
Improving Web Performance in Broadcast-Unicast

Networks

Mukesh Agrawal Amit Manjhi Nikhil Bansal

Srinivasan Seshan

July 2002

CMU-CS-02-159

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Satellite operators have recently begun offering Internet access over their networks. Typically, users connect
to the network using a modem for uplink, and a satellite dish for downlink. We investigate how the perfor-
mance of these networks might be improved by two simple techniques: caching and use of the return path on
the modem link. We examine the problem from a theoretical perspective and via simulation. We show that
the general problem is NP-Hard, as are several special cases, and we give approximation algorithms for them.
We then use insights from these cases to design practical heuristic schedulers which leverage caching and
the modem downlinks. Via simulation, we show that caching alone can simultaneously reduce bandwidth
requirements by 33% and improve response times by 62%. We further show that the proposed schedulers,
combined with caching, yield a system that performs far better under high loads than existing systems.
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1 Introduction

A recent development in Internet access technologies is satellite based Internet service. In systems such as
DirecPC [1] and Starband [2], users connect to the network via a satellite dish and a modem. Fig. 1 depicts a
typical system. When a user visits a web page, his modem transmits the request over the telephone network
to the satellite service’s Network Operations Center (NOC). The NOC retrieves the web page from its cache
or from the origin server over the Internet, and sends the data to a satellite. The satellite echoes the data,
which is picked up by the user’s satellite dish.

The appeal of these services is that satellite transmission can be much faster than modem transmission,
accelerating both simple web page access and larger file transfers. However, as the satellite is a shared
resource, the performance of satellite transmission decreases as the number of users increases. In contrast,
the currently unused modem downlinks, while much slower than satellite, provide dedicated, or independent,
channels to each user. Unlike the satellite channel, the aggregate capacity of these links scales directly with
the number of users. We estimate that, in a 100,000 user system, the ratio of aggregate modem bandwidth
to satellite bandwidth will be greater than 12:11 [3].

Given a small enough user population, and hence, a small enough service demand, it is possible to service
all requests via the satellite link. As the user base grows, and during peak usage periods, the satellite is
likely to become overloaded. It is important to understand when this will occur (to estimate the capacity of
the system), and how to maintain performance under overload conditions.

We argue that when the system is highly loaded, performance is optimized by exploiting the fundamental
properties of each type of link. The satellite link, being a broadcast channel, is well suited to the delivery
of popular objects — those objects which many users are likely to want. Being a high speed channel, it is
also well suited for the delivery of large objects. The modem links have the properties of being dedicated,
and self-scaling. They are ideal for the delivery of small and unpopular objects. By shifting a few small
objects, which still receive reasonable performance, to the modem links, we can reduce contention for the
shared channel, thereby increasing capacity of the system.

As we explain below, in order to better exploit the power of the broadcast link, we require storage at
the client nodes so that they can later benefit from cache hits. We note that satellite network operators
already offer receivers, such as DirecTV Receiver with TiVo [4], with large storage capacity. Given the low
and decreasing cost of disks, it is inexpensive to use some storage to cache web objects.

Fig. 1 depicts our model. The figure shows a system with a single user node; the generalization to multiple
users is straightforward. In our model, each user is connected to the network via a modem, which may be
used for bidirectional communication, and a satellite dish, which is capable of reception only 2. In addition,
the user node has a disk which may be used to store recently transmitted objects from both the modem and
satellite channels.

Any object transmitted on the satellite link, whether requested by the node owning the cache or not,
may be entered into the cache. Consider users A and B, and web page W . Suppose A loads page W at time
t, and that the page is transferred via satellite. User B then places W in his cache. Later, at time t + ε,
when B accesses W , it is loaded directly from his cache. We refer to this caching of objects requested by
other users as opportunistic caching, or OpCaching. The zipf-like distribution of web-proxy workloads [5]
implies that there is sufficient locality amongst requests of different users for this approach to succeed.

