
Stochastic Models and Analysis for
Resource Management in Server Farms

Varun Gupta
CMU-CS-11-114

May 2011

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Mor Harchol-Balter, Chair

David G. Andersen
Anupam Gupta

Alan Scheller-Wolf
Devavrat Shah, MIT

Don Towsley, UMass. (Amherst)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2011 Varun Gupta

This research was sponsored by the National Science Foundation under grant numbers CCR-0133077
and CNS-0615262, Lehigh University under grant number C000037043, Intel Corporation, and The
Technology Collaborative.

The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Keywords: Queueing theory, Multi-server systems, Load balancing, Scheduling,
M/G/k, Time-varying load, Energy management, Stochastic modeling, Heavy-traffic
analysis

Abstract

Server farms are popular architectures for computing infrastructures such
as supercomputing centers, data centers and web server farms. As server
farms become larger and their workloads more complex, designing effi-
cient policies for managing the resources in server farms via trial-and-
error becomes intractable. In this thesis, we employ stochastic modeling
and analysis techniques to understand the performance of such complex
systems and to guide design of policies to optimize the performance.

There is a rich literature on applying stochastic modeling to diverse appli-
cation areas such as telecommunication networks, inventory management,
production systems, and call centers, but there are numerous disconnects
between the workloads and architectures of these traditional applications
of stochastic modeling and how compute server farms operate, necessi-
tating new analytical tools. To cite a few:

(i) Unlike call durations, supercomputing jobs and file sizes have high
variance in service requirements and this critically affects the optimality
and performance of scheduling policies.

(ii) Most existing analysis of server farms focuses on the First-Come-
First-Served (FCFS) scheduling discipline, while time sharing servers
(e.g., web and database servers) are better modeled by the Processor-
Sharing (PS) scheduling discipline.

(iii) Time sharing systems typically exhibit thrashing (resource con-
tention) which limits the achievable concurrency level, but traditional
models of time sharing systems ignore this fundamental phenomenon.

(iv) Recently, minimizing energy consumption has become an impor-
tant metric in managing server farms. State-of-the-art servers come with
multiple knobs to control energy consumption, but traditional queueing
models don’t take the metric of energy consumption into account.

In this thesis we attempt to bridge some of these disconnects by bringing
the stochastic modeling and analysis literature closer to the realities of
today’s compute server farms. We introduce new queueing models for
computing server farms, develop new stochastic analysis techniques to
evaluate and understand these queueing models, and use the analysis to
propose resource management algorithms to optimize their performance.

iv

Acknowledgments

This thesis is merely the ticket stub of a long roller coaster ride, and among my many
companions, there are first among equals without whom I might not have made it
to the end. Kumar Avĳit, Hetunandan Kamisetty, Balakrishnan Narayanaswamy,
Swapnil Patil, Amar Phanishayee, Vyas Sekar, Gaurav Veda: I owe you much more
than you realize.
This thesis would not be possible without my advisor Mor Harchol-Balter who initi-
ated me into the beautiful world of stochastic processes, gave invaluable advice and
support at every stage, and above all, remained patient. I hope that some of her
optimism and enthusiasm has rubbed off on me during my stay at Carnegie Mellon.
I have been extremely lucky to have had exceptional mentors whose faith in me made
me feel like a valuable part of the research community: Alan Scheller-Wolf, who was
always forthcoming with advice on research and career and was a second advisor
to me; Sem Borst, who was both a mentor and a friend during my stint at Bell
Labs; Jim Dai, whose appreciation of my work gave me the self-confidence a young
researcher needs and who has been an inspiration; Milan Vojnovic, from whom I
learned much about problem solving and research during the summer at Microsoft
Research. I have also learned a lot from my co-authors, colleagues and teachers
whose words would have inevitably found their way into this thesis: Ana Bušić, Paul
Enders, Peter Harrison, Michael Kozuch, Takayuki Osogami, Kavita Ramanan, Karl
Sigman, Ward Whitt, Adam Wierman, Bert Zwart.
I would like to thank the staff of the Computer Science Department for looking after
the graduate students. Sharon Burks, Deborah Cavlovich, Catherine Copetas and
Sophie Park deserve special mention for making problems disappear at little or no
notice.
A special note of thanks is also due to the operators of the Carnegie Mellon escort
service for the many rides to home after late nights at the office.
Prasad Chebolu, Deepak Garg, Vineet Goyal, Himanshu Jain, Vĳay Krishnamurthy,
Viswanath Nagarajan, Sandeep Pandey, and Mohit Singh never made me feel that I

v

had left home when I first arrived in Pittsburgh.
Finally, words fail me in expressing my gratitude to my family. It is said that you
don’t choose your family; they are God’s gift to you. Even if it weren’t the case, I
would not have chosen any differently. My parents have always given me the freedom
to follow my heart even if it meant sacrificing their happiness, and have had faith in
me when I myself had none. They have been a constant source of strength – just the
thought of them is enough to guide me in moments of self-doubt.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Notation and Preliminaries . 5
1.3 Summary of research questions . 6

2 Towards a New Theory of Moments-based Bounds I:
An Inapproximability Result for the M/G/k Multi-server Queue 13
2.1 Introduction . 14
2.2 Prior Work . 19
2.3 Insights into why two-moment approximations are not enough 21
2.4 Proof of Theorem 2.1 . 25
2.5 Proof of Theorem 2.2 . 27
2.6 Effect of higher moments . 43
2.7 Summary and Open Questions . 47
2.A Proofs . 48

3 Towards a New Theory of Moments-based Bounds II:
Markov-Krein Characterization of Mean Sojourn Time in Queueing
Systems 63
3.1 Introduction . 64
3.2 Principal Representations, Tchebycheff systems, and the Markov-Krein

Theorem . 70
3.3 Bounds for the M/G/k Multi-server Model 74

vii

3.4 Bounds for M/G/1 Round-Robin . 81
3.5 Bounds for systems with time-varying load 84
3.6 Conjectures on tight bounds for general traffic 89
3.7 Towards a unified approach for moments-based bounds 90
3.8 Summary and Open Questions . 93
3.A Proof of Theorem 3.7 . 94

4 Scheduling Policies for Database Concurrency Control: The G/G/PS-
MPL Model 97
4.1 Introduction . 98
4.2 Choosing the best static MPL . 104
4.3 Self-Adaptive MPL control policies 111
4.4 A Heavy-Traffic Diffusion Scaling and Approximation for Non-Work-

Conserving Systems . 125
4.5 Summary and Open Questions . 131
4.A Policy Iteration to Construct Candidate Poisson-Approx Policies . 132

5 Load Balancing for Webserver Farms: Analysis of Join-the-Shortest-
Queue Policy for PS servers 137
5.1 Introduction . 138
5.2 Prior Work . 142
5.3 Bounded-sensitivity of JSQ/PS Model 144
5.4 Single-Queue-Approximation for M/M/K/JSQ/PS 148
5.5 Optimal Load Balancing for PS Servers 160
5.6 Many-Servers Heavy-Traffic Analysis of Load Balancing Policies . . . 163
5.7 Summary and Open Questions . 178
5.A Optimality of Least-Work-Left Routing for Deterministic Job Sizes . 179

6 Energy-Efficient Dynamic Capacity Provisioning in Server Farms 181
6.1 Introduction . 182
6.2 Prior work . 185

viii

6.3 Model . 187
6.4 Optimal Single Server policies . 188
6.5 Near-Optimal Multi-server policies 190
6.6 Traffic-oblivious dynamic capacity provisioning and Applications . . . 196
6.7 Summary and Open Questions . 202
6.A Proof of Theorem 6.1 . 203
6.B Justification for Conjecture 6.1 . 210

7 Summary 215
7.1 Theoretical Contributions . 215
7.2 System Design Insights . 218

Bibliography 221

ix

x

List of Figures

1.1 The server farm architecture. 2

2.1 The M/G/k queueing system. 14

2.2 Effect of E[S3] on E
[
WM/G/k

]
for H2 service distribution and the two-

moment approximation . 23
2.3 Effect of E[S3] on the distribution of load, ρ(x), for H2 service distri-

bution . 25
2.4 Construction of U (ε) – the upper bounding system 33
2.5 Notation used for analysis of system U (ε) 35
2.6 Construction of L(ε) – the lower bounding system 42
2.7 The distribution of load as a function of job size, ρ(x), for lognormal

and bounded Pareto distributions . 45
2.8 Numerical results for the effect of E

[
S4
]
on E

[
WM/G/k

]
for H∗3 service

distribution . 46

3.1 Illustration of upper and lower p.r. based bounds for E
[
WM/G/k

]
for

H2 and H∗3 service distributions . 78
3.2 Simulation results for upper and lower p.r. based bounds forE

[
WM/G/k

]
for Weibull service distribution . 80

3.3 Numerical illustration of Theorem 3.7 86
3.4 The N-sharing model . 87
3.5 Numerical results for upper and lower p.r. based bounds for the N-

sharing model . 88

4.1 A prototypical service rate curve . 98

xi

4.2 The G/G/PS-MPL model . 100
4.3 Performance of Opt-Static MPL selection heuristic for common ser-

vice distributions . 109
4.4 The structure of Light-Approx MPL control policy 117
4.5 The dynamic MPL control policy obtained from the action function π. . . 118
4.6 The embedded Markov chain for evaluating dynamic MPL control

policies . 119
4.7 The structure of Poisson-Approx control policy 121

5.1 A JSQ/PS Server Farm . 138
5.2 A pictorial view of some results in the chapter. 141
5.3 Numerical illustration of bounded-sensitivity for M/G/2/JSQ/PS in

light-traffic for H2 service distribution 146
5.4 Simulation results illustrating near-insensitivity for M/G/K/JSQ/PS 149
5.5 Convergence of conditional arrival rates for theM/M/K/JSQ/PS model151
5.6 Performance of the SQA method . 158
5.7 Performance of the SQA method for general service distributions . . . 159
5.8 Comparison of load balancing policies for PS server farms 162
5.9 Simulation results for convergence to the many-servers heavy-traffic

limit for the M/M/K/JSQ/PS model 168
5.10 Simulation results for performance of load balancing policies in the

many-servers regime . 176
5.11 Simulation results for performance of load balancing policies in non-

many-servers regime . 177

6.1 Illustration of server farm model for studying power management al-
gorithms . 187

6.2 Near-optimality of best of NeverOff and InstantOff policies for
constant arrival rate . 192

6.3 Simulation results for verifying the accuracy of the rule of thumb for
choosing between NeverOff, InstantOff, and Sleep 195

6.4 Comparison of DelayedOff, InstantOff and LookAhead for a
sinusoidal demand pattern . 198

xii

6.5 Effect of system parameters on the performance of DelayedOff . . 200
6.6 Trace-based simulation results for DelayedOff 201

xiii

xiv

List of Tables

1.1 A tabular summary of the questions addressed in the thesis. 7

2.1 Simulation results for the M/G/k mean waiting time for several pop-
ular service distributions . 15

2.2 Simulation results for the M/G/k system for k = 10 and ρ = 9 44
2.3 Simulation results for the M/G/k system for k = 10 and ρ = 6 44

4.1 Simulation results for mean number of jobs in system, E[N], as a
function of MPL for Poisson arrivals and Weibull service distribution 112

4.2 Simulation results for mean number of jobs, E[N], for the Light-
Approx policy for Poisson arrivals and Weibull service distribution . 122

4.3 Simulation results for mean number of jobs, E[N], for the Poisson-
Approx policy for Poisson arrivals and Weibull service distribution . 122

4.4 Simulation results for mean number of jobs, E[N], as a function of
MPL for Batch Poisson arrivals and Weibull service distribution . . . 123

4.5 Simulation results for mean number of jobs, E[N], for the Light-
Approx policy for Batch Poisson arrivals and Weibull service distri-
bution . 124

4.6 Simulation results for the mean number of jobs, E[N], for the Poisson-
Approx policy for Batch Poisson arrivals and Weibull service distri-
bution . 124

5.1 Simulation results for effect of service distribution on conditional ar-
rival rates . 156

5.2 Performance of the SQA method for approximating E[N] 160
5.3 Performance of the SQA method for approximating E[N2] 160

xv

6.1 Summary of server-energy management policies considered in Chapter 6184

xvi

Chapter 1

Introduction

1.1 Motivation

Server farms are becoming an increasingly popular paradigm of computation since
they use low-cost commodity hardware to provide computing power exceeding that
of any single device. In addition, the server farm architecture allows the design of
fault-tolerant and scalable systems – failures of a few servers don’t bring down the
entire server farm, and adding capacity is as easy as adding more servers. Server
farms also lead to the design of energy-efficient computing systems by combining
slower but more power-efficient processors to reduce the peak power consumption
(for example, the IBM Blue Gene supercomputer [1] and the FAWN cluster archi-
tecture [14]). Another benefit of server farms is that by allowing the consolidation
of multiple workloads, server farms lead to efficient resource utilization, such as in
cloud computing centers.
Figure 1.1 shows the components of a simple server farm. New requests or jobs arrive
at the front-end dispatcher, or load balancer. The load balancer routes the incoming
requests to the back-end servers, which serve them. Requests leave the server farm
once they complete processing at the back end servers.1 Even in this simplified setup,
there are two fundamental design questions:

Question 1: Load balancing: Which back-end server should process the incom-
1We present a subset of the request types, i.e., a job is dispatched to a single server and is

processed at that one server until completion. There are certainly more complicated scenarios.
For example, requests that fork into multiple smaller requests and are completed once all the sub-
requests are complete (join), or map-reduce type tasks which involve multiple of these fork-join
stages. In this thesis we focus on the simple subset.

1

Requests arriving
to the server farm

Back−end servers

Front−end
Dispatcher/Buffer

Completed requests

Figure 1.1: The server farm architecture.

ing request? Should the dispatch be immediate, or can the front-end dispatcher
defer the decision? Should the dispatching policy be dynamic (depending on
the current load of back-end servers), or static?

Question 2: Scheduling policy: How should the back-end servers schedule the
tasks dispatched to them?

Today’s server farms and data centers cater to a wide spectrum of workloads –
from database queries, to computationally intensive jobs, to file streaming and web
requests, to map-reduce tasks. Each of the aforementioned workloads imposes dif-
ferent constraints on which dispatching policies and scheduling policies are feasible.
For example, a database query may only be dispatched to a server that stores the
required data (locality) and hence dispatching policies are static, while a job only
requiring processing may be dispatched to any server, allowing dynamic dispatching
policies. Further, while a database query or a CPU intensive job may be queued for
later processing, web and file download requests are latency-sensitive and must be-
gin processing immediately to prevent dropped connections caused by time-outs. As
another example, a supercomputing job runs alone on its back-end server in a non-
preemptive fashion, whereas web and database requests typically timeshare their
back-end server with other requests. It is clear that different applications compel
different answers to the scheduling/dispatching questions raised above.
In addition to the problem of matching the dispatching and scheduling policies to the

2

workload and application, server farms are also required to satisfy multiple conflict-
ing performance goals – low mean response times, efficient utilization of resources,
flexibility to adapt to varying and unpredictable demands, performance isolation for
high priority jobs, minimizing energy, to name a few. This adds at least two more
problem dimensions:

Question 3: Dynamic Capacity Scaling/Server Management: When and
which back-end servers should be turned off, or hibernate, to save energy?
When should servers be turned on to increase capacity?

Question 4: Provisioning/Dimensioning: Given a cost budget, how should one
design a server farm (in terms of number of servers and server speeds) to
maximize performance?

In this thesis we will use stochastic (queueing theoretic) modeling and analysis tech-
niques to guide these design decisions by modeling server farms as multi-server
queues. Queueing theoretic modeling abstracts out the important features of the
scheduling policies governing the performance of the system under consideration, and
by imposing structured probabilistic assumptions on the sequence of request arrivals
allows answering questions of the kind: What is the average response time of the
requests? What fraction of requests experience response time larger than Tmax? How
sensitive are these performance metrics to parameter X? In addition to providing
these answers for server farms of arbitrary size, stochastic analysis provides insights
into the qualitative effect of various system parameters on the performance which
may then be combined with other techniques, such as control theory and feedback
systems, for operating the server farms.
Queueing theory started with the work of Erlang [55] (also see [138]) who was mo-
tivated by applications in telecommunications. Modern queueing theory has been
shaped by applications to production systems, inventory management, and call cen-
ters [100]. The workloads and architectures of these application areas are very differ-
ent from compute server farms and hence existing stochastic modeling and analysis
results do not directly apply to problems faced by computer systems designers:

1. Assumption of FCFS back-end servers: Most analysis of dispatching poli-
cies for multi-server queues assumes that the servers follow a non-preemptive
First-Come-First-Served (FCFS) scheduling policy. While this model fits prob-
lem domains which gave rise to the traditional multi-server models, such as
telephone networks, call centers, hospital emergency rooms, queues in super-
markets etc., computer systems such as web servers are better modeled as

3

time-sharing systems. Designing and analyzing dispatching policies for time-
sharing back-end servers is still an open question.

2. Assumption of ideal time-sharing: While there is a large body of work
on analyzing a single time-sharing server, all existing analytical work models
this time-sharing server as operating under an ideal Processor Sharing (PS)
scheduling policy. Under PS, the server’s capacity is independent of the num-
ber of concurrently running tasks. However time sharing systems, such as
database servers and thread-based web servers exhibit thrashing which causes
loss of server’s capacity due to resource contention when too many tasks are
concurrently active.

3. Assumption of low job-size variability: Even in application scenarios
where traditional models of multi-server are a good fit, the existing analy-
ses and approximations are severely lacking because they are derived under
the assumption that the service requirements of the jobs have low variance.
One example of such an application scenario is supercomputing centers where
jobs are typically scheduled in a non-preemptive FCFS fashion and thus the
traditional call center model fits. However, existing approximations which are
reasonably accurate for the problem domain of call centers can be off by un-
acceptable margins when the variance in service requirements is significant,
which is the case in supercomputing workloads.

4. Lack of evaluation of energy-performance trade-offs: Traditional mod-
els of server farms have not dealt with the metric of energy. This question
becomes even more important because demands faced by today’s server farms
vary substantially over time. Provisioning for peak demand is extremely waste-
ful of energy and thus it is imperative to develop algorithms to power down
servers when demand is low and turn them back on when demand increases.
However, the existing models and analyses do not deal with the associated
setup costs and delays of powering servers up and down in a server farm.

The goal of the thesis is to develop stochastic modeling and analysis techniques to
bridge the disconnects between prior work on the analysis of multi-server systems
and the problems faced in management of compute server farms today. Before sum-
marizing the research questions addressed in the thesis, we introduce the notation
used in the thesis. In some chapters we will need additional notation or will deviate
from the notation mentioned below, and hence notation will be reintroduced within
the chapters as well.

4

1.2 Notation and Preliminaries

The arrival and service processes constitute the most important aspects of a stochas-
tic model of a queueing system. The arrival process specifies the instants at which
jobs arrive into the system (server farm), and the service process specifies the size
or processing requirements of the jobs. Unless otherwise stated, we assume that
the arrival process is a renewal process, by which we mean that the times between
consecutive arrivals are independent and identically distributed (i.i.d.) random vari-
ables. We use A to denote a generic interarrival time. We denote the mean of A
by E[A] = 1

λ
. Thus λ denotes the mean arrival rate. We also assume that job sizes

form a sequence of independent and identically distributed (i.i.d.) random variables,
where the random variable S (for service time distribution) denotes a generic job
size. We will be dealing with models where the server speed may be heterogeneous
or state-dependent. Consequently, we will use job sizes to denote the amount of work
(for example the number of cycles for a CPU job, or file size for an I/O job). We
denote the mean of S by E[S], and assume E[S] = 1 without loss of generality. In
empirical computing workloads it is often the case that A and S exhibit high variabil-
ity. One of the most widely used metrics for characterizing this variability is the the
squared coefficient of variation (SCV) of the interarrival and service distributions,
C2
A and C2

S, respectively:

C2
A = var(A)

E[A]2
; C2

S = var(S)
E[S]2

,

where var(X) denotes the variance of random variable X. For a substantial part
of the thesis we will assume that arrival process is Poisson, that is, A obeys the
exponential distribution with mean 1/λ, abbreviated as A ∼ Exp(λ), and will denote
the arrival process by Poisson(λ). We will use the symbol µ to denote the service
rate, or capacity of each server. When we talk about homogeneous server farms,
where the capacity of each server is the same, we will use ρ = λE[S]/µ to denote the
‘load’ which represents the amount of work coming into the system per unit of time.
We use T to denote the random variable for the response time, defined as the time
between a job’s arrival to the system and its departure from the system. We use W
to denote the random variable for waiting time, defined as the total time spent in
the system waiting to receive service.
Since the queueing models considered in the thesis are very different from the clas-
sical models, we will extend Kendall’s notation to abbreviate them. In Kendall’s
notation, a queueing system shorthanded as A/B/C/D denotes a system with ar-
rival process A, service time distribution B, number of servers C, and scheduling

5

policy D.2 Typical values for the arrival process A that we will use are: M (for
Markovian) for a Poisson arrival process, Mt for a doubly stochastic Poisson pro-
cess (that is, the mean arrival rate at time t is given by some function λ(t)), BPP
for a Batch Poisson Process (Poisson process with a random number of arrivals at
a time), and GI for general i.i.d. interarrival times. Typical values for the service
time distribution B we will use are: M for exponentially distributed, D for degen-
erate (non-random), H2 for 2-phase hyperexponential (a mixture of two exponential
distributions with different means), H∗2 for degenerate hyperexponential (mixture of
an exponential distribution and a point mass at 0), and G for generally distributed
i.i.d. service times. Typical values for the scheduling policy are FCFS for First-Come-
First-Served, and PS for Processor Sharing (if there are n jobs queued at the server,
each job gets 1

n
th of the server’s capacity). However, we will sometimes combine the

dispatching and scheduling policies in D. For example, we will use M/G/k/JSQ/PS
to denote the multi-server system with Poisson arrivals, general service distribution,
and k servers where each server follows the processor sharing (PS) scheduling policy
and new requests join the shortest queue (JSQ) immediately on arrival.

1.3 Summary of research questions

We now give a formal summary of the disconnects between existing analytical stochas-
tic work on multi-server systems and the needs of practitioners that the thesis aims
to bridge. The goal of the thesis is not to bridge all the disconnects at once, but to
analyze each individually in depth to show how and where traditional policies and
analysis fail. Each disconnect guides the answer to one or more of the four design
decisions presented in Section 1.1. We motivate each disconnect with a computing
application, and develop frameworks for optimizing and analyzing the performance
under the unique constraints/opportunities presented by the motivating application.
Table 1.1 provides a brief summary of the various pieces of the thesis.

1: High job-size variance of computer systems workloads invalidates ex-
isting approximations:
We begin with a scenario where the difference in workloads encountered in
computing applications and traditional applications of queueing models com-
pel us to develop new techniques to analyze queueing systems, because existing
analytical approximations are insufficient. We illustrate this point by consid-
ering the M/G/k First-Come-First-Served (FCFS) multi-server system. The
M/G/k FCFS system has traditionally been used as a model of systems such

2Note the absence of dispatching policy in Kendall’s notation.

6

Disconnect Motivating
Application

Design Decisions
Influenced

Contributions Chpt.

1. High job-size vari-
ability

Supercomputing Provisioning new analysis 2, 3

2. Thrashing/Resource
Contention

Database concurrency
control, thread-pool
management

Scheduling new model +
analysis + algo-
rithm

4

3. Server farms with
time-sharing servers

Web server farms Dispatching new analysis 5

4. Energy-performance
trade-offs

Cloud computing,
data centers

Capacity Scaling/
Server Management

new model +
algorithm 6

5. Time-varying de-
mands

DB servers, Cloud
computing, data
centers

Capacity Scaling/
Server Management

new algorithms 4.3,
5.6.3,
6.6

Table 1.1: A tabular summary of the questions addressed in the thesis.

as call centers, manufacturing, hospital emergency rooms, and supercomput-
ing centers. The M/G/k FCFS system is notoriously hard to analyze, and
despite being one of the oldest multi-server models to be studied, expressions
for even the mean response time are not available for general service distribu-
tions. In the absence of such results, the following approximation proposed by
Lee and Longton [108] which only involves the first two moments of the service
distribution (S) is widely used:

E
[
WM/G/k/FCFS

]
≈ C2

S + 1
2 E

[
WM/M/k/FCFS

]
where WM/M/k/FCFS denotes the delay in an M/M/k FCFS system with the
same mean job size, arrival rate and service rate as the M/G/k FCFS system
(WM/M/k has an exact and explicit expression).
We challenge the status quo in Chapter 2 by proving an inapproximability
result: any approximation based only on the first two moments of the service
distribution S must be inaccurate for some service distribution when C2

S is
large. This is significant because many computer systems workloads such as
supercomputing jobs and sizes of files transferred over the Internet exhibit
C2
S > 40 (e.g., [20]), unlike call centers and manufacturing systems where C2

S

is small (e.g., [142]).
Motivated by this result, in Chapter 3, we pursue approximations for WM/G/k

utilizing higher moments of S. In fact, our goal is more ambitious: Given the

7

moments of S, we want to identify service distributions that maximize/minimize
the mean waiting time. Thus our goal is to find sharp bounds on E

[
WM/G/k

]
given the moments of S. By analyzing the M/G/k system in the limit where
the arrival rate approaches 0, we identify a link with the classical areas of
moment problem and Tchebycheff systems, and are able to show that these
extremal distributions are what are known as the principal representations. In
fact we go further: we find that the same service distributions are extremal for
two seemingly very different, and as yet unsolved, queueing systems.

Next we turn to scenarios where new architectures of computing applications
force us to develop new stochastic models and new analysis tools.

2: Effects of thrashing are ignored while analyzing PS-like systems:
We consider the problem of concurrency control in database servers, and man-
aging the thread pool in web servers. Processor sharing (PS) is an idealized
scheduling policy commonly used to model time-sharing systems such as the
CPU, bandwidth sharing systems, web and database servers. Under PS, a
server shares its capacity equally among all the jobs in its queue. However al-
most all analytical results on the analysis of PS ignore the effects of thrashing
[78]. Thrashing, or resource contention, causes the net capacity of a resource to
decrease as the number of jobs concurrently sharing the resource increases, and,
in the absence of any concurrency control mechanism, can bring the system to a
halt. To get around this problem a Multi-Programming-Limit (MPL) is placed
on the maximum number of jobs allowed to share the resource simultaneously
and is almost always chosen to be the point of maximum efficiency (capacity).
Existing work on analysis of PS with an MPL either ignores the effect of vari-
ability of service distribution (C2

S), or assumes that µ (service rate/capacity)
is independent of the state (number of jobs) of the system.
In Chapter 4, we present an approximate analysis of PS-MPL queueing systems
to find the optimal MPL for minimizing the mean response time as a function
of C2

S, λ and the µ-vs.-MPL function. The optimal MPL depends crucially on
the arrival rate λ, which may not always be known at the time of system design,
or may fluctuate at small time scales. As a second contribution, we develop
traffic-oblivious dynamic MPL control policies, which adapt the MPL
based on the instantaneous queue length, rather than by attempting to learn the
instantaneous arrival rate. Finally, we propose the first heavy-traffic scaling
for analysis of ‘non-work-conserving’ time-sharing systems (i.e., systems where,
depending on the current state, the service rate can be smaller than the peak

8

service rate) and present a preliminary heavy-traffic approximation for the
stationary distribution of number of jobs in GI/G/PS-MPL systems.

3: No analysis of load balancing policies for PS server farms:
The next problem we address focuses on developing smart load balancing poli-
cies for server farms. Motivated by supercomputing applications, there is a
large body of work on analyzing dispatching policies for server farms where
the servers operate under FCFS scheduling where the relative performance of
different load balancing policies is well understood. However, in many appli-
cation scenarios, such as web servers and file downloads, the scheduling policy
employed by servers is PS (in other words, preemptive scheduling policies are
feasible). Unfortunately, policies which perform well for FCFS server farms
may not perform well for PS server farms.
In Chapter 5, we show via simulations that Least-Work-Left and Size-Based
dispatching, which perform well under FCFS scheduling, are far from optimal
under PS scheduling. By contrast Join-the-Shortest-Queue is near optimal,
while being oblivious to the job sizes or the service distribution. We also find
that JSQ/PS systems exhibit a near-insensitivity property: moments of S
larger than the mean have minimal impact on the mean response time. Armed
with the above observation, we propose sharper approximations for JSQ/PS
systems via a novel Single-Queue-Approximation technique. Finally, we pro-
pose a careful many-servers heavy-traffic scaling. We utilize our scaling
to present another closed-form approximation for the JSQ load balancing pol-
icy that provides new insights into the behavior of JSQ, and also allows us to
study the impact of heterogeneity in server capacities on the performance
of JSQ-type dispatching policies.

4: Limited understanding of energy-performance trade-offs:
Energy consumption has recently emerged as a key metric for the evaluation of
scheduling policies and server management policies. Naturally there are trade-
offs involved between minimizing the energy consumed and guaranteeing low
response times. While one wants to turn off idle servers, or put them into some
sleep state, the penalties to boot up the servers may be prohibitive.
In Chapter 6, we consider the metric of the product of the mean response time
and mean power consumed (Energy-Response time-Product, ERP) to capture
the trade-offs involved in minimizing energy consumptions and maximizing
performance and analyze server management policies with respect to the ERP

9

metric. We prove that optimal or near-optimal policies can be found within
a substantially small set of policies, and provide rules of thumb to choose the
right policy from among this set. Finally we propose two heuristic policies for
energy management when the demand is non-stationary.

5: Time-varying arrival patterns:
Most of the work on stochastic analysis of multi-server queues has focused
on Poisson or renewal arrival processes. This implies that the mean traffic
demand remains constant over time. This assumption is violated in the real
world, as the arrival patterns at web server farms and data centers, for ex-
ample, show strong diurnal and seasonal variations. Designing robust server
management policies which may self-adapt the capacity of the server farm to
unpredictable arrival patterns is one of the holy grails of capacity provisioning.
Unfortunately, systems with time-varying arrival patterns are not well under-
stood analytically. In previous work [69], we proved that the answer to the
question, ‘Is a system with time-varying arrival pattern worse than a system
with constant mean arrival rate,’ is not always yes. While there is existing
analytical work on designing server management policies for time-varying ar-
rival patterns, the proposed policies either involve repeated static provisioning,
or assume that the arrival pattern is known beforehand. Additionally, it is
often assumed that server farm capacity may be increased instantaneously –
an assumption that is not always justified.
For each of the three application scenarios discussed above (PS servers with
thrashing; load balancing; energy management), we have striven to present
traffic-oblivious policies in addition to optimal/near-optimal policies for
a stationary arrival process. In Section 4.3, we present two traffic-oblivious
heuristics for the problem of concurrency (MPL) control in time sharing sys-
tems. In Section 5.6.3, we prove that in the presence of heterogeneous servers,
JSQ minimizes the mean response time while being traffic-oblivious in the
many-server regime, which is a good approximation for today’s large server
farms. We also propose another policy Hybrid, that is also optimal in many-
servers limit when the traffic intensity is very close to capacity, and provides
favorable performance when the number of servers is smaller. Finally, in Sec-
tion 6.6, we design two traffic-oblivious server management policies with the
goal of optimizing energy-performance tradeoff and show that they can be ex-
tended to application scenarios beyond the simple abstract model of Chapter 6.

10

Organization

Broadly, each disconnect corresponds to a chapter, and the aim while writing has
been to make the chapters self-contained. The reader is encouraged to familiarize
oneself with the ideas from Chapter 2 before reading of Chapter 3, although this is
not necessary for understanding the analysis.

11

12

Chapter 2

Towards a New Theory of
Moments-based Bounds I:
An Inapproximability Result for
the M/G/k Multi-server Queue

“But it is also worth asking whether anything can be done about some of
the simple unsolved problems which have, perhaps wisely, been left to one
side of the mainstream of research. For example, M/G/1 was solved by
Pollaczek, andM/D/k for general k by Erlang, but what aboutM/G/k?
This is surely an important system, with the Poisson arrivals that are
still the most useful input process, and independent service times having
a given but arbitrary distribution.”

- J.F.C. Kingman [100]

We begin this thesis with a problem that is at the heart of the century old field
of queueing theory – analyzing the mean waiting time in an M/G/k multi-server
queue (Figure 2.1). The M/G/k queue is widely used as a model for call centers
and telecommunication systems, inventory management systems, hospital emergency
rooms, and supercomputing systems, and new applications of this model are continu-
ally being discovered. The wide applicability of the M/G/k system makes it a prime
target for developing and testing new stochastic analysis techniques, which provide
insights into queueing systems far beyond the M/G/k queue itself.
While exact expressions for the mean waiting time of the M/G/k queue are only
available for very special cases, numerous bounds and expressions have been proposed

13

in the literature. These bounds and approximations are usually functions of the first
or first two moments of the service distribution. The present chapter is devoted
to proving the insufficiency of existing approaches to approximate the mean waiting
time of theM/G/k queue by proving that no single approximation based on only the
first two moments can be accurate for all service distributions. In Chapter 3, we build
on the lessons from this chapter to propose a new framework for establishing tight
bounds on the mean sojourn time of queueing systems by utilizing higher moments.

2.1 Introduction

The M/G/k queue is one of the oldest and most classical models of a multi-server
system and has been used as a model in a wide range of applications, including call
centers, manufacturing systems, and computer systems.

Buffer

Back−end servers

Poisson arrivals

(rate)λ

Central FCFS

Figure 2.1: The M/G/k queueing system.

AnM/G/k queue consists of k identical servers and a First-Come-First-Serve (FCFS)
queue (see Figure 2.1). The jobs (or customers) arrive according to a Poisson process
with rate λ and their service requirements (job sizes) are assumed to be independent
and identically distributed random variables having a general distribution; we use
S to denote such a generic random variable. If an arriving job finds a free server,
it immediately enters service, otherwise it waits in the FCFS queue. When a server
becomes free, it chooses the next job to process from the head of the FCFS queue.
We denote the load of this M/G/k system as ρ = λE[S], and assume ρ < k so that a
steady-state distribution exists [92, 93]. We will focus on the metric of mean waiting

14

C2
S = 19 C2

S = 99
E[W] E[W]

2-moment approximation (Eqn. 2.1) 6.6873 33.4366
Weibull 6.0691±0.0138 25.9896±0.1773

Truncated Pareto (α = 1.1) 5.5277±0.0216 24.6049±0.2837
Lognormal 4.9937±0.0249 19.5430±0.4203

Truncated Pareto (α = 1.3) 4.8788±0.0249 18.7738±0.3612
Truncated Pareto (α = 1.5) 3.9466±0.0321 10.6487±0.5373

Table 2.1: Simulation results for the mean waiting time for an M/G/k with k = 10
and ρ = 9. The first line shows the mean waiting time given by the analytical 2-
moment approximation in Equation (2.1). All service distributions throughout the
chapter have E[S] = 1.

time in this chapter, denoted as E
[
WM/G/k

]
, and defined to be the expected time

from the arrival of a customer to the time it enters service.
Even though theM/G/k queue has received a lot of attention in the queueing litera-
ture, an exact analysis for even the simplest metric of mean waiting time for the case
k ≥ 2 still eludes researchers. To the best of our knowledge, the first approximation
for the mean waiting time for an M/G/k queue was given by Lee and Longton [108]
nearly half a century ago:

E
[
WM/G/k

]
≈
(
C2
S + 1
2

)
E
[
WM/M/k

]
(2.1)

where E
[
WM/M/k

]
is the mean waiting time with exponentially distributed job sizes

with the same mean, E[S], as in theM/G/k system, and C2
S is the squared coefficient

of variation (SCV) of S. Many other authors have also proposed simple approxima-
tions for the mean waiting time, [34, 79, 80, 106, 120, 159], but all these closed-form
approximations involve only the first two moments of the service distribution.
Whitt [153], while referring to (2.1) as “usually an excellent approximation, even
given extra information about the service-time distribution,” hints that approxima-
tions based on the first two moments of S may be inaccurate when C2

S is large.
Similar suggestions have been made by many authors, but there are very limited nu-
merical experiments to support this. While a high C2

S may not be of major concern in
applications such as manufacturing or customer contact centers, the invalidity of the
approximation (2.1) is a major problem in computer and communication systems.
In Table 2.1, we consider a range of distributions (Weibull, lognormal, truncated

15

Pareto1) used in the literature to model computer systems workloads. We compare
the mean waiting time obtained via simulations to the mean waiting time predicted
by the approximation (2.1) for two values of C2

S, C2
S = 19 and C2

S = 99. Such high
values of C2

S are typical for workloads encountered in computer systems, such as the
sizes of files transferred over the Internet [20], and the CPU requests of UNIX jobs
[49] and supercomputing jobs [74]. As can be seen, there is a huge disagreement
between the simulated mean waiting time and the 2-moment approximation (2.1).
Further, the simulated mean waiting times are consistently smaller than the analyti-
cal approximation. Also observe that different distributions with the same mean and
C2
S yield very different mean waiting times.

Goal

The goals of this chapter are two-fold:

1. Investigate the (in)sufficiency of first two moments of the service distribution
for approximating E

[
WM/G/k

]
,

2. Investigate how characteristics of the service distribution other than the first
two moments affect E

[
WM/G/k

]
.

Ideally, to address our first goal, we should consider the set {G|C2
S} of all positive

distributions with a given mean and second moment. Each distribution in this set
when chosen as the service distribution for the M/G/k queue yields a value for the
mean waiting time. We want to establish the set of values (an interval of R+

0) that
are attained as the mean waiting time. We refer to this interval as “the span”. To
define the span, set

W
C2
S

h = sup
{
E
[
WM/G/k

] ∣∣∣ E[S] = 1,E
[
S2
]

= C2
S + 1

}
, (2.2)

and
W

C2
S

l = inf
{
E
[
WM/G/k

] ∣∣∣ E[S] = 1,E
[
S2
]

= C2
S + 1

}
. (2.3)

1The cumulative distribution function of a truncated Pareto distribution with support
[xmin, xmax] and parameter α is given by:

F (x) = x−αmin − x−α

x−αmin − x
−α
max

xmin ≤ x ≤ xmax

Therefore, specifying the first two moments and the α parameter uniquely defines a truncated
Pareto distribution.

16

The span ranges (WC2
S

l ,W
C2
S

h). One of the contributions of this chapter is a lower
bound on the span for the case ρ < k− 1 in Theorem 2.1, and for the case ρ > k− 1
in Theorem 2.2. We believe that the bounds presented in Theorem 2.1 for the case
ρ < k−1 are tight, and conjecture tight bounds for the case ρ > k−1 in Conjecture 2.1
(see Section 2.3).

Theorem 2.1 For any E[S] = 1 finite C2
S and ρ < k − 1,

W
C2
S

h ≥ (C2
S + 1)E

[
WM/D/k

]
W

C2
S

l ≤ E
[
WM/D/k

]
and thus,

W
C2
S

h

W
C2
S

l

≥ C2
S + 1

where E
[
WM/D/k

]
is the mean waiting time when the service distribution is deter-

ministic 1.

Theorem 2.2 For E[S] = 1 any finite C2
S and ρ > k − 1,

W
C2
S

h ≥
(
C2
S + 1
2

)
E
[
WM/M/k

]
W

C2
S

l ≤ E
[
WM/M/k

]
+
[
ρ− (k − 1)
k − ρ

]
C2
S − 1
2

and thus,

W
C2
S

h

W
C2
S

l

≥

(
C2
S+1
2

)
E
[
WM/M/k

]
E
[
WM/M/k

]
+
[
ρ−(k−1)
k−ρ

]
C2
S−1
2

where E
[
WM/M/k

]
is the mean waiting time when the service distribution is expo-

nential with mean 1.

Theorem 2.1 will be proved in Section 2.4 and follows by combining a result of Daley
[44] with some new observations. Theorem 2.2 is far more intricate to prove, and
forms the bulk of the chapter (Section 2.5).
We now make a few important observations on the span:

17

• Since we prove a lower bound for WC2
S

h and an upper bound for WC2
S

l , Theo-
rems 2.1 and 2.2 provide a lower bound on the span for general distributions.

• The span can be quite large if C2
S is high. In particular, when ρ < k − 1,

Theorem 2.1 states that the maximum possible mean waiting time is at least
(C2

S + 1) times the minimum possible mean waiting time. Thus, Theorems 2.1
and 2.2 prove that any approximation based only on the first two moments of
S will be inaccurate for some service distribution.

• The lower bound on WC2
S

h in Theorem 2.2 is the same as the 2-moment approx-
imation in (2.1). (The lower bound on WC2

S
h in Theorem 2.1 is very close but

slightly higher than the 2-moment approximation.)

Another interesting point is that the lower bound on the span depends on the load, ρ.
The case ρ ≥ k− 1 is commonly known in the queueing literature as 0-spare servers
and the case ρ < k − 1 is known as at least 1 spare server. The presence of spare
servers is known to play a crucial role in determining whether the mean waiting time
is infinite given that the second moment of the service distribution is infinite (see
[133] and references therein), and on the tail of the waiting time distribution (see
[60]). Observe that the number of spare servers (zero or at least one) affects whether
C2
S shows up in the lower bound of the span in our results. When there is even just

one spare server, the lower bound is independent of C2
S, which suggests that having

even one spare server might potentially reduce most of the effect of C2
S on the mean

waiting time.
The key insight in proving Theorem 2.1 (ρ < k − 1) is to consider two extreme
two-point service distributions and find the mean waiting time under these extremal
distributions. To prove Theorem 2.2 (ρ ≥ k − 1), we consider two extreme distri-
butions in the class of 2-phase hyperexponential distributions and obtain the mean
waiting time under those service distributions. We believe that it is not hard to
tighten the bound in Theorem 2.2 by extending our proof technique to work with
two-point distributions (mixtures of two mass points), and thus establish a wider
“span” than we do in this chapter. However, presently, we focus on 2-phase hyper-
exponential distributions for ease of exposition and to elucidate the basic steps in
obtaining the bound. Clearly the span described by Theorem 2.1 is non-empty for
all C2

S > 0. The span described by Theorem 2.2 is non-empty only when C2
S > 1

even though the theorem is true for all values of C2
S. In fact, Proposition 2.1 (Ap-

pendix 2.A) shows that our lower bound on the span is strictly non-empty when
k ≥ 2 and C2

S > 1.

18

The bounds on WC2
S

h and WC2
S

l in Theorem 2.2 are identical for k = 1, and in fact in
this case agree with the well-known Pollaczek Khintchine formula

E
[
WM/G/1

]
=
(
C2
S + 1
2

)
E
[
WM/M/1

]
, (2.4)

which shows that the mean waiting time is completely determined by C2
S and E[S].

Similar results on stationary waiting time and queue length distributions in aGI/M/k
queue were derived by Eckberg [50] and further developed by Whitt [152] by consid-
ering extremal interarrival time distributions. For the GI/M/k queue, proving such
theorems is simplified due to the availability of rather explicit expressions for the
queue length and waiting time distributions in terms of the Laplace transform of the
inter-arrival time distribution.

Outline

Section 2.2 reviews existing work on obtaining closed-form, numerical and heavy-
traffic approximations for E

[
WM/G/k

]
. In Section 2.3 we seek insights into why the

first two moments of the service distribution are insufficient for approximating the
mean delay. We also seek answer to the question: “Which characteristics of the
service distribution, outside of the first two moments, are important in determining
the mean waiting time?” Our insights stem from numerical experiments based on the
2-phase hyperexponential class of service distributions. These insights help us later
in proving Theorem 2.2. Sections 2.4 and 2.5 are devoted to proving Theorems 2.1
and 2.2, respectively. In Section 2.6, we address the question of the effect of higher
moments of service distribution on the mean waiting time.

2.2 Prior Work

While there is a large body of work on approximating the mean waiting time of
an M/G/k system, all the closed-form approximations only involve at most the
first two moments of the service distribution. As mentioned earlier, to the best of
our knowledge, the first approximation for the mean waiting time for an M/G/k
queue was given in (2.1) by Lee and Longton [108]. This approximation is very
simple, is exact for k = 1 and was shown to be asymptotically exact in heavy
traffic by Köllerström [106]. The same expression is obtained by Nozaki and Ross
[120] by making approximating assumptions about the M/G/k system and solving
for exact state probabilities of the approximating system, and by Hokstad [79] by

19

starting with the exact equations and making approximations in the solution phase.
Boxma et al. [34] obtain a closed-form approximation for the mean waiting time in
an M/D/k system, extending the heavy traffic approximation of Cosmetatos [40].
Takahashi [144] obtains expressions for mean waiting time by assuming a parametric
formula. Kimura [95] uses the method of system interpolation to derive a closed-
form approximation for the mean waiting time that combines analytical solutions of
simpler systems.
There is also a large literature on numerical methods for approximating the mean
waiting time by making much weaker assumptions and solving for state probabilities.
For example, Tĳms et al. [76] assume that if a departure from the system leaves
behind i jobs where 1 ≤ i < k, then the time until the next departure is distributed
as the minimum of i independent random variables, each of which is distributed
according to the equilibrium distribution of S. If, however, the departure leaves
behind i ≥ k jobs, then the time until the next departure is distributed as S/k.
Similar approaches are followed in [79, 80, 113, 115, 140]. Miyazawa [115] uses
“basic equations” to provide a unified view of approximating assumptions made in
[120], [79] and [76], and to derive new approximation formulas. Boxma et al. [34]
also provide a numerical approximation for M/G/k which is reasonably accurate for
service distributions with low variability (C2

S ≤ 1) by assuming a parametric form and
matching the heavy traffic and light traffic behaviors. Other numerical algorithms
include [45, 46, 47]. While these numerical methods are accurate and usually give an
approximation for the entire waiting time distribution, the final expressions do not
give any structural insight into the behavior of the queueing system and the effect
of M/G/k parameters on waiting time.
Heavy traffic, light traffic and diffusion approximations for the M/G/k system have
been studied in [37, 71, 94, 106, 153, 154, 159]. The diffusion approximations used in
[154] are based on many-server diffusion limits. Motivated by call center applications,
there is now a huge body of literature for multiserver systems with a large number
of exponential servers; see the survey paper [62] and references therein.
Bounds on the mean waiting time for M/G/k queues (and more generally, for
GI/G/k queues) have mainly been obtained via two approaches (e.g., see Sec-
tion 11-7 from Wolff [158]). The first approach is by assuming various orderings
(stochastic ordering, increasing convex ordering) on the service distributions (see
[43, 116, 141, 150, 151]), but these tend to be very loose as approximations. More-
over, one does not always have the required strong orderings on the service distri-
bution. The second, and more practical, approach that started with the work of
Kingman [99] is obtaining bounds on mean waiting time in terms of the first two
moments of the inter-arrival and service distributions. The best known bounds of
this type for E

[
WGI/G/k

]
are presented by Daley [44]. Scheller-Wolf and Sigman

20

[132] derive bounds on for the case ρ <
⌊
k
2

⌋
by reducing the GI/G/k waiting time

recursion into an equivalent single-server recursion with dependent service times.
Foss and Korshunov [60] and Scheller-Wolf and Vesilo [133] use dependent D/GI/1
queues to bound a GI/G/k system, and obtain necessary and sufficient conditions
under which higher (even fractional) moments of delay are finite.
Daley [44] also conjectures tight upper and lower bounds on GI/GI/k mean waiting
time in terms of the first two moments of interarrival and service distributions, and
proves a tight lower bound

inf E
[
WGI/GI/k

]
= 0, when ρ < k − 1.

While bounds for GI/GI/k mean waiting time are more general, they can also be
loose when applied to M/G/k.
Recently, Bertsimas and Natarajan [24] have proposed a computational approach
based on semidefinite optimization to obtain bounds on the moments of waiting
time in GI/GI/k queues given the information of moments of the job size and the
interarrival time distributions. We, however, prove E

[
WM/G/k

]
is inapproximable

within a certain factor based on just the knowledge of the first two moments of the
service distribution.

2.3 Insights into why two-moment approximations
are not enough

Our goal in this section is to illustrate the inadequacy of the first two moments of
the service distribution for approximating E

[
WM/G/k

]
. As we said earlier, to achieve

this goal, ideally we would have to look at the set of all distributions with given first
two moments and establish the span of mean waiting time. As expected, this turns
out not to be feasible. However, to illustrate inadequacy of first two moment, it
suffices to establish this fact for an analytically tractable subset of distributions. We
choose this tractable subset as the class of two-phase hyperexponential distributions,
denoted by H2 (see Definition 2.1 below). Distributions in the H2 class are mixtures
of two exponential distributions and thus have three degrees of freedom. Having
three degrees of freedom provides us a method to create a set of distributions with
any given first two moments (C2

S > 1 in the case of H2) and analyze the effect of some
other characteristic. A natural choice for this third characteristic is the third moment

21

of the distribution2. The H2 distribution is also convenient because it allows us to
capture the effect of small vs. large jobs (the two phases of the hyperexponential) –
an insight which will be very useful to us later in proving our theorems.

Definition 2.1 Let µ1 > µ2 . . . > µn > 0. Let pi > 0, i = 1, . . . , n, be such
that ∑n

i=1 pi = 1. We define the n−phase hyperexponential distribution, Hn, with
parameters µi, pi, i = 1, . . . , n, as:

Hn ∼

Exp(µ1) with probability p1

Exp(µ2) with probability p2
...
Exp (µn) with probability pn

where Exp(µi), i = 1, . . . , n, are n independent exponential random variables with
mean 1

µi
, i = 1, . . . , n.

Definition 2.2 Let µ1 > µ2 . . . > µn−1 > 0. Let pi > 0, i = 0, . . . , n − 1, be such
that ∑n−1

i=0 pi = 1. We define the n−phase degenerate hyperexponential distribution,
H∗n, with parameters p0, µi, pi, i = 1, . . . , n− 1, as:

H∗n ∼

0 with probability p0

Exp(µ1) with probability p1
...
Exp (µn−1) with probability pn−1

where Exp(µi), i = 1, . . . , n− 1, are n− 1 independent exponential random variables
with mean 1

µi
, i = 1, . . . , n− 1.

Figure 2.2 shows the mean waiting time for anM/H2/k system evaluated numerically
using matrix analytic methods. The dashed line shows the standard two moment
approximation of (2.1). Note that the x−axis is actually not showing E[S3] but
rather a normalized version of the third moment, θ3, which we define as:

θ3 = E[S3]E[S]
E[S2]2

. (2.5)

2In [45, 153], the authors use the quantity r, which denotes the fraction of load contributed
by the branch with the smaller mean, as the third parameter to specify the H2 distribution. We
choose the third moment because it is more universal and better understood than r. Further, r is
an increasing function of the third moment and thus one can go back and forth between the two
parametrizations.

22

0 50 100 150
1

2

3

4

5

6

7

θ
3

E
[W

]

2−moment approx.

Figure 2.2: Illustration of the inadequacy of two-moment approximations for mean
delay E

[
WM/G/k

]
. As shown, the normalized 3rd moment, θ3, of the service distri-

bution has a big effect on mean waiting time of anM/H2/10 system (solid line). The
parameters of the service distribution were held constant at E[S] = 1 and C2

S = 19
with load ρ = 9. The dashed line shows the standard two-moment approximation of
(2.1). The values on the x−axis are the normalized third moment (2.5).

The above normalization for the third moment with respect to the first two moments
is analogous to the definition of the squared coefficient of variation, C2

S = E
[
S2
]

E[S]2 − 1,
which is the scale-invariant normalization of the second moment with respect to the
first moment. For positive distributions, θ3 takes values in the range [1,∞), and
our ongoing work on approximations for E

[
WM/G/k

]
based on higher moments of

service distribution suggests that θ3 is the right variable to look at. We will use the
normalized third moment, θ3, throughout the chapter.
Our first interesting observation is that the M/H2/k mean waiting time actually
decreases as the third moment of S increases. We also observe that the existing two
moment approximation is insufficient as it sits at one end of the spectrum of possible
values for E

[
WM/H2/k

]
. For lower values of the third moment the approximation is

good, but it is very inaccurate for high values. Moreover, any approximation based
only on the first two moments will be inaccurate for some distribution because the
span of possible values of mean waiting time for the same first two moments of the
service distribution is large.

23

While the drop in mean waiting time with increasing θ3 seems very counter-intuitive,
this phenomenon can partially be explained by looking at how increasing θ3 alters the
distribution of load among the small and large jobs. Let ρ(x) represent the fraction
of load made up by jobs of size smaller than x. If f(x) represents the probability
density function of the service distribution, then,

ρ(x) = 1
E[S]

∫ x

0
uf(u)du.

In Figure 2.3, we show ρ(x) for distributions in the H2 class with mean 1, C2
S = 19

and different values of θ3. As a reference, we also show ρ(x) for the exponential
distribution with mean 1. As can be seen from Figure 2.3, increasing θ3 while holding
the first two moments of the H2 distribution constant, causes the load to (almost
monotonically) shift towards smaller jobs. While the large jobs also become larger,
they become rarer at an even faster rate so that in the limit as θ3 →∞, the ρ(x) curve
for the H2 distribution converges to the ρ(x) curve for the exponential distribution
with the same mean. Thus as θ3 increases, the fraction of smaller jobs arriving into
the M/H2/k queue increases, thereby causing a smaller mean waiting time. In fact,
this behavior would hold for any M/G/k system where the service distribution is a
mixture of two scaled versions of an arbitrary distribution.
Based on the numerical evidence of the huge variation in E

[
WM/H2/k

]
, a natural

question that arises is: Can this span of possible values of E
[
WM/H2/k

]
be quantified?

Lemmas 2.3 and 2.4 in Section 2.5 answer this question. Lemma 2.3 is obtained by
considering the case of a distribution in the H2 class with a small value of θ3. In
particular, we consider the case of an H∗2 distribution (see Definition 2.2) which we
can prove has the lowest possible third moment of all distributions in the H2 family
(with any given first two moments), and we derive the exact mean waiting time under
the H∗2 jobs size distribution. Likewise, Lemma 2.4 is derived by considering the case
of an H2 distribution where θ3 goes to∞ and we derive the asymptotic mean waiting
time for that situation. Since we restrict our attention to a subset of the entire space
of distributions with given first two moments, our results provide a lower bound
on the exact span of E

[
WM/G/k

]
. However, all known tight bounds for GI/GI/1

involving the first two moments of the service distribution are obtained by considering
two-point distributions. We too conjecture that the bounds in Theorem 2.1 are tight,
whereas the bounds in Theorem 2.2 can be tightened as described in the conjecture
below:

Conjecture 2.1 For E[S] = 1 any finite C2
S,

W
C2
S

h =
(
C2
S + 1

)
E
[
WM/D/k

]
for all ρ < k

24

0.01 1 10 100
0

0.2

0.4

0.6

0.8

1

x

ρ
(x

)

θ
3
 = 1.5

θ
3
 = 1.75

θ
3
 = 3

θ
3
 = 20

Exp(1)

Figure 2.3: Illustration of the effect of the normalized 3rd moment, θ3, on the
distribution of load as a function of job size for the H2 class of distributions. The
first two moments were held constant at E[S] = 1 and C2

S = 19. The distribution
of the load for exponential distribution with mean 1, labeled Exp(1), is shown for
reference.

and,

W
C2
S

l =

E
[
WM/D/k

]
if ρ < k − 1

E
[
WM/D/k

]
+
[
ρ−(k−1)
k−ρ

]
C2
S

2 if k−1
k
≤ ρ < 1

where E
[
WM/D/k

]
is the mean waiting time when all the jobs have a constant size 1.

2.4 Proof of Theorem 2.1

To obtain the bounds on W
C2
S

h and W
C2
S

l in Theorem 2.1, it suffices to show the
existence of service distributions with SCV C2

S which give the desired expressions for
mean waiting times. To obtain an upper bound on WC2

S
l , we use a corollary of [44],

Proposition 3.15:

Lemma 2.1 (Daley [44, Proposition 3.15]) For E[S] = 1, any C2
S > 0 and 0 <

25

ε <
√

1
C2
S
, define the following random variable with a two-point distribution:

D(ε) ∼

1− ε
√
C2
S with probability 1

1+ε2

1 +
√
C2
S

ε
with probability ε2

1+ε2 .

For ρ < k − 1 and any given GI arrival process,

lim
ε→0

E
[
WGI/D(ε)/k

]
= E

[
WGI/D/k

]
where E

[
WGI/D/k

]
is the mean waiting time when the service distribution is deter-

ministic 1.

By definition, each distribution in the D(ε) family has mean 1 and SCV C2
S. The

bound onWC2
S

l follows by setting the inter-arrival time distribution to be Exponential
(GI ≡M).

To obtain a lower bound on WC2
S

h , we consider the following two-point distribution:

D∗2 ∼

0 with probability C2
S

C2
S+1

C2
S + 1 with probability 1

C2
S+1 .

It is easy to verify that the above distribution has mean 1, squared coefficient of
variation C2

S, and θ3 = 1. We denote theM/G/k system with D∗2 service distribution
as M/D∗2/k.

The bound on WC2
S

h follows from the following lemma:

Lemma 2.2 For any ρ < k and C2
S > 0,

E
[
WM/D∗2/k

]
= (C2

S + 1)E
[
WM/D/k

]
.

Proof: Since the scheduling discipline is size independent, the distributions of the
waiting times experienced by zero-sized jobs and non-zero jobs are identical. Further,
to find the waiting time distribution experienced by non-zero sized jobs, we can ignore
the presence of zero-sized jobs. The waiting time distribution of the non-zero sized
jobs is thus equivalent to the waiting time distribution in an M/D/k system with
arrival rate λ

C2
S+1 and mean job size (C2

S + 1). The latter system, however, is just an
M/D/k system with arrival rate λ and mean job size 1 seen on a slower time scale,
slowed by a factor (C2

S + 1). Hence, the mean waiting time of the original system is
also (C2

S + 1) times the mean waiting time of an M/D/k system with arrival rate λ
and mean job size 1.

26

2.5 Proof of Theorem 2.2

As in the proof of Theorem 2.1, to obtain the bounds on W
C2
S

h and W
C2
S

l in Theo-
rem 2.2, it suffices to show the existence of service distributions with SCV C2

S which
give the desired mean waiting times. To handle the case ρ > k − 1, we resort to
service distributions in the class of 2-phase hyperexponentials.

To obtain a lower bound on WC2
S

h , we consider the following degenerate hyperexpo-
nential distribution:

H∗2 ∼

0 with probability C2

S−1
C2
S+1

Exp
(

2
C2
S+1

)
with probability 2

C2
S+1 .

It is easy to verify that the above distribution has mean 1, squared coefficient of
variation C2

S, and θ3 = 3
2 . The H

∗
2 distribution as defined above has the lowest third

moment among all the Hn distributions with mean 1 and SCV C2
S:

Claim 2.1 Let ∪n>1{Hn|C2
S} be the set of all hyperexponential distributions with

finite number of phases, mean 1 and squared coefficient of variation C2
S (C2

S > 1).
The H∗2 distribution lying in this set has the smallest third moment among all the
distributions in ∪n>1{Hn|C2

S}.

The bound on WC2
S

h in Theorem 2.2 follows from the following lemma which can be
proved along the lines of Lemma 2.2:

Lemma 2.3 For any ρ < k and C2
S > 1,

E
[
WM/H∗2 /k

]
=
(
C2
S + 1
2

)
E
[
WM/M/k

]
.

Note that the bound obtained from Lemma 2.3 is weaker than the bound from
Lemma 2.2 since E

[
WM/M/k

]
< 2 · E

[
WM/D/k

]
. We present Lemma 2.3 here for

comparison with the corresponding upper bound on W
C2
S

l in Lemma 2.4 and the
2-moment approximation (2.1), which involve E

[
WM/M/k

]
.

To obtain a bound on W
C2
S

l , we consider a sequence of systems parametrized by a
parameter ε in which we fix the first two moments of the service distribution analogous
to Lemma 2.1. The parameter ε allows for increasing the third moment as ε goes to
0. More precisely, we consider the sequence of queues M/H

(ε)
2 /k (see Section 2.5.2,

Definition 2.3) as ε→ 0 and prove the following limit theorem:

27

Lemma 2.4 For E[S] = 1 and any finite C2
S,

lim
ε→0

E
[
WM/H

(ε)
2 /k

]
=

E
[
WM/M/k

]
if ρ < k − 1

E
[
WM/M/k

]
+
[
ρ−(k−1)
k−ρ

]
C2
S−1
2 if ρ ≥ k − 1

where E
[
WM/M/k

]
is the mean waiting time when the service distribution is expo-

nential with mean 1.

