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Abstract

This report describes an application of the SetA* algorithm to VLSI channel routing. We
consider an extended form of the classical routing problem where pins of nets can occur
anywhere within the channel. The derived algorithm can use general cost functions and
heuristics given that the total routing cost equals the sum of routing costs for each col-
umn. For this class of problems we show a graph-based approach for deriving an admissible
heuristic for any cost function. The approach is evaluated on a subset of classical routing
problems generated from ISCAS-84. We obtain results similar to the most efficient current
approaches.
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1 Introduction

Channel routing is a fundamental subtask in the layout process of VLSI-design. It is an
NP-complete problem which makes exact solutions hard to produce. Various heuristics have
been applied, but in practice solutions are often far from optimal. SAT algorithms based
on the reduced Ordered Binary Decision Diagram (OBDD, [1]) have been applied to either
extract optimal solutions within small critical areas of the channel [5] or investigate routing
of long channels with a restricted number of tracks [7]. Previous results have been limited.
The approach described in [5] is only feasible for extremely small and restricted problems
and [7] fails to solve classical routing problems with more than 13 tracks.

In this report, we introduce a new approach for deriving optimal solutions to an extended
class of routing problems where pins are allowed within the channel. This opens up for a
more general use of the routing algorithm to over-the-cell routing, intra-cell routing, or more
interestingly, as a leaf operation in global routing. Similar to [7], we consider a search starting
at the left-most column in the channel. In contrast to [7], however, we apply SetA* [3] for
expanding only the most promising partial routings. SetA* combines A* [4] and symbolic
search. Similar to A*, it focuses the search on a subset of the possible partial routings with
lowest expected cost. SetA* performs a complete search and finds optimal solutions given
an admissible heuristic (that is, a heuristic underestimating the remaining cost). Given that
the total routing cost is a sum of routing costs for each column, we show a general approach
for deriving an admissible heuristic function. As an example, we consider the sum of vias as
cost function.

We evaluate the approach on instances from two problem classes: extended and classical
channel routing. Surprisingly, the results show that the search fringe for channel routing
problems, when applying blind search, only grows moderately. This is in sharp contrast to
hard AI search and planning problems where the search fringe typically blow-up [3]. The
OBDDs representing only most promising partial routings seem to grow as fast as the blind
search fringe, and consequently no particular complexity reduction is obtained by applying
SetA*. The performance of our approach is similar to [7].

The remainder of this report is organized as follows. In Section 2, we describe previous
work. We then, in Section 3, define the extended routing problem and our approach for
deriving admissible heuristics. In Section 4, the application of SetA* is described. Experi-
mental results are presented in Sectionb, and finally in Section 6, we conclude and discuss
directions for future work.

2 Previous Work

The first application of OBDDs for channel routing was presented in [5]. In this paper a
general channel routing problem was considered with an arbitrary number of layers and pins
at any position. Every grid location is represented by an MDD variable [6] indicating which
net, occupies the position. In this way, a single MDD representing all possible routings can
be build. However, due to the extensive use of variables, the approach is only feasible for
extremely small and restricted problems.

A less general, but more efficient encoding, is described in [7]. In this encoding, a single



horizontal and single vertical layer is assumed. Nets shift tracks by doglegs in the vertical
layer. Wires are not allowed to fork and can only run from left to right in the channel. Several
implementations were experimentally evaluated using problems derived from the ISCAS-85
circuits. An MDD implementation had best performance and solved up to 13 tracks.

In [8], a similar approach was considered, this time using an MTBDD to enable optimal
solutions to be generated. The approach is feasible up to 15 tracks, but on a different
problem set than [7]. For both [8] and [7] the quality of the symbolic implementation is
unclear. The work in [8] apparently relied on some sort of transition relation encoding,
while [7] applied specialized MDD operations. The work presented in this report uses a
classical conjunctive partitioning of a transition relation for each column, mapping a set of
in-track assignments to their possible out-track assignments. In contrast to [8], we consider
a complete search approach that can focus on the most promising partial routings without
pruning any reachable routings.

3 Channel Routing as State Space Search

The channels we will consider, have a single lower layer with horizontal tracks and a single
upper layer with vertical tracks. A track can hold at most one wire. Wires are not allowed
to fork and are assumed only to run from left to right. A wire with a particular in and out
track over a column is assumed to have a unique cost. The total cost of a routing is the sum
of the column costs.

Definition: Optimal channel routing problem

Input: A channel with ¢ tracks and ¢ columns, A list of nets each defined by a set pins
given by grid positions, and a cost function.

Output: A minimum assignment of nets to tracks for each column such that all nets are
connected.

