (1) if there exists
i ∈ F0 su that d(j, i) ≤ γ/m2, set πj to any su i; (2) if there exists i ∈ I su that ij is
an edge in H , then πj = i (i is unique because of properties of I) ; (3) if there exists i ∈ I

su that i ∈ ϕ(j), then πj = i; (4) otherwise, pi i′ ∈ ϕ(j) and set πj to i ∈ I whi is a
neighbor of a neighbor of i′.

Clients of the first case, denoted byC0, are called freely connected; clients of the cases (2) and
(3), denoted by C1, are called directly connected. Otherwise, a client is indirectly connected.

e following lemmas bound the facility costs and the connection costs of indirectly con-
nected clients.

Lemma 3.12 ∑
i∈FA

fi ≤
γ

m
+
∑
j∈C1

(1 + ε)αj −
∑

j∈C0∪C1

d(j, πj)

Proof: When facility i ∈ FT was opened, it must satisfy fi ≤
∑

j:ij∈E(G)(1+ε)αj−d(j, i).
If client j has contributed to i (i.e., (1+ε)αj−d(j, i) > 0) and i ∈ I , then j is directly con-
nected to it. Furthermore, for ea client j, there is at most one facility in I that it contributes
to (because I = MUD(H)). erefore,

∑
i∈I fi ≤

∑
j∈C1

(1 + ε)αj − d(j, πj). Fur-
thermore, for ea “free” facility, we know that fi ≤

∑
j∈C max(0, γ2/m2 − d(j, i)), so by

ouroice of π, fi ≤ γ
m2×nc−

∑
j∈C0:πj=i d(j, i). us,

∑
i∈F0

fi ≤ γ/m−
∑

j∈C0
d(j, i).

Combining these results and observing that FA is the disjoint union of I and F0, we have
the lemma. �

Lemma 3.13 For ea indirectly connected client j (i.e., j 6∈ C0 ∪ C1), we have d(j, πj) ≤
3(1 + ε)αj .

Proof : Because j 6∈ C0 ∪ C1 and I = MUD(H), there must exist a facility i′ ∈ ϕ(j)

and a client j′ su that j′ contributed to both i and i′, and (1 + ε)αj ≥ d(j, i′). We claim
that both d(j′, i′) and d(j′, i) are upper-bounded by (1 + ε)αj . To see this, we note that
because j′ contributed to both i and i′, d(j′, i′) ≤ (1 + ε)αj′ and d(j′, i) ≤ (1 + ε)αj′ .
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Let ` be the iteration in whi j was declared frozen, so αj = t`. Since i′ ∈ ϕ(j), i′ must
be declared open in iteration ≤ `. Furthermore, because (1 + ε)αj′ > d(j′, i′), αj′ must be
frozen in or prior to iteration `. Consequently, we have αj′ ≤ t` = αj . Combining these
facts and applying the triangle inequality, we get d(j, i) ≤ d(j, i′) + d(i′, j′) + d(j′, i) ≤
(1 + ε)αj + 2(1 + ε)αj′ ≤ 3(1 + ε)αj . �

By Lemmas 3.12 and 3.13, we establish

3
∑
i∈FA

fi +
∑
j∈C

d(j, πj) ≤
3γ

m
+ 3(1 + ε)

∑
j∈C

αj . (3.5)

Now since {αj , βij} is dual feasible, its value can be at most that of the primal optimal
solution; that is,

∑
j αj ≤ opt. erefore, combining with Equation (3.5), we know that

the cost of the solution returned by parallel primal-dual algorithm in this section is at most
3
∑

i∈FA
fi +

∑
j∈C d(j, C) ≤ (3 + ε′)opt for some ε′ > 0 when the problem instance is

large enough.

Running Time Analysis

We analyze the running of the algorithm presented, starting with the main body of the
algorithm. Since

∑
j αj ≤ opt and opt ≤ ncγ, no αj can be bigger than ncγ ≤ mγ. Hence,

the main algorithm must terminate before ` > 3 log1+εm, whi upper-bounds the number
of iterations to O(log1+εm). In ea iteration, steps 1, 3, and 4 perform trivial work. Step 2
can be broken down into (1) computing the max for all i ∈ F, j ∈ C„ and (2) computing the
sum for ea i ∈ F . ese can all be implemented with the basic matrix operations, giving
a totalof O(log1+εm) of basic matrix operations over a matrix of sizem.

e preprocessing step, again, involves some reductions over the rows and columns of the
matrix. is includes the calculations of γj ’s and the composite γ. e post-processing
step relies on computing the U -dominating set, as described in Section 3.1 whi runs in
O(logm) matrix operations.

e whole algorithm therefore runs in O(log1+εm) basic matrix operations and is hence
work efficient compared to theO(m logm) sequential algorithm of Jain andVazirani. Puing
these altogether, we have the following theorem:

eorem 3.14 Let ε > 0 be fixed. For sufficiently large m, there is a primal-dual RNC
O(m log1+εm)-work algorithm that yields a factor-(3 + ε) approximation for the metric
facility-location problem.
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In this section, we consider other applications of dominator set in facility-location problems.

k

Hobaum and Shmoys [HS85] show a simple factor-2 approximation for k-center. e al-
gorithm performs a binary sear on the range of distances. We show how to combine the
dominator-set algorithm from Section 3.2 with standard teniques to parallelize the algo-
rithm of Hobaum and Shmoys, resulting in an RNC algorithmwith the same approximation
guarantee. Consider the set of distances D = {d(i, j) : i ∈ C and j ∈ V } and order them
so that d1 < d2 < · · · < dp and {d1, . . . , dp} = D, where p = |D|. e sequence {di}pi=1

can be computed inO(log |V |) depth and O(|V |2 log |V |) work. LetHα be a graph defined
as follows: the nodes of Hα is the set of nodes V , but there is an edge connecting i and j if
and only if d(i, j) ≤ α.

e main idea of the algorithm is simple: find the smallest index t ∈ {1, 2, . . . , p} su that
MD(Hdt) ≤ k. Hobaum and Shmoys observe that the value t can be found using
binary sear in O(log p) = O(log |V |) probes. We parallelize the probe step, consisting
of constructing Hdt′ for a given t′ ∈ {1, . . . , p} and eing whether |MD(Hdt′ )|
is bigger than k. Constructing Hdt′ takes O(1) depth and O(|V |2) work, and using the
maximal-dominator-set algorithm from Section 3.2, the test can be performed in expected
O(log2 |V |) depth and expectedO(|V |2 log |V |)work. e approximation factor is identical
to the original algorithm, hence proving the following theorem:

eorem 3.15 ere is an RNC 2-approximation algorithm withO((|V | log |V |)2) work for
k-center.

LP rounding was among the very first teniques that yield non-trivial approximation guar-
antees for metric facility location. e first constant-approximation algorithm was given by
Shmoys et al. [STA97]. Althoughwe do not know how to solve the linear program for facility
location in polylogarithmic depth, we demonstrate another application of the dominator-set
algorithm and the sla idea by parallelizing the randomized-rounding step of Shmoys et
al. e algorithm yields a (4 + ε)-approximation, and the randomized rounding is an RNC

algorithm.
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e randomized rounding algorithm of Shmoys et al. consists of two phases: a filtering phase
and a rounding phase. In the following, we show how to parallelize these phases and prove
that the parallel version has a similar guarantee. Our presentation differs slightly from the
original work but works in the same spirit.

Filtering: e filtering phase is naturally parallelizable. Fix α to be a value between 0 and
1. Given an optimal primal solution (x, y), the goal of this step is to produce a new solution
(x′, y′) with properties as detailed in Lemma 3.16. Let δj =

∑
i∈F d(i, j) · xij , Bj = {i ∈

F : d(i, j) ≤ (1 + α)δj}, and mass(Bj) =
∑

i∈Bj
xij . We compute x′ij and y′i as follows:

(1) let x′ij = xij/mass(Bj) if i ∈ Bj or 0 otherwise, and (2) let y′i = min(1, (1 + 1/α)yi).

Lemma 3.16 Given an optimal primal solution (x, y), there is a primal feasible solution
(x′, y′) su that (1)

∑
i x

′
ij = 1, (2) if x′ij > 0, then d(j, i) ≤ (1+α)δj , and (3)

∑
i fiyi ≤

(1 + 1
α)
∑

i fiy
′
i.

Proof : By construction, (1) clearly holds. Furthermore, we know that if x′ij > 0, it must be
the case that i ∈ Bj , so d(j, i) ≤ (1 + α)δj , proving (2). By definition of y′i,

∑
i fiyi ≤

(1 + 1
α)
∑

i fiy
′
i, proving (3). Finally, since in an optimal LP solution,

∑
i xij = 1, we

know that mass(Bj) ≥ α
1+α , by an averaging argument. erefore, x′ij ≤ (1 + 1

α)xij ≤
min(1, (1 + 1

α)yi) = y′i, showing that (x
′, y′) is primal feasible. �

Rounding: e rounding phase is more allenging to parallelize because it is inherently
sequential—a greedy algorithm whi considers the clients in an increasing order of δj and
appears to need Ω(nc) steps. We show, however, that we can aieve parallelism by eagerly
processing the clients S = {j : δj ≤ (1 + ε)τ}. is is followed by a clean-up step,
whi uses the dominator-set algorithm to rectify the excess facilities. We precompute the
following information: (1) for ea j, let ij be the least costly facility inBj , and (2) construct
H = (C,F, ij ∈ E iff. i ∈ Bj).

ere is a preprocessing step to ensure that the number of rounds is polylogarithmic in m.
Let θ be the value of the optimal LP solution. By an argument similar to that of Section 3.3,
we can afford to process all clients with δj ≤ θ/m2 in the first round, increasing the final
cost by at most θ/m ≤ opt/m. e algorithm then proceeds in rounds, ea performing the
following steps:

Since J isU -dominator ofH , we know that for all distinct j, j′ ∈ J ,Bj∩Bj′ = ∅; therefore,∑
i∈I fi =

∑
j∈J fij ≤

∑
j∈J
(∑

i∈Bj
x′ijfij

)
≤
∑

j∈J y
′
ifij ≤

∑
j∈J y

′
ifi, proving the

following claim:
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1. Let τ = minj δj .
2. Let S = {j : δj ≤ (1 + ε)τ} and
3. Let J = MUD(H), add I = {ij : j ∈ J} to FA; finally, remove all of S and
∪j∈SBj from V (H).

Claim 3.17 In ea round,
∑

i∈I fi ≤
∑

i∈∪jBj
y′ifi.

Like our previous analyses, we will define a client-to-facility assignment π convenient for
the proof. For ea j ∈ C , if ij ∈ FA, let πj = ij ; otherwise, set πj = ij′ , where j′ is the
client that causes ij to be shut down (i.e., either ij ∈ Bj′ and j′ was process in a previous
iteration, or both j and j′ are processed in the same iteration but there exists i ∈ Bj ∩Bj′ ).

Claim 3.18 Let j be a client. If ij ∈ FA, then d(j, πj) ≤ (1 + α)δj ; otherwise, d(j, πj) ≤
3(1 + α)(1 + ε)δj .

Proof : If ij ∈ FA, then by Lemma 3.16, d(j, πj) ≤ (1 + α)δj . If ij 6∈ FA, we know that
there must exist i ∈ Bj and j′ su that i ∈ Bj′ and δj′ ≤ (1 + ε)δj . us, applying
Lemma 3.16 and the triangle inequality, we have d(j, πj) ≤ d(j, i) + d(i, j′) + d(j′, ij′) ≤
3(1 + α)(1 + ε)δj . �

Running TimeAnalysis: eabove algorithmwill terminate in atmostO(log1+εm) rounds
because the preprocessing step ensures the ratio between the maximum and the minimum
δj values are polynomially bounded. Like previous analyses, steps 1 – 2 can be accomplished
in O(1) basic matrix operations, and step 3 in O(logm) basic matrix operations on matri-
ces of sizem. is yields a total of O(log1+εm logm) basic matrix operations, proving the
following theorem:

eorem 3.19 Given an optimal LP solution for the primal LP in Figure 3.1, there is an RNC

rounding algorithm yielding a (4+ ε)-approximation withO(m logm log1+εm) work. It is
cae efficient.

k

Local sear, LP rounding, and Lagrangian relaxation are among the main teniques for
approximation algorithms for k-median. In this section, building on the algorithms from
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previous sections, we present an algorithm for the k-median problem, based on local-sear
teniques. e natural local-sear algorithm for k-median is very simple: startingwith any
set FA of k facilities, find some i ∈ FA and i′ ∈ F \FA su that swapping them decreases
the k-median cost, and repeat until no sumoves can be found. Finding an improving swap
or identifying that none exists takesO(k(n−k)n) time sequentially, where n is the number
of nodes in the instance. is algorithm is known to be a 5-approximation [AGK+04, GT08].

e key ideas in this section are that we can find a good initial solution S0 quily and
perform ea local-sear step fast. Together, this means that only a small number of local-
sear steps is needed, and ea step can be performed fast. To find a good initial solution, we
observe that any optimal k-center solution is an n-approximation for k-median. erefore,
wewill use the 2-approximation from Section 3.5.1 as a factor-(2n) solution for the k-median
problem. At the beginning of the algorithm, for ea j ∈ V , we order the facilities by their
distance from j, taking O(n2 logn) work and O(logn) depth.

Let 0 < ε < 1 be fixed. We say that a swap (i, i′) su that i ∈ FA and i′ ∈ F \ FA

is improving if M(FS − i + i′) < (1 − β/k)M(FS), where β = ε/(1 + ε). e
parallel algorithm proceeds as follows. In ea round, find and apply an improving swap as
long as there is one. We now describe how to perform ea local-sear step fast. During
the execution, the algorithm keeps tra of ϕj , the facility client j is assigned to, for all
j ∈ V . We will consider all possible test swaps i ∈ FA and i′ ∈ V \ FA simultaneously
in parallel. For ea potential swap (i, i′), every client can independently compute ∆j =

d(j, FA − i+ i′)− d(j, FA); this computation trivially takes O(nc) work and O(1) depth,
since we know ϕj and the distances are presorted. From here, we know that M(FA −
i+ i′)− M(FA) =

∑
j ∆j , whi can be computed in O(n) work and O(logn) depth.

erefore, in O(k(n − k)n) work and O(logn) depth, we can find an improving swap or
detect that none exists. Finally, a round concludes by applying an improving swap to FA

and updating the ϕj values.

Arya et al. [AGK+04] show that the number of rounds is bounded by

O
(
log1/(1−β/k)

(
M(S0)/opt

))
= O

(
log1/(1−β/k)(n)

)
Since for 0 < ε < 1, ln

(
1/(1−β/k)

)
≤ 2

k ln (1/(1− β)), we have the following theorem,
assuming k ∈ O(polylog(n)), whi is oen the case in many applications:

eorem 3.20 For k ∈ O(polylog(n)), there is an NC O(k2(n − k)n log1+ε(n))-work al-
gorithm whi gives a factor-(5 + ε) approximation for k-median.

Remarks. Relative to the sequential algorithm, this algorithm is work efficient—regardless
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of the range of k. In addition to k-median, this approa is applicable to k-means, yielding
an (81 + ε)-approximation [GT08] in general metric spaces and a (25 + ε)-approximation
for the Euclidean space [KMN+04], and the same parallelization teniques can be used to
aieve the same running time. Furthermore, there is a factor-3 approximation local-sear
algorithm for facility location, in whi a similar idea can be used to perform ea local-
sear step efficiently; however, we do not know how to bound the number of rounds.

For completeness, we reproduce the proof of Gupta and Tangwongsan [GT08] that the nat-
ural local sear algorithm yields a (5+ ε)-approximation. is proof can be generalized to
k-means as well as higher `p-norms [GT08]

A Simple Analysis of k-Median Local Sear

A Set of Test Swaps. To show that a local optimum is a good approximation, the standard
approa is to consider a carefully osen subset of potential swaps: if we are at a local
optimum, ea of these swaps must be non-improving. is gives us some information
about the cost of the local optimum. To this end, consider the set F ∗ of facilities osen
by an optimum solution, and let F be the facilities at the local optimum. Without loss of
generality, assume that |F | = |F ∗| = k.

. . .

. . .

F

F ∗

Figure 3.2: An example mapping η : F ∗ → F and a set of test swaps S.

Define a map η : F ∗ → F that maps ea optimal facility f∗ to a closest facility η(f∗) ∈ F :
that is, d(f∗, η(f∗)) ≤ d(f∗, f) for all f ∈ F . Now define R ⊆ F to be all the facilities
that have at most 1 facility in F ∗ mapped to it by the map η. (In other words, if we create
a directed bipartite graph by drawing an arc from f∗ to η(f∗), R ⊆ F are those facilities
whose in-degree is at most 1).

Finally, we define a set of k pairs S = {(r, f∗)} ⊆ R× F ∗ su that

• Ea f∗ ∈ F ∗ appears in exactly one pair (r, f∗).

• If η−1(r) = {f∗} then r appears only once in S as the tuple (r, f∗).

• If η−1(r) = ∅ then r appears at most in two tuples in S.
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e procedure is simple: for ea r ∈ Rwith in-degree 1, construct the pair (f, η−1(r))—let
the optimal facilities that are already mated off be denoted by F ∗

1 . e other facilities
in R have in-degree 0: denote them by R0. A simple averaging argument shows that the
unmated optimal facilities |F ∗ \ F ∗

1 | ≤ 2|R0|. Now, arbitrarily create pairs by mating
ea node in R0 to at most two pairs in F ∗ \ F ∗

1 so that the above conditions are satisfied.

e following fact is immediate from the construction:

Fact 3.21 For any tuple (r, f∗) ∈ S and f̂∗ ∈ F with f̂∗ 6= f∗, η(f̂∗) 6= r.

Intuition for the Pairing.

To get some intuition for why the pairing S was osen, consider the case when ea facility
in F is the closest to a unique facility in F ∗, and far away from all other facilities in F ∗—in
this case, opening facility f∗ ∈ F ∗ and closing the mated facility in f ∈ F can be handled
by leing all clients aaed to f be handled by f∗ (or by other facilities in F ). A problem
case would be when a facility f ∈ F is the closest to several facilities in F ∗, since closing f
and opening only one of these facilities inF ∗ might still cause us to pay too mu—hence we
never consider the gains due to closing su “popular” facilities, and instead only consider
the swaps that involve facilities from the set of relatively “unpopular” facilities R.

Bounding the Cost of a Local Optimum

We use the fact that ea of the swaps S are non-improving to show that that the local
optimum has small cost.

Breaking ties arbitrarily, assume that ϕ : V → F and ϕ∗ : V → F ∗ are functions mapping
ea client to some closest facility. For any client j, let Oj = d(j, F ∗) = d(j, ϕ∗(j)) be
the client j’s cost in the optimal solution, and Aj = d(j, F ) = d(j, ϕ(j)) be it’s cost in the
local optimum. Let N∗(f∗) = {j | ϕ∗(j) = f∗} be the set of clients assigned to f∗ in the
optimal solution, andN(f) = {j | ϕ(j) = f} be those assigned to f in the local optimum.

Lemma 3.22 For ea swap (r, f∗) ∈ S,

M(F + f∗ − r)− M(F ) ≤
∑

j∈N∗(f∗)

(Oj −Aj) +
∑

j∈N(r)

2Oj . (3.6)

Proof : Consider the following candidate assignment of clients (whi gives us an upper
bound on the cost increase): map ea client in N∗(f∗) to f∗. For ea client j ∈ N(r) \
N∗(f∗), consider the figure below. Let the facility f̂∗ = ϕ∗(j): assign j to r̂ = η(f̂∗), the
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closest facility in F to f̂∗. Note that by Fact 3.21 , r̂ 6= r, and this is a valid new assignment.
All other clients in V \ (N(r) ∪N∗(f∗)) stay assigned as they were in ϕ.

. . .

. . .

F

F ∗

j

f̂∗ = ϕ∗(j)

f̂ = η(ϕ∗(j))ϕ(j)

Note that for any client j ∈ N∗(f∗), the ange in cost is exactly Oj − Aj : summing over
all these clients gives us the first term in the expression (3.6).

For any client j ∈ N(r) \N∗(f∗), the ange in cost is

d(j, r̂)− d(j, r) ≤ d(j, f̂∗) + d(f̂∗, r̂)− d(j, r) (3.7)

≤ d(j, f̂∗) + d(f̂∗, r)− d(j, r) (3.8)

≤ d(j, f̂∗) + d(j, f̂∗) = 2Oj . (3.9)

with (3.7) and (3.9) following by the triangle inequality, and (3.8) using the fact that r̂ is the
closest vertex in F to f̂∗. Summing up, the total ange for all these clients is at most

∑
j∈N(r)\N∗(f∗)

2Oj ≤
∑

j∈N(r)

2Oj , (3.10)

the inequality holding since we are adding in non-negative terms. is proves Lemma 3.22.
�

Note that summing (3.6) over all tuples in S, along with the fact that ea f∗ ∈ F ∗ appears
exactly once and ea r ∈ R ⊆ F appears at most twice gives us the simple proof of the
following theorem.

eorem 3.23 ([AGK+04]) At a local minimum F , the cost M(F ) ≤ 5 · M(F ∗).
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In this apter, we studied the design and analysis of parallel approximation algorithms for
facility-location problems, including facility location, k-center, k-median, and k-means. We
presented several efficient algorithms, based on a diverse set of approximation algorithms
teniques. e practicality of these algorithms is a maer pending experimental investiga-
tion.





Chapter 4

In this apter, we investigate a basic graph optimization problem known as the maximum
cut (MaxCut) problem. is problem has been a catalyst in the development of many now-
common teniques in both approximation algorithms and the theory of hardness of approx-
imation. Given a graph G = (V,E), the goal of the problem is to find a bipartition of the
graph to maximize the number of edges crossing the partition. Mathematically,

MaxCut(G) = max
S⊆V (G)

|(S, S̄)|, where (S, S̄) def
= E(G) ∩ (S × (V (G) \ S)).

Sometimes, it is more convenient to work with a normalized objective. Let valG(S, S̄)
def
=

|(S, S̄)|/|E(G)| denote the fraction of the edges in the cut (S, S̄). e MaxCut problem can
equivalently be stated as finding a cut (S, S̄) that maximizes valG(S, S̄).

e MaxCut problem is known to be NP-complete [GJ79], but a number of surprisingly
simple 1

2 -approximation algorithms are known. For example, a randomized algorithm that
flips an unbiased coin to decide whi part ea node belongs to is a 1

2 -approximation. is
algorithm runs inO(|V |) time and can be derandomized to run inO(|E|) time. Furthermore,
the randomized algorithm is trivial to parallelize.

Goemans and Williamson (GW) [GW95] presented a major breakthrough that aieved an
approximation ratio of αGW ≈ 0.878 · · · through a novel, yet simple, SDP rounding te-
nique. Assuming the unique games conjecture, this approximation has been shown to be

49
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the best possible (see, e.g, [OW08] and the references therein for details). In the sequential
seing, Klein and Lu [KL96] give an algorithm for general graphs with Õ(|V ||E|) running
time, and subsequently, Arora and Kale [AK07] give an algorithm for regular graphs with
Õ(|E|) running time. It was not obvious how any of these SDP-based algorithms can be
efficiently parallelized.

In this apter, we give an SDP-based primal-dual algorithm that works for general graphs,
building on the algorithm of Arora and Kale. Specifically, we prove the following theorem:

eorem 4.1 For a fixed constant ε > 0, there is a (1−ε)αGW-approximation algorithm for
MaxCut on an unweighted graph with n nodes andm edges that runs in O(m log7 n) work
and O(log5 n) depth.

(We prove this theorem in Section 4.3)

First, we begin by reviewing the MaxCut SDP. e MaxCut problem has an SDP relaxation
based on a natural quadratic program formulation. It consists of n vectors (the rows of X),
ea corresponding to a vertex of the input graph. Let G = (V,E) be a graph and L be the
Laplacian associated with it. e MaxCut SDP primal/dual pair (ignoring a scaling constant
of 1/4) is as follows.

Maximize L • X
Subj. to: Xii ≤ 1 for i = 1, . . . , |V |

X < 0

Minimize 1 · y
Subj. to: diag(y) < L.

y ≥ 0.
(4.1)

It is easy to see that Tr [X] ≤ n in any primal feasible solution X.

In this section, we outline the primal-dual framework of Arora and Kale [AK07] for ap-
proximately solving semidefinite programs (SDPs) and describe how it can be implemented
efficiently in parallel.

At STOC’07, Arora and Kale presented a primal-dual framework for approximately solving
semidefinite programs (SDPs). Using a matrix multiplicative weights method, the frame-
work allows for finding an approximate solution to an SDP through the help of an oracle (it
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should be compared with the framework of Plotkin, Shmoys, and Tardos [PST95] for pa-
ing/covering LPs and more recent work of Khandekar [Kha04]). More specifically, consider
a general SDP pair, in whi the primal has n2 variables andm constraints:

Maximize C • X
Subj. to: Aj • X ≤ bj for j ∈ [m]

X < 0

Minimize b · y
Subj. to:

∑m
j=1 Ajyj < C.

y ≥ 0.

As with [AK07], we assume A1 = I and b1 = R for some R ∈ R+, whi serves to bound
the trace of the solution (i.e., Tr [X] ≤ R). e framework solves the feasibility version of the
problem; our algorithm will use binary sear to derive the optimization version. Let α be
the current guess for the SDP’s optimum value. e framework starts with a trivial candidate
(whi might not be primal feasible) X(1) = R

n I and produces a series of candidate solutions
X(2),X(3), . . . through the help of an oracle. For ea X(t), the oracle seares for a vector
y ∈ Dα

def
= {y ∈ Rm

+ : b · y ≤ α} su that

m∑
j=1

[Aj • X(t)]yj − [C • X(t)] ≥ 0. (4.2)

Arora and Kale show that if the oracle fails, scaling X(t) suitably gives a primal feasible
solution with value at least α [AK07]. If the oracle succeeds, X(t) is either primal infeasible
or has value at most α—and the vector y contains information useful for improving the
candidate solution X(t). Before we can describe the algorithm for updating X(t), we need
the following definition:

Definition 4.2 ((`, ρ)-Boundedness Oracle) For 0 ≤ ` ≤ ρ), an (`, ρ)-bounded oracle is
an oracle whose return value y ∈ Dα always satisfies either

∑
j Ajyj − C ∈ [−`, ρ] or∑

j Ajyj − C ∈ [−ρ, `]. Moreover, we say that the oracle has width ρ.

e update procedure relies on the matrix multiplicative weights algorithm, whi can be
summarized as follows. For a fixed ε0 ≤ 1

2 and W(1) = I, we play a repeated “game” a
number of times, where in iteration t = 1, 2, . . . , the following steps are performed:

1. Produce a probability matrix P(t) = W(t)/ Tr
[
W(t)

]
,

2. Incur a loss matrixM(t), and
3. Update the weight matrix asW(t+1) = exp(−ε0

∑
t′≤tM

(t′)).

Approximating Matrix Exponentials. For efficiency, we have to implement the matrix
exponentials approximately. For the MaxCut algorithm, it suffices to approximate matrix
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exponentials using a Taylor’s series expansion and dimensionality reduction, as described
in [AK07]. But this means that the oracle also has to be approximate. We first describe a
parallel implementation of the matrix exponentials approximation and proceed to discuss
approximate oracles.

Arora and Kale apply the Johnson-Lindenstrauss (JL) projection to ea X(t) ∈ Rn×n
+ , re-

sulting in n length-k vectors for k = O(logn/ε2), where ε is a parameter that ensures
pair-wise squared distance preservation up to 1 ± ε. is process is easily parallelized be-
cause it involves constructing an n×k projection matrix (O(nk)work andO(1) depth) and
k sparse-matrix vector multiplies, all of whi can be done in parallel, for a total of O(mk)

work and O(log(m+ n)) if X(t) ∈ Rn×n
+ hasm nonzero entries.

Now eamatrixX(t) = exp(−ε0
∑

t′<tM
(t)) needs not be sparse, but its approximation us-

ing Taylor’s expansion has the nice properties that the matrices involved will be sufficiently
sparse and for the precision required, the computation involves only a fewmatrix multiplies.
First, it is easy to see that if C initially has p nonzeros, aer t iterations

∑
t′≤tM

(t) has at
most (p + n)t nonzeros. In our algorithm, as will soon be apparent, p will be the number
of edges in the input graph plus the number of nodes, and t will always be O(polylog(n)).
Second, note that to compute the JL projection, we only have to be able to find a vector v for
ea vector u (a row of the projection matrix) su that ‖X(t)u− v‖2 ≤ τ · ‖X(t)‖, where
‖X(t)‖ denotes the spectral radius of X(t) and τ is an accuracy parameter, whi we will set
to n−O(1). Finally, shown in the lemma below is the cost of computing one column (out of
k) of the JL projection; this follows from Lemma 6 of [AK07].

Lemma 4.3 Let an accuracy parameter τ be given. IfA ∈ Rn×n has s nonzeros and spectral
radius ‖A‖, then a vector v satisfying

‖exp(A)u− v‖2 ≤ τ · ‖exp(A)‖

can be found inO(r(s+n))work andO(r log(s+n)) depth, where r = max(ln( 1τ ), e
2‖A‖).

is holds because we are performing r sparse-matrix vector multiplies sequentially, where
ea is computable in O(s + n) work and O(log(s + n)) depth. As a consequence of this
lemma, the total cost of JL projection (whi results in n length-k vectors) is O(rk(s+ n))

work and O(r log(s+ n)) depth, as ea dimension of the output vectors can be computed
independently. In our algorithm, τ will be n−O(1), k = O(logn), s = O(m log2 n), and
‖A‖ = O(log2 n), so the work will be O(m log5 n) and depth O(log3 n), assuming n ≤
m ≤ n2.
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Approximate Oracles. While this approximation allows us to implement matrix exponen-
tials efficiently, it does affect the guarantee we can expect from the oracle. As a result, the
primal-dual framework has to be able to handle an oracle with weaker guarantees.

A δ-approximate oracle works with a less stringent guarantee than what is imposed by (4.2):
it instead looks for a vector y ∈ Dα su that

m∑
j=1

[Aj • X(t)]yj − [C • X(t)] ≥ −αδ. (4.3)

Armed with these, we present the Arora-Kale framework in Algorithm 4.1.1. With τ =
δα

48n5/2R(`+ρ)
and a suitable seing of constants in the JL projection, the approximation turns

an (`, ρ)-bounded (exact) oracle into a δ
3 -approximate (`, ρ)-bounded oracle, whi suffices

to aieve the following guarantees:

eorem 4.4 (Arora-Kale [AK07]) For a tolerance parameter δ > 0, and a guess value
α, the primal-dual algorithm using these approximations converges within T = 18`ρR2 lnn

δ2α2

rounds given an (`, ρ)-bounded δ
3 -approximate oracle. Either it returns an X(t) with value

at least α or if it did not fail for T rounds, then there is a dual feasible solution with value
at most (1 + δ)α given by the vector y, where y1 = 1

T

∑T
t=1 y

(t)
1 + δα/R and for i > 1,

yi =
1
T

∑T
t=1 y

(t)
i .

We describe a graph sparsification procedure that will prove useful in our MaxCut algo-
rithm. e underlying idea relies on standard sampling teniques that arose in various
forms before.

Let G = (V,E,w) be an n-node weighted graph. We obtain Ĝ by sampling with replace-
ment from G as follows. For t = 1, 2, . . . , T = 2

λ2 (n + lnn), pi an edge from G with
probability proportional to its weight—and add this to Ĝ with weight 1 (if the edge already
exists, we simply increase its weight).

Extending the previous definition of valG(S, S̄) to include weights, we let valG(S, S̄) :=∑
ij∈(S,S̄)wij/W (G), whereW (G) =

∑
ij∈E(G)wij is the total weight.
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Algorithm 4.1.1e Arora-Kale Primal-Dual Algorithm

Oracle: a δ
3 -approximate (`, ρ)-bounded oracle

Let T = 18`ρR2 lnn
δ2α2 We will run the matrix multiplicative weights (MWU) algorithm with

ε0 = δα/3`R for T = rounds. For t = 1, . . . , T ,

1. Retrieve the probability matrix P(t) from MWU and produce X(t) = RP(t).
2. Run the δ

3 -approximate oracle with an approximation of X(t), with τ = δα
48n5/2R(`+ρ)

.

If the oracle fails, return X(t); otherwise, we obtain y(t).
3. Provide MWU with the following loss matrix:

M(t) =
1

`+ ρ

m∑
j=1

Ajy
(t)
j − C+ γ(t)I,

where

γ(t) =

{
` if

∑
j Ajyj − C ∈ [−`, ρ]

−` if
∑

j Ajyj − C ∈ [−ρ, `]

Lemma 4.5 For any cut (S, S̄) inG, the sampled graph Ĝ preserves the fractional cut value
up toλ additive errorwith high probability. More precisely, with high probability, val

Ĝ
(S, S̄) ∈

[valG(S, S̄)− λ, valG(S, S̄) + λ].

Proof : Consider the sequence of T edges sampled by this process and let et denote the t-th
edge sampled. Note that the probability that an edge ij is sampled is pij := wij/W .

Now fix a cut (S, S̄). us, for t = 1, . . . , T ,

Pr
[
et ∈ (S, S̄)

]
= valG(S, S̄).

Furthermore, letXt = 1{et∈(S,S̄)}, so

val
Ĝ
(S, S̄) =

1

T

∑
t

Xt.