The rest of this section is devoted to proving Lemma 2.4. Since the proof of
Lemma 2.4 involves a new technique, we begin in Section 2.5.1 with a high level
proof idea. Subsequent subsections will provide the rigorous lemmas.

2.5.1 Proof idea

The key steps involved in the analysis are as follows:

1. We first observe that the H(ε)
2 service distribution is made up of two classes of

jobs – small jobs and large jobs. We use Ns and N` to denote the number of
small and large jobs in system, respectively.

2. We show that the expected number of large jobs, E
[
N
M/H

(ε)
2 /k

`

]
, vanishes as ε

goes to zero; therefore it suffices to consider only small jobs (see Section 2.5.3).

3. For each M/H
(ε)
2 /k system, we construct another system, U (ε), which stochas-

tically upper bounds the number of small jobs in the corresponding M/H
(ε)
2 /k

system. That is,

NM/H
(ε)
2 /k

s ≤st NU(ε)

s

(see Section 2.5.4).

4. To analyze NU(ε)
s , we consider two kinds of periods: good periods – when there

are no large jobs in the system, and bad periods – when there is at least one
large job in the system. Our approach is to obtain upper bounds on the mean
number of small jobs during the good and bad periods, E

[
NU(ε)
s | good period

]
andE

[
NU(ε)
s | bad period

]
, respectively, and obtain an upper bound onE

[
NU(ε)
s

]
using the law of total probability:

E
[
NU(ε)

s

]
= E

[
NU(ε)

s | good period
]
Pr[good period]

+ E
[
NU(ε)

s | bad period
]
Pr[bad period]

28

We obtain upper bounds on the mean number of small jobs during the good
and bad periods using the following steps (see Section 2.5.5):

(a) We first look at the number of small jobs only at switching points. That
is, we consider the number of small jobs only at the instants when the
system switches from a good period to a bad period and vice versa.

(b) To obtain bounds on the number of small jobs at the switching points,
we define a random variable ∆, which upper bounds the increment in the
number of small jobs during a bad period. Further, by our definition, the
upper bound ∆ is independent of the number of small jobs at the beginning
of the bad period. To keep the analysis simple, this independence turns
out to be crucial.

(c) Next we obtain a stochastic upper bound on the number of small jobs at
the end of a good period by solving a fixed point equation of the form

A
d= Φ(A+ ∆)

where A is the random variable for (the stochastic upper bound on) the
number of small jobs at the end of a good period, and Φ is a function that
maps the number of small jobs at the beginning of a good period to the
number of small jobs at the end of the good period.

(d) Finally, we obtain the mean number of small jobs during the good and
bad periods from the mean number of small jobs at the switching points.

5. Similar to U (ε), for each M/H
(ε)
2 /k system, we also construct a system, L(ε),

which stochastically lower bounds the number of small jobs in the correspond-
ing M/H

(ε)
2 /k system. That is,

NM/H
(ε)
2 /k

s ≥st NL(ε)

s

(see Section 2.5.6). We omit the analysis of L(ε) since it is similar to analysis
of U (ε). Note, that we indeed obtain

E
[
NU(ε)

s

]
= E

[
NL(ε)

s

]
+ o(1)

Convergence of E
[
NM/H

(ε)
2 /k

]
follows from convergence of its upper and lower

bounds.

6. Finally, we use Little’s law to obtain mean waiting time, E
[
WM/H

(ε)
2 /k

]
, from

the mean number of waiting jobs, E
[
NM/H

(ε)
2 /k

]
− ρ.

29

2.5.2 Preliminaries

Below we give a formal definition of the H(ε)
2 class of service distributions.

Definition 2.3 We define a family of distributions parametrized by ε as follows:

H
(ε)
2 =

Exp
(
µ(ε)
s

)
with probability p(ε)

Exp
(
µ

(ε)
`

)
with probability 1− p(ε)

µ(ε)
s > µ

(ε)
` , where µ(ε)

s , µ(ε)
` and p(ε) satisfy,

p(ε)

µ
(ε)
s

+ 1− p(ε)

µ
(ε)
`

= E
[
S(ε)

]
= 1

2 p(ε)(
µ

(ε)
s

)2 + 21− p(ε)(
µ

(ε)
`

)2 = E
[(
S(ε)

)2
]

= C2
S + 1

6 p(ε)(
µ

(ε)
s

)3 + 61− p(ε)(
µ

(ε)
`

)3 = E
[(
S(ε)

)3
]

= 1
ε

For proving the upper bound on the lower boundWC2
S

l ofE[W], we look atE
[
WM/H

(ε)
2 /k

]
as ε → 0. That is, the third moment of service time goes to ∞. Below we present
some elementary results on the asymptotic behavior3 of the parameters of the H(ε)

2

3We will use the following asymptotic notation frequently in this chapter: We say a function
h(ε) is:

1. Θ(g(ε)) if

0 < lim inf
ε→0

∣∣∣∣h(ε)g(ε)

∣∣∣∣ ≤ lim sup
ε→0

∣∣∣∣h(ε)g(ε)

∣∣∣∣ <∞
Intuitively, this means that the functions h and g grow at the same rate, asymptotically, as
ε→ 0.

2. o(g(ε)) if

lim
ε→0

∣∣∣∣h(ε)g(ε)

∣∣∣∣ = 0

Intuitively, h becomes insignificant when compared with g, asymptotically, as ε→ 0.

3. O(g(ε)) if

lim sup
ε→0

∣∣∣∣h(ε)g(ε)

∣∣∣∣ <∞
30

distribution, which will be used in the analysis in Section 2.5.5.

Lemma 2.5 The µ(ε)
s , µ(ε)

` and p(ε) can be expressed in terms of ε as :

µ(ε)
s = 1 + 3

2(C2
S − 1)2ε+ Θ(ε2)

µ
(ε)
` = 3(C2

S − 1)ε+ 18C2
S(C2

S − 1)ε2 + Θ(ε3)

p(ε) = 1− 9
2(C2

S − 1)3ε2 + Θ(ε3)

Proof in Appendix 2.A.

Corollary 2.1 As ε→ 0,

p(ε) → 1 , µ(ε)
s → 1

1−p(ε)

µ
(ε)
`

→ 0 , 1−p(ε)(
µ

(ε)
`

)2 → C2
S−1
2

Corollary 2.1 formalizes the observation we made from Figure 2.3: As the third
moment grows, asymptotically, all the load is made up only by the small jobs, whose
mean approaches 1. While the mean size of the large jobs also grows linearly in the
third moment (asymptotically), the probability that a large job arrives vanishes at
a faster rate. Thus, intuitively, our M/H

(ε)
2 /k system rarely encounters a large job

in the limit as ε→ 0.
It is important to point out that, as ε → 0, the H(ε)

2 distribution converges in dis-
tribution to the Exp(1) distribution. Thus, the stationary queue length and waiting
time distributions of the sequence of M/H

(ε)
2 /k systems also converge in distribution

to the queue length and waiting time distributions of the corresponding M/M/k
system [30, 139]. However, convergence in distribution of the waiting time does not
imply convergence of the mean waiting time; namely, it is possible that

lim
ε→0

E
[
WM/H

(ε)
2 /k

]
6= E

[
WM/M/k

]
. (2.6)

Indeed, (2.6) can be verified for k = 1 where the mean waiting time is given by
the Pollaczek-Khintchine formula (2.4). Lemma 2.4 proves that the non-convergence
(2.6) holds more generally for the M/H

(ε)
2 /k system when ρ > k − 1.

That is, h is either Θ(g(ε)) or o(g(ε)).

31

Daley [44] proved an analogous non-convergence result by considering a class of
service distributions, S(ε), which includes H(ε)

2 service distributions. He further con-
jectured [44, Conjecture 3.19] an expression for the difference,

lim
ε→0

E
[
WGI/S(ε)/k

]
− E

[
WGI/S/k

]
,

where S denotes the limiting service distribution. The proof of Lemma 2.4 verifies
Daley’s conjecture for the case of Poisson arrival process and H2 service distribution.

2.5.3 Bounding the number of large jobs

The following lemma proves that to bound the mean number of jobs in anM/H
(ε)
2 /k

system within o(1), it suffices to consider only the small jobs.

Lemma 2.6 E
[
N
M/H

(ε)
2 /k

`

]
= o(1)

Proof: We will upper bound the expected number of large customers in the system
by (a) giving high priority to the small customers and letting the large jobs receive
service only when there are no small jobs in the system, and (b) by allowing the large
customers to be served by at most one server at any time. Further, we increase the
arrival rate of small customers to λ and increase the mean size of the small customers
to 1. By not being work conserving, increasing the arrival rate, and making small
jobs stochastically larger, the modified system can become overloaded. However,
since we are only interested in the asymptotic behavior as ε → 0, it suffices to find
an ε′ such that the above system is stable for all ε < ε′. This is indeed true for
ε′ = 1

6

[
ρ(C2

S+1)2

4(1−ρ/k) + 1
]−1

(See proof of Lemma 2.9).

For brevity, we use M(a)/M(b)/k to denote an M/M/k queue with arrival rate
a and service rate b. Let N`

(ε) be the steady-state number of customers in an
M
(
λ(1− p(ε))

)
/M

(
µ

(ε)
`

)
/1 queue with service interruptions, where the server is

interrupted for the duration of the busy period of anM(λ)/M(1)/k queue. It is easy
to see that

E
[
N
M/H

(ε)
2 /k

`

]
≤ E

[
N`

(ε)
]
.

The proof is completed by the following lemma:

Lemma 2.7 E
[
N`

(ε)
]

= o(1)

Proof in Appendix 2.A.

32

Bad phase
(1 large job)

Bad phase
(> 0 large jobs)

’’

Number of
large jobs

Good period Good period

(0 large jobs) (0 large jobs)

Large job arrives
Gets preemptive prio at server 1

Service of small jobs ceases

Good period begins
Service of small jobs resumes

Third large job arrives
Queues up at server 1

Bad period

’

Queues up at server 1
Second large job arrives

Figure 2.4: Construction of system U (ε) which upper bounds the number of jobs in
an M/H

(ε)
2 /k

2.5.4 Construction of U (ε): the upper bounding system for
NM/H

(ε)
2 /k

s

Figure 2.4 illustrates the behavior of system U (ε), which upper bounds the number of
small jobs in an M/H

(ε)
2 /k. Denote periods where there are no large jobs (including

when the system is idle) as good periods, and periods when there is at least 1 large
job as a bad period. During a good period, the small jobs receive service according
to a normal k server FIFO system. As soon as a large job arrives, we say that a bad
period begins. The bad period consists of up to 2 phases, called bad′ and bad′′. A
bad′ phase spans the time from when a large job first arrives until either it leaves
or a second large job arrives (whichever happens earlier). A bad′′ phase occurs if a
second large job arrives while the first large job is still in the system, and covers the
period from when this 2nd large job arrives (if it does) until there are no more large
jobs in the system.
The large job starting a bad period preempts the small job at server 1 (if any) and
starts receiving service. The small jobs are served by the remaining (k − 1) servers.
If a second large job arrives during a bad period while the first large job is still in
system, starting a bad′′ phase, we cease serving the small jobs and continue serving
the large jobs by only server 1 until this busy period of large jobs ends (there are no
more large jobs). When the last large job leaves, we resume the service of small jobs

33

according to a normal k server FIFO system.
Analyzing system U (ε) is simpler than analyzing the correspondingM/H

(ε)
2 /k system

because in U (ε), the large jobs form anM/M/1 system independent of the small jobs,
due to preemptive priority and service by only one server. The small jobs operate in
a random environment where they have either k, (k − 1) or 0 servers.

Lemma 2.8 The number of small jobs in anM/H
(ε)
2 /k system, NM/H

(ε)
2 /k

s , is stochas-
tically upper bounded by the number of small jobs in the corresponding system U (ε),
NU(ε)
s .

Proof: Straightforward using stochastic coupling.
Stability of system U (ε): Since system U (ε) is not work conserving, there are values
of ε for which it is unstable, even when ρ < k. Therefore we restrict our attention to
the following range of ε:

Lemma 2.9 The upper bounding system, U (ε), is stable for ε < ε′ where

ε′ = 1
6

[
ρ(C2

S + 1)2

4(1− ρ/k) + 1
]−1

.

Proof in Appendix 2.A.

2.5.5 Analysis of system U (ε)

Figure 2.5 introduces the notation we will use in this section. Since in this section
we focus only on the analysis of system U (ε), we will omit superscripting the random
variables used in analysis by U (ε) for readability. Unless explicitly superscripted,
random variables correspond to the U (ε) system. We define the following random
variables:

• N∗s,g ≡ the number of small jobs at the end of a good period, that is, when the
system switches from a good to a bad period

• N∗s,b ≡ the number of small jobs at the end of a bad period, that is, when the
system switches from a bad to a good period

• Ns,g ≡ the time stationary number of small jobs during a good period

• Ns,b ≡ the time stationary number of small jobs during a bad period

34

’

Number of
small jobs ’’

∆b

∆b

N
s,g
*

’’

time

Good period Bad period

Bad phase’ Bad phase

Figure 2.5: Notation used for analysis of system U (ε)

• ∆b′ ≡ the increment in the number of small jobs during a bad′ period (when
small jobs have (k − 1) servers available)

• ∆b′(n) ≡ the increment in the number of small jobs during a bad′ period given
that the bad′ period begins with n small jobs

• ∆b′′ ≡ the increment in the number of small jobs during a bad′′ period (where
the service of small jobs has been blocked)

• ∆b = ∆b′(0) + ∆b′′

We denote the fraction of time spent in a good, bad, bad′ and bad′′ phase by Pr[g],
Pr[b], Pr[b′] and Pr[b′′] respectively.
By the law of total probability,

E[Ns] = E[Ns,g]Pr[g] + E[Ns,b]Pr[b] (2.7)

In Section 2.5.5, we derive stochastic upper bounds on Ns,g and Ns,b, which give us
an upper bound, (2.9), on E[Ns]. In Sections 2.5.5 and 2.5.5, we derive expressions
for the quantities appearing in (2.9). These are used to obtain the final upper bound
on E[Ns] in Section 2.5.5.

Stochastic Bounds

Obtaining a stochastic upper bound on Ns,g : Let Φ(A) be a mapping between
non-negative random variables where Φ(A) gives the random variable for the number

35

of small jobs at the end of a good period, given that the number at the beginning of
the good period is given by A. Let N̄∗s,g be the solution to the following fixed point
equation:

N̄∗s,g
d= Φ(N̄∗s,g + ∆b) (2.8)

Lemma 2.10

Ns,g
d= N∗s,g ≤st N̄∗s,g

Proof sketch: The first relation follows since the length of a good period is
exponential and its termination is independent of the number of small jobs. Hence,
by conditional PASTA [148] (see also [69] for a similar use of conditional PASTA),

Ns,g
d= N∗s,g

Intuitively, ∆b stochastically upper bounds the increment in the number of small
jobs during a bad period since it assumes there were zero small jobs at the beginning
of the bad period and hence ignores the departures of those small jobs. Therefore,
solving the fixed point equation (2.8) gives a stochastic upper bound on N∗s,g. A
formal proof of the stochastic inequality is in Appendix 2.A.
Obtaining a stochastic upper bound on Ns,b : The required upper bound is
given by the following lemma.

Lemma 2.11

Ns,b ≤st N̄∗s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e)

where Aλ (Tb′′e) is the number of arrivals of a Poisson process (with rate λ) dur-
ing a random time interval Tb′′e denoting the excess of the length of a bad′′ period,
and where Ib′′|b denotes an indicator random variable which is 1 with probability
Pr[b′′]/Pr[b].

Proof sketch: Observe that the first term in the upper bound is a stochastic upper
bound on the number of small jobs at the beginning of a bad period. The second
term denotes a stochastic upper bound on the increment in the number of small jobs
during a bad′ phase. Finally, the third term denotes the “average increment” in the
number of small jobs during a bad′′ phase. See Appendix 2.A for the complete proof.

36

Combining the bounds on Ns,g and Ns,b, we get an upper bound on E[Ns]:

E[Ns] ≤ E
[
N̄∗s,g

]
Pr[g] + E

[
N̄∗s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e)

]
Pr[b] (2.9)

To complete the proof, we need expressions for each of the quantities in equa-
tion (2.9). In Section 2.5.5 we will obtain expressions for E[∆b′(0)] for the cases
ρ < k − 1 and ρ ≥ k − 1. In Section 2.5.5 we will obtain E

[
N̄∗s,g

]
. However, to

do this, we will need the first two moments of ∆b, E[∆b] and E[∆2
b], which are also

derived in Section 2.5.5.
To obtain Pr[b], recall that the large jobs form an M/M/1 system. Hence (see
Lemma 2.5 for expressions for p and µ`),

Pr[b] = Pr[≥ 1 large job] = λ(1− p(ε))
µ

(ε)
`

= 3ρ(C2
S − 1)2ε

2 + Θ(ε2) (2.10)

The following asymptotic behavior of Pr[b′′]
Pr[b] E[Aλ (Tb′′e)] is proved in the proof of

Lemma 2.14:

Pr[b′′]
Pr[b] E[Aλ (Tb′′e)] = Θ(1) (2.11)

In Section 2.5.5, we perform the final calculations by substituting the above quantities
into (2.9).

Obtaining E[∆b] and E[∆2
b]

Recall that we defined,

∆b = ∆b′(0) + ∆b′′

where ∆b′(0) is the random variable for the number small jobs at the end of a bad′
phase given that it starts with 0 small jobs and ∆b′′ is the number of small of jobs
that arrive during a bad′′ phase.
Lemma 2.12 gives the expressions for E[∆b′(0)] and E[∆2

b′(0)]. Lemma 2.14 gives
the asymptotic expressions for E[∆b′′] and E[∆2

b′′] which will be sufficient for our
purposes of obtaining E[Ns] within o(1).

37

Lemma 2.12
Case: ρ < k − 1

E[∆b′(0)] = O(1)
E
[
∆2
b′(0)

]
= O(1)

Case: ρ > k − 1

E[∆b′(0)] = (ρ− (k − 1))
3(C2

S − 1)ε + Θ(1)

E
[
∆2
b′(0)

]
= 2

9
(ρ− (k − 1))2

(C2
S − 1)2ε2

+ Θ
(1
ε

)

Proof: We can think of ∆b′(0) as the number of jobs in anM/M/k−1 with arrival
rate λs = λp and service rate µs at time T ∼ Exp (β) (β = λ(1− p) + µ`) given that
it starts empty. Let us call this NM(λs)/M(µs)/k−1(T). Let NM(λs)/M((k−1)µs)/1(T) be
the number of jobs in an M/M/1 with arrival rate λs and service rate (k − 1)µs at
time T given that it starts empty. Then,

NM(λs)/M((k−1)µs)/1(T) ≤stNM(λs)/M(µs)/k−1(T) ≤st NM(λs)/M((k−1)µs)/1(T) + (k − 1)
(2.12)

To see why (2.12) is true, first note that using coupling, NM(λs)/M(µs)/k−1(T) can be
(stochastically) sandwiched between NM(λs)/M((k−1)µs)/1(T) and the number of jobs
in an M/M/k − 1 where the service is stopped when the number of jobs goes below
k− 1. Finally, again using coupling, the number of jobs in this latter system can be
stochastically upper bounded by NM(λs)/M((k−1)µs)/1(T) + (k − 1).
Therefore, using (2.12), we only need to evaluate the first and second moments of
NM(λs)/M((k−1)µs)/1(T) to obtain E[∆b′(0)] and E[∆2

b′(0)] within an error of Θ(1) and
Θ(E[∆b′(0)]), respectively. We do this next.
Case: ρ < k − 1
For this case the M/M/k − 1 system is stable during bad′ phases, and hence

E[∆b′(0)] = O(1)
E
[
∆2
b′(0)

]
= O(1).

Case: ρ > k − 1
The following lemma gives the expressions for the first and second moments of
NM(λs)/M((k−1)µs)/1(T) for the case ρ > k − 1.

38

Lemma 2.13 Let T ∼ Exp(β) and λs > (k − 1)µs. Then,

E
[
NM(λs)/M((k−1)µs)/1(T)

]
= λs − (k − 1)µs

β
+ Θ(1)

E
[
(NM(λs)/M((k−1)µs)/1(T))2

]
= 2

(
λs − (k − 1)µs

β

)2

+ Θ
(

1
β

)
.

Proof of Lemma 2.13: See Appendix 2.A.
Now, using the inequality (2.12) and Lemma 2.13, and substituting in the expressions
for µs, λs and µ` from Lemma 2.5 :

E[∆b′(0)] = E
[
NM(λs)/M(µs)/k−1(T)

]
≤ E

[
NM(λs)/M((k−1)µs)/1(T)

]
+O(1)

= λs − (k − 1)µs
β

+ Θ(1)

= λp− (k − 1)µs
λ(1− p) + µ`

+ Θ(1)

= λ(1−Θ(ε2))− (k − 1)(1 + Θ(ε))
λΘ(ε2) + (3(C2

S − 1)ε+ Θ(ε2)) + Θ(1)

= (ρ− (k − 1))
3(C2

S − 1)ε + Θ(1)

and,

E
[
∆2
b′(0)

]
= E

[(
NM(λs)/M(µs)/k−1(T)

)2
]

≤ E
[(
NM(λs)/M((k−1)µs)/1(T)

)2
]

+O
(1
ε

)

= 2
(
λs − (k − 1)µs

β

)2

+ Θ
(

1
β

)
+O

(1
ε

)

= 2
(

(ρ− (k − 1))
3(C2

S − 1)ε

)2

+ Θ
(1
ε

)

Lemma 2.14 The asymptotics for the first and second moments of ∆b′′ are given
by:

E[∆b′′] = O(1)

39

E
[
∆2
b′′

]
= Θ

(1
ε

)
Proof: See Appendix 2.A.

Obtaining E
[
N̄∗s,g

]
We will use the following lemma to obtain E

[
N̄∗s,g

]
.

Lemma 2.15 Consider an M/M/k system with arrival rate λ and mean job size
µ−1. We interrupt this M/M/k system according to a Poisson process with rate α,
and at every interruption, a random number of jobs are added to the system. The
number of jobs injected are i.i.d. random variables which are equal in distribution to
some non-negative random variable ∆. Let N (Int) denote the number of jobs in this
M/M/k system. If E[∆] = o

(
1
α

)
, we have,

E
[
N (Int)

]
= E

[
NM/M/k

]
+

α
2E[∆2]
kµ− λ

+ o(1).

Proof in Appendix 2.A.
To use the above lemma, we will consider an M/M/k with arrival rate λp(ε), mean
job size 1

µ
(ε)
1
, α = λ(1− p(ε)) and ∆ d= ∆b. Using the expression for E[∆b] derived in

Section 2.5.5, one can check that the condition of Lemma 2.15 is met. Therefore,

E
[
N̄∗s,g

]
= E

[
NM/M/k

]
+ 1

2
λ(1− p)E[∆2

b]
kµ− λ

+ o(1) (2.13)

Substituting E[∆2
b] from Section 2.5.5 and using Lemma 2.5,

Case: ρ < k − 1

E
[
N̄∗s,g

]
= E

[
NM/M/k

]
+ 1

2
λ
(

9
2(C

2
S − 1)3ε2

)
Θ
(

1
ε

)
kµ− λ

+ o(1)

= E
[
NM/M/k

]
+ o(1)

Case: ρ > k − 1
E
[
N̄∗s,g

]

=E
[
NM/M/k

]
+ 1

2

λ
(

9
2(C

2
S − 1)3ε2

)(
2
9

(ρ−(k−1))2

(C2
S−1)2ε2

)
kµ− λ

+ o(1)

=E
[
NM/M/k

]
+ ρ

k − ρ
[ρ− (k − 1)]2 C

2
S − 1
2 + o(1)

40

Putting it together: Upper bound on E[Ns]

Recall the expression for upper bound on E[Ns] from equation (2.9):

E[Ns] ≤ E
[
N̄∗s,g

]
(1−Pr[b]) + E

[
N̄∗s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e)

]
Pr[b]

Substituting the expressions forE
[
N̄∗s,g

]
from Section 2.5.5, E[∆b′(0)] from Lemma 2.12,

Pr[b] from Equation (2.10) and Pr[b′′]
Pr[b] E[Aλ (Tb′′e)] from Equation (2.11) into the above

equation, we get:

Case: ρ < k − 1

E[Ns] ≤ E
[
NM/M/k

]
+ o(1)

Case: ρ > k − 1

E[Ns] ≤
(
E
[
NM/M/k

]
+ ρ

k − ρ
[ρ− (k − 1)]2 C

2
S − 1
2

)

+
(

(ρ− (k − 1))
3(C2

S − 1)ε + Θ(1)
)(

3ρ(C2
S − 1)2ε

2

)
+ o(1)

= E
[
NM/M/k

]
+ ρ

k − ρ
[ρ− (k − 1)]2 C

2
S − 1
2 + ρ [ρ− (k − 1)] C

2
S − 1
2 + o(1)

= E
[
NM/M/k

]
+ ρ

k − ρ
[ρ− (k − 1)] C

2
S − 1
2 + o(1)

Case: ρ = k − 1
The critical case ρ = k − 1 is difficult to handle directly. However, we can infer the
limit

lim
ε→0

E
[
NM/H

(ε)
2 /k

]
= E

[
NM/M/k

]
from the preceding analysis to obtain upper bounds for the cases ρ < k − 1 and
ρ > k − 1, and the matching lower bounds obtained via analysis of the system
described in Section 2.5.6 as follows. For each ε, let f (ε) : [0, k) → R+

0 denote the
function mapping the load ρ to the mean number of jobs in an M/H

(ε)
2 /k system,

E
[
NM/H(ε)/k

]
. Let f(·) be the point-wise limit of f (ε)(·) as ε→ 0. Since each f (ε) is

a monotonic function, f is also monotonic. Further,

lim
ρ↑k−1

f(ρ) = lim
ρ↓k−1

f(ρ) = E
[
NM/M/k

]
.

41

Number of
large jobs

µs
(ε)

0 large jobs 1 large job 0 large jobs

Large job completes service

resumes

Second large job arrives

service
Instantaneously completes Normal service of small jobs

Large job arrives
All existing jobs instantaneously
complete service
Arriving small jobs receive service
at a total rate of (k−1)

Figure 2.6: Construction of system L(ε) which lower bounds the number of jobs in
an M/H

(ε)
2 /k

Thus we conclude,

f (k − 1) = lim
ε→0

E
[
NM/H

(ε)
2 /k

]∣∣∣∣
ρ=k−1

= E
[
NM/M/k

]
.

2.5.6 Construction of L(ε): the lower bounding system

Case: ρ > k − 1
Figure 2.6 shows the behavior of system L(ε) for this case. As before, denote the
periods where there are no large jobs in the system as good periods, and periods
when there is at least 1 large job as bad periods. During a good period, the small
jobs receive service according to a normal k server FIFO system. As soon as a
large job arrives to begin the bad period, all the small jobs currently in the system
instantaneously complete service. That is, the system restarts with 1 large job.
Any large jobs that arrive during this bad period complete service instantaneously.
Further, whenever there are fewer than (k−1) small jobs in the system during a bad
period, they are collectively served at a total rate of (k − 1)µ(ε)

s .
Case: ρ ≤ k − 1
For this case we can consider an alternate lower bounding system which simplifies the
analysis. In the lower bounding system, L(ε), all large jobs instantaneously complete
service on arrival. Thus the number of large jobs is always 0 and the number of small
jobs behaves as in an M/M/k with arrival rate λp(ε) and mean job size 1

µ
(ε)
s

.

Lemma 2.16 The number of small jobs in an M/H
(ε)
2 /k system, NM/H

(ε)
2 /k

s , is
stochastically lower bounded by the number of small jobs in the corresponding system

42

L(ε), NL(ε)
s .

Proof: Straightforward using stochastic coupling.

Sketch of Analysis of L(ε)

Case: ρ > k − 1
The analysis of system L(ε) is simplified because the large jobs form an M/M/1/1
system independent of the small jobs. The length of a bad period is distributed as
Exp

(
µ

(ε)
`

)
and the length of a good period is distributed as Exp

(
λ(1− p(ε))

)
. Fur-

ther, during a bad period, the number of small jobs behaves as in an M/M/1 queue
with arrival rate λp(ε) and service rate (k − 1)µ(ε)

s starting with an empty system.
Therefore, the distribution of the number of small jobs at the end of bad periods
(and hence, by conditional PASTA, the distribution of the time average number of
small jobs during the bad periods) in system L(ε) can be derived along the lines of
proof of Lemma 2.12. To complete the proof we need to find the stationary mean
number of small jobs at the end of good periods (and hence, by conditional PASTA,
the stationary mean number of small jobs during the good periods). This is equiva-
lent to finding the mean number of jobs in an M/M/k at time T ∼ Exp (λ(1− p)),
starting at t = 0 with number of jobs sampled from the distribution of the number of
small jobs at the end of bad periods. To do this, we start with Eqn. (2.50), proceed
as in the proof of Lemma 2.13 by finding the root of the denominator in the interval
[0, 1) and equating the numerator to zero at this root. We then follow the proof of
Lemma 2.15 to obtain the mean number of jobs at time T .
Case: ρ ≤ k − 1
As stated earlier, in constructing the lower bound system L(ε), we assume that the
large jobs complete service instantaneously on arrival. Therefore, the number of
large jobs in the system is 0 with probability 1. The distribution of the time average
number of small jobs in the system is given by the stationary distribution in an
M/M/k FCFS system.

2.6 Effect of higher moments

In Theorems 2.1 and 2.2, we proved that the first two moments of the service dis-
tribution alone are insufficient to approximate the mean waiting time accurately. In
Section 2.3, by means of numerical experiments, we observed that within the H2
class of distributions, the normalized third moment of the service distribution has a
significant impact on the mean waiting time. Further, we observed that for H2 ser-
vice distributions, increasing the normalized third moment causes the mean waiting

43

time to drop. It is, therefore, only natural to ask the following questions: Are three
moments of the service distribution sufficient to accurately approximate the mean
waiting time, or do even higher moments have an equally significant impact? Is the
qualitative effect of 4th and higher moments similar to the effect of the 3rd moment
or is it the opposite? In this section, we touch upon these interesting and largely
open questions.

C2
S = 19 C2

S = 99
E[W] θ3 E[W] θ3

2-moment approx. (Eqn. 2.1) 6.6873 - 33.4366 -
Weibull 6.0691 4.2 25.9896 8.18

Truncated Pareto (α = 1.1) 5.5241 4.24 24.5788 6.30
Lognormal 4.9937 20 19.5548 100

Truncated Pareto (α = 1.3) 4.8770 7.59 18.8933 16.85
Truncated Pareto (α = 1.5) 3.9504 20 10.5404 100

Table 2.2: Results from simulating an M/G/k with k = 10 and ρ = 9 (confidence
intervals omitted). All service distributions have E[S] = 1.

C2
S = 19 C2

S = 99
E[W] θ3 E[W] θ3

2-moment approx. (Eqn. 2.1) 0.2532 - 1.2662 -
Weibull 0.1374 4.2 0.4638 8.18

Truncated Pareto (α = 1.1) 0.0815 4.24 0.2057 6.30
Lognormal 0.0854 20 0.2154 100

Truncated Pareto (α = 1.3) 0.0538 7.59 0.0816 16.85
Truncated Pareto (α = 1.5) 0.0355 20 0.0377 100

Table 2.3: Results from simulating an M/G/k with k = 10 and ρ = 6 (confidence
intervals omitted). All service distributions have E[S] = 1.

We first revisit the simulation results of Table 2.1. Table 2.2 shows the simulation
results of Table 2.1 again, but with an additional column – the normalized third
moment of the service distribution. We have omitted the confidence intervals in
Table 2.2. Observe that the lognormal distribution and the Pareto distribution with
α = 1.5 have identical first three moments, yet exhibit very different mean waiting
times. This behavior is compounded when the system load is reduced to ρ = 6
(Table 2.3). As we saw in Section 2.3, the disagreement in the mean waiting time for
the lognormal and the truncated Pareto distribution can be partly explained by the

44

0.01 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

x

ρ
(x

)

lognormal (C
2
=99)

Pareto (α=1.5, C
2
=99)lognormal (C

2
=19)

Pareto (α=1.5, C
2
=19)

Figure 2.7: The distribution of load as a function of job size for the lognormal
and bounded Pareto (α = 1.5) distributions for two values of squared coefficient of
variation. Although the lognormal and Pareto distributions have identical first three
moments, the distribution of load among different job sizes is drastically different.

very different looking ρ(x) curves for these distributions, shown in Figure 2.7. The
bulk of the load in the lognormal distribution is comprised of larger jobs as compared
to the truncated Pareto distribution.
The example of lognormal and Pareto (α = 1.5) distributions suggests that even
knowledge of three moments of the service distribution may not be sufficient for
accurately approximating the mean waiting time. So what is the effect of higher mo-
ments on the mean waiting time? To begin answering this question, we will follow
a similar approach as in Section 2.3 where we looked at the H2 service distribution.
However, we first need to expand the class of service distributions to allow us control
over the 4th moment. For this purpose, we choose the 3-phase degenerate hyperexpo-
nential class of distribution, denoted by H∗3 . Analogous to the H∗2 distribution, H∗3
is the class of mixtures of three exponential distributions where the mean of one of
the phases is 0 (see Definition 2.2). Compared to the H2 class, the H∗3 class has one
more parameter and thus four degrees of freedom, which allows us control over the
4th moment while holding the first three moments fixed.
We now extend the numerical results of Figure 2.2 by considering service distributions
in the H∗3 class with the same mean and SCV as the example illustrated in Figure 2.2.

45

2 4 6 8 10

x 10
5

5.6

6

6.4

6.8

E[S
4
]

E
[W

]

E[W
M/H

*

3
/10

]

E[W
M/H

2
/10

]

E[W
M/H

2

*
/10

]

(a) θ3 = 3

1 2 3 4 5

x 10
7

3

4

5

6

7

E[S
4
]

E
[W

]

E[W
M/H

*

3
/10

]

E[W
M/H

2
/10

]

E[W
M/H

2

*
/10

]

(b) θ3 = 20

Figure 2.8: Illustration of the effect of 4th moment of the service distribution on
mean waiting time of an M/H∗3/10 system for two values of the normalized third
moment. Dashed line shows the mean waiting time under an H2 service distribution
with the same first three moments and the light dotted line shows the mean waiting
time under an H∗2 service distribution with the same first two moments as the H∗3
distribution. The mean and squared coefficient of variation of the service distribution
were held constant at E[S] = 1 and C2

S = 19 with load ρ = 9 (same as Figure 2.2).

To demonstrate the effect of the 4th moment, we choose two values of θ3 and plot the
E[W] curves as a function of the 4th moment in Figure 2.8. As a frame of reference,
we also show the mean waiting time under the H2 service distribution (with the same
first three moments as H∗3) and that under H∗2 distribution (with the same first two
moments as H∗3).
As is evident from Figure 2.8, the fourth moment can have as significant an impact
on the mean waiting time as the third moment. As the 4th moment is increased,
the mean waiting time increases from E

[
WM/H2/k

]
to E

[
WM/H∗2 /k

]
. Therefore, the

qualitative effect of the 4th moment is opposite to that of the third moment.
The effect of the fourth moment also helps explain the disagreement between the
mean waiting time for the lognormal, the truncated Pareto (α = 1.5) and the H2
distributions. For the case C2

S = 19, the lognormal distribution has a much higher
4th moment (E

[
S4
]

= 64 × 106) than the Pareto (E
[
S4
]

= 5.66 × 106) and the H2

(E
[
S4
]

= 4.67 × 106) distribution with θ3 = 20. While this is a possible cause for

46

a higher mean waiting time under the lognormal distribution, there is still disagree-
ment between the mean waiting time under the lognormal distribution and the H∗3
distribution (see Figure 2.8) with the same first 4 moments, indicating that even
higher moments are playing an important role as well! In the next chapter, we will
conjecture and provide analytical and simulation evidence for sharp bounds on the
mean waiting time in terms of moments of the service distribution.
In conclusion, by looking at a range of distributions including hyperexponential,
Pareto and lognormal distributions, we see that the moments of the service distribu-
tion may not be sufficient to accurately predict the mean waiting time. Further, for
distributions such as the lognormal distribution which are not uniquely determined
by their moments, no finite number of moments may suffice. Other characteristics,
such as the distribution of load among the small and large job sizes, may lead to
more accurate approximations.

2.7 Summary and Open Questions

In this chapter, we addressed the classical problem of approximating the mean wait-
ing time of an M/G/k queueing system, which has been at the heart of queueing
theory since its beginnings, and is the key hurdle in answering the question: What is
the minimum number of servers necessary for a given QoS guarantee. In the absence
of exact analysis, most work in literature on this problem has proposed approxima-
tions which are functions of at most the first two moments of the service distribution.
As the major contribution of this chapter, we proved that it is impossible to develop
any approximation based on only the first two moments of the service distribution
that is accurate for all service distributions. Specifically, we proved that specifying
the first two moments of the service distribution insufficiently limits the range of
possible values of mean waiting time: The maximum value of this range can be as
much as (C2

S + 1) times the minimum value. We also conjecture that the bounds
derived in this chapter are sharp given the first two moments.
We will continue to explore the question of moments-based bounds in Chapter 3.
Impact: The major contribution of this chapter has been to deepen the understand-
ing of the M/G/k queueing system which we believe would lead to tighter analysis,
and hence efficiently provisioned server farms. In addition, we also advocate a new
perspective for developing approximations for queueing systems: by exploring the
worst case deviation of the performance of a queueing system from the proposed
approximation – a perspective that is ubiquitous in the theoretical computer science
community but not well-assimilated in the stochastic analysis community.

47

Open Problems: What partial characterizations of the service distribution (i.e.,
independent of k and ρ) are representative for the purpose of approximating M/G/k
mean waiting time? Our experiments suggest that moments are not the ideal job
size characteristic on which to base approximations for mean waiting time. The
moment sequence can be useful if one of the moments (appropriately normalized)
is small. As an example, if the service distribution has a small normalized third
moment, then an approximation based on only the first two moments is likely to
be accurate. However, there are also many service distributions, e.g., the lognormal
distribution (whose moments are all high), for which moments are not useful in
accurately predicting mean waiting time.

2.A Proofs

Proposition 2.1 Let E
[
WM/M/k

]
be the mean waiting time in an M/M/k with

mean job size 1. For all values of k ≥ 2, ρ ∈ [k − 1, k) and C2
S > 1,(

C2
S + 1
2

)
E
[
WM/M/k

]
> E

[
WM/M/k

]
+
[
ρ− (k − 1)
k − ρ

]
C2
S − 1
2 .

Proof: Our aim is to prove that for k ≥ 2, ρ ≥ k − 1 and C2
S > 1

C2
S − 1
2 E

[
WM/M/k

]
>

[
ρ− (k − 1)
k − ρ

]
C2
S − 1
2 . (2.14)

Recall that we take E[S] = 1 without loss of generality so that ρ ≥ k−1 is equivalent
to λ ≥ k−1. Let C(k, λ) be the probability of wait in an M/M/k. It is easily shown
that

E
[
WM/M/k

]
= C(k, λ)

k − λ
. (2.15)

Therefore, using ρ = λ, (2.14) holds if (we have assumed C2
S−1
2 > 0)

C(k, λ) > [λ− (k − 1)] . (2.16)

It is known that C(k, λ) is a strictly convex function in λ on [0, k] (see [109]). Since
(2.16) trivially holds for λ = k − 1, and since the right hand side of (2.16) has
derivative (w.r.t. λ) 1, it suffices to show that

d

dλ
C(k, λ)

∣∣∣∣∣
λ→k

< 1. (2.17)

48

Let Aλ be a random variable that is Poisson with mean λ. It is well known ([103],
page 103) that

C(k, λ) = 1
ρ
k

+
(
1− ρ

k

)
P (Aλ≤k)
P (Aλ=k)

. (2.18)

Using this expression, we find that

d

dλ
C(k, λ)

∣∣∣∣∣
λ→k

= d

dλ

1
λ
k

+
(
1− λ

k

)
P (Aλ≤k)
P (Aλ=k)

∣∣∣∣∣∣
λ→k

= −
1
k
− 1

k
P (Aλ≤k)
P (Aλ=k) +

(
1− λ

k

)
d
dλ

P (Aλ≤k)
P (Aλ=k)(

λ
k

+
(
1− λ

k

)
P (Aλ≤k)
P (Aλ=k)

)2

∣∣∣∣∣∣∣
λ→k

= 1
k

P (Ak ≤ k − 1)
P (Ak = k)

= 1
k

k−1∑
i=0

P (Ak = i)
P (Ak = k) .

Now, note that at λ = k

P (Ak = k − 1)
P (Ak = k) = kk−1/(k − 1)!

kk/k! = 1.

If i < k − 1 we find that
P (Ak = i)

P (Ak = i+ 1) = i+ 1
k

< 1,

which implies that

P (Ak = i)
P (Ak = i+ 1) < 1, i < k − 1.

Consequently, for k ≥ 2, we see that

d

dλ
C(k, λ)

∣∣∣∣∣
λ→k

= 1
k

k−1∑
i=0

ki/i!
kk/k! < 1, (2.19)

which completes the proof of the proposition.
Proof of Lemma 2.5: Suppressing the superscript, we have the following equations
from Definition 2.3:

p

µs
+ 1− p

µ`
= 1 (2.20)

49

p

µ2
s

+ 1− p
µ2
`

= C2
S + 1
2 (2.21)

p

µ3
s

+ 1− p
µ3
`

= 1
6ε (2.22)

Performing (2.21)− (2.20)× (2.20):

p(1− p)
(

1
µs
− 1
µ`

)2

= C2
S − 1
2 (2.23)

Performing (2.22)× (2.20)− (2.21)× (2.21):

p(1− p)
µsµ`

(
1
µs
− 1
µ`

)2

= 1
6ε −

(C2
S + 1)2

4 (2.24)

The above two equations give:

µsµl =
C2
S−1
2

1
6ε −

(C2
S+1)2

4

(2.25)

From equations (2.20) and (2.21),

p(µ` − µs) = µsµ` − µs

p(µ2
` − µ2

s) + µ2
s = C2

S + 1
2 (µsµ`)2

Substituting p(µ` − µs) as µsµ` − µs in the second equation gives:

µs + µ` = 1 + C2
S + 1
2 µsµ`

= 1 +
C2
S+1
2 · C

2
S−1
2

1
6ε −

(C2
S+1)2

4

Finally,

µsµ` =
C2
S−1
2

1
6ε −

(C2
S+1)2

4

= 3(C2
S − 1)ε

(
1− 3(C2

S + 1)2

2 ε

)−1

= 3(C2
S − 1)ε

[
1 + 3

2(C2
S + 1)2ε+ 9

4(C2
S + 1)4ε2 + Θ(ε3)

]

µs + µ` = 1 +
C2
S+1
2 · C

2
S−1
2

1
6ε −

(C2
S+1)2

4

= 1 + 3
2(C2

S + 1)(C2
S − 1)ε

(
1− 3(C2

S + 1)2

2 ε

)−1

50

= 1 + 3
2(C2

S + 1)(C2
S − 1)ε

[
1 + 3

2(C2
S + 1)2ε+ 9

4(C2
S + 1)4ε2 + Θ(ε3)

]
It is straightforward to verify that the expressions for µs and µ` in Lemma 2.5 satisfy
the above equations. The expression for p then follows from p = 1− µ` µs−1

µs−µl
.

Proof of Lemma 2.7: Recall that N`
(ε) is defined to be the steady-state number of

customers in an M
(
λ(1− p(ε))

)
/M

(
µ

(ε)
`

)
/1 queue with service interruptions where

the server is interrupted for the duration of the busy period of an M(λ)/M(1)/k
queue. The busy period of an M(λ)/M(1)/k queue has finite second moment [145],
and hence the second moment of the service interruptions is also finite. Let Bλ,1,k be
the busy period of this queue. Define ρ(ε)

` = λ(1− p(ε))/µ(ε)
` .

Our aim is to prove:

E
[
N`

(ε)
]

= o(1)

The lemma follows by specializing results for the M/G/1 queue with server break-
downs to the special case considered here, see e.g. Adan & Resing [11, page 101].
For completeness, we provide a new proof of the M/G/1 queue with breakdowns by
viewing it as a special case of an M/G/1 with setup times [143, page 130]. Let G
be a so-called generalized service time, which is the service time of a large customer
plus the total duration of service interruptions while that customer was in service.
Let α = λ(1− p(ε)) denote the arrival rate of the customers. The breakdowns (busy
periods of the M(λ)/M(1)/k queue) arrive at a rate λ when the system is “up”, and
let B̃λ,1,k(s) denote the Laplace transform of the duration of these breakdowns. We
can now view theM(α)/M(µ(ε)

`)/1 queue with breakdowns as anM/G/1 queue with
service distribution given by the generalized service time, G, and a setup time I at
the beginning of each busy period, where the Laplace transform of I, Ĩ(s), satisfies:

Ĩ(s) = α

α + λ
+ λ

α + λ
· B̃λ,1,k(α) · Ĩ(s) + λ

α + λ
· α

α− s
(
B̃λ,1,k(s)− B̃λ,1,k(α)

)
(2.26)

In the above equation, the first term denotes the event that the customer arrives
before the breakdown, the second term denotes the event that the breakdown ar-
rives before the customer, but no customers arrive during this breakdown, and the
third term denotes the event that the breakdown arrives before the customer and a
customer arrives during this breakdown. By differentiating (2.26) with respect to s
once and twice, and evaluating at s = 0, the first two moments of I are obtained,

51

respectively, as:

E[I] =
(

λ

α + λ

)
·
E[B1,λ,k]− 1−B̃1,λ,k(α)

α

1− λ
α+λ · B̃1,λ,k(α)

(2.27)

E
[
I2
]

=
(

λ

α + λ

) E
[
B2

1,λ,k

]
− 2E

[
B1,λ,k

]
α

+ 21−B̃1,λ,k(α)
α2

1− λ
α+λ · B̃1,λ,k(α)

(2.28)

Define V`
(ε) to be the system time (response time) of large customers in the modified

queue. From [143, page 130], we get

E
[
V`

(ε)
]

= E[G] +
(

ρG
1− ρG

)
E[G2]
2E[G] + 2E[I] + αE[I2]

2(1 + αE[I])

= E[G] +
(

ρG
1− ρG

)
E[G2]
2E[G] +

(
λE[Bλ,1,k]

1 + λE[Bλ,1,k]

) E
[
B2
λ,1,k

]
2E[Bλ,1,k]

. (2.29)

Here ρG = ρ
(ε)
` (1 + E[Bλ,1,k]/λ). The first two moments of G are given by

E[G] = 1
µ

(ε)
`

(
1 + E[Bλ,1,k]

λ

)
(2.30)

and that

E
[
G2
]

= 2(
µ

(ε)
`

)2

(
1 + E[Bλ,1,k]

λ

)2

+ 1
µ

(ε)
`

λE
[
B2
λ,1,k

]
. (2.31)

From these equations, it follows that E[G] = Θ(1/ε) and E[G2] = Θ(1/ε2). This
implies E

[
V`

(ε)
]

= Θ(1/ε). By Little’s law, E
[
N`

(ε)
]

= λ(1 − p(ε))E
[
V`

(ε)
]
, which

implies E
[
N`

(ε)
]

= Θ(ε).

Proof of Lemma 2.9: Consider a further modification of system U (ε) where the
small jobs are not served during the entire bad period. That is, even when there
is only a single large job in the system, we stop serving small jobs. The fraction of
time this modified system U (ε) is busy with large jobs is given by λ1−p(ε)

µ
(ε)
`

= ρ1−p(ε)

µ
(ε)
`

.
The load of the small jobs is less than ρ/k. Thus, system U (ε) will be stable if
ρ
k
< 1− ρ1−p(ε)

µ
(ε)
`

.

Since p(ε) ≤ 1 and µ(ε)
s ≥ 1, we have

1− p(ε)(
µ

(ε)
`

)2 ≤
C2
S + 1
2

52

1− p(ε)(
µ

(ε)
`

)3 ≥
1
6ε − 1

Now,

1− p(ε)

µ
(ε)
`

=

 1−p(ε)(
µ

(ε)
`

)2

2

1−p(ε)(
µ

(ε)
`

)3

≤

(
C2
S+1
2

)2

1
6ε − 1

Thus,

ε <
1
6

[
ρ(C2

S + 1)2

4(1− ρ/k) + 1
]−1

=⇒ ρ

(
C2
S+1
2

)2

1
6ε − 1 < 1− ρ

k

=⇒ ρ
1− p(ε)

µ
(ε)
`

< 1− ρ

k

Proof of Lemma 2.10: Recall that Φ(A) was defined as the mapping between
non-negative random variables where Φ(A) gives the random variable for the number
of jobs at the end of a good period given that the number at the beginning of the
good period is A. Let Ψ(A) be another mapping between random variables defined
by:

Ψ(A) = ∆b′′ +
∞∑
i=0

(i+ ∆b′(i))I{A=i}

That is, Ψ(A) gives the number of small jobs at the end of a bad period given that
the number at the start is A. Further, the following facts can be easily verified via
coupling:

1. A1 ≤st A2 =⇒ Φ(A1) ≤st Φ(A2)

2. ∆b′(0) ≥st ∆b′(1) ≥st . . .∆b′(i) ≥ ∆b′(i+ 1) ≥ . . .

The last fact implies Ψ(A) ≤st A+ ∆b′(0) + ∆b′′
def= A+ ∆b. This gives us a way to

stochastically upper bound N∗s,g. We defined N̄∗s,g to be the solution to the following

53

fixed point equation:

N̄∗s,g
d= Φ(N̄∗s,g + ∆b)

Also,

N∗s,g
d= Φ(Ψ(N∗s,g))

Let Y (0) = Ȳ (0) = 0. Further, let Y (n + 1) = Φ(Ψ(Y (n))) and Ȳ (n + 1) =
Φ(Ȳ (n) + ∆b). Since the Markov chains defined by the transition functions Φ(Ψ(·))
and Φ(·+ ∆b) are positive recurrent (we proved system U (ε) stable for ε < ε′ but the
proof implies the stability of this system as well) and irreducible,

N∗s,g = lim
n→∞

Y (n)

N̄∗s,g = lim
n→∞

Ȳ (n)

Since Y (n) ≤st Ȳ (n) for all n by induction, N∗s,g ≤st N̄∗s,g.
Proof of Lemma 2.11: Let Ns,b′ denote the number of small jobs during the
bad′ phase and Ns,b′′ denote the number of jobs during the bad′′ phase. We will
stochastically bound Ns,b′ and Ns,b′′ separately using stochastic coupling.
Bound for Ns,b′: We know that the lengths of bad′ phases of system U (ε) are i.i.d.
random variables. Let Tb′ denote a random variable which is equal in distribution
to these. It is easy to see that Ns,b′ is equal in distribution to the number of small
jobs in the following regenerative process. The system regenerates after i.i.d. periods
whose lengths are equal in distribution to Tb′ . At each regeneration the system starts
with a random number of small jobs sampled from the distribution of N∗s,g and then
the system evolves as an M/M/k − 1 with arrival rate λp and service rate µs until
the next renewal.
Now, Ns,b′ can be stochastically upper bounded by the number in system in another
regenerative process where the renewals happen in the same manner but at every re-
newal the system starts with a random number of jobs sampled from the distribution
of N̄∗s,g. These jobs never receive service. However, we also start anotherM/M/k−1
from origin (initially empty) with arrival rate λp and service rate µs and look at the
total number of small jobs.
Finally, since Tb′ is an exponential random variable, by PASTA, the distribution of
number of jobs at a randomly chosen time (or as t→∞) is the same as the number
of jobs at a random chosen renewal. Therefore,

Ns,b′ ≤st N̄∗s,g + ∆b′(0) (2.32)

54

Bound for Ns,b′′: To obtain a stochastic upper bound on Ns,b′′ , we follow the same
procedure as above. It is easy to see that Ns,b′′ is stochastically upper bounded by
the number of jobs in the following regenerative system. The renewals happen after
i.i.d. intervals which are equal in distribution to Tb′′ , the random variable for the
length of a bad′′ phase in system U (ε). At every renewal, the system starts with a
random number of jobs sampled from the distribution of N̄∗s,g + ∆b′(0) and external
arrivals happen at a rate λ (there are no departures) until the next renewal. Let
Tb′′e denote the age (and equal in distribution to the excess) of Tb′′ and Aλ(T) denote
the number of arrivals in time T of a Poisson process with rate λ. This gives us the
following stochastic bound on Ns,b′′ ,

Ns,b′′ ≤st N̄∗s,g + ∆b′(0) + Aλ (Tb′′e) (2.33)

The excess of Tb′′ comes into the picture because we need the number of jobs at a
randomly chosen instant of time during the bad′′ phase. The time elapsed since the
starting of a bad′′ phase until this randomly chosen instant of time is distributed as
Tb′′e, the excess of Tb′′ . Finally, combining (2.32) and (2.33),

Ns,b ≤st N̄∗s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e) (2.34)

Proof of Lemma 2.13: The z-transform of NM(λs)/M((k−1)µs)/1(T) is given by [69,
Theorem 4]:

N̂M(λs)/M((k−1)µs)/1(T)(z) = βz − (k − 1)µs(1− z)p0

βz − ((k − 1)µs − λsz)(1− z)
(2.35)

where,

p0 = βξ

(k − 1)µs(1− ξ)

and ξ is the root of the polynomial in the denominator of N̂M(λs)/M((k−1)µs)/1(T)(z)
in the interval (0, 1). Let η be the other root (lying in (1,∞)). Therefore, we can
write (2.35) as,

N̂M(λs)/M((k−1)µs)/1(T)(z) =
βz − (k − 1)µs(1− z) βξ

(k−1)µs(1−ξ)

−λs(z − ξ)(z − η)

= β

−λs(1− ξ)(z − η)

55

= 1− η
z − η

(2.36)

The last step follows since N̂M(λs)/M((k−1)µs)/1(T)(z)|z=1 = 1. By differentiating the
transform in (2.36) and evaluating the derivatives at z = 1, we have

E
[
NM(λs)/M((k−1)µs)/1(T)

]
= 1
η − 1

E
[
(NM(λs)/M((k−1)µs)/1(T))2

]
= 2

(η − 1)2 + 1
η − 1

Factoring the denominator of (2.35), we can write η as the larger root of the quadratic
equation:

z2λs − z(λs + β + (k − 1)µs) + (k − 1)µs

That is,

η =
λs + β + (k − 1)µs +

√
(λs + β + (k − 1)µs)2 − 4λs(k − 1)µs

2λs

=
λs + β + (k − 1)µs +

√
(λs + β − (k − 1)µs)2 + 4β(k − 1)µs

2λs

=
λs + β + (k − 1)µs + (λs + β − (k − 1)µs)

√
1 + 4 β(k−1)µs

(λs+β−(k−1)µs)2

2λs

=
λs + β + (k − 1)µs + (λs + β − (k − 1)µs)

(
1 + 2 β(k−1)µs

(λs+β−(k−1)µs)2 + Θ(β2)
)

2λs

= 1 + β

λs
·
(

1 + (k − 1)µs
(λs + β − (k − 1)µs)

)
+ Θ(β2)

= 1 + β

λs − (k − 1)µs
+ Θ(β2)

which results in the expressions in the lemma.
Proof of Lemma 2.14: Recall that ∆b′′ is the random variable denoting the
number of small jobs that arrive during time Tb′′ , where Tb′′ is the random variable
for the length of the bad′′ phase of a bad period. Using Aλ(T) to denote the number
of Poisson (with rate λ) arrivals in a random time interval T , we have ∆b′′ is equal
in distribution to Aλp(Tb′′). The following equalities are easy to prove:

E[Aλ(T)] = λE[T] (2.37)

56

E
[
(Aλ(T))2

]
= λ2E

[
T 2
]
+ λE[T] (2.38)

Thus we need the first two moments of Tb′′ to obtain the first two moments of ∆b′′ .
The Laplace transform of Tb′′ , T̃b′′(s), is given by:

T̃b′′(s) = µ`
µ` + λ(1− p) + λ(1− p)

µ` + λ(1− p)B̃
2(s) (2.39)

where B̃(s) is the Laplace transform for the length of busy periods of an M/M/1
with arrival rate λ(1− p) and service rate µ`. To see this, note that with probability

µ`
µ`+λ(1−p) , the large job starting the bad phase leaves before another large job arrives
and thus bad′′ phase has length 0. With probability λ(1−p)

µ`+λ(1−p) , a large job arrives and
starts the bad′′ phase. In this case, the length of the bad′′ phase is the time for an
M/M/1 with arrival rate λ(1−p) and service rate µ` to become empty starting with
2 jobs in the system. This is just the sum of two independent M/M/1 busy periods.
By differentiating the transform in (2.39) and evaluating at s = 0, we obtain:

E[Tb′′] = λ(1− p)
µ` + λ(1− p)

(
2

µ` − λ(1− p)

)
= Θ(1) (2.40)

E
[
T 2
b′′

]
= λ(1− p)
µ` + λ(1− p)

(
4µ`

(µ` − λ(1− p))3

)
= Θ

(1
ε

)
(2.41)

Obtaining E[∆b′′] and E[∆2
b′′]: Substituting λ ≡ λp and T ≡ Tb′′ in (2.37)-(2.38)

and using (2.40)-(2.41), we get the following asymptotics which will be sufficient for
our purposes:

E[∆b′′] = λpE[Tb′′] = Θ(1) (2.42)

E
[
∆2
b′′

]
= λ2p2E

[
T 2
b′′

]
+ λpE[Tb′′] = Θ

(1
ε

)
(2.43)

Obtaining E[Aλ (Tb′′e)]: Aλ (Tb′′e) denotes the number of Poisson (with rate λ)
arrivals in a random time interval given by Tb′′e – the stationary age (equivalently
excess) of a renewal process where renewals intervals are i.i.d. according to Tb′′ .
Note that A (Tb′′e) is not equal in distribution to ∆b′′ since Tb′′ is not an exponential
random variable. From (2.37),

E[Aλ (Tb′′e)] = λE[Tb′′e]

From the formula for stationary age (equivalently excess) of a renewal process [131],

E[Tb′′e] = E[T 2
b′′]

2E[Tb′′]
= Θ

(1
ε

)

57

Combining, we get the following asymptotics for E[Aλ (Tb′′e)] which will be sufficient
for our purposes:

E[Aλ (Tb′′e)] = Θ
(1
ε

)
(2.44)

Pr[b′′]
Pr[b] E[Aλ (Tb′′e)] = E[Tb′′](

1
µ`−λ(1−p)

)E[Aλ (Tb′′e)] = Θ(1) (2.45)

Proof of Lemma 2.15: Recall that N (Int) denotes the number of jobs in the
interrupted M/M/k system. Let N̂ (Int)(z) be the z-transform of N (Int) and let ∆̂(z)
be the z-transform of ∆. Since the interruptions happen according to a Poisson
process, N (Int) also denotes the random variable for the number of jobs just before
the interruptions. Let f map the z-transform of the distribution of number of jobs
in an M/M/k at time t = 0 to the z-transform of the distribution of number of
jobs after the M/M/k system has run (uninterrupted) for T ∼ Exp (α) time. The
solution for N̂ (Int)(z) is given by the following fixed point equation:

N̂ (Int)(z) = f
(
N̂ (Int)(z)∆̂(z)

)
Our next goal is to derive the function f(·). Let pi(t) denote the probability that there
are i jobs in the M/M/k system at time t. We can write the following differential
equations for pi(t):

d

dt
p0(t) = −λp0(t) + µp1(t) (2.46)

d

dt
pi(t) = λpi−1(t)− (λ+ iµ)pi(t) + (i+ 1)µpi+1(t) . . . 1 ≤ i ≤ k − 1 (2.47)

d

dt
pi(t) = λpi−1(t)− (λ+ kµ)pi(t) + kµpi+1(t) . . . i ≥ k (2.48)

Let Π̂(z, t) = ∑∞
i=0 pi(t)zi. Multiplying (2.46) by z0 and the set of equations (2.47)

and (2.48) by zi and summing, we have:
∂

∂t
Π̂(z, t) = Π̂(z, t)

[
kµ
(1
z
− 1

)
+ λ (z − 1)

]
(2.49)

+ µ
(
1− 1

z

) [
kp0(t) + (k − 1)zp1(t) + . . .+ zk−1pk−1(t)

]
Let Π̂α(z) =

∫∞
0 Π̂(z, t)αe−αtdt and pi,α =

∫∞
0 pi(t)αe−αtdt. Integrating by parts, we

get:

Π̂α(z) =
∫ ∞
0

Π̂(z, t)αe−αtdt =
∫ ∞
0

(
Π̂(z, t)

) (
d
(
−e−αt

))
58

=
[
−Π̂(z, t)e−αt

]∞
t=0
−
∫ ∞
t=0

(
−e−αt

) (
dΠ̂(z, t)

)
= Π̂(z, 0) + 1

α

∫ ∞
t=0

αe−αt
(
Π̂(z, t)

[
kµ
(1
z
− 1

)
+ λ (z − 1)

]
+µ

(
1− 1

z

) [
kp0(t) + (k − 1)zp1(t) + . . .+ zk−1pk−1(t)

])

= Π̂(z, 0) + Π̂α(z)
α

[
kµ
(1
z
− 1

)
+ λ (z − 1)

]
+ µ

α

(
1− 1

z

) [
kp0,α + . . .+ zk−1pk−1,α

]
(2.50)

To obtain N̂ (Int)(z), we substitute Π̂α(z) = N̂ (Int)(z), Π̂(z, 0) = N̂ (Int)(z)∆̂(z) and
pi,α = pi = Pr

[
N (Int) = i

]
. This gives:

N̂ (Int)(z) =
µ
[
kp0 + (k − 1)zp1 + . . .+ zk−1pk−1

]
(kµ− λz)− αz

(
1−∆̂(z)

1−z

) (2.51)

Since N̂ (Int)(1) = 1, and limz→1
1−∆̂(z)

1−z = E[∆], we get

kp0 + (k − 1)p1 + . . .+ pk−1 = k − λ+ αE[∆]
µ

(2.52)

The sum on the left is precisely the expected number of idle servers at T ∼ Exp (α).
Let

C = 0 · k · p0 + (k − 1) · 1 · p1 + (k − 2) · 2 · p2 + . . .+ 1 · (k − 1) · pk−1

Then,

E
[
N (Int)

]
= d

dz
N̂ (Int)(z)

∣∣∣∣∣
z=1

=
µ d
dz

[
kp0 + (k − 1)zp1 + . . .+ zk−1pk−1

]
(kµ− λz)− αz

(
1−∆̂(z)

1−z

)
∣∣∣∣∣∣∣∣
z=1

−
µ
[
kp0 + (k − 1)zp1 + . . .+ zk−1pk−1

]
(
(kµ− λz)− αz

(
1−∆̂(z)

1−z

))2
d

dz

(
(kµ− λz)− αz

(
1− ∆̂(z)

1− z

))∣∣∣∣∣∣∣∣∣
z=1

= µC

kµ− λ− αE[∆]

59

− N̂ (Int)(1)
kµ− λ− αE[∆]

−λ− α1− ∆̂(z)
1− z − αz

1− ∆̂(z)− (1− z)d∆̂(z)
dz

(1− z)2

∣∣∣∣∣∣
z=1

and applying L’Hospital’s rule to the last term,

= µC

kµ− λ− αE[∆]

− 1
kµ− λ− αE[∆]

−λ− αE[∆]− α
− d

dz
∆̂(z)− (1− z)d

2∆̂(z)
dz2 + d

dz
∆̂(z)

−2(1− z)

∣∣∣∣∣∣
z=1

= µC

kµ− λ− αE[∆] −
1

kµ− λ− αE[∆]

(
−λ− αE[∆]− αE[∆2]− E[∆]

2

)

= µC

kµ− λ− αE[∆] +
λ+ α

2 (E[∆2] + E[∆])
kµ− λ− αE[∆] (2.53)

To calculate C we need the following relations obtained by matching the coefficients
of zi, i = 0, . . . , k − 1, from (2.50):

−λp0,α + µp1,α = α [p0,α − p0(0)]
λpi−1,α − (λ+ iµ)pi,α + (i+ 1)µpi+1,α = α [pi,α − pi(0)] . . . 1 ≤ i ≤ k − 1

which yields pi,α = p0,α
1
i!