Consider the example shown in Figure 1 (a). This problem has three tracks, four columns,
and two nets. Two solutions are shown in Figure 1 (b) and (c). In order to apply SetA* for
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Figure 1: An example problem (a) and two solutions (b) and (c).

this problem, we need to restate it as a state space search problem. Given that columns are



routed left to right (from 1 to m), the initial states of this search is the set of valid track
assignments after the first column, and the goal states is the set of valid track assignments
before column m. Let a state be a track assignment s; of active nets between column 7 and
1+ 1. A partial routing of columns 1 to k is then a path s;---s;. Thus, a solution to a
routing problem with m columns is a path s;---s,, 1.

We can now define the cost function g : path — N and the heuristic function h : state — N.
The cost of a partial routing p = s1 -+ si is

k
9(p) = Z ci(si-1, i),
i=1
where ¢;(x,y) is the cost of routing column ¢ with in-tracks z and out-tracks y. The ini-
tial state so is an arbitrary track assignment since no nets enter column one. For a track
assignment s; the heuristic function is

h(si) = > e(n)+ > e(n),

neA() neu (i)

where A(i) is the set of active nets in column ¢ and U(7) is the set of unrouted nets located
after column i. The function e(n) estimates of the remaining cost of routing net n.

In order to define g(p) and h(s), we introduce the concept of a cost graph. The cost graph
of a net covering columns 1 to £ in a channel with n tracks is a layered graph where vertices
form a n x k — 1 grid with a beginning and end vertex. Each layer is fully connected (see
Figure 2). Each vertex in layer ¢ denotes a track assignment of the net between column i

1 2 k-1

Figure 2: The structure of the cost graph.

and 7+ 1. An edge between two vertices denotes a routing of the net over the associated
column. The edge cost corresponds to the cost of this routing.

The cost graph can be used to efficiently find a minimum routing cost of the net by per-
forming a Dijkstra search from the end vertex. However, notice that this approach assumes
that the cost of routing a net over a column is uniquely defined by the in and out track. This
may not always be the case as depicted in Figure 1 (b) and (c), where the routing of net
2 over column 3 is different but with the same in and out-tracks. For our purpose, unique
routings are obtained by restricting the vertical extension of a routing to the minimum range
occupied by ports of the net on the column and the in and out tracks. Thus, in the example,
only routing (b) is valid.

An admissible heuristic is easy to derive from the cost graph. For a search state, where the
net is active, its track assignment corresponds to a vertex in the cost graph. The minimum



remaining cost of routing the net is the value assigned to the vertex by Dijkstra’s algorithm.
This is a lower bound, since it does not consider interaction with other nets.

In the remainder of this note, the cost of a column routing equals the number of vias
in the routing. A via is a connection between the horizontal and vertical layer. We assume
vias on ports are free. The heuristic function will be defined from the cost graph of the cost
function. As an example, consider the net shown in Figure 3. The cost graph of the net is

Column

Track 2 A

Figure 3: A net example.

shown in Figure 4. After running Dijkstra’s algorithm from the right most vertex, we get

Figure 4: Cost graph of the example net.

the vertex values shown in Figure 5.

Figure 5: Vertex values of Dijkstra’s algorithm.



4 Boolean Encoding and SetA*

SetA* encodes states and explores the state space implicitly via OBDDs. For details, we refer
to [3]. A state equals a Boolean vector. A set of states V' is represented by its characteristic
function V(%) where Z is a vector of Boolean variables. The transition relation of the state

= =

space is given by a Boolean function T(Z,z"). T(Z,Z') is true iff there is a transition from
the state denoted by & to the state denoted by Z'. The states that can be reached in one
step from a set of states V' are defined by the I'mage

Image = (3Z.V(Z) NT(Z,7"))[Z/7].

The OBDD-encoding of a track assignment state s; is a binary encoding of the track numbers
of the nets alive between column 7 and 7 + 1. Given a transition relation 7;,; defining the
possible routings over column ¢ + 1, we get

sip1(F) = (3F. Tt (7, 7) A 54(3))[2/7].

4.1 Implementation I

Two transition relation implementations were made. In the first, 7; is defined as a conjunc-
tion of constraints for each unordered pair of live nets (i, ). The expression constraint (i, j)
states that there is no conflicts between the routing of net 7+ and j. It can be decomposed
into a horizontal and vertical part

constraint (i, j) = horizontal (i, j) A vertical (i, ).
The horizontal constraint states that
1. ¢ cannot touch a port of j
2. j cannot touch a port of ¢
3. All ’s out-tracks are different from j’s in and out-tracks
4. All j’s out-tracks are different from ¢’s in and out-tracks
5. 7 and j’s out-tracks are different

Notice that this definition ignores special cases for nets being born and dying on the
column. These are of course considered in the SetA* implementation. It also should be
noted that we do not need to state that ¢ and j’s in-tracks are different. This will hold by
induction. The vertical constraint is more complicated. Its abstract definition is

dogleg (i) A dogleg(j) = disjoint(dogleg;, dogleg;)

Again we ignore details. The constraint expression is reflexive and only depends on the
variables used to define the in and out-tracks of net 7 and 5. This allows for a conjunctive
partitioning [2] of T; where the first partition contains the constraints between the first live
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net and all subsequent live nets. The second partition contains the constraints between the
second live net and all subsequent live nets etc..

When routing a column, SetA* needs to be able to extract transitions with a particular
change in g and h-value. We obtain this simply by conjoining the transition relation of
a column with an OBDD representing such transitions. This OBDD is generated with a
special OBDD function that in a topdown fashion tracks all possible transitions and only
picks those corresponding to a particular change. Separate OBDDs §(g, h) are computed
using this function. Given r live nets on column i, the resulting image computation finding
si11 for 6(g, h) is

sitv1(g, h) = (3',1“;':—1 Tqu AR (33311+1 Tzl+1 NO(g,h) N s;)--- )[f/fl]

where Tij is the j’th partition of the transition relation of column ¢ and fg is the variables

this partition depends on.

4.2 Implementation II

In a second implementation, the image computation was broken up into a number of itera-
tions. In each iteration, a single net is routed over the column without conflicting with any
previous nets routed over the column in earlier iterations. This implementation allows the
change in g and h-value to be computed along the way according to the g and A change of
each net. This implementation assumes a classical routing problem with ports only on the
top and bottom of the channel. Thus, for this implementation we do not use two tracks for
these ports.

The search performed by SetA* proceeds in the usual way. First the transition relation
of each column is computed. Then the search queue is initialized with the possible track
assignments of live nets after column one. In each iteration, the search node with the
lowest f-value (f = (1 —w)g + wh) is popped from the search queue. The data structure
of the search queue nodes has been extended such that it stores which column the set of
track assignments belong to. This information is used to apply the right transition relation.
Children corresponding to particular g and h-value changes are generated and reinserted
in the queue. Notice that the SetA* implementation of channel routing handles general
transition costs (the original version of SetA* assumed unit edge costs).

5 Experimental Evaluation

Our SetA* channel router has been evaluated on number of problem sets. In this report, we
describe two of these experiments. The first has been generated from the ISPD-98 global
routing benchmarks placed with Timberwolf. These channel routing problems are in the
extended form with ports within the channel. The second problem set is a subset of the
ISCAS-85 benchmarks used in [7]. These problems are classical channel routing problems
with ports only on the bottom and top of the channel.

All experiments were carried out on a Linux kernel 2.4.16, 500 MHz Pentium III with
512KB L2 cache and 512MB RAM. The time limit (TIME) was 600 seconds and the memory



limit (MEM) was 200 MB. The upper bound of the size of OBDDs in the search queue, the
number of allocated OBDD nodes and the size of the operator cache of the OBDD package
was hand-tuned for best performance. The weight of SetA* was set to 0.5 to generate optimal
solutions. The measured data are:

Number of columns

Number of tracks

Number of nets

Density (average number of active nets per track)
Time (sec) for building transition relation in seconds
Total CPU time (sec)

Cost of solution

Number of iterations

|Q|maz @ Max size of queue during search

U Upper bound of OBDDs in the search queue

FQNHRI 0
-+

5.1 Implementation I

For the ISPD-98 experiment, we generated problems with increasing number of tracks. The
results are shown in Table 1. For all problems the upper bound u was set to 500. The

Lcl t[n] d] | T]O|#t][Qlma]

40110125023 | 1.7 25|10 | 28 70
40110130033 | 26| 44| 6| 45 83
40110135028 | 15| 21| 8| 20 o4
20115125023 1.7| 25|10 | 28 70
201151301033 | 26| 44| 6| 45 83
20115135028 | 15| 21| 8| 20 04
20120 |42]0.26 | 5.6 |10.4 |13 | 163 84
2012040026 | 51| 85|12 95 71
20120 |41 0.28 | 83| 145 |15 | 67 111
20125(35(017 | 1.7 47| 5| 20 %)
20| 25|40 0.21 | 28.0 | 46.1 | 10 | 158 102
20130(30]0.17| 85 |11.5|10| 32 125

Table 1: Results of the ISPD-98 experiment.

performance of SetA* is promising on this problem set. However, an evaluation of the
algorithm can not be based on these results since the locality of nets may be crucial for the
good performance, and we have no previous results to compare with.

The ISCAS-85 problems were obtained from Kolja Sulimma and were used for the exper-
imental evaluation of the channel router algorithm described in [7]. It is unclear though, how
large a fraction these problems constitute of the benchmark suit used in [7]. The problems
are classical channel routing problems with no predefined number of tracks. For each prob-
lem, we generated a number of subproblems with increasing number of tracks. The track
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numbers reported below include two tracks used to hold the ports. There are two problem
sets Add and C432. Table 2 shows the results of the Add set. A dash (-) in the cost entry
C indicates that no routing exists. The results for the C432 set are shown in Table 3. The

L clt[n] d[T] T]C[#t]|Qlmw ]| u]

3814110048 0.1 03|19]| 96 14 | o0
4716 127104906 | 1.5 -1 214 27 | oo
41 14112053 |0.1| 04120 153 22 | o0
46 | 8 | 20 | 0.47 | 1.3 | 19.3 | 47 | 408 93 | o0
2515 6103201 02| 8| 45 15| o0
Table 2: Results of the ISCAS-85 Add set.
el t[n] d] ] T[C[#t[|Qmaw]| v |
83| 4133|047 | 0.2 03| -| 58 16 | oo
83| 5133038 | 04 0.8 129|231 30| oo
89 | 11 | 58 | 0.56 - | TIME | - - -1 200
101 | 9| 57| 0.60 | 22.9 57.8 | -| 75 - 1 200
99| 858 |056| 4.0 113.3| -] 200 61 | 200
97 | 10 | 63 - - | TIME | - - -l -
101 7153064 4.1 10.4 - | 170 43 | 200
101 | 8 |53 | 0.56 - | TIME | - - S -
95| 948 0.58 - | TIME | - - - -
84| 5123|1040 | 0.5 271 - 30 6| oo
84| 623 (1033| 0.6 3.2 119 | 250 54 | oo

Table 3: Results of ISCAS-85 C432 set.

performance of SetA* on the ISCAS-85 problems is similar to the algorithm described in [7]
and [8]. As [8], we observe very large intermediate OBDDs in the image computation. In
addition, the OBDD representing each partition is about twice the size of the sum of the OB-
DDs representing the constraints they are a conjunction of. Variable reordering can reduce
this size, but since a set of OBDD variables is used to represent different nets, the optimal
variable ordering changes from column to column. Another interesting observation is that
the search frontier of blind OBDD-based search grows only moderately. Focusing on the
most promising track assignments does not seem to reduce the size of the frontier OBDDs.
This is often the case for hard Al search and planning problems. Consequently applying
SetA* to this problem does not scale the size of problems that can be handled. Performing
best-first search by changing w from 0.5 to 1.0 does not reduce the search complexity, but
results in solutions with substantially lower quality.

5.2 Implementation II

Since this implementation only handles classical routing problems the ISPD-98 problems are
not applicable. For the ISCAS Add and C432 problems we get the results shown in Table 4
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and Table 5 (recall that the corresponding solution with implementation I normally needs
more tracks)

Lclt[n] d[T [ T]C|#it]|Qma| u ]
3813110059 ]0.1(0.2|23]| 40 0] o0
47 151271059 0.7] 08|52 46 24 | o0
41131121068 1 0.1]0.2 27| 42 0] oo
46 | 7120]10.76 | 3.5 | 5.0 | 53| 89 56 | oo
2514 61033]00(0.1 (11| 30 0| o0
Table 4: Results of the ISCAS-85 Add set.

L cl tln] d] T] T] Cl#it]|Qmw]| v |
83| 433]0.42 0.2 0.4 38| 93 0| c©
89 | 11 | 58 | 0.56 | 107.8 | MEM - - - | 500
101 | 9|57 0.60|61.48 | 286.1 | 121 | 113 135 | 500
99| 8|58 |0.56| 13.5 34.0 | 117 | 448 59 | oo
97 110| 63 | 0.51 | 99.7| 295.0 | 120 | 109 129 | oo
101 7153 0.64 11.5 15.7 1 102 | 101 90 | oo
95| 91|48 | 0.58 | 58.9| 223.8 - - - | oo
95|10 | 48 | 0.58 - | TIME - - - o
84| 512311037 | 0.73 3.2 | 38| 92 0] oo

Table 5: Results of ISCAS-85 C432 set.

The results of implementation II are better than for implementation I due to a less
complex image computation. It should also be noticed that a lot fewer iterations seems
to be necessary when not placing ports on the tracks since this may cause more frequent
backtracking.

6 Conclusion and Outlook

We have presented an approach for applying SetA* to an extended form of channel routing
problems. We show that SetA* can be extended to handle conjunctive partitions and general
edge costs and develop an approach for computing an admissible heuristic for any edge cost
function. The experimental evaluation of our approach shows a performance profile similar
to the most efficient current algorithms. Implementation I and II are not more much more
efficient than OBDD-based blind search. This indicates that the main source of complexity
of channel routing problems is very large transition representations. It is unclear at this
point, why channel routing problems are so different from the hard AI search problems
solved successfully with SetA*. A deeper understanding of permutation problems with global
change (like channel routing problems) is on our current research agenda.
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