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Abstract
As we ride on a wave of technological innovation towards the age of petascale com-

puting, massive input data models and voluminous output data sets involved in large-scale
parallel computer simulations and scientific instruments will soon (if not already) overwhelm
our ability to generate, manipulate, and interpret them. Although efficient and effective for
processing relatively small data sets, traditional main-memory–based algorithms lack the
necessary scalability to deal with massive data sets that require more memory than that is
available. To address the new data challenge, we must seek a more scalable solution.

Inspired by the success of database management systems in managing huge informa-
tion stores for the commercial and governmental sectors, we propose a database approach
to computing and managing large-scale scientific data sets. Although unstructured scientific
data sets do not map to the tabular representation of a database system naturally, we resolve
the mismatch by introducing acomputational cacheon top of a standard database buffer pool
and providing a mechanism to translate data between the inherent unstructured representa-
tion (stored in the computational cache) and the native database format (stored in database
pages). Scientific application codes then operate directly on the computational cache instead
of on the native database format.

We have implemented our methodology in a prototype system calledAbacusthat tar-
gets Delaunay triangulations, a commonly used unstructured data representation used by
many scientific and engineering applications. Abacus can not only store and index existing
Delaunay triangulations but also generate large-scale Delaunay triangulations from scratch.
Evaluation results show that:
• Computing a Delaunay triangulation using Abacus is more thanthree orders of mag-

nitude fasterthan an implementation that uses standard database techniques
• The performance of Abacus matches that of the state-of-the-art 2D and 3D Delau-

nay triangulator (Triangle andPyramid) when triangulating data sets that fit in main
memory

• Abacus achieves scalable performance even when triangulating data setsfour orders
of magnitude largerthan the main memory (while other software has stopped working
long ago)

Furthermore, we demonstrate the scalability of Abacus in the context of a grand challenge
application—earthquake ground motion modeling, where we use Abacus to compute a series
of large-scale 3D Delaunay triangulated finite element meshes with multi-billion tetrahedral
elements.

Although some of the techniques presented in this dissertation are specific to Delaunay
triangulations, the proposition of a database approach is more general; it points to a promis-
ing new way of how to leverage and extend existing database techniques to compute and
manage large-scale unstructured scientific data sets of the coming era.
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Chapter 1

Introduction

We are at an exciting juncture in the history of computing: high-performance scientific simula-
tions are leaping towards the petascale; commodity processors are rushing to multi-core/many-
core; alternative technologies such as GPGPU and Cell processors are gaining momentum. The
list goes on. Yet behind the spectacle of the current wave of innovation looms a massive data
avalanche. The vast quantities of data required and produced by scientific simulations and instru-
ments will soon—if not already—overwhelm our ability to generate, manipulate, and interpret
them. Database Management Systems (DBMSs), though capable of managing huge information
stores for the commercial and governmental sectors, have lagged in supporting core scientific
applications [1, 32]. The need to bridge the gap is urgent.

While a number of ongoing research efforts are dedicated to the management and query
processing ofstaticdata sets, this dissertation takes a step further and targets the generation and
manipulation ofdynamicdata sets. The proposed database approach and the relevant techniques
introduce a new dimension to the design space of scientific data management.

This introductory chapter describes the challenges facing scientists and engineers in the new
era of computing, and surveys existing solution strategies. A detailed preview of the main results
of the dissertation concludes the chapter.
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Figure 1.1:A typical scientific simulation process.

1.1 Data Avalanche

If Einstein would roam the campus of a university today, he would probably be surprised to find a
new breed of researchers who call themselves computational scientists. Indeed, the landscape of
scientific research has been significantly transformed in the past 50 years. A new form of science
is emerging, thanks to rapidly-evolving, and sometimes revolutionary, computing technologies.
Computational science and engineering is now widely accepted, along with theory and exper-
iment, as a crucial third mode of scientific investigation and engineering design. Large-scale
physical simulations enabled by high-performance parallel computers have led to new scientific
understanding and discoveries that were previously unconceivable.

Einstein would also be amazed to learn how versatile and powerful scientific instruments
have become. All disciplines, ranging from physics to astronomy to biology to earth science,
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have developed innovative and high-precision new instruments to collect data and conduct ex-
periments.

Dazzled by the overwhelming progress, Einstein would then ask how his contemporary col-
leagues would generate, manage, and interpret of the huge quantities of data involved in com-
puter simulations or produced by scientific instruments. The answer, however, would not be what
he would expect: even though there have been individual heroic efforts undertaken by domain
scientists to address data management problems, there exists no generic solution as of today.

For a genius like Einstein, the so-calleddata avalanche[34] triggered by technology break-
throughs might not drown his thoughts on the theory of relativity. But for mortals, generating,
organizing, and interpreting massive scientific data sets imposes a serious challenge.

For example, the Carnegie Mellon Quake group has been working on modeling earthquakes
in large sedimentary basins on parallel supercomputers for over a decade [5, 8, 9, 12, 99]. The
goal of the research is not to predict when an earthquake will occur, but instead to understand the
consequences of a particular hypothetic earthquake’s occurrence. For instance, if a large rupture
occurs on the southern portion of the San Andreas fault in Southern California, which regions of
Los Angeles will experience the most severe ground motion? Which faults and rupture scenarios
will have the greatest effect on populated regions? Answers to these questions will help city
planners establish building codes, structural engineers design buildings, emergency management
officials prepare response plans, and insurance companies estimate potential losses.

We model seismic wave propagation in the earth via Navier’s equations of elastodynamics
and apply a standard Galerkin finite element method to seek the numerical solution to the equa-
tions. Figure 1.1 illustrates the process of conducting an earthquake ground motion simulation
at the operational level. Given a description of the material properties of the earth, we construct
a 3D seismic wavelength adaptive mesh (i.e., a graph) to resolve the local spatial resolution re-
quirement. Roughly speaking, the softer the soil is in a particular region (e.g., the ground close
to the top surface), the more mesh nodes (i.e., graph vertices) are needed to capture the behavior
of the propagating seismic waves. Unknowns such as displacements and velocities are defined
and associated with the mesh nodes. The mesh is partitioned into smaller pieces so that each
can be loaded into the memory of a processor on a distributed-memory supercomputer (the pre-
vailing parallel architecture today). A parallel numerical solver then takes the partitioned mesh
and a postulated rupture source as input, and computes the solutions to the unknowns for each
simulation timestep. Typically, the solver runs for several days to a couple of weeks on a par-
allel computer. During the long-running process, snapshots of the displacement and velocity
fields are output to disk at prescribed intervals, for example, every 10 timesteps. After the run is
completed, the 3D mesh and the time series of snapshots are queried by seismologists and civil
engineers to understand the impact of the simulated earthquake.

We migrated our solver code to multi-thousand-processor terascale supercomputers five years
ago in response to increasing resolution requirements, which continue to grow into the billions
of elements and beyond. As a result, the problem description phase now requires generation of
massive unstructured meshes on the order of hundreds of gigabytes; the output analysis phase
involves manipulating and querying gigantic solution field data sets that are in the range of multi-
terabyte and beyond.

At this scale, the traditional and still widely-used file-basedftp-grepmodel for data anal-
ysis breaks down. Scanning a multi-terabyte data set to locate a particular data object is time-
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consuming. Moreover, the unstructured nature of the data sets often demands a more complicated
data retrieval scheme than finding a single data object.

For example, retrieving a seismograph at a particular location requires (1) finding the mesh
element that encloses the query location, (2) retrieving the solutions associated with the nodes of
the enclosing element, and (3) interpolating the results to compute the requested seismograph.
This procedure is dictated by the mathematics of the underlying numerical method of (linear)
finite elements. We are not allowed to return an interpolation result ofk arbitrary nearest neigh-
boring nodes.

Figure 1.2 shows the procedure for retrieving the seismograph out of a file-based data set.
First, two mesh files are consulted. The element file contains the topology of the mesh. Each
element is identified by an element id and a list of 4 node ids (assuming a tetrahedral mesh is
used). The node file contains the geometry of the mesh. Each node is identified by a node id
and the 3D coordinate of the node. Finding the element that encloses the query location begins
with a scan from the first record of the element file. For each element, the coordinates of the
corresponding nodes are fetched (via random seeks) from the node file. Four computationally
expensiveside-of-facetests are conducted to determine if the element is the target. The process
continues until we find the enclosing element. Using the four node ids of the hit element (and
some magical way of mapping node ids to file offsets), we seek into a series of snapshot files
for the field, fetch the displacement values, and compute the interpolated results at the query
location.

When billions of elements and hundreds of thousands of timesteps are involved, the proce-
dure of scanning an element file and seeking into a node file and a large number of field data
files slows down to a crawl. Nevertheless, querying for points is the easy case. Much more
difficult is the task of data summarization. To obtain insight, scientists need to “see” the data,
for example, using 3D time-varying volume rendering visualization; “annotate” the data, for ex-
ample, performing iso-contour extraction; and “convert” the data, for example, applying a Fast
Fourier Transform to the entire domain. All these operations are memory intensive since large,
sophisticated, incore data structures are required by the high-level algorithms. Simply scanning
and seeking in flat files can hardly accomplish these tasks in a reasonable amount of time. On the
hand, let us optimistically expect that memory size should keep growing according to Moore’s
Law, that is, doubling every 18 months. It will take 15 years for most desktop computers to have
1 terabyte memory (assuming 2 GB memory as of today). But by that time, the amount of data
to be processed will be on the order of a petabyte (1015) or even an exabyte (1018).

Orthogonal to the difficulties associated with read-only queries, the other major challenge is
how to modify the data sets on demand. For example, as more information becomes available
regarding the geological structure in a particular region, part of the mesh structure needs to be
refined or adjusted to incorporate the new knowledge. On these occasions, the flat files are com-
pletely useless. A new mesh has to be re-generated from scratch (a memory- and computation-
intensive task that often requires the use of a parallel computer by itself), though most of the new
mesh structure is identical to the old one.

The problems just presented are merely an example of the wide-spread data avalanche that
has cut across all disciplines of science and engineering [11, 34, 56, 89]. The specifics of earth-
quake modeling are not important here. Other domains may have different material or geometry
models, obey different governing equations, or use different numerical methods. But the overall
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Figure 1.2:Querying for the seismograph at a particular location. “Eid” stands for element id
and “nid” for node id. “TS” is an abbreviation for timestep. For clarity, only the enclosing element
is drawn; the rest of the mesh is omitted. The seismograph at the upper-right corner is computed
by interpolation of the seismographs associated with the four corresponding nodes.

simulation methodology, the scale and the complexity of the data sets, and the needs of data
querying and data modification are similar and are comparable to those encountered in earth-
quake modeling.

1.2 Solution Approaches

Active research and software development are under way to deal with the data avalanche. A
number of solutions have emerged. What follows is a brief discussion of the strengths and
the weaknesses of three strategies that have shown promise and created new functionality for
scientists and engineers. Note that it is not a taxonomy of all existing solutions. Rather, the
classification reflects the relevance of flat files with respect to the solutions from a programmer’s
perspective. In order of decreasing level of relevance, the strategies are (1)a supercomputing
approach, (2) a portable file format approach, and (3)a database approach.

5



1.2.1 A Supercomputing Approach

The basic idea of a supercomputing approach is to use the aggregated memory, processors,
network and I/O bandwidth of a supercomputer to solve the data problem and conduct high-
performance data analysis online. Depending on how the data analysis is conducted, a super-
computing approach can be further categorized as eitherdecoupledor coupled.

Meshing Partitioning Solving Visualizing

V
el

(m
/s

)

time

InternetInternet

Supercomputer

Laptop / Desktop

Receive Image Buffer Send Config Buffer

QuakeShow

Hercules

MPI MPI MPI MPI PDIO Lib.

PDIO Daemon
TCP

Figure 1.3:A coupled supercomputing approach. Hercules is a coupled simulation frame-
work that executes on a multi-thousand-processor supercomputer. MPI stands for message-
passing interface, the standard programming interface on parallel computers. PDIO stands for
Portals Direct I/O, a special-purpose middleware infrastructure that supports external interac-
tion with parallel programs running on Portals-enabled supercomputers such as the Cray XT3.
QuakeShow is a client program that runs on a remote user’s computer and communicates with
a PDIO daemon using a TCP/IP connection.

A traditional supercomputing approach decouples parallel data processing and analysis from
the rest of the simulation pipeline [19, 54, 55, 104].The input are flat-file data sets associated
with scientific applications. The output is whatever a parallel data analysis tool is designed
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to produce, which is often another massive data set. If the size of the data sets exceeds the
aggregated memory of the parallel computer, sophisticated parallel I/O strategies are deployed to
bulk-load the data in a certain order to avoid thrashing. In essence, a decoupled supercomputing
approach attempts to solve the data problem by loading everything into memory. If that does not
work, parallel out-of-core methods are used.

I have proposed and implemented a new coupled supercomputing approach [51, 97, 99] that
visualizes solution data simultaneously while a parallel solver executes, as shown in Figure 1.3.
The solution field is pipelined directly into the data analysis module, which uses the same pro-
cessors that compute the solution. Thus, simulation results are retrieved directly from each pro-
cessor’s cache or main memory. Data reduction and summarization take place instantly.

A coupled supercomputing approach avoids the bottlenecks associated with transferring and
storing large quantities of output data, and is particularly applicable whenever a user’s ultimate
interest is visualizing the 3D volume output, as opposed to retaining it for future analysis. Fig-
ure 1.3 shows an example in the context of the earthquake modeling problem where 3D volume
rendering is coupled with the meshing, partitioning, and solving components. At runtime, the
solution fields are visualized as they are being computed. The output JPEG images are sev-
eral orders of magnitude smaller than the volume data and can be sent to a remote user via
a low bandwidth TCP/IP network connection. A middleware layer (i.e., PDIO [85]) provides
the infrastructure to facilitate the communication between the parallel simulation pipeline (i.e.,
Hercules) and the remote client (i.e., QuakeShow).

The biggest limitation of a coupled approach, however, is its inability to support postmortem
data analysis. Once a simulation is completed, a user cannot conduct any further investigation
into the data sets.

Both the decoupled and coupled supercomputing approaches have alleviated the data prob-
lems of scientific applications to a certain extent. But neither has addressed the fundamental
issue of how to organize and index scientific data sets and provide efficient query support. After
all, the carriers for the both the input and output data sets are still flat files.

1.2.2 A Portable File Format Approach

A portable file format approach overlays a data set-specific structure on top of a flat file and pro-
vides a general purpose library to manipulate the data sets. Hence, application programs (either
parallel or sequential) operate on an underlying data set via the library Application Programming
Interface (API) instead of on the raw data directly.

The most commonly used portable file formats support multidimensional array data sets.
Typical examples include HDF [40], NetCDF [57], and FITS [28]. These formats are different
from one another and are in fact competing standards. They provide a platform-independent
way of creating, modifying, and sub-setting array data sets. Generic open-source or commercial
analytical/visualization tools such as AVS, MATLAB, and ParaView are able to manipulate the
encapsulated data via the respective library interfaces. In addition, these standards can record
data lineage and other metadata within data files, thus making it possible to share array data
among scientists.

We have proposed and developed a complementary portable file format calledetree [93]
that targets octree-based data sets such as large-scale octrees or point sets embedded in a 3D
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integer domain. Similar to array-oriented models, an etree allows applications to manipulate
an encapsulated octree-based data set via a library API. Figure 1.4 (a) shows the components
of the etree library.1 A schema (i.e., the names and types of data fields) and other metadata
(e.g., a narrative description) can be defined and stored within an etree file. The runtime ensures
the portability of an etree across different platforms (e.g., little-endian vs. big-endian). Unlike
other models, an etree stores an octree as a sequence of fixed-size octant records sorted by a
special key called locational code, a technique generally referred to aslinear octree[31]. The
order obtained is equivalent to a preorder traversal of the tree or a Z-order traversal through the
domain [27, 60, 61]. The sorted records are indexed by a conventional B-tree index and queried
using fixed-length locational code keys. Spatial queries such as point in an octant and 3D range
queries can be implemented conveniently on top of an etree.

Metadata manager

Linear octree

B-tree index

Buffer manager

Etree library

Etree API

Application

Schema manager

Element
etree

Unbalanced
linear octree

Balanced
linear octree

Material
model

balanceconstruct extract

Node
etree

transform

Element file

Etree library Etree library Etree library Etree library 

Node file

(a) Etree library components. (b) Generating octree-based hexahedral meshes on etrees.

Figure 1.4:Etree library and its application.

Etree has been adopted by the United States Geological Survey (USGS) and the Southern
California Earthquake Center (SCEC) to store the velocity models [83, 101] of the San Francisco
Bay Area and the Los Angeles Basin, respectively. Thanks to the adaptivity of the underlying
octree, an etree is able to represent a velocity model compactly. As a comparison, storing a
velocity model using a uniformly spaced 3D grid would require 2 or 3 orders more data points.

In addition to storing and indexing static data sets such as material properties of the earth,
the etree library also supports efficient dynamic updates to massive octree data sets stored on
disk. We have built an octree-based hexahedral mesh generator calledWeaverto exploit this
feature [93, 94, 95, 96, 98]. Weaver has been used by the CMU Quake project to generate record
sized unstructured hexahedral meshes to simulate the 1994 Northridge Earthquake in California.

Figure 1.4(b) shows the process of generating an octree mesh using the etree library. The
constructstep builds an indexed linear octree on disk. The sizes of the octants are determined by
an application, for example, by the density of the material they enclose. Since only leaf octants
are transformed to finite elements, the interior octants are not stored in an etree. The output is an
anunbalanced octreebecause the neighbors of an octant may be arbitrarily larger or smaller than

1Strictly speaking, the etree library is more than a portable file format. It has features of a nascent database
system such as a B-tree index structure, a page buffer manager, and a schema manager.
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the octant. To guarantee good element quality, the next step performs abalanceoperation, which
repeatedly decomposes large leaf octants into smaller sizes until a so-called2-to-1 constraintis
satisfied. The 2-to-1 constraint requires that two leaf octants sharing a face or an edge be no more
than twice as large or small. After abalanced octreeis derived, anextractprocedure is invoked
to collect mesh topology and geometry information, which are stored in two different etrees, one
for the mesh elements, and the other for the mesh nodes. Finally, an optionaltransformstep
queries the data in the mesh etrees and generates an element file and a node file as illustrated in
Figure 1.2. The output flat files can be used directly by existing mesh partitioning tools [47] and
solver packages [49].

The main strength (and also the limitation) of portable file formats is their optimized design
and implementation for a particular type of data sets. They provide a level ofphysical data in-
dependenceso that applications are isolated from the physical data layout in the files. How the
data are stored on disk and how to access the data are handled by the library runtime system. On
the downside, the query capabilities provided by portable file formats are quite limited. Except
for extracting sub-arrays, array-oriented file formats do not support efficient temporal, spatial,
and associative searches. The etree file format does support certain spatial queries, though un-
derneath the hood it is actually using a database index structure (i.e., a B-tree) to provide the
services. As such, an interesting question arises: Can we use database systems as a generic
framework to solve data problems in large-scale scientific applications instead of re-inventing
the wheels (i.e., access methods, buffer manager, disk space manger, etc.) for each particular
type of data sets?

1.2.3 A Database Approach

The idea of using database systems to manage the scientific data avalanche is appealing. Today’s
DBMSs are the product of decades of innovative research and intense software development.
They provide the backbone of infrastructure applications ranging from banking, retailing to sup-
ply chain management and national security. Although designed and optimized mainly for busi-
ness applications, DBMSs have been used successfully to support scientific applications such as
workflow management [4]. For the purpose of this dissertation, the following discussion focuses
only on how database systems have been used to manage massive data sets that are acquired via
scientific instruments or involved in computer simulations.

Typically, a database approach stores and indexes massive scientific data sets in a relational
(or object-relational or object-oriented) database [44] and uses a data manipulation language
(DML) exported by the database system such as SQL to operate and query the data. Application
programs are thus completely shielded from the file abstraction.

A number of large-scale international and national data acquisition and archiving projects, in-
cluding the Sloan Digital Sky Survey (astronomy) [82, 89], BaBar (high energy physics) [11, 84]
and GenBank (biology) [58], have adopted a database approach. The driving motivation is to
leverage existing database capability to perform queries, analyze correlations, manage metadata,
and automate parallel execution. However, since most existing database systems target applica-
tions of a different nature, mapping large-scale scientific applications and data sets to databases
imposes real challenges. For example, Objective/DB, an object-oriented database, is used in the
Sloan Digital Sky Survey (SDSS) project to convert C++ objects to and from persistent database
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structures. But its performance is disappointing, delivering only about1/10 of the expected
speed [89]. On the other hand, loading the SDSS data into a relational database exposes the
difficulties of using SQL to implement application logic. For example, there is no support for
arrays and the support for user-defined types, and hierarchical data is limited. Such mismatches
have made application development more difficult and the software products execute slower. In
order to improve the performance, a novel automated schema design algorithm [62, 63] and a
new index method [88] have been proposed.

Recently, Heber and Gray have led an effort to investigate how to support parallel finite
element simulations using a relational database [41, 42, 43]. The main idea is to represent a
finite element mesh and the associated solution fields using an SQL database. First, a relational
schema is defined for the mesh topology (i.e., an element file) and geometry (i.e., a node file). A
pre-generated mesh is then bulk-loaded into a database. Before a parallel solver starts running,
each compute node queries the database to fetch its share of mesh data. During the execution
of the solver, the database is not queried or updated. Output data from the solver are stored in
flat files on local disks attached to compute nodes. After the solver finishes running, the solution
files are copied from the compute nodes’ local disks to a scratch space close to the database and
then bulk loaded into the database. During the analysis phase, the database is queried to support
certain types of visualization.

Note that the relational database is not tightly coupled with the simulation process. Its use
is limited to the management of the finite element mesh and the solution fieldsafter they are
computed and stored in flat files. Besides, since no performance measurements are reported,
it is unclear how efficient and scalable this approach is. Nevertheless, the work represents a
significantfirst step towards supporting parallel simulation pipelines using databases.

Regardless of the context, the previous examples are pioneering works undertaken by domain
scientists (with the help of computer scientists) to tackle the data problem using databases. But
as a general rule, the vast majority of scientists do not use database systems in their work [32].
There is a long list of reasons why databases have not been more useful for scientific appli-
cations. For example, databases do not support important scientific data types such as arrays,
meshes, and fields; it is hard to formulate sophisticated spatial-temporal queries in SQL; the per-
formance of loading and querying data is abysmal; there are no quality visualization or analysis
tools built on top of databases. To change the status quo and make databases the workhorse for
scientific applications, significant research challenges must be overcome to qualitatively enhance
the competence of today’s database systems.

In summary, each of the three solution strategies has solved some aspect of the data problem
in large-scale scientific applications. As the size and complexity of scientific data sets move
into the realm of the terascale and beyond, these disparate, ad-hoc solution strategies become
increasingly untenable. We need a systematic framework to attack the data problem at its core.
Towards that goal, we envision adata-centric frameworkanchored on databases.

1.3 A Data-Centric Framework

Facilities that host the high-performance computers are commonly referred to assupercomputing
centers. The term, by itself, reflects a unique mental model of the funding agencies, user groups,
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and on-site hardware and software engineers: A supercomputing center is first of all a prime
CPU cycle-provider; everything else comes second. In fact, crafting optimal parallel numerical
solvers (the core algorithms in scientific computing) has traditionally been the primary goal of
computational scientists who are the main users of supercomputing centers. Great effort has
gone into the design, evaluation, and performance optimization of scalable parallel solvers. Data
management and analysis have taken a back seat when it comes to attention paid to scalability
and performance. But as the amount of data reaches into the terabyte to petabyte scale and the
content of data becomes more unstructured and complex, thiscomputation-centricview must be
re-assessed and adjusted.

Outside of the scientific computing community, there is a complementary view of computing,
which is also coined in the term referring to the hosting facilities—data centers. Enterprises
rely on data centers to conduct mission critical operations such as airline ticket reservation, e-
commerce, web search, and online auctions. Although the computer systems at data centers are
high-end commodity clusters similar in capacity to those found at supercomputing centers, the
focus here is on the data. Efficient, reliable, and secure manipulation of data is the primary goal.
Processor cycles are consumed to retrieve, convert, summarize, and format the data in order to
make them accessible and useful to the users.
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Figure 1.5:Scientific simulation within a data-centric framework .

Borrowing the idea from enterprise computing and using databases as the building block, we
can recast the simulation pipeline (Figure 1.1) into the adata-centric frameworkas shown in
Figure 1.5. The database system at the center is the hub for all data exchanges. It is also an
oracle to satisfy all the data queries issued by different simulation components. No intermediary
flat files or portable file formats are involved. The database is tightly coupled with meshing,
partitioning, solving, and online or offline data analysis, and thus becomes an integral part of
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the simulation process. Note that the data-centric framework proposed here does not require the
use of a parallel supercomputer. As long as there is enough disk space to store the database,
a simulation can be performed and interpreted by scientists or engineers. Of course, the more
resources (i.e., larger memory and more processors), the faster the simulation and the analysis.

Similar vision has been proposed recently. Gray and colleagues have envisionedscience cen-
ters to deal with petascale data sets produced by modern scientific instruments [32]. Bryant and
colleagues have proposedData-Intensive Super Computer(DISC) systems, placing emphasis on
data, rather than raw computation, as the core focus of the system [15].

1.4 Thesis Statement

To build flexible, high-performance parallel simulation database systems that run on multi-
thousand-processor terascale or petascale supercomputers requires innovative research in all ar-
eas within computer science. This dissertation demonstrates the scalability of a database ap-
proach to computing a particular kind of unstructured scientific data sets called Delaunay trian-
gulations. Compared with other types of scientific data sets, Delaunay triangulations are one of
the most flexible and unstructured.2 Thanks to their superior geometry-resolving power, they are
used by a large number of important applications such as finite element simulations, computer
graphics, and geographic information systems.

Chapter 2 presents a case study of mapping Delaunay triangulation to database structures in
a traditional way. A solution that builds a Delaunay triangulation construction algorithm on top
of an R-tree index structure—a popular spatial data access method supported by a number of
production database management systems—turns out to be ineffective. It runs more than three
orders of magnitude slower than a quality incore Delaunay triangulator. Performance analysis
shows that most of the running time is spent searching and updating the R-tree index. Further
analysis reveals astructural mismatchbetween the unstructured properties of Delaunay triangu-
lations and the built-in tabular representation of data in typical database structures such as an
R-tree.

Based on this discovery, Chapter 3 proposes a new technique to make a database approach
feasible for computing large-scale Delaunay triangulations. The main idea is to add acomputa-
tional cacheon top of a standard database buffer manager and provide a mechanism to translate
data between the unstructured representation in the computational cache and the tabular data lay-
out on slotted database pages. Scientific codes then operate directly on the computational cache
instead of on the native storage format. This proposition diverges from the traditional translation-
free buffer management scheme used by today’s DBMSs. The conventional wisdom has been
that such data “marshaling” and “un-marshaling” operations is computationally too costly to be
practical.

