
Efficient data organization and management

on heterogeneous storage hierarchies

Minglong Shao

CMU-CS-07-170

May 2008

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Anastasia Ailamaki, Chair

Greg Ganger

Todd Mowry

Per-Åke (Paul) Larson (Microsoft Research)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2008 Minglong Shao

This research was sponsored by the National Science Foundation under grant numbers CCR-0205544 and IIS-

0429334. The views and conclusions contained in this document are those of the author and should not be interpreted

as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government

or any other entity.



Keywords: data placement, data organization, data management, benchmark, optimization,

buffer pool, database management system, storage, performance, multidimensional



To my family.



iv



Abstract

Due to preferences for design and implementation simplicity, current data or-

ganization and management in database systems are based on simple assumptions

about storage devices and workload characteristics. This has been the major design

principle since the inception of database systems. While thedevice- and workload-

oblivious approach worked well in the past, it falls short when considering today’s

demands for fast data processing on large-scale datasets that have various character-

istics. The ignorance of rich and diverse features in both devices and workloads has

posed unnecessary performance trade-offs in existing database systems.

This dissertation proposes efficient, flexible, and robust data organization and

management for database systems by enhancing the interaction with workloads and

hardware devices. It achieves the goal through three steps.

First, a microbenchmark suite is needed for quick and accurate evaluation. The

proposed solution is DBmbench, a significantly reduced database microbenchmark

suite which simulates OLTP and DSS workloads. DBmbench enables quick evalua-

tion and provides performance forecasting for real large-scale benchmarks.

Second,Clotho investigates how to build a workload-concious buffer pool man-

ager by utilizing query payload information.Clothodecouples the in-memory page

layout from the storage organization by using a new query-specific layout called

CSM. Due to its adaptive structure,CSMeliminates the long-standing performance

trade-offs ofNSM andDSM, thus achieving good performance for both DSS and

OLTP applications, two predominant database workloads with conflict characteris-

tics. Clothodemonstrates that simple workload information, such as query payloads,

is of great value to improve performance without increasingcomplexity.

The third step looks at how to use hardware information to eliminate perfor-

mance trade-offs in existing device-oblivious designs.MultiMap is first proposed

as a new mapping algorithm to store multidimensional data onto disks without los-

ing spatial locality. MultiMap exploits the new adjacency model of disks to build

a multidimensional structure on top of the linear disk space. It outperforms exist-

ing mapping algorithms on various spatial queries. Later,MultiMap is expanded to

organize intermediate results for hash join and external sorting where the I/O perfor-

mance of different execution phases exhibits similar trade-offs as those in 2-D data

accesses. Our prototype demonstrates an up to 2 times improvement over the exist-

ing implementation in memory limited executions. The abovetwo projects complete

Clothoby showing the benefits of exploiting detailed hardware features.



vi



Acknowledgments

First, I would like to thank my adviser, Professor AnastasiaAilamaki, a pas-

sionate researcher and an inspiring mentor. Without her guidance, this dissertation

would not have been possible. I cannot thank her enough for her encouragement and

patience from the first day I started working with her. She first introduced me to the

fascinating world of database systems and has been helping me with every aspect of

my doctoral studies ever since. From her high-level insightful advice on the princi-

ples of system research, and advice about long-term goal setting as a professional

woman, to her meticulous comments about writing slides and giving presentations,

her teachings are of great value to my career and my life.

During my doctoral studies, I also have had the honor to work with three great

professors: Greg Ganger, Babak Falsafi, and Christos Faloutsos. I am deeply grateful

to them for their advice and encouragement. I would like to thank Professor Todd

Mowry, and Dr. Per-̊Ake Larson for kindly agreeing to be on my thesis committee

and for taking the time to read my dissertation and to give me comments.

I would like to thank my colleagues in the Fates project, Dr. Jiri Schindler and

Dr. Steven Schlosser whom I also regard as my “minor mentors”. They are the

best colleagues one could ever have: knowledgeable, professional, cheerful, and

considerate. I deeply appreciate their help throughout theentire project.

I would like to thank my colleagues in the database family: Shimin Chen, Stratos

Papadomanolakis, Mengzhi Wang, Stavros Harizopoulos, andVlad Shkapenyuk. It

has been a great pleasure to work with them.

If I had not met so many wonderful friends, my studies at Carnegie Mellon Uni-

versity would have been only long and hard. Thanks to Ting Liu, Ke Yang, Ningning

Hu, Qin Jin, Chang Liu, Rong Yan, Juchang Hua, Yanhua Hu, YanjunQi, Xiaofang

Wang, Ippokratis Pandis, Kun Gao, Steven Okamoto, Jimeng Sun, Huiming Qu,

Vahe Poladian, Monica Rogati, Fan Guo, Yanxi Shi, Shuheng Zhou, Tim Pan, Ying

Zheng, and Zihan Ma for their friendship which I cherish heartily.

I feel lucky to be able to join the Computer Science Departmentat Carnegie

Mellon University and to be a member of the database group andthe Parallel Data

Lab. I could not think of a better place to complete my Ph.D. work.

Last but not least, I would like to thank my parents, my brother, and Changhao

Jiang for their love and support. This dissertation is dedicated to them.



viii



Contents

1 Introduction 1

1.1 Difficulties in database benchmarking at microarchitectural level . . . . . . . . . 2

1.2 Problems of static page layouts for relational tables . .. . . . . . . . . . . . . . 3

1.3 Trade-offs of storing multidimensional data on disks . .. . . . . . . . . . . . . 6

1.4 Opposite access patterns during query execution . . . . . .. . . . . . . . . . . . 8

1.5 Thesis road map and structure . . . . . . . . . . . . . . . . . . . . . . .. . . . 10

2 Background: adjacency model for modern disks 11

2.1 The traditional model for disks . . . . . . . . . . . . . . . . . . . . .. . . . . . 11

2.2 Adjacent disk blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 12

2.2.1 Semi-sequential access . . . . . . . . . . . . . . . . . . . . . . . . .. . 14

2.3 Quantifying access efficiency . . . . . . . . . . . . . . . . . . . . . .. . . . . . 14

2.4 Hiding low-level details from software . . . . . . . . . . . . . .. . . . . . . . . 15

3 DBmbench 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Scaling down benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 21

3.3.1 A scaling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Framework application to DSS and OLTP benchmarks . . . .. . . . . . 22

3.3.3 DBmbench design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 25

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

3.5.1 Analyzing the DSS benchmarks . . . . . . . . . . . . . . . . . . . . .. 27

3.5.2 Comparison toµTPC-H . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.3 Analyzing the OLTP benchmarks . . . . . . . . . . . . . . . . . . . .. 31

3.5.4 Comparison toµTPC-C . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



3.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Fates database management system storage architecture 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36

4.2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . .. . . 37

4.3 Decoupling data organization . . . . . . . . . . . . . . . . . . . . . .. . . . . . 40

4.3.1 An example of data organization inFates . . . . . . . . . . . . . . . . . 40

4.3.2 In-memory C-page layout . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Overview ofFatesarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42

4.4.2 Advantages ofFatesarchitecture . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Atroposlogical volume manager . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.1 Atropos disk array LVM . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.2 Efficient database organization withAtropos. . . . . . . . . . . . . . . . 45

4.6 Clothobuffer pool manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6.1 Buffer pool manager design space . . . . . . . . . . . . . . . . . . .. . 47

4.6.2 Design spectrum of in-memory data organization . . . . .. . . . . . . . 48

4.6.3 Design choices inClothobuffer pool manager . . . . . . . . . . . . . . . 50

4.6.4 Data sharing inClotho . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6.5 Maintaining data consistency inClotho . . . . . . . . . . . . . . . . . . 54

4.7 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 55

4.7.1 Creating and scanning C-pages . . . . . . . . . . . . . . . . . . . . . .. 55

4.7.2 Storing variable-sized attributes . . . . . . . . . . . . . . .. . . . . . . 56

4.7.3 Logical volume manager . . . . . . . . . . . . . . . . . . . . . . . . . .56

4.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

4.8.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

4.8.2 Microbenchmark performance . . . . . . . . . . . . . . . . . . . . .. . 59

4.8.3 Buffer pool performance . . . . . . . . . . . . . . . . . . . . . . . . . .61

4.8.4 DSS workload performance . . . . . . . . . . . . . . . . . . . . . . . .63

4.8.5 OLTP workload performance . . . . . . . . . . . . . . . . . . . . . . .. 63

4.8.6 Compound OLTP/DSS workload . . . . . . . . . . . . . . . . . . . . . . 64

4.8.7 Space utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

4.9 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



5 MultiMap: Preserving disk locality for multidimensional datasets 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Mapping multidimensional data . . . . . . . . . . . . . . . . . . . . .. . . . . 72

5.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.2 TheMultiMap algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Maximum number of dimensions supported by a disk . . . . .. . . . . . 76

5.3.4 Mapping large datasets . . . . . . . . . . . . . . . . . . . . . . . . . .. 76

5.3.5 Mapping non-grid structure datasets . . . . . . . . . . . . . .. . . . . . 77

5.3.6 Supporting variable-size datasets . . . . . . . . . . . . . . .. . . . . . . 78

5.4 Analytical cost model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79

5.4.1 Analytical cost model for Naive mapping . . . . . . . . . . . .. . . . . 80

5.4.2 Analytical cost model forMultiMap mapping . . . . . . . . . . . . . . . 80

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

5.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.3 Synthetic 3-D dataset . . . . . . . . . . . . . . . . . . . . . . . . . . .. 84

5.5.4 3-D earthquake simulation dataset . . . . . . . . . . . . . . . .. . . . . 85

5.5.5 4-D OLAP dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.6 Analytical cost model and higher dimensional datasets . . . . . . . . . . 88

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Data organization for hash join and external sorting 91

6.1 Hash join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 Opposite I/O accesses in partition phase and join phase . . . . . . . . . . 92

6.1.2 Organizing partitions along the semi-sequential path . . . . . . . . . . . 93

6.2 External sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 94

6.2.1 Opposite I/O accesses in two phases . . . . . . . . . . . . . . . .. . . . 95

6.2.2 Organizing runs along the semi-sequential path . . . . .. . . . . . . . . 96

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

6.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.2 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

6.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusions 101

xi



Bibliography 105

xii



List of Figures

1.1 Diagrams ofNSMandDSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Performance trade-offs ofNSMandDSM. . . . . . . . . . . . . . . . . . . . . . 5

1.3 Two mapping algorithms based on linearization. . . . . . . .. . . . . . . . . . . 7

1.4 Performance trade-offs ofNaiveandHilbert mapping. . . . . . . . . . . . . . . 8

2.1 Conceptual seek profile of modern disk drives and illustration of adjacent blocks. 12

2.2 Disk trends for 10,000 RPM disks. . . . . . . . . . . . . . . . . . . . . .. . . . 13

2.3 Quantifying access times. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 15

3.1 Benchmark-scaling dimensions. . . . . . . . . . . . . . . . . . . . . .. . . . . 22

3.2 TPC-H time breakdowns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28

3.3 µSS vs. TPC-H “scan bound” query. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 µNJ vs. TPC-H “join bound” query. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 µTPC-H vs. TPC-H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 TPC-C time breakdowns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31

3.7 µIDX vs. TPC-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 µIDX vs. TPC-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Decoupled on-disk and in-memory layouts. . . . . . . . . . . . .. . . . . . . . 40

4.2 C-page layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

4.3 Interaction among three components inFates. . . . . . . . . . . . . . . . . . . . 43

4.4 Mapping of a database table with 12 attributes ontoAtroposwith 4 disks. . . . . 46

4.5 Components inClothobuffer pool manager. . . . . . . . . . . . . . . . . . . . . 50

4.6 Buffer pool manager algorithm. . . . . . . . . . . . . . . . . . . . . . .. . . . . 53

4.7 Microbenchmark performance for different layouts. . . .. . . . . . . . . . . . . 57

4.8 Microbenchmark performance forAtroposLVM. . . . . . . . . . . . . . . . . . 60

4.9 Performance of buffer pool managers with different pagelayouts. . . . . . . . . . 61

4.10 Miss rates of different buffer pool managers. . . . . . . . .. . . . . . . . . . . . 62

xiii



4.11 TPC-H performance for different layouts. . . . . . . . . . . . .. . . . . . . . . 63

4.12 Compound workload performance for different layouts. .. . . . . . . . . . . . . 65

4.13 Space efficiencies withCSMpage layout. . . . . . . . . . . . . . . . . . . . . . 66

5.1 Mapping 2-D dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73

5.2 Mapping 3-D dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73

5.3 Mapping 4-D dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74

5.4 Mapping a cell in space to an LBN. . . . . . . . . . . . . . . . . . . . . . .. . 75

5.5 Performance of queries on the synthetic 3-D dataset. . . .. . . . . . . . . . . . 84

5.6 Performance of queries on the 3-D earthquake dataset. . .. . . . . . . . . . . . 86

5.7 Performance of queries on the 4-D OLAP dataset. . . . . . . . .. . . . . . . . . 87

5.8 Estimated cost of beam queries in 8-D space. . . . . . . . . . . .. . . . . . . . 89

6.1 GRACEhash join algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Proposed disk organization for partitions. . . . . . . . . . .. . . . . . . . . . . 94

6.3 Merge-based external sorting algorithm. . . . . . . . . . . . .. . . . . . . . . . 96

6.4 Running time breakdown for hash join and external sortingalgorithms. . . . . . . 99

xiv



List of Tables

2.1 Adding extra conservatism to the base skew of51◦ for the Atlas 10k III disk. . . 14

3.1 DBmbench database: table definitions. . . . . . . . . . . . . . . . .. . . . . . . 23

3.2 DBmbench workload: queries. . . . . . . . . . . . . . . . . . . . . . . . .. . . 24

4.1 Summary of performance with current page layouts. . . . . .. . . . . . . . . . . 39

4.2 TPC-C benchmark results withAtroposdisk array LVM. . . . . . . . . . . . . . 64

5.1 Notation definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 72

5.2 Comparison of measured and predicted I/O times. . . . . . . . .. . . . . . . . . 89

xv



xvi



Chapter 1

Introduction

Data organization and management in database management systems study how to store data

on devices efficiently regarding space utilization and/or the time to index, fetch, and process the

information. The research area on this subject covers a widevariety of topics. For instance, a

few topics that are closely related to this dissertation include low-level data structure designs,

such as page layouts for indices and relational tables; algorithmic designs, such as strategies for

space allocation and data sharing; architectural designs,such as the dividing of functionalities

among different modules and the defining of interfaces for inter-modular communication.

Data organization and management play central roles in database management systems and

have a direct impact on system functionalities and performance. Therefore, they have been the

subject of numerous studies [4, 11, 15, 31, 40] since the emergence of relational databases. Re-

search continues as the memory hierarchy remains the bottleneck [3] in database systems, and no

single solution serves all needs in database systems where data structures, storage device char-

acteristics, workload access patterns, and performance requirements vary significantly from time

to time and from application to application. In this highly diverse environment, data organization

and management that can adapt to the differences will be moreresilient to changes, and will thus

be able to maintain consistently good performance. To achieve this goal, desirable data organiza-

tion strategies will need to promote close interactions between software and hardware. In other

words, these strategies will need to show a deeper understanding of data structures and their

access patterns, as well as an understanding of the characteristics of underlying storage devices

and their technical trends.

This chapter is intended to promote the idea that a deeper understanding of storage devices is

needed in data organization and management for database systems. This chapter also outlines the

structure of the dissertation, highlights the contributions, and briefly summarizes the content of

1



each of the following chapters. The thesis governing this document is the following: “Database

Management Systems can become more robust by eliminating performance trade-offs related

to inflexible data layout in the memory and disk hierarchy. The key to improving performance

is to adapt the data organization to workload characteristics, which is achieved (a) by intelli-

gently using query payload information when managing the buffer pool, (b) by decoupling the

in-memory layout from the storage organization, and (c) by exposing the semi-sequential access

path available on modern disks to the storage manager.”

As the thesis statement indicates, this dissertation centers on designing and implementing

adaptable data management and organization for database systems by carefully exposing the in-

formation of query requests and detailed hardware characteristics. Specifically, it addresses the

problem from the following aspects: (a) a simple yet representative database microbenchmark

suite for quick and accurate evaluation; (b) adaptable pagelayouts for relational tables, and (c)

algorithms for mapping logical geometric addresses to physical disk addresses for multidimen-

sional data access. In the rest of this chapter, each sectionwill provide the following: (a) a

brief introduction to the background of the topic and how it relates to the thesis statement, (b)

an explanation of the problems in existing approaches that motivated the current work, and (c) a

summary of the high-level ideas and solutions contributed by this thesis.

1.1 Difficulties in database benchmarking at microarchitec-

tural level

With the proliferation of database workloads on servers, database benchmarks have been widely

used to evaluate and compare performance on server architecture. Existing prevalent database

benchmarks, such as the benchmarks [76] proposed by Transaction Processing Performance

Council (TPC), are designed to mimic different behavior of real-world workloads running on

database systems, thus they focus on overall system functionality and performance. As a result,

these benchmarks consist of complex query execution on verylarge datasets which can easily

reach the scale of terabyte. The complexity in query execution and the size of datasets make ex-

isting database benchmarks inapplicable in microarchitecture and memory system research due

to the following reasons.

First, microarchitecture simulation tools used by computer architects are typically five or

more orders of magnitude slower than real machines. Thus, itmight take months or even longer

to conduct an experiment with a full database benchmark. It is not acceptable at the early design

stage where several design options need to be evaluated in a trial-and-error setting. Second, the

2



execution of a full database benchmark is complicated. For instance, DSS workloads typically

have complex query plans consisting of tens or hundreds operators. OLTP workloads involve

concurrent transactions running queries on top of shared resources. The execution complexity

makes it hard to do experiments in a controllable way and to pinpoint the bottlenecks. Third, the

installation of conventional database benchmarks is time-consuming and error-prone. It takes an

expert several days or weeks to set up an experiment environment where performance-sensitive

parameters are assigned with the proper values.

The solution to the above problems is, naturally, scaled-down database benchmarks which

has been adopted in previous research projects in various contexts [3, 8, 9, 12, 39, 54, 75]. These

studies all employ ad hoc abbreviations of benchmarks with ahope that the reduced bench-

marks possess the same characteristics as their full-size counterparts. Unfortunately, scaling

down database benchmarks is tricky: changes in dataset sizes, query execution orders, and/or

parameter values may cause severe and unpredictable deviation in characteristics.

DBmbench, the first project of the thesis work, is a small and representative database mi-

crobenchmark suite designed with the goal to mimic the performance behavior of TPC-H and

TPC-C. By identifying and executing the primary operations in the two benchmarks, DBmbench

systematically scales down the dataset sizes and query complexity significantly and accurately

captures the processor and memory performance behavior. DBmbench is also used in other

projects of my thesis work to conduct sensitivity analysis on query selectivities and payloads.

The details of DBmbench are discussed in Chapter 3 .

1.2 Problems of static page layouts for relational tables

Conventional relational database systems provide a conceptual representation of data in relations

or tables [17]. Each table is stored in fixed-sized pages of a typical size from 4 to 64 KB, which

is also the minimal transferring unit between storage devices and main memory. Page layout,

also known asstorage model, describes the records that are contained within a page and how

they are laid out. It usually has a header which stores some metadata, such as the number of

records in the page and the size of the free space. Records are then stored according to the

corresponding layout. Since the page layout determines what records and which attributes of a

relation are stored in a single page, the storage model employed by a database system has far-

reaching implications for the performance of a particular workload [3]. The most widely used

page layouts in commercial database systems are the N-ary Storage Model (NSM) [52], which

stores full records sequentially within a page, and the Decomposition Storage Model (DSM) [18],

which partitions the table vertically into single-attribute subtables and stores them separately.

3



………

52Susan7658

20Jim1563

45John4322

30Jane1237

AgeNameEID

………

52Susan7658

20Jim1563

45John4322

30Jane1237

AgeNameEID

(a) A table with 3 attributes.

PAGE HEADER

4322 John 45

7658 Susan 52

1237

30

Jane

Jim 20

1563

PAGE HEADER

4322 John 45

7658 Susan 52

1237

30

Jane

Jim 20

1563

(b) In NSM.

PAGE HEADER 12371 2

4322 765815633 4

PAGE HEADER 12371 2

4322 765815633 4

PAGE HEADER 1

2 3 4 Susan

Jane

JimJohn

PAGE HEADER 1

2 3 4 Susan

Jane

JimJohn

45

52

30

20

PAGE HEADER 1 2

3 4

45

52

30

20

PAGE HEADER 1 2

3 4

(c) In DSM.

Figure 1.1: Diagrams ofNSM andDSM. This graph shows how a simple table with three at-
tributes is stored in theNSMandDSM layouts respectively.

Figure 1.1 shows a simple example ofNSMandDSMwith a three-attribute table.

Access patterns on database tables, by and large, fall into two categories. One is the full-

record access frequent in Online Transaction Processing (OLTP) applications, where all (or

almost all) attributes of records are usually requested. The full-record access is analogous to

accessing a table along the row direction. The other is the partial-record access, represented by

Decision Support System (DSS) applications, where very fewattributes of records are processed.

This can be viewed as accessing a table along the column direction. These two prevalent access

patterns have exactly opposite characteristics. Existingpage layouts optimized for them employ

different design strategies, as the best page layout for onepattern usually performs poorly for the

other.

Existing approaches face a performance trade-off by first predicting the application’s domi-

nant access pattern, and then by choosing a page layout optimized for that pattern at the expense

of the other. Among the existing page layouts in the literature, NSM is preferable for OLTP

workloads, whereasDSMand its variations [73, 86] are better choices for DSS workloads. Fig-

ure 1.2 illustrates the performance trade-offs ofNSMandDSM. In this example, a simple table

scan query is posed on a table with 15 attributes. We vary the number of attributes referenced by

the query and measure the total query execution time.DSMoutperformsNSMwhen the number

of attributes referenced is small, whereasNSM is clearly the winner when more attributes are

requested. Neither option can offer good performance across the spectrum.

Therefore, systems using a predetermined page layout basedon prediction are not able to

adapt to workload changes. If the actual access pattern deviates from the prediction, the perfor-

mance plummets. In addition, workloads with mixed characteristics are becoming more com-

mon in the real world where two access patterns could appear in the same system and are equally

important. In this case, solutions with one static page layout, NSM or DSM, fail. Several so-

lutions have been proposed to address the performance trade-offs. Fractured Mirrors [53] tries

4



 0

 50

 100

 150

 200

 250

 1  3  5  7  9  11  13  15

Q
ue

ry
 r

un
ni

ng
 ti

m
e 

[s
ec

]

Query payload (# of attributes referenced)

NSM
DSM

Figure 1.2: Performance trade-offs ofNSMandDSM. In this example, we store a 15-attribute
table inNSMandDSMrespectively and measure the execution time of a simple table-scan query
on this table as a function of the number of attributes referenced by the query.

to combine the advantages ofNSMandDSM by storing tables in two layouts to accommodate

the workload changes. Unfortunately, keeping two copies ofdata doubles the required storage

space and complicate data management because two copies have to be maintained in synchrony

to preserve data integrity. Focusing on the CPU cache performance, thePAX layout [4] provides

another approach for unifying the two layouts by organizingrecords in aDSM formatwithin a

page. WhilePAX performs very well for both access patterns at the CPU cache level, it faces

the same problem asNSMat the storage level. The Data Morphing technique [31] furthers the

idea ofPAXby reorganizing records within individual pages based on the workloads that change

over time. It increases the flexibility of memory pages, but these fine-grained changes cannot

address the trade-offs involved in accessing non-volatilestorage. These solutions bring some

degree of flexibility for mitigating the problems caused by static page layouts, but they are far

from adequate in that they either pose extra complexity in data management or they only focus

on one level of the memory hierarchy.

Clotho, as one part of theFatesdatabase storage manager, solves the performance trade-off

problem inherent to a particular page layout by decoupling the in-memory page layout from the

storage organization.Clothoproposes a flexible page layout calledClothoStorage Model (CSM)

that can change its structure and content in order to meet thedifferent needs of various queries

and to match the unique features of different storage devices. The benefit of the decoupling

is twofold. First, pages in the buffer pool can be tailored tothe specific needs of each query.

The query-specific pages save memory space and I/O bandwidth. Second, data at each memory

hierarchy level can be organized in a way that can fully exploit the device characteristics at that

level. Clotho, together with other components in the Fates database storage project [59, 60, 66],

also investigates the architectural issues of building a robust and adaptable storage manager for

database systems.

5



This thesis project implementsClothoon top ofAtropos[60]. The experimental results show

thatClothowith CSMpage layout is able to eliminate the trade-offs that exist inNSMandDSM.

It combines the best performance of the two page layouts at all levels of the memory hierarchy.

A detailed description is presented in Chapter 4.

1.3 Trade-offs of storing multidimensional data on disks

Multidimensional datasets are widely used to represent geographic information, present multi-

media datasets, and to model multidimensional objects in both scientific computing (such as the

3-D model of earth in earthquake simulation) and business applications (such as the data cubes

in OLAP applications). Their growing popularity has brought the problem of efficient storage

and retrieval of multidimensional data to the fore. The major challenge is to find a mapping

algorithm that maps logical geometric addresses, such as the coordinates of data, to locations

on disks, usually identified by logical block numbers (LBN). The goal of mapping algorithms

is to preserve spatial locality as much as possible on disks so that nearby objects in the original

geometric space are stored in close-by disk blocks. The property of preserving spatial locality is

often calledclusteringin the literature. Since neighboring data are usually accessed together, al-

gorithms with better clustering will have better I/O performance because fetching nearby blocks

is more efficient than fetching remote blocks.

The existing mapping algorithms have not been very successful at preserving spatial locality.

The fundamental obstacle is the conflict between multidimensional data and the traditionallinear

abstractionof storage devices offered by standard interfaces such as SCSI. Under the abstraction,

storage devices are simplified as a sequence of blocks identified by LBNs. Therefore, to organize

multidimensional data on linear disks, all existing mapping algorithms have to put an order on

the dataset. Generally speaking, there are two ways to do that: (a) serialize all data based on a

pre-selected dimension (often called major order), or (b) use space-filling curves [42].

A simple implementation that serializes data along a pre-selected dimension, calledNaive,

traverses a dataset as following. For example, in a two-dimensional (2-D) space(X,Y ), data are

ordered first along theX axis, then theY axis, as Figure 1.3(a) shows. This mapping scheme

perfectly preserves the spatial locality on theX axis because successive points on theX axis

are stored physically onto contiguous disk blocks. However, it completely ignores the spatial

locality of theY axis. The result is the optimal sequential access along theX axis and the worst

random-like access forY . Sarawagi et al. [57] optimize the naive mapping by first dividing

the original space into multidimensional tiles, calledchunks, according to the predicted access

patterns. Together with other techniques, such as storing redundant copies sorted along different

6



12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Y

X

(a) Naive mapping.

5 6 9 10

4 7 8 11

3 2 13 12

0 1 14 15

5 6 9 10

4 7 8 11

3 2 13 12

0 1 14 15

Y

X

(b) Hilbert curve mapping.

Figure 1.3: Two mapping algorithms based on linearization.The graph illustrates howNaiveand
Hilbert mapping algorithms map the cells in a 4x4 2-D grid to a linear space. The numbers in the
cells indicate the order of the cells, i.e., the cells will bestored on the disk sequentially according
to this order.

dimensions, this chunk-based solution is up to an order of magnitude faster over the unoptimized

method. However, their work adopts the linear abstraction,so it still faces the same problem as

theNaiveapproach of losing spatial locality on non-major orders.

Alternatively, one can traverse a multidimensional space by following a space-filling curve.

Space-filling curves are continuous, non-intersecting curves that pass (“cover”) all points in a

space. The fractal dimensions [64] of space-filling curves are usually greater than 1, which makes

them “dense” and “closer” to a multidimensional object. Therefore, space-filling curves are

preferable to theNaive linear mapping. Some well-known space-filling curves are Gray-coded

Curve [23], Hilbert Curve [32], and Z-ordering Curve [47]. Figure 1.3(b) shows the mapping

based on Hilbert Curve on a 2-D grid. Moon et al. [42] analyzed the clustering properties of

Hilbert Curve and indicate that it has better clustering thanZ-orderingCurve, and hence better

I/O performance in terms of average per-node access time. Unlike the approaches which linearize

along a single major order, space-filling curves do not favorany dimension, but rather balance

their performance along all dimensions, which results in better performance for range queries.

Unfortunately, space-filling curve-based solutions stillface the problem of losing spatial locality.

The performance improvement also comes at the high cost of losing the sequential bandwidth

on all dimensions. Finally, space-filling curve-based mapping algorithms are not practical for

dimensions higher than three. In fact, some space-filling curves can not even be generalized to

higher dimensions [42].

In the rest of the dissertation,Hilbert denotes the linear mapping algorithm that uses Hilbert

Curve. Figure 1.4 illustrates the trade-offs of theNaiveandHilbert mapping algorithms on a 3-D

dataset. In this example, the dataset has three dimensions,X, Y , andZ, whereX is selected as

7



 0

 1

 2

 3

 4

 5

 6

X Y Z

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Naive
Hilbert

Figure 1.4: Performance trade-offs ofNaiveandHilbert mapping. This graph shows the average
I/O response time to fetch contiguous points along each dimension,X, Y , andZ, using different
mapping algorithms.

the major order in theNaivemapping. The experiment accesses contiguous points along each

dimension and measures the average I/O response time. The trade-offs are easy to see. The

Naivemapping optimizes the performance on the major orderX while severely compromising

the performance on the other two dimensions,Y and Z. The Hilbert mapping balances the

performance on all dimensions at the cost of losing the sequential bandwidth: the response time

on all dimensions in theHilbert mapping is almost two orders of magnitude longer than the

response time on theX dimension in theNaivemapping.

Naturally, a solution that eliminates the trade-offs wouldbe preferred. However, under the

assumption of the linear disk abstraction, the loss of spatial locality of multidimensional datasets,

as well as the performance trade-offs, are inevitable. Any new algorithms that seek to solve this

problem need to resolve the discord of dimensionality.MultiMap, an algorithm used to map data

to disks, solves the problem by building a multidimensionalview for disks based on a novel ad-

jacency model.MultiMap allows applications to store data without any serialization. Therefore,

it is able to preserve spatial locality of multidimensionaldata and eliminate the performance

trade-offs.MultiMap is an example of how detailed knowledge about storage devices can aid in

solving some long-standing problems in database systems. Details aboutMultiMap are discussed

in Chapter 5.