It follows that E
[
val

Ĝ
(S, S̄)

]
= valG(S, S̄). By Chernoff bounds, we have that val

Ĝ
(S, S̄)

deviates additively by more than λ from valG(S, S̄)with probability at most 2 exp(−2Tλ2).
Since there are at most 2n different cuts, seing T = 2

λ2 (n+ lnn) suffices for the lemma to
hold with high probability. �
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We are now ready to describe the parallel MaxCut algorithm, whi consists of two main
components. First, we present a preprocessing routine whi transforms an arbitrary graph
with n nodes and m edges into a graph on at most 2m nodes with the special property that
none of the nodes have degree more than O(logn). en, we describe a parallel implemen-
tation of Arora and Kale’s MaxCut algorithm for small-degree graphs.

e first ingredient we need is a parallel algorithm that turns an arbitrary graph into a graph
of comparable size but with no large-degree node. Specificially, we prove the following
lemma:

Lemma 4.6 Fix λ > 0. For input an unweighted graph G = (V,E) with n nodes and m

edges, there is an algorithm preprocess that turns it into an O(n+m)-node, O(λ−2(n+

m))-edge (unweighted) graph Ĥ with maximum degree at most C0 logn, where C0 is a
constant that depends on λ and the accuracy parameter λ satisfies

MaxCut(Ĥ)

|E(Ĥ)|
− λ ≤ MaxCut(G)

|E(G)|
≤ MaxCut(Ĥ)

|E(Ĥ)|
+ λ.

is process runs in O(n+m) work and O(log(n+m)) depth with high probability.

For this, we extract and parallelize a construction that was implicit in [Tre01] (whi was
developed for a different problem). LetG = (V,E) be given. We will proceed by describing
how to construct an auxiliary weighted graph H , whi we never build in reality, and de-
scribe an efficient procedure to sample from it (without having to construct su a graph). To
buildH , for ea node u ∈ V (G), create deg(u) copies of u. Now for ea edge ij ∈ E(G),
create deg(u) deg(v) copies, ea with weight 1

deg(u) deg(v) (i.e., we have one edge for ea
pair of u and v copies and the weights on them sum to 1). us,H will have 2|E(G)| nodes
and

∑
u(deg(u))

2 edges. Given the sheer size ofH , constructing it explicitly would be pro-
hibitively expensive. An important property of the graphH is that it maintains the MaxCut
size in the following sense:

Lemma 4.7 ere is a cut (S, S̄) inG with valG(S, S̄) ≥ c if and only if there is a cut (T, T̄ )
inH with valH(T, T̄ ) ≥ c.
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Proof: If (S, S̄) is a cut inGwith valG(S, S̄) ≥ c, we constructT by including for ea u ∈ S

all of u’s copies. By construction, (T, T̄ ) cuts the same fraction of edges in H . Conversely,
we give a probabilistic argument. Let (T, T̄ ) be a cut in H su that valH(T, T̄ ) = κ ≥ c.
For ea u ∈ V (G), let m(u) be the number of copies of u that are present in T and
p(u) = m(u)/ degG(u). Construct S as follows: include u in S with probability p(u). It is
easy to verify that E

[
valG(S, S̄)

]
= κ, proving the existence of su a cut in G. �

is proof also sheds light on how we can recover a cut in G from a cut we find in H .
However, at this point, it may seem that we have not made any progress at all because H
could have high-degree vertices and we would not be able to apply the algorithm of Arora
and Kale. Here is where the graph sparsification idea from Section 4.2 comes in handy.
Lemma 4.5 says that if we sample ξ = 2

λ2 (N + lnN) times from an N -node graph H , we
have a new graph Ĥ with at most ξ = O(N) edges and hence constant average degree.
Note thatH has at most O(n+m) nodes.

Next, wewill showhow to sample efficiently fromH while ensuring that Ĥ has itsmaximum
degree bounded by O(logn). e idea is to observe that we can sample an edge from H

by first piing an edge uv uniformly at random from G and then deciding whi deg(u)
and deg(v) copies of u and v to put this to. In this way, an edge xy ∈ E(H) with weight

1
deg(x) deg(y) has probability exactly

1
deg(x) deg(y) of beingosen, yielding the same probability

distribution as sampling explicitly from H . Moreover, in this way, we can construct Ĥ in
parallel in O(ξ) work and O(logN) depth.

To make sure Ĥ does not have any high-degree node, we generate and e ea candidate
graph until the graph does not contain a node with degree more thanO(logn). As the next
claim shows, with high probability, we have to try at most a constant number of times.

Claim 4.8 ere is a constant C0 depending on λ su that the sampling procedure con-
structs a graph with maximum degree at most C0 logn with probability exceeding 1− n−2.

Proof : Consider a node x in Ĥ . For t = 1, . . . , ξ, let Yt indicate whether our t-th sampled
edge is incident to x, so deg

Ĥ
(x) ≤

∑
t Yt. But E [Yt] =

degG(u)
|E(G)|

1
degG(u) , where u is the

“mother” node of x. us, E [
∑

t Yt] =
ξ

|E(G)| = O(1/λ2). Since these edges are sampled
independently, the claim then follows from Chernoff bounds (and union bounds taken over
the nodes), like the balls-and-bins analysis. �

Combining these claims completes the proof of Lemma 4.6.
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We revisit the MaxCut algorithm of Arora and Kale [AK07] with an eye towards paralleliza-
tion. (Basic familiarity with their algorithm is assumed.) Consider the SDP in (4.1). We will
be working with the graph Ĥ , so for the remainder of this section, let N = |V (Ĥ)| and
M = |E(Ĥ)|. eir MaxCut algorithm relies on the observation that on an unweighted
graph Ĥ with maximum degree ∆ = O(logn), there is an (O(∆), O(∆))-bounded oracle
and that the SDP optimal value lies between 2M and 6M . erefore, performing binary
sear on this range to accuracy ε requires at most O(log 1

ε ) rounds. Furthermore, as ob-
served earlier, the trace bound of this SDP isR = N . Hence, byeorem 4.4, the primal-dual
framework converges to accuracy δ within O( 1

δ2
log2N) rounds. Within ea round, the

dominant cost is from computing the approximate Cholesky decomposition using a Taylor’s
expansion and JL projection; this¹ takesO(M log5N)work andO(log3N) depth per round.

eir oracle algorithm is easy to parallelize. It involves basic operations that can be per-
formed in O(log(N +M)) depth and O(N +M) work and computing L • X, whi can
be done in O(log(N + M)) depth and O(M logN) work, as follows: Note first that we
are given as input to the oracle length-O(logN) vectors v1, . . . , vN that approximate the
Cholesky decomposition of X (as described in Section 4.1). en, we observe that L

Ĥ
•

X =
∑

ij∈E(Ĥ)
‖vi − vj‖2; for ea edge ij ∈ E(Ĥ), we can compute ‖vi − vj‖2 in

O(log logN) depth and O(logN) work, for a total ofO(log logN) depth and O(M logN)

work (the depth term does not increase because all these computations can be done in paral-
lel). Finally, we sum up these values for all the edges, in O(logM) depth and O(M) work.
us, computing L

Ĥ
• X can be done in O(log(N +M)) depth and O(M logN) work, as

desired.

Following the argument in Arora and Kale [AK07], in conjuction with the parallel imple-
mentation outlined above, we have:

eorem 4.9 (Adapted from [AK07]) Let Ĥ be an unweighted graph on N nodes and M

edges with O(logn) maximum degree. e MaxCut SDP (4.1) can be approximated to arbi-
trary constant, but fixed, accuracy in O(M log7N) work and O(log5N) depth.

Rounding the SDP

GivenN length-O(logN) vectors, v1, . . . , vN , with SDP value α ≥ (1− δ)α∗, where α∗ is
the optimum, the rounding procedure proceeds as usual: pi a random unit vector n (from

¹Since the number of iterations is bounded by O(log2 N), the tenical condition that the spectral radius
of ea A has to be small is met. Indeed, ‖A‖ ≤ O(log2 N).
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a spherical symmetric distribution), compute the dot-products n ·vi for all i, and derive a cut
by puing the positive ones on one side and the negative ones on the other. is rounding
step takes O(logN) depth and O(N logN) work. Furthermore, Goemans and Williamson
show that the cut obtained in this way has size, in expectation, at least αGW · α, whi is at
least (1− δ)αGW times the size of the optimal cut.

Finally, we need to translate this cut ba to a cut in the graph we started off. Using Lem-
mas 4.6 and 4.7, we have the following corollary:

Corollary 4.10 If (T, T̄ ) is a cut in Ĥ su that val
Ĥ
(T, T̄ ) = κ, then generating a cut

(S, S̄) using the randomized algorithm in Lemma 4.7 satisfies E
[
valG(S, S̄)

]
≥ κ−λ−o(1).

is step can be performed within the same cost as the rounding step. For large enough
graph and appropriate seings of λ, δ, and ε, we have that the cut (S, S̄) in G satisfies

E
[
valG(S, S̄)

]
≥ (1− δ)αGW · opt− λ− o(1) ≥ (1− ε)αGW,

where opt denotes the fraction of the edges cut in an optimal solution. Combining the results
in this section and observing that N ≤ |V (G)| + 2|E(G)| and M = O(N), we have
completed the proof of the main theorem (eorem 4.1) of this apter.



Chapter 5

Set cover is one of the most fundamental and well-studied problems in optimization and
approximation algorithms. is problem and its variants have a wide variety of applica-
tions in the real world, including locating warehouses, testing faults, seduling crews on
airlines, and allocating wavelength in wireless communication. Let U be a set of n ground
elements, F be a collection of subsets of U covering U (i.e., ∪S∈FS = U ), and c : F → R+

a cost function. e set cover problem is to find the eapest collection of sets A ⊆ F
su that ∪S∈AS = U , where the cost of the solutionA is specified by c(A) =

∑
S∈A c(S).

Unweighted set cover (all weights are equal) appeared as one of the 21 problems Karp identi-
fied as NP-complete in 1972 [Kar72]. Two years later, Johnson [Joh74] proved that the simple
greedy method gives an approximation that is at most a factorHn =

∑n
k=1

1
k from optimal.

Subsequently, Chvátal [Chv79a] proved the same approximation bounds for the weighted
case. ese results are complemented by a mating hardness result: Feige [Fei98] showed
that unless NP ⊆ DTIME(nO(log logn)), set cover cannot be approximated in polynomial time
with a ratio beer than (1− o(1)) lnn. is essentially shows that the greedy algorithm is
optimal.

Not only is greedy set cover optimal but it also gives an extremely simple O(M) time algo-
rithm for the unweighted case and O(M logM) time for the weighted case, whereM ≥ n

is the sum of the sizes of the sets. In addition, ideas similar to greedy set cover have been suc-
cessfully applied to max k-cover, min-sum set cover, k-center, and facility location, generally
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leading to optimal or good-quality, yet simple, approximation algorithms.

From a parallelization point of view, however, the greedy method is in general difficult to
parallelize, because at ea step, only the highest-utility option is osen and every sub-
sequent step is likely to depend on the preceding one. Berger, Rompel, and Shor [BRS94]
(BRS) showed that the greedy set cover algorithm can be “approximately” parallelized by
bueting¹ utility values (in this case, the number of new elements covered per unit cost) by
factors of (1 + ε) and processing sets within a buet in parallel. Furthermore, the number
of buets can be kept to O(logn) by preprocessing. However, deciding whi sets within
ea buet to oose requires some care: although at a given time, many sets might have
utility values within a factor of (1 + ε) of the current best option, the sets taken together
might not cover as many unique elements as their utility values imply—shared elements can
be counted towards only one of the sets. BRS developed a tenique to subselect within a
buet by first further bueting by cost, then set size, and finally element degree, and then
randomly selecting sets with an appropriate probability. is leads to an O(log5M)-depth
and O(m log4M)-work randomized algorithm, giving a ((1 + ε)Hn)-approximation on a
PRAM. Rajagopalan and Vazirani [RV98] improved the depth to O(log3(Mn)) with work
O(M log2M) but at the cost of a factor of two in the approximation (essentially a factor-
2(1 + ε)Hn approximation).

In comparison to their sequential counterparts, none of these previous set-cover algorithms
arework efficient—their work is asymptoticallymore than the time for the optimal sequential
algorithm.² Work efficiency is important since it allows an algorithm to be applied efficiently
to both a modest number of processors (one being the most modest) and a larger number.
Even with a larger number of processors, work-efficient algorithms limit the amount of re-
sources used and hence presumably the cost of the computation.

Summary of Results

In this apter, we abstract out the most important component of the bueting approa,
whi we refer to as Maximal Nearly Independent Set (MaNIS), and develop anO(m) work
and O(log2m) depth algorithm for an input graph with m edges, on the EREW PRAM. e
MaNIS problem is to find a subset of sets su that they are nearly independent (their ele-
ments do not overlap too mu), and maximal (no set can be added without introducing too

¹e bueting approa has also been used for other algorithms su as vertex cover [KVY94] and metric
facility location [BT10].

²We note that the sequential time for a weighted (1 + ε)Hn-approximation for set-cover is O(M) when
using bueting.
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mu overlap). Since we have to look at the input, whi has size O(m), the algorithm is
work efficient. e MaNIS abstraction allows us to reasonably easily apply it to several set-
cover-like problems. In particular, we develop the following work-efficient approximation
algorithms:

— Set cover. We develop an O(M) work, O(log3M) depth (parallel time) algorithm with
approximation ratio (1 + ε)Hn. For the unweighted case, the same algorithm gives a (1 +
ε)(1 + ln(n/opt)) approximation where opt is the optimal set-cover cost.

—Max cover. We develop anO(M)work,O(log3M) depth prefix-optimal algorithmwith
approximation ratio (1−1/e−ε). is significantly improves the work bounds over a recent
result [CKT10].

—Min-sum set cover. We develop anO(M)work,O(log3M) depth algorithm with an ap-
proximation ratio of (4+ε)Hn. We know of no other RNC parallel approximation algorithms
for this problem.

— Asymmetric k-center. We develop anO(p(k+ log∗ n))work,O(k logn+ log3 n log∗ n)
depth algorithmwith approximation ratioO(log∗ n), where p = n(n−1)/2 is the size of the
table of distances between elements. e algorithm is based on the sequential algorithm of
Panigrahy and Vishwanathan [PV98] and we know of no other RNC parallel approximation
algorithms for this problem.

—Metric facility location. We develop anO(p log p)work,O(log4 p) depth algorithm with
approximation ratio (1.861 + ε), where p = |F | × |C| is the size of the distance table. e
algorithm is based on the greedy algorithm of Jain et al. [JMM+03] and improves on the
approximation ratio of (3 + ε) for the best previous RNC algorithm [BT10].

All these algorithms run on a CRCW PRAM but rely on only a few primitives discussed in
the next section, and thus are easily portable to other models.

e results in this apter use both the EREW (Exclusive Read Exclusive Write) and CRCW

(Concurrent Read Concurrent Write) variants of the PRAM, and for the CRCW, we assume
an arbitrary value is wrien. For an input of size n, we assume that every memory word
has O(logn) bits. In our analysis, we are primarily concerned with minimizing the work
while aieving polylogarithmic depth and less concerned with polylogarithmic factors in
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the depth since su measures are typically not robust across models. All algorithms we
develop are in NC or RNC, so they have polylogarithmic depth.

e algorithms in thisapter are all based on a bipartite graphG = (A∪B,E), E ⊆ A×B.
In set cover, for example, we useA to represent the subsetsF andB for the ground elements
U . In addition to operating over the vertices and edges of the graph, the algorithms need
to copy a value from ea vertex (on either side) to its incident edges, need to “sum” values
from the incident edges of ea vertex using a binary associative operator, and givenA′ ⊆ A

and B′ ⊆ B need to subselect the graph G′ = (A′ ∪B′, (A′ ×B′) ∩ E).

For analyzing bounds, we assume thatG is represented in a form of adjacency array we refer
to as the paed representation ofG. In this representation, the vertices in A and B and the
edges in E are ea stored contiguously, and ea vertex has a pointer to a contiguous array
of pointers to its incident edges. With this representation, all the operations mentioned in
the previous paragraph can be implemented using standard teniques in O(|G|) work and
O(log |G|) depth on an EREW PRAM, where |G| = |A|+ |B|+ |E|. e set-cover algorithm
also needs the following operation for constructing the paed representation.

Lemma 5.1 Given a bipartite graph G = (A ∪ B,E) represented as an array of a ∈ A,
ea with a pointer to an array of integer identifiers for its neighbors in B, the paed rep-
resentation ofG can be generated withO(|G|) work and O(log2 |G|) depth (both w.h.p.) on
a CRCW PRAM.

Proof: We note that the statement of the lemma allows for the integer identifiers to be sparse
and possibly mu larger than |B|. To implement the operation use duplicate elimination
over the identifiers for B to get a unique representative for ea b ∈ B and give these
representatives contiguous integer labels in the range [|B|]. is can be done with hash-
ing in randomized O(|G|)-work O(log2 |G|)-depth [BM98]. Now that the labels for B are
bounded by [|B|] we can use a bounded integer sort [RR89] to collect all edges pointing to
the same b ∈ B and generate the adjacency arrays for the vertices inB in randomizedO(n)

work and O(logn) depth on a (arbitrary) CRCW PRAM. �

We will also use the following.

Lemma 5.2 If y1, . . . , yn ∈ (0, 1] are drawn independently su that Pr
[
xi ∈

( j−1
n , j

n

]]
≤

1
n for all i, j = 1, . . . , n, then the keys y1, . . . , yn can be sorted in expected O(n) work and
O(logn) depth on an CRCW PRAM
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Proof : Use parallel radix sort to buet the keys into B1, . . . , Bn, where Bj contains keys
between

( j−1
n , j

n

]
. is requires O(n) work and O(logn) depth. en, for ea Bi, in

parallel, we can sort the elements in the buet in O(|Bi|2) work O(|Bi|) depth using, for
example, a parallel implementation of the insertion sort algorithm. e work to sort these
buets is E

[∑
i |Bi|2

]
≤ 2n. Furthermore, balls-and-bins analysis shows that for all i,

|Bi| ≤ O(logn) with high probability. us, the depth of the sorting part is bounded by
E [maxi |Bi|] ≤ O(logn). �

We motivate the study of Maximal Nearly Independent Set (MaNIS) by revisiting existing
parallel algorithms for set cover. e basic idea is as follows. ese algorithms define a notion
of utility—the number of new elements covered per unit cost—for ea available option (set).
Ea iteration then involves identifying and working on the remaining sets that have utility
within a (1 + ε) factor of the current best utility value—and for fast progress, requires that
the best option aer an iteration has utility at most a (1 + ε) factor smaller than before.
Among the sets meeting the criterion, deciding whi ones to include in the final solution is
non-trivial. Selecting any one of these sets leads to an approximation ratio within (1+ ε) of
the strictly greedy algorithm but may not meet the fast progress requirement. Including all
of them altogether leads to arbitrarily bad bounds on the approximation ratio (many sets are
likely to share ground elements) but does ensure fast progress. To meet both requirements,
we would like to select a “maximal” collection of sets that have small, bounded overlap—if
a set is le unosen, its utility must have dropped sufficiently. is leads to the following
graph problem formulation, where the input bipartite graphmodels the interference between
sets.

Definition 5.3 ((ε, δ)-MaNIS) Let ε, δ > 0. Given a bipartite graph G = (A ∪ B,E), we
say that a set J ⊆ A is a (ε, δ) maximal nearly independent set, or (ε, δ)-MaNIS, if

(1) Nearly Independent. e osen options do not interfere mu with ea other, i.e.,

|N(J)| ≥ (1− δ − ε)
∑
a∈J
|N(a)|.

(2) Maximal. e unosen options have significant overlaps with the osen options, i.e.,
for all a ∈ A \ J ,

|N(a) \N(J)| < (1− ε)|N(a)|
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e first condition in this MaNIS definition only provides guarantees on average—it ensures
that on average ea osen option does not overlap mu with ea other. It is oen de-
sirable to have a stronger guarantee that provides assurance on a per-option basis. is
motivates the following strengthened definition, whi implies the previous definition.

Definition 5.4 (Ranked (ε, δ)-MaNIS) Let ε, δ > 0. Given a bipartite graph G = (A ∪
B,E), we say that a set J = {s1, s2, . . . , sk} ⊆ A is a ranked (ε, δ) maximal nearly
independent set, or a ranked (ε, δ)-MaNIS for short, if

(1) Nearly Independent. ere is an ordering (not part of theMaNIS solution) s1, s2, . . . , sk
su that ea osen option si is almost completely independent of s1, s2, . . . , si−1,
i.e., for all i = 1, . . . , k,

|N(si) \N({s1, s2, . . . , si−1})| ≥ (1− δ − ε)|N(si)|.

(2) Maximal. e unosen options have significant overlaps with the osen options, i.e.,
for all a ∈ A \ J ,

|N(a) \N(J)| < (1− ε)|N(a)|.

Under this definition, an algorithm for ranked MaNIS only has to return a set J but not the
ordering. Furthermore, the following fact is easy to verify:

Fact 5.5 If J is a ranked (ε, δ)-MaNIS, then every J ′ ⊆ J satisfies |N(J ′)| ≥ (1 − δ −
ε)
∑

j∈J ′ |N(j)|.

Connection with previous work: Both versions of MaNIS can be seen as a generalization
of maximal independent set (MIS). Indeed, when δ = ε = 0, the problem is the maximal set
paing problem, whi can be solved using a maximal independent set algorithm [KW85,
Lub86], albeit with O(logn) more work than the simple sequential algorithm that solves
both versions of MaNIS in O(|E|) sequential time.

Embedded in existing parallel set-cover algorithms are steps that can be extracted to com-
pute MaNIS. We obtain from Berger et al. [BRS94] (henceforth, the BRS algorithm) an RNC4

algorithm for computing (ε, 8ε)-MaNIS in O(|E| log3 n) work. Similarly, we extract from
Rajagopalan and Vazirani [RV98] (henceforth, the RV algorithm) an RNC2 algorithm for
computing ranked (ε2, 1− 1

2(1+ε) − ε2)-MaNIS in O(|E| log |E|) work.

Unfortunately, neither of the existing algorithms, as analyzed, is work efficient. In addition,
the existing analysis of the RV algorithm places a restriction on δ: even when ε is arbitrarily
close to 0, we cannot have δ below 1

2 .
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Algorithm 5.2.1 MaNIS(ε,3ε) — a parallel algorithm for computing ranked (ε, 3ε)-MaNIS

Input: a bipartite graph G = (A ∪B,E).

Output: J ⊆ A satisfying Definition 5.4.

Initialize G(0) = (A(0) ∪B(0), E(0)) = (A ∪B,E), and
for ea a ∈ A, D(a) = |NG(0)(a)|.
Set t = 0. Repeat the following steps until A(t) is empty:

1. For a ∈ A(t), randomly pi xa ∈R [0, 1]

2. For b ∈ B(t), let ϕ(t)(b) be b’s neighbor with maximum xa

3. Pi vertices of A(t) osen by sufficiently many in B(t):

J (t) =
{
a ∈ A(t)

∣∣∣ ∑
b∈B(t)

1{ϕ(t)(b)=a} ≥ (1− 4ε)D(a)
}
.

4. Update the graph by removing J and its neighbors, and elements ofA(t) with too few remaining
neighbors:
B(t+1) = B(t) \NG(t)(J (t))
A(t+1) = {a ∈ A(t) \ J (t) : |NG(t)(a) ∩B(t+1)| ≥ (1− ε)D(a)}
E(t+1) = E(t) ∩ (A(t+1) ×B(t+1))

5. t = t+ 1

Finally, return J = J (0) ∪ · · · ∪ J (t−1).

We present an algorithm for the ranked MaNIS problem. Our algorithm is inspired by the
RV algorithm. Not only is the algorithm work efficient but also it removes the 1

2 restriction
on δ, mating and surpassing the guarantees given by previous algorithms. To obtain these
bounds, we need a new analysis that differs from that of the RV algorithm. Our algorithm
can be modified to compute ranked (ε, δ)-MaNIS for any 0 < ε < δ in essentially the same
work and depth bounds (with worse constants); however, for the sake of presentation, we
sele for the following theorem:

eorem 5.6 (Ranked MaNIS) Fix ε > 0. For a bipartite graphG = (A∪B,E) in paed
representation there exists a randomized EREW PRAM algorithm MaNIS(ε,3ε)(G) that pro-
duces a ranked (ε, 3ε)-MaNIS in O(|E|) expected work and O(log2 |E|) expected depth.

Presented in Algorithm 5.2.1 is an algorithm for computing ranked MaNIS. To understand
this algorithm, we will first consider a natural sequential algorithm for (ε, 3ε)-MaNIS—and
discuss modifications that have led us to the parallel version. To compute MaNIS, we could
first pi an ordering of the vertices of A and consider them in this order: for ea a ∈ A,
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if a has at least (1 − 4ε)D(a) neighbors, we add a to the output and delete its neighbors;
otherwise, set it aside. us, every vertex added certainly satisfies the nearly-independent
requirement. Furthermore, if a vertex is not added, its degree must have dropped below
(1− ε)D(a), whi ensures the maximality condition.

Algorithm 5.2.1 aieves parallelism in twoways. First, we adapt the selection process so that
multiple vertices can be osen together at the same time. Unlike the sequential algorithm,
the parallel version can decide whether to include a vertex a ∈ A without knowing the
outcomes of the preceding vertices. is is done by making the inclusion condition more
conservative: Assign ea b ∈ B to the first a ∈ A in the osen ordering—regardless of
whether a will be included in the solution. en, for ea a ∈ A, include it in the solution if
enough of its neighbors are assigned to it. is step is highly parallel and ensures that every
vertex added satisfies the nearly-independent requirement. Unfortunately, this process by
itself may miss vertices that must be included.

Second, we repeat the selection process until no more vertices can be selected but ensure
that the number of iterations is small. As the analysis below shows, a random permutation
allows the algorithm to remove a constant fraction of the edges, making sure that it will
finish in a logarithmic number of iterations. Note that unlike before, the multiple iterations
make it necessary to distinguish between the original degree of a vertex,D(a), and its degree
in the current iteration (whi we denote by deg(a) in the proof). Furthermore, we need an
clean-up step aer ea iteration to eliminate vertices that are already maximal so that they
will not hamper progress in subsequent rounds.

Running Time Analysis: To prove the work and depth bounds, consider the potential func-
tion

Φ(t) def
=

∑
a∈A(t)

|NG(t)(a)|,

whi counts the number of remaining edges. e following lemma shows that sufficient
progress is made in ea step:

Lemma 5.7 For t ≥ 0, E
[
Φ(t+1)

]
≤ (1− c)Φ(t), where c = 1

4ε
2(1− ε).

Before proceeding with the proof, we offer a high-level sket. We say a vertex a ∈ A(t)

deletes an edge (a′, b) if a ∈ J (t) and ϕ(t)(b) = a. In essence, the proof shows that for
a ∈ A(t), the expected number of edges a deletes, denoted by∆a in the proof, is proportional
to the degree of a. If a has few neighbors, it suffices to consider the probability that all
neighbors select a. Otherwise, the proof separates the neighbors of a into high- and low-
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A

B
b1 b2 b3 bp+1 bn'+1

...bp ...... ...

...... a

low-degree high-degree

Figure 5.1: MaNIS analysis: for ea a ∈ A(t), order its neighbors so that NG(t)(a) =
{b1, . . . , bn′} and deg(b1) ≤ deg(b2) ≤ · · · ≤ deg(bn′), where n′ = degG(t)(a).

degree groups and analyzes ∆a by averaging over possible values of xa. In particular, it
considers a ya (i.e., 1 − ε/ deg(bp) in the proof) su that for all xa ≥ ya, there are likely
sufficiently many low-degree neighbors that select a to ensure with constant probability that
a is in J (t). en, the proof shows that there is sufficient contribution to ∆a from just the
high-degree neighbors and just when xa ≥ ya (that is when a is likely in J (t)). is is
formalized in the proof below.

Proof: Consider an iteration t. Let deg(x) = degG(t)(x) and∆a = 1{a∈J(t)}
∑

b:ϕ(t)(b)=a deg(b).

us, when a is included in J (t), ∆a is the sum of the degrees of all neighbors of a that are
assigned to a (by ϕ(t)). It is zero otherwise if a 6∈ J (t). Since ϕ(t) : B(t) → A(t) maps ea
b ∈ B(t) to a unique element in A(t), the sum of∆a over a is a lower bound on the number
edges we lose in this round. at is,

Φ(t) − Φ(t+1) ≥
∑

a∈A(t)

∆a,

so it suffices to show that for all a ∈ A(t), E [∆a] ≥ c · deg(a).

Let a ∈ A(t) be given and assumeWLOG thatNG(t)(a) = {b1, . . . , bn′} su that deg(b1) ≤
deg(b2) ≤ · · · ≤ deg(bn′). (as shown in Figure 5.1). Now consider the following cases:

— Case 1. a has only a few neighbors: Suppose n′ < 2
ε . Let E1 be the event that xa =

max{xa′ : a′ ∈ NG(t)(NG(t)(A(t)))}. en, E1 implies that (1) a ∈ J (t) and (2) ϕ(t)(bn′) =

a. erefore,

E [∆a] ≥ Pr [E1] · deg(bn′) ≥ 1
n′ ≥ c · deg(a),

because |NG(t)(NG(t)(A(t)))| ≤ n′ · deg(bn′) and n′ = deg(a) < 2/ε.

— Case 2. a has many neighbors, i.e., n′ ≥ 2
ε . Partition the neighbors of a into low- and

high- degree elements as follows. Let p = b(1 − ε) deg(a)c, L(a) = {b1, . . . , bp}, and
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H(a) = {bp+1, . . . , bn′}. To complete the proof for this case, we rely on the following
claim.

Claim 5.8 Let select(t)a = {b ∈ B(t) : ϕ(t)(b) = a}, and E2 be the event that |L(a) \
select

(t)
a | ≤ 2ε|L(a)|. en, (i) for γ ≤ ε/ deg(bp), Pr [E2|xa = 1− γ] ≥ 1

2 ; and (ii) for
b ∈ H(a) and γ ≤ ε/ deg(b), Pr

[
ϕ(t)(b) = a|E2, xa = 1− γ

]
≥ 1− ε.

Note that E2 implies |select(t)a | ≥ n′−εn′−2εn′ ≥ (1−4ε)D(a), because n′ ≥ (1−ε)D(a).
is in turn means that E2 implies a ∈ J (t). Applying the claim, we establish

E [∆a] ≥
∑

b∈H(a)

deg(b) Pr
[
E2 ∧ ϕ(t)(b) = a

]
≥

∑
b∈H(a)

∫ ε
deg(b)

γ=0
deg(b) Pr

[
E2
∣∣xa = 1− γ

]
Pr
[
ϕ(t)(b) = a

∣∣E2, xa = 1− γ
]
dγ

≥
∑

b∈H(a)

ε
1

2
(1− ε)

≥ c · deg(a),

where the final step follows because |H(a)| ≥ εn′ ≥ 1. �

Proof of Claim 5.8: To prove (i), letX def
= |L(a) \ select(t)a | =

∑
j∈L(a) 1{j 6∈select

(t)
a }, so

E [X|xa = 1− γ] =
∑

j∈L(a)

Pr
[
j /∈ select(t)a |xa = 1− γ

]
.

en, note that j ∈ select
(t)
a iff. xa = max{xi : i ∈ NG(t)(j)}. us, for j ∈ L(a),

Pr
[
j /∈ select(t)a |xa = 1− γ

]
≤ 1−

(
1− ε

deg(bp)

)deg(j)
≤ ε,

and soE [X|xa = 1− γ] ≤ ε|L(a)|. ByMarkov’s inequality, we havePr [E2|xa = 1− γ] ≥
1− ε

2ε = 1
2 .

We will now prove (ii). Consider that for i ∈ NG(t)(b)\{a}, Pr [xi > xa|E2, xa = 1− γ] ≤
γ. Union bounds give

Pr
[
ϕ(t)(b) = a|E2, xa = 1− γ

]
≥ 1−

∑
i∈N

G(t) (b)\{a}

γ

≥ 1− ε.
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�

Ea iteration can be implemented in O(Φ(t)) work and O(logΦ(t)) depth on an EREW

PRAM since beyond trivial parallel application and some summations, the iteration only in-
volves the operations on the paed representation of G discussed in Section 5.1. Since Φ(t)

decreases geometrically (in expectation), the bounds follow. Algorithm 5.2.1 as described
selects random reals xa between 0 and 1. But it is sufficient for ea a to use a random
integer with O(logn) bits su that w.h.p., there are no collisions. In fact, since the xa’s are
only compared, it suffices to use a random permutation over A since the distribution over
the ranking would be the same.

As our first example, in this section, we apply MaNIS to parallelize a greedy approximation
algorithm for weighted set cover. Specifically, we prove the following theorem:

eorem 5.9 Fix 0 < ε < 1
2 . For a set system (U ,F), where |U| = n, there is a randomized

(1 + ε)Hn-approximation for (weighted) set cover that runs in O(M) expected work and
O(log3M) expected depth on a CRCW PRAM, whereM =

∑
S∈F |S|.

We describe a parallel greedy approximation algorithm for set cover in Algorithm 5.3.1. To
motivate the algorithm, we discuss three ideas crucial for transforming the standard greedy
set-cover algorithm into a linear-work algorithm with substantial parallelism: (1) approx-
imate greedy through bueting, (2) prebueting and lazy buet transfer, and (3) subse-
lection via MaNIS. Despite the presence of some of these ideas in previous work, it is the
combination of our improved MaNIS algorithm and careful lazy buet transfer that is re-
sponsible for beer work and approximation bounds.

Like in previous algorithms, bueting creates opportunities for parallelism at the round
level, by grouping together sets by their coverage-per-unit-cost values in powers of (1− ε).
Consequently, there will be at most O(log1+ε ρ) buets (also rounds), where ρ is the ratio
between the largest and the smallest coverage-per-unit-cost values. is, however, raises
several questions (whi we resolve by ideas (2) and (3)).

First, how can we make ρ small and keep the contents of the relevant buets “fresh” in linear
work? As detailed in Lemma 5.10, the algorithm relies on a subroutine Prebucket that first
preprocesses the input to keep ρ polynomially bounded by seing aside certain “eap” sets
that will be included in the final solution by default and throwing away sets that will never
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Algorithm 5.3.1 SetCover — parallel greedy set cover.
Input: a set cover instance (U ,F , c).
Output: a collection of sets covering the ground elements.

i. Let γ = maxe∈U minS∈F c(S),
M =

∑
S∈F |S|,

T = log1/(1−ε)(M
3/ε),

and β = M2

ε·γ .
ii. Let (A;A0, . . . , AT ) = Prebucket(U ,F , c) and U0 = U
iii. For t = 0, . . . , T , perform the following steps:

1. Remove deleted elements from sets in this buet:
A′

t = {S ∩ Ut : S ∈ At}
2. Only keep sets that still belong in this buet:

A′′
t = {S ∈ A′

t : |S|/c(S) > β · (1− ε)t+1}.
3. Select a maximal nearly independent set from the buet:

Jt = MaNIS(ε,3ε)(A′′
t ).