Given this model, we seek to optimize mean response time. Response time is the time from when a user
sends a request until he receives the last byte of the reply. We assume a response time of zero if the request
is a cache hit in the client’s cache. To accomplish this optimization task, we must answer two questions for
each object transmitted. Namely, we must determine both when to send the data item, and how to send it
(i.e. which link should be used). The second question is particularly significant in our setting because the
links are fundamentally different.

In Sec. 2, we approach the problem from an analytical perspective. The aim is to understand how we
might compute an optimal schedule offline, given complete knowledge of the series of user requests. Based
on the theoretical analysis, Sec. 3 proposes and evaluates offline heuristics. This offline evaluation isolates

1We estimate that DirecPC dedicates ten 45 Mb/sec satellite channels to its roughly 100,000 users.
2We use modem and unicast interchangeably. We also use satellite and broadcast interchangeably. We also use document,

file, object and response interchangeably.
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Figure 1: Satellite based Internet access system. Links are bidirectional unless otherwise indicated. Dashed
lines indicate elements not exploited in existing systems.

heuristic performance from predictor accuracy. Next, in Sec. 4, we use promising aspects of the offline
heuristics to develop online schedulers. Our performance evaluation of these online schedulers shows that
clever scheduling, coupled with OpCaching, improves both scalability and response time under high loads.

Specific contributions of this work are:

• Analyzing the problem of scheduling the combination of broadcast and unicast channels. We also ana-
lyze simplified variants of this scheduling problem. We give approximation algorithms for the variants
that we show to be NP-Hard. For several other special cases, we give polynomial time algorithms.

• Proving a lower bound of Ω(
√

n) on the competitive ratio for any online algorithm.

• Introducing opportunistic caching, which can reduce the bandwidth required to service peak loads by
33%, while improving mean response time by 62%.

• Describing schedulers that gracefully degrade performance during high load periods. The schedulers
simultaneously achieve lower response times, and complete more requests than the strategy of using
the satellite alone.

• Demonstrating that, with typical web workloads, it is possible to accelerate large object access, while
providing good performance for small objects, even at peak loads.

2 Theoretical section

In this section, we analyze our problem from a theoretical perspective3, assuming an infinite cache at the
client’s end. Therefore, no file needs to be broadcast more than once. We gradually build from a simple
scenario, where only the broadcast downlink is used and all documents are of the same size, to the most
realistic scenario, which includes broadcast and unicast links and variable sized objects. We investigate the
problem of finding optimal offline 4 solutions for each scenario. Table 1 summarizes the results. In the last
subsection, we consider online algorithms and prove that no o(

√
n)-competitive algorithm exists for either

the broadcast-unicast case, or its variants.
We show most of the scenarios to be NP-Hard, and give approximation algorithms for them. Our

algorithms use resource augmentation, a paradigm introduced by Kalyanasundaram and Pruhs [6] and widely
used in scheduling literature. The idea is to allow our algorithm a slightly faster (1+ ε) speed processor. We
then compare our solution to the optimum solution, but the optimum is only allowed to use a unit speed

3Formally, we explore minimizing: ∑

j∈Clients

∑

i∈Files

max((resij − reqij), 0)

where reqij is the time when client j requests object i (∞ if no such request is made), and resij denotes the time when the
client receives the document (either by the broadcast link or the unicast link, whichever is first).

4Offline means that the NOC a priori knows the request dates for all objects, i.e. it has complete future knowledge.
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Table 1: Summary of theoretical results
Downlink Files Results Section

Broadcast Same-size O(n3) 2.1
Broadcast Variable-size NP-Hard, (1 + ε)-speed, (1 + 1

ε
)-approx 2.2

Broadcast Uniform popularity 3-approx, optimal (special case) 2.3
Broadcast + Unicast Same-size NP-Hard 2.4

Broadcast + Unicast Variable-size (1 + ε)-speed,(1 + 1
ε
)-approx 2.4

processor. We say that an algorithm is (s − speed, c − approximate) if it uses an s times faster processor
than the optimal algorithm and produces a schedule which is no more than c times worse than that of the
optimum. Note that in our scenario providing a speedup of s translates to increasing the bandwidth of a
link by a factor of s.