Chapter 4 describes the implementation of the methodology within a prototype system called
Abacusthat is designed to deal with 2D/3D Delaunay triangulation data sets. Abacus is capable
of storing and indexing pre-generated triangulations and supporting read-only applications such
as iso-contour extraction and volume rendering. More importantly, Abacus has the unique ability

2Structured data sets (e.g., a regular grid) exhibit a uniform topological structure that unstructured data sets (e.g.,
an arbitrary triangulation) lack. See more details in Chapter 2.
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to support dynamic data sets, generating and indexing massive Delaunay triangulations from
scratch. In order to prevent other DBMS’s overhead from affecting performance evaluation,
I have built Abacus from a clean slate without using an existing database system. However, no
special assumptions are made; almost all production DBMSs have the required software modules,
such as a page buffer pool manager and a B-tree index, to support the implementation.

Chapter 5 presents the performance evaluation of Abacus. The main findings are summarized
as following:

• Computing a Delaunay triangulation using Abacus is more than 5000 times faster than the
implementation (of Chapter 2) that uses an R-tree, a standard spatial access method.

• The performance of Abacus matches that ofTriangleandPyramid, the state-of-the-art 2D
and 3D Delaunay refinement mesh generators,3 respectively, when triangulating data sets
that fit in memory.

• When Triangle and Pyramid start thrashing (out of physical memory) and stop working
(out of virtual memory), Abacus continues to achieve (almost linearly) scalable perfor-
mance. For instance, it is capable of triangulating a data set of 93 GB using only 8 MB
physical memory.

Besides the experimental cases, Abacus further demonstrates its scalability in the context of a
grand challenge application (earthquake ground motion modeling) where it supports the genera-
tion of a series of large-scale 3D Delaunay triangulated finite element meshes with multi-billion
tetrahedral elements. This is a breakthrough new capability on commodity servers, which ri-
vals parallel algorithms running on supercomputers that have hundreds of gigabytes to terabyte
aggregated physical memories.

Building on the evidence, Chapter 6 claims the intellectual and practical contributions of the
research and points out how to leverage new technologies such as multi-core processors.

Together, the analysis, design, implementation, and evaluation presented in this dissertation
corroborate the following thesis statement:

Extending existing database techniques with an application-specific computa-
tional cache is a scalable solution to computing large-scale Delaunay triangulations.

32003 James Hardy Wilkinson Prize in Numerical Software.
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Chapter 2

Structural Mismatch

A problem that has persistently vexed database researchers is why mapping scientific applica-
tions to conventional DBMSs is so difficult. As early as the late 1980s, the termimpedance
mismatchwas coined by the object-oriented database community to refer to the differences in
both the programming models and the type systems between the general-purpose imperative
programming language such as PL/I and the declarative databases data manipulation language
such as SQL [7, 105]. Recently (circa 2005), researchers have extended the meaning of the term
to refer to the mismatch between the programming model of scientific applications and the exist-
ing database capabilities [32, 41]. Propositions have been made, for example, putting scientific
data types and programs into databases, to ameliorate the problem.

The insight of impedance mismatch is important. However, it accounts for only part of
the essential hurdle between scientific applications and database systems. As will be shown in
this chapter, merely integrating types and codes with data (and thus eliminating the impedance
mismatch) is not sufficient to resolve the mapping problem. The main hurdle, I believe, is due
to structural mismatch, that is, the unstructured nature of a large class of scientific data sets and
algorithms do not match the rigid built-in tabular abstraction of database systems.

This chapter uses Delaunay triangulation as a running example to demonstrate that directly
implementing a scientific algorithm on top of a database system is a dead end. Compared to
an efficient incore implementation of the same algorithm, the database version runs three orders
of magnitude slower. Performance evaluation and synthetic analysis lead to the discovery of
structural mismatch as the root cause of the problem.
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d = 3

d = 4

(a) A structured mesh. (b) An unstructured mesh.

Figure 2.1:Structured and unstructured mesh. The structured mesh (a) has the same topol-
ogy as a uniform rectangular grid, though it is deformed enough to appear to be unstructured.
The arrows point to mesh nodes of different degrees (abbreviated as “d=3” and “d=4”).

2.1 Structured and Unstructured Data Sets

There is no formal ways to define a data set as structured or unstructured. In practice, 2D/3D
topological and geometric properties are often used to assess how structured a data set is.

In scientific applications, a physical problem domain is usually discretized with a finite num-
ber of points and partitioned into small pieces of simple shape. Adopting the terminology in
numerical simulations, we call the pointsnodesand simple shapeselements. Together, the nodes
and elements define a mesh. Topologically, a mesh is either structured or unstructured. Figure 2.1
shows an example of each. Structured meshes exhibit a uniform topological structure that un-
structured meshes lack. A functional definition [81] is that in a structured mesh, the indices of
the neighbors of any node can be calculated using simplex addition, whereas an unstructured
mesh necessitates the storage of a list of each node’s neighbors. Note that geometrically, nei-
ther example is structured (regular); the coordinates of the irregularly distributed nodes of both
meshes have to be explicitly listed.

Under this criterion, only uniform grids are strictly structured; all others are unstructured,
either topologically or geometrically or both. It turns out that the vast majority of data sets used
in scientific applications are unstructured. Among them, one of the most flexible and commonly
used is the Delaunay triangulation.

2.2 Delaunay Triangulation

Delaunay triangulation [24], first introduced by Delaunay in 1934, is of paramount contempo-
rary importance in numerical analysis, computer graphic, and geographic information systems.
Given a vertex set, there are numerous different ways to construct a triangulation. A Delaunay
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triangulation is a special instance in which the circumcircle of every triangle isempty. A circum-
circle is defined as empty if it does not enclose any vertices. Note that vertices are allowed on
a circumcircle. This property is called theempty circumcircle property. Figure 2.2 shows two
examples of Delaunay triangulations.

(a) A 2D Delaunay triangulation. (b) A 3D Delaunay triangulation.

Figure 2.2:Delaunay triangulation data sets. The interior of the 3D Delaunay triangulation is
not shown in the figure.

It can be proven that a Delaunay triangulation always exists and is unique if all the vertices
are ingeneral position, meaning that non 4 vertices lie on a common circle. It can also be proven
that a Delaunay triangulation is optimal (among all the triangulations of a vertex set) in that it
maximizes the minimal angle in the triangulation [23]. Roughly speaking, most triangles in a
Delaunay triangulation are well shaped. There exist fewer long, skinny triangles than any other
triangulation of the same vertex set. The practical application of this optimality is to minimize
numerical interpolation errors.
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(a) A non-Delaunay triangulation. (b) A Delaunay triangulation.

Figure 2.3: Triangulations of a vertex set V1, V2, V3, V4, V5. The non-Delaunay triangles
4V1V2V3 and 4V1V3V5 are removed by flipping the edge V1V3.

In 2D, when no four vertices lie on a common circle, the Delaunay triangulation is unique.
(The uniqueness generalizes to higher-dimensions.) For example, Figure 2.3(a) shows a non-
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Delaunay triangulation of 5 vertices whereV2 is enclosed by the circumcircle of4V1V3V5. Flip-
ping the edgeV1V3 to V2V5, we obtain a new triangulation as shown in Figure 2.3(b). The empty
circumcircle property holds for every triangle in this triangulation. Hence, it is a Delaunay trian-
gulation.

Over the years, a number of efficient computational geometry algorithms have been invented
to construct 2D Delaunay triangulations including the incremental insertion [13, 50, 103], the
divide-and-conquer [26, 35, 52], and the sweepline [30] algorithms. Among these, the simplest
is the incremental insertion algorithm, which has the advantage of generalizing to arbitrary di-
mensionality. We use this algorithm to illustrate the mismatch between Delaunay triangulation
and database structures.

Proposed by Bowyer [13] and Watson [103] at the same time, the incremental insertion algo-
rithm inserts vertices into a Delaunay triangulation one at a time. For each insertion, two steps
are performed to maintain the empty circumcircle property:

1. Cavity creation: Find the triangles whose circumcircles enclose the new vertex and form
an insertion polygon, called acavity, from these triangles.

2. Re-triangulation: Connect the new vertex to each edge of the cavity to create new triangles.
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(a) Creation of a cavity (the shaded area). (b) Re-triangulation of the cavity.

Figure 2.4:Insertion of a new vertex V6 into a Delaunay triangulation.

Figure 2.4 illustrates the insertion of vertexV6. Before the insertion, we have a valid Delaunay
triangulation of{V1, V2, V3, V4, V5}. The cavity creation step identifies two triangles,4V1V2V5

and4V2V3V5, whose circumcircles encloseV6. The shared edgeV2V5 is canceled out. The
remaining edgesV1V2, V2V3, V3V5 andV5V1 form the edges of the cavity. The re-triangulation
step then simply connectsV6 to the four edges and create four new triangles. The other triangle
4V3V4V5 is not involved with the cavity and thus remains intact.

The incremental insertion algorithm is usually implemented using a pointer-based topological
structure to keep track of the evolving Delaunay triangulation. The cavity creation step first
locates a triangle that encloses the new vertex and then conducts a depth-first or breath-first
search to expand the cavity. The re-triangulation step deletes theencroached triangles, that is,
those triangles whose circumcircles enclose the new vertex, and inserts the new ones. In many
circumstances, the dominant cost is the time required forpoint location: finding the triangle in
which a vertex lies, so that a cavity can be expanded from a base.
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In practice, the incremental insertion algorithm has been implemented in a number of high-
quality free software packages includingTriangle [92], Pyramid [81], Qhull [67], and Tet-
gen[90]. Although highly efficient in triangulating relatively small data sets, these implementa-
tions are subject to two major limitations.1

First, running the programs requires massive amount of memory. Roughly speaking, a 2D
triangulation requires about 100 bytes per vertex on average (including the memory usage by
the associated triangles), and a 3D triangulation 400 bytes on average (including the memory
usage by the associated tetrahedrons). On a commodity server with 8 GB memory, this trans-
lates to about 80 million 2D vertices or 20 million 3D vertices. Such capacities fall short of the
requirements of large-scale real-world applications where billions of vertices need to be triangu-
lated. Consequently, parallel computers must be used to aggregate hundreds of gigabyte physical
memories. However, scalable parallel algorithms and implementations for large-scale Delaunay
triangulation based mesh generation aresignificantlymore difficult than their sequential coun-
terparts.2

Second, after a triangulation is computed and stored to disk, there is no way toefficiently
query the triangulation or insert more vertices. Flat file format, as described in Chapter 1, is the
standard representation for Delaunay triangulations. The massive topological structure used to
build the triangulation collapses into a nondescript sequence of records. Even simple queries such
as point-in-a-triangle would require chasing out-of-core pointers, as would more complicated
ones such as range queries or iso-contour queries. Adding more vertices is equally non-trivial.
The entire triangulation must be loaded from flat files back to memory to restore the structure in
order to continue the incremental insertion operations—even when only a handful vertices are to
be added.

Intuitively, database systems appear to be a natural solution to overcome these limitations.
In particular, database systems are built to store and index data that are orders of magnitude
larger than the memory size. Interactive queries and incremental updates are their strong suits
by design. The question is, how do we map Delaunay incremental insertions to operations on
databases?

Directly porting an incore implementation to a database system would be quite infeasible.
Following a pointer in memory takes a few nanoseconds (when the target object is in the cache)
to tens of nanoseconds (when the target object is in the DRAM), while following a pointer on
disk takes time on the order of 10 milliseconds (if the target object is on an un-cached disk
page). Furthermore, regardless of the efficiency of an implementation, the inherent applica-
tion logic of Delaunay triangulation is fundamentally in conflict with the design philosophy of
databases. In contrast to record-at-a-time operations performed by the incremental insertion al-
gorithm, database systems are optimized for set-at-a-time operations.

1Note that these software packages are capable of other sophisticated geometry computation besides Delaunay
triangulation.

2In a report [65] identifying the prospects of scalability of a variety of parallel algorithms to petascale archi-
tecture, mesh generation and associated load balancing are categorized as Class 2—”scalable provided significant
research challenges are overcome.”
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2.3 The Database Approach Revisited

The case of Delaunay triangulation exemplifies the difficulty of mapping scientific applications
to database systems. A widely accepted view attributes such a difficulty to a problem called
impedance mismatch[7, 32, 41, 105]. Namely, the programming model of scientific applica-
tions (i.e., data types and procedural interfaces) does not match the existing database capabilities
(i.e., tables, SQL, and non-procedural set-oriented accesses). The recommended solution is to
incorporate user-defined data types (UDT) and user-defined functions (UDF) into the database
to ameliorate the mapping problem.

Following this advice, I have developed an incremental insertion program on top of an R-
tree index. The implementation eliminates the impedance mismatch completely by interacting
directly with a low-level R-tree API, thus avoiding the overhead of SQL and other database
mechanism. In a way, this is the best performance one can expect from an existing database
system.3

2.3.1 A Trial with R-trees

Before discussing the technique of implementing Delaunay triangulation on an R-tree, we first
briefly explain what an R-tree is and how it works.

An R-tree [36] is a spatial access method invented by Guttman in 1984. Since then, a
number of variants [10, 46, 75] have been proposed to improve the performance. R-trees are
generally regarded as the most flexible and powerful structure for indexing spatial data and have
been incorporated in both open-source and commercial database systems such as PostgreSQL
and Oracle.
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(a) Spatial distribution of four triangles. (b) An R-tree index for the triangles.

Figure 2.5: Indexing triangles using an R-tree. Minimum bounding rectangles (MBRs) are
defined for the triangles and indexed in an R-tree.

3An earlier implementation on a open-source object-relational database system, PostgreSQL, runs orders of
magnitude slower due to additional overhead.
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An R-tree is an index that organizes multi-dimensional objects in a tree structure similar to
that of an B-tree. There are two types of tree nodes in an R-tree: the leaf nodes and the index
nodes. A leaf node contains spatial objects to be indexed. Each entry in a leaf node is a record of
<R, data> , whereR is the N-dimensionalminimum bounding rectangle(MBR) of an object
anddata describes the geometry span and other attributes of the object. An index node, on the
other hand, contains routing information for guiding data object searches. Each entry in an index
node is a record of<R, ptr> , whereR is the MBR that encloses all the MBRs contained in a
child node andptr points to where the child node is stored on disk. Both the leaf and the index
nodes are mapped to disk pages. Figure 2.5(a) illustrates the MBRs of four triangles A, B, C,
and D in an R-tree. Assuming each leaf node and index node can accommodate two records,
Figure 2.5(b) shows the corresponding R-tree structure.

An R-tree support three basic operations: search, insertion, and deletion.
• R-tree-search : The search operation takes a query MBR (which can degenerate to a

point) as input and returns a collection of objects whose MBRs overlap with it. A search
starts from the root node. If the current node is an index node, the MBR of every entry
is examine to check if it overlaps with the query MBR. If so, recursively search the child
node pointed at by the associatedptr . If the current node is a leaf node, return the objects
whose MBRs overlap with the query MBR. Note that multiple descending paths may be
traversed to return all the qualified objects.

• R-tree-insert : The insertion operation inserts a new object into an R-tree. The op-
eration first descends an R-tree from the root node. If the current node is an index node,
find the entry whose MBR needs the least enlargement to include the MBR of the new
object. Ties are resolved by choosing the entry whose MBR has smaller area. Descend to
the child node pointed to by theptr associated with the chosen MBR. Repeat the process
until a leaf node is encountered. Note that only one path from the root to a leaf node is
traversed. If the leaf node has extra space for the new object, insert the new object and
adjust the MBRs of the ancestors of the leaf nodes recursively. If the leaf node is full, a
split operation is carried out to distribute the existing entries and the new object into two
leaf nodes. The newly created leaf node is inserted into the parent (index) node. If the
parent node is full, recursively split the parent node until reaching the root node. When a
root node is split, the height of the R-tree increases by 1.

• R-tree-delete : The delete operation first searches for the object whose MBR matches
the MBR to be deleted. The routine is almost identical to that ofR-tree-search except
that at a leaf node only the MBR that exactly matches the target MBR is chosen. If there
is no match, return immediately. Otherwise, remove the entry from the leaf node and
recursively adjust the MBRs of the ancestor nodes. If a node becomes under-utilized, for
example, the number of entries on the node drops below 50%, the node is eliminated from
the R-tree. The remaining entries in this node are then re-inserted into the R-tree.

Note that the insertion and deletion operation dynamically adjust the structure of the tree in such
a way that all leaf nodes are at the same level, which means an R-tree is a balanced search tree
structure, similar to a B-tree.

The main innovation of the R-tree is that it allows the MBRs of the objects and the index
nodes to overlap. For example,R1 andR2 in Figure 2.5 overlap with each other. As a result, the
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maintenance of the tree structure is greatly simplified. But the downside of this feature is that the
search operation may need to explore more than one subtree since their MBRs may all overlap
with a query MBR. In the worst case, the entire tree must be searched. Therefore, unlike a B-tree
where the search time is bound byO log(n), the worse case search time of an R-tree isO(n),
wheren is the number of data objects being indexed.

Now, let us study how to construct Delaunay triangulation on an R-tree using the incremental
insertion algorithm. A seemingly simple way is to directly index the triangles in an R-tree, and
make use of the R-tree’s search and update capabilities to carry out the cavity creation and re-
triangulation steps. However, although we can use an R-tree to locate the triangle that encloses
a new insertion vertex, there is no means for us to expand from the base triangle to create the
cavity since there is no connectivity information available.

A better way to make use of an R-tree is to index the circumcircles of the triangles. After all,
when we create a cavity, we are only interested in retrieving those triangles whose circumcircles
encloses a new insertion vertex. For simplicity, we refer to the MBRs of the circumcircles of
triangles ascircumrectangles. The algorithm works by first querying an R-tree to retrieve a
collection of candidate triangles whose circumrectangles enclose a new insertion vertex, and
then eliminating the false hits using a robust in-circle geometry test [78, 80].
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(a) Searching for candidate triangles. (b) Dismissal of false hit.

Figure 2.6:Insertion of a vertex V7 into a Delaunay triangulation indexed by an R-tree. The
R-tree index returns three candidate triangles. One of them, 4V1V6V5, is a false hit. Although its
circumrectangle encloses the new insertion vertex, its circumcircle does not.

Figure 2.6 shows an example. AssumeV7 is a new vertex to be inserted into a Delaunay
triangulation. We first search the R-tree and find that4V1V6V5, 4V6V3V5, and4V3V4V5 are
the triangles whose circumrectangles encloseV7. Robust geometry predicate tells us that the
circumcircle of4V1V6V5 does not really encloseV7. So we ignore it as a false hit. The remaining
two triangles,4V6V3V5 and4V3V4V5, pass the test and are deleted from the R-tree to create the
cavity. The re-triangulation step produces four new triangles,4V7V4V5, 4V7V5V6, 4V7V6V3,
and4V7V3V4, which are then inserted in the R-tree. The general procedure of inserting a new
vertex is shown in Figure 2.7.4

4The new vertex is assumed to fall inside the convex hull of the existing Delaunay triangulation.
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1. Search the R-tree : Find triangles whose circumrectangles enclose the new vertex
2. Incircle tests : Apply a robust geometry predicate to dismiss the false hits
3. Delete from the R-tree : Create a cavity that comprises the true hits
4. Insert into the R-tree : Insert the new triangles into the R-tree

Figure 2.7:Inserting a new vertex into a Delaunay triangulation indexed by an R-tree.

A technical detail that has been conveniently side-stepped till now is how to define the cir-
cumrectangles for triangles. Mathematically, we can compute the center (Ox, Oy) and the radius
Rcircumcircle of the circumcircle of a triangle4abc using the formulae:

Ox = cx +

∣∣∣∣ (ax − cx)
2 + (ay − cy)

2 (ay − cy)
(bx − cx)

2 + (by − cy)
2 (by − cy)

∣∣∣∣
2×

∣∣∣∣ (ax − cx) (ay − cy)
(bx − cx) (by − cy)

∣∣∣∣ (2.1)

Oy = cy +

∣∣∣∣ (ax − cx) (ax − cx)
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2
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2 + (by − cy)

2

∣∣∣∣
2×

∣∣∣∣ (ax − cx) (ay − cy)
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Rcircumcircle =
LaLbLc

2×
∣∣∣∣ (ax − cx) (ay − cy)

(bx − cx) (by − cy)

∣∣∣∣ (2.3)

whereLa, Lb, andLc are the edge lengths of4abc.
We then compute the lower-left corner and upper-right corner of the circumrectangle of a

triangle as follows:

(Ox −Rcircumcircle, Oy −Rcircumcircle)

(Ox + Rcircumcircle, Oy + Rcircumcircle)

However, due to floating-point arithmetic round-off errors, we cannot obtain the exact values by
evaluating these formulae. The results are merely approximations, which may cause circumrect-
angles to shift, expand or shrink slightly. When we search for the enclosing circumrectangles, we
can encounter two types of errors: afalse hitor afalse miss, as shown in Figure 2.8. A false hit is
acceptable since we can dismiss it along with other false hits using a robust geometry predicate.
However, a false miss is detrimental. If the R-tree does not return a triangle whose circumcircle
truly encloses the new vertex, we would not be able to find the triangle in other ways, and the
resulting triangulation would be incorrect (for example, cross-over triangles would appear).

To fix this problem, we use the interval arithmetic technique [14] to slightly expand the
circumrectangles to ensure that theyalwaysfully contain the circumcircles. Although there will
be (a few) more false hits, the correctness of the algorithm is guaranteed.
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(a) False hit (acceptable). (b) False miss (detrimental).

Figure 2.8:Round-off errors may result in either a false hit or a false miss. For illustra-
tion purpose, the errors (shift, expansion, shrinking) associated with the circumrectangles are
magnified to show the effects.

2.3.2 The Missing Performance

We have built an R-tree implementation in C that includes a standard page buffer pool man-
ager [33] and that supports theR-tree-search , R-tree-insert , andR-tree-delete
function calls. Seeing that Delaunay triangulation always inserts more triangles into an R-tree, it
is unnecessary, during a delete operation, to eliminate an under-utilized R-tree node and re-insert
its remaining entries. The newly created triangles will soon refill the node. This observation has
been incorporated in the implementation to improve the performance of the delete operations.

On top of the R-tree, we have developed an incremental insertion Delaunay triangulation pro-
gram using the techniques described in the previous section. There is no SQL query processing,
logging, locking, or any other overhead associated with a full-fledged database system. There is
no mismatch of the programming models or type systems. (The triangulation program was also
written in C.) In short, there is no impedance mismatch.

Unfortunately, the performance of this implementation, which we callGoose, turns out to
be abysmal. Compared to the state-of-the-art incore Delaunay triangulatorTriangle, Goose runs
more than 3 orders of magnitude slower. Computing the Delaunay triangulation of 1 million
random points takes Triangle 1 minute, but takes Goose 25 hours 43 minutes and 35 seconds.

The experiments were conducted on a server with two Intel 3.6 GHz Xeon processors run-
ning Linux 2.6.17. (Only one processor was used in the experiments.) The memory subsystem
consisted of 8 GB physical memory and 18 GB swap space. Both Triangle and Goose were com-
piled with gcc using the-O2 optimization flag. In the experiments, the data sets fit completely
in the physical memory (8 GB). The Goose implementation never accessed disk to swap in or
out R-tree node pages, except for storing the final results.

Given that both Triangle and Goose are operating on in-memory structures, why is there such
a huge difference in performance? What is Goose doing that makes it run so much slower?
Where does the time go?

To answer these questions, we conducted an experiment for triangulating 100,000 random
points and usedGNU gprof to obtain a running time profile of Goose. The percentage contri-
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bution of different operations to the running time of inserting a new vertex is listed in Figure 2.9.

Search the R-tree : 16%
Incircle tests : 0.1%
Delete from the R-tree : 74%
Insert into the R-tree : 4%
Other operations (including I/O stalls) : 5%

Figure 2.9:The percentage contribution of inserting a new vertex using Goose

The biggest surprise is the cost of the delete operations, which account for 74% of the total
running time. The cost of searching the R-tree to retrieve a collection of candidate triangles uses
16% of the time. Following that is the cost of inserting new triangles, which accounts for 4% of
the time. The seemingly expensive robust in-circle geometry test is responsible for only 0.1% of
the total time. Simply put, the vast majority of the running time is spent searching and updating
the R-tree structure.

A closer look at the running time of theR-tree-deleteoperation further reveals that more
than 98% of the cost is attributed to searching the R-tree to find the true-hit triangles that need
to be removed. The removal operation itself accounts for less than 2% of the time (thanks to
the optimization mentioned earlier). Note that the search operation involved inR-tree-delete
is different in nature to the search operation carried out when we create a cavity. The former
searches for an exact match for a circumrectangle in order to delete it; the latter searches for all
circumrectangles that enclose a new vertex in order to create a cavity.

If we aggregate the cost of searching the R-tree, regardless of the nature of the searches, the
overall contribution of searches is 89% (i.e., 16% + 74%×98%) of the total running time. The
total contribution of updates (i.e., insertion and deletion) is about 5.5% (i.e., 4% + 74%×2%).

Besides the running time, two other metrics are also measured. First, the R-tree search ef-
ficiency is only 10%. That is, out of 10 MBRs checked, only 1 results in a hit. This of course
makes sense. Since a triangulation is a dense spatial structure, the circumrectangles are natu-
rally overlapping with one another. As a result, the MBRs in the R-tree index nodes also tend
to overlap, leading to multiple search paths down the tree structure, which, in turn, increases the
chance of wasted searches. Second, as many as 67% of the triangles inserted are later deleted.
On average, the insertion of a new vertex deletes 4 existing triangles and inserts 6 new triangles.
Hence the incremental insertion algorithm removes about two thirds (i.e., 67%) of the total tri-
angles that are ever generated. These two metrics quantitatively reflect the unstructured property
of Delaunay triangulations and the dynamic nature of the incremental insertion algorithm.

From the timing and the statistics, we make three observations. First, frequent searches of
the R-tree hurt the performance most. We cannot afford to conduct associative key searches on
the R-tree to create cavities. Second, the cost of updating an R-tree (i.e., insertion and deletion of
triangles), though much smaller than the search cost, is still non-trivial. Even if we could com-
pletely eliminate the search cost, the remaining 5.5% running time (for insertion and deletion)
would remain one to two orders of magnitude larger than an efficient incore implementation.
Third, most of of triangles should not have been stored in the R-tree in the first place since they
are to be deleted later. The unnecessary insertions cause more deletions, clutter the MBRs of the
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index nodes, and slow down the search operations. If compelled to draw a conclusion, we must
admit that mapping Delaunay triangulation and the incremental insertion algorithm to operating
on R-trees appears to be a dead end.

The Delaunay triangulation problem presented here is just one instance. Other scientific data
sets may take the form of an array, a tree, or a graph. Mapping such data sets to traditional
database structures imposes equally difficult challenges. For example, recent research [39]
has shown that database systems such as MySQL and BerkeleyDB are not suitable for efficient
storage and on-demand query processing of massive graph data sets.

2.4 Structural Mismatch

So, what are the causes of such difficulties? Impedance mismatch—the discrepancy in the pro-
gramming models between scientific applications and database systems—is certainly one culprit.
The proposition of integrating user-defined data types (UDT) and user-defined functions (UDF)
into databases helps resolve the issue of how to efficiently manipulate individual data objects.
However, when a subset is to be manipulated by a user-defined function, for instance, incremen-
tal insertion of a new vertex into a Delaunay triangulation, a standard database query still has
be to executed in order to retrieve the data objects of interest. Unfortunately, as shown in the
case of Delaunay triangulation, frequent database queries (associative searches, insertions, and
deletions) slow down a scientific application to a crawl.