4. Remove elements covered by Jt:
Ut+1 = Ut \Xt whereXt = ∪S∈JtS

5. Move remaining sets to the next buet:
At+1 = At+1 ∪ (A′

t \ Jt)
iv. Finally, return A ∪ J0 ∪ · · · ∪ JT .

be used in the solution. It then classifies the sets into buetsA0, A1, . . . AT by their utility;
however, this initial bueting will be stale as the algorithm progresses. While we cannot
afford to reclassify the sets in every round, it suffices to maintain an invariant that ea set
in S ∈ Ai satisfies |S ∩Ut|/c(S) ≤ β · (1− ε)i. Furthermore, we make sure that the buet
that contains the current best option is fresh—and move the sets that do not belong there
accordingly.

Second, what to do with the sets in ea buet to satisfy both the buet invariant and the
desired approximation ratio? is is where we apply MaNIS. As previously discussed in
Section 5.2, MaNIS allows the algorithm to oose nearly non-overlapping sets, whi helps
bound the approximation guarantees and ensures that sets whi MaNIS leaves out can be
moved to the next buet and satisfy the buet invariant.

In the following lemma and proof, we use the definitions for γ, M , T , and β from Algo-
rithm 5.3.1. Furthermore, let opt denote the optimal cost.

Lemma 5.10 ere is an algorithm Prebucket that takes as input a set system (U ,F , c)
and produces a set A su that c(A) ≤ ε · opt and buets A0, . . . , AT su that
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1. for ea S ∈ F \ A, either S costs more than Mγ or S ∈ Ai for whi |S|/c(S) ∈
(β · (1− ε)i+1, β · (1− ε)i].

2. there exists a set cover solution costing at most opt using sets from A ∪ A0 ∪ A1 ∪
· · · ∪AT ;

3. the algorithm runs in O(M) work and O(logM) depth on a CRCW PRAM.

Proof : We rely on the following bounds on opt [RV98]: γ ≤ opt ≤ Mγ. Two things are
clear as a consequence: (i) if c(S) ≤ ε · γ

M , S can be included in A, yielding a total cost at
most εγ ≤ ε · opt. (ii) if c(S) > Mγ, then S can be discarded (S is not part of any optimal
solution).

us, we are le with sets costing between ε · γ
M and Mγ. Compute |S|/c(S) for ea

remaining setS, in parallel, and storeS inAi su that |S|/c(S) ∈ (β·(1−ε)i+1, β·(1−ε)i].
We know that 1/(Mγ) ≤ |S|/c(S) ≤M2/(εγ) = β, so the buets are numbered between
i = 0 and i = log1/(1−ε)(M

3/ε) = T .

Computing M , γ, and |S|/c(S) for all sets S can be done in O(M) work and O(logM)

depth using parallel sums. Once ea set knows whi buet it belongs to, a stable integer
sort over integers in the range [O(logM)] can be used to collect them into buets with the
same work and depth bounds [RR89]. �

Approximation Guarantees: We follow a standard proof in Vazirani [Vaz01]. It should
be noted that although we do not mention LPs here, the proof given below is similar in
spirit to the dual-fiing proof presented by Rajagopalan and Vazirani [RV98]. Let pt =
1
β (1 − ε)−(t+1). For ea e ∈ U , if e is covered in iteration t, define the price of this
element to be p(e) = pt. at is, every element covered in this iteration has the same
price pt. Now, Step 2 ensures that if S ∈ A′′

t can cover e, then c(S)/|S| ≤ p(e), where
|S| is the size of S aer Step 2 in iteration t. Let Xt = ∪S∈JtS be the set of elements
covered in iteration t. e near independent property of (ε, 3ε)-MaNIS indicates that |Xt| =
|N(Jt)| ≥ (1 − 4ε)

∑
S∈Jt N(S), where N(·) here is the neighborhood set in A′′

t . us,
c(J0 ∪ · · · ∪ JT ) can be wrien as

∑
t

∑
S∈Jt

c(S)

|S|
· |S| ≤

∑
t

pt
∑
S∈Jt

|S| ≤ 1

1− 4ε

∑
e∈U

p(e).

LetO∗ be any optimal solution. Consider a set S∗ ∈ O∗. Since all buets t′ < t are empty,
we know that pt ≤ 1

1−ε minS∈A′′
t

c(S)
|S| . Furthermore, for ea e ∈ S∗, let te denote the
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iteration in whi e was covered. By greedy properties (as argued in [RV98, Vaz01]),

∑
e∈S∗

min
S∈G′′

te

c(S)

|S|
≤
(
1 +

1

2
+

1

3
+ . . .

1

|S∗|

)
c(S∗).

Hence, c(J0 ∪ · · · ∪ JT ) ≤ 1
1−5ε

∑
S∗∈O∗ H|S∗|c(S

∗) ≤ 1
1−5εHn · opt ≤ (1 + ε′)Hn · opt

(using ε = O(ε′)), as promised.

Implementation and Work and Depth Bounds: To analyze the cost of the algorithm, we
need to be more specific about the representation of all structures that are used. We assume
the sets S ∈ F are given unique integer identifiers [|F|], and similarly for the elements e ∈
U . Ea set keeps a pointer to an array of identifiers for its elements, and ea buet keeps
a pointer to an array of identifiers for its sets. e sets can shrink over time as elements are
filtered out in Step 1 of ea iteration of the algorithm. We keep a Boolean array indicating
whi of the elements from U remain in Ut. LetA(t) be the snapshot of At at the beginning
of iteration t of Algorithm 5.3.1, andMt =

∑
S∈A(t) |S|.

Claim: Iteration t of Algorithm 5.3.1 can be accomplished in expected O(Mt) work and
O(log2Mt) depth on the randomized CRCW PRAM.

Steps 1 and 2 use simple filtering on arrays of total length O(Mt), whi can be done with
prefix sums. Step 3 requires converting adjacency arrays for ea set in A′′

t to the paed
representation needed by MaNIS. e indices of the elements might be sparse, but this con-
version can be done using Lemma 5.1. e cost of this conversion, as well as the cost of
running MaNIS, is within the claimed bounds. Step 4 and 5 just involve seing flags, a filter,
and an append, all on arrays of length O(Mt).

Now there are O(logM) iterations, and Prebucket has depth O(logM), so the overall
depth is bounded by O(log3M). To prove the work bound, we will derive a bound on∑

tMt. We note that every time a set is moved from one buet to the next its size decreases
by a constant factor, and hence the total work aributed to ea set is proportional to its
original size. More formally, we have the following claim:

Claim: If S ∈ A(t), |S| ≤ c(S) · β · (1− ε)t.

is claim can be shown inductively: For any set S ∈ F , Prebucket guarantees that the
buet that S went into satisfies the claim. Following that, this set can be shrunk and moved
(Steps 1, 2, and 5). It is easy to e that the claim is satisfied (by noting Steps 2 and 5’s
criteria and that sets not osen by MaNIS are shrunk by an ε fraction).
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By this claim, the total sum
∑

tMt is at most∑
t

∑
S∈A(t)

c(S) · β · (1− ε)t ≤
∑
S∈F

1

ε
· c(S)β · (1− ε)tS ,

where tS is the buet index of S in the initial bueting. Furthermore, Lemma 5.10 indicates
that |S| ≥ c(S) · β · (1− ε)tS+1, showing that

∑
tMt = O(1εM) as ε ≤ 1

2 . Since the work
on ea step is proportional toMt, the overall work is O(1εM).

Building on the SetCover algorithm from the previous section, we describe simple anges
to the algorithm or the analysis that result in solutions to variants of set cover. In this section,
we will be working with unweighted set cover.

Ordered vs. Unordered. Wewould like to develop algorithms for prefix-optimal max cover
and min-sum set cover, using our set-cover algorithm; however, unlike set cover, these prob-
lems require an ordering on the osen sets—not just an unordered collection. As we now
describe, minimal anges to the SetCover algorithm will enable it to output an ordered
sequence of sets whi closely approximate the greedy behavior. Specially, we will give an
algorithm with the following property³: Let T ⊆ U be given. Suppose there exist ` sets
covering T , and our parallel algorithm outputs an ordered collection S1, . . . , Sp covering
U , then

Lemma 5.11 For any i ≤ p, the number of elements in T freshly covered by Si, i.e., |Si∩Ri|,
is at least (1− 5ε)|Ri|/`, where Ri = T \ (∪j<iSj) contains the elements of T that remain
uncovered aer oosing S1, . . . , Si−1.

We modify the SetCover algorithm as follows. Make MaNIS returns a totally ordered se-
quence, by sorting ea J (t) by their xa’s values and stringing together the sorted sequences
J (0), J (1), . . . ; this can be done in the same work-depth bounds (Lemma 5.2) in CRCW. Fur-
ther, modify SetCover so that (1) Prebucket only buets the sets (but will not throw
away sets nor eagerly include some of them) and (2) its Step iv. returns a concatenated se-
quence, instead of a union. Again, this does not ange the work-depth bound but outputs
an ordered sequence.

³is is the analog of the following fact from the sequential greedy algorithm [You95, PV98]: if there exist
` sets covering T , and greedy pis sets χ1, . . . , χp (in that order) covering U , then for i ≤ p, the number of
elements in T freshly covered by χi is at least |Ri|/`, where Ri = T \ (∪j<iχj).
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Next, we show that the output sequence has the claimed property by proving the following
tenical claim (variables here refer to those in Algorithm 5.3.1). Lemma 5.11 is a direct
sequence of this claim (note that the sets we output come from J0, J1, . . . in that order).

Claim 5.12 For all t ≥ 0, if Ĵt ⊆ Jt and X̂t = ∪S∈ĴtS, then |X̂t∩T | ≥ (1−5ε)·|Ĵt|·|Qt|/`,
where Qt = T \ (∪t′<tXt′).

Proof : Let t ≥ 0. By our assumption, there exist ` sets that fully cover Qt. An averaging
argument shows that there must be a single set, among the remaining sets, with a coverage
ratio of at least |Qt|/`. Since at the beginning of iteration t, we have At′ = ∅ for t′ < t, it
follows that τt ≥ |Qt|/`, where τt = β · (1 − ε)t. Furthermore, all sets S ∈ A′′

t have the
property that |S| ≥ τt(1 − ε). Furthermore, Fact 5.5 guarantees that Ĵt covers, among T ,
at least |N(Ĵt)| ≥ (1 − 4ε)

∑
j∈Ĵt |N(j)| ≥ (1 − 4ε)(1 − ε)τt|Ĵt| ≥ (1 − 5ε)|Ĵt||Qt|/`,

proving the lemma. �

e max k-cover problem takes as input an integer k > 0 and a set system (generally un-
weighted), and the goal is to find k sets that cover as many elements as possible. e se-
quential greedy algorithm gives a (1 − 1/e)-approximation, whi is tight assuming stan-
dard complexity assumptions. In the parallel seing, previous parallel set-covering algo-
rithms do not directly give (1 − 1

e − ε)-approximation. But in the related MapReduce
model, Chieriei et al. [CKT10] give a 1 − 1/e − ε-approximation, whi gives rise to
a O(m log3M)-work algorithm in PRAM, where M =

∑
S∈F |S|. is is not work effi-

cient compared to the greedy algorithm, whi runs in at most O(M logM) time for any
k.

In this section, we give a factor-(1 − 1
e − ε) prefix optimal algorithm for max cover. As in

Chieriei et al. [CKT10], we say that a sequence of sets S1, S2, . . . , Sp covering the whole
ground elements is factor-σ prefix optimal if for all k ≤ p, |∪i≤k Si| ≥ σ · optk, where
optk denotes the optimal coverage using k sets. More specifically, we prove the following
theorem:

eorem 5.13 Fix 0 < ε < 1
2 . ere is a factor-(1 − 1

e − ε) prefix optimal algorithm the
max cover problem requiring O(M) work and O(log3M) depth, whereM =

∑
S∈F |S|.
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Proof : Use the algorithm from Lemma 5.11, so the work-depth bounds follow immediately
from set cover. To argue prefix optimality, let k be given and OPTk ⊆ F be an opti-
mal max k-cover solution. Applying Lemma 5.11 with T = OPTk gives that |Ri+1| ≤
|Ri|(1− 1

k (1−5ε)) and |R1| = |OPTk|. Also, we know that using S1, . . . , Sk, we will have
covered at least OPTk − |Rk+1| elements of OPTk. By unfolding the recurrence, we have
OPTk − |Rk+1| ≥ OPTk −OPTk · exp{−(1− 5ε)}. Seing ε = e

5ε
′ completes the proof. �

When the sets all have the same cost, we can derive a slightly different and stronger form of
approximation guarantees for the same algorithm. We apply this bound to derive guaran-
tees for asymmetric k-center in Section 5.4.4. e following corollary can be derived from
Lemma 5.11 in a manner similar to the max-cover proof; we omit the proof in the interest of
space.

Corollary 5.14 Let 0 < ε ≤ 1
2 . For an unweighted set cover instance, set cover can be

approximated with cost at most opt(1+ε)(1+ ln(n/opt)), where opt is the cost of the optimal
set cover solution.

Another important and well-studied set covering problem is the min-sum set cover problem:
given a set system (U ,F), the goal is to find a sequence S1, . . . , Sn′ to minimize the cost
cost(〈S1, . . . , Sn′〉) def

=
∑

e∈U τ(e), where τ(e) def
= min{i : e ∈ Si}. Feige et al. [FLT04]

(also implicit in Bar-Noy et al. [BNBH+98]) showed that the standard set cover algorithm
gives a 4-approximation, whi is optimal unless P = NP. e following theorem shows that
this carries over to our parallel set cover algorithm:

eorem 5.15 Fix 0 < ε ≤ 1
2 . ere is a parallel (4 + ε)-approximation algorithm for the

min-sum set cover problem that runs in O(M) work and O(log3M) depth.

Proof : Consider the modified algorithm in Lemma 5.11. Suppose it outputs a sequence of
sets Alg = 〈S1, S2, . . . , Sn′〉 covering U , and an optimal solution is O∗ = 〈O1, . . . , Oq〉.

Let αi = Si \ (∪j<iSj) denote the elements freshly covered by Si and βi = U \ (∪j<iSj)

be the elements not covered by S1, . . . , Si−1. us, |βi| = |U| −
∑

j<i |αj |. Following
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Feige et al. [FLT04], the cost of our solution is cost(Alg) =
∑

i>0 i · |αi| =
∑

i>0 |βi|,
whi can be rewrien as

∑
i>0

∑
e∈αi

|βi|
|αi| =

∑
e∈U p(e), where the price p(e) = |βi|

|αi| for
i su that e ∈ αi. We will depict and argue about these costs pictorially as follows. First,
the “histogram” diagram (below) is made up of |U| horizontal columns, ordered from le to
right in the order the optimal solution covers them. e height of column e ∈ U is its τ(e)
in the optimal solution. Additionally, the “price” diagram is also made up of |U| columns,
though ordered from le to right in the order our solution covers them; the height of column
e is p(e).

τ(e)

U

histogram

U

p(e) price

We can easily e that (1) the histogram curve has area opt = cost(O∗) and (2) the price
curve has area cost(Alg). We will show that shrinking the price diagram by 2 horizontally
and θ vertically (θ to be osen later) allows it to lie completely inside the histogram when
they are aligned on the boom-right corner. Let p = (x, y) be a point inside (or on) the price
diagram. Suppose p lies in the column e ∈ αi, so y ≤ p(e) = |βi|/|αi|—and p is at most
|βi| from the right.

When shrunk, p will have height h = p(e)/θ and width—the distance from the right end—
r = 1

2 |βi|. We estimate how many elements inside βi are covered by the optimal solution
using its first h sets. Of all the sets in F , there exists a set S su that |S ∩ βi| ≥ |O∗

j ∩ βi|
for all j < i.

Arguing similarly to previous proofs in this section, we have that |αi| ≥ (1− 5ε)|S|, so at
this time, the optimal algorithm could have covered at most h · 1

1−5ε |αi|. Seing θ = 2
1−5ε

gives that the first h sets ofO∗ will leave |βi|− 1
2 |βi| ≥

1
2 |βi| = r elements of βi remaining.

erefore, the scaled version of p lies inside the histogram, proving that the algorithm is a
2θ-approximation. By seing ε = 1

40ε
′, we have 2θ = 4

1−5ε ≤ 4 + ε′, whi completes the
proof. �
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k

Building on the set cover algorithm we just developed, we present an algorithm for asym-
metric k-center. e input is an integer k > 0 and a distance function d : V × V → R+,
where V is a set of n vertices; the goal is to find a set F ⊆ V of k centers that minimizes
the objective maxj∈V mini∈F d(i, j), where d(x, y), whi needs not be symmetric, denotes
the distance from x to y. e distance d, however, is assumed to satisfy the triangle in-
equality, i.e., d(x, y) ≤ d(x, z) + d(z, y). For symmetric d, there is a 2-approximation for
both the sequential [HS85, Gon85] and parallel seings [BT10]. is result is optimal as-
suming P 6= NP. However, when d is not symmetric—hence the name asymmetric k-center,
there is a O(log∗ n)-approximation in the sequential seing, whi is also optimal unless
NP ⊆ DTIME(nO(log logn)) [CGH+05], but nothing was previously known for the parallel
seing.

In this section, we develop a parallel factor-O(log∗ n) algorithm for this problem, based on
the (sequential) algorithm of Panigrahy and Vishwanathan [PV98]. ier algorithm consists
of two phases: recursive cover and find-and-halve.

Recursive Cover for Asymmetric k-Center. e recursive cover algorithm of Panigrahy
and Vishwanathan [PV98] (shown below) is easy to parallelize given the set cover routine
from Corollary 5.14. Here, V is the input set of vertices.

Set A0 = A and i = 0. While |Ai| > 2k, repeat the following:

1. Construct a set cover instance (U ,F), where U = Ai and F = {S1, . . . , S|V |} su that
Sx = {y ∈ Ai : d(x, y) ≤ r}.

2. B = SetCover(U ,F).
3. Ai+1 = B ∩A and i = i+ 1.

Letn = |A|. Assuming d is given as a distancematrix, Step 1 takesO(n2)work andO(logn)
depth (to generate the paed representation). In O(n2) work and O(log3 n) depth, Steps 2
and 3 can be implemented using the set-cover algorithm (Section 5.4.2) and standard te-
niques. Following [PV98]’s analysis, we know the number of iterations is at mostO(log∗ n).
erefore, this recursive cover requires O(n2 log∗ n) work and O(log∗ n log3 n) depth.

Next, the find-and-halve phase will be run sequentially beyond trivial parallization; in the
section that follows, we give some evidence why parallelizing it might be difficult. Combin-
ing these components, we have the following theorem:
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eorem 5.16 Let ε > 0. ere is aO(n2 · (k+ log∗ n))-workO(k · logn+ log3 n log3 n)-
depth factor-O(log∗ n) approximation algorithm for the asymmetric k-center problem

Note that the algorithm performs essentially the same work as the sequential one. Further-
more, for k ≤ logO(1) n, this is an RNC algorithm. As suggested in [PV98], the recursive
cover procedure alone yields a bicriteria approximation, in whi the solution consists of 2k
centers and costs at most O(log∗ n) more than the optimal cost. is bicriteria approxima-
tion has O(logO(1) n) depth for any k.

e find-and-halve procedure is a crucial preprocessing for recursive cover. is procedure is
responsible for pruning out center capturing vertices (CCV). To describe CCV and find-and-
halve, we need some definitions: let d(u→ v) be the distance from u to v, and R be a fixed
constant. Define N+(v) := {u : d(v → u) ≤ R} and N−(v) := {u : d(u→ v) ≤ R}. A
vertex v is a center capturing vertex (CCV) if N−(v) ⊆ N+(v). e sequential algorithm
is simple: for a given distance parameter R, while there exists a CCV vertex v, remove v as
well as all vertices w su that d(v → w) ≤ 2R.

We show that the find-and-halve procedure is P-complete by showing an NC reduction from
NOR-CVP, whi is known to be P-complete [JáJ92, GHR95]. In particular, we prove the
following theorem:

eorem 5.17 ere is an NC reduction from NOR-CVP to an instance of asymmetric k-
center su that if I is any sequence produced by the find-and-halve procedure, the gate gi
outputs true if and only if v(0)i appears in I . erefore, the problem of computing su a
sequence is P-complete.

Before describing the reduction, let us review the NOR-CVP problem:

Definition 5.18 (NOR-CVP) Give a Boolean circuit consisting of gates g1, . . . , gn su that
gi is either an input equal to true or gi = NOR(gk, g`) for k < ` < i, the NOR-CVP problem
is to determine whether C outputs true.

e Reduction. For ea input gate gi, we create a node v
(0)
i . For ea non-input gate gi =

NOR(gk, g`), we build the following 4-node gadget (Figure 5.2, le): v
(0)
i , v

(1)
i , v

(2)
i , and v(3)i

with arcs v(0)i → v
(2)
i , v

(1)
i → v

(0)
i , v

(2)
i → v

(1)
i , v

(2)
i → v

(3)
i , v

(3)
i → v

(1)
i ; all these arcs



5.4. SET COVERING VARIANTS 79

have length R. Furthermore, there are also arcs connecting between gadgets. For gi =

NOR(gk, g`), we have arcs v(0)k → v
(1)
i with length R − ε and v

(0)
k → v

(0)
i with length

R + ε, and symmetrically, we have v(0)` → v
(3)
i with length R − ε and v

(0)
` → v

(0)
i with

length R+ ε. is reduction results in an asymmetric k-center instance, in fact a weighted
directed graph. We give an example of su reductions in Figure 5.2. e distance d(u→ v)

is the shortest-path distance from u→ v in this graph; therefore, this (directional) distance
function satisfies the triangle inequality.
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Figure 5.2: Top (le): the gadget used in the find-and-halve reduction. Top (right): an ex-
ample of a circuit. Boom: the graph produced by performing the reduction on the circuit
from the middle figure.

Analysis: We reason about the reduction as follows. First, notice that this reduction can be
accomplished in Õ(1) depth. Furthermore, the gadget has the property that any v(0)i (square)

cannot become a CCV unless both v
(1)
i (le arm) and v(3)i (right arm) are removed (because

other nodes are osen as CCVs and they can cover these nodes with 2R from them). at is,
for a square node to be selected as a CCV, both the le and right arms have to be “unloed.”

e rough intuition behind this reduction is that find-and-halve is forced to process vertices
in layers (topological ordering of the gates in the circuit) parallel to how circuit evaluation
is carried out. Consider the asymmetric k-center instance derived from the reduction. Ini-
tially, only the input nodes are CCVs and by definition of NOR-CVP, these nodes represent
true. If a vertex is CCV, either it is an input node or both of its arms have been unloed.
Furthermore, when a node v(0)i is osen as a CCV, it wipes out every node reaable within
2R, eliminating the square nodes of the gadgets that consume the output of gi, together with
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an arm of the gadget one-level further up. is corresponding to the following scenario in
the circuit: if a gate gi outputs a true, the gate that consumes the output of gi has to be
false—and the gates one-level further up have one input set to false and have a potential
to output true. erefore, it is easily verified that (1) if any input to a gate gi is true, then
v
(0)
i , together with the arm that takes that input, will be removed and can never become
CCV; and (2) if the input to a gi gate is false, the arm corresponding to this input will be
removed (i.e., covered by some prior CCV down the line). Arguing inductively, we have the
theorem.

Metric facility location is a fundamental problem in approximation algorithms; detailed
problem description, as well as bibliographical remarks, appears in Chapter 3. To review,
the input consists of a set of facilities F and a set of clients C , where ea facility i ∈ F

has cost fi, and ea client j ∈ C incurs d(j, i) to use facility i—and the goal is to find a
set of facilities FS ⊆ F that minimizes the objective function FL(FS) =

∑
i∈FS

fi +∑
j∈C d(j, FS). e distance d is assumed to be symmetric and satisfy the triangle inequal-

ity. is problem has an exceptionally simple factor-1.861 greedy algorithm due to Jain et
al. [JMM+03], whi has been parallelized by Blello and Tangwongsan [BT10], yielding an
RNC (3.722+ε)-approximation with workO(p log2 p), where p = |F |×|C| (see Chapter 3).

Using ideas from previous sections, we develop an RNC algorithm with an improved approx-
imation guarantee, whi essentially mates that of the sequential version.

eorem 5.19 Let ε > 0 be a small constant. ere is a O(p log p)-work O(log4 p)-depth
factor-(1.861 + ε) approximation algorithm for the (metric) facility location problem.

Recall the definitions of a star, price, and a maximal star from Definition 3.2. is will be
essential in describing the algorithm.

Presented in Algorithm 5.5.1 is a parallel greedy approximation algorithm for metric facility
location. e algorithm closely mimics the behaviors of Jain et al.’s algorithm, except the
parallel algorithm is more aggressive in oosing the stars to open. Consider the natural
integer-program formulation of facility location for whi the relaxation yields the pair of
primal and dual programs shown in Figure 3.1 (Chapter 3). We wish to give a dual-fiing
analysis similar to that of Jain et al.
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Algorithm 5.5.1 Parallel greedy algorithm for metric facility location.
Set FA = ∅. For t = 1, 2, . . . , until C = ∅,
i. Let τ (t) = (1 + ε) ·min{best(i) : i ∈ F} and F (t) = {i ∈ F : best(i) ≤ τ (t)}.
ii. Build a bipartite graph G from F (t) and N(·), where for ea i ∈ F (t), N(i) = {j ∈ C :

d(j, i) ≤ τ (t)}.
iii. While (F (t) 6= ∅), repeat:

1. Compute∆J (t) = MaNIS(ε,3ε)(G) and J (t) = J (t) ∪∆J (t)

2. Remove∆J (t) andN(∆J (t)) from G, remove the clientsN(∆J (t)) from C , and set fi = 0
for all i ∈ ∆J (t).

3. Delete any i ∈ F (t) su that price((i,N(i))) > τ (t).

eir proof shows that the solution’s cost is equal to the sum of αj ’s over the clients, where
αj is the price of the star with whi client j is connected up. Following this analysis, we
set αj to τ (t)/(1 + ε) where t is the iteration that the client was removed. Note that stars
osen in F (t) may have overlapping clients. For this reason, we cannot afford to open them
all, or we would not be able to bound the solution’s cost by the sum of αj ’s. is situation,
however, is rectified by the use of MaNIS, allowing us to prove Lemma 5.22, whi relates
the cost of the solution to αj ’s. Before we prove this lemma, two easy-to-e facts are in
order:

Fact 5.20 In the graph G constructed in Step 2, for all i ∈ F (t), price((i,N(i))) ≤ τ (t).

Fact 5.21 At any point during iteration t, best(i) ≤ τ (t) if and only if price((i,N(i))) ≤ τ (t).

Lemma 5.22 e cost of the algorithm’s solution FL(FA) is upper-bounded by 1
1−5ε

∑
j∈C αj .

Proof: Let t > 0 and consider what happens inside the inner loop (Steps iii.1—iii.3). Ea iter-
ation of the inner loop runsMaNIS onF (t)with ea i ∈ F (t) satisfying τ (t) ≥ price((i,N(i))) =

(fi +
∑

j∈N(i) d(j, i))/|N(i)|, so

|N(i)| ≥ 1
τ (t)

(
fi +

∑
j∈N(i) d(j, i)

)
.

Because of Fact 5.20 and Step iii.3, the relationship τ (t) ≥ price((i,N(i))) is maintained
throughout iteration t. Running a (ε, 3ε)-MaNIS on F (t) ensures that ea ∆J (t) satisfies
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|N(∆J (t))| ≥ (1− 4ε)
∑

i∈∆J(t) |N(i)|. us,

∑
j∈∆J(t)

αj =
τ (t)

1 + ε
|N(∆J (t))| ≥ τ (t)

1 + ε
(1− 4ε)

∑
i∈∆J(t)

|N(i)|

≥ (1− 5ε)
∑

i∈∆J(t)

(
fi +

∑
j∈N(i)

d(j, i)
)
,

whi is at least
(1− 5ε)

( ∑
i∈∆J(t)

fi +
∑

j∈N(∆J(t))

d(j,∆J (t))
)
.

Since every client has to appear in at least one J (t), summing across the inner loop’s itera-
tions and t gives the lemma. �

In the series of claims that follows, we show that when scaled down by a factor of γ = 1.861,
the α seing determined above is a dual feasible solution. We will assume without loss of
generality that α1 ≤ α2 ≤ · · · ≤ α|C|. Let Wi = {j ∈ C : αj ≥ γ · d(j, i)} for all i ∈ F

andW = ∪iWi.

Claim 5.23 For any facility i ∈ F and client j0 ∈ C ,∑
j∈W:j≥j0

max(0, αj0 − d(j, i)) ≤ fi.

Proof : Suppose for a contradiction that there exist client j and facility i su that the in-
equality in the claim does not hold. at is,∑

j∈W:j≥j0

max(0, αj0 − d(j, i)) > fi (5.1)

Let t be the iteration su that αj0 = τ (t)/(1 + ε). Let Ĉ(t) be the set of clients j’s
su that αj0 − d(j, i) > 0 that remain at the beginning of iteration t. us, by our
assumption and the fact that {j ∈ W : j ≥ j0 ∧ αj0 > d(j, i)} ⊆ Ĉ(t), we estab-
lish

∑
j∈Ĉ(t) αj0 − d(j, i) =

∑
j∈Ĉ(t) max(0, αj0 − d(j, i)) ≥

∑
j∈W:j≥j0

max(0, αj0 −
d(j, i)) > fi. It follows that αj0 > 1

|Ĉ(t)|
(fi +

∑
j∈Ĉ(t) d(j, i)). Hence, τ (t)/(1 + ε) =

αj0 > 1

|Ĉ(t)|
(fi +

∑
j∈Ĉ(t) d(j, i)) ≥ best(i) ≥ τ (t)/(1 + ε) since τ (t)/(1 + ε) is the mini-

mum of the best price in that iteration. is gives a contradiction, proving the claim. �

Claim 5.24 Let i ∈ F , and j, j′ ∈W be clients. en, αj ≤ αj′ + d(i, j′) + d(i, j).
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Proof : If αj ≤ αj′ , the proof is trivial, so assume αj > αj′ . Let i′ be any facility that
removed j′ (i.e, i′ ∈ ∆J (t) su that j ∈ N(i′)). It suffices to show that αj ≤ d(i′, j)

and the claim follows from triangle inequality. Since αj > αj′ , in the iteration t where
αj = τ (t)/(1 + ε), we know that fi′ has already been set to 0, so best(i′) ≤ d(j, i′). Fur-
thermore, in this iteration, αj ≤ best(i′) as αj = min{best(i)}, proving the claim. �

ese two claims are sufficient to set up a factor-revealing LP identical to Jain et al.’s. ere-
fore, the following lemma follows from Jain et al. [JMM+03] (Lemmas 3.4 and 3.6):

Lemma 5.25 e seing α′
j =

αj

γ and β′
ij = max(0, α′

j−d(j, i)) is a dual feasible solution,
where γ = 1.861.

Combining this lemma with Lemma 5.22 and weak duality, we have the promised approxi-
mation guarantee.

Running time analysis: Fix ε > 0. We argue that the number of rounds is upper bounded
by O(log p). For this, we need a preprocessing step whi ensures that the ratio between
the largest τ and the smallest τ ever encountered in the algorithm is O(pO(1)). is can be
done inO(p)work andO(log(|F |+ |C|)) depth, adding ε ·opt to the solution’s cost [BT10].
Armed with that, it suffices to show the following claim.

Claim 5.26 τ (t+1) ≥ (1 + ε) · τ (t).

Proof : Let best(t)(i) denote best(i) at the beginning of iteration t. Let i∗ be the facility
whose best(t+1)(i∗) aains τ (t+1)/(1 + ε). To prove the claim, it suffices to show that
best(t+1)(i∗) ≥ τ (t), as this will imply τ (t+1) ≥ (1 + ε) · τ (t). Now consider two possibili-
ties.

—Case 1. i∗ was part ofF (t), so then either i∗ was opened in this iteration or i∗ was removed
from F (t) in Step 3.iii. If i∗ was opened, all clients at distance at most τ (t) from it would be
connected up, so best(t+1)(i∗) ≥ τ (t). Otherwise, i∗ was removed in Step iii.3, in whi case
best(t+1)(i∗) ≥ τ (t) by the removal criteria and Fact 5.21.

— Case 2. Otherwise, i∗ was not part of F (t). is means that best(t)(i∗) > τ (t). As the set
of unconnected clients can only become smaller, the price of the best star centered at i∗ can
only go up. So best(t+1)(i∗) will be at least τ (t), whi in turn implies the claim. �
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us, the total number of iterations (outer loop) in the algorithm is O(log p). We now con-
sider the work and depth of ea iteration. Step 1 involves computing best(i) for all i ∈ F .
is can be done inO(p) work andO(log p) depth using a prefix computation and standard
teniques (see [BT10] for details). Step 2 can be done in the same work-depth bounds. In-
side the inner loop, ea MaNIS call requiresO(p′) work and O(log2 p′) depth, wherem′ is
the number of edges in G. Steps iii.2–3 do not require more than O(p′) work and O(log p′)
depth. Furthermore, note that if i ∈ F (t) is not osen by MaNIS, it loses at least an ε frac-
tion of its neighbors. erefore, the total work of in the inner loop (for ea t) is O(ε−1p),
and depth O(log3 p). Combining these gives the theorem.

We formulated and studied MaNIS—a graph abstraction of a problem at the crux of many
(set) covering-type problem. We gave a linear-work RNC solution to this problem and applied
it to derive parallel approximation algorithms for several problems, yielding RNC algorithms
for set cover, (prefix-optimal) max cover, min-sum set cover, asymmetric k-center, andmetric
facility location.