To obtain a more realistic model, we can associate a release date ri with each file i. This denotes the
time when the document is first available to be sent. It can be used to account for the time it takes for
the NOC to fetch the document from the origin server or the fact that a document (such as the score of a
basketball match) is only available after a certain time. Most of the techniques we present in this section
can be extended to incorporate release dates. We can also envision a scenario in which the NOC has more
than one satellite downlink at its disposal, all of which are equivalent (users OpCache files sent on either of
the links). We provide details of these extensions wherever necessary.

2.1 Same sized documents - broadcast only

We first consider the simplest case when there is a single broadcast channel, all files have unit size, and
requests have arbitrary weights. We show that this problem can be solved by computing a minimum cost
perfect matching in a suitably constructed graph.

Let m denote the number of unique documents (files). For each file i, let cij denote the cost incurred if
the file is served at time j. That is, cij equals the sum of the weighted response times incurred by clients if
file i is sent at time j. We construct a bipartite graph with m nodes on the left, where each node corresponds
to a document, and m nodes on the right, where each node corresponds to a unit time interval. The edge
ij between node i on the left and node j on the right has cost cij . Finding a schedule now corresponds to
finding a minimum cost matching in the graph, which can be solved in O(m3) [7]. If there are release dates
ri for each document i, the same method applies by setting cij to ∞ for j < ri.

For the case of multiple broadcast channels, b > 1, we modify the construction as follows. Let T = dm
b
e.

Clearly all files will be broadcast by time T in the optimal schedule. Let us label the channels 0, . . . , b − 1.
We now create a complete bipartite with m nodes on the left and bT nodes on the right, where cij denotes
the cost of sending file i on channel b j

T
c and time j − T b j

T
c. Every matching in this graph corresponds to a

valid schedule and vice-versa. Thus, the result follows. Again, if we have release dates, the bipartite graph
can be modified suitably.

2.2 Different sized documents – broadcast only

Unlike the case of unit size documents, scheduling different sized documents on a broadcast link is NP-Hard.
We show that this case is a generalization of the minimum weighted tardiness5 problem, which is NP-Hard
[9]. We also give an approximation algorithm for this problem.

For multiple channels, the hardness follows trivially from a reduction from the Partition problem [8].
Given a set of numbers s1, . . . , sn with total sum S, the partition problem asks whether the numbers can be
divided into two parts where the sum of each part is exactly S/2. Now consider the case where we have 2
broadcast channels, we can simply have documents with sizes s1, ..., sn, such that each document is requested

5Given a set S of tasks all released at time 0, let s(i), w(i) and d(i) denote the processing time (size), weight and deadline
respectively of job i. Given a schedule, the tardiness of a job is defined as the amount by which it exceeds its deadline (the
tardiness is 0 if it finishes before its deadline). Find a single processor schedule that minimizes total weighted tardiness [8].
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at time S/2. Observe that the optimal broadcast schedule has cost zero if and only if there exists a partition
for the original problem.

Proving NP-Hardness: For each job i with size, weight and deadline si, wi and di in the weighted
tardiness problem, let there be a corresponding document in our scheduling problem (call it i), which has
size si and for which wi requests arrive at time di. In any schedule, the weighted tardiness of file i is exactly
identical to the weighted response time in our broadcast schedule. Thus, our problem is at least as hard. It
is interesting to note that the weighted tardiness problem remains NP-Hard even if all the weights are one
[10]. This corresponds to the fact that our broadcast scheduling is hard even if each file has just one request.

Notice that if we have release date constraints, and if wi users send requests for file i at time ri, then
computing an optimal broadcast schedule is identical to the problem of minimizing the weighted response
time on a single machine. Thus, our problem generalizes the weighted response time problem, for which no
o(n) approximation algorithms are known (except for special cases). Thus, it seems hard to find a good
approximation algorithm that does not use speedup for our more general single channel broadcast problem.
Instead, we give a speedup-based approximation algorithm.