The root cause of the problem, I believe, lies instructural mismatch, that is, the discrep-
ancy between how data are stored and indexed in databases and how data are accessed and
manipulated by scientific applications.

A figurative way to illustrate structural mismatch is to imagine squeezing an octopus into a
cubic box (of equal volume). We can certainly do that with due efforts. But the octopus can
hardly be moved afterwards. If we want to turn it sideways or take a biopsy sample from one of
its tentacles, a large number of maneuvers have to be carried out. In the interim, cares must be
taken to prevent the octopus from slipping out of the box. Now map an unstructured data set to
an octopus and a traditional database to a box. We can surely manage to load a data set into a
database by defining a relational schema. But if we want to expand, modify, or query part of the
data set, expensive database operations need to be performed. All the while we have to prevent
the data set from “slipping” out of the database and using up the main memory.

Going back to the Delaunay triangulation example, we have chosen to map a triangulation
to an R-tree, thus “flattening” the data set to fit the database. While doing so, we lose important
topological information about the data set and hence pay a significant performance penalty for
manipulating the triangulation. On the other hand, we could have chosen to preserve the topo-
logical information by introducing out-of-core pointers in a relational schema, thus “stretching”
the database to accommodate the data set. But then, we would have to rely on record-at-a-time
operations (which we have decided against). Consequently, the performance would degrade to
no better than random accesses to flat files.

More generally, scientific data sets often exhibit strong spatial and/or temporal correlation
among the compositing parts/regions. The natural representation of a scientific data set can be an
array, a tree, a graph, or some other non-trivial data structure. When storing such a data set in a
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database, we have to serialize (flatten) the data structure into a sequence of records and map the
records to disk pages, which are organized by databases in a format referred to asslotted pages.

Figure 2.10 shows an example. In this particular format used within the PostgreSQL database
system [66], a page (e.g., 4 KB) is partitioned into 5 regions. ThePage Header field contains
general information about the page, including relative offsets recording the start and the end of
the free space. An array ofItem Pointers point to the actual items (data records or index
entries).Free Space represents the un-allocated space. New item pointers are allocated from
the start of the this area and new items from the end. TheItems (records) (i.e., data
objects) are stored in space allocated backwards from (almost) the end of a page. TheSpecial
Space at the end of a page stores data specific to an access method if the page is an index page.
The field is unused in a regular table data page. Other database systems use some variants of the
page layout.

  

Page Header Item Pointer Item Pointer
Item Pointer

...
Item Pointer...

... Item (record)Item (record)
Item (record)...
Special Space

Item (record)

Free space

Figure 2.10:Data layout on a slotted database page. This particular example shows the page
format used within PostgreSQL tables and indices.

When we read the data back from disk, we should ideally reverse the serialization and re-
construct the correlation among the data. But the problem is that scientific data sets are huge.
Loading a massive data set into the memory of a supercomputer can be a problem, let alone
on commodity servers. The simple way out—and the only way out in a traditional database
system—is to cache data in main memory in slotted page unit. Without a means to partially re-
construct the natural data structure, we are left with a collection of “structureless” tabular chunks
stored in slotted pages.

In order to operate on the tabular format, we have to adapt algorithms originally designed
for the natural representations, as we did for the incremental insertion algorithm. The biggest
problem is how to efficiently access individual data objects. Sequential scan incurs anO(n)
cost for every single data access. Unless an algorithm needs to traverse an entire data set in an
arbitrary order, sequential scan is useless for implementing any non-trivial scientific algorithms.
The only other choice we have is to use database index structures. Still, the cost of executing a
search operation, assuming it isO(log n), could be tens of thousands to millions of instructions
(and memory references). In contrast, accessing a data object following a pointer, as does a
typical incore implementation operating on a natural representation, costs only two instructions
and memory references: one for loading the pointer (address) and the other for loading the data
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object pointed to by the pointer. The huge difference in data access time implies that even if we
are able to develop a scientific algorithm using the best tools available in current databases, the
implementation is destined to be several orders of magnitude slower than its incore counterpart,
as is the case with Goose and Triangle.

In summary, a large class of unstructured scientific data sets simply does not fit with the
built-in tabular abstraction of traditional databases. Forcing scientific data sets and applications
into databases could only result in poor performance and cause user frustration.
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Chapter 3

A Scalable Database Approach

Structural mismatch is a fact of life. We cannot expect scientists to change their data sets to fit
databases. Even if they want to, they are probably not able to, since most data sets are generated
or collected according to a natural process or a physical problem. Meanwhile, we can hardly
afford to make any major changes to the database systems cores, which are built on decades of
intense research and software development. Therefore, the only option we have is to come up
with a work-around to bridge the structural mismatch.

This chapter presents a new scalable database approach that is based on a simple idea: (1)
deliver data to scientific applications in such a way that the data can be efficiently manipulated,
and (2) deliver data to databases in such a way that the data can be efficiently stored and indexed.

Our proposal adds acomputational cacheon top of a standard database buffer pool manager
and provides a mechanism to translate data between the inherent unstructured representation
(stored in the computational cache) and the native database format (stored in slotted data pages).
This approach diverges from the translation-free buffer management scheme used by today’s
DBMSs [44]. The conventional wisdom has been that “marshaling” and “un-marshaling” data
from and to disk is computationally too expensive to be practical. We believe, however, that it is
a reasonable price to pay to mitigate the effects of structural mismatch and to speed up scientific
applications operating on databases.

Although the first of its kind, the proposed database approach contains a number of ideas
that can be traced back to as early as the 1970s. This chapter concludes with a discussion of the
related work and points out the similarity and difference between the proposed solution and the
earlier works.

29



  

Fixed-size page buffer pool (main memory)

Disk space manager

User-defined data types and functions

Access method (B-tree, R-tree)

Buffer manager

page 
frame

page 
frame...

Storage manager

page 
frame

Disk

index 
page 

data 
page 

Disk

data 
page 

data 
page 

Disk

data 
page 

data 
page 

SQL query processing

page 
frame

page 
frame

page 
frame

Figure 3.1:A traditional database system.

3.1 Framework Overview

Today’s databases, refined and optimized over the past four decades, are highly sophisticated
software systems. They are particularly good at managing massive tabular data commonly used
in the commercial and governmental sectors. Our goal is to make them also good at manag-
ing massive unstructured data sets commonly used in scientific and engineering applications.
Structural mismatch is the key obstacle we have to overcome.

Our solution strategy is to organically integrate a new mechanism into standard databases,
rather than building systems from scratch or attaching a kludge to existing systems. The moti-
vation is two-fold. On the one hand, fine-tuned and robust software components of a database
system, such as the buffer pool manager and access methods, are (almost) always needed re-
gardless of the nature of a solution. We should capitalize on this existing capability instead of
reinventing the wheel. On the other hand, structural mismatch is a problemwithin. Any external
solution would be a veneer fix at the best; the inherent conflict would still persist.

This section briefly illustrates the working of traditional databases and explains how to in-
corporate a new functionality into the established machinery to solve the structural mismatch
problem.

3.1.1 Traditional Database Management Systems

Figure 3.1 shows an abstract overview of today’s database systems, including IBM DB2 Uni-
versal Database, Microsoft SQL Server, Oracle Database, and PostgreSQL. An effort has been
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made to highlight the data paths between disk storage and high-level SQL query processing.
Other important database core modules such as lock management, logging systems, memory
management, and replication services are omitted for clarity of illustration.

At the top level, SQL query processing [74, 77] encapsulates all the complex operations of
parsing an SQL statement, building a query tree, rewriting and optimizing a query plan, and
executing a query. A database derives its non-procedural, set-at-a-time power from this layer.

User-defined data types and functions [87] enable extensions to a database. Using a database
internal structure calledsystem catalog, users can add new data types, functions, and operators
to a database. At runtime, the database engine consults the system catalog to retrieve the relevant
information and executes the requested functions on the target data types. This is usually the
layer where the impedance mismatch problem is addressed.

To efficiently retrieve data and deliver them to the upper layers, database systems make ex-
tensive use of highly optimized access methods such as B-trees [21, 69], R-trees [10, 36, 75], and
hashing [53]. Note that there may be cases (illustrated in the figure as bypasses) when a query
optimizer (contained in the SQL query processing layer) chooses not to use an index or any other
access methods if it determines that doing so can improve the performance of a particular query.
But in general, index structures are heavily relied on to execute queries. It cannot be emphasized
too much how important they are to the success of database systems.

The next level in the software hierarchy is a database buffer manager [20, 59], which oversees
a main memory buffer pool consisting of a large array of fixed-size page frames. The size of the
frames (e.g., 8 KB) equals the size of database disk pages. All database pages, either data pages
storing records of a table or index pages containing search routing information, are mapped to
page frames in the buffer pool. Pages are copied in native format from disk directly, manipulated
in memory in native format, and written out to disk if necessary. This translation-free buffer
management scheme is the norm in today’s databases.

At the bottom level, the disk space manager allocates new database pages, deallocates un-
used pages, and reorganizes disk page layout when requested to improve I/O performance. The
storage manager caches disk pages, reorders I/O request sequences, and issues disk read/write
commands. This layer gains performance by understanding the characteristics of the storage
system rather than the semantics of user-defined functions or SQL queries.

Zooming in on the data paths, we can see that data travel straight through the different soft-
ware layers without changing representation. Data layout in memory is identical to that on disk.1

This makes sense. Typical database workloads such as online transaction processing (OLTP) and
decision-support systems (DSS) operate on tabular data sets. The only reasonable way to orga-
nize the data in memory is tokeepthem as a list of discrete records, which is exactly the data
layout on disk.

Unfortunately, the simplicity of direct data transfer gives way to the inefficiency of structural
mismatch when it comes to dealing with unstructured scientific data sets and applications.

1An exception is presented in Section 3.4.
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3.1.2 A New Framework

To bridge the structural mismatch, we propose to (1) add acomputational cacheon top of the
standard page buffer pool, and (2) provide a translation mechanism to convert data between the
representation optimized for applications and the representation suitable for storage and index-
ing. Most of the existing machinery of a database system does not need to be modified. The only
exception is that user-defined functions should now be able to operate on a computational cache.

Figure 3.2 shows the new solution framework called acomputational database system, which
encodes a triple meaning. First, the overall solution is aimed at managing and manipulating
large-scale unstructured scientific data sets used incomputational sciences. Second, the new
cache structure is intended to optimize the performance ofcomputational algorithmsoperating
on databases. Third, the translation mechanism introduced is acomputational taskby itself.
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Figure 3.2:A computational database system.

Compared to a traditional database management system, a computational database system
provides additional venues of accessing data. Besides the existing data paths, a data flow can
take a detour through the memory hierarchy and convert into a natural form that is suitable for
scientific applications. The placement of the new software module (in the gray box) is dictated
by two factors:functionalityandperformance. Since the new module’s function is to provide
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alternative data paths parallel to the ones going through the index structures, it is a natural choice
to place it alongside the access method module. A second and more important factor is perfor-
mance. We need to access data objects in groups to amortize CPU and I/O overheads. The page
buffer pool manager is just the right layer to provide the service. By situating a computational
cache on top of the buffer manager (the fixed-size page buffer pool), we can retrieve a pageful
of existing data objects, allocate an empty page to store a group of new data objects, or delete a
page to invalidate a batch of old data objects.

One huge potential application of a computational database system is to conduct large-scale
scientific simulations directly on databases. As shown in Figure 1.1 (Chapter 1), a scientific
simulation consists of a number of components (algorithms) that operate on massive data sets.
Since structural mismatch has prevented implementing scientific algorithms on top of databases,
it is a common practice to implement these simulation components on memory-resident data
structures. Consequently, the size of the problem that can be modeled, meshed, solved, and
analyzed is bound by the main memory size. By bridging structural mismatch, a computational
database system allows us to recast a simulation pipeline as a sequence of database queries. In
particular, we can implement the simulation components as user-defined functions and rely on
a computational cache to provide efficient data accesses to the underlying data sets stored in
a database. Memory size should no longer be a limiting factor. As long as there is enough
processing power (multicore processors) and sufficient storage (RAID disks), we can conduct a
scientific simulation. As a result, we can (1) defer the time when a simulation has to be executed
on a supercomputer, (2) monitor and steer an ongoing simulation by issuing database queries, (3)
have a coherent data store recording all aspects of a simulation, and (4) explore models, meshes,
and solution fields interactively by querying databases. All these are new capabilities that are
previously unconceivable and sought after by scientists and engineers.

Exciting as it is, the proposed solution begs two questions. First, is it feasible? Can we really
bridge the structural mismatch between scientific data sets and traditional databases by adding a
computational cache? The rest of this dissertation is devoted to answering this question. It will
be shown that not only is the technical approach feasible, but it is also capable of delivering the
necessary performance and scalability.

The second question is, how general is the solution? Can we build one computational
database system and use it for all scientific data sets? What we propose is a generic solution
framework, which clearly identifies where the structural mismatch problem should be attacked.
Nevertheless, there are numerous scientific data sets with widely different spatial and tempo-
ral properties, it is impossible to hardwireonecure-all solution. That said, it should be also
be noted that thetypesof different scientific data sets in terms of the fundamental data struc-
tures are quite limited. Vendors or the open-source community could develop one computational
database system for each type of data sets. Or, we can develop an extensible framework that al-
lows users to define their own computational cache and translation mechanism. Similar proposal
for database extension has been adopted in the past. Namely, the user-defined functions (UDF)
and the user-defined data types (UDT). All of today’s major database systems support UDF and
UDT. The main difference, however, is that a user-defined computational cache (UDC) needs to
interact more intimately with the inner working of a database system. The challenge is how can
we extend an existing database system to export the right level of abstraction to support UDC
extension. There is already an indication of promise as shown in Figure 3.2: The computational
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cache module is well isolated from the rest of the system. The clear logical separation should
greatly simplify the design and implementation of an extensible computational database system.
However, how to develop an extensible framework is beyond the scope of this dissertation and is
left as future work.

3.2 Computational Cache

The proposition of converting data between different representations is different from the translation-
free buffer management scheme adopted by today’s DBMSs. This section discusses the rationale
and the design issues of a computational cache.

3.2.1 Rationale

A standard caching scheme delivers data verbatim. Figure 3.3 shows how caching works in a
modern computer system [16]. Data (and code) are fetched from disk in fixed-size pages (e.g., 4
KB) and cached in main memory, and then fetched from main memory in fixed-size blocks (e.g.,
64 bytes) and cached in processor cache, and finally fetched from processor cache in fixed-size
words (e.g., 8 bytes) and delivered to registers where the processor can directly manipulate the
data. Note that regardless of the granularity of data transfer between the different levels, data
traverse through the memory hierarchy in one format. There is no transformation of any kind.

  

Main memory (2 GB)

Hard disk (200 GB)

Processor cache (2 MB)

Registers (512 B)
Smaller, faster, 
and costlier (per 
byte) storage 
device

4KB

64 bytes

8 bytes

Larger, slower, 
and cheaper 
(per byte) 
storage device

Figure 3.3:A typical translation-free caching scheme.

However, there certainly exist cases where converting and caching data in a different format
can improve performance. (For the purpose of this dissertation, we focus only on the main
memory cache.) For example, suppose we have a data set consisting of a collection of unordered
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records and we need to conduct key searches. If there are only a small number of searches, we
can cache the data set in main memory (assuming it fits) in its native format as a sequence of
pages, and go through the list multiple times (assuming we are given a search key only after we
finish the previous search). The running time of this brute-force method isO(kn), wherek is the
number of searches andn is the number of records. However, ifk is large, for example,k ≈ n,
the total cost becomes quadraticO(n2). In this case, we can afford to build a balanced binary
search tree upfront inO(n log n) time when we load the data into memory, and then search the
binary tree to answer the queries. The total cost isO(n log n+k log n). Whenk ≈ n, the running
time isO(n log n), which outperforms the non-conversion case. Better, we can simply build a
hash table inO(n) time when loading the records. Since the average cost of searching a hash
table isO(1), the total running time improves toO(n + k), or O(n) whenk ≈ n. Now let us
extend our example further and intermix range queries (i.e., finding all the records whose keys
are between a specified range) with individual key searches. In this case, the balanced binary
tree becomes indispensable since (simple) hashing does not support range queries. Of course, if
there is sufficient memory space, we would prefer to keep both data structures to speed up all the
queries.

This simple example illustrates an important rationale: Whether a data set needs to be con-
verted to a particular format depends largely on how an application operates on the data. The
overhead (memory usage and CPU cycles) of conversion, such as constructing a balanced binary
search tree or building a hash table, is justified if the overall performance (running time) of an
application is improved. Therefore, there is no right or wrong when it comes to caching data in
a native format or in a converted format. The conventional wisdom of avoiding “marshalling”
and “un-marshalling” data from and to disk is based on years of experience of the database com-
munity working with traditional database applications. Scientific data sets and applications are
different. The data sets are more unstructured; the applications are more computation intensive.
Hence, “marshalling” and “un-marshalling” scientific data is often worth the effort.

3.2.2 Design issues

A computational cacheis a main memory structure that stores the converted representation of a
tabularized scientific data set. The purpose of a computational cache is to provide a faster cache
than the database buffer pool cache. Instead of searching a database index structure to locate data
objects, we should access data mostly from a computational cache.

Functionally, a computational cache is similar to a processor cache. Both provide faster
access to data and and shield an application (i.e., the processor) from the lower-level slower
memory, unless there is a cache miss. But the two derive performance from two different sources.
A processor cache, made of SRAM, is inherently faster than a DRAM main memory. Regardless
of the application, a cache hit is asystem optimizationthat cuts short the data access path. In
comparison, a computational cache uses the same DRAM technology as the buffer pool cache. If
we could know in advance where in the buffer pool we should access the data, then there would
no need for a computational cache. However, as we do not have the knowledge, we have to search
a database index structure, which, in most cases, costsO(log n). The data representation stored in
a computational cache, on the other hand, matches more closely to the natural properties of a data
set and the application logic. Accessing a data object may cost only one operation and takeO(1)
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time (e.g., following a pointer or accessing an indexed element). Therefore, the performance
of a computational cache is due to analgorithmic optimization. Of course, since we can now
significantly reduce the number of memory references, it is more likely for a computational
cache hit to be also a processor cache hit. In other words, an algorithmic optimization improves
our chance of exploiting the system optimization.

Operationally, let us examine the following design issues in turn:data representation, appli-
cation interface, I/O management, andmemory management.

• Data representation.How data is represented in a computational cache is of paramount
importance. It determines how fast we can access the data. Usually, a data set has a
natural representation, such as an array, a tree, or a graph. Algorithms operating on a
data set are often designed to manipulate the natural representation. If that is the case, a
computational cache should store the natural representation. However, if some efficient
algorithm is designed to operate on a format different from the natural representation of a
data set, a careful evaluation is needed to determine how efficient it is to emulate the new
format using the natural representation. If the performance difference is unacceptable, then
it may be necessary to implement a second representation of the data set. In practice, such
cases may be quite rare.

• Application interface.In order for applications to take advantage of the high-performance
data representation, a computational cache should export a high-level data access interface
(API). For example, if an unstructured data set is a tree, an application may want to conduct
tree traversal operations. The interface thus exported is not visible to the end user but only
to the user-defined function developers and SQL query processing layer. It is the entry
point to the alternative data paths within a computational database system.

• I/O management.A computational cache may access disk either directly or indirectly. We
are in favor of an indirect design and make a computational cache operate on top of a
standard database page buffer pool. Data pages are first fetched by a buffer manager and
cached in the buffer pool, and then delivered to the computational cache. In the process,
data are converted from the tabular storage format to the natural representation via a trans-
lation mechanism (to be discussed in the next section). The advantage of this design is
that the buffer manager remains the sole I/O request initiator. All database pages are still
managed at a single location: the page buffer pool. Effects of data page manipulations by
a computational cache, such as read, write, and update, become visible to the rest of the
system without delay. No special synchronization mechanism is needed to advertise the
effects of the operations. The drawback is that data may be double-buffered, once in the
page buffer pool (in the native database format), and once in the computational cache (in
a converted format). As will be shown later in the dissertation, how much memory is used
is far less important than how the memory is used.

• Memory management. The size of a computational cache is bound by a prescribed value.
We cannot expand a data structure (e.g., a tree representation) infinitely. When a compu-
tational cache becomes full, we need to make room for new data. Part of the data structure
has to be either discarded if it has not been modified, or pushed down to the buffer pool
for output if it has been modified. The question is which part of the data structure should
be replaced. We certainly do not want to discard or swap out data that will be used again
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shortly. Thus, we must use a data replacement policy such as the least-recently-used (LRU)
algorithm. However, implementing such a policy at the individual data object level is prob-
lematic. First, the memory overhead of keeping track of the use patterns of all data objects
is too high. Second, data objects chosen to be swapped out may belogically unrelated.
That is, they may not be correlated either geometrically, topological, or temporally. They
are selected to be evicted from a computational cache simply because (1) they have been
modified (e.g., newly created), and (2) they qualify for the replacement criterion (e.g., least
recently used). Storing them on the samephysicaldata page would result in poor locality
of reference in the future. To solve this problem, we can organize logically-related data
objects into physical groups (i.e., contiguous regions in main memory) that can be directly
mapped to data pages, and make a replacement decision at the group level. A concrete
example illustrating the technique will be presented in the next chapter.

In short, the function of a computational cache is to provide applications with the appropriate
representations of scientific data sets. The reasoning is that the overhead of maintaining and
managing a computational cache will be far offset by the the acceleration achieved by having
applications operate on the appropriate data representations.

3.3 Translation Mechanism

In order for a computational cache to work as designed, we use atranslation mechanismto (1)
transfer data in and out of the cache in page unit, and (2) convert the data format. An efficient
translation mechanism is critical to the performance of the proposed solution.

Conceptually, a translation mechanism can be thought of as a special type of virtual memory
system. When a data access cannot be satisfied from the computational cache, a “page fault”
takes place and the translation mechanism is triggered. Similar to a virtual memory system, a
translation mechanism fetchesone pageof data at a time instead of just fetching the individual
data object that has caused the cache miss. Different from a virtual memory system, data items
are extracted from the fetched slotted page and installed into the appropriate data structure in a
computational cache rather then mapped to memory verbatim.

But we have a problem: There is no page table for us to look up. Whichone pageshould we
fetch?

To solve this problem, let us zoom out from the data page level and look at the big picture.
On one side, we have an unstructured data set whose optimal (natural) representation is partially
stored in the computational cache. On the side, we have a collection of slotted pages that store
the serialized version of the same data set. What we need is a systematic mapping between the
entire optimal representation and the slotted pages. This mapping must somehow be stored in
the database and be efficiently looked up.

A natural choice is database index structures. Because of the spatial and temporal locality
universally present in scientific data sets, we can (almost) always cluster logical (e.g., spatially
or temporally) correlated data objects on the same physical data page. For each page, we can
extract the logical property common to all data objects in the page, for example, they all fall
within a particular minimum bounding rectangle (MBR), and assign the property (the MBR) as
the key for the page. We can then use the keys to build an unclustered index, such as a B-tree or
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an R-tree, to keep track of the data pages. The index structure is the “page table” we seek. For
simplicity, we refer to such an index as apage index.

There is nothing special about a page index. The index entries are still of the form<key,
value> , wherekey represents a key (property) value common to all the data objects store on
a page andvalue is a disk page identifier. The only difference from a regular index is that
individual data objects are no longer being indexed. The granularity of the index has coarsened
to the page level. Within a data page, there is no need to sort the data objects and organize them
in order.

With a page index, we can service a computational cache miss as follows: (1) construct the
logical key for the missing object, (2) search the page index to find the data page id, and (3)
request the buffer pool manager to fetch the page.

At this point, we are half way through the translation process. The next step is to retrieve the
data items from a data page (which is already cached in the buffer pool) and convert their rep-
resentation from the tabular format to the natural format. In order to achieve good performance,
we have to resolve two issues.

• Data placement.Logically correlated data objects should be physically clustered in main
memory as they are on the slotted data pages. Not only does such clustering facilitate
mapping data objects back to disk pages, but it also improves processor cache performance
when we manipulate a logical group of data objects. To avoid losing control of where a
data object is placed in memory as is the case when calling a standard memory allocation
routine such asmalloc , we should pre-allocate large chunks of memory and manage data
placement explicitly.

• Data correlation.Just placing a data object in a right memory location is not enough. We
must further establish the correlation between the new data object with other data objects
that are already stored in a computational cache. For example, two triangles sharing an
edge should have pointers pointing to each other. We can search the existing data structure
to find out to which other data objects the new object is correlated. However, the cost (e.g.,
O(log n)) could be quite expensive. An alternative is to trade (memory) space for speed.
We can set up auxiliary fast (e.g.,O(1)) lookup data structures to speed up the association
of the new object with the existing ones.

In summary, a translation mechanism enables us to maintain a dynamically evolving optimal
data representation in a computational cache. The overhead of translation is just another price
we have to pay in order to deliver data to applications in the right format.

3.4 Related Work

The proposed database approach that uses an application-specific computational cache is the
first of its kind. Nonetheless, the core idea bears resemblance to that of several previous re-
search efforts, including, in order of relevance,architecture-conscious databases, object-oriented
databases, andexternal memory algorithms.

This section is not intended to be a detailed survey of the related work. But rather, it focuses
on the main ideas coming out of the previous work and points out the similarities and differences
between these ideas and that of the proposed solution.
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3.4.1 Architecture-conscious databases

Architecture-conscious databases [2, 3, 17, 18, 37, 38, 76] represent an exciting new research
area. The main focus is on how to exploit system (processor, cache, memory, disk) character-
istics to significantly boost the performance of traditional database workloads such as online
transaction processing (OLTP) and decision support system (DSS).

The idea of decoupling memory representation from disk page layout should be attributed to
two pioneering works in this area: thePAX modeland theClothoarchitecture. Both address the
issue of how data should be placed on disk pages and how data should be accessed in memory
and cache.

In a traditional database, an N-ary Storage Model (NSM) is used to store records one after
another on a slotted data page, as shown in Figure 3.4. The attribute values of a record are stored
together and occupy a contiguous region on disk (also in main memory and the processor cache).
When an SQL query examines the value of one attribute, other attributes of the same record are
also loaded into the processor cache. Since the other attributes are not used, they practically
pollute the cache and waste memory bandwidth.

  

Page Header RH0  Apple   $5 RH1 Orange  $6

RH2   Kiwi     $4 RH3 Lemon  $3

Figure 3.4:An NSM data page layout. For clarity, the slotted page is illustrated in a simplified
way.“RH” represents the record header, a metadata field associated with each record.

The PAX model

Recognizing this pitfall, Ailamaki and colleagues proposed an alternative data organization model
called Partition Attribute Across (PAX) [2, 3]. The key new idea is to vertically partition the
records on a page and group together all values of each attribute within the page. Figure 3.5
shows the PAX data organization for the records shown in Figure 3.4. Since attribute values are
clustered, a cache line is always loaded with attribute values from different records. Since all
of them need be accessed if a predicate (e.g., price< $5) is to be executed on the associated
attribute, the cache performance and memory bandwidth utilization become optimal. If a full
record needs to be returned, the scattered attribute values are collected and re-assembled.