1.4 Opposite access patterns during query execution

ClothoandMultiMap are able to address the performance trade-offs caused by “spatial” conflict

I/O access patterns, the opposite access patterns that originate from the data structures (e.g.

relational tables and multidimensional data structures).There also exist “temporal” conflict I/O

access patterns in database systems: the opposite I/O access patterns in different phases during

8



query execution. The idea is to organize the intermediate results in a smart way so that access

to the intermediate results in all execution phases are efficient. This work focuses on two major

database operators, (a) hash join and (b) external sorting.

Hash join, as an efficient algorithm to implement equijoins,is commonly used in commercial

database systems. In its simplest form, the algorithm first builds a hash table on the smaller

(build) relation, and then probes the hash table using tuples from the larger (probe) relation to

find matches. In the real world, database systems adopt variations of a more practical algorithm,

called theGRACEhash join algorithm [36], to avoid excessive disk accesses due to a lack of

memory resources.GRACEbegins by partitioning the two joining relations into smaller sub-

relations (also called “partitions”) using a certain hash function on the join attributes such that

each sub-relation of the build relation and its hash table can fit into the main memory. It then joins

each pair of build and probe sub-relations separately as in the simplest algorithm. The two phases

of theGRACEalgorithm are called the “partition phase” and the “probe phase” respectively.

In the partition phase, the algorithm writes out tuples intodifferent partitions based on the

hash value of the join attributes. In practice, accesses to different partitions are interleaved, which

results in a random access pattern. In contrast, during the probe phase, the algorithm reads and

processes each partition one after another. The optimization of I/O performance in these two

phases conflicts with each other; sequential access in one phase will inevitably cause random

access in the other phase. A popular practice is to optimize the probe phase. In this manner,

partitions are stored sequentially, so that fetching one partition incurs efficient sequential access,

whereas the interleaved writing to all partitions is done ina random fashion.

Similarly, conflicting I/O access patterns are also found inthe external sorting algorithms.

External sorting algorithms [37] are used to sort massive amounts of data that do not fit into

main memory. Generally speaking, external sorting algorithms have two phases. The first phase

partitions the data into smaller chunks using different strategies. The second phase processes

these chunks and outputs the final sorted file. Based on the different strategies in the first phase,

external sorting can be roughly classified into two groups [79]: (a) distribution-based sorting and

(b) merge-based sorting. Both face the sequential versus random accesses in the two phases.

Details are discussed in Chapter 6.

This dissertation proposes a solution that exploits the newly proposed adjacency model in

order to eliminate the expensive random I/O access. This is achieved by organizing partitions (in

the hash join algorithm) and chunks (in the external sortingalgorithm) along the semi-sequential

access paths. Details are discussed in Chapter 6. This work isanother example of how a deeper

understanding of hardware features can help to organize data more efficiently and hence, to

improve performance.

9



1.5 Thesis road map and structure

To solve the problems described in the previous sections, this dissertation first proposes DBm-

bench as a significantly reduced database microbenchmark suite which simulates OLTP and DSS

workloads. DBmbench enables quick evaluation on new designsand provides forecasting for per-

formance of real large scale benchmarks. After that, I design and developClotho, a new buffer

pool manager for database management systems.Clothodecouples the in-memory page layout

from the storage organization by using a new query-specific layout calledCSM. CSM, as a flexi-

ble page layout, combines the best performance ofNSMandDSM, achieving good performance

for both DSS and OLTP workloads. The layout for two-dimensional tables inClotho inspires

the idea of mapping data in high dimensional spaces to disks which leads to the next project:

MultiMap. MultiMap is a new mapping algorithm that stores multidimensional data onto disks

without losing spacial locality.MultiMap exploits the new adjacency model for disks to build a

multidimensional structure on top of the linear disk space.It outperforms existing multidimen-

sional mapping schemes on various spatial queries. I later utilize the multidimensional structure

to improve the performance of two database operators that have opposite I/O access patterns in

their different execution phases.

The rest of the thesis is organized as follows. Chapter 2 explains the basic concepts of adja-

cent blocks and semi-sequential access paths as the background knowledge. Chapter 3 introduces

DBmbench. Chapter 4 presents theFatesdatabase storage architecture with a focus onClotho.

Chapter 5 presentsMultiMap, a new locality-preserving mapping algorithm to store multidimen-

sional datasets. Chapter 6 continues to explore the opportunities brought by the new disk model

in two major query operators, hash join and external sorting. Finally, Chapter 7 concludes my

thesis work.

10



Chapter 2

Background: adjacency model for modern

disks

For completeness, this chapter reviews the adjacency modelon whichFatesandMultiMap are

built. This chapter provides the background information that is necessary for understanding this

dissertation. Detailed explanations and evaluations of disk technologies across a range of disks

from a variety of vendors are provided by Schlosser et al. [62].

2.1 The traditional model for disks

It is well understood that a disk access consists of two phases: first, the disk head moves to the

destination track; second, the head waits until the rotating disk platter brings the target block

right under the head. After this, the head starts moving the data to or from the media. The time

spent on the mechanical movements of the disk head and the platter is often calledpositioning

cost. Accordingly, there are two components associated with thetwo phases respectively: seek

time and rotational latency [55].

Compared to the actual time spent reading/writing data, the positioning cost—or the overhead

of one disk access— is very high. For small chunks of data, theoverhead could be more than

90% of the total time [58]. Therefore, the most efficient way to access data is the one that pays

the positioning cost only once (i.e., at the beginning of theaccess). After the initial positioning

cost, the disk head just reads/writes data continuously. Since the traditional abstraction for disks,

such as SCSI, is a sequence of fixed-size blocks identified by ascending block numbers, the

above access path can be easily expressed by accessing sequential disk blocks. For other access

patterns involving non-contiguous blocks, the linear abstraction falls short of giving any insight

on the relationships among those blocks, thus simply categorizing any non-sequential accesses

11



C 

0 MAX
0

Seek distance [cylinders]

S
e

e
k 

tim
e

 [
m

s]

(a) Conceptual seek profile of modern
disks.

����
����
����

����
����
����

����
����
����
����

����
����
����
��������
����
����
����

����
����
����
��������
����
����
����

����
����
����
��������
����
����
����

����
����
����
��������
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����

Last (D−th) adjacent block

first adjacent blocks

Semi−sequential path through

D
 a

dj
ac

en
t b

lo
ck

s

Adjacent disk block

Starting disk block

path
Semi−sequential

(b) Adjacent blocks and semi-sequential ac-
cess.

Figure 2.1: Conceptual seek profile of modern disk drives and illustration of adjacent blocks.

as “random accesses.” In practice, most of the random accesses incur the overhead of seek time

and rotational latency. With the above model, when it is not possible to store data in sequential

disk blocks, applications will blindly use non-contiguousblocks that happen to be available at

that time. This often leads to bad I/O performance.

The recent development of disk technologies sparks research on new disk models that can

disclose more features to upper applications without burdening programmers. This chapter de-

scribes the one proposed by Schlosser et al. [62], called theAdjacency model. This new model

exposes the second most efficient access paths, referred to as semi-sequential access paths, which

are later utilized to store multidimensional datasets.

The new adjacency model introduces two primary concepts:adjacent blocksand semi-

sequential access. The rest of this chapter explains them in detail. As described by Schlosser et

al. [62], the necessary disk parameters can be exposed to applications in an abstract, disk-generic

manner.

2.2 Adjacent disk blocks

The concept of adjacent blocks is based on two characteristics of modern disks as shown in

Figure 2.1 [62]:

1. Short seeks of up to some cylinder distance,C, are dominated by the time to settle the head

on a destination track;

2. Firmware features that are internal to the disk can identify and, thus, access blocks that

require no rotational latency after a seek.

Figure 2.1(a) shows a conceptual view of seek time as a function of cylinder distance for

modern disks. For very short distances of up toC cylinders, seek time is near constant and

12



Disk Trends

Atlas 10k II

Atlas 10k IV
Cheetah 10k.6

Cheetah 36ES/
Cheetah 73LP

Seagate Cheetah 18LP
Cheetah 9LP

Cheetah 4LP
Seagate Hawk 1LP

2.5

1.2

1.1

0.9 0.75

1.0

0.8

0.6

0

10000

20000

30000

40000

50000

60000

70000

1995 1997 1999 2001 2003

Year

T
ra

ck
 D

e
n
si

ty
 [
T

P
I]

0

0.5

1

1.5

2

2.5

3

O
n
e
-C

ylin
d
e
r S

e
e
k T

im
e
 [s]

Maxtor Atlas 10k III

Interpolated
TPI density

Seagate SettleTime

Maxtor Settle Time

Figure 2.2: Disk trends for 10,000 RPM disks. Seagate introduced the Cheetah disk family in
1997 and Quantum/Maxtor introduced its line of Atlas 10k disks in 1999. Notice the dramatic
increase in track density, measured in Tracks Per Inch (TPI), since 2000. The most recent disks
introduced in 2004 Cheetah 10k.7 and Atlas 10k V (not shown in the graph) have densities
of 105,000 and 102,000 TPI respectively, and settle times≈0.1 ms shorter than their previous
counterparts.

dominated by the time it takes for the disk head to settle on the destination track, referred to as

settle time. If each of these cylinders is composed ofR tracks, up toD = R × C tracks can be

accessed from a starting track for equal cost.

While settle time has always been a factor in positioning diskheads, the dramatic increase in

areal density over the last decade has brought it to the fore,as shown in Figure 2.2. At lower track

densities (e.g., in disks introduced before the year 2000),only a single cylinder can be reached

within the settle period. However, with the large increase in track density since the year 2000,

up toC can now be reached.

The growth of track density has been one of the strongest trends in disk drive technology over

the past decade, while settle time has decreased very little[5], as shown in Figure 2.2 for two

families of enterprise-class 10,000 RPM disks from two manufacturers. With such trends, more

cylinders can be accessed as track density continues to growwhile settle time has improved very

little. The Maxtor Atlas 10k III disk from the previous example hasC = 17, and up to 8 surfaces

for a total capacity of 73 GB. Thus, it hasD = 136 adjacent blocks, according to the definition.

While each of theseD tracks contains many disk blocks, there is one block on each track that

can be accessed immediately after the head settles on the destination track, with no additional

rotational latency. These blocks can be viewed as beingadjacentto the starting block. Accessing

any of these adjacent blocks takes just the settle time, the minimum time to access a block on

13



Conservatism D Settle time
0◦ 136 1.10 ms
10◦ 180 1.25 ms
20◦ 380 1.45 ms

Table 2.1: Adding extra conservatism to the base skew of51◦ for the Atlas 10k III disk.

another track.

Figure 2.1(b) illustrates the adjacent blocks on a disk. Fora given starting block, there are

D adjacent disk blocks, one in each of theD adjacent tracks. All adjacent blocks have the same

offset from the starting block because the offset is determined by the number of degrees the

disk platters rotate within the settle time. For example, ifW denotes the offset, with a settle

time of 1 ms and a rotational period of 6 ms (i.e., for a 10,000 RPM disk), the offset will be

W = (1/6 × 360◦) = 60◦.

As settle time is not deterministic (i.e., due to external vibrations, thermal expansion, etc.), it

is useful to add some extra conservatism toW to avoid rotational misses and to avoid suffering

full revolution delay. Adding conservatism increases the number of adjacent tracks,D, that can

be accessed within the settle time at the cost of added rotational latency, as shown in Table 2.1

for the Atlas 10k III disk.

2.2.1 Semi-sequential access

Accessing successive adjacent disk blocks enablessemi-sequentialdisk access [25, 60], which

is the second most efficient disk access method after pure sequential access. Figure 2.1(b)

shows two potential semi-sequential paths from a starting disk block. Traversing the first semi-

sequential path accesses the first adjacent disk block of thestarting block, and then the first

adjacent block of each successive destination block. Traversing the second path accesses the

successivelast or Dth adjacent blocks. Either path achieves equal bandwidth, despite the fact

that the second path accesses successive blocks that are physically further away from the starting

block. Recall that the first, second, or (up to)Dth adjacent block can be accessed for equal cost.

2.3 Quantifying access efficiency

A key feature of adjacent blocks is that, by definition, they can be accessed immediately after

the disk head settles. To quantify the benefits of such access, suppose an application is accessing

d non-contiguous blocks that map withinD tracks. Without explicit knowledge of adjacency,

accessing each pair of such blocks will incur, on average, rotational latency of half a revolution,

14



Comparison of access times

0

1

2

3

4

5

6

7

8

Maxtor Atlas 10k III Seagate Cheetah 36ES

T
im

e 
[m

s]

Normal
Adjacent

Figure 2.3: Quantifying access times.This graph compares the access times to blocks located
within C cylinders. For both disks, the average rotational latency is 3 ms. For the Atlas 10k III
disk,C = 17 and seek time withinC ranges from 0.8 ms to 1.2 ms. For the Cheetah 36ES disk,
C=12 and seek time ranges from 0.7 ms to 1.2 ms.

in addition to the seek time equivalent to the settle time. Ifthese blocks are specifically chosen

to be adjacent, then the rotational latency is eliminated and the access to thed blocks is much

more efficient.

A system that takes advantage of accesses to adjacent blocksoutperforms traditional systems.

As shown in Figure 2.3, such a system, labeled Adjacent, outperforms a traditional system, la-

beled Normal, by a factor of 4, thanks to the elimination of all rotational latency when accessing

blocks withinC cylinders. Additionally, the access time for the Normal case varies considerably

due to variable rotational latency, whereas the access timevariability is much smaller for the Ad-

jacent case; this is entirely due to the difference in seek time within theC cylinders, as depicted

by the error bars.

2.4 Hiding low-level details from software

While the adjacency model advocates exposing adjacent LBNs toapplications, it is unrealistic

to burden application developers with such low-level details as settle time, physical skews, and

data layout in implementing the algorithm described above.The application need not know the

reasons for why disk blocks are adjacent, it just needs to be able to identify them through a

GETADJACENT call to a software library or logical volume manager interface that encapsulates

the required low-level parameters. This software layer canexist on the host as a device driver or

within a disk array. It would either receive the necessary parameters from the disk manufacturer

or extract them from the disk drives when the logical volume is initially created.

For a long time, the linear abstraction of disks has imposed limitations on database systems

in storing relational tables and other datasets with more than one dimension. The new adja-

cency model for disks and the semi-sequential access that hides the rotational latency bring new

15



opportunities to data layout designs in the database community. Database should enhance the

interaction with storage devices to understand the device-specific features and to exploit them.

Through carefully-designed interfaces, the improved interaction can improve performance with-

out sacrificing the design and implementation simplicity.

This thesis will demonstrate how the semi-sequential access path is later utilized byAtropos

to store relational tables and byMultiMap to store multidimensional datasets without losing

spatial localities. It is also used to organize intermediate results in hash join and external sorting

(Chapter 6).

16



Chapter 3

DBmbench

Make everything as simple as possible, but not simpler.

— Albert Einstein

This chapter presents DBmbench, a small yet representative database benchmark for com-

puter microarchitecture. With the proliferation of database workloads on servers, much recent

research on server architecture has focused on database system benchmarks. The TPC bench-

marks for the two most common server workloads, OLTP and DSS,have been used extensively in

the database community to evaluate the database system functionality and performance. Unfor-

tunately, these benchmarks fall short of being effective inmicroarchitecture and memory system

research due to several key shortcomings. First, setting upthe experimental environment and

tuning these benchmarks to match the workload behavior of interest involves extremely complex

procedures. Second, the benchmarks themselves are complexand preclude accurate correlation

of microarchitecture- and memory-level bottlenecks to dominant workload characteristics. Fi-

nally, industrial-grade configurations of such benchmarksare too large and preclude their use in

detailed but slow microarchitectural simulation studies of future servers. In this paper, we first

present an analysis of the dominant behavior in DSS and OLTP workloads, and highlight their

key processor and memory performance characteristics. We then introduce a systematic scaling

framework to scale down the TPC benchmarks. Finally, we propose the DBmbench, consisting

of two substantially scaled-down benchmarks:µTPC-H andµTPC-C that accurately (> 95%)

capture the processor and memory performance behavior of DSS and OLTP workloads.

3.1 Introduction

Database workloads — such as Decision Support Systems (DSS) and Online Transaction Pro-

cessing (OLTP) — are emerging as an important class of applications in the server computing

17



market. Nevertheless, recent research [3, 9, 35] indicatesthat these workloads perform poorly on

modern high-performance microprocessors. These studies show that database workloads have

drastically different processor and memory performance characteristics as compared to conven-

tional desktop and engineering workloads [71] that have been the primary focus of microarchi-

tecture research in recent years. As a result, researchers from both the computer architecture and

database communities are increasingly interested in careful performance evaluation of database

workloads on modern hardware platforms [3, 6, 8, 9, 12, 20, 35, 39, 54, 74, 75].

To design microprocessors on which database workloads perform well, computer architects

need benchmarks that accurately represent these workloads. There are a number of require-

ments that suitable benchmarks should satisfy. First, modern wide-issue out-of-order superscalar

processors include a spectrum of mechanisms to extract parallelism and enhance instruction ex-

ecution throughput. As such, the benchmarks must faithfully mimic the performance of the

workloads at the microarchitecture-level to allow for designers to pinpoint the exact hardware

bottlenecks. Second, microarchitecture simulation tools[70] are also typically five or more or-

ders of magnitude slower than real hardware [69, 80]. To allow for practical experimentation

turnaround, architects need benchmarks that are scaled down variations of the workloads [30]

and have minimal execution time. Third, the benchmark behavior should be deterministic when

across scaled datasets and varying system configurations toallow for conclusive experimenta-

tion. Finally, the benchmark sources or executables shouldeither be readily available [71] or at

most require installation and setup skills characteristicof a typical computer system researcher

and designer.

Unfortunately, conventional DSS and OLTP database benchmarks,TPC-HandTPC-C [28],

fall far short of satisfying these requirements. The TPC benchmarks have been primarily de-

signed to test functionality and evaluate overall performance of database systems on real hard-

ware. These benchmarks have orders of magnitude larger execution times than needed for use

in simulation. To allow for practical experimentation turnaround, most prior studies [3, 8, 9,

12, 39, 54, 75] employ ad hoc abbreviations of the benchmarks(scaled down datasets and/or a

subset of the original queries) without justification. Manyof these studies tacitly assume that

microarchitecture-level performance behavior is preserved.

Moreover, the TPC benchmarks’ behavior at the microarchitecture-level may be non-deterministic

when scaled. The benchmarks include complex sequences of database operations that may be

reordered by the database system depending the nature of thesequence, the database system

configuration and the dataset size, thereby substantially varying the benchmark behavior. Recent

research by Hankins et al. [30], rigorously analyzes microarchitecture-level performance metrics

of scaled datasets forTPC-Cworkloads and concludes that performance metrics cease to match

18



when the dataset is scaled below 12GB. Unfortunately, such dataset sizes are still too large to

allow for practical simulation turnaround.

Finally, the TPC benchmark kits for most state-of-the-art database systems are not readily

available. Modern database systems typically include overone hundred configuration and instal-

lation parameters. Writing and tuning the benchmarks according to the specifications [76] on a

given database system to represent a workload of interest may require over six months of exper-

imentation even by a trained database system manager [34] and requires skills beyond those at

hand for a computer system designer.

In this chapter, we presentDBmbench, a benchmark suite representing DSS and OLTP work-

loads tailored to fit the requirements for microarchitecture research. The DBmbench is based

on the key observation that the executions of database workloads are primarily dominated by a

few intrinsic database system operations — e.g., a sequential scan or a join algorithm. By iden-

tifying these operations, microarchitecture-level behavior of the workloads can be mimicked by

benchmarks that simply trigger the execution of these operations in the database system. We

present the DBmbench benchmarks in the form of simple database queries, readily executable

on database systems, and substantially reducing executioncomplexity as compared to the TPC

benchmarks. Moreover, by isolating operation execution instand-alone benchmarks, the datasets

can be scaled down to only hundreds of megabytes while resulting in deterministic behavior pre-

cluding any optimizations in operation ordering by the database system.

Using hardware counters on an Intel Pentium III platform running IBM DB2, we show that

the DBmbench benchmarks can match a key set of microarchitecture-level performance behavior,

such as cycles-per-instruction (CPI), branch prediction accuracy, and miss rates in the cache

hierarchy, of professionally tuned TPC benchmarks for DB2 towithin 95% (for virtually all

metrics). As compared to the TPC benchmarks, the DBmbench DSSand OLTP benchmarks: (1)

reduce the number of queries from 22 and 5 to 2 and 1 simple queries respectively, (2) allow for

scaling dataset sizes down to 100MB, and (3) reduce the overall number of instructions executed

by orders of magnitude.

The remainder of this chapter is organized as follows: Section 3.2 presents a brief survey of

recent database workload characterization studies and theresearch on microbenchmarks. Sec-

tion 3.3 describes a framework to scale down database benchmarks and the design of DBmbench.

Section 3.4 discusses the experimental setup and the metrics used to characterize behavior at the

micro-architecture level. Sections 3.5 evaluates the scaling framework and the DBmbench. Sec-

tion 3.6 concludes the chapter and outlines future work.

19



3.2 Related work

Database workloads evaluation at the architectural level is a prerequisite toward improving the

suboptimal performance of database applications on today’s processors. It identifies performance

bottlenecks in software and hardware and points out the direction of future efforts. Several

workloads characterization efforts [3, 6, 8, 9, 12, 39, 54, 75] explore the characteristics of OLTP

and/or DSS on various hardware platforms using either a small-scale database or a subset of

a standard workload or both. Three studies [9, 54, 75] emphasize the scale-down issues and

demonstrate that the modified benchmarks they use do not affect the results. However, they

still lack detailed analysis based on sufficient experiments on database systems with different

scales. Most recently, Diep et al. [20] report how varying the configuration parameters affects

the behavior of an OLTP workload. They propose a parameter vector consisting of number of

processors, disks, warehouses, and concurrent clients to represent an OLTP configuration. They

then formulate empirical relationships of the configurations and show how these configurations

change the critical workload behavior. Hankins et al [30] continue this work by first proposing

two metrics, average instructions per transaction (IPX) and average cycles per instruction (CPI)

to characterize OLTP behavior. Then they conduct an extensive, empirical examination of an

Oraclebased commercial OLTP workload on a wide range of the proposed metrics. Their results

show that the IPX and CPI behavior follows predictable trendswhich can be characterized by

linear or piece-wise linear approximations.

There are a number of recent proposals for microbenchmarking database systems. The first

processor/memory behavior comparison of sequential-scanand random-access patterns across

four database systems [3] uses an in-memory TPC-like microbenchmark. The microbenchmark

used consists of a sequential scan simulating a DSS workloadand a non-clustered index scan

approximating random memory accesses of an OLTP workload. Although the microbenchmark

suite is sufficiently similar to the behavior of TPC benchmarks for the purposes of the study,

a comprehensive analysis varying benchmark configuration parameters is beyond the scope of

that paper. Another study [34] evaluates the behavior of a similar microbenchmark. Their mi-

crobenchmark simulates two sequential scan queries (Q1 andQ6) from the TPC-H suite, whereas

for TPC-C, it devises read-only queries that generate random memory/disk access to simulate the

access pattern of OLTP applications. Computation complexity affects the representativeness of

the proposed micro-DSS benchmark, while the degree of database multiprogramming affects the

micro-OLTP benchmark.

In this work, we build on the previous work as follows. First,we address the scaling problem

from a database’s point of view in addition to the traditional microarchitecture-approaches. We

20



examine how query complexity, as one important dimension ofthe scaling framework, can be

reduced while preserving their key hardware level characteristics. Second, we use a wealth of

metrics that are important to obtain a complete picture of the workload behavior. Third, we build

microbenchmarks for both DSS and OLTP workload.

3.3 Scaling down benchmarks

This section outlines a framework to scale down benchmarks.We identify three dimensions

along which we can abbreviate benchmarks and discuss the issues involved when scaling database

benchmarks workload along the dimensions. Then, we presentthe design of DBmbench.

Decision-support system (DSS) workloads are typically characterized by long, complex queries

(often 1MB of SQL code) running on large datasets at low concurrency levels. DSS queries are

characterized from sequential access patterns (through table scans or clustered index scans).

By contrast, on-line transaction processing (OLTP) workloads consist of short read-write query

statements grouped in atomic units calledtransactions[28]. OLTP workloads have high concur-

rency levels, and the users run many transactions at the sametime. The queries in the transactions

typically use non-clustered indices and access few records, therefore OLTP workloads are char-

acterized by concurrent random accesses.

The prevalent DSS benchmark is TPC-H [28]. TPC-H consists of eight tables, twenty-two

read-only queries (Q1–Q22) and two batch update statements, which simulate the activities of a

wholesale supplier. For OLTP, the TPC-C benchmark portrays awholesale supplier and several

geographically distributed sale districts and associatedwarehouses [76]. It is comprised of nine

tables and five different types of transactions. TPC-H is usually executed in a single-query-at-a-

time fashion while TPC-C models multiple clients running concurrently.

3.3.1 A scaling framework

A database benchmark is typically composed of a dataset and aworkload (set of queries or

transaction) to run on the dataset. Inspired by the differences between DSS and OLTP outlined

in Section 3.3, we scale down a full benchmark along three orthogonal dimensions, shown in

Figure 3.1: workload complexity, dataset size, and level ofconcurrency.

In order to scale down a benchmark’s workload complexity, one approach is to choose a sub-

set of the original queries [9, 54, 75]. Another approach is to reduce the query complexity by

removing parts of the query or reducing the number of items inthe SELECT clause. Both meth-

ods effectively reduce query complexity at the cost of sacrificing representativeness; choosing

21



D
at

as
et

 s
iz

e

Workload complexity

Con
cu

rre
nc

y l
ev

el

Figure 3.1: Benchmark-scaling dimensions.

a subset of queries may exclude important queries that significantly affect behavior, while the

complexity reduction method may inadvertently result in dramatic changes to the query plans

and thus modify the benchmark’s behavior.

Scaling down along the dataset size dimension is fairly straightforward, because benchmark

specifications typically provide rules or software to scaledown datasets. The main concern when

scaling down along this dimension is to preserve the performance characteristics of the workload,

as reducing the database size is likely to alter the query plans (and consequently the instruction

mix) and cause performance bottlenecks to shift. Similarly, scaling the level of concurrency is

straightforward, because benchmarks include in their specifications the how many users should

run per data unit. It is important to abide by the scaling rules in the specifications, to maintain

the data and usage properties.

3.3.2 Framework application to DSS and OLTP benchmarks

From the perspective of benchmark evaluation, DSS queries are mostly read-only and usually

access a large portion of the dataset. While there are also batch updates, read-only operations

are the critical part in a DSS workload. Queries are executedone-at-a-time, and the execution

process for each query is predictable and reproducible. Furthermore, while DSS queries vary

enormously in functionality, they typically spend most of their time executing basic query oper-

ations such as sequential scan and/or join.

When examining the optimizer’s suggested plans for TPC-H queries, we find that 50%

queries are dominated by table scans (over 95% of their execution time is estimated to be due

to table scans) whereas 25% of the queries spend more than 95%of the time executing nested-

loop joins. The remaining 25% of the queries executed table scans for about 75% on average

and nested-loop joins for about 25% on average. Therefore, we can represent scan-bound and

join-bound queries by executing the two dominant operators.

Considering the complexity and depth of a TPC-H query plan, this result may seem counter-

22



Table T1 Table T2
CREATE TABLE T1 (

a1 INTEGER NOT NULL,
a2 INTEGER NOT NULL,
a3 INTEGER NOT NULL,
<padding>,
FOREIGN KEY (a1) references T2

);

CREATE TABLE T2 (
a1 INTEGER NOT NULL PRIMARY KEY,
a2 INTEGER NOT NULL,
a3 INTEGER NOT NULL,
<padding>

);

Table 3.1: DBmbench database: table definitions.

intuitive; however, the major part of the filtering is done atthe lowest levels of the operator tree,

and the result size is reduced dramatically as execution continues to the upper levels of the tree.

In conclusion, DSS workloads can be scaled down by (1) constructing representative queries

that execute the dominant operators; (2) using small datasets that fit in the research testbed. The

concurrency level is already low in DSS.

OLTP workloads are characterized by a large number of concurrent and continuous update-

intensive transactions that generate random-like memory access patterns. Queries in OLTP work-

loads are simple and only touch a small fraction of the dataset. OLTP execution is quite different

from that of DSS, in that it involves a stream of concurrent transactions including numerous sim-

ple queries and insert/update statements. Scaling down OLTP benchmarks involves decreasing

the number of concurrent clients and reducing the dataset sizes. To accurately mimic the work-

load’s scattered dataset access pattern, the concurrent clients should execute one or more queries

with random access to memory.

3.3.3 DBmbench design

DBmbench is a microbenchmark suite that can emulate DSS and OLTP workloads at the com-

puter architectural level. DBmbench includes two tables andthree simple queries. The design

principles are (1) keeping table schemas and queries as simple as possible; (2) focusing on the

dominant operations in DSS and OLTP.

DBmbench tables. DBmbench uses two tables, T1 and T2, as shown in Table 3.1. T1

and T2 have three fields each,a1, a2, anda3, which will be used by the DBmbench queries.

“padding” stands for a group of fields that are not used by any of the queries. We use the

values of these fields as “padding” to make records 100 Byte long, which approximates the

average record length of TPC-H and TPC-C. The type of these fieldsmakes no difference in

the performance, and by varying its size we can experiment with different record sizes without

affecting the benchmark’s queries.

23



µSS query µNJ query µIDX query
SELECT distinct (a3)
FROM T1
WHERE Lo < a2 < Hi
ORDER BY a3

SELECT avg (T1.a3)
FROM T1, T2
WHERE T1.a1=T2.a1 AND Lo < T1.a2 < Hi

SELECT avg (a3)
FROM T1
WHERE Lo < a2 < Hi

Table 3.2: DBmbench workload: queries.

The values of fielda1 is in the range of1 and150, 000. The field ofa2 takes values randomly

within the range of1 to 20, 000 anda3 values are uniformly distributed between1 and50. Since

a1 is the primary key of T2, T2 has150, 000 records which are ordered bya1. For each record in

T2, a random number of rows within[1 . . . 7] are generated in T1. The distributions and values in

these tables are a properly scaled-down subset of the data distributions and values in thelineitem

and orders table of TPC-H. Whether to create indices on T1 and T2 depends onthe type of

workloads DBmbench is trying to mimic. Details are in the nextsection.

DBmbench queries. Based on the discussion in Section 3.3.2, the design of the DSSmi-

crobenchmark mainly focuses on simplifying query complexity. Moreover, as discussed pre-

viously, scan and join operators typically dominate DSS query execution time. Therefore, we

propose two queries for the DSS microbenchmark, referred toasµTPC-H, as follows: sequential

scan query with sort (µSS) and join query (µNJ). The first two columns of Table 3.2 show the

SQL statements for these two queries.