Chapter 6

Solving a system of linear equations Ax = b is a fundamental computing primitive that lies
at the core of many numerical and scientific computing algorithms, including the popular
interior-point algorithms. e special case of symmetric diagonally dominant (SDD) sys-
tems has seen substantial progress in recent years; in particular, the ground-breaking work of
Spielman and Teng showed how to solve SDD systems to accuracy ε in time Õ(m log(1/ε)),
wherem is the number of non-zeros in the n× n-matrix A.¹ is is algorithmically signif-
icant since solving SDD systems has implications to computing eigenvectors, solving flow
problems, finding graph sparsifiers, and problems in vision and graphics (see [Spi10, Ten10]
for these and other applications).

In the sequential seing, the current best SDD solvers run in O(m logn(log logn)2 log(1ε ))
time [KMP11]. However, with the exception of the special case of planar SDD systems [KM07],

¹e Spielman-Teng solver and all subsequent improvements are randomized algorithms. As a consequence,
all algorithms relying on the solvers are also randomized. For simplicity, we omit standard complexity factors
related to the probability of error.
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we know of no previous parallel SDD solvers that perform near-linear² work and aieve
non-trivial parallelism. is raises a natural question: Is it possible to solve an SDD linear
system in o(n) depth and Õ(m) work? We answer this question affirmatively:

eorem 6.1 For any fixed θ > 0 and any ε > 0, there is an algorithm SDDSolve that on
input an n×n SDD matrixA withm non-zero elements and a vector b, computes a vector x̃
su that ‖x̃−A+b‖A ≤ ε · ‖A+b‖A in O(m logO(1) n log 1

ε ) work and O(m1/3+θ log 1
ε )

depth.

In the process, we give parallel algorithms for constructing graph decompositionswith strong-
diameter guarantees, and parallel algorithms to construct low-stret spanning trees and
low-stret ultra-sparse subgraphs, whi may be of independent interest. An overview of
these algorithms and their underlying teniques is given in Section 6.3.

Some Applications. Let us mention some of the implications of eorem 6.1, obtained by
plugging it into known reductions.

— Construction of (Spectral) Sparsifiers. Spielman and Srivastava [SS08] showed that spec-
tral sparsifiers can be constructed using O(logn) Laplacian solves, and using our theorem
we get spectral and cut sparsifiers in Õ(m1/3+θ) depth and Õ(m) work.

— Flow Problems. Daits and Spielman [DS08] showed that various graph optimization
problems, su as max-flow, min-cost flow, and lossy flow problems, can be reduced to
Õ(m1/2) applications³ of SDD solves via interior point methods described in [Ye97, Ren01,
BV04b]. Combining this with our main theorem implies that these algorithms can be paral-
lelized to run in Õ(m5/6+θ) depth and Õ(m3/2)work. is gives the first parallel algorithm
with o(n) depth whi is work-efficient to within polylog(n) factors relative to the sequen-
tial algorithm for all problems analyzed in [DS08]. Furthermore, our results in conjunction of
a recent result of Christiano et al. [CKM+11] give a Õ(ε−O(1)m4/3)-work, Õ(ε−O(1)m2/3)-
depth algorithm for (1− ε) approximate max-flow and (1 + ε) min-cut.

In some sense, the parallel bounds are more interesting than the sequential times because
though in many cases the results in [DS08] are not the best known sequentially (e.g. max-
flow), they do lead to the best know parallel bounds for problems that have traditionally
been hard to parallelize. Finally, we note that although [DS08] does not explicitly analyze
shortest path, their analysis naturally generalizes the LP for it.

²i.e. linear up to polylog factors.
³here Õ hides logU factors as well, where it’s assumed that the edge weights are integers in the range

[1 . . . U ]
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Given a graph G = (V,E), let hop(u, v) denote the edge-count distance (or hop distance)
between u and v, ignoring the edge lengths. When the graph has edge lengths w(e) (also
denoted bywe), let dG(u, v) denote the edge-length distance, the shortest path (according to
these edge lengths) between u and v. If the graph has unit edge lengths, the two definitions
coincide. We drop subscripts when the context is clear. We denote by V (G) and E(G),
respectively, the set of nodes and the set of edges, and use n = |V (G)| and m = |E(G)|.
For an edge e = {u, v}, the stret of e onG′ is strG′(e) = dG′(u, v)/w(e). e total stret
of G = (V,E,w) with respect to G′ is strG′(E(G)) =

∑
e∈E(G) strG′(e).

Given G = (V,E), a distance function δ (whi is either hop or d), and a partition of
V into C1 ] C2 ] . . . ] Cp, let G[Ci] denote the induced subgraph on set Ci. Here, the
operator] denotes a disjoint union. eweak diameter ofCi is maxu,v∈Ci δG(u, v), whereas
the strong diameter of Ci is maxu,v∈Ci δG[Ci](u, v); the former measures distances in the
original graph, whereas the laer measures distances within the induced subgraph. e
strong (or weak) diameter of the partition is the maximum strong (or weak) diameter over
all the components Ci’s.

Graph Laplacians. For a fixed, but arbitrary, numbering of the nodes and edges in a graph
G = (V,E), the Laplacian LG of G is the |V |-by-|V | matrix given by

LG(i, j) =

{
−wij if i 6= j∑

{j,i}∈E(G)wij if i = j
,

When the context is clear, we use G and LG interangeably. Given two graphs G and H

and a scalar µ ∈ R, we say G � µH if µLH − LG is positive semidefinite, or equivalently
x>LGx ≤ µx>LHx for all vector x ∈ R|V |.

Matrix Norms, SDD Matrices. For a matrix A, we denote by A+ the Moore-Penrose pseu-
doinverse of A (i.e., A+ has the same null space as A and acts as the inverse of A on its
image). Given a symmetric positive semi-definite matrix A, the A-norm of a vector x is
defined as ‖x‖A =

√
x>Ax. A matrix A is symmetrically diagonally dominant (SDD) if

it is symmetric and for all i, Ai,i ≥
∑

j 6=i |Ai,j |. Solving an SDD system reduces in O(m)

work and O(logO(1)m) depth to solving a graph Laplacian (a subclass of SDD matrices
corresponding to undirected weighted graphs) [Gre96, Section 7.1].

Parallel Ball Growing. LetBG(s, r) denote the ball of edge-count distance r from a source
s, i.e., BG(s, r) = {v ∈ V (G) : hopG(s, v) ≤ r}. We rely on an elementary form of
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parallel breadth-first sear to compute BG(s, r). e algorithm visits the nodes level by
level as they are encountered in the BFS order. More precisely, level 0 contains only the
source node s, level 1 contains the neighbors of s, and ea subsequent level i+ 1 contains
the neighbors of level i’s nodes that have not shown up in a previous level. On standard
parallel models (e.g., CRCW), this can be computed in O(r logn) depth and O(m′ + n′)

work, wherem′ and n’ are the total numbers of edges and nodes, respectively, encountered
in the sear [UY91, KS97]. Notice that we could aieve this runtime bound with a variety
of graph (matrix) representations, e.g., using the compressed sparse-row (CSR) format. Our
applications apply ball growing on r roughlyO(logO(1) n), resulting in a small depth bound.
We remark that the idea of small-radius parallel ball growing has previously been employed
in the context of approximate shortest paths (see, e.g., [UY91, KS97, Coh00]). ere is an
alternative approa of repeatedly squaring a matrix, whi gives a beer depth bound for
large r at the expense of a mu larger work bound (about n3).

Finally, we state a tail boundwhiwill be useful in our analysis. is bound is easily derived
from well-known facts about the tail of a hypergeometric random variable [Chv79b, Hoe63,
Ska09].

Lemma 6.2 (Hypergeometric Tail Bound) LetH be a hypergeometric random variable de-
noting the number of red balls found in sample of n drawn from a total of N balls of whi
M are red. en, if µ = E [H] = nM/N , then

Pr [H ≥ 2µ] ≤ e−µ/4

Proof: We apply the following theorem of Hoeffding [Chv79b, Hoe63, Ska09]. For any t > 0,

Pr [H ≥ µ+ tn] ≤
(( p

p+ t

)p+t( 1− p

1− p− t

)1−p−t
)n

,

where p = µ/n. Using t = p, we have

Pr [H ≥ 2µ] ≤
(( p

2p

)2p( 1− p

1− 2p

)1−2p
)n

≤
(
e−p ln 4

(
1 +

p

1− 2p

)1−2p
)n

≤
(
e−p ln 4 · ep

)n
≤ e−

1
4
pn,

where we have used the fact that 1 + x ≤ exp(x). �
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In the general solver framework of Spielman and Teng [ST06, KMP10], near linear-time SDD
solvers rely on a suitable preconditioning ain of progressively smaller graphs. Assuming
that we have an algorithm for generating low-stret spanning trees, the algorithm as given
in [KMP10] parallelizes under the following modifications: (i) perform the partial Cholesky
factorization in parallel and (ii) terminate the preconditioning ain with a graph that is of
size approximately m1/3. e details in Section 6.6 are the primary motivation of the main
tenical part of the work in this apter, a parallel implementation of a modified version of
Alon et al.’s low-stret spanning tree algorithm [AKPW95].

More specifically, as a first step, we find an embedding of graphs into a spanning tree with av-

erage stret 2O(
√

logn log logn) in Õ(m) work and O(2O(
√

logn log logn) log∆) depth, where
∆ is the ratio of the largest to smallest distance in the graph. e original AKPW algo-
rithm relies on a parallel graph decomposition seme of Awerbu [Awe85], whi takes
an unweighted graph and breaks it into components with a specified diameter and few cross-
ing edges. While su semes are known in the sequential seing, they do not parallelize
readily because removing edges belonging to one component might increase the diameter
or even disconnect subsequent components. We present the first near linear-work parallel
decomposition algorithm that also gives strong-diameter guarantees, in Section 6.4, and the
tree embedding results in Section 6.5.1.

Ideally, we would have liked for our spanning trees to have a polylogarithmic stret, com-
putable by a polylogarithmic depth, near linear-work algorithm. However, for our solvers,
we make the additional observation that we do not really need a spanning tree with small
stret; it suffices to give an “ultra-sparse” graph with small stret, one that has only
O(m/ polylog(n)) edges more than a tree. Hence, we present a parallel algorithm in Sec-
tion 6.5.2 whi outputs an ultra-sparse graph with O(polylog(n)) average stret, per-
forming Õ(m) work with O(polylog(n)) depth. Note that this removes the dependence

of log∆ in the depth, and reduces both the stret and the depth from 2O(
√

logn log logn)

to O(polylog(n)).⁴ When combined with the aforementioned routines for constructing a
SDD solver presented in Section 6.6, this low-stret spanning subgraph construction yields
a parallel solver algorithm.

⁴As an aside, this construction of low-stret ultra-sparse graphs shows how to obtain the Õ(m)-time
linear system solver of Spielman and Teng [ST06] without using their low-stret spanning trees result [EEST05,
ABN08].
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In this section, we present a parallel algorithm for partitioning a graph into components
with low (strong) diameter while cuing only a few edges in ea of the k disjoint subsets
of the input edges. e sequential version of this algorithm is at the heart of the low-stret
spanning tree algorithm of Alon, Karp, Peleg, and West (AKPW) [AKPW95].

For context, notice that the outer layer of the AKPW algorithm (more details in Section 6.5)
can be viewed as bueting the input edges by weight, then partitioning and contracting
them repeatedly. In this view, a number of edge classes are “reduced” simultaneously in an
iteration. Further, as we wish to output a spanning subtree at the end, the components need
to have low strong-diameter (i.e., one could not take “shortcuts” through other components).
In the sequential case, the strong-diameter property is met by removing components one
aer another, but this process does not parallelize readily. For the parallel case, we guarantee
this by growing balls from multiple sites, with appropriate “jiers” that conceptually delay
when these ball-growing processes start, and assigning vertices to the first region that reaes
them. ese “jiers” terms are crucial in controlling the probability that an edge goes across
regions. But this probability also depends on the number of regions that could rea su
an edge. To keep this number small, we use a repeated sampling procedure motivated by
Cohen’s (β,W )-cover construction [Coh93].

More concretely, we prove the following theorem:

eorem 6.3 (Parallel Low-Diameter Decomposition) Given an input graphG = (V,E1]
. . . ] Ek) with k edge classes and a “radius” parameter ρ, the algorithm Partition(G, ρ),
upon termination, outputs a partition of V into components C = (C1, C2, . . . , Cp), ea
with center si su that

1. the center si ∈ Ci for all i ∈ [p],
2. for ea i, every u ∈ Ci satisfies hopG[Ci]

(si, u) ≤ ρ, and
3. for all j = 1, . . . , k, the number of edges inEj that go between components is at most
|Ej | · c1·k log3 n

ρ , where c1 is an absolute constant.

Furthermore, Partition runs inO(m log2 n) expectedwork andO(ρ log2 n) expected depth.

Low-Diameter Decomposition for Simple Unweighted Graphs

To prove this theorem, we begin by presenting an algorithm splitGraph that works with
simple graphs with only one edge class and describe how to build on top of it an algorithm
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that handles multiple edge classes.

e basic algorithm takes as input a simple, unweighted graphG = (V,E) and a radius (in
hop count) parameter ρ and outputs a partition V into components C1, . . . , Cp, ea with
center si, su that

(P1) Ea center belongs to its own component. at is, the center si ∈ Ci for all i ∈ [p];

(P2) Every component has radius at most ρ. at is, for ea i ∈ [p], every u ∈ Ci satisfies
hopG[Ci]

(si, u) ≤ ρ;

(P3) Given a tenical condition (to be specified) that holdswith probability at least 3/4, the
probability that an edge of the graphG goes between components is at most 136ρ log3 n.

In addition, this algorithm runs in O(m log2 n) expected work and O(ρ log2 n) expected
depth. (ese properties should be compared with the guarantees in eorem 6.3.)

Consider the pseudocode of this basic algorithm in Algorithm 6.4.1. e algorithm takes as
input an unweighted n-node graph G and proceeds in T = O(logn) iterations, with the
eventual goal of outpuing a partition of the graphG into a collection of sets of nodes (ea
set of nodes is known as a component). Let G(t) = (V (t), E(t)) denote the graph at the
beginning of iteration t. Since this graph is unweighted, the distance in this algorithm is
always the hop-count distance hop(·, ·). For iteration t = 1, . . . , T , the algorithm pis a
set of starting centers S(t) to grow balls from; as with Cohen’s (β,W )-cover, the number
of centers is progressively larger with iterations, reminiscent of the doubling tri (though
with more careful handling of the growth rate), to compensate for the balls’ shrinking radius
and to ensure that the graph is fully covered.

Still within iteration t, it ooses a random “jier” value δ
(t)
s ∈R {0, 1, . . . , R} for ea

of the centers in S(t) and grows a ball from ea center s out to radius r(t) − δ
(t)
s , where

r(t) = ρ
2 logn(T − t + 1). Let X(t) be the union of these balls (i.e., the nodes “seen” from

these starting points). In this process, the “jier” should be thought of as a random amount
by whi we delay the ball-growing process on ea center, so that we could assign nodes to
the first region that reaes them while being in control of the number of cross-component
edges. Equivalently, our algorithm forms the components by assigning ea vertex u rea-
able from one of these centers to the center that minimizes hopG(t)(u, s) + δ

(t)
s (ties broken

in a consistent manner, e.g., lexicographically). Note that because of these “jiers,” some
centers might not be assigned any vertex, not even itself. For centers that are assigned some
nodes, we include their components in the output, designating them as the components’
centers. Finally, we construct G(t+1) by removing nodes that were “seen” in this iteration
(i.e., the nodes inX(t))—because they are already part of one of the output components—and
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adjusting the edge set accordingly.

Algorithm 6.4.1 splitGraph (G = (V,E), ρ) — Split an input graph G = (V,E) into
components of hop-radius at most ρ.

Let G(1) = (V (1), E(1))← G. Define R = ρ/(2 logn). Create empty collection of components C.
Use hop(t) as shorthand for hopG(t) , and define B(t)(u, r)

def
= BG(t)(u, r) = {v ∈ V (t) |

hop(t)(u, v) ≤ r}.

For t = 1, 2, . . . , T = 2 log2 n,

1. Randomly sample S(t) ⊆ V (t), where |S(t)|| = σt = 12nt/T−1|V (t)| logn, or use S(t) =
V (t) if |V (t)| < σt.

2. For ea “center” s ∈ S(t), draw δ
(t)
s uniformly at random from Z ∩ [0, R].

3. Let r(t) ← (T − t+ 1)R.
4. For ea center s ∈ S(t), compute the ball B(t)

s = B(t)(s, r(t) − δ
(t)
s ).

5. Let X(t) = ∪s∈S(t)B
(t)
s .

6. Create components {C(t)
s | s ∈ S(t)} by assigning ea u ∈ X(t) to the component C(t)

s

su that s minimizes hopG(t)(u, s) + δ
(t)
s (breaking ties lexicographically).

7. Add non-empty C
(t)
s components to C.

8. Set V (t+1) ← V (t) \X(t), and let G(t+1) ← G(t)[V (t+1)]. it early if V (t+1) is empty.

Return C.

Analysis. roughout this analysis, wemake reference to various quantities in the algorithm
and assume the reader’s basic familiarity with our algorithm. We begin by proving properties
(P1)–(P2). First, we state an easy-to-verify fact, whi follows immediately by our oice of
radius and components’ centers.

Fact 6.4 If vertex u lies in component C(t)
s , then hop(t)(s, u) ≤ r(t). Moreover, u ∈ B

(t)
s .

We also need the following lemma to argue about strong diameter.

Lemma 6.5 If vertex u ∈ C
(t)
s , and vertex v ∈ V (t) lies on any u-s shortest path in G(t),

then v ∈ C
(t)
s .

Proof: Since u ∈ C
(t)
s , Fact 6.4 implies u belongs toB(t)

s . But hop(t)(v, i) < hop(t)(u, i), and
hence v belongs toB(t)

s andX(t) as well. is implies that v is assigned to some component
C

(t)
j ; we claim j = s.

For a contradiction, assume that j 6= s, and hence hop(t)(v, j)+δ
(t)
j ≤ hop(t)(v, s)+δ

(t)
s . In

this case hop(t)(u, j) + δ
(t)
j ≤ hop(t)(u, v) + hop(t)(v, j) + δ

(t)
j (by the triangle inequality).

Now using the assumption, this expression is at most hop(t)(u, v) + hop(t)(v, s) + δ
(t)
s =
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hop(t)(u, s)+ δ
(t)
s (since v lies on the shortest u-s path). But then, u would be also assigned

to C(t)
j , a contradiction. �

Hence, for ea non-empty component C(t)
s , its center s lies within the component (since it

lies on the shortest path from s to any u ∈ C
(t)
s ), whi proves (P1). Moreover, by Fact 6.4

and Lemma 6.5, the (strong) radius is at most TR, proving (P2). It now remains to prove
(P3), and the work and depth bounds.

Lemma 6.6 For any vertex u ∈ V , with probability at least 1 − n−6, there are at most
68 log2 n pairs⁵ (s, t) su that s ∈ S(t) and u ∈ B(t)(s, r(t)),

We will prove this lemma in a series of claims.

Claim 6.7 For t ∈ [T ] and v ∈ V (t), if |B(t)(v, r(t+1))| ≥ n1−t/T , then v ∈ X(t) w.p. at
least 1− n−12.

Proof : First, note that for any s ∈ S(t), r(t) − δs ≥ r(t) − R = r(t+1), and so if s ∈
B(t)(v, r(t+1)), then v ∈ B

(t)
s and hence in X(t). erefore,

Pr
[
v ∈ X(t)

]
≥ Pr

[
S(t) ∩B(t)(v, r(t+1)) 6= ∅

]
,

whi is the probability that a random subset of V (t) of size σt hits the ball B(t)(v, r(t+1)).

But, Pr
[
S(t) ∩B(t)(v, r(t+1)) 6= ∅

]
≥ 1−

(
1− |B(t)(v,r(t+1))|

|V (t)|

)σt

, whi is at least 1−n−12.
�

Claim 6.8 For t ∈ [T ] and v ∈ V , the number of s ∈ S(t) su that v ∈ B(t)(s, r(t)) is at
most 34 logn w.p. at least 1− n−8.

Proof: For t = 1, the size σ1 = O(logn) and hence the claim follows trivially. For t ≥ 2, we
condition on all the oices made in rounds 1, 2, . . . , t − 2. Note that if v does not survive
in V (t−1), then it does not belong to V (t) either, and the claim is immediate. So, consider
two cases, depending on the size of the ball B(t−1)(v, r(t)) in iteration t− 1:

— Case 1. If |B(t−1)(v, r(t))| ≥ n1−(t−1)/T , then by Claim 3.5, with probability at least
1 − n−12, we have v ∈ X(t−1), so v would not belong to V (t) and this means no s ∈ S(t)

will satisfy v ∈ B(t)(s, r(t)), proving the claim for this case.

⁵In fact, for a given s, there is a unique t—if this s is ever osen as a “starting point.”
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— Case 2. Otherwise, |B(t−1)(v, r(t))| < n1−(t−1)/T . We have

|B(t)(v, r(t))| ≤ |B(t−1)(v, r(t))| < n1−(t−1)/T

asB(t)(v, r(t))⊆ B(t−1)(v, r(t)). Now letX be the number of s su that v ∈ B(t)(s, r(t)),
so X =

∑
s∈S(t) 1{s∈B(t)(v,r(t))}. Over the random oice of S(t),

Pr
[
s ∈ B(t)(v, r(t))

]
=
|B(t)(v, r(t))|
|V (t)|

≤ 1

|V (t)|
n1−(t−1)/T ,

whi gives

E [X] = σt · Pr
[
s ∈ B(t)(v, r(t))

]
≤ 17 logn.

To obtain a high probability bound forX , we will apply the tail bound in Lemma 6.2. Note
that X is simply a hypergeometric random variable with the following parameters seing:
total balls N = |V (t)|, red balls M = |B(t)(v, r(t))|, and the number balls drawn is σt.
erefore, Pr [X ≥ 34 logn] ≤ exp{−1

4 · 34 logn}, so X ≤ 34 logn with probability at
least 1− n−8.

Hence, regardless of what oices we made in rounds 1, 2, . . . , t− 2, the conditional prob-
ability of seeing more than 34 logn different s’s is at most n−8. Hence, we can remove the
conditioning, and the claim follows. �

Lemma 6.9 If for ea vertex u ∈ V , there are at most 68 log2 n pairs (s, t) su that s ∈
S(t) and u ∈ B(t)(s, r(t)), then for an edge uv, the probability that u belongs to a different
component than v is at most 68 log2 n/R.

Proof : We define a center s ∈ S(t) as “separating” u and v if |B(t)
s ∩ {u, v}| = 1. Clearly,

if u, v lie in different components then there is some t ∈ [T ] and some center s that sep-
arates them. For a center s ∈ S(t), this can happen only if δs = R − hop(s, u), since
hop(s, v) ≤ hop(s, u)−1. As there areR possible values of δs, this event occurs with prob-
ability at most 1/R. And since there are only 68 log2 n different centers s that can possibly
cut the edge, using a trivial union bound over them gives us an upper bound of 68 log2 n/R
on the probability. �

To argue about (P3), notice that the premise to Lemma 6.9 holds with probability exceeding
1− o(1) ≥ 3/4. Combining this with Lemma 6.6 proves property (P3), where the tenical
condition is the premise to Lemma 6.9.
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Finally, we consider the work and depth of the algorithm. ese are randomized bounds.
Ea computation of B(t)(v, r(t)) can be done using a BFS. Since r(t) ≤ ρ, the depth is
bounded byO(ρ logn) per iteration, resulting inO(ρ log2 n) aer T = O(logn) iterations.
As for work, by Lemma 6.6, ea vertex is reaed by at most O(log2 n) starting points,
yielding a total work of O(m log2 n).

Low-Diameter Decomposition for Multiple Edge Classes

Extending the basic algorithm to support multiple edge classes is straightforward. e main
idea is as follows. Suppose we are given a unweighted graphG = (V,E), and the edge setE
is composed of k edge classesE1] · · · ]Ek. So, if we run splitGraph onG = (V,E) and
ρ treating the different classes as one, then property (P3) indicates that ea edge—regardless
of whi class it came from—is separated (i.e., it goes across components) with probability
p = 136

ρ log3 n. is allows us to prove the following corollary, whi follows directly from
Markov’s inequality and the union bounds.

Corollary 6.10 With probability at least 1/4, for all i ∈ [k], the number of edges in Ei that
are between components is at most |Ei|272k log3 n

ρ .

e corollary suggests a simple way to use splitGraph to provide guarantees required by
eorem 6.3: as summarized in Algorithm 6.4.2, we run splitGraph on the input graph
treating all edge classes as one and repeat it if any of the edge classes had too many edges
cut (i.e., more than |Ei|272k log3 n

ρ ). As the corollary indicates, the number of trials is a ge-
ometric random variable with with p = 1/4, so in expectation, it will finish aer 4 trials.
Furthermore, although it could go on forever in the worst case, the probability does fall
exponentially fast.

Algorithm 6.4.2 Partition (G = (V,E = E1 ] · · · ] Ek), ρ) — Partition an input graph
G into components of radius at most ρ.

1. Let C = splitGraph((V,]Ei), ρ).

2. If there is some i su that Ei has more than |Ei|272·k log3 n
ρ edges between compo-

nents, start over. (Recall that k was the number of edge classes.)

Return C.

Finally, we note that properties (P1) and (P2) directly give eorem 6.3(1)–(2)—and the val-
idation step in Partition ensures eorem 6.3(3), seing c1 = 272. e work and depth
bounds for Partition follow from the bounds derived for splitGraph and Corollary 6.10.
is concludes the proof of eorem 6.3.
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is section presents parallel algorithms for low-stret spanning trees and for low-stret
spanning subgraphs. To obtain the low-stret spanning tree algorithm, we apply the con-
struction of Alon et al. [AKPW95] (henceforth, the AKPW construction), together with
the parallel graph partition algorithm from the previous section. e resulting procedure,
however, is not ideal for two reasons: the depth of the algorithm depends on the “spread”
∆—the ratio between the heaviest edge and the lightest edge—and even for polynomial
spread, both the depth and the average stret are super-logarithmic (both of them have

a 2O(
√

logn·log logn) term). Fortunately, for our application, we observe that we do not need
spanning trees but merely low-stret sparse graphs. In Section 6.5.2, we describe modifi-
cations to this construction to obtain a parallel algorithm whi computes sparse subgraphs
that give us only polylogarithmic average stret and that can be computed in polyloga-
rithmic depth and Õ(m) work. We believe that this construction may be of independent
interest.

Using the AKPW construction, along with the Partition procedure from Section 6.4, we
will prove the following theorem:

eorem 6.11 (Low-Stret Spanning Tree) ere is an algorithm AKPW(G) whi given
as input a graphG = (V,E,w), produces a spanning tree inO(logO(1) n·2O(

√
logn·log logn) log∆)

expected depth and Õ(m) expected work su that the total stret of all edges is bounded
bym · 2O(

√
logn·log logn).

Presented in Algorithm 6.5.1 is a restatement of the AKPW algorithm, except that here we
will use our parallel low-diameter decomposition for the partition step. In words, iteration
j of Algorithm 6.5.1 looks at a graph (V (j), E(j)) whi is a minor of the original graph
(because components were contracted in previous iterations, and because it only considers
the edges in the first j weight classes). It uses Partition((V,]j≤kEj), z/4) to decompose
this graph into components su that the hop radius is at most z/4 and eaweight class has
only 1/y fraction of its edges crossing between components. (Parameters y, z are defined in
the algorithm and are slightly different from the original seings in the AKPW algorithm.)
It then shrinks ea of the components into a single node (while adding a BFS tree on that
component to T ), and iterates on this graph. Adding these BFS trees maintains the invariant
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Algorithm 6.5.1 AKPW (G = (V,E,w)) — a low-stret spanning tree construction.
i. Normalize the edges so that min{w(e) : e ∈ E} = 1.

ii. Let y = 2
√

6 logn·log logn, τ = d3 log(n)/ log ye, z = 4c1yτ log
3 n. Initialize T = ∅.

iii. Divide E into E1, E2, . . . , where Ei = {e ∈ E | w(e) ∈ [zi−1, zi)}.
Let E(1) = E and E

(1)
i = Ei for all i.

iv. For j = 1, 2, . . . , until the graph is exhausted,

1. (C1, C2, . . . , Cp) = Partition((V (j),]i≤jE
(j)
i ), z/4)

2. Add a BFS tree of ea component to T .
3. Define graph (V (j+1), E(j+1)) by contracting all edges within the components and re-

moving all self-loops (but maintaining parallel edges). Create E
(j+1)
i from E

(j)
i taking

into account the contractions.
v. Output the tree T .

that the set of original nodes whi have been contracted into a (super-)node in the current
graph are connected in T ; hence, when the algorithm stops, we have a spanning tree of the
original graph—hopefully of low total stret.

We begin the analysis of the total stret and running time by proving two useful facts:

Fact 6.12 e number of edges |E(j)
i | is at most |Ei|/yj−i.

Proof : If we could ensure that the number of weight classes in play at any time is at most
τ , the number of edges in ea class would fall by at least a factor of c1τ log3 n

z/4 = 1/y by
eorem 6.3(3) and the definition of z, and this would prove the fact. Now, for the first τ
iterations, the number of weight classes is at most τ just because we consider only the first
j weight classes in iteration j. Now in iteration τ + 1, the number of surviving edges of
E1 would fall to |E1|/yτ ≤ |E1|/n3 < 1, and hence there would only be τ weight classes
le. It is easy to see that this invariant can be maintained over the course of the algorithm. �

Fact 6.13 In iteration j, the radius of a component according to edgeweights (in the expanded-
out graph) is at most zj+1.

Proof: e proof is by induction on j. First, note that by eorem 6.3(2), ea of the clusters
computed in any iteration j has edge-count radius at most z/4. Now the base case j = 1

follows by noting that ea edge in E1 has weight less than z, giving a radius of at most
z2/4 < zj+1. Now assume inductively that the radius in iteration j − 1 is at most zj . Now
any path with z/4 edges from the center to some node in the contracted graph will pass
through at most z/4 edges of weight at most zj , and at most z/4 + 1 supernodes, ea of
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whi adds a distance of 2zj ; hence, the new radius is at most zj+1/4+(z/4+1)2zj ≤ zj+1

as long as z ≥ 8. �

Applying these facts, we bound the total stret of an edge class.

Lemma 6.14 For any i ≥ 1, strT (Ei) ≤ 4y2|Ei|(4c1τ log3 n)τ+1.

Proof: Let e be an edge in Ei contracted during iteration j. Since e ∈ Ei, we know w(e) >

zi−1. By Fact 6.13, the path connecting the two endpoints of e in F has distance at most
2zj+1. us, strT (e) ≤ 2zj+1/zi−1 = 2zj−i+2. Fact 6.12 indicates that the number of su
edges is at most |E(j)

i | ≤ |Ei|/yj−i. We conclude that

strT (Ei) ≤
i+τ−1∑
j=i

2zj−i+2|Ei|/yj−i

≤ 4y2|Ei|(4c1τ log3 n)τ+1

�

Proof of eorem 6.11: Summing across the edge classes gives the promised bound on
stret. Now there are dlogz ∆e weight classes Ei’s in all, and since ea time the number
of edges in a (non-empty) class drops by a factor of y, the algorithm has at mostO(log∆+τ)

iterations. By eorem 6.3 and standard teniques, ea iteration does O(m log2 n) work

and has O(z log2 n) = O(logO(1) n · 2O(
√

logn·log logn)) depth in expectation. �

We now show how to alter the parallel low-stret spanning tree construction from the
preceding section to give a low-stret spanning subgraph construction that has no de-
pendence on the “spread,” and moreover has only polylogarithmic stret. is comes at
the cost of obtaining a sparse subgraph with n − 1 + O(m/ polylogn) edges instead of a
tree, but suffices for our solver application. e two main ideas behind these improvements
are the following: Firstly, the number of surviving edges in ea weight class decreases by
a logarithmic factor in ea iteration; hence, we could throw in all surviving edges aer
they have been whiled down in a constant number of iterations—this removes the factor

of 2O(
√

logn·log logn)from both the average stret and the depth. Secondly, if ∆ is large,
we will identify certain weight-classes with O(m/ polylogn) edges, whi by seing them
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aside, will allow us to break up the ain of dependencies and obtain O(polylogn) depth;
these edges will be thrown ba into the final solution, addingO(m/ polylogn) extra edges
(whi we can tolerate) without increasing the average stret.

e First Improvement

Let us first show how to aieve polylogarithmic stret with an ultra-sparse subgraph.
Given parameters λ ∈ Z>0 and β ≥ c2 log3 n (where c2 = 2 · (4c1(λ + 1))

1
2
(λ−1)), we

obtain the new algorithm SparseAKPW(G,λ, β) by modifying Algorithm 6.5.1 as follows:

(1) use the altered parameters y = 1
c2
β/ log3 n and z = 4c1y(λ+ 1) log3 n;

(2) in ea iteration j, call Partitionwith at most λ+1 edge classes—keep the λ classes
E

(j)
j , E

(j)
j−1, . . . , E

(j)
j−λ+1, but then define a “generic buet” E(j)

0 := ∪j′≤j−λE
(j)
j′ as

the last part of the partition; and

(3) finally, output not just the tree T but the subgraph Ĝ = T ∪ (∪i≥1E
(i+λ)
i ).

Lemma 6.15 Given a graph G, parameters λ ∈ Z>0 and β ≥ c2 log3 n (where c2 = 2 ·
(4c1(λ + 1))

1
2
(λ−1)) the algorithm SparseAKPW(G,λ, β) outputs a subgraph of G with at

most n − 1 +m(c2(log3 n/β))λ edges and total stret at most mβ2 log3λ+3 n. Moreover,
the expected work is Õ(m) and expected depth is
O((c1β/c2)λ log2 n(log∆+ logn)).