Similarity. Both the PAX model and a computational cache strive to feed data to applications
in the right format to boost performance. The record assembly process of the PAX model is a
simple form of online data conversion, which mirrors the more complex translation mechanism
required by a computational cache.
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Page Header Apple  Orange  Lemon   Kiwi       

$5    $6    $4    $3  

Figure 3.5:A PAX data page layout. Attribute values of different records on the same page are
clustered together.

Difference.The PAX model stores the optimized data layout statically on disk. At runtime,
the PAX data layout is accessed by a database engine without change. In contrast, a computa-
tional cache builds an optimized data representation dynamically at runtime.

The ClothoArchitecture

Exploiting the idea originated from the PAX model, Shao and colleagues introduced a new buffer
pool and storage management architecture calledClotho [76]. The main idea is to decouple in-
memory page layout from data organization on disk to enable independent data layout design at
each level of the storage hierarchy.

At the disk storage level, data are organized intoA-pages. Similar to a PAX page, an A-page
organizes data into mini-pages that group values from the same attributes for efficient predicate
evaluation.Clothogives storage devices the freedom to place the content of an A-page on disk
in an optimal way.

In the main memory, data are re-organized intoC-pages. A C-page is similar to an A-page
in that it also has attribute values grouped into mini-pages. But unlike an A-page, a C-page
contains only values of the attributes that a query needs to access. There is no one-to-one map-
ping between A-pages and C-pages. The content in a C-page can be extracted from a number of
A-pages.

The strength of theClotho architecture is that the data page layout in memory is not tied
to the data page layout on disk. The particular in-memory page organization at an instance is
determined by the data access need of the current query. As a result,Clotho is able to efficiently
support workloads that have dynamically changing data access needs.

Similarity. The core idea of computational database system is a close cousin to that of the
Clothoarchitecture. Both advocate decoupling data representations between memory and disk.
Both support dynamic data conversion at runtime.

Differences. Although similar in concept, theClotho architecture and the computational
database framework are different in a number of major ways:

• TheClothoarchitecture targets traditional database workloads; the computational database
framework targets unstructured scientific applications.
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• In the Clotho architecture, data are converted into fixed-size C-pages, while in a com-
putational database system, data are converted and attached to a free-form optimal data
structure.

• The data conversion between A-pages and C-pages is syntactic. In essence, the operations
are a sequence of permutation and sub-setting of the original data records (tuples). The
conversion process is relatively straightforward. In contrast, the conversion in a computa-
tional database system is at the semantic level. We have to understand the logical property
such as the spatial or temporal features of a data set in order to carry out the conversion.
As a result, the translation mechanism is much more “heavy-weight” in terms of the CPU
cycles and the memory usage.

• The Clotho architecturedecouples data layoutwithin the page buffer pool. A compu-
tational database system decouples data layout in a computational cache that sitson top
of the page buffer pool. This difference exhibits the complementary nature of the two
techniques. If we combine the two together, a computational cache will be able to fetch
C-pages instead of A-pages. Interestingly, in this case, data traveling from disk to proces-
sor cache will undergo a series of non-trivial format transformations. Fortuitously, thanks
to the additional computing power available on multicore processors, the computational
overhead of data format conversion should not be a problem in the near future as long as
we can improve the overall performance of the applications.

Although different from the computational database framework in design and implementa-
tion, both the PAX model and theClothoarchitecture have provided convincing evidence show-
ing the promise of decoupled data representations. This dissertation takes a step further and
demonstrates that decoupling data representation at the semantic level can lead to new break-
through capabilities.

3.4.2 Object-oriented databases

Object-oriented databases (OODB) integrates DBMS functionality with a programming lan-
guage with the goal to eliminate impedance mismatch [44, 105]. The technical solutions are
based onpersistent programming languages[22, 73] such as persistent C++. The main fea-
tures of OODBs are: (1) variables of a persistent programming language could represent both
disk-based data and main memory data, (2) database search criteria are formulated using the
programming language constructs instead of SQL.

The main target of the OODB community is engineering applications.2 A general form of
these applications is to open a large engineering object, for example, an electronic circuit, and
then process it extensively before closing it. Such objects are read into virtual memory by a
load program. In the process of loading, pointers of the objects are converted from the disk
representations to main memory representations. When the code finishes processing the object,
the C++ data structure is linearized and stored back to disk.

Similarity. OODB’s idea of converting data between disk representation and memory rep-
resentation is similar to that of a computational database system. The translation (conversion)

2Unfortunately, all of the OODB vendors have failed [44].
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process requires an OODB to understand both the data layout on disk and the data format of the
programming language.

Difference.Different from OODBs, a computational database system converts data represen-
tation at the semantic level (translation of inherent data set structures) instead of at the syntactic
level (translation of object pointers). Not coupled with a programming language, a computa-
tional database system has the flexibility to convert data into any free-form representation that is
best for the applications.

A second difference lies in how data are loaded into memory. Instead of loading objects
upfront, a computational database system carries out on-demand data conversion at the page
granularity. Applications can work on part of the data sets that have already been stored in the
computational cache.

3.4.3 External Memory Algorithms

External memory algorithms, also known as out-of-core algorithms solve large-scale computa-
tional problems involving massive data [91, 102]. These algorithms incorporate locality directly
into the algorithm design and explicitly manage the contents of each level of the memory hi-
erarchy, thereby bypassing the virtual memory system. In practice, a large number of external
memory algorithms have been designed and implemented to solve problems ranging from N-
body simulations [70] to streamline visualization [100]. In a sense, a database system is also a
collection of external memory algorithms and data structures, which happen to have been opti-
mized for dealing with massive tabular data.

Most external memory algorithms organize data on disk a way that can optimize performance
of a particular application. Intermediary results are dumped to disk in any way an algorithm sees
fit. Neither data persistence nor query capability is a concern. Disks are used as a temporary
staging area rather than a permanent data store.

Similarity. Like a computational database system, external memory algorithms provide ap-
plication programs with optimal incore data representation, which is often far from optimal for
storage purpose. To reduce I/O costs, external memory algorithms also manage I/O explicitly.

Difference. In contrast to external memory algorithms, a computational database system
stores data in slotted pages. Runtime format translation has to be carried out to map data properly
to an optimized incore representation.

While a computational database system supports queries on data sets after computational
algorithms finish execution, external memory algorithms produce ad-hoc formatted output that
are not suitable for data queries.

Regardless of their relevances, the influence of these prior works has melted into the design
of the computational database framework one way or another. The description in this chapter
lays out a conceptual model for building real systems. In the next chapter, we demonstrate how
to turn the blueprint into the implementation of a prototype system.
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Chapter 4

Implementation

The proposed database approach looks promising, at least on paper. To turn this vision into
reality, we must address a myriad of technical challenges. The first and the most important of
all is whether the proposed database framework is feasible. In particular, what exactly should
be stored in a computational cache? How does it work? How can we translate data? What is
the overhead of data translation? And above all, can application programs run faster operating
directly on a computational cache?

These problems are addressed in this chapter and the next. As mentioned earlier, it is beyond
any reasonable expectation to have one cure-all solution. Therefore, we return to our original
problem and demonstrate the feasibility of a computational database system solution in the con-
text of Delaunay triangulation.

This chapter describes the implementation of our methodology within a a prototype system
calledAbacusthat deals with massive triangulation datasets. The abstract design principles out-
lined in the previous chapter are materialized into concrete data structures and algorithms.
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Figure 4.1:Abacus system overview.

4.1 The Abacus System Overview

The generic computational database framework we proposed is not tied to any specific scientific
datasets or applications. In order to validate its feasibility, we have instantiated it into a sys-
tem implementation calledAbacuswhose overall structure is shown in Figure 4.1. The Abacus
system 2D and 3D Delaunay triangulation datasets. It is mainly designed and implemented to
re-attack the Delaunay triangulation problem that has frustrated us in Chapter 2.

A decision has been made to implement the system from a clean slate instead of on top of
an existing database system. The benefit of building a standalone system is that we can avoid
unrelated database complexity and overhead that could interfere with the implementation and
evaluation of the computational cache and the translation mechanism. This may appear to be
against the proposed strategy of integrating a computational cache with an existing database
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system as explained in Section 3.1. But in fact, it is not. Besides the B-tree index, none of the
existing database functions are re-implemented within Abacus. Porting Abacus to an existing
system does not require rewriting modules in the current (Abacus) implementation. Besides,
since we do not go through the SQL layer of a traditional database system, we completely avoid
the impedance mismatch and thus are able to concentrate on the effectiveness of our solution
of overcoming the structural mismatch. As a result, the components shown in Figure 4.1 are
slightly different from those in the generic computational database framework. The SQL query
processing layer is not included; and the user-defined function/user-defined data type layer is
replaced with application programs.

The computational cache within the Abacus system consists of a number of optimized data
structures and algorithms. A small Application Programming Interface (API) is exported to
application programmers. For brevity, we use the termscomputational cache, Abacus computa-
tional cache, andAbacus cacheinterchangeably, all of which refer to the box captionedAbacus
Computational Cacheas shown in Figure 4.1.

We have developed a B-tree implementation instead of using the R-tree index we developed
in Chapter 2. There are two reason for this design choice. First, the worse-case search time (also
the average-case search time) of the B-tree isO(log n), while the worse-case search time of an
R-tree isO(n). Second, all existing database systems have built-in support for B-tree indices,
which is not the case for R-trees. (For example, the R-tree is not supported in the IBM DB2
Universal Database.1) The practical implication is that when we port Abacus into a full-fledged
database system, there will not be technical difficulties due to the lack of a proper index structure.

At the storage level, we have chosen to use the standard file system buffer cache to manage
fixed-size database pages. Although it has been pointed out that the OS buffer pool is not the
ideal solution for database applications [86], we use it simply for convenience. When a fully
functional database page buffer pool manager replaces the file system in the future, we expect to
the performance of the Abacus system to improve.

The rest of this chapter provides an anatomy of the Abacus system. In most of the technical
discussions that follow, we use a simple 2D triangulation described in the next section to illustrate
concepts and motivate solutions. Nevertheless, all the algorithms, data structures and techniques
have been designed and implemented for both 2D and 3D cases.

4.2 A 2D Triangulation Example

Figure 4.2 shows a simple 2D triangulation with 6 vertices, numbered from 0 to 5. A triangle is
marked byTi, wherei is a unique identifier for the triangle.

The example triangulation is embedded in a square with the origin, also called the near end
point, at(0, 0) and the far end point at(8, 8). In real-world applications, the dimension of a
problem domain is usually known beforehand. For example, the size of a turbine engine or the
geographic span of terrain map are always known. Without loss of generality, we assume an
application can specify both the near and far end points. The problem domain does not need to
be a square, though. It only has to be a rectangle, which we can always conveniently embed into

1After IBM acquired Informix, R-tree indices were supported in the IBM Informix Dynamic Server (IDS).
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Figure 4.2:A 2D triangulation embedded in a square.

a square.

4.3 Database Organization

We organize a triangulation dataset in two database tables, one for the triangles and the other for
the vertices. To facilitate the discussion, we assume the size of disk pages is 64 byte. In reality,
the size is 8 KB or 16 KB.

4.3.1 Triangle Table

A triangle table contains the triangle records of a triangulation dataset. The table has three
attributes,< vid0, vid1, vid2 >, where thevids are the ids of the three vertices of a triangle.
The triplet is stored in the counterclockwise order. It uniquely identifies a triangle and is the
primary keyof the table.

Additional attributes are often required in practice. They usually represent satellite data,
which are carried around with the primary keys. For the purpose of this thesis, we ignore these
attributes in our discussion.

The triangle table for our example triangulation is shown in Figure 4.3(a). TheTis listed
to the left of the records are for illustration purpose only. They are not stored in the triangle
table. Note that whenvid0 of a triangle is chosen,vid1 andvid2 become uniquely determined
automatically due to the counterclockwise order requirement. Note thatvid0 does not need to
be the one with the smallest vertex id. For example, triangleT4 is represented as< 5, 2, 3 >.

We store a triangle table in slotted disk pages, which we refer to as thetriangle data pages.
We assume the header field of a slotted page consumes 4 bytes. The triangle records are placed
one after another after the header field. In addition, we assume thevids are defined as 4-byte
integers. Hence, each triangle record is 12 bytes in size (i.e., 4 bytes× 3). At most 5 triangle
records can be stored in our hypothetical disk page (i.e., 64 bytes = 4 bytes (header) + 12 bytes
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vid0 vid1 vid2

0 1 2
1 3 2
0 2 4
2 5 4
5 2 3

T0

T1

T2

T3

T4

  

Header 0    1     2 1    3     2
0    2     4 2    5     4 5    2     3

(a) A triangle data. (b) Triangles on a slotted page.

Figure 4.3:The organization of a triangle table.

(triangle record)× 5). Figure 4.3(b) shows how the triangle records of the 2D example are laid
out on a slotted page. (The size of the header field is artificially enlarged for clarify.)

A digression is due to clarify how the counterclockwise order is defined for 3D tetrahedrons.
As shown in Figure 4.4, we define a tetrahedron< vid0, vid1, vid2, vid3 > to be in a counter-
clockwise order if curling our right-hand palm along the plane of the first three vertices results
in the thumb pointing to the fourth vertex.

  

vid3

vid0

vid1

vid2

Figure 4.4:A tetrahedron in the counterclockwise order.

4.3.2 Triangle B-tree Page Index

In order to keep track of the triangles stored in the triangle table, we build a B-tree index. How-
ever, we do not use the primary keys (< vid0, vid1, vid2 >) to index individual triangles. In-
stead, we use a technique calledlocational codesto index triangles one data page at a time. We
refer to the B-tree index as thetriangle B-tree page index. Roughly speaking, a locational code
encodes the common spatial properties of the triangles stored in a data page.

Since the construction of a locational code is closely related to how we group triangles to-
gether in memory, we defer the discussion on how to compute a locational code for a triangle
data page to Section 4.8.3.
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vid x y
0 0.6 1.8
1 2.2 0.8
2 2.9 3.4
3 5.8 1.6
4 0.4 4.6
5 5.6 7.2

  

Page 0

Page 1

Header 0      0.6     1.8  1
2.2         0.8 2      2.9       3.4

Header 3      5.8     1.6  4
0.4        4.6 5      5.6       7.2

(a) A vertex data. (b) Vertices on 2 slotted page.

Figure 4.5:The organization of a vertex table.

4.3.3 Vertex Table

A vertex table contains the vertex records of a triangulation. The table has three attributes,
< vid, x, y >, where thevid is the id of the vertex,x andy are the coordinate of the vertex. The
vid attribute is the primary key.

Figure 4.5 shows the vertex table for our example. The vertex table is also stored in slotted
disk pages, which we refer to as thevertex data pages. We assume the coordinates of a vertex
are 8-byte doubles. The size of each vertex record is 20 bytes (i.e., 4 bytes (vid) + 8 bytes
(coordinate)× 2). Using the same disk page size of 64 bytes and the same header fields size, we
can place at maximum 3 vertex records on a disk page ((i.e., 64 bytes = 4 bytes (header) + 20
bytes (vertex record)× 3). Figure 4.5(b) shows how the vertex records of the example are laid
out on two slotted pages.

Note that when we store the vertex records in a slotted page, we do place them one after
another according to an ascending vertex id order. There is no such requirement when we store
triangle records.

4.3.4 Vertex B-tree Page Index

We use a second B-tree to manage vertices in a vertex table. Again, we do not index individual
vertices but index the vertex data pages. The key assigned to a vertex data page is the vertex id
of the first record on that page, which is also the smallest vertex id on the page. We refer to the
B-tree as thevertex B-tree page index.

Although using a different key for indexing purpose, the vertex B-tree page index is similar
to the triangle B-tree page index in that both return one data page at a time instead of individual
data objects. As such, we are able to prefetch data objects on the same data page where the target
object (i.e., the one we are looking for) is stored and amortize the cost (i.e.,O(log n) per search)
of searching B-trees.

Figure 4.6 summarizes the four different database structures we have introduced. Each struc-
ture is stored in a separate regular file.
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Triangle table Slotted data pages storing triangle records
Triangle B-tree page indexA B-tree index managing triangle data pages
Vertex table Slotted data pages storing vertex records
Vertex B-tree page index A B-tree index managing vertex data pages

Figure 4.6:Summary of database structures for storing a triangulation dataset.

4.4 Data Structures in the Computational Cache

From an application’s perspective, the natural representation of a triangulation dataset is one that
supports efficient traversal of the topological structure. That is, moving from one triangle to
another across a shared edge. In practice, there are two popular data structures that effectively
represent the topological structure of a triangulation: thequad-edgedata structure [35] proposed
by Guibas and Stolfi, and thetriangle-baseddata structure [79] proposed by Shewchuk. Between
the two, the triangle-based structure is more memory efficient and is the one we choose use in
Abacus. We refer to it as theAbacus triangle structure.

Figure 4.7 shows how triangleT0 is represented within the Abacus triangle structure. A
piece of memory calledsimplex entryis allocated forT0. The entry records three pointers to
neighboring triangles,T1, T2, and NULL as there is no neighboring triangle sharing edge(0, 1),
and three pointers to the vertices,0, 1, 2, which are allocated elsewhere within the Abacus cache.

  

0

2

1

T0 T1

T2

NULL

Figure 4.7:The Abacus triangle structure of T0.

This section lists that data structures for the different geometry entities (vertices, triangles,
and edges) within the Abacus cache. The next section explains how we manage these data
structures.

4.4.1 Vertex Heap

When a vertex record is fetched from the database, it is converted into a slightly different form.
Besides the vertex id and the coordinate, a reference count is associated with the vertex, which
records how manycachedtriangles share the vertex.

To distinguish the two different representations, we refer to the records in the database as the
out-of-core records(even though they may have been cached in the buffer cache) and the records
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T4
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vid x y
5 5.6 7.2

NULL
1 2.2 0.8

4 0.4 4.6

3 5.8 1.6

0 0.6 1.8
2 2.9 3.4

refs
2

2

2

2
5

2

first_free

(a) The example triangulation. (b) A vertex heap layout.

Figure 4.8: Incore vertex records stored in a vertex heap. We assume the five triangles
shown in (a) are all cached in the Abacus cache.

within the Abacus cache as theincore records. The same convention is used when we discuss
triangle representations.

An incore vertex record is placed on a heap that is allocated at initialization time, that is, at
the time an Abacus database is opened (see Section 4.11). The size of the heap is prescribed and
does not change over time. We call the heap thevertex heap. It consists an array of entries for
storing incore vertex records. When incore vertex records are placed on the heap, they are not
necessarily clustered in a contiguous region. Unused entries may be scattered across the array.
They are managed by a linked list. The pointers used by the linked list are directly installed
inside the unused entries.

Figure 4.8(b) shows how the vertices of our example triangulation are stored in a vertex heap
with 10 entries. For convenience of reference, the original example is replicated in Figure 4.8(a).
We assume all the 5 triangles,T0, T1, T2, T3, T4, are already cached in the Abacus cache. The
reference count (refs ) show how many incore triangle records share a vertex, not how many
edges are incident to the vertex. For example, vertex2 has a reference count of 5 since all the
triangles share it. Thefirst free pointer in the figure points to the head of the unused entry
list.

4.4.2 Vertex Hash Table

When a new triangle is generated or loaded into the computational cache, we need to know if
its vertices have been cached in the vertex heap, and if so, the memory address of the cached
vertices (so that we can construct the Abacus triangle structure). Because the heap is a slow
search structure (O(n) per search), we build a hash table called thevertex hash tableto keep
track of the incore vertex records.

The size of the vertex hash table is prescribed at initialization time. We use a division method
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to index into the table and use a doubly-linked overflow chain to manage collision. Each hash
entry contains a pointer an incore vertex record.

To avoid the pitfalls of the division method (i.e., not all the bits of a key are used), we
scramble a vertex id first before using as a search key. As a secondary optimization, we set the
hash table size to a power of 2 and use a bit-mask to extract the lower-order bits of the scrambled
keys to avoid division operations.

Figure 4.9 shows how the incore vertex records are tracked by a hash table of size 4. Note
that we do not use the vertex ids as keys directly. The keys are the output of a deterministic
scrambling process. Hence, vertex0 and2 are hashed into the same slot.

  

vid x y
5 5.6 7.2

1 2.2 0.8

4 0.4 4.6

3 5.8 1.6

0 0.6 1.8
2 2.9 3.4

refs
2

2

2

2
5

2

Vertex heapVertex hash table

5

1

4

0

Slot

2

Figure 4.9:A vertex hash table tracking incore vertex records. The free entry list within the
vertex heap is omitted.

4.4.3 Simplex Blocks

The counterparts of the database triangle data pages inside the Abacus cache are thesimplex
blocks, although the triangle representations of the two are vastly different.

The number of simplex blocks is also determined at initialization time and does not change
afterwards. A simplex block is organized in the same way as the vertex heap. The number of
simplex entriesin a simplex block equals to the maximum number of triangle records that can
fit in a triangle data page. Each entry holds one incore triangle record with 6 pointers. Three of
the pointers point at the vertex hash entries that correspond to the vertices of the triangle. The
other three point at neighboring triangles. If a neighbor is not cached, the corresponding pointer
is NULL. A neighbor triangle may be stored in another simplex block and it is all right to have
cross simplex block pointers.

Figure 4.10 shows how the 5 triangles of our example are cached in one simplex block. To
clarity, the pointers of the incore triangle records are not shown in the figure. The ordering of
triangles within the simplex block is deliberately shuffled. There is no correspondence between
where an out-of-core triangle record is stored in a slotted page and where an incore triangle
record is stored in a simplex block. Note that we reserve a small amount of memory at the
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beginning of each simplex block to store meta data, which record the number of free entries and
other control information.

  

T1

T4

T2

T0

T3

An allocated simplex block Free simplex blocks

Free  
block

meta

Figure 4.10:Storing incore triangle records in a simplex block. There are actually pointers
pointing to one another within the simplex block. However, for clarity, those pointers are not
drawn. The meta field is a small chunk of memory reserved for meta data.

The main use of simplex blocks is to group spatially close triangles together in contiguous
memory address space. Section 4.5.2 explains how to assign a triangle to an appropriate simplex
block.

4.4.4 Edge Hash Table

We use a hash table callededge hash tableto keep track ofvisible edges. An edge is said to
be visible if there is only one incore triangle that uses the edge. The other triangle sharing the
same edge is either on disk or non-existent (for example, a convex hull edge is only used by one
triangle). The edge hash table provides a fast means for a newly loaded or created triangle to find
its neighbors and set pointers to them.

An edge hash entry has three fields(vid0, vid1, ptr triangle). Thevid0 andvid1 fields
record the vertex ids of the end points of the edge. We require that< vid0, vid1 > be an ordered
pair such thatvid0 < vid1. Theptr triangle field points to the triangle that shares the edge.

Figure 4.11(b) shows how the status of an edge hash table after the 5 triangles of our example
are loaded into a simplex blocks. We assume the size of the hash table is 4. Note that edges
shared by two triangles, for example, edge (2,5) and (2,4), are not hashed. Only the ones on the
convex hull are hashed.

In summary, the data structures described so far are collectively known as the Abacus trian-
gle structure. The individual components and their usage are listed in Figure 4.12. The most
important among these is the simplex blocks. The data structures for storing vertices and edges
are updated as a result of changes in the simplex blocks.

4.5 Computational Cache Memory Management

This section provides an overview of how we use the various data structures to allocate and
deallocate vertices, triangles, and edges, respectively.
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Simplex block
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0,1

Slot

0,4

Edge hash table

(a) The example triangulation. (b) An edge hash table.

Figure 4.11:Edge hash table tracking edges used by only one triangles.

Vertex heap A heap storing incore vertex records
Vertex hash table A hash table keeping track of cached vertex records
Simplex blocks Fixed-size blocks storing incore triangle records
Edge hash table A hash table keeping track of visible edges

Figure 4.12:Summary of the Abacus triangle structure.

4.5.1 Vertex Memory Management

New incore vertices are allocated from from the vertex heap. If there are free entries left on the
heap, that is, thefirst free pointer in Figure 4.8(b) is not NULL, the entry pointed at by
first free is returned and the free entry list is updated accordingly. If there are no more free
entries, we go through the entire vertex hash table and check each entry’s reference count. If the
reference count is 0, the vertex heap entry is freed and its associated hash entry is also deleted.
After all the hash entries are checked, we either acquire a vertex record entry and proceed or fail
to reclaim any memory and have to exit with an out-of-memory error.

Incore vertex records are deleted from the heap indirectly. When a incore triangle record
is deleted, either because the triangle is to be swapped to disk or the triangle is deleted, the
reference counts of its three vertices decrement by 1. When the reference count of a vertex drops
to 0, the incore vertex record is deleted from the heap and the corresponding hash entry removed.

It may appear strange that how there could be vertex records with reference count 0 existing
on the heap while we have a policy to reclaim memory whenever the reference count drops to 0.
The existence of such vertex records is due to the effect of prefetching, which will be explained
in Section 4.7.

Figure 4.13 shows that a new triangleT5 (6,5,3) is added into the Abacus cache. The details
of how the triangle is inserted is explained the next section. For the time being, let us just focus
on the operations in the vertex heap and vertex hash table. Figure 4.14 shows the updated vertex
heap and vertex hash table. The vertex 6 is allocated the entry pointed at by thefirst free
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pointer as shown in Figure 4.8(b). Its reference count is set to 1 since onlyT5 uses it. A new hash
entry is created and in vertex hash table and linked into the overflow chain. Note the reference
counts of vertex 3 and 5 increment by 1, respectively, as there is now one more triangle sharing
them.

  (0,0)

(8,8)

0
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1
3

4
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T0 T1

T2

T4

T3

6

T5

Figure 4.13:Adding a new triangle into the Abacus cache.
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Figure 4.14:Updated vertex heap and vertex hash table.

4.5.2 Simplex Memory Management

The design goal of simplex blocks is to cluster spatially close triangles together in contiguous
physical memory. There are two major advantages if the goal can be achieved. First, applications
operating on a triangulation dataset, such as Delaunay triangulation and iso-contour extraction,
exhibit strong spatial and temporal locality of reference. They tend to operate in a small region
of the triangulation intensely for a short period of time and then move to the next (nearby) region.
By clustering spatially close triangles in contiguous physical memory, we can make better use of
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the processor cache. Second, when we map a simplex block to a triangle data page, there is no
need to chasing pointers in the memory. All the triangles that need to be swapped out are stored
in the same simplex block.

The questions are, (1) How can we group spatially close in the same simplex block? (2) How
do we split the data when a simplex block becomes full? and (3) What should we do if all the
simplex blocks are used up?

Our solution is to overlay an an octree on top of the Abacus triangle structure and use the
octree as a memory management tool.

Octree Structure

An octree recursively subdivides a 3D problem domain into 8 equal size octants until certain cri-
terion is satisfied.2 We can interpret an octree in two equivalent ways: thedomain representation
and thetree representation. A domainis a Cartesian coordinate space that consists of a uniform
grid of 2n × 2n indivisiblepixels, that is, the smallest octant representable. Figure 4.15(a) shows
a domain representation of an octree decomposition of a domain of24 × 24. The uniform grid in
the background consists of the pixels of the domain. The equivalent tree representation is shown
in Figure 4.15(b). Theroot octantspanning the entire domain is defined to be at level 0. Each
child octant is one level lower than its parent and is half as large (in edge size). Each tree edge
in Figure 4.15(b) is labeled with adirectional codethat distinguishes the children of each parent
octant. Figure 4.16 shows the interpretation of the directional code in the context of the domain
representation.
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: Interior octant : Leaf octant

(a) Domain representation. (b) Tree representation.