TheµSS query is a sequential scan over table T1. We will use it to simulate the DSS queries

whose dominant operators are sequential scans. The two parameters in the predicate,Lo and

Hi, are used to obtain different selectivities. The order-by clause sorts the query results by

the values in the a3 field, and is added for two reasons. First,sort is an important operator in

DSS queries, and the order-by clause increases the query complexity effectively to overcome

common shortcomings in existing microbenchmarks [3, 34]. Second, the clause will not alter

the sequential scan access method, which is instrumental indetermining the basic performance

characteristics. TheµSS query is run against T1 without any indices.

Previous microbenchmarks use aggregation functions in theprojection list to minimize the

server/client communication overhead [3, 34]. To prevent the optimizer from omitting the sort

operator,µSS uses “distinct” instead of the aggregate. “Distinct” eliminates duplicates from

the answer and achieves the same methodological advantage as the aggregate, because the num-

ber of distinct values ina3 is small (less than or equal to50), and does not interfere with the

performance characteristics. Our experiment results corroborate these hypotheses.

Although previously proposed microbenchmark suites [34] often omit the join operator, it

is actually an important component in DSS queries and has very different behavior from table

24



scan [3]. To mimic the DSS workload behavior accurately, we consider the join operator and

propose theµNJ query to simulate the DSS queries dominated by the join operator. The predicate

“Lo < T1.a2 < Hi” adds an adjustable selectivity to the join query so that we can control the

number of qualifying records by changing the values ofLo andHi. An index onT2.a1 is created

for theµNJ query to reduce the execution time.

The OLTP microbenchmark, which we callµTPC-C, consists of one non-clustered index scan

query (µIDX), shown in the third column of Table 3.2. Accordingly, anindex onT1.a2 is created

as the non-clustered index. TheµIDX query is similar to theµSS query inµTPC-H. The key

difference is that, when evaluating the predicate in the ”where” clause, the table scan through the

non-clustered index generates a TPC-C-like random access pattern. The proposedµIDX query

is a read-only query which only partly reflects the type of actions in TPC-C. The transactions

also include a significant number of write statements (updates, insertions, and deletions). In

our experiments, however, we found that adding updates to the DBmbench had no effect in

the representativeness of the benchmark. The reason is that, like queries, updates use the same

indices to locate data, and the random accesses on the tablesthrough index search is the dominant

behavior in TPC-C. Therefore, theµIDX query is enough to represent the benchmark. We scale

down the dataset to the equivalent of one warehouse (100MB) and the number of concurrent

users to ten (as directed by the TPC-C specification).

3.4 Experimental methodology

In this section, we present the experimental environment and methodology we use in the work.

Industrial-strength large-scale database servers are often configured with fully optimized high-

performance storage devices so that the execution process is typically CPU- rather than I/O-

bound. A query’s processor execution and memory access characteristics in such settings domi-

nate overall performance [9]. As such, we ignore I/O activity in this work and focus on microarchitecture-

level performance.

We conducted our experiments on a 4-way 733 MHz Intel PentiumIII server. Pentium III is a

3-way out-of-order superscalar processor with 16 KB level-one instruction and data caches, and

a unified 2 MB level-two cache. The server has 4 GB of main memory and four SCSI disks of

35 GB capacity. To measure microarchitecture-level performance, we use the hardware counters

featured in the processors to count events or measure operation latencies. 1 We use Intel’s

1We have also verified that the microarchitecture-level event counts between the TPC benchmarks and DBm-
bench match on a Pentium 4 platform. However, we are not awareof an execution time breakdown model for the
platform to match the stall time components, and therefore we omit these results in the interest of brevity.

25



EMON tool to operate the counters and perform measurements.The counted events include

the total number of retired instructions, the number of cache misses at each level, mispredicted

branch instructions, and CPU cycles, etc.

We use IBM DB2 UDB V.7.2 with Fix Package 11 [19] on Linux (kernelversion 2.4.18) as

the underlying database management system, and run TPC-H andTPC-C benchmarks. As in

prior work [8, 9, 12, 34, 75], we focus on the read-only queries which are the major components

of the TPC-H workload, but our results can easily be extended to include the batch updates. For

our experiments, we used a slightly modified version of the TPC-C kit provided by IBM which

has been optimized for DB2. Prior work [3] suggests that commercial DBMS exhibit similar

microarchitecture-level performance behavior when running database benchmarks. Therefore,

expect the results in this work to be applicable to other database servers.

For TPC-H, we record statistics for the entire execution of all the queries. We measure work

units in order to minimize the effect of startup overhead. Each work unit consists of multiple

queries of the same type but with different values of the substitute parameters (i.e., selectivity

remains the same, but qualifying records vary). We run each work unit multiple times, and

measure events per run. The measurement is repeated severaltimes to eliminate the random

factors during the measurement. The reported results have less than5% discrepancy across

different runs.

For TPC-C, we count a pair of events during a five-second fixed time interval. We measure

events multiple times and in different order each time. For all experiments, we ensure that the

standard deviation is always lower than5% and compute an average over the per-event collected

measurements.

When scaling dataset sizes, we also change the system configuration parameters to ensure

the setup is valid. Database systems include a myriad of software-configured parameters. In the

interest of brevity and to allow for practical experimentalturnaround time, in this work we focus

on the buffer pool size as the key database system parameter to vary. As database applications are

heavily memory-bound, the buffer pool size: (1) is expectedto have the most fundamental effect

on processor/memory performance, and (2) often determinesthe values of other memory-related

database system parameters. For TPC-C, where the number of concurrent users is intuitively

important for the system performance, we also vary the degree of concurrency. While we have

studied other parameters (such as degree of parallelism), we did not find any insightful results

based on them.

When measuring performance, we are primarily interested in the following characteristics:

(1) query execution time breakdown, (2) memory stall time breakdown in terms of cycles lost

at various cache levels and TLBs, (3) data and instruction cache misses ratios at each level (4)

26



branch misprediction ratio.

To break down query execution time, we borrow the model proposed and validated in [3]

for the the Pentium III family of processors. In this model, query execution time is divided

into cycles devoted to useful computation and stall cycles due to various microarchitecture-level

mechanisms. The stalls are further decomposed into different categories. Hence, the total execu-

tion timeTQ can be expressed by the following equation:

TQ = TC + TM + TB + TR − TOV L

TC is the actual computation time;TM is wasted cycles due to misses in the cache hierarchy;TB

refers to stalls due to the branch prediction unit includingbranch misprediction penalty and BTB

miss penalty;TR is the stalls due to structural hazards in the pipeline due tolack of functional

units or physical rename registers;TOV L indicates the cycles saved by the overlap of the stall

time because of the out-of-order execution engine.

TM is further broken down into six components:

TM = TL1D + TL1I + TL2D + TL2I + TDTLB + TITLB

These are stalls caused by L1 cache misses (data and instruction), L2 cache misses (data and

instruction), and TLB misses respectively.

3.5 Evaluation

In this section, we compare and contrast the microarchitecture-level performance behavior of the

TPC and DBmbench benchmarks. We first present results for the DSS benchmarks followed by

results for the OLTP benchmarks.

3.5.1 Analyzing the DSS benchmarks

When taking a close look at the query plans provided by the optimizer, we corroborate our

intuition from 3.3.2 that one of the two “scan” or “join” operators account for more than95%

of the total execution time in each of the TPC-H queries. We also find that these two operators

remain dominant across database system configurations and dataset sizes. Therefore, we classify

the TPC-H queries into two major groups: “scan bound” query and “join bound” query. We

evaluate the microarchitecture-level performance these groups on a 10GB dataset.

Figure 3.2(a) shows the representative execution time breakdowns of the two groups. Each

27



0%

20%

40%

60%

80%

100%

scan

bound

join

bound

N
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
%

)

resource stalls

br-mispred stalls

memory stalls

computation

(a) TPC-H execution time breakdown.

0%

20%

40%

60%

80%

100%

scan

bound

join

bound

N
o

rm
a

li
z
e

d
 m

e
m

o
ry

 s
ta

ll
s

 (
%

)

ITLB stalls
L2 I-stalls
L2 D-stalls
L1 I-stalls
L1 D-stalls

(b) TPC-H memory stall breakdown.

Figure 3.2: TPC-H time breakdowns.Representative time breakdowns for the “scan bound” and
“join bound” groups, which spend their execution time mainly on sequential scan and join oper-
ators respectively.

0%

20%

40%

60%

80%

100%

1% 10% 50% 100% scan

boundselectivity

N
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
%

)

computation memory stalls br-mispred stalls resource stalls

(a) Execution time breakdown comparison.

0%

20%

40%

60%

80%

100%

1% 10% 50% 100% scan

boundselectivity

N
o

rm
a

li
z
e

d
 m

e
m

o
ry

 s
ta

ll
s

 (
%

)

L1 D-stalls L1 I-stalls L2 D-stalls L2 I-stalls ITLB stalls

(b) Memory stall breakdown comparison.

Figure 3.3:µSS vs. TPC-H “scan bound” query. The graphs show the time breakdowns ofµSS
and TPC-H “scan bound” queries. For theµSS query, we vary its selectivity from1% to 100%
to show how selectivity affects the behavior.

bar shows the contributions of the three primary microarchitectural stall components (memory

stalls, branch stalls, and resource stalls) as a percentageof the total query execution time.

These results corroborate prior findings [3, 9] that on average the processor is idle more than

80% of the time when executing the TPC-H queries. In both groups, the performance bottlenecks

are memory-related and resource-related stalls, each accounting for approximately25% to 50%

of the execution time. While we can not measure the exact causeof the resource-related stalls,

our conjecture is that they are related to the load/store unit due to the high overall fraction of

memory accesses in these queries.

Not surprisingly, the queries in the “join bound” group havea higher computation time com-

ponent because joins are more computationally intensive than sequential scans. Furthermore,

control-flow in joins are data-dependent and irregular, andas such the “join bound” group ex-

hibits a higher branch misprediction stall (over15%) component as compared to the “scan bound”

28



group whose execution is dominated by loops exhibiting negligible branch misprediction stall

time.

Figure 3.2(b) depicts a breakdown of memory stall time. The figure indicates that the “scan

bound” group’s memory stalls are dominated (over90%) by L2 data misses. These queries sim-

ply thrash the L2 cache by marching over the entire dataset and as such have no other relatively

significant memory stall component.

Unlike the “scan bound” queries, the “join bound” queries suffer from frequent L1 i-cache

and i-TLB misses. These queries exhibit large and dynamic i-cache footprints that can not fit in a

2-way associative 16KB cache. The dynamic footprint natureof these queries is also consistent

with their irregular control flow nature and their high branch misprediction stalls. Moreover,

frequent branch misprediction also inadvertently pollutes the i-cache with the wrong-path in-

structions, thereby increasing the miss rate.

3.5.2 Comparison toµTPC-H

In this section, we compare the microarchitecture-level performance behavior of the “scan bound”

and “join bound” TPC-H queries against theirµTPC-H counterparts. As before, TPC-H results

assume a 10GB dataset while theµTPC-H results we present correspond to a significantly scaled

down 100MB dataset.

Figure 3.3(a) compares the execution time breakdown of theµSS query and TPC-H queries

in the “scan bound” group. The x-axis in the left graph reflects the selectivity of the predicate in

theµSS query. These results indicate that the execution time breakdown of the TPC benchmark

is closely mimicked by the DBmbench. Our measurements indicate that the absolute benchmark

performances also match, averaging a CPI of approximately 4.1.

The µSS query with high selectivity sorts more records, thereby increasing the number of

branches in the instruction stream. These branches do not exhibit any patterns and are difficult

to predict, which unavoidably results in a higher branch misprediction rate. As shown in Fig-

ure 3.3(a), theµSS query successfully captures the representative characteristics of the TPC-H

queries in the “scan bound” group: it exposes the same bottlenecks and has similar percentages

of each component. Figure 3.3(b) compares the memory stall breakdowns of theµSS query

and the “scan bound” queries. TheµSS query exposes the same bottlenecks at the L2 (for data

accesses) and L1 instruction caches.

To mimic the “join bound” queries, we focus on the nested loopjoin because it is the only

join operator that appears to be dominant. To represent TPC-H’s behavior accurately, we build

an index on the join fields when evaluatingµNJ. We do so because most join fields in the TPC-H

workload have indices, and the index decreases the query execution time significantly.

29



0%

20%

40%

60%

80%

100%

10% 20% 50% 100% join

boundselectivity

N
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
%

)

computation memory stalls br-mispred stalls resource stalls

Figure 3.4:µNJ vs. TPC-H “join bound” query. The graph shows the time breakdowns ofµNJ
and TPC-H “join bound” queries. For theµNJ query, we vary its selectivity from1% to 100% to
show how selectivity affects the behavior.

0%

10%

20%

30%

40%

50%

60%

L1D L1I L2D L2I br-mispred.

V
a

ri
o

u
s

 m
is

s
 r

a
ti

o
 (

%
)

µSS

scan bound

(a) µSS and “scan bound” miss ratio compari-
son.

0%

5%

10%

15%

20%

25%

30%

L1D L1I L2D L2I br-mispred.

V
a

ri
o

u
s

 m
is

s
 r

a
ti

o
 (

%
)

µNJ

join bound

(b) µNJ and “join bound” miss ratio compari-
son.

Figure 3.5:µTPC-H vs. TPC-H.The graphs compare the miss ratios ofµTPC-H and TPC-H

Figure 3.4 examines the execution time breakdown of theµNJ query and the “join bound”

queries. It shows that selectivity significantly affects the execution time breakdown of theµNJ

query, and a20% selectivity best represents the characteristics of a “joinbound” query. We also

verify that the absolute performance measured in CPI matchesbetween the TPC queries and the

scaled down DBmbench query with a20% selectivity. The average CPI for these benchmarks

are approximately 2.95.

Figure 3.5(a) and Figure 3.5(b) compare the stall event frequencies across the benchmarks

suites. Much like the “scan bound” queries, the execution ofµSS is dominated by L2 cache

misses. Similarly, besides the high fraction of L2 cache stalls, the execution ofµNJ much like

the “join bound” queries also incurs a high rate of L1 i-cachemisses and branch mispredictions.

The L1 d-cache misses are often overlapped Moreover, the actual differences in event counts

between the benchmark suites are negligible.

In summary, the simpleµSS andµNJ queries inµTPC-H closely capture the microarchitecture-

level performance behavior of the “scan bound” and “join bound” queries in the TPC-H workload

30



0%

20%

40%

60%

80%

100%

TPC-C

N
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
%

)

resource stalls

br-mispred stalls

memory stalls

computation

(a) TPC-C execution time breakdown.

0%

20%

40%

60%

80%

100%

TPC-C

N
o

rm
a

li
z
e

d
 m

e
m

o
ry

 s
ta

ll
s

 (
%

)

ITLB stalls
L2-I stalls
L2-D stalls
L1-I stalls
L1-D stalls

(b) TPC-C memory stall breakdown.

Figure 3.6: TPC-C time breakdowns.

respectively.µTPC-H reduces the number of queries in TPC-H from 22 to 2. Moreover,µTPC-H

allows for scaling down the dataset with predictable behavior from 10GB to 100MB. We mea-

sure a reduction in the total number of instructions executed from 1.8 trillion in TPC-H to 1.6

billion in µTPC-H, makingµTPC-H a suitable benchmark suite for microarchitecture simulation

and research.

3.5.3 Analyzing the OLTP benchmarks

Figure 3.6 shows the execution time and memory stall breakdowns for a150-warehouse,100-

client TPC-C workload corresponding to a 15GB dataset. Much like the TPC-H results, these

results corroborate prior findings on microarchitecture-level performance behavior of TPC-C [3].

The effect of the high instruction cache miss rates result inan increased memory stall compo-

nent, which is nevertheless dominated by L2 stall time due todata accesses. The reason is that,

although the L2 data miss rate is not that high, in TPC-C each L2data miss reflects I/O delays

(TPC-C incurs I/O costs regardless of the dataset size, because it logs the transaction updates).

3.5.4 Comparison toµTPC-C

Figure 3.7(a) compares the execution time breakdown of theµIDX query and the TPC-C bench-

mark. It shows that theµIDX query with 0.01% and 0.1% selectivity mimics the execution

time breakdown of TPC-C. Increasing the selectivity to0.1%, however, also achieves the desired

memory stall breakdown (shown in Figure 3.7(b)). The interesting result here is that selectivity

is important to fine-tune memory stall breakdown.

The execution of a singleµIDX query exhibits fewer stall cycles caused by L1 instruction

cache misses. This is because the TPC-C workload has many concurrently running transactions

which aggravate the localities in the instruction stream. We can improve the similarity by running

31



0%

20%

40%

60%

80%

100%

0.01% 0.10% TPC-Cselectivity

N
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
%

)

computation memory stalls br-mispred stalls resource stalls

(a) Execution time breakdown comparison.

0%

20%

40%

60%

80%

100%

0.01% 0.10% TPC-Cselectivity

N
o

rm
a

li
z
e

d
 m

e
m

o
ry

 s
ta

ll
s

 (
%

)

L1 D-stalls L1 I-stalls L2 D-stalls L2 I-stalls ITLB stalls

(b) Memory stall breakdown comparison.

Figure 3.7:µIDX vs. TPC-C. The graphs show the time breakdowns ofµIDX and TPC-C.

multipleµIDX queries. We increase the L1 instruction cache miss rate from0.017 to 0.032 with

10 currently running queries, which is similar to the L1 instruction cache miss rate of TPC-C

(≃ 0.036).

Figure 3.8 shows the miss ratios ofµIDX with a 0.1% selectivity and TPC-C. We can see

from the graph that the branch misprediction rate of theµIDX query is the performance metric

that is far from the real TPC-C workload. The simpler execution path of theµIDX query might be

the reason for this discrepancy. The branch misprediction rate cannot be improved with a higher

degree of concurrency. Fortunately, this discrepancy doesnot affect the performance bottleneck,

as shown in Figure 3.7(a). This branch prediction mismatch,however, results in a small overall

CPI difference of 8.4 forµIDX as compared to 8.1 for TPC-C.

0%

10%

20%

30%

40%

L1D L1I L2D L2I br-mispred.

V
a

ri
o

u
s

 m
is

s
 r

a
ti

o
 (

%
)

µIDX

TPC-C

Figure 3.8:µIDX vs. TPC-C.The graph compare the miss ratios ofµIDX and TPC-C

A singleµIDX query is not enough to mimic the instruction-related performance behavior of

TPC-C. We can achieve better approximation by running multipleµIDX queries. As for the data

cache, theµIDX query represents TPC-C well on the L1 data cache. Less locality in our simple

µIDX query’s execution, however, causes a higher L2 data cache miss rate.

In summary, theµIDX query can expose the execution bottlenecks of TPC-C successfully.

Running multipleµIDX queries (usually10) can closely mimic the execution path of the TPC-C

32



workload with a7.06% relative error. TheµIDX query fails to approximate the branch mispre-

diction rate of the TPC-C workload. We should take this into account when predicting the branch

behavior of the TPC-C benchmark.µTPC-C reduces the dataset size from 10GB to 100MB as

compared to TPC-C. It also reduces five transactions containing approximately 50 queries to just

a single query. The total number of instructions executed per transaction is reduced from 91.65

million in TPC-C to 2.75 million inµTPC-C.

3.6 Chapter summary

Database applications and systems are emerging as the popular (if not dominant) commercial

workloads. Computer architects are increasingly relying ondatabase benchmarks to evaluate fu-

ture server designs. Unfortunately, conventional database benchmarks are prohibitively complex

to set up, and too large to experiment with and analyze when evaluating microarchitecture-level

performance bottlenecks.

This chapter proposes DBmbench, a benchmark suite representing DSS and OLTP work-

loads tailored to the requirements for microarchitecture research. The rationale of DBmbench

is based on the observation that the execution of database benchmarks are decided by a small

set of database operations. At the microarchitecture level, the execution of complicated database

queries are broken down into executions of a handful database operations with each having a

small code footprint and unique performance characteristics. By identifying these key database

operations for DSS and OLTP workloads, DBmbench proposes a set of simple queries that use

the key database operations as their building blocks. By doing so, DBmbench is able to preserve

the performance characteristics of their large counterparts.

DBmbench identifies that sequential scan and nested loop joinare the two operators that

primarily dominate the performance of TPC-H, a widely used DSS workload. The two operators

take more than 90% of the execution time of all TPC-H queries, and they show very different

performance behavior. Therefore, we use two types of queries to mimic the TPC-H queries: the

µSS query for sequential scan and theµNJ query for join. BothµSS andµNJ match the CPIs

of sequential scan and join queries, which are 4.1 and 2.95, respectively. In addition, they also

closely, usually with a less than 5% relative error, capturethe detailed characteristics such as

cache miss ratios at different levels of the memory hierarchy. We find that selectivity affects the

µNJ query more than it does onµSS. Both queries reduce the number of instructions executed

by 1000×.

OLTP workloads, such as TPC-C, present more challenges as there are more variations in

the execution of these workloads due to the concurrency in transaction executions. TheµIDX

33



query, a read-only non-clustered index scan, captures the primary access pattern, random ac-

cess, of TPC-C, thus its performance behavior resembles that of TPC-C, especially on exposing

bottlenecks. But singleµIDX query falls short of capturing the complex interaction among con-

currently running transactions in the TPC-C execution. Running multipleµIDX queries (usually

10) improves the representativeness on detailed statistics such as cache miss rate with a 7.06%

relative error.µTPC-C, consisting of 10 concurrently runningµIDX queries, also reduces the

number of instructions executed per transaction by33×.

Although DBmbench is originally designed for microarchitectural research, it is also valuable

for database system research, especially in sensitivity analysis because the simple queries in

DBmbench do a good job at isolating operation executions. This isolation makes it easy to control

experiments and to study the effect of a single operation on performance. The small set of tunable

knobs in DBmbench also makes performance analysis and comparison more manageable. The

other projects in this thesis use DBmbench to conduct sensitivity analysis on query selectivities

and payloads.

Admittedly, DBmbench can not perfectly mimic the performance behavior of TPC-H and

TPC-C, but it achieves its goal of providing a simple, more controllable, yet representative

database workload for microarchitecture research to locate bottlenecks and gain insight into per-

formance characteristics at the early design stage with short turn-around time.

34



Chapter 4

Fates database management system storage

architecture

The life of data in Fates:

First, Clotho spins the thread of life with her distaff: generating request for data.

Then, Lachesis decides the length of the thread with her ruler: determining the I/O request size.

Finally, Atropos cuts the thread with her scissors: fetchingand returning the data.

This chapter describes the design and implementation of theFatesdatabase storage manager,

with a focus onClotho, and evaluates its performance under a variety of workloadsusing both

disk arrays and simulated MEMS-based storage devices.

As database application performance depends on the utilization of the memory hierarchy,

smart data placement plays a central role in increasing locality and in improving memory uti-

lization. Existing techniques, however, do not optimize accesses to all levels of the memory

hierarchy and for all the different workloads, because eachstorage level uses different technol-

ogy (cache, memory, disks) and each application accesses data using different patterns. The

Fatesdatabase storage manager addresses this problem by building pages of data that are tai-

lored to match the characteristics of the medium in which they are stored, i.e., on disk, in main

memory, and in CPU caches. On disk, data layout is tailored to the underlying storage devices

such that tables can be accessed efficiently in either dimension. In memory, pages are tailored

to individual queries, such that only the required fields of records are fetched from disk, saving

disk bandwidth and reducing memory footprint. Memory pagesare partitioned into minipages,

which optimizes CPU cache performance, as in thePAX page layout [4]. In contrast to previ-

ous systems, inFates, data page layouts aredecoupled, meaning that their format is different

at each level of the memory hierarchy. TheFatesarchitecture consists of three main compo-

nents, which are named for the three Fates of Greek mythology. Clotho is the buffer pool and

35



storage management component which manages in-memory and on-disk data layout.Atroposis

a logical volume manager which exposes device-specific details of underlying storage devices

to allow efficient access to two-dimensional data structures. Lastly, theFatessystem leverages

device-specific performance characteristics provided byLachesis[59] to tailor access to storage.

4.1 Introduction

Page structure and storage organization have been the subject of numerous studies [4, 11, 15, 31,

40], because they play a central role in database system performance. Research continues as no

single data organization serves all needs within all systems. In particular, the access patterns re-

sulting from queries posed by different workloads can vary significantly. One query, for instance,

might access all the attributes in a table (full-record access), while another accesses only a subset

of them (partial-record access). Full-record accesses are typical in transactional (OLTP) appli-

cations where insert and delete statements require the entire record to be read or written, whereas

partial-record accesses are often found in decision-support system (DSS) queries. Moreover,

when executing compound workloads, one query may access records sequentially while others

access the same records “randomly” (e.g., via non-clustered index). Currently, database storage

managers implement a single page layout and storage organization scheme, which is utilized by

all applications running thereafter. As a result, in an environment with a variety of workloads,

only a subset of query types can be serviced well.

Several data page layout techniques have been proposed in the literature, each targeting a

different query type. Notably, the N-ary Storage Model (NSM) [52] stores records consecutively,

optimizing for full-record accesses, while penalizing partial-record sequential scans. By con-

trast, the Decomposition Storage Model (DSM) [18] stores values of each attribute in a separate

table, optimizing for partial-record accesses, while penalizing queries that need the entire record.

More recently,PAX [4] optimizes cache performance, but not memory utilization. “Fractured

mirrors“ [53] reduceDSM’s record reconstruction cost by using an optimized structure and scan

operators, but need to keep anNSM-organized copy of the database as well to support full-record

access queries. None of the previously proposed schemes provides a universally efficient so-

lution, however, because they all make a fundamental assumption that the pages used in main

memory must have the same contents as those stored on disk.

This chapter describes howFates, a dynamic and automated database storage manager, ad-

dresses the above problems by decoupling in-memory data layout from on-disk storage layout to

exploit unique device-specific characteristics across thememory hierarchy.

Fatesconsists of three independent components, named after three goddesses in Greek mythol-

36



ogy: Atroposis the volume manager [60] which enables efficient accesses to two dimensional

data structures stored both in disk arrays and in MEMS-basedstorage devices (MEMStores) [63,

81] through new simple interfaces;Lachesis[59] utilizes the explicit device-specific information

provided byAtroposto construct efficient I/O requests for varying and mixed workloads without

manual tuning;Clotho[66] is the buffer pool manager which manages query-specificdata pages

dynamically based on queries’ needs. The contents of in-memory query-specific pages could be

different from the on-disk pages, hence the meaning of “decoupling”.

This decoupling offers two significant advantages. First, it optimizes storage access and

memory utilization by fetching from disk only the data accessed by a given query. Second, it al-

lows new two-dimensional storage mechanisms to be exploited to mitigate the trade-off between

the NSM andDSM storage models. The break of conventional view of single andstatic page

layouts provides the flexibility of using different page layouts that perform best for the current

workload at the current memory hierarchy level.

Among the threeFatescomponents, this chapter focuses on the design and a prototype im-

plementation ofClothowithin the Shore database storage manager [13]. Experiments with disk

arrays show that, with only a single storage organization, performance of DSS and OLTP work-

loads is comparable to the page layouts best suited for the respective workload (i.e.,DSM and

PAX, respectively). Experiments with a simulated MEMStore confirm that similar benefits will

be realized with these future devices as well.

The remainder of this chapter is organized as follows. Section 4.2 introduces background

knowledges and related work. Section 4.3 describes the decoupled data organization inFates.

Section 4.4 presents theFatesarchitecture and the relationship among its three components.

Section 4.5 describes the design ofAtropos. Section 4.6 details howClotho, the new buffer pool

manager, constructs query-specific pages using the new in-memory page layout. Section 4.7

describes our initial implementation, and Section 4.8 evaluates this implementation for several

database workloads using both a disk array logical volume and a simulated MEMStore.

4.2 Background and related work

Conventional relational database systems store data in fixed-size pages (typically 4 to 64 KB). To

access individual records of a relation (table) requested by a query, a scan operator of a database

system accesses main memory. Before accessing data, a page must first be fetched from non-

volatile storage (e.g., a logical volume of a disk array) into main memory. Hence, a page is the

basic allocation and access unit for non-volatile storage.A database storage manager facilitates

this access and sends requests to a storage device to fetch the necessary blocks.

37



A single page contains a header describing what records are contained within and how they

are laid out. In order to retrieve data requested by a query, ascan operator must understand the

page layout, (a.k.a. storage model). Since the page layout determines what records and which

attributes of a relation are stored in a single page, the storage model employed by a database

system has far reaching implications on the performance of aparticular workload [3].

The page layout prevalent in commercial database systems, called N-ary storage model

(NSM), is optimized for queries with full-record access common in an on-line transaction pro-

cessing (OLTP) workload.NSMstores all attributes of a relation in a single page [52] and full

records are stored within a page one after another. Accessing a full record is accomplished by

accessing a particular record from consecutive memory locations. Using an unwritten rule that

access to consecutive logical blocks (LBNs) in the storage device is more efficient than random

access, a storage manager maps single page to consecutive LBNs. Thus, an entire page can be

accessed by a single I/O request.

An alternative page layout, called the Decomposition Storage Model (DSM) [18], is opti-

mized for decision support systems (DSS) workloads. Since DSS queries typically access a

small number of attributes and most of the data in the page is not touched in memory by the scan

operator,DSM stores only one attribute per page. To ensure efficient storage device access, a

storage manager mapsDSM pages with consecutive records containing the same attribute into

extents of contiguous LBNs. In anticipation of a sequential scan through records stored in mul-

tiple pages, a storage manager can prefetch all pages in one extent with a single large I/O, which

is more efficient than accessing each page individually by a separate I/O.

A page layout optimized for CPU cache performance, calledPAX [4], offers good CPU-

memory performance for both individual attribute scans of DSS queries and full-record accesses

in OLTP workloads. ThePAX layout partitions data across into separate minipages. A single

minipage contains data of only one attribute and occupies consecutive memory locations. Col-

lectively, a single page contains all attributes for a givenset of records. Scanning individual

attributes inPAX accesses consecutive memory locations and thus can take advantage of cache-

line prefetch logic. With proper alignment to cache-line sizes, a single cache miss can effectively

prefetch data for several records, amortizing the high latency of memory access compared to

cache access. However,PAXdoes not address memory-storage performance.

All of the described storage models share the same characteristics. They (i) are highly opti-

mized for one workload type, (ii) focus predominantly on onelevel of the memory hierarchy, (iii)

use a static data layout that is determineda priori when the relation is created, and (iv) apply the

same layout across all levels of the memory hierarchy, even though each level has unique (and

very different) characteristics. As a consequence, there are inherent performance trade-offs for

38



Data Cache–Memory Memory–Storage
Organization OLTP DSS OLTP DSS

NSM
√ × √ ×

DSM × √ × √

PAX
√ √ √ ×

Table 4.1: Summary of performance with current page layouts.

each layout that arise when a workload changes. For example,NSMor PAX layouts waste mem-

ory capacity and storage device bandwidth for DSS workloads, since most data within a page is

never touched. Similarly, aDSM layout is inefficient for OLTP queries accessing random full

records. To reconstruct a full record withn attributes,n pages must be fetched andn−1 joins on

record identifiers performed to assemble the full record. Inaddition to wasting memory capacity

and storage bandwidth, this access is inefficient at the storage device level; accessing these pages

results in random one-page I/Os. In summary, each page layout exhibits good performance for a

specific type of access at a specific level of memory hierarchy. as shown in Table 4.1.