Proof : e proof parallels that for eorem 6.11. Fact 6.13 remains unanged. e claim
from Fact 6.12 now remains true only for j ∈ {i, . . . , i + λ − 1}; aer that the edges in
E

(j)
i become part of E(j)

0 , and we only give a cumulative guarantee on the generic buet.
But this does hurt us: if e ∈ Ei is contracted in iteration j ≤ i + λ − 1 (i.e., it lies within
a component formed in iteration j), then str

Ĝ
(e) ≤ 2zj−i+2. And the edges of Ei that

survive till iteration j ≥ i + λ have stret 1 because they are eventually all added to Ĝ;
hence we do not have to worry that they belong to the class E(j)

0 for those iterations. us,
str

Ĝ
(Ei) ≤

∑i+λ−1
j=i 2zj−i+2 · |Ei|/yj−i ≤ 4y2( zy )

λ−1|Ei|.

Summing across the edge classes gives str
Ĝ
(E) ≤ 4y2( zy )

λ−1m, whi simplifies toO(mβ2 log3λ+3 n).
Next, the number of edges in the output follows directly from the fact T can have at most
n − 1 edges, and the number of extra edges from ea class is only a 1/yλ fraction (i.e.,
|E(i+λ)

i | ≤ |Ei|/yλ from Fact 6.12). Finally, the work remains the same; for ea of the
(log∆+ τ) distance scales the depth is still O(z log2 n), but the new value of z causes this
to become O((c1β/c2)λ log2 n). �
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e Second Improvement

e depth of the SparseAKPW algorithm still depends on log∆, and the reason is straightfor-
ward: the graphG(j) used in iteration j is built by takingG(1) and contracting edges in ea
iteration—hence, it depends on all previous iterations. However, the crucial observation is
that if we had τ consecutive weight classes Ei’s whi are empty, we could break this ain
of dependencies at this point. However, there may be no empty weight classes; but having
weight classes with relatively few edges is enough, as we show next.

Fact 6.16 Given a graph G = (V,E) and a subset of edges F ⊆ E, let G′ = G \ F be a
potentially disconnected graph. If Ĝ′ is a subgraph of G′ with total stret str

Ĝ′(E(G′)) ≤
D, then the total stret of E on Ĝ := Ĝ′ ∪ F is at most |F |+D.

Consider a graph G = (V,E,w) with edge weights w(e) ≥ 1, and let Ei(G) := {e ∈
E(G) | w(e) ∈ [zi−1, zi)} be the weight classes. en, G is called (γ, τ)-well-spaced if
there is a set of special weight classes {Ei(G)}i∈I su that for ea i ∈ I , (a) there are at
most γ weight classes before the following special weight class min{i′ ∈ I ∪{∞} | i′ > i},
and (b) the τ weight classes Ei−1(G), Ei−2(G), . . . , Ei−τ (G) preceding i are all empty.

Lemma 6.17 Given any graph G = (V,E), τ ∈ Z+, and θ ≤ 1, there exists a graph
G′ = (V,E′) whi is (4τ/θ, τ)-well-spaced, and |E′ \ E| ≤ θ · |E|. Moreover, G′ can be
constructed in O(m) work and O(logn) depth.

Proof : Let δ = log∆
log z ; note that the edge classes for G are E1, . . . , Eδ , some of whi may

be empty. Denote by EJ the union ∪i∈JEi. We construct G′ as follows: Divide these edge
classes into disjoint groups J1, J2, . . . ⊆ [δ], where ea group consists of dτ/θe consecutive
classes. Within a group Ji, by an averaging argument, there must be a range Li ⊆ Ji of τ
consecutive edge classes that contains at most a θ fraction of all the edges in this group, i.e.,
|ELi | ≤ θ · |EJi | and |Li| ≥ τ . We formG′ by removing these the edges in all these groups
Li’s from G, i.e., G′ = (V,E \ (∪iELi)). is removes only a θ fraction of all the edges of
the graph.

We claim G′ is (4τ/θ, τ)-well-spaced. Indeed, if we remove the group Li, then we desig-
nate the smallest j ∈ [δ] su that j > max{j′ ∈ Li} as a special buet (if su a j exists).
Since we removed the edges in ELi , the second condition for being well-spaced follows.
Moreover, the number of buets between a special buet and the following one is at most
2dτ/θe − (τ − 1) ≤ 4τ/θ. Finally, these computations can be done in O(m) work and
O(logn) depth using standard teniques [JáJ92, Lei92]. �
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Lemma 6.18 Let τ = 3logn/log y. Given a graphGwhi is (γ, τ)-well-spaced, SparseAKPW
can be computed on G with Õ(m) work and O( c1c2 γλβ log2 n) depth.

Proof: SinceG is (γ, τ)-well-spaced, ea special buet i ∈ I must be preceded by τ empty
buets. Hence, in iteration i of SparseAKPW, any surviving edges belong to buets Ei−τ

or smaller. However, these edges have been reduced by a factor of y in ea iteration and
since τ > logy n

2, all the edges have been contracted in previous iterations—i.e., E(i)
` for

` < i is empty.

Consider any special buet i: we claim that we can construct the vertex set V (i) that
SparseAKPW sees at the beginning of iteration i, without having to run the previous it-
erations. Indeed, we can just take the MST on the entire graph G = G(1), retain only the
edges from buets Ei−τ and lower, and contract the connected components of this forest
to get V (i). And once we know this vertex set V (i), we can drop out the edges from Ei and
higher buets whi have been contracted (these are now self-loops), and execute iterations
i, i+1, . . . of SparseAKPWwithout waiting for the preceding iterations to finish. Moreover,
given the MST, all this can be done in O(m) work and O(logn) depth.

Finally, for ea special buet i in parallel, we start running SparseAKPW at iteration i.
Since there are at most γ iterations until the next special buet, the total depth is only
O(γz log2 n) = O( c1c2γλβ log2 n). �

eorem 6.19 (Low-Stret Subgraphs) Given a weighted graph G, λ ∈ Z>0, and β ≥
c2 log3 n (where c2 = 2 · (4c1(λ+ 1))

1
2
(λ−1)), there is an algorithm LSSubgraph(G, β, λ)

that finds a subgraph Ĝ su that

1. |E(Ĝ)| ≤ n− 1 +m
(
cLS

log3 n
β

)λ
2. e total stret (of all E(G) edges) in the subgraph Ĝ is at most bymβ2 log3λ+3 n,

where cLS (= c2 + 1) is a constant. Moreover, the procedure runs in O(λβλ+1 log3−3λ n)

depth and Õ(m) work. If λ = O(1) and β = polylog(n), the depth term simplifies to
O(logO(1) n).

Proof: Given a graphG, we set τ = 3logn/log y and θ = (log3 n/β)λ, and apply Lemma 6.17
to delete at most θm edges, and get a (4τ/θ, τ)-well-spaced graph G′. Let m′ = |E′|. On
this graph, we run SparseAKPW to obtain a graph Ĝ′ with n−1+m′(c2(log3 n/β))λ edges
and total stret at mostm′β2 log3λ+3 n; moreover, Lemma 6.18 shows this can be computed
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with Õ(m) work and the depth is

O(
c1
c2
(4τ/θ)λβ log2 n) = O(λβλ+1 log3−3λ n).

Finally, we output the graph Ĝ = Ĝ′ ∪ (E(G) \ E(G′)); this gives the desired bounds on
stret and the number of edges as implied by Fact 6.16 and Lemma 6.15. �

In this section, we derive a parallel solver for symmetric diagonally dominant (SDD) linear
systems, using the ingredients developed in the previous sections. e solver follows closely
the line of work of [ST03, ST06, KM07, KMP10]. Specifically, we will derive a proof for the
main theorem (eorem 6.1), the statement of whi is reproduced below.

eorem 6.1. For any fixed θ > 0 and any ε > 0, there is an algorithm
SDDSolve that on input an SDD matrix A and a vector b computes a vector
x̃ su that ‖x̃−A+b‖A ≤ ε · ‖A+b‖A in O(m logO(1) n log 1

ε ) work and
O(m1/3+θ log 1

ε ) depth.

In proving this theorem, we will focus on Laplacian linear systems. As noted earlier, linear
systems on SDD matrices are reducible to systems on graph Laplacians in O(log(m + n))

depth andO(m+n)work [Gre96]. Furthermore, because of the one-to-one correspondence
between graphs and their Laplacians, we will use the two terms interangeably.

e core of the near-linear time Laplacian solvers in [ST03, ST06, KMP10] is a “precondi-
tioning” ain of progressively smaller graphs 〈A1 = A,A2, . . . , Ad〉, along with a well-
understood recursive algorithm, known as recursive preconditioned Chebyshev method—
rPCh, that traverses the levels of the ain and for ea visit at level i < d, performs O(1)

matrix-vector multiplications withAi and other simple vector-vector operations. Ea time
the algorithm reaes level d, it solves a linear system on Ad using a direct method. Ex-
cept for solving the boom-level systems, all these operations can be accomplished in linear
work and O(log(m + n)) depth. e recursion itself is based on a simple seme; for ea
visit at level i the algorithm makes at most κ′i recursive calls to level i + 1, where κ′i ≥ 2

is a fixed system-independent integer. erefore, assuming we have computed a ain of
preconditioners, the total required depth is (up to a log) equal to the total number of times
the algorithm reaes the last (and smallest) level Ad.
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e construction of the preconditioning ain in [KMP10] relies on a subroutine that on in-
put a graph Ai, constructs a slightly sparser graph Bi whi is spectrally related to Ai. is
“incremental sparsification” routine is in turn based on the computation of a low-stret
tree for Ai. e parallelization of the low-stret tree is actually the main obstacle in par-
allelizing the whole solver presented in [KMP10]. Crucial to effectively applying our result
in Section 6.5 is a simple observation that the sparsification routine of [KMP10] only re-
quires a low-stret spanning subgraph rather than a tree.en, with the exception of some
parameters in its construction, the preconditioning ain remains essentially the same.

e following lemma is immediate from Section 6 of [KMP10].

Lemma 6.20 Given a graphG and a subgraph Ĝ ofG su that the total stret of all edges
inGwith respect to Ĝ ism ·S, a parameter on condition number κ, and a success probability
1− 1/ξ, there is an algorithm that constructs a graphH su that

1. G � H � κ ·G, and
2. |E(H)| = |E(Ĝ)|+ (cIS · S logn log ξ)/κ

in O(log2 n) depth and O(m log2 n) work, where cIS is an absolute constant.

Although Lemma 6.20 was originally stated with Ĝ being a spanning tree, the proof in fact
works without anges for an arbitrary subgraph. For our purposes, ξ has to be at most
O(logn) and that introduces an additional O(log logn) term. For simplicity, in the rest of
the section, we will consider this as an extra logn factor.

Lemma 6.21 Given a weighted graphG, parameters λ and η su that η ≥ λ ≥ 16, we can
construct in O(log2ηλ n) depth and Õ(m) work another graphH su that

1. G � H � 1
10 · log

ηλ n ·G
2. |E(H)| ≤ n− 1 +m · cPC/logηλ−2η−4λ (n),

where cPC is an absolute constant.

Proof : Let Ĝ = LSSubgraph(G,λ, logη n). en, eorem 6.19 shows that |E(Ĝ)| is at
most

n− 1 +m

(
cLS · log3 n

β

)λ

= n− 1 +m

(
cLS

logη−3 n

)λ
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Furthermore, the total stret of all edges in G with respect to Ĝ is at most

S = mβ2 logλ+3 n ≤ m log2η+3λ+3 n.

Applying Lemma 6.20 with κ = 1
10 log

ηλ n givesH su that G � H � 1
10 log

ηλ n ·G and
|E(H)| is at most

n− 1 +m ·

(
cλLS

logλ(η−3) n
+

10 · cIS log2η+3λ+5 n

logηλ n

)
≤ n− 1 +m · cPC

logηλ−2λ−3k−5 n

≤ n− 1 +m · cPC

logηλ−2η−4λ n
.

�

We now give a more precise definition of the preconditioning ain we use for the parallel
solver by giving the pseudocode for constructing it.

Definition 6.22 (Preconditioning Chain) Consider a ain of graphs

C = 〈A1 = A,B1, A2, . . . , Ad〉,

and denote by ni andmi the number of nodes and edges of Ai respectively. We say that C is
preconditioning ain for A if

1. Bi = IncrementalSparsify(Ai).

2. Ai+1 = GreedyElimination(Bi).

3. Ai � Bi � 1/10 · κiAi, for some explicitly known integer κi. ⁶

As noted above, the rPCh algorithm relies on finding the solution of linear systems on Ad,
the boom-level systems. To parallelize these solves, we make use of the following fact
whi can be found in Sections 3.4. and 4.2 of [GVL96].

Fact 6.23 A factorization LL> of the pseudo-inverse of an n-by-n Laplacian A, where L is
a lower triangular matrix, can be computed in O(n) time and O(n3) work, and any solves
thereaer can be done in O(logn) time and O(n2) work.

⁶e constant of 1/10 in the condition number is introduced only to simplify subsequent notation.
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Note that although A is not positive definite, its null space is the space spanned by the all
1s vector when the underlying graph is connected. erefore, we can in turn drop the first
row and column to obtain a semi-definite matrix on whi LU factorization is numerically
stable.

e routine GreedyElimination is a partial Cholesky factorization (for details see [ST06]
or [KMP10]) on vertices of degree at most 2. From a graph-theoretic point of view, the
routine GreedyElimination can be viewed as simply recursively removing nodes of degree
one and splicing out nodes of degree two. e sequential version of GreedyElimination
returns a graph with no degree 1 or 2 nodes. e parallel version that we present below
leaves some degree-2 nodes in the graph, but their number will be small enough to not
affect the complexity.

Lemma 6.24 IfG hasn vertices andn−1+m edges, then the procedure GreedyElimination(G)

returns a graph with at most 2m− 2 nodes in O(n+m) work and O(logn) depth whp.

Proof : e sequential version of GreedyElimination(G) is equivalent to repeatedly re-
moving degree 1 vertices and splicing out 2 vertices until no more exist while maintaining
self-loops and multiple edges (see, e.g., [ST03, ST06] and [Kou07, Section 2.3.4]). us, the
problem is a slight generalization of parallel tree contraction [MR89]. In the parallel ver-
sion, we show that while the graph has more than 2m − 2 nodes, we can efficiently find
and eliminate a “large” independent set of degree two nodes, in addition to all degree one
vertices.

We alternate between two steps, whi are equivalent to Rake and Compress in [MR89],
until the vertex count is at most 2m− 2:
Mark an independent set of degree 2 vertices, then

1. Contract all degree 1 vertices, and

2. Compress and/or contract out the marked vertices.

To find the independent set, we use a randomized marking algorithm on the degree two
vertices (this is used in place of maximal independent set for work efficiency): Ea degree
two node flips a coin with probability 1

3 of turning up heads; we mark a node if it is a heads
and its neighbors either did not flip a coin or flipped a tail.

We show that the two steps above will remove a constant fraction of “extra” vertices. LetG
is a multigraph with n vertices andm+ n− 1 edges. First, observe that if all vertices have
degree at least three then n ≤ 2(m − 1) and we would be finished. So, let T be any fixed
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spanning tree ofG; let a1 (resp. a2) be the number of vertices in T of degree one (resp. two)
and a3 the number those of degree three or more. Similarly, let b1, b2, and b3 be the number
vertices in G of degree 1, 2, and at least 3, respectively, where the degree is the vertex’s
degree in G.

It is easy toe that in expectation, these two steps remove b1+ 4
27b2 ≥ b1+

1
7b2 vertices. In

the following, we will show that b1+ 1
7b2 ≥

1
7∆n, where∆n = n−(2m−2) = n−2m+2

denotes the number of “extra” vertices in the graph. Consider non-tree edges and how they
are aaed to the tree T . Letm1,m2, andm3 be the number of aament of the following
types, respectively:

(1) an aament to x, a degree 1 vertex in T , where x has at least one other aament.

(2) an aament to x, a degree 1 vertex in T , where x has no other aament.

(3) an aament to a degree 2 vertex in T .

As ea edge is incident on two endpoints, we have m1 + m2 + m3 ≤ 2m. Also, we can
lower bound b1 and b2 in terms of mi’s and ai’s: we have b1 ≥ a1 − m1/2 − m2 and
b2 ≥ m2 + a2 −m3. is gives

b1 +
1
7b2 ≥

2
7(a1 −m1/2−m2) +

1
7(m2 + a2 −m3)

= 2
7a1 +

1
7a2 −

1
7(m1 +m2 +m3)

≥ 2
7a1 +

1
7a2 −

2
7m.

Consequently, b1 + 1
7b2 ≥

1
7(2a1 + a2 − 2m) ≥ 1

7 · ∆n, where to show the last step, it
suffices to show that n + 2 ≤ 2a1 + a2 for a tree T of n nodes. WLOG, we may assume
that all nodes of T have degree either one or three, in whi case 2a1 = n + 2. Finally, by
Chernoff bounds, the algorithm will finish with high probability in O(logn) rounds. �

Spielman and Teng [ST06, Section 5] gave a (sequential) time bound for solving a linear SDD
system given a preconditioner ain. e following lemma extends theireorem 5.5 to give
parallel runtime bounds (work and depth), as a function of κi’s and mi’s. We note that in
the bounds below, them2

d term arises from the dense inverse used to solve the linear system
in the boom level.
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Lemma 6.25 ere is an algorithm that given a preconditionerainC = 〈A1 = A,A2, . . . , Ad〉
for a matrix A, a vector b, and an error tolerance ε, computes a vector x̃ su that

‖x̃−A+b‖A ≤ ε · ‖A+b‖A,

with depth bounded by( ∑
1≤i≤d

∏
1≤j<i

√
κj

)
logn log

(
1
ε

)
≤ O

(( ∏
1≤j<d

√
κj

)
logn log

(
1
ε

))

and work bounded by ∑
1≤i≤d−1

mi ·
∏
j≤i

√
κj +m2

d

∏
1≤j<d

√
κj

 log
(
1
ε

)
.

To reason about Lemma 6.25, we will rely on the following lemma about preconditioned
Chebyshev iteration and the recursive solves that happen at ea level of the ain. is
lemma is a restatement of Spielman and Teng’s Lemma 5.3 (slightly modified so that the
√
κi does not involve a constant, whi shows up instead as constant in the preconditioner

ain’s definition).

Lemma 6.26 Given a preconditioner ain of length d, it is possible to construct linear oper-
ators solveAi for all i ≤ d su that

(1− e−2)A+
i � solveAi � (1 + e2)

and solveAi is a polynomial of degree
√
κi involving solveAi+1 and 4 matrices with mi

non-zero entries (from GreedyElimination).

Armed with this, we state and prove the following lemma:

Lemma 6.27 For ` ≥ 1, given any vector b, the vector solveA`
· b can be computed in depth

logn
∑

`≤i≤d

∏
`≤j<i

√
κj

and work ∑
`≤i≤d−1

mi ·
∏

`≤j≤i

√
κj +m2

d

∏
`≤j<d

√
κj
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Proof: e proof is by induction in decreasing order on `. When d = `, all we are doing is a
matrix multiplication with a dense inverse. is takes O(logn) depth and O(m2

d) work.

Suppose the result is true for `+1. en since solveA`
can be expressed as a polynomial of

degree
√
κ` involving an operator that is solveA`+1

multiplied by at most 4 matrices with
O(m`) non-zero entries. We have that the total depth is

logn
√
κ` +

√
κ` ·

logn
∑

`+1≤i≤d

∏
`+1≤j<i

√
κj


= logn

∑
`≤i≤d

∏
`≤j<i

√
κj

and the total work is bounded by

√
κ`m` +

√
κ` ·

 ∑
`+1≤i≤d−1

mi ·
∏

`+1≤j≤i

√
κj +m2

d

∏
`+1≤j<d

√
κj


=

∑
`≤i≤d−1

mi ·
∏

`≤j≤i

√
κj +m2

d

∏
`≤j<d

√
κj .

�

Proof of Lemma 6.25: e ε-accuracy bound follows from applying preconditioned Cheby-
shev to solveA1 similarly to Spielman and Teng’seorem 5.5 [ST06], and the running time
bounds follow from Lemma 6.27 when ` = 1. �

Lemma 6.25 shows that the algorithm’s performance is determined by the seings of κi’s
and mi’s; however, as we will be using Lemma 6.21, the number of edges mi is essentially
dictated by our oice of κi. We now show that if we terminate ain earlier, i.e. adjusting
the dimension Ad to roughly O(m1/3 log ε−1), we can obtain good parallel performance.
As a first aempt, we will set κi’s uniformly:

Lemma 6.28 For any fixed θ > 0, if we construct a preconditioner ain using Lemma 6.21
seing λ to some proper constant greater than 21, η = λ and extending the sequence
until md ≤ m1/3−δ for some δ depending on λ, we get a solver algorithm that runs in
O(m1/3+θ log(1/ε)) depth and Õ(m log 1/ε) work as λ → ∞, where ε is the accuracy
precision of the solution, as defined in the statement of eorem 6.1.
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Proof: By Lemma 6.20, we have thatmi+1—the number of edges in level i+ 1—is bounded
by

O(mi ·
cPC

logηλ−2η−4λ
) = O(mi ·

cPC

logλ(λ−6)
),

whi can be repeatedly apply to give

mi ≤ m ·

(
cPC

logλ(λ−6) n

)i−1

erefore, when λ > 12, we have that for ea i < d,

mi ·
∏
j≤i

√
κ(nj) ≤ m ·

(
cPC

logλ(λ−6) n

)i−1

·
(√

logλ
2
n

)i

= Õ(m) ·

(
cPC

logλ(λ−12)/2 n

)i

≤ Õ(m)

Now consider the term involvingmd. We have that d is bounded by(
2

3
+ δ

)
logm/ log (

1

cPC
lognλ(λ−6)).

Combining with the κi = logλ
2
n, we get∏

1≤j≤d

√
κ(nj)

=
(
lognλ2/2

)( 2
3
+δ) logm/ log (c lognλ(λ−6))

= exp
(
log logn

λ2

2
(
2

3
+ δ)

logm
λ(λ− 6) log logn− log cPC

)
≤ exp

(
log logn

λ2

2
(
2

3
+ δ)

logm
λ(λ− 7) log logn

)
(since log cPC ≥ − logn)

= exp
(
logn

λ

λ− 7
(
1

3
+

δ

2
)

)
= O(m( 1

3
+ δ

2
) λ
λ−7 )
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Sincemd = O(m
1
3
−δ), the total work is bounded by

O(m( 1
3
+ δ

2
) λ
λ−7

+ 2
3
−2δ) = O(m1+ 7

λ−7
−δ λ−14

λ−7 )

So, seing δ ≥ 7
λ−14 suffices to bound the total work by Õ(m). And, when δ is set to 7

λ−14 ,
the total parallel running time is bounded by the number of times the last layer is called

∏
j

√
κ(nj) ≤O(m

( 1
3
+ 1

2(λ−14)
) λ
λ−7 )

≤O(m
1
3
+ 7

λ−14
+ λ

2(λ−14)(λ−7) )

≤O(m
1
3
+ 14

λ−14 ) when λ ≥ 21

Seing λ arbitrarily large suffices to give O(m1/3+θ) depth. �

To mat the promised bounds in eorem 6.1, we improve the performance by reducing
the exponent on the logn term in the total work from λ2 to some large fixed constant while
leing total depth still approa O(m1/3+θ).

Proof of eorem 6.1: Consider seing λ = 13 and η ≥ λ. en,

ηλ− 2η − 4λ ≥ η(λ− 6) ≥ 7

13
ηλ

We use c4 to denote this constant of 7
13 , namely c4 satisfies

cPC/ logηk−2η−4λ n ≤ cPC/ logc4ηλ n

We can then pi a constant threshold L and set κi for all i ≤ L as follows:

κ1 = logλ
2
n, κ2 = log(2c4)λ

2
n, · · · , κi = log(2c4)

i−1λ2
n

To solve AL, we apply Lemma 6.28, whi is analogous to seing AL, . . . , Ad uniformly.
e depth required in constructing these preconditioners is O(md +

∑L
j=1(2c4)

j−1λ2),
plus O(md) for computing the inverse at the last level—for a total of O(md) = O(m1/3).
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As for work, the total work is bounded by∑
i≤d

mi

∏
1≤j≤i

√
κj +

∏
1≤j≤d

√
κjm

2
d

=
∑
i<L

mi

∏
1≤j≤i

√
κj +

 ∏
1≤j<L

√
κj

 ·
√κj∑

i≥L

mi

∏
L≤j≤i

√
κj +m2

d

∏
L≤j≤d

√
κj


≤
∑
i<L

mi

∏
1≤j≤i

√
κj +

 ∏
1≤j<L

√
κj

mL
√
κL

=
∑
i≤L

mi

∏
1≤j≤i

√
κj

≤
∑
i≤L

m∏
j<i κ

c4
i

∏
1≤j≤i

√
κj

= m
∑
i≤L

√
κ1
∏

2≤j≤i

√
κ2c4j−1∏

j<i κ
c4
i

= mL
√
κ1

e first inequality follows from the fact that the exponent of logn in κL can be arbitrarily
large, and then applying Lemma 6.28 to the solves aer level L. e fact that mi+1 ≤
mi ·O(1/κc4i ) follows from Lemma 6.21.

Since L is a constant,
∏

1≤j≤L ∈ O(polylogn), so the total depth is still bounded by
O(m1/3+θ) by Lemma 6.28. �

We presented a near linear-work parallel algorithm for constructing graph decompositions
with strong-diameter guarantees and parallel algorithms for constructing spanning trees

with stret 2O(
√

logn log logn) and ultra-sparse subgraphs with stret O(logO(1) n). e
ultra-sparse subgraphs were shown to be useful in the design of a near linear-work paral-
lel SDD solver. By plugging our result into previous frameworks, we obtained improved
parallel algorithms for several problems on graphs.





Chapter 7
k

Probabilistic tree embeddings—the general idea of embedding finite metrics into a distri-
bution of dominating trees while maintaining distances in expectation—has proved to be a
very useful and general tenique in the algorithmic study of metric spaces [Bar98]. eir
study has far-reaing consequences to understanding finite metrics and developing approx-
imation algorithms on them. An elegant optimal algorithm for su tree embeddings was
given by Fakaroenphol, Rao, and Talwar (FRT); it maintains distances to within O(logn)
in expectation [FRT04]. In this apter, we study the problem of computing su embed-
dings in parallel, and use these to obtain parallel approximation algorithms for k-median
and buy-at-bulk network design.

A crucial design constraint is to ensure that the parallel work of our algorithms remains
close to that of the sequential counterparts (a.k.a. work efficiency) while aieving small,
preferably polylogarithmic, depth (parallel time). Work efficiency is important since it means
an algorithm is useful regardless of whether we have a modest number of processors (one
being the most modest) or a larger number. Su algorithms limit the amount of resources
used and hence presumably the cost of the computation (e.g. in terms of the energy used, or
the rental cost of a maine in the “cloud”). We will be less concerned with polylogarithmic
factors in the depth since su a measure is typically not robust across models.

113
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Summary of Results

We give a parallel algorithm to embed any n-point metric into a distribution of hierari-
cally well-sparated trees (HSTs) with O(n2 logn) (randomized) work and O(log2 n) depth,
while providing the same distance-preserving guarantees as FRT [FRT04]. e main al-
lenge arises in making sure the depth of the computation is polylogarithmic even when the
resulting tree is highly imbalanced—in contrast, the FRT algorithm, as stated, works level
by level. is imbalance can occur when the ratio between the maximum and minimum
distances in the metric space is large. Our contribution lies in recognizing an alternative
view of the FRT algorithm and developing an efficient algorithm to exploit it. In addition,
our analysis also implies probabilistic embeddings into trees without Steiner nodes of height
O(logn) whp. (though not HSTs); su trees are useful for both our algorithms and have
also proved useful in other contexts.

Using this algorithm, we give an RNCO(log k)-approximation for k-median. is is the first
RNC algorithm that gives non-trivial approximation for any k ¹. Furthermore, the algorithm
is work efficient relative to previously described sequential teniques. We also give an RNC

O(logn)-approximation algorithm for buy-at-bulk network design. is algorithm is within
an O(logn) factor of being work efficient.

For alphabet Σ and a sequence α ∈ Σ∗, we denote by |α| the length of α and by αi (or
alternatively α(i)) the i-th element of α. Given sequences α and β, we say that α v β if α
is a prefix of β. Furthermore, we denote by LCP(α, β) the longest common prefix of α and
β. Let prefix(α, i) be the first i elements of α.

Let G = (V,E) be a graph with edge lengths ` : E → R+. Let dG(u, v) or simply d(u, v)

denote the shortest-path distance inG between u and v. We represent graphs and trees in a
form of adjacency array, where the vertices and the edges are ea stored contiguously, and
ea vertex has a pointer to a contiguous array of pointers to its incident edges.

A trie (also known as a prefix tree) is an ordered tree where ea tree edge is marked with
a symbol from (constant-sized) Σ and a node v corresponds to the sequence given by the
symbols on the root-to-v path, in that order. In this work, we only deal with non-empty
sequences s1, s2, . . . , sk of equal length. e trie corresponding to these sequences is one

¹ere is an RNC algorithm that give a (5 + ε)-approximation for k ≤ polylog(n) [BT10]
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in whi there are k leaf nodes, ea corresponding uniquely to one of the sequences. If
these sequences have long common prefixes, its trie has many long paths (i.e., a line of non-
braning nodes ). is can be compressed. Contracting all non-root degree-2 nodes by con-
catenating the symbols on the incident edges results in a Patricia tree (also known as a radix
tree), in whi by definition, all internal node except the root has degree at least 3. Using a
(multiway-)Cartesian tree algorithm of Blello and Shun and known reduction [BS11], the
Patricia tree of a lexicographically ordered sequence of strings s1, . . . , sn can be constructed
in O(n) work and O(log2 n) depth assuming the following as input: (1) the sequences si’s
themselves, (2) |si| the length of ea si for i ∈ [n], and (3) |LCP(si, si+1)| the length of the
longest common prefix between si and si+1 for i ∈ [n− 1].

We also rely on the following primitives on trees. Given a commutative semigroup (U, ∗),
and a rooted tree T (not necessarily balanced) where every node v ∈ V (T ) is tagged with a
value val(v) ∈ U , there is an algorithm treeAgg that computes the aggregate value for ea
subtree of T (i.e., for ea v ∈ V (T ), compute the result of applying ∗ to all val(·) inside that
subtree) inO(n)work andO(logn) depth, assuming the binary operator ∗ is a constant-time
operation [MRK88, JáJ92]. In the same work-depth bounds, the lowest common ancestor
(LCA) of a pair of vertices u and v, denoted by LCA(u, v), can be determined (via the tree
primitive just mentioned or otherwise) [SV88, BV93].

An input instance is a finite metric space (X, d), where |X| = n and the symmetric distance
function d(·, ·) is specified by an n-by-n matrix, normalized so that 1 ≤ d(x, y) ≤ 2δ = ∆

for all x 6= y. We adopt the standard convention that d(x, x) = 0.

In the sequential case, FRT [FRT04] developed an elegant algorithm that preserves the dis-
tances up toO(logn) in expectation. eir algorithm can be described as a top-down recur-
sive low-diameter decomposition (LDD) of the metric. In broad strokes, given a metric space
(X, d)with diameter∆, the algorithm applies an LDD procedure to partition the points into
clusters of diameter roughly ∆/2, then ea cluster into smaller clusters diameter of ∆/4,
etc. is construction produces a laminar family of clusters that we connect up based on set-
inclusion, yielding a so-called FRT tree. e algorithm gives an optimal distance-preserving
guarantee and can be implemented in Õ(n2) sequential time.

e low-diameter decomposition step is readily parallelizable, but there is potentially a long
ain of dependencies: for ea i, figuring out the clusters with diameter 2i requires knowl-
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Algorithm 7.2.1 Implicit simultaneous low-diameter decompositions

1. Pi a permutation π : X → [n] uniformly at random.

2. Pi β ∈ [1, 2] with the distribution fβ(x) = 1/(x ln 2).

3. For all v ∈ X , compute the partition sequence χ(v)
π,β .

edge of the clusters of diameter 2i+1. is O(log∆) ain is undesirable for large ∆. Our
algorithms get rid of this dependence. e main theorem of this section is the following:

eorem 7.1 (Parallel FRT Embedding) ere is a randomized algorithm running inO(n2 logn)
work andO(log2 n) depth that on input a finite metric space (X, d) with |X| = n, produces
a tree T su that for all x, y ∈ X , d(x, y) ≤ dT (x, y) and E [dT (x, y)] ≤ O(logn) d(x, y).

To aieve this parallelization, we take a slightly different, though completely equivalent,
view of the FRT algorithm. (We assume basic familiarity with their algorithm.) Instead of a
cluster-centric view whi maintains a set of clusters that are refined over time, we explore
a point-centric view whi tras the movement of ea point across clusters but without
explicitly representing the clusters. is view can also be seen as representing an FRT tree
by the root-to-leaf paths of all external nodes (corresponding to points in the metric space).
We formalize this idea in the following definition:

Definition 7.2 ((π, β)-Partition Sequence) For v ∈ X , the partition sequence of v with
respect to a permutation π : X → [n] and a parameter β > 0, denoted by χ

(v)
π,β , is a

length-(δ + 1) sequence su that χ(v)
π,β(0) = 1 and

χ
(v)
π,β(i) = min{π(w) | w ∈ X, d(v, w) ≤ β · 2δ−i−1}

for i = 1, . . . , δ = log∆.

For ea combination of π and β, this is the sequence of the lowest-numbered vertices (where
the numbering is given by the random permutation π) that the node v can “see” as it reduces
its range-of-vision geometrically from∆ down to 0—naturally, these numbers keep increas-
ing from 1 = minw∈X π(w) to π(v). Hence, the first step in generating an FRT tree is to pi
a random permutation π on the nodes and a value β, and compute the partition sequence
χ
(v)
β,π for ea node v ∈ X , as in Algorithm 7.2.1. ese partition sequences encode all the

information we need to construct an FRT tree T as follows:
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• Vertices. For i = 0, . . . , δ, let Li = {prefix(χ(v)
π,β, i+ 1) | v ∈ X} be the i-th level in

the tree. e vertices of T are exactly V (T ) = ∪iLi, where ea v ∈ X corresponds
to the node identified by the sequence χ(v)

π,β .
• Edges. Edges only go between Li and Li+1 for i ≥ 1. In particular, a node x ∈ Li

has an edge with length 2δ−i to y ∈ Li+1 if x v y.