Figure 4.15:Octree decomposition. Note that the interior octants a, d, f are not shown in
the domain representation, which contains only leaf octants.

In the rest of this chapter, we will use the directional code to refer to the four sibling octants,
with (00) representing the octant in the left-lower corner, (01) the octant in the right-lower corner,

2We use a 2D quadtree to illustrates the concepts.
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10 11

Figure 4.16:Two-bit encoding of a directional code.

(10) the octant in the left-upper corner, and (11) the octant right-upper corner. This ordering is
the same as the left to right ordering as the siblings are laid out in the tree representation.

How to Group Spatially Close Triangles in the Same Simplex Block?

We determine the closeness of triangles using a simple criterion: Triangles whosecentroidsfall
within the same leaf octant in an octree are regarded as spatially close to one another. The
centroid (C) of a triangle4abc is defined as follows.

Cx =
ax + bx + cx

3
(4.1)

Cy =
ay + by + cy

3
(4.2)

A centroid is the geometry center of a triangle, which gives some indication of where a triangle is
in the domain. As stated in Section 4.2, we always embed a problem domain into a square region,
which can be mapped to a root octant. Hence, the centroid ofany triangle consisted of vertices
from within the domain must fall inside the root octant. In contrast, as shown in Figure 4.17,
the circumcenter of a triangle may be far way from where a triangle is and could be outside of
a pre-defined domain. A centroid is also fast to compute. In contrast, computing circumcenters
requires evaluation of non-trivial determinants as shown in Equation 2.1 and 2.2.

Since we make use of the octree structure to aggregate spatially close triangles, it is a natural
choice for us to use the leaf octants to manage the simplex blocks. Initially, all simplex block are
marked as free. At runtime, simplex blocks are dynamically assigned to leaf octants. Each leaf
octant can be assigned one simplex block at most. A pointer is installed in a leaf octant to point
to the simplex block it manages. Conversely, a pointer is installed in a simplex block meta data
field to point to its assigned leaf octant.

To allocate space for a new incore triangle, we compute its centroid and search the octree to
find the enclosing leaf octant. If the simplex block associated with the enclosing leaf octant has
free entries, we allocate an entry for the new triangle. Otherwise, we split the simplex block as
will explained next.

56



  

Centroid of ∆abc 

Circumcenter of ∆abc
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Figure 4.17:The position of the centroid of 4abc vs. that of the circumcenter.
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(a) The original example. (b) The root (leaf) octant manages a simplex block.

Figure 4.18:Managing simplex blocks using leaf octants.

Figure 4.18(a) shows the original triangulation (without the addition of the new triangleT5).
We map the domain (from (0,0) to (8,8)) to the root octant, which is also the sole octant of the
octree shown in Figure 4.18(b).

How to Split a Full Simplex Block?

Let us study the case of inserting a new triangleT5 (as shown in Figure 4.13) into the Abacus
triangle structure. We first compute the centroid ofT5 and search the octree. Since there is only
one octant, the root. We arrive at a leaf octant trivially. Examining the simplex block associated
with the leaf octant, we find there are no more free simplex entries available. Recall that the
capacity of a simplex block equals to that of a triangle data page, which, in our simple example,
is equal to 5. At this point, we must split the full simplex block and grow the octree properly. By
“splitting”, we mean allocating new simplex block(s) and distributing the incore triangle records
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across the old and new simplex blocks.
Octree structural change requires a leaf octant be split into 4 children in 2D and 8 in 3D.

However, if we allocate 3 new simplex blocks and assign them along with the old (splitting)
simplex block to the 4 new children octant, we make a one-to-four split, which results in an
average memory and disk utilization rate of 25% if the triangles are uniformly distributed in the
domain. Worse, if the distribution is extremely skewed, we may end up with a large number of
almost empty simplex blocks. Not only are the memory space and bandwidth wasted, but the
disk space and I/O bandwidth are wasted since we need to map simplex blocks to triangle data
pages.

To avoid this pitfall, we emulate the one-to-two split method used in the B-tree. We organize
the new children octant in two groups such thatthe centroidsof the triangles stored in the full
simplex block are distributed (roughly) evenly between the two groups. Each group is assigned
a simplex block that is shared among the siblings of the group. The incore triangle records are
then physically re-distributed between the two simplex blocks. As such, we improve the memory
and disk utilization rate (immediately after a split) to50%.

For reasons to be explained Section 4.10, we require that a split must be placed along the
directional code ordering of the children, that is, a cut is made somewhere between the leftmost
child and the rightmost child. Figure 4.19 shows 3 possible scenarios in 2D.

  
00 01

1110
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1110

  
00 01

1110

(a) (00), (01, 10, 11). (b) (00, 01), (10, 11). (c) (00, 01, 10), (11).

Figure 4.19:Three scenarios of splitting 4 children leaf octants into 2 groups. We have
three choices along the sequence (00, 01, 10, 11).

When a group contains only one octant, the octant has exclusive use of a simplex block.
Triangles whose centroids fall inside the octant are distributed to the exclusive simplex block.

When a group contains multiple sibling octants, the group share a simplex block. The first
sibling sets a pointer to the shared simplex block; other siblings set pointers to the first sibling
and access the shared simplex block indirectly. Triangles whose centroids fall inside any of the
octants of the group are distributed to the shared simplex block.

Figure 4.20 shows how the centroids of the 5 triangles of our example triangulation are dis-
tributed among the children of the root octant. The centroids are marked as four-pointed stars
in the figure. Since the centroids ofT0, T1, T2 are distributed inside the first child (00) and the
two remaining centroids ofT3, T4 are distributed inside the other children, we split the children
according to scenario (a) of Figure 4.19.
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Figure 4.20:Centroid distribution of existing triangles among the children octants of the
root.

Figure 4.21 illustrates the result of the splitting. The old (splitting) simplex block is trans-
ferred from the root octant to the first child (00). A new simplex block is allocated and associated
with the first sibling (01) of the second group. The other sibling of the group, (10) and (11), set
their pointers to the first sibling (00). The existing 5 triangles are physically re-distributed be-
tween the simplex blocks based on where their centroids fall.
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Figure 4.21:Result of splitting a simplex block.

After the split is completed, the insertion of the new triangleT5 proceeds as normal. We
search the octree from the root and traverse down to the leaf octant (01), which encloses the
centroid ofT5 as shown in Figure 4.22. Then we allocate a simplex entry from the simplex block
associated with the octant and initialize the incore triangle record forT5. The result of the Abacus
cache is illustrated Figure 4.23.
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Figure 4.22:Centroid distribution of all triangles (including T5 among the children octants
of the root.

In cases when a new triangle’s centroid falls inside an octant that is not the first sibling of the
group, for example, a centroid falls inside octant (10), we follow the pointer to the first sibling
(01) and find the simplex block indirectly.
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Figure 4.23:Result of inserting T5.

A problem we have conveniently sidestepped is what if the distribution is extremely skewed.
The centroid of the triangles in a full simplex block all fall inside one child octant. Figure 4.24
shows an example. Let us assume trianglesT0, T1, T2, T3 andT4 are already cached in a simplex
block and we try to insert a new triangle,T5. All the centroids, including the new triangle’s, fall
inside the first child (00) of the root. Using the one-to-two split algorithm just described, we get
a full simplex block associated with the first group (00) and anemptysimplex block associated
with the second group (01, 10, 11). When we attempt to insertT5 again, we run into the same
full simplex block and have to split it again.
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Figure 4.24:All centroids fall inside one child octant.

To avoid wasting simplex blocks and to ensure a split operation always effective (i.e., new
simplex entries always become available after a split), we perform asingular splitfor the extreme
cases as the one shown in the previous example.

In a singular split, a leaf octant is still split into 4 children octant. Except for the child that
contains all the centroids, all the children are marked asphantom octantsand are not associated
with any simplex blocks, either directly or indirectly.3 The phantom octant, however, do exist
in the octree structure. The fully packed child is split recursively until a one-to-two split is
performed, that is, until a new simplex block is finally allocated. Figure 4.25 shows the result of
the singular split. In practice, when a vertex set is reasonably distributed in the space, singular
splits occur rarely.

How to Evict Old Simplex Blocks?

After a sufficiently large number of splits, the free simplex blocks will be all used up. If we need
to add more triangles into the Abacus cache, we must make room for the newcomers.

We implement a replacement policy by maintaining an LRU list as a doubly-linked list at the
octree leaf level. Only leaf octants that have direct association with simplex blocks are linked in
the list.

When a triangle is manipulated, we use its memory address to calculate which simplex block
it belongs to. Using the pointer stored in the meta data field of the hosting simplex block, we
trace back to the leaf octant and move it to the end of the LRU list. That is, the leaf octant
becomes the most recently used.

When we use up all available simplex blocks and need a new one, simplex blocks associ-
ated with the leaf octants at the head of the LRU list are chosen for eviction. In the current
implementation, we evict 10% of the least recently used simplex blocks at a time.

3The reason these octants are referred to asphantomis that there are no triangle data pages on disk associated
with such octants.
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Figure 4.25:The result of a singular split.

This scheme works well thanks to the locality of references by applications. When a triangle
is manipulated, a large number of its neighboring triangles in the same simplex block are also
likely be manipulated. Hence, we can use the access pattern of a leaf octant to approximates
the collective access pattern of the triangles stored in the simplex block associated with the leaf
octant.

In summary, we make use of an octree structure to (1) choose which simplex block should be
used to store a particular triangle, (2) perform one-to-two splits of full simplex blocks, and (3)
evict simplex blocks that contain the least recently used triangles.

4.5.3 Edge Memory Management

The management of the edge hash table is quite straightforward. When an edge shows up for
the first time, we inserted it into the edge hash table; when it shows up for the second time, we
remove it from the edge hash table after we retrieve the information stored in the hash entry.

For example, when we try to insert a new triangleT5 in the Abacus cache as shown in Fig-
ure 4.13, we search in the edge hash table for edges (3,5), (3,6), and (3,5), respectively. The
status of the edge hash table is shown in Figure 4.11(b). The first two searches result in misses,
which means that the edges are seen for the first time in the Abacus cache and we should install
them into the edge hash table. The third search, the one for edge (3,5), results in a hit. The hash
entry points to triangleT4. The address is copied into the new incore triangle record forT5 as a
pointer to the neighbor that shares edge (3,5). We then follow the pointer to access the incore
record forT4 and modify one of its neighbor pointers to point toT5. Thus, we are able to use the
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edge hash table to establish correlation between a new triangle and existing triangles. Once the
correlation is established, the hash entry for edge (3,5) is deleted from the hash table.

Figure 4.26(b) shows the result of the updated edge hash table after triangleT5 (6,5,3) is
inserted into the Abacus cache. Note that the original simplex block shown in Figure 4.11(b) has
now been split into two blocks, as illustrated in Figure 4.23. Two new hash entries are created
for edge (3,5) and (5,6), respectively. Both point to the new triangleT5. The hash entry for edge
(3,5) is deleted.
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(a) Addition ofT5. (b) Result of the updated edge hash table.

Figure 4.26:State of the edge hash table after T5 is inserted into the Abacus cache.

Note that all the edges ofT4 have become invisible. None of the edge hash entries points
to T4. This is becauseT4 has become aninterior cached triangle, surrounded by other cached
triangles (T1, T3 andT5). When we operate on a large chunk of spatially clustered triangles in the
Abacus cache, most triangles are interior. Only those on the boundary contribute visible edge to
the edge hash table.

By now, it should become clear that we do not need to keep track ofall the edges of cached
triangles, but only those that are at the interface between the Abacus triangle structure in memory
and the triangulation database on disk.

4.6 Correlation of the Data Structures

The data structures we have presented so far are correlated in an organic way. Figure 4.27
illustrates the correlation visually. The vertex database, consisting of a vertex table and a vertex
B-tree page index, maps to the vertex heap and vertex hash table inside the Abacus cache. The
simplex database, consisting of a triangle table and a triangle B-tree page index, associates with
the simplex blocks and the octree structure within the Abacus cache. The edge hash table inside
the Abacus cache does not have a counterpart in the database. It serves as a glue that ties newly
arrived database triangles with existing cached triangles. Inside the Abacus cache, the different
data structures are also tightly correlated with one another, with the simplex blocks and the octree
being the centerpiece.
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Figure 4.27:Correlation of the data structures.

Note the one-way arrow between the vertex database and the vertex heap and vertex hash
table. In our current implementation, the vertex database is accessed read-only by the Abacus
cache. The construction of the vertex table and the B-tree index is a separate process and does
not make use of the Abacus cache. It usually involves staging the vertices in a certain way to
optimize loading vertices into the Abacus cache. Section 4.12.2 explains how we stage a vertex
set for constructing a Delaunay triangulation from scratch.

In the following sections, we describe (1) how to load vertices from the vertex database into
the Abacus cache, (2) how to store triangles from the Abacus cache to the triangle database, and
(3) how to load triangles from the triangle database into the Abacus cache.

For clarity, we add the termdatabasebefore data structures that are associated with the
databases. For example,database vertex table. Similarly, we add the termAbacusbefore data
structures within the Abacus cache. For example,Abacus vertex hash table. Otherwise, confu-
sion might arise since both are “tables”.

4.7 Loading Vertices into the Computational Cache

When we cannot find a vertex in the Abacus vertex hash table, a cache miss takes place and we
must load the vertex into the Abacus cache. Instead of merely fetching the single missing vertex,
our strategy is to prefetch all the vertices stored on the same vertex data page as the missing
vertex.

We use the id of the missing vertex to search the database vertex B-tree page index. The
result we get is the identifier (e.g., page number) of the database vertex data page that contains
the missing vertex. We make a read request to the file system to fetch the page. If the page
is already cached in the file buffer cache, it is returned immediately. Otherwise, a disk read
operation is performed.
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After we obtain a handle to the buffered page, we go throughall the vertex records in the
page one by one. For each record, we search the Abacus vertex hash table to check if it has been
cached already. If so, we ignore the record. Otherwise, we allocate an entry on the Abacus vertex
heap to cache the record and set its the reference count to 0. We also create a new Abacus vertex
hash entry to keep track of the new incore vertex record.

The benefit of prefetching vertices is that we can amortize the cost of fetching a page, which
include a B-tree search and, potentially, a disk read. The hope is that most of the vertices thus
cached will soon be accessed.

However, some of the prefetched vertices might never be used. The reference counts of their
incore vertex records will alwaysremain to be 0. Therefore, these records will not be evicted
voluntarilysince their reference counts neverdropsto 0.

Our solution is to let them linger on the vertex heap. When all the heap memory is used up,
we conduct a sweep and reclaim memory occupied by entries whose reference counts are 0 (See
Section 4.5.1).

4.8 Linear Octree and Proximity Search

The key bridge between the triangle database and the Abacus triangle structure is a technique
calledlinear octree[31, 71, 72]. Therefore, before describing how to exchange triangles between
the Abacus cache and the database, we highlight the features of linear octrees and explain how
to make use of them to conduct proximity searches in a triangle database.

The basic idea of the linear octree is to encode each leaf octant by a key called theloca-
tional codethat uniquely identifies the octant. There are two different types of locational codes:
variable-length and fixed-length. Conceptually, both schemes derive the locational code for an
octant by concatenating the directional codes on the path from the root to some target octant. We
refer to these concatenated bits as thepath information. The difference between the two schemes
lies in the number of bits used to encode the path information.
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Figure 4.28:Variable-length locational codes. Concatenate the directional codes on the path
from the root to the target octant.
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Figure 4.29:Computing a locational code by interleaving the bits of the coordinate.

In the variable-length scheme, leaf octants at different levels use a different number of bits
to encode their path information. For example, in Figure 4.28, the path information for octantk
is 1010, while path information for octantg is 100100. Since the path information can uniquely
identify an octant, the variable-length scheme actually uses the path information directly as the
locational code for an octant.

In contrast, the fixed-length scheme uses the same number of bits to encode the path in-
formation for all leaves. Obviously, the number of bits should be sufficient to encode the leaf
octant at the maximum allowable level. For octants at higher levels, zeroes are padded to extend
the path information to the specified length. For example, the maximum allowable level of the
octree in Figure 4.15 is four. Thus the fixed-length path information for octantk is 10100000,
with the trailing four zeroes padded to its variable-length counterpart. Similarly, octantg has a
fixed-length path information of10010000.

We adopt the fixed-length scheme because the locational codes thus constructed can be
treated as fixed length byte strings, which is a requirement for indexing by a B-tree. For brevity,
we will use the termlocational codeto refer to the fixed-length locational code.

4.8.1 Computing Locational Codes

The concatenation method just described is a conceptual model. In practice, we compute the
locational codes by interleaving the bits of the coordinates of the left-lower corner pixel of an
octant [93]. Figure 4.8.2(b) illustrates how to compute the locational code for octanth. (Fig-
ure 4.8.2(b) is a replication of Figure 4.15(a) for convenience of reference.)

4.8.2 Locating An Octant Without Knowing Its Locational Code

A useful property of the locational code is that the ordering of leaf octants based on their loca-
tional code is exactly the preorder traversal of the octree [93].
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Figure 4.30:Finding a leaf octant without knowing its exact locational code.

We make use of this property to locate an octant using the locational code of any pixels
that fall inside the octant. For example, suppose we have a query pixel that is enclosed by
octanth as shown in Figure 4.30(a). Let us hypothetically expand the enclosing leaf octanth
to the maximum allowable level of the octree (which is 4 in the24 × 24 domain) as shown in
Figure 4.30(b). A preorder traversal guarantees that (1) The subtree root be visited before any
descendants, and (2) The traversal of a subtree be completed before processing the next subtree.

Generally, if two leaf octants, sayh andi, are next to each other in the ascending locational
code order, the locational code ofany pixel withinh must also be strictly less than that ofany
pixel within i. This is because all the pixels withinh belong to the subtree rooted ath and all
the pixels withini belong to the subtree rooted ati. In a preorder traversal, all descendants ofh
come before those ofi, given the assumption thath comes beforei.

We can exploit this property to find an octant without knowing itsexact locational code.
It works as follows. We build a B-tree that indexes the locational codes of octants. Given an
arbitrary query pixel in the domain, we can compute its locational code by interleaving its integer
coordinates, as explained in the Figure . We use the locational code as a search key to query the
B-tree. Instead of returning an exact match, we modify the search routine slightly and return the
key that is the maximum among all the index keys that are less than the search key. The key
returned is the locational code of the octant that encloses query pixel. In other words, we can
use a B-tree to find an octant by specifying the locational codes ofanypixels that fall inside the
octant.

We make use of this capability to conduct proximity search into the triangle database.

4.8.3 Proximity Search

Now we explain how to compute the keys for the triangle B-tree index, an issue that we have
deferred in Section 4.3.2.
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Since the simplex block managed by a leaf octant maps to a triangle data page, we use the
locational code of the leaf octant as a key to index the triangle data page in the triangle B-tree.

If a simplex block is associated with only one octant, for example leaf octant (00) in Fig-
ure 4.21, we use the locational code of the octant directly. If a simplex block is associated with
a group of sibling octants, for example, leaf octants (01, 10, 11) in Figure 4.21, we use the
locational code of the first sibling (01) as the key.

Figure 4.31 shows the distribution of a number of centroids within four octants. The circles,
diamonds, four-stared points, and triangular tick marks are the centroids of the triangles. The
triangles themselves are not shown explicitly. The centroids should be thought of as pixels within
the octants. Because the locational code of an octant is computed by interleaving the pixel at its
left lower corner, we mark them explicitly asfirst pixel i in the figure.

  
First_pixel_0 First_pixel_1

First_pixel_2 First_pixel_3

Figure 4.31:Centroids of triangles scattered in 4 octants. The black square box in the left
lower corner of each octant represents the first pixel with that octant.

The result of indexing the locational codes of the octants (i.e., thefirst pixel i) is shown
in Figure 4.32. It can be seen that triangles spatially close to one another (within the same
octant) are placed in the same triangle data page. When we project the locational codes of the
their centroids onto to the search key space (shown as an axis at the bottom of the figure), they
are strictly in between twofirst pixels.

Now consider an arbitrary query point within the four octants. Using the modified B-tree
search technique described in the previous subsection, we find an index entry whose correspond-
ing octant encloses the query point. Thepage id field of the index entry points to a triangle data
page that contains triangles whose centroids are enclosed by the same octant. The triangles we
find are spatially close to the query point.

The beauty of this scheme is that we are able to conduct proximity search without the knowl-
edge of how the triangles are distributed in space. We can query the domain using any coordi-
nate. The triangle B-tree index will guide us to the region (a triangle data page) where we can
find nearby triangles.

In summary, by using the locational codes to index triangle data pages, we are able to use a
scalar B-tree to search the vector space of a triangulation that is stored in a database.
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Figure 4.32:The partition of the locational code space.

4.9 Storing Triangles to the Database

As described in Section 4.5.2, we use a doubly-linked LRU list at the leaf level of the octree to
keep track of the simplex block usage. When we run out free simplex blocks and need to allocate
a new, we evict the simplex blocks associated with the leaf octants that are at the head of the
LRU list. If a simplex block to be evicted has never been modified, that is, no triangles have
been inserted into or deleted from the simplex block, we discard the content in simplex block
and mark it as free immediately. Otherwise, we have to store the triangles in the simplex block
to a database triangle data page. (Recall that each simplex block maps to a triangle data page.)

Mapping a (modified) simplex block to a triangle data page is a three-step procedure:
1. Obtaining a new triangle data page

2. Converting the triangles from the Abacus internal representation to the database format

3. Creating an index entry in the database triangle B-tree to keep track of the data page
The first step is straightforward in our current implementation. We use a linked list to keep

track of triangle data pages that are freed (deallocated) and allocate new pages from the the list if
there are pages available. Otherwise, we allocate a new data page at the end of the triangle table
file.

The second step goes through the entries of the simplex block. For each entry (i.e., an incore
triangle record with 6 pointers), we create a new item on the target slotted data page and then
delete the entry. Various Abacus data structures are updated accordingly.

The last step adds an index entry into the database triangle B-tree page index to keep track
of the new data page. The key we use to index a triangle data page is the locational code of the
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octant that is associated with the simplex block that is being swapped out. If multiple octants are
associated with the simplex block, the locational code of the first sibling is used.

4.10 Loading Triangles into the Computational Cache

The inverse operation of storing triangles to the database is loading triangles from the database
into the Abacus cache.

If we know all the vertex ids of a triangle, we retrieve the coordinates and compute the
triangle’s centroid. Then we can search the database triangle B-tree using the locational code of
the centroid (as a pixel). The query result is an index entry pointing to a triangle data page that
contains the target triangle we need.

However, in most cases we do not knowall the vertex ids of a triangle and cannot use the
simple procedure just described. In a typical application, for example, casting a ray through
a triangulation, the basic operation is to move from a triangle to its neighbor across an edge.
Figure 4.33(a) shows the part of a triangulation that has already cached in Abacus. The short
arrows represent direct moves from one triangle to the next. When we reach triangleT, we find
the pointer to the neighbor in the direction of the ray is NULL since the neighbor is not cached
yet.

At this moment, we only know the vertex ids of the edge shared by the missing neighbor and
T, marked as two filled circles in the in Figure 4.33(b). The third, unknown vertex, marked as
an empty circle in the figure, could be anywhere in the domain. We cannot pinpoint where the
centroid of the target triangle is and thus are unable to search for using the triangle B-tree.

  

A ray

T

NULL

  

A ray

T

(a) Moving within the Abacus triangle structure.(b) Unknown third vertex of an uncached triangle.

Figure 4.33:Moving to adjacent triangles across edges. When a triangle is not cache, we
are unable to carry on the operation.

Taking advantage of the proximity search capability, we locate the missing triangle byprob-
ing the triangle B-tree. In order to reduce the number of probes and quickly find the data page
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that encloses the missing triangle, we choose probing pixels wisely so that they are likely to lead
us to a page hit.

Recognizing the spatial clustering property of a triangulation, we probe the triangle B-tree
page index using three different methods. The first two methods,quick probingandray-casting
probing are speculative. They are more efficient but do not guarantee the target triangle could
be found. The third method,concentric probing, works more conservatively and has higher
overhead. But it ensures that we are able to finally find the triangle we need.

4.10.1 Quick Probing

The intuition of quick probing is that the middle point of an edge of a trianglemightbe spatially
close to the centroid of the triangle. Hence, there is a good chance we could find the octant that
encloses the centroid if we search the B-tree page index using the middle point pixel of the edge.

Operationally, it works as follows. We calculate the coordinate of the middle point of the
edge that we have failed to cross, convert the coordinate to an integer pixel, and compute the
locational code of the pixel.

We search the Abacus octree structure of check if any existing leaf octant encloses the query
pixel. If so, we abort the quick probing operation because the triangle data page corresponding
to the enclosing leaf octant already exists in the Abacus cache and it does not contain the triangle
we seek. If not, we send a request to the triangle B-tree index and fetch the triangle data page
pointed at by the hit index entry.

Similar to prefetching vertices, we prefetch all the triangle records stored in a triangle data
page and install them into the Abacus cache. After the loading is completed, we check whether
the pointer to the target triangle has been modified from NULL to a valid address. If so, the quick
probing has been successful. Otherwise, we have to use the following two methods to continue
probing.

4.10.2 Ray-Casting Probing

The limitation of the quick probing method is that we use only one probing pixel. In order
to create more probing points, we borrow the idea of ray casting from computer graphics and
visualization.

The basic idea of ray-casting probing is to cast a number of rays from the middle point of
the edge that we have failed to cross. The directions of these rays are towards the opposite side
of where we come from as shown in Figure 4.34. Each ray intersects a series of octants that
are present either in the Abacus octree structure or in the triangle B-tree. We ignore those that
already exist in the Abacus cache and fetch the ones that are not. It should be emphasized that we
do not know about the location or the size of an uncached octant, nor do we know the distribution
of the octants in space. We learn the information as we carry out the probing.

In order to conduct ray-casting probing, we have to solve three problems:
• Given a ray, how to compute a probing pixel for an unknown octant?

• How to define the set of rays to cast?

• How to control the order of ray-casting probing?
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Figure 4.34:Rays originated from the middle point of an edge.

Ray-Box Intersection

The main algorithm we use to compute probing pixels is based on a technique known asray-box
intersection, which solves the problem of whether a ray, specified by its origin and direction,
intersects an axis-aligned rectangular box, and if so, what are the distances from the origin of the
ray to the entry point and the exit point, respectively.

We use the particular method [48] developed by by Kay and Kayjia, which operates on
“slabs”. A slab is the space between two parallel planes. So the intersection of a set of slabs
defines a box (an octant). The method looks at the intersection of each pair of slabs by the ray.
It finds two values,Tfar i andTnear i for each pair of slabs along axisi. If Tnear max, the largest
Tnear value among all axes is greater thanTfar min, the smallestTfar value among all axes, then
the ray misses the box. Otherwise, it intersects the box.Tnear max andTfar min are the distances
from the origin of the ray to the entry point and the exit point, respectively. Figure 4.35(a) shows
an example where a ray misses a box; (b) shows an example where a ray intersects a box. Note
that in order to apply the slab method, we must know the size of the box (i.e., the widths of the
slabs).