Several researchers have proposed solutions to address these performance trade-offs. Rama-

murthy et al. proposed fractured mirrors that store data in both NSMandDSM layouts [53] to

eliminate the need to reload and reorganize data when accesspatterns change. Based on the work-

load type, a database system can choose the appropriate dataorganization. Unfortunately, this

approach doubles the required storage space and complicates data management; two physically

different layouts must be maintained in synchrony to preserve data integrity. Hankins and Pa-

tel [31] proposed data morphing as a technique to reorganizedata within individual pages based

on the needs of workloads that change over time. Since morphing takes place within memory

pages that are then stored in that format on the storage device, these fine-grained changes can-

not address the trade-offs involved in accessing non-volatile storage. The multi-resolution block

storage model (MBSM) [86] groupsDSM table pages together into superpages, improvingDSM

performance when running decision-support systems.

MEMStores [14] are a promising new type of storage device that has the potential to provide

efficient accesses to two-dimensional data. Schlosser et al. proposed data layout for MEMStores

that exploits their inherent access parallelism [63]. Yu etal. devised an efficient mapping of

database tables to this layout that takes advantage of the unique characteristics of MEMStores [81]

to improve query performance.

In summary, these solutions either address only some of the performance trade-offs or are

applicable to only one level of the memory hierarchy.Fatesbuilds on the previous work and

uses a decoupled data layout that can adapt to dynamic changes in workloads without the need to

maintain multiple copies of data, to reorganize data layout, or to compromise between memory

39



4 
LBNs

3 
LBNs

4 
LBNs

3 
LBNs

25Jerry1015

54Jean2534

33Kate8791

31Tom2865

20Susan7658

45Jim1563

52John4322

30Jane1237

AgeNameID

Table R

1563

PAGE 1
1237 4322 7658

Jane John Jim Susan

30 45 2052

2865 2534 87911015

Tom Jerry Jean Kate

31 54 3325

Storage format

1563

PAGE HDR (ID, Age)

1237 4322 7658

30 45 205230 45 2052

25342865 1015 8791

31 54 3325

Memory format

A-page C-page

Unused space

PAGE 2

SELECT ID 

 FROM R 

  WHERE Age>30

Figure 4.1: Decoupled on-disk and in-memory layouts.

and I/O access efficiency.

4.3 Decoupling data organization

From the discussion in the previous section, it is clear thatdesigning a static scheme for data

placement in memory and on non-volatile storage that performs well across different workloads

and different device types and technologies is difficult. Instead of accepting the trade-offs in-

herent to a particular page layout that affects all levels ofthe memory hierarchy, we propose

decoupling the in-memory page layout from the storage organization. This section introduces

the high-level picture of the data organization as well as detailed in-memory page layout used in

Fatesthrough a simple example. It also explains some terminologies used in later section.

4.3.1 An example of data organization inFates

Fatesallows for decoupled data layouts and different representations of the same table at the

memory and storage levels. Figure 4.1 depicts an example table, R, with three attributes:ID,

Name, andAge. At the storage level, the data is organized into A-pages. AnA-page contains all

attributes of the records; only one A-page needs to be fetched to retrieve a full record. Exploiting

the idea used inPAX [4], an A-page organizes data into minipages that group values from the

same attribute for efficient predicate evaluation, while the rest of the attributes are in the same

A-page. The storage and organization of A-pages on storage devices are decided byAtropos

and transparent to other components. This allowsAtroposto use optimized methods for placing

the contents of the A-page onto the storage medium. Therefore, not only doesAtroposfully

exploit sequential scan for evaluating predicates, but it also places A-pages carefully on the

40



1 409

Minipage 1

Minipage 4

max # of rec.

pid

(2 blocks)

(5 blocks)

3111

31

11

Header

(3 blocks)
Minipage 2

(5 blocks)
Minipage 3

1111

presence bits # of rec

3111

1 1

31

page start addr
# of pages schema

(1 block)

(a) Full records.

pid 3 0011

111

41111

41111

# of pages

409

max # of rec.
schema

presence bits
# of rec

3111

3

61111 11

61111 11

Minipage 1

Minipage 2

Minipage 1

Minipage 2

Minipage 1

Minipage 2

Header

(2 blocks)

(1 block)

(3 blocks)

(2 blocks)

(3 blocks)

(2 blocks)

(3 blocks)

(b) Partial records.

Figure 4.2: C-page layout.

device to ensure near-sequential (or semi-sequential [60]) access when reconstructing a record.

The placement of A-pages on the disk is further explained in Section 4.5.

The rightmost part of Figure 4.1 depicts a C-page, which is thein-memory representation of a

page. The page frame is sized by the buffer pool manager and ison the order of 8 KB. A C-page

is similar to an A-page in that it also contains attribute values grouped in minipages, to maximize

processor cache performance. Unlike an A-page, however, a C-pageonlycontains values for the

attributes the query accesses. Since, the query in the example only uses theID andAge, the

C-page only includes these two attributes, maximizing memory utilization. Note that the C-page

uses data from two A-pages to fill up the space “saved” from omitting Name. In the rest of this

chapter, we refer to the C-page layout as theClothostorage model (CSM). Details ofCSMare

discussed in Section 4.3.2. Note that how C-pages are stored in the main memory is independent

of the organization of A-pages.

4.3.2 In-memory C-page layout

Figure 4.2 depicts two examples of C-pages for a table with four attributes of different sizes. In

our design, C-pages only contain fixed-size attributes. Variable-size attributes are stored sepa-

rately in other page layouts (see Section 4.7.2). A C-page contains a page header and a set of

minipages, each containing data for one attribute and collectively holding all attributes needed

by queries. In a minipage, a single attribute’s values are stored in consecutive memory locations

to maximize processor cache performance. The current number of records and presence bits are

distributed across the minipages. Because the C-page only handles fixed-size attributes, the size

of each minipage is determined at the time of table creation.

The page header stores the following information: page id ofthe first A-page, the number of

partial A-pages contained, the starting address of each A-page, a bit vector indicating the schema

41



of the C-page’s contents, and the maximal number of records that can fit in an A-page.

Figure 4.2(a) and Figure 4.2(b) depict C-pages with completeand partial records, respec-

tively. The leftmost C-page is created for queries that access full records, whereas the rightmost

C-page is customized for queries touching only the first two attributes. The space for minipages

3 and 4 on the left are used to store more partial records from additional A-pages on the right. In

this example, a single C-page can hold the requested attributes from three A-pages, increasing

memory utilization by a factor of three.

On the right side of the C-page we list the number of storage device blocks each minipage

occupies. In our example each block is 512 bytes. Depending on the relative attribute sizes, as

we fill up the C-page using data from more A-pages there may be some unused space. Instead of

performing costly operations to fill up that space, we chooseto leave it unused. Our experiments

show that, with the right page size and aggressive prefetching, this unused space does not cause

a detectable performance deterioration (details about space utilization are in Section 4.8.7).

4.4 Overview ofFates architecture

Fatesis a new storage architecture for database systems that enables the decoupled data organi-

zation. Thanks to the flexibility of query-specific pages, data processing inFatesis able to adapt

to the vastly different characteristics at each level of thememory hierarchy. The challenge is

to ensure that this decoupling works seamlessly within current database systems. This section

describes the key components of theFatesarchitecture.

4.4.1 System architecture

The difficulty in buildingFateslies in implementing the necessary changes without undue in-

crease in system and code complexity. The three modules inFatesconfine changes within each

component that do not modify the query processing interface.

Figure 4.3 shows the threeFatescomponents to highlight the interplay among them and their

relationship to database systems as well. Each component can independently take advantage

of enabling hardware/OS technologies at each level of the memory hierarchy, while hiding the

details from the rest of the system. This section outlines the role of each component. The

changes to the components are further explained in Sections4.6 and 4.5 while details specific to

our prototype implementation are provided in Section 4.7. We introduce each component from

the top to the bottom.

The operatorsare essentially predicated scans that access data from in-memory pages stored

42



buffer
pool

disk 0

payload data directly placed 

via scatter/gather I/O

access to payload 

logical volumedisk array

page hdr

         OPERATOR
(tblscan,idxscan, ... )

disk 1

 Atropos
LOGICAL VOLUME Manager

requests for pages with a

subset of attributes (payload)

storage interface exposes efficient 

access to non-contiguous blocks

Lachesis
STORAGE Manager

Clotho
BUFFER POOL Manager

DBMS

Figure 4.3: Interaction among three components inFates.

in a common buffer pool. They take advantage of the query-specific page layout of C-pages that

leverages the L1/L2 CPU cache characteristics and cache prefetch logic for efficient access to

data. The scan operators are essentially a part ofClotho. They are discussed separately to give a

clearer picture of the three components ofFates.

Clotho manages C-pages in the buffer pool and enables sharing acrossdifferent queries that

need the same data. In traditional buffer pool managers, a buffer page is assumed to have the

same schema and contents as the corresponding relation. InClotho, however, this page may con-

tain a subset of the table schema attributes. To ensure sharing, correctness during updates, and

high memory utilization, theClothobuffer pool manager maintains a page-specific schema that

denotes which attributes are stored within each buffered page (i.e., the page schema). The chal-

lenge of this approach is to ensure minimal I/O by determining sharing and partial overlapping

across concurrent queries with minimal book-keeping overhead. Section 4.6 details the buffer

pool manager operation in detail.

Lachesis maps A-pages to specific logical volume’s logical blocks, called LBNs. Since the

A-page format is different from the in-memory layout, the storage manager rearranges A-page

data on-the-fly into C-pages using the query-specificCSM layout. Unlike traditional storage

managers where pages are also the smallest access units,Lachesisstorage manager selectively

retrieves a portion of a single A-page. With scatter/gatherI/O and direct memory access (DMA),

the pieces of individual A-pages can be delivered directly into the proper memory frame(s) in the

buffer pool as they arrive from the logical volume.Lachesissimply sets up the appropriate I/O

vectors with the destination address ranges for the requested LBNs. The data is placed directly

43



to its destinations withoutLachesis’s involvement or the need for data shuffling and extraneous

memory copies. To efficiently access data for a variety of access patterns,Lachesisrelies on

adjacent blocks provided by the logical volume manager,Atropos.

Atropos (Logical Volume Manager, LVM) maps volume LBNs to the physical blocks of the

underlying storage device(s). It is independent of the database system and is typically imple-

mented with the storage system (e.g., disk array). TheAtroposLVM leverages the traditional

sequential access path (e.g., all blocks mapped onto one disk or MEMStore track) to store mini-

pages containing the same attributes for efficient scans of asubset of attributes (column direction

access). It utilizes the semi-sequential access path consisting of consecutive first adjacent blocks

to store a single A-page (row direction access). TheAtroposLVM is briefly described in Sec-

tion 4.5 and detailed elsewhere [60, 63].Clotho need not rely on theAtroposLVM to create

query-specific C-pages. With conventional LVMs, it can map a full A-page to a contiguous run

of LBNs with each minipage mapped to one or more discrete LBNs. However, with these con-

ventional LVMs, access only along one dimension will be efficient. Also, the actual storage

devices managed byAtroposcould be conventional magnetic disks or new MEMStore.

4.4.2 Advantages ofFates architecture

Fatesis a dynamic, robust and autonomous storage architecture for database systems. It has the

following advantages over existing approaches.

Leveraging unique device characteristics.At the volatile (main memory) level,Fatesuses

CSM, a data layout that maximizes processor cache utilization by minimizing unnecessary ac-

cesses to memory.CSM organizes data in C-pages and also groups attribute values toensure

that only useful information is brought into the processor caches [4, 31]. At the storage-device

level, the granularity of accesses is naturally much coarser. The objective is to maximize memory

utilization for all types of queries by only bringing into the buffer pool data that the query needs.

Query-specific memory layout.With memory organization decoupled from storage layout,

Fatescan decide what data is needed by a particular query, requestonly the needed data from

a storage device, and arrange the data on-the-fly to an organization that is best suited for the

particular query needs. This fine-grained control over whatdata is fetched and stored also puts

less pressure on buffer pool and storage system resources. Bynot requesting data that will not be

needed, a storage device can devote more time to servicing requests for other queries executing

concurrently and hence speed up their execution.

Dynamic adaptation to changing workloads. A storage architecture with flexible data

organization does not experience performance degradationwhen query access patterns change

over time. Unlike systems with static page layouts, where the binding of data representation to

44



workload occurs during table creation, this binding is donein Fatesonly during query execution.

Thus, a system with decoupled data organizations can easilyadapt to changing workloads and

also fine-tune the use of available resources when they are under contention.

4.5 Atropos logical volume manager

This section briefly describes the storage device-specific data organization and the mechanisms

exploited byAtropos in creating logical volumes that consist of either disk drives or a single

MEMStore.

4.5.1 Atropos disk array LVM

To store a table, a 2-D data structure, on disks,Atroposutilizes the semi-sequential access path

consisting of the consecutive first adjacent blocks, together with the traditional sequential access

path to provide efficient I/O operations along both row direction and column direction. It also

exploits automatically-extracted knowledge of disk trackboundaries, using them as its stripe unit

boundaries for achieving efficient sequential access.Atroposexposes these boundaries explicitly

to Clothoso that it can use previously proposed “track-aligned extent” ( traxtents), which provide

substantial benefits for streaming patterns interleaved with other I/O activity [58, 59]. Finally,

as with other logical volume managers,Atroposdelivers aggregate bandwidth of all disks in the

volume and offers the same reliability/performance trade-offs of traditional RAID schemes [49].

Please refer to Chapter 2 for the explanation of adjacent blocks and semi-sequential accesses.

This section focuses on how a page is stored on disks.

4.5.2 Efficient database organization withAtropos

With Atropos, Lachesiscan lay out A-pages such that access in one dimension of the table is

sequential, and access to the other dimension is semi-sequential. Figure 4.4 shows the mapping

of a simple table with 12 attributes and 1008 records to A-pages stored on anAtroposlogical

volume with four disks. A single A-page includes 63 records and maps to the diagonal semi-

sequential LBNs, with each minipage mapped to a single LBN. Whenaccessing one attribute

from all records,Atroposcan use four track-sized, track-aligned reads. For example, a sequential

scan of attribute A1 results in a access of LBN 0 through LBN 15. Accessing a full A-page

results in three semi-sequential accesses, one to each disk. For example, fetching attributes A1

through A12 for record 0 results in three semi-sequential accesses, each proceeding in parallel

on different disks, starting at LBNs 0, 64, and 128.

45



16

32

48

64

80

96

112

128

144

160

176

0

0 4 8 12

64 68 7276

128128 132136 140

disk 0 disk 1 disk 2 disk 3

A1-A4
r0:251

A1-A4
r252:503

A1-A4
r504:755

A5-A8
r0:251

A9-A12
r756:1007

A5-A8
r252:503

A5-A8
r504:755

A1-A4
r756:1007

A9-A12
r0:251

A9-A12
r252:503

A9-A12
r504:755

A5-A8
r756:1007

Figure 4.4: Mapping of a database table with 12 attributes onto Atroposwith 4 disks.The numbers
to the left of disk 0 are theLBN s mapped to the gray disk locations connected by the arrow and
not the first block of each row. The arrow illustrates efficient semi-sequential access fetching
single A-page with 63 records. A single sequential I/O for 16LBN s can efficiently fetch one
attribute from 1008 records striped across four disks.

Atroposhides the details of underlying storage devices through simple interfaces that support

more than one access paths. It works harmoniously with otherstorage devices other than tradi-

tional disks, such as MEMStores. Details aboutAtroposand MEMStores can be found in the

previous work [60, 63].

4.6 Clotho buffer pool manager

Due to the query-specific feature, a C-page can contain a single attribute (similar toDSM), a

few attributes, or all attributes of a given set of records (similar to NSMandPAX) depending on

query needs. The responsibility ofClotho, the new buffer pool manager inFates, is to construct

and manage C-pages to ensure both the query-specific feature and data sharing among multiple

concurrently running queries. This section first discussesthe general design choices for buffer

pool managers, followed by the unique challenges facingClotho. After that, we present the

design details for Clotho.

46



4.6.1 Buffer pool manager design space

Before discussing the design space of a buffer pool manager, we first describe the performance

metrics used in our analysis. The final performance of a buffer pool manager is evaluated by the

average time to serve a request from a scan operator. For a better understanding of how each

design aspect affects the performance, we break down the cause of the service time into two

components: buffer pool miss rate and management cost.

• Buffer pool miss rate is the number of missed pages (page faults) divided by the total

number of requested pages. It indicates how often a buffer pool manager needs to fetch

pages from disks. Since fetching a page from disks is two orders of magnitude slower

than visiting a page in main memory, buffer pool miss rate hasa significant impact on

the overall performance: waiting for pages from disks dramatically increases the average

service time of a buffer pool manager.

• Management cost is the time spent on metadata maintenance, which implies the complex-

ity of buffer pool management. It includes maintaining the lookup table structure, keep

tracking of the status of all frames in memory, etc. Approaches trying to reduce buffer

pool miss rate might have negative effects on management cost due to the complicated

data structures or algorithms employed by these techniques.

We summarize the design choices for buffer pool managers in database systems as consisting

of the following dimensions: in-memory data organization,page lookup algorithms, replacement

policies, and metadata management. Among them, in-memory data organization is the most

crucial dimension.

In-memory data organization refers to the way in which data are laid out in main memory.

In almost all systems, buffer pool managers store data in frames of the same size as disk pages.

NSM, DSM, PAX, and C-pages ofCSM discussed in this chapter are examples of organizing

data in pages with different layouts. The choice of in-memory data organization influences the

designs of other three dimensions. Performance-wise, it affects both buffer pool miss rate and

management cost. An in-depth analysis is presented in the next section.

A page lookup algorithm checks whether a requested page is present in the buffer pool

(page hit or miss). It decides how fast a lookup operation canbe performed. A hash table with

page IDs as search keys is widely adopted by conventional buffer pool managers for its O(1)

search complexity. Lookup operations are usually fast and not performance-crucial.

A replacement policydetermines the victim pages to be evicted from the buffer pool when

there is no enough space for newly requested pages. Based on the access history of pages,

different algorithms have been proposed in the literature to exploit the temporal locality in data

47



accesses, thus reducing buffer pool miss rate.

Metadata managementincludes data structures and algorithms used to keep track of the

status of each buffer pool frame. It varies with the choices made for the other design dimensions.

Performance trade-offs exist among the above design dimensions. For instance, optimiz-

ing in-memory data organization, such as maximizing space utilization, could complicate man-

agement, resulting in more management overhead. For a traditional buffer pool manager that

employs a static page layout, the design of in-memory data organization is straightforward. The

in-memory page layout simply adopts the same structure as the on-disk layout which is selected a

prior based on predicted workload characteristics. The flexibility introduced byCSMalso brings

in complexity and variations for this design dimension. Thenext section discusses the design

choices for in-memory data organization and the new opportunities/challenges forClotho.

4.6.2 Design spectrum of in-memory data organization

In-memory data organization affects buffer pool miss rate through effective memory capacity,

which is the amount of memory storing relevant data. By holding more data to be accessed

in the future, a buffer pool manager can reduce buffer pool miss rate. Therefore, we choose

memory utilization rate as one optimization objective of in-memory data organization. In a

multi-query execution environment, data sharing opportunities across different queries present

another optimization target.

Memory utilization rate

Memory utilization rateis defined as the percentage of the entire allocated memory space used

to buffer relevant data. Ideally, it would be 100%, meaning abuffer pool manager never wastes

space to store undesired data. In reality, due to implementation artifact or preference for simple

management, there are extraneous data and/or replicate data in the buffer pool. The first refers

to the attributes that are not needed by any queries during their lifetime in the buffer pool; the

second is the data that have multiple copies in the buffer pool. These two kinds of undesired

data waste I/O bandwidth and memory space, increase the pagemiss rate, and thus impair the

performance.

Memory utilization rate is workload-dependent. But generally speaking, buffer pool man-

agers using theNSMandPAX page layouts suffer from extraneous data due to always fetching

all attributes regardless of queries’ needs. In contrast, buffer pool managers based on theDSM

andCSM layouts can store only requested data (attributes) while trading some memory space to

store replicate copies for faster data processing and less management cost.

48



The design spectrum of in-memory data organization on memory utilization rate spans from

0% to 100%, withDSM at 100% if no replicates andNSMandPAX at some point in between

depending on workloads. Buffer pool managers usingCSMhave a wide range of memory utiliza-

tion rate. Depending on the strategies of choosing C-page schemas in the presence of multiple

queries, the order the queries enter the execution engine, and their relative execution speeds, the

memory utilization rate could vary from 100% to less than 50%(in the most pessimistic cases).

We propose three buffer pool management strategies: the first one is simply retrieving full

pages for all queries. This method is essentially the same asthe traditional buffer pool manager

usingNSM-like page layouts. The second strategy is always fetching query-specific pages. The

buffer pool is free of extraneous data but may contain replicate copies of some data, therefore

extra structures are needed to maintain data consistency. In the second method, full pages are

used for update queries. The last strategy is the one we applyto theClothoprototype, which is

discussed in details in the next section.

Data sharing opportunities

The data sharing discussed in this section happens at the granularity of buffer pool frames, i.e., if

two queries access the same buffer pool frame, they are sharing this frame no matter whether they

access the same set of attributes or the same set of records. Data sharing opportunities among

concurrent queries are determined by the relationships of two sets, the attribute set and the record

set, of queries and buffer pool frames. At any point of time, sharing a frame is possible only when

both sets of the buffer pool frame contain those of the queries. The complexity of data sharing

in Clothocomes from the fact that concurrent queries do not necessarily access the same set of

attributes. Attribute sets of different queries may be disjoint, inclusive, or otherwise overlapping.

The observation is also true for record sets.

With theNSMandPAXpage layouts, the attribute sets of buffer pool frames are the same as

the relational table schemas stored in them because full pages are used regardless. In theDSM

case, queries join multiple single-attribute pages to reconstruct records containing requested at-

tributes. In both situations, pages brought into the bufferpool by one query can always be used

by others. Therefore data sharing is easy and straightforward. TheCSM layout with a query-

specific attribute set brings up new issues. Should queries make use of the existingCSMpages

with overlapping attributes? If yes, how? If no, how to enable data sharing among different

queries? Generally speaking, data sharing is desirable. The challenge here is to keep a good

balance between management cost and memory utilization rate.

49



Schema

Manager

…

Q
u

e
ry

 s
c
h

e
m

a
s

Q
u

e
ry

 s
c
h

e
m

a
s

Page schemas

Buffer pool

Hash table
Page id

Query schema

…

Buffer

Pool

frames

Schema

Manager

…

Q
u

e
ry

 s
c
h

e
m

a
s

Q
u

e
ry

 s
c
h

e
m

a
s

Page schemas

Buffer pool

Hash table
Page id

Query schema

…

Buffer

Pool

frames

Figure 4.5: Components inClothobuffer pool manager.

4.6.3 Design choices inClotho buffer pool manager

This section describes the design choices made byClotho, namely, the in-memory data organiza-

tion, the data structure and algorithm for page lookup, the replacement policy, and the metadata

management. Figure 4.5 depicts three important componentsof theClothobuffer pool manager,

separated by vertical dotted lines. The leftmost is calledSchema Managerwhich keeps updating

the latest information of activepage schemasbased on new and retiredquery schemasfor each

relation. A page schema is a bit vector describing the attributes held by a C-page. Active page

schemas are the ones currently in Schema Manager. It is used to decide what attributes should

be fetched from disks, indicated by the arrow from Schema Manager to the buffer pool. A query

schema is also a bit vector, describing the attributes in a single relation that are referenced by

a query. Both schemas are based on individual relations. A single relation may have multiple

disjoint page schemas, and a single query may have multiple query schemas, each corresponding

to a relation referenced by the query. Schema Manager belongs to the metadata management cat-

egory and is discussed in details in Section 4.6.3. The middle component is a hash table to look

up requested A-pages in the buffer pool. Its responsibilityincludes the page lookup operation as

well as choosing victim pages based the adopted replacementpolicy. We explain how it works

in Section 4.6.3. The rightmost depicts the shared buffer pool with 4 example C-pages.

During query execution, the three components collaborate in the following way: when a new

query comes in, Schema Manager checks the query schemas and updates the page schemas for

all relations involved. A page lookup searches for the requested page idand the corresponding

query schema to decide whether it is a hit or miss. If it is a miss, an I/O request for the missing

page is issued using the page id and a proper page schema to fetch data from disks.

The rest of this section first reviews the layout of C-pages briefly (the rightmost part), fol-

lowed by the page lookup operation. The algorithm employed by Schema Manager to enable

data sharing among different queries is discussed after that.

50



In-memory data organization

Clothoadopts C-page (Figure 4.2) as its in-memory data organization format to match various

needs from different queries. Details of the C-page layout, such as the metadata in page headers

and the arrangement of minipages, can be found in Section 4.3.2. We recapitulate some important

characteristics about C-pages that are closely related to the topic of this section.

Each frame in the buffer pool stores a C-page which has a globalheader followed by one or

more partial A-pages. The global header contains, among other metadata, the page schema, the

page id of the first partial A-page, and the total number of partial A-pages.

C-pages introduce high flexibility to database systems, withthe caveat that data sharing

among multiple queries becomes a tricky problem: it is no longer a straightforward page id

(record set) match, but a more complex decision involving both page ids and attribute sets. Be-

fore delving into the sharing algorithm details, I first describe the data structure and algorithm for

page lookup. It is closely related to data sharing: being able to find C-pages containing needed

attributes and records is a prerequisite of data sharing among concurrent queries.

Page lookup inClotho

When looking for a page, a traditional database buffer pool manager searches for the correspond-

ing page id in the hash table to determine whether the page is in memory. To support page lookup

among query-specific C-pages inClotho, the hash table ofClothocontains the page ids of all par-

tial A-pages currently in the buffer pool, augmented by the page schemas of the corresponding

C-pages that contain these partial A-pages. When looking for apage in the hash table,Clotho

still uses a key generated based on the page id, but a hit now has to meet two conditions: first,

the page id matches one A-page page id; second, the schema associated with the partial A-page

subsumes the query schema. Note that a query schema, not a page schema is used to decide

whether there is a match. This has the advantage that even when the page schema of a C-page

is not active any more, the pages fetched earlier using this schema can still be utilized by later

queries with a smaller attribute set.

Clothoadopts the traditional LRU algorithm to select a victim C-page when no free frames

are available. Since the victim C-page may contain multiple partial A-pages, we have to make

sure all the partial A-pages in that C-page are removed from the hash table. This is done by

looking up the hash table using the A-page ids and the schema of that C-page.

51



4.6.4 Data sharing inClotho

This section presents the ideas to enable data sharing inClotho. Like all buffer pool managers, the

Clothobuffer pool manager sets its performance goals for data sharing as follows: (a) maximize

sharing, ensuring high memory utilization rate, (b) minimize book-keeping cost to keep buffer

pool operations quick, and (c) maintain consistency in the presence of updates.

First, let us examine the options of data sharing in the presence of query-specific pages

through an example of two queries with overlapped attributesets. Assume that query Q1 asks

for attributesa1 anda2 of a tableT and query Q2 asks for attributesa2 anda3 of the same table.

Using a simple approach, the buffer pool manager could create two separate C-pages tailored

to each query. This approach ignores the sharing possibilities when these queries scan the table

concurrently and could have shared the data ofa2. To achieve a better memory utilization rate,

the buffer pool manager can instead keep track of minipages of a2 and share them between the

two queries. However, this approach incurs too much book-keeping overhead, and is inefficient

in practice. It is basically equivalent to the management ofDSM pages, but at a much smaller

granularity.

TheClothobuffer pool manager balances memory utilization rate and management complex-

ity. This is achieved by the collaboration between Schema Manager and the page lookup logic.

The role of Schema Manager is to make sure that a C-page in the buffer pool can be utilized

by as many queries as possible. In this sense, C-pages are moreworkload-specific than query-

specific for a single query. The page lookup logic is to assisteach query to find those C-pages,

as described above.

For each active table, Schema Manager keeps a list of page schemas for C-pages that belong

to the table and areactive, meaning they are used to fetch data from disks.

Whenever a query starts executing, for each relation referenced by the query, Schema Man-

ager notes the query schema and inspects the other, already active, page schemas. If the new

query schema accesses a disjoint set of attributes from the other active queries, Schema Manager

adds the new page schema to the list and uses it to fetch new C-pages. Otherwise, it merges the

new schema with the most-efficient overlapping one already in memory. The algorithm in Fig-

ure 4.6 modifies the page schema list (psch), which is initially empty, based on the query schema

(q sch). Once the query is complete, the system removes the corresponding query schema from

the list and adjusts the page schema list accordingly using the currently active query schemas.

During query execution the page schema list dynamically adapts to changing workloads de-

pending on the concurrency degree and the overlaps among attribute sets accessed by queries.

This list ensures that queries having common attributes canshare data in the buffer pool while

queries with disjoint attributes will not affect each other. In the above example, Q1 first comes

52



if read-only querythen
if ∃p sch ⊇ q sch then

Do nothing
else ifq sch ∩ allp sch = ∅ then

Add q sch to the schema list
else

New p sch =∪(q sch, {p sch | p sch ∩ q sch 6= ∅})
Add the new psch to the list

end if
else if it is a write query (update/delete/insert)then

Use full schema as the qsch
Modify the list: only one full psch now

end if

Figure 4.6: Buffer pool manager algorithm.

along, the buffer pool manager creates C-pages witha1 anda2. When Q2 arrives, the buffer

pool manager will create a C-page witha1, a2, anda3 for these two queries. After Q1 finishes,

C-pages with onlya2 anda3 will be created for Q2.

One characteristic of the schema updating algorithm is thatif a query with a large attribute

set comes after a query with a smaller attribute set, yet theyaccess the same set of records, the

existing C-pages with the smaller schema are of no use to the second query because there will

not be a buffer pool hit. In other words,Clotho does not fetch only the missing attributes and

rearrange the existing partial A-pages to create a new C-pagewith a larger attribute set. This

is opted out due to too much bookkeeping because the buffer pool manager has to keep track

of the progress for all queries that are processing this C-page. In addition, fetching only the

missed attributes and rearrange them in memory, in practice, does not bring substantially better

performance. In our design, the existing queries can keep working on the old copy while the

new query starts processing the new C-page with a enlarged page schema. Here, we are trading

memory space for simple and quick management. However, the queries processing the old copy

will start using the new C-page once they are done with the old C-page.

The memory utilization rate will decrease when the above scenario happens. In an unfavor-

able case, two or more queries with overlapping attribute sets ask for the same record set, but

the queries with larger attribute sets always come after thequeries with smaller attribute sets,

forcingClothoto fetch a new C-page with an enlarged schema every time a new query comes in.

The theoretical worst case would be a query sequence in whichthe next query asks for one more

attribute from the same A-page than the previous one. The length of the sequence can be as large

as the number of total attributes in a full A-page. Take a specific example, for a page size of 8 KB

53



and a block size of 512 Bytes, the maximum number of attributesin an A-page is 15 (one block

for each attribute and one block for the page header.) We callthe 15 attributesa1 a2, ... ,a15. As-

sume we have a sequence of 15 queries, Query 1 through Query 15, of which Query i comes after

Query (i-1). All of them access the same A-page with a page idP . Query 1 asks fora1; Query

2 asks fora1 anda2; so on and so forth. After Query 15 comes in, the buffer pool will have 15

C-pages, each containing a subset of A-pageP . The attributea1 is in all C-pages constructed for

the 15 queries, thus it has 15 copies; similarly,a2 has 14 copies, etc. If these C-pages will not be

used later, the memory utilization rate is as low as1/15. In a more general form, the theoretical

lowest memory utilization rate is1/(number of attributes in anA − page). Fortunately, the

chance of the worst case is very small, if not zero, in real applications. Because a small variation

in the assumptions, such as the arriving time of queries, thequery schemas, the query execution

time, and/or the attribute sizes, will completely change the picture and significantly boost the

memory utilization rate. We have never observed the worst case in our experiments except in a

carefully and deliberately-set experiment. The above is for the purpose of theoretical analysis.

We also employ the following idea to avoid unfavorable casesas much as possible. When

the number of partial A-pages that can be held by a C-page is less than 2,Clothowill use the full

schema to fetch the entire requested A-page. But Schema Manager does not update the schema

list. The benefits are twofold: first, space in C-pages is not left blank, thus wasted; second, this

C-page can be used by all queries. The extra cost to get the fullA-page is negligible.

Most of the time, database systems benefit from the flexible C-pages, as the evaluation in

Section 4.8 shows. The schema management algorithm will notmiss any favorable cases, which

are quite common in real applications. For instance, queries with disjoint attribute sets or disjoint

record sets or disjoint attribute sets and record sets can run on the C-pages tailored to their needs

without any duplicate data; queries with smaller attributesets and record sets that are contained

in exiting C-pages can readily make use of them. Even in the unfavorable cases, after the schema

list is updated with a full schema,Clotho acts like a traditional buffer pool manager with the

NSMor PAX layout.

4.6.5 Maintaining data consistency inClotho

With the algorithm in Figure 4.6, the buffer pool may containmultiple copies of the same mini-

page. To ensure data consistency when a transaction modifiesa C-page,Clothouses the mecha-

nisms described below to fetch the latest copy of the data to other queries.

As described in Section 4.6.3, a buffer pool hit requires that the requested page id matches one

of the A-page page ids, and the requested schema is a subset ofthe matched A-page’s schema.

In the case of write queries, i.e., insertions, deletions, and updates,Clothouses full-schema C-

54



pages. There are two reasons for the full-schema design: first, insertions and deletions need

full-record access and modify all respective minipages regardless; second, full-schema pages for

updates help keep buffer pool data consistent at little additional cost, as explained below.

When a write query is looking up an A-page, it invalidates all of the other buffered A-pages

with the same page id and partial schemas. Thus, after the write operation, there is only one A-

page containing the valid copy of the modified data and it has the full-schema. According to the

page lookup algorithm, queries asking for updated records in the modified A-page automatically

obtain the (only) correct dirty page from the buffer pool. Since the A-page with updated data has

a full schema, the updated page will serve all other queries asking for records in this page until it

is flushed to the disk.Clothodoes not affect locking policies because page data organization is

transparent to the lock manager. Since deletion of records always operates on full C-pages,CSM

can work with any existing deletion algorithms, such as “pseudo deletion” [41]. Another reason

for the full-schema design is that it is more efficient and easier to write out a whole A-page than

writing out several C-pages with partial A-pages. The procedures that collect, coalesce, and write

out dirty pages need no changes at all.

4.7 Implementation details

Clotho and Lachesisare implemented within the Shore database storage manager [13] while

Atroposis implemented as a separate software library. This sectiondescribes the implementation

of C-pages, scan operators, andAtropos. The implementation does not modify the layout of index

pages.

4.7.1 Creating and scanning C-pages

We implementedCSMas a new page layout in Shore, according to the format described in Sec-

tion 4.3.2. The only significant change in the internal Shorepage structure is that the page header

is aligned to occupy one block (512 B in our experiments). As described in Section 4.6, the orig-

inal buffer pool manager is augmented with schema management information to control and

reuse C-page contents. These modifications were minor and limited to the buffer pool module.

To access a set of records, a scan operator issues a request tothe buffer pool manager to return

a pointer to the the C-page with the (first of the) records requested. This pointer consists of the

first A-page id in the C-page plus the page schema id.

If there is no appropriate C-page in the buffer pool to serve the request, the buffer pool

manager allocates a new frame for the requested page. It thenfills the page header with schema

55



information that allows the storage manager to determine which data (i.e., minipages) is needed.

This decision depends on the number of attributes in the query payload and on their relative sizes.

Once the storage manager determines from the header information what minipages to request, it

constructs an I/O vector with memory locations for individual minipages and issues a batch of

I/O requests to fetch them. Upon completion of the individual I/Os, the requested blocks with

minipages are “scattered” to their appropriate locations.

We implemented two scan operators: S-scan is similar to a scan operator onNSMpages, with

the only difference that it only scans the attributes accessed by the query. (in the predicate and

in the payload).Clotho invokes S-scan to read tuples containing the attributes in the predicate

and those in the payload, reads the predicate attributes, and if the condition is true returns the

payload. The second scan operator, SI-scan, works similarly to an index scan. SI-scan first

fetches and evaluates only the attributes in the predicates, then makes a list of the qualifying

record ids, and finally retrieves the projected attribute values directly. Section 4.8.2 evaluates

these two operators. To implement the above changes, we wrote about 2000 lines of C++ code.

4.7.2 Storing variable-sized attributes

Our current implementation stores fixed-sized and variable-sized attributes in separate A-pages.

Fixed-sized attributes are stored in A-pages as described in Section 4.3.1. Each variable-sized

attribute is stored in a separate A-page whose format is similar to aDSM page. To fetch the

full record of a table with variable-sized attributes, the storage manager issues one (batch) I/O to

fetch the A-page containing all of the fixed-size attributesand an additional I/O for each variable-

sized attribute in the table. As future work, we plan to design storage of variable-sized attributes

in the same A-pages with fixed-sized attributes using attribute size estimations [4] and overflow

pages whenever needed.

4.7.3 Logical volume manager

The Atroposlogical volume manager prototype is implemented as a software library which is

linked with the client application, in this case Shore. In practice, the functions ofAtroposwould

be added to a traditional disk array logical volume manager.In our case, the software LVM

determines how I/O requests are broken into individual diskI/Os and issues them directly to the

attached SCSI disks using the/dev/sg Linux raw SCSI device.

Since real MEMStores do not exist yet, theAtroposMEMStore LVM implementation relies

on simulation. It uses an existing model of MEMS-based storage devices [61] integrated into

the DiskSim storage subsystem simulator [21]. The LVM process runs the I/O timings through

56



0

1

2

3

4

5

0 2 4 6 8 10 12 14 16

R
un

tim
e 

re
l. 

to
 N

S
M

Query payload [# of attributes]

NSM
DSM
PAX
CSM

(a) Atropos disk LVM.

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16

R
un

tim
e 

re
l. 

to
 N

S
M

Query payload [# of attributes]

NSM
DSM
PAX
CSM

(b) MEMStore.

0

10

20

30

40

50

60

70

80

0.0001 0.001 0.01 0.1 1 10 100

R
un

tim
e 

[s
ec

]

Selectivity [%]

S-scan
SI-scan

(c) Scan operators performance.

Figure 4.7: Microbenchmark performance for different layouts. The graphs show the total mi-
crobenchmark query run time relative toNSM. The performance of S-scan and SI-scan is shown
for CSM layout running onAtroposdisk array.

DiskSim and uses main memory for storing data.

Disks don’t always work the way you want them to. Both of these problems would be solved

by adding proper batching semantics to SCSI requests. The disk would only schedule batches of

requests once all of the requests in the batch have arrived.

The schedulers in the Cheetah (and maybe in the Atlas10kIII) can’t handle not-ascending

semi-sequential requests. The solution in our implementation is to only issue two requests to a

disk at any one time.

Semi-sequential batches will always incur one half of a rotation of initial latency because the

first request delivered always gets scheduled first. The solution here is to use a model of the disk

to predict which request should be delivered first based on rotational position after the seek.

Zero-latency access doesn’t give all of the benefits you would expect since the data must still

be delivered to the host in order.

The real solution to these problems would be to define proper batching semantics in SCSI.

There is provision to link requests together, which only says that unlinked requests will be de-

ferred until all of the linked requests have been received.

57



4.8 Evaluation

This section evaluates the benefits of decoupling in-memorydata layout from storage device

organization using ourFatesprototype. The evaluation is presented in two parts. The first part

uses representative microbenchmarks [67] to perform a sensitivity analysis by varying several

parameters such as the query payload (projectivity) and theselectivity in the predicate. The

second part of the section presents experimental results from running DSS and OLTP workloads,

demonstrating the efficiency ofFateswhen running these workloads with only one common

storage organization. The microbenchmarks include queries with sequential and random access,

point updates, and bulk insert operations and evaluate the performance of the worst- and best-

case scenarios.

4.8.1 Experimental setup

The experiments are conducted on a two-way 1.7 GHz Pentium 4 Xeon workstation running

Linux kernel v. 2.4.24 and RedHat 7.1 distribution. The machine for the disk array experiment

has 1024 MB memory and is equipped with two Adaptec Ultra160 Wide SCSI adapters, each

controlling two 36 GB Seagate Cheetah 36ES disks (ST336706LC). TheAtroposLVM exports

a single 35 GB logical volume created from the four disks in the experimental setup and maps it

to the blocks on the disks’ outermost zone.

An identical machine configuration is used for the MEMStore experiments; it has 2 GB of

memory, with half used as data store. The emulated MEMStore parameters are based on the G2

MEMStore [61] that includes 6400 probe tips that can simultaneously access 16 LBNs, each of

size 512 bytes; the total capacity is 3.46 GB.

All experiments compareCSMto theNSM, DSM, andPAX implementations in Shore.NSM

andPAX are implemented as described in [4], whereasDSM is implemented in a tight, space-

efficient form using the tuple-at-a-time reconstruction algorithm [53]. ForCSM, the Atropos

LVM uses its default configuration [60]. TheNSM, DSM, or PAXpage layouts don’t take advan-

tage of the semi-sequential access thatAtroposprovides. However, they still run over the logical

volume which is effectively a conventional striped logicalvolume with the stripe unit size equal

to individual disks’ track size to ensure efficient sequential access. Unless otherwise stated, the

buffer pool size in all experiments is set to 128 MB and page sizes forNSM, PAX andDSM are

8 KB. For CSM, both the A-page and C-page sizes are also set to 8 KB. The TPC-H queries

used in our experiments (Q1, Q6, Q12, Q14) do not reference variable-sized attributes. TPC-C

new-order transaction has one query asking for a variable-size attribute,C DATA, which is stored

separately as described in Section 4.7.2.

58



4.8.2 Microbenchmark performance

To establishFatesbaseline performance, we first run a range query of the formSELECT AVG(a1),

AVG(a2), ... FROM R WHERE Lo < a2 < Hi. R has 15 attributes of typeFLOAT,

and is populated with 8 million records (roughly 1 GB of data). All attribute values are uni-

formly distributed. We show the results of varying the query’s payload by increasing the number

of attributes in the select clause from one up to the entire record, and the selectivity by changing

the values ofLo andHi. We first run the query using sequential scan, and then using anon-

clustered index to simulate random access. The order of the attributes accessed does not affect

the performance results, becauseAtroposuses track-aligned extents [58] to fetch each attribute

for sequential scans.

Queries using sequential scan

Varying query payload. Figure 4.7 compares the performance of the microbenchmark query

with varying projectivity for the four data layouts.CSMuses the S-scan operator. The data are

shown for a query with 10% selectivity; using 100% selectivity exhibits the same trends.

Fatesshows the best performance at both low and high projectivities. At low projectivity,

CSMachieves comparable performance toDSM, which is the best page layout when accessing a

small fraction of the record. The slightly lower running time of DSM for the one attribute value

in Figure 4.7(a) is caused by a limitation of the Linux operating system that prevents us from

using DMA-supported scatter/gather I/O for large transfers1. As a result, it must read all data

into a contiguous memory region and do an extra memory copy to“scatter” data to their final

destinations.DSM does not experience this extra memory copy; its pages can be put verbatim

to the proper memory frames. LikeDSM, CSMeffectively pushes the project to the I/O level.

Attributes not involved in the query will not be fetched fromthe storage, saving I/O bandwidth,

memory space, and accelerating query execution.

With increasing projectivity,CSMperformance is better than or equal to the best case at the

other end of the spectrum, i.e.,NSMandPAX, when selecting the full record.DSM’s suboptimal

performance at high projectivities is due to the additionaljoins needed between the table frag-

ments spread out across the logical volume.Clotho, on the other hand, fetches the requested data

in lock-step from the disk and places it in memory usingCSM, maximizing spatial locality and

eliminating the need for a join.Clothoperforms a full-record scan over 3× faster when compared

to DSM. As shown in Figure 4.7(b), the MEMStore performance shows the same results.

1The size of an I/O vector for scatter/gather I/O in Linux is limited to 16 elements, while commercial UNIX-es
support up to 1024 elements.

59



0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

Query payload [# of attributes]

NSM
DSM
PAX
CSM

R
un

tim
e 

[m
se

c]

(a) Point queries.

Runtime
NSM 58 s
DSM 236 s
PAX 63 s
CSM 57 s

(b) Full scan.

Figure 4.8: Microbenchmark performance forAtroposLVM.

Comparison of S-scan and SI-scan.Figure 4.7(c) compares the performance of the above

query for the S-scan and SI-scan operators. We vary selectivity from 0.0001% to 20% and use

a payload of four attributes (the trend continues for higherselectivities). As expected, SI-scan

exhibits better performance at low selectivities, whereasS-scan wins as the selectivity increases.

The performance gain comes from the fact that only pages containing qualified records are pro-

cessed. The performance deterioration of SI-scan with increasing selectivity is due to two factors.

First, SI-scan must process a higher number of pages than S-scan. At selectivity equal to 1.6%,

all pages will have qualifying records, because of uniform data distribution. Second, for each

qualifying record, SI-scan must first locate the page, then calculate the record address, while

S-scan uses a much simpler same-page record locater. The optimizer can use SI-scan or S-scan

depending on which one will perform best given the estimatedselectivity.

Point queries using random access

The worst-case scenario forClothodata placement schemes is random point tuple access (access

to a single record in the relation through a non-clustered index). As only a single record is ac-

cessed, sequential scan is never used; on the contrary, as the payload increasesCSMis penalized

more by the semi-sequential scan through the disk to obtain all the attributes in the record. Fig-

ure 4.8(a) shows that, when the payload is only a few attributes,CSMperforms closely toNSM

andPAX. As the payload increases theCSM performance becomes slightly worse, although it

deteriorates much less thatDSMperformance.

Updates

Bulk updates (i.e., updates to multiple records using sequential scan) exhibit similar performance

to queries using sequential scan, when varying either selectivity or payload. Similarly, point up-

dates (i.e., updates to a single record) exhibit comparableperformance across all data placement

60



0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Average # of attributes

#
 o

f 
I/
O

 r
e
q
s
. 
/ 
5
0
0
0
 t
u
p
le

s
 

(n
o
rm

a
liz

e
d
 t
o
 D

S
M

)

DSM NSM/PAX Clotho

Figure 4.9: Performance of buffer pool managers with different page layouts.This figure com-
pares the average I/O requests per 5000 tuples during the execution of a table-scan query with
different page layouts.

methods as point queries.Clothoupdates single records using full-schema C-pages, therefore its

performance is always 22% worse thanNSM, regardless of payload. To alleviate this behavior,

we are currently investigating efficient ways to use partial–record C-pages for updates as we do

for queries. As with point queries, the performance ofDSMdeteriorates much faster.

Full table scans and bulk inserts

When scanning the full table (full-record, 100% selectivity) or when populating tables through

bulk insertions,Clothoexhibits comparable performance toNSMandPAX, whereasDSM per-

formance is much worse, which corroborates previous results [4]. Figure 4.8(b) shows the total

running time when scanning tableR and accessing full records. The results are similar when do-

ing bulk inserts. Our optimized algorithm issues track-aligned I/O requests and uses aggressive

prefetching for all data placement methods. Because bulk loading is an I/O intensive operation,

space efficiency is the only factor that will affect the relative bulk-loading performance across

different layouts. The experiment is designed so that each layout is as space-efficient as possi-

ble (i.e., table occupies the minimum number of pages possible). CSM exhibits similar space

efficiency and the same performance asNSMandPAX.

4.8.3 Buffer pool performance

This section evaluates the performance of the buffer pool manager. The first experiment runs the

same microbenchmark described in Section 4.8.2 to compare the performance ofNSM, DSM,

andClotho. In this experiment, we generate and run a sequence of table-scan queries accessing

a random set of attributes with a pre-selected expected set size. The expected set size varies

from 1 to 15 which corresponds to queries referencing a single attribute to queries referencing

61



Buffer Pool Miss Rate

0%

20%

40%

60%

80%

100%

BP=128 BP=256 BP=384 BP=512 BP=640

Buffer pool size (MB)

F-page S-page D-page

Figure 4.10: Miss rates of different buffer pool managers.This figure shows the miss rates of
different buffer pool managers with various buffer pool sizes.

all attributes. We measure the average I/O requests issued per 5000 tuples, which is equivalent

to the average buffer pool miss rate. SinceDSM has the lowest miss rate due to only storing

relevant data, we normalize the results ofNSMandClothobased on the result ofDSM.

In Figure 4.9, the X axis is the average number of attributes referenced by the query sequence,

increasing from 1 to 15. The Y axis is the normalized results of the I/O requests per 5000 tuples,

therefore the lower the better. As we expected,DSMhas the fewest I/O requests when accessing

the same amount of tuples, especially when the attribute setsize is small. This is becauseDSM

only fetches and stores relevant data. By issuing one I/O request of the same size, the buffer pool

with DSM obtain more relevant data thanNSM andPAX. Clotho matches the performance of

DSMat the leftmost end and both outperformNSMandDSM. As the attribute set size increases,

it is more likely that two queries inClothohave overlapped schemas, which may result in fetching

duplicate data from disks. This is the reason for the increasing I/O request number. When the

attribute set size continues increasing, the number of I/O requests of all page layouts converge

since all fetch full pages from disks.

The second experiment compares the miss rates of the three methods mentioned in the Sec-

tion 4.6.2. For a better presentation, we denote the first buffer pool as ”F-page” indicating that

full pages will always be used. We call the second one as ”S-page” meaning that query- specific

pages are used for each query except update queries where full pages will be fetched. The third

one is referred to as ”D-page” because it dynamically changes page schemas in the buffer pool

when queries come and go.

We run TPC-H 1 GB queries using different buffer pool managerswith various buffer pool

sizes. Figure 4.10 shows that when buffer pool size is smaller than the working set, all of the

three buffer pool managers behave similarly. But with the increase of the buffer pool size, D-page

62



Atropos disk array MEMS device

TPC-H Benchmark 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Q1 Q6 Q12 Q14 Q1 Q6 Q12 Q14
Query #

R
un

tim
e 

re
la

tiv
e 

to
 N

S
M

NSM DSM PAX CSM

Figure 4.11: TPC-H performance for different layouts.The performance is shown relative to
NSM.

outperforms the other two due to the fact that it balances the“commonality” and “uniqueness”

of queries in a dynamic way. The buffer pool with the ”D-page”algorithm uses the precious

resource of main memory more efficiently by fetching only necessary information as much as

possible.

4.8.4 DSS workload performance

To quantify the benefits of decoupled layout for database workloads, we run the TPC-H decision

support benchmark on our Shore prototype. The TPC-H dataset is 1 GB and the buffer pool size

is 128 MB.

Figure 4.11 shows execution times relative toNSM for four representative TPC-H queries

(two sequential scans and two joins). The leftmost group of bars represents TPC-H execution on

Atropos, whereas the rightmost group represents queries run on a simulated MEMStore.NSM

andPAX perform the worst by a factor of 1.24× – 2.0× (except forDSM in Q1) because they

must access all attributes. The performance ofDSM is better for all queries except Q1 because of

the benchmark’s projectivity.CSMperforms best because it benefits from projectivity and avoids

the cost of the joins thatDSM must do to reconstruct records. Again, results on MEMStore

exhibit the same trends.

4.8.5 OLTP workload performance

The queries in a typical OLTP workload access a small number of records spread across the

entire database. In addition, OLTP applications have several insert and delete statements as well

as point updates. WithNSMor PAXpage layouts, the entire record can be retrieved by a single-

page random I/O, because these layouts map a single page to consecutive LBNs.Clothospreads

63



Layout NSM DSM PAX CSM
TpmC 1115 141 1113 1051

Table 4.2: TPC-C benchmark results withAtroposdisk array LVM.

a single A-page across non-consecutive LBNs of the logical volume, enabling efficient sequential

access when scanning a single attribute across multiple records and less efficient semi-sequential

scan when accessing full records.

The TPC-C benchmark approximates an OLTP workload on our Shore prototype with all

four data layouts using 8 KB page size. TPC-C is configured with10 warehouses, 100 users, no

think time, and 60 s warm-up time. The buffer pool size if 128 MB, so it only caches 10% of

the database. The completed transactions per minute (TpmC) throughput is repeatedly measured

over a period of 120 s.

Table 4.2 shows the results of running the TPC-C benchmark. Asexpected,NSMandPAX

have comparable performance, whileDSM yields much lower throughput. Despite the less ef-

ficient semi-sequential access,CSMachieves only 6% lower throughput thanNSMandPAX by

taking advantage of the decoupled layouts to construct C-pages that are shared by the queries

accessing only partial records. On the other hand, the frequent point updates penalizeCSM’s

performance: the semi-sequential access to retrieve full records. This penalty is in part compen-

sated by the buffer pool manager’s ability to create and share pages containing only the needed

data.

4.8.6 Compound OLTP/DSS workload

Benchmarks involving compound workloads are important in order to measure the impact on

performance when different queries access the same logicalvolume concurrently. WithFates, the

performance degradation may be potentially worse than withother page layouts. The originally

efficient semi-sequential access to disjoint LBNs (i.e., forOLTP queries) could be disrupted by

competing I/Os from the other workload creating inefficientaccess. This does not occur for other

layouts that map the entire page to consecutive LBNs that can be fetched in one media access.

We simulate a compound workload with a single-user DSS (TPC-H) workload running con-

currently with a multi-user OLTP workload (TPC-C) against ourAtroposdisk LVM and measure

the differences in performance relative to the isolated workloads. The respective TPC workloads

are configured as described earlier. In previous work [59], we demonstrated the effectiveness of

track-aligned disk accesses on compound workloads; here, we compare all of the page layouts

using these efficient I/Os to achieve comparable results forTPC-H.

As shown in Figure 4.12, undue performance degradation doesnot occur: CSM exhibits

64



TPC-H query TPC-C 

DSS and OLTP Compound Workload

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

NSM DSM PAX CSM NSM DSM PAX CSM
S

lo
w

do
w

n 
re

la
tiv

e 
to

 s
ta

nd
-a

lo
ne

 w
or

kl
oa

d Stand-alone Compound

Figure 4.12: Compound workload performance for different layouts.This figure shows the slow-
down off TPC-H query 1 running time when it runs with TPC-C benchmark relative to the case
when it runs in isolation and the impact on TPC-C performance.

the same or lesser relative performance degradation than the other three layouts. The figure

shows indicative performance results for TPC-H query 1 (others exhibit similar behavior) and

for TPC-C, relative to the base case when OLTP and DSS queries run separately. The larger

performance impact of compound workloads on DSS withDSM shows that small random I/O

traffic aggravates the impact of seeks necessary to reconstruct aDSMpage. ComparingCSMand

PAX, the 1% lesser impact ofPAXon TPC-H query is offset by 2% bigger impact on the TPC-C

benchmark performance.

4.8.7 Space utilization

Since theCSMA-page partitions attributes into minipages whose minimalsize is equal to the size

of a single LBN,CSM is more susceptible to the negative effects of internal fragmentation than

NSMor PAX. Consequently, a significant amount of space may potentiallybe wasted, resulting in

diminished access efficiency. WithPAX, minipage boundaries can be aligned on word boundaries

(i.e., 32 or 64 bits) to easily accommodate schemas with highvariance in attribute sizes. In that

case,Clothomay use large A-page sizes to accommodate all the attributeswithout undue loss in

access efficiency due to internal fragmentation.

To measure the space efficiency of theCSMA-page, we compare the space efficiency ofNSM

andCSM layouts for the TPC-C and TPC-H schemas.NSMexhibits the best possible efficiency

among all four page layouts. Figure 4.13 shows the space efficiency ofCSMrelative toNSMfor

all tables of TPC-C and TPC-H as a function of total page size. Space efficiency is defined as

the ratio between the maximum number of records that can be packed into aCSMpage and the

number of records that fit into anNSMpage.

A 16 KB A-page suffices to achieve over 90% space utilization for all but the customer and

65



0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

page size [KB]

Space Efficiency of TPC-C

customer

district

history

item
new_order

order_line

orders

stock

warehouse

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

page size [KB]

Space Efficiency of TPC-H

customer

lineitem

nation

orders

part

partsupp

region

supplier

Figure 4.13: Space efficiencies withCSMpage layout.

stock tables of the TPC-C benchmark. A 32 KB A-page size achieves over 90% space efficiency

for the remaining two tables. Both customer and stock tables include an attribute that is much

larger than all other attributes. The customer table includes a 500 byte longC DATA attribute

containing “miscellaneous information”, while the next largest attribute has a size of 20 bytes.

The stock table includes a 50 byteS DATA attribute, while the next largest attribute is 24 bytes.

Both of these attributes are rarely used in the TPC-C benchmark.

4.9 Chapter summary

Page layouts for relational tables are among the most fundamental data structures in database

systems. How relational tables are organized in memory and on disks affects all aspects of

data processing. Due to preferences for simplicity, in-memory page layouts have been chosen

to be the same as on-disk page layouts. While this design choice greatly reduces the design

and implementation complexity, it imposes inflexibility onpage layout designs in a dynamic

environment, which results in performance trade-offs for different workloads. Applications have

to select one layout a priori that is optimized for predictedprevalent workload characteristics.

The reality in database workloads is that the two most commonworkloads, OLTP and DSS, have

exactly conflict preferences for page layouts, namelyNSMandDSM. Therefore, one page layout

optimized for one type of workloads penalizes severely the performance of the other type of

workloads. For example, OLTP workloads can run 20 times faster onNSMthan onDSM, while

DSS workloads can run 5–6 times faster onDSM than onNSMin our prototype evaluation. This

long-standing performance trade-off has been bothering researchers for years.

Fates’s contribution is eliminating this trade-off by decoupling in-memory page layout from

66



on-disk data organization. The rationale ofFatesis that page layouts at different levels of the

storage hierarchy should be designed such that they can exploit distinct features of different

storage hardware.Fatesfetches only relevant data and dynamically assembles query-specific in-

memory pages for running queries. The design ofFateshas its own trade-off between flexibility

and implementation simplicity. On the spectrum of flexibility and simplicity, existing approaches

using static and uniform page layouts can be viewed at one endwith the maximum simplicity

whereas approaches using fully dynamic pages in memory are at the other end with the maximum

flexibility. Fatesmakes the following design choices to stay balanced on the spectrum. First,

Fatesuses the same page size for both in-memory and on-disk pages;second, only read-only

queries are considered using query-specific pages; third,Fatesallows duplicate data in memory

and guarantees data integrity by the algorithm in Figure 4.6.

Another contribution ofFatesis its modularized architecture.Fatesconsists of three inde-

pendent but closely interacting components,Clotho, Lachesis, andAtropos. Each component

has well-designed interfaces that hide details from other modules while providing necessary in-

formation to enhance inter-module interaction.Fatesgreatly improves the interaction between

workloads and hardware by passing down the query payloads information to the buffer pool

manager and exposing the semi-sequential access paths on modern disks to the storage manager.

Experiments with ourFatesimplementation show that it achieves the best case performance

of bothNSMandDSM on OLTP and DSS workloads respectively:FatesoutperformsDSM on

TPC-C by a factor of10× and outperformsNSM on TPC-H by a factor of1.24×–2.0×. In

addition, for non-best case workloads,Fatesprevails by as much as 2 times and 8 times for a real

disk array and future MEMS-based storage devices.

Last but not least,Fates’s achievement can be summarized from another interesting angle

which inspires the following work ofMultiMap. The disk layout of A-pages, the on-diskCSM

pages, proposes an elegant way to store two-dimensional data structures on disks so that accesses

along both dimensions are efficient, namely sequential access and semi-sequential access. A

natural following-up question is that can we expand the layout to multidimensional structures.

We address this question in the next Chapter.

67



68



Chapter 5

MultiMap: Preserving disk locality for

multidimensional datasets

Build a multidimensional disk.

This chapter introduces,MultiMap, an algorithm for mapping multidimensional datasets so

as to preserve the data’s spatial locality on disks. Withoutrevealing disk-specific details to ap-

plications, MultiMap exploits modern disk characteristics to provide full streaming bandwidth

for one (primary) dimension and maximally efficient non-sequential access (i.e., minimal seek

and no rotational latency) for the other dimensions. This isin contrast to existing approaches,

which either severely penalize non-primary dimensions or fail to provide full streaming band-

width for any dimension. Experimental evaluation of a prototype implementation demonstrates

MultiMap’s superior performance for range and beam queries. On average, MultiMap reduces

total I/O time by over 50% when compared to traditional linearized layouts and by over 30%

when compared to space-filling curve approaches such as Z-ordering and Hilbert curves. For

scans of the primary dimension, MultiMap and traditional linearized layouts provide almost two

orders of magnitude higher throughput than space-filling curve approaches.

5.1 Introduction

Applications accessing multidimensional datasets are increasingly common in modern database

systems. The basic relational model used by conventional database systems organizes infor-

mation with tables or relations, which are 2-D structures. Spatial databases directly manage

multidimensional data for applications such as geographicinformation systems, medical image

databases, multimedia databases, etc. An increasing number of applications that process multi-

dimensional data run on spatial databases, such as scientific computing applications (e.g., earth-

69



quake simulation and oil/gas exploration) and business support systems using online analytical

processing (OLAP) techniques.

Existing mapping algorithms based on the simple linear abstraction of storage devices of-

fered by standard interfaces such as SCSI are insufficient forworkloads that access out-of-core

multidimensional datasets. To illustrate the problem, consider mapping a relational database ta-

ble onto the linear address space of a single disk drive or a logical volume consisting of multiple

disks. A naive approach requires making a choice between storing the table in row-major or

column-major order, trading off access performance along the two dimensions. While access-

ing the table in the primary order is efficient, with requeststo sequential disk blocks, access in

the other order is inefficient: accesses at regular strides incur short seeks and variable rotational

latencies, resulting in near-random-access performance.Similarly, range queries are inefficient

if they extend beyond a single dimension. The problem is moreserious for higher dimensional

datasets: sequentiality can only be preserved for a single dimension and all other dimensions will

be, essentially, scattered across the disk.

The shortcomings of non-sequential disk drive accesses have motivated a healthy body of

research on mapping algorithms using space-filling curves,such as Z-ordering [47], Hilbert

curves [32], and Gray-coded curves [23]. These approaches traverse the multidimensional dataset

and impose a total order on the dataset when storing data on disks. They can help preserve local-

ity for multidimensional datasets, but they do not allow accesses along any one dimension to take

advantage of streaming bandwidth, the best performance a disk drive can deliver. This is a high

price to pay, since the performance difference between streaming bandwidth and non-sequential

accesses is at least two orders of magnitude.

Recent work [62] describes a new generalized model of disks, called adjacency model, for

exposing multiple efficient access paths to fetch non-contiguous disk blocks. With this new

model, it becomes feasible to create data mapping algorithms that map multiple data dimensions

to physical disk access paths so as to optimize access to morethan one dimension.

This chapter describesMultiMap, a data mapping algorithm that preserves spatial locality of

multidimensional datasets by taking advantage of the adjacency model.MultiMap maps neigh-

boring blocks in the dataset into specific disk blocks on nearby tracks, calledadjacent blocks,

such that they can be accessed for equal positioning costandwithout any rotational latency. We

describe a general algorithm forMultiMap and evaluateMultiMap on a prototype implementa-

tion that uses a logical volume of real disk drives with 3-D and 4-D datasets. The results show

that, on average,MultiMap reduces total I/O time by over 50% when compared to the naive

mapping and by over 30% when compared to space-filling curve approaches.

The remainder of the chapter is organized as follows. Section 5.2 describes related work.

70



Section 5.3 introducesMultiMap in detail. Section 5.4 provides a analytical cost model for the

NaiveandMultiMap mapping algorithms. Section 5.5 evaluates the performanceof MultiMap.

Section 5.6 summarizes the work ofMultiMap.

5.2 Related work

Organizing multidimensional data for efficient access has become increasingly important in both

scientific computing and business support systems, where dataset sizes are terabytes or more.

Queries on these datasets involve data accesses on different dimensions with various access pat-

terns [29, 72, 82]. Data storage and management for massive multidimensional data have two

primary tasks: data indexing, whose goal is to quicklylocate the needed data, and data place-

ment, which arranges data on storage devices so thatretrievingthem is fast. There is a large body

of previous work on the two closely related but separate topics as they apply to multidimensional

datasets. Our work focuses on data placement which happens after indexing.

Under the assumption that disks are one-dimensional devices, various data placement meth-

ods have been proposed in the literature, such as theNaivemapping, described in the previous

section, and spacing-filling curve mappings utilizing Z-ordering [47], Hilbert [32], or Gray-

coded curve [23]. The goal is to order multidimensional datasuch that spatial locality can be

preserved as much as possible within the 1-D disk abstraction. With the premise that nearby ob-

jects in the multidimensional space are also physically close on disk, they assume that fetching

them will not incur inefficient random-like accesses. The property of preserving spatial locality

is often calledclustering[42].

Optimizations on naive mappings [57] such as dividing the original space into multidimen-

sional tiles based on predicted access patterns and storingmultiple copies along different dimen-

sions improve performance for pre-determined workloads. However, the performance deterio-

rates dramatically for workloads with variable access patterns, the same problem asNaive.

Recently, researchers have focused on the lower level of the storage system in an attempt

to improve performance of multidimensional queries. Part of that work proposes to expand the

storage interfaces so that the applications can optimize data placement. Gorbatenko et al. [25]

and Schindler et al. [60] proposed a secondary dimension on disks which has been utilized to

store 2-D database tables. Multidimensional clustering inDB2 [48] consciously matches the

application needs to the disk characteristics to improve the performance of OLAP applications.

Others have studied the opportunities of building two dimensional structures to support database

applications with new alternative storage devices, such asMEMS-based storage devices [63, 81].

Another body of related research focuses on how todeclustermultidimensional datasets

71



across multiple disks [1, 7, 10, 24, 50, 51] to optimize spatial access methods [33, 65] and

improve throughput.

5.3 Mapping multidimensional data

To map an N-dimensional (N -D) dataset onto disks, we first impose anN -D grid onto the dataset.

Each discrete cell in the grid is assigned to anN -D coordinate and mapped to one or more disk

blocks. A cell can be thought of as a page or a unit of memory allocation and data transfer,

containing one or more points in the original geometric space. For clarity of explanation, we

assume that a single cell occupies a single LBN (logical blocknumber) on the disk, whose size

is typically 512 bytes. In practice, a single cell can occupymultiple LBNs without any impact

on the applicability of our approach.

MultiMap exploits the new adjacency model to map multidimensional datasets to disks. The

terminologies of the adjacency model and a brief explanation of them can be found in Chapter 2.

5.3.1 Examples

For simplicity, we first illustrateMultiMap through three concrete examples for 2-D, 3-D, and

4-D uniform datasets. The general algorithm for non-uniform datasets are discussed in later

sections.

Notation Definition
T disk track length (varies by disk zone)
D number of blocks adjacent to each LBN
N dimensions of the dataset
Dimi notations of theN dimensions
Si length ofDimi

Ki length ofDimi in the basic cube
σ time to access next sequential block
α time to access any adjacent block

Table 5.1: Notation definitions. ForDim, S, andK, 0 ≤ i ≤ N − 1.

The notations used in the examples and later discussions arelisted in Table 5.1. In the fol-

lowing examples, we assume that the track length is 5 (T = 5), each block has 9 adjacent blocks

(D = 9), and the disk blocks start from LBN 0.

Example of 2-D mapping.Figure 5.1 shows howMultiMap maps a (5× 3) 2-D rectangle to

a disk. The numbers in each cell are its coordinate in the formof (x0, x1) and the LBN to which

72



Track0

Track1

Track2

(0,0)

0

(1,0)

1

(2,0)

2

(3,0)

3

(4,0)

4

(0,1)

5

(1,1)

6

(2,1)

7

(3,1)

8

(4,1)

9

(0,2)

10

(1,2)

11

(2,2)

12

(3,2)

13

(4,2)

14

Dim0

Dim1

S0 = T = 5

S
1

=
 3

Dim1 mapped to sequences 

of 1st adjacent blocks

Dim0 mapped to tracks 

Figure 5.1: Mapping 2-D dataset

Dim0

Dim2

Dim1

S 1
= 

3

S0 = T = 5

S
2

=
 3

(4,1,0)

9
(0,0,0)

0

(1,0,0)

1

(2,0,0)

2

(3,0,0)

3

(4,0,0)

4

(0,1,0)

5

(1,1,0)

6

(2,1,0)

7

(3,1,0)

8

(0,2,0)

10

Track0

Track1

Track2

(4,1,0)

9
(0,0,0)

0

(1,0,0)

1

(2,0,0)

2

(3,0,0)

3

(4,0,0)

4

(0,1,0)

5

(1,1,0)

6

(2,1,0)

7

(3,1,0)

8

(0,2,0)

10

Track0

Track1

Track2

(0,0,1)

15

(1,0,1)

16

(2,0,1)

17

(3,0,1)

18

(4,0,1)

19

(0,1,1)

20

(0,2,1)

25

Track3

Track4

Track5

(0,0,1)

15

(1,0,1)

16

(2,0,1)

17

(3,0,1)

18

(4,0,1)

19

(0,1,1)

20

(0,2,1)

25

Track3

Track4

Track5

(0,0,2)

30

(1,0,2)

31

(2,0,2)

32

(3,0,2)

33

(4,0,2)

34

(0,1,2)

35

(0,2,2)

40

Track6

Track7

Track8

(0,0,2)

30

(1,0,2)

31

(2,0,2)

32

(3,0,2)

33

(4,0,2)

34

(0,1,2)

35

(0,2,2)

40

Track6

Track7

Track8

D
im

2
m

a
p
p
e
d
 t

o
 s

e
q
u
e

n
c
e
s
 

o
f 

3
rd

 a
d
ja

c
e
n
t 

b
lo

c
k
s

Figure 5.2: Mapping 3-D dataset.

the cell is mapped. Cells along the first dimension (i.e.,Dim0, or the row direction), are mapped

sequentially to consecutive LBNs on the same track. For example, the five cells on the bottom

row are mapped to LBN 0 through LBN 4 on the same track.

Cells along the second dimension (Dim1, or the column direction) are mapped to successive

first adjacent blocks. Suppose LBN 5 is the first adjacent blockof LBN 0 and LBN 10 is the

first adjacent block of LBN 5, then the cells of(0, 1) and(0, 2) are mapped to LBN 5 and 10,

as shown in Figure 5.1. In this way, spatial locality is preserved for both dimensions: fetching

cells onDim0 achieves sequential access and retrieving cells onDim1 achieves semi-sequential

access, which is far more efficient than random access. Notice that once the mapping of the

left-most cell(0, 0) is determined, mappings of all other cells can be calculated. The mapping

occupiesS1 = 3 contiguous tracks.

Example of 3-D mapping.In this example, we use a 3-D dataset of the size (5× 3× 3). The

mapping is iterative, starting with mapping 2-D layers. As shown in Figure 5.2, the lowest 2-D

layer is mapped in the same way described above with the cell(0, 0, 0) stored in LBN 0. Then,

we use the third adjacent block of LBN 0, which is LBN 15, to storethe cell(0, 0, 1). After that,

73



Dim0

Dim2

S 1
= 

3

S0 = T = 5

S
2

=
 3

(0,0,0,0)

0

(1,0,0,0)

1

(2,0,0,0)

2

(3,0,0,0)

3

(4,0,0,0)

4

(0,0,0,0)

0

(1,0,0,0)

1

(2,0,0,0)

2

(3,0,0,0)

3

(4,0,0,0)

4

(0,0,1,0)

15

(0,0,1,0)

15

(0,0,2,0)

30

(0,1,2,0)

35

(0,2,2,0)

40

(0,0,2,0)

30

(0,1,2,0)

35

(0,2,2,0)

40

(0,0,0,1)

45

(0,0,0,1)

45

(0,0,1,1)

60

(0,0,1,1)

60

(0,0,2,1)

75

(0,1,2,1)

80

(0,2,2,1)

85

(0,0,2,1)

75

(0,1,2,1)

80

(0,2,2,1)

85

Dim3

S
3

=
 2

D
im

3
m

a
p
p
e
d
 t

o
 s

e
q
u
e

n
c
e
s
 

o
f 

9
th

 a
d
ja

c
e

n
t 

b
lo

c
k
s

Dim0

Dim2

Dim1

Figure 5.3: Mapping 4-D dataset.

the second 2-D layer can be mapped in the similar way as the 2-Dexample. Continuing this

procedure, we map the cell(0, 0, 2) to the third adjacent block of LBN 15 (LBN 30) and finish

the mapping of all cells on the last layer after that.

SinceD = 9, access alongDim2 also achieves semi-sequential bandwidth by fetching suc-

cessive adjacent blocks. Therefore, the spatial locality of Dim2 is also preserved (the locality of

Dim0 andDim1 are guaranteed by the 2-D mapping). Note that the width of each layer (S1) is

restricted by the value ofD to guarantee efficient access alongDim2 as well. We will discuss

the case whereS1 > D in the general mapping algorithm. The resulting 3-D mappingoccupies

(S1 × S2 = 3 × 3 = 9) contiguous tracks.

Example of 4-D mapping. The 4-D example, shown in Figure 5.3, maps a dataset of the

size (5 × 3 × 3 × 2) (S0 = T = 5, S1 = 3, S2 = 3, S3 = 2). Iteratively, we start by mapping the

first 3-D cube in the 4-D space using the same approach described in the 3-D example. Then, we

use the ninth adjacent block of LBN 0 (LBN 45) to store the cell(0, 0, 0, 1). Once the mapping

of (0, 0, 0, 1) is determined, the second 3-D cube can be mapped using the same 3-D mapping

approach and so on.

As described, access alongDim3 also achieves semi-sequential bandwidth, as long asS1 and

S2 satisfy the restriction:(S1 × S2) ≤ D.

5.3.2 TheMultiMap algorithm

As illustrated in the previous section, mapping an N-D spaceis an iterative extension of the

problem of mapping (N − 1)-D spaces. In addition, the size of the dataset one can map todisks

while preserving its locality is restricted by disk parameters. We define abasic cubeas the largest

data cube that can be mapped without losing spatial locality. Ki, the length ofDimi in the basic

cube, must satisfy the following requirements:

74



L := MAP(x[0], x[1], . . . , x[N − 1]) :

lbn := (start lbn + x[0]) mod T + ⌊start lbn/T ⌋ ∗ T
step := 1
i := 1
repeat

for j = 0 to x[i] − 1 do
lbn := GETADJACENT(lbn, step)

end for
step := step ∗ K[i]
i := i + 1

until (i >= N)
RETURN(lbn)

K[i] = Ki

start lbn = 1st LBN of basic cube (storing cell(0, . . . , 0))
GETADJACENT: getstep-th adjacent block oflbn

Figure 5.4: Mapping a cell in space to an LBN.

K0 ≤ T (5.1)

KN−1 ≤
⌊

Number of tracks in a zone
∏N−2

i=1 Ki

⌋

(5.2)

N−2
∏

i=1

Ki ≤ D (5.3)

Equation 5.1 restricts the length of the first dimension of the basic cube to the track length.

Note that track length is not a constant value due to zoning ondisks, but is found through

GETTRACKBOUNDARIES. Equation 5.2 indicates that the last dimension of the basiccube is subject

to the total number of tracks in each zone, and zones with the same track length are considered a

single zone. Equation 5.3 sets a limit on the lengths ofK1 to KN−2. The volume of the(N − 2)-

D space,
∏N−2

i=1 Ki, must be less thanD. Otherwise, the locality of the last dimension cannot

be preserved because accessing the consecutive cells alongthe last dimension cannot be done

within the settle time.

The basic cube is mapped as follows:Dim0 is mapped along each track;Dim1 is mapped

to the sequence of successive first adjacent blocks; . . . ;Dimi+1(1 ≤ i ≤ N − 2) is mapped to a

sequence of successive(
∏i

i=1 Ki)-th adjacent blocks.

TheMultiMap algorithm, shown in Figure 5.4, generalizes the above procedure. The inputs

of MAP are the coordinate of a cell in the basic cube, and the output is theLBN to store that

cell. MAP starts from the cell(0, 0, . . . , 0). Each inner iteration proceeds one step alongDimi,

75



which on a disk corresponds to a jump over(K1 × K2 · · · × Ki−1) adjacent blocks. Therefore,

each iteration of the outer loop goes from cell(x[0], . . . , x[i−1], 0, . . . , 0) to cell(x[0], . . . , x[i−
1], x[i], 0, . . . , 0).

Because of the zoning on disks, the track length decreases from the outer zones to the inner

zones. The parameter ofT in the algorithm refers to the track length within a single zone. User

applications can obtain the track length information from the proposedGETTRACKBOUNDARIES

call implemented either in the storage controller or in a device driver. A large dataset can be

mapped to basic cubes of different sizes in different zones.MultiMap does not map basic cubes

across zone boundaries.

MultiMap preserves spatial locality in data placement.Dim0 is mapped to the disk track so

that accesses along this dimension achieve the disk’s full sequential bandwidth. All the other di-

mensions are mapped to a sequence of adjacent blocks with different steps. Any two neighboring

cells on each dimension are mapped to adjacent blocks at mostD tracks away (see Equation 5.3).

So, requesting these (non-contiguous) blocks results in semi-sequential accesses.

5.3.3 Maximum number of dimensions supported by a disk

The number of dimensions that can be supported byMultiMap is bounded byD and the values of

Ki. But, a substantial number of dimensions can usually be supported. One can always map the

first dimension,Dim0, along disk tracks, and map the last dimension,DimN−1, along successive

last (D-th) adjacent blocks. The restN−2 dimensions must fit inD tracks (refer to Equation 5.3).

Consider basic cubes with equal length along all dimensions,K1 = · · · = KN−2 = K. Based on

Equation 5.3, we get:

N ≤ ⌊2 + logK D⌋ (K ≥ 2) (5.4)

Nmax = ⌊2 + log2 D⌋ (5.5)

For modern disks,D is typically on the order of hundreds, allowing mapping for more than 10

dimensions. For most physical simulations and OLAP applications, this is more than sufficient.

5.3.4 Mapping large datasets

The basic cube in Section 5.3.2 serves as an allocation unit when we map larger datasets to disks.

If the original space is larger than the basic cube, we partition it into basic cubes to get a new

76



N -D cube with a reduced size of
(⌈

S0

K0

⌉

, . . . ,

⌈

SN−1

KN−1

⌉)

Under the restrictions of the rules about the basic cube size, a system can choose the best

basic cube size based on the dimensions of its datasets. Basically, the larger the basic cube

size, the better the performance because the spatial locality of more cells can be preserved. The

least flexible size isK0, because the track length is not a tunable parameter. If the length of the

dataset’s, and hence basic cube’s,S0 (alsoK0) is less thanT , we simply pack as many basic

cubes next to each other along the track as possible. Naturally, if at all possible, it is desirable to

select a dimension whose length is at leastT and set it asDim0.

In the case whereS0 = K0 < T , MultiMap will waste (T mod K0) ∗
∏N−1

i=1 Ki blocks per

⌈T/K0⌉ basic cubes due to unmapped space at the end of each track. So,the percentage of the

wasted space is(T mod K0)/T . In the worst case, it can be 50%. Note this only happens to

datasets where all dimensions are much shorter thanT . If space is a big concern and datasets

do not favorMultiMap, a system can simply revert to linear mappings. In the case whereS0 >

K0 = T , MultiMap will only have unfilled basic cubes at the very end. Within a cell, MultiMap

uses the same format as other mapping algorithms, and therefore it has the same in-cell space

efficiency.

When using multiple disks,MultiMap can apply existing declustering strategies to distribute

the basic cubes of the original dataset across the disks comprising a logical volume just as tra-

ditional linear disk models decluster stripe units across multiple disks. The key difference lies

in how multidimensional data is organized on a single disk.MultiMap thus works nicely with

existing declustering methods and can enjoy the increase inthroughput brought by parallel I/O

operations. In the rest of our discussion, we focus on the performance ofMultiMap on a single

disk, with the understanding that multiple disks will scaleI/O throughput by adding disks. The

access latency for each disk, however, remains the same regardless of the number of disks.

5.3.5 Mapping non-grid structure datasets

MultiMap can be directly applied to datasets that are partitioned into regular grids, such as the

satellite observation data from NASA’s Earth Observation System and Data Information System

(EOSDIS) [44] and tomographic (e.g., the Visible Human Project for the National Library of

Medicine) or other volumetric datasets [22]. When the distribution of a dataset is skewed, a

grid-like structure applied on the entire dataset would result in poor space utilization. For such

datasets, one should detect uniform subareas in the datasetand applyMultiMap locally.

77



Since the performance improvements ofMultiMap stem from the spatial locality-preserving

mappingwithin a basic cube, non-grid datasets will still benefit fromMultiMap as long as there

exist subareas that can be modeled with grid-like structures and are large enough to fill a basic

cube. The problem of mapping skewed datasets thus reduces toidentifying such subareas and

mapping each of them into one or more basic cubes.

There are several existing algorithms that one can adopt to find those areas, such as density-

based clustering methods. In this paper, we use an approach that utilizes index structures to

locate the sub-ranges. We start at an area with a uniform distribution, such as a leaf node or

an interior node on an index tree. We grow the area by incorporating its neighbors of similar

density. The decision of expanding is based on the trade-offs between the space utilization and

any performance gains. We can opt for a less uniform area as long as the suboptimal space

utilization will not cancel the performance benefit broughtby MultiMap. As a last resort, if such

areas can not be found (e.g, the subarea dimensions do not fit the dimensions of the basic cubes),

one can revert to traditional linear mapping techniques.

We demonstrate the effectiveness of this method by mapping areal non-uniform dataset used

in earthquake simulations [78] that uses an octree as its index. Experimental results with this

dataset are shown in Section 5.5.

5.3.6 Supporting variable-size datasets

MultiMap is an ideal match for the static, large-scale datasets that are commonplace in science.

For example, physics or mechanical engineering applications produce their datasets through sim-

ulation. After a simulation ends, the output dataset is heavily queried for visualization or analysis

purposes, but never updated [46]. As another example, observation-based applications, such as

telescope or satellite imaging systems [29], generate large amounts of new data at regular inter-

vals and append the new data to the existing database in a bulk-load fashion. In such applications,

MultiMap can be used to allocate basic cubes to hold new points while preserving spatial locality.

For applications that need to perform online updates to multidimensional datasets,MultiMap

can handle updates just like existing linear mapping techniques. To accommodate future inser-

tions, it uses a tunable fill factor of each cell when the initial dataset is loaded. If there is free

space in the destination cell, new points will be stored there. Otherwise, an overflow page will

be created. Space reclaiming of underflow pages are triggered also by a tunable parameter and

done by dataset reorganization, which is an expensive operation for any mapping technique.

78



5.4 Analytical cost model

To further evaluate the effectiveness ofMultiMap, we developed an analytical model to estimate

the I/O cost for any query against a multidimensional dataset. The model calculates the expected

cost in terms of total I/O time for theNaiveand theMultiMap mappings given disk parameters,

the dimensions of the dataset and the size of the query. Our model does not predict the total cost

for the the space curve mapping. Although it is possible to estimate the number ofclusters, which

are groups of consecutive LBNs for a given query [42], no work has been done on investigating

the distribution of distances between clusters, which would be required for an accurate analytical

model. Such investigation, as well as the derivation of sucha model, is beyond the scope of this

work.

In the following discussion, we use the notations defined in Table 5.1 in Section 5.3.1. As

with traditional disk I/O cost models, we express the total I/O cost of a query as a sum of two

parts: the total positioning time overhead,Cpos, and the total data transfer time,Cxfer . The

positioning time overhead is the time needed to position thedisk heads to the correct locations

before data can be accessed. The transfer time is the time to read data from the media. The model

does not include the cost of transporting the data to the host. This constant overhead is the same

for both Naive andMultiMap mappings and depends on the interconnect speed and the number

of blocks returned, here referred to as the volume of the query.

Suppose we have a range query of the size(q0, q1, . . . , qn−1), whereqi is the size ofDimi, in

anN -dimensional cube of size(S0, S1, . . . , Sn−1). Cxfer is calculated by the volume of the query

multiplied by the transfer time per disk block,σ. Cpos is a function of the number of movements

of the disk heads, referred to asjumpsin the LBN sequence, and their corresponding distances.

The total I/O cost of a query is thus expressed as:

Ccost = Cpos + Cxfer

Ccost =

Njmp
∑

j=1

(Seek(dj) + lj) + σ Volumequery

whereNjmp is the number of jumps incurred during the query execution,dj is thedistancethe

disk heads move in thej-th jump, expressed as the number of tracks, andlj is the rotational

latency incurred during each jump after the disk heads finishseeking. The functionSeek(d)

determines the seek time for a given distanced from a pre-measured seek time profile.

Given the mapping of anN -dimensional cube for both the Naive and theMultiMapmappings,

the most efficient path to fetch all points is first throughDim0, thenDim1, etc. We definenon-

consecutive pointsfor Dimi as two adjacent points whose coordinates for all butDimi are the

79



same and that are mapped to non-contiguous LBNs. Therefore, ajump occurs when we fetch

these non-consecutive points and the distance of the jump can be calculated as the difference

of the LBNs storing these two non-consecutive points. We build the cost model based on the

above analysis. We assume that in addition to a seek, each jump incurs a constant rotational

latency equal to half a revolution,RotLat , which is the average rotational latency when accessing

a randomly chosen pair of LBNs. Finally, we assume some initial cost for positioning disk heads

prior to fetching the first block ofDim0 and denote this overheadCinit .

5.4.1 Analytical cost model for Naive mapping

The following equations calculate the query I/O cost for theNaive model.

Cxfer = σ
n−1
∏

i=0

qi (5.6)

Cpos = Cinit +
n−1
∑

i=1

[

(Seek(di) + RotLat) (qi − 1)
n−1
∏

j=i+1

qj

]

(5.7)

di =









∏i−1
j=0 Sj − q0 + 1 − ∑i−1

j=1

(

(qj − 1)
∏j−1

k=0 Sk

)

T









(5.8)

Equation 5.6 calculates the total transfer time; the per-block transfer time,σ, is multiplied by

the query volume, which is the product of all cells returned by the query. Equation 5.7 calculates

the positioning overhead. The term(qi − 1)
∏n−1

j=i+1 qj calculates the number of jumps along

Dimi, wherei > 0. Equation 5.8 computes the distance of such jumps alongDimi. This

distance is the LBN difference of the two points(x0, . . . , xi−1, xi, xi+1, . . . , xn−1) and (x0 +

q0, . . . , xi−1 + qi−1, xi + 1, xi+1, . . . , xn−1) divided by the track length,T .

5.4.2 Analytical cost model forMultiMap mapping

The following equations calculate the query I/O cost for theMultiMap model.

80



Cxfer = σ
n−1
∏

i=0

qi (5.9)

Cpos = Cinit + (Seek(d0) + RotLat) Njmp(q0, K0, S0) +
n−1
∑

i=1

[

( α (qi − Njmp(qi, Ki, Si)) + (Seek(di) + RotLat)Njmp(qi, Ki, Si))
n−1
∏

j=i+1

qj

]

(5.10)

di =

⌈

∏n−1
i=0 Ki

T

⌉

i−1
∏

j=0

⌈

Sj

Kj

⌉

(5.11)

Njmp(qi, Ki, Si) =

(⌈

qi

Ki

⌉

− 1

)

LocS (qi, Ki, Si)

Si − qi + 1
+

⌈

qi

Ki

⌉ (

1 − LocS (qi, Ki, Si)

Si − qi + 1

)

(5.12)

LocS (qi, Ki, Si) = LocK (qi, Ki)

(⌊

Si

Ki

⌋

−
⌊

qi

Ki

⌋)

+

⌊

Si mod Ki

LocK (qi, Ki)

⌋

(5.13)

LocK (qi, Ki) = Ki − (qi mod (Ki + 1)) + 1 (5.14)

The transfer cost (Equation 5.9) is the same as the transfer cost of theNaivemodel. Equa-

tion 5.10 calculates the positioning cost and consists of three terms. The first term,Cinit , is

the initial positioning cost, the second term is the positioning cost when reading alongDim0,

and the third term is the positioning cost when reading alongDimi, wherei > 0. SinceMul-

tiMap partitions theN -dimensional cube into smaller basic cubes, the sequentialaccesses along

Dim0 are broken when moving from one basic cube to the next. Thus, the term(Seek(d0) +

RotLat)Njmp(q0, K0, S0) accounts for the overhead of seek and rotational latency multiplied by

the expected number of such jumps (determined by Equation 5.12).

The third term of Equation 5.10 is similar to the second term in Equation 5.7 for the Naive

model, but includes two additional expressions for calculating the cost alongDimi. The ex-

pressionα (qi − Njmp(qi, Ki, Si)) accounts for the cost of semi-sequential accesses to adja-

cent blocks when retrieving the points along thei-th dimension. The expression(Seek(di) +

RotLat)Njmp(qi, Ki, Si) accounts for the cost of jumps from one basic cube to the next.

Equation 5.11 calculates the distance of each jump onDimi. This distance depends on

the volume of each basic cube,
∏n−1

i=0 Ki, which determines the number of LBNs needed when

mapping one basic cube. The term
∏i−1

j=0

⌈

Sj

Kj

⌉

determines how many basic cubes are mapped be-

tween two basic cubes containing two successive points (x0, . . . , xi, . . . , xn−1) and (x0, . . . , xi +

Ki, . . . , xn−1).

Given query sizeqi, basic cube sizeKi, and original space sizeSi, Njump(qi, Ki, Si) (Equa-

tion 5.12) calculates the expected number of jumps across basic cubes along that dimension.

81



With query size ofqi, there areSi − qi + 1 possible starting locations in the original space.LocS

of the possible starting locations will cause
⌈

qi

Ki

⌉

− 1 jumps alongDimi while the remaining lo-

cations will cause one more jump. To calculate the expected number of jumps, we simply add the

probabilities for each possible type of starting locationsmultiplied by the number of such jumps.

The probability of the minimal number of jumps is the ratio ofLocS (qi, Ki, Si) andSi − qi + 1.

Therefore, the probability of
⌈

qi

Ki

⌉

jumps is1 − LocS (qi,Ki,Si)
Si−qi+1

.

To determineLocS (Equation 5.13), we first count the locations within a basic cube that will

cause the minimal number of jumps, denoted asLocK (Equation 5.14), and multiply it by the

total number of complete basic cubes that the possible starting locations can span, given by the

expression
⌊

Si

Ki

⌋

−
⌊

qi

Ki

⌋

. Finally, we add the number of locations causing the minimalnumber

of jumps in the last (possibly incompletely mapped) basic cube, which is
⌊

Si mod Ki

LocK (qi,Ki)

⌋

.

5.5 Evaluation

We evaluateMultiMap’s performance using a prototype implementation that runs queries against

multidimensional datasets stored on a logical volume comprised of real disks. The three datasets

used in our experiments are a synthetic uniform 3-D grid dataset, a real non-uniform 3-D earth-

quake simulation dataset with an octree index, and a 4-D OLAPdata cube derived from TPC-H.

For all experiments, we compareMultiMap to three linear mapping algorithms:Naive, Z-order,

andHilbert. Naive linearizes anN -D space alongDim0. Z-order andHilbert order theN -D

cells according to their curve values.