(
λ
µ

)i
+ Θ(α). Let πi be the stationary probabilities of an

M/M/k system with arrival rate λ and mean job size 1
µ
. We can use (2.52) to write:

kπ0 + (k − 1)π1 + . . .+ πk−1 = k − λ

µ

or equivalently,

π0

k · 1 + (k − 1) · λ
µ

+ . . .+ 1 · 1
(k − 1)!

(
λ

µ

)k−1
 = k − λ

µ

Rewriting (2.52) and using the facts pi = p0
1
i!

(
λ
µ

)i
+ Θ(α) and αE[∆] = o(1):

p0

k · 1 + (k − 1) · λ
µ

+ . . .+ 1 · 1
(k − 1)!

(
λ

µ

)k−1
+ Θ(α) = k − λ+ o(1)

µ

60

which gives p0 = π0 + o(1), and hence pi = πi + o(1) for i ≤ k − 1. Using this, we
have:

µC + λ

kµ− λ− αE[∆] =
µ
(∑k−1

i=0 i(k − i)pi
)

+ λ

kµ− λ+ αE[∆]

=
µ
(∑k−1

i=0 i(k − i)πi
)

+ λ+ o(1)
kµ− λ+ o(1)

=
µ
(∑k−1

i=0 i(k − i)πi
)

+ λ

kµ− λ
+ o(1)

= E
[
NM/M/k

]
+ o(1)

where E
[
NM/M/k

]
is the mean number of jobs in a stationary M/M/k queue with

arrival rate λ and service rate µ. To see that E
[
NM/M/k

]
can be written in the

above form, note that when ∆ ≡ 0, E
[
N (Int)

]
= µC+λ

kµ−λ but E
[
N (Int)

]
= E

[
NM/M/k

]
.

Finally,

E
[
N (Int)

]
= E

[
NM/M/k

]
+

α
2E[∆2]
kµ− λ

+ o(1)

since αE[∆] = o(1).

61

62

Chapter 3

Towards a New Theory of
Moments-based Bounds II:
Markov-Krein Characterization of
Mean Sojourn Time in Queueing
Systems

In Chapter 2, we obtained an inapproximability gap for the mean waiting time in the
M/G/k model and further conjectured that the bounds we had obtained are sharp.
Implicit in our sharpness conjecture was another stronger conjecture: given the first
two moments of the service distribution, the mean waiting time is minimized and
maximized by special two-point distributions. This conjecture echoes the results of
the Stieltjes moment problem[90]: which probability distributions minimize or max-
imize the expectation of a function g given constraints (called moment constraints)
on the distribution as expectations of a system {f0, . . . , fn} of functions. A classi-
cal theorem of Markov and Krein establishes sufficient conditions for the extremality
properties of certain special point-mass distributions for the moment problem – these
distributions are called the principal representations of the moment sequence. In this
chapter we take a small step towards extending the classical literature on moment
problem to three queueing systems which have so far defied exact analysis: (i) the
M/G/k multi-server system, (ii) queueing systems with fluctuating arrival and ser-
vice rates, and (iii) the M/G/1 round-robin queue. We argue that rather than
looking for exact expressions for the mean response time as a function of the entire
service distribution, or approximations based on heavy traffic/diffusion asymptotics,
a more fruitful approach is to identify distributions which minimize or maximize the

63

mean response time given the first n moments of the job size distribution.
By analyzing the queueing systems in appropriate “light-traffic” asymptotics, we
prove that analogous to the classical Markov-Krein Theorem, these ‘extremal’ dis-
tributions are given by the principal representations of the moment sequence. We
conjecture that (under some conditions) the property of extremality should be invari-
ant to the system load, and thus our light traffic results should hold for general load
as well, and propose potential strategies for a unified approach to finding moments-
based bounds for queueing systems. By identifying the extremal distributions, our
results allow one to numerically obtain sharp bounds on the performance of these
queueing systems.

3.1 Introduction

Most results in queueing theory are concerned with obtaining explicit expressions
for the performance metric of interest (e.g., mean response time) as a function of
the distribution of some system parameter (e.g., job size distribution) under suitable
assumptions to make the analysis tractable. However, there are many fundamental
queueing systems for which such explicit results are not possible. We have already
seen one example of this in Chapter 2: the M/G/k First-Come-First-Serve multi-
server model. We consider two more examples of such queueing systems in this
chapter: the M/G/1 round-robin scheduling model, and systems with time-varying
load, and present a fresh approach towards their analysis: via obtaining sharp bounds
on the mean sojourn time, given a partial characterization of the system parameter
in terms of the first n moments.

Motivation

Due to the abundance of work surrounding theM/G/k multi-server model, we use it
as an example to motivate our approach. We reviewed the prior work that studies the
M/G/k in Chapter 2, but for self-containment, we overview the literature relevant
to this chapter again. For the M/G/k system, our focus will be on the mean waiting
time, denoted as E

[
WM/G/k

]
, and defined to be the expected time from the arrival

of a customer to the time it begins service.
While the first approximation for E

[
WM/G/k

]
dates back to 1959 [108], and only

involves the first two moments of the service distribution, almost all modern closed-
form approximations are motivated by diffusion analyses or other approximating
assumptions and still involve only the first two moments of the service distribution.

64

Burman and Smith [37] proved a light-traffic approximation for WM/G/k which in-
volves the entire job size distribution, and Boxma et al. [34] used it to obtain tighter
approximations for E

[
WM/G/k

]
for service distributions with low variance (SCV <

1). This was achieved by interpolating the mean waiting time under deterministic
jobs sizes, and under exponentially distributed job sizes, with the Burman-Smith ap-
proximation as the weighting function. However, extrapolating the Burman-Smith
approximation yields inaccuracies when the job size distribution has high variance
as is common in applications in computer science.
Bounds on the mean waiting time for M/G/k queues (and more generally, for
GI/G/k queues) have mainly been obtained via two approaches (e.g., see Sec-
tion 11-7 from Wolff [158]). The first approach is by assuming various orderings
(stochastic ordering, increasing convex ordering) on the service distributions (see
[43, 116, 141, 150, 151]), but these tend to be very loose as approximations. More-
over, one does not always have the required strong orderings on the service distri-
bution. The second, and more practical, approach that started with the work of
Kingman [99] is obtaining bounds on mean waiting time in terms of the first two
moments of the inter-arrival and service distributions. The best known bounds of
this type for E

[
WGI/G/k

]
are presented by Daley [44]. Scheller-Wolf and Sigman

[132] derive bounds on for the case ρ <
⌊
k
2

⌋
by reducing the GI/G/k waiting time

recursion into an equivalent single-server recursion with dependent service times.
Foss and Korshunov [60] and Scheller-Wolf and Vesilo [133] use dependent D/GI/1
queues to bound a GI/G/k system, and obtain necessary and sufficient conditions
under which higher (even fractional) moments of delay are finite.
Another approach used in the literature to establish bounds is by formulating a
semidefinite program (SDP) with joint moments of service and inter-arrival time
distribution forming the constraint set, and moments of waiting time as the objective
function. With this approach, Bertsimas and Popescu [25] prove that the Markov
inequality (using only the first moment) is tight, improve the Tchebycheff inequality
(using the first two moments) to rediscover the corresponding tight inequality, and
establish the analogous tight inequality that involves the first three moments. SDPs
have also been used to obtain bounds on performance metrics for several queueing
models. Recently, Bertsimas and Natarajan [24] have obtained numerical bounds on
the moments of WGI/G/K given the information of moments of the service and the
inter-arrival time distributions. Although most of the prior work obtains numerical
bounds, Osogami and Raymond [123] use SDPs to establish closed-form bounds
on the waiting time in a transient GI/G/1 queue. However, there are insufficient
experimental results on the tightness of the resulting bounds.

65

Our Approach

Rather than try to obtain an explicit expression for the performance metric as a
function of the job size distribution, or obtain approximations/bounds as functions
of some moments of the job size distribution for which no tightness guarantees can
be proved, we argue that a more fruitful approach is the following: We first obtain
a partial characterization of the job size distribution, say, in terms of the first n
moments. We then look at the set of all distributions which satisfy this partial char-
acterization, and identify those distributions in this set that maximize or minimize
the performance metric of interest. Once these extremal distributions are identified,
numerical algorithms can be used to obtain provably tight bounds on performance.
That is, the bounds so obtained are the tightest achievable bounds given
the partial characterization of the job size distribution, not just arbitrary
approximations or bounds. Our approach has the added benefit that many times the
entire job size distribution is not available, while estimating the first few moments
via sampling is a much easier task. By quantifying the gap between the upper and
lower bounds given these first few moments, it can be determined if a more refined
characterization, say, in terms of higher order moments, is necessary.
In this chapter, we take the first step towards obtaining tight bounds on the mean
response time of the three queueing systems by analytically investigating suitable
asymptotic regimes (to be made precise later). The asymptotic regimes are chosen so
that the effect of the entire distribution of the system parameter of interest is evident
(unlike heavy-traffic asymptotes where, usually, at most the first two moments are
involved). Next, rather than using the asymptotic approximations to obtain quanti-
tative behavior (by extrapolating to non-asymptotic regime), we extract qualitative
properties by identifying distributions which minimize or maximize the performance
metric in the asymptotic regime. We conjecture that the extremality property of the
service distributions should be invariant to the arrival rate, and thus extremal distri-
bution in the asymptotic regime should remain extremal in non-asymptotic regime as
well (this is a non-trivial conjecture because there exist examples where the relative
performance of two job size distributions is sensitive to the arrival rate for M/G/k).
The idea of obtaining tight bounds on the performance of a queueing system based on
a partial characterization of the system parameters was first advocated by Eckberg
[50] (and extended by Whitt [152]) for the GI/M/k model. However, the explicit ex-
pressions for the waiting time distribution in the GI/M/k model as a function of the
Laplace transform of the inter-arrival time distribution greatly facilitates obtaining
sharp bounds. The queueing systems we consider in this chapter do not have any
such analyses available.

66

Summary of Results

We now briefly describe the three queueing systems, the “light traffic” asymptote we
look at, and our results.
1. The M/G/kM/G/kM/G/k multi-server system (Section 3.3)
Model: Recall that an M/G/k system consists of k identical servers and a FCFS
queue. The arrival process is Poisson with rate λ, and the job sizes are assumed to
be i.i.d random variables. We will use S to denote such a generic random variable.
We are interested in obtaining bounds on the mean waiting time, E

[
WM/G/k

]
, as a

function of the job size distribution S.
Asymptotic Regime: We let the arrival rate λ→ 0, and look at E

[
WM/G/k

]
of a

random arrival conditioned on the event that the arrival finds all servers busy. This
can be seen as the first term in the Taylor series expansion of E

[
WM/G/k

]
around

λ = 0.
Results: We start with the Burman-Smith light-traffic approximation (Theorem 3.3),
and prove the following:
1. Given the first n = 2 or 3 moments of the job size distribution, the extremal
distributions are given by the principal representations of the moment sequence (de-
fined in Section 3.2).
2. If we restrict the job size distribution to lie in the class of completely monotone
(CM) distributions, then given the first n moments, the extremal distributions are
given by the principal representations of the moment sequence within the hyperexpo-
nential class of distributions (mixtures of approximately n

2 exponential distributions;
to be made formal in Section 3.2).
Finally, we illustrate the utility of our results by presenting numerical results that
demonstrate that while two moments of the job size distribution are insufficient for
approximating E

[
WM/G/k

]
for real world heavy-tailed distributions, three moments

usually suffice, especially if we add the knowledge of complete monotonicity.
2. The M/G/1M/G/1M/G/1 round-robin queue (Section 3.4)
Model: The M/G/1 round-robin queue consists of a single server and an infinite
buffer. The arrival process is Poisson with rate λ, and new arrivals join the back of
the buffer. Job sizes are assumed to be i.i.d., with S used to denote a generic job
size. Jobs are given q units of service at a time (called the quantum size), and if the
job does not finish service, it joins the back of the buffer. For analytical simplicity
we assume that service quanta are exponentially distributed random variables with
mean q = 1

ν
. That is, each time a job gets to the server, its service quantum is an

i.i.d. sample from an exponential distribution with rate ν. We will be interested in
obtaining bounds on the mean response time, E

[
TM/G/1/RR

]
, in terms of moments

of S.

67

Asymptotic Regime: We let the arrival rate λ→ 0, and look at the coefficient of
Θ(λ) in the expression for E

[
TM/G/1/RR

]
.

Results: 1. We derive the light-traffic approximation for E
[
TM/G/1/RR

]
when the

job size distribution is hyperexponential with finite number of phases.
2. We use our light-traffic result to prove that if the job size distribution is re-
stricted to lie in the class of CM distributions, then given the first n moments,
the extremal distributions are given by the principal representations of the moment
sequence within the hyperexponential class of distributions.
3. Systems with fluctuating arrival and service rates (Section 3.5)
Model: We analyze anM/M/1 system whose arrival and service rates are controlled
by an exogenous environment process with two states: L and H. The job sizes are
exponentially distributed. While in the H state, the arrival process is Poisson with
rate λH , and server serves jobs at rate µH . During the L states, the arrival process
is Poisson with rate λL, and the server’s service rate is µL. The durations of stay
in the L state during each visit are i.i.d. random variables with general distribution;
we use τL to denote such a generic random variable. Similarly, we use τH to denote
a generic random variable for the duration of stay in the H states during each visit.
We will be interested in obtaining bounds on the mean number of jobs, E[N], in
terms of moments of τL and τH . (As mentioned later, we expect our results to hold
for systems where evolution during L and H states is governed by arbitrary Markov
processes satisfying mild conditions.)
Asymptotic Regime: We consider the “fast-switching” asymptote. In particular,
we index our time-varying load system with a parameter α, where in the αth sys-
tem the durations of stay in L and H states are i.i.d. and given by ατL and ατH ,
respectively. We then analyze E[N] in the limit α→ 0. Note that as α→ 0 and our
systems switches very fast, the zeroth order behavior is given by anM/M/1 with the
average arrival and service rates. We will be interested in the coefficients of higher
order terms in the expansion of E[N] around α = 0.
Results: 1. We derive the first fast-switching asymptote approximation for the
time-varying load system when the distributions of τL and τH are hyperexponential
with finite number of phases. In particular, we prove the following interesting result:
The coefficient of αi is a function of only the first (i + 1) moments of τL and τH .
Further, this coefficient is linear in E

[
τ i+1
L

]
and E

[
τ i+1
H

]
.

2. The above result immediately implies that if τL and τH are restricted to lie in
the CM class, then given the first n moments, the number of jobs in the system
(equivalently, the mean response time) in the fast-switching asymptote is extremized
by CM distributions with extremal (n + 1)st moment. These are again given by
principal representations of the moment sequence in the class of hyperexponential
distributions.

68

3. Our light-traffic result, and hence the result on extremal distributions, easily
extend to general distributions, but we choose not to present them here since the
analysis is almost identical but proof ideas are easy to illustrate for CM distributions.
Finally, we illustrate the utility of our results in obtaining provable bounds on the
performance of the N model for work-stealing (or the N-sharing system). While the
N-sharing system can be modeled by a Markov chain, there are no exact numerical
algorithms for solving it since the Markov chain is infinite in two dimensions.

A note on completely monotone class of distributions

A probability density function fX(·) is said to belong to the class of completely
monotone (CM) distributions if all derivatives of fX exist and (−1)nf (n)

X (x) ≥ 0 for
all x > 0 and n ≥ 1. It is well known that mixture of exponential distributions are
dense in the CM class. That is, for any distribution function F in the CM class,
there exist hyperexponential distributions F (n) with n phases such that F (n) ⇒ F as
n → ∞ [56, Theorem 3.2]. In fact, FX(·) is a CM probability distribution function
if and only if

FX(x) =
∫ ∞
0

e−µxdG(µ),

where G is a proper probability distribution function, and commonly called the
spectral distribution of F . Completely Monotone distributions are a subset of the
Decreasing Failure Rate (DFR) class of distributions. It can be shown that this
denseness is sufficient to approximate arbitrarily many moments of a CM distribution
via mixture of exponential distributions. It has been established that many heavy-
tailed distributions used to model computer systems workloads fall in the CM class,
e.g., Pareto distributions, Weibull distributions with shape parameter less than 1
(heavier than exponential), and Gamma distributions with shape parameter less than
1 [56]. Further, there are several results on conditions under which the convergence
of the inter-arrival and service-time distributions imply convergence in distribution
of waiting time (see e.g. Borovkov [30, page 118], Stoyan [141]), although care must
be exercised since convergence in distribution does not necessarily imply convergence
of moments. To prove results about CM distributions, we will therefore restrict to
looking for extremal distributions within hyperexponential distributions.

Outline

We introduce the concepts of Principal Representations and Tchebycheff systems of
functions in Section 3.2. Section 3.2 also states the classical Markov-Krein Theorem
which we use as a tool to prove our results for CM distributions. In Sections 3.3, 3.4

69

and 3.5, we present our results on tight moment-based bounds for (i) the M/G/k
multi-server model, (ii) M/G/1 round-robin scheduling, and (iii) systems with time-
varying load, respectively, under “light-traffic” asymptote. We present conjectures
on bounds under non-asymptotic regimes for these three queueing systems in Sec-
tion 3.6. In Section 3.7, we present some approaches for proving our conjectures, and
introduce a novel moment problem as a unified framework for analyzing the question
of moment-based bounds for general queueing systems.

3.2 Principal Representations, Tchebycheff systems,
and the Markov-Krein Theorem

The classic Tchebycheff inequality concerns bounds on the tail probability of a ran-
dom variable X, given E[X] and E[X2]. In other words, given the expectations
of functions f1(x) = x and f2(x) = x2, one asks for bounds on the expectation of
g(x) = 1|x−E[X]|>a. The theory of Tchebycheff systems [90] generalizes this question
by asking for bounds on the expectation of some given function g(·) of a random
variable, given a partial characterization of the random variable in terms of general-
ized moment constraints expressed as expectations of some functions f1(·), . . . , fn(·).
In this chapter, we will be concerned with the case fi(x) = xi. Below we present a
special case of the results from this area. We will begin with the case where random
variables are restricted to bounded support [0, B] and where the results are easy to
state. We then present results for the case where the support is [0,∞) and details
are a little delicate. For a detailed treatment, we refer the reader to [90].

3.2.1 Random variables with support on [0, B]

We first introduce the notion of upper and lower principal representations as pre-
sented in [50]. Define the function f0(x) = 1, 0 ≤ x ≤ B, and denote the moment
space associated with {f0, f1, . . . , fn} as

Mn+1
B =

{
m ∈ Rn+1

∣∣∣∃µ ∈ D,mi =
∫ B

0
fi(u)dµ(u), 0 ≤ i ≤ n

}
where D is the set of all non-decreasing right continuous functions for which the
indicated integrals exist. For a point m0 in the interior ofMn+1

B , we define the lower
and upper principal representation (pr) to be distributions with a particular number
of mass probabilities, some of which are restricted to be at 0 or B, in such a way
that the first n moments of these distributions agree with m0. In particular the
constraints on the support of principal representations are:

70

Upper pr (µ̄) Lower pr (µ)

n even n
2 mass points in (0, B), one at B n

2 mass points in (0, B), one at 0

n odd n−1
2 mass points in (0, B), one at 0, one

at B
n+1

2 mass points in (0, B)

The upper and lower principal representations are uniquely determined when the
functions {f0, . . . , fn} satisfy certain linear independence constraints mentioned later.
To see why, consider the case of upper pr for n even. We have n+ 1 constraints, one
each for mi, 0 ≤ i ≤ n. If we are allowed n

2 + 1 probability masses, then we have
n+2 degrees of freedom: n

2 +1 for the locations of the probability masses, and n
2 +1

for the actual probability values. Since one probability mass is constrained to be at
B, we lose one degree of freedom. Thus the degrees of freedom match the number
of constraints, where these constraints are “linearly independent” in a sense made
precise next.

Definition 3.1 Functions {h0, h1, . . . , hn} form a Tchebycheff system over [a, b] pro-
vided the determinants

U

(
0, 1, · · · , n

x0, x1, · · · , xn

)
=

∣∣∣∣∣∣∣∣∣∣
h0(x0) h0(x1) · · · h0(xn)
h1(x0) h1(x1) · · · h1(xn)

...
hn(x0) hn(x1) · · · hn(xn)

∣∣∣∣∣∣∣∣∣∣
are strictly positive whenever a ≤ x0 < x1 < · · · < xn ≤ b.

In other words, any non-trivial linear combination of h0, . . . , hn must have at most n
zeros in the interval [0, B] (and then the signs of {hi} should be chosen appropriately
to ensure that the determinant is positive). Systems of polynomials: hi(x) = xαi

(0 ≤ α0 < α1 < . . . < αn) indeed form Tchebycheff systems.
The proof of the following theorem can be found in [90, Chpt. V, Sec. 5]:

Theorem 3.1 (Markov-Krein) If {f0, . . . , fn} and {f0, . . . , fn, g} are Tchebycheff
systems on [0, B], then

βl ≡ inf
µX∈D

{E[g(X)] | Pr[X ∈ [0, B]] = 1;E[fi(X)] = mi, 0 ≤ i ≤ n} =
∫ B

0
g(u)dµ(u) ,

βu ≡ sup
µX∈D

{E[g(X)] | Pr[X ∈ [0, B]] = 1;E[fi(X)] = mi, 0 ≤ i ≤ n} =
∫ B

0
g(u)dµ̄(u) ,

where µ and µ̄ are the unique lower and upper pr’s, respectively, of m = {1,m1, . . . ,mn},
and µX denotes the measure induced by X on <.

71

3.2.2 Random variables with support on [0,∞)

As before, denote the moment space associated with {f0, f1, . . . , fn} as

Mn+1
∞ =

{
m ∈ Rn+1

∣∣∣∃µ ∈ D,mi =
∫ ∞
0

fi(u)dµ(u), 0 ≤ i ≤ n
}

where D is the set of non-negative regular measures of bounded variation for which
the indicated integrals exist.
The definition of lower pr remains unchanged when we extend the support to [0,∞)
as there are no atoms placed at the upper bound of the support. Hence, for a large
enough B, the lower pr of m0 on [0, B] will coincide with the lower pr on [0,∞). In
particular, for n even, the lower pr will constitute of n

2 mass points in (0,∞) and
one mass point at 0; for n odd, there will be n+1

2 mass points in (0,∞).
To define the upper pr, µ̄,we first need another definition.

Definition 3.2 Functions {h0, h1, . . . , hn} form a Tchebycheff system of Type II
over [0,∞) provided:
(i) {h0, . . . , hn−1} and {h0, . . . , hn} are Tchebycheff systems on [0,∞); and
(ii) there exists A > 0 such that hn(x) > 0 for x ≥ A, and

lim
x→∞

hi(x)
hn(x)

= 0 for i < n.

If {f0, . . . , fn} is a Tchebycheff system of Type II, then for m0 in the interior of
Mn+1
∞ , the upper pr puts one mass at∞,

⌊
n
2

⌋
mass points in (0, B), and additionally

one at 0 if n is odd. The following example might help readers uncomfortable with
the idea of mass at infinity: Consider the case fi(x) = xi and n = 2. In this case,
the upper pr can be seen as the limit as ε → 0 of a sequence of distributions with
support [0, 1

ε
] (indeed, the upper pr with support

[
0, 1

ε

]
) which put Θ(ε2) mass on 1

ε
.

Thus, this mass at ∞ is needed to satisfy the constraint corresponding to fn, but
does not contribute to constraints for f0, . . . , fn−1 when {f0, . . . , fn} is a Tchebycheff
system of Type II.

Theorem 3.2 (Markov-Krein) [90, Theorem V5.1] If {f0, . . . , fn} and {f0, . . . , fn, g}
are Tchebycheff systems on [0,∞), and m0 lies in the interior of Mn+1

∞ , then there
exists

βl ≡ inf
µX∈D

{E[g(X)] | Pr[X ∈ [0, B]] = 1;E[fi(X)] = mi, 0 ≤ i ≤ n}

72

which is achieved uniquely for µX = µ, the lower pr of m0.
The upper bound

βu ≡ sup
µX∈D

{E[g(X)] | Pr[X ∈ [0, B]] = 1;E[fi(X)] = mi, 0 ≤ i ≤ n}

in general may not be attained, or may be infinite. However, if {f0, . . . , fn} is a
Tchebycheff system of Type II, and

lim
x→∞

g(x)
fn(x)

= γ <∞,

then βu exists and is “achieved” by the upper pr of m0.

In the last sentence of the theorem, we say “achieved” to emphasize the fact that
the upper pr has a mass point at ∞ and thus it is not a finite measure. However, βu
exists and is achieved as a limit.
The Markov-Krein Theorem has been successfully applied in the context of queueing
systems [50, 152]. In particular, for a GI/M/1 system, Theorem 3.1 proves that
given the first n moments of the inter-arrival time distribution, the mean number of
jobs in the system is extremized by inter-arrival time distributions which correspond
to the upper and lower pr’s. The proof follows by noting that the mean number of
jobs in a GI/M/1 queue with i.i.d. inter-arrival times given by a random variable A
is an increasing function of the Laplace-Stieltjes transform of the inter-arrival time
distribution (Ã(s) = E

[
e−sA

]
), and the functions gs(x) = e−sx form Tchebycheff

system with fi(x) = xi.

Principal representations within Hyperexponential distributions Consider
the following random variable with an n-phase hyperexponential distribution:

X ∼

Exp

(
1
x1

)
with probability q1

...
Exp

(
1
xn

)
with probability qn

We can now define another random variable Y with distribution given by the inverse
spectrum of X:

Y ∼

x1 with probability q1
...
xn with probability qn

73

We have the following straightforward relationship between moments of X and Y :
E
[
Y i
]
= E

[
Xi
]

i! . We define the upper and lower principal representation for a moment
sequencem1,m2, . . . ,mn within the class of hyperexponential distributions as the dis-
tributions whose inverse spectrum are the upper and lower principal representations,
respectively, for the moment sequence m1,

m2
2! , . . . ,

mn
n! .

3.3 Bounds for the M/G/k Multi-server Model

In this section we present our results on sharp moment-based bounds for theM/G/k
model in light traffic. Recall that the arrival process is Poisson with rate λ, and the
job sizes are i.i.d. according to a random variable S. The load of the system is defined
as ρ = λE[S] and denotes the time average number of busy servers. The waiting
time of a job is defined to be the time between when a job arrives to the system and
when it begins service, and is denoted by WM/G/k. We will analyze E

[
WM/G/k

]
in

the light traffic asymptote ρ→ 0 while holding S and k unchanged.
In Section 3.3.1, we present our results on bounds for general service distributions
given the first 2 or 3 moments, and in Section 3.3.2 for completely monotone distri-
butions given any number of moments. In Section 3.3.3, we present numerical results
on bounds obtained using principal representations for common heavy-tailed service
distributions.

3.3.1 Bounds for general distribution

We begin with a well-known result on the light traffic approximation for WM/G/k.

Theorem 3.3 (Burman Smith [37]) Under the assumption that the service dis-
tribution is phase-type, as ρ → 0, the probability that an arrival finds all servers
busy is asymptotically given by 1

k!

(
ρ
k

)k
, and conditioning on this event, WM/G/k is

distributed as the minimum of k independent copies of the stationary excess of S,
denoted by Se. The survival function of Se is given by F Se(x) = Pr[Se > x] =∫∞
u=x Pr[S > u]du

E[S] .

Theorem 3.4 Given the first n (n = 2 or 3) moments of the service distribution
S, E

[
WM/G/k

]
under light traffic is extremized by service distributions given by the

lower and upper principal representations of the moment sequence.

74

Proof: We present the proof for the case n = 3, where the lower pr minimizes, and
upper pr maximizes E

[
WM/G/k

]
. Denote F Se = h for succinctness. Since 1−h(x) =∫ x

0 Pr[S > u]du
E[S] is the integral of a bounded, non-negative, decreasing function, (1 −

h(x)) is a continuous, non-decreasing, concave function. The problem of extremizing
E
[
WM/G/k

]
in the light-traffic asymptote can thus be equivalently formulated as:

min/max
∫ ∞
0

h(u)kdu

subject to h(·) continuous, non-negative, non-increasing, convex ;
h(0) = 1 ;

|h′(0+)| = Pr[S > 0]
E[S] ≤ 1

E[S] ;∫ ∞
0

h(u)du = E[S2]
2E[S] ;∫ ∞

0
u · h(u)du = E[S3]

12E[S] .

(Note that a solution to the above problem exists because 0 ≤ h(u)k ≤ h(u), and∫
h(u)du is finite.) Let h represent the survival functions of Se corresponding to the

lower pr of S for the given moment sequence. Now, suppose that h is not the solution
to the minimization problem above, and the solution is instead given by hmin. For
n = 3, we have that the lower pr has 2 point masses, say at 0 < x1 < x2 < ∞, as
shown below.

x1 x2

h

hmin

1

0

The absolute value of the slope of hmin at 0+ must be at most that of h since the
lower pr has no mass at 0 for n = 3, and because hmin is convex, it follows that
δ = hmin− h satisfies (i)

∫∞
0 δ(u)du = 0 (i.e., areas under h and hmin are equal), (ii)∫∞

0 u·δ(u)du = 0 (from moment conditions), and (iii) δ(·) changes sign exactly twice,
and the sequence of signs is +−+ (see the figure above). We obtain a contradiction:∫

hmin(u)kdu−
∫
h(u)kdu

75

=
∫
δ(u)

[
hmin(u)k−1 + hmin(u)k−2h(u) + . . .+ h(u)k−1

]
du

> 0

To see the last inequality, denote the function in the square brackets by `(·), and
note that ` is convex. Now

∫∞
0 δ(u)`(u)du = [δ(u)`′(u)]∞0 −

∫∞
u=0 `

′(u)
∫ u
v=0 δ(v)dvdu.

The first term is zero because δ(0) = δ(∞) = 0. Now assuming derivatives exist (by
approximating by smoothed versions), we find that `′(u) is an increasing function,
and

∫
δ(v)dv is a function that changes sign only once, from + to − and integrates

to 0. Thus
∫∞
u=0 `

′(u)
∫ u
v=0 δ(v)dvdu < 0.

The proof for upper pr is identical except that the sequence of signs of δ in this case
is −+−. For n = 2, δ changes sign once.

3.3.2 Bounds for CM service distributions

Theorem 3.5 If the service distribution is constrained to lie in the CM class, then
given the first n moments of the service distribution S, E

[
WM/G/k

]
under light traffic

is extremized by the lower and upper principal representations of the moment sequence
within the hyperexponential class of distributions.

Proof: The first step of the proof is to restrict our attention to hyperexponential
distributions with finite number of phases as they are dense in the CM class. We will
now use the Markov-Krein Theorem to prove the result. However, Theorem 3.1 does
not apply directly to our problem because as Theorem 3.3 shows, the mean waiting
time in light traffic can not be written as E[f(S)] for any function f(·). Instead, we
prove a stronger result.
Consider a tagged arrival that finds all the servers busy. We fix the distribution of
the job sizes at the first k−1 servers to be exponential with arbitrary parameters (say
ν1, ν2, . . . , νk−1). We will now show that given the moments of the service distribution
for the job at the kth server, the hyperexponential distributions that minimize or
maximize the time until first departure, and hence the waiting time of the arrival, are
given by the pr’s irrespective of the choice of ν1, . . . , νk−1. Let the service distribution
of the job at the kth server be:

S ∼

Exp

(
1
x1

)
with probability q1,

...
Exp

(
1
xn

)
with probability qn.

76

As defined in Section 3.2, let Y denote a random variable whose distribution is given
by the inverse spectrum of S, and let M = ∑k−1

j=1 νj. The mean waiting time of the
tagged arrival, E[W ∗], is then given by:

E[W ∗] =
n∑
i=1

qixi
E[S] ·

1
M + 1

xi

= 1
E[S]

n∑
i=1

qi

(
Mxi − 1
M2 + 1

M2(Mxi + 1)

)

= 1
M
− 1
M2E[Y] + 1

M2E[Y]E
[1
MY + 1

]
From Theorem 31 of [86], 1

Mx+1 forms a Tchebycheff system with the functions i!xi,
and hence by Theorem 3.1, the result follows.
Remark 1: The reader might wonder if we could use a similar proof outline as
Theorem 3.5 to prove the result for general distributions. To be more precise, we can
arbitrarily fix the residual sizes of jobs at the first k − 1 servers as u1 ≤ . . . ≤ uk−1.
We may then ask the question: for given first n moments, what service distribution
for S extremizes E[min{Se, u1}]. The latter expectation can indeed be written as
E[f(S)], where f(·) is a piecewise polynomial function. However, even for n = 3,
f(x) does not form a Tchebycheff system with the moment functions x0, x1, x2 and
x3. Thus, Theorem 3.4 can in some sense be seen as breaking the Tchebycheff system
barrier.

3.3.3 Simulation and numerical evaluation

We conjecture that Theorem 3.4 extends to any number, n, of moments and to general
traffic, and Theorem 3.5 extends to arbitrary loads. See Section 3.6 for the specific
properties that we conjecture to hold generally for moment-based tight bounds on
E
[
WM/G/k

]
. In this section, we provide support for the conjectures and numerically

study the quality of bounds obtained with principal representations.
Figure 3.1 provides numerical evidence in support of the validity of Theorem 3.5 for
general loads. The solid curves in Figure 3.1(a) and Figure 3.1(c) show E

[
WM/G/k

]
when the job size has a two-phase hyperexponential (H2) distribution which allows
us to vary E[S3] while holding the first two moments fixed. The solid curves in
Figure 3.1(b) and Figure 3.1(d) show E

[
WM/G/k

]
when the job size has a degenerate

three-phase hyperexponential (H?
3) distribution, which has two non-zero mean expo-

nential phases and a phase with zero mean. Within H?
3 distributions, we can vary

E
[
S4
]
, while holding the first three moments fixed. We set the number of servers, k,

as indicated below each figure.

77

0 0.5 1 1.5 2

x 10
4

0

5

10

15

E[S
3
]

E
[W

]

M/M/4

upper p.r.

lower p.r.

M/H
2
/4

(a) n = 2, k = 4

0 1 2 3 4

x 10
4

0

1

2

3

E[S
3
]

E
[W

]

lower p.r.

M/H
2
/5

upper p.r.= M/M/5

(c) n = 2, k = 5

0 1 2 3 4 5

x 10
7

10

11

12

13

14

15

16

E[S
4
]

E
[W

]

upper p.r.

lower p.r.

M/H
3

*
/4

(b) n = 3, k = 4

0 1 2 3 4 5

x 10
7

0.5

1

1.5

2

2.5

3

E[S
4
]

E
[W

]

lower p.r.

upper p.r.

M/H
3

*
/5

(d) n = 3, k = 5

Figure 3.1: Mean waiting time in an M/G/k system when the job sizes obey a
hyperexponential distribution. In (a) and (c), we vary E[S3], while keeping {E[S] =
1, E[S2] = 20}. In (b) and (d), we vary E

[
S4
]
, while keeping {E[S] = 1, E[S2] =

20, E[S2] = 8000}.

Observe that the solid curves lie between the mean waiting times attained when
the service distributions are given by principal representations within hyperexpo-
nential distributions (dashed line and dotted line). The principal representations are
determined by the first two moments of the H2 distribution in Figure 3.1(a) and
Figure 3.1(c) and the first three moments of the H?

3 distribution in Figure 3.1(b) and
Figure 3.1(d). Also, observe that the solid curve is decreasing in E[S3] and increasing

78

in E
[
S4
]
. A detail is that, in Figure 3.1(a), the upper principal representation re-

fines the lower bound obtained from an exponential job-size distribution (line labeled
with M/M/4). However, in Figure 3.1(c), the lower bound obtained with a principal
representation coincides with the lower bound obtained from an exponential job-size
distribution. See Conjecture 3.1 in Section 3.6 for the properties that we conjecture
to hold generally for the bounds on E

[
WM/G/k

]
.

Figure 3.2 shows E
[
WM/G/k

]
and its bounds obtained with principal representa-

tions, when the service distribution is a Weibull distribution. We fix the parame-
ters of the Weibull distribution such that its probability density function is f(x) =
1
2x
−1/2 exp

(
−x1/2

)
for x ≥ 0. We also fix the number of servers, k = 4, and vary

the load, ρ ≡ λE[S], as indicated below each figure. The dashed line shows the
exact value of E

[
WM/G/k

]
, and the crosses and the dots show bounds on E

[
WM/G/k

]
obtained with principal representations. Specifically, a bound shown with a cross
is the mean waiting time in the M/G/k system whose service distribution has a
principal representation that is determined by the moments of the Weibull distri-
bution (see Theorem 3.4). A bound shown with a dot is obtained analogously with
a principal representation within hyperexponential distributions (see Theorem 3.5).
Notice that the Weibull distribution under consideration is completely monotonic
(see [56]), so that principal representations within hyperexponential distributions
give valid bounds. The horizontal axis indicates the number of moments used to
determine the principal representations. The moments of the Weibull distribution
under consideration are E[Sn] = (2n)! for n = 1, 2,

In all cases, E
[
WM/G/k

]
and the bounds shown with a cross are obtained via sim-

ulations; the bounds shown with a dot are calculated via matrix analytic methods.
For each data point, the simulation is run 10 times and the average value of the
10 simulated mean waiting times is plotted. Each run of simulation is continued
for 10,000,000 events, where an event is either an arrival or a departure of a job,
and waiting times of the departed jobs are recorded (we ignore the first 100,000
departures). Confidence intervals are sufficiently small and not shown.
In Figure 3.2, notice that, except for n = 2, either lower bounds or upper bounds are
shown for each n, where n is the number of moments used to determine the principal
representation. This is because the lower (respectively, upper) bound obtained with
an even (respectively, odd) number n of moments in general does not improve the
corresponding lower (respectively, upper) bound obtained with n− 1 moments. An
exception is that the lower bound obtained with n = 2 moments improves upon
that with n = 1 for ρ = 3.6 (but not for ρ = 2.4, as predicted by our analysis in
Chapter 2). The lower bound with n = 2 moments is given by a limiting distribution
where one of the mass points, B, approaches infinity. This lower bound corresponds

79

2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

E
[W

M
/G

/k
]

number of moments

Weibull
Bounds with p.r.
Bounds with H

n
 p.r.

(a) ρ = 2.4

2 4 6
0

2

4

6

8

10

12

number of moments

E
[W

M
/G

/k
]

Weibull
Bounds with p.r.
Bounds with H

n
 p.r.

(b) ρ = 3.6

Figure 3.2: Bounding mean waiting time in an M/G/4 queue when the job sizes
obey a Weibull distribution.

to the principal representation with B = 106. It appears that the mean waiting time
under the principal representation hardly changes in the interval between B = 104

and B = 106. For a B > 106, the analysis of the mean waiting time suffers from
numerical errors.
Observe in Figure 3.2 that the principal representations within hyperexponential dis-
tributions (dot) can give bounds that are significantly better than the corresponding
bounds obtained with the standard principal representations (cross). The princi-
pal representations within hyperexponential distributions provide bounds that are
valid only for (service) distributions that are completely monotonic. The difference
between a dot and a cross shows the refinement of the bound that we gain from
the knowledge of complete monotonicity. Also observe that, as the number of mo-
ments used to determine principal representations grows, the upper and lower bounds
approach each other quickly particularly at high load (Figure 3.2(b)). This makes
intuitive sense, because E

[
WM/G/k

]
becomes insensitive to third and higher moments

in heavy-traffic.

3.3.4 A departure from Markov-Krein

The classical Markov-Krein theorem only enforces the condition that the moment
constraint functions {f0, . . . , fn} be linearly independent (modulo signs of functions).
As mentioned earlier, this condition holds for the power functions fi(x) = xαi ,

80

0 ≤ α0 < . . . ≤ αn. In particular, note that αi need not be integral. However,
here we see a departure in the behavior of M/G/k from the classical Markov-Krein
characterization – If the moment constraints involve fractional moments, the relative
performance of upper and lower principal representations may flip as the arrival rate
increases from light traffic to heavy traffic. Further, the upper and lower pr’s may
no longer provide bounds.
We will illustrate this point with an example. Consider the moment constraints
m0 = E[S0] = 1, m1 = E[S1] = 1, and m 4

3
= E

[
S

4
3
]

= 5, and let us restrict
ourselves to the class of hyperexponential distributions (since we do have the light
traffic extremality results within the Hn class). The upper pr places almost the entire
probability mass on the mean, and behaves as an exponential distribution in light
traffic (this is true as long as the highest moment constraint is smaller than 1 + 1

k
; 4

3
for k > 1 suffices). Therefore in light traffic, the mean sojourn time of the upper pr
is smaller than the mean sojourn time of the lower pr. However, due to the mass at
∞ in upper pr, the second moment is∞ whereas the lower pr has all finite moments.
Since the mean sojourn time in heavy traffic limit is completely determined by the
first two moments, the mean sojourn time of the upper pr in heavy traffic is higher
than the mean sojourn time of the lower pr. Further, the mean sojourn times of the
upper and lower pr will cross at some arrival rate λ∗, where the mean sojourn time
is T ∗. Clearly, there are distributions with the given moment constraints with mean
sojourn time different than T ∗ at λ∗. Thus the pr’s do not provide bounds in this
case. The same behavior is observed whenever the cardinality of moment constraints
in the interval (0, 2) is even.
The above discussion, while discomfiting, should be taken as an instructive caution.
While we strive to prove a Markov-Krein characterization for M/G/k mean sojourn
time, conditions more than those in Theorems 3.1 and 3.2 would be needed. We
conjecture that the knowledge of the integral moments suffices. However, fractional
moments, in general, may not be admissible.

3.4 Bounds for M/G/1 Round-Robin

In this section we prove sharp moments-based bounds for the mean sojourn time,
E
[
TM/G/1/RR

]
, of anM/G/1 round-robin queue with exponentially distributed quan-

tum sizes and CM service distribution in the limit when the arrival rate λ→ 0. For-
mally, we consider round-robin scheduling where every time a job gets to the server,
the server picks a quantum size i.i.d. from an Exp(ν) distribution..

81

Lemma 3.1 Consider an M/G/1 Round-Robin system with i.i.d. Exp(ν) quanta,
arrival rate λ and the following Hn service distribution:

S ∼

Exp(γ1) with probability q1
...
Exp(γn) with probability qn

As the arrival rate λ→ 0:

E
[
TM/G/1/RR

]
= E[S] (1 + λE[S]) + λ

2

n∑
i=1

n∑
j=1

qiqj(γi − γj)2

γiγj(γiγj + (γi + γj)ν)
+ o(λ).

Proof: As the arrival rate approaches 0, the coefficient of the Θ(λ) term will be
dominated by events where (i) a job arrives to an empty system and is interrupted at
most once during its stay, or (ii) a job arrives to a system with a yet uninterrupted
job already in service, and there are no more arrivals during its sojourn.
Let us consider the case where an Exp(ξ) job is interrupted by an Exp(χ) job. In
this case, the mean residual sojourn time of the interrupted Exp(ξ) job satisfies

Aξ,χ = 1
ξ + ν

+ ν

ξ + ν

(
1

χ+ ν
+ ν

χ+ ν
Aξ,χ + χ

χ+ ν

1
ξ

)

= 1
ξ

(
1 + ξν

(ξ + ν)(χ+ ν)− ν2

)
(3.1)

Similarly, the mean sojourn time of the interrupting Exp(χ) job is given by:

Bχ,ξ = 1
χ

(
1 + χ2 + χν

(ξ + ν)(χ+ ν)− ν2

)
(3.2)

Returning to our original round-robin system, a tagged class i job arrives to an empty
system with probability (1 − λE[S]), and stays there for Exp(γi + λ) time. With
probability λ

λ+γi , the tagged class i job gets interrupted by another arrival which is
of class j with probability qj and spends additional time Aγi,γj . With probability
λE[S], the class i job arrives to a busy system and interrupts a class j job with
probability qj

γjE[S] , in which case the sojourn time of the tagged class i job is Bγi,γj .
Thus, the overall sojourn time of a class i job is given by:

E[Ti] = (1− λE[S])
 1
γi + λ

+ λ

γi + λ

∑
j

qjAγi,γj

+ λE[S]
∑
j

qj
γjE[S]Bγi,γj +O(λ2)

82

= 1 + λE[S]
γi

+ 1
γi

n∑
j=1

qj
γi − γj

γj(γiγj + (γi + γj)ν)
(3.3)

Calculating E
[
TM/G/1/RR

]
= ∑

i qiE[Ti], we get the expression in the theorem state-
ment.

Theorem 3.6 Given the first n moments of the service distribution S in the CM
class, E

[
TM/G/1/RR

]
under light traffic is extremized by the lower and upper prin-

cipal representations of the moment sequence within the class of hyperexponential
distributions.

Proof: We will follow similar steps as in the proof of Theorem 3.5. The first
is to restrict our attention to hyperexponential distributions with finite number of
phases as they are dense in the CM class. We will then use the Markov-Krein Theo-
rem to show that E

[
TM/G/1/RR

]
given in Lemma 3.1 is extremized by the principal

representations within the hyperexponential class of distributions. Let Y denote a
random variable with the same distribution as the inverse spectrum of the service
distribution S, and let xi = 1

γi
. From Lemma 3.1 (ignoring o(λ) terms):

E
[
TM/G/1/RR

]
=E[S] (1 + λE[S]) + λ

2

n∑
i=1

n∑
j=1

qiqj(γi − γj)2

γiγj(γiγj + (γi + γj)ν)

=E[Y] (1 + λE[Y]) + λ

2

n∑
i=1

n∑
j=1

qiqj(xi − xj)2

(1 + (xi + xj)ν)

=E[Y] (1 + λE[Y]) + λ

2

n∑
i=1

qi
n∑
j=1

qj
ν2

(
νxj − 1 + ν2x2

i + νxi + 1
ν(xi + xj) + 1

)

=E[Y] (1 + λE[Y]) + λ

2

n∑
i=1

qi

[
νE[Y]− 1

ν2 − ν2x2
i + νxi + 1
ν2 E[fi(Y)]

]

where fk(x) = 1
ν(x+xk)+1 . From Theorem 31 of [86], each fk(x) forms a Tchebycheff

system with the functions i!xi (and the same pr, either upper or lower, minimizes
each E[fk(Y)], and similarly the other pr maximizes each E[fk(Y)]), and hence by
Theorem 3.1, the result follows.
Remark 2: Given E[S] and E[S2], the lower bound within the CM distributions is
attained by the upper pr, and is equal to the mean sojourn time under Exponential
service distribution, E

[
TM/M/1/RR

]
, which also equals the mean sojourn time under

83

ideal Processor Sharing discipline, E
[
T PS

]
. The upper bound is attained by the

lower pr, and can be shown to be [66]:

E
[
T
M/G/1/RR
h

]
= E

[
TM/M/1/RR

] 1 + C2
S + 1

C2
S + 1 ·

λ

ν + 2
E[S](C2

S+1)

 . (3.4)

As C2
S → ∞, this upper bound converges to E

[
TM/M/1

] [
1 + λ

ν

]
. The M/G/1/RR

system therefore exhibits bounded-sensitivity – the effect of higher order charac-
teristics beyond the mean is bounded if ν is bounded away from 0 (when ν → 0, the
Round-Robin policy becomes FCFS).

3.5 Bounds for systems with time-varying load

In this section we prove tight moment-based bounds for an M/M/1 queue with
arrival and service rates controlled by a 2-state environment process. However, we
believe the results extend to much more general time-varying systems (see the remark
after Theorem 3.8). The asymptotic regime we consider is what we call the “fast-
switching asymptote”: we let the duration of stay in the environment states on
each visit approach 0. In Theorem 3.7, we prove the result when the distributions
for the durations of environment states are CM, but our proof extends to generally
distributed durations. In Section 3.5.2 we show an application of our results to the
development of (conjectured) tight bounds on the performance of work-stealing, an
exact analysis of which is impossible since the Markov chain for the work-stealing
model is infinite in 2 dimensions.
Formally, we consider a system with an exogenous environment process with states
L and H. The durations of the H states are i.i.d. according to a random variable τH ,
and those of L states are i.i.d. according to τL. The job sizes are i.i.d. exponential
with mean 1. However, during the L state, the arrival process is Poisson with rate
λL and the server’s service rate is µL. Similarly, during the H states, the arrival
process is Poisson with rate λH and the server’s service rate is µH . We define µavg =
µLE[τL]+µHE[τH]

E[τL]+E[τH] , λavg = λLE[τL]+λHE[τH]
E[τL]+E[τH] , and ρ = λavg

µavg
. We will consider a sequence of

systems indexed by a parameter α, where the durations of L and H states in the αth
system are i.i.d. as ατL and ατH , respectively. We will analyze the mean number of
jobs in this sequence of systems, E[Nα], as α→ 0.

84

3.5.1 Fast-switching asymptote and bounds

Theorem 3.7 Consider a time-varying load system with residence time in L and H
states given by ατL and ατH , respectively. Further, assume that the distributions of
τL and τH are hyperexponential with finite number of phases. Then the mean number
of jobs in the system as α→ 0 is given by:

E[Nα] = ρ

1− ρ +
∞∑
i=1

φiα
i (3.5)

where φi are functions of the first i+ 1 moments of τL and τH (and µL, µH , λL, λH),
and are linear in E

[
τ i+1
H

]
and E

[
τ i+1
L

]
.

Proof: We defer the proof to Appendix 3.A. We do not provide the full details
but instead illustrate the main ideas behind the proof by looking at a finite buffer
system with a buffer size of 1 (i.e., there can only be either 0 or 1 jobs in the system)
with time-varying arrival and service rates. The proof easily extends to the infinite
buffer case as well.

Theorem 3.8 If τL and τH are constrained to lie in the CM class, then given the
first n moments of τL and τH , the mean number of jobs, E[N], under the fast switch-
ing asymptote is extremized by the lower and upper principal representations of the
moment sequence within the hyperexponential distribution.

Proof: Given the first nmoments of τL and τH , the coefficients of αi for 0 ≤ i ≤ n−1
are already fixed. The distributions which extremize the mean number of jobs will
be those that extremize the coefficient of αn. Since this is linear in the (n + 1)st
moments, and moment functions fi(x) = xi form a Tchebycheff system, the theorem
follows from Theorem 3.1.
Remark 3: The result of this section easily extends to the case of general distri-
butions for τL and τH . The only fact that is needed is that for any finite x, the
probability of i arrivals or departures in duration αx is ci(αx)i − di(αx)i+1 + o(αi)
for some constants ci and di – a simple consequence of the Poisson process.
Remark 4: The results of this section should also extend to more general time-
varying systems. For example, during the L andH, the system could evolve according
to arbitrary finite-state Markov processes with generators QL and QH , respectively,
as long as the characteristic polynomials of QL and QH (φL(s) = det(sI − QL),
φH(s) = det(sI −QH)) do not have repeated roots.
Remark 5: UnlikeM/G/k andM/G/1 round-robin models where the heavy-traffic
limits tend to be insensitive to the job size distribution beyond the first or second

85

0.0 0.2 0.4 0.6 0.8 1.0
E[τi+1H]

0.00

0.05

0.10

0.15

0.20

0.25

i

(a) i = 1

0 5 10 15 20 25 30 35
E[� i+1H]

�0.7

�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

0.0

0.1

i

(b) i = 2

Figure 3.3: Dependency of φi (Theorem 3.7) on E
[
τ i+1
H

]

moments, for the time-varying load model, we actually do have an interesting result
in the “slow switching asymptote” (α→∞): in the special case when τH ∼ Exp(γ)
and λH > µH . Under transient overload during H states, as the mean durations of H
and L states become long, the time-varying load system converges to a fluid system.
For the special case mentioned, it is not hard to see that the mean response time
of this fluid system can be derived from a GI/M/1 system with inter-arrival time
distribution given by τL. As stated earlier, characterization of bounds for GI/M/1
via principal representations is known from the work of Eckberg [50]. We have proved
that this characterization also holds under the fast switching asymptote, irrespective
of the choice of arrival and service rates, and when both L and H state durations
may be generally distributed.
We validate Theorem 3.7 numerically with Figure 3.3. Consider a time-varying
load system with λL = 4, λH = 8, µL = µH = 10. We let τL have an exponential
distribution with rate 10 and vary τH as is specified in the following. In Figure 3.3(a),
τH has a two-phase hyperexponential (H?

2) distribution having a non-zero exponential
phase and a phase of zero mean. The H?

2 allows us to hold the mean at 0.1 and
vary the second moment E[τ 2

H], which is indicated along the horizontal axis. The
vertical axis shows ∆i ≡ (E[Nα] − E[N ′α])/αi for i = 1, where N ′α indicates Nα

with E[τ 2
H] = 0.02 (the lowest value studied in Figure 3.3(a)). Throughout we set

α = 10−3, so that o(αi+1) terms are negligible relative to Θ(αi) term. Because E[τH]
is fixed, ∆1 shows (approximately) how φ1 depends on E[τ 2

H]. Indeed, we find that
φ1 grows linearly with E[τ 2

H]. In Figure 3.3(b), τH has a two-phase hyperexponential
(H2) distribution, which allows us to hold E[τH] = 0.1 and E[τ 2

H] = 0.2, and vary
E[τ 3

H], which is indicated along the horizontal axis. The vertical axis in Figure 3.3(b)
shows ∆2 (here, N ′α represents Nα with E[τ 3

H] = 0.601 (the lowest value studied in
Figure 3.3(b))), which indicates (approximately) how φ2 depends on E[τ 3

H]. Although

86

λBλD λD

µ
B

µ
D

µ
B

λB

D+µ

Figure 3.4: The N-sharing model – Service rate at the beneficiary queue is µB+µD
when the donor queue is empty and µB otherwise.

the line in Figure 3.3(b) is not as straight as Figure 3.3(a) due to numerical errors,
we find that φ2 does decrease linearly with E[τ 3

H].

3.5.2 Application to analysis of N-sharing model

In this section, we apply the analysis of the time-varying load system to a work-
stealing system with two M/M/1 queues, beneficiary and donor (see Figure 3.4).
The two queues are independent except that the service rate at the beneficiary queue
becomes larger when the donor queue is empty (thus the donor server can help the
benefeciary queue, but not the other way round). Let λB (respectively, λD) be the
arrival rate at the beneficiary (respectively, donor) queue. Let µB (respectively, µD)
be the service rate at the beneficiary (respectively, donor) queue when the donor
queue is nonempty. When the donor queue is empty, the service rate at the benefi-
ciary queue becomes µB + µD. We assume that the jobs are preemptive, so that the
service rate at the beneficiary queue changes from µB + µD to µB immediately after
a job arrives at the empty donor queue. The jobs arriving at the donor queue see a
standard M/M/1 system with arrival rate λD and service rate µD.
Observe that the jobs arriving at the beneficiary queue, which we refer to as benefi-
ciary jobs, see a time varying system, where λH = λL = λB, µH = µB, µL = µB+µD,
τL has an Exponential distribution with rate λD, and τH is the busy period of the
M/M/1 system with arrival rate λD and service rate µD. To analyze the response
time of beneficiary jobs, we need to consider a Markov chain that is infinite in two
dimensions, where one dimension represents the number of beneficiary jobs and the
other dimension represents the number of donor jobs. Such a Markov chain cannot be
solved exactly, so that the prior work has investigated various approximations (e.g.,
truncation in [65] and approximating the donor busy period with moment matching

87

1 2 3 4 5 6
number of moments

1.3

1.4

1.5

E
[T

B
]

bounds with Hn p.r.
analysis with truncation

(a) ρ = 0.6

1 2 3 4 5 6
number of moments

2

3

4

5

6

7

E
[T

B
]

bounds with Hn p.r.
analysis with truncation

(b) ρ = 0.9

Figure 3.5: Bounding mean response time of beneficiary jobs in the N-sharing
model. The system parameters are µB = µD = 1 and λB = λD = ρ.

in [122]). However, such approximations do not guarantee their accuracy and can be
computationally expensive.
Now, because the busy period of an M/M/1 system has a hyperexponential distri-
bution with a continuous spectrum [4], our results in Section 3.5.1 suggest that the
stationary mean response time of beneficiary jobs, E[TB], is likely to be extremized
by lower and upper principal representations, given the first n moments of the busy
period for n = 1, 2, Figure 3.5 shows E[TB] and the bounds obtained with prin-
cipal representations. We fix µB = µD = 1.0 and vary ρ = λD = λB as indicated
below each figure. The dashed line shows the exact value of E[TB], which is obtained
by numerically analyzing a Markov chain. Here the state space of the Markov chain
is truncated so that the number of jobs at the donor queue is at most a threshold,
200, and we verify that increasing the threshold does not change the results of the
analysis. The resulting Markov chain is a quasi-birth-and-death (QBD) process that
can be analyzed with a matrix analytic method.
A dot in Figure 3.5 shows a bound on E[TB] obtained by replacing the busy period
with a principal representation, where the number of moments used to determine
the principal representation is shown on the horizontal axis. Here again, the bound
is numerically computed by analyzing a QBD process via matrix analytic methods
(but due to a small number of levels, the computational cost is much lower than
truncation). Observe that the principal representations obtained by including an
additional odd moment (1, 3, and 5 are shown in the figure) refine the lower bound
on E[TB], while the upper bound is refined by principal representation obtained
via an additional even moment (2, 4, and 6 are shown in the figure). When five
or six moments are used, the upper bound and the lower bound give nearly exact
value (specifically, the two bounds differ by 0.62% in Figure 3.5(a) and 2.2% in

88

Figure 3.5(b)).
The results in Figure 3.5 justify the approximation in [122], where the donor busy
period is approximated by matching its first three moments. The lower bound ob-
tained with the first three moments gives a nearly perfect approximation, and using
the fourth and higher moments do not significantly improve the bound. In determin-
ing the principal representations for the busy period, B, we have used the following
expression obtained by manipulating the Laplace-Stieltjes transform of B (we omit
the details): E

[
Bk
]

= k!
µkD(1−ρD)2k−1 ξk, where ρD = λD/µD, ξ1 = ξ2 = 1, ξ3 = 1 + ρD,

ξ4 = 1 + 3ρD + ρ2
D, ξ5 = 1 + 6ρD + 6ρ2

D + ρ3
D, and ξ6 = 1 + 10ρD + 20ρ2

D + 10ρ3
D + ρ4

D.