A ((1+ε)-speed, (1+ 1
ε
)-approximate) Algorithm: First observe that the response time in the

broadcast schedule can be thought of as
∑

i∈Files

∑
t≤ci

oi,t, where oi,t the number of outstanding requests
for file i at time t and ci is the time when file i is completely transmitted. Consider the fractional response
time metric, where instead of counting the total number of outstanding requests for file i at time t, we
consider the fraction of the file remaining at time t times the number of outstanding requests. Thus, if a
third of file i is sent by time t we count 2/3oi,t for that time in our metric. Clearly, for any schedule the
value of the fractional response time metric is no more than the value of the original response time metric.

Let Opt be the schedule which minimizes the value of the total response time, V (Opt) denote its value,
and F (Opt) denote its fractional response time. Thus, we know that F (Opt) ≤ V (Opt). Now let Opt′ be
the schedule which minimizes the fraction response time. Thus, F (Opt′) ≤ F (Opt) ≤ V (Opt).

Let us assume for now that the file can be broken up into infinitesimally small chunks. Then Opt′ can be
computed optimally, since it simply reduces to the problem of minimizing the broadcast schedule with unit
size objects with arbitrary weights. More precisely, to transform the original problem, if there was a request
for a file of size si, we break it up into si requests, one for each chunk of the file. Each chunk of the file has
weight 1/si and size 1.

Having obtained Opt′, we observe that if we have a (1 + ε) speed processor and just mimic the schedule
of Opt′, then at the time when we finish sending file i, Opt′ would still have a β = ε

1+ε
fraction of the file

left. Thus, if we have a faster processor then the cost of schedule Opt′ using the original metric, V (Opt′),
can be no more than 1

β
= 1 + 1

ε
.

Thus, we have a (1+ε-speed, 1+ 1
ε
-approximate) algorithm. Recall, we assumed that a file can be broken

into very small chunks. However, simply breaking it into chunks of size cε, where c < 1, suffices. This affects
the approximation negligibly.

Making the Schedule Non-preemptive: We observe that the schedule returned by Opt′ might
schedule various chunks of the same file in non-contiguous time blocks. However, it can be made non-
preemptive. Non-preemptive schedules are preferable in real systems, because there might be overheads
associated with preemption. To make the schedule non-preemptive, we simply consider the times when ε

1+ε

fraction of a file in Opt′ is remaining. Call this time ti for file i. We now order the files according to increasing
ti and broadcast them in this order using our 1 + ε faster processor. The above procedure clearly produces
a feasible non-preemptive schedule.

2.3 Different sized documents, uniform arrivals over time — broadcast only

Although a non-speedup approximation algorithm for the general case of scheduling variable sized objects
on a broadcast link is unlikely, such algorithms are possible for important special cases of the problem. For
the case where the request rate, λi, is uniform over time for all objects i, we give a (1-speed, 3-approximate)
algorithm. For the further constrained case where the request rate of an object is correlated with its size,
si, such that the density of objects, λi/si, satisfies λi

si
>

λj

sj
⇐⇒ λi > λj , we show that scheduling in order

of decreasing density is optimal.
Note that if the file reaches the clients at time t over the broadcast channel, then the total expected waiting
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time for the outstanding requests for the file is
∫ t

0
(t − x)λidx = λit

2/2. Thus, the problem of minimizing
the total response time in this case is equivalent to minimizing the weighted response time squared where
all the release dates are 0, and the weight of the file is given by λi.

A (1-speed, 3-approximate) Algorithm: Transmitting the files in non-increasing order of λi/si gives
us the required algorithm. Let ri denote the response time of file i and let Opt denote the optimal value of∑

i λir
2
i . We consider another metric which we call the fractional weighted response time squared. In this

metric we divide file i into si chunks each of size 1 and weight λi/si each. If rij denotes the response time
of the jth chunk of file i, the value of the metric is

∑
i

∑si

j=1
λi

si
r2
ij . Clearly, for any schedule, the value of

fractional weighted response time squared is at most that of weighted completion squared metric. Let FOpt

denote the fractional weighted response time squared for the schedule Opt.
Let Opt(F ) denote the cost of a schedule which minimizes the fractional weighted response time squared.