5.5.1 Experimental setup

We use a two-way 1.7 GHz Pentium 4 Xeon workstation running Linux kernel 2.4.24 with

1024 MB of main memory and one Adaptec Ultra160 SCSI adapter connecting two 36.7 GB

disks: a Seagate Cheetah 36ES and a Maxtor Atlas 10k III. Our prototype system consists of

a logical volume manager (LVM) and a database storage manager. The LVM exports a single

logical volume mapped across multiple disks and identifies adjacent blocks [62]. The database

storage manager maps multidimensional datasets by utilizing high-level functions expected by

the LVM.

The experiment datasets are stored on multiple disks.The LVM generates requests to all the

disks during our experiments, but we report performance results from a single disk. This ap-

proach keeps the focus on average I/O response times, which depend only on the characteristics

of a single disk drive. Using multiple drives improves the overall throughput of our experiments,

82



but does not affect the relative performance of the mappingswe are comparing.

We run two classes of queries in the experiments.Beam queriesare 1-D queries retrieving

data cells along lines parallel to the dimensions. Queries on the earthquake dataset examining

velocity changes for a specific point over a period of time areexamples of beam query in real

applications. Range queriesfetch anN -D equal-length cube with a selectivity ofp%. The

borders of range queries are generated randomly across the entire domain.

5.5.2 Implementation

Our implementation of theHilbert andZ-order mappings first orders points in theN -D space,

according to the corresponding space-filling curves. Thesepoints are then packed into cells with

a fill factor of 1 (100%). Cells are stored sequentially on disks with each occupying one or more

disk blocks, depending on the cell size. As we are only concerned with the cost of retrieving data

from the disks, we assume that some other method (e.g. an index) has already identified all data

cells to be fetched. We only measure the I/O time needed to transfer the desired data.

For Hilbert andZ-order mappings, the storage manager issues I/O requests for disk blocks

in the order that is optimal for each technique. After identifying the LBNs containing the de-

sired data, the storage manager sorts those requests in ascending LBN order to maximize disk

performance. While the disk’s internal scheduler should be able to perform this sorting itself (if

all of the requests are issued together), it is an easy optimization for the storage manager that

significantly improves performance in practice.

When executing beam queries,MultiMaputilizes sequential (Dim0) or semi-sequential (other

dimensions) accesses. The storage manager identifies thoseLBNs that contain the data and is-

sues them directly to the disk. No sorting is required. For instance, in Figure 5.1, if a beam query

asks for the first column (LBN 0, 5, and 10), the storage managergenerates an I/O request for

each block and issues them all at once. The disk’s internal scheduler will ensure that they are

fetched in the most efficient way, i.e., along the semi-sequential path.

When executing a range query usingMultiMap, the storage manager will favor sequential

access over semi-sequential access. Therefore, it will fetch blocks first alongDim0, thenDim1,

and so on. Looking at Figure 5.1 again, if the range query is for the first two columns of the

dataset (0, 1, 5, 6, 10, and 11), the storage manager will issue three sequential accesses along

Dim0 to fetch them. That is, three I/O requests for (0, 1), (5, 6), and (10, 11). Favoring sequential

over semi-sequential access for range queries provides better performance as sequential access is

still significantly faster than semi-sequential access. Inour implementation, each cell is mapped

to a single disk block of 512 Byte.

83



 0

 1

 2

 3

 4

 5

 6

Dim0 Dim1 Dim2

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Maxtor Atlas 10k III

 0

 1

 2

 3

 4

 5

 6

Dim0 Dim1 Dim2

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Seagate Cheetah 36ES

Naive
Z-order
Hilbert

MultiMap

(a) Beam queries.

 0

 1

 2

 3

 4

0.01
0.1

1 5 10 20 40 60 80 100

S
pe

ed
up

 r
el

at
iv

e 
to

 N
ai

ve

selectivity (%)

Maxtor Atlas 10k III

 0

 1

 2

 3

 4

0.01
0.1

1 5 10 20 40 60 80 100

S
pe

ed
up

 r
el

at
iv

e 
to

 N
ai

ve

selectivity (%)

Seagate Cheetah 36ES

Naive
Z-order
Hilbert

MultiMap

(b) Range queries.

Figure 5.5: Performance of queries on the synthetic 3-D dataset.

5.5.3 Synthetic 3-D dataset

For these experiments, we use a uniform synthetic dataset with 1024 × 1024 × 1024 cells. We

partition the space into chunks of at most259 × 259 × 259 cells that fit on a single disk and

map each chunk to a different disk of the logical volume. For both disks in our experiments,

MultiMap usesD = 128.

Beam queries.The results for beam queries alongDim0, Dim1, andDim2 are presented

in Figure 5.5(a). The graphs show the average I/O time per cell (disk block). The values are

averages over 15 runs, and the standard deviation is less than 1% of the reported times. Each run

selects a random value between 0 and 258 for the two fixed dimensions and fetches all cells (0

to 258) along the remaining dimension.

As expected,Naiveperforms best alongDim0, the major order, as it utilizes efficient sequen-

tial disk accesses with average time of 0.035 ms per cell. However, accesses along the non-major

orders take much longer, since neighboring cells alongDim1 and Dim2 are stored 259 and

67081 (259×259) blocks apart, respectively. Fetching each cell alongDim1 experiences mostly

just rotational latency; two consecutive blocks are often on the same track. Fetching cells along

Dim2 results in a short seek (1.3 ms for each disk) followed by rotational latency.

84



True to their goals,Z-orderandHilbert achieve balanced performance across all dimensions.

They sacrifice the performance of sequential accesses thatNaivecan achieve forDim0, result-

ing in 2.4 ms per cell inZ-order mapping and 2.0 ms per cell inHilbert, versus 0.035 ms for

Naive(almost 57× worse).Z-orderandHilbert outperformNaivefor the other two dimensions,

achieving 22%–136% better performance for each disk.Hilbert shows better performance than

Z-order, which agrees with the theory thatHilbert curve has better clustering properties [42].

MultiMap delivers the best performance for all dimensions. It matches the streaming perfor-

mance ofNaivealongDim0 despite paying a small penalty when jumping from one basic cube

to the next one. As expected,MultiMap outperformsZ-orderandHilbert for Dim1 andDim2 by

25%—35% andNaiveby 62%–214% for each disk. Finally,MultiMap achieves almost identical

performance on both disks, unlike the other techniques, because these disks have comparable

settle times, and thus the performance of accessing adjacent blocks alongDim1 andDim2.

Range queries. Figure 5.5(b) shows the speedups of each mapping technique relative to

Naiveas a function of selectivity (from 0.01% to 100%). The X axis uses a logarithmic scale.

As before, the performance of each mapping follows the trends observed for the beam queries.

MultiMap outperforms other mappings, achieving a maximum speedup of3.46×, while Z-order

andHilbert mappings observe a maximum speedup of1.54× and1.11×, respectively.

Given our dataset size and the range of selectivities from 0.01% to 100%, these queries fetch

between 900 KB and 8.5 GB data from a single disk. The performance of range queries are

determined by two factors: the closeness of the required blocks (the clustering property of the

mapping algorithm) and the degree of sequentiality in theseblocks. In the low selectivity range,

the amount of data fetched is small and there are few sequential accesses. Therefore,Hilbert

(up to 1%) andZ-order (up to 0.1%) outformNaivedue to their better clustering property. As

the value of selectivity increases,Naivehas relatively more sequential accesses. Thus, its over-

all performance improves, resulting in lower speedups of other mappings. This trend continues

until the selectivity hits a point (around 40% in our experiment) where all mappings have com-

parable sequential accesses but different degrees of clustering. In this case,Hilbert andZ-order

again outperformNaive. As we keep increasing the value of selectivity to fetch nearly the entire

dataset, the performance of all mapping techniques converge, because they all retrieve the cells

sequentially. The exact turning points depend on the track length and the dataset size. Most

importantly,MultiMap always performs the best.

5.5.4 3-D earthquake simulation dataset

The earthquake dataset models earthquake activity in a 14 kmdeep slice of earth of a38×38 km

area in the vicinity of Los Angeles [77]. We use this dataset as an example of how to apply

85



 0

 1

 2

 3

 4

 5

 6

X Y Z

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Maxtor Atlas 10k III

 0

 1

 2

 3

 4

 5

 6

X Y Z

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Seagate Cheetah 36ES

Naive
Z-order
Hilbert

MultiMap

(a) Beam queries.

 0

 50

 100

 150

 200

0.0001 0.001 0.003

T
ot

al
 I/

O
 ti

m
e 

[m
s]

Selectivity (%)

Maxtor Atlas 10k III

 0

 50

 100

 150

 200

0.0001 0.001 0.003

T
ot

al
 I/

O
 ti

m
e 

[m
s]

Selectivity (%)

Seagate Cheetah 36ES

Naive
Z-order
Hilbert

MultiMap

(b) Range queries.

Figure 5.6: Performance of queries on the 3-D earthquake dataset.

MultiMap to skewed datasets. The points in the 3-D dataset, called nodes, have variable densities

and are packed into elements such that the 64 GB dataset is translated into a 3-D space with

113,988,717 elements indexed by an octree. Each element is aleaf node in the octree.

In our experiments, we use an octree to locate the leaf nodes that contain the requested

points. Naiveuses X as the major order to store the leaf nodes on disks whereasZ-order and

Hilbert order the leaf nodes according to the space-filling curve values. ForMultiMap, we first

utilize the octree to find the largest sub-trees on which all the leaf nodes are at the same level,

i.e., the distribution is uniform on these sub-trees. Afteridentifying these uniform areas, we start

expanding them by integrating the neighboring elements that are of the similar density. With the

octree structure, we just need to compare the levels of the elements. The earthquake dataset has

roughly four uniform subareas. Two of them account for more than 60% elements of the total

datasets. We then applyMultiMap on these subareas separately.

The results, presented in Figure 5.6, exhibit the same trends as the previous experiments.

MultiMap again achieves the best performance for all beam and range queries. It is the only

mapping technique that achieves streaming performance forone dimension without compro-

mising the performance of spatial accesses in other dimensions. For range queries, we select

86



 0

 1

 2

 3

 4

 5

Q1 Q2 Q3 Q4 Q5

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

(a) Maxtor Atlas 10k III.

 0

 1

 2

 3

 4

 5

Q1 Q2 Q3 Q4 Q5

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Naive
Z-order
Hilbert

MultiMap

(b) Seagate Cheetah 36ES.

Figure 5.7: Performance of queries on the 4-D OLAP dataset.

representative selectivities for the applications.

5.5.5 4-D OLAP dataset

In this section, we run experiments on an OLAP cube derived from the TPC-H tables as follows:

CREATE TABLE Sales(

int OrderDay, int ProductType,

int NationID, int Quantity,

<other information>)

This table schema is similar to the one used in the IBM’s Multi-Dimensional Clustering

paper [48]. We choose the first four attributes as the four dimensions of the space and form an

OLAP cube of size (2361, 150, 25, 50) according to the unique values of these attributes. Since

each unique combination of the four dimensions does not haveenough points to fill a cell or

disk block, we roll up alongOrderDay to increase the number of points per combination, i.e.,

combine two cells into one cell alongOrderDay. This leads to a cube of size (1182, 150, 25,

50) for a 100 GB TPC-H dataset. Each cell in the cube corresponds to the sales of a specific

order size for a specific product sold to a specific country within 2 days.

The original cube is partitioned into chunks to fit on each disk, whose dimensions are (591,

75, 25, 25). The value ofD is the same as the 3-D experiments, and the results are presented

in Figure 5.7. For easy comparison across queries, we reportthe average I/O time per cell. The

details of OLAP queries are as follows:

Q1: “How much profit is made on product P with a quantity of Q to country C over all

dates?”

Q2: “How much profit is made on product P with a quantity of Q ordered on a specific date

over all countries?”

87



Q1 and Q2 are beam queries on the major order (OrderDay) and a non-major dimension

(NationID), respectively. As expected,NaiveoutperformsHilbert andZ-orderby two orders of

magnitude for Q1, whileZ-orderandHilbert are almost twice as fast asNaivefor Q2. MultiMap

achieves the best performance for both.

Q3: “How much profit is made on product P of all quantities to country C in one year?” The

2-D range query Q3 accesses the major order (OrderDay) and one non-major order (Quantity),

so Naivecan take advantage of sequential access to fetch all requested blocks along the major

dimension then move to the next line on the surface. Hence,NaiveoutperformsZ-order and

Hilbert. MultiMap matchesNaive’s best performance, achieving the same sequential access on

the major order.

Q4: “How much profit is made on product P over all countries, quantities in one year?” Q4

is a 3-D range query. Because it also involves the major order dimension,Naiveshows better

performance than the space-filling curve mappings by at least one order of magnitude.MultiMap

slightly outperformsNaivebecause it also preserves locality along other dimensions.

Q5: “How much profit is made on 10 products with 10 quantities over 10countries within

20 days?” Q5 is a 4-D range query. As expected, bothZ-order andHilbert demonstrate better

performance thanNaive. MultiMap performs the best. For the two different disks, it achieves

166%–187% better performance thanNaive, 58%–103% better performance thanZ-order and

36%–42% better performance thanHilbert.

5.5.6 Analytical cost model and higher dimensional datasets

For the results presented in this section, we used parameters that correspond to the Atlas 10 k III

disk. We determined the values empirically from measurements of our disks. The average rota-

tional latencyRotLat = 3 ms,Cinit = 8.3 ms, which is the average rotational latency plus the

average seek time, defined as the third of the total cylinder distance. Based on our measurements,

we setσ = 0.015 ms andα = 1.5 ms with the conservatism of 30◦ (Table 2.1 in Section 2.2).

We setT = 686, which is equal to the number of sectors per track in the outer-most zone. To

evaluate the model’s accuracy, we first compare its predictions with our measurements from the

experiments on 3-D and 4-D data sets and summarize these findings in Table 5.2. As shown,

the prediction error our model is for most cases less than 8% and 5 out of 24 predicted values

are within 20%. The model estimates the cost based on the cells-to-LBNs mappings, which are

accurate no matter what the dimensions are. Therefore, the prediction error is independent of the

dimensions.

We can use the model to predict the performance trends forN -D space withN > 4. Fig-

ure 5.8 shows the predicted performance for beam queries with an 8-D dataset with each dimen-

88



sion being 12 cells. These results exhibit the same trends asthose for 3-D and 4-D, demonstrating

thatMultiMap is effective for high-dimensional datasets.

3-D experiments
Naive MultiMap

Query Measured Model ∆ Measured Measured ∆

(ms) (ms) (ms) (ms)

Dim0 0.03 0.03 0% 0.04 0.03 13%
Dim1 2.7 2.7 0% 1.7 1.5 8%
Dim2 5.2 4.3 17% 1.5 1.5 0%
1% 294 291 1% 205 168 18%
2% 1086 1156 6% 722 723 0%
3% 2485 2632 5% 1626 1758 8%

4-D experiments
Dim0 0.02 0.02 0% 0.02 0.02 0%
Dim1 5.5 5.0 9% 2.1 1.9 9%
Dim2 2.2 4.0 82% 2.1 1.9 9%
Dim3 4.86 5.1 5% 1.8 1.6 11%
64 1142 1065 7% 513 436 15%
104 5509 5016 9% 1996 2150 8%
124 8905 8714 2% 3590 3960 9%

Table 5.2: Comparison of measured and predicted I/O times.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Dim0 Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Naive
MultiMap

Figure 5.8: Estimated cost of beam queries in 8-D space.

5.6 Chapter Summary

MultiMap is a breakthrough on disk layouts for multidimensional datain that it extends the

traditional linear abstraction of disks. In the world ofMultiMap, disks are not in a linear space

89



anymore: they are in a multidimensional space where the well-known sequential path and the

new semi-sequential paths construct different dimensionsin the space.

The contributions ofMultiMap are twofolds. First, it presents a simple interface that takes

the coordinates of a point in a multidimensional space as inputs and returns thelbn to store

the point. This interface depicts disks as a multidimensional space. Second and more impor-

tantly, by using this interface,MultiMap solves the fundamental problem of preserving spatial

locality for multidimensional data on disks because it doesnot need to do linearization as ex-

isting solutions have to. As a result,MultiMap does not face the performance trade-offs among

different dimensions, thus demonstrating substantial improvement over traditional mapping tech-

niques. On average,MultiMap reduces total I/O time by over 50% when compared to traditional

linearized layouts and by over 30% when compared to space-filling curve approaches such as

Z-ordering and Hilbert curves. For scans of the primary dimension,MultiMap and traditional

linearized layouts provide almost two orders of magnitude higher throughput than space-filling

curve approaches.

MultiMap achieves its goals by successfully exploiting the detaileddevice-specific informa-

tion about semi-sequential access. The design ofMultiMap is about how to leverage this new

technique without increasing the implementation complexity. The interface mapping a multi-

dimensional point to a disk block carefully hides the semi-sequential access details from user

applications without compromising the functionality.

Last but not least, the disk technology development trends of fast increasing track density

and slow improvement on seek time and rotational latency imply more dimensions supported on

disks, which makesMultiMap even more useful in the future. Currently, the typical maximum

number of dimensions supported by a modern disk is 10.

This chapter is a further exploration of how to utilize semi-sequential access paths to elim-

inate the performance trade-offs among multiple dimensions. The next chapter continues the

journey from another angle: how to eliminate the performance trade-offs among different execu-

tion phases.

90



Chapter 6

Data organization for hash join and

external sorting

This chapter discusses how a database system can utilize thesemi-sequential access to organize

intermediate results for hash join and external sorting. Wediscover that the performance trade-

offs shown in accessing multidimensional datasets also exist in the two phases of theGRACE

hash join algorithm and external sorting algorithms. The conflicting I/O access patterns are not

caused by the high dimensionality of datasets, but rather bythe different orders in which the

two operators process data. In existing systems, one phase of these two operators achieves the

sequential bandwidth while the other phase suffers the inefficiency of random accesses.

The solution proposed in this dissertation exploits the semi-sequential access path to store the

intermediate results between the two phases. While keeping the good performance of the sequen-

tial access in one phase, the solution replaces expensive random accesses with semi-sequential

accesses in the other phase, resulting in up to a 50% shorter I/O time. This performance is

achieved without modifying the kernel algorithms. The restof this chapter explains the conflict-

ing I/O accesses, followed by the solutions there are uncovered in this project. The last part of

the chapter presents the experimental results to evaluate the performance of the new solution on

a prototype system.

6.1 Hash join

Hash join [27, 36, 43, 68, 83], as an efficient algorithm to implement equijoins, is widely used in

commercial database systems. In its simplest form, when theavailable memory is large enough,

the algorithm first reads in the smaller (build) relation and builds a hash table based on the value

of the join attributes. Then it scans the larger (probe) relation, and for each tuple from the probe

91



relation, it probes the hash table to find matches. In the simplest scenario, the only I/O operations

are one scan on each join relation and one sequential write for the output.

In the real world, database systems adopt more sophisticated algorithms, such as theGRACE

hash join algorithm [36], to deal with the problem of excessive disk accesses when the memory is

too small to hold the build relation and/or the hash table. Practical hash join algorithms usually

take a two-phase approach. The first phase is called “partition phase” in which the algorithm

partitions the two joining relations into smaller sub-relations (also called “partitions”) using a

hash function on the join attributes. In the second phase, the “join phase”, the algorithm joins

each pair of the build and probe partitions that have the samehash value as in the simple scenario.

The number of partitions is based on the sizes of the available memory and the size of the build

relation. A key point is that the build partition and the hashtable built upon it must fit in memory.

If a build partition turns out to be too big for the memory because of a skewed hash distribution,

the above two-phase process is applied recursively.

Due to multiple read and write operations, hash join algorithms are I/O-intensive in na-

ture. Since the introduction of theGRACEhash join algorithm, a lot of work has been done

to minimize the I/O operations by keeping as many intermediate partitions in memory as pos-

sible [27, 36, 43, 68, 83]. The approach presented in this chapter takes a different angle by

exploring more efficient ways to organize intermediate partitions on disks. If partitions must be

read/written, what are the best ways to do it?

The next section explains the challenges of optimizing I/O performance for hash join algo-

rithms, followed by our solution.

6.1.1 Opposite I/O accesses in partition phase and join phase

This section delineates the I/O access patterns in the two phases of theGRACEhash join al-

gorithm. Figure 6.1 shows the procedure for joining two tables, R and S. The numbers in the

circles denote the execution order. Following the order, the algorithm first partitions the join

relations (Figure 6.1(a)) as follows. Step 1 reads in the join relation (e.g. relation R) in chunks

with a typical size of several KB. A hash function is used to calculate the hash value of each

tuple and put it into corresponding buckets. In this example, the hash function has three buckets

(thus three partitions), coded with different colors: yellow, orange, and brown. When a bucket

is full, the algorithm writes it to disk in chunks, as denotedby step 2. Assuming that the hash

function is adequate, each final partition contains roughlythe same number of records. In this

example, each partition occupies 6 disk chunks. More importantly, in practice, the three buckets

in memory are usually filled and written out alternately, resulting in interleaved writes to differ-

ent partitions, as illustrated by the vertical arrow in Figure 6.1(a). The interleaved writes to disks

92



Partition 1

Partition 2

Partition 3

Memory
Table R / S

1

2

Partition 1

Partition 2

Partition 3

Memory
Table R / S

1

2

(a) Partition phase.

Partition i of R

Partition i of S

Result

Memory

Hash table

3

4

5
Partition i of R

Partition i of S

Result

Memory

Hash table

3

4

5

(b) Join phase.

Figure 6.1:GRACEhash join algorithm. The graph illustrates the two phases intheGRACEhash
join algorithm. The vertical arrow at step 2 indicates interleaved writes to three partitions, but
not a writing order from partition 1 to partition 3.

form a random-like access pattern.

After both join relations are partitioned, the algorithm enters the join phase (Figure 6.1(b)).

In this phase, the algorithm joins pairs of partitions that have the same hash value in the previous

phase. Without losing generality, the graph uses the pair ofpartition i as an example to illustrate

the procedure. Step 3 reads in the entire partition i of R and builds a hash table based on the join

attributes. Step 4 reads in the partition i of S in chunks, probes the hash table with each tuple in

the chunk, and outputs the matched ones, as shown in step 5.

In today’s systems, the I/O access patterns in steps 3 and step 4, which scan the join partitions

(denoted by the horizontal arrow), conflict with the I/O access patterns in step 2. Sequential

accesses at step 3 and 4 result in random accesses at step 2 because the interleaved I/O operations

at step 2 are now writing to non-contiguous blocks spread across disks.

6.1.2 Organizing partitions along the semi-sequential path

The performance trade-offs caused by the conflicting I/O access patterns in the hash join al-

gorithm can be resolved by utilizing the semi-sequential access path. This idea is similar to

MultiMap in which the random access at step 2 is replaced with the much more efficient semi-

sequential access. The high-level idea is to align all partitions along a semi-sequential access

path. In other words, the chunks of different partitions that are of the same offset in the partition

93



Partition 1

Partition 2

Partition 3
A2

A1

A3

Semi-sequential 

access

0 1 2

18

17

19 20 35

36 37 38Semi-sequential 

access

Partition 1

Partition 2

Partition 3
A2

A1

A3

Semi-sequential 

access

0 1 2

18

17

19 20 35

36 37 38Semi-sequential 

access

Figure 6.2: Proposed disk organization for partitions.

will be stored in the consecutive adjacent blocks. Figure 6.2 depicts the data placement strategy

with more details.

Figure 6.2 is a detailed picture of step 2 taken from Figure 6.1(a) where the algorithm writes

full buckets to the disk. Boxes with solid sides in the exampledenote chunks, the basic unit of

a read/write operation. Boxes with dotted sides denote disk blocks, usually of 512 bytes. The

chunk size in this example is thus 3 disk blocks. For simplicity, the example assumes the size of

each partition equals the track length (i.e., 18 blocks in the graph) and disk block 0 is the starting

disk block. A1, A2, and A3 are the first chunks in the three partitions, and are defined to be of

the same offset from the beginning of the partitions to whichthey belong. Numbers in the dotted

boxes (disk blocks) are LBNs. Suppose that chunk A1 is stored in the first 3 blocks, from LBN 0

to LBN 2. With the knowledge of the adjacency model, the new data placement algorithm picks

the adjacent block of LBN 2 to be the first block of Chunk A2. For example, if LBN 18 is the

adjacent block of LBN 2, then Chunk A2 is stored in the blocks starting from LBN 18. Similarly,

the starting block of Chunk A3 is stored in the adjacent block of LBN 20, which is LBN 36 in the

example. In this way, writing A1, A2, and A3 incurs semi-sequential access. By only paying the

cost of settle time, the disk head can read LBN 18 after accessing LBN 2, without any rotational

latency. This also holds true for the access from LBN 20 to LBN 36.

Implementation concerns, such as how to issue I/O requests and how to handle larger par-

titions, are shared by hash join and external sorting. Therefore, they are discussed together in

Section 6.3.1.

6.2 External sorting

External sorting algorithms are used to order large datasets that cannot fit into memory. Similar

to hash join algorithms, they typically have two phases. Thefirst phase generates a set of files

and the second phase processes these files to output the sorted result. Based on how the first

94



phase generates the set of files, external sorting can be roughly classified into two groups [79]:

1. Distribution-based sorting: The input data file is partitioned into N partitions, with each

partition covering a range of values [37]. All elements in partition i are larger than the

elements in the partitions from 0 to (i-1) and smaller than the elements in the partitions

from (i+1) to (N-1). The second phase then sorts each partition separately and concatenates

them as the final output.

2. Merge-based sorting: The first phase partitions the inputfile into equal-sized chunks and

sorts them separately in main memory. The sorted chunks, also calledruns, are written to

disks. The second phase merges the sorted runs and outputs the final sorted file.

External memory sorting performance is often limited by I/Operformance. Extensive re-

search has been done on formalizing the I/O cost in theory andminimizing the amount of data

written to and read from disks in implementation [2, 38, 45, 56, 79]. Zhang et. al. [84] im-

prove the performance of external mergesort by dynamicallyadjusting the memory allocated

to the operation. Equal buffering and extended forecasting[85] are enhanced versions of the

standard double buffering and forecasting algorithms thatimprove the external mergesort per-

formance by exploiting the fact that virtually all modern disks perform caching and sequential

prefetch. Some efforts aim at using a co-processor, such as GPU, to offload compute-intensive

and memory-intensive tasks to the GPU to achieve higher I/O performance and better main mem-

ory performance [26]. Other approaches seek to minimize I/Otime by reading in run chunks in a

particular order that involves minimal disk seeks, such as the technique ofclustering[85]. This

dissertation chooses a similar angle asclusteringtowards optimizing the I/O performance by

reading in run chunks in a disk-concious way. Different fromthe previous research, our idea is

to organize the intermediate partitions along the new semi-sequential path.

6.2.1 Opposite I/O accesses in two phases

The conflict I/O access patterns in the distribution-based sorting algorithm are the same as in

hash join. The writes to different partitions in the first phase are random if the algorithm chooses

to optimize the later read operations by storing each partition sequentially.

The merge-based sorting algorithm is different, depicted in Figure 6.3. This diagram shows

the procedure of sorting a file named D. In the partition phase(Figure 6.3(a)), at step 1, the

algorithm reads in sequentially a certain amount of data that can be held in main memory and

sorts it using any existing sorting algorithms. Then the sorted chunk, called arun, is written out

sequentially at step 2. The graph shows the generation of thei-th run. After the entire file is

consumed, the merge phase applies merge sort on all runs (step 3), and outputs the final sorted

95



Run i
Memory

Data file D
1

2

Run i
Memory

Data file D
1

2

(a) Partition phase.

Run 2

Run 3

Sorted file

Run 1
3

4

Memory

Run 2

Run 3

Sorted file

Run 1
3

4

Memory

(b) Merge phase.

Figure 6.3: Merge-based external sorting algorithm. The graph illustrates the two phases in the
merge-based external sorting algorithm.

file (step 4). At step 3, the three runs are fetched into memoryin chunks. If the data being sorted

is not highly skewed, reading in chunks from different runs are usually interleaved, which causes

random access patterns on disks.

6.2.2 Organizing runs along the semi-sequential path

Adopting an idea similar to the one used in the solution of hash join, the runs are aligned along

the semi-sequential access path. That is, the chunks of different runs that are of the same offset in

the run will be stored in the consecutive adjacent blocks. The layout details of each run, such as

the adjacent block selection, are the same as in hash join andhave been discussed in Section 6.1.2

( Refer to Figure 6.2).

6.3 Evaluation

This section describes the implementation of a prototype developed on a logical volume com-

prised of real disks that is used to evaluate the performanceof the new data organization for hash

join and external sorting.

96



6.3.1 Implementation

The prototype system is implemented on a two-way 1.7 GHz Pentium 4 Xeon workstation run-

ning Linux kernel 2.4.24 with 1024 MB of main memory and one Adaptec Ultra160 SCSI adapter

connecting two 36.7 GB disks: a Seagate Cheetah 36ES and a Maxtor Atlas 10k III. This proto-

type system consists of a logical volume manager (LVM) and the operators of theGRACEhash

join algorithm [68] and the merge-based external sorting [37].

Hash join and external sorting algorithm implementation. We adopt the optimized hash

join implementation from Chen et al [16]. It uses a slotted page structure with support for fixed-

length and variable-length attributes in tuples. The hash function is a simple XOR and shift-based

function. It converts join attributes of any length to 4-byte hash codes. The same hash codes are

used in both the partition and the join phase. Partition numbers are hash codes modulo the total

number of partitions which are calculated based on the statistics of the relations. Hash bucket

numbers in the join phase are the hash codes modulo the hash table size. The merge-based

external sorting algorithm is implemented using Quick sortin the partition phase to sort each

run.

Double buffering. We also implement a simple buffer pool manager with the function of

double buffering. Double buffering is a commonly used technique to exploit CPU resources

during I/O operation by overlapping CPU and I/O processing. It also helps to accommodate the

different filling (or consuming) speeds of different partitions (or runs). In the hash join operator,

when a bucket is full, it is put in a full bucket list, and a freebucket will be linked in to fill in

the vacancy. When there are full buckets for all partitions orthere are no more free buckets, a

worker thread will write them out and put the buckets back on the free list. In external mergesort,

reading run chunks is triggered when the memory space for a run is half empty.

Skewed datasets.The approaches proposed in this chapter work nicely with uniformly dis-

tributed datasets, meaning the hash function in hash join does a good job at distributing tuples

equally or the values of sort keys in external mergesort are randomly distributed. Datasets with

highly skewed distributions pose some obstacles. For example, in an extreme case, the writing

of hash join partitions or the reading of external sort runs are sequential, no interleaving reads or

writes at all. In this case, our approach would not help to improve performance because first, no

semi-sequential access batches will be issued; second, thesequential access is the fastest. Gen-

erally speaking, the skewness of datasets determines whether writing join partitions (hash join)

and reading run chunks (external sorting) are interleaved.In other words, skewed datasets have

better I/O performance than uniformly distributed datasets. From our approaches’ point of view,

as far as the interleaving reads/writes exist, it can help improve the I/O performance. If no such

an interleaving access pattern, it will not hurt performance either.

97



Track-aligned extents. In the current prototype, disk space for tables, partitions, or runs

is allocated in extents. An extent is a set of contiguous diskblocks. This prototype utilizes

previously proposed “track-aligned extents” (traxtents) [58, 59] to achieve efficient sequential

access. The idea of track-aligned extents exploits automatically-extracted knowledge of disk

track boundaries, using them as the extent size. If a partition or a run is larger than the track

capacity, the system just allocates another extent on a new track for it.

Large memory. The performance improvement gained from our approaches comes from the

idea of replacing random read/write of chunks with semi-sequential access. If the chunk size is

very big, the time it takes to read/write a chunk will be long,which makes the overhead of disk

seeks less important or even negligible. In a system with ample memory, it tends to use large

chunk sizes. In this case, our approaches cease to be helpful. The performance diminishing is

shown in the experiments in the next section.

The next section compares our solutions to existing approaches where no care is taken to

avoid random accesses.

6.3.2 Experiment results

The first half of this section evaluates the hash join algorithm. In the experiments, build relations

and probe relations have the same schema which consists of a 4-byte join key and a fixed-length

payload. No selection or projection operations are performed because they are orthogonal to

the study. Output records consist of all fields from the two join relations. The tuple size in the

following experiments is 100 bytes, and the sizes of the relations are 1 GB and 2 GB. Values of

the join key are randomly distributed. All tuples in the build relation have matches in the probe

relation. All partitions and the hash table built on them fit tightly in main memory; therefore, no

recursion is involved.

We vary memory size from 5 MB to 60 MB and measure the total running time of the hash

join algorithm, shown in Figure 6.4(a). By ”Old”, we denote the traditional semi-sequential-

oblivious approach, and by ”New”, we refer to the new solution discussed in the previous sec-

tions. The total running time is broken down into five components, from the bottom to the top:

(a) “partition read” is the total time spent reading in the join relations; (b) “partition comp” refers

to the computational cost in the partition phase to calculate hash keys and to distribute tuples;

(c) “partition write” is the time spent writing filled buckets which is the optimization target; (d)

“join read” and (e) “join comp” are the costs in the join phasewhich consists of the time to read

in the join partition and to build/probe the hash table.

When the memory size is small, the bucket size is also small. Therefore, writing out the par-

titions incurs more I/O requests for small data chunks, resulting in worse performance. The new

98



5 10 20 40 605 10 20 40 60

0

200

400

600

800

1000

1200

Old New Old New Old New Old New Old New

Memory size [MB]

H
a
s
h
 j
o
in

 r
u
n
n
in

g
 t
im

e
 [
s
]

Join comp

Join read

Partition write

Partition comp

Partition read

(a) Hash join.

0

200

400

600

800

Old New Old New Old New Old New Old New

Memory size [MB]

E
x
te

rn
a
l 
s
o
rt

in
g
 r

u
n
n
in

g
 t
im

e
 [
s
]

Merge write

Merge read

Partition write

Partition read

5 10 20 40 605 10 20 40 60

(b) External sorting.

Figure 6.4: Running time breakdown for hash join and externalsorting algorithms. The graph
plots the running time of the “Old” and ”New” approaches withincreasing memory sizes. The
“old” solution refers to the existing implementation that does not take the advantage of semi-
sequential access while the “new” solution exploits this feature to store the intermediate parti-
tions.

organization of aligning partitions along the semi-sequential path helps to mitigate the problem.

In the case where the memory size is 5 MB, the ”New” approach reduces the “partition write”

time by a factor of 2. The performance improvement diminishes as memory size increases be-

cause of the increased bucket size. Large bucket size implies few I/O requests with large data

chunks. In this case, the benefit of saving rotational latency becomes less manifest.

The same trend is observed in the performance evaluation on the external sorting algorithm,

as Figure 6.4(b) shows. In this experiment, a table of 1 GB is sorted using the same set of

memory sizes (i.e., from 5 MB to 60 MB). Values of the sort attribute are uniformly distributed.

The legend used in Figure 6.4(b) refers to different operations performed in the external sorting

algorithm, from the bottom to the top: (a) “partition read” is the time spent reading in the data file

at the beginning; (b) “partition write” is the time spent writing the sorted runs; (c) “merge read”

refers to the cost of reading data from different partitionsin the merge phase; and (d) “merge

write” is the time spent writing out the final sorted file. Trueto its goal, our solution successfully

reduces the cost of “merge read” by a factor of 2 when the memory size is small. The advantage

of organizing intermediate partitions along the semi-sequential path decreases as more memory

is available.

In real applications, the memory available for the operations of hash join and external sorting

is quite limited because this part of memory is allocated from the private space of each execution

process. In a system with a high concurrency degree, this newapproach helps to sustain good

performance with less memory. This is also beneficial to the other modules in the entire system.

99



6.4 Chapter summary

In this chapter, we propose a new way to optimize the I/O performance for two important

database operators, hash join and external sorting, by exploiting the semi-sequential access path

for organizing intermediate partitions. Our purpose is to improve the performance of the worst

scenarios in hash join and external sorting, where the reads/writes of partitions/runs result in a

random disk access pattern.

The performance improvement is achieved by eliminating expensive random accesses during

the execution of the two operators in current systems. The experiments demonstrate that our

prototype exhibits a speedup of a factor of two when comparedto traditional techniques when

the available memory is limited (less than 1% of the dataset size). Moreover, we achieve this

speedup without the need of modifying existing algorithms.This project is another example that

a deeper understanding of hardware features can facilitatedata organization in database systems.

However, we also find out that the performance improvement diminishes as more memory is

available. The approach achieves the same performance as existing solutions when the memory

size is larger than 6% of the dataset. Large memory size implies large I/O request size, which

makes the overhead of a random disk access, seek time and rotational latency, less important in

performance.

Although the memory size in a system will keep increasing rapidly in the future, the available

memory to hash join and external sorting will not increase ata similar speed. In fact, since this

part of memory is allocated on a per thread basis, the increasing concurrency degree will put

a restriction on the memory space allocated to hash join and external sorting, which makes the

approaches in this chapter stay valuable in the future.

100



Chapter 7

Conclusions

Thesis statement

“Database Management Systems can become more robust by eliminating performance

trade-offs related to inflexible data layout in the memory and disk hierarchy. The key to

improving performance is to adapt the data organization to workload characteristics, which is

achieved (a) by intelligently using query payload information when managing the buffer pool,

(b) by decoupling the in-memory layout from the storage organization, and (c) by exposing the

semi-sequential access path available on modern disks to the storage manager.”.

Existing database management systems use static data organization across all layers of the mem-

ory hierarchy: the same data layout is used in CPU caches, mainmemory, and disks. The

single format design simplifies the implementation of database systems and works well in the

early days when most hardware were dumb devices and major workloads shared similar char-

acteristics. Unfortunately, the “one layout fits all” solution does not meet the ever-increasing

performance requirements of today’s applications where the high diversity of workloads asks for

different, sometimes even conflict, designs of data layouts. In the meantime, this simple solution

fails to leverage many advanced features being added to storage devices, missing opportunities

which could have been exploited to improve performance.

In this thesis, we propose flexible and efficient data organization and management for database

systems to address these problems. Our solutions include (a) a scaled-down database benchmark

suite for quick evaluation; (b) an adaptive buffer pool manager which appliesCSM, a dynamic

page layout, to customize in-memory content to query payloads; (c) a new mapping algorithm,

MultiMap, that exploits the new adjacency model of disks to provide a multidimensional struc-

ture on top of the linear disk space for efficiently storing multidimensional data; and (d) a new

way to organize intermediate results for external sorting and hash join.

First, DBmbench provides a significantly scaled-down database benchmark suite that accu-

101



rately mimics the characteristics of the most commonly usedDSS and OLTP workloads, TPC-H

and TPC-C, at the microarchitecture-level. This is done by identifying and isolating a small set of

operations that primarily dominate the executions of the workloads. DBmbench simplifies exper-

iment setup, reduces experiment running time, and ease performance analysis. More importantly,

DBmbench faithfully preserves the major characteristics oftheir large-scale counterparts. DBm-

bench is also valuable database system research, especially in sensitivity analysis. The other

projects in this thesis employ it to study the performance effects of individual parameters on the

entire system.

Clotho is a buffer pool manager which adapts to changing workloads by decoupling the in-

memory page layout from the storage organization. The decoupling solves the problem inherent

to existing static page layouts, i.e., the performance trade-offs between two major database work-

loads TPC-H and TPC-C. LikeDSM, Clothoasks for only requested attributes, which makes it

the best choice for TPC-H-like workloads. LikeNSM, Clothoalso performs well for full record

accesses as in TPC-C-like workloads, thanks to the new semi-sequential access path on disks.

However,Clotho is not burdened with the details of the semi-sequential access path. The decou-

pling allows the volume manager to organize pages on disks that best exploits the characteristics

of the storage devices.

MultiMap is a mapping algorithm to store multidimensional datasets on disks. Instead of us-

ing the over-simplified linear abstraction of disks,MultiMap utilizes the semi-sequential access

path to build a multidimensional view on disks, thus eliminating the restrictions posed by the

linear abstraction. Thanks to the multidimensional abstraction, the spatial locality of multidi-

mensional datasets can be preserved on disks which translates to superior performance for range

and beam queries. On average,MultiMap reduces total I/O time by over 50% when compared to

traditional linearized layouts and by over 30% when compared to space-filling curve approaches.

Continuing the exploration of building hardware-aware algorithms, We investigate the idea

of utilizing the semi-sequential access path to organize intermediate partitions in hash join and

external sorting. It eliminates the costly random accessesexisting in the current implementation,

thus optimizing the I/O performance without modifying the kernel algorithms. This solution is

especially useful in systems with scarce resources. The experiments on our prototype demon-

strate a speedup of a factor of two over the traditional implementation.

FromClothoto the data placement for hash join and external sorting, theprojects of this dis-

sertation revolve around the theme of enhancing the interaction between software and hardware

and demonstrate the significant performance benefits brought by it from various aspects.

The evolution of computer system has shown two evident developing trends. One is that

computer hardware, such as processors, main memory, and disks, keeps evolving with more so-

102



phisticated built-in intelligence; the other is that computer software, from low-level firmware up

to user applications, is becoming more and more complicatedand diversified due to the ever in-

creasing demands for performance and features. Under thesetwo trends, it is increasingly crucial

to design software that collaborates with hardware devices, thus exploiting their characteristics

to the fullest.

103



104



Bibliography

[1] Khaled A. S. Abdel-Ghaffar and Amr El Abbadi. Optimal allocation of two-dimensional

data. InInternational Conference on Database Theory, pages 409–418, 1997.

[2] Alok Aggarwal and S. Vitter Jeffrey. The input/output complexity of sorting and related

problems.Commun. ACM, 31(9):1116–1127, 1988.

[3] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMSs on a

modern processor: where does time go? InProceedings of International Conference on

Very Large Databases, pages 266–277. Morgan Kaufmann Publishing, Inc., 1999.

[4] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. Weaving

relations for cache performance. InInternational Conference on Very Large Databases,

pages 169–180. Morgan Kaufmann Publishing, Inc., 2001.

[5] Dave Anderson, Jim Dykes, and Erik Riedel. More than an interface: SCSI vs. ATA. In

FAST, pages 245–257. USENIX, 2003.

[6] Murali Annavaram, Trung Diep, and John Shen. Branch behavior of a commercial OLTP

workload on Intel IA32 processors. InProceedings of International Conference on Com-

puter Design, September 2002.

[7] Mikhail J. Atallah and Sunil Prabhakar. (almost) optimal parallel block access for range

queries. InACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-

tems, pages 205–215. ACM, 2000.

[8] Luiz A. Barroso, Kourosh Gharachorloo, Andreas Nowatzyk, and Ben Verghese. Impact of

chip-level integration on performance of OLTP workloads. In Proceedings of International

Symposium on High-Performance Computer Architecture, January 2000.

[9] Luiz A. Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory system character-

ization of commercial workloads. InProceedings of International Symposium on Computer

Architecture, pages 3–14, June 1998.

[10] Randeep Bhatia, Rakesh K. Sinha, and Chung-Min Chen. Declustering using golden ratio

105



sequences. InICDE, pages 271–280, 2000.

[11] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database architecture opti-

mized for the new bottleneck: memory access. InInternational Conference on Very Large

Databases, pages 54–65. Morgan Kaufmann Publishers, Inc., 1999.

[12] Qiang Cao, Pedro Trancoso, Josep-Lluis Larriba-Pey, Josep Torrellas, Robert Knighten,

and Youjip Won. Detailed characterization of a quad PentiumPro server running TPC-D.

In Proceedings of International Conference on Computer Design, October 1999.

[13] Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall, Mark L. McAuliffe,

Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon, C. K.Tan, Odysseas G. Tsat-

alos, Seth J. White, and Michael J. Zwilling. Shoring up persistent applications. InPro-

ceedings of the 1994 ACM SIGMOD International Conference on Management of Data,

Minneapolis, Minnesota, May 24-27, 1994, pages 383–394. ACM Press, 1994.

[14] L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Mukher-

jee, S. Santhanam, L. Abelmann, and S. Min. Single-chip computers with microelectrome-

chanical systems-based magnetic memory.Journal of applied physics, 87(9):6680–6685,

May 2000. ISSN 0021-8979.

[15] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. Improving index performance

through prefetching. InSIGMOD Conference, 2001.

[16] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. Improving

hash join performance through prefetching. InICDE, pages 116–127, 2004.

[17] Edgar Codd. A relational model of data for large shared data banks.Commun. ACM, 13

(6):377–387, 1970.

[18] George P. Copeland and Setrag Khoshafian. A decomposition storage model. InACM

SIGMOD International Conference on Management of Data, pages 268–279. ACM Press,

1985.

[19] DB2Manual.IBM DB2 Universal Database Administration Guide: Implementation, 2000.

[20] Trung Diep, Murali Annavaram, Brian Hirano, and John P. Shen. Analyzing performance

characteristics of OLTP cached workloads by linear interpolation. In Workshop on Com-

puter Architecture Evaluation using Commercial Workloads, September 2002.

[21] disksim. The disksim simulation environment (version3.0), 2006. http://-

www.pdl.cmu.edu/DiskSim/index.html.

[22] T. Todd Elvins. A survey of algorithms for volume visualization. Computer Graphics, 26

(3):194–201, 1992. URLciteseer.ist.psu.edu/elvins92survey.html.

106

citeseer.ist.psu.edu/elvins92survey.html


[23] Christos Faloutsos. Multiattribute hashing using Graycodes. InACM SIGMOD, pages

227–238, 1986.

[24] Christos Faloutsos and Pravin Bhagwat. Declustering using fractals. InInternational Con-

ference on Parallel and Distributed Information Systems, 1993.

[25] George G. Gorbatenko and David J. Lilja. Performance oftwo-dimensional data models

for I/O limited non-numeric applications. Technical ReportARCTiC 02-04, Laboratory for

Advanced Research in Computing Technology and Compilers, University of Minnesota,

2002.

[26] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort: high

performance graphics co-processor sorting for large database management. InProceedings

of the 2006 ACM SIGMOD international conference on Management of data, pages 325–

336. ACM Press, 2006.

[27] Goetz Graefe. Query evaluation techniques for large databases.ACM Comput. Surv., 25

(2):73–170, 1993.

[28] Jim Gray. The Benchmark Handbook for Database and Transaction Processing Systems.

Morgan Kaufmann Publishers, Inc., second edition, 1993.

[29] Jim Gray, Donald Slutz, Alexander Szalay, Ani Thakar, Jan vandenBerg, Peter Kunszt, and

Chris Stoughton. Data mining the SDSS skyserver database. Technical Report MSR-TR-

2002-01, MSR, 2002.

[30] Richard Hankins, Trung Diep, Murali Annavaram, Brian Hirano, Harald Eri, Hubert

Nueckel, and John P. Shen. Scaling and characterizing database workloads: bridging the

gap between research and practice. InProceedings of International Symposium on Microar-

chitecture, December 2003.

[31] Richard A. Hankins and Jignesh M. Patel. Data morphing: an adaptive, cache–conscious

storage technique. InInternational Conference on Very Large Databases, pages 1–12.

VLDB, 2003.

[32] David Hilbert. Über die stetige abbildung einer linie auf flächensẗuck. Math. Ann, 38:

459–460, 1891.

[33] Ibrahim Kamel and Christos Faloutsos. Parallel R-trees.In SIGMOD, pages 195–204,

1992.

[34] Kimberly Keeton and David A. Patterson.Towards a simplified database workload for

computer architecture evaluations, chapter 4. Kluwer Academic Publishers, 2000.

[35] Kimberly Keeton, David A. Patterson, Yong Qiang He, Roger C. Raphael, and Walter E.

107



Baker. Performance characterization of a quad Pentium Pro SMP using OLTP workloads.

In Proceedings of International Symposium on Computer Architecture, pages 15–26, June

1998.

[36] Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka. Application of hash to data

base machine and its architecture.New Generation Comput., 1(1):63–74, 1983.

[37] Donald E. Knuth. The art of computer programming, volume 3: sorting and searching.

Addison-Wesley, Reading, 2nd edition, 1998. ISBN 0–201–89685–0.

[38] Per-Åke Larson. External sorting: Run formation revisited.IEEE Trans. Knowl. Data Eng.,

15(4):961–972, 2003.

[39] Jack L. Lo, Luiz Andre Barroso, Susan J. Eggers, Kourosh Gharachorloo, Henry M. Levy,

and Sujay S. Parekh. An analysis of database workload performance on simultaneous multi-

threaded processors. InProceedings of International Symposium on Computer Architecture,

June 1998.

[40] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Generic database cost models

for hierarchical memory systems. InInternational Conference on Very Large Databases,

pages 191–202. Morgan Kaufmann Publishers, Inc., 2002.

[41] C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz.

ARIES: A transaction recovery method supporting fine-granularity locking and partial roll-

backs using write-ahead logging.ACM Trans. Database Syst., 17(1):94–162, 1992.

[42] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and JoelH. Saltz. Analysis of the clus-

tering properties of Hilbert space-filling curve. Technical Report UMIACS-TR-96-20, Uni-

versity of Maryland at College Park, 1996.

[43] Masaya Nakayama, Masaru Kitsuregawa, and Mikio Takagi. Hash-partitioned join method

using dynamic destaging strategy. InVLDB, pages 468–478, 1988.

[44] Beomseok Nam and Alan Sussman. Improving access to multi-dimensional self-describing

scientific datasets.International Symposium on Cluster Computing and the Grid, 2003.

[45] Mark H. Nodine and Jeffrey Scott Vitter. Greed sort: optimal deterministic sorting on

parallel disks.J. ACM, 42(4):919–933, 1995.

[46] Office of Science Data-Management Workshops. The officeof science data-management

challenge. Technical report, Department of Energy, 2005.

[47] Jack A. Orenstein. Spatial query processing in an object-oriented database system. InACM

SIGMOD, pages 326–336. ACM Press, 1986.

108



[48] Sriram Padmanabhan, Bishwaranjan Bhattacharjee, Tim Malkemus, Leslie Cranston, and

Matthew Huras. Multi-dimensional clustering: A new data layout scheme in DB2. InACM

SIGMOD, 2003.

[49] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of

inexpensive disks RAID. InACM SIGMOD International Conference on Management of

Data, pages 109–116, 1–3 June 1988.

[50] Sunil Prabhakar, Khaled Abdel-Ghaffar, Divyakant Agrawal, and Amr El Abbadi. Efficient

retrieval of multidimensional datasets through parallel I/O. In ICHPC, pages 375–386.

IEEE, 1998.

[51] Sunil Prabhakar, Khaled A. S. Abdel-Ghaffar, Divyakant Agrawal, and Amr El Abbadi.

Cyclic allocation of two-dimensional data. InICDE. IEEE, 1998.

[52] Raghu Ramakrishnan and Johannes Gehrke.Database management systems. McGraw-Hill,

3rd edition, 2003.

[53] Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. A casefor fractured mirrors. In

International Conference on Very Large Databases, pages 430–441. Morgan Kaufmann

Publishers, Inc., 2002.

[54] Parthasarathy Ranganathan, Sarita V. Adve, Kourosh Gharachorloo, and Luiz A. Barroso.

Performance of database workloads on shared-memory systems with out-of-order proces-

sors. InProceedings of Architectural Support for Programming Languages and Operating

Systems, volume 33, pages 307–318, November 1998. ISBN ISSN 0362–1340.

[55] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.IEEE Computer,

27(3):17–28, 1994.

[56] Betty Salzberg, Alex Tsukerman, Jim Gray, Michael Stuewart, Susan Uren, and Bonnie

Vaughan. Fastsort: a distributed single-input single-output external sort. InProceedings of

the 1990 ACM SIGMOD international conference on Management of data, pages 94–101.

ACM Press, 1990. ISBN 0-89791-365-5.

[57] Sunita Sarawagi and Michael Stonebraker. Efficient organization of large multidimensional

arrays. InICDE, pages 328–336, 1994.

[58] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and Gregory R. Ganger. Track-

aligned extents: matching access patterns to disk drive characteristics. InConference on

File and Storage Technologies, pages 259–274. USENIX Association, 2002. ISBN ISBN

1–880446–03–0.

[59] Jiri Schindler, Anastassia Ailamaki, and Gregory R. Ganger. Lachesis: robust database

109



storage management based on device-specific performance characteristics. InInternational

Conference on Very Large Databases, pages 706–717. Morgan Kaufmann Publishing, Inc.,

2003.

[60] Jiri Schindler, Steven W. Schlosser, Minglong Shao, Anastassia Ailamaki, and Gregory R.

Ganger. Atropos: a disk array volume manager for orchestrated use of disks. InConference

on File and Storage Technologies, pages 27–41. USENIX Association, 2004.

[61] Steven W. Schlosser, John Linwood Griffin, David F. Nagle, and Gregory R. Ganger. De-

signing computer systems with MEMS-based storage. InArchitectural Support for Pro-

gramming Languages and Operating Systems, pages 1–12, 2000.

[62] Steven W. Schlosser, Jiri Schindler, Minglong Shao, Stratos Papadomanolakis, Anastassia

Ailamaki, Christos Faloutsos, and Gregory R. Ganger. On multidimensional data and mod-

ern disks. InConference on File and Storage Technologies. USENIX Association, 2005.

[63] Steven W. Schlosser, Jiri Schindler, Anastassia Ailamaki, and Gregory R. Ganger. Expos-

ing and exploiting internal parallelism in MEMS-based storage. Technical report, Technical

Report CMU–CS–03–125, March 2003.

[64] Manfred Schroeder.Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise. W.

H. Freeman, 1991.

[65] Bernhard Seeger and Per-Åke Larson. Multi-disk B-trees. InSIGMOD, pages 436–445,

1991.

[66] Minglong Shao, Jiri Schindler, Steven W. Schlosser, Anastassia Ailamaki, and Gregory R.

Ganger. Clotho: Decoupling memory page layout from storage organization. InInterna-

tional Conference on Very Large Databases, pages 696–707, 2004.

[67] Minglong Shao, Anastassia Ailamaki, and Babak Falsafi. DBmbench: Fast and accurate

database workload representation on modern microarchitecture. InConference of the Cen-

tre for Advanced Studies on Collaborative Research, pages 254–267, 2005.

[68] Leonard D. Shapiro. Join processing in database systems with large main memories.ACM

Trans. Database Syst., 11(3):239–264, 1986.

[69] Timothy Sherwood, Erez Perelman, Greg Hamerly, and BradCalder. Automatically char-

acterizing large scale program behavior. InProceedings of International Conference on

Architectural Support for Programming Languages and Operating Systems, October 2002.

[70] simplescalar. SimpleScalar tool set. SimpleScalar LLC. http://www.simplescalar.com.

[71] Spec.SPEC CPU Benchmark. The Standard Performance Evaluation Corporation. http://-

www.specbench.org.

110



[72] Kurt Stockinger, Dirk Dullmann, Wolfgang Hoschek, andErich Schikuta. Im-

proving the performance of high-energy physics analysis through bitmap indices.

In Database and Expert Systems Applications, pages 835–845, 2000. URL

citeseer.ist.psu.edu/stockinger00improving.html.

[73] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherni-

ack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J. O’Neil,

Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik.C-store: A column-

oriented DBMS. InVLDB, pages 553–564, 2005.

[74] Shreekant S. Thakkar and Mark Sweiger. Performance of an OLTP application on sym-

metry multiprocessor system. InProceedings of International Symposium on Computer

Architecture, 1990.

[75] Pedro Trancoso, Josep-L. Larriba-Pey, Zheng Zhang, and Josep Torrellas. The memory per-

formance of DSS commercial workloads in shared-memory multiprocessors. InProceed-

ings of International Symposium on High-Performance Computer Architecture, Feburary

1997.

[76] tpcmanual. TPC benchmarks. Transaction Processing Performance Countil. http://-

www.tpc.org.

[77] Tiankai Tu and David R. O’Hallaron. A computational database system for generating

unstructured hexahedral meshes with billions of elements.In SC, 2004.

[78] Tiankai Tu, David O’Hallaron, and Julio Lopez. Etree: Adatabase-oriented method for

generating large octree meshes. InEleventh International Meshing Roundtable, pages 127–

138, 2002.

[79] Jeffrey Scott Vitter. External memory algorithms and data structures: dealing with massive

data.ACM Comput. Surv., 33(2):209–271, 2001.

[80] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe. SMARTS:

Accelerating microarchitecture simulation via rigorous statistical sampling. InProceedings

of International Symposium on Computer Architecture, June 2003.

[81] Hailing Yu, Divyakant Agrawal, and Amr El Abbadi. Tabular placement of relational data

on MEMS-based storage devices. InInternational Conference on Very Large Databases,

pages 680–693, 2003.

[82] Hongfeng Yu, Kwan-Liu Ma, and Joel Welling. A parallel visualization pipeline for teras-

cale earthquake simulations. InProceedings of Supercomputing ’04, page 49, 2004. ISBN

0-7695-2153-3. doi: http://dx.doi.org/10.1109/SC.2004.6.

111

citeseer.ist.psu.edu/stockinger00improving.html


[83] Hansj̈org Zeller and Jim Gray. An adaptive hash join algorithm for multiuser environments.

In VLDB, pages 186–197, 1990.

[84] Weiye Zhang and Per-Åke Larson. Dynamic memory adjustment for external mergesort.

In VLDB, pages 376–385, Athens, Greece, 1997. Morgan Kaufmann Publishers Inc.

[85] Weiye Zhang and Per-Åke Larson. Buffering and read-ahead strategies for external merge-

sort. InVLDB, pages 523–533. Morgan Kaufmann Publishers Inc., 1998.

[86] Jingren Zhou and Kenneth A. Ross. A multi-resolution block storage model for database

design. InInternational Database Engineering & Applications Symposium, 2003.

112


	1 Introduction
	1.1 Difficulties in database benchmarking at microarchitectural level
	1.2 Problems of static page layouts for relational tables
	1.3 Trade-offs of storing multidimensional data on disks
	1.4 Opposite access patterns during query execution
	1.5 Thesis road map and structure

	2 Background: adjacency model for modern disks
	2.1 The traditional model for disks
	2.2 Adjacent disk blocks
	2.2.1 Semi-sequential access

	2.3 Quantifying access efficiency
	2.4 Hiding low-level details from software

	3 DBmbench
	3.1 Introduction
	3.2 Related work
	3.3 Scaling down benchmarks
	3.3.1 A scaling framework
	3.3.2 Framework application to DSS and OLTP benchmarks
	3.3.3 DBmbench design

	3.4 Experimental methodology
	3.5 Evaluation
	3.5.1 Analyzing the DSS benchmarks
	3.5.2 Comparison to TPC-H
	3.5.3 Analyzing the OLTP benchmarks
	3.5.4 Comparison to TPC-C

	3.6 Chapter summary

	4 Fates database management system storage architecture
	4.1 Introduction
	4.2 Background and related work
	4.3 Decoupling data organization
	4.3.1 An example of data organization in Fates
	4.3.2 In-memory C-page layout

	4.4 Overview of Fates architecture
	4.4.1 System architecture
	4.4.2 Advantages of Fates architecture

	4.5 Atropos logical volume manager
	4.5.1 Atropos disk array LVM
	4.5.2 Efficient database organization with Atropos

	4.6 Clotho buffer pool manager
	4.6.1 Buffer pool manager design space
	4.6.2 Design spectrum of in-memory data organization
	4.6.3 Design choices in Clotho buffer pool manager
	4.6.4 Data sharing in Clotho
	4.6.5 Maintaining data consistency in Clotho

	4.7 Implementation details
	4.7.1 Creating and scanning C-pages
	4.7.2 Storing variable-sized attributes
	4.7.3 Logical volume manager

	4.8 Evaluation
	4.8.1 Experimental setup
	4.8.2 Microbenchmark performance
	4.8.3 Buffer pool performance
	4.8.4 DSS workload performance
	4.8.5 OLTP workload performance
	4.8.6 Compound OLTP/DSS workload
	4.8.7 Space utilization

	4.9 Chapter summary

	5 MultiMap: Preserving disk locality for multidimensional datasets
	5.1 Introduction
	5.2 Related work
	5.3 Mapping multidimensional data
	5.3.1 Examples
	5.3.2 The MultiMap algorithm
	5.3.3 Maximum number of dimensions supported by a disk
	5.3.4 Mapping large datasets
	5.3.5 Mapping non-grid structure datasets
	5.3.6 Supporting variable-size datasets

	5.4 Analytical cost model
	5.4.1 Analytical cost model for Naive mapping
	5.4.2 Analytical cost model for MultiMap mapping

	5.5 Evaluation
	5.5.1 Experimental setup
	5.5.2 Implementation
	5.5.3 Synthetic 3-D dataset
	5.5.4 3-D earthquake simulation dataset
	5.5.5 4-D OLAP dataset
	5.5.6 Analytical cost model and higher dimensional datasets

	5.6 Chapter Summary

	6 Data organization for hash join and external sorting
	6.1 Hash join
	6.1.1 Opposite I/O accesses in partition phase and join phase
	6.1.2 Organizing partitions along the semi-sequential path

	6.2 External sorting
	6.2.1 Opposite I/O accesses in two phases
	6.2.2 Organizing runs along the semi-sequential path

	6.3 Evaluation
	6.3.1 Implementation
	6.3.2 Experiment results

	6.4 Chapter summary

	7 Conclusions
	Bibliography