Equipped with the slab method, we compute the probing pixels along a ray iteratively. The
origin is the middle point of the edge on which we have got stuck. We use the current cached
octant (with which the ray intersects) to compute the probing pixel for the next octant. At the
beginning, the octant that encloses the origin (i.e., edge middle point) must be present in the
Abacus cache thanks to the quick probing step. Hence, the following procedure is well-founded.

For each cached octant, we compute theTfar min value, which is thedistancefrom the origin
of the ray to the exit point on the octant. Next, we compute thecoordinateof the exit point.
Then, we shift the results towards the direction of the ray and convert them into integer values
(assuming the floating-point numbers do not overflow the range of the integer representation).
The nudged integer coordinate gives us a probing pixel to locate the next uncached octant. The
various concept is illustrated in Figure 4.36.

After we find the next octant from the triangle B-tree index, we initialize the octant in the
Abacus octree structure and assign a simplex block to the new octant. The triangle data page is
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Figure 4.35:Ray-box intersection. (Ox, Oy) is the origin of the ray; (Rx, Ry) is the direction of
the ray.

fetched and the records are converted and stored into the Abacus cache. If we find the missing
triangle, then the probing is successful. Otherwise, we use the newly cached octant to probe for
the next one.

Directions of Probing Rays

The next technical problem to solve is how to define a set of rays. From the middle point of
the edge where we have failed to reach the adjacent neighbor, there are infinite number of direc-
tions to cast a ray. Which ones should we use? Without the knowledge of how the octants are
distributed in space, there exists no optimal answer. We use a simple heuristic and cast a preset
number of rays uniformly in all direction (in the halfspace opposite to where we come from). In
the current implementation, the preset numbers are 9 for 2D and 17 for 3D.

The base ray direction is perpendicular to the edge we are crossing as shown in Figure 4.34.
Since we know the coordinates of the end points of the edge, we can easily compute the normal
of the edgeVnormal. The other directions are computed by rotating the normal vector as follows.

Vθ =

[
cos θ − sin θ
sin θ cos θ

]
Vnormal (4.3)

whereVθ is a ray that isθ aways fromVnormal in the counterclockwise direction.

Order of Ray-Casting Probing

Our strategy for ray-casting probing is not to follow a single ray until it travels outside of the
domain. Instead, we follow all the rays one step at a time. That is, after we retrieve an octant
along a certain ray and do not find the triangle we need, we move to the next ray to probe forward
for one step. Thus, we are able to probe nearby regions extensively before moving far away from
the edge where we started the probing. In the current implementation, we bound the number of
steps for speculative ray-casting probes to 32 for 2D and 4 for 3D.
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Figure 4.36:Ray-casting probing. An cached octant is used to compute the probing pixel for
the next octant.

4.10.3 Concentric Probing

The ray-casting probing method is designed to exploit the locality of the triangulation structure.
The rationale is that since the missing triangle shares an edge, its third vertex isprobablynot far
away. By probing in the nearby region, there is a good chance that we can find it. However, there
is no guarantee of finding the missing triangle unless we cast infinite number of rays.

To make sure that we canalwaysfind the missing triangle, we use a more conservative strat-
egy calledconcentric probingto search the domain exhaustively.

Probing Region

Probing the whole domain is expensive. In fact, it is unnecessary. We can limit the probing
region effectively. Although we do not know where the thirdvertexof the missing triangle is, we
can still accurately bound the region where itscentroidmight fall.

Recall that we can always know the domain specification (i.e., the origin and dimensions) in
advance. The four corners of the domain bound where the third unknown vertex could fall. In the
worse case, the unknown vertex falls on the domain boundary. If we connect the edge of interest
to the four corners of the domain, we obtain four large (and probably skinny) triangles. When we
connect the centroids of these four hypothetical triangles, we obtain the rectangular region where
the centroid ofanytriangle that shares the edge must fall as shown in Figure 4.37(a). Because the
centroid of the uncached neighbor triangle must be on the other side of the edge, we can further
limit the search area to one side of the edge, as shown in Figure 4.37(b).

Order of Concentric Probing

Unlike ray-casting probing where we adapt to the size of the octants as we probe, we use a
fixed-size grid overlay to conduct a concentric probing. The grid size is equal to the size of the
smallest octant currently in the domain. It is not necessarily the size of a pixel, which is the
smallestpossibleoctant.
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Concentric probe
search region

(a) Possible search region. (b) Reduced search region.

Figure 4.37:Concentric probing search region.

A concentric probing is not carried out within the search grid in an axis-aligned order. In-
stead, as the name suggests, we start the probing from the grid that encloses the middle point
of the edge that we have failed to cross and expand the search radius gradually as shown in
Figure 4.38.

  

Probing 
center

Figure 4.38:Concentric probing order. The thick arrows represent rounds of concentric prob-
ing, starting from the innermost circle and expanding outwards.

It must be emphasized that when we probe for a grid, we first search the Abacus octree
structure to check if the enclosing octant is already cached. Useless requests are eliminated
efficiently within the Abacus cache. Only when we cannot find an enclosing leaf octant is a
search question sent to the database triangle B-tree.
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4.11 Abacus API

The techniques described in the previous sections are used inside the Abacus system and are
not visible to the outside world. A small API is exported to allow application programmers to
interact with Abacus. This section presents the generic API functions for manipulatinganytrian-
gulation datasets. The next section explains two specialized API functions that are implemented
specifically to support Delaunay triangulation.

4.11.1 Opening and Closing An Abacus Database

#include <abacus.h>

abacus t *abacus open(const char *path, int flags, int dimension,
int payloadsize, double *near, double *far, int cachesize);

Returns: a handle to an open abacus database, NULL on error

The abacus open function opens an existing Abacus database or create a new Abacus
database depending on the options specified in theflags parameters. Internally, this function
allocates memory for the vertex heap, the vertex hash table, the simplex blocks, the octree struc-
ture, and the edge hash table, as explained in Section 4.4. It also embeds the domain to a square
region (see Section 4.2).

This function receives the following parameters:
• path : The path name of the Abacus database. Within an Abacus database, the file names

of the vertex table, the triangle table, the vertex B-tree, and the triangle B-tree are assigned
internally.

• flags : This parameter specifies the mode in which the file is to be opened. Flags can have
one of the following values:O RDONLYor O RDWR. The flags may also be bitwise-or’d
with O CREATor O TRUNC. The semantics are the same as in UNIX.

• dimension : Specifies the dimension of the triangulation datasets. The current imple-
mentation supports 2D and 3D.

• payloadsize : The size of the payload of each triangle. This parameter is only used to
created a new Abacus database (i.e., OCREAT, O TRUNC was specified), otherwise the
payload size is obtained from an existing Abacus.

• near : This parameter is a 2-element array for 2D cases and 3-element array for 3D cases.
It contains the coordinate of the left-lower corner of the problem domain.

• far : Similar to near in format, this parameter contains the right-upper corner of the
problem domain.

• cachesize : Specifies the maximum amount of memory that can be used by the Abacus
computational cache and all other internal data structures. In the current implementation,
a heuristic is used to estimate the memory usage of different structures and the memory is
allocated statically at initialization.
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On success, this function returns an abacus handle (abacus t struct ) which is used in
subsequent calls to the operate the Abacus database. If an error occurs, for example, running out
of memory, the Abacus database is not opened and a NULL pointer is returned.

#include <abacus.h>

int t abacus close(abacus t *ap);
Returns: 0 on success, -1 on error

Theabacus close function closes an Abacus database by completing the following tasks:
(1) storing all the cached triangles that have been modified (or created) to the triangle database,
(2) releasing the memory used by the Abacus cache, and (3) closing the database files.

This function receives the following parameter:
• ap : Handle to the Abacus database to be closed.
This function returns 0 on success, -1 on error. If an error occurs the application program

should callperror to identify the nature of the problem.

4.11.2 Inserting and Deleting Simplices

#include <abacus.h>

int t abacus insert(abacus t *ap, const simplex t *simplex);
Returns: 0 on success, -1 on error

Theabacus insert function inserts a new simplex record (i.e., a triangle or a tetrahedron)
in an Abacus database. If we have a pre-generated triangulation, we can use this function to load
the data into an Abacus database.

This function receives the following parameters:
• ap : Handle to the Abacus database to which the simplex is to be inserted.

• simplex : This parameter is a generic wrapper, which is dereferenced internally by the
Abacus runtime as either atriangle t or a tetrahedron t structure according to
the dimension specified when the Abacus database is opened.

This function returns 0 on success and -1 on error. On a successful return, the inserted simplex
is stored in the Abacus cache. Note that the records is not mapped to a triangle data page imme-
diately. There is no persistence guarantee. If the system crashes immediately after the function
call returns, the record may be lost.

The implementation of the function is straightforward. We fetch the coordinates of the ver-
tices of the new triangle, either from the Abacus vertex heap if they have been cached or from the
vertex database if they have not. Using the coordinates, we compute the centroid of the triangle
and search the Abacus octree structure to find the enclosing leaf octant. If the leaf octant is a
phantom octant (see Section 4.5.2), we request a new simplex block and assign it to the phan-
tom octant. We then allocate an incore triangle record from the simplex block. If the simplex
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block is full, we split it using the algorithms described in Section 4.5.2. The new incore triangle
record is initialized properly to point to its neighbors and its vertices. The reference counts of its
vertices stored in the Abacus vertex heap are incremented by 1. The edge hash table is updated
accordingly to either expose new visible edges or remove shared interior edges.

In the current implementation, no data integrity check is enforced. If two identical simplices
are inserted, no error occurs. But the second insertion becomes a dangling simplex that is not
attached to the Abacus triangle structure. Worse, if two cross-over triangles are inserted, no
immediate error is reported but further operations may fail.

For Abacus to be fully functional, we need to a implement semantic integrity check in the
future.

#include <abacus.h>

int t abacus delete(abacus t *ap, const simplex t *simplex);
Returns: 0 on success, -1 on error

The abacus delete function deletes a simplex record from an Abacus database. This
function is provided for completeness of the API.4

This function receives the following parameters:
• ap : Handle to the Abacus database from which the simplex is to be deleted.

• simplex : Specifies the simplex to be deleted.
This function returns 0 on success and -1 on error. An error indicates that the target simplex

does not exist in the Abacus database.
The implementation of the function is as follows. We use the centroid of the triangle to

locate the leaf octant that encloses it. If we cannot find a leaf octant, we use the centroid as a
probing pixel to search the database triangle B-tree index, fetch the triangle data page, and load
the triangle records into a simplex block. If we do find a leaf octant, we retrieve the associated
simplex block directly. Either way, we search the simplex block for the triangle to be deleted.
If we cannot find it, return an error. If we find it, the entry in the simplex block is released.
Relevant pointers in the neighboring triangles are modified to point to NULL since the triangle
is being deleted. The reference counts of the vertices of the deleted triangle are decremented by
1, respectively. The edge hash table is updated accordingly to either expose new visible edges or
remove edges that are no longer used by any triangles in the Abacus cache.

If the simplex block from which the deleted triangle is released is associated with a valid
triangle data page id, it means the simplex block has never been modified. In this case, we carry
out three operations: (1) delete the corresponding index entry in the triangle B-tree, (2) deallocate
the triangle data page, and (3) mark the current simplex block as not associated with any triangle
data page.

The aggressive deletion strategy is motivated by the lessons we learned in Chapter 2. Recall
that the incremental insertion algorithm for constructing Delaunay triangulation deletes 66% of
all the triangles that are ever generated. Therefore, the deletion of one triangle on a triangle data
page often heralds more deletions on the same page. By deallocating a modified triangle data

4I do not know of an application that needs to delete individual triangles.

78



page at the first possible instant, we avoid the overhead of deleting individual triangles from the
slotted data page. The Abacus cache will absorbs all the follow-up deletions, much in the same
way as a processor cache absorbs repeated writes into the same cache line.

4.11.3 Searching for Simplices

Two API functions are provided to support querying triangles. They can be combined to im-
plement more complicated queries such as general range queries, iso-contour extraction, and
ray-casting volume rendering.

#include <abacus.h>

int t abacus reset(abacus t *ap, double *location, simplex t
*result);

Returns: 0 on success, -1 on error

The abacus reset function searches an Abacus database and returns the simplex that
encloses a query point.

This function receives the following parameters:
• ap : Handle to the Abacus database to be searched.

• location : Specifies either a 2D or 3D query point.

• result : An output parameter that points to either atriangle t or atetrahedron t
structure.

This function returns 0 on success and -1 on error. On success, the simplex enclosing the
query point is stored in the structure pointed byresult .

We implement this function using a combination of searching in an octree and stochastic
walking in triangulation. Figure 4.39 shows a query point marked as a circle in our example
triangulation.

Assuming all the triangles are already cache, we find the enclosing triangleT0 in three steps,
as shown in Figure 4.40. First, we start from the root of the Abacus octree and descend to the
leaf octant (00), which encloses the query point. Second, we access the simplex block associated
with the leaf octant. Third, starting from triangleT1, we “walk” to T0 across the edge (1,2). We
will explain the “walk” operation shortly.

For a large triangulation, theleaf octantthat encloses the query point might not be present
in the Abacus octree structure, which means that the triangle data page covering that area is not
cached within Abacus yet. In this case, we compute a search key using the coordinate of the
query point and fetch the triangle page by querying the triangle B-tree.

Another subtle issue is illustrated in Figure 4.41. The query point might fall in an octant (10)
that does not contains the centroid of the target triangle, that is, the target triangle is not allocated
from the simplex block associated with the octant. In this case, we still pick an arbitrary triangle
(e.g.,T4) in the simplex block associated with the “wrong” octant and start a “walk” from there
to reach the target triangleT0 across edge (2,3), as shown in Figure 4.42.
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Figure 4.39:A query point in a triangulation. The circle represents the query point. The
four-pointed stars represent the centroids of the triangles.
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Figure 4.40:Point location within the Abacus cache.
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Figure 4.41:The query point falls inside an octant that does not enclose the centroid of
the target triangle.
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Figure 4.42:Point location within the Abacus cache by walking across simplex blocks.
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Stochastic Walk

The “walk” operation we have implemented is based an algorithm known asstochastic walk[25],
which is a variant of a simpler algorithm called thevisibility walk.

A visibility walk starts from a triangle and walks towards a query pointp. For each triangle
T visited, the first edge (defined in certain way)e0 is tested to check whethere0 separatesT from
p. This is carried out by a robust orientation test. If so, the next visited triangle is the neighbor
of T throughe0. Otherwise, the second edge is tested in the same way. In case the test for the
second edge also fails, then the third edge is tested. The failure of the third test indicates that the
target triangle has been reached. That is,T enclosesp.

Figure 4.43 shows an example. Of the three edges ofT, e1 ande2 separateT from the query
point, whilee0 does not. According to the order of visiting the edges, we walk to triangleS

acrosse1 and continue the visibility walk from there. For clarity, other triangles are not shown
in the figure.
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Figure 4.43:Visibility walk.

The visibility walk in a Delaunay triangulation always terminates [29]. However, for non
Delaunay triangulations, the visibility walk may fall into a cycle. To avoid this problem, we use
the stochastic walk algorithm. The only difference between a stochastic walk and a visibility
walk is how thefirst edge of a triangle is chosen. Instead of using a prescribed (fixed) ordering
of the edges of a triangle as is the case with a visibility walk, a stochastic walk choose the first
edge randomly at runtime. In particular, when a triangle is visited for a second time (due to a
loop), the first edge chosencouldbe different from the first edge chosen for the first time. Such
a randomness ensures that even if a walk enters into a cycle within a triangulation, it cannot loop
in the cycle forever. For a detailed proof, see the paper by Devillers and colleagues [25].

A variant of the stochastic walk algorithm calledDirected Local Search(DLS) [64] was
proposed by Papadomanolakis, myself, and other researchers recently (2006) to implement point
queries on a tetrahedral mesh stored in a traditional database table. The major difference between
DLS and theabacus reset function is that the walking operations in DLS follow a kind
of out-of-core pointers, while the walking operations within the Abacus cache follow memory

82



pointers to adjacent triangles in most cases. In terms of performance, Abacus is comparable to
any efficient incore implementation of the stochastic walk algorithm.

In the process of walking, if we fail to reach a triangle across an edge if the triangle is not
cached yet, we use the techniques described in Section 4.10 to load the missing triangle. Recall
that we load a pageful of triangle records at a time. The cost of fetching a page is amortized
among the prefetched triangles, which are likely to be “walked” through shortly.

#include <abacus.h>

int t abacus walk(abacus t *ap, const simplex t *from, int t id,
simplex t *to);

Returns: 0 on success, -1 on error

Theabacus walk function searches the Abacus cache and returns the target simplex as the
result of walking from a source simplex across either an edge in 2D or a face in 3D.

This function receives the following parameters:
• ap : Handle to the Abacus database to be searched.

• from : Specifies current simplex where the walk is initiated.

• id : The edge id (2D) or the face id (3D) of thefrom simplex that is to be crossed.

• to : An output parameter that points to either atriangle t or a tetrahedron t
structure.

This function returns 0 on success and -1 on error. On success, the target simplex record is
stored in theto parameter.

The implementation ofabacus walk is trivial. We first callabacus reset to find the
starting triangle/tetrahedron of the walk and then either directly walk to the neighbor within the
Abacus triangle structure or load the neighbor triangle from the triangle database if it is not
cached yet. Either way, we retrieve the neighbor’s record and store it in the output parameter.

4.12 Putting it All Together: Delaunay Triangulation Reim-
plemented

This section describes our second attempt to attack the problem of Delaunay triangulation after
the structural mismatch has baffled our first attempt in Chapter 2. This time we build our solution
on top of Abacus.

4.12.1 Balance Between Randomization and Locality of Reference

We have mentioned a number of times in the previous sections the importance of locality of
reference to the performance of Abacus. Yet we have glossed over an important aspect of the
performance: the algorithm complexity.
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Theexpectedrunning time of the incremental insertion algorithm for constructing Delaunay
triangulations isO(n log n). In order to achieve the optimalexpectedrunning time, the insertion
order of the vertices must be randomized. However, randomization eliminates the inherent spatial
locality in a vertex set.

To achieve good performance, we must strike a balance between randomization and locality
of reference. Ignoring randomization, we may turn incremental insertion from anO(n log n) al-
gorithm into anO(n2) algorithm, for example, if the input vertices are sorted along the axes. On
the other hand, ignoring locality, we may suffer from severe I/O thrashing, for example, if con-
secutive insertions are scattered far apart in the domain. Both would bring down the performance
to a crawl.

Below we explain how we build on a prior research result to organize an input vertex database
in such a way that we can achieve the optimal running timeO(n log n) without suffering from
I/O thrashing.

Biased Randomized Insertion Order (BRIO)

Amenta and colleagues developed an algorithm calledBiased Randomized Insertion Order(BRIO) [6]
that addresses the tension between randomization and locality. The BRIO algorithm assumes the
input vertices have some fixed ordering that respects locality, for example, a space-filling curve
ordering. Their main idea is to add enough randomness to the vertex set so that the incremental
insertion algorithm remains theoretically optimal, and in the meantime retain enough locality so
that the performance of the virtual memory system is improved.

A biased randomized insertion orderfor a set ofn vertices (assumingn is a power of 2) is
defined as follows. The vertices are inserted into a Delaunay triangulation inrounds, from round
0 through roundlog n. To allocate vertices to rounds, they choose each vertex independently
with probability 1/2 to be inserted in the final round. They choose each of the remaining vertices
independently with probability of 1/2 to be inserted in the next-to-last round, and so on. When
reaching round 0, they choose any remaining vertices with probability 1. The proof that such an
insertion order is theoretical optimal can be found in [6].

Conceptual, we can think of the result of a BRIO order as a pyramid. At the top layer are
the vertices that will be inserted in the first round; and at the bottom layer are the vertices that
will be inserted in the last round. Intuitively, the effect of the BRIO order is to scatter vertices
randomly in the entire domain in early rounds to obtain a well-shaped coarsen-grained Delaunay
triangulation, and then insert spatially-clustered vertices in small regions in later rounds.

The BRIO order has been successfully used in practice, for example, in streaming computa-
tion of large-scale Delaunay triangulations [45].

Redundant Insertion

However, we cannot use the BRIO order directly for two reasons. First, in order to keep track
of the BRIO insertion order, we have to either create a flat file to record the vertex ids in the
BRIO order or build another vertex table to record the BRIO order. Not only does it clutter the
database structure, but it also introduce confusion because there are two primary keys associated
with vertices now, one is the original vertex id and the other is the sequence number of the vertex
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in the BRIO order. Second, the BRIO insertion order can result in a large number of intermediate
triangles whose vertices are widely spread across vertex id space. For example, a triangle may
consist of vertices (100, 2000000, 50000). Since we have to query the database to retrieve
vertices, the large disparity in the vertex id values may cost us three separate I/O operations to
retrieve the vertices of a single triangle.

We have adapted the BRIO algorithm slightly to suit our need. Our algorithm also works
from the last round backwards to the first round. Initially, we include all the input vertices in the
the last round of insertion. Then we carry outpromotionof vertices starting from the last round.
For each vertex in the current round, we toss a coin. With probabilityp, we promotethe vertex
to the previous round. Unlike the BRIO algorithm, we stillkeepthe vertex in the current round.
After the vertices in the current round are processed, we move to the previous round, which has
just been created, and repeat the promotion process. The algorithm terminates when the number
of vertices in the current round is less than the capacity of a vertex data page.

The difference between this algorithm and the BRIO algorithm is that a vertex may exist in a
number of consecutive rounds instead of just one round. That is, if a vertex exists in roundk, it
must also exists in round(k + 1), (k + 2), and the all the way to last round. Otherwise, it would
not have been promoted through the hierarchy. As a result, the vertex will appear multiple times
in the insertion order.

For the occurrence of a vertex in roundk, we assign the vertex anartificial new id based on
its assigned id in round(k + 1). All the vertices have theiroriginal ids in the last round.

Artificial Vertex IDs

We assume that the input vertices have vertex ids starting from 0 and we can bound the maximum
number of vertices that can be possibly added into the vertex set. We define the range from 0 to
the maximum bound as anepoch.

For example, Figure 4.44 shows a vertex set with 30 vertices, represented as tick marks
between 0 and 29. For illustration purpose, we define the epoch to be 100. The start of the
current epoch is at 0.

When we start processing vertices in the current round, in our example, the last round, we
create a new epoch to the left of the current epoch. The two epochs are adjacent to each other
but do not overlap. In our example, the start of the new epoch is at -100.

For each vertex being promoted into the previous round, we take its current vertex id and add
it to the origin of the new epoch. For example, the numbers enclosed by parentheses in the figure
represent the vertex ids of three vertices that have been promoted (8, 18, 25). The artificial vertex
ids for the three vertices in the previous round are -92 (i.e., 8 + (-100)), -82 (i.e., 18 + (-100)),
and -75 (i.e., 25 + (-100)), respectively.

We repeatedly shift the epoch to the left when more rounds are needed. The smaller the round
number, the smaller the artificial vertex ids in that round.

Effectiveness of the New Algorithm

If we ignore the re-occurrence of vertices in later rounds, our algorithm is identical to the BRIO
algorithm. Randomness has been added into the insertion order.
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Figure 4.44:Staging vertices into the vertex database. The coordinates of the vertices are
not shown in the figure. We assume a promote probability of 10%.

Now consider the redundancy in the insertion order. At the end of roundk, all the vertices
inserted between round 0 and round(k − 1) must have been replaced with the vertices in round
k because the vertices in roundk represent a proper superset of all the vertices in the previous
rounds. The triangles in the triangulation at the end of roundk consist of only artificial vertex
ids drawn from the epoch associated with roundk. If we look at the vertices within an epoch as
shown in Figure 4.44, their artificial ids are clustered in the vertex id space. Locality of reference
has been achieved.

The tunable parameter for striking a balance between randomization and locality is the pro-
motion probabilityp. If we setp too low, we fail to introduce enough randomness into the
insertion order. If we setp too high, we pay the extra cost of redundant insertions. In theory,p
should be set to 1/2, as proved by the BRIO paper. Doing so would result in the total number of
vertices to be inserted to be doubled (i.e.,1+(1/2)+ (1/2)× (1/2)+ . . .)). In practice, we have
found ap value of 0.02 works more efficiently.

4.12.2 Staging the Vertices

Given a vertex set, we load the vertices into an Abacus vertex database by calling the following
function.

#include <abacus.h>

int32 t abacus stage vertices(abacus t *ap, const char *vertexset);
Returns: 0 on success, -1 on error
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The abacus stage vertices function implements the modified BRIO algorithm just
described and bulk-loads the results into an Abacus vertex database.

This function receives the following parameters:
• ap : Handle to the Abacus database.

• vertexset : The file name of the input vertex set.
This function returns 0 on success, -1 on error. Figure 4.44 shows the result of calling the

function to stage 30 vertices.
We implementabacus stage vertices in a number of iterations. In the first iteration

(i.e., the last round of the insertion order), we open the input file and process all the vertices in
order. We pack them into vertex data pages, assign vertex page ids starting from 0, store the
vertex data pages to disk, and insert keys (i.e., the first vertex id on each page) into the vertex
B-tree. While going through the vertices, we also promote vertices for the next iteration (i.e.,
the previous round), compute their artificial vertex ids, and store them one after another in a
temporary flat file.

After the first iteration is finished, we move to the next iteration using the temporary flat file
just created as the input file. Note that at the second iteration, the free vertex data page id has
increased to the number of vertex pages that have already been stored in the first iteration.

We repeat the iterations until the remaining vertices in a temporary file is less than the capac-
ity of the vertex data page. The last iteration simply store and index the vertex data page without
further promotion of vertices.

The output of theabacus stage vertices function is a vertex table and a vertex B-tree
that store and index not only the original input vertices but also the redundant vertices that have
been promoted to the earlier rounds, as shown in Figure 4.44.

From the Abacus cache’s point of view, there is no difference between an artificial vertex
ids and an original vertex id. All vertices are treated equally. If two vertices have the same
coordinate, the second one replaces the first one in the triangulation. Since all the original input
vertices are inserted in the last round, the output triangle database does not contain any artificial
vertex ids.

4.12.3 Triangulating the Vertices

#include <abacus.h>

int32 t abacus delaunay insert(abacus t *ap, int64 t vid, double
*coord);

Returns: 0 on success, -1 on error

Theabacus delaunay insert function implements the incremental insertion algorithm
as explained in Chapter 2.

This function receives the following parameters:
• ap : Handle to the Abacus database to be searched.

• vid : Specifies the id of the new vertex to be inserted.
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• coord : Specifies the coordinate of the vertex.
This function returns 0 on success and -1 on error. On success, the function adds the vertex

into an existing triangulation managed by the Abacus system and restores the empty circle prop-
erty within the triangulation. If the triangulation is Delaunay before the function is called, the
triangulation remains Delaunay after the function returns

We implementabacus delaunay insert using the incremental insertion algorithm pre-
sented in Chapter 2 almost verbatim. This is the beauty and the power of the computational
database approach. The data representation within the Abacus cache emulates how a triangu-
lation is represented if the incremental insertion algorithm is implemented incore. There is no
need to devise a work-around as we did with the Goose implementation.

The two steps of inserting a new vertex into an existing triangulation map naturally to opera-
tions in the Abacus cache.

Cavity creation

The cavity creation step finds all triangles whose circumcircles enclose the new vertex and forms
a cavity. The internal data structure used to carry out the cavity creation step is a queue that
keeps track of the triangles that fall inside the cavity. Since these triangles are to be deleted, we
refer to the queue as thedelete queue. Initially the delete queue is empty. We append triangles to
the queue by conducting a breadth-first search within the Abacus triangle structure.

The starting triangle for the breadth-first search is located by executing aninternal version
of the abacus reset function. Since we do not need to return the result to an application,
the internal version returns a pointer to the incore triangle record that encloses the new insertion
vertex rather than copying the results into an output parameter. We then add the pointer to the
starting triangle into the delete queue.

For each triangle we read from the head of the queue, we check its three neighbors in turn.
For each neighbor, if its circumcircle encloses the new insertion vertex, it is appended to the end
of the queue. Otherwise, it is ignored. If we cannot reach a neighbor, we use the techniques
described in Section 4.10 to load the missing triangle. The breadth-first search terminates when
all the triangles inserted in the queue are processed, that is, when we cannot expand the cavity
further.

It should be clarified that the delete queue contains pointers to the incore triangle records that
are stored in simplex blocks instead of the records themselves. The effect of creating the cavity
is to load allencroachedtriangles into the Abacus cache.

Re-triangulation

The re-triangulation step deletes the triangles stored in the delete queue by calling theabacus delete
function, and inserts new triangles by connecting the new vertex with the edges of the cavity and
calling theabacus insert function.

The deletion operations are grouped together and executed first before any new triangle is
inserted. Otherwise, cross-over triangles would appear and destroy the coherence of the Abacus
triangle structure.
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The abacus delaunay insert is implemented as a standalone function for two rea-
sons. First, the algorithm needs to keep track of pointers to the incore triangle structure, which
is not visible to an application. Second, the re-triangulation step has a stringent requirement
of deletions before insertions. It should be implemented within the Abacus system to ensure
correctness.

4.12.4 Application Cache

The cavity creation step just described follows the standard procedure of locating a point within
the Abacus cache as illustrated in Figure 4.40 and Figure 4.42. It requires traversing down the
octree to locate the enclosing leaf octant first, and then starting from an arbitrary triangle in the
associated simplex block to walk to the target triangle.

When a triangulation is small, the octree is shallow. The standard point location procedure
works well. However, when a triangulation is large, the octree is deep. We pay the overhead of
traversing down a deep octree every time we insert a new vertex.

In order the alleviate the problem, we have devised a technique called anapplication cache
to accelerate the process of finding the first triangle in the cavity. The structure of the application
cache is an array of pointers, each pointing at a newly created incore triangle record. The size of
the cache is 4 entries for 2D and 16 entries for 3D.

Because real-world vertex sets exhibit inherentspatial coherence[45], that is, there is strong
correlation between the spatial proximity of the vertices and the proximity of their positions in a
stream (i.e., the vertex id sequence), the vertex to be inserted next is highly likely to be enclosed
by one of the newly created triangles incident to the current insertion vertex. Hence, instead of
following the standard point location procedure, we first check the application cache to see if
there is a hit.

The criterion of a hit is also relaxed. We do not require a strict enclosure. As long as the
circumcircle of a triangle encloses the new insertion vertex, it is a hit, which is referred to as an
incircle cache hit. The correctness of the cavity creation step is not compromised. Any triangle
that falls inside the cavity can be used as the base for a breadth-first expansion. Because an
incircle cache hit returns a triangle whose circumcircle encloses a new vertex, the triangle must
be part of the cavity. Hence, we can safely push it into the delete queue and start the breadth-first
search from there.

For example, Figure 4.45(a) shows the status of the application cache after vertex 2 is in-
serted into a Delaunay triangulation. We assume trianglesT0, T1, T2 andT3 are tracked by the
application cache. Figure 4.45(b) shows the insertion of a new vertex 6. Although none of the
triangles in the application cache encloses vertex 6, we are able to get an incircle cache hit since
the circumcircle ofT3 encloses vertex 6.

4.12.5 A New Delaunay Triangulation Program

The pseudo-code of our new Delaunay triangulation program is shown in Algorithm 1.
We first open an Abacus database and stage the vertices into the vertex database using the

modified BRIO algorithm implemented in theabacus stage vertices function. Then we
insert two initialization Delaunay triangles into the Abacus triangle database. All input vertices
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Figure 4.45:Incircle cache hit.

Algorithm 1 : Constructing a Delaunay triangulation using Abacus
Input : A flat file containing a set of input vertices
Output : An Abacus triangulation database

ap = abacusopen(dbname, OCREAT|O RDWR, dim, 0, near, far, cachesize);1

abacusstagevertices(ap, vertexset);2

abacusinsert(ap, boundingtriangle0);3

abacusinsert(ap, boundingtriangle1);4

create a vertex record cursor;5

set the cursor to the first record in the vertex table;6

while (not at the end the vertex table)do7

read the current vertex id and its coordinate;8

abacusdelaunayinsert(ap, vertexid, coordinate);9

advance the cursor;10

endw11

abacusclose(ap);12
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must fall inside the two initial triangles. Next, we create a cursor to iterate through the vertex
table in an ascending vertex id order. We call theabacus delaunay insert function re-
peatedly to insert the vertices into the Abacus database until the cursor reaches the end of the
vertex table. The output of the algorithm is an Abacus triangulation database that contains a
vertex table, a vertex B-tree index, a triangle table, and a triangle B-tree index.

A caveat: We insert 2 initial bounding triangles (or 5 initial bounding tetrahedra for 3D) at
the beginning of Delaunay triangulation process. This is a makeshift measure we use to avoid
the problem of convex hull expansion so that we can focus on the Delaunay triangulation proper.
In the long term, we need to develop new computational database algorithms for constructing
convex hulls dynamically.

The algorithm just outlined can be used in a number of flexible ways. For example, we
can suspend an ongoing triangulation process (though not in the middle of inserting a particular
vertex), close the Abacus database, and flush the data to disk. Later, we can reopen the Abacus
database and continue the insertions. For long running jobs, which take days or weeks to finish,
the ability to checkpoint is a huge plus. Or, we can gradually expand a Delaunay triangulation
as data become available. For example, survey data often become available in small pieces. It
may take months or even years to collect a complete dataset. Using Abacus, we can triangulate
a partial dataset and add more data later.

The translation mechanism of exchanging data between the Abacus cache and the database
presented in this chapter may have appeared to be too heavy-weight to be efficient. In fact, they
are not. The next chapter demonstrates the performance and scalability of our techniques for
Delaunay-triangulating massive 2D and 3D datasets.
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Chapter 5

Performance Evaluation

One of the driving motivations for designing the computational database framework in general
and implementing the Abacus system in particular is to solve the problem of large-scale Delaunay
triangulation. Although specific to a certain class of applications, Delaunay triangulations are
among the most challenging data sets in terms of complexity and scale. Whether Abacus can
effectively support Delaunay triangulation provides a litmus test of the feasibility of the proposed
computational cache.

This chapter presents the performance evaluation of constructing massive 2D and 3D Delau-
nay triangulations using Abacus. Our main focus is on the speed and the scalability of our new
Delaunay triangulation solution. To put the performance in perspective, we compare our results
with those of the state-of-the-art incore Delaunay triangulators,Triangle1 [79] andPyramid[81].

The main findings of this chapter are: (1) Abacus matches the performance of Triangle and
Pyramid when triangulating data sets that fit in memory, and (2) Abacussignificantlyoutperforms
Triangle and Pyramid when triangulating data sets larger than the memory size.

12003 James Hardy Wilkinson Prize in Numerical Software, the highest honor for numerical software awarded
once every 4 years.
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Figure 5.1:Z-order traversal in a domain.

5.1 Data Set Characteristics

We used both 2D and 3D data sets to evaluate the effectiveness of our solution. The 2D data
sets were generated randomly and the 3D data sets came from a grand challenge application—
earthquake ground motion modeling. Below we describe the characteristics of the data sets.

5.1.1 The 2D Data Sets

For the 2D cases, we generated a series of random data sets, each consisted of a fixed number of
vertices distributed randomly within a 1 by 1 square. However, a sequence of random vertices are
not sufficient to approximate the characteristics of real-world data sets. Adjacent vertices (in the
vertex id order) in a random data set are often scattered far apart in the domain, while adjacent
vertices in a realistic data set tend to be clustered in space. For example, the terrain data set of
the Neuse River Basin of North Carolina, consisted of 500 million 2D vertices (double-precision
x, y coordinates and a height value), were captured by an airborne laser scanner [68]. Given the
continuous flying path of an aircraft, a sequence of consecutive vertices can hardly be scattered
far apart.

To introduce spatial locality into the randomly generated data sets, we sorted the vertices into
Z-order [93, 98], a space-filling curve ordering that tends to cluster spatially close vertices in the
linearized ordering, as shown in Figure 5.1.

The choice of the Z-order is of no particular significance to our evaluation. Other space-
filling curve orderings such as the Hilbert-Peano curve [27] can also be used and might result in
better performance. What is important is that we need to introducesomeform of spatial locality
into our data sets. Sorting them in Z-order is merely a convenient solution.

Figure 5.2 summarizes the the sizes of the Z-ordered random data sets. The first row lists the
numbers of vertices within the data sets. “M” stands for million and “B” for billion. (We will
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this convention throughout this chapter.) The second row shows the sizes of the files storing the
data sets. Vertices are stored in files in binary format. Each vertex contains an 8-byte vertex id
and a 16-byte coordinate (i.e., 8-byte double-precision floating point number× 2).

Number of vertices 1 M 10 M 40 M 100 M 200 M 1 B
File size 24 MB 240 MB 960 MB 2.4 GB 4.8 GB 24 GB

Figure 5.2:Summary of the 2D vertex sets.

5.1.2 The 3D Data Sets

The 3D data sets we used for our experiments came from a real-world application—earthquake
ground motion modeling. The models were were built by a parallel octree mesh generator [97,
99].

Vertices in these models were distributed irregularly in the domain as shown in Figure 5.3.
The variation in the density of distribution of the vertices was due to the variation of soil material
properties in the domain. Since the vertices in these data sets were organized in a semi–Z-
order by the parallel octree mesh generator [99], we did not sort them or conduct any other
pre-processing. In practice, we expect most real-world data sets have similar inherent spatial
locality.

Figure 5.3:A 3D earthquake model data set. Only the exterior of the vertex set is shown.

For our experiments, we used the models generated for the Greater Los Angeles Basin, a 3D
volume of 100 km x 100 km x 37.5 km. The sizes of the data sets are listed in Figure 5.4. The
“Frequency” row shows the seismic frequencies for which the models were built to resolve. The
higher the frequency, the higher the resolution (of a simulation) and the larger the data set.

95



Frequency 0.25 Hz 0.5 Hz 0.75 Hz 1 Hz 1.5 Hz 1.85 Hz
Number of Vertices 1.3 M 11.3 M 35.7 M 134.0 M 534.5 M 1.0 B
File size 40 MB 362 MB 1.14 GB 4.29 GB 17.10 GB 32.75 GB

Figure 5.4:Summary of the 3D vertex sets.

5.2 System Configurations

All our experiments were conducted on a server with two Intel 3.6 GHz Xeon processors running
Linux 2.6.17. (Only one processor was used in the experiments.) The memory subsystem con-
sisted of 8 GB physical memory and 18 GB swap space. The same machine was used to conduct
the experiments for the Goose implementation described in Chapter 2.

All the programs were compiled withgcc using the-O2 optimization flag. The database
page size used in vertex tables, vertex B-trees, simplex (triangle and tetrahedron) tables and
simplex B-trees was set to be 16 KB.

5.3 Execution Time

The total running time of constructing Delaunay triangulations using the Abacus system consists
of two parts: (1) staging the vertices, and (2) triangulating the vertices. Below, we present the
running time of the two parts, respectively, and compare the overall running time with the state-
of-the-art incore Delaunay triangulators.

5.3.1 Staging the Vertices

The promotion probability we used to stage the vertices was 0.02, which was an engineering
choice rather than a theoretical must. Figure 5.5 shows the running time and throughput of
staging the 2D vertex sets. The first two rows list the numbers of vertices and the corresponding
file sizes. The “Vertex database” row shows the aggregate sizes of the vertex databases, which are
the sums of the sizes of vertex tables and vertex B-trees listed below. The “Staging time” row lists
the wall clock times of staging the vertex sets. The “CPU utilization” row shows the percentages
of the staging time when the CPU was busy. The “user time” and “system time” rows report the
times spent by the staging operation executing the user code and the system code, respectively.
The “Throughput” row shows the throughput of the staging operation in terms of how many
megabytes of input vertex data are processed every second.

The table reveals three interesting phenomena. First, the staging operation is I/O bound. The
CPU utilization rate is consistently around 22%. We waited for I/O to complete for most of the
time. The breakdown of the (busy) CPU time shows that the ratio between the user time and the
system time is about 1:5, an indication that the staging operation spent significantly more time
in executing system calls than generating random numbers to promote vertices.

Second, the throughput of staging, though fluctuated, scales reasonably well. It reflects the
effectiveness of the bulk-loading procedure described in Section 4.12.2. If we need to stage a
data set with 10 billion vertices, we can make an educated guess of how long it may take. For
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Number of vertices 1 M 10 M 40 M 100 M 200 M 1 B
Flat file size 24 MB 240 MB 960 MB 2.4 GB 4.8 GB 24 GB

Vertex database 25 MB 246 MB 981 MB 2.5 GB 4.90 G 24.5 GB
Vertex table 24.5 MB 245 MB 980 MB 2.5 GB 4.9 GB 24.5 GB
Vertex B-tree 65 KB 279 KB 1 MB 2.4 MB 5 MB 24 MB

Staging time 00:00.5 00:03.6 00:27 01:08 02:25 12:29
CPU utilization 24% 38% 22% 23% 22% 21%
User time (s) 0.02 0.24 1.2 3.1 5.6 28
System time (s) 0.1 1.15 4.9 13 27.3 133

Throughput (MB / s) 91 134 72 71 67 65

Figure 5.5:The running time of staging the 2D vertex sets. The “Staging time” is shown in
(mm:ss) format. The “s” shown in the parentheses stands for seconds.

large-scale applications, the ability to provide some indication of the running time is often helpful
by itself. For example, if an estimated running time far exceeds a deadline, the problem size can
be scaled down properly.

Third, the sizes of the vertex B-trees are about three orders of magnitude smaller than the
vertex tables. This is because each 16 KB vertex data page is tracked by one index entry, which
is 16 bytes in size (i.e., an 8-byte vertex id plus an 8 byte page id). The ratio between the two
happens to be 1000. Given the small sizes of the vertex B-tree indices, they are likely to be
completely cached in the file system buffer cache at runtime. Also note that the sizes of vertex
tables are almost identical to those of the input flat files. This is because we have fully packed the
vertex pages when we stage the vertex database. As such, we make full use of the I/O bandwidth
when we fetch data pages of the vertex table.

Figure 5.6 shows the running time and throughput of staging the 3D vertex sets.

Number of vertices 1.3 M 11.3 M 35.7 M 134.0 M 534.5 M 1.0 B
Flat file size 40 MB 362 MB 1.14 GB 4.29 GB 17.1 GB 32.8 GB

Vertex database 41 MB 370 MB 1.17 GB 4.39 GB 17.5 GB 33.5 GB
Vertex table 41 MB 370 MB 1.17 GB 4.38 GB 17.5 GB 33.5 GB
Vertex B-tree 80 KB 400 KB 1.2 MB 4 MB 32 MB 33 MB

Staging time 00:01 00:16 00:48 02:54 11:21 22:19
CPU utilization 21% 13% 13% 14% 15% 15%
User time (s) 0.04 0.3 1 4 15 30
System time (s) 0.2 1.8 6 21 88 171

Throughput (MB / s) 71 46 48 50 51 49

Figure 5.6:The running time of staging the 3D vertex sets.

The overall characteristics of staging 3D data sets are similar to those of the 2D cases. There
are two minor differences, though. The CPU utilization rate and the throughput rate both drop
for about 33%. This is due to the additional coordinate we have to process. For each vertex in
3D, we have to read in and write out 32 bytes, that is, an 8-byte vertex id plus a 24 byte 3D
coordinate. In two 2D, each vertex is 24 bytes. Hence, there is a difference of about 33% in the
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size of the records, which is reflected in the proportional drop in the CPU utilization rate and the
throughput rate.

5.3.2 Triangulating the Vertices

The more time consuming part of the our solution is Delaunay triangulating the vertices. Fig-
ure 5.7 shows the running time of triangulating the 2D data sets. The Abacus computational
cache size was set to be 8 MB for these experiments.

The first row lists the number of vertices in the data sets. The second row shows the number
of triangles stored in the final triangulation. The “Triangle database” row shows the aggregated
file size of the triangle databases, which are the sums of sizes of the triangle tables and triangle
B-trees listed below, respectively. The “Triangulating time” row shows the running times of
triangulating the data sets. The “Amortized time” row shows how long it takes to triangulate 1
million points on average for each data sets.

Number of vertices 1 M 10 M 40 M 100 M 200 M 1 B
Number of triangles 2M 20 M 80 M 200 M 400 M 2 B

Triangle database 67 MB 817 MB 3.1 GB 8.3 GB 16.4 GB 69.0 GB
Triangle table 67 MB 814 MB 3.1 GB 8.3 GB 16.3 GB 68.7 GB
Triangle B-tree 280 KB 3 MB 13 MB 30 MB 53 MB 269 MB

Triangulating time 00:00:18 00:03:30 00:15:19 00:43:10 01:18:16 07:17:12
CPU utilization 99% 98% 94% 94% 93% 92%
User time (s) 18 204 860 2416 4300 23901
System time (s) 0.17 3 10 41 71 369

Amortized time (s) 18 18 23 25 24 26

Figure 5.7: The running time of Delaunay triangulating the 2D vertex sets (8 GB physi-
cal memory, 8 MB Abacus computational cache). The triangulating time is represented in
(hh:mm:ss) format. The amortized time represents the average time (in seconds) to triangulate
1 million vertices, that is, the total triangulation time divided by the number of millions in a vertex
set.

The table illustrates a number of interesting results. First of all, our new solution takes
only 18 seconds to triangulate 1 million vertices. Compared to the running time (25 hours 43
minutes and 35 seconds, or 92615 seconds) of the R-tree based Goose implementation presented
in Chapter 2, we have achieved a speedup of more than 5000 times.

Second, the performance of Abacus scales exceptionally well. The amortized time for trian-
gulating 1 million vertices increase moderately as expected. Recall that the complexity of the
incremental insertion algorithm isO(n log n). By dividing the total triangulation time by the
number of millions, weshouldexpectO(log n) as the amortized running time. As the problem
sizen increase, the amortized running time should increase moderately.

Note how the performance holds up even when triangulating the 1 billion vertex data set.
The total size of the data set is 93 GB (i.e., 24 GB vertex database plus 69 GB triangle database),
which is an order of magnitude larger than the physical memory size (8 GB). There is no perfor-
mance degradation of any kind.
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The third observation is that the triangulation process is CPU-bound. The overall CPU uti-
lization rates are always above 90%. Of the busy CPU time, about 98% is spent in executing
the triangulation (user) code. This is a strong proof that constructing large-scale Delaunay trian-
gulation on Abacus is compute-intensive. Most of the wall clock time is spent in executing the
triangulation code rather than making system calls.

We believe that running the experiments on a dual-CPU machine has contributed to the over-
lapping of I/O with the normal execution of our program. Since we have used only one processor,
the OS daemons must have used the other processor to swap in and out disk pages in the back-
ground. However, we have not yet quantitatively analyzed the effect of the dual-processor setup.
It is an interesting line of research to pursue in the future.

Besides setting the Abacus computational cache to 8 MB, we also experimented with larger
cache sizes, ranging from 16 MB to 4 GB. The results were all within 5 percent of the running
time reported in Figure 5.7, which suggests that the working set of 2D Delaunay triangulation is
quite small. As long as there is some amount of memory allocated for the Abacus computational
cache, the performance of Delaunay triangulation is boosted.

Figure 5.8 shows the running time of triangulating the 3D data sets. We set the Abacus
computational cache size to 6 GB for these experiments. The rows of the table have the same
meaning as those in Figure 5.7.

Frequency 0.25 Hz 0.5 Hz 0.75 Hz 1 Hz 1.5 Hz 1.85 Hz
Number of vertices 1.3 M 11.3 M 35.7 M 134 M 534.5 M 1.0 B
Number of tetrahedra 7 M 63.4 M 200.1 M 738 M 3.0 B 5.7 B

Tetrahedron database 330 MB 3 GB 9.6 GB 36.8 GB 137.2 GB 256.0 GB
Tetrahedron table 329 MB 3 GB 9.5 GB 36.6 GB 136.6 GB 255.0 GB
Tetrahedron B-tree 1 MB 12 MB 38 MB 146 MB 546 MB 1 GB

Triangulating time 00:05:47 00:54:23 03:09:08 12:23:56 51:07:00 102:36:54
CPU utilization 98% 99% 97% 97% 97% 93%
User time (s) 334 3227 11083 43278 178394 346468
System time (s) 8 14 32 111 405 757

Amortized time (s) 275 289 318 333 344 361

Figure 5.8: The running time of Delaunay triangulating the 3D vertex sets (8 GB physi-
cal memory, 8 MB Abacus computational cache). The triangulating time is represented in
(hh:mm:ss) format. The amortized time represents the average time (in seconds) to triangulate
1 million vertices, that is, the total triangulation time divided by the number of millions in a vertex
set.

The performance characteristics of the 3D cases are almost identical to those of the 2D cases.
The difference in the amortized times between the 2D and 3D cases are due to the extra work
for dealing with 3D data sets. For the 2D random data sets, the average number of deletions
caused by a new insertion is 4.7 and the average number of of new insertions is 6.6. In contrast,
for the 3D earthquake data sets, the average number of deletions caused by a new insertion
is 36.1 and the average number of new insertions is 41.6. Adding other overhead such as the
breadth-first search, the overall cost of triangulating 1 million 3D vertices is about 12 times that
of triangulating 1 million 2D vertices.
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The most striking result shown in Figure 5.8 is that Abacus produced 3 billion and 5.7 billion
tetrahedra for the 1.5 Hz and 1.85 Hz data sets, respectively. The sizes of the output tetrahedra
databases alone are 137 GB and 256 GB, respectively, far exceeding the size of the 8 GB physical
memory.

That we are able to generate billion-element Delaunay tetrahedral meshes on commodity
servers represents a breakthrough new capability. Previously, meshes of such scale and com-
plexity had tobe generated by parallel programs running on supercomputers with hundreds of
gigabytes to terabytes physical memory.

5.3.3 Comparison with Incore Delaunay Triangulators

In order to assess the performance of Abacus in a meaningful way, we conducted experiments
to triangulate the 2D and 3D data sets using the state-of-the-art incore Delaunay triangulators,
Triangle and Pyramid.

The inputs to Triangle and Pyramid did not include the redundant vertices we added into the
vertex databases. Both program took the flat vertex files as input directly. All the experiments
were conducted on the same server as used in previous sections.

The 2D cases

An interesting observation we made was that Triangle ran about 3 times faster triangulating the
Z-ordered vertex sets than the corresponding random data sets. For example, it took Triangle 21
seconds to triangulate 1 million Z-ordered random data set, while it took Triangle 1 minutes to
triangulate the original random data sets. To ensure a fair comparison, we used the Z-ordered
random data sets as inputs to Triangle.

Besides the incremental insertion algorithm, Triangle also implements the divide-and-conquer
algorithm for constructing Delaunay triangulations, which is the fastest 2D Delaunay triangula-
tion algorithm in practice. We compare our results to both implementations of Triangle.

Figure 5.9 shows the running time of triangulating the 2D data sets using Abacus, Triangle
executing the incremental insertion algorithm, and Triangle executing the divide-and-conquer
algorithm, respectively.

The “Abacus time” shows the total time of executing the Delaunay triangulation program
shown in Section 4.12.5, which include the time of staging the vertices,“Staging time”, and the
time of triangulating the vertices, “Triangulating time”. The “Abacus amortized time” shows how
many seconds Abacus takes to process 1 million vertices on average. “Triangle (ii)” represents
the execution time of Triangle running the incremental insertion algorithm. “Memory usage (ii)”
lists the amount of memory used by Triangle running the incremental insertion algorithm. For
the 1 billion vertex set, Triangle ran out of the virtual memory (26 GB). The 114 GB shown in the
table is a linearly extrapolation estimate of the memory usage based on the memory usage by the
smaller data sets. “Triangle (ii) amortized time” shows how many seconds Triangle, executing
the incremental insertion algorithm, takes to process 1 million vertices on average. The three
rows below have the same meaning as the previous three rows except that they represent the case
of Triangle running the divide-and-conquer algorithm.
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Number of vertices 1 M 10 M 40 M 100 M 200 M 1 B
Number of triangles 2M 20 M 80 M 200 M 400 M 2 B

Abacus time 00:00:19 00:03:34 00:15:46 00:44:18 01:20:41 07:29:41
Staging time 00:00:01 00:00:04 00:00:27 00:01:08 00:02:25 00:12:29
Triangulating time 00:00:18 00:03:30 00:15:19 00:43:10 01:18:16 07:17:12

Abacus amortized time (s) 19 21 24 27 27 27

Triangle (ii) 00:00:21 00:06:22 00:38:06 02:39:51 09:15:49 N/A
Memory usage (ii) 114 MB 1.1 GB 4.6 GB 11.4 GB 22.8 GB 114 GB (est.)
Triangle (ii) amortized time (s) 21 38 57 96 167 N/A

Triangle (dc) 00:00:08 00:01:19 00:06:01 01:07:51 09:55:47 N/A
Memory usage (dc) 122 MB 1.2 GB 4.9 GB 12.2 GB 24.4 GB 122 GB (est.)
Triangle (dc) amortized time (s) 8 8 9 41 179 N/A

Figure 5.9:Running time comparison between Abacus and Triangle. “Triangle (ii)” repre-
sents Triangle executing the incremental insertion algorithm. “Triangle (dc)” represents Triangle
executing the divide-and-conquer algorithm.
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Number of vertices 1.3 M 11.3 M 35.7 M 134 M 534.5 M 1.0 B
Number of tetrahedra 7 M 63.4 M 200 M 738 M 3.0 B 5.7 B

Abacus time 00:05:48 00:54:39 03:09:56 12:26:50 51:18:21 102:59:13
Staging time 00:00:01 00:00:16 00:00:48 00:02:54 00:11:21 00:22:19
Triangulation time 00:05:47 00:54:23 03:09:08 12:23:56 51:07:00 102:36:54

Abacus amortized time (s) 268 290 319 334 346 371

Pyramid 00:03:16 00:43:28 inf N/A N/A N/A
Memory usage 493 MB 4.4 GB 14 GB(est.) 52 GB(est.) 0.2 TB(est.) 0.4 TB(est.)
Pyramid amortized time (s) 155 231 inf N/A N/A N/A

Figure 5.11:Running time comparison between Abacus and Pyramid. “TB” stands for ter-
abyte.

Figure 5.10 plots the amortized running times for triangulating 1 million vertices on average
by the three programs. The x-axis is in logarithmic scale and represents the number of vertices.
The y-axis is in normal scale and shows the amortized running time for triangulating every 1
million points. The dashed vertical bar in the figure marks the size of the data set that would use
us all the 8 GB physical memory.

The 3D cases

Pyramid, the 3D cousin of Triangle, only implemented the incremental insertion algorithm.
Hence, the performance comparison shown below does not include the divide-and-conquer case.

Figure 5.11 shows the running time of triangulating 3D data sets using Abacus and Pyramid,
respectively. The meaning of the rows is identical to that in Figure 5.9.

Figure 5.12 shows the comparison of the amortized time for processing 1 million vertices on
average between Abacus and Pyramid. The vertical bar in the figure shows the memory wall (8
GB physical memory) which Pyramid failed to cross.

Pyramid started to thrash severely when triangulating the 35.7 million vertex set. The CPU
utilization of the program dropped below 0.1% (observed using thetop program). Since the
program did not finish in a month, we set the running time as infinity in the table.

The estimated memory usage shown in the table is based on linear extrapolation of the mem-
ory usage by smaller data sets. Since pyramid used about 390 MB for every one million vertices,
the 1 1 billion vertex set requires about 400 GB memory. Even assuming the memory size keeps
growing according to Moore’s Law, that is, doubling every 18 months, it will take about 4 years
for the memory of our server (currently 8 GB) to reach the size that can accommodate the data
set. In comparison, it took Abacus 4 days and 6 hours.

Main Conclusions

The first main conclusion we draw from the comparison study is that Abacus is a competitive
solution when triangulating data sets that fit in memory. Its performance matches that of the best
incore Delaunay triangulators.

The second main conclusion is that Abacus is a superior solution than Triangle and Pyramid
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Figure 5.12:The amortized running time for triangulating the 3D vertex sets. The x-axis
(in logarithmic scale) represents the number of vertices. The y-axis represents the average
execution time in seconds for processing every 1 million vertices. The two curves represent the
results of triangulating the same data sets using Abacus and Pyramid, respectively.
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when triangulating data sets larger than the memory size. When Triangle and Pyramid start
thrashing (out of physical memory) and stop working (out of virtual memory), Abacus continues
to deliver scalable performance.

As a final note of this section, we must clarify that Triangle and Pyramid were designed
and implemented as highly efficientincorequality-guaranteed Delaunay mesh generators. They
are capable of powerful functions such as Delaunay refinement mesh generation, constrained
Delaunay triangulation, and convex hull construction, which we do not support in Abacus. It is
an interesting research topic to investigate how to incorporate these algorithms into Abacus in
the future.

5.4 The Effect of the Physical Memory Size

The server we used to conduct the previous experiments has 8 GB physical memory, which is the
norm today. In order to understand the effect of the physical memory size on the performance of
Abacus, we configured the kernel to boot with only 64 MB physical memory (and a 2 GB swap
space) and re-conducted the experiments for the 2D cases.

After the machine was rebooted, there were only about 20 MB free physical memory. We set
the size of the Abacus computational cache to 8 MB, as we did for the previous 2D experiments.
The operating system did not make aggressive use of the remaining 12 MB memory and left
them unused all the time. Hence, in this configuration, we completely skipped the file system
buffer cache and practically used only 8 MB physical memory.

Figure 5.13 shows the running time of triangulating the 2D data sets in the setup just de-
scribed. The database sizes are the same as listed in previous sections. They are listed as a quick
reference.

Number of vertices 1 M 10 M 40 M 100 M 200 M 1 B
Number of triangles 2M 20 M 80 M 200 M 400 M 2 B

Total database size 92 MB 1 GB 4 GB 11 GB 21 GB 94 GB
Triangle database 67 MB 817 MB 3.1 GB 8.3 GB 16.4 GB 69.0 GB
Vertex database 25 MB 246 MB 981 MB 2.5 GB 4.90 G 24.5 GB

Abacus time 00:00:29 00:06:11 00:32:01 01:33:01 02:37:50 14:49:05
Staging time 00:00:02 00:00:23 00:01:40 00:05:09 00:10:26 00:52:14
Triangulating time 00:00:27 00:05:48 00:30:22 01:27:52 02:27:24 13:56:51

Abacus amortized time (s) 27 35 46 53 47 53
Slowdown (vs. 8 GB memory) 1.4 1.9 2.0 2.1 2.0 2.0

Figure 5.13:The running time of Delaunay triangulating the 2D vertex sets (64 MB physical
memory, 8 MB Abacus computational cache).

As the table shows, we have successfully constructed a Delaunay triangulation for a data set
(1 billion vertices, 94 GB database size) that is 4 orders of magnitude larger than the memory
size (the 8 MB Abacus cache).

What’s more surprising is that there is only about a factor of 2 slowdown when we compare
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the performance to the cases when 8 GB physical memory was used. The side-by-side compari-
son of the amortized running times are shown Figure 5.14.
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Figure 5.14:Comparison between the Abacus amortized running times between the 8 GB
memory setup and the 64 MB memory setup. Both cases use 8 MB computational cache.

5.5 I/O Characteristics

In order to understand why the experiments with only 64 MB memory footprint did not suffer
from I/O thrashing, we instrumented our code to collect the I/O traces for accessing the vertex
table and the triangle table, and re-ran the experiment for triangulating 100 million vertices.

5.5.1 I/O Requests to the Vertex Table

Figure 5.15 shows the read I/O trace for accessing the vertex table. Since the vertex database is
read-only during the construction of a triangulation, there is no write I/O trace. The x-axis in the
figure shows the execution time in microsecond and the y-axis shows the vertex data page ids. A
dot at(x, y) represents a read request at timex for pagey .

We can see from the I/O trace plot that there are random reads are scarce. Most of the read
requests are clustered along two major threads, one at the top of the plot (the top thread) and the
other diagonally across the plot (the diagonal thread).

The top thread represents read accesses to the redundant vertices inserted in earlier rounds.
Recall from Chapter 4 that the redundant vertices in earlier rounds are stored in vertex data pages
with larger page ids because we bulk-load the vertex database in a backward order. Therefore,

105



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  1e+09  2e+09  3e+09  4e+09  5e+09  6e+09

V
er

te
x 

da
ta

 p
ag

e 
id

Execution time (microsecond)

Vertex table I/O trace for triangulating 100 million 2D points
 64 MB physical memory, 8 MB computational cache

Vertex table read requests

Figure 5.15: I/O trace for reading the vertex table. The vertex table is read-only when we
triangulate the vertices.

the top thread starts at a large page id on the y-axis. Meanwhile, the redundant vertices all
together account for a little more than 2% of the total data pages (since we have set the promotion
probability to 0.02.) Thus, the top thread is almost flat.

The reason the redundant vertices are accessed throughout the execution time is that they are
gradually being replaced by the (original) vertices inserted in the last round. When a vertex in the
last round has a redundant counterpart in an earlier round, the triangles incident to the redundant
counterpart will be deleted. While doing so, we need to load the triangles and their vertices into
the Abacus cache. One of the vertices must be the redundant counterpart. In most cases, the
redundant vertex is already flushed out of the computational cache since the access time between
the initial insertion of the redundant vertex and the time it is replaced is usually quite long. This
is the reason why there are read requests to access redundant vertices late in the execution time.

The diagonal thread represents read accesses to the original vertices. The clustering shows
the effect of the spatial locality in the data sets. When a vertex is inserted into the Delaunay
triangulation, the triangles that need to be deleted due to its occurrence usually consist of vertices
that have close-by vertex ids. If these vertices have been flushed out of the computational cache,
read requests are issued to fetch them back in. As a result, the read requests for vertex page ids
tend to be clustered.

5.5.2 I/O Requests to the Triangle Table

Figure 5.16 shows both the read and write I/O traces for accessing the simplex table. The read
trace is shown in the upper half of the figure. A dot at(x, y) , wherey > 0, represents a read

106



request at timex for pagey . The write trace is shown in the lower half of the figure. A dot at
(x, y) , wherey < 0, represents a write request at timex for page(-y) .
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Figure 5.16:I/O trace for accessing the simplex table. The upper half of the figure shows the
read requests; the lower half shows the write requests.

The figure is almost symmetric for dual reasons. On the one hand, a new triangle page that
is written out to disk is very likely to be fetched into the Abacus cache shortly since the triangles
on the page needs to be removed due to the spatially locality among the insertion vertices. On
the other hand, if a triangle page recently read is modified, the page becomes deallocated imme-
diately. The Abacus system reuses the page, stores other triangles on the page and writes it to
disk. Therefore, the symmetry is a natural outcome by design.

Both the read and write traces show two main I/O threads, one close to the x-axis and the other
diagonal. They correspond to the top I/O thread and the diagonal thread shown in Figure 5.15,
respectively. Triangles created due to vertices inserted in the earlier rounds are allocated from
the beginning of the triangle page id space. There are only about 2% of these triangles since
there are only about 2% of redundnat vertices. Hence, the triangle page id range they occupy
is very narrow. Since these triangles are gradually deleted as the original vertices are inserted,
the read requests to access these triangles are spread across the entire execution time in a narrow
range. Therefore, the read and write I/O threads associated with these triangles are very close to
the x-axis.

The diagonal threads associated with the triangles created and deleted due to the insertions
of the original vertices. For the same reason as explained for the vertex I/O trace, the triangles
recently created are likely to be deleted due to a new insertion. Hence, the read and write accesses
in the triangle page id space are also clustered.
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The basic conclusion we draw from the I/O trace study is that the design schemes of ex-
ploiting locality at both the application level (the modified BRIO order) and the system level
(the Abacus cache) have resulted in good I/O behavior. Instead of thrashing, the storage system
seems to have identified the small number of I/O threads and have been able to service the I/O
requests satisfactorily. The technical challenge of how to tune the storage system to improve the
performance is beyond the scope of this thesis and is left as future work.

5.6 Abacus Cache Performance

The running time presented in the previous sections suggest that most of the operations on the
Delaunay triangulations have taken place with the Abacus cache.

Figure 5.17 shows the performance of the Abacus cache. performance when triangulating the
2D data sets. The size of the physical memory for these experiments was reset to 8 GB and the
size of the Abacus cache was still 8 MB. The performance of the Abacus cache is characterized
by “Abacus cache hit ratio”. AnAbacus cache hitmeans that when we walk from a triangle to
one of its neighbors in a certain direction (i.e., across a particular edge), the neighbor is already
stored in the Abacus cache. The Abacus cache hit ratio is the ratio between the total number of
Abacus cache hits and the total number of walk attempts. To service an Abacus cache miss, we
need to fetch a triangle data page from disk using the various probing techniques described in
Section 4.10. Hence, the higher the Abacus cache hit ratio, the better the overall performance.

The table also shows the performance of the application cache, a secondary cache imple-
mented to speed up the cavity creation step of the incremental insertion algorithm as described
in Section 4.12.4. An incircle cache miss causes a traversal down the Abacus octree structure to
find the starting triangle to expand a cavity. Since the octree structure is in the main memory,
the cost of servicing an incircle cache miss is orders of magnitude less than that of servicing an
Abacus cache miss.

Number of vertices 1 M 10 M 40 M 100 M 200 M 1 B
Total walk attempts 11 M 114 M 514 M 1.1 B 2.6 B 11.2 B
Abacus cache hit ratio 99.9948% 99.9911% 99.9937% 99.9893% 99.9935% 99.9938%
Incircle cache hit ratio 81.88% 81.95% 82.18% 82.68% 83.53% 89.82%

Figure 5.17:Abacus cache performance for triangulating the 2D data sets (8 GB physical
memory, 8 MB Abacus cache).

Figure 5.18 shows the performance of the Abacus cache performance when triangulating the
3D data sets. The meaning of the rows is the same as that in Figure 5.17. Since the data set with
1.3 million vertices fit completely in the Abacus cache, the Abacus cache hit ratio is 100%.

These statistics explain why Abacus has been able to compete with the best incore algorithms:
Abacus computes as if itwerean incore algorithm. The Abacus cache hit ratios are above 99.99%
and 99.999% for the 2D and 3D cases, respectively. Almost all data are accessed directly from
the main memory. Further, unlike a traditional database where main memory cached data are
retrieved by searching, Abacus retrieves a cached triangle via one memory reference. Therefore,
Abacus can compute as fast as an incore algorithm.
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Number of vertices 1.3 M 11.3 M 35.7 M 134 M 534.5 M 1.0 B
Total walk attempts 118 M 1.1 B 3.3 B 12.4 B 50.0 B 97.1 B
Abacus cache hit ratio 100% 99.99958% 99.99937 % 99.99913% 99.99920% 99.99915%
Incircle cache hit ratio 92.28% 92.29% 92.34% 92.18% 92.32% 92.41%

Figure 5.18:Abacus cache performance for triangulating the 3D data sets (8 GB physical
memory, 6 GB Abacus cache).

In addition, the application cache also turns out to be an effective secondary optimization
technique. In 2D, more than 4 out of 5 search of the application cache result in an incircle cache
hit; and in 3D, more than 9 out of 10.

5.7 The Translation Mechanism

The translation mechanism is triggered when an Abacus cache miss occurs. The three probing
techniques described in Section 4.10 are invoked in combination to load the missing triangles.

Figure 5.19 summarizes the characteristics of the probing operations for triangulating the 2D
data sets. “Abacus cache misses” represents the number of times we cannot walk directly to a
neighbor. Each row below represents the percentage of Abacus cache misses that is serviced by
a particular probing technique. For example, the quick probe successfully retrieves 67.79% of
the 596 missing triangles for triangulating the 1 M vertex data sets.

Number of vertices 1 M 10 M 40 M 100 M 200 M 1 B
Abacus cache misses 596 10118 32647 120520 168262 694189
Quick probe 67.79% 69.16 % 68.06% 69.32% 69.23% 62.83%
Ray-casting probe 31.54% 29.74% 30.81% 29.80% 29.80% 36.01%
Concentric probe 0.67% 1.10% 1.13% 0.88% 0.97% 1.16%

Figure 5.19:Characteristics of the probing operations for triangulating the 2D data sets (8
GB physical memory, 8 MB Abacus cache).

The statistics in the table illustrate the efficiency of our probing strategy. About 2/3 of the
Abacus cache misses are serviced by quick probes, which involve only one disk access per probe.
The speculative ray-casting probe retrieves about 1/3 of the missing triangles. The most expen-
sive concentric probe accounts for about 1% of the misses.

Figure 5.20 summarizes the characteristics of the probing operations for triangulating the 3D
data sets. The meanings of the rows are the same as in Figure 5.19.

The 3D cases have similar characteristics as the 2D cases. Together, the speculative quick
probe and ray-casting probe resolve more than 92% of the misses. The concentric probe serves
the remaining 7%. Considering that the Abacus cache miss in 3D is below 0.001%, the slightly
higher number of concentric probes has no material effect on the overall performance. After all,
it only accounts for less than 0.00007% of the total walk attempts.

Besides the I/O probing into the databases, we are also interested in understanding what is
the CPU overhead of conducting data translation. However, since different components work in-
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Number of vertices 1.3 M 11.3 M 35.7 M 134 M 534.5 M 1.0 B
Abacus cache misses 0 4459 21512 108424 398532 821445
Quick probe N/A 50.93% 52.50% 53.40% 51.91% 52.13%
Ray-casting probe N/A 42.52% 40.75% 39.36% 40.79% 40.50%
Concentric probe N/A 6.55% 6.75% 7.24% 7.29% 7.37%

Figure 5.20:Characteristics of the probing operations for triangulating the 3D data sets (8
GB physical memory, 6 GB Abacus cache).

timately within the Abacus system to carry out data translation, it is difficult to precisely quantify
the CPU cost.

Recall that there are two hash tables within the Abacus cache: the vertex hash table and
the edge hash table. Whenever vertices or triangles are loaded into or flushed out of the Abacus
cache, these two hash tables are looked up and operated on. Hence, as a first order approximation,
we use the time spent in hash table operations as an indicator of the cost of data translation.

In the next experiment, we re-compiled the Abacus system and the Delaunay triangulation
program with the-g -pg flags and re-ran the program triangulating the 2D vertex data set with
40 million vertices. The physical memory used for the experiment was 8 GB, and the Abacus
cache size was set to 16 MB. Figure 5.21 lists the top 10 time-consuming functions as reported
by gprof .

1 hash uint32key : 24.63%
2 hash insert : 11.95%
3 hash search : 10.10%
4 incircle : 8.77%
5 delaunay2d insert : 5.70%
6 release triangle : 4.93%
7 direct insert triangle : 4.84%
8 octree search : 4.51%
9 get leaf : 2.40%
10 momanewobj : 2.10%

Figure 5.21:The top 10 time-consuming functions for triangulating 40 million 2D vertices
(8 GB physical memory, 16 MB Abacus cache).

Thehash uint32key function is permutes (scrambles) an input key to ensure that all the
bits are used in a hash key. Thehash insert andhash search functions are standard hash
table operations. Theincircle function is a robust geometry predicate that tests whether a
vertex falls within the circumcircle of a triangle. The remaining functions are various internal
functions used by Abacus to carry out the basic operations.

The aggregated cost of hash related functions accounts for about 47% of the total running
time. In order words, we spend about half of the CPU time conducting data translation. In return,
we achieve sustainable high performance for dealing with massive Delaunay triangulations.

In summary, the performance evaluation presented in this chapter should disperse any doubt
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about the viability of a computational cache. However, we do not claim that the performance
can be readily replicated for other scientific data sets and applications. But at the least, our
results have unambiguously demonstrated the feasibility of the proposed database approach to
computing large-scale Delaunay triangulations.
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Chapter 6

Conclusion

The research presented in this dissertation is—according to our knowledge—the first of its kind.
We have demonstrated how to integrate a set of new techniques with existing database technolo-
gies to compute large-scale Delaunay triangulations.

Nevertheless, how to extend and use existing database techniques to process other massive
unstructured scientific data sets remains a difficult task in general. In order toqualitatively
transform our overall ability to manipulate and interpret large-scale scientific data sets, significant
research challenges must be overcome; and opportunities abound.

This concluding chapter summarizes the main contributions of the dissertation, outlines the
road map for future work, and presents a final remark on the thesis.
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6.1 Contributions

The development of the proposed database approach and the Abacus system has not taken place
in a vacuum. From the conception of the idea to the design and implementation of the software
system, we have been driven by the needs of real-world scientific data sets and applications every
step of the way. Hence, our research results directly benefit scientific applications that operate
on massive data sets.

Intellectual Contributions

Compared with previous research works, which targeted efficient query processing ofstaticsci-
entific data sets at the SQL level [62, 63, 64] or at the index level [88], this dissertation focuses
on how to extend existing database techniques with new methods and algorithms to create op-
portunities fordynamicscientific applications to run directly on databases.

The intellectual contribution of the research consists of two parts:
• The identification of the structural mismatch between the unstructured representation of

scientific data sets and tabular data layout in traditional database systems

• The proposition of an application-specific computational cache as a generic solution
Using Delaunay triangulation as a running example, we have demonstrated thatstructural

mismatch, the discrepancy between how data are stored and indexed in databases and how data
are accessed and manipulated by scientific applications, is the root cause for the difficulty of
mapping core scientific applications to database systems.

We solve the problem by introducing an additional layer of indirection by adding an application-
specific computational cache on top of the standard database page buffer pool, and carrying out
runtime data translation between the unstructured representation of a scientific data set and its
tabular data storage format in database pages.

Practical Contributions

From a practitioner’s perspective, our research makes two contributions:
• The illustration of a systemic methodology of designing and implementing the Abacus

computational cache and the associated translation mechanism

• The creation of a breakthrough new capability for constructing massive Delaunay triangu-
lations on commodity servers

We have illustrated the complete procedure of how to organize triangulation data in a database,
how to build and maintain a pointer-based topological structure in the Abacus cache, and how
to map data between the database and the Abacus cache. Scientific data sets and applications of
different natures may require different data organizations throughout the memory hierarchy. But
the basic design and implementation methodology should the same as what we have described
in Chapter 4.

The first application of the Abacus system is the new Delaunay triangulation program pre-
sented in Section 4.12.5. As shown in Chapter 5, the performance and scalability of the Abacus-
enabled Delaunay triangulator are unparalleled. It creates a new capability for scientists to
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construct massive 2D/3D Delaunay triangulations on their servers or even desktops that have
sufficient disk storage space, deferring the time when scientists have to submit batch jobs to
supercomputers that have hundreds of gigabytes to terabyte physical memories.

6.2 Future Work

Even though the Abacus prototype has shed light on the promise of the proposed database ap-
proach, there is still a long way to go to turn our vision into reality. The research challenges
lying ahead spread across almost the entire spectrum of computer science, ranging from scien-
tific computing to discrete algorithms to programming language to systems design to parallel
architectures. Below we outline the plan for extending our current work to ultimately support the
data-centric framework envisioned in Section 1.3.

Short Term Plan

The Neuse River Basin data set mentioned in in Chapter 5 was a data set collected by the North
Carolina Floodplain Mapping Project. The project, started after Hurricane Floyd in 1999, was
the first in the country to use the LIDAR technology (Light Detection and Ranging, an airborne
laser scanning technology) to capture terrain data (i.e., a 2D vertex set) of the entire state. The
goal was to analyze the elevation distribution of the terrain data to access flood risks, set in-
surance premiums, and create disaster plans. However, the sheer volume enormity of the 2D
vertex set (500 million vertices for the Neuse River Basin alone) has rendered incore Delaunay
triangulation programs useless, delaying the project’s completion time from the projected 2002
to 2007 [68].

Isenburg and colleagues have devised a highly sophisticated streaming Delaunay triangu-
lation algorithm to solve the problem [45]. The idea is to pre-process the input vertices by
sequential-scanning the data set multiple times. In the final pass, a Delaunay triangulation is
constructed and output on the fly to either disk storage or another streaming algorithm, for ex-
ample, a streaming iso-contour extraction program.

The streaming-algorithm–based solution, though efficient, have two major limitations. First,
when more vertices in an already triangulated region become available, the Delaunay triangu-
lation streaming algorithm have to be re-run. Second, if a user such as a county emergency
management officer needs to examine a specific set of iso-contours within her county, she has no
choice but to re-run the the streaming visualization program on the entire Delaunay triangulation
data set, even though she may be only concerned about 2% of the data.

We plan to extend Abacus to solve both problems and make it useful to a large number of
other applications. In particular, our short-term research agenda is to develop Abacus into a full-
fledged high-performance database system for dealing with Delaunay triangulation data sets.

• Developing specialized read-only Abacus API functions.The specialized API functions
abacus stage vertices andabacus delauanay insert are both designed for
support dynamic construction of Delaunay triangulations. A useful extension of the Aba-
cus API is to develop a set of commonly used read-only functions such as range query,
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iso-contour extraction, and ray-casting visualization. The facility to support these func-
tions is already built within the Abacus system. In essence, all these operations can be
efficiently supported by the walk operation described in Section 4.11.3. The only differ-
ence lies in which direction to walk to from within a particular triangle. For example, a
range query walks to all directions (i.e., breadth-first expansion); a ray-casting algorithm
walks along the direction of a ray; and an iso-contour extraction algorithm walks across
the edges where the iso-contour values lie.

• Porting the Abacus prototype to full-fledged database systems.We have chosen to build
Abacus as a standalone system to simplify software development and performance evalu-
ation. On the downside, we cannot capitalize on the existing capabilities of a full-fledged
database system. In particular, there is no support for associative search. For example, if
a user queries for all the vertices with a certain attribute value (e.g., the x component of
the velocity falls within a specified range), we must scan the vertex table to retrieve the
qualified vertex records.

Porting the Abacus prototype to an open-source database system such as PostgreSQL will
create a full-fledged database system for dealing with Delaunay triangulations data sets.
We will be able to provide the efficient data manipulation capabilities of the Abacus system
as well as the associative query capabilities of a standard database system.

Since our current implementation does not rely on any special features of the index struc-
tures, the mapping of software modules will be relatively straightforward. However, cou-
pling Abacus data page operations with the transactional aspect of a standard database
system will be a major problem. In our current design and implementation, we do not take
the ACID property [33, 44] of a database system into consideration and focus only on the
performance. Although we believe the ACID property is far less important to scientific
applications than to business application, we must nevertheless thoroughly investigate the
issue in order to carry out the porting.

• Leveraging multi-core processors to speed up data translation.As shown in Chapter 4,
Delaunay triangulation on Abacus is a compute-intensive task, with a CPU utilization rate
above 90%. In the meantime, roughly 47% of the CPU time (in 2D) is spent in data
translation (i.e., hash table operations). An interesting research topic is to make use of the
extra cores on a CPU to hide the translation overhead and further improve the performance
of Abacus.

Since data translation take place when triangles are loaded from or stored into a database
page, we can decouple data translation from the normal execution of the triangulation code
by prefetching the page or deferring the write-out. Thus, we will be able to make full use
of the additional cycles provided by the extra cores. The technical challenge is how to
share the Abacus computational cache among multiple cores.

Long Term Plan

• Building a generic computational database framework.The Abacus system is tailored
to deal with one particular data set type: 2D/3D triangulations. There are many other
commonly used scientific data set types. Building one special-purpose database system
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for each data set type is certainly a possible solution. But we plan to develop a generic
database framework to allow domain experts to define and implement their own computa-
tional cache. As mentioned in Section 3.1.2, a user-defined computational cache (UDC)
needs to interact more intimately with the inner working of a database system. The chal-
lenge lies in how to export the right level of abstraction to support UDC extensions.

A related technical problem is how to provide a high-level declarative language (not nec-
essarily an extension of the SQL) for user applications to interact with scientific data sets
stored in a database system. In our current implementation, we have largely ignored this
problem. But in a fully-functional database system, there should be one simple, coher-
ent data manipulation language. Application programmers should not call the internal API
functions as those exported by Abacus. Instead, all the interaction with the database should
be expressed in the same high-level language construct.

• Coupling with parallel scientific simulations.Beyond all new the capabilities brought
about by the proposed database approach, our ultimate goal is to develop a parallel database
infrastructure to support terascale/petascale scientific simulations. All the simulation com-
ponents will fetch data from or store data into a parallel distributed, computational database
system. The physical storage space of the computational database will provided by a par-
allel file system such as Lustre.

Going parallel adds a whole new dimension to the design space of the proposed database
approach. How to enforce cache-coherence among the computational cache on differ-
ent processors resembles the classic cache-coherence problem on shared-memory parallel
computers. But the the granularity of sharing and the mechanism of enforcing coher-
ence are different. Instead of relying on hardware instrument to enforce coherence at
the cache-line level, we will need to use software protocol to enforce coherence at the
application-logic level. Besides the cache-coherence problem, there are many other tech-
nical challenges. For example, how should we aggregate and schedule I/O to maximize
the performance of the parallel file system? What kind of parallel database transaction
semantic should be supported to facilitate application development?

All in all, these are exciting new research territories for us to explore. Only after we carry
out the research can we materialize the full potential of a computational database system.

6.3 A Final Remark

The analysis, design, implementation, and evaluation presented in the previous chapters, along
with the prospect of future work discussed in this chapter, jointly corroborate the following thesis
statement:

Extending existing database techniques with an application-specific computa-
tional cache is a scalable solution to computing large-scale Delaunay triangulations.

As we move towards the age of petascale computing, the data produced by scientific simu-
lations and instruments will become more massive and unstructured. The data sets of tomorrow
will dwarf the scale and complexity of the most unmanageable ones of today. In order to manage
the extraordinary new data sets, we need extraordinary new capabilities.
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