We can e that this construction yields a tree because edges are between adjacent lev-
els and defined by the subsequence relation. e following two lemmas show distance-
preserving properties of the tree T . e first lemma indicates that dT is an upper bound for
d; the second shows that dT preserves the distance d up to a O(logn) factor in expectation.

Lemma 7.3 For all u, v ∈ X , for all β, π, d(u, v) ≤ dT (χ
(u)
π,β , χ

(v)
π,β).

Lemma 7.4 For all u, v ∈ X , E
[
dT (χ

(u)
π,β , χ

(v)
π,β)

]
≤ O(logn) · d(u, v).

Since this is a completely equivalent process to that of [FRT04], the proofs are analogous but
are given below for completeness.

Proof of Lemma 7.3: Let u, v ∈ X su thatu 6= v be given. ese nodes are “separated” at a
vertex y that is the longest common prefix (LCP) ofχ(u) andχ(v). Let i∗ = |LCP(χ(u), χ(v))|.
is means there is a vertex w at distance at most β · 2δ−i∗−1 from both u and v, so
d(u, v) ≤ 2δ−i∗+1. On the other hand, both χ(u) and χ(v) are in the subtree rooted at
y; therefore, dT (χ(u), χ(v)) ≥ 2 · 2δ−i∗ ≥ 2δ−i∗+1, whi concludes the proof. �

Before proving the upperbound on the tree distance, we state a useful fact: Because β is
pied from [1, 2] with pdf. 1

x ln 2 , the probability that for any x ≥ 1, there exists an i ∈
Z+ \ {0} su that β · 2i−1 ∈ [x, x+ dx) is at most dx

x ln 2 :

Fact 7.5

Pr
[
∃i ≥ 1, β · 2i−1 ∈ [x, x+ dx)

]
≤ dx

x ln 2
.

We now prove an upperbound on the distance:

Proof of Lemma 7.4: is proof is adapted from the original FRT proof to suit our seing.
Let distinct u, v ∈ X be given. For a level t, we say thatw ∈ X seles the pair uv ifw is the
first node (according to π) su that there exists an x ∈ Lt with the property that xt = w,
and x v χ(u) or x v χ(v). We say that w ∈ X cuts the pair uv if w seles it but for su
an x, either x v χ(u) or x v χ(v)—and not both.
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We know that uv must be cut at some level, and if it is cut at level i, dT (u, v) ≤ 2 ·∑
i′≥i 2

δ−i′ = 2δ−i+2 ≤ 8β2δ−i−1.

Let w be any node. Assume WLOG d(w, u) ≤ d(w, v). For w to cut uv, there must be a
level i su that

1. d(w, u) ≤ β · 2δ−i−1 ≤ d(w, v), and
2. w seles uv at this level i.

For the purpose of analysis, let’s order the vertices ofX asw1, w2, . . . in order of increasing
distance from the closer of u and v. Consider the k-th node wk. Like in FRT’s proof, for a
particular x between d(wk, u) and d(wk, v), Pr

[
∃i ≥ 1, β · 2δ−i−1 ∈ [x, x+ dx)

]
≤ dx

x ln 2 .
Conditioned on this, at this level i, w1, w2, . . . , ws could all sele uv, but the first in the π
order will sele it. us, the contribution of this vertex to dT (u, v), in expectation, is at
most ∫ d(wk,v)

d(wk,u)

1

x ln 2
8x

1

k
dx ≤ O( 1k · d(u, v)).

Summing over possible nodes that could cut uv, we have

E [dT (u, v)] ≤
n∑

i=1

O( 1kd(u, v)) = O(logn)d(u, v).

�

We now present a naïve parallelization of the above construction: not only does its depth
depend on log∆, it also does significantly more work than the sequential FRT algorithm.
A parallel algorithm with su parameters can be inferred directly from [FRT04], but the
presentation here is instructive: it relies on computing partition sequences and build the tree
using them, a view that will be useful to get the improved parallel algorithm in the next
section.

Lemma 7.6 Given π and β, ea χ
(v)
π,β can be computed in O((n + log∆) logn) work and

O(logn) depth.

Proof: Let v ∈ X , together with π and β, be a given. We can sort the vertices by the distance
from v so that v = vn and d(v, v1) ≥ d(v, v2) ≥ · · · ≥ d(v, vn) = 0, where v1, . . . , vn
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are distinct vertices. is requires O(n logn) work and O(logn) depth. en, we use a
prefix computation to compute `i = min{π(vj) | j ≥ i} for i = 1, . . . , n. is quantity
indicates that by going to distance at least d(v, vi), v could be a number as low as `i. is
step requires O(n) work and O(logn) depth (using a prefix computation). Finally, for ea
k = 1, . . . , δ, use a binary sear to determine the smallest index i (i.e., largest distance) su
that d(v, vi) ≤ β ·2δ−k−1—and χ(v)(k) is simply `i. ere areO(log∆) su k values, ea
independently running inO(logn) depth and work, so this last step requiresO(log∆ logn)
work and O(logn) depth, whi completes the proof. �

Using this algorithm, we can compute all partition sequences independently in parallel, lead-
ing to a total of O(n(n+ log∆) logn) work and O(logn) depth for computing χ(v) for all
v ∈ X . e next step is to derive an embedding tree from these partition sequences. From
the description in the previous section, to compute the set of level-i vertices, we examine
all length-i prefixes prefix(χ(v)

π,β , i) for v ∈ X and remove duplicates. e edges are easy to
derive from the description. Ea level i can be done in expected O(i2) work and O(logn)
depth, so in total we needO(log3∆)work andO(logn log∆) depth in expectation to build
the tree from these sequences, proving the following proposition:

Proposition 7.7 ere is an algorithm simpleParFRT that computes an FRT tree inO(n2 logn+
n log∆ logn+ log3∆) work and O(logn log∆) depth.

e simple algorithm in the preceding section had a log∆ dependence in both work and
depth. Now we show the power of the partition sequence view of the construction, and
derive an algorithm whose work and depth bounds are independent of ∆. Moreover, the
algorithm performs essentially the same amount of work as the sequential algorithm.

At first glance, the log∆ dependence in the generation of partition sequences in our previous
algorithm seems necessary and the reason is simple: the length of ea partition sequence is
O(log∆). To remove this dependence, we work with a different representation of partition
sequences, one whi has length at most n. is representation is based on the observation
that any partition sequence is non-decreasing and its entries are numbers between 1 and n.
Consequently, the sequence cannot ange values more than n times and we only have to
remember where it anges values. is inspires the following definition:

Definition 7.8 (Compressed Partition Sequence) For v ∈ X , the compressed partition se-
quence of v, denoted by σ(v)

π,β , is the unique sequence 〈(si, pi)〉
k
i=1 su that 1 = s1 < · · · <
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sk < sk+1 = δ+1, p1 < p2 < · · · < pk, and for all i ≤ k and j ∈ {si, si+1, . . . , si+1−1},
χ
(v)
π,β(j) = pi, where χ

(v)
π,β is the partition sequence of v.

In words, if we view π as assigning priority values to X , then the compressed partition
sequence of v tras the distance scales at whi the lowest-valued vertex within rea from
v anges. As an example, at distances β · 2δ−s1+1, β · 2δ−(s1+1)+1, . . . , β · 2δ−(s2−1)+1,
the lowest-valued vertex within rea of v is p1—and β · 2δ−s2+1 is the first distance scale
at whi p1 cannot be reaed and p2 > p1 becomes the new lowest-valued node. e
following lemma shows how to efficiently compute the compressed partition sequence of a
given vertex.

Lemma 7.9 Given π and β, ea compressed partition sequence σ(v)
π,β can be computed in

O(n logn) work and O(logn) depth.

Proof : e idea is similar to that of the partition sequence, except for how we derive the
sequence at the end. Let v ∈ X , together with π and β, be a given. Sort the vertices by the
distance from v so that v = vn and d(v, v1) ≥ d(v, v2) ≥ · · · ≥ d(v, vn), where v1, . . . , vn
are distinct vertices. is has O(n logn) work and O(logn) depth. Again, compute `i =
min{π(vj) | j ≥ i} for i = 1, . . . , n. Furthermore, let bi = max{j ≥ 1 | β · 2δ−j−1 ≥
d(v, vi)} for all i = 1, . . . , n. is index bi represents the smallest distance scale that v can
still see vi. en, we compute ρi = min{`j | bj = bi}. Because the bi’s are non-decreasing,
computing ρi’s amounts to identifying where bi’s ange values and performing a prefix
computation. us, the sequences `i’s, bi’s, and ρi’s can be computed in O(n) work and
O(logn) depth.

To derive the compressed partition sequence, we look for all indices i su that ρi−1 6= ρi
and bi−1 6= bi—these are precisely the distance scales at whi the current lowest-numbered
vertex becomes unreaable from v. ese indicies can be discovered in O(n) work and
O(1) depth, and using standard teniques involving prefix sums, we put them next to ea
other in the desired format. �

To keep the work term independent of log∆, we cannot, for example, explicitly write out all
the cluster nodes. e FRT tree has to be in a specific “compressed” format for the construc-
tion to be efficient. A compacted FRT tree is obtained by contracting all degree-2 internal
nodes of an FRT tree, so that every internal node except for the root has degree at least 3
(a single parent and at least 2 ildren). By adding the weights of merged edges, the com-
pacting preserves the distance between every pair of leaves. Equivalently, an FRT tree as
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described earlier is in fact a trie with the partition sequences as its input—and a compacted
FRT tree is a Patricia (or radix) tree on these partition sequences.

Our task is therefore to construct a Patricia tree given compressed partition sequences. As
discussed in Section 7.1, the Patricia tree of a lexicographically ordered sequence of strings
s1, . . . , sn can be constructed inO(n)work andO(log2 n) depth if we have the following as
input: (1) |si| the length of ea si for i ∈ [n], and (2) LCP(si, si+1) the length of the longest
common prefix between si and si+1 for i ∈ [n−1]. ese sequences can be lexicographically
ordered in O(n2 logn) work and O(log2 n) depth and the LCP between all adjacent pairs
can be computed in O(n2) work and O(logn) depth. Combining this with the Patricia tree
algorithm [BS11] gives the promised bounds, concluding the proof of eorem 7.1.

Some applications call for a tree embedding solution that consists of only the original input
vertices. To this end, we describe how to convert a compacted FRT tree from the previous
section into a tree that contains no Steiner vertices. As byproduct, the resulting non-Steiner
tree has O(logn) depth with high probability.

eorem 7.10 ere is an algorithm FRTNoSteiner running inO(n2 logn)work andO(log2 n)
depth that on input an n-point metric space (X, d), produces a tree T su that (1) V (T ) =

X ; (2) T has O(logn) depth whp.; and (3) for all x, y ∈ X , d(x, y) ≤ dT (x, y) and
E [dT (x, y)] ≤ O(logn) d(x, y).

We begin by recalling that ea leaf of an FRT tree corresponds to a node in the original
metric space, so there is a bijection f : Lδ → X . Now consider an FRT tree T on whi we
will perform the following transformation: (1) obtainT ′ bymultiply all the edge lengths of T
by 2, (2) for ea node x ∈ V (T ′), label it with label(x) = min{π(f(y)) | y ∈ leaves(T ′

x)},
where leaves(T ′

x) is the set of leaf nodes in the subtree of T
′ rooted at x, and (3) construct T ′′

from T ′ by seing an edge to length 0 if the endpoints are given the same label—otherwise
retaining the length. As shown in Lemma 7.12, the resulting tree T ′′ has O(logn) depth
with high probability.

Several things are clear from this transformation: First, for allu, v ∈ X , d(u, v) ≤ dT ′(χ(u), χ(v))

and E
[
dT ′(χ(u), χ(v))

]
≤ O(logn) d(u, v) (of course, with worse constants than dT ). Sec-

ond, T ′′ is no longer an HST, but dT ′′ is a lowerbound on dT ′ , i.e., for all u, v ∈ X ,
dT ′′(χ(u), χ(v)) ≤ dT ′(χ(u), χ(v)). erefore, to prove distance-preserving guarantees sim-
ilar to eorem 7.1, we only have to show that dT ′′ dominates d
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Lemma 7.11 For all u, v ∈ X , d(u, v) ≤ dT ′′(χ(u), χ(v)).

Proof: Let u 6= v ∈ X be given and let y = LCP(χ(u), χ(v)). In T ′′ (also T and T ′), y is the
lowest common ancestor of χ(u) and χ(v). Let i∗ = |LCP(χ(u), χ(v))|. is means there is
a vertex w at distance at most β · 2δ−i∗−1 from both u and v, so d(u, v) ≤ 2δ−i∗+1. Now
let a (resp. b) be the ild of y su that Ta (resp. Tb) contains χ(u) (resp. χ(v)). So then, we
argue that dT ′′(χ(u), χ(v)) ≥ 2 · 2δ−i∗ because label(y) must differ from at least one of the
labels label(a) and label(b)—and su non-zero edges have length 2δ−i∗+1 since we doubled
its length in Step (1). is establishes the stated bound. �

Lemma 7.12 e depth of T ′′ is O(logn) with high probability.

Proof : It is easy to see that the depth of T ′′ is upperbounded by the length of the longest
compressed partition sequence. Consider a vertex v ∈ X and let v1, . . . , vn−1 ∈ X be su
that d(v, v1) > d(v, v2) > · · · > d(v, vn−1) > 0. e length of the compressed partition
sequence of v is upperbounded by the number of times the sequence yi = min{π(vj) |
n− 1 ≥ j ≥ i}anges value, a quantity whi is known to be bounded by O(logn) with
probability exceeding 1−n−(c+1) [Sei92]. Taking union bounds gives the desired lemma. �

On a compacted FRT tree, this transformation is easy to perform. First, we identify all
leaves with their corresponding original nodes. Computing the label for all nodes can be
done in O(n) work and O(logn) depth using treeAgg (Section 7.1), whi is a variant of
tree contraction. Finally, we just have to contract zero-length edges, whi again, can be
done in O(n) work and O(logn) depth using standard teniques [JáJ92]. Note that we
only have to compute the minimum on the nodes of a compacted tree, because the label (i.e.,
the minimum value) never anges unless the tree branes.

k

e k-median problem is a standard clustering problem, whi has received considerable
aention in the past decades from various resear communities. e input to this problem
is a set of vertices V ⊆ X , where (X, d) is a (finite) metric space, and the goal is to find a
set of at most k centers FS ⊆ V that minimizes the objective

Φ(FS) =
∑
j∈V

d(j, FS).
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Since we will be working with many different metric spaces, we will write

ΦD(FS) =
∑
j∈V

D(j, FS)

to emphasize whi distance function is being used. In the sequential seing, several ap-
proximation algorithms are known, includingO(1)-approximations (see [AGK+04] and ref-
erences therein) and approximation via tree embeddings [Bar98, FRT04]. In the parallel set-
ting, these algorithms seem hard to parallelize directly: to our knowledge, the only RNC

algorithm k-median gives a (5+ ε)-approximation but only aieves polylogarithmic depth
when k is at most polylog(n) [BT10].

Our goal is to obtain an O(log k)-approximation that has polylogarithmic depth for all k
and has essentially the same work bound as the sequential counterpart. e basic idea is
to apply boom-up dynamic programming to solve k-median on a tree, like in Bartal’s pa-
per [Bar98]. Later, we describe a sampling procedure to improve the approximation guaran-
tee fromO(logn) toO(log k). While dynamic programming was relatively straightforward
to apply in the sequential seing, more care is needed in the parallel case: the height of a
compacted FRT tree can be large, and since the dynamic program essentially considers tree
vertices level by level, the total depth could be mu larger than polylog(n).

Rather than working with compacted FRT trees, we will be using FRT trees that contain
no Steiner node, constructed by the algorithm FRTNoSteiner in eorem 7.10. is type
of trees is shown to have the same distance-preserving properties as an FRT tree but has
O(logn) depth with high probability. Alternatively, we give an algorithm that reduces the
depth of a compacted FRT tree toO(logn); this construction, whi assumes the HST prop-
erty, is presented in Section 7.6.3 and may be of independent interest.

k

Our second ingredient is a parallel algorithm for solving k-median when the distance metric
is the shortest-path distance in a (shallow) tree. For this, we will parallelize a dynamic
programming (DP) algorithm of Tamir [Tam96], whi we now sket. Tamir presented a
O(kn2) algorithm for a slight generalization of k-median on trees, where in his seing, ea
node i ∈ V is associated with a cost ci if it were to be osen; every node i also comes
equipped with a nondecreasing function fi; and the goal becomes to find a set A ⊆ V of
size at most k to minimize ∑

i∈A
ci +

∑
j∈V

min
i∈A

fj(d(vj , vi)).
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is generalization (whi also generalizes the facility-location problem) provides a conve-
nient way of taking care of Steiner nodes in FRT trees. For our purpose, these fi’s will simply
be the identity function² x 7→ x, and ci’s are set so that it is 0 if i is a real node from the
original instance and∞ if i is a Steiner node (to prevent it from being osen).

Tamir’s algorithm is a DP whi solves the problem exactly, and for simplicity, it requires the
input tree to be binary. Tamir also gave an algorithm that converts any tree into a binary tree.
His algorithm, however, can significantly increase the depth. For our algorithm, we need a
different an algorithm that ensures not only that the tree is binary but also that the depth
does not grow substantially. To this end, we give a parallel algorithm based on the Shannon-
Fano code construction [Sha48] in Section 7.6.1, whi outputs a binary tree whose depth is
an additive logn larger than the original depth. We set edge lengths as follows: e new
edges will have length 0 except for the edges incident to the original vi’s: the parent edge
incident to vi will inherit the edge length from viv. Also, the added nodes have cost∞. As
a result of this transformation, the depth of the new tree is at mostO(logn) and the number
of nodes will at most double. Furthermore, the whole transformation can be accomplished
in O(log2 n) depth and O(n logn) work (see Section 7.6.1).

e main body of Tamir’s algorithm begins by producing for ea node v a sequence of
vertices that orders all vertices by their distances from v with ties appropriately broken. His
algorithm for generating these sequences are readily parallelizable because the sequence for
a vertex v involves merging the sequences of its ildren in a manner similar to the merge
step in merge sort. e work for this step, as originally analyzed, is O(n2). Ea merge
can be done in O(logn) depth and there are at most O(logn) levels; this step has depth
O(log2 n).

Armedwith this, the actual DP is straightforward to parallelize. Tamir’s algorithmmaintains
two tables F andG, both indexed by a tuple (i, q, r) where i ∈ [n] represents a node, q ≤ k

counts the number of centers inside the subtree rooted at i, and r indicates roughly the
distance from i to the closest selected center outside of the subtree rooted at i. As su, for
ea i and q, there can be at most n different values for r. Now Tamir’s DP is amendable
to parallelization because the rules of the DP compute an entry using only the values of its
immediate ildren. Further, ea rule is essentially taking the minimum over a combination
of parameters and can be parallelized using standard algorithms for finding the minimum
and prefix sums. erefore, we can compute the table entries for ea level of the tree in
general and move on to the higher level. It is easy to e ea level can be accomplished
in O(logn) depth, and as analyzed in Tamir’s paper, the total work is bounded by O(kn2).

²In the weighted case, we will use fi(x) = wi · x to reflect the weight on node i.
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Our algorithm thus far gives anO(logn)-approximation on input consisting of n points. To
improve this toO(log k), we devise a parallel version of Meu and Plaxton’s successive sam-
pling (shown in Algorithm 7.3.1) [MP04]. We then describe how to apply it to our problem.
Since the parallel version produces an identical output to the sequential one, guarantees
about the output follow directly from the results of Meu and Plaxton. Specifically, they
showed that there are suitable seings of α and β su that by using K = max{k, logn},
the algorithm runs forO(log(n/K)) rounds and producesQ of size atmostO(K·log(n/K))

with the following properties:

eorem 7.13 (Mettu and Plaxton [MP04]) ere exists an absolute constantCSS su that
if Q = SuccSampling(V,K), then with high probability, Q satisfies Φ(Q) ≤ CSS ·
Φ(OPTk), where OPTk is an optimal k-median solution on the instance V .

In otherwords, the theorem says thatQ is a bicriteria approximationwhiusesO(K log(n/K))

centers and obtains a CSS-approximation to k-median. To obtain a parallel implementation
of successive sampling (Algorithm 7.3.1), we will make steps 1–3 parallel. We have the fol-
lowing runtime bounds:

Lemma 7.14 For input V with |V | = n and K ≤ n, SuccSampling(V,K) has O(nK)

work and O(log2 n) depth.

Proof: First, by the oice of Ci, we remove at least a β fraction of Ui and since α and β are
constants, we know that the number of iterations of the while loop is O(log(n/K)). Now
step 1 of the algorithm can be done in O(nK) work and O(1) depth (assuming concurrent
writes). To perform Step 2, First, we compute for ea p ∈ Ui, the distance to the near-
est point in Si. is takes O(|Ui|K) work and O(logK) depth. en, using a linear-work
selection algorithm, we can find the set Ci and ri in O(|Ui|) work and O(log |Ui|) depth.
Since ea time |Ui| shrinks by a factor β, the total work is O(nK) and the total depth is
O(log2 n), as claimed. �

Piecing together the components developed so far, we obtain aO(log k)-approximation. e
following theorem summarizes our main result for the k-median problem:

eorem 7.15 For k ≥ logn, the k-median problem admits a factor-O(log k) approxima-
tion with O(nk + k(k log(nk ))

2) ≤ O(kn2) work and O(log2 n) depth. For k < logn,
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Algorithm 7.3.1 SuccSamplingα,β(V,K)—successive sampling

Let U0 = V , i = 0
while (|Ui| > αK)

1. Sample from Ui u.a.r. (with replacement) bαKc times—call the osen points Si.
2. Compute the smallest ri su that |BUi(Si, ri)| ≥ β · |Ui| and let Ci = BUi(Si, ri),

where BU (S, r) = {w ∈ U | d(w, S) ≤ r}.
3. Let Ui+1 = Ui \ Ci and i = i+ 1.

Output Q = S0 ∪ S1 ∪ · · · ∪ Si−1 ∪ Ui

the problem admits aO(1)-approximation withO(n logn+ k2 log5 n) work and O(log2 n)
depth.

Here is a proof sket, see Section 7.6.2 for more details: we first apply Algorithm 7.3.1 to
get the set Q (in O(nK) work and O(log2 n) depth). en, we “snap” the clients to their
closest centers inQ (paying at mostCSSΦ(OPTk) for this), and depending on the range of k,
either use an existing parallel k-median algorithm for k < logn [BT10] or use the FRT-based
algorithm on these “moved” clients to get theO(log q)-approximation (inO(kq2) work and
O(log2 q) depth, where q = O(K log(n/K)), because we are running the algorithm only
onO(K log(n/K)) points). Note that we now need a version of the k-median algorithm on
trees (Section 7.3.1) where clients also have weights, but this is easy to do (by anging the
fi’s to reflect the weights).

Let G = (V,E) be an undirected graph with n nodes; edge lengths ` : E → R+; a set of k
demand pairs {demsi,ti}ki=1; and a set of cables, where cable of type i has capacity ui and
costs ci per unit length. e goal of the problem is to find the eapest set of cables that
satisfy the capacity requirements and connect ea pair of demands by a path. Awerbu
and Azar [AA97] gave a O(logn)-approximation algorthim in the sequential seing. eir
algorithm essentially finds an embedding of the shortest-path metric onG into a distribution
of treeswith no Steiner nodes, a property whi they exploit when assigning ea tree edge to
a path in the input graph. For an edge with net demand dem, the algorithmooses the cable
type that minimizes ciddem/uie. is is shown to be an O(logn)-approximation. From a
closer inspection, their algorithm can be parallelized by developing parallel algorithms for
the following:
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1. Given a graph G with edge lengths ` : E(G) → R+, compute a dominating tree T
with no Steiner node su that T O(logn)-approximate d in expectation.

2. For ea (u, v) ∈ E(T ), derive the shortest path between u and v in G.

3. For ea e ∈ E(T ), compute the net demand that uses this edge, i.e.,

fe =
∑

i:e∈PT (si,ti)

demsi,ti ,

where PT (u, v) denotes the unique path between u and v in T .

We consider these in turn. First, the shortest-path metric d can be computed using a standard
all-pair shortest paths algorithm in O(n3 logn) work and O(log2 n) depth. With this, we
apply the algorithm in Section 7.2.4, yielding a dominating tree T in whi dT O(logn)-
approximates d. Furthermore, for ea tree e = (u, v), the shortest-path between u and v

can be recovered from the calculation performed to derive d at no additional cost.

Next we describe how to calculate the net demand on every tree edge. We give a simple
parallel algorithm using the treeAgg primitive discussed in Section 7.1. As a first step, we
identify for ea pair of demands its least common ancestor (LCA), where we let LCA(u, v)
be the LCA of u and v. is can be done in O(n) work and O(logn) depth for ea pair.
us, we can compute the LCA for all demand pairs inO(kn)work andO(logn) depth. As
input to the second round, we maintain a variable up(w) for ea node w of the tree. en,
for every demand pair demu,v , we add to both up(u) and up(v) the amount of demu,v—and to
up(LCA(u, v)) the negative amount −2demu,v . As su, the sum of all the values up inside
a subtree rooted at u is the amount of “upward” flow on the edge out of u toward the root.
is is also the net demand on this edge. erefore, the demand fe’s for all e ∈ E(T ) can
be computed in O(kn) work and O(logn) depth. Finally, mapping these ba to G and
figuring out the cable type (i.e., computing mini ciddem/uie) are straightforward and no
more expensive than computing the all-pair shortest paths. Hence, we have the following
theorem:

eorem 7.16 e buy-at-bulk network design problem with k demand pairs on an n-node
graph can be solved in O(n3 logn) work and O(log2 n) depth.

We gave an efficient parallel algorithm for tree embedding with expected O(logn) stret.
Our contribution is in making these bounds independent of the ratio of the smallest to
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largest distance, by recognizing an alternative view of the FRT algorithm and developing
an efficient algorithm to exploit it. As applications, we developed the first an RNCO(log k)-
approximation algorithm for k-median and an RNCO(logn)-approximation for buy-at-bulk
network design.

Given a tree T with n nodes and depth h but of arbitrary fanout, we give a construction
that yields a tree with depth O(h + logn). is construction makes use of the Shannon-
Fano code’s construction [Sha48], For ea original tree node v with ildren v1, . . . , vk, we
assign to vi the probability

pi =
|V (Tvi)|
|V (Tv)|

,

where Tu denotes the subtree of T rooted at u. Shannon-Fano’s result indicates that there
is a binary tree (though, originally stated in terms of binary strings) whose external nodes
are exactly these v1, . . . , vk and the path from v to vi in the new tree has length at most
1 + log(1/pi). Applying this construction on all internal nodes with degree more than 2

gives the following lemma:

Lemma 7.17 Given a tree T with n nodes and depth h but of arbitrary fanout, there is an
algorithm treeBinarize producing a binary tree with depth at most h+ logn.

Proof: Let w be a leaf node in T and consider the path from the root node to w. Suppose on
this path, the subtrees have sizes n = n1 > n2 > · · · > nd′ = 1, where d′ ≤ h. Applying
the aforementioned construction, this path expands to a path of length at most

1 +

d′−1∑
i=1

(1 + log(1/pi)) = 1 +

d′−1∑
i=1

(1 + log( ni
ni+1

)) ≤ d′ + logn ≤ h+ logn,

whi proves the lemma. �

is construction is also easily parallelized as all that is needed is sorting the probabilities
in decreasing order (so that p1 ≥ p2 ≥ · · · pk), computing the cumulative probabilities (i.e.,
Pi =

∑
i′≤i pi), finding the point where the cumulative probability splits in (roughly) half,
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and recursing on the two sides. Sorting needs to be done once for ea v; then, ea call
involves essentially a prefix computation. us, the transformation on the whole tree will
take O(n logn) work and O(log2 n) depth. (Note that the degrees of T ’s nodes sum to at
most 2n.)

k

Case I: k ≥ logn:

Let Q = {q1, . . . , qK} = SuccSampling(V,K), where K = max{k, logn} and ϕ : V →
Q be the mapping that sends ea v ∈ V to the closest point inQ (breaking ties arbitrarily).
us, ϕ−1(q1), ϕ

−1(q2), . . . , ϕ
−1(qK) form a collection ofK non-intersecting clusters that

partition V . For i = 1, . . . ,K , we definew(qi) = |ϕ−1(qi)|. We prove a lemma that relates
a solution’s cost in Q to the cost in the original space (V, d).

Lemma 7.18 Let A ⊆ Q ⊆ V be a set of k centers satisfying

K∑
i=1

w(qi) · d(qi, A) ≤ β · min
X⊆Q
|X|≤k

K∑
i=1

w(qi) · d(qi, X)

for some β ≥ 1. en,

Φ(A) =
∑
x∈V

d(x,A) ≤ O(β · cSS) · Φ(OPTk),

where OPTk, as defined earlier, is an optimal k-median solution on V .

Proof: For convenience, let

λ =
∑
x∈V

d(x,Q) =
∑
x∈V

d(x, ϕ(x)),
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and so λ ≤ cSS · Φ(OPTk). We establish the following:

∑
x∈V

d(x,A) ≤ λ+

K∑
i=1

w(qi) · d(qi, A) ≤ λ+ β · min
X⊆Q
|X|≤k

K∑
i=1

w(qi) · d(qi, X)

≤ λ+ β
K∑
i=1

w(qi) · d(qi, ϕ(OPTk)) ≤ λ+ 2β
K∑
i=1

w(qi) · d(qi,OPTk)

≤ λ+ 2β

K∑
i=1

∑
x∈ϕ−1(qi)

(
d(qi, x) + d(x,OPTk)

)
≤ λ+ 2βλ+ 2βΦ(OPTk) = O(β · cSS) · Φ(OPTk),

whi proves the lemma. �

By this lemma, the fact that the k-median on tree gives aO(log |Q|)-approximation, and the
observation that |Q| ≤ k2 (because k ≥ logn), we have that our approximation isO(log k).

Case II: k < logn:

We run successive sampling as before, but this time, we will use the parallel local-sear al-
gorithm [BT10] instead. On input consisting ofn points, the BT algorithm hasO(k2n2 logn)
work and O(log2 n) depth. Since k < logn, we have K = logn and the successive sam-
pling algorithm would give |Q| ≤ log2 n. is means we have an algorithm with total work
O(n logn+ k2 log5 n) and depth O(log2 n).

k

Another way to control the height of the tree is by taking advantage of a cruder solution
(whi can be computed inexpensively) to prune the tree. e first observation is that if
A ⊆ V is a ρ-approximation to k-center, thenA is a ρn-approximation to k-median. Using a
parallel k-center algorithm [BT10], we can find a 2-approximation to k-center inO(n log2 n)
work and O(log2 n) depth. is means that we can compute a value β su that if OPT is
an optimal k-median solution, then Φ(OPT) ≤ β ≤ 2n · Φ(OPT).

Following this observation, two things are immediate when we consider an uncompacted
FRT tree:
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1. If we are aiming for a C · logn approximation, no clients could go to distance more
than than C · logn · Φ(OPT) ≤ C · nβ. is shows twe can remove the top portion
of the tree where the edge lengths are more than Cnβ.

2. If a tree edge is shorter than τ = β
8n2 , we could set its length to 0without significantly

affecting the solution’s quality. ese 0-length edges can be contracted together. Be-
cause an FRT tree as constructed in eorem 7.1 is a 2-HST, it can be shown that if
T ′ is obtained from an FRT tree T by the contraction process described, then for all
x 6= y, dT (x, y) ≤ dT ′(x, y) + 4τ .

Both transformations can be performed on compacted trees in O(n) work and O(logn)
depth, and the resulting tree will have height at most O(log(8n3)) = O(logn). Further-
more, if A ⊆ V is any k-median solution, then

Φd(A) ≤ ΦdT (A) =
∑
x∈V

dT (x,A) ≤
∑
x∈V

(
dT ′(x,A) + 4t

)
≤ ΦdT ′ (A) + n · β

2n2
≤ ΦdT ′ (A) + Φd(OPT).





Chapter 8
Iterative algorithms are oen the method of oice for large sparse problems. For example,
specialized multigrid linear solvers have been developed to solve large classes of symmetric
positive definite matrices [BHM00, TSO00]. Many of these solvers run in near linear time
and are being applied to very large systems. ese algorithms heavily rely on the sparse
matrix-vector multiplication (SpMV) kernel, whi dominates the running time. As noted
by many, the performance of SpMV on large matrices, however, is almost always limited by
memory bandwidth. is is even more pronounced on modern multicore hardware where
the aggregate memory bandwidth can be particularly limiting [WOV+07b] when all the
cores are busy.

Many approaes have been suggested to reduce the memory bandwidth requirements in
SpMV: row/column reordering [PF90, OLHB02], register bloing [Tol97], compressing row
or column indices [WL06] , cae bloing [IYV04, WOV+07b], symmetry [Saa90], using
single or mixed precision [BDK+08], and reorganizing the SpMV ordering across multiple
iterations in a solver [MHDY09], among others. Some of these approaes are hard to par-
allelize. For example, the standard sparse skyline format for symmetric matrices does not
parallelize well.

e work in this apter introduces an approawe refer to as hierarical diagonal bloing
(HDB) whiwe believe captures many of the existing optimization teniques in a common
representation. It can take advantage of symmetry while still being easy to parallelize. It
takes advantage of reordering. It also allows for simple compression of column indices. In
conjunction with precision reduction (storing single-precision numbers in place of doubles),
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it can reduce the overall bandwidth requirements by more than a factor of three. It is par-
ticularly well-suited for the type of problems that CMG is designed for, symmetric matrices
for whi the corresponding graphs have reasonably small graph separators, and for whi
the effects of reduced precision arithmetic are well-understood. Our approa does not use
register bloing although this could be added.

We prove various theoretical bounds for matrices for whi the adjacency structure has
edge separators of size O(nα) for α < 1. Prior work has shown a wide variety of sparse
matrices have a graph structure with good separators [BBK04]. We study the algorithm in
the cae-oblivious framework [FLPR99], where algorithms are analyzed assuming a two-
level memory hierary with an unbounded main memory and a cae of size M and line
size B. As long as the algorithm does not make use of any cae parameters, the bounds
are simultaneously valid across all cae levels in a hierarical cae. For an n× n matrix
withm nonzeros, we show that the number of misses is at mostm/B +O(1 + n/(Bw) +

n/M1−α), where w is the number of bits in a word.

We complement the theoretical results with a number of experiments, evaluating the perfor-
mance of various SpMV semes on recent multicore aritectures. Our results show that a
simple double-precision parallel SpMV algorithm saturates the multicore bandwidth, but by
reducing the bandwidth requirements—using a combination of hierarical diagonal blo-
ing and precision reduction—we are able to obtain, on average, a factor of 2.5x speedup
on an 8-core Nehalem maine. We also examine the implications of using the improved
SpMV routine in CMG and preconditioned conjugate gradient (PCG) solvers. In addition,
we explore heuristics for finding good separator-orderings and study the effects of separator
quality on SpMV performance.

Reducing SpMV Bandwidth Requirements

Prior work has proposed several approaes for reducing the memory bandwidth require-
ments of SpMV. Reordering of rows and columns of the matrix can reduce the cae misses
on the input and output vectors x and y by bringing references to these vectors closer to ea
other in time [OLHB02]. Many heuristic reordering approaes have been used, including
graph separators su as Chaco [HL95] or METIS [KK98], Cuthill-McKee reordering [GL81]
or the Dulmage-Mendelsohn permutation [PF90]. ese teniques tend to work well in
practice since real-world matrices tend to have high locality. is is especially true with
meshes derived from 2- and 3-d embeddings. Recent results have shown various bounds for
meshes with good separators [BKTW07, BCG+08, BGS10]. e graph structure of a wide
variety of sparse matrices has been to shown to have good separators, including graphs su
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as the Google link graph. Reordering can be used with cae bloing [IYV04], whi blos
the matrix into sparse rectangular blos and processes ea blo separately so that the
same rows and columns are reused.

Index compression reduces the size of the column and row indices used to represent the
matrix. e indices are normally represented as integers, but there are various ways to
reduce their size. Willcok and Lumsdaine [WL06] apply graph compression teniques to
reduce the size, showing speedups of up to 33% (although mu more modest numbers on
average). Williams et al. point out that by using cae bloing, it is possible to reduce the
number of bits for the column indices since the number of columns in the blo is typically
small [WOV+07b]. Register bloing [Tol97] represents the matrix as a set of dense blos.
is can reduce the index information needed, but for very sparse or unstructured matrices,
it can cause significant fill due to the insertion of zero entries to fill the dense blos.

Data compression is a natural extension of index compression that aempts to reduce the size
of the actual data contained in the matrix. For symmetric matrices, one can store the lower-
triangular entries and use them twice. When stored in the sparse skyline format [Saa90],
(the compressed sparse row format with only elements strictly below the diagonal stored) a
simple loop of the following form can be used:

// loop over rows.
for (i = 0;i < n;i++) {
float sum = diagonal[i]*x[i];
// loop over nonzeros below diagonal in row
for (j = start[i];j < start[i+1];j++) {
sum += x[cols[j]] * vals[j]; // as row
y[cols[j]] += x[i] * vals[j]; // as column

}
y[i] += sum;

}

Figure 8.1: Simple sequential code for sparse matrix vector multiply (SpMV).

Unfortunately, this loop does not parallelize well because of the unstructured addition to an
element in the result vector in the statement y[cols[j]] += x[i] * vals[j];. Buluç et
al. study how to parallelize this by recursively bloing the matrix [BFF+09], but this does
not take advantage of any locality in the matrix.

Another approa to data compression is to reduce the number of bits used by the nonzero
entries. Buari et al. [BDK+08] suggest the implementation of mixed-precision inner-outer
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Level 1

Level 2

Level 3

Figure 8.2: Hierarical diagonal bloing: decomposing a matrix into a tree of submatrices.

iterative algorithms, i.e. a nesting of iterative algorithms where the outer iterative method is
implemented in double precision, and the inner one—formally viewed as a preconditioner to
the outer one—is implemented in single precision. While oen positive, the effects of reduced
precision are in general unpredictable. One main advantage of the CMG solver comparing
to other iterative methods is that it can be used as a preconditioner to Conjugate Gradient,
and the effects of using single precision are well-understood.

Finally, recent work by Mohiyuddin et al. [MHDY09] suggests reorganizing a sequence of
SpMV operations on the same matrix structure across iterations so that the same part of the
vector can be reused. Although this works well when using the same matrix over multiple
iterations, it does not directly help in algorithms su as multigrid, where only a single
iteration on a matrix is applied before moving to another matrix of quite different form.

In this section, we describe the hierarical diagonal bloing (HDB) representation for
sparse square matrices and an SpMV routine for the representation. We assume that we
have already computed a fully balanced tree of edge-separators for the graph of the matrix,
with the vertices as leaves. In the following discussion, we assume the rows of the square
matrix are ordered by le-to-right pass over the leaves (the separator ordering), and since
the matrix is square, we will use row to refer to both the row and corresponding column.

e HDB representation is a partitioning of the matrix into a tree of submatrices (see Fig-
ure 8.2). Ea leaf represents a range of rows (possibly a single row), and ea internal node
of the tree represents a continuous range of rows it covers. Nonzero entries of the matrix
are stored at the least common ancestor of the leaves containing its two indices (row and
column). If both indices are in the same leaf, then the element will be stored at that leaf (all
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diagonal entries are at a leaf). e representation stores with ea internal node the range
of rows it covers, and we refer to the number of rows in the range as the node’s size.

e separator tree can be used directly as the structure of the HDB tree. is, however,
creates many levels whi help neither in theory nor in practice. Instead, we coalesce the
nodes of the separator tree so that sizes square at ea level: 2, 4, 16, 256, 65536, . . . , 22

i
.

We maintain the separator ordering among the ildren of a node. is is important for the
cae analysis. We note that for matrices with good separators most of the entries will be
near the leaves.

Algorithm 8.1.1 Sparse Matrix Vector Multiply for HDB
HDB_SpMV (x, y, T ):

1: A = T.M // the nonzero entries in this node of T
2: [`, u] = T.range
3: if isLeaf(T ) then
4: y[`, u] = A · x[`, u]
5: else
6: for all t ∈ T .ildren, in parallel, do
7: HDB_SpMV (x, y, t)
8: end for
9: y[`, u] = y[`, u] +A · x[`, u]
10: end if

e SpMV routine on the HDB representation works as shown in Algorithm 8.1.1. e re-
cursive algorithm takes as arguments the input vector x, the output vector y, and a sub-
tree/internal node T . e algorithm requires that the ordering of the x and y vectors coin-
cide with the separator (matrix) ordering. We denote by [`, u] the range of rows the subtree
covers. e algorithm computes the contribution to y for-all nonzero entries in the subtree.
In the base case, it directly calculates the contribution. In the inductive case, ea recursive
call in the for all loop computes the contribution for the entries in its subtree. Since ea of
these is on a distinct range of rows, all the calls can be made in parallel without interference.
Aer returning from the recursive calls, the algorithm adds in the contribution for the entries
in the current node, hence accounting for the contribution of all entries in the subtree.

An important feature of HDB is that it gives freedom in the selection of the matrix represen-
tation A and corresponding SpMV algorithm used for ea node of the tree. In particular,
depending on the level, different representations can be used. If A in some node has many
empty rows in its range, we need store only the non-empty rows. is can easily be done
using an additional index vector of non-empty rows as is oen done in cae-bloed algo-
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rithms [WOV+07b]. If the matrix is symmetric, then we can keep just the lower triangular
part and store it in Compressed Sparse Row (CSR) format. For a submatrix stored in this
form, we can use the skyline algorithm given in Figure 8.1 and for internal nodes, we need
not even worry about diagonals. Since the skyline algorithm is difficult to parallelize, it can
be used sequentially at lower levels of the tree where there is plenty of parallelism from
the recursive calls, and the CSR representation with redundant entries can be used at the
higher levels. is works both in theory (proof of eorem 8.1) and in practice (Section 8.3).
Another important feature of HDB is that space can be saved in storing the indices by only
storing an offset relative to the beginning of the range. Again, this is used both in theory
(eorem 8.1) and practice (Section 8.3).

We now bound space, cae complexity, and depth for HDB_SpMV for matrices with good
separators. We assume that ea nonzero value takes one word of memory. erefore, B
nonzeros fit in a cae line (this is just the values and not any indices). We assume a word
has w bits in it.

eorem 8.1 LetM be a class of matrices for whi the adjacency graphs satisfy annα-edge
separator theorem, α < 1, andA ∈M be an n×nmatrix withm ≥ n nonzeros, orm ≥ n

lower triangular nonzeros for a symmetric matrix. If A is stored in the HDB representation
T then:

1. T can be implemented to usem+O(n/w) words.
2. AlgorithmHDB_SpMV (x, y, T ) is cae oblivious and runswithm/B+O(1+n/(Bw)+

n/M1−α) misses in the ideal cae model.
3. Algorithm HDB_SpMV (x, y, T ) runs in O(logc n) depth (span) for some constant c.

eproof of this theorem relies on the follong result for sparse-matrix vectormatrixmultiply.

eorem 8.2 (Blello et al. [BCG+08]) LetM be a class of matrices for whi the adja-
cency graphs satisfy an nα-edge separator theorem with α < 1. Any n× n matrix A ∈ M
withm ≥ n nonzeros can be reordered so the CSR SpMV algorithm has O(logn) depth and
O(1 +m/B + n/M1−α) sequential cae complexity.

Notice that for B ≤ M1−α (likely in practice), the m/B term dominates so the number
of cae misses is asymptotically optimal (no more than needed to scan the array entries in
order).
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Proof ofeorem 8.1: Wewill use a modified CSR representation for all matrices stored in the
tree. For symmetric matrices, we only store the lower triangular entries and diagonals for
nodes of size r < log1/(1−α) n, and all entries for larger nodes. e idea is that the number
of entries in the larger matrices is small enough that we can store them twice or use a pointer
to the second copy without significantly affecting space or cae complexity. As mentioned
above, we modify CSR so it does not store any information for empty rows.

Consider a matrix at a node of T with size r and with e entries assigned to it. Because the
range of columns is bounded by r, all column and row indices can be stored relative to the
lower bound of the range usingO(log r) bits. is means the matrix can be stored in ew bits
for the values and O(e log r) bits for the indices. We also need to store the pointers to the
ildren of the node. For this, we assume that the memory for nodes are allocated one aer
another in a postorder traversal of the tree. is means to point to a ild the structure only
has to point within the memory used by this subtree. is is certainly bounded by O(wr2)

bits and therefore we can use aO(log r) bit pointer for eaild. We can also useO(log r)
bits to specify the range limits of ea ild, whi we arge to the parent even though
stored with the ild. erefore, the total space required by the node with c ildren is
ew+O((e+ c) log r). Now if we organize the tree so the nodes grow doubly exponentially
ri = 22

i
, (2, 4, 16, 256, 65536, . . .), a node at level i captures all edges that were cut in

the binary separator tree above size 22
i−1

and up to 22
i
. Using the separator bounds, and

counting per pairwise split, we have for a node at level i, ei =
∑2i

j=2i−1+1 η(j) × O(2αj),

where η(j) = 22
i−j is the number of splits at the binary tree level j. is sum is bounded

by O(22
α(i−1)

22
i−1

) = O(22
α(i−1)+2i−1

) since the terms of the sum geometrically decrease
with increasing j. We also have ci = 22

i−1
for the number of ildren at level i. ere are

n/ri nodes at level i and therefore the total space in bits for pointers is bounded by:

S(n) =

log logn∑
i=0

O

(
n

ri
(ei + ci) log ri

)

=

log logn∑
i=0

O

(
n

22i
(2(2

α(i−1)+2i−1) + 22
i−1

)2i
)

For α < 1, this sum geometrically decreases, so for asymptotic analysis, we need only
consider i = 0 and therefore S(n) = O(n). When we include the space for the matrix
values and convert from bits to words, the total space ism+O(n/w). We note that we can
store matrices with size r ≥ log1/(1−α) n using two nonzeros per symmetric entry without
affecting the asymptotic bounds. is is because there are at most O(n/ logn) nonzeros in
matrices of that size so we can use a pointer of size O(logn) bits to point to the other copy,
or if w = O(logn), we can store the duplicates directly.



140 CHAPTER 8. HIERARCHICAL DIAGONAL BLOCKING

We now consider bounds on the sequential cae complexity. e argument is similar to the
argument for the CSR format [BCG+08]. We separate the misses into the accesses to the
matrix entries and to the input and output vectors x and y. Recall that all tree nodes are
stored in post-order with respect to the tree traversal, and at the nodes, the elements within
ea matrix are stored in CSR format. Since the CSR algorithm visits the matrix in the order
it is stored, the algorithm visits all elements in the order they are laid out. When including
the O(n/w) words for indices in the structure, whi are also visited in order, visiting the
matrix causes a total of m/B + O(n/(Bw)) misses. For larger nodes in the tree where
r ≥ log1/(1−α) n, we store duplicate entries, but for the same reason, this is a lower order
term in the space and also a lower order term in cae misses. is leaves us to consider
the number of misses from accessing x and y. For the sake of analysis, we can partition the
leaves into blos that fit into the cae, where ea su blo is executed in order by the
algorithm. We therefore only have to consider edges that go between blos. By the same
argument as in [BCG+08], the number of su edges (entries) is bounded by O(n/M1−α)

ea potentially causing a miss. e total number of misses is therefore bounded bym/B+

O(1 + n/(Bw) + n/M1−α).

Finally, we consider the depth of the algorithm. We assume that the SpMV for all nodes
of size r ≥ log1/(1−α) n run in parallel since they are stored with both symmetric entries.
Su a SpMV runs in O(logn) depth. For r < log1/(1−α) n, we run the SpMV on the
skyline format sequentially. e total time is bounded asymptotically by the size, and all
these small multiplies can run in parallel. is is the dominating term giving a total depth
of O(log1/(1−α) n). �

To study how the improvements in SpMV performance benefit an actual iterativemethod, we
consider Combinatorial Multigrid (CMG), a recently introduced variant of Algebraic Multi-
grid (AMG) [KM09, KM08, KMT09] providing strong convergence guarantees for symmetric
diagonally dominate linear systems [Kou07, ST04, KM09, KMT09, KMP10]. Ouroice is mo-
tivated by the potential for immediate impact on the design of industrial strength code for
important applications. In contrast to AMG, CMG offers strong convergence guarantees for
the class of symmetric diagonally dominant (SDD) matrices [Gre96, BHV04, ACST06], and
under certain conditions for the even more general class of symmetric M -matrices [DS08].
e convergence guarantees are based on recent progress in spectral graph theory and combi-
natorial preconditioning (see for example [BH03], [Kou07]). At the same time, linear systems
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from these classes play an increasingly important role in a wave of new applications in com-
puter vision [Gra06, TM06, KMT09], and medical imaging in particular [TKI+08]. Multigrid
algorithms are commonly used as preconditioners to other iterative methods. e idea of
implementing the preconditioner in single precision has been explored before, but the ef-
fects on convergence are in general unpredictable [BDK+08]. However, in the case of CMG,
switing to single precision has provably no adverse effects. In summary, CMG can benefit
from our fastest SpMV primitive, whi exploits both symmetry and precision reduction, in
applications that are well suited for the diagonal hierarical bloing approa.

A thorough discussion of multigrid algorithms is out of the scope of this paper. ere are
many excellent survey papers and monographs on various aspects of the topic and among
them [BHM00, TSO00]. e purpose of this section is to discuss aspects of the parallel im-
plementation that are specific to CMG, but at the same time, convince the reader that the
performance improvements we see for CMG are expected to carry over to other flavors of
multigrid.

Similarly to AMG, the CMG algorithm consists of the setup phase whi computes a multi-
grid hierary, and the solve phase. e CMG setup phase constructs a hierary of SDDma-
tricesA = A0, . . . , Ai. As with most variants of AMG, CMG uses the Galerkin condition to
construct the matrix Ai+1 from Ai. is amounts to the computation of a restriction opera-
torRi ∈ Rdim(Ai)×dim(Ai+1), and the construction ofAi+1 via the relationAi+1 = RT

i AiRi.
CMG constructs the restriction operator Ri by grouping the variables/nodes of Ai into
dim(Ai+1) disjoint clusters and leing R(i, j) = 1 if node i is in cluster j, and R(i, j) = 0

otherwise. is simple approa is known as aggregate-based coarsening, and it has recently
aracted significant interest due to its simplicity and advantages for parallel implementa-
tions [Gra08, MN08]. Classic AMG constructs more complicated restriction operators that
can be viewed as (partially) overlapping clusters. e main difference between CMG and
other AMG variants is the algorithm for clustering, whi in the CMG case is combinatori-
ally rather than algebraically driven. e running time of the CMG setup phase is negligible
comparing to the actual MG iteration, so we do not further discuss it in this paper. e
reader can find more details in [KMT09].

e solve phase of CMG, whi is dominated by SpMV operations, is quite similar to the
AMG solve phase; the pseudo-code is given in Figure 8.2.1. When ti = 1, the algorithm
is known in the MG literature as the V-cycle, while when ti = 2, it is known as the W-
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Algorithm 8.2.1e CMG Solve Phase
function xi = CMG(Ai, bi)

1: D = diag(A)
2: ri = bi −Ai(D

−1b)
3: bi+1 = Rri
4: z = CMG(Ai+1, bi+1)
5: for i = 1 to ti − 1 do
6: ri+1 = bi+1 −Ai+1z
7: z = z + CMG(Ai+1, ri+1)
8: end for
9: x = RT z
10: x = ri −D−1(Aix− b)

cycle. It has been known that the aggregate-based AMG does not exhibit good convergence
for the V-cycle. e theory in [Kou07] essentially proves that more complicated cycles are
expected to converge fast, without blowing up the total work performed by the algorithm.
is is validated by our experiments with CMG where we pi

ti = max
{⌈ nnz(Ai)

nnz(Ai+1)
− 1
⌉
, 1
}
.

Here nnz(A) denotes the number of nonzero entries of A. is oice for the number of
recursive calls, combined with the fast geometric decrease of the matrix sizes, targets a geo-
metric decrease in the total work per level.

In our parallel implementation, we optimized the CMG solve phase by using different SpMV
implementations for different matrix sizes. When the matrix size is larger than 1K, we use
the bloed version of SpMV, and when it is smaller than that, we resort to the plain parallel
implementation, where the matrix is stored in full and we compute ea row in parallel. e
reason is that the bloed version of SpMV has higher overhead than the simple implemen-
tation for smaller matrices.

In our experiments, we found that aoice of t′i = ti+1 improves (in some examples) the se-
quential running time required for convergence by as mu as 5%. However, it redistributes
work to lower levels of the hierary where, as noted above, the SpMV speedups are smaller.
As a result, the overall performance gains for CMG are less significant with this oice.
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e CMG solve phase is the implicit inverse of a symmetric positive operatorB. e condi-
tion number κ(A,B) can therefore be defined, and it is well-understood that it aracterizes
the rate of convergence of the preconditioned CG iteration [Axe94].

Recall that the CMG core works with the assumption that the system matrix A is SDD.
We form a single precision matrix Â from the double precision matrix A as follows; we
decompose A into A = D + L, where L has zero (in double precision) row sums and D

is a diagonal matrix with non-negative entries. We form D̃ by casting the positive entries
of D into single precision. We form L̃ by casting the off-diagonal entries of L into single
precision, adding them in the order they appear using single precision, and then negating
the sum and seing it to the corresponding diagonal entry of L̃. Finally, we let Ã = D̃+ L̃.
is construction guarantees that Ã is numerically diagonally dominant and thus positive
definite.

Substituting a double-precision hierary A0, . . . , Ad by its single-precision counterpart
Ã0, . . . , Ãd in effect anges the symmetric operator B to a new operator B̂, whi is also
symmetric. By an inductive (on the number of levels) argument, it can be shown that

κ(B, B̃) ≤ max
i

κ(Ai, Ãi).

Using the Spliing Lemma for condition numbers [BH03], it is easy to show that

κ(A, Ã) ≤

(
max
i

{
Di,i

D̃i,i

,
D̃i,i

Di,i
,max
j 6=i

{
|Li,j |
|L̃i,j |

,
|L̃i,j |
|Li,j |

}})2

.

Under reasonable assumptions for the range of numbers used in A, we get κ(B, B̃) < 1 +

10−7. Using the transitivity of condition numbers, we get

κ(A, B̃) ≤ κ(A,B)κ(B, B̃) ≤ κ(A,B)(1 + 10−7).

It is known that the condition number of a pair (A,B) is the ratio of the largest to the
smallest generalized eigenvalue of (A,B). e above inequality can in fact be extended to
show that ea generalized eigenvalue of the pair (A,B) is within a (1+10−7) factor of the
corresponding generalized eigenvalue of (A, B̃). us, the preconditioned CG is expected to
have an almost identical convergence, independent of whetherB or B̃ is the preconditioner.
the two preconditioned CG iterations are virtually indistinguishable with respect to their
convergence rates.
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is section describes an implementation of an SpMVbased on hierarical diagonal bloing
and a study of its performance compared to other related variants.

We implemented SpMV routines for symmetric matrices using the descriptions from Sec-
tion 8.1. e implementation stores a matrix as groups of on-diagonal entries, diagonal-
blo entries, and off-blo entries (similar to Figure 8.2 with only 2 inner-node levels and
a level of leaf nodes). e diagonal blos in the first level are ∼ 32K in size (to take ad-
vantage of caing) and the leaves correspond the singletons along the matrix’s diagonal.
is representation allows for a simple implementation whi delivers good performance in
practice.

e two main ideas from previous sections are precision reduction and diagonal bloing.
To understand the benefits of these ideas individually, we study the following variants: the
sequential program using double-precision numbers “seq. (double)” is our baseline imple-
mentation (more details below). e simple parallel program for double-precision numbers
“simple par. (double)” computes the rows in parallel. e corresponding version for single-
precision numbers is known as “simple par. (single).” We have two variants of the hierar-
ical diagonal bloing routines, one for double-precision numbers “bloed par. (double)”
and one for single-precision numbers “bloed par. (single)”. e names inside quotation
marks are abbreviated names used in all the figures.

e baseline implementation is a simple sequential program similar to what is shown in
Figure 8.1. We optimized the code slightly by applying one level of loop-unrolling to the
inner loop. Note that although the code is simple, its performance mates, within 1%, that of
highly optimized kernels for SpMV, su as IntelMath Kernel Library [int10b]. We decided to
work with our own implementation because of the flexibility in anging and instrumenting
the code (e.g., for collecting statistics).

All versions of our parallel programs were wrien in Cilk++, a language similar to C++
with keywords that allow users to specify what should be run in parallel [int10a]. Cilk++’s
runtime system relies on a work-stealing seduler, a dynamic seduler that allows tasks
to be reseduled dynamically at low overhead cost. Our benmark programs were com-
piled with Intel Cilk++ build 8503 using the optimization flag -O2. To avoid overhead in
the Cilk++’s runtime system, we compiled the baseline sequential programs with GNU g++
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version 4.4.1 using the optimization flag -O2.¹

Testbed. We are interested in understanding the performance aracteristics of SpMV and
CMG solvers on three recent maine aritectures: the Nehalem-based Xeon, the Intel
Harpertown, and the AMD Opteron Shanghai. A brief summary of our test maines is
presented in Table 8.1. Our measurements were taken with hyperthreading turned off. Even
though hyperthreading gives a slight boost in performance (though less than 5%), the timing
numbers were mu more reliable with it turned off.

Machine Model Speed Layout Agg. Bandwidth

(Ghz) (#ips×#cores) 1 core 8 cores

Intel Nehalem X5550 2.66 2× 4 10.5 27.9
Intel Harpertown E5440 2.83 2× 4 2.8 6.4
AMD Shanghai 2384 2.70 2× 4 4.9 10.7

Table 8.1: Characteristics of the aritectures used in our study, where clo speeds are
reported in Ghz and 1- and 8-core aggregate bandwidth numbers in GBytes/sec. For the ag-
gregate bandwidth, we report the performance of the triad test in the University of Virginia’s
STREAM benmark [McC07], compiled with gcc -O2 and using gcc’s OpenMP.

Among these aritectures, the Intel Nehalem is the current flagship, whi shows significant
improvements in bandwidth over prior aritectures. For this reason, this work focuses on
our performance on the Nehalem maine; we include results for other aritectures for
comparisons as our teniques benefit other aritectures as well.

Datasets. Our study involves a diverse collection of large sparse matrices, gathered from the
University of Florida Matrix Collection [Dav94] and a collection of mesh matrices generated
by applications in vision and medical imaging. We present a summary of these matrices in
Table 8.2. ese matrices are osen so that for the majority of them, neither the vectors nor
the whole matrix can fit entirely in cae; smaller matrices are also included for comparison.

For the CMG experiments, since the CMG solver requires the input matrix to be SDD, we
replace eaoff-diagonal entrywith a negative number of the samemagnitude, andwe adjust

¹We have also experimented with the Intel compiler and found similar results.
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Matrix #rows/cols #nonzero

2d-A 999,999 4,995,995
3d-A 999,999 6,939,993
af_shell10 1,508,065 52,672,325
audikw_1 943,695 77,651,847
bone010 986,703 71,666,325
ecology2 999,999 4,995,991
nd24k 72,000 28,715,634
nlpkkt120 3,542,400 96,845,792
pwtk 217,918 11,634,424

Table 8.2: Summary of matrices used in the experiments.

the diagonals to get zero row-sums. e perturbation does not affect the SpMV performance,
as thematrix structure remains unanged, but it allows us to study the performance of CMG
on various sparse paerns.

All matrices in the study are ordered in the best possible ordering we are able to find. Ea
matrix is reordered using a number of heuristics and we keep the ordering that yields the best
baseline performance. For ea matrix, we use the same ordering when comparing SpMV
semes. We discuss the effects of separator quality in Section 8.3.5.

e first set of experiments concerns the performance of SpMV. In these experiments, we are
especially interested in understanding how the ideas outlined in previous sections perform
on a variety of sparse matrices.

roughput. Figure 8.3 and Table 8.3 show the performance (in GFlops) and the speedup
aieved by various SpMV routines on the matrices in our collection. Several things are clear.
First, on all these matrices, a simple parallel algorithm speeds up SpMV by 3.4x–4.5x. In
fact, without any data reduction, we cannot hope to improve the performance mu further,
because as will be apparent in the next discussion, the simple parallel algorithm operates
near the peak bandwidth.

Second, but more importantly, both hierarical diagonal bloing and precision reduction
can help enhance the speed of SpMV, but neither idea alone yields as mu performance
improvement as their combination. By replacing double-precision numbers with single-
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Figure 8.3: Performance of different SpMV routines (in GFlops) on a variety of matrices.

Matrix Speedup Speedup
simple par. (double) bloed par. (single)

2d-A 3.9x 7.1x
3d-A 3.7x 7.6x
af_shell10 4.3x 11.3x
audikw_1 4.0x 11.0x
bone010 3.7x 9.7x
ecology2 3.4x 6.2x
nd24k 3.9x 9.6x
nlpkkt120 3.8x 8.4x
pwtk 3.7x 10.1x
thermal2 4.5x 7.3x

Table 8.3: Speedup numbers of parallel SpMV on an 8-core Nehalem maine as compared
to the sequential baseline code.

precision numbers, we use 4 bytes per matrix entry instead of 8. Furthermore, by using
the hierarical diagonal bloing with the top-level blo size∼ 32K, we can represent the
indices of the entries in the diagonal blos using 16-bit words, a saving from 32-bit words
used to represent matrix indices in a normal CSR format. Diagonal bloing can also take ad-
vantage of symmetry: ea digonal blos can be stored in the skyline format, whi halves
the number of entries (both indicies and values) we have to store. Combining these ideas, we
not only further reduce the bandwidth but also improve the cae locality due to bloing.
Shown in Table 8.4 is the memory footprint of the different representations. By applying
the bloing on these matrices, the footprint can be reduced by more than 1.5x and can be
further reduced by precision reduction. is is reflected in the additional speedup of more



148 CHAPTER 8. HIERARCHICAL DIAGONAL BLOCKING

than 2x in the speedup of the single-precision bloed parallel version over the speedup of
the simple double-precision parallel code.

Matrix Memory Access (MBytes)

CSR/double blocked/double blocked/single

2d-A 80 56 36
3d-A 103 67 43
af_shell10 657 313 193
audikw_1 951 426 261
bone010 880 404 251
ecology2 80 56 36
nd24k 346 164 106
nlpkkt120 1212 589 367
pwtk 143 65 40
thermal2 128 85 55

Table 8.4: Total memory accesses (inMBytes) to perform one SpMV operation using different
representations.

Scalability. Presented in Figures 8.4 and 8.5 are speedup and bandwidth numbers for differ-
ent SpMV routines. e speedup on i cores is how mu faster a program is on i cores than
on 1 core running the same program. First and most importantly, bloed parallel single pre-
cision scales the best on all three maines. On the Nehalem, it aieves a factor of almost 7x
compared to approximately 4x for the simple double-precision parallel SpMV. Furthermore,
the trend is similar between Nehalem and Shanghai, whi both have more memory an-
nels and higher bandwidth than the Harpertown. On the Harpertown, all the benmarks
saturate at 4 cores, potentially due to the limited bandwidth.

Second, reducing thememory footprint (hence the bandwidth requirement) is key to improv-
ing the scalability. As Figure 8.5 shows, the simple parallel SpMV seems to be compute bound
on 1 core but runs near peak bandwidth on 8 cores, suggesting that further performance im-
provement is unlikely without reducing the bandwidth requirements. But, as noted earlier,
the bloed semes have substantially smaller memory footprint than the simple seme.
For this reason, the bloed semes are able to aieve beer FLOPS counts and scalability
even though they do not operate near the peak bandwidth.
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Figure 8.4: Speedup factors of SpMV on Intel Nehalem X5550, AMD Shanghai 2384, and Intel
Harpertown E5440 as the number of cores used is varied.

Figure 8.6 shows the performance of one call to three CMG programs, differing in the SpMV
kernel used. e precision of scalars and vectors used by CMG mat that of its SpMV
kernel. In the parallel implementations, vector-vector operations in the CMG programs are
also parallelized, when possible, in a straightforward manner.

From the figure, two things are clear. First, the speedup—the ratio between the performance
of the baseline sequential program and the parallel one—varies with the linear system being
solved; however, on all datasets we consider here, the speedup is more than 3x, with the best
case reaing beyond 6x. Second, the speedup of the CMG solver seems to be proportional
to the speedup of SpMV, but not as good. is finding is consistent with the fact that the
largest fraction of the work is spent in SpMV, while part of the work is spent on operations
with more modest speedups (e.g., vector-vector operators and SpMV operations on smaller
matrices).
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Figure 8.5: Bandwidth consumption of SpMV (in GBytes/sec) on Intel Nehalem X5550, Intel
Harpertown E5440, and AMD Shanghai 2384 as the number of cores used is varied. e peak
1- and 8-core bandwidth numbers are from Table 8.1.

e CMG is used as a preconditioner in a Preconditioned Conjugate Gradients (PCG) itera-
tion. In Table 8.5, we report the number of PCG iterations required to compute a solution x

su that the relative residual error satisfies ‖Ax−b‖/‖b‖ < 10−8, for various matrices and
three different b-sides. e first column corresponds to a random vector b, the second to Ab

and the third to an approximate solution ofAx = b, for the same random b. We note that the
reported convergence rates are preliminary. Improvements may be possible as long as the
hierary construction abides by the sufficient and necessary conditions reported in [KM08].
One call to CMG is on average 5–6 times slower than one call to SpMV. Most of the matrices
have a particularly bad condition number and standard CG without preconditioning would
require thousands of iterations to aieve the same residual error.

As predicted by the theory in Section 8.2.2, CG preconditionedwith double-precision CMG is
virtually indistinguishable from CG preconditioned with single-precision CMG; the number
of iterations for convergence differs by at most 1 in all our experiments. We have also found
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Figure 8.6: Performance of a CMG solve iteration (in GFlops) on different linear systems.
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Figure 8.7: Performance of SpMV routines (in GFlops) with different ordering heuristics.

that further improvements can be found by using a single-precision implementation of CG to
drive the error down to 10−6 and then switing to the double-precision mode. In Table 8.5,
we report the running times of one call to PCG, with CG implemented in single precision and
double precision—the preconditioner CMG is implemented consistently in single precision.

Our results thus far rely on the assumption that the input matrices are given in a good
separator-ordering. Oen, however, the matrices have good separators but are not prear-
ranged in su an ordering. In this section, we explore various heuristics for computing a
good separator-ordering and compare their relative performance with respect to SpMV.

We begin by defining two abstract measures of the quality of an ordering. e first measure,
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Matrix #iterations PCG run time per call

random b Ab A+b P-single-CG P-double-CG

2d-A 42 34 48 24.15 31.1
3d-A 37 32 37 24.3 31.5
af_shell10 26 23 30 195.3 231.3
audikw_1 19 15 17 205.0 245.8
ecology2 49 37 55 25.5 32.2
nlpkkt120 26 20 28 203.2 256.8

Table 8.5: PCG: number of iterations required for convergence of error to 10−8 and running
time per call in milliseconds.

called the `-distance, is inspired by previous work on graph compression using separator
trees [BBK03]. e `-distance is an information-theoretic lower bound on the average num-
ber of bits needed to represent the index of an entry. is measure therefore indicates how
well the ordering compresses. Formally, for a matrixM ,

`(M) :=
1

#nnz

∑
(i,j)∈M

log2 |i− j + 1|.

Simpler than the first, the second measure—denoted by “off”—is simply the percentage of
the nonzero entries that fall off the first-level blos. is measure tells us what fraction of
the nonzero elements has to resort to the simple parallel seme and cannot benefit from the
blos.