3.6 Conjectures on tight bounds for general traffic

Let m = (m0 = 1,m1,m2, . . . ,mn) ∈ Rn
+ be such that there exists a positive random

variable X with E
[
X i
]

= mi, i = 0, . . . , n. For n odd, let D(m) denote the unique
lower pr with moments m and support [0,∞) (and therefore has mass at ∞), and
let D∗B(m) denote the unique upper pr with moments m and support [0, B]. For n
even, let D∗(m) denote the unique lower principal representation with moments m
and support (0,∞], and let DB(m) denote the unique upper pr with moments m
and support [0, B]. (The star in the superscript is to emphasize a point mass at 0,
and the B in the subscript emphasizes the point mass at the upper bound, B, of the
support.)
Let

Th(m) = sup
µX∈D

{
E
[
T S(X)

] ∣∣∣E[X i
]

= mi, i = 0, . . . , n
}
,

Tl(m) = inf
µX∈D

{
E
[
T S(X)

] ∣∣∣E[X i
]

= mi, i = 0, . . . , n
}
.

where S(X) represents either the M/G/k (k ≥ 2) multi-server system, the M/G/1
round-robin system, or the time-varying load system, with X as the random variable
for the service distribution for the M/G/k and the M/G/1 round-robin models, or
the duration of the L or H states for the time-varying load model, and T denotes the
response time.

Conjecture 3.1 Let m = (m0 = 1,m1, . . . ,mn), n ≥ 1, be a valid moment sequence
for positive distributions. Let m′ = (m0,m1, . . . ,mn−1). Then,
Case 1: n odd
(i) Th(m) = limB→∞E

[
T S(D∗B(m))

]
.

89

(ii) Tl(m) = E
[
T S(D(m))

]
.

(iii) Tl(m1, . . . ,mn−1, x) is strictly decreasing in x.
Case 2: n even
(i) Th(m) = E

[
T S(D∗(m))

]
.

(ii) Tl(m) = limB→∞E
[
T S(DB(m))

]
.

(iii) Th(m1, . . . ,mn−1, x) is strictly increasing in x.
Further, for the M/G/k system: for n odd, Th(m) = Th(m′); and for n even (and
additionally for ρ < (k − 1) if n = 2), Tl(m) = Tl(m′). 1

To state in simple language, the conjectures would imply the following for theM/G/k
multi-server model: If we are given only the mean of the service distribution, we only
have enough information to fix a lower bound on E

[
WM/G/k

]
. This lower bound is

given by E
[
WM/D/k

]
. If we are additionally given the second moment of the ser-

vice distribution, we can fix an upper bound on E
[
WM/G/k

]
(The conjectured upper

bound is presented in Conjecture 2.1). By determining the third moment of ser-
vice distribution, we can refine (tighten) our lower bound but this lower bound is
a decreasing function of the third moment. The upper bound remains unchanged.
Similarly, knowledge of the fourth moment will refine the upper bound on the mean
waiting time (bring it down), and so forth for alternating higher even and odd mo-
ments. Further, these bounds are achieved by mixtures of point masses as dictated
by the upper and lower pr’s.

3.7 Towards a unified approach for moments-based
bounds

While our results offer an intuitive justification for tight moments-based bounds via
principal representations for the three queueing systems considered for general (i.e.,

1Intuitively, as we said before, this is true because the mass at ∞ is only present to satisfy
the largest moment constraint. Karlin and Studden write ([90], page 152), “Whenever mass
at ∞ is present, this mass may be ignored to obtain a measure representing only the moments
m0,m1, · · · ,mn−1.” In the classical Markov-Krein framework, this treatment suffices under some
conditions on the function g(·) whose expectation we are extremizing. However for queueing sys-
tems, whenever the sup/inf as defined above exist and involve the upper principal representation,
we need to be slightly more careful. For example, for the case ofM/G/k with n = 2 and ρ ≥ (k−1)
we can not ignore the mass at infinity and must define the sup/inf via the limit of a sequence of
systems involving upper pr on finite support. This fact is highlighted viaM/G/1 where given n = 2,
the mean sojourn time is completely determined. However, if we ignore the mass at∞ in the upper
pr, we incorrectly obtain E

[
TM/D/1]!

90

non-asymptotic) traffic conditions, we are still quite far from proving the desired
result. Further, we believe that similar results are likely to hold for other queueing
systems as well. We now discuss some possible lines of attack for proving moments-
based bounds for general queueing systems.
One line of approach to proving such results might be along what we have tried to
do in the present chapter. One would first prove the desired result in an “appro-
priate” asymptotic regime, that is, where the effect of the entire distribution of the
parameter of interest (e.g., the service distribution) is apparent. This is expected
to be the easier step, and should offer insights into what distributions are extremal.
The remaining open question would then be to prove that the extremality of the con-
jectured distributions is preserved when we are in non-asymptotic regime. This last
step seems very challenging because there exist service distributions whose relative
performance flip while going from light to heavy traffic.2

While the above approach sounds promising in that obtaining extremal distributions
in asymptotic regimes would be tractable, proving such results for every new queueing
system ab initio would be far from elegant.
A second line of approach could be that of Eckberg [50] for obtaining bounds on
the mean response time of the GI/M/k model. As we mentioned earlier, the mean
response time of a GI/M/k queue can be written as an increasing function of an im-
plicit quantity σ that is itself an increasing function of the Laplace-Stieltjes transform
Ã(s) = E

[
e−sA

]
of the inter-arrival time duration A:

σ = Ã(µ(1− σ)).

The functions e−sx form a Tchebycheff system with moment functions xi. There-
fore from Theorem 3.1, the principal representations of the moment sequence would
extremize the Laplace-Stieltjes transform point-wise, and hence the mean response
time of the GI/M/k queue. Employing a similar approach for the mean response
time of queueing systems considered in this chapter by expressing these quantities
as increasing functions of E[f(X)] for some function f which forms a Tchebycheff
system with fi(x) = xi, and then directly applying Theorem 3.1, eludes us (and in
light of the discussion in Section 3.3.4, seems not possible).
To overcome the above shortcomings, we propose a unified framework by posing the
following moment problem: Observe that the solution to any queueing system can be

2Indeed, consider moment sequences m = (m1,m2) and m′ = (m′1,m′2) with m1 = m′1 and
(m1)2

< m2 < m′2. The lower pr of m yields a higher mean sojourn time than the upper pr of m′
in light traffic. However, the mean sojourn time in heavy traffic is completely determined by the
first two moments, and hence the lower pr of m yields a lower mean sojourn time than the upper
pr of m′ in heavy traffic. Also see the discussion in Section 3.3.4.

91

represented at some level by the fixed point of a stochastic recursive sequence (SRS).
That is, there exists Φ such that

W d= Φ(W, S), (3.6)

where W is the unknown random vector capturing the performance of the system,
and d= denotes equality in distribution. For example, for the GI/G/1 FCFS model,
the distribution of the customer average waiting time W is given by the Lindley
recursion:

W
d= (W + S − A)+

where S is the service distribution, and A is the inter-arrival time distribution. As an-
other example, for the GI/G/k/FCFS queueing system, let W = (W1,W2, . . . ,Wk)
where W1 ≤ W2 ≤ . . . ≤ Wk denote the Kiefer-Wolfowitz workload vector seen by
arriving customer (equivalently, the ordered vector of times at which the k servers
will idle, assuming the customer arriving at time t = 0 has size 0 and and there are
no further arrivals). The distribution of W is then given by:

W d= R
(
(W +X · e1 − A · e)+

)
where e1 is a k−vector whose first element is 1 and the rest are 0, e is a k-vector
all of whose elements are 1, and R is a function that reorders the elements of its
argument in ascending order.
The final performance metric of interest would be E[g(W)] for some function g. Our
goal is to seek bounds on E[g(W)], given the first n moments of X. For what class
of probability flows Φ(·) and functions g(·) can these bounds be characterized along
the Markov-Krein Theorem?
Even partial progress on the above moment problem promises to yield bounds on
many interesting queueing systems in a single shot – one only needs to check whether
the SRS for the queueing system satisfies certain conditions. Further, an understand-
ing of this problem should give insights into the common thread among queueing
systems which share the Markov-Krein characterization property, but are otherwise
seemingly very different. For example, what is the fundamental difference between
the queueing systems described above and the following queueing system for which
the principal representations achieve identical mean sojourn time (when n, the num-
ber of moment constraints, is even), yet the mean sojourn time is sensitive to the
service distribution?

A queueing system where principal representations are non-extremal Con-
sider a 2-server JSQ-PS system with Poisson arrival process : each server follows the

92

ideal Processor Sharing (PS) scheduling discipline, and new arrivals join the shorter
queue (ties broken randomly, no jockeying between queues). It is easy to see that
given any first n moments with n even, the service distributions corresponding to
the upper and lower pr’s yield identical mean sojourn time. Consider the case n = 2
– the mass at ∞ in the upper pr does not influence the mean sojourn time; jobs of
size 0 in the lower pr depart the PS servers instantaneously on arrival. Thus both
the upper and lower pr systems effectively behave as if the service distribution is
deterministic (albeit, with different means; the arrival process is still Poisson but
with different rates). This in turn implies that the distribution for the number of
jobs in the upper and lower pr systems are identical, and thus by Little’s law, so are
the mean sojourn time. A formal proof is given after Theorem 5.1.
While the upper and lower pr yield the same mean sojourn time, this system is
sensitive to the service distribution. Bonald and Proutiére [28] have proved that
local balance is a necessary and sufficient condition for insensitivity, whereas shortest
queue routing with static node capacities violates the local balance condition.

3.8 Summary and Open Questions

In this chapter we have taken a small but fundamental step towards solving three
queueing systems which have not yielded exact analysis so far, one of them being
the classical M/G/k multi-server system whose analysis has remained open for more
than 50 years. Our approach is different from prior attempts in the literature in
that instead of trying to obtain an explicit expression for the mean response time as
a function of the service distribution, we strive to identify the service distributions
with given first n moments which minimize or maximize the mean response time,
thus obtaining sharp lower and upper bounds on the mean response time given a
partial characterization of the service distribution in terms of its moments.
We were initially motivated by experimental observations made in Chapter 2, and
further emboldened by existence of results similar in spirit in the seemingly discon-
nected area of moment problems. To bridge this disconnect, our approach relied
on looking at appropriate tractable asymptotic regimes where the effect of the en-
tire service distribution is apparent (unlike heavy traffic regimes, for example), and
extracting the extremal distributions. As our major contribution, we utilized the
Markov-Krein theorem to prove that if the service distribution is restricted to lie in
the completely monotone (CM) class of distributions, then given any first nmoments,
the extremal distributions are the principal representations within the hyperexpo-
nential class of distributions. For the M/G/k multi-server system, we additionally
proved that without the restriction of complete monotononicity, and given the first

93

n = 2 or n = 3 moments, these extremal distributions are given by the principal rep-
resentations of the moment sequence. However, we found the Markov-Krein Theorem
lacking for the latter purpose.
Finally, analogous to the classical Markov-Krein theorem for scalar functions, we
propose exploration of Markov-Krein characterization of solutions of Stochastic re-
cursive equations as a unified approach to identify and study queueing systems per-
mitting moment-based characterization of extrema via principal representations of
the moment sequence of the random variables driving them.
Impact: We have given strong analytical evidence for tight moments-based bounds
for the mean sojourn time in three, as yet unsolved, queueing systems. However,
the contributions of this chapter go beyond the queueing systems that have been the
subject of analysis. We have proposed an analytical tool which would open a new
area in the century old field of queueing theory. By viewing queueing systems as a
special case of solutions of stochastic recursive sequences, we can utilize the rich set
of tools from algebraic geometry, functional analysis and approximation theory and
approach the problem of obtaining tight moments-bounds for more general queueing
systems.
Open Problems: The most tractable question seems to be extending Theorem 3.4
(light-traffic extremality for E

[
WM/G/k

]
without CM restriction) to higher moments.

A deeper question of interest is, when can the ordering of mean sojourn time under
light traffic extend to general arrival rates? Is ordering in both the light and heavy
traffic asymptotes sufficient? Motivated by observations in Chapter 2, another ques-
tion of practical relevance is to identify characteristics of the service distribution
which would yield sharper bounds than achievable by moments. Can principal rep-
resentations be identified when the constraints include these more representative
characterization of the service distribution? What are the simplest non-trivial solu-
tions to the moment problem proposed in Section 3.7?

3.A Proof of Theorem 3.7

As stated previously, to illustrate the main ideas behind the proof, we will instead
consider an M/M/1/1 system in the 2-state environment process defined in Sec-
tion 3.5. For this case, we only need to analyze the time average idle probability. Let
pL and pH denote the idle probabilities at the end of L and H states, respectively, and
let pL and pH be the time average idle probabilities during L and H states, respec-
tively. Our focus is not on deriving the precise coefficients of αi for all i because our
goal is not to propose an approximation by extrapolating the fast-switching asymp-

94

tote (even though we can do so). Instead, we want to identify sufficient functional
dependence of these coefficient on the moments of τL and τH to be able to conclude
that principal representations extremize the performance metric of interest.
Let the distributions of τL be given by:

τL ∼

Exp(γ1) with probability q1
...
Exp(γn) with probability qn

We begin with a simple lemma.

Lemma 3.2 Consider an M/M/1/1 system with arrival rate λ and service rate µ.
Let τ ∼ Exp(γ), and let p(t) denote the idle probability at time t. Then:

p(τ) =
p(0) + µ

γ

1 + µ+λ
γ

(3.7)

Proof: The Chapman-Kolmogorov equation is given by:

dp(t)
dt

= −λp(t) + µ(1− p(t))

Integrating by parts:

p(τ) =
∫ ∞
0

γe−γup(u)du = p(0) + 1
γ

(µ− (λ+ µ)p(τ)) .

By conditioning on the which of the n phases of the L state duration occurs and
using the above lemma, we can obtain pL in terms of pH for the αth system as:

pL =
n∑
j=1

qj
pH + αµL

γj

1 + αµL+λL
γj

(3.8)

= pH

(
1− α(µL + λL)E[τL] +

i+1∑
k=2

αkE
[
τ kL
]
ηk + Θ(αi+2)

)

+ αµLE[τL] +
i+1∑
k=2

αkE
[
τ kL
]
ζk + Θ(αi+2) (3.9)

95

where ηk and ζk are constants (functions of µL and λL only). Similarly,

pH = pL

(
1− α(µH + λH)E[τH] +

i+1∑
k=2

αkE
[
τ kH
]
θk + Θ(αi+2)

)

+ αµHE[τH] +
i+1∑
k=2

αkE
[
τ kH
]
κk + Θ(αi+2) (3.10)

where, again, θk and κk are constants (functions of µH and λH only).
Eliminating pH ,

pL = pL (1− α [(µL + λL)E[τL] + (µH + λH)E[τH]]

+
i∑

k=2
αkσk + αi+1

[
E
[
τ kL
]
ηk + E

[
τ kH
]
θk
]
+ Θ(αi+2)

)

+ α [µLE[τL] + µHE[τH]] +
i∑

k=2
αkψk

+ αi+1
[
E
[
τ i+1
L

]
ζk + E

[
τ i+1
H

]
κk
]
+ Θ(αi+2) (3.11)

where σk and ψk for 2 ≤ k ≤ i involve µL, µH , λL, λH and E[τmL] and τmH for 1 ≤ m ≤ i

(importantly, not E
[
τ i+1
L

]
, E

[
τ i+1
H

]
, or still higher moments). This gives

pL = µavg
µavg + λavg

1 + αi

E[τL] + E[τH]

E
[
τ i+1
L

]
ζk + E

[
τ i+1
H

]
κk

µavg

+
E
[
τ i+1
L

]
ηk + E

[
τ i+1
H

]
θk

µavg + λavg

+
i∑

k=1
αkφk

+ Θ(αi+1) (3.12)

where again φk for 1 ≤ k ≤ i only involve µ, λ, and the first i moments of τL and
τH . A similar expression holds for pH . Note that as α → 0, the idle probability of
the finite buffer system is indeed given by µavg

µavg+λavg .
Finally, the expression for the time avergae idle probability during L states is obtained
as:

pL = 1
E[τL]

n∑
j=1

qj
γj

(
pH + αµL

γj

)
1 + αµL+λL

γj

(3.13)

The contributions to the αi term in pL are made by O(αi) terms in pH , and also from
α qjµL

γ2
j

term in the numerator above. It is straightforward to see that the coefficient
of the αi term will again depend on only the first (i+1) moments, and will be linear
in the (i+ 1)st moments of τL and τH .

96

Chapter 4

Scheduling Policies for Database
Concurrency Control: The
G/G/PS-MPL Model

In this part of the thesis, we focus on designing scheduling policies for the small-
est building block of a server farm: an individual back-end server. Two of the
most common roles of these servers are to act as database servers, or as web/file
servers. The architecture of such servers is based on multi-threaded time-sharing. A
time-sharing server is commonly modeled using the ideal Processor Sharing service
discipline where the server’s aggregate service rate is invariant to the number of re-
quests in service. However, database servers exhibit load-dependent service rate: As
the number of requests at the server increases, initially the service rate increases due
to more efficient use of the resources, but eventually drops due to context switching
overheads and thrashing arising from resource contention. To avoid thrashing, servers
maintain a constant population of threads thus imposing a limit (called the Multi-
Programming-Limit (MPL)) on the maximum number of active threads. Whenever
a request arrives and finds an idle thread, the thread is assigned to processing the
new request. Requests arriving to find all threads active and busy wait in a buffer.
In practice, the MPL is always chosen to maximize the server’s capacity. However,
there are no analytical results to understand the following questions: Does choosing
the peak efficiency point as the MPL minimize the mean response time? If not, what
should the MPL be set to?

97

1 5 10 15 20 25
0.25

0.5

0.75

1

1.25

1.5

Number of jobs at the server (n)

S
er

ve
r

sp
ee

d
µ(

n)

Figure 4.1: A prototypical service rate curve. The peak efficiency point for the
curve shown is K∗ = 5.

4.1 Introduction

The notion of time-sharing has been around since the earliest days of operating
systems, as described in the first paper on Unix [130]. Time-sharing has several
benefits. First, given that jobs often need different resources (CPU, I/O) at different
times, time-sharing allows for increased throughput, typically allowing two jobs to
complete in the same time as one, since they aren’t likely to need the same resources
at the same time. Another major benefit of time-sharing is that it allows small jobs
to get out quickly; the small jobs are not stuck queueing behind big jobs as they
would be in a first-come-first-served (FCFS) system, and therefore they don’t have
to suffer the delays of waiting for big jobs to complete.
However, time-sharing is most effective when there is a fixed Multi-Programming-
Limit (MPL) imposed, so that not too many jobs time-share at once. Allowing too
many jobs to time-share can lead to thrashing (due to the context-switching over-
head), and reduce overall performance. This point has been observed repeatedly,
starting with operating systems research in the 1970’s [48] and 1980’s [12, 26], and
continuing to more recent research in Web server design [53, 88], and database im-
plementation [77, 134]. Specifically, a system has a service rate curve which shows
that the “speed” of the system increases when the number of jobs in the system
increases from 1 to 2, and increases again as the number increases from 2 to 3, but
the system speed starts to drop as the number of jobs in the system increases beyond
some point. Figure 4.1 shows a typical service rate curve (see, e.g. [149, Figure 2]).

98

Model

To model a time-sharing system, we start with a G/G/1/PS queue where PS denotes
“processor sharing,” meaning that if there are n jobs in the system, they each receive
1
n
th of the system’s processing capacity. Job sizes (or service requirements) are i.i.d.,

with S denoting such a generic service requirement, and C2
S its squared coefficient of

variation (SCV). Throughout, we assume that E[X] = 1 without loss of generality.
In order to capture the fact that the speed of the system depends on the number
of jobs at the server, we assume that our G/G/1/PS server has state-dependent
service rates µ(n). That is, when the number of jobs at the server is n, the speed
of the server is µ(n), where µ(n) is chosen to match the system’s service rate curve
(Figure 4.1). As an example, a job of size x seconds which is sharing the server with
n jobs (including itself) for its entire duration would require x

µ(n) ·n time to complete.
We assume that the µ(n) curve is unimodal, that is, initially it is non-decreasing and
then after some point the curve switches to being non-increasing. We define K ′ to
be the smallest MPL which achieves the maximum speed, and K∗ to be the largest
MPL which achieves the maximum speed. For the µ(n) curve in Figure 4.1, K ′ = 4
and K∗ = 5.
To complete our model, we now add an MPL parameter which limits the number of
jobs that are allowed to concurrently share the server to some number MPL=K, and
forces all remaining jobs to wait in a First-Come-First-Served (FCFS) buffer. We
assume that the job sizes of the jobs in the system are not known, and size-based
prioritization is not possible. We denote our model by the notation G/G/PS-MPL.
Figure 4.2 depicts a G/G/PS-MPL system with MPL=4. When we additionally
assume the arrival process to be Poisson, we will denote the system by M/G/PS-
MPL. Throughout, we assume load-dependent service rates µ(n). So, for example, if
there are n = 10 jobs in the G/G/PS-4 system, the server speed will be µ(4), since
only 4 jobs time-share the server, while if there are n<4 jobs in the system, the speed
will be µ(n). Thus the response time for a job of size x will be its queueing time plus
its service time, where the service time will typically be x

µ(4) · 4, assuming that there
are at least 4 jobs in the system during the job’s time in system.
The goal of this chapter is, of course, to answer the question:

What is the optimal MPL for the G/G/PS-MPL model, so as to minimize
mean response time?

Obviously, the service rate curve plays a large role in the answer, and in fact, almost
exclusively the MPL is chosen to maximize efficiency, e.g., [5, 26, 53]. For the curve
shown in Figure 4.1, this would mean choosing the MPL to be K ′ = 4 or K∗ = 5.

99

FCFS

PS

MPL = 4

Figure 4.2: AG/G/PS-MPL queue withMPL = 4. Only 4 jobs can simultaneously
share the server. The rest must wait outside in FCFS order.

Indeed, when the service distribution is exponential, maximizing efficiency is indeed
the right answer regardless of the arrival process. The question of choosing the opti-
mal MPL becomes non-trivial when the service distribution exhibits high variability,
since with high variability service distributions, it is known that PS yields lower mean
response time than FCFS by preventing small jobs from getting blocked behind big
jobs. Thus, the optimal MPL must strike the right tradeoff between parallelism
and efficiency. Towards this goal, we develop the first approximation for the mean
response time of the GI/G/PS-MPL with general service rate curve. Additionally,
we propose a novel heavy-traffic diffusion scaling for the GI/G/PS-MPL model, and
more generally for non-work-conserving systems, and perform approximate analysis
for the stationary distribution of the number of jobs under the proposed scaling. We
will also answer the even harder question of how to dynamically vary the MPL when
the arrival rate is not known and as load conditions change.

Prior Work

The non-triviality of choosing the optimal MPL for high variability service distribu-
tions arises because there is no known analysis even for the M/G/PS-MPL model.
This is not surprising because the M/G/PS-MPL model is a generalization of the
M/G/k model the performance analysis of which, as we have seen in Chapters 2
and 3, is still largely an open problem. The M/G/k system can be modeled by
an M/G/PS-MPL system with MPL = k, and µ(n) = µ · n, where µ is the speed
of the individual servers. While the performance analysis of the Processor-Sharing
queue has been well understood for years, and research on the M/G/1/PS queue
has been abundant [32, 38, 101, 102, 104, 161, 163], very little is known about the
M/G/PS-MPL queue. Most analyses of the M/G/PS-MPL queue do not allow for
load-dependent service rates. For example, Itzhak and Halfin [16] derive a 2-moment
approximation for the mean response time for the M/G/PS-MPL queue where the
service rate is fixed, and Zhang and Zwart [162] have recently derived a heavy-traffic

100

diffusion approximation for GI/G/PS-MPL (referred to as the Limited Processor
Sharing queue in [162]) with a constant service rate curve. There is one analysis
of the M/G/PS-MPL that does involve state-dependent service rates, see Rege and
Sengupta [127], which however assumes that job sizes are exponentially-distributed
while our focus is on high-variability service distributions which are more representa-
tive of computer workloads. While Fredericks [61] warns that the exponential service
distribution is not a good indicator of performance under high variability, he does
not derive an approximation that allows for higher variability. Finally none of the
above theoretical papers have tried to answer the question of how to set the MPL so
as to minimize the mean response time.
While there is a large body of work on adaptive load control and admission control in
resource-sharing systems, all of the existing work either ignores the crucial point of
load-dependent service rates at the server, or the effect of job size variability. Elnikety
et al. [53] propose monitoring the load of the server and admitting tasks as long as
the resulting load does not exceed the peak efficiency point. Blake [26] also proposes
operating at the peak efficiency point, but uses the fraction of jobs waiting in the
virtual memory queue as an indicator of thrashing to control the MPL. Kamra et
al. [88] model the server as an ideal M/G/1/PS system thereby ignoring the state-
dependence of the service rate. They monitor the response time of the departing
jobs, and adjust the dropping probability of the arriving requests to achieve target
response time for the admitted tasks. Our solutions differ from [88] in that we do not
drop requests. Heiss and Wagner [77] propose a feedback mechanism to monitor the
effect that changing the MPL has on the performance metric of interest. However, as
the authors observe, this requires monitoring at least hundreds of departures before
a control decision can be taken. Another drawback of the solution proposed in [77] is
that the authors assume the system reaches stationarity after the control decision has
been taken. This assumption is hardly justified, and can cause incorrect decisions
due to a delay between the time the control action is taken, and the time its effect is
observed. Schroeder et al. [134] consider the problem of setting a static MPL in the
presence of variable job sizes, but the emphasis of [134] is to find a sufficiently small
MPL so that jobs waiting in the FCFS buffer can be priority-ordered. Schroeder
et al. also develop a feedback based controller based on measuring the throughput
and response times, but ignore the state-dependence of service rate. Van der Weĳ,
Bhulai and van der Mei [147] also look at admission control in a PS queue under the
assumption that the service distribution is of phase type and the phases of all the
jobs in the system are known. The authors assume a constant µ(n), and characterize
the optimal admission control policy. In contrast, we assume that no information
about the job sizes is available and hence size-based prioritization is not possible.

101

Summary of Results

The work presented in this chapter makes at least three contributions:
1. Optimal traffic-aware static policies
We derive the first 2-moment approximation for mean response time for theM/G/PS-
MPL queue with state-dependent service rates, and extend this approximation to the
GI/G/PS-MPL model. We had argued in Chapter 2 that no 2-moment approxima-
tion can be accurate for theM/G/k model, and hence by extension for theM/G/PS-
MPL model. Indeed, our approximation is not aimed at accurately predicting the
exact mean response time. Rather, our goal is to well-characterize the behavior of
mean response time as a function of the MPL to enable us to choose the MPL that
achieves near optimal mean response time, and we do find this to be the case. Via
extensive simulation experiments, we demonstrate that the optimal MPL setting can
be much higher than the peak efficiency point under job size variability characteristic
of computer workloads. In fact, we show examples where the optimal MPL operates
the system at 85% of the peak efficiency, while reducing the mean response time by
more than 65% compared to setting the MPL to maximize the service rate. Our
results are verified across a variety of service distributions including Weibull, Pareto
and Hyperexponential distributions. We refer to the static policy which uses the
optimal static MPL as the Opt-Static policy.
2. Near-optimal traffic-oblivious dynamic policies
The above results assume jobs arrive according to a Poisson process with a known
arrival rate and propose the best static MPL. However, we are interested in scenarios
where the mean arrival rate may not be known, or the arrival process may not even
be Poisson, exhibiting burstiness or temporal correlations. Our goal is to design light-
weight MPL control policies that adapt to the traffic characteristics. By light-weight
policies, we mean policies which take decisions based only on the instantaneous
number of jobs in the buffer, Q(t), and the instantaneous number of jobs at the
server, K(t).
We first consider the setting where the arrival process is known to be Poisson, but
with an unknown mean arrival rate. We find that, unsurprisingly, static MPLs are
very poor in handling uncertainty in the mean arrival rate. We then propose two
light-weight MPL control policies, Light-Approx and Poisson-Approx that ro-
bustly handle uncertainty in the mean arrival rate. The key idea in our approach
is that by approximating the original service distribution via a 2-phase degenerate
hyperexponential distribution, we are able to incorporate the effect of job size vari-
ability in our optimization problem, while (Q(t), K(t)) remains a Markov process.
Thus, the control policies we obtain are a function only of (Q(t), K(t)). Via sim-
ulations we show that both Light-Approx and Poisson-Approx are robust at

102

adapting to unknown mean arrival rate, resulting in near-optimal mean response
time (under 19%) for a wide range of arrival rates when compared to the optimal
static MPLs for each arrival rate. The computation of the Poisson-Approx policy
is enabled by a novel combination of Matrix geometric methods with the policy itera-
tion algorithm which allows us to obtain exact solutions of Markov decision processes
with infinite state space, and this technique is likely to be of independent interest.
Next, we consider the setting where not only is the mean arrival rate not known,
but the arrival process is also bursty. We demonstrate that both Light-Approx
and Poisson-Approx are simultaneously robust to unknown mean arrival rate and
burstiness of the arrival process, resulting in less than 25% higher mean response
time than the mean response time for the optimal traffic-aware static MPL in the
worst case. Surprisingly, we find that if the mean arrival rate is known, a static MPL
optimized for a Poisson arrival process with the given mean arrival rate is also near-
optimal when the arrival process is bursty with that mean arrival rate (that is, the
interarrival times are i.i.d. but not exponentially distributed). However, burstiness
can greatly worsen the performance of static policies when the mean arrival rate is
unknown.
3. The first diffusion scaling and approximation for non-work conserving
systems
Diffusion analysis is a powerful tool to approximate the behavior of a physical system
as a stochastic process, and its application to queueing theory started with the
work of Kingman [98] for single-server systems, and recently, relevant to our work,
a diffusion scaling and analysis was proposed for the GI/G/PS-MPL model with
µ(n) restricted to be a constant function [162]. Both of these systems are “work-
conserving”. The PS-MPL model we are considering is non-work-conserving in the
sense that depending on the state of the system, the capacity or service rate available
can be less than the maximum capacity. While diffusion scalings and approximation
exist for specific examples of non-work-conserving systems (e.g., the GI/G/k model,
networks of queues), we propose the first approach to systematically obtain heavy
traffic diffusion scaling for general non-work-conserving systems. Our key idea is to
reverse-engineer the parameters (service rates) of the systems we aim to approximate
so that the limiting distribution of the number of jobs in the system under the scaling
converges to the distribution of the number of jobs in the original unscaled system
under the tractable M/M/ arrival and service processes. Thus the approximation
obtained via our proposed scaling is representative of the original system, and we
believe that even for the GI/G/k model it would yield a sharper approximation than
existing scalings. As mentioned, the real strength of a diffusion scaling is developing
a process level approximation for the queueing system of interest, but a rigorous
treatment is beyond the scope of the present thesis. In this thesis, we will restrict

103

ourselves to an approximate analysis for the stationary distribution of the number
of jobs under our proposed diffusion scaling.

Outline

In Section 4.2, we propose an approximation to the M/G/PS-MPL model and solve
the problem of choosing the optimal static MPL for a general service distribution
under the assumption that the arrival process is Poisson with a known arrival rate.
In Section 4.3, we begin by demonstrating that the approach of choosing a single
static MPL is fundamentally limited in its ability to handle variability in traffic
arrival patterns. In Sections 4.3.2 and 4.3.3, we construct our dynamic MPL control
policies Light-Approx and Poisson-Approx, respectively. In Section 4.3.4, we
evaluate these dynamic policies with respect to (i) robustness to unknown arrival
rate, and (ii) robustness to burstiness of the arrival process against optimal traffic-
aware static MPL policies. In Section 4.4, we present our heavy-traffic scaling for non-
work-conserving systems and present preliminary approximations for the stationary
behavior.

4.2 Choosing the best static MPL

Our first goal in this chapter is to address the question of how to optimally set a
multi-programming limit in a resource-sharing system so as to minimize the mean
response time (equivalently, minimize the mean number of jobs in the system). We
assume that the arrival process is Poisson with a known mean arrival rate, and that
the service distribution is known. In Section 4.2.1, we present some stochastic mono-
tonicity results for the performance of PS-MPL systems under fairly general service
distributions which motivate the need to appropriately choose the MPL based on
the service distribution. In Section 4.2.2, we provide a simple approximation for the
mean number of jobs in an M/G/PS-MPL system with state-dependent service rate
involving only the first two moments of the service distribution, and demonstrate a
service distribution for which the approximation is, in fact, exact. In Section 4.2.3,
we present the Opt-Static policy, which uses our approximation to choose a static
MPL based on the mean arrival rate and the first two moments of the service distri-
bution. Even though our approximation involves only the first two moments of the
service distribution, we show via experiments that it leads to optimal or near-optimal
MPL selection for a range of distributions used to model computer workloads.

104

4.2.1 Stochastic monotonicity results

Let F be a distribution function for a non-negative random variable X, and f be the
corresponding density function.

Definition 4.1 Distribution F is said to belong to the class DFR (IFR) if the func-
tion h(x) = f(x)

1−F (x) is decreasing (increasing).

Definition 4.2 Distribution F is said to belong to the class DMRL (IMRL) if the
function R(a) = E[X − a|X ≥ a] is decreasing (increasing).

The classes IMRL (Increasing Mean Residual Life, also referred to as NWUE for
New Worse than Used in Expectation) and DFR (Decreasing Failure Rate) both
capture the notion that young jobs (those who have received less service) are more
likely to finish earlier than old jobs. The condition DFR is equivalent to saying that
the residual life of young jobs is stochastically smaller than the residual life of old
jobs, while IMRL is equivalent to saying that the mean residual life of young jobs is
smaller than the mean residual life of old jobs.
The following is a corollary of [121, Theorem 1].

Proposition 4.1 In a G/G/PS-MPL system with a DFR service distribution, the
number of jobs in the system at any time is a stochastically decreasing function of
the MPL K, for K ≤ K∗. For an IFR distribution, the number of jobs in the system
is a stochastically increasing function of the MPL K, for K ≥ K ′.

A similar proposition can be proved for the mean number of jobs (equivalently mean
response time) by relaxing the assumptions on the arrival process and the service
distribution.

Proposition 4.2 In an M/G/PS-MPL system with an IMRL service distribution,
the mean number of jobs in the system is a decreasing function of the MPL K, for
K ≤ K∗. For a DMRL distribution, the mean number of jobs in the system is an
increasing function of the MPL K, for K ≥ K ′.

Proof: From [128, Theorem 3.14], for IMRL distributions, it suffices to prove that
for all x, the quantity V x, which denotes the mean workload in the system due to
jobs with attained service less than x, is decreasing in the MPL K for K ≤ K∗.
From the proof of [121, Theorem 1], this is easily seen to hold. The proof for DMRL
distributions is analogous.

105

Intuitively, when the service distribution is DFR or IMRL, we prefer to serve young
jobs as they are more likely to finish earlier. By choosing an MPL smaller than K∗,
we do not gain serving capacity, since K∗ achieves the maximum speed, and simul-
taneously limit the ability of new jobs (which are likely to be small) to enter service.
Similarly, for IFR or DMRL service distributions, we prefer to serve old jobs as they
are more likely to finish earlier. By choosing an MPL larger than K ′, we do not
gain aggregate serving capacity, and we simultaneously reduce the capacity available
to old jobs, as young jobs are allowed into service. Job size distributions belonging
to class DFR and IMRL correspond to distributions which are more variable than
the exponential distribution, and the above results show that there is no benefit in
running at an MPL smaller than K∗ in this case. However, there might be benefit in
operating at an MPL higher than K∗, increasing the chance for small jobs to enter
service and finish quickly even while losing aggregate service capacity in the process,
as we show next.

4.2.2 2-moment approximation for M/G/PS-MPL

As mentioned earlier, there are no known analytical expressions or approximations
for the mean number of jobs in an M/G/PS-MPL system with state-dependent ser-
vice rate. We now propose a simple approximation for the mean number of jobs
in an M/G/PS-MPL system involving only the first two moments of the service
distribution.

Proposition 4.3 Let E[N] denote the mean number of jobs in an M/G/PS-MPL
system with arrival rate λ, state-dependent service rate µ(n) when there are n jobs
at the PS server, with MPL=K, and a general service distribution with mean 1 and
SCV C2

S. Then,

E[N] ≈ E
[
NS
Exp(K)

]
+ C2

S + 1
2 E

[
NQ
Exp(K)

]
(4.1)

where E
[
NQ
Exp(K)

]
and E

[
NS
Exp(K)

]
, respectively, denote the mean number of jobs

in the FCFS Queue and at the PS Server in an M/M/PS-MPL with the same state-
dependent service rates as the original M/G/PS-MPL system, with MPL=K and
exponential service distribution with mean 1. The expressions for E

[
NQ
Exp(K)

]
and

E
[
NS
Exp(K)

]
are given by:

E
[
NQ
Exp(K)

]
= φK+1

1 +∑∞
i=1 φi

 1
1− λ

µ(K)

2

106

E
[
NS
Exp(K)

]
=
∑K
i=1 i · φi +K ·∑∞i=K+1 φi

1 +∑∞
i=1 φi

where φi’s are the ratio of the stationary probabilities and the idle probability for an
M/M/PS-MPL, and are given by:

φi =

Πi
j=1

λ
µ(j) 1 ≤ i ≤ K,

φK ·
(

λ
µ(K)

)i−K
i > K.

Proposition 4.3 can be seen as a generalization of the Lee and Longton [108] ap-
proximation for the mean number of jobs in an M/G/K system, and agrees with the
approximation given by Avi-Itzkah and Halfin when the service rate is independent
of the state [16]. In Proposition 4.4, we show that approximation (4.1) is in fact
exact for a degenerate hyperexponential distribution, H∗, with mean 1 and squared
of coefficient of variation C2

S.
Recall that a degenerate hyperexponential distribution with mean 1 and SCV C2 is
defined by:

H∗(C2) ∼

0 with probability 1− q = C2−1
C2+1

Exp
(

2
C2+1

)
with probability q = 2

C2+1

where Exp(ν) denotes an exponential random variable with mean 1/ν.

Proposition 4.4 The mean number of jobs in an M/H∗(C2
S)/PS-MPL system with

arrival rate λ, state-dependent service rate µ(n) when there are n jobs at the PS
server, and MPL=K is given by:

E
[
NH∗(C2

S)(K)
]

= E
[
NS
Exp(K)

]
+ C2

S + 1
2 E

[
NQ
Exp(K)

]
where E

[
NQ
Exp(K)

]
and E

[
NS
Exp(K)

]
are as defined in Proposition 4.3.

Proof: We first observe that the H∗(C2
S) distribution consists of two classes of jobs,

those of size 0 and those belonging to the exponential branch. The response time and
hence the number of jobs belonging to the exponential class in the M/H∗(C2

S)/PS-
MPL system is not affected by the presence of zero-sized jobs. Therefore, the contri-
bution to the mean number of jobs in the system consisting of jobs in the exponential
class is precisely E

[
NS
Exp

]
+E

[
NQ
Exp

]
. The zero-sized jobs only contribute to the mean

number in queue. However, since the scheduling policy is size-independent, the wait-
ing time distribution of a zero-sized job is the same as the waiting time distribution

107

of a job belonging to the exponential class, but the arrival rate of zero-sized jobs
is C2

S−1
2 times the arrival rate of the exponential class. Therefore, the contribution

of the zero-sized jobs to the mean number in system is C2
S−1
2 E

[
NQ
Exp

]
, proving the

proposition.
In Section 4.2.4 we extend Proposition 4.3 to obtain an approximation for aGI/G/PS-
MPL system involving the first two moments of the interarrival time and service
distributions.

4.2.3 The Opt-Static policy

We now introduce the Opt-Static policy to choose a near-optimal static MPL. The
Opt-Static policy simply sets MPL = κ where κ denotes the MPL that minimizes
the right hand side of (4.1):

κ = arg minK
{
E
[
NS
Exp(K)

]
+ C2

S + 1
2 E

[
NQ
Exp(K)

]}
(4.2)

We now show that the Opt-Static policy is a good heuristic for minimizing the
mean response time in an M/G/PS-MPL system with known mean arrival rate. In
Figure 4.3, we present simulation results for the following three service distributions
all with mean 1 and C2

S=19:

• Weibull distribution with scale parameter 1
6 and shape parameter 1

3 .

• Bounded Pareto distribution with shape parameter α = 1.1 and support [0.182, 178.759].

• A two-phase hyperexponential (H2) distribution whose parameters are chosen
so that, r, the fraction of the total load constituted by the phase with the
smaller mean, is 0.25.

The results in Figure 4.3 assume that the state-dependent service rates of the PS
server are given by the µ(n) curve shown in Figure 4.1. We will use the service rate
curve shown in Figure 4.1 in all the numerical and simulation evaluations in this
paper. Detailed simulation results for more scenarios appear in [68].
The main message of Figure 4.3 is that the optimal MPL can be much larger than
the peak efficiency MPL of K∗ = 5. For example, when λ = 0.8, the optimal
static MPL for the bounded Pareto distribution is 11 with a resulting mean number
of jobs around 3.4, while K∗ = 5 results in 35% larger mean number of jobs at
approximately 4.6. Second, as can be seen, even though approximation (4.1) is not

108

extremely accurate at predicting the mean number of jobs in the system for general
distributions (and, as we have mentioned repeatedly, no approximation based on only
the first two moments can be), it is robust in predicting the optimal or near-optimal
MPL. Our approximation recommends MPL = 14 and the mean number of jobs in
the system using our recommended MPL is around 3.45.

4 6 8 10 12 14 16 18
2

2.5

3

3.5

4

4.5

5

MPL

E
[N

]

Pareto 1.1
Weibull
H

2
 (r=0.25)

Our approx.

(a) λ = 0.7

4 6 8 10 12 14 16 18
3

4

5

6

7

8

MPL

E
[N

]

Pareto 1.1
Weibull
H

2
 (r=0.25)

Our approx.

(b) λ = 0.8

4 6 8 10 12 14
7

8

9

10

11

12

13

14

MPL

E
[N

]

Pareto 1.1
Weibull
H

2
 (r=0.25)

Our approx.

(c) λ = 0.9

Figure 4.3: The mean number of jobs in the system vs. MPL for the following distribu-
tions, all with mean 1 and SCV 19: (i) Bounded Pareto distribution with shape parameter
1.1 (ii) Weibull distribution (iii) Two-phase hyperexponential distribution with 25% of load
constituted by the branch with the smaller mean. The arrival process considered is Poisson
with the indicated mean arrival rate, λ. For reference, we have also shown our 2-moment
approximation for the mean number of jobs in the system. The optimal MPL for each
curve is shown with a circle.

Using approximation (4.1), it is easy to see why the mean number of jobs in the
system is minimized at a larger MPL than the peak efficiency MPL of K∗ when
job sizes have high variability. To see this, start by considering the case of low
variability: C2

S = 1. For this case, approximation (4.1) suggests that the optimal
MPL is in fact K∗. As we increase the MPL beyond K∗, if the traffic intensity is
not very high, E

[
NQ
Exp

]
falls while E

[
NS
Exp

]
increases. For a large enough C2

S, the
fall in C2

S+1
2 E

[
NQ
Exp

]
, and hence in the mean waiting time in the FCFS buffer, will

be larger than the rise in E
[
NS
Exp

]
, which is the component representing the mean

time to process a job at the PS server. Therefore, setting an MPL larger than K∗,
and allowing small jobs to overtake the big jobs, leads to an overall reduction in the
mean response time.
We would like to point out that the question of choosing the optimal multi-programming
limit is closely related to the question of choosing the optimal number of servers in
a multiserver system (that is, one fast vs. K slow servers), such as the M/G/K,
but with a fundamentally different trade-off. In the presence of highly variable job

109

sizes, one wants to choose a large number of servers in a multiserver system to pre-
vent small jobs from getting blocked behind large jobs. Similarly, in the PS-MPL
system, we want to choose a high MPL to allow small jobs to overtake large jobs. In
both cases, we are limited in our ability to increase the parallelism due to capacity
wastage. While in a multiserver system, capacity is wasted when there are less than
K jobs in the system, in the PS-MPL system, capacity is wasted when the multi-
programming limit K is set larger than the peak efficiency point K∗, and there are
more than K∗ jobs in the system. Therefore, in a multiserver system, high paral-
lelism (large number of servers) is preferred when the traffic intensity is high, while
in a PS-MPL system a high degree of parallelism (large MPL) is preferred when the
traffic intensity is low.

4.2.4 Approximation for GI/G/PS-MPL

Proposition 4.5 Let E[N] denote the mean number of jobs in a GI/G/PS-MPL
system with state-dependent service rate µ(n) when there are n jobs at the PS server,
MPL=K, a general service distribution with mean 1 and SCV C2

S ≥ 1, and a general
interarrival time distribution with mean 1

λ
and SCV C2

A ≥ 1. Then,

E[N] ≈ E
[
NSExp

]
+ C2

S + 1
2 E

[
NQExp

]
where E

[
NSExp

]
and E

[
NQExp

]
denote, respectively, the mean number of jobs at the

PS Server and in the FCFS Queue in a BPP/M/PS-MPL system with the same
state-dependent service rates as the original GI/G/PS-MPL system, MPL=K, ex-
ponential service distribution with mean 1, mean arrival rate λ and i.i.d. geometric
batch sizes with mean C2

S+C2
A

C2
S+1 . The expressions for E

[
NSExp

]
and E

[
NQExp

]
are given

by

E
[
NSExp

]
=
∑K
i=1 i · φi +K ·∑∞i=K+1 φi

1 +∑∞
i=1 φi

(4.3)

E
[
NQExp

]
= φK+1

1 +∑∞
i=1 φi

(
C2
S + C2

A

(C2
S + 1)(1− ρ)

)2

(4.4)

where

φi =

Πi
j=1

λ·(C2
S+1)+µ(j−1)·(C2

A−1)
(C2
S+C2

A)µ(j) 1 ≤ i ≤ K

φK ·
(
ρ·(C2

S+1)+C2
A−1

C2
S+C2

A

)i−K
i > K

and ρ = λ
µ(K) .

110

In the special case of state-independent service rate, i.e. µ(n) = µ for all n, our
approximation for the mean number in system simplifies to:

E[N] ≈ (1− pb)
C2
S + C2

A

C2
S + 1 ·

ρ

1− ρ + pb
C2
S + C2

A

2 · ρ

1− ρ

where pb =
(
1− (1− ρ) C2

S+1
C2
S+C2

A

)K
denotes the probability (approximation thereof)

that a job sees at least K jobs in the system on arrival. The above approxima-
tion is similar to the heavy-traffic approximation for GI/G/PS-MPL systems with
state-independent service rates proposed by Zhang and Zwart [162], except that

pb ≈ ρ

C2
S

+1
C2
S

+C2
A

K
in [162]. Indeed, in heavy-traffic (ρ → 1, K → ∞ as ρK → θ for

some constant θ), the two approximations converge.
Similar to Proposition 4.4, we can show the existence of a GI arrival process with an
interarrival time SCV of C2

A, and a service distribution with SCV C2
S (the H∗(C2

S)
distribution) for which the approximation proposed in Proposition 4.5 is exact.

Proposition 4.6 The mean number of jobs in an BPP/H∗(C2
S)/PS-MPL system

with mean arrival rate λ, i.i.d. batch sizes distributed according to a Geometric
distribution with mean C2

A+1
2 , state-dependent service rate µ(n) when there are n jobs

at the PS server, and MPL=K is given by:

E
[
NC2

S ,C
2
A
(K)

]
= E

[
NSExp(K)

]
+ C2

S + 1
2 E

[
NQExp(K)

]
where E

[
NQExp(K)

]
and E

[
NSExp(K)

]
are as defined in Proposition 4.5.

4.3 Self-Adaptive MPL control policies

In the previous section, we considered the question of choosing the optimal static
MPL under the assumption that the arrival process is Poisson, and that the arrival
rate, λ, was known accurately. We begin this section by showing that the method-
ology of choosing a static MPL based on assuming a mean intensity for the Poisson
arrival process is very fragile. In Table 4.1 we consider a Weibull service distribution
with mean 1 and C2

S = 19, and show the mean number of jobs in the system for
various settings of MPL and the mean arrival rate λ. We assume the service rate
curve shown in Figure 4.1 with K∗ = 5. The optimal MPL in Table 4.1 varies from
15, when λ = 0.65, to 5, when λ = 1.15. In fact, choosing the optimal static MPL
assuming λ ≤ 0.85 results in an unstable system when λ = 1.15.

111

MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.
λ = 0.65 2.96 2.47 2.25 2.14 2.09 2.05 2.04 2.02 2.02 2.02 2.01 2.01 ± 0.007
λ = 0.75 4.84 3.88 3.44 3.17 3.00 2.89 2.84 2.79 2.77 2.76 2.75 2.76 ± 0.020
λ = 0.85 8.49 6.79 6.02 5.54 5.22 4.98 4.90 4.85 4.92 5.01 5.21 5.58 ± 0.294
λ = 0.95 15.96 13.19 12.52 12.16 12.17 12.63 13.49 15.03 18.05 23.13 32.88 60.79 ± 2.483
λ = 1.05 33.92 29.51 31.08 34.98 40.70 52.55 72.72 126.90 ± 4.273
λ = 1.15 92.84 87.18 114.99 183.61 ± 5.606

Table 4.1: Numerical results for mean number of jobs in system for different values
of MPL and arrival rates. The arrival process was Poisson, and the service distribu-
tion was Weibull with mean 1, SCV 19. The optimal value for each setting of the
mean arrival rate has been boldened.

There are at least two ways around this problem: The first is to robustly choose
a single static MPL that works well for all λ. This necessarily implies operating
the system at peak efficiency K∗, which we have already seen can be far from the
optimal. The second approach is to learn the parameters of the arrival process and
then choose the optimal static MPL for that particular arrival process. However,
this approach will fail to adapt to variations in traffic on time scales smaller than
needed for the learning algorithm to converge.
In this section, we are motivated by the question:

Are there light-weight, traffic-oblivious MPL control policies which per-
form as well as the traffic-aware optimal static MPL policies?

By a traffic-oblivious control policy, we mean a policy that does not depend on
knowing the arrival rate or the higher order characteristics of the arrival process.
In this section, we develop two dynamic MPL control policies - Light-Approx and
Poisson-Approx. Section 4.3.1 highlights the key ideas in our approach. Sec-
tion 4.3.2 and Section 4.3.3, respectively, present the numerical algorithms involved
in the construction of our traffic-oblivious dynamic MPL control policies Light-
Approx and Poisson-Approx. In Section 4.3.4 we evaluate our dynamic MPL
control policies via simulations and demonstrate that our proposed MPL control
policies exhibit robustness to both the traffic intensity and the burstiness of the
arrival process.

4.3.1 Key Steps in Our Approach

Recall that, given a service distribution, our goal is to obtain MPL control policies
which are (i) light-weight: adjust the MPL based only on the instantaneous queue

112

length, Q(t), and the instantaneous MPL, K(t), and (ii) traffic-oblivious: robust to
variations in the arrival process.
To achieve our first goal, we consider a special class of service distributions, the
degenerate hyperexponential distribution (H∗), which is a mixture of an exponential
distribution, and a point mass at 0. Jobs of size 0 do not spend any time at the
server. This coupled with the memoryless property of the exponential distribution,
ensures that (Q(t), K(t)) is a Markov process. This ensures that we can obtain a
light-weight dynamic MPL control policy, since any optimal MPL control policy for
the H∗ service distribution will only take decisions based on (Q(t), K(t)).
The next step in our approach is solving a stochastic dynamic programming prob-
lem to construct families of candidate dynamic MPL control policies. The Light-
Approx and Poisson-Approx policies correspond to two families of candidate
policies. Under Light-Approx, the family of candidate policies is a set, {πp},
where a particular policy πp is constructed by solving an optimal MPL control prob-
lem for an H∗ service distribution with parameter p (Eqn. (4.7)). Thus, while there
is some unique H∗(C2

S) service distribution that matches the first two moments of
the true service distribution, the family is constructed by looking at a range of H∗
distributions. To solve the optimal control problem, we assume that we start in some
initial state (Q0, K0), and find the policy that minimizes the sum of response time of
jobs in the system given that there are no further arrivals. In the case of Poisson-
Approx, the family of candidate policies is the set, {πλp}, where a particular policy
πλp is obtained by solving an optimal control problem for a Poisson arrival process
with intensity λp and the H∗(C2

S) service distribution to minimize the time-average
mean number of jobs in the system.
The final step in our approach is to choose one member of the family of candidate
dynamic policies, so that the chosen policy is robust to the arrival process. To
achieve this goal, we evaluate the candidate policies in the family for a Poisson
arrival process with rates lying in an interval [λ, λ] and H∗(C2

S) service distribution.
Let E[N∗(λ)] denote the mean number of jobs in the system for a Poisson arrival
process with intensity λ, and H∗(C2

S) service distribution, under the Opt-Static
policy. The quantity E[N∗(λ)] is given by Proposition 4.4. Let E[Nπ(λ)] denote the
mean number of jobs in the system for the H∗(C2

S) service distribution and Poisson
arrival process with intensity λ under a dynamic MPL control policy π. We define
the worst-case relative error for a policy π as:

ε(π) = max
λ∈[λ,λ]

E[Nπ(λ)]− E[N∗(λ)]
E[N∗(λ)] (4.5)

Given a family of candidate policies {πa} with parameter a taking its values from

113

some set A, we choose the policy that minimizes the worst case relative error:

a∗ = arg mina∈A ε(πa) (4.6)

Thus, in our case, πp∗ denotes the Light-Approx policy, and πλ∗p denotes the
Poisson-Approx policy.

4.3.2 The Light-Approx policy

As a first step towards deriving the Light-Approx policy, we begin in Section 4.3.2
by formulating and solving a light-traffic optimal MPL control problem. We find that
the solution to this problem exhibits both a fluid component, to guarantee stability,
and a stochastic component, to handle variability in job sizes. In Section 4.3.2, we
use the solution of the light-traffic optimal control problem to construct a family,
{πp}, of simple, light-weight MPL control policies, and in Section 4.3.2 we sketch
the use of Matrix-Geometric methods to evaluate this family of candidate policies to
enable selection of the appropriate policy, Light-Approx.

A light-traffic optimal control problem

In this section we solve an optimal light-traffic MPL control problem parametrized
by p, by considering the following degenerate hyperexponential service distribution :

H∗(p) ∼

0 with probability p
Exp (1) with probability 1− p

(4.7)

We assume that we start our PS-MPL system in some state (Q0, K0) at time t = 0,
where a departure has taken place at time t = 0−. The state variable Q0 denotes the
queue length at t = 0− and K0 is one more than the number of jobs at the PS server
left behind by the last departure. We assume that multiple zero-sized jobs admitted
at the same time leave together. Thus K0 does not necessarily denote the MPL at
time t = 0−. However, by our assumption of an H∗(p) service distribution, each of
the (K0 − 1) jobs at the server has remaining service requirement independent and
identically distributed as Exp(1). Note that while the zero-sized jobs do not spend
any time at the server, they still experience delays while waiting in the FCFS buffer.
We assume that there are no more arrivals (hence the light-traffic). We can now take
one of the following actions at time t = 0:

1. Decrease MPL: We do not admit another job from the queue into the PS
server, decreasing the MPL to K0 − 1.

114

2. Keep MPL same: We admit only one job from the queue into the PS server
to replace the departing job, maintaining the MPL at K0.

3. Increase MPL by k: We admit k+1 jobs from the queue into the PS server,
increasing the MPL to K0 + k.

Our aim is to take the optimal action in each state so as to achieve the following
goal:
Minimize the expected sum of response times of jobs present in the system at time
t = 0, given that there are no further arrivals.
If our goal was to minimize the time until the system empties, the optimal control
would be to operate at MPL of K∗. However our performance metric is the mean
response time. Note that we do not allow the preemption of an executing job to
decrease the MPL. This is important because in a transaction processing system, for
instance, killing an executing task involves unrolling the execution trace for the task
and is significantly expensive. In our framework, we can only alter the MPL when a
job departs, and hence we assume that there are no costs associated with changing
the MPL.
The solution of the above optimal-control problem can be obtained in a straightfor-
ward fashion via stochastic dynamic programming. To do so, we associate a cost
function c(Q,K) with each state (Q,K), which represents the optimal expected sum
of response times, given that we start in state (Q,K) at time t = 0, and an action
function π(Q,K), representing the optimal action in state (Q,K). The function
π(Q,K) takes values in the range {−1, 0, 1, 2, . . .} with −1 representing the action
‘decrease MPL’, 0 representing the action ‘keep MPL same’ and k > 0 representing
the action ‘increase MPL by k’.
The cost of states with zero queue length is simply:

c(0, K) =
K−1∑
i=1

i

µ(i) (4.8)

To see why the above is true, note that since the queue is empty and we do not allow
preemption of executing jobs, the cost of state (0, K) is the expected sum of response
times of the K − 1 jobs executing at the server. The mean time until the departure
of the first job is given by 1

µ(K−1) since the server is processing at rate µ(K−1). The
time until the first departure gets added to the response time of all the jobs in the
system, and contributes K−1

µ(K−1) to c(0, K), and so on for subsequent departures.
We represent by c−1(Q,K) the cost of state (Q,K) given that we take action ‘decrease
MPL’ in state (Q,K). Similarly, ck(Q,K) (k ∈ {0, . . . , Q − 1}) denotes the cost of

115

state (Q,K) given that we take action ‘increase MPL by k’ in state (Q,K). Given
c−1(Q,K) and ck(Q,K), the optimal action π(Q,K) and the cost function c(Q,K)
are:

π(Q,K) = arg minδ cδ(Q,K) δ ∈ {−1, . . . , Q− 1} (4.9)
c(Q,K) = cπ(Q,K)(Q,K) (4.10)

The function c−1(Q,K) is given by:

c−1(Q,K) = Q+K − 1
µ(K − 1) + c(Q,K − 1) (4.11)

and ck(Q,K) is given by:

ck(Q,K) =
[
Q+K − 1
µ(K + k) + c(Q− k − 1, K + k)

]
· (1− p)k+1

+
k+1∑
i=1

c(Q− k − 1, K + k + 1− i) ·
(
k + 1
i

)
(1− p)k+1−ipi (4.12)

In deriving the last equation, we have made use of the assumption that if multi-
ple zero-sized jobs are admitted simultaneously, then they all leave together. This
maintains the invariant that the K in state descriptor (Q,K) is one larger than the
number of jobs at the server belonging to the exponential class, and we do not have
to keep track or estimate the number of zero-sized jobs.
While in the problem formulation above, we have not imposed an upper bound on
k, in practice we restrict k ≤ ∆max to prevent sudden jumps in MPL. For all the
simulation results in this paper, we set ∆max = 1.

A family of traffic-oblivious MPL control policies

In Section 4.3.2 we formulated an optimal control problem parametrized by p, the
fraction of zero-sized jobs in theH∗(p) service distribution. By varying the parameter
p, we obtain a family of MPL control policies. Let πp denote the action function for
the control problem with parameter p. Figure 4.4 shows the structure of πp for
p = 0.3 and p = 0.5 and the service rate curve shown in Figure 4.1. For example,
if the current state is (Q = 21, K = 10), under the p = 0.3 policy, the control is to
decrease the MPL to 9 by not admitting a new job, while under p = 0.5 policy, the
optimal control is to increase the MPL to 11 by admitting two jobs. The structure
of the optimal solution has some interesting features:

116

Queue Length

M
P

L

0 5 10 15 20 25 30
0

5

10

15

20

INCREASE MPL

DECREASE MPL

(a) p = 0.3
Queue Length

M
P

L

0 10 20 30 40 50 60
0

5

10

15

20

INCREASE MPL

DECREASE MPL

(b) p = 0.5

Figure 4.4: The structure of the Light-Approx control policy for two values of
the parameter p and ∆max = 1. The dark shaded area represents the region where
the control decision is to ‘increase MPL’, and the light shaded region represents the
decision ‘keep MPL same’. Decision in the unshaded area is to decrease MPL.

1. For a given p, there is some minimum queue length Q(p) such that the optimal
action for Q > Q(p) is to operate at the peak efficiency point. In Figure 4.4(a),
Q(p) = 20 and the optimal control for Q > Q(p) is to attain the peak efficiency
MPL of K∗ = 5. We call this the fluid component of the control policy. This
fluid component provides robustness to the dynamic MPL policy against high
arrival rates. Furthermore, as p increases, the threshold Q(p) increases.

2. As the queue length decreases, the stochastic component of the control takes
over, gradually increasing the MPL to a point with lower service rate than the
most efficient point. This stochastic component gives our MPL control policy
the ability to combat the job-size-variability when the traffic intensity is low.

The structure of the optimal control is quite intuitive. Whenever a decision to
increase the MPL has to be taken, there are two scenarios: (i) with probability p the
admitted job is of size zero in which case the decrease in server speed does not hurt
any one, and (ii) with probability 1− p, the admitted job belongs to the exponential
class and in this case adds to the waiting time of everyone in the queue. If we define
the ‘threshold queue length’ to be the point when we should increase the MPL and
move to a less efficient service rate, then we see that this threshold queue length is
an increasing function of p.
Given any action function π, we can translate it into a dynamic MPL control policy
via the procedure in Figure 4.5.

117

Algorithm MPL_control(π)
Case: New arrival

• LetQ be the queue length andK be the MPL immediately after the arrival.

• Let π(Q,K + 1) = k

– if k ≥ 0: admit k + 1 jobs from the head of the FCFS buffer into the
server and increase MPL to K + k + 1

– if k < 0: do nothing

Case: Departure

• Let Q be the queue length and K be the MPL immediately before the
departure.

• Let π(Q,K) = k

– if k ≥ 0: admit k + 1 jobs from the head of the FCFS buffer into the
server and set MPL to K + k

– if k < 0: reduce MPL to K − 1 by not admitting any job from the
FCFS buffer

Figure 4.5: The dynamic MPL control policy obtained from the action function π.

The Light-Approx control policy for a distribution with SCV C2
S is now chosen to

be πp∗ such that:

p∗ = arg minp ε(πp) (4.13)

where ε(·) is given by (4.5). Experimentally, it suffices to carry out the optimization
over a small set of parameters p (at a coarse granularity).

Evaluation of dynamic MPL control policies via Matrix-geometric analysis

In this section, we outline a method to numerically evaluate the mean number of
jobs, E[Nπ(λ)], for a dynamic MPL control policy π under the assumption of the
H∗(C2

S) service distribution and a Poisson arrival process of intensity λ. Note that in
Proposition 4.4 with static MPL, we were able to simplify the analysis of the H∗(C2

S)
service distribution by ignoring the zero-sized jobs and focusing on the exponential
class. This was because the admission control policy was independent of the queue-
length. However, with a dynamic policy that looks at the queue-length, we need

118

dK∗

K+, ? K+

K+ − 1

K+ − 2

K∗, ?
K∗ − 1, ?

Q = 1 Q∗ Q∗ + 1

K+

K+ − 1

K+ − 2

K∗

K∗ − 1, ?

K+

K+ − 1, ?

K+ − 1

0, ?

0

K+, ?

K+

K+ − 1, ?

K+ − 1

0, ?

K+, ?

K+

K+ − 1, ?

K+ − 1

K∗

K∗ − 1, ?K∗

K∗ − 1, ?

K∗ + 1

2

1

dK+

1

dK+−1

aK+

q

1− q

q2

2q(1− q)

(1− q)2

1

dK+

1

dK+−1

aK+−1

aK+

1− q

q
dK+

1

aK+

1

dK+−1

1− q

q

q

1− q

1
1

0

aK+ aK+

dK+ dK+

aK+−1 aK+−1

dK+−1 dK+−1

q

1− q

q

1− q

aK∗ aK∗

aK+−2

aK∗

dK∗

dK+−2 dK+−2

aK+−2

aK+−1aK+−1

dK∗

Figure 4.6: The embedded Markov chain for evaluation of dynamic MPL control policies. We
use an to denote λ

λ+q·µ(n) and dn = 1 − an. For decision states with multiple alternatives (e.g.,
(1,K+− 1, ?) and (2,K∗− 1, ?)), the dash-dotted arcs correspond to the decision to not admit any
jobs, dashed arcs correspond to the decision to admit one job, and dotted arcs correspond to the
decision to admit two jobs.

119

to keep track of how many zero-sized jobs are in the system. For succinctness, let
q = 2

C2
S+1 .

Assuming that under the dynamic policy π, there is some queue-length Q∗ such
that the optimal control for any queue length Q ≥ Q∗ is to operate at the highest
efficiency point K∗, we can model the system by a Markov chain with a repeating
structure. The states of the Markov chain are pairs (Q,K) with Q denoting the
queue length, and K denoting the number of jobs of the exponential class at the
server. However, due to the zero-sized jobs, we can have arbitrarily large drops in
Q. For example, if we are in state (Q = 10, K = 5) and a departure takes place,
and if all the jobs in the queue have size 0, which happens with non-zero probability,
we jump to state (Q = 0, K = 4). To take care of this problem, we introduce
decision states represented as (Q,K, ?). We transition to the decision state (Q,K, ?)
immediately after a departure takes place from the state (Q,K + 1), or if an arrival
takes place while in state (Q − 1, K) and Q < Q∗. The state (Q,K, ?) implements
the admission control policy π, as well as handling zero-sized jobs, because now the
jumps are bounded. For example, if the control in state (Q,K, ?) is to admit 1 job,
then with probability (1− q) the job is of size 0, and we transition to (Q− 1, K, ?);
otherwise, with probability q we transition to (Q − 1, K + 1). However, the rate of
transitioning from the decision states is infinite. Thus we will find it suitable instead
to work in the framework of Semi-Markov processes. We will consider the embedded
discrete time Markov chain where the transitions correspond to arrivals, departure
and decisions taken in decision states in the original continuous time system. The
embedded Markov chain is shown in Figure 4.6. We then solve for the stationary
distribution of this embedded Markov chain via Matrix-Geometric method. We
would like to point out that due to the special structure of the Markov chain in
Figure 4.6 (the backward transition matrix is of rank 1), the rate matrix involved in
the Matrix-geometric solution has an explicit solution in our case [125]. Finally, we
obtain the stationary distribution of the number of jobs in the system by multiplying
the probability of being in a state in the embedded chain with the mean residence
time in that state, and normalizing.

4.3.3 The Poisson-Approx policy

The Poisson-Approx policy is defined by constructing a family {πλp}, where the
candidate policy πλp is obtained as follows: We consider a Poisson arrival process of
intensity λp and theH∗(C2

S) service distribution, and solve the optimal dynamic MPL
control problem to minimize the mean number of jobs. The policy πλp is computed
via the method of policy iteration, explained in Appendix 4.A. Figure 4.7 shows the
structure of πλp for λp = 0.95 and λp = 1.05. The Poisson-Approx MPL control

120

Queue Length

M
P

L

0 10 20 30 40 50
0

5

10

15

20

INCREASE MPL

DECREASE MPL

(a) λp = 0.95
Queue Length

M
P

L

0 10 20 30 40 50
0

5

10

15

20

INCREASE MPL

DECREASE MPL

(b) λp = 1.05

Figure 4.7: The structure of the Poisson-Approx control policy for two values of
the parameter λp and ∆max = 1. The dark shaded area represents the region where
the control decision is to ‘increase MPL’, and the light shaded region represents the
decision ‘keep MPL same’. Decision in the unshaded area is to decrease MPL.

policy is now chosen to be πλ∗p where:

λ∗p = arg minλp ε(πλp) (4.14)

where ε(·) is defined in (4.5). As in the case of Light-Approx, it suffices to carry
out the above optimization at a coarse granularity.

4.3.4 Performance Evaluation

In this section we show via simulations that our dynamic MPL control policies pro-
posed in Sections 4.3.2 and 4.3.3 guarantee robustness against both misestimation of
traffic intensity, and against higher order characteristics of the arrival process, such
as the burstiness.

Robustness against traffic intensity estimation

We will now evaluate the Light-Approx and Poisson-Approx policies for a Pois-
son arrival process with unknown arrival rate, λ, and compare them against the
Opt-Static policy that is given the exact mean arrival rate. To do this, we show
the mean number of jobs, E[N], under different arrival rates, obtained via simula-
tions. Recall that Table 4.1 shows these results for the Weibull service distribution

121

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% c.int.
λ = 0.65 2.14 2.06 2.03 2.02 2.02 2.01 2.01 ± 0.004
λ = 0.75 3.26 3.03 2.89 2.84 2.80 2.80 2.80 ± 0.015
λ = 0.85 5.93 5.50 5.22 5.13 5.18 5.33 5.49 ± 0.049
λ = 0.95 12.47 12.31 12.31 12.83 13.83 15.48 17.03 ± 0.201
λ = 1.05 29.80 30.73 32.44 35.98 40.74 46.83 53.34 ± 0.381
λ = 1.15 89.07 93.37 99.87 108.30 120.12 132.35 143.67 ± 1.724

Table 4.2: Simulation results for mean number of jobs, E[N], for different param-
eters p of the Light-Approx policy and arrival rates, λ. The arrival process is
Poisson(λ), and the service distribution is Weibull with mean 1, SCV 19.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% c.int.
λ = 0.65 2.01 2.01 2.02 2.03 2.13 2.47 ± 0.005
λ = 0.75 2.79 2.76 2.77 2.84 3.19 3.89 ± 0.015
λ = 0.85 5.82 5.24 4.89 4.98 5.65 6.77 ± 0.068
λ = 0.95 20.99 16.73 13.26 11.87 12.10 13.21 ± 0.183
λ = 1.05 66.04 53.76 40.95 33.48 29.67 29.46 ± 0.536
λ = 1.15 166.72 149.05 124.86 104.40 91.01 86.47 ± 1.967

Table 4.3: Simulation results for mean number of jobs, E[N], for different param-
eters λp of the Poisson-Approx policy and arrival rates λ. The arrival process is
Poisson(λ), and the service distribution is Weibull with mean 1, SCV 19.

and various values of static MPLs. In Table 4.2 we show the results for the mean
number of jobs for the same Weibull service distribution under the Light-Approx
policy, as a function of λ and the parameter p of the family {πp} of candidate policies.
The optimization procedure (4.13) sets p∗ = 0.25 from among the values shown in
the table (column highlighted). Observe that the Light-Approx policy gives near
optimal performance for each arrival rate as compared to Table 4.1 for λ up to 1.05
with approximately 13% larger mean number of jobs in the system than the optimal
traffic-aware static policy when λ = 0.85. On the other hand, a single robustly chosen
static MPL necessarily has to operate at the peak efficiency point and, as Table 4.1
shows, exhibits 41% larger mean response time than the optimal traffic-aware static
policy when λ = 0.75.
Table 4.3 shows simulation results for the mean number of jobs with the Poisson-
Approx MPL control policy for various values of the parameter λp for the family
{πλp} of candidate policies. The optimization procedure (4.14) sets λ∗p = 0.95 from

122

among the values shown in the table (column highlighted). The Poisson-Approx
policy also achieves near-optimal performance for each arrival rate as compared to
Table 4.1 with approximately 19.5% larger mean number of jobs in the system than
the optimal traffic-aware static policy when λ = 1.15. Note that for these results,
we have not completely optimized the λp parameter, and the performance of the
Poisson-Approx policy is likely to improve further.
While we have seen that both dynamic policies are far superior than any static policy
when the mean arrival rate is not known, looking both at Tables 4.2 and 4.3, one
can observe that neither dynamic policy significantly outperforms the Opt-Static
policy if the mean arrival rate is known.

Robustness against burstiness in arrival process with unknown arrival rate

We now evaluate the robustness of our MPL control policies to unknown arrival rate
for bursty arrival processes. To do so, we choose a batch Poisson arrival process
(BPP). The batch sizes are i.i.d. geometric with mean 5. Table 4.4 shows the
results for the mean number of jobs in the system with Weibull service distribution
for various settings of static MPL and mean arrival rate λ of the arrival process.
From Table 4.4, we see that when the arrival rate is not known, a robustly chosen
static policy has to operate at K∗ = 5, which results in 50% higher mean number
of jobs than the optimal traffic-aware static policy when the mean arrival rate is
λ = 0.65. Therefore a bursty arrival process can exacerbate the inadequacy of static
MPL policies when the mean arrival rate is not known.

MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.
λ = 0.65 5.80 4.85 4.35 3.99 3.75 3.58 3.46 3.37 3.31 3.26 3.25 3.23 ± 0.015
λ = 0.75 9.28 7.79 7.09 6.53 6.17 5.87 5.69 5.56 5.49 5.47 5.47 5.58 ± 0.083
λ = 0.85 15.43 13.20 12.29 11.67 11.38 11.20 11.22 11.43 11.86 12.75 13.90 15.85 ± 0.905
λ = 0.95 27.24 24.04 23.86 24.36 25.17 26.84 29.45 34.28 41.08 54.11 78.13 141.17 ± 3.495
λ = 1.05 53.044 49.18 53.36 60.67 71.38 90.52 130.34 210.05 ± 4.932
λ = 1.15 136.64 131.35 176.23 274.39 ± 7.308

Table 4.4: Simulation results for mean number of jobs, E[N], for different values of
MPL and mean arrival rates λ. The arrival process is a batch Poisson process where
the arriving batch sizes are geometrically distributed with mean 5, and the service
distribution is Weibull with mean 1 and SCV 19. The optimal value for each setting
of the mean arrival rate is boldened.

Table 4.5 shows the results for mean number of jobs in the system for the same
setting as Table 4.4 for the Light-Approx MPL control policy as a function of the
parameter p of the family {πp} of candidate policies for various values of the mean

123

arrival rate λ. The column for the parameter chosen by the Light-Approx policy
has been highlighted. From Table 4.5, we find that Light-Approx policy is also
robust to burstiness, while yielding at worst 25% higher mean response time than
the optimal traffic-aware static MPL policy. Therefore, the Light-Approx policy
is robust to the mean arrival rate, both for Poisson and for bursty arrival processes.
The Light-Approx policy with parameter p = 0.3 outperforms the policy with
Light-Approx policy p = 0.25 for the chosen setting, but as noted earlier, this is
due to the fact that we have not optimized the parameter completely.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% c.int.
λ = 0.65 4.39 4.03 3.75 3.53 3.41 3.34 3.32 ± 0.017
λ = 0.75 7.30 6.80 6.39 6.10 5.91 5.90 6.00 ± 0.040
λ = 0.85 12.66 12.26 11.88 11.77 12.02 12.67 13.45 ± 0.104
λ = 0.95 23.83 23.71 24.05 24.97 26.61 29.42 32.59 ± 0.312
λ = 1.05 49.54 50.41 52.11 55.58 60.66 67.07 74.57 ± 0.569
λ = 1.15 133.77 137.34 141.70 149.05 158.22 171.73 182.81 ± 2.458

Table 4.5: Simulation results for mean number of jobs, E[N], for different parame-
ters p of the Light-Approx policy and mean arrival rates λ. The arrival process is
a batch Poisson process where the arriving batch sizes are geometrically distributed
with mean 5, and the service distribution is Weibull with mean 1 and SCV 19.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% c.int.
λ = 0.65 3.27 3.26 3.30 3.48 4.07 4.85 ± 0.017
λ = 0.75 5.92 5.64 5.63 5.84 6.80 7.82 ± 0.035
λ = 0.85 14.03 12.42 11.42 11.17 12.17 13.17 ± 0.125
λ = 0.95 36.05 30.40 26.07 23.89 23.29 23.93 ± 0.244
λ = 1.05 84.01 71.67 60.75 54.10 49.37 48.83 ± 0.510
λ = 1.15 199.38 180.81 162.21 148.86 135.17 131.72 ± 2.239

Table 4.6: Simulation results for mean number of jobs, E[N], for different param-
eters λp of the Poisson-Approx policy and arrival rates λ. The arrival process is
a batch Poisson process where the arriving batch sizes are geometrically distributed
with mean 5, and the service distribution is Weibull with mean 1 and SCV 19.

Table 4.6 shows the results for mean number of jobs in the system under the same
setting for the Poisson-Approx MPL control policy as a function of the parameter
λp of the family {πλp} of candidate policies. The column for the parameter chosen

124

by the Poisson-Approx policy has been highlighted. From Table 4.6, we find
that the Poisson-Approx policy yields at worst 13% higher mean response time
than the optimal traffic aware static MPL policy. Thus while both our policies are
robust to bursty arrival processes, the Poisson-Approx policy seems to marginally
outperform the Light-Approx policy. These observations also hold true for other
simulation experiments not shown here.
While we have demonstrated that our dynamic policies are much more robust than
any static policy in handling burstiness when the mean arrival rate is not known,
comparing Tables 4.1 and 4.4, we see that, surprisingly, if the mean arrival rate of
the arrival process is known, the Opt-Static policy which optimizes for a Poisson
arrival process with the given mean arrival rate remains near-optimal for a bursty
arrival process.

4.4 A Heavy-Traffic Diffusion Scaling and Approx-
imation for Non-Work-Conserving Systems

Diffusion approximations are very powerful tools for studying the dynamics of queue-
ing systems and to observe the first order effects of system parameters on the perfor-
mance of the queueing system. They are also an important first step in developing
algorithms for stochastic control of queueing systems. While for certain special types
of queueing systems, the diffusion approximations are very mature, there are no tools
to study the very important class of queueing systems which are not work conserv-
ing, i.e., queueing systems where the service capacity varies as a function of the
system state. In this section we propose a novel approach to derive heavy-traffic
diffusion scaling for non-work conserving systems, and perform approximate analysis
of the stationary distribution of the number of jobs in the system. We illustrate
our approach via the GI/G/PS-MPL model with state-dependent service rates. The
proposed scaling is quite general, and we hope that it will be applicable to other
systems as well.
At a high level, the diffusion scaling is obtained by fixing a smooth distribution
function F (·) on [0,∞) for the number of jobs in the system, and engineering a
sequence of systems (the state-dependent service rates, to be precise) indexed by
parameter r, so that under Poisson arrivals (the intensity of the arrival process is
invariant in the scaling) and Exponential service distribution (the mean of the job
size distribution is also fixed and we assume it to be 1 without loss of generality),
the sequence of the distribution function of number of jobs scaled by r converges to

125

F (·) as :

lim
r→∞

F (r)(dxre)→ F (x) ∀x ∈ [0,∞), (4.15)

where F (r)(·) denotes the distribution function for the number of jobs in the rth
system under a Poisson arrival process and Exponential job size distribution. Addi-
tionally, for the GI/G/PS-MPL system, we will impose the condition that the MPL
for the rth system scales as θ · r, for a constant θ.
The motivation behind our ‘reverse-engineered’ heavy-traffic scaling should be obvi-
ous: Our goal is to approximate the behavior of a ‘discrete’ system with a bounded
MPL, and hence we want our limiting continuous system to ‘resemble’ the original
discrete system. A natural constraint to impose then is that under a Markovian work-
load, the limiting scaled system behave ‘identically’ to the original discrete system,
and hence by design also guaranteeing us a non-degenerate limit.
In Section 4.4.1 we derive the heavy-traffic scaling for a GI/G/PS-MPL system. In
Section 4.4.2 we present approximate analysis of the stationary distribution of the
number of jobs in the system under our scaling by considering degenerate hyperexpo-
nential interarrival and service distributions. Since the degenerate hyperexponential
distributions allow us to vary the first two moments, our approximate analysis pro-
vides strong indications as to what the true diffusion limit looks like. A rigorous
diffusion analysis is a topic of ongoing research.

4.4.1 Heavy-traffic scaling for GI/G/PS-MPL

Consider a system with MPL K, and service rate curve µ(·) where µ(n) is the service
rate of the server when time sharing among n jobs. Let the arrival process have mean
intensity λ, and the mean job size be 1 without loss of generality. Also, assume
ρ ≡ λ

µ(K) < 1. To arrive at the heavy-traffic scaling, we begin by considering the
case where the arrival process is Poisson and the service distribution is Exponential,
which we abbreviate as M/M/ in the remainder of the section.
Let πM/M/(i) denote the stationary probability that the system under M/M/ arrival
process has i jobs in the system. Let F (·) : [0,∞) → (0, 1] be a twice-differentiable
non-decreasing cdf obtained from πM/M/ as follows:

1− F (j) =
j−1∑
i=0

πM/M/(i) j = 0, 1, . . . , K

1− F (x) = (1− F (K))ρx−K x > K

126

Thus, F is a twice-differentiable interpolation of the stationary distribution of the
number of jobs in the M/M/PS-MPL system. Let f(x) = Ḟ (x). As briefly men-
tioned in the introduction, the diffusion scaling is obtained by creating a sequence of
M/M/PS-MPL systems, indexed by a discrete parameter r ∈ N, where the service
rates of the rth system

{
µ(r)(n)

}
are engineered to satisfy:

1. the MPL of the rth system is r ·K,

2. the arrival rate of the rth system is λ,

3. limr→∞ F
(r)(dr · xe)→ F (x) for x ∈ [0,∞),

where F (r)(·) denotes the stationary distribution function for the number of
jobs in the rth system.

Obtaining the service rates: To achieve our goal, consider the rth system. Let
x = i

r
. We create the service rates so that the probability that the system is in state

i = r · x is approximately 1
r
f(x). If the service rate in state i + 1 = (x + 1/r) · r is

µ(r)(x+ 1
r
), then we must have:

{
f
(
x+ 1

N

)} 1
N

= λ

µ(N)((x+ 1/N) ·N) {f (x)} 1
N

(4.16)

which gives:

λ

µ(r)((x+ 1/r) · r) = f(x+ 1/r)
f(x) ≈ 1 + 1

r
· f
′(x)
f(x)

or,

λ

µ(r)(r · x) = 1 + 1
r

d log f(x)
dx

+ o(1/r)

Therefore the state-dependent service rates of the rth system under the heavy traffic
scaling are given by:

µ(r)(i) = λ

1− 1
r

d log(f(x))
dx

∣∣∣∣∣
x= i

r

 (4.17)

Remark 1: Consider the case with a constant service rate µ and arrival rate λ.
In this case F (x) = 1 −

(
λ
µ

)x
= 1 − ρx, so that µ(r)(r · x) ≈ λ

(
1− 1

r
d log f(x)

dx

)
=

λ
(
1− log ρ

r

)
, which is exactly the diffusion scaling used in Zhang and Zwart [162].

127

Remark 2: As r →∞, the service rate curve uniformly converges to λ. Thus while
the limiting system would be work-conserving on any compact interval of time, none
of the pre-limit systems are work conserving. Work conservation was one of the
critical tools used in [162] for diffusion analysis of GI/G/PS-MPL systems with
constant µ(n) curve, and its absence makes the diffusion analysis non-trivial. We
will however be able to provide an approximation for the stationary distribution via
special arrival and service processes.

4.4.2 Analysis of the Heavy-traffic Diffusion scaling

A simple approximation for a GI/GI/ arrival process, but involving only the first
two moments of the interarrival time and service distributions, can be obtained by
considering H∗2 interarrival times and H∗2 job sizes. Let C2

A denote the squared
coefficient of variation of the interarrival time distribution and C2

S denote the SCV
of the service distribution. The main result of this section is that the mean number
of jobs in the stationary system is approximately given by:

E[N] ≈

∞∫
u=0

min {u,K}f(u)
C2
S

+1
C2
S

+C2
A du

∞∫
u=0

f (u)
C2
S

+1

C2
S

+C2
A du

+ C2
S + 1
2 ·

∞∫
u=0

(u−K)+f(u)
C2
S

+1
C2
S

+C2
A du

∞∫
u=0

f (u)
C2
S

+1

C2
S

+C2
A du

where f(·) is the pdf corresponding to the distribution function F (·) – the smooth
interpolation of the distribution of number of jobs in the M/M/PS-MPL system.
We will begin with the analysis of a discrete H∗2/H∗2/PS-MPL system, and then
specialize the results to the heavy-traffic diffusion limit.

Analysis of H∗2/H∗2/PS-MPL model: Let πH
∗
2 /H

∗
2 /

Exp (i) denote the stationary
probability distribution for the number of jobs belonging to the Exponential branch in
the system. That is, the probability that under the H∗2/H∗2/ arrival process described
above, the system has i Exponential jobs in the system. Then as we established in
Propositions 4.5 and 4.6:

πH
∗
2 /H

∗
2 /(i) = φH

∗
2 /H

∗
2 /(i)∑∞

i=0 φ
H∗2 /H

∗
2 /(i)

128

where,

φH
∗
2 /H

∗
2 /(i) =

1 i = 0,
φH
∗
2 /H

∗
2 /(i− 1) · λ·(C

2
S+1)+µ(i−1)·(C2

A−1)
(C2
A+C2

S)·µ(i) 1 ≤ i ≤ K,

φH
∗
2 /H

∗
2 /(K) ·

(
ρ·(C2

S+1)+C2
A−1

C2
S+C2

A

)i−K
i > K.

Given the above, we can obtain the mean number of jobs in the system as:

E
[
NH∗2 /H

∗
2 /
]

= E
[
N
H∗2 /H

∗
2 /

SExp

]
+ C2

S + 1
2 E

[
N
H∗2 /H

∗
2 /

QExp

]
(4.18)

where E
[
N
H∗2 /H

∗
2 /

SExp

]
and E

[
N
H∗2 /H

∗
2

QExp

]
, denote, respectively, the mean number of jobs

from the Exponential branch at the PS Server and in the FCFS Queue, and are given
by

E
[
N
H∗2 /H

∗
2 /

SExp

]
=
∑K
i=1 i · φH

∗
2 /H

∗
2 /(i) +K ·∑∞i=K+1 φ

H∗2 /H
∗
2 /(i)

1 +∑∞
i=1 φi

(4.19)

E
[
N
H∗2 /H

∗
2

QExp

]
= φH

∗
2 /H

∗
2 /(K + 1)

1 +∑∞
i=1 φ

H∗2 /H
∗
2 /(i)

(
C2
S + C2

A

(C2
S + 1)(1− ρ)

)2

. (4.20)

Mean number of jobs under the diffusion scaling and H∗2/H
∗
2/ arrival pro-

cess: We now consider the sequence of PS-MPL systems described by the service
rate curves µ(r)(i) defined in (4.17) and use the expressions in (4.18)-(4.20) to find
the mean number of jobs under stationarity for an H∗2/H∗2 arrival process.

Let φ(r)
Exp(i) denote the probability that there are i jobs of the Exponential branch in

the rth system. From our exact equations:

φ
(r)
Exp(r · x+ 1)
φ

(r)
Exp(r · x)

= λ · (C2
S + 1) + µ(r)(r · x) · (C2

A − 1)
(C2

A + C2
S) · µ(r)(r · x) . . . x > 0 (4.21)

=
(C2

S + 1) + µ(r)(r·x)
λ
· (C2

A − 1)
(C2

A + C2
S) ·

µ(r)(r·x)
λ

(4.22)

=
(C2

S + 1) +
(
1− 1

r
f ′(x)
f(x)

)
· (C2

A − 1)
(C2

A + C2
S) · 1

1+ 1
r
· f
′(x)
f(x)

+ o(1/r) (4.23)

= 1 + 1
r
· C

2
S + 1

C2
A + C2

S

· f
′(x)
f(x) + o(1/r) (4.24)

129

Which gives:

log φ(r)
Exp((x+ 1/r) · r)− log φ(r)

Exp(r · x) ∼
C2
S + 1

C2
S + C2

A

· [log f(x+ 1/r)− log f(x)]

(4.25)

Therefore:

φ
(r)
Exp(r · x) ∼ φ

(r)
Exp(0) ·

(
f(x)
f(0)

) C2
S

+1
C2
S

+C2
A

Normalizing to obtain φ(r)
Exp(0):

1 = φ
(r)
Exp(0)

∞∑
i=0

f
(
i
r

)
f(0)

C2
S

+1
C2
S

+C2
A

 (4.26)

∼ φ
(r)
Exp(0) · r ·

∞∫
x=0

(
f (x)
f(0)

) C2
S

+1
C2
S

+C2
A
dx (4.27)

which yields:

φ
(r)
Exp(r · x) =

(
f(x)
f(0)

) C2
S

+1
C2
S

+C2
A

∞∫
x=0

(
f(x)
f(0)

) C2
S

+1

C2
S

+C2
A dx

· 1
r

+ o(1/r) (4.28)

= f(x)
C2
S

+1
C2
S

+C2
A

∞∫
x=0

f (x)
C2
S

+1

C2
S

+C2
A dx

· 1
r

+ o(1/r) (4.29)

Denote by N (r), N
(r)
Exp, N

(r)
SExp

, N
(r)
QExp

the stationary number of jobs in the system, and
the stationary number of jobs belonging to the Exponential branch in the system, at
the server, and in the queue, respectively, for the rth system. Let N∗ = limr→∞

N(r)

r
,

and similarly define N∗Exp, N∗SExp and N∗QExp . Let F ∗Exp be the distribution function
of N∗Exp. We then have:

F ∗Exp(x) =

x∫
u=0

f(u)
C2
S

+1
C2
S

+C2
A du

∞∫
u=0

f (u)
C2
S

+1

C2
S

+C2
A du

(4.30)

130

Therefore the approximation for N∗ (including all jobs) is given by:

E[N∗] = E
[
N∗SExp

]
+
(
C2
S + 1
2

)
E
[
N∗QExp

]
(4.31)

=

∞∫
u=0

min {u,K}f(u)
C2
S

+1
C2
S

+C2
A du

∞∫
u=0

f (u)
C2
S

+1

C2
S

+C2
A du

+
(
C2
S + 1
2

) ∞∫
u=0

(u−K)+f(u)
C2
S

+1
C2
S

+C2
A du

∞∫
u=0

f (u)
C2
S

+1

C2
S

+C2
A du

(4.32)

Remark 3: Our goal is to approximate a discrete system by its corresponding dif-
fusion approximation. However, for the original system, we have a discontinuous
distribution function, and hence the choice of the interpolating F (equivalently f)
is somewhat arbitrary and in our control. Further, while we needed f to be differ-
entiable to define the scaling, the approximation (4.32) is defined even when f is
continuous.

4.5 Summary and Open Questions

In this chapter we addressed the problem of concurrency control for resource-sharing
system such as database servers by limiting the maximum number of active threads
to avoid thrashing. We modeled such systems as Processor Sharing servers with load-
dependent service rates. We proved that, contrary to common practice, imposing a
static multi-programming limit (MPL) to maximize the system efficiency (service
rate) is not always optimal for minimizing the mean response time when the job
sizes exhibit high variance, and used analysis to propose a simple heuristic rule to
choose the optimal static MPL under the assumption that traffic is Poisson with a
known arrival rate.
Next, we showed that a static MPL policy cannot be robust to varying traffic pat-
terns, such as variability in the mean arrival rate. We proposed two simple MPL
control policies, Light-Approx and Poisson-Approx, that adjust the MPL based
on knowledge of only the instantaneous queue length. We showed that our dynamic
MPL control policies exhibit robustness to both an unknown mean arrival rate and
to burstiness in the arrival process.
As a third contribution, we proposed a novel heavy-traffic diffusion scaling to study
non-work-conserving systems, such as the one which was the focus of study of this
chapter. Our scaling was arrived at via reverse engineering the system parameters

131

so as to be more representative of the original system that is being approximated.
We presented an approximate analysis of the stationary distribution of the number
of jobs under the proposed scaling.
Impact: The work in this chapter highlights an important system design principle:
maximizing efficiency is not always optimal for minimizing the mean response time,
and the optimal operating point critically depends on the workload. The existing
work on concurrency control has ignored the effects of the workload. We also demon-
strated existence of simple concurrency control policies which adapt to fluctuations
in the demand without needing to learn the demand. We believe that the techniques
presented to develop these traffic-oblivious control policies will be applicable to more
general stochastic settings. While the majority of literature on robust dynamic con-
trol focuses on solving the corresponding optimal control problem in the fluid regime
(i.e., when the backlog is large), our techniques allow one to obtain optimal control
policies which exhibit components of both stochastic and fluid control (i.e., from
close to empty to when the backlog is large). Finally, we hope that our heavy-traffic
scaling for non-work-conserving systems will allow researchers to revisit the existing
work on diffusion analysis of multi-server queueing systems and queueing networks
and obtain refined approximations.
Open Problems: Are the traffic-oblivious dynamic MPL control schemes proposed
in this chapter robust to the traffic demand in a formal sense, and are there provably
better traffic-oblivious concurrency control mechanisms? Performing a rigorous dif-
fusion analysis of the proposed heavy-traffic scaling is subject of ongoing research by
the author, and we believe that the approximate results presented for the stationary
behavior under the proposed scaling would match the diffusion analysis.

4.A Policy Iteration to Construct Candidate Poisson-
Approx Policies

The goal of this section is to explain the policy iteration algorithm to find the optimal
MPL control policy πλp , for a Poisson arrival process with intensity λp and the
H∗(C2

S) service distribution matching the true service distribution .
Let us first recall how policy iteration works [23]. We begin with some MPL control
policy π0 (in our case, a good initial policy is the threshold MPL policy which
operates at the peak efficiency point K∗). Let γ0 be the average cost (in our case the
mean number of jobs in the system) of this policy. We then define the differential
cost function h0(·) associated with each state, where h0(si) denotes the differential
cost to reach some state s0 starting in state si under π0. That is, h0(si) denotes

132

the difference between the mean total cost to reach state s0, and the product of
γ0 and the mean total time to reach state s0, given that we start in state si. The
vector of differential costs, h0(·), and the average cost, γ0, are obtained by solving
the following linear system of equations:

h0(s0) = 0
h0(si) = c(si)τ(si)− γ0τ(si) +

∑
j

pij(π0(si))h(sj)

where τ(si) is the mean residence time in state si, c(si) is the cost per unit of time
in state si, and pij(π0(si)) represents the probability that we transition from state si
to sj when control π0(si) is applied in state si. This is called the policy evaluation
step. We then perform the policy improvement step to obtain the policy π1. To do
this, for each state si, we choose π1(si) as the control which satisfies:

c(si)τ(si)− γ0τ(si) +
∑
j

pij(π1(si))h(sj) = min
a∈Ai

c(si)τ(si)− γ0τ(si) +
∑
j

pij(a)h(sj)

where Ai is the set of possible actions in state i. We then keep performing policy
evaluation and improvement until two consecutive policies are the same, or have the
same average cost.
The policy iteration step can be easily performed once the policy evaluation step
is performed. The policy evaluation step is clearly tractable when the state space
is finite. We now show it is also tractable when the state space is infinite but
repeating, obeying the conditions for Matrix-Geometric analysis. In the remaining
section, we focus on the procedure for performing the policy evaluation step for such
infinite state space systems, and specializing it to the problem of solving the optimal
dynamic MPL control problem.
Consider a fixed policy π, and let P π denote the probability transition matrix:

P π =

L0 F0 0 0 0 · · ·
B0 L F 0 0 · · ·
0 B L F 0 · · ·

... ...

Let h0 be the vector of differential costs for the 0th (non-repeating) level, hi (i ≥ 1)
be the differential cost vector for the ith (repeating) level of the state space, and γ
be the average cost under policy π. Denote by R the rate matrix (for the embedded
chain) which is the least non-negative solution to:

R = F +RL+R2B

133

Let G be the solution to the following equation:

G = B + LG+ FG2

We now note that G and R have the following probabilistic interpretations [119]:
by conditioning on the first transition, it is easy to see that G(j, k) denotes the
conditional probability that the chain eventually reaches level i− 1 and the state it
enters is (i−1, k), given the chain starts in state (i, j). Similarly, conditioning on the
last transition before visiting (i+ 1, k), one can see that the entry R(j, k) represents
the mean number of visits to state (i + 1, k) until it first enters level i again, given
that the chain starts in state (i, j). Let J be given by:

J = L+ FG

Then J(j, k) represents the conditional probability that the chain enters level i again
before entering level i− 1, and that the state it enters is (i, k), given the chain starts
in state (i, j). We can now write the differential cost of some state (i, j) for i ≥ 2 as

h(i, j) = c(i, j)τ(i, j)− γτ(i, j) +
∑
k

B(j, k)h(i− 1, k) +
∑
k

J(j, k)h(i, k)

+
∞∑
m=1

∑
k

Rm(j, k) [c(i+m, k)τ(i+m, k)− γτ(i+m, k)]

or,

hi = diag(τττ i)ci − γ.τττ i +Bhi−1 + Jhi +
∞∑
m=1

Rm(diag(τττ i+m)ci+m − γτττ i+m) . . . i ≥ 2

(4.33)

where ci is the column vector of cost per unit of time for states in level i, and τττ i is
the column vector of mean residence time for states in level i. Thus,

hi = (I − J)−1
(
diag(τττ i)ci − γτττ i +Bhi−1 +

∞∑
m=1

Rm(diag(τττ i+m)ci+m − γτττ i+m)
)

Thus, we can express h2 in terms of h1 and solve for h0 and h1. We can then obtain
subsequent cost vectors as needed while performing the policy improvement step.
We now address the problem of evaluating a dynamic MPL control policy, π. Let
K+ denote the maximum MPL used by policy π and let Q∗ denote the queue length
beyond which policy π uses the MPL K∗ (see Figure 4.6). For computational reasons
we restrict Q∗ to be at most 50. As stated earlier, in our case, the matrix B is of
rank 1. Specifically, we can write B = ννν · ααα, where ννν = eee1 (the column vector with

134

first entry 1, and rest 0), and ααα = [(1 − q) q 0 . . . 0]. Therefore, in our case the
matrices G and R have an explicit solution [125]:

G = eee ·ααα
R = F (I − L− Feeeααα)−1

where eee is the column vector of all 1s.
Denote by si the state vector for level i, i ≥ 1 :

si =

(Q∗ + i− 1, K∗ − 1, ?)

(Q∗ + i− 1, K∗)
...

(Q∗ + i− 1, K+)

with the cost and mean residence time vectors given by ci = (Q∗+ i− 1) ·eee+ K and

τττ i =

0
1

λ+q·µ(K∗)
...
1

λ+q·µ(K+)

 = τττ , K =

K∗ − 1
K∗

...
K+

We can thus simplify (4.33) to:

hi = diag(τττ)ci − γτττ +Bhi−1 + Jhi +
∞∑
m=1

Rm(diag(τττ)ci+m − γτττ)

= Bhi−1 + Jhi +
[
(I −R)−1 ((Q∗ + i− 2− γ).τττ + diag(τττ) ·K) +

(
(I −R)−1

)2
τττ
]

or,

hi = (I − J)−1
{
Bhi−1 +

[
(I −R)−1 ((Q∗ + i− 2− γ).τττ + diag(τττ)K) +

(
(I −R)−1

)2
τττ
]}

(4.34)

Thus, the solution of our system is given by the following system of linear equations
for h0,h1, γ:

h0 = diag(τττ 0)c0 − γτττ 0 + L0h0 + F0h1 (4.35)
h1 = diag(τττ)c1 − γτττ +B0h0 + Lh1 + Fh2

= diag(τττ)c1 − γ(I + F (I − J)−1(I −R)−1)τττ +B0h0

135

+ (L+ F (I − J)−1B)h1 + F (I − J)−1
{[

(I −R)−1 (Q∗.τττ

+diag(τττ)K) +
(
(I −R)−1

)2
τττ
]}

(4.36)

and the additional constraint h(0, 0) = 0.
In the method of policy iteration, the policy evaluation and policy improvement steps
are repeated until two policies with the same cost are obtained. In the experiments
presented in this paper, we stopped when the relative improvement between consec-
utive policies was below 0.01%, which took at most 7 iterations in each case (less
than 30 seconds on a 3.2 GHz Pentium 4 CPU with 1 GB of memory).

136

Chapter 5

Load Balancing for Webserver
Farms: Analysis of
Join-the-Shortest-Queue Policy for
PS servers

Load balancers are the most critical component of multi-server systems: Which server
from among the hundreds in a data center should be assigned a particular task? How
much information about the state of each server needs to be collected before such
decisions can be taken with confidence? Join-the-Shortest-Queue (JSQ) is one of the
most popular load balancing heuristics, but until now all analysis and optimality
results of JSQ have been limited to First-Come-First-Serve (FCFS) server farms,
whereas it is known that web servers are better modeled by the Processor Sharing
(PS) scheduling discipline. We provide the first approximate analysis of JSQ in the
PS server farm model for general job size distributions, obtaining the distribution of
queue length at each queue. We also discover interesting insensitivity properties for
PS server farms with JSQ load balancing, and discuss the near-optimality of JSQ.
Finally, we propose a novel many-server heavy-traffic regime to study load balancing
policies. We use the proposed many-servers scaling to present a new closed-form
approximation for the joint distribution of queue lengths under Exponential service
distribution. The analysis of the many-servers scaling leads to many useful insights
into the behavior of JSQ, including the first approximation for the distribution of re-
sponse time. Finally, we use the proposed scaling to analytically study load balancing
policies for the case where server speeds are heterogeneous.

137

5.1 Introduction

In this chapter, we are motivated by web server farm architectures serving static
requests. Requests for files (or HTTP pages) arrive at a front-end dispatcher, which
immediately routes the request to one of the servers in the farm for processing using a
load balancing or task assignment policy. It is important that the dispatcher not hold
back the arriving connection request, or the client will time out and possibly submit
more requests. The bottleneck resource at a web server is often the uplink bandwidth.
This bandwidth is shared by all files requested in a round-robin manner with a small
granularity, which is well-modeled by the idealized processor sharing (PS) scheduling
policy [75]. We are thus interested in a PS server farm with immediate dispatch.
Time sharing servers are beneficial in that they allow “short jobs” to get processed
quickly without being stuck waiting behind long jobs, and are thus ‘fair’. This is
particularly important, since measurements have shown that requested files sizes, and
the associated service requirements, are highly variable, (e.g., heavy-tailed [21, 42])
.

Front−end servers

(Processor sharing)

Poisson arrivals

λ(rate)

JSQ

Dispatcher New job

(request)

Figure 5.1: Server farm with front-end dispatcher andK identical processor sharing
back-end servers.

Join-the-Shortest-Queue (JSQ) policy is the most popular load balancing heuristic
used in PS server farms today; e.g., it is used in Cisco Local Director, IBM Network
Dispatcher, Microsoft Sharepoint and F5 Labs BIG/IP. Under JSQ, an incoming

138

request is routed to the server with the least number of unfinished requests. Thus,
JSQ strives to balance load across the servers, reducing the probability of one server
having several jobs while another server sits idle. From the point of view of a new
arrival, it is a greedy policy for the case of PS servers, because the arrival would prefer
sharing a server with as few jobs as possible. We refer to a PS server farm with JSQ
routing as a JSQ/PS server farm.

Model and Notation

We model the arrival process of jobs as a stationary Poisson process. We assume that
there is a single dispatcher (router) and K identical PS servers, each with unlimited
waiting space, as depicted in Figure 5.1. We assume that dispatching is immediate
using the JSQ policy. Ties are broken by randomly choosing (with equal probabil-
ities) among the servers with the fewest jobs. No jockeying is allowed between the
servers (once a job is dispatched to a server, it stays there until completion).
Consequently, the JSQ/PS server farm acts as anM/G/K/JSQ/PS queueing model,
with JSQ denoting the policy used to assign arrivals to the servers and PS denoting
the scheduling rule (service discipline) used by each server. Jobs arrive as a Poisson
stream with rate λ and are dispatched immediately to one of the K servers with the
fewest jobs. For most of the chapter, we will assume that the servers are identical
with speed µ. The service requirements are drawn independently from a general
distribution with mean 1 (the G) and service is performed at each server according
to PS. We define the load of this system, ρ, as the per-server load ρ = λ/(Kµ) (unlike
previous chapters). We sometimes use the extra notation M(λ)/G(µ)/K/JSQ/PS
to denote that the arrival rate is λ and the server’s speed is µ. We will use N to
denote the random variable for the number of jobs at a single PS queue in the server
farm.

Summary of Results

Despite the ubiquity of JSQ/PS server farms, analytical results on the performance
of JSQ in this setting are very limited. The existing analysis on JSQ involves First-
Come-First-Serve (FCFS) server farms, where the servers employ FCFS scheduling.
Within the JSQ/FCFS setting, almost all analysis is restricted to 2 servers, often
with exponentially-distributed job sizes. For more than 2 servers, while some very
appealing approximations exist, the accuracy of those approximations decreases as
the number of servers is increased or as the job-size distribution becomes more vari-
able. Prior work is detailed in Section 5.2.

139

In this chapter we provide the first analysis of the JSQ/PS model. In particular, we
provide a way to approximate the steady-state distribution of queue-length (number
of jobs in the system) at a server, which also yields the mean response time via
Little’s Law. While our analysis is approximate, the accuracy of our approximation
is extremely good: < 3% error for mean response time and only slightly more for
the second moment of queue length. More importantly, the error does not seem
to increase beyond 3% with increased numbers of servers, or with an increase in
job-size variability. We compliment this approximation with asymptotic analysis of
the stationary joint distribution of queue lengths at the servers, and the stationary
distribution of response time for Exponential service distribution under a novel many-
servers heavy-traffic limit.
1. Bounded-Sensitivity
We begin by investigating the sensitivity of the M/G/K/JSQ/PS model to the vari-
ability of the service distribution in Section 5.3. In Theorem 5.1 we prove that for
the degenerate hyperexponential (H∗2) service distribution, the joint distribution of
the number of jobs at the servers (and hence the mean response time) depends on
the service distribution only through its mean. We then perform numerical exper-
iments in the light-traffic regime with the more broad class of H2 service distri-
bution, and observe an interesting bounded-sensitivity phenomenon. To examine
other job-size distributions, we resort to extensive simulations of a wide class of dis-
tributions, including hyperexponential distributions, Erlang distributions, Weibull
distributions, the deterministic distribution and bimodal distributions (mixture of
two point masses), which further lend support to the bounded-sensitivity hypothesis.
Thus we have:

M/G/K/JSQ/PS ≈M/M/K/JSQ/PS

where the approximation is quite close for at least the first two moments of queue
length.
2. Single Queue Approximation for M/M/K/JSQ/PS
Based on the results and observations of Section 5.3, we turn focus on analyzing the
M/M/K/JSQ/PS model. We accomplish this goal in what we believe is an inter-
esting innovative way. In Section 5.4 we introduce a new approximation technique
for server farms, which we call the single-queue approximation (SQA). The key idea
behind SQA is the following: Instead of analyzing the entire multi-server model, we
just concentrate on a single queue in the server farm, say queue Q, and model its
behavior independently of all the other queues. To capture the effect of the other
queues, without directly considering them, we model the arrival process into queue
Q by a stochastic point process with state dependent rates. In particular, we assume
that the arrival process into queue Q has stochastic intensity λ(NQ(t)), where NQ(t)
is the queue length of Q at time t and λ(n) is the long-run arrival rate when Q has

140

PS

PS

PSJSQ
PS

PS

PS

PSJSQ

M/G/K/JSQ/PS

PS

PS

PSJSQ
SQA

M/M/K/JSQ/PS M /M/1/PSM/H /K/JSQ/PS n2
*

Figure 5.2: A pictorial view of some results in the chapter.

n customers in the original multi-server model.
To determine the λ(n)’s, we begin with extensive simulation experiments, and find
stunning regularity in the results: λ(n) ≈ µρK for all n ≥ 3. We support the
observation by Theorem 5.3 which proves that

λ(n)
µ
→ ρK , as n→∞

in the case where K = 2, and provide further support in Section 5.6 where we
prove that under a suitable (in fact the only non-degenerate) many-servers scaling,
λ(n) = µρK for n ≥ 3. It is this critical observation that lends SQA its tractability for
the JSQ-PS model, leaving only three parameters to be determined: λ(0), λ(1) and
λ(2), which we determine using a combination of analysis and simulation, obtaining
closed-form expressions for all the conditional arrival rates as functions of λ, µ and
K.
Figure 5.2 pictorially summarizes some of the results in this chapter. It is impor-
tant to note that once we know that: M/G/K/JSQ/PS ≈ M/M/K/JSQ/PS ≡
M/M/K/JSQ/FCFS, we can apply other methods in the literature to solve the
M/M/K/JSQ/FCFS as well, e.g. Blanc [27], Nelson and Philips [117], Lin and
Raghavendra [110].
3. Near-optimality of JSQ for M/G/K/ · /PS
In Section 5.5, we address the question:

Are there smart load balancing policies that substantially outperform JSQ?

141

There certainly exist sample paths where JSQ can yield mean response time twice as
much as the optimal even for deterministic job sizes. However, for theM/G/K/·/PS
model, we find via simulations that JSQ is impressively close to optimal, despite using
far less information about system state than the other routing policies against which
it is compared.
4. Many-server asymptotics, and load balancing with heterogeneous servers
In Section 5.6, we fill the gap left by lack of exact analysis for the M/M/K/JSQ/PS
model by introducing a many-server “heavy-traffic” scaling, and presenting the sta-
tionary analysis under the proposed scaling. The scaling is obtained by letting the
number of servers K → ∞, while simultaneously increasing the arrival rate so that
ρK converges to a positive constant 0 < θ < 1. Equivalently Kµ− λ converges to a
constant. The intuition is that under the proposed scaling, the marginal queue length
distribution at a single server converges to a limit, and is the only scaling where the
response time converges to a non-degenerate limit in distribution.
The many-server analysis can be seen as a complement to the approximation of
Nelson and Philips [117] and Blanc [27] which are tight when traffic is light, and also
to the exact analysis of K = 2 case by Adan, Wessels and Zĳm [8, 9]. In addition, the
analysis provides useful insights into the behavior of the JSQ load balancing policy.
We use our scaling to propose the first approximation for the distribution of
response time for M/M/K/JSQ/PS model. The author is currently working
on an analysis for general service distribution under the proposed scaling to obtain
closed-form bounded-sensitivity results.
Finally, we utilize our many-server heavy-traffic scaling to analyze optimal routing
policies for the M/M/K/ · /PS model, and prove that, counter to intuition, JSQ
remains optimal, while the greedy policy which sends to the server where the arrival
gets served at the maximum rate is far from optimal.

5.2 Prior Work

There has been no previous mathematical analysis of the M/G/K/JSQ/PS model.
However, Bonomi [29] conducted a simulation study for the special case of two
servers. He showed that, among all policies that base their decisions only on the
queue lengths at the servers, JSQ minimizes the mean response time for the PS
scheduling rule and exponential service requirements. Bonomi also proposed policies
that improve slightly upon JSQ (5% improvement), for some general job-size distri-
butions, by exploiting the remaining service times of jobs. He showed via simulation
that common load-balancing schemes that perform well for JSQ/FCFS do not per-

142

form well for JSQ/PS. Bonomi observed that, while Least-Work-Left (LWL) is good
for FCFS, it is not good for PS. However, we find that LWL is not always bad; see
Figure 5.8.
By contrast, there is a lot of work on the JSQ/FCFS model (recall that under expo-
nential workloads, JSQ/FCFS is equivalent to JSQ/PS with respect to the stationary
queue length distribution). However, even the M/M/K/JSQ/FCFS model remains
quite intractable. Several authors, including Koole, Sparaggis and Towsley [107],
Winston [157], and Ephremides et al. [54], consider the optimality of JSQ for FCFS
servers in certain constrained settings involving a job-size distribution with non-
decreasing likelihood ratio and various assumptions on not knowing job sizes a priori.
Note, however, that JSQ is far from optimal for FCFS servers with highly-variable
job sizes [41, 73].
Almost all papers analyzing JSQ/FCFS performance are limited to 2 servers, an
exponential job-size distribution and the mean response time metric. Among the
classic papers are Kingman [97] and Flatto and McKean [58]. They use generating
functions to derive the joint probability distribution of queue lengths and express
the mean response time as an infinite sum, which in practice requires truncation
to compute. Wessels, Adan, and Zĳm [8] show that Kingman’s result can be de-
rived more intuitively via the compensation approach. Approximations for the mean
response time have been obtained by state space truncation of the Markov chain
[39, 64, 126], and Lui, Muntz and Towsley obtain bounds for JSQ (and its hetero-
geneous counterpart, the Minimum Expected Response time policy) by constructing
models which upper or lower bound the mean response time under JSQ and can be
analyzed numerically [112]. Heavy traffic approximations for JSQ/FCFS also exist
and are evaluated in [59, 105]. Lastly, Boxma and Cohen [33] obtain a functional
representation for the mean response time using boundary value approach. These
methods are exact. However they are not always computationally efficient and do
not generalize to higher values of K.
For analyzing the mean response time for M/M/K/JSQ/FCFS with K > 2 servers,
only approximations exist. Nelson and Philips [117] use the following idea: They
look at the steady-state probability of the M/M/K/FCFS queue (with a central
queue) as an estimate for the total number of jobs in the JSQ/FCFS system, and
then assume that the jobs in the system are divided equally (within 1) among each
of the queues. Lin and Raghavendra [110] follow the approach of approximating the
number of busy servers by a binomial distribution and then also assume that the jobs
are equally divided among each of the queues (within 1). The Nelson and Philips
demonstrates error less than 8% for K up to 16 with exponentially distributed job
sizes for the cases presented in the paper. They also provide an empirically obtained
correction factor which drops the error to 2%. However, we show that the Nelson-

143

Philips approximation can overestimate the mean response time by as much as a
factor of 2. Lin and Raghavendra method yields less than 3.5% error for K up to
64 for the cases presented. Blanc [27] presents a numerical approximation based on
a power-series expansion of the state probabilities as functions of the load of the
system. Blanc’s approximation performs well when the load or number of servers is
small. There are also some numerical methods papers that don’t lead to a closed-
form solution, but are accurate and computationally efficient for not-too-large K,
see for example [6, 10, 112].
Recently Bramson et al. [35] have presented asymptotic analysis of ‘JSQ-type’ dis-
patching schemes. They consider dispatching policies of the following kind: an arrival
picks d random servers out of K, and joins the most favorable (shortest queue, least
work) among them. The authors consider the limit where K → ∞, and the arrival
rate increases as λ = θ · K (0 < θ < 1). For PS servers with shortest queue crite-
rion, the authors are able to show an insensitivity result: the mean response time
depends only on the mean of the service distribution and not on the higher order
characteristics. Intuitively one expects such a result to hold because, as K →∞, the
queues become asymptotically independent of each other. Thus the arrival process
into a particular queue is a state-dependent Poisson process, and insensitivity of mean
response time to higher moments of the service distribution under such an arrival
process is a well-known result. Previously, Mitzenmacher [114] had characterized the
steady-state joint queue length distribution under the same asymptotic scaling and
dispatching policy for exponential service distributions. At the outset, it is not clear
if and when such an insensitivity result holds for the JSQ-PS model we consider.
There has also been a lot of work investigating the optimality of routing policies for
heterogeneous servers under Exponential service distribution. Nelson and Towsley
[118] propose a policy, Greedy-Throughput, which routes jobs to servers so as to max-
imize the number of departures before the next arrival, and thus depend on knowing
the arrival rate. Shenker and Weinrib [135, 136] propose policies that estimate the
value functions of the solution of a certain stochastic dynamic programming problem
by observing the state, and thus are able to adapt to changes in the arrival rate.

5.3 Bounded-sensitivity of JSQ/PS Model

The first question that must be raised when performing analysis of a queueing model
is: Does the service distribution influence the performance at all? This question
acquires further prominence for the JSQ/PS model because it is well established that
for a Poisson arrival process, the mean response time of a single PS queue depends
on the service distribution only through the mean [91]. Further, Bramson et al. [35]

144

have recently proved that a similar insensitivity also holds asymptotically when jobs
are routed to shortest of a small set of randomly chosen servers, and the total number
of servers grows to infinity. In this Section, we show that while the JSQ/PS model
does not exhibit complete insensitivity, there is evidence of bounded-sensitivity – the
effect of higher order characteristics of the service distribution beyond the mean is
bounded.

Insensitivity with the Degenerate Hyperexponential Distri-
bution

We begin by proving that for the special degenerate hyperexponential class of service
distribution, the M/G/K/JSQ/PS model exhibits perfect insensitivity. Recall the
definition of the degenerate hyperexponential distribution (denote by H∗2):1

A random variable X distributed according to the H∗2 distribution with mean 1/µ
and SCV C2, is given by

X ∼

0 w.p. p

Exp(µ∗) w.p. 1− p ,

where p = (C2−1)/(C2 +1) and µ∗ = µ(1−p). We will use the shorthand H∗2 (µ∗, p)
to denote the above.
As mentioned before, the degenerate hyperexponential distribution is a relatively
minor modification of the Exponential distribution, but provides an additional pa-
rameter to represent the full range of SCV C2 from 1 to ∞. The next result shows
that if the job sizes are drawn from an H∗2 distribution, then the steady-state queue-
length distribution and the mean response time in the resulting M/H∗2/K/JSQ/PS
model depend only on the mean job size, and not on the remaining free parameter;
i.e., we have insensitivity within this H∗2 class.

Theorem 5.1 The queueing systems M(λ)/H∗2 (1 − p, p)/K/JSQ/PS and
M(λ)/M(1)/K/JSQ/PS have identical steady-state queue-length distributions and
mean steady-state response times. Moreover, the response-time distribution of the
M(λ)/H∗2 (1 − p, p)/K/JSQ/PS system is a mixture of a unit point mass at 0, with
probability p, and the response-time distribution of the M(λ)/M(1)/K/JSQ/PS sys-
tem multiplied by 1/(1− p), with probability 1− p.

1We have already seen in the previous chapters that the H∗2 distribution is extremely useful
approximately capture the variability of job sizes in multi-server systems. See also, [151, 155].

145

Proof: The jobs with size 0 do not have to wait, since the servers are doing
processor sharing. Therefore, only accounting for the non-zero-sized jobs, the joint
distribution of the original M(λ)/H∗2 (1− p, p)/K/JSQ/PS system is identical to an
M(λ(1− p))/M(1− p)/K/JSQ/PS. However, the latter system can be thought of as
an M(λ)/M(1)/K/JSQ/PS system seen on a slower time scale, and thus have the
same stationary joint queue length distribution, proving the first part of the theorem.
From the perspective of response time, the response time of the p-proportion of zero-
sized jobs is the deterministic distribution with mean 0, while the remaining (1− p)-
proportion of non-zero-sized jobs experience an M(λ(1 − p))/M(1 − p)/K/JSQ/PS
system. By employing the time scaling argument again, the (1 − p)-proportion of
non-zero-sized jobs experience a response time 1/(1 − p) times higher than that in
an M(λ)/M(1)/K/JSQ/PS system.

Bounded-Sensitivity for H2 service distribution in light traffic

The provable insensitivity of Theorem 5.1 is for a very special class of service dis-
tributions. We will show that this insensitivity property does not extend exactly
to other job-size distributions, but an approximate form of it does; i.e., we have
near-insensitivity or bounded sensitivity.

10
0

10
1

10
2

10
3

−6

−5.5

−5

−4.5

∆

C
S

2

(a) λ = 0.005

10
0

10
1

10
2

10
3

−6

−5.5

−5

−4.5

∆

C
S

2

(b) λ = 0.01

10
0

10
1

10
2

10
3

−6

−5.5

−5

−4.5

∆

C
S

2

(c) λ = 0.02

10
0

10
1

10
2

10
3

−6

−5.5

−5

−4.5

∆

C
S

2

(d) λ = 0.04

Figure 5.3: Light-traffic numerical results illustrating bounded-sensitivity underH2
service distribution with mean 1. For each value of SCV C2

S shown, the largest values
of mean number of jobs within the H2 class of service distribution was evaluated
numerically for a 2-server JSQ/PS system with a finite buffer of 5 at each server.
The Y -axis shows ∆ = 2E[N]−(2ρ+4ρ3)

ρ4 .

In Figure 5.3, we show results from experiments with the two-phase hyperexponential
service distribution in light traffic. We considered a 2-server JSQ/PS system where

146

each server has a finite buffer space of 5 jobs, and numerically solve for the stationary
distribution for job size distributions with SCV ranging from 1 to 1000. Since the
buffer is finite, to remove the effect of lost jobs, we chose arrival rates small enough
so as to make the loss probability negligible. For each value of SCV, we find that H2
distribution that results in the largest mean number of jobs in the system and show
that result in Figure 5.3. We observe that in light traffic, the mean number of jobs
for a 2-server system has the expansion: E[N] ∼ ρ+ 2ρ3 + ∆

2 · ρ
4 + o(ρ4), where the

effect of the job size variability shows up in the coefficient ∆. It is this quantity that
is plotted in Figure 5.3.
There are a couple of important observations: As ρ → 0, the coefficient of the ρ4

term, ∆, does converge to a non-degenerate function of the service distribution.
Further, as the job size variability C2

S → ∞, ∆ remains bounded (reminiscent with
(3.4), it appears to grow as a+ 1

C2
S+b). Therefore, there is strong evidence of bounded

sensitivity to the service distribution in the JSQ/PS model.

Near-Insensitivity for General Job-Size Distributions

As further evidence of near-insensitivity, we simulate an M/G/K/JSQ/PS system
with the following job-size distributions (all with mean 2, in increasing order of C2

S):

1. Deterministic: point mass at 2 (variance = 0)

2. Erlang2: sum of two exponential random variables with mean 1 (variance = 2)

3. Exponential: exponential distribution with mean 2 (variance = 4)

4. Bimodal-1: (mean = 2, variance = 9)

X =
{

1 w.p. 0.9
11 w.p. 0.1

5. Weibull-1: Weibull with shape parameter = 0.5 and scale parameter = 1
(heavy-tailed, mean = 2, variance = 20)

6. Weibull-2: Weibull with shape parameter = 1
3 and scale parameter = 1

3
(heavy-tailed, mean = 2, variance = 76)

7. Bimodal-2: (mean = 2, variance = 99)

X =
{

1 w.p. 0.99
101 w.p. 0.01

147

The load was set at ρ = 0.9 and simulations were run for K = 2, 4, 8 and 16 servers.
For each value of K and each distribution, the simulation was run 50 times, each run
consisting of K × 107 departures. Statistics for completed requests were considered.
Figure 5.4 shows the 95% confidence intervals for the mean response time and second
moment of queue length, for each service distribution and K = 2, 8 (complete simu-
lation results appear in [70]). The mean response time in Figure 5.4 never deviates
by more than 2% from the exponential case, regardless of the job-size distribution,
and the deviation for the second moment of queue length is barely over 3%.
This section has aimed to provide ample justification for approximating the mean
response time of an M/G/K/JSQ/PS system by an M/M/K/JSQ/PS system. We
address this latter goal in the next section.

5.4 Single-Queue-Approximation forM/M/K/JSQ/PS

To understand SQA, it helps to recall that the main obstacle in analyzing routing
policies such as JSQ is that the states of all the queues are correlated, necessitating
a multidimensional state space for the system. Thus exact analysis requires that
we work with the vector of queue lengths and possibly also the remaining service
requirements of all jobs at each server. The SQA method allows one to approximate
the marginal queue length distribution of each queue in the server farm by modeling
each queue independently of the other, thereby avoiding the above difficulties.
Consider a queue Q in the server farm. Under SQA, we model Q by a queue Q′,
where the arrival rate of jobs into Q′ depends only on the queue length of Q′, and
not on the state of any other queues. Thus SQA approximates each queue of the
M/G/K/JSQ/PS model by an associated Mn/G/1/PS model, where Mn denotes a
state-dependent Markovian arrival process. Specifically, at time t, the arrival process
acts as a Poisson process with rate λ(NQ′(t)), where NQ′(t) is the queue length of Q′
at time t and {λ(n) : n ≥ 0} is a deterministic sequence with λ(n) being the actual
long-run arrival rate into queue Q (of the original server farm) conditioned on the
queue length of Q being n. We define λ(n) in Definition 5.1.

Definition 5.1 Given a general M/G/K/R/S model, the conditional arrival rate
into one designated queue Q given that it has n jobs, λ(n), is defined as

λ(n) = lim
t→∞

An(t)
Tn(t)

, (5.1)

where An(t) is the number of arrivals into Q during the time interval [0, t] that see

148

10.9

10.95

11

11.05

11.1

M
e
a
n
 R

e
s
p
o
n
s
e
 T

im
e

Deterministic

Erlang2
Exponential

Bimodal−1Weibull−1
Weibull−2

Bimodal−2

47

47.5

48

48.5

E
[N

2
]

Deterministic

Erlang2 Exponential

Bimodal−1Weibull−1
Weibull−2Bimodal−2

(a) K = 2

4.2

4.25

4.3

4.35

M
e
a
n
 R

e
s
p
o
n
s
e
 T

im
e

Deterministic

Erlang2

Exponential

Bimodal−1

Weibull−1

Weibull−2

Bimodal−2

5.4

5.5

5.6

5.7

E
[N

2
]

Deterministic

Erlang2

Exponential

Bimodal−1

Weibull−1

Weibull−2

Bimodal−2

(b) K = 8

Figure 5.4: 95% Confidence intervals for mean response time (left column) and
second moment of queue length (right column) in the M/G/K/JSQ/PS model with
ρ = 0.9 and mean job size 2 for different job-size distributions based on simulations.
The service distributions are arranged on the x-axis in order of increasing C2

S (the
C2
S values are {0, 1, 2.25, 5, 19, 24.75}, respectively).

n jobs at Q on arrival (excluding themselves), while Tn(t) is the total time spent by
Q with n jobs during the time interval [0, t].

Formally, the arrivals form a stochastic point process with stochastic intensity λ(NQ′(t)),
as defined in §II.3,5 in Brémaud [36].
The state-dependence in the arrival rate λ(n) is intended to capture some of the de-
pendence inherent in the fullM/G/K/JSQ/PS model. Consider anM/G/K/JSQ/PS
model with outside arrival rate λ. The average arrival rate into each queue is λ/K.
However, if we condition on the fact that some designated queue has n jobs, then the
arrival rate into that designated queue is no longer λ/K. In fact, with JSQ routing,

149

we expect that the long-term arrival rates into that designated queue, λ(n), should
decrease as n increases, because it is likely that at least one other queue is shorter
than the designated queue. This is precisely what happens: λ(0) is larger than λ/K,
but λ(n) decreases as n increases. In this way, having state-dependent arrival rates
captures some of the influence of the other queues on the designated queue.
The SQA method is not limited to the M/G/K/JSQ/PS model. We can consider
other routing policies R (see e.g., Definition 5.2) for the K-server model and other
scheduling rules S at this single queue. We can also accommodate heterogeneous
servers. We now specify a class of routing policies for which SQA works well.

Definition 5.2 A stationary queue-length-dependent routing policy is a time-stationary
routing policy that uses only information about queue lengths at the servers at the
instant of an arrival. The decisions may be made probabilistically, and may be biased
in favor of certain servers (allowing the modeling of heterogeneous servers).

In fact, SQA in some senses is a misnomer. If in addition to accurately computing
the conditional arrival rates, we could also compute the conditional departure rates
µ(n), then SQA yields the exact marginal distribution for the number of jobs at
a designated queue and not just an approximation (intuitively, since the number
of arrivals while in state n, and departures while in state n + 1 are within ±1,
λ(n)
µ(n+1) → limt→∞

Tn+1(t)
Tn(t)). However, when the service distribution is Markovian,

finding the arrival rates is sufficient to produce the exact stationary queue-length
distribution:

Theorem 5.2 Consider an M/M/K/R/S model, where R is any stationary queue-
length-dependent routing policy, e.g., JSQ, and S is any stationary, size-independent,
work-conserving scheduling policy, e.g., PS. Assume that this model has a unique
proper steady-state distribution. Let Q be any particular server in the M/M/K/R/S
model. Then SQA with the exact conditional arrival rates λ(n) yields the same steady-
state queue-length distribution as in the original M/M/K/R/S model.

Proof: The result easily follows via sample path arguments employing conditional
arrival and departure rates, see [52] (Theorem 1.9, Section 1.4.2, page 21).
What makes SQA especially appealing for approximating the M/M/K/JSQ/PS
model is that due to a surprising regularity in the conditional arrival rates, the
number of parameters to be approximated essentially reduces to two. We elaborate
on this next.

150

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

n

λ
(n

)

(a) ρ = 0.3

0 1 2 3 4 5 6
0.3

0.5

0.7

0.9

n

λ
(n

)
(b) ρ = 0.6

0 1 2 3 4 5 6
0.8

1

1.2

1.4

n

λ
(n

)

(c) ρ = 0.9

Figure 5.5: Illustrating the convergence of conditional arrival rates, λ(n), for a
given queue of an M/M/K/JSQ/PS, with mean job size 1, where K = 2.

5.4.1 The Conditional Arrival Rates

The feasibility of the SQA method hinges on obtaining the conditional arrival rates
λ(n), n ≥ 0, defined in (5.1). In this section we will derive closed-form approx-
imations for these conditional arrival rates. Our results here draw on extensive
simulation experiments in which we estimated these conditional arrival rates for a
range of job-size distributions and other model parameters.
First, we observed that the conditional arrival rates rapidly converge to a limiting
value as n (the number of jobs at the queue) increases. Indeed, we found that

λ(n)
µ
≈ ρK for all n ≥ 3 , (5.2)

for ρ ≤ 0.95. Simulations of the M/M/K/JSQ/FCFS model showed this approx-
imation to be consistently within 2% of the actual values (provided that ρ is not
too extreme, i.e., for 0.3 ≤ ρ ≤ 0.95). We will provide further analytical arguments
justifying this observation in Section 5.6.1. This fact is illustrated in Figure 5.5 for
the case of K = 2. We also prove this convergence in the limit for the case K = 2 in
Theorem 5.3 below, but it is easy to see the intuition behind the result. Since JSQ
tries to equalize queue lengths, if a particular designated queues has many jobs, then
there is a high probability that all servers are busy. In this case, the total number
of jobs in the systems starts behaving as a central queue M/M/K. For the number
of jobs to increase by 1 at a queue, the total number of jobs in the system should
increase by K, which gives the tail decay rate as ρK .

151

Theorem 5.3 For the M(λ)/M(µ)/2/JSQ/PS system,

lim
n→∞

λ(n)
µ

= ρ2 (5.3)

The proof follows directly from the work of Adan et al. [8] on using the compensation
approach to analyze the M/M/2/JSQ/FCFS queue and will use Lemmas 5.1 and
5.2 mentioned below. We begin by reviewing the notation. Let πm,n be the stationary
probability that length of queue 1 is m and length of queue 2 is n. For m ≥ 0 and
r ≥ 0, define qm,r as:

qm,r = πm,m+r (5.4)

That is, qm,r is the probability that queue 1 is the shorter queue and has m jobs and
queue 2 has m+ r jobs.

Lemma 5.1 [Adan et al. [8]] The stationary probabilities qm,r for m ≥ 0 and r ≥ 1
are given by:

qm,r = Cxm,r

The normalization constant C is given by

C = 2(1− ρ2)(2− ρ)
ρ(2 + ρ)

and

xm,r =
∞∑
i=0

di(αmi + ciα
m
i+1)βri (5.5)

where αi, βi, ci and di’s are given by the following recursion scheme:

d0 = 1
α0 = ρ2

β0 = ρ2

2 + ρ

αiαi+1 = 2ρβ2
i

βiβi+1 = α2
i+1/(2ρ+ αi+1)

ci = −αi+1 − βi
αi − βi

di+1 = −(αi+1 + ρ)/βi+1 − (ρ+ 1)
(αi+1 + ρ)/βi − (ρ+ 1) cidi

152

We will use the following lemma to bound the infinite sum of (5.5) by a finite sum.

Lemma 5.2 The infinite sum for xm,r (m ≥ 0, r ≥ 1) in (5.5) can be bounded by
the following finite sums:

(αm0 + c0α
m
1)βr0 + d1(αm1 + c1α

m
2)βr1 = xm,r < xm,r < xm,r = (αm0 + c0α

m
1)βr0 (5.6)

Proof: Let si = |di(αmi + ciα
m
i+1)βri |. In [8] (Lemma 8), authors prove that:

si+1 < Rsi

where R = 4/(4+2ρ+ρ2) < 1. Also as a consequence of Lemma 1 of [8], di+1/di < 0.
That is di alternate signs, d0 being defined to equal 1. Hence,

xm,r = s0 − s1 + s2 − s3 + s4 − . . .
< s0 − s1 +Rs1 − s3 +Rs3 − . . .
= s0 − (1−R)(s1 + s3 + . . .)
< s0
def= xm,r

and,

xm,r = s0 − s1 + s2 − s3 + s4 − s5 + . . .

> s0 − s1 + s2 −Rs2 + s4 −Rs4 + . . .

= s0 − s1 + (1−R)(s2 + s4 + . . .)
> s0 − s1
def= xm,r

Proof of Theorem 5.3: Let Πn be the stationary probability that there are n
jobs in queue 1. Since we know SQA is exact, we can express the conditional arrival
rates, λ(n), as

λ(n) = µ
Πn+1

Πn

= µ

∑∞
i=0 πn+1,i∑∞
i=0 πn,i

Let xm,0 = C−1qm,0. Since for m > 0,

qm,0 = 1
1 + ρ

(2ρqm−1,1 + qm,1) (5.7)

153

we also have the following bounds on xm,0:
1

1 + ρ
(2ρxm−1,1 + xm,1) = xm,0 < xm,0 < xm,0 = 1

1 + ρ
(2ρxm−1,1 + xm,1)

Expressing π’s in terms of the x’s gives us the following bounds on λ(n):

λ(n) < λ(n) < λ(n) (5.8)

where,

λ(n) = µ
xn+1,0 +∑∞

i=1 xn+1,i +
∑n
j=0 xj,n+1−j

xn,0 +∑∞
i=1 xn,i +

∑n−1
j=0 xj,n−j

(5.9)

λ(n) = µ
xn+1,0 +∑∞

i=1 xn+1,i +
∑n
j=0 xj,n+1−j

xn,0 +∑∞
i=1 xn,i +

∑n−1
j=0 xj,n−j

(5.10)

The expression for λ(n) in (5.10) is obtained by upper bounding the numerator, Πn+1,
and lower bounding the denominator, Πn. Doing the opposite gives λ(n) (5.9).
To prove the convergence of λ(n), we will prove

lim
n→∞

λ(n) = lim
n→∞

λ(n) = µρ2

We will first show the convergence of λ(n). Proof for λ(n) is similar. Now,

λ(n) = µ
xn+1,0 +∑∞

i=1 xn+1,i +
∑n
j=0 xj,n+1−j

xn,0 +∑∞
i=1 xn,i +

∑n−1
j=0 xj,n−j

= µ
Sn+1

Sn + Tn
(5.11)

where,

Si = β0

1 + ρ
[2ρ(αi−1

0 + c0α
i−1
1) + (αi0 + c0α

i
1)] + (αi0 + c0α

i
1)

β0

1− β0

+ β0

(
αi0 − βi0
α0 − β0

+ c0
βi0 − αi1
β0 − α1

)

Ti =d1

[
β1

1 + ρ
[2ρ(αi−1

1 + c1α
i−1
2) + (αi1 + c1α

i
2)] + (αi1 + c1α

i
2)

β1

1− β1

+β1

(
αi1 − βi1
α1 − β1

+ c1
βi1 − αi2
β1 − α2

)]

Dividing the numerator and denominator of (5.11) by αn−1
0 , taking limn→∞ and

noting that α1
α0
< 1, α2

α0
< 1, β0

α0
< 1 and β1

α0
< 1:

lim
n→∞

λ(n) = µα0

β0
1+ρ [2ρ+ α0] + α0

β0
1−β0

+ β0
(

α0
α0−β0

)
β0

1+ρ [2ρ+ α0] + α0
β0

1−β0
+ β0

(
α0

α0−β0

) (5.12)

154

= µα0

= µρ2 (5.13)

Similarly,

lim
n→∞

λ(n) = lim
n→∞

µ
Sn+1 + Tn+1

Sn
= µρ2

and hence convergence of λ(n) follows by convergence of its upper and lower bounds.
We believe that we can generalize the proof to any finite K, however we state it only
for K = 2.
Observe that it makes intuitive sense that λ(n), the average arrival rate into a des-
ignated queue conditioned on that queue having n jobs, should decrease as n is
increased, because, if the designated queue has many jobs then it is likely that other
queues have fewer jobs than itself.
Next, consistent with the other near-insensitivity results, we have observed that
these conditional arrival rates also exhibit near-insensitivity; there is almost no de-
pendence on the variability of the job-size distribution. This fact is illustrated in
Table 5.1 for the case of K = 4, with hyperexponential job-size distributions having
squared coefficient of variation ranging from 1 to 64, where r denotes the fraction
of load made up by one branch of the hyperexponential (hence r = 0.5 denotes a
hyperexponential with balanced load on its branches). The near-insensitivity of the
λ(n)’s provides further justification for focusing on the special case of an exponential
job-size distribution.
Based on the key observation in (5.2), our task has been reduced to obtaining approx-
imations for the first 3 conditional arrival rates: λ(0), λ(1) and λ(2). The following
lemma, allows us to reduce our task further to just deriving two conditional arrival
rates, λ(0) and λ(2), since λ(1) can be estimated from these, assuming the relation
in (5.2).

Lemma 5.3 Under the approximating approximation of (5.2) for theM/M/K/JSQ/PS
model, we obtain

λ(1) = µ

[
µ
λ(0)

ρ−ρK+1

(1−ρ) + ρK − 1
]

1 + λ(2)/µ− ρK . (5.14)

Proof: Since all the servers are homogeneous, the time-average arrival rate into
any one queue is λ/K = µρ. By Theorem 5.2, SQA is exact given the conditional
arrival rates. Therefore, we can write the time average arrival rate into any server as

µρ =
∞∑
n=0

Πnλ(n) .

155

λ(0) λ(1) λ(2) λ(3) λ(4) λ(5) λ(6)
C2 = 0 2.2379 0.9865 0.6931 0.6575 0.6605 0.6645 0.6678
C2
S = 1 2.2125 0.9962 0.7098 0.6631 0.6573 0.6550 0.6543

C2
S = 2

r = 0.1 2.2080 1.0000 0.7123 0.6629 0.6541 0.6516 0.6542
r = 0.5 2.2074 0.9975 0.7119 0.6609 0.6520 0.6522 0.6525
r = 0.9 2.2077 0.9947 0.7114 0.6649 0.6560 0.6554 0.6557

C2
S = 4

r = 0.1 2.2068 1.0041 0.7144 0.6611 0.6513 0.6531 0.6522
r = 0.5 2.2018 0.9992 0.7150 0.6653 0.6585 0.6553 0.6520
r = 0.9 2.2075 0.9971 0.7110 0.6630 0.6572 0.6560 0.6549

C2
S = 16

r = 0.1 2.2032 1.0092 0.7201 0.6641 0.6544 0.6521 0.6536
r = 0.5 2.1957 0.9982 0.7181 0.6649 0.6534 0.6510 0.6559
r = 0.9 2.2091 0.9965 0.7146 0.6672 0.6598 0.6567 0.6572

C2
S = 64

r = 0.1 2.2061 1.0104 0.7157 0.6572 0.6515 0.6497 0.6597
r = 0.5 2.1893 0.9959 0.7233 0.6702 0.6569 0.6526 0.6529
r = 0.9 2.2072 0.9964 0.7136 0.6668 0.6583 0.6573 0.6554

Table 5.1: Conditional arrival rates for M/H2/K/JSQ/PS with K = 4 and
ρ = 0.9, where the hyperexponential (H2) distribution has parameters C2

S and r
with mean 1, and the variability of H2 ranges from C2

S = 1 to C2
S = 64. Results

from simulation. (Conditional arrival rates forM/D/K/JSQ/PS are also shown for
reference in the top line.)

By Little’s law (focusing on the servers), 1 − Π0 = ρ. Using that with (5.2), we
obtain

µρ = (1− ρ)λ(0) + (1− ρ)λ(0)
µ

λ(1) + (1− ρ)λ(0)λ(1)
µ2 λ(2)

+
(
ρ− (1− ρ)λ(0)

µ
− (1− ρ)λ(0)λ(1)

µ2

)
ρK (5.15)

This gives the desired approximation for λ(1).
The approximations for λ(2) and λ(0) were obtained empirically using MATLAB’s
curve fitting toolbox (version 1.1.5), which uses a trust-region method for a nonlinear
least-squares fit. For each value of load, ρ, we approximate λ(2) as a function of K
by a simple exponential function of the form

λ(2) ≈ µ
(
uρv

K
ρ

)
(5.16)

Empirical fit yields the following functions of ρ:

uρ = c3ρ
3 + c2ρ

2 + c1ρ+ c0 and vρ = c′2ρ
2 + c′1ρ+ c′0 ,

156

where c3 = −0.29, c2 = 0.8822, c1 = −0.5349, and c0 = 1.0112, while c′2 = −0.1864,
c′1 = 1.195, and c′0 = −0.016.
For λ(0), we used a function with two exponential terms, namely,

λ(0) ≈ µ
(
aρ − bρcKρ − dρeKρ

)
(5.17)

where cρ, eρ < 1. The constant aρ in (5.17) is clearly the limit as K → ∞. The
following lemma gives the value of this limit.

Lemma 5.4

lim
K→∞

λ(0)
µ

= ρ

1− ρ (5.18)

Proof: For any value of ρ < 1, as the number of servers becomes large enough, any
arrival will find at least one server idle with high probability. Therefore, λ(i) ≈ 0 for
i ≥ 1. Equating the expressions for time average arrival rates into any queue,

(1− ρ)λ(0) = µρ or λ(0)
µ

= ρ

1− ρ .

The remaining functions bρ, cρ, dρ, and eρ were determined empirically for 0.3 ≤
ρ ≤ 0.95; we did not have accurate enough simulations outside this range. The final
functions are

bρ = −0.0263ρ2 + 0.0054ρ+ 0.1155
ρ2 − 1.939ρ+ 0.9534

cρ = −6.2973ρ4 + 14.3382ρ3 − 12.3532ρ2 + 6.2557ρ− 1.005

dρ = −226.1839ρ2 + 342.3814ρ+ 10.2851
ρ3 − 146.2751ρ2 − 481.1256ρ+ 599.9166

eρ = 0.4462ρ3 − 1.8317ρ2 + 2.4376ρ− 0.0512

5.4.2 Evaluating the Approximation

In this section we evaluate our SQA approximation for the M/G/K/JSQ/PS model,
where the conditional arrival rates used in the SQA are the approximate ones derived
in Section 5.4.1. Our approach is not exact even for the case of an exponential service
distribution, because the conditional arrival rates are approximate. Therefore, we
first evaluate our method for exponential distributions, and afterwards, we consider
general service distributions.

157

Exponential Job Sizes

2 4 8 16 32 64
0.4

0.45

0.5

Number of servers (K)

E
[N

]

SQA
Simulation

2 4 8 16 32 64
0.4

0.5

0.6

0.7

0.8

Number of servers (K)

E
[N

2
]

SQA
Simulation

(a) ρ = 0.4

2 4 8 16 32 64

0.8

1

1.2

1.4

Number of servers (K)
E

[N
]

SQA
Simulation

2 4 8 16 32 64
0

1

2

3

4

5

Number of servers (K)

E
[N

2
]

SQA
Simulation

(b) ρ = 0.7

2 4 8 16 32 64
1

2

3

4

5

Number of servers (K)

E
[N

]

SQA
Simulation

2 4 8 16 32 64
0

10

20

30

40

50

Number of servers (K)

E
[N

2
]

SQA
Simulation

(c) ρ = 0.9

Figure 5.6: The top row shows the effectiveness of SQA in predicting mean
queue length, and the bottom row shows the effectiveness of SQA in predicting
the second moment of queue length. Results are shown for three values of load:
ρ = {0.4, 0.7, 0.9}, K up to 64 servers.

Theorem 5.2 implies that SQA is exact if the conditional arrival rates are correct. In
this section, we apply SQA with our approximate conditional arrival rates to deter-
mine the first two moments of queue lengths for exponential service requirements.
The results are shown in Figure 5.6, where N represents the queue length of a single
queue in the server farm.
From Figure 5.6, it is difficult to see that the SQA method with our derived ap-
proximate conditional arrival rates exhibits any error at all, when compared with
simulations. However, the error is actually < 2% for mean queue length and < 2.4%
for the second moment of queue length, when the number of servers is up to K = 64
and ρ = 0.9. Given that we have exponential job sizes, this error is solely due to
error in the approximation of the conditional arrival rates.

158

Looking at Figure 5.6, we see
lim
K→∞

E[N] = ρ.

This is expected because, when ρ < 1 and the number of servers increases, arrivals
find idle servers with probability 1. Thus the system resembles an infinite server
system.

General Job Sizes

We now move on to the case of general job-size distributions. Figure 5.7 shows the
95% confidence intervals for the first and second moment of queue length obtained
from simulations of the original M/G/K/JSQ/PS server farm for the distributions
mentioned in Section 5.3. Each plot also shows the results of the SQA approximation:
the analysis of the Mn/G/1/PS system with the conditional arrival rates derived in
Section 5.4.1. The results are also summarized in Tables 5.2 and 5.3.

K = 2 K = 8
E[N]JSQ E[N]SQA % error E[N]JSQ E[N]SQA % error

Deterministic 4.8999 4.8426 1.1676 1.8946 1.9295 1.8449
Erlang2 4.9216 4.8426 1.6055 1.9142 1.9295 0.8015

Exponential 4.9298 4.8426 1.7678 1.9213 1.9295 0.4260
Bimodal-1 4.9445 4.8426 2.0592 1.9308 1.9295 0.0668
Weibull-1 4.9495 4.8426 2.1589 1.9384 1.9295 0.4573
Weibull-2 4.9640 4.8426 2.4456 1.9490 1.9295 1.0010
Bimodal-2 4.9700 4.8426 2.5618 1.9431 1.9295 0.7004

Table 5.2: Evaluation of SQA: First moment of queue length, obtained via simula-
tion versus SQA, evaluated on distributions mentioned in Section 5.3.

The error is at most 2.6% for mean queue length, and at most 3.3% for the second
moment of queue length when ρ = 0.9.

5.5 Optimal Load Balancing for PS Servers

So far, we have only considered the commonly used JSQ routing policy. However,
it is natural to wonder how good a routing policy JSQ is for PS server farms. In
this section we show, via simulation, that it is unlikely that there is a routing policy

159

4.85

4.9

4.95

5

E
[N

]

Deterministic

Exponential

Bimodal−1Weibull−1
Weibull−2

Bimodal−2

JSQ (Sim.)

SQA

46.5

47

47.5

48

48.5

E
[N

2
]

Deterministic

Exponential
Bimodal−1Weibull−1Weibull−2Bimodal−2

JSQ (Sim.)

SQA

(a) K = 2

1.88

1.9

1.92

1.94

1.96

E
[N

]

Deterministic

Exponential

Bimodal−1

Weibull−1

Weibull−2

Bimodal−2

JSQ (Sim.)

SQA

5.4

5.5

5.6

5.7

5.8

E
[N

2
]

Deterministic

Exponential

Bimodal−1

Weibull−1

Weibull−2

Bimodal−2

JSQ (Sim.)

SQA

(b) K = 8

Figure 5.7: Comparison of the first and second moments of queue length at a single
queue in the JSQ/PS server farm with those obtained using SQA for various service
distributions with load ρ = 0.9 and number of servers K = 2 and 8. The top row
shows E[N] and the bottom row shows E[N2].

which outperforms JSQ by more than about 10%. We also pose many interesting
open problems regarding the optimality of JSQ.
Figure 5.8 compares the performance of JSQ for a PS server farm with that of
several other policies, via simulation, on a range of job size distributions, defined in
Section 5.3. The policies shown are:

Random – We flip a fair coin in deciding to which queue an incoming job should be
assigned. Note that in this case, each queue looks like an M/G/1/PS queue
with arrival rate λ/K.

Round-Robin (RR) – Assign jobs in Round-Robin order, where if the previous
job was assigned to queue i mod K, then the next job will be assigned to
queue (i+ 1) mod K.

Least-Work-Left (LWL) – Each job is assigned to the queue with the least total

160

K = 2 K = 8
E[N2]JSQ E[N2]SQA % error E[N2]JSQ E[N2]SQA % error

Deterministic 46.9934 46.4050 1.2523 5.4210 5.5982 3.2690
Erlang2 47.3844 46.4050 2.0669 5.5354 5.5982 1.1352

Exponential 47.4411 46.4050 2.1840 5.5738 5.5982 0.4375
Bimodal-1 47.6244 46.4050 2.5606 5.6217 5.5982 0.4187
Weibull-1 47.6847 46.4050 2.6837 5.6688 5.5982 1.2464
Weibull-2 47.9491 46.4050 3.2203 5.7277 5.5982 2.2616
Bimodal-2 47.9787 46.4050 3.2801 5.6912 5.5982 1.6343

Table 5.3: Evaluation of SQA: Second moment of queue length, obtained via sim-
ulation versus SQA, evaluated for distributions mentioned in Section 5.3.

remaining work.

Join-Shortest-Queue (JSQ) – Each job is assigned to the queue with the fewest
number of jobs. Ties are broken by flipping a fair coin.

OPT-0 – Each incoming job is assigned so as to minimize the mean response time
for all jobs currently in the system, assuming that there are 0 future arrivals.
Note that we are not being greedy from the perspective of the incoming job,
but rather trying to minimize across all the jobs in the system. This policy is
followed for each successive incoming arrival. The OPT-0 policy was introduced
Bonomi [29].

Observe that policies OPT-0 and Least-Work-Left are both less practical than the
other policies because they require knowledge of the job sizes.
There are many interesting things to see in Figure 5.8. First, we note that OPT-
0 is in fact the best routing policy across all job-size distributions of those policies
shown. Also JSQ is very close to OPT-0, within no more than 10%. This is surprising
because JSQ utilizes only the number of jobs at each queue, whereas OPT-0 uses the
remaining sizes of all jobs and the size of the incoming job.
From an insensitivity perspective, we see that that there are some policies, e.g., OPT-
0 and JSQ, that are nearly insensitive to the job-size distribution, whereas other
policies, e.g., LWL and RR, are highly sensitive to the job-size distribution. It is an
interesting question whether there is some detectable common characteristic among
those routing policies that are nearly insensitive to the job-size distribution under
PS server farms. This is an important question in light of the fact that empirical
workloads in Web server farms are very variable.

161

0.7

0.8

0.9

1

E
[N

]

D
et Exp

Bim
−1

W
ei
b−

1

W
ei
b−

2

Bim
−2

JSQ
OPT−0

LWL

R−R

RANDOM

5

6

7

8

9

E
[N

]

D
et Exp

Bim
−1

W
ei
b−

1

W
ei
b−

2

Bim
−2

JSQ
OPT−0

LWL

R−R
RANDOM

(a) K = 2

0.5

0.6

0.7

0.8

0.9

1

E
[N

]

D
et Exp

Bim
−1

W
ei
b−

1

W
ei
b−

2

Bim
−2

JSQ
OPT−0

LWL

R−R

RANDOM

2

4

6

8

E
[N

]

D
et Exp

Bim
−1

W
ei
b−

1

W
ei
b−

2

Bim
−2

JSQ
OPT−0

LWL

R−R
RANDOM

(b) K = 8

Figure 5.8: Comparison of the first moment of queue length for JSQ, Least Work
Left (LWL), Round Robin (R-R) and Random routing policies for K = 2 and K = 8
servers for a PS server farm with a range of job-size distributions. The service
distributions are arranged on the x-axis in order of increasing C2

S (the C2
S values are

{0, 1, 2.25, 5, 19, 24.75}, respectively).
blah blah

Turning to the question of optimality, note that the case of deterministic job sizes
yields the lowest mean response times, as compared with other job-size distributions,
and that all three policies: RR, LWL, and OPT-0, yield the same performance for the
case of deterministic job sizes – in fact, they behave identically on every sample path
when the job-size distribution is deterministic, and Theorem 5.7 (Appendix 5.A)
shows that they are optimal in a strong sense. Conjecture 5.1 below hypothesizes
that this value is the minimum response time possible across all policies and job-size
distributions for PS farms.

Conjecture 5.1 For an M/G/K/R/PS system, where the job-size distribution has
mean 1, we conjecture that setting G ≡ Deterministic(1) and R ≡ RR results in
the lowest possible mean response time, over all other pairs (G, R).

162

Conjecture 5.1 gives us a handle on evaluating the optimality of JSQ. Making use
of the fact that JSQ is one of the policies that is nearly insensitive to the job-size
distribution, by the above conjecture, it would suffice to compare the performance
of JSQ under deterministic job sizes with RR under deterministic job sizes. Even
under the narrowed scope of deterministic job sizes, the comparison between JSQ
and RR is not obvious, however, because JSQ can differ from RR both in tie-breaks
and non-tie-break situations. If we do not impose the restriction of Poisson arrival
process, then the following theorem shows that there exist arrival sequences where
JSQ can yield response times up to twice as much as RR for deterministic service
distribution, even without any tie breaks. We conjecture this factor of two to be
tight.

Theorem 5.4 For the JSQ/PS task assignment policy, with any arbitrary tie-breaking
rule,

sup
σ

E
[
T σ/D/K/JSQ/PS

]
E
[
T σ/D/K/RR/PS

] ≥ 2

The supremum is taken over all finite arrival sequences σ.

Proof: Let the number of servers K be even, and consider the following arrival
sequence σ∗: At time t = 0, a batch of 3K

2 jobs arrive. Thus servers 1 to K
2 get 2

jobs each and will serve these until time t = 2. Servers K
2 + 1 to K get one job

each and idle at time t = 1. At time 2 − ε, a batch of K jobs arrives, and since
servers 1 to K

2 are still busy with 2 jobs (each of which has remaining size ε
2), JSQ

will send 2 jobs each to servers K
2 +1 to K. However RR (LWL) will send a job each

to servers 1 to K. The arrival sequence continues as follows: at times t = 2i − ε,
i = 2, 3, . . ., batches of K jobs arrive. Under RR (LWL), the subsequent batches
of K jobs are distributed evenly among the K servers. Under JSQ, the K

2 servers
which are idle at the arrival instant of the batch get two jobs each. As the number
of arrivals increases, and for ε small enough:

E
[
T σ
∗/D/K/JSQ/PS

]
E
[
T σ
∗/D/K/RR/PS

] = 2

163

5.6 Many-Servers Heavy-Traffic Analysis of Load
Balancing Policies

As we have mentioned before, there are very few results on the exact analysis of
JSQ/PS, and even the proposed approximations (including the one in Section 5.4)
only give results for the distribution of number of jobs in the system. There are
no results on the sojourn time distribution. In this section, we propose a novel
heavy-traffic scaling to enable study of load balancing policies, and as a first step,
we perform the analysis of the stationary joint distribution of queue lengths, and the
sojourn time distribution. As the name suggests, our scaling is obtained by letting
the number of servers K grow to ∞, while the arrival rate also grows to match the
capacity. However unlike the popular square root rule where Kµ − λ = Θ(

√
K), in

our scaling the arrival rate grows so as to ensure Kµ − λ = Θ(1). While we call
this scaling heavy traffic, under our scaling the marginal queue length of each server
converges to a limit, and thus is very useful as a tool to obtain approximations,
analyze routing policies for heterogeneous servers, and to study the effect of service
distribution. Our scaling is similar to the recent work on Non-Degenerate Slowdown
scaling for the central queue M/M/K model by Atar [15].
We employ this scaling to present a new approximation for the M/M/K/JSQ/PS
model in Section 5.6.1. Our closed-form approximation is accurate when the num-
ber of servers is large and the average load per server is close to one, and thus
should be seen as a complement to the existing approximations [27, 117]. In addi-
tion, we present the first approximation for the distribution of response time for the
M/M/K/JSQ/PS model. In Section 5.6.2 we discuss some further insights gained
via our many-server analysis. In Section 5.6.3, we analyze load balancing policies for
heterogeneous servers under the many-servers regime and prove that, rather coun-
terintuitively, joining the shorter queue remains optimal.

5.6.1 A new approximation for the M/M/K/JSQ/PS model

We begin with a formal definition of the many-server heavy-traffic limit, followed by
the analysis of the stationary joint distribution of the number of jobs at the servers
in Theorem 5.5, and the stationary distribution of response time in Theorem 5.6.

Definition 5.3 The many-servers heavy-traffic limiting system with parameter θ
(0 < θ < 1) is obtained via a sequence of M/M/r/JSQ/PS systems indexed by a
discrete parameter r, such that:

1. The speed of the servers in the rth system is µ,

164

2. The number of servers in the rth system is r,

3. The arrival rate of the rth system, λ(r) is chosen to satisfy
(
ρ(r)

)r
=
(
λ(r)

rµ

)r
= θ.

Equivalently, ρ(r) = λ(r)

rµ
= 1 + log θ

r
.

Stationary joint distribution of number of jobs

Theorem 5.5 Let N (r) denote the number of job in the rth system. Then:

lim
r→∞

Pr
[
N (r) > αr

]
=

1 α ≤ 1,

1
C
· 1
| log θ| +

1
C

[
(log θ−1)(1−(α−1)(θe)

α−2)−(1−(θe)
α−2)

]
(log θ−1)2 1 < α ≤ 2,

1
C
· θα−2

| log θ| 2 < α.

where C, the normalizing constant, is given by

C = e

θ

∫ 1

0
ueu(log θ−1)du+

∫ ∞
0

eu log θdu

= 1
(log θ − 1) −

1
(log θ − 1)2 + e

θ(log θ − 1)2 −
1

log θ

Further, the system exhibits the following state-space collapse: Conditioning on N (r) =
αr (i < α < i+1, i ∈ N) , the number of servers with (i+1) jobs is (α− i)r+Θ(1),
the number of servers with i jobs is ((i + 1) − α)r + Θ(1), and the distribution of
the number of servers with (i − 1) jobs is Geom (α− i) − 1, where Geom(p) is the
geometric distribution with success probability p (equivalently, as the number of jobs
in an M/M/1 with load (i + 1 − α)). The number of servers with less than (i − 1)
or more than (i+ 1) jobs is o(1).

Proof: We begin by showing how the first part of the theorem follows from the
second. The proof involves an idea similar to SQA. We look at the whole system
as a single queue and consider the Markov chain for the total number of jobs in the
system. The problem of finding conditional arrival rates now becomes trivial – they
are simply λ(r). The interesting question is finding the conditional departure rates,
and since our servers are homogeneous and job size distribution is Exponential, this
would be given by M (r)(j) =

(
r − I(r)(j)

)
µ, where I(r)(j) is the expected number

of idle queues in the rth system conditioning on the total number of jobs being j.
Consider α < 1: That is, the number of jobs is less than the number of servers. In
this case, the system is unstable on a transient scale and hence there is no probability
mass for α < 1.

165

Now consider α > 2: then according to the second statement in the theorem, the
number of idle queues is o(1). Thus the departure rate is rµ− o(1), while under our
scaling, the arrival rate is rµ−Θ(1). Therefore, for α > β ≥ 2, for the rth system:

Pr
[
N (r) = [αr]

]
Pr
[
N (r) = [βr]

] = Π[αr]
j=[βr]+1

(
λ(r)

µ (r − I(r)(j))

)

= Π[αr]
j=[βr]+1

(
r + log θ
r − I(r)(j)

)

In the above, we use [x] to denote the integer part of x. Taking logarithm of both
sides:

logPr
[
N (r) = [αr]

]
− logPr

[
N (r) = [βr]

]
=

[αr]∑
j=[βr]+1

(
1 + log θ

r
+ o(1)

)

= (α− β) log θ + o(1)

Therefore, for α > β ≥ 2,

Pr
[
N (r) = [αr]

]
Pr
[
N (r) = [βr]

] ∼ θα−β

Finally, consider 1 < α < 2: This is the regime where difference between JSQ and
central queueM/M/K really emerges. While there would be no idleness inM/M/K,
under JSQ, the expected number of idle queues I(r)([αr]) = 2−α

α−1 . Therefore, for
1 < α < β ≤ 2:

logPr
[
N (r) = [βr]

]
− logPr

[
N (r) = [αr]

]
=

[βr]∑
j=[αr]+1

(
log λ

(r)

µ
− log

(
r − I(r)(j) + o(1)

))

= (β − α)r log r(1 + log θ
r

)− r
∫ β

α
log r

(
1− 1

r
· 2− u
u− 1

)
du+ o(1)

= (β − α)r log r + (β − α) log θ − (β − α)r log r +
∫ β

α

2− u
u− 1du+ o(1)

= (β − α)r log r + (β − α) log θ − (β − α)r log r −
∫ β

α
du+

∫ β

α

du

u− 1 + o(1)

= (β − α)(log θ − 1) + log β − 1
α− 1 + o(1)

166

or,

Pr
[
N (r) = [αr]

]
Pr
[
N (r) = [βr]

] ∼ β − 1
α− 1

(
θ

e

)β−α
(5.19)

By integrating, the expression for the distribution of limr→∞
N(r)

r
in the Theorem

statement follows.
We do not provide a rigorous proof of the second part of the theorem as it can be
verified by setting up the balance equations and plugging in the stationary distri-
bution from the theorem statement. Instead, we provide an intuitive argument for
why the expression for the distribution is so. Suppose there are more than αr jobs
in the system with 2 ≤ i < α < i+ 1. Since JSQ tries to equalize queue lengths, we
expect servers to have only have either i or i + 1 jobs. However, servers with i jobs
can have departures creating servers with i − 1 jobs. Since i ≥ 2, these servers are
not idle, and thus do not cause loss in departure rate. Further, these servers with
i − 1 jobs are being created at an average rate of approximately ((i + 1) − α)µr,
and destroyed (that is, getting an ith job) at rate of µr + Θ(1). Thus the number
of these servers ‘behaves’ similar to the number of jobs in an M/M/1 with arrival
rate ((i+ 1)− α)µr and service rate µr, and we expect the number of these servers
to be Θ(1). Since conditional departure rate is µr, and the arrival rate is µr−Θ(1),
it would take Θ(r) time for the number of jobs to change by Θ(r) (If we view the
system as a random walk where the up/down probabilities are 1

2 ± Θ (r−1); it takes
Θ(r2) steps for a displacement of Θ(r)). However, if we look at the number of servers
with i − 1 jobs, it achieves stationarity in ø(1) time (the M/M/1 queue mimicing
the evolution of these servers has mean busy period of Θ(1

r
)) during which period

the rate of their creation does not change.
However, if the number of jobs is αr with 1 = i < α < i+1 = 2, then the the servers
with i − 1 jobs are, in fact, idle causing a drop in the departure rate. However,
this drop is Θ(1), and we still have that the total number of jobs changes by Θ(r)
at a time scale of Θ(1), while the number of idle servers achieves the stationary
distribution at a time scale of Θ

(
1
r

)
.

Corollary 5.1 Under the many-servers heavy-traffic limit with parameter θ, the
mean number of jobs per server is given by:

E
[

lim
r→∞

N (r)

r

]
= 1 + 1

C(log θ)2 + 1
C| log θ| +

1
C(log θ − 1) − 2 1

C(log θ − 1)2 + 2
1−

(
θ
e

)−1

C(log θ − 1)3

(5.20)

where C is the normalization constant from Theorem 5.5.

167

0 1 2 3
0

0.2

0.4

0.6

0.8

1

α

P
r[

N
>
α

K
]

Many−servers limit
CDF for K=200
CDF for K=100
CDF for K=50

(a) θ = 0.0059

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

α

P
r[

N
>
α

K
]

Many−servers limit
CDF for K=200
CDF for K=100
CDF for K=50

(b) θ = 0.3660

Figure 5.9: Simulation results showing convergence of the stationary distribution
of the number of jobs in the system to the many-servers heavy-traffic limit for two
values of θ. θ = 0.0059 corresponds to ρ = 0.95 for K = 100, and θ = 0.3660
corresponds to ρ = 0.99 for K = 100.

Figure 5.9 shows the speed of convergence of the stationary distribution of the number
of jobs in the system to the many-servers limit as the number of servers is increased
while holding ρK = θ fixed. The approximation is tight under very heavy traffic, but
we believe that the ideas in the proof of Theorem 5.5 can be combined with existing
approximations which perform well in light-traffic to obtain sharper approximations
for all parameter settings.

Stationary distribution of response time

Theorem 5.6 Let T (r)(α) denote the response time of an arrival that sees [α ·r] jobs
in the rth system on arrival with 1 ≤ i < α < i + 1. Let T (α) = limr→∞ T

(r)(α).
Then, T (α) has a phase-type (PH) distribution with parameters (βββ,B)

βββ =
(
i+ 1− α
α− i

)
; B =

(
−
(
µ
i

+ γα
) (

µ
i

+ γα
)

iγα
µ+iγα

µ i
i+1 −µ

)
(5.21)

where γα = α−i
i+1−α .

In other words, T (α) is given by the time until absorption into state 0 in a Markov

168

chain with states {0, i, i+ 1}, initial state vector q and generator Q, where:

q =

 0
i+ 1− α
α− i

 ; Q =

0 0 0(

µ
i

+ γα
)

µ
µ+iγα −

(
µ
i

+ γα
) (

µ
i

+ γα
)

iγα
µ+iγα

µ 1
i+1 µ i

i+1 −µ

 .
(5.22)

Proof: According to Theorem 5.5, the arrival will either join a server with queue
length i− 1 or i with overwhelmig probability. Let Ti(α) be the response time given
the arrival joins a server with queue size (i − 1) (and thus begins its sojourn in a
server with i jobs in total), and let Ti+1(α) be the response time given the arrival
joins a server with queue size i (and thus begins its sojourn in a server with i+1 jobs
in total). The distribution of Ti(α) is the time until absorption in state 0 starting
from state i in the Markov chain with generator Q above, and similarly, Ti+1(α) is
the time until absorption in state 0 starting from state i + 1 in the Markov chain
with generator Q.
According to Theorem 5.5, the arrival joins a server with queue length i − 1 with
probability (i + 1 − α), and a server with queue length i with probability (α − i),
and these correspond to the initial state vector q (or, βββ) in the theorem statement.
Case 1: arrival starts sojourn in a queue with i + 1 jobs in total : Note
that it takes Θ(r) time for the number jobs in the system to change by Θ(r), while
the sojourn time of the arrival is Θ(1), and thus we can assume that the state of
the system is tightly concentrated around the stationary distribution conditioned on
α · r + o(r) jobs. Given this knowledge, the only event that can affect the tagged
arrival is a departure from its queue, as no arrivals will happen into a queue with
i + 1 jobs. Thus, with rate µ, the server with the tagged job loses a job to become
a server with i jobs, and with probability i

i+1 , the departing job is not the tagged
job. The ensuing sojourn time of the tagged job in this case is equal in distribution
to Ti(α). This explains the last rwo of Q.
Case 2: arrival starts sojourn in a queue with i jobs in total : The events
that can affect the server with the tagged job in this case are a departure as well as
an arrival. Note that as we mentioned before, the number of queues of size (i − 1)
behaves as the number of jobs in anM/M/1 with departure rate r and load (i+1−α),
and hence busy period of Θ(1

r
). On the other hand, the events at the tagged server

happen at rate Θ(1), and hence we can assume that the probability that an external
arrival finds no queue of size i−1 and hence is assigned to a queue of size i is (α− i).
External arrivals happen at a rate of r, and conditioning on the arrival joining a
queue of size i, it joins the tagged queue with probability 1

(i+1−α)r + o
(

1
r

)
. Thus,

the arrival process into the tagged queue is (asymptotically, as r → ∞) a Poisson

169

process with rate r(̇α− i) · 1
(i+1−α)r = α−i

i+1−α = γα. We are now ready to explain the
middle row of Q. An arrival or a departure happens at aggregate rate of µ + γα.
However, a departure that is not the tagged departure causes the queue length to
drop to i−1, where it only spends θ

(
1
r

)
time before being assigned a job and pushed

back to queue length of i. Thus, we only need to worry about the departure of the
tagged job, which happens at rate of µ

i
, or an arrival from outside, which happens

at rate γα. The arrival causes the Markov chain to transition to state (i + 1), from
where the ensuing sojourn time of the tagged job is equal in distribution to Ti+1(α).

5.6.2 Further Consequences

A couple of interesting observations immediately follow from Theorem 5.5.

Accuracy of existing approximations: The popularity of JSQ stems from the
fact that it is believed to be a good approximation to theM/M/K system. Switching
the statement around,M/M/K is a good approximation for the performance of JSQ.
How far off can the performance of M/M/K be from JSQ? Under the many-servers
heavy-traffic limit, the probability distribution for the total number of jobs in an
M/M/K is

lim
r→∞

Pr
[
N

(r)
M/M/r ≥ αr

]
=

1 α ≤ 1
θα−1 α > 1

which gives an approximation for the mean number of jobs in the system as:

E
 lim
r→∞

N
(r)
M/M/r

r

 = 1 + 1
| log θ| (5.23)

Numerically comparing (5.20) against (5.23) in the many-servers limit, the perfor-
mance of JSQ is at most 14% off (θ = 0.124). We have found that the figure of 14% is
approximately the maximum performance gap between central queue M/M/K and
JSQ even under non-asymptotic regime.
We now turn to the question: How well do popular approximations in the literature
for JSQ compare in the many-servers heavy-traffic limit? We choose the Nelson
Philips [117] approximation, according to which the mean number of jobs under JSQ
is approximated by:

E
[
NJSQ(NP)

]
≈ λ

µ

(
1 +

⌊
NM/M/K

K

⌋)

170

which under the many-servers heavy-traffic scaling becomes

E
 lim
r→∞

N
(r)
JSQ(NP)

r

 = 1 + 1
1− θ (5.24)

By letting θ → 0, the Nelson Philips approximation can be made arbitrarily close to a
factor of 2 times the JSQ limit. Thus, in the worst case, Nelson Philips approximation
for JSQ can be off by 100%. This error stems from the approximation assumption
employed in [117] that an arrival seeing n jobs in the system on arrival will join a
server with

⌊
n
K

⌋
jobs. However, as our analysis reveals, if K ≤ n ≤ 2K, then it is

very likely that at least one server is idle.

Analytic justification for (5.2): The derivation of conditional arrival rates in
Section 5.4 relied on a crucial approximation assumption based on empirical evidence:
λ(n)
µ
≈ ρK for n ≥ 3. We now formally justify the assumption, using Theorem 5.5.

Let us fix a designated queue Q. For i ≥ 3, the probability that Q has i jobs is given
by:

π(i) =
∑
j

Pr[Q = i|N = j] ·Pr[N = j]

which in the many servers limit is given by,

≈
∫ α=i+1

α=i−1
θα−2 [1α<i{α− (i− 1)}+ 1α>i{i+ 1− α}] dα

Therefore, the conditional arrival rate λ(i) for i ≥ 3 in the many server limit is:

λ(i)
µ

=

∫ i
α=i−1 θ

α−2{α− (i− 1)} · 0dα +
∫ i+1
α=i θ

α−2(i+ 1− α) λ
K(i+1−α) · (1− (i+ 1− α))dα

+
∫ i+2
α=i+1 θ

α−2(i+ 2− α) λ
K
dα∫ α=i+1

α=i−1 θ
α−2 [1α<i{α− (i− 1)}+ 1α>i{i+ 1− α}] dα

= λ

K

∫ i+1
α=i θ

α−2(α− i)dα +
∫ i+2
α=i+1 θ

α−2(i+ 2− α)∫ α=i
α=i−1 θ

α−2 (α− (i− 1)) dα +
∫ i+1
α=i θ

α−2 (i+ 1− α) dα

= λ

K
θ

≈ θ = ρK

171

5.6.3 Optimal load balancing for heterogeneous servers

The optimality of JSQ for homogeneous servers for Exponential service distribution
(and when job sizes can not be observed) was established long ago [29]. However,
if the servers speeds are heterogeneous, finding the optimal policy quickly becomes
intractable due to the explosion of state space. Heuristic policies have been proposed
(see, e.g., [136]) motivated by policies for central queue M/M/K models with het-
erogeneous servers. What makes the problem non-trivial is that there is no single
load-balancing policy that is optimal across all arrival intensities, and thus thus the
optimal policy must learn the arrival rate. One popular traffic-oblivious heuristic is
to send a new arrival to the server where the arrival gets served at the largest rate.
That is, if the ith server has speed µi and ni jobs in the buffer, then the job is sent
to the server with the largest value of µi

ni+1 . Alternately, this policy can be seen as
sending the job to the server where its expected response time is minimized if the
servers were FCFS, and hence we will refer to it as the Minimum Expected Response
time (MER) policy.
In this section we prove that, rather counterintuitively, the MER policy is suboptimal
in the many-servers regime. Instead, sending the job to the server with fewer number
of jobs (irrespective of the speeds) and only using the server speeds for tie breaking
is optimal while being traffic-oblivious.
We will compare the following load balancing heuristics:

1. Minimum-Expected-Response time (MER): The job is sent to server
with the smallest value of n+1

µ
. Equivalently, where the job’s expected response

time is minimized under FCFS scheduling.

2. Join-Shortest-Queue with smart tie-breaking (JSQ): The job is sent to
the server with the fewest number of jobs, if this server is unique. Otherwise
ties are broken in favor of faster servers.

3. HYBRID: A combination of MER and JSQ – JSQ is followed if some server
is idle, otherwise if all servers are busy then the job is sent to the server with
smallest value of n+1

µ
.

We first generalize the many-servers limit to heterogeneous servers, and for ease of
exposition, consider the case where servers can have two possible speeds µ1 or µ2.

Definition 5.4 In the many-servers limit with parameters µ1, µ2, β1, β2 with β1 +
β2 = 1, the total number of servers K grows to ∞, while the number of servers of
speed µ1 grows as K1 = β1K, and that of speed µ2 grows as K2 = β2K. Without loss
of generality we will assume µ1 > µ2.

172

The many-servers regime defined above is very natural in large data centers where
servers are bought in volume once or twice a year, and are phased out over a period
of 3-5 years, leading to heterogeneous equipment.
In the next section, we will compare the load balancing schemes in light traffic regime,
and prove that while MER is suboptimal, both JSQ and Hybrid are optimal in
many-servers light-traffic. To resolve between JSQ and Hybrid, we will look at
many-servers heavy-traffic. Finally we will present simulation results comparing the
policies.

Comparison of Policies in Many-servers Light-Traffic

As mentioned previously, in the many-servers limit, the system capacity grows to
infinity, and thus the arrival rate λ must also grow to infinity for a non-degenerate
limit. In the light traffic regime, the arrival rate grows so that λ

K
= γ (a constant),

where γ < (β1µ1 + β2µ2). Therefore the offered load is a constant fraction of the
capacity. We now proceed to analyze our load balancing policies in the light-traffic
limit.
Analysis of MER: The analysis splits in two cases:
Case 1: (γ < β1µ1) In this case, the capacity of the the fast servers is sufficient
to handle the offered load. Thus, arrivals find idle fast servers with overwhelming
probability and hence the expected response time converges to 1

µ1
.

Case 2: (γ > β1µ1) In this case, the slower servers must be used to handle load.
However, the MER policy does not route any jobs to a slower server until all fast
servers have at least

⌈
µ1
µ2

⌉
− 1 jobs (depending on tie breaking rule when µ1

µ2
is an

integer). Thus, under stationarity, all fast servers have at least
⌈
µ1
µ2

⌉
− 1 jobs, while

(γ−β1µ1)K
µ2

+ o(K) slow servers have 1 job. Moreover, all jobs find at least some server
idle with overwhelming probability.
Analysis of JSQ: The analysis again splits in two cases:
Case 1: (γ < β1µ1) This case is identical to MER since ties are broken in favor of
faster servers, and hence the expected response time converges to 1

µ1
.

Case 2: (γ > β1µ1) In this case again, the slower servers must be used to handle
load. Unlike MER, JSQ starts routing jobs to slower servers as soon as all fast servers
have 1 job. Moreover, all jobs find at least some server idle with overwhelming proba-
bility. Thus, JSQ gives strictly smaller mean response time than MER. Moreover, as
can be seen, JSQ minimizes the mean response time in light traffic. This is because
the number of jobs in the system is lower bounded by the number of servers needed
for stability (β1K1 + (γ−β1µ1)K

µ2
), and JSQ keeps these many servers occupied with

173

exactly one job.
Analysis of HYBRID: The Hybrid policy mimics JSQ as long as there are idle
servers, which in the light-traffic regime happens with overwhelming probability.
Thus JSQ and Hybrid yield identical mean response time.
We thus already see that MER, while greedy, is not a smart policy in the many-
servers regime. Instead, JSQ and Hybrid yield better performance. Intuitively, by
trying to keep all servers busy, JSQ and Hybrid use the full system capacity. To
compare JSQ and Hybrid, we next look at heavy-traffic regime.

Comparison of Policies in Many-servers Heavy-Traffic

Similar to Definition 5.3, the many-servers heavy-traffic limit is achieved by scaling
the arrival rate so that (β1µ1 + β2µ2)K − λ = Θ(1). We will only compare JSQ and
Hybrid under this regime. As illustrated in the proof of Theorem 5.5, to compare
JSQ and Hybrid, we have to compare the inefficiencies induced by idle servers. The
greater the number of idle servers, and the greater their speed, the worse the load
balancing policy is. We will therefore look at the distribution of idle queues as a
function of N , the number of jobs in the system.
Analysis of JSQ: The analysis splits into three cases:
Case N > 2K: There are no idle queues in this case, because almost all servers have
at least 2 jobs, and thus even after having a departure and before getting an arrival,
these servers are busy.
Case (1+β1)K < N < 2K: In this case almost all fast servers have 2 jobs, and even
after departures, do not become idle. However, a constant fraction of slow servers
have one job, and they will give rise to Θ(1) idle queues.
Case K < N < (1 + β1)K: Both fast and slow servers will give rise to idle queues.
The total number of idle queues is distributed according to an M/M/1 with arrival
rate ((1 + β1)K −N)µ1 + (β2K)µ2 (the total service rate of servers with 1 job), and
departure rate λ = γK. However, since JSQ gives priority to fast idle servers over
slow idle servers, the idle servers evolve according to a 2-class preemptive priority
queueing system – the number of fast idle servers is distributed according to an
M/M/1 with arrival rate ((1 + β1)K − N)µ1 and departure rate λ = γK, and the
remaining idle servers are slow.
Analysis of HYBRID: To compare the Hybrid policy with JSQ, it will now suffice
to look at whether under Hybrid, there are more or less queues of size 1, as these
are instrumental in giving birth to idle queues and hence loss in efficiency. For N up
to (1 + β1)K, Hybrid again behaves exactly like JSQ because fast servers will get
the second job before slow servers get the second job. However, for N > (1 + β)K,

174

under Hybrid, the fast servers will get a third job before slow servers get a second
job. Therefore, the number of idle slow server under Hybrid will be larger than
the number of idle slow servers under JSQ. Only after N >

(⌊
2µ1
µ2

⌋
β1 + 2β2

)
K

will there be no idleness in the system. Therefore, for every value of N > K, the
conditional departure rate under JSQ will be at least the conditional departure rate
under Hybrid, and hence JSQ stochastically minimizes the number of jobs in the
system in the many-servers limit. However, note that until N = (1 + β1)K, Hybrid
mimics JSQ, which is optimal. Hence, unless traffic is very high, Hybrid and JSQ
will have similar performance.
In the next section we will compare MER, JSQ, and Hybrid in the many-servers
regime, and also compare them to an elegant traffic-aware policy Greedy-Throughput
[118] when not in the many-servers regime.

Simulation Results

Figure 5.10 presents the simulation results for the many-server regime. We simulate
a queueing system with K1 = 100 servers of speed µ1 = 4, and K2 = 400 servers of
speed µ2 = 1. The total capacity is 600, and the capacity of the fast servers alone is
400. We vary the arrival rate and plot the mean response time as a function of the
arrival rate. In Figure 5.6.3, we present the simulation results for the light-traffic
case, that is where the system is far from critical load. We see that simulations verify
our analysis. While the arrival rate is less than the capacity of fast servers, arrivals
find an idle fast server with high probability and hence the mean response time is
1
µ1

= 0.25. As λ increases beyond 400, under MER, all the fast servers are occupied
by 3 jobs before slow servers are utilized. Thus the mean response time jumps to
0.75, and then increases linearly as more and more slow servers are used. However,
under JSQ and Hybrid, the slow servers are utilized immediately, and the response
time increases linearly without the jump. We further see that JSQ and Hybrid yield
identical mean response time in light traffic.
Figure 5.6.3, we show the same results, but when arrival rate is close to the capacity
of the server farm. We now see that JSQ starts outperforming Hybrid, as analysis
predicts. However, this behavior emerges at a very high arrival rate.
In Figure 5.11, we compare the policies analyzed in this section when the num-
ber of servers is not very large. All the policies we have analyzed are very simple
traffic-oblivious policies in that they do not require knowing the arrival rate λ (and
indeed are optimal in the many-servers across all values of λ). However, when the
numbers of servers is not large, the optimal load balancing critically depends on
the arrival rate. We will compare the proposed traffic-oblivious policies against an

175

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

arrival rate (λ)

E
[T

]

JSQ
MER
HYBRID

(a) Light Traffic

590 592 594 596 598 600

0.5

1

1.5

2

arrival rate (λ)

E
[T

]

JSQ
MER
HYBRID

(b) Heavy Traffic

Figure 5.10: Simulation results comparing mean response time under JSQ, MER,
and Hybrid load balancing policies in the many servers regime. The speeds of fast
and slow servers were 4 and 1, respectively, and their numbers were 100 and 200 for
a total service rate of 600.

elegant traffic-aware policy proposed in the literature – Greedy Throughput [118].
The Greedy Throughput heuristic sends an arriving job to the queue so as to maxi-
mize the number of departures before the next arrival. This amounts to maximizing(

µi
µi+λ

)ni+1
. We note that this policy takes the right decision at extrema of arrival

rate. When λ → 0, Greedy Throughput routes the job to the queue maximizing
1− λ(ni+1)

µi
, and thus is the same as MER. When λ→∞, Greedy Throughput routes

the job to the queue maximizing
(
µi
λ

)ni+1
– and thus aims to equalize queue lengths,

and among queues of equal size, routes to the faster server – identical to JSQ. Shenker
and Weinrib [136] have performed extensive comparisons of central queue variants of
JSQ (called Never Queue (NQ) in [136]), MER (called to Shortest Expected Delay
(SED) in [136]), and Greedy Throughput policies.
The experiments in Figure 5.11 are split in two groups: the figures on the left are
for a server farm where the heterogeneity in server speeds is high (µ1

µ2
= 8), and

on the right are when the heterogeneity is lower (µ1
µ2

= 4). For each server farm
scenario, we fix different values of ‘average load’, i.e., the ratio of the arrival rate
to the server farm capacity, and plot the mean response time as a function of the
number of servers. We have chosen three values of ‘average load’ for each scenario:
the arrival rate is larger than the capacity of the fast servers in the top figure, in the
middle figure they are equal, and the arrival rate is smaller than the capacity of the

176

5 10 20 40 80 160

0.4

0.6

0.8

1

number of servers (K)

E
[T

]

JSQ
MER
HYBRID
G.T.

(i) λ = 10
5 K

5 10 20 40 80 160
0.2

0.4

0.6

0.8

number of servers (K)

E
[T

]

JSQ
MER
HYBRID
G.T.

(ii) λ = 8
5K

5 10 20 40 80 160
0.1

0.2

0.3

0.4

0.5

0.6

number of servers (K)

E
[T

]

JSQ
MER
HYBRID
G.T.

(iii) λ = 6
5K

(a) µ1 = 8, µ2 = 1; β1 = 1
5 , β2 = 4

5

3 6 12 24 48 96

0.5

1

1.5

number of servers (K)

E
[T

]

JSQ
MER
HYBRID
G.T.

(i) λ = 5
3K

3 6 12 24 48 96
0.3

0.4

0.5

0.6

0.7

0.8

number of servers (K)

E
[T

]

JSQ
MER
HYBRID
G.T.

(ii) λ = 4
3K

3 6 12 24 48 96
0.2

0.3

0.4

0.5

0.6

0.7

number of servers (K)

E
[T

]

JSQ
MER
HYBRID
G.T.

(iii) λ = K
(b) µ1 = 4, µ2 = 1; β1 = 1

3 , β2 = 2
3

Figure 5.11: Simulation results comparing mean response time under JSQ, MER, Hy-
brid, and Greedy-Throughput policies in the non-many-servers regime. The x-axis shows
the total number of servers and the y-axis shows the mean response time. The figures
on the left represent high server speed heterogeneity (8 : 1), and the figures on the right
represent low heterogeneity (4 : 1). In each figure, the ratio of the arrival rate to server
farm capacity is constant, and this ratio decreases from top to bottom as indicated.

177

fast servers in the bottom figure. The following observations are immediate:

• Among the traffic-oblivious policies, Hybrid provides the best compromise.
It consistently outperforms JSQ in the non-many-servers regime, and this per-
formance gap increases when the degree of heterogeneity is higher. Hybrid
is only outperformed by MER when the server heterogeneity is very high and
arrival rate is smaller than the capacity of fast servers.

• When the arrival rate is smaller than the capacity of fast servers, MER performs
the best among traffic oblivious policies, and even outperforms traffic aware
Greedy Throughput. However, when the arrival rate is close or above the
capacity of fast servers, MER becomes suboptimal even at relatively small
number of servers.

5.7 Summary and Open Questions

We present the first analysis of JSQ load balancing for server farms with Processor
Sharing servers, which are more representative of computing applications than First-
Come-First-Served servers. We have introduced several new ideas which we believe
will be applicable in much more general settings. The first is the idea of Single Queue
Approximation (SQA), whereby one designated queue in the farm can be analyzed
in isolation of all the other queues, where a state-dependent arrival rate is used to, in
some sense, capture the effect of the other queues. Understanding what these state-
dependent arrival rates look like is also a very interesting topic that we introduce
and study via analysis and simulation.
Second, and perhaps most interesting, is the notion of bounded-sensitivity, and the
discovery that theM/G/K/JSQ/PS farm exhibits bounded-sensitivity to the service
distribution, apart from the mean job size. This is particularly intriguing in light of
the fact that so many other routing policies for PS server farms, like Least-Work-Left
or Round-Robin, do not exhibit this insensitivity property. Via simulations, we con-
jecture that despite being simple and oblivious to the sizes of jobs, the performance
of JSQ is comparable to load balancing policies which know the sizes of all the jobs
in the system.
Finally, we proposed a novel many-servers heavy-traffic scaling to study load bal-
ancing polices for server farms. Based on this scaling, we proposed a new closed-
form approximation for the stationary joint distribution of queue length in the
M/M/K/JSQ/PS model, which we believe can be combined with existing light traf-
fic approximations to provide a uniformly sharp approximation. We also presented

178

the first approximation for the distribution of response time. Finally, we utilized
our many server scaling to analyze load balancing policies for heterogeneous server
farms, and proposed the traffic-oblivious Hybrid policy – a cross between Join-
Shortest-Queue (JSQ) and Minimum-Expected-Response Time (MER) heuristics,
which performs favorably compared to traffic-aware policies.
Impact: Join-the-Shortest-Queue has been the subject of numerous papers – both
from the point of view of analyzing its performance, and for finding optimal load
balancing policies for heterogeneous server farms. However, most of the existing
work has been limited to numerical studies. Our many-servers scaling for the first
time allows us to analytically address these questions. For example, we proved
that popular approximations for the mean response time of the M/M/K/JSQ/PS
queueing system can be off by 100% in the many-servers regime. We also proved that,
counter to intuition, JSQ load balancing while ignoring the server speeds is optimal
for heterogeneous server farms in the many-servers regime. Finally, we propose
investigating the bounded-sensitivity phenomenon of theM/G/K/JSQ/PS queueing
system in the many-servers regime, which should lead to useful intuition into this
behavior. Our results are not meant to invalidate the existing work, but instead to
complement them to develop better approximations for the performance of JSQ, and
to develop better load balancing algorithms (for example, the Hybrid policy).
Open Problems: The present chapter perhaps opens many more areas of explo-
ration than it closes. The first question of interest is to combine the many-server
heavy-traffic approximation (Theorem 5.5) with existing light-traffic approximations
in a principled manner to arrive at an approximation that is sharp across all param-
eter settings (number of servers and arrival rate).
The second question is to further investigate the notion of bounded-insensitivity: Are
there closed-form bounds on the effect of job-size distribution on the mean response
time of M/G/K/JSQ/PS model? We believe that our proposed many-server regime
is the right tool to approach this problem, and the author has made preliminary
progress as of writing of this thesis. However, a deeper question is to investigate
the cause of this phenomenon (we have already observed a similar behavior in Sec-
tion 3.4 for the quantum-based Round-Robin problem). When can insensitivity un-
der tractable service distributions, such as the degenerate hyperexponential (H∗2) be
employed to conclude near- or bounded-insensitivity? Is size-independent schedul-
ing a sufficient condition? E.g., M/G/K/LWL/PS is insensitive under H∗2 , yet its
performance is very sensitive to the service distribution.
Finally, algorithmically, is it possible to find policies that can significantly outperform
JSQ for PS servers? We have seen evidence that even size-aware policies do not
perform significantly better. However, for heterogeneous servers, JSQ is likely to be

179

quite inferior to size-aware load balancing policies.

5.A Optimality of Least-Work-Left Routing for De-
terministic Job Sizes

Theorem 5.7 In the G/D/K/ · /PS system, Least-Work-Left routing policy mini-
mizes the mean sojourn time.

Proof: We will use backward induction technique as outlined in [111] to prove that
Least Work Left minimizes the sum of response time in the G/D/K/PS model.
Consider an arrival sequence of n jobs. Let π be any routing policy and let π(k) be
the routing policy that routes the first k arrivals according to π, and the remaining
jobs using Least-Work-Left. Let TP be the sum of response times of the jobs under
the routing policy P . We will show,

Tπ(k−1) ≤ Tπ(k) (5.25)

We will use backward induction to prove the above. First we make the following
observation: With deterministic job sizes (of size 1), a job arriving into a queue with
workload w increases the sum of response times of jobs in system (including itself)
by 1 + 2w.
Basis step: ` = n Straight forward using the above observation.
Inductive step: Assume that for a given k, 1 ≤ k ≤ n, (5.25) holds for all k ≤ ` ≤ n.
We will prove that (5.25) holds for ` = k − 1.
We will prove this by creating another policy, γ(k), that behaves like π for the first
k − 1 arrivals and does LWL at the kth arrival. Further, we will show that

Tγ(k) ≤ Tπ(k) (5.26)

Now, π(k−1) is a policy that behaves like γ(k) for the first k arrivals and then does
LWL (since γ(k) does LWL at the kth arrival). Applying induction step to γ(k),

Tπ(k−1) ≤ Tγ(k) ≤ Tπ(k)

The policy γ(k) is constructed as follows: Let π(k) route the kth job to queue r,
whereas the queue with the least work left is s. The policy γ(k) routes the kth job
to s. For subsequent arrivals, if π(k) routes the job to s, γ(k) routes to r, and if π(k)

180

routes the job to r, γ(k) routes it to s. The routing of other jobs under γ(k) and π(k)

is identical.
It is easy to see that (5.26) holds under the above construction, thus completing the
proof of optimality of LWL with deterministic job sizes.
In fact, as a consequence of Theorem 5.1 of Liu, Nain and Towsley [111], the following
strong theorem holds.

Theorem 5.8 In the G/D/K/ · /PS system, Least-Work-Left routing policy mini-
mizes the vector of workloads at the queues in the increasing Schur convex ordering.

181

182

Chapter 6

Energy-Efficient Dynamic Capacity
Provisioning in Server Farms

In this chapter we turn to an important algorithmic problem: efficiently provisioning
the number of servers in a server farm so as to optimize energy/response-time trade-
offs. Traffic demand experienced by data centers and cloud computing infrastructures
is highly non-stationary, exhibiting not only seasonal and diurnal variations, but also
unpredictable surges. Therefore, server farms which are provisioned to handle the
peak demand usually have many servers idle. While one would like to turn servers
off when they become idle to save energy, the large setup cost (both, in terms of
setup time and energy penalty) needed to switch the server back on can adversely
affect performance. The problem is made more complex by the fact that today’s
servers provide multiple sleep or standby states which trade off the setup cost with
the power consumed while the server is ‘sleeping’.
We employ the metric of Energy-Response time Product (ERP) to capture the
energy-performance tradeoff, and present theoretical results on the optimality of
server farm management policies. For a stationary demand pattern, we prove that
there exists a very small, natural class of policies that always contains the opti-
mal policy for a single server, and conjecture it to contain a near-optimal policy
for multi-server systems. For time-varying demand patterns, we propose a simple,
traffic-oblivious policy and provide empirical evidence for its near-optimality.

183

6.1 Introduction

Motivation

Server farm power consumption accounts for more than 1.5% of the total electricity
usage in the U.S., at a cost of nearly $4.5 billion [146]. The rising cost of energy
and the tremendous growth of data centers will result in even more expenditures
on power consumption. Unfortunately, due to over-provisioning, only 20-30% of the
total server capacity is used on average [22]. This over-provisioning results in idle
servers which can consume as much as 60% of their peak power.
While a lot of energy can be saved by turning idle servers off, turning on an off
server incurs a significant cost. The setup cost takes the form of both a time delay,
which we refer to as the setup time, and an energy penalty. Another option is to put
idle servers into some sleep state. While a server in sleep mode consumes more power
than an off server, the setup cost for a sleeping server is lower than that for an off
server. Today’s state-of-the-art servers come with an array of sleep states, leaving it
up to the server farm manager to determine which of these is best.

Goal and metric

There is a clear tradeoff between leaving idle servers on, and thus minimizing mean
response time, versus turning idle servers off (or putting them to sleep), which hurts
response time but may save power. Optimizing this tradeoff is a difficult problem,
since there are an infinite number of possible server farm management policies. Our
goal in this chapter is to find a simple class of server farm management policies,
which optimize (or nearly optimize) the above tradeoff. We also seek simple rules
of thumb that allow designers to choose from this class of near-optimal policies. In
doing so, we greatly simplify the job of the server farm manager by reducing the
search space of policies that he/she needs to choose from.
To capture the tradeoff involved in energy and performance, and to compare different
policies, we use the Energy-Response time Product (ERP) metric, also known as the
Energy-Delay Product (EDP) [63, 87, 89, 96, 137]. For a control policy π, the ERP
is given by:

ERP π = E[P π] · E[T π]

where E[P π] is the long-run average power consumed under the control policy π, and
E[T π] is mean customer response time under policy π. Minimizing ERP can be seen
as maximizing the “performance-per-watt”, with performance being defined as the

184

inverse of mean response time. While ERP is widely accepted as a suitable metric
to capture energy-performance tradeoffs, we believe we are the first to analytically
address optimizing the metric of ERP in server farms.
Note that there are other performance metrics that also capture the tradeoff between
response time and energy, for example, a weighted sum of the mean response time
and mean power (ERWS) [13, 17, 156]. However, the ERWS metric implies that
a reduction in mean response time from 1001 sec to 1000 sec is of the same value
as a reduction from 2 sec to 1 sec. By contrast, the ERP metric implies that a
reduction in mean response time from 2 sec to 1 sec is better than a reduction from
1001 sec to 1000 sec. One reason for the popularity of ERWS is that it is a nicer
metric to handle analytically, being a single expectation, and hence additive over
time. Therefore, one can optimize the ERWS metric via Markov Decision Processes,
for example. From the point of view of worst case sample path based analysis, this
metric allows one to compare arbitrary policies to the optimal policy via potential
function arguments [84]. However, ERP, being a product of two expectations, does
not allow a similar analysis. Other realistic metrics of interest include minimizing
total energy given bounds on, say, the 95%tile of response times.

Summary of Contributions

We consider a specific set of server farm management policies (defined in Table 6.1)
and prove that it contains the optimal policy for the case of a single server, and
also contains a near-optimal policy for the case of multi-server systems, assuming
a stationary demand pattern. For the case of time-varying demand patterns, we
develop a traffic-oblivious policy that can auto-scale the server farm capacity to
adapt to the incoming load. Via simulations, we show that our traffic-oblivious
policy performs well when the server farm is offered a general time-varying arrival
process. Throughout this chapter, for analytical tractability, we make the assumption
of exponentially distributed job sizes and a Poisson arrival process. Setup times are
assumed to be Deterministic. We formally define the traffic model and the model for
servers’ sleep state dynamics in Section 6.3.

• We begin with the question of designing the optimal power management policy
for an M/M/1 queue in Section 6.4. While the range of possible policies is
large, for example, immediately put a server to sleep when it goes idle and then
delay turning on the server until a certain number of jobs have accumulated
in the queue (to amortize setup cost) transitioning to shallower sleep states
on arrivals, we prove that one of the policies, NeverOff, InstantOff or
Sleep, is always optimal. Refer to Table 6.1 for the exact definitions of these

185

Policy Single-Server Multi-Server
NeverOff Whenever the

server goes idle, it
remains idle until a
job arrives.

A fixed optimally chosen number n∗ (with respect to
ERP) of servers are maintained in the on or idle states.
If an arrival finds a server idle, it starts serving on the
idle server. Arrivals that find all n∗ servers on (busy)
join a central queue from which servers pick jobs when
they become idle.

InstantOff Whenever the
server goes idle,
it turns off. The
server then remains
off until there is
no work to process,
and begins to turn
on as soon as work
arrives.

Whenever a server goes idle, and there are no jobs in
the queue, the server turns off. Otherwise it picks a job
from the queue to serve. At any moment in time, there
are some number of servers that are on (busy), and
some number of servers that are in setup (transitioning
from off to on). Every arrival puts a server into setup
mode, unless the number of servers in setup already
exceeds the number of jobs in the queue. A job does
not necessarily wait for the full setup time since it can
be run on a different server that becomes free before the
setup time is complete, leaving its initially designated
server in setup.

Sleep(S) Whenever a server
goes idle, it goes
into the sleep state
S. It remains in
sleep state S until
there is no work to
process, and begins
to wake up as soon
as work arrives.

A fixed optimally chosen number n∗ of servers are main-
tained in the on, off or sleep states. Whenever a server
goes idle, and there are no jobs in the queue, it goes
into the sleep state S. Otherwise it picks a job from the
queue to serve. Every arrival wakes a sleeping server
and puts it into setup, unless the number of servers in
setup already exceeds the number of jobs in the queue.

Table 6.1: A summary of the different policies considered in this chapter, and their
description in the single-server and multi-server cases.

policies.

• In Section 6.5, we consider the case of managing servers in an M/M/∞ multi-
server systems. The arrival process is Poisson with a known mean arrival rate.
We assume that there are enough servers so that we are not constrained by
the available capacity. Again, the range of policies to choose from is vast. For
example, some servers could be turned off when idle, some could be moved
to a specific sleep state, and the rest may be kept idle. One could also delay
turning on an off server until a certain number of jobs have accumulated in
the queue, or delay turning off an idle server until some time has elapsed. Via
a combination of analysis and numerical experiments, we conjecture that one

186

of NeverOff, InstantOff or Sleep (defined in Table 6.1 for a multi-server
system) is near-optimal.

• In Section 6.6 we consider a time-varying arrival pattern with the aim of finding
policies which can auto-scale the capacity while being oblivious to the traffic
intensity. This situation is even more complicated than in Section 6.5, since a
server farm management policy might now also take into account the history
of arrivals or some predictions about the future arrivals. For the time-varying
case, we introduce a new policy DelayedOff. Under the DelayedOff pol-
icy, a server is only turned off if it does not receive any jobs to serve within an
interval of length twait. If an arrival finds more than one server idle on arrival,
it is routed to the server which was most recently busy (MRB) (alternately,
the server which is the farthest from turning off). Otherwise, the arriving job
turns on an off server.
The MRB routing policy proposed above turns out to be crucial for the near-
optimality of DelayedOff. Intuitively, MRB routing increases the variance
of the idle periods of the servers when compared to random or round-robin
routing, and yields the property that the longer a server has been idle, the
longer it is likely to stay idle.Policies similar to DelayedOff have been pro-
posed in the literature but applied to individual devices [51, 84, 129], whereas
in our case we propose to apply it to a pool of homogeneous interchangeable
servers under MRB routing. We provide simulation evidence in favor of the
auto-scaling capabilities of DelayedOff and show that it compares favorably
to an offline, traffic-aware capacity provisioning policy.

6.2 Prior work

Prior analytical work in server farm management to optimize energy-performance
tradeoff can be divided into stochastic analysis, which deals with minimizing average
power/delay or the tail of power/delay under some probabilistic assumptions on the
arrival sequence, and worst-case analysis, which deals with minimizing the cost of
worst-case arrival sequences.

Stochastic Analysis

The problem of server farm management is very similar in flavor to two well studied
problems in the stochastic analysis community: operator staffing in call centers and
inventory management. In call center staffing, the servers are operators, who require

187

a salary (power) when they are working. Similarly to our problem, these operators
require a setup cost to bring an employee into work, however, importantly, all analysis
in call center staffing has ignored this setup cost.
The operator staffing problem involves finding the number of operators (servers)
which minimize a weighted sum of delay costs experienced by users and the monetary
cost of staffing operators. While this problem has received significant attention under
the assumption of stationary (non-time-varying) demand (see [31] for recent results),
there is significantly less work for the time-varying case, one exception being [85].
In [85], the authors consider the problem of dynamic staffing based on knowing the
demand pattern so as to maintain a target probability of a user finding all servers
busy on arrival.
Within inventory management, the problem of capacity provisioning takes the form:
how much inventory should one maintain so as to minimize the total cost of unused
inventory (holding cost, in our case idle power) and waiting cost experienced by
orders when there is no inventory in stock (queueing delay of users). Conceptually
this problem is remarkably similar to the problem we consider, and the two com-
mon solution strategies employed, known as Make to Order and Make to Stock, are
similar in flavor to what we call InstantOff and NeverOff, respectively (see [7],
for example). However, in our case servers can be turned on in parallel, while in
inventory management it is assumed that inventory is produced sequentially (this is
similar to allowing at most one server to be in setup at any time).

Worst-case Analysis

There has been significant amount of work done in power management from the point
of view of minimizing worst case sample path cost, for example ERWS (See [83] for a
recent survey). Again, none of the prior work encompasses a setup time and is more
applicable to a single device than a server farm. The performance metrics used are
also very different from ERP.
The work can primarily be split in terms of results on speed scaling algorithms, and
results on algorithms for powering down devices. In the realm of speed scaling, the
problem flavors considered have been minimizing energy or maximum temperature
while meeting job deadlines [18, 19, 160], minimizing mean response time subject to
a bound on total energy [124], and minimizing the ERWS [17, 156]. However, again
all these papers assume that the speed level can be switched without any setup costs,
and hence are mainly applicable to single stand-alone devices, since in multi-server
systems setup costs are required to increase capacity.
The work on powering down devices is more relevant to the problem we consider,

188

and due to sample path guarantees, these results naturally lead to traffic-oblivious
powering down schemes. In [84] the authors consider the problem of minimizing total
energy consumed under the constraint that a device must instantly turn on when
a job arrives. Further, [84] assumes that there is no setup time while turning on a
device, only an energy penalty.

6.3 Model

(t)λ

ON (BUSY)

ON (BUSY)

IDLE

SLEEP

OFF

central queue
Poisson

1

2

3

4

n

Figure 6.1: Illustration of server farm model for studying power management al-
gorithms

Figure 6.1 illustrates our server farm model. We assume n homogeneous servers
of capacity one, where each server can process any job, and thus the servers are
interchangeable. Jobs arrive from outside the system, to a central queue, according
to a Poisson process. In Sections 6.4 and 6.5, we consider a fixed arrival rate, λ.
However, in Section 6.6, we consider a time-varying arrival rate, λ(t). We assume
the job sizes are i.i.d. Exponentially distributed random variable with mean E[S].
The quantity ρ(t) = λ(t)E[S] is used to denote the instantaneous load, or the rate
at which work is entering the system at time t.Therefore, ρ represents the minimum
number of servers needed to maintain a stable system (same as in Chapter 2).
Each server can be in one of the following states: on (busy), idle, off, or any one
of N − 1 sleep states: S1, S2, . . ., SN−1. For convenience, we sometimes refer to
the idle state as S0 and the off state as SN . The associated power values are PON ,
PIDLE = PS0 , PS1 , . . ., PSN = POFF . We shall assume the ordering PON > PIDLE >
PS1 > . . . > PSN−1 > POFF = 0. The server can only serve jobs in the on state.
PON need not necessarily denote the peak power at which a job is served, but is

189

used as a proxy for the average power consumed during the service of a job. Indeed,
while applying our model, we would first profile the workload to measure the average
power consumed during a job’s execution, and use it as PON . The time to transition
from initial state, Si, to final state, Sf , is denoted by TSi→Sf and is deterministic.
Rather obviously, we assume TON→IDLE = TIDLE→ON = 0. Further, the average
power consumed while transitioning from state Si to Sf is given by PSi→Sf .
Model Assumptions: For analytical tractability, we will introduce some additional
assumptions. We will assume that the time to transition from a state to any state
with lower power is zero. Therefore, TON→OFF = TSi→OFF = 0, for all i. This
assumption is justified because the time to transition back to a higher power state
is generally considerably larger than the time to transition to the lower power state,
and hence dominates the performance penalties. Further, we will assume that the
time to transition from a state Si to any higher power state is only dependent on
the low power state, and we will denote this simply as TSi . Therefore, TOFF→IDLE =
TOFF→Si = TOFF , for all i. Note that 0 = TIDLE < TS1 < . . . < TSN−1 < TOFF .
This assumption is justified because in current implementations there is no way
to go between two sleep states without first transitioning through the IDLE state.
Regarding power usage, we assume that when transitioning from a lower power state,
Si, to a higher power state Sf , we consume power PSi→Sf = PON .
The results of this chapter are derived under the Model Assumptions which were
validated experimentally.
Simulation Parameters: All the simulation results presented in this chapter are
based on the following server characteristics: TOFF = 200s, TSleep = 60s, POFF =
0W , PSleep = 10W , PIDLE = 150W and PON = 240W . These parameter values are
based on measurements for the Intel Xeon E5320 server, running the CPU-bound
LINPACK [82] workload.

6.4 Optimal Single Server policies

As the first step towards our goal of finding policies for efficiently managing server
pools, we analyze the case of a single server system. Recall that our aim is to find
the policy that minimizes ERP under a Poisson arrival process of known intensity.
Theorem 6.1 below states that for a single server, remarkably, the optimal policy is
included in the set {NeverOff, InstantOff, Sleep} (defined in Table 6.1).

Theorem 6.1 For the single server model with a Poisson(λ) arrival process and
i.i.d. Exponentially distributed job sizes, the optimal policy for minimizing ERP is

190

either NeverOff, InstantOff or Sleep(S), where S is the optimally chosen
sleep state among the existing sleep states.

Remark 1: Theorem 6.1 is quite non-intuitive, and in general we do not expect such
a result to hold for other metrics such as ERWS. The theorem rules out a large class
of policies, for example those which may randomize between transitioning to different
sleep states, or policies which move from one sleep state to another, or those which
may wait for a few jobs to accumulate before transitioning to the on state. While
ERP , being a product of expectations, is a difficult metric to address analytically,
for the single-server case we are able to obtain tight optimality results by deriving
explicit expressions for ERP.
Proof of Theorem 6.1: We give a high-level sketch of the proof in terms of
four lemmas, whose proofs are deferred to Appendix 6.A. These lemmas successively
narrow down the class of optimal policies, until we are left with only NeverOff,
InstantOff and Sleep.

Definition 6.1 Let Πmixed denote the class of randomized policies whereby a server
immediately transitions to power state Si (i ∈ {0, . . . , N}) with probability pi on
becoming idle. Given that the server went into power state Si, with probability qij
it stays in Si and waits until j jobs accumulate in the queue, where ∑∞j=1 qij =
1. Once the target number of jobs have accumulated, the server immediately begins
transitioning to the on state, and stays there until going idle.

Lemma 6.1 Under a Poisson arrival process and general i.i.d. job sizes, the optimal
policy lies in the set Πmixed.

Lemma 6.2 Consider a policy π ∈ Πmixed with parameters as in Definition 6.1.
The mean response time for policy π under a Poisson(λ) arrival process with i.i.d.
Exp(µ) job sizes is given by:

E[T] =
∑N
i=0 pi

∑∞
j=1 qijrij∑N

i=0 pi
∑∞
j=1 qij (j + λTSi)

(6.1)

where,

rij = j + λTSi
µ− λ

+
[
jTSi + j(j − 1)

2λ +
λT 2

Si

2

]
(6.2)

and the average power for policy π is given by:

E[P] =
∑N
i=0 pi

∑∞
j=1 qij (j(ρPON + (1− ρ)PSi) + λTSiPON)∑N

i=0 pi
∑∞
j=1 qij (j + λTSi)

. (6.3)

191

Lemma 6.3 The optimal strategy for a single server must be pure. That is, pi = 1
for some i ∈ {0, . . . , N}, and qini = 1 for some integer ni ≥ 1.

Lemma 6.4 The optimal pure strategy dictates that ni = 1, if the optimal sleep
state is Si.

Lemma 6.1 is proved using a sample path argument and crucially depends on the
assumption of a Poisson arrival process and the Model Assumptions for the sleep
states of the server, and in fact holds for any metric that is increasing in mean
response time and mean power. Lemma 6.3 relies on the structure of ERP metric.
While Lemma 6.3 also holds for the ERWS metric (with a much simpler proof), it
does not necessarily hold for general metrics such as the product of the mean power
and the square of the mean response time. Lemma 6.4 also relies on the structure of
the ERP metric and does not hold for other metrics such as ERWS.

Corollary 6.1

E[T] = 1
µ− λ

+ TSi(1 + λTSi/2)
1 + λTSi

(6.4)

E[P] = ρPON + (1− ρ)PSi + λTSiPON
1 + λTSi

(6.5)

where Si = IDLE for NeverOff, Si = OFF for InstantOff, and Si is the sleep
state that we transition to in Sleep.

Proof: Follows by substituting pi = 1 and qi1 = 1 in Lemma 6.2.
The expressions in Corollary 6.1 allow us to determine regimes of load and mean
job sizes for which each of NeverOff, InstantOff and Sleep policy is best with
respect to ERP. Numerically, we have found that NeverOff is typically superior to
the other policies, unless the load is low and the mean job size is high, resulting in
very long idle periods. In the latter case, InstantOff or one of the Sleep policies
is superior, depending on the parameters of the sleep and off states. Eqs. (6.4)
and (6.5) are also helpful for guiding a server architect towards designing useful sleep
states by enabling the evaluation of ERP for each candidate sleep state.

6.5 Near-Optimal Multi-server policies

In this section, we extend our results for single server systems to the multi-server
systems with a fixed known arrival rate, with the goal of minimizing ERP. Inspired

192

by the results in Section 6.4, where we found the best of NeverOff, InstantOff
and Sleep to be the optimal policy, we intuit that one of NeverOff, InstantOff
and Sleep will be close to optimal in the multi-server case as well. We make this
intuition precise in Section 6.5.1, and provide simple guidelines for choosing the right
policy from among this set in Section 6.5.2.

6.5.1 A Near-optimality conjecture

Conjecture 6.1 Let ΠSi denote the class of policies which only involve the states
on, idle and the Si sleep state. For arbitrary Si (that is PSi and TSi), the ERP of the
best of NeverOff and Sleep with sleep state Si is within 30% of the ERP of the
optimal policy in ΠSi when ρ ≥ 10. When ρ ≥ 20, the performance gap is smaller
than 20%.

The main idea behind Conjecture 6.1 is obtaining reasonably good lower bounds on
the ERP for the optimal policy, and then numerically optimizing the performance
gap with respect to the lower bound. We justify Conjecture 6.1 in Appendix 6.B.
We believe that in reality, the simple NeverOff, InstantOff, and Sleep policies
are better than our Conjecture suggests. To justify this claim, we perform the
following simulation experiment. We focus on the class of policies involving on,
idle and off states. Note that as we mentioned earlier, due to the metric of ERP,
we cannot utilize the framework of Markov Decision Processes/Stochastic Dynamic
Programming to numerically obtain the optimal policy. Instead we limit ourselves
to the following class of threshold policies:
THRESHOLD(n1, n2): At least n1 servers are always maintained in either the on
or idle states, but no more than n2 servers are ever turned on. If an arrival finds
a server idle, it begins service. If the arrival finds all servers on (busy) or turning
on, but this number is less than n2 ≥ n1, then the arrival turns on an off server.
Otherwise the arrival waits in a queue. If a server becomes idle and the queue is
empty, the server turns off if there are at least n1 other servers which are on.
The Threshold policy can be seen as a mixture of NeverOff with n1 servers,
and InstantOff with (n2 − n1) servers. Thus, Threshold represents a broad
class of policies (since n1 and n2 can be set arbitrarily), which includes NeverOff
and InstantOff. In Figure 6.2, we show the gain in ERP afforded by the optimal
Threshold policy over the best among optimal NeverOff and InstantOff for
various values of ρ, TOFF and PIDLE

PON
. We see that if TOFF is small (Figure 6.2

(a)), the ERP gain of the Threshold policy over the best of NeverOff and
InstantOff is marginal (< 7%). This is because in this case, InstantOff is

193

2 6 10 14 18 22
3

4

5

6

7

8

ρ →

E
R

P
 im

pr
ov

em
en

t (
%

) →

P
IDLE

/P
ON

=0.5

P
IDLE

/P
ON

=0.7

P
IDLE

/P
ON

=0.9

(a) TOFF = 0.1E[S]

2 6 10 14 18 22
0

5

10

15

20

ρ →

E
R

P
 im

pr
ov

em
en

t (
%

) →

P
IDLE

/P
ON

=0.5

P
IDLE

/P
ON

=0.7

P
IDLE

/P
ON

=0.9

(b) TOFF = 0.5E[S]

2 6 10 14 18 22
0

1

2

3

4

5

6

ρ →

E
R

P
 im

pr
ov

em
en

t (
%

) →

P
IDLE

/P
ON

=0.5

P
IDLE

/P
ON

=0.7

P
IDLE

/P
ON

=0.9

(c) TOFF = 2E[S]

Figure 6.2: Comparison of the performance of Threshold policy against the best
of optimal NeverOff and InstantOff policies. The y-axis shows the percentage
improvement in ERP afforded by the Threshold policy.

close to optimal. At the other end, when TOFF is large (Figure 6.2 (c)), the ERP
gain of the Threshold policy over the best of NeverOff and InstantOff are
again marginal (< 6%), because now NeverOff is close to optimal. We expect the
optimal Threshold policy to outperform the best of NeverOff and InstantOff
when TOFF is moderate (comparable to PIDLE ·E[S]

PON
). In Figure 6.2 (b), we see that

this is indeed the case. However, the gains are still moderate (an improvement of
10% when ρ ≥ 10 and at most 7% when ρ ≥ 20 when PIDLE is high).

6.5.2 Choosing the right policy

Based on the results of Section 6.5.1, to provision a multi-server system with a fixed
known arrival rate, it suffices to only consider the policies NeverOff, InstantOff
and Sleep. The goal of this section is to develop a series of simple rules of thumb
that will help a practitioner choose between these policies. The specific questions we
answer in this section are:
Question 1: What is the optimal number of servers, n∗, for the NeverOff policy?
Question 2: What is the optimal number of servers, n∗, for the Sleep policy?
Question 3: Which of InstantOff, NeverOff, and the various Sleep policies
should be chosen?
Before presenting the rules of thumb to answer the above questions, we present a
well-known result regarding the M/M/K queueing system which forms the basis of
further analysis.

Lemma 6.5 (Halfin and Whitt [72]) Consider a sequence of M/M/sn systems

194

with load ρn in the nth system. Let αn denote the probability that an average customer
finds all servers busy in the nth system. Then,

lim
ρn→∞

αn = α(β) if and only if lim
ρn→∞

sn − ρn√
ρn

= β. (6.6)

The function α(β) is given by

α(β) =
[
1 +
√

2πβΦ(β)e
β2
2

]−1
(6.7)

where Φ(·) is the c.d.f. of a standard Normal variate. Under the above conditions,
the mean number of jobs in the nth system, E

[
NM/M/sn

]
, satisfies:

lim
ρn→∞

E
[
NM/M/sn

]
− ρn

√
ρn

= α(β)
β

. (6.8)

Rule of Thumb #1: Choosing n∗ for NeverOff
For the parameter regime where NeverOff is the chosen policy,

n∗ = ρ+ β∗(PIDLE/PON)√ρ+ o(√ρ) (6.9)

where β∗(·) is the following function:

β∗(x) = arg minβ>0

(
α(β)
β

+ β · x
)
. (6.10)

A very good approximation β∗(x) ≈ 0.4105x2+0.8606x+0.0395
x2+0.5376x+0.01413 is obtained via the MAT-

LAB curve fitting toolbox, with a maximum absolute relative error of < 0.75%.
Justification: Consider a sequence of M/M/sn systems with load ρn in the nth
system. Let sn ∼ ρ + g(ρn) + o(g(ρn)). From [72], we have that E

[
NM/M/sn

]
∼

ρn + ρn
g(ρn)αn where αn denotes the stationary probability that all sn servers are busy

in the nth system. Also, E
[
PM/M/sn

]
∼ ρPON + g(ρn)PIDLE, which gives

E
[
NM/M/sn

]
· E
[
PM/M/sn

]
= ρ2

nPON

(
1 + αn

g(ρn)
+ g(ρn)

ρn

PIDLE
PON

+ o() terms
)
.

When g(ρn) = ω(√ρn), αn → 0, and the expression in the parenthesis is 1 +
ω
(
1/√ρn

)
. When g(ρn) = o(√ρn), αn → 1, and the expression in the parenthe-

sis is again 1 + ω
(
1/√ρn

)
. Thus, the optimal choice is g(ρn) = β

√
ρn + o(√ρn) for

some constant β. This yields:

ERPNEV EROFF ∼ ρnE[S]PON

1 +
α(β)
β

+ β PIDLE
PON√

ρn

 (6.11)

195

Optimizing the above yields the expression for β∗.
For the ERWS metric, the rule n∗ = ρ+β√ρ is known to be near-optimal in practice.
It is popularly known as the “square-root staffing rule”, or the Quality and Efficiency
Driven regime because it balances the sub-optimality in the performance (Quality)
and resource utilization (Efficiency), both being Θ

(
1√
ρ

)
, and hence optimizing the

ERWS metric. Here we have shown that the square-root staffing rule also optimizes
the ERP metric, albeit with a different β.

Rule of Thumb #2: Choosing n∗ for Sleep
For the parameter regime where Sleep with sleep state Si is the chosen policy,

n∗ = ρ′ + β∗(PSi/PON)
√
ρ′ + o(

√
ρ′) (6.12)

where ρ′ = ρ
(
1 + TSi

E[S]

)
and β∗(·) is given by (6.10).

Justification: The justification for Rule of Thumb #2 is along the same lines. We
expect the Sleep(Si) policy to outperform NeverOff when TSi is small enough so
that almost all jobs turn on a sleeping server and get served there. This is equivalent
to an M/G/∞ system with G ∼ S + TSi . However, since PSi > 0, we optimize the
number of servers by following Rule of Thumb #1, but with mean job size replaced
by E[S] + TSi , or equivalently ρ′ ← ρ

(
1 + TSi

E[S]

)
, and PIDLE ← PSi . This gives us:

ERP Sleep(Si) ∼ ρE[S]
(

1 + TSi
E[S]

)2

PON

1 +
α(β)
β

+ β
PSi
PON√

ρ
(
1 + TSi

E[S]

)
 (6.13)

Rule of Thumb #3: Which policy to use?
We associate each policy with an index, and choose the policy with the smallest index.
The index for InstantOff is given by

(
1 + TOFF

E[S]

)2
. The index for NeverOff is

given by
(
1 + γ(PIDLE/PON)√

ρ

)
, and for Sleep with state Si by

(
1 + TSi

E[S]

)2

1 + γ(PSi/PON)√
ρ

(
1+

TSi
E[S]

)
.

The function γ(·) is given by

γ(x) = min
β>0

(
α(β)
β

+ β · x
)

(6.14)

with α(β) given by (6.7). A very good approximation γ(x) ≈ 5.444x2+2.136x+0.006325
x2+4.473x+0.9012 is

obtained via the MATLAB curve fitting toolbox, with a maximum relative error of
< 0.6% for x ≥ 0.025.

196

Justification: We justify the heuristic rule of thumb by proposing approximations
for the ERP metric under InstantOff, NeverOff, and the Sleep policies. We
expect the InstantOff policy to outperform NeverOff and Sleep when TOFF is
small enough compared to E[S], so that the penalty to turn on an off server is neg-
ligible compared to the necessary cost of serving the job. In this regime, we can ap-
proximate the ERP of InstantOff by ERP INSTANTOFF ≈ λPON (E[S] + TOFF)2,
which is an upper bound obtained by forcing every job to run on the server that
it chooses to turn on on arrival. The ERP of NeverOff with optimal number
of servers is approximated by Eq. (6.11), with ρn = ρ and β = β∗(PIDLE/PON).
For Sleep, we again expect Sleep(Si) policy to outperform NeverOff when TSi
is small enough so that almost all jobs turn on a sleeping server and get served
there. In this regime, we can approximate the ERP of Sleep by Eq. (6.13), with
β = β∗(PSi/PON). Using the above approximations for ERP, we can choose between
the InstantOff, NeverOff and Sleep policies.

10
0

10
2

10
4

10
0

10
1

10
2

90541 8767 834 87 42 87 93

57397 5711 586 72 13 44 49

38990 3715 382 46 3 22 26

26547 2462 240 29 0 11 14

22752 1472 135 17 0 5 8

37459 1122 82 10 0 3 4

ρ
→

E[S] (seconds) →

NEVEROFF INSTANTOFF

(a)

10
0

10
2

10
4

10
0

10
1

10
2

26817 2554 255 5 84 103 105

17580 1718 194 16 38 52 53

10494 1119 120 13 17 27 28

7418 713 74 9 8 14 15

5233 422 42 6 4 7 8

5159 278 25 3 2 4 5

ρ
→

E[S] (seconds) →

NEVEROFF SLEEP

(b)

Figure 6.3: Verifying the accuracy of Rule of Thumb #3. The relative performance
of NeverOff, InstantOff and Sleep policies for a multi-server system are shown as
functions of load (ρ) and mean job size (E[S]) based on simulations. Figure (a) shows
NeverOff vs. InstantOff. The crosses indicate the region of superiority of In-
stantOff over NeverOff. Figure (b) shows NeverOff vs. Sleep. The crosses indicate
the region of superiority of Sleep over NeverOff. The numbers associated with each
point denote the % improvement of the superior algorithm over the inferior. The dashed
lines indicate the theoretically predicted split based on Rule of Thumb #3.

If we compare InstantOff and NeverOff, Rule of Thumb #3 says that if TOFF
is sufficiently small compared to E[S] and 1√

ρ
, then one should choose InstantOff.

197

Figure 6.3(a) verifies the accuracy of the above rule of thumb. Observe that in the
region where our rule of thumb mispredicts the better policy, the gains of choosing
either policy over the other are minimal. Similarly, the dashed line in Figure 6.3(b)
indicates that the theoretically predicted split between the NeverOff and Sleep
policies is in excellent agreement with simulations.

6.6 Traffic-oblivious dynamic capacity provision-
ing and Applications

Thus far we have considered a stationary demand pattern. In this section we propose
a policy, DelayedOff, and provide empirical evidence towards favorable perfor-
mance of our proposed policy when the arrival process is Poisson with an unknown
non-stationary arrival rate λ(t), with ρ(t) = λ(t)E[S]. In Section 6.6.2, we propose a
slight modification of the DelayedOff policy, called the DelayedOff-Index pol-
icy, which is easier to implement and is flexible enough to adapt to diverse application
scenarios.

6.6.1 The DelayedOff policy

The previous policies that we have considered, NeverOff, Sleep and InstantOff,
do not satisfy our goal. NeverOff and Sleep are based on a fixed number of servers
n∗, and thus do not auto-scale to time-varying demand patterns. InstantOff is
actually able to scale capacity in the time-varying case, since it can turn on servers
when the load increases, and it can turn off servers when there isn’t much work in
the system. However, when TOFF is high, we will see that InstantOff performs
poorly with respect to ERP.
We now define our proposed traffic-oblivious auto-scaling policy, DelayedOff.
DELAYEDOFF: DelayedOff is a capacity provisioning policy similar to In-
stantOff, but with two major changes. First, under DelayedOff, we wait for
a server to idle for some predetermined amount of time, twait, before turning it off.
If the server gets a job to service in this period, its idle time is reset to 0. The
parameter twait is a constant chosen independent of load, and thus DelayedOff is
a truly traffic-oblivious policy. Second, if an arrival finds more than one servers idle
on arrival, instead of joining a random idle server, it joins the server that was most
recently busy (MRB). Equivalently, and perhaps more precisely, the arrival is sent
to the server which will turn off farthest in the future. We will later see that MRB
routing is crucial to the near-optimality of DelayedOff.

198

We will demonstrate the superiority of DelayedOff by comparing it against two
other policies, the first being InstantOff, and the second being an offline, traffic-
aware hypothetical policy, LookAhead. LookAhead runs the NeverOff policy,
with n∗ changing as a function of time. LookAhead smartly calculates n∗(t) for
each time t, given the ρ(t) forecast. To do this, we use an idea proposed in [85],
which is to compute what we will call the “effective load” at time t (referred to as
the “offered load” in [85]), ρeff(t), as:

ρeff(t) =
∫ t

−∞
e−µ(t−u)λ(u)du.

The quantity ρeff(t) denotes the mean number of jobs in the system at time t under
the assumption that every job in the system can have its own server. The number of
servers to have on at time t, n∗(t), is then chosen to be n∗(t) = ρeff(t) + β∗

√
ρeff(t),

where β∗ is given by (6.10).
Figure 6.4 illustrates the performance of InstantOff, LookAhead and Delayed-
Off in the case of a time-varying arrival pattern that resembles a sine curve with a
period of 6 hours. In all the simulations, we set E[S] = 1sec, and TOFF = 200secs
(hence TOFF is high). Figure 6.4(a) shows that InstantOff auto-scales poorly as
compared to the other policies, in particular ERP InstantOff ≈ 6.8× 105Watts · sec,
with E[T] ≈ 13.17sec and E[P] ≈ 5.19 × 104Watts. By contrast, LookAhead,
shown in Figure 6.4(b), scales very well with the demand pattern. The ERP of
LookAhead is ERPLookAhead ≈ 1.64 × 104Watts · sec, with E[T] ≈ 1.036sec and
E[P] ≈ 1.58 × 104Watts. Unfortunately, as pointed out above, LookAhead re-
quires knowledge of the future arrival pattern to be able to have n∗(t) servers on
at time t (in particular, it needs knowledge of the demand curve TOFF units in ad-
vance). Thus, while LookAhead performs very well in a time-varying situation,
it is not an online strategy, and is thus, not practical. Figure 6.4(c) illustrates the
excellent auto-scaling capability of DelayedOff for the sinusoidal arrival pattern.
Here, twait = 320s is chosen according to Rule of Thumb #4 presented later in this
section. For the case in Figure 6.4(c), ERPDelayedOff ≈ 1.89 × 104Watts · sec with
E[T] ≈ 1.002sec and E[P] ≈ 1.89 × 104Watts. The ERP for DelayedOff is only
slightly higher than that of LookAhead, and far lower than that of InstantOff.
DelayedOff slightly over-provisions capacity compared to LookAhead due to its
traffic-oblivious nature. We verify this last observation analytically.
While analyzing DelayedOff even under stationary traffic is a formidable chal-
lenge, we justify its excellent auto-capacity-scaling capabilities via the following mod-
est proposition which suggests that under a Poisson arrival process with unknown
intensity, DelayedOff achieves near-optimal ERP. Thus, if the rate of change of
the arrival rate is less than TOFF (as was the case in Figure 6.4(c)), we expect De-

199

0 4 8 12
0

50

100

150

200

Time (hrs) →

period=6hrs, ρ=60, E[S]=1s

ρ(t)
n

busy+idle
(t)

N(t)

(a) InstantOff

0 4 8 12
0

50

100

150

200

Time (hrs) →

period=6hrs, ρ=60, E[S]=1s

ρ(t)
n

busy+idle
(t)

N(t)

(b) LookAhead

0 4 8 12
0

50

100

150

200

Time (hrs) →

period=6hrs, ρ=60, E[S]=1s, t
wait

=320s

ρ(t)
n

busy+idle
(t)

N(t)

(c) DelayedOff

Figure 6.4: Dynamic capacity provisioning capabilities of InstantOff, LookA-
head and DelayedOff. The dashed line denotes the load at time t, ρ(t), the dots
denotes the number of servers that are busy or idle at time t, nbusy+idle(t), and the
crosses represent the number of jobs in the system at time t, N(t).

layedOff to still achieve near-optimal ERP. This is because we are able to turn
servers on before the queue builds up.

Proposition 6.1 Consider a server farm with Poisson arrival process and Exponen-
tial service distribution. Let ρ denote the average load. Under DelayedOff with
MRB routing, the number of servers on is given by ρ+ Θ(√ρ), as ρ→∞.

Proof: We first provide an alternate way of viewing the MRB routing. Consider
a server farm with infinitely many servers, where we assign a unique rank to each
server. Whenever there are n jobs in the server farm, they instantaneously move to
servers ranked 1 to n. We now claim that there are m servers on at time t under
MRB routing and DelayedOff if and only if there are m servers on at time t in
the alternate model under DelayedOff. To see this, let the rank of servers at time
t under MRB be defined by the last time they were idle (rank 1 server has been idle
the shortest and so on). Once a server goes idle and gets rank n (thus the number
of jobs in the system drops to n− 1), its rank remains n until the number of jobs in
the system increases to n.
Define the idle period for server n+ 1, I(n), to be the time that elapses between the
instant that the number of jobs in the system transitions from n + 1 to n until it
next reaches n + 1. It is easy to see that the setup delay, TOFF does not affect the
distribution of I(n). A rank n + 1 server turns off when I(n) > twait. Analyzing
DelayedOff now reduces to analyzing the idle periods of servers in an M/M/∞.
Let N(t) denote the number of jobs in an M/M/∞ at time t. Iglehart [81] proved

200

that as ρ → ∞, the process X(t) = N(t)−ρ√
ρ

converges to the solution Y (t) of the
following mean reverting Ornstein-Uhlenbeck process:

dY (t) = −mY (t)dt+ σdW (t); m = 1
E[S] , σ

2 = 2
(E[S])2 (6.15)

where W (t) is the standard Brownian motion. The process Y (t) mixes on a Θ(1)
time scale, and the first passage time distributions for Y (t), defined as Tu,v = inf{t ≥
0 : Y (t) = v|Y (0) = u} are only known via their Laplace transforms [57]. Thus while
any exact analysis of DelayedOff seems intractable, we can make the following
conclusion: if we observe the system at a random point in time T , and find N(T) =
ρ + u

√
ρ, the probability that the server ranked ρ + v

√
ρ will be on, is exactly the

probability that t∗ = sup{t ≥ 0 : N(T − t) ≥ ρ+ v
√
ρ} ≤ twait. However, t∗ has the

same distribution as Tu,v, and thus for any v, there is a constant probability that
server with ρ+ v

√
ρ is on. 1

We now address the question of choosing the optimal value of twait, which we denote
as t∗wait.
Rule of Thumb #4: Choosing t∗wait.
As mentioned above, an exact analysis of DelayedOff seems intractable since it
involves first passage time distributions of the Ornstein-Uhlenbeck process, and thus
analytically obtaining the optimal value of twait is equally intractable. However,
empirically we have found that a good choice for the twait parameter is t∗wait ≈
TOFF · PON

PIDLE
. The rule of thumb is along similar lines as the power down strategy

proposed in [84] and is based on an amortization argument. Once the server has
wasted PIDLE · t∗wait units of power in idle, it amortizes the cost of turning the server
on later and paying the penalty of PON ·TOFF . While a reader familiar with work on
powering down scheme might find our DelayedOff policy not novel, we would like
to point out a conceptual difference between the use of DelayedOff in our work
and in the prior literature. The prior literature uses DelayedOff type schemes
for stand-alone devices, obtaining constant factor sub-optimality. However, we are
applying DelayedOff to each device in a server farm, and are artificially creating
an arrival process via MRB so as to make the idle periods of the servers highly
variable. It is not surprising that the optimal value t∗wait should be independent of
ρ. As we mentioned above, by mapping the DelayedOff policy to an Ornstein-
Uhlenbeck process, for a fixed E[S], as we increase the arrival rate and hence ρ, the
limit Y (t) does not change, and thus the behavior of a server with rank ρ + c

√
ρ

would remain invariant to ρ for a fixed twait. However, what is interesting is that
even as E[S] varies, our rule of thumb for t∗wait holds as shown in Figure 6.5(a).

1In the published version of this work [67], there is an error in Theorem 2 and Corollary 1. While
Lemma 7 on mean idle periods is indeed correct, it does not imply Theorem 2.

201

0 4 16 64 256 1024 4096 16384
0

2

4

6

8

10
x 10

4

t
wait

 (seconds) →

E
R

P
/E

[S
] (

W
at

ts
) →

period=6hrs, ρ=60, T
OFF

=200s

E[S]=0.1s
E[S]=1s
E[S]=10s

t*
wait

(a) Effect of E[S] on optimal twait

10
1

10
2

1

1.2

1.4

1.6

1.8

2

T
OFF

 (seconds) →

N
or

m
al

iz
ed

 E
R

P
 →

period=6hrs, ρ=60, E[S]=1s

DELAYEDOFF
LOOKAHEAD
Theoretical bound

(b) Effect of TOFF on ERP

36 31 26 21 16 11 6 1

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 E
R

P
 →

Period (hours) →

ρ=60, E[S]=1s

DELAYEDOFF
LOOKAHEAD
Theoretical bound

(c) Effect of time period on ERP

Figure 6.5: (a) Verifying the accuracy of Rule of Thumb #4. The graph shows the effect
of twait on ERP for the DelayedOff policy, in the case of a sinusoidal demand curve,
with average ρ = 60 and E[S] = 0.1, 1, 10s. Different values of twait result in different ERP
values. However, t∗wait = TOFF · PON

PIDLE
= 320s does well for all values of E[S]. (b) The

graph shows the difference in ERP of the DelayedOff and LookAhead policies. The
ERP values are normalized by the theoretical lower bound. (c) The graph shows the effect
of decreasing the period of the sinusoidal demand curve on the ERP. Results suggest that
decreasing the period of the demand curve does not effect the ERP significantly.

Figure 6.5(b) compares the ERP of DelayedOff against the ERP of LookAhead
for different TOFF values. We normalize the ERP values with the theoretical lower
bound of ρPON ·E[S]. Throughout the range of TOFF values, we see that Delayed-
Off, with twait chosen based on Rule of Thumb #4, performs within 10% of LookA-
head, based on the ERP. The ERP of both, DelayedOff and LookAhead are
within 70-80% of the ERP values of the theoretical lower bound. Figure 6.5(c) shows
the effect of decreasing the period of the sinusoidal demand curve on the ERP. We see
that the ERP of DelayedOff increases as the period decreases, but this change is not
very significant. Thus, we can expect DelayedOff to perform well for time-varying
demand patterns, as long as the rate of change of demand is not too high.

Trace-based simulation results: Thus far we have only looked at simulation
results for arrival patterns that look like a sinusoidal curve. However, not all de-
mand patterns are sinusoidal. We now consider a real-life demand pattern based on
traces from the 1998 World Cup Soccer website, obtained from the Internet Traffic
Archives [3]. The trace contains approximately 90 days worth of arrival data, with
more than 1.3 billion arrivals. The data contains very bursty arrivals, with the ar-
rival rate varying by almost a factor of 10, between periods of peak demand and low
demand. In particular, the rate of change of arrival rate is sometimes much higher

202

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1000

2000

3000

Time (hrs) →

ρ(t) n
busy+idle

(t) N(t)

Figure 6.6: DelayedOff simulation results based on a subset of arrival traces
collected from the Internet Traffic Archives, representing 15 hours of bursty traffic
during the 1998 Soccer world cup finals. Observe that DelayedOff scales very well
even in the case of bursty traffic.

than TOFF = 200s. We run DelayedOff on this trace, and compare our results
against LookAhead. Throughout, we assume Exponentially distributed job sizes,
with mean 1 second.
Figure 6.6 shows our simulation results for a subset of the arrival traces, correspond-
ing to the most bursty traffic. We see that DelayedOff (with optimally chosen
twait = 320s) adapts extremely well to the time-varying traffic. In fact, over the
entire duration of 90 days, the ERP of DelayedOff was within 15% of the ERP
of LookAhead. Thus, we conclude that DelayedOff performs very well even in
the case of unpredictable and bursty traffic.

6.6.2 An Index-based proxy for DelayedOff and applications

In this section we discuss a proxy policy for DelayedOff that is easier is to imple-
ment, and can be easily modified for several application scenarios.
DELAYEDOFF-INDEX: In DelayedOff-Index, we apriori assign static dis-
tinct ranks to all the servers in the server farm. Like DelayedOff, under DelayedOff-
Index as well, we wait for a server to idle for some predetermined amount of time,
twait, before turning it off. If the server gets a job to service in this period, its idle
time is reset to 0. However, unlike MRB routing, if an arrival finds more than one
servers idle on arrival, then it joins the highest ranked idle server (this server may
not be the one that is farthest from turning off).
The intuition behind DelayedOff-Index is the same as behind DelayedOff – by

203

repeatedly sending the jobs to a preferred set of servers, we are creating variability in
the idle periods. Empirically we have found that the performance of DelayedOff
and DelayedOff-Index to be indistinguishable. However, the DelayedOff-
Index policy is practically appealing because it can be easily modified to adapt to
many application scenarios, a couple of which we mention below:
Example 1: Dynamic capacity provisioning for heterogeneous server farms
Our description and analysis of the DelayedOff policy depended on the fact that
the servers were homogeneous, while this is almost never true for data centers. How-
ever, by assigning static ranks to the servers, giving preference to faster and more
energy efficient servers, and employing the DelayedOff-Index policy, we can per-
form dynamic capacity scaling in heterogeneous compute environments.
Example 2: Dynamic capacity provisioning in cloud infrastructures An as-
sumption that we have made throughout this chapter is that servers do not timeshare
their capacity, and that further, a single job can exhaust the server’s resources. As
virtualization and cloud computing becomes ubiquitous, this assumption is broken.
A typical virtual machine (VM) request might ask for 1GB of RAM and 2 GHz of
processing capacity, while the physical servers are provisioned with several GBs of
memory, and several cores. While it is hard to imagine how the DelayedOff policy
would extend to this application scenario, DelayedOff-Index does the trick. A
public cloud service like Amazon EC2 [2] allows users to choose from a small set
of instance types. Based on the popularity of these instance types, physical servers
could be partitioned into virtual servers, and these virtual servers can be assigned
static ranks (ensuring that virtual servers in the same physical server get contiguous
ranks). Now DelayedOff-Index policy can be used to schedule VMs on these
virtual servers. A physical server will be turned off once all its virtual servers have
idled for twait units of time.

6.7 Summary and Open Questions

In this chapter we address the algorithmic question of energy-performance tradeoff
in server farms, and utilized the metric of Energy-Response Time Product (ERP) to
capture the aforementioned tradeoff. Via the first analysis of the ERP metric, we
proves that a very small natural class of server farm management policies suffices to
find the optimal or near-optimal policy. We furthermore develop rules of thumb for
choosing the best among these policies given the workload and server farm specifica-
tions. The impact of our results is two-fold: (i) Our results eliminate the complexity
of finding the optimal server farm management policy in a high-dimensional search

204

space, and (ii) Our analytical evaluation of the policies advocated in this chapter
with respect to ERP can guide server designers towards developing a smaller set of
sleep states with the most impact.
We first proved that for a single server under a Poisson arrival process, the opti-
mal policy with respect to ERP is either (a) to always keep the server on or idle
(NeverOff), or (b) to always turn a server off when idle and to turn it back on when
work arrives (InstantOff), or (c) to always put the server in some sleep state when
idle (Sleep). Next, based on analysis and numerical experiments, we conjecture that
for a multi-server system under a Poisson arrival process, the multi-server generaliza-
tions of NeverOff, InstantOff and Sleep suffice to find a near-optimal policy.
Finally we consider the case of a time-varying demand pattern and propose a simple
traffic oblivious policy, DelayedOff, which turns servers on when jobs arrive, but
waits for a specific amount of time, twait, before turning them off. Through a clever
routing policy, DelayedOff achieves asymptotically near-optimal performance in
simulations for a stationary Poisson arrival process with an unknown arrival rate, as
the load becomes large. We also proposed a variant, DelayedOff-Index, which
allows extending DelayedOff to dynamic capacity provisioning in heterogeneous
server farms and in cloud computing infrastructure.
Open Problems: In order to prove the optimality results in this chapter, we have
made some assumptions: (i) The servers are interchangeable (any job can serve on
any server), (ii) The server farm is homogeneous, (iii) The job-sizes are Exponen-
tially distributed. If some or all of these assumptions were to be relaxed, then our
optimality results might look different. Proving optimality results without the above
assumptions constitutes ongoing work. Perhaps most important extension would
be energy-management policies under I/O bound workloads, which severely limit
the load balancing flexibility. Proving guarantees on performance of traffic-oblivious
policies under some smoothness conditions on the demand pattern is also a theoret-
ically challenging goal.

6.A Proof of Theorem 6.1

Proof of Lemma 6.1: We first note that if the server is in the on state and there
is work in the system, then the optimal policy never transitions into a sleep state.
Suppose, by contradiction, an optimal policy π transitioned into a sleep state at time
t0 with work in the queue and then later transitioned through some sleep state until
finally transitioning to the on state at time t1. We could transform this into a policy
π′ with equivalent power consumption, but lower mean response time by deferring
the powering down until all the work present in the system at t0 has finished (say at

205

t2), and then transitioning through the same sleep states as π, finally transitioning
to the on (or idle) state at time t2 + (t1 − t0).
Next, we prove that the only instants at which an optimal policy takes actions will
be job completions, job arrivals, or when the server finishes transition from a low
power state to a higher power state. Here we assume that once a transition to a
sleep, idle or on state has been initiated from a lower power state, it can not be
interrupted. We have already argued that no actions happen during a busy period
when the server is in the on state. Therefore to prove that control actions only
happen at the claimed events, it remains to show that actions do not occur while
the server is in idle or sleep states (and not in transition or on) and an arrival has
not occurred. To achieve this, it suffices to show that there exists a Markovian
optimal control for the ERP metric. Note that E[T] = limT→∞

1
λT
E
[∫ T
t=0N(t)dt

]
and E[P] = limT→∞

1
T
E
[∫ T
t=0 P (t)

]
, where N(t) and P (t) denote the number of jobs

and power consumption, respectively, at time t. Thus the optimal decision at time
t depends only on the future evolution of the system, and not on the finite history
in [0, t]. (Note that these statements are not true if we replace E[T] and E[P] by
their discounted versions, e.g. E[Pγ] =

∫∞
t=0 γ

tP (t)dt for some 0 < γ < 1.) By the
memoryless property of the Poisson arrival process, the claim follows.
Finally, we will show that once a policy goes into a sleep state when the server
goes idle, the only other state it will transition to next is on. To see this, suppose
the server went into sleep state Si. Now, the server will not go into sleep state Sj
for j > i (and hence to a state with lower power) on a job arrival, otherwise it
would have been better to transition to Sj when the server first went idle. If the
server transitions to a sleep state Sk for k < i (thus a state with higher power) but
not the on state, and later transitions to the on state, it would instead have been
better to transition directly to the on (since the transition times are the same by
the Model Assumptions), finish processing the work and then transition to state Sk
instantaneously.
So far, we have argued that the optimal policy must (i) immediately transition to idle
or a sleep state when the work empties (recall that we have assumed these transitions
to be instantaneous), (ii) immediately transition to the on state on some subsequent
arrival, and (iii) is Markovian. However, the optimal control need not necessarily be
a deterministic function of the current state. We therefore use pi and qij to denote
the class of possible optimal control policies Πmixed.
Proof of Lemma 6.2: The proof proceeds via renewal reward theory. We define a
renewal cycle for the server as the time from when a server goes idle (has zero work),

206

until it next goes idle again. Thus we can express:

E[T] = E[total response time per cycle]
E[number of jobs per cycle] ; E[P] = E[total energy per cycle]

E[duration per cycle] .

Now consider a specific case, where the server goes into sleep state Si on becoming
idle, and starts transitioning to the on state when ni jobs accumulate. There can
be more arrivals while the server is turning on. We denote the number of arrivals
during transition from Si by Xi, and note that Xi is distributed as a Poisson random
variable with mean λTSi . Thus, after the server turns on, it has ni +Xi jobs in the
queue, and thus the time until the server goes idle is distributed as a sum of ni +Xi

busy periods of an M/M/1 system. The sum of the response times of jobs that are
server during this renewal cycle has two components:
1. Sum of waiting times of all jobs before the server turns on (term 1 below): The
waiting time of the jth of the first ni jobs is ∑ni

k=j+1 Tλ(k) + TSi , where {Tλ(·)} are
i.i.d. Exp(λ) random variables, and Tλ(k) denotes the time between the (k − 1)st
and kth arrival of the cycle. By the properties of the Poisson arrival process, the
(unordered) waiting time of each of the Xi jobs is an independent U([0, TSi]) random
variable. Adding an taking expectation, we get the term 1 as shown below in (6.16).
2. Sum of the response times from when the server turns on until it goes idle (term 2
below): Since the sum of response time of the jobs that are served during the renewal
cycle is the same for any non-preemptive size-independent scheduling policy, we will
find it convenient to schedule the jobs as follows: We first schedule the first of ni+Xi

arrivals and do not schedule any of the ni + Xi − 1 remaining jobs until the busy
period started by the first job completes. Then we schedule the second of the ni+Xi

jobs, holding the remaining jobs until the busy period started by this job ends, and
so on. The sum of the response times is thus given by the sum of response times in
ni +Xi i.i.d. M/M/1 busy periods, and the additional waiting time experienced by
the initial ni+Xi arrivals. By renewal theory, the expectation of the sum of response
times of the jobs served in an M/M/1 busy period with arrival rate λ and service
rate µ is given by the product of the mean number of jobs served in a busy period(

1
1−λ

µ

)
and the mean response time per job

(
1

µ−λ

)
. This gives the first component of

term 2. The additional waiting time of the jth of the ni +Xi initial arrivals due to
our scheduling policy is given by the sum of durations of j−1 M/M/1 busy periods,
each of expected length 1

µ−λ . Adding this up for all the ni + Xi jobs and taking
expectation, we get the second component of term 2.

207

ni

(
ni − 1

2λ + TSi

)
+ E[Xi]

TSi
2︸ ︷︷ ︸

term 1

+ 1
1− ρ ·

ni + E[Xi]
µ− λ

+ E
[
(ni +Xi)(ni +Xi − 1)

2(µ− λ)

]
︸ ︷︷ ︸

term 2
(6.16)

= 1
1− ρ

(
ni + E[Xi]
µ− λ

+
[
niTSi + ni(ni − 1)

2λ +
λT 2

Si

2

])
= rini

1− ρ

The final expression in (6.1) is obtained by combining the above with the renewal
reward equation, and noting that the mean number of jobs served in this renewal
cycle is given by ni+E[Xi]

1−ρ .

E[T] = E[total response time per cycle]
E[number of jobs per cycle] =

∑N
i=0 pi

∑∞
ni=1 qini

rini
1−ρ∑N

i=0 pi
∑∞
ni=1 qini

ni+λTSi
1−ρ

=
∑N
i=0 pi

∑∞
j=1 qijrij∑N

i=0 pi
∑∞
j=1 qij(j + λTSi)

The proof for E[P] is analogous. The duration of a cycle is composed of three dif-
ferent times:
1. Time spent waiting for ni jobs to queue up: The expected duration is ni

λ
, with

expected total energy consumed given by ni
λ
PSi .

2. Time to wake up the server: This is TSi , with total energy consumed by the server
during this time as TSiPON .
3. (ni +Xi) busy periods: The expected time it takes for the server to go idle again
is the expected duration of ni +Xi busy periods, given by ni+λTSi

µ−λ with total energy
consumed being ni+λTSi

µ−λ PON .

Thus, we have:

E[P] = E[total energy per cycle]
E[duration per cycle] =

∑N
i=0 pi

∑∞
j=1 qij

[
j
λ
· PSi + TSi · PON + j+λTSi

µ−λ · PON
]

∑N
i=0 pi

∑∞
j=1 qij

[
j
λ

+ TSi + j+λTSi
µ−λ

]
=
∑N
i=0 pi

∑∞
j=1 qij (j(ρPON + (1− ρ)PSi) + λTSiPON)∑N

i=0 pi
∑∞
j=1 qij (j + λTSi)

.

Proof of Lemma 6.3: To prove that the optimal strategy is pure, we only need
to note that the expressions for both the mean response time and average power are

208

of the form

E[T] = q1t1 + . . .+ qntn
q1m1 + . . .+ qnmn

; E[P] = q1u1 + . . .+ qnun
q1m1 + . . .+ qnmn

,

where n is the number of pure strategies that the optimal strategy is randomizing
over. for some discrete probability distribution {q1. . . . , qn}. We will show that when
n = 2, the optimal strategy is pure, and the proof will follow by induction on n.
For n = 2, we consider E[T] and E[P] as a function of q1 over the extended domain
q1 ∈ (−∞,+∞), and show that there is no local minima of E[T] ·E[P] in q1 ∈ (0, 1).
Further, note that both E[T] and E[P] are of the form a+ b

c+dq1
for some constants

a, b, c, d. While the lemma would trivially follow if the product of E[T] and E[P]
were a concave function of q, this is not true in our case because one/both of E[T]
and E[P] may be convex, and hence we proceed through a case analysis:
Case 1: Both E[T] and E[P] are increasing or decreasing in q1, except for a
shared discontinuity at q1 = m2

m2−m1
. In this case, trivially, E[T]E[P] is also in-

creasing/decreasing in the interval q1 ∈ [0, 1] as both the functions are positive in
this interval, and thus the minimum of E[T] · E[P] is either at q1 = 0 or at q1 = 1.
Case 2: One of E[T] and E[P] is an increasing function and the other is a decreasing
function of q1 (except for the shared discontinuity at q1 = m2

m2−m1
). In this case, as

q1 → m2
m2−m1

, E[T]·E[P]→ −∞. Second, due to the form of E[T] and E[P], it is easy
to see that their product has at most one local optimum. Finally, we can see that as
q1 → ±∞, E[T]E[P]→ (t1−t2)(m1−m2)

(u1−u2)2 , which is finite. Combining the previous three
observations, we conclude that there is no local minima in the interval q1 ∈ (0, 1).
In other words, in the interval q1 ∈ [0, 1], the minimum is achieved at either q1 = 0,
or q1 = 1. The inductive case for n follows by considering only two variables, qn
and q′, where q′ is a linear combination of q1, q2, . . . , qn−1, and applying the inductive
assumption.
Proof of Lemma 6.4: We now know that the optimal power down strategy is of
the following form: the server goes into a fixed sleep state, Si, on becoming idle. It
then waits for some deterministic ni arrivals before transitioning into the on state.
We will show that under optimality, ni = 1. The basic idea is to minimize the
product of Eqs. (6.1) and (6.3). We first show that if m = λTSi > 1, then the policy
where the server goes to idle state (recall TIDLE = 0) has a lower E[T]E[P] than
going into sleep state Si with any ni. Thus λTSi < 1 is a necessary condition for
optimality of sleep state Si:

Lemma 6.6 When λTSi ≥ 1, NeverOff has a lower ERP than a policy involving
sleep state Si with any ni > 0.

Proof: We will prove the above fact by upper bounding PIDLE by PON , which only
makes the ERP of NeverOff worse. Under the above assumption, the ERP values

209

for NeverOff and ni = n are given by:

E[T] · E[P]|NeverOff = PON
µ− λ

E[T] · E[P]|ni=n =
 n+m
µ−λ + 1

λ

(
nm+ n2−n

2 + m2

2

)
(n+m)2

 · (ρn+m)PON , where m = λTSi

Cross-multiplying the terms, we can say that

E[T] · E[P]|NeverOff < E[T] · E[P]|ni=n

⇐⇒ ρ(n+m)2 −
[
ρ(n+m) + (1− ρ)

(
(m+ n)2

2 − n

2

)]
(ρn+m) < 0

⇐⇒ ρ2
[
−n(m+ n) + n

(
(m+ n)2

2 − n

2

)]
+ ρ

[
n(m+ n) + (m− n)

(
(m+ n)2

2 − n

2

)]

−m
[
(m+ n)2

2 − n

2

]
< 0 (6.17)

It is easy to check that the LHS of Eq. (6.17) is negative at ρ = 0, and is zero at
ρ = 1. Since this expression is quadratic, it suffices to show that the derivative of
the above at ρ = 1 is positive. This would imply that the curve lies below X-axis in
the interval ρ ∈ [0, 1) for m,n > 1. The derivative at ρ = 1 is given by:

− n(m+ n) + (m+ n)
[
(m+ n)2

2 − n

2

]

= (m+ n)
[
(m+ n)2

2 − 3n
2

]

For m,n > 1, it is easy to see that (m+ n)2 > 3n, and hence the derivative at ρ = 1
is indeed positive.
Next, we show that when λTSi < 1, the optimal value of ni is in fact ni = 1. We
already know that λTSi is a necessary condition for the optimality of the pure policy
involving Si, and we thus show that in this case the optimal value of ni = 1. Thus,
the optimal policy involving Si must be Sleep(Si).

Lemma 6.7 When λTSi < 1, ni = 1 is the optimal policy involving sleep state Si.

Proof: Since we know from Lemma 6.3 that the optimal ni will be at positive
integral values, we can create alternate functions for E[P] and E[T] that agree at
integral points and have continuous derivatives. If optimal value obtained from these

210

continuous functions is indeed nON = 1 then we are done. Let m = λTSi . Further,
we assume PSi = 0 as a higher PSi only favors a lower ni. These smooth functions
are given by:

E[T] =
x+m
µ−λ + 1

λ

[
x ·m+ x2−x

2 + m2

2

]
x+m

= 1
µ− λ

+ x+m

2λ − x

2λ(x+m)

= 1
µ− λ

− 1
2λ + x+m

2λ + m

2λ(x+m)

E[P] = ρ · PON + (1− ρ)λTSi · PON
x+ λTSi

= (ρx+m)PON
x+m

= ρ · PON + m(1− ρ)PON
x+m

The product E[T] ·E[P] can be written as ax+b+ c
x+m + d

(x+m)2 . Therefore, there are
3 local optima, and the second derivative changes sign only once. Further, the curve
approaches −∞ when x→ −∞, +∞ when x→ +∞, and again +∞ when x→ −m.
Further, as x→ −∞, the sign of the second derivative is −sgn(c), and as x→ +∞,
the sign of the derivative is sgn(c). In either case, since the curve is convex for some
interval in (−∞, 0], +∞ at x = − 1

m
, and the second derivative changes sign only

once, proving that the derivative of E[T] · E[P] is positive at x = 1 suffices to show
that there is no local minima for x > 1. (This is because in [0,+∞), the curve is
either convex decreasing at x = 0 and then switches to concave, or is convex in the
entire interval.)
Taking derivative of the log of the product we get:

∂

∂x
log (E[T]E[P]) =

1 + (1−ρ)
ρ

[
m+ 2x−1

2

]
x+m+ (1−ρ)

ρ

[
mx+ x2−x

2 + m2

2

] + ρ

ρx+m
− 2 1

x+m

=⇒ ∂

∂x
log (E[T]E[P])

∣∣∣∣∣
x=1

=
1 + (1−ρ)

ρ

[
m+ 1

2

]
1 +m+ (1−ρ)

ρ

[
m+ m2

2

] + ρ

ρ+m
− 2 1

1 +m

211

Now,

∂

∂x
log (E[T]E[P])

∣∣∣∣∣
x=1

> 0 ⇐⇒[
ρ+ (1− ρ)(m+ 1

2)
]
· [(ρ+m)(1 +m)]

−
[
ρ(1 +m) + (1− ρ)(m+ m2

m
)
]
· [ρ(1−m) + 2m] > 0

The last inequality involves a quadratic in ρ on LHS. It is easy to check that when
ρ = 0 and m < 1, the quadratic is positive. Further, when ρ = 1, the value of
the quadratic polynomial is 0. Thus it suffices to show that the slope of the above
quadratic at ρ = 1 is negative (when m < 1). This would imply that the above
inequality is satisfied in the interval ρ ∈ [0, 1). Indeed, it can be checked that the
derivative at ρ = 1 is given by −m3

2 −
1
2 < 0. Thus, we have proved that ni > 1 is

not optimal for m < 1. Thus, ni = 1 is optimal.

6.B Justification for Conjecture 6.1

The core problem is in coming up with a tight lower bound for E[T]E[P] for the
optimal policy. We have a trivial lower bound of E[T] ≥ E[S], and E[P] ≥ ρPON .
However, this is very loose when ρ is small and TOFF is large.
To illustrate the key ideas in our approach to obtaining the lower bound, we begin
by considering the case where there are no sleep states. The first idea we use is
to give the optimal policy additional capability. We do so by allowing the optimal
policy to turn a server on from off instantaneously (zero setup time). Consequently,
each server is either on (busy), idle, or off. However there is still an energy penalty
of PONTOFF . Secondly, we use an accounting method where we charge the energy
costs to the jobs, rather than to the server. Thus, each job contributes towards the
total response time cost and to the total energy cost. Thirdly, we obtain a lower
bound by allowing the optimal policy to choose the state it wants an arrival to see
independently for each arrival. This allows us to decouple the decisions taken by the
optimal policy in different states. We make this last point clearer next.
An arrival that finds the n jobs in the system (excluding itself) could find the system
in one of the following states:

1. At least one server is idle: Here, the optimal policy would schedule the arrival
on the idle server. In this case, we charge the job E[S] units for mean response

212

time. Further, the server would have been idle for some period before the
arrival, and we charge the energy spent during this idle period, as well as the
energy to serve the arrival, to the energy cost for the job. However, if under
the optimal policy, there is an idle server when the number of jobs increases
from n to n+1, there must have been a server idle when the number of servers
last went down from n+1 to n. Furthermore, some server must have remained
idle from then until the new arrival which caused the number of jobs to go to
n + 1 (and hence there were no jobs in the queue during this period). Thus,
this idle period is exactly the idle period of anM/M/n+1 with load ρ, denoted
by I(n), where the idle period is defined as the time for the number of jobs to
increase from n to n+ 1.

2. No server is idle, arrival turns on an off server: Here, we charge the arrival
E[S] units for mean response time, and PONE[S] + TOFFPON for energy.

3. No server is idle, arrival waits for a server to become idle: This case is slightly
non-trivial to handle. However, we will lower bound the response time of the job
by assuming that the arrival found n servers busy with the n jobs. Further, until
a departure, every arrival turns on a new server and thus increases the capacity
of the system. Thus, this lower bound on queueing time can be expressed as
the mean time until first departure in anM/M/∞ system starting with n jobs.
We denote this by D(n). The energy cost for the job will simply be PONE[S].

We will give the optimal strategy the capability to choose which of the above 3
scenarios it wants for an arrival that occurs with n jobs in the system. Since
the response time cost of scenario 1 and 2 are the same, only one of them is
used, depending on whether PIDLEE[I(n)] > PONTOFF or not. Let Pwaste(n) =
min{PIDLEE[I(n)], PONTOFF}. Let qn denote the probability that the optimal pol-
icy chooses the best of scenarios 1 and 2 for an arrival finding n jobs in the system,
and with probability 1−qn it chooses scenario 3. Since we are interested in obtaining
a lower bound, we will further assume that the probability of an arrival finding n
jobs in the system, pn, is given by the pdf of a Poisson random variable with mean
ρ, which is indeed a stochastic lower bound on the stationary number of jobs in the
system. We thus obtain the following optimization problem:

E
[
TOPT

]
E
[
POPT

]
≥ λmin

{qn}

(
E[S] +

∑
n

pn(1− qn)E[D(n)]
)(

PONE[S] +
∑
n

pnqnPwaste(n)
)

≥ λmin
{qn}

(∑
n

pn
√

(E[S] + (1− qn)E[D(n)])(PONE[S] + qnPwaste(n))
)2

213

(By Cauchy-Schwarz inequality)

= λ

(∑
n

pn
√

min {PONE[S] + Pwaste(n), PON(E[S] +D(n))}
)2

The last equality was obtained by observing that the minimum occurs at qn = 0 or
qn = 1. The rest of the argument is numerical. We have written a program that
computes the above lower bound for a given ρ, TOFF , PIDLE and PON values. We
then compare it against the cost of the NeverOff with optimal n∗, and against
the following upper bound on the cost of InstantOff: λPON (E[S] + TOFF)2. This
upper bound is obtained by forcing every job to run on the server that it chooses
to setup on arrival. For each value of ρ, we then search for the TOFF value that
maximizes the ratio of the cost of the best of NeverOff and InstantOff to the
above lower bound, and bound the relative performance of the best of NeverOff
and InstantOff against the theoretical optimal as a function of ρ and the ratio
PIDLE
PON

.
The proof for Theorem 6.1 with sleep states now proceeds along the same lines as
we have described above. For Theorem 6.1, we have PSi > 0, so the optimal policy
does not have infinite servers to work with. Let us say the optimal policy works with
N servers. We first add a cost of NPSi

λ
to the energy cost of all jobs, and get back

a system with PON ← PON − PSi and PIDLE ← PIDLE − PSi . We now have the
following three scenarios an arrival that sees n jobs in the system could encounter:

1. At least one server is idle: In this case we must have n < N , and the response
time is E[S] and the energy penalty is (PON − PSi)E[S] + (PIDLE − PSi)I(n).

2. Arrival finds no idle servers and there is a sleeping server: In this case we may
turn on a sleeping server and the energy penalty is (PON −PSi)E[S] +PONTSi .
However, the new arrival may be jumping ahead of jobs in the queue. There
are at least (n− (N − 1))+ of them.

3. Arrival finds no idle server and the job waits: In this case the response time is
given by E[S] +D(n) where D(n) denotes the time until first departure in an
M/M/N starting with n jobs. The energy cost is just (PON − PSi)E[S].

As before, only one of scenarios 1 or 2 is used, and we define

Pwaste = min{PONTSi , (PIDLE − PSi)I(n)1n<N}.

Our optimization problem then is:

214

min
{pn},{qn}

{pn}≥stPoisson(ρ)

λ

(
E[S] +

∞∑
i=0

pi(1− qi)E[D(n)]
)(

NPSi
λ

+ (PON − PSi)E[S] +
∞∑
i=0

piqiPwaste(i)
)

The problem with using the above approach is the following: consider a sleep state
with PSi very close to PIDLE and TSi � 1. In this case, the above problem is
optimized for N = ρ+ 1 (that too because we have a lower bound on N) as follows:
for every job, we assume there is a sleeping server which we can wake up for negligible
power penalty and negligible response time penalty. Thus we have the following gap
in the current accounting method: once there are at least N jobs in the system, a
new arrival is allowed to jump ahead of someone in the queue - so either we have jobs
in queue, or we have an idle server which we are not taking into account. We may
try to get around this by not charging jobs for response time when they queue up,
but instead charge them for the number of jobs they see. However, we need to argue
that the job either pays the penalty of turning on a server, or of waiting. However,
we can’t charge the job for waiting if we are also charging jobs for queue lengths they
see.
To get around this problem, we will charge every job E[S] units for their service
time, α < 1 times the cost of the queue lengths they see, and 1 − α times the cost
of their waiting time. We can then optimize over α to get a good lower bound. We
now show the steps in detail:

1. At least one server is idle: In this case we must have n < N , and the response
time is E[S] and the energy penalty is (PON − PSi)E[S] + (PIDLE − PSi)I(n).

2. Arrival finds no idle servers and there is a sleeping server: In this case we may
turn on a sleeping server and the energy penalty is (PON −PSi)E[S] +PONTSi .
The response time penalty is E[S] + 1

λ
α(max{0, n−N + 1}).

3. Arrival finds no idle server and the job waits: In this case the response time is
given by E[S] + (1− α)D(n). The energy cost is just (PON − PSi)E[S].

Let qn,1 be the probability that scenario 1 is used when there are n jobs, and so on.
Our optimization problem then is:

max
α

min
{qn,1,qn,2,qn,3}|{pn}≥stPoisson(ρ)

λ

(
E[S] +

∞∑
i=0

pi(qi,2α
(i−N + 1)+

λ
+ qi,3(1− α)E[D(i)]

)

·
(
NPSi
λ

+ (PON − PSi)E[S] +
∞∑
i=0

pi(qi,1(PIDLE − PSi)E[I(i)] + qi,2PONTSi)
)

215

We note that the optimal values for the qi,k ∈ {0, 1}. Applying Cauchy-Schwarz, we
reduce this to a term-by-term minimization, and then we maximize over α.

216

Chapter 7

Summary

Queueing theory has traditionally been used for performance evaluation and opti-
mization in application areas such as telecommunications systems, bandwidth sharing
systems, inventory and production managament, and call centers. In this thesis, we
have argued that queueing theory can also provide answers to the questions faced
by designers of today’s computing server farms. However, since the workloads and
architectures of modern computing server farms are very different from telecom-
munications and manufacturing systems, new analytical tools and models must be
developed for queueing theory to be relevant to computing applications.
The work presented in this thesis should be appealing to theoreticians, as well as sys-
tem designers. From the theoretical perspective, we have addressed many challenging
open problems, and raised questions which would lead to a deeper understanding of
queueing systems. From the practical perspective, we have proposed new algorithms
for resource management, and provided insights into the behavior of the queueing
models considered. While not complete solutions in themselves, we hope that the
policies proposed in this thesis will be combined with profiling and control theory
techniques to solve the problems faced by systems designers. We briefly recapitulate
the major contributions and open problems from the thesis below.

7.1 Theoretical Contributions

Moments-based bounds for solutions of Stochastic recursive sequences

In Chapter 2, we demonstrated the insufficiency of existing analyses of the classical
M/G/k queue by proving that no approximation for the mean waiting time that

217

only uses the first two moments of the service distribution can be accurate when the
variance of the service distribution is large. Thus, in Chapter 3, we began with the
goal of obtaining bounds on the mean sojourn time of M/G/k via higher moments
of the service distribution. We presented two more examples of queueing systems for
which we could prove, in appropriate light-traffic asymptotic regimes, that the mean
sojourn time was extremized by certain principal representations of these moment
constraints, and achieved this via a link to the Markov-Krein Theorem and theory
of Tchebycheff systems. These links have been established for the GI/M/k model,
but are not transparent for queueing systems such as theM/G/k. As a new research
area, we propose to formally investigate these connections by considering a more
general problem: Given a stochastic fixed point equation

W
d= Φ(W,S)

when can sharp bounds on E[W] be achieved by principal representations of moment
constraints on S?
We have provided evidence that we expect more conditions than the classical Markov-
Krein theorem to be needed, and hence new theory may indeed be required. However,
we believe this is a promising approach to tackle the classical unsolvedM/G/k model,
and to provide a template for solving new queueing systems.

Queueing Models with Bounded-Sensitivity

The M/G/1/PS model is one of the foremost examples of queueing systems where
the mean sojourn time and the distribution of number of jobs in system exhibits
perfect insensitivity to higher order characteristics of the service distribution beyond
the mean [91]. In Chapter 5 and Section 3.4, we saw examples of queueing systems
which, unlike theM/G/1/PS, do not exhibit perfect insensitivity but show evidence
of bounded-sensitivity – as the variance of the service distribution increases, the mean
sojourn time initially increases and then asymptotes to an upper bound. For the
M/G/1/Round-Robin model, we were able to prove this phenomenon in light traffic
under restrictions of completely monotone service distribution and Exponentially
distributed quantum sizes. For the M/G/k/JSQ/PS, we provided numerical and
simulation evidence. While both systems are in some senses a modification of the
M/G/1/PS queue, we saw that the bounded-sensitivity does not carry over to other
load balancing policies for the M/G/k/ · /PS model.
It is a very fascinating question to explore under what conditions would a queueing
system exhibit such bounded-sensitivity? We were able to intuit this phenomenon
for the M/G/1/Round-Robin and M/G/k/JSQ/PS models via the example of the

218

degenerate hyperexponential H∗2 service distribution (while in the former it provides
an upper bound, in the latter it yields identical performance as M/M/k/JSQ/PS).
When can this be a sufficient criterion, at least for size-independent scheduling dis-
ciplines?

New heavy-traffic scalings

In this thesis we have presented two new heavy-traffic scalings to study questions
which have not yet been addressed via this tool.

1. Heavy-traffic scaling for non-work-conserving systems: A non-work-
conserving system is defined as one where the system capacity can be less than
the maximum depending on the system state. Apart from the G/G/k queue-
ing model and Jackson type queueing networks, non-work-conserving queueing
systems have not been subjected to study via the powerful tool of diffusion
analysis which can provide approximations for the behavior not just in station-
arity, but also as a stochastic process. We were motivated by the application
of Database servers (Section 4.4) where depending on the number of jobs at
the server, the aggregate server capacity can vary. None of the known scal-
ings in the literature were sufficient for our purposes, and we thus proposed
a general and principled approach to deriving heavy-traffic diffusion scaling
for non-work-conserving systems – start with the original discrete system that
is to be approximated, and then reverse engineer the system parameters such
that the stationary distribution of the limiting system under Poisson arrivals
and Exponential service approaches that of the original system under the same
workload. We presented a preliminary approximation for the stationary dis-
tribution under our scaling, and a complete rigorous analysis is left as future
work. We believe that our scaling will yield sharper approximations even for
the G/G/k model as the limiting system is more representative of the original
finite-server system.

2. Many-servers heavy-traffic scaling for load balancing policies: In Sec-
tion 5.6, we proposed a many-servers heavy-traffic scaling to study Joint-the-
Shortest-Queue (JSQ) load balancer. Under the proposed scaling, the server
farm capacity (K) and arrival rate (λ) grow simultaneously while maintaining
constant slack capacity (K − λ = Θ(1)). Here we were walking on a razor’s
edge: a higher slack capacity causes the mean sojourn time to converge to the
mean job size, and any smaller slack capacity causes the multi-server system to
collapse to a single server system. We presented a very simple analysis of JSQ

219

policy under the proposed scaling leading to new insights into its behavior, in-
cluding an approximation for the sojourn time distribution. Similar scaling was
recently independently proposed for analyzing central queue systems [15], and
we believe this to be a very exciting regime for discovering qualitative behavior
of load balancing policies.

7.2 System Design Insights

Maximizing efficiency is not always optimal

System designers are often faced with the problem of choosing an operating point for
their system. For example, in Chapter 4, we encountered the problem of concurrency
control via imposing a Multi-Programming Limit (MPL) – too little concurrency can
lead to inefficient resource utilization, while too much concurrency can again lead to
loss of throughput due to context switch overhead. Another design question of similar
flavor is choosing the quantum size for CPU scheduling: too small a quantum size
can lead to wasted capacity, while a large quantum size can hurt the performance of
interactive jobs (jobs with short CPU bursts). A popular rule of thumb is to choose
the MPL or quantum size that maximizes the efficiency of the system because a
system close to instability is undesirable. As we show in this thesis, the metrics
of maximizing efficiency and minimizing response time are not equivalent, and the
right decision depends on the workload and the demand. We also presented a traffic-
oblivious concurrency mechanism that can adapt to the changes in demand – when
the demand is low, the concurrency level is increased driven by the variance in job
sizes; when the demand is high, the concurrency level is adjusted to attain maximum
efficiency.

Simple load balancing heuristics can be good

Modern day load balancers use numerous parameters to measure the ‘health’ of the
servers in the system before taking load balancing or task assignment decisions. In
Chapter 5 we saw that the very simple load balancing rule of just sending a new
job to the server with the fewest jobs can be near optimal while being oblivious to
remaining work at the servers. We found this rule to be asymptotically optimal even
when server speeds are heterogeneous.

220

See the forest for the trees

Driven by the goal of energy-efficiency, a lot of effort is going into designing state-
of-the-art servers with low power sleep states. While innovations in hardware are
indeed the future of low-power computing, in Chapter 6 we saw that by looking at
the entire data center as a single entity, significant energy savings can be achieved
just via smart software. For example, our proposed policy DelayedOff turns off
servers after they have idled for some threshold time. Such time-out policies are
commonplace, but applied at device level alone they are insufficient. By adding
a smart dispatcher (MRB or DelayedOff-Index) and keeping the same set of
servers busy, we can induce the necessary variance in idle periods of the servers for
such time-out based rules to work. Similarly, we suggest that the development of
algorithms for server side speed-scaling, data layout in data centers, geographic load
balancing, and incentive mechanisms for traffic shaping should be developed in a
holistic rather than piecemeal manner.

221

222

Bibliography

[1] http://www.research.ibm.com/bluegene/.
[2] http://aws.amazon.com/ec2/instance-types/.
[3] The internet traffic archives: WorldCup98. Available at

http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
[4] J. Abate and W. Whitt. Simple spectral representations for the M/M/1 queue.

Queueing Systems, 3(4):321–345, 1988.
[5] M. Abouzour. Automatically tuning database server multiprogramming level.

Master’s thesis, University of Waterloo, 2007.
[6] I. Adan, G. van Houtum, and J. van der Wal. Upper and lower bounds for the

waiting time in the symmetric shortest queue system. Annals of Operations
Research, 48:197–217, 1994.

[7] I. Adan and J. v. d. Wal. Combining make to order and make to stock. OR
Spektrum, 20:73–81, 1998.

[8] I. Adan, J. Wessels, and W. Zĳm. Analysis of the symmetric shortest queue
problem. Stochastic Models, 6:691–713, 1990.

[9] I. Adan, J. Wessels, and W. Zĳm. Analysis of the asymmetric shortest queue
problem. Queueing Systems, 8:1–58, 1991.

[10] I. Adan, J. Wessels, and W. Zĳm. Matrix-geometric analysis of the shortest
queue problem with threshold jockeying. Operations Research Letters, 13:107–
112, 1993.

[11] I. J. B. F. Adan and J. Resing. Queueing theory. Eindhoven University of
Technology, 2002.

[12] R. Agrawal, M. J. Carey, and M. Livny. Models for studying concurrency
control performance: alternatives and implications. SIGMOD Rec., 14(4):108–
121, 1985.

[13] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimiza-
tion. ACM Trans. Algorithms, 3(4):49, 2007.

223

http://www.research.ibm.com/bluegene/
http://aws.amazon.com/ec2/instance-types/

[14] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Va-
sudevan. FAWN: A Fast Array of Wimpy Nodes. In SOSP ’09: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, pages
1–14, New York, NY, USA, 2009. ACM.

[15] R. Atar. A diffusion regime with nondegenerate slowdown. Preprint http:
//webee.technion.ac.il/people/atar/NDS-rev.pdf, Accessed: 24 April,
2011.

[16] B. Avi-Itzhak and S. Halfin. Expected response times in a non-symmetric time
sharing queue with a limited number of service positions. In Proceedings of
ITC, 12:5.4B.2.1–7, 1988.

[17] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling with an arbitrary power
function. In SODA ’09: Proceedings of the Nineteenth Annual ACM -SIAM
Symposium on Discrete Algorithms, pages 693–701, Philadelphia, PA, USA,
2009. Society for Industrial and Applied Mathematics.

[18] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage
energy and temperature. In FOCS ’04: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 520–529, Washington,
DC, USA, 2004. IEEE Computer Society.

[19] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and
temperature. J. ACM, 54(1):1–39, 2007.

[20] P. Barford and M. Crovella. Generating representative web workloads for
network and server performance evaluation. Proceeding of ACM SIGMET-
RICS/Performance’98, pages 151–160, 1998.

[21] P. Barford and M. E. Crovella. Generating representative Web workloads for
network and server performance evaluation. In Proceedings of Performance
’98/SIGMETRICS ’98, pages 151–160, July 1998. Software for Surge is avail-
able from Mark Crovella’s home page.

[22] L. A. Barroso and U. Hölzle. The case for energy-proportional computing.
Computer, 40(12):33–37, 2007.

[23] D. Bertsekas. Dynamic Programming and Optimal Control, volume 1-2. Athena
Scientific, 3rd edition, 2007.

[24] D. Bertsimas and K. Natarajan. A semidefinite optimization approach to the
steady-state analysis of queueing systems. Queueing Syst., 56(1):27–39, 2007.

[25] D. Bertsimas and I. Popescu. Optimal inequalities in probability theory: A
convex optimization approach. SIAM Journal on Optimization, 15:780–804,
2005.

[26] R. Blake. Optimal control of thrashing. In Proceedings of ACM SIGMET-

224

http://webee.technion.ac.il/people/atar/NDS-rev.pdf
http://webee.technion.ac.il/people/atar/NDS-rev.pdf

RICS’82, 1982.
[27] J. P. C. Blanc. The power-series algorithm applied to the shortest-queue model.

Operations Research, 40(1):157–167, 1992.
[28] T. Bonald and A. Proutière. Insensitive bandwidth sharing in data networks.

Queueing Syst. Theory Appl., 44:69–100, May 2003.
[29] F. Bonomi. On job assignment for a parallel system of processor sharing queues.

IEEE Transactions on Computers, 39(7):858–869, 1990.
[30] A. Borovkov. Stochastic Processes in Queueing Theory. Nauka, Moscow, 1972.
[31] S. Borst, A. Mandelbaum, M. I. Reiman, and M. Centrum. Dimensioning large

call centers. Operations Research, 52:17–34, 2000.
[32] S. Borst and R. Núñez-Queĳa. Introduction to special issue on queueing models

for fair resource sharing. Queueing Syst., 53(1-2):5–6, 2006.
[33] O. Boxma and J. Cohen. Boundary value problems in queueing system analysis.

North Holland, 1983.
[34] O. Boxma, J. Cohen, and N. Huffels. Approximations in the mean waiting

time in anM/G/s queueing system. Operations Research, 27:1115–1127, 1979.
[35] M. Bramson, Y. Lu, and B. Prabhakar. Randomized load balancing with

general service time distributions. In Proceedings of ACM SIGMETRICS’10,
pages 275–286, New York, NY, USA, 2010.

[36] P. Brémaud. Point Processes and Queues. Springer, New York, 1981.
[37] D. Burman and D. Smith. A light-traffic theorem for multi-server queues.

Math. Oper. Res., 8:15–25, 1983.
[38] E. G. Coffman, Jr., R. R. Muntz, and H. Trotter. Waiting time distributions

for processor-sharing systems. J. Assoc. Comput. Mach., 17:123–130, 1970.
[39] B. Conolly. The autostrada queueing problem. J. Appl. Prob., 21:394–403.
[40] G. Cosmetatos. Some approximate equilibrium results for the multiserver queue

(M/G/r). Operational Research Quarterly, 27:615–620, 1976.
[41] M. Crovella, M. Harchol-Balter, and C. Murta. On choosing a task assignment

policy for a distributed server system. J. Parallel and Distributed Computing,
59(2):204–228, 1999.

[42] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web traffic:
Evidence and possible causes. In Proceeding of ACM SIGMETRICS’96, pages
160–169, May 1996.

[43] D. Daley and T. Rolski. Some comparibility results for waiting times in single-
and many-server queues. J. Appl. Prob., 21:887–900, 1984.

[44] D. J. Daley. Some results for the mean waiting-time and workload in GI/GI/k

225

queues. In J. H. Dshalalow, editor, Frontiers in queueing: models and applica-
tions in science and engineering, pages 35–59. Boca Raton, FL, USA, 1997.

[45] J. H. A. de Smit. A numerical solution for the multiserver queue with hyper-
exponential service times. Oper. Res. Lett., 2(5):217–224, 1983.

[46] J. H. A. de Smit. The queue GI/M/s with customers of different types or the
queue GI/Hm/s. Adv. in Appl. Probab., 15(2):392–419, 1983.

[47] J. H. A. de Smit. The queue GI/Hm/s in continuous time. J. Appl. Probab.,
22(1):214–222, 1985.

[48] P. J. Denning, K. C. Kahn, J. Leroudier, D. Potier, and R. Suri. Optimal
multiprogramming. Acta Informatrica, 7:197–216, 1976.

[49] A. Downy and M. Harchol-Balter. Exploiting process lifetime distributions for
dynamic load balancing. ACM Transactions on Computer Systems, 15(3):253–
285, August 1997.

[50] A. Eckberg Jr. Sharp bounds on Laplace-Stieltjes transforms, with applications
to various queueing problems. Math. Oper. Res., 2(2):132–142, 1977.

[51] L. Eggert and J. D. Touch. Idletime scheduling with preemption intervals.
SIGOPS Oper. Syst. Rev., 39(5):249–262, 2005.

[52] M. El-Taha and S. Stidham. Sample-Path Analysis of Queueing System.
Kluwer, Boston, 1999.

[53] S. Elnikety, E. Nahum, J. Tracy, and W. Zwaenepoel. A method for trasparent
admission control and request schedulin in e-commerce web sites. In World-
Wide-Web Conference, 2004.

[54] A. Ephremides, P. Varaiya, and J. Walrand. A simple dynamic routing prob-
lem. IEEE Transac. on Auto. Cont., AC-25(4):690–693, 1980.

[55] A. K. Erlang. Sandsynlighetsregning og telefonsamtaler (in Danish). Nytt
tidsskrift for Matematik B 20, 1909. Later in French: Calcul des probabilitès
et conversations téléphoniques. Revue général De l’Electricité, 18, 1925.

[56] A. Feldmann and W. Whitt. Fitting mixtures of exponentials to long-tail
distributions to analyze network performance models. Performance Evaluation,
31:245–279, 1998.

[57] S. Finch. Ornstein-Uhlenbeck process. http://algo.inria.fr/csolve/ou.
pdf, Accessed: 26 April, 2011.

[58] L. Flatto and H. McKean. Two queues in parallel. Communication on Pure
and Applied Mathematics, 30:255–263, 1977.

[59] G. Foschini and J. Salz. A basic dynamic routing problem and diffusion. IEEE
Trans. Comm., 26(3):320–328, 1978.

226

http://algo.inria.fr/csolve/ou.pdf
http://algo.inria.fr/csolve/ou.pdf

[60] S. Foss and D. Korshunov. Heavy tails in multi-server queue. Queueing Syst.,
52(1):31–48, 2006.

[61] A. Fredericks. Approximations for customer viewed delays in multipro-
grammed, transaction oriented computer systems. Bell System Technical Jour-
nal, 59(9):1559–1574, 1980.

[62] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: tutorial,
review, and research prospects. Manufacturing and Service operations Man-
agement, 5:79–141, 2003.

[63] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micro-
processors. IEEE Journal of Solid-State Circuits, 31(9):1277–1284, 1996.

[64] W. Grassmann. Transient and steady state results for two parallel queues.
Omega, 8:105–112, 1980.

[65] L. Green. A queueing system with general use and limited use servers. Opera-
tions Research, 33(1):168–182, 1985.

[66] V. Gupta. Finding the optimal quantum size: Sensitivity analysis of the
M/G/1 round-robin queue. SIGMETRICS Perform. Eval. Rev., 36(2):104–
106, 2008.

[67] V. Gupta, A. Gandhi, M. Harchol-Balter, and M. Kozuch. Optimality analysis
of energy-performance trade-off for server farm management. In PERFOR-
MANCE 2010, Namur, Belgium, Nov. 2010.

[68] V. Gupta and M. Harchol-Balter. Self-adaptive admission control policies for
resource-sharing systems. Technical Report CMU-CS-09-115, School of Com-
puter Science, Carnegie Mellon University, 2009.

[69] V. Gupta, M. Harchol-Balter, A. Scheller-Wolf, and U. Yechiali. Fundamen-
tal characteristics of queues with fluctuating load. In Proceedings of ACM
SIGMETRICS ’06, pages 203–215, 2006.

[70] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Simulation results
for JSQ server farms with processor sharing servers. Technical Report CMU-
CS-07-151, School of Computer Science, Carnegie Mellon University, 2007.

[71] B. Halachmi and W. Franta. A diffusion approximation to the multi-server
queue. Management Science, 24(5):522–529, 1978.

[72] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential
servers. Operations Research, 29(3):567–588, 1981.

[73] M. Harchol-Balter. Task assignment with unknown duration. JACM,
49(2):260–288, 2002.

[74] M. Harchol-Balter and B. Schroeder. Evaluation of task assignment policies
for supercomputing servers. In Proceedings of 9th IEEE Symposium on High

227

Performance Distributed Computing (HPDC ’00), August 2001.
[75] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based

scheduling to improve web performance. ACM Transactions on Computer Sys-
tems, 21(2):207–233, 2003.

[76] M. v. H. H.C. Tĳms and A. Federgruen. Approximations for the steady-state
probabilities in the M/G/c queue. Adv. Appl. Prob., 13:186–206, 1981.

[77] H.-U. Heiss and R. Wagner. Adaptive load control in transaction processing
systems. In Proceedings of the 17th International Conference on Large Data
Bases (VLDB), 1991.

[78] J. L. Hellerstein, V. Morrison, and E. Eilebrecht. Applying control theory in
the real world: experience with building a controller for the .net thread pool.
SIGMETRICS Perform. Eval. Rev., 37(3):38–42, 2009.

[79] P. Hokstad. Approximations for the M/G/m queue. Operations Research,
26(3):510–523, 1978.

[80] P. Hokstad. The steady state solution of the M/K2/m queue. Adv. Appl.
Prob., 12(3):799–823, 1980.

[81] D. L. Iglehart. Limiting diffusion approximations for the many server queue
and the repairman problem. J. Appl. Probab., 2(2):429–441, 1965.

[82] Intel Corp. Intel Math Kernel Library 10.0 - LINPACK.
http://www.intel.com/cd/software/products/asmo-na/eng/266857.htm,
2007.

[83] S. Irani and K. R. Pruhs. Algorithmic problems in power management.
SIGACT News, 36(2):63–76, 2005.

[84] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. ACM Trans.
Algorithms, 3(4):41, 2007.

[85] O. B. Jennings, A. M, W. A. Massey, and W. Whitt. Server staffing to meet
time-varying demand. Management Science, 42:1383–1394, 1996.

[86] M. A. Johnson and M. T. Taaffe. Tchebycheff systems for probabilistic analysis.
American Journal of Mathematical and Management Sciences, 13(1-2):83–111,
1993.

[87] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark. Coordinated,
distributed, formal energy management of chip multiprocessors. In ISLPED
’05: Proceedings of the 2005 international symposium on Low power electronics
and design, pages 127–130, New York, NY, USA, 2005. ACM.

[88] A. Kamra, V. Misra, and E. M. Nahum. Yaksha: A self-tuning controller for
managing the performance of 3-tiered web sites. In Twelfth IEEE International
Workshop on Quality of Service (IWQOS), 2004.

228

[89] C. W. Kang, S. Abbaspour, and M. Pedram. Buffer sizing for minimum energy-
delay product by using an approximating polynomial. In GLSVLSI ’03: Pro-
ceedings of the 13th ACM Great Lakes symposium on VLSI, pages 112–115,
New York, NY, USA, 2003. ACM.

[90] S. Karlin and W. J. Studden. Tchebycheff systems: With applications in anal-
ysis and statistics. John Wiley & Sons Interscience Publishers, New York,
1966.

[91] F. P. Kelly. Reversibility and Stochastic Networks. Chichester, 1979.
[92] J. Kiefer and J. Wolfowitz. On the theory of queues with many servers. Trans.

Amer. Math. Soc., 78:1–18, 1955.
[93] J. Kiefer and J. Wolfowitz. On the characteristics of the general queueing

process with applications to random walk. Ann. Math. Statist., 27:147–161,
1956.

[94] T. Kimura. Diffusion approximation for an M/G/m queue. Operations Re-
search, 31:304–321, 1983.

[95] T. Kimura. Approximations for multi-server queues: system interpolations.
Queueing Systems, 17(3-4):347–382, 1994.

[96] J. Kin, M. Gupta, andW. Mangione-Smith. The filter cache: an energy efficient
memory structure. Microarchitecture, IEEE/ACM International Symposium
on, 0:184, 1997.

[97] J. Kingman. Two similar queues in parallel. Biometrika, 48:1316–1323, 1961.
[98] J. Kingman. On queues in heavy traffic. J. R. Statist. Soc., 24(2):383–392,

1962.
[99] J. Kingman. Inequalities in the theory of queues. J. R. Statist. Soc., 32(1):102–

110, 1970.
[100] J. F. Kingman. The first Erlang century–and the next. Queueing Syst. Theory

Appl., 63:3–12, December 2009.
[101] L. Kleinrock. Analysis of a time-shared processor. Naval research logistics

quarterly, pages 59–73, 1964.
[102] L. Kleinrock. Time-shared systems: A theoretical treatment. J. Assoc. Comput.

Mach., 14:242–261, 1967.
[103] L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley-Interscience, 1975.
[104] L. Kleinrock. Queueing Systems; Volume 2: Computer Applications. Wiley,

New York, 1976.
[105] C. Knessl, B. Matkowsky, Z. Schuss, and C. Tier. Two parallel M/G/1 queues

where arrivals join the system with the smaller buffer content. IEEE Trans.

229

Comm., 35(11):1153–1158, 1987.
[106] J. Köllerström. Heavy traffic theory for queues with several servers. I. J. Appl.

Prob., 11:544–552, 1974.
[107] G. Koole, P. D. Sparaggis, and D. Towsley. Minimizing response times and

queue lengths in systems of parallel queues. J. Appl. Prob., 36:1185–1193,
1999.

[108] A. Lee and P. Longton. Queueing process associated with airline passenger
check-in. Operations Research Quarterly, 10:56–71, 1959.

[109] H. L. Lee and M. A. Cohen. A note on the convexity of performance measures
of M/M/c queueing systems. J. Appl. Probab., 20(4):920–923, 1983.

[110] H. Lin and C. Raghavendra. An analysis of the join the shortest queue (JSQ)
policy. In Proc. 12th Int’l Conf. Distributed Computing Systems, pages 362–
366, 1992.

[111] Z. Liu, P. Nain, and D. Towsley. Sample path methods in the control of queues.
Queueing Systems, 21(3-4):293–335, Sept. 1995.

[112] J. Lui, R. Muntz, and D. Towsley. Bounding the mean response time of the
minimum expected delay routing policy: an algorithmic approach. IEEE Trans.
Comp., 44(12):1371–1382, 1995.

[113] B. Ma and J. Mark. Approximation of the mean queue length of an M/G/c
queueing system. Operations Research, 43(1):158–165, 1995.

[114] M. Mitzenmacher. The power of two choices in randomized load balancing.
IEEE Trans. Parallel Distrib. Syst., 12(10):1094–1104, 2001.

[115] M. Miyazawa. Approximation of the queue-length distribution of an M/GI/s
queue by the basic equations. J. Appl. Prob., 23:443–458, 1986.

[116] A. Müller and D. Stoyan. Comparison methods for stochastic models and risks.
Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester,
2002.

[117] R. Nelson and T. Philips. An approximation to the response time for shortest
queue routing. ACM Perf. Eval. Review, 17:181–189, 1989.

[118] R. Nelson and D. Towsley. On maximizing the number of departures before a
deadline on multiple processors. Technical report, Amherst, MA, USA, 1987.

[119] M. Neuts. Matrix-geometric solutions – An algorithmic approach. The Johns
Hopkins University Press, Baltimore, MD, 1981.

[120] S. Nozaki and S. Ross. Approximations in finite-capacity multi-server queues
with Poisson arrivals. J. Appl. Prob., 15(4):826–834, 1978.

[121] M. Nuyens and W. van der Weĳ. Monotonicity in the limited processor sharing

230

queue. Technical Report PNA-E0802, CWI, 2008.
[122] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analysis of cycle stealing

with switching costs and thresholds. Performance Evaluation, 61(4):347–369,
2005.

[123] T. Osogami and R. Raymond. Semidefinite optimization for transient analysis
of queues. ACM SIGMETRICS Performance Evaluation Review, 38(1):363–
364, 2010.

[124] K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting the best response for
your erg. ACM Trans. Algorithms, 4(3):1–17, 2008.

[125] V. Ramaswami and G. Latouche. A general class of Markov processes with
explicit matrix-geometric solutions. OR Spektrum, 8:209–218, 1986.

[126] B. Rao and M. Posner. Algorithmic and approximation analyses of the shorter
queue model. Naval Research Logistics, 34:381–398, 1987.

[127] K. Rege and M. Sengupta. Sojourn time distribution in a multiprogrammed
computer system. AT&T Tech. J., 64:1077–1090, 1985.

[128] R. Righter, J. G. Shanthikumar, and G. Yamazaki. On extremal service disci-
plines in single-stage queueing systems. J. Appl. Probab., 27(2):409–416, 1990.

[129] A. Riska, N. Mi, E. Smirni, and G. Casale. Feasibility regions: exploiting trade-
offs between power and performance in disk drives. SIGMETRICS Perform.
Eval. Rev., 37(3):43–48, 2009.

[130] D. M. Ritchie and K. Thompson. The Unix time-sharing system. C. ACM,
17(7):365–375, 1974.

[131] S. M. Ross. Stochastic Processes, 2nd Edition. Wiley, 1996.
[132] A. Scheller-Wolf and K. Sigman. New bounds for expected delay in FIFO

GI/GI/c queues. Queueing Systems, 26(1-2):169–186, 1997.
[133] A. Scheller-Wolf and R. Vesilo. Structural interpretation and derivation of nec-

essary and sufficient conditions for delay moments in FIFO multiserver queues.
Queueing Syst., 54(3):221–232, 2006.

[134] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, and A. Wierman. How
to determine a good multi-programming level for external scheduling. In Pro-
ceedings of the 22nd International Conference on Data Engineering, Atlanta,
GA, April 2006.

[135] S. Shenker and A. Weinrib. A symptotic analysis of large heterogeneous queue-
ing systems. In Proceedings of ACM SIGMETRICS’88, pages 56–62, New York,
NY, USA, 1988. ACM.

[136] S. Shenker and A. Weinrib. The optimal control of heterogeneous queueing
systems: A paradigm for load-sharing and routing. IEEE Trans. Comput.,

231

38:1724–1735, December 1989.
[137] M. R. Stan and K. Skadron. Power-aware computing: Guest editorial. IEEE

Computer, 36(12):35–38, December 2003.
[138] K. Stordahl. The history behind the probability theory and the queuing theory.

Telektronikk, pages 123–140, 2007.
[139] D. Stoyan. A continuity theorem for queue size. Bull. Acad. Sci. Pollon.,

21:1143–1146, 1973.
[140] D. Stoyan. Approximations for M/G/s queues. Math. Operationsforsch.

Statist. Ser. Optimization, 7:587–594, 1976.
[141] D. Stoyan. Comparison methods for queues and other stochastic models. Wiley

Series in Probability and Mathematical Statistics: Applied Probability and
Statistics. John Wiley & Sons Ltd., Chichester, 1983. Translation from the
German edited by Daryl J. Daley.

[142] B. Sun and S. Li. Improving effectiveness of customer service in a cost-efficient
way - empirical investigation of service allocation decisions with out-sourced
centers. Working Paper, Tepper School of Business, Carnegie Mellon Univer-
sity, 2006.

[143] H. Takagi. Queueing Analysis, Vol. 1: Vacation and Priority Systems. North-
Holland, 1991.

[144] Y. Takahashi. An approximation formula for the mean waiting time of an
M/G/c queue. J. Opns. Res. Soc. Japan, 20:147–157, 1977.

[145] H. Thorisson. The queue GI/GI/k: finite moments of the cycle variables and
uniform rates of convergence. Comm. Statist. Stochastic Models, 1(2):221–238,
1985.

[146] U.S. Environmental Protection Agency. EPA Report on server and data center
energy efficiency. 2007.

[147] W. van der Weĳ, S. Bhulai, and R. van der Mei. Optimal scheduling policies for
the limited processor sharing queue. Technical Report WS2008-5, Department
of Mathematics, Vrĳe University, 2008.

[148] E. van Doorn and J. Regterschot. Conditional PASTA. Oper. Res. Lett.,
7:229–232, 1988.

[149] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-conditioned,
scalable internet services. SIGOPS Oper. Syst. Rev., 35(5):230–243, 2001.

[150] W. Whitt. The effect of variability in the GI/G/s queue. J. Appl. Prob.,
17:1062–1071, 1980.

[151] W. Whitt. Comparison conjectures about the M/G/s queue. OR Letters,
2(5):203–209, 1983.

232

[152] W. Whitt. On approximations for queues, I: Extremal distributions. AT&T
Bell Labs Technical Journal, 63:115–138, 1984.

[153] W. Whitt. Approximations for the GI/G/m queue. Production and Operations
Management, 2(2):114–161, 1993.

[154] W. Whitt. A diffusion approximation for the G/GI/n/m queue. Operations
Research, 52:922–941, 2004.

[155] W. Whitt. Heavy-traffic limits for the G/H∗2/n/m queue. Math. Oper. Res.,
30(1):1–27, 2005.

[156] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in
processor sharing systems. INFOCOM, 2009.

[157] W. Winston. Optimality of the shortest line discipline. J. Appl. Prob., 14:181–
189, 1977.

[158] R. W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice Hall,
1989.

[159] D. Yao. Refining the diffusion approximation for the M/G/m queue. Opera-
tions Research, 33:1266–1277, 1985.

[160] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
Foundations of Computer Science, Annual IEEE Symposium on, 0:374, 1995.

[161] S. F. Yashkov. Processor-sharing queues: some progress in analysis. Queueing
Systems Theory Appl., 2(1):1–17, 1987.

[162] J. Zhang and B. Zwart. Steady state approximations of limited processor
sharing queues in heavy traffic. Submitted for publication.

[163] A. P. Zwart and O. J. Boxma. Sojourn time asymptotics in the M/G/1 pro-
cessor sharing queue. Queueing Systems Theory Appl., 35(1-4):141–166, 2000.

233

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Notation and Preliminaries
	1.3 Summary of research questions

	2 Towards a New Theory of Moments-based Bounds I: An Inapproximability Result for the M/G/k Multi-server Queue
	2.1 Introduction
	2.2 Prior Work
	2.3 Insights into why two-moment approximations are not enough
	2.4 Proof of Theorem ??
	2.5 Proof of Theorem ??
	2.6 Effect of higher moments
	2.7 Summary and Open Questions
	2.A Proofs

	3 Towards a New Theory of Moments-based Bounds II: Markov-Krein Characterization of Mean Sojourn Time in Queueing Systems
	3.1 Introduction
	3.2 Principal Representations, Tchebycheff systems, and the Markov-Krein Theorem
	3.3 Bounds for the M/G/k Multi-server Model
	3.4 Bounds for M/G/1 Round-Robin
	3.5 Bounds for systems with time-varying load
	3.6 Conjectures on tight bounds for general traffic
	3.7 Towards a unified approach for moments-based bounds
	3.8 Summary and Open Questions
	3.A Proof of Theorem ??

	4 Scheduling Policies for Database Concurrency Control: The G/G/PS-MPL Model
	4.1 Introduction
	4.2 Choosing the best static MPL
	4.3 Self-Adaptive MPL control policies
	4.4 A Heavy-Traffic Diffusion Scaling and Approximation for Non-Work-Conserving Systems
	4.5 Summary and Open Questions
	4.A Policy Iteration to Construct Candidate Poisson-Approx Policies

	5 Load Balancing for Webserver Farms: Analysis of Join-the-Shortest-Queue Policy for PS servers
	5.1 Introduction
	5.2 Prior Work
	5.3 Bounded-sensitivity of JSQ/PS Model
	5.4 Single-Queue-Approximation for M/M/K/JSQ/PS
	5.5 Optimal Load Balancing for PS Servers
	5.6 Many-Servers Heavy-Traffic Analysis of Load Balancing Policies
	5.7 Summary and Open Questions
	5.A Optimality of Least-Work-Left Routing for Deterministic Job Sizes

	6 Energy-Efficient Dynamic Capacity Provisioning in Server Farms
	6.1 Introduction
	6.2 Prior work
	6.3 Model
	6.4 Optimal Single Server policies
	6.5 Near-Optimal Multi-server policies
	6.6 Traffic-oblivious dynamic capacity provisioning and Applications
	6.7 Summary and Open Questions
	6.A Proof of Theorem ??
	6.B Justification for Conjecture ??

	7 Summary
	7.1 Theoretical Contributions
	7.2 System Design Insights

	Bibliography