Clearly, Opt(F ) ≤ FOpt ≤ Opt. Now, finding the optimal fractional schedule is easy, since each job is of
size 1 and weight λi/si. Simply scheduling the jobs according to non-increasing order of λi/si minimizes
the fractional weighted response time squared. We show that the optimal fractional response time schedule
yields a solution that is no more than 3 times worse than the optimal traditional response time schedule.
This gives our desired 3-approximation.

Let ri0 denote the starting position of the first chunk in the optimal fraction schedule. Thus, the
contribution of file i to the fractional weighted response time squared is λi/si

∑si

j=1(ri0 + j)2 whereas the

contribution to the original metric is λi(ri0 + si)
2. Note that

λi/si

si∑

j=1

(ri0 + j)2

= λi(r
2
i0 + ri0(si + 1) + (si + 1)(2si + 1)/6)

≥ λi(r
2
i0 + ri0si + s2

i /3)

≥ 1

3
λi(ri0 + si)

2

Thus, the 3-approximation follows.
We observe that the schedule produced by the algorithm above has the advantage of being non-preemptive.

If the file sizes and weights are small compared to the time horizon, it can be show that the schedule produced
is close to optimum.

The above method works for any n (n > 0). If instead of λit
2, the response time metric is λit

n, the above
method gives a (n + 1) − approximate algorithm (∀ n ≥ 2).

An Optimal Algorithm: When the order of λi

si
is the same as λi, scheduling in decreasing order of

λi/si is optimal. We show that this holds whenever the response time metric is λtn, for any positive n.
Assume to the contrary. Then, there exist 2 consecutive jobs, say job 1 and job 2, in an optimal schedule
OPT, such that 2 is scheduled before 1, even though (λ2

s2

< λ1

s1

). We will show that switching them improves
the metric, and so, we get a contradiction to optimality.

Note that switching 1 and 2 does not affect the schedule of any jobs except these two (since these are
consecutive jobs). Let the schedule obtained by switching 1 and 2 be OPT’ and the contribution of response
time from job 1 and 2 be ROPT.

Let x be the time when job 2 starts in OPT. Then,

ROPT = λ2(x + s2)
n + λ1(x + s1 + s2)

n

ROPT’ = λ1(x + s1)
n + λ2(x + s1 + s2)

n

We show that

λ2(x + s1 + s2)
n − λ2(x + s2)

n ≤ λ1(x + s1 + s2)
n − λ1(x + s1)

n

and hence, interchanging the jobs leads to a better schedule.
If s1 ≤ s2 , we are directly done, since λ2 < λ1.
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If s1 > s2 , we rewrite as

λ2s1(

n−1∑

i=0

(x + s1 + s2)
i(x + s2)

n−1−i) ≤ λ1s2(

n−1∑

i=0

(x + s1 + s2)
i(x + s1)

n−1−i)

Now, since λ1s2 > λ2s1, and the right hand side summation is term-by-term larger than the left hand
side summation, it follows that OPT’ is better than OPT. Thus, the contradiction is shown.

2.4 The Broadcast-Unicast problem

We now explore the target problem of scheduling for both the broadcast and the unicast channels. Unfor-
tunately, we show that the Broadcast-Unicast problem is NP-Hard, even if all files are unit-sized. Although
we give an approximation algorithm, it provides few insights into devising a practical algorithm.

Proving NP-Hardness: We give a transformation from Exact Cover by 3-Sets6, in which each element
occurs in at most 3 subsets [8].