As we already discussed in Section 8.1, at the heart of a separator ordering is a separator
tree—a fully balanced tree of edge-separators for the graph of the matrix. For the study, we
consider the following graph-partitioning and reordering heuristics: (1) “local,” a boom-up
contraction heuristic (known in the original paper as bu) [BBK03]; (2) METIS, an algorithm
whi recursively applies the METIS partitioning algorithm [KK98]; and (3) a random or-
dering of the vertices.

Table 8.6 shows statistics for these heuristics on three of the matrices used in previous sec-
tions. On both the `-distance and off-blomeasures, it is clear thatMETIS produces superior
orderings than the local heuristic does on all of the matrices considered; however, the local
heuristic is significantly faster than METIS, both running sequentially—and as we will see
next, both semes yield comparable SpMV performance. In terms of parallelization po-
tential, we were unable to run parMETIS on our Nehalem maine. Yet, the local heuristic
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shows good speedup running on 8 cores, finishing in under 3 seconds on the largest matrix
with almost 100 million entries and exhibiting more than 5x speedup over 1 core.

Matrix nnz/row Random Local METIS

(avg.) ` off ` off T1 T8 ` off T1

audikw_1 82.3 17.5 92.6% 7.6 9.0% 11.1 1.9 6.8 3.6% 76.1
nd24k 399.0 13.9 93.5% 9.5 36.1% 5.0 0.8 8.5 21.4% 12.0
nlpkkt120 26.9 19.2 96.6% 7.5 11.9% 15.3 2.6 6.3 5.3% 230.5

Table 8.6: Statistics about different ordering heuristics: ` is the `-distance defined in Sec-
tion 8.3.5 and off is the percentage of the entries that fall off the diagonal blos. e timing
numbers (in seconds, T1 for the sequential code and T8 for the parallel code on 8 cores) on
the Nehalem are reported.

We show in Figure 8.7 how the different ordering heuristics compare in terms of SpMV
performance. First but unsurprisingly, the random ordering, whiwe expect to have almost
no locality, performs the worst on all three SpMV algorithms. Second, as can be seen from the
stark difference between the random ordering and the other two semes, a good separator-
ordering benefits all algorithms, not just the HBD seme. ird but most importantly,
the SpMV algorithms are “robust” against small differences in the separator’s quality: on all
algorithms, there is no significant performance loss when switing fromMETIS to a slightly
worse, but faster to compute, ordering produced by the local heuristic.

is apter described a sparse matrix representation whi in conjunction with precision
reduction, forms the basis for high-performance SpMV kernels. We evaluated their perfor-
mance both as stand-alone kernels and on CMG, showing substantial speedsup on a diverse
collection of matrices.





Chapter 9

In this apter, we build on the algorithms from Chapter 5 to give approximation algorithms
for set cover and related problems that are both parallel and I/O efficient.

e past few years have witnessed the proliferation of parallel maines, with tens of cores
readily available in commodity maines; a similar time frame also saw a dramatic increase
in disk bandwidths through the advent of solid-state drives (SSDs). ese two seemingly
disparate trends might seem to lead to very different directions in algorithms design, but
fortunately, oen approaes that are good for parallelism are also good for external mem-
ory [CGG+95]. Roughly speaking, this is because teniques that generate parallelism can
enable algorithms to hide latency and bat-access external blos of memory.

From a practical perspective, set cover and its variants have many applications that can re-
quire very large data [CKW10], including data analysis, information retrieval, fault testing,
and allocating wavelength in wireless communication. It thus seems well-suited for paral-
lel and I/O efficient algorithms. From a theoretical perspective, although set cover is one
of the most fundamental and well-studied problems in optimization and approximation al-
gorithms, we know of no I/O efficient solutions for the general case (i.e. when neither the
sets nor the elements fit in memory). Recent work of Cormode, Karloff, and Wirth (CKW)
has developed an efficient algorithm for the case when the elements—but not the sets—fit in
memory [CKW10]. We present a solution that is both I/O-efficient and parallel.
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PROBLEMS

Our (randomized) algorithm for (weighted) set cover extends recent results for parallel set
cover [BPT11] (BPT) to I/O models. As with other previous parallel algorithms for the prob-
lem [BRS94, RV98], and also as with the CKW approa, the idea is based on bueting
costs in powers of (1 + ε). e BPT approa, however, uses maximal nearly-independent
sets to aieve good parallelism and hence I/O efficiency within a step while being work-
efficient—ea edge is processed on average a constant number of times.¹ In the I/O models
where permutations are as expensive as sorting, the algorithm aieves the same bound as
sorting. Our algorithm gives an (1 + ε)(1 + lnn)-approximation for arbitrary ε > 0 and
hence is essentially optimal. In addition to set cover, as shown in [BPT11], the same sequence
of sets can be used as a solution to max cover and min-sum set cover. For max cover, this se-
quence is prefix optimal: for any prefix of length k, this prefix is a (1− 1

e−ε)-approximation
to the max k-cover problem.

We analyze the cost in the parallel cae oblivious (PCO) model [BFGS11]. e model cap-
tures both parallelism and I/O (cae) efficiency by analyzing algorithms in terms of their
depth (aka. critical path, span) and cae complexity. e model supports nested fork-join
parallelism startingwith a single sequential strand and allowing arbitrary dynamic nesting of
parallel loops or forks and joins. Upper bounds on cae complexity in the PCOmodel imply
the same cae complexity in the sequential cae oblivious model [FLPR99], and hence the
external memory (EM) model whenM ≥ B2 (the standard tall cae assumption) [Vit01].

In the PCO model (and hence CO and EM models), the cae (I/O) complexity of our al-
gorithm is O(WB logM/B

W
B ), where W is the size of the input (number of edges). is

mates the sorting lower bounds for all models. Furthermore, it has polylogarithmic par-
allel depth. e PCO bounds also imply equivalent bounds on total misses on parallel ma-
ines with various cae hieraries including shared caes, distributed caes and trees
of caes [BFGS11].

We have implemented and experimented with two variants of our algorithm, one for shared-
memory parallel maines and one for external memory. e only difference between the
two variants is how we implement the communication steps. We experiment with the par-
allel variant on a modern 48-core multicore with just enough memory to fit all our instances
(64 Gbytes), and with the external memory variant, on a more modest maine using an
external solid-state drive. We test the algorithms with several large instances with up to
5.5 billion edges. For the parallel version, we are able to aieve significant speedup over a
fast sequential implementation. In particular, we compare to the CKW sequential algorithm

¹Here, edges refer to the bipartite graph representation of a set-cover instance with sets on one side, ground
elements on the other, and an edge when a set includes an element.
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whi is already significantly faster than the greedy algorithm. For our largest graph with
about 5.5 billion edges, the algorithm runs in under a minute. In fact, it runs faster than
optimized parallel sorting code [SSP07] on the same sized data, and over 20x faster than
sequential sorting code. For the max k-cover problem, we empirically show that it is oen
possible to speedup the computation by more than a factor of 2 by stopping the algorithm
early when k is known and is small relative to the set cover’s solution size. For the sequential
I/O variant, we are able to aieve orders of magnitude speedups over the results of CKW
when neither the sets nor elements fit in memory. When the elements fit in memory, the
CKW algorithm is faster. With regards to quality of the results (number of sets returned),
our algorithm returns about the same number of sets as the other algorithms.

Parallel Primitives

We need primitives su as sorting, prefix computation, merge, filter, map for the set cover
algorithm. Parallel algorithms with optimal cae complexity in the PCO model and poly-
logarithmic depth can be constructed for these problems (for construction, see [BFGS11]).
e cae complexity of sorting on an input instance n in the PCOmodel is sort(n;M,B) =

O( nB logM/B
n
B ), while the complexity of the other primitives is O(n/B). We use sort(n)

as shorthand. All primitives have O(log2 n) depth.

is section describes an efficient implementation of the BPT set cover algorithm [BPT11]
in the PCO model, implying good I/O complexity in other related models. We begin by pre-
senting an algorithmic description, whi satisfies eorem 9.1. Following that, we discuss
implementation details in optimizing this algorithm for different hardware setups.

roughout this section, letW =
∑

S∈S |S| be the sum of the set sizes.

eorem 9.1 (Parallel and I/O Efficient Set Cover) e I/O (cae) complexity of the ap-
proximate set cover algorithm on an instance of size W is O(sort(W )) and the depth is
polylogarithmic in W . Furthermore, this implies an algorithm for prefix-optimal max cover
and min-sum set cover in the same complexity bounds.

At the core of the BPT algorithm (reproduced in Algorithm 9.1.1 for reference) are the fol-
lowing 3 ingredients—prebueting, MaNIS, and buet management—whi we discuss in
turn. e universe of elements U is represented as a bitmap indexed by an element identifier.
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Algorithm 9.1.1 SetCover — Blello et al. parallel greedy set cover.
Input: a set cover instance (U ,F , c) and a parameter ε > 0.
Output: a ordered collection of sets covering the ground elements.

i. Let γ = maxe∈U minS∈F c(S),W =
∑

S∈F |S|, T = log1/(1−ε)(W
3/ε), and β = W 2

ε·γ .
ii. Let (A;A0, . . . , AT ) = Prebucket(U ,F , c) and U0 = U \ (∪S∈AS).
iii. For t = 0, . . . , T , perform the following steps:

1. Remove deleted elements from sets in this buet: A′
t = {S ∩ Ut : S ∈ At}

2. Only keep sets that still belong in this buet: A′′
t = {S ∈ A′

t : |S|/c(S) > β · (1− ε)t+1}.
3. Select a maximal nearly independent set from the buet: Jt = MaNIS(ε,3ε)(A′′

t , {|a| : a ∈
A}).

4. Remove elements covered by Jt: Ut+1 = Ut \Xt whereXt = ∪S∈JtS

5. Move remaining sets to the next buet: At+1 = At+1 ∪ (A′
t \ Jt)

iv. Finally, return A ∪ J0 ∪ · · · ∪ JT .

Since we only need one bit of information per element to indicate whether it is covered or
not, this can be stored in O( |U|

logW ) words.

Prebueting. is component (Step ii.) ensures that the ratio between the costliest set and
eapest set is polynomially bounded so that the total number of buets is kept logarithmic.
As described originally (cf. Lemma 4.2 of [BPT11]), this part involves discarding sets that cost
more than a threshold, including in the solution all setseaper than a certain threshold—and
marking the covered elements in the bitmap—then assigning the remaining sets toO(logW )

different buets by their cost. ese operations can be done using filter, sort, and merge, all
in less than sort(W ) I/O complexity and O(log2 n) depth in the PCO model.

MaNIS. Invoked in Step iii of the set cover algorithm, MaNIS finds a subcollection of the sets
in a buet that are almost non-overlapping with the goal of closely mimiing the greedy
behavior. Shown in Algorithm 9.1.2 is a modified version of MaNIS algorithm from [BPT11]
with the steps annotated with primitives in the PCO model used to implement them. By
inspection, it is clear that ea round of MaNIS require at most O(sort(|G|) I/O complexity
and depth in the PCO model. As analyzed in [BPT11], for a buet with Wt edges to start
with, MaNIS runs for at mostO(logWt) rounds—and aer ea round, the number of edges
drops by a constant factor; therefore, we have the following bounds:

Lemma 9.2 e cae (I/O) complexity in the PCO model of running MaNIS on a buet with
Wt edges is O(sort(Wt)), and the depth is O(sort(Wt) logWt).

Buet Management. e remaining steps in Algorithm 9.1.1 are devoted to buet man-
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Algorithm 9.1.2 MaNIS(ε,3ε)(G,D)

Input: A bipartite graph G = (A,NG(a)), and a degree functionD(a).
A is a sequence of le vertices (the sets), and NG(a), a ∈ A are the neighbors of ea le vertex

on the right.
ese are represented as contiguous arrays. e right vertices are represented implicitly as B =

NG(A).
Output: J ⊆ A of osen sets.

1. If A is empty, return the empty set.
2. For a ∈ A, randomly pi xa ∈R {0, . . . ,W 7

G − 1}. // ensure no collision with high probability
3. For b ∈ B, let ϕ be b’s neighbor with maximum xa // sort and prefix sum
4. Pi vertices of A “osen” by sufficiently many in B: // sort, prefix sum, and filter

J = {a ∈ A|#{b : ϕ(b) = a} ≥ (1− 4ε)D(a)}.

5. Update the graph by removing J and its neighbors, and elements of A with too few remaining
neighbors:
(1) B = NG(J) (elements to remove) // sort
(2) N ′

G = {{b ∈ NG(a)|b 6∈ B} : a ∈ A \ J} // sort and filter
(3) A′ = {a ∈ A \ J : |N ′

G(a)| ≥ (1− ε)D(a)} // filter
(4) N ′′

G = {{b ∈ N ′
G(a)} : a ∈ A′} // filter

6. Recurse on reduced graph: JR = MaNIS(ε,3ε)((A′, N ′′
G), D)

7. return J ∪ JR

agement, ensuring the contents of the least-costly buet is “fresh.” We assume the At, A
′
t

and A′′
t are stored in the same format as the input for MaNIS (see 9.1.1). Step iii.1 can be

accomplished using a sort to order the edges by element index, a merge (with a vector of
length O(|U|/ logW )) to mat them with the elements bitmap, a filter to remove deleted
edges, and another sort to get them ba ordered by set. Step iii.2 is simply a filter. e
append operation in Step iii.5 is no more expensive than a scan. In the PCO models, these
primitives have I/O complexity at most O(sort(Wt) + scan(|U|/ logW )) for a buet with
Wt edges. ey all have O(sort(W )) depth.

To show the final cae (I/O) complexity bounds, we make use of the following claim:

Claim 9.3 ([BPT11]) Let Wt be the number of edges in buet t at the beginning of the
iteration whi processes this buet. en,

∑
Wt = O(W ).

erefore, we have O(sort(W )) from prebueting, O(sort(W )) from MaNIS combined,
and O(sort(W ) + scan(U)) from buet management combined. is simplifies to an I/O
(cae) complexity of Q∗(W ;M,B) = O(sort(W ;M,B)) since U ≤ W . e depth is
O(log4W ).
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Here we discuss certain design decisions that we made for the two versions of the MaNIS-
based set cover algorithm: one optimized for the multicore aritecture and the other for
the external-memory seing. In both cases we store the adjacency arrays (integers for the
elements belonging to ea set) contiguously within ea array and then across arrays. We
maintain a pointer from ea set to the beginning of its array.

Parallel Implementation

is implementation targets modern maines with many cores and sufficient RAM to fit
and process the dataset if sufficient care is taken to manage the memory. e goal of this
implementation is therefore to take advantage of available parallelism and locality, and strike
a balance between the computation cost and the memory-access cost. We apply buet sort
and standard prefix computations to put the input sets into the buets they belong. To im-
plement MaNIS, we make the following observation: a round of MaNIS can be seen as a
small number of sorts, as presented, or as handling concurrent priority writes. Our prelim-
inary experiments show that simulating priority writes using compare and swap (CAS) on
these sets in a standard way does not produce high contention—and is in fact faster than run-
ning sort a few times. is is the tradeoff between computation cost and memory-accesses
that we alluded to earlier. We also made efforts to minimize the number of passes over the
bitmap and the data.

Disk-optimized Implementation

At the other end of the spectrum, we target a single-core maine with so lile fast memory
that not even the bitmap—the bit indicator array for the elements—cannot fit in main mem-
ory, but this maine has relatively fast disk (e.g., a solid-state drive). To perform external-
memory (out-of-core) computations, we resort to STXXL, a C++ reimplementation of the
Standard Template Library (STL) for external memory usage [DKS08, SSP07]. STXXL hides
from the users the intricate optimizations done at the low-level (e.g., asynronous/bulk
I/O) but exposes enough parameters if it were necessary to fine-tune the performance. As
suggested in the theoretical design, the bitmap is represented as a bit array. Ea round of
MaNIS is implemented as a series of external-memory sort, using the sort routine that comes
with STXXL. In this case, we resort to sorting as the algorithmic description suggested be-
cause disk accesses are slower than RAM accesses and random read/writes, as in the parallel
case, would be costly (more costly than sorting).
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We empirically investigate the performance of the proposed algorithm. We implemented
two variants of the algorithm, one optimized for the multicore aritecture and the other
optimized for disk-based computation. e algorithms process the graph with exactly the
same sequence of buets and the same MaNIS steps. When started with the same random
seed they therefore return the same result. e only difference is in how they perform the
communication in the bueting and eaMaNIS step. For a seing of ε, all implementations
adopt the convention that the solution produced is no worse than (1 + ε)(1 + lnn).

Datasets. Our study uses a diverse collection of instances derived from various sources
of popular graphs. Many of the datasets here are obtained from the datasets made pub-
licly available by the Laboratory for Web Algorithmics at Università degli studi di Mi-
lano [BRSV11, BV04a]. ese datasets are derived from directed graphs of various kinds
in a natural way: ea node v gives rise to a set and all nodes that v points to are members
of the set corresponding to v. We give a detailed description of ea instance below and
present a summary of these instances in Table 9.1.

Dataset # of sets # of elts. # of edges avg |S| max |S| ∆

webdocs 1,692,082 5,267,656 299,887,139 177.2 71,472 1,429,525
livejournal-2008 4,817,634 5,363,260 79,023,142 16.4 2,469 19,409
twier-2010 40,103,281 41,652,230 1,468,365,182 36.6 2,997,469 770,155
twier-2009 54,127,587 62,539,895 1,837,645,451 34.0 2,968,120 748,285
uk-union 121,503,286 133,633,040 5,507,679,822 45.3 22,429 6,010,077
altavista-2002-nd 532,261,574 1,413,511,386 4,226,882,364 7.9 2,064 299,007

Table 9.1: A summary of the datasets used in our experiments, showing for every dataset the
number of sets, the number of elements, the number of edges, the average set size (avg |S|),
the maximum set size (max |S|), and the maximum number of sets containing an element
(∆ := max |{S 3 e}|).

—livejournal-2008 is derived from user-user relationships on the LiveJournal blogging and
virtual community site. Our dataset is a snapshot taken by Chieriei et al. [CKL+09],
where ea set S is a user of the site and covers all users that are listed as S’s friends.
— webdocs is a collection of web pages with directed links between them [Goe]. We derive
a set system from this graph as described earlier.
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— twier-2010 is derived from a snapshot taken in 2010 of the follower relationship graph on
the popular Twier network, where there is an edge from x to y if y “follows” x [KLPM10].
e set system is derived using the method described earlier.
— twier-2009 is an older, but larger, Twier snapshot taken in 2009 by a different resear
group [KMF11].
— altavista-2002-nd is the AltaVista web links dataset from 2002 provided by Yahoo! Web-
Scope. e dataset has been preprocessed to remove dangling nodes, as suggested by experts
familiar with this dataset².
— uk-union combines snapshots of webpages in the .uk domain taken over a 12-month
period between June 2006 and May 2007 [BSV08].

e first set of experiments is concerned with the performance of our multicore-optimized
program in comparison to existing sequential algorithms. ese experiments are designed
to test the parallel implementation on the following important metrics:

1. Solution’sality. eparallel algorithm should deliver solutions with no significant
loss in quality when compared to the sequential counterpart;

2. Parallel Overhead. e parallel algorithm running on a single core should not take
mu longer than its sequential counterpart, showing empirically that it is work effi-
cient; and

3. Parallel Speedup. e parallel algorithm should aieve good speedup³,indicating
that the algorithm can successfully take advantage of parallelism.

e baseline for the experiments is our own implementation of Cormode et al.’s disk-friendly
greedy (DFG) algorithm [CKW10]. is is a good baseline for this experiment because DFG
aieves significant performance improvements over the standard greedy algorithm by mak-
ing a geometric-scale bueting approximation similar to ours. As previously shown, this
approximation does not harm the solutions’ quality in practice but makes it run mu faster
on both disk- and RAM- based environments. Our implementation of DFG closely follows
the description in their paper but is further optimized for performance. Because of the fine
tuning we made to the code, our implementation runs significantly faster than the numbers
reported in Cormode et al. on RAM, taking in account the differences between maines.
For this reason, we believe our DFG code is a reasonable baseline. We also implemented the

²See, e.g., http://law.dsi.unimi.it/webdata/altavista-2002-nd/
³is measures how mu faster it is running on many cores than running sequentially.
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standard greedy algorithm for comparison.

Evaluation Setup

Our parallel experiments were performed on a 48-core AMD maine, consisting of four
Opteron 6168 ips running at 1.9 Ghz. e maine is equipped with 64 GBytes of RAM,
running Linux 2.6.35 (Ubuntu 10.10). We compiled our programs with Intel Cilk++ build
8503 using the optimization flag -O3 [int10a]. e Cilk++ platform, in whi the runtime
system relies on a work-stealing seduler, is known to impose only lile overhead on both
parallel and sequential code.

Dataset Standard Greedy DFG Parallel MaNIS

T1 (sec) # sets T1 (sec) # sets T1 (sec) T48 (sec) # sets

webdocs 55.35 406,399 9.53 406,340 9.88 4.11 406,367
livejournal-2008 15.19 1,120,594 6.92 1,120,543 15.99 2.91 1,120,599
twier-2010 584.87 3,846,209 113.08 3,845,345 159.39 21.53 3,845,089
twier-2009 1,136.2 5,518,039 186.83 5,516,959 222.28 20.84 5,517,864
uk-union - - 238.06 18,388,007 422.54 45.47 18,379,547
altavista-2002-nd - - 397.60 33,103,284 1,002.50 56.99 33,090,726

Table 9.2: Performance with ε = 0.01 of RAM-based algorithms: the standard greedy im-
plementation, the disk-friendly greedy (DFG) algorithm of Cormode et al., and our MaNIS-
based parallel implementation. We show the running time on p cores, denoted by Tp (in
seconds), and the number of sets in the solutions.

Results

Table 9.2 shows the performance of the three aforementioned RAM-based algorithms when
run with ε = 0.01. Several things are clear. First, parallel MaNIS aieves essentially the
same solutions’ quality as both DFG and the baseline algorithm. In fact, with ε set to 0.01

for both DFG and parallel MaNIS, all algorithms produce solutions of roughly the same
quality—within about 1% of ea other. Interestingly, the standard greedy algorithm does
not always yield the best solution. Our experience has been that the additional randomness
that parallel MaNIS adds to the greedy algorithm oen helps gain beer solutions. In a
number of datasets above, parallel MaNIS does yield the best-quality solutions.

Second, the overhead in running parallel MaNIS is small—under 1.8x in all but two cases.
is means that parallel MaNIS is likely to be faster than DFG even on a modest number of
processors. As the numbers show, except for livejournal-2008 and altavista-2002-nd, paral-
lel MaNIS is at most 1.8x slower than DFG when running on 1 core. We believe this stems
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from the fact that the number of MaNIS rounds is usually small, so when running sequen-
tially, parallel MaNIS performs more or less the same number of steps as DFG. However,
livejournal-2008 and altavista-2002-nd exercise MaNIS more than usual: we have found that
in other datasets, at most 5% of the buets require more than 2 MaNIS rounds, whereas in
livejournal-2008, 13% of the buets need 3 or more rounds and in altavista-2002-nd, 67% of
the buets need 3 or more rounds—with one buet running 218 rounds of MaNIS.

ird but perhaps most importantly, parallel MaNIS shows substantial speedups on all but
the small datasets. e experiments show that MaNIS aieves upto 17.6x speedup with
the speedup numbers ranging between 7.4x and 17.6x—except for the two smallest datasets
webdocs and livejournal-2008 whi obtain only 2.4x and 5.5x speedup. is shows that the
algorithm is able to effectively utilize available cores except when the datasets are too small
to take full advantage of parallelism.

To further understand the effects of the number of cores, we study the performance of parallel
MaNIS on altavista-2002-nd as the number of cores used is varied between 1 and 48 (all
cores). As Figure 9.1 shows, the running-time performance of our algorithm scales well
with the number of cores until at least 24 cores. Aer that, even though the performance
continues to improve, the marginal benefit diminishes. We believe this is due to saturation
of the memory-bandwidth. On newer maines with larger memory bandwidth, we expect
to see even beer speedups.
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Figure 9.1: Speedup of the parallel MaNIS algorithm (i.e., how mu faster is running the
algorithm on n cores is over running it sequentially) as the number of cores used is varied.
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Figure 9.2: Max k-cover performance (in seconds) as the value of k is varied.

Max Cover

In the sequential seing, stopping the standard greedy set cover algorithmwhen it has found
k sets gives the optimal (1− 1/e)-approximation to max k-cover. An important feature of
the parallel MaNIS algorithm is that it can be stopped early in the same way. To see how one
might benefit from stopping the algorithm when the algorithm has found enough sets, we
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record the time point when k sets are discovered. Presented in Figure 9.2 are plots from our
3 largest datasets (by the number of edges), altavista-2002-nd, uk-union, and twier-2009.
is experiment shows that although the rate varies between datasets, it is clear that most of
the sets are added late in the algorithm; therefore, if the value of k of interest is small relative
to the set cover solution’s size, we can benefit from stopping early, whi can oen halve the
running time. Chieriei et. al. [CKT10] present results for max k cover on map-reduce
but do not report any times, so we were not able to compare.

e second set of experiments deals with the performance of our disk-optimized implemen-
tation in comparison to existing disk-based algorithms. We are interested in evaluating the
algorithms on the following metrics: (1) solutions’s quality and (2) running time. Since the
disk-optimized versions of both DFG and MaNIS yield the same solutions as their parallel
counterparts, their relative performance in terms of solutions’s quality will be identical to the
study conducted earlier for the parallel case. For this reason, in the remaining of this section,
we will focus on investigating the running time as well as other performance aracteristics
of the disk-optimized MaNIS implementation.

Evaluation Setup

Our disk experiments were performed on a 4-core Intel maine although we only make use
of a single core running at 2.66 Ghz. e maine is equipped with 8 GBytes of RAM and
an Intel X25-M 160 GBytes SSD disk⁴ (used both for input and as scrat space). ere is a
separate magnetic disk whi we keep the OS Linux 2.6.38 (Ubuntu 11.04) and other system
files. We compiled our programs with g++ 4.5.2 using the optimization flag -O3.

We artificially limited the RAM size available to the set cover process to 512 MBytes and
carefully control all disk-access buffers to use only these 512 MBytes. is may seem unre-
alistic at first, but this controlled setup models the types of maines available as embedded
devices and computing nodes in low-power clusters (e.g., [AFK+09]) and provides a testbed
for understanding the performance of these algorithms on su devices.

Table 9.3 reports the performance of the disk-based algorithms when run ε = 0.01. On the
larger graphs, the DFG algorithm did not complete within 40 hours. On the smaller sets,
the disk based MaNIS is substantially faster (about 4x for webdocs and 39.6x for livejournal-

⁴Per Intel’s specification, it has sustained sequential read and write bandwidths of 250 MB/s and 100 MB/s,
resp.
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Dataset DFG Disk MaNIS

Time # of sets Time # of sets

webdocs 32m50s 406,340 481s 406,367
livejournal-2008 3h5m 1,120,543 280s 1,120,599
twier-2010 > 40 hrs - 55m2s 3,845,089
twier-2009 > 40 hrs - 1h11m 5,517,864
uk-union > 40 hrs - 6h49m 18,379,547
altavista-2002-nd > 40 hrs - 13h27m 33,090,726

Table 9.3: Performance with ε = 0.01 of disk-based algorithms: the disk-friendly greedy
(DFG) algorithm of Cormode et al., and our disk-based MaNIS implementation. We show
the running time and the number of sets in the solutions.

2008). In some cases the timing numbers might seem irregular but a closer look at the results
reveals paerns that are worthwhile mentioning:

When the bitmap representing the elements does not fully stay in fast memory (i.e., cae
or RAM), the number of passes over the bitmap and the bitmap size crucially determine the
performance of both algorithms. In DFG, whi consults the bitmap every time it considers a
set, this is lower-bounded by the number of sets in the output, whereas in disk MaNIS, whi
bates “requests” to look up the bitmap and reduces them to one pass over it per MaNIS
round, this number is the total number of MaNIS rounds summed across all buets. is
explains the difference in running-time paerns between the two algorithms onwebdocs and
livejournal-2008. For this reason also, the two Twier datasets take roughly the same time
to run disk MaNIS despite significant differences in the number of sets outpued.

ε

In theory, the dependence on ε in the work bound isO(1/ log3(1+ ε)), whi for small ε is
roughlyO(1/ε3). is seems alarming because as we decrease ε (i.e., increase accuracy), 1

ε3

grows rather rapidly, rendering the algorithm unusable in no time; however, in practice, the
situation is mu beer. As we decrease ε, we will observe more buets but an even larger
fraction of these buets will be empty, reducing the efforts needed to run MaNIS to process
them and counteracting the increase in the number of buets. Table 9.4 shows the effects
of ε on webdocs for both the disk-optimized and parallel versions.

e numbers show that increasing the accuracy from ε = 0.1 to 0.001 (2 more digits of
accuracy) increases the running time by less than 3x. is trend seems to generalize across
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Algorithm ε = 0.1 0.05 0.01 0.001

Disk MaNIS 271 310 481 891
Parallel MaNIS 2.43 2.65 4.11 7.66
# of sets 406,431 406,389 406,367 406,364

Table 9.4: Performance of MaNIS-based algorithms on webdocs (in seconds) as ε is varied.

the datasets we have. More interesting, however, is the observation that ε only has small
effect on the solutions’ quality. Our experience has been that with ε sufficiently small, we
benefitmore from spending the computation time on different randomoices than adjusting
ε to increase accuracy.

We presented a parallel cae-oblivious set-cover algorithm that offers essentially the same
approximation guarantees as the standard greedy algorithm. As our main contribution, we
implemented slight variants of the theoretical algorithm optimized for different hardware
setups and provided extensive experimental evaluation showing non-trivial speedups over
existing algorithms while yielding the same solution’s quality.



Chapter 10
In this thesis, we initiated a principled study of efficient parallel approximation algorithms
and presented a set of key algorithmic teniques that aid the design, analysis, and imple-
mentation of a wide variety of su algorithms. Traditionally, parallelizing an algorithm
entails identifying its dependencies structure, so that we know whi parts of the algorithm
can be run independently in parallel. When an algorithm is made up mostly of independent
operations, it is automatically parallel. Unfortunately, most approximation algorithms have
complex dependencies that prevent their operations to be executed in parallel.

e bulk of this work can be seen as identifying independent tasks and decoupling dependent
tasks to create additional opportunities for parallelism. In general, this involves staging the
dependent computations in a way that we can keep their “interference” under control and
we have the ability to properly “merge” the outcome of these dependent computations (eir
dependencies will surely cause conflict of some sort). An important advantage of working
with approximation algorithms is that the answer needs not be exact, a crucial factor that
allows these “merges” to be done reasonably efficiently. For example, MaNIS (Chapter 5)
offers a way to bring together overlapping sets su that the amount of overlap in the end
is small. Similarly, low-diameter decomposition (Chapter 6) relies crucially on the ability to
handle overlapping balls that were grown from different starting points.

Our investigation thus far has led to many tantalizing resear questions, whi we would
like to see resolved in the future. In the rest of this apter, we comment on future directions
for some of these questions.

169
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As a continuation of our work in Chapter 4, we would like to gain a deeper understanding
of what can be solved in parallel in this way. Specifically,

estion 10.1 What LP and SDP formulations have a small width? Is it possible to develop
a general “sparsification” tenique to reduce the width of those that are not small enough?

Learning Linear Separators. Closely related to this theme is the problem of learning a
linear separator. Many real-life datasets are known to have large margin. On these datasets,
it was observed that classifiers su as linear separators and SVMs can be trained quily.
As a first step in this direction, we ask: how to efficiently train a linear classifier in parallel
if the dataset has large margin?

In the sequential seing, we have a classic algorithm whose running time is a function of
the margin. More specifically, if the margin is γ, then the Perceptron algorithm has running
time O( 1

γ2nd), whi can be parallelized to get a O( 1
γ2nd)-work and O( 1

γ2 logn log d)-
depth algorithm. us, the parallel algorithm is work efficient with respect to the sequential
counterpart. In this case, even though there is a considerable amount of parallelism, the
depth is polynomial when 1/γ2 = Ω(n). It is natural to wonder whether the depth can be
improved to a quantity that depends on, e.g., log(1/γ) as opposed to 1/γO(1). To this end, we
are able to show that when the margin γ is exponentially small in n, su an improvement
is unlikely.

eorem 10.2 e problem of finding a linear separator when γ ≤ 1
16n4

−n is P-hard.

Our formulation of MaNIS assumes set-based options, where the interference is additive (set
union and intersection). is can be seen as requiring the goodness measure of the options
to be a unimodular function (in this case, the set cardinality function).

estion 10.3 Is there an analog of MaNIS for submodular functions? Could this general-
ization be used to solve problems like maximizing a submodular function subject to a budget
constraint?
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In this work, we presented a near linear-work parallel algorithm for graph decomposition

with strong-diameter guarantees and parallel algorithms for constructing 2O(
√

logn log logn)-
stret spanning trees and O(logO(1) n)-stret ultra-sparse subgraphs. e ultra-sparse
subgraphs were shown to be useful in the design of a near linear-work parallel SDD solver.

An interesting avenue of resear is to design a (near) linear-work parallel algorithm for
constructing a low-stret tree with polylogarithmic stret. Currently, we only know how
to get ultrasparse graphs if polylogarithmic stret is required.

estion 10.4 Is it possible to construct a low-stret spanning tree with polylog stret in
near linear-work and low-depth?

Since we do not know of an efficient low-depth single-source shortest-path algorithm, a good
starting point for this question is perhaps exploring whether we can build a low-stret
spanning tree with polylog stret in a boom-up manner. All of the constructions thus
far that yield polylog stret are top-down (á la the FRT-tree construction), whi requires
growing balls out to large radii.

Another tantalizing problem is that of devising a (near) work-efficient O(logO(1) n)-depth
SDD solver. Su a solution will lead to immediate significant improvements to many par-
allel algorithms. We believe radical anges to the solver framework will be necessary.

k k

Our work shows RNC constant approximation algorithms for k-median and k-means for
small k (specifically, for k ≤ polylog(n)). For large k, we only know of an RNC O(log k)-
approximation.

estion 10.5 Is it possible to derive RNC constant-approximation algorithms for k-median
and k-means for any k? Or, can we show that this is P-complete?
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