Given an instance of Exact Cover by 3 sets, let the elements of X be u1, . . . , u3q and let Si ∈ C denote the
3-element subsets. We create an instance of the Broadcast-Unicast problem as follows: Each ui corresponds
to a client and each Si corresponds to a file. Client ui requests file j iff i ∈ Sj . Note that since each element
lies in at most 3 sets, each client requests at most 3 files. Next, we add dummy requests for each client such
that total number of files requested by a client is exactly q + 1. A dummy request for a client ui is a file
which is requested by ui only. Finally, all the q + 1 requests by each client (u1 through u3q), are made at
time t = q. Our goal is to show that all the requests can be satisfied by time q (i.e. the Broadcast-Unicast
problem has cost zero) iff the original problem instance has an exact cover.

First, we show that given an exact cover C ′ we can satisfy all requests by time q. This is done by
transmitting file i for each Si ∈ C ′ over the broadcast channel. By the definition of exact cover, the
broadcast schedule will satisfy exactly one request for each of the 3q clients. Finally, for each client we
simply send the remaining q requests using its personal unicast link. Thus, all requests are satisfied by time
q.

For the other direction, we show that any zero cost broadcast-unicast schedule gives an exact cover. Since
all requests are satisfied by time q, each client has at least one request satisfied by the broadcast channel.
Now, any file transmitted by the broadcast channel can either satisfy 3 clients (if it is a file corresponding
to some Si) or 1 client (if it is a dummy file for some client). Since there are 3q clients and each has at least
one request satisfied by the broadcast channel, every file sent over the broadcast channel must correspond
to some Si. Thus, we have an exact cover in the original instance.

Hence, finding the optimal Broadcast-Unicast schedule is NP-Hard. Moreover, it is also impossible to
obtain a non-speedup approximation algorithm for the problem (since any algorithm which is not optimal
has a non-zero cost, whereas the optimal cost is zero). Although no 1-speed approximation is possible, a
(1+ε)-speed, (1+ 1

ε
)-approximate algorithm is possible using linear programming. We give the details below.

A ((1+ε)-speed, (1+ 1
ε
)-approximate) Algorithm: The idea is to obtain a schedule which is optimal

for the fractional response time metric. However, in the case of both unicast and broadcast, there is no easy
combinatorial algorithm for optimizing the fractional response time. We obtain the fractional optimum using
a time-index linear programming formulation. We then use the schedule obtained and show that with a (1+ε)
speed-up in the capacity of the both the unicast and broadcast channels we can obtain a schedule whose cost
is no worse than (1 + 1/ε) times the optimum with respect to the (non-fractional) weighted response time.

Let si, ri denote the size and release time of file i. Let wj,i be the weight that user j assigns to file i. bi,t

will be denote the amount (bytes) of file i transmitted over the broadcast link at time t. Let cj denote the
bandwidth of the unicast channel of user j. Let C denote the bandwidth of the common broadcast link. Let
uj,i,t denote the amount of file i sent to user j at time t over the unicast channel.

Consider the following linear program:

6Given a set X with |X| = 3q and a collection C of 3-element subsets of X. Does there exist an exact cover for X, i.e., a
sub-collection C ′ ⊆ C such that every element of X occurs in exactly one member of C ′? The problem is NP-Complete even if
no element occurs in more than three subsets.
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Minimize

∑

j∈Clients

∑

i∈Files

T∑

t=0

wj,iremj,i,t

Subject to

∑

i∈Files

bi,t ≤ C ∀t (1)

∑

i∈Files

uj,i,t ≤ cj ∀j, t (2)

T∑

t=0

bi,t + uj,i,t ≥ pi ∀j, i (3)

remj,i,t = 1 − 1

pi

(

t−1∑

x=0

(bi,x + uj,i,x)), ∀j, i, t (4)

remj,i,t ≥ 0 ∀j, i, t (5)

bi,t ≥ 0 ∀i, t (6)

uj,i,t ≥ 0 ∀j, i, t (7)

Constraints 1 and 2 ensure the bandwidth constraints for the broadcast and the unicast channels. Con-
straint 3 ensures that all the bytes of a file are transmitted by the schedule. Constraint 4 defines the fraction
of the file remaining by time t. The last three constrains are positivity constraints. The objective function
measures the fractional weighted response time of the broadcast-unicast schedule.

Having obtained the optimal LP-solution (the LP can be solved in polynomial time using the ellipsoid
algorithm [7]), we obtain a schedule as follows: starting from time t = 0, whenever the LP solution sends
bi,t units of file i by t, we send bi,t(1 + ε) units of i our faster processor. On the broadcast channel, we start
sending the file from its beginning, i.e., we send the first (1 + ε)bi,0 units at time 0, next (1 + ε)bi,1 units
at time 1 as so on. For deciding what to send on the unicast channel we do the following: for a file i and
user j, let t(i, j) denote the earliest time when 1/(1 + ε) fraction of the file has been sent by the LP, i.e.

remj,i,t(i,j) ≤ ε/(1 + ε). Let btotal(i, t) =
∑t−1

x=0 bi,x. On the unicast channel, beginning from time t = 0, we
start sending the file i starting from the unit (1 + ε)btotal(i, t(i, j)). Notice that using this procedure, every
user j will have the file i by time t(i, j). Finally, arguing as in Sec. 2.2, it can be seen that the solution
obtained is no more than (1 + 1/ε) times the optimum.

Note that in the above schedule, a part of the file may be sent via broadcast, and the remaining part
might be sent via unicast. If we want to ensure that a file reaches completely via a single channel, we can
do this if we have a (2 + ε) speedup, ε > 0. Note that for every user j, there exists time t(i, j) such that
at least 1/(2 + ε) fraction of file i either reaches by unicast or by broadcast. Now, if both our unicast and
broadcast are sped up by a factor of (2 + ε), the complete file will reach by time t(j, i). Again rounding the
LP solution as above, it can be seen that this gives us a (1 + 2

ε
)-approximate schedule.

This solution is applicable even if the unicast channels have different bandwidths, and we need to consider
release dates.

2.5 Online Algorithms

In this subsection, we consider how well online algorithms perform as compared to their offline counterparts
in our scenarios. An algorithm is said to be c-competitive if it is a c-approximation algorithm that computes
online.

Because an offline algorithm can use the cache in a more judicious fashion by pushing documents that
it knows would be requested next, it can perform considerably better than an online algorithm. We prove
that no o(

√
n)-competitive algorithm exists, even for the simple case in which just one broadcast channel

is available for sending files, and the files are same-sized. This result holds even if we make changes to this
model like adding back the unicast channels, having different sized-objects, and having multiple broadcast
channels.
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Consider 2k unit length files that are each requested at time t = 0. At time k, there are k additional
requests for each of the k remaining files. The document sent in slot [k + i − 1, k + i) would contribute
i ∗ (k + 1) + k to the total response time. Thus, the total response time for the online schedule is Θ(k3).
The offline scheduler would send out the k popular ones first, and hence, the total response time would be
Θ(k2). The total number of requests n=Θ(k2), and hence, the competitive ratio is Θ(

√
n). The above also

shows that if no more than k requests arrive at any time, then a lower bound of Ω(
√

k) holds.

3 Offline Heuristics

Since finding an optimal solution to the offline broadcast-unicast problem is NP-Hard (Sec. 2.4), in this
section, we devise and evaluate heuristics to minimize the average response time. Our primary focus is to
find heuristics that work well in an online setting, since our algorithms would finally be deployed in an online
setting. In addition, we also evaluate heuristics that would work well in an offline setting, to get a sense
of how much better we could perform if we had a perfect predictor. Subsection 3.1 details our heuristics.
In Subsection 3.2, we present the results and expound on the lessons learned. These in turn motivate our
choices for the online algorithms evaluated in Sec. 4.

3.1 Heuristics

Instead of solving the whole problem in one step, we solve the broadcast case first, and then use it to determine
the unicast schedule. This is a natural approach, since the broadcast channel has much higher bandwidth
and also happens to be shared, thus making it imperative to find a good schedule for it. Fortunately, we
also have some heuristics that are guaranteed to work well in the broadcast-only case (Sec. 2.2, 2.3).

Note that the broadcast schedule tells us the time when a particular file would reach the clients. For
determining each client’s unicast schedule, we then step through its requests in order of their arrival time,
and send a requested file over the unicast link iff doing so makes the new waiting time of the client for
that particular request threshold times the original waiting time7. Reducing threshold involves a tradeoff —
forsaking immediate gains (reduction in waiting time due to the present request) in anticipation of future
gains (subsequent documents sent over unicast would reach the user faster)8. We experiment with different
values of threshold in arriving at a unicast schedule.

Now that we have reduced our problem to finding a good broadcast schedule, we can use insights from
Sec. 2 to devise a broadcast schedule that works well. From Sec. 2.2, we know a (1 + ε) − speed, (1 + 1/ε)-
approximate algorithm that uses the technique of dividing each file into chunks of equal size, and basing the
broadcast schedule on the optimal order of sending the equal sized chunks (Sec. 2.1). Unfortunately, the
O(m3) matching algorithm (Sec. 2.1) does not scale. Moreover, in our preliminary evaluation on smaller
data sets, our geometric scheduler (described below) performed equally well. So, we do not use this heuristic
any further in our experiments. One other heuristic that works well, when files are uniformly popular, is
to schedule in order of densities (Sec. 2.3). We generalize the density function (popularity/size) to λi

sα
i

and

experiment with different values of α between 0 and 1. We do this because α = 1 does not seem to be the
optimal choice when the two alternative links have widely different bandwidths9 and capabilities (broadcast

7If a request is satisfied by unicast, then the number of outstanding requests for the file decreases, and this may invalidate
the broadcast schedule already computed. Thus, a more elaborate but accurate mechanism that we did not use, would be to
re-compute the broadcast schedule whenever a request is satisfied by unicast. This could potentially make the new running
time of any heuristic, the old running time times the total number of requests.

8Note that the problem of finding the optimal solution here is NP-Hard. The problem can be formulated for each client as
given bi, reqi, find a unicast schedule such that

∑
i∈Files

max((min(bi, σi) − reqi), 0) is minimized, where bi and σi are the

time instants when the file reaches the user via broadcast and unicast channels, and reqi is the time when the user requested
file i. If all files are same-sized, the problem can be solved by min-cost bipartite matching, else it is NP-Hard.

Showing NP-Hardness: Assume a user, for whom the bi values are very large. Then, this problem is the same as minimizing
weighted tardiness with all weights as 1 (Sec. 2.2), where the deadline for file i is reqi, and its release date is 0.

9Assume a simplistic case, in which 2 files, one of size 900KB (requested by 900 users), and the other of size 1KB (requested
by 2 users) need to be scheduled. All requests arrive at time t=0. If α = 1, we send the smaller file first on broadcast channel.
Note that the unicast channels in this case remain idle, since the larger file, even though sent second on the broadcast link,
reaches the user faster than the unicast link (because the unicast link is extremely slow). If α = 0, the smaller file would be
sent over the unicast links and the total response time could be reduced.
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Table 2: Evaluating heuristics: Avg. response time (normalized)
Size Naive Geometric Sorted Sorted Naive

(thres=0.55) (α = 0) (α = 0) (α = 1) (thres=1)

5MB 1.00 0.89 0.95 1.20 1.04
10MB 1.00 0.94 0.98 1.18 1.02
20MB 1.00 0.94 0.97 1.15 1.02
50MB 1.00 0.92 0.94 1.14 1.02

Table 3: Avg. response time (normalized) vs. threshold, Size=50MB
Threshold values 0.10 0.30 0.55 0.80 1.0

Naive 1.20 1.00 1.00 1.02 1.02
Sorted(α = 0) 1.28 0.98 0.94 0.93 0.94

Geometric(α = 0) 1.23 0.94 0.91 0.92 0.93

vs. unicast). Also, in the presence of OpCaching, sending popular objects over the broadcast channel is
likely to improve performance by enabling cache hits, thus strengthening the case for a lower α value.

We employ the following heuristics to find the broadcast-only schedule:

Naive Scheduler This simple heuristic serves files in first-come, first-serve order. A file’s position in the
broadcast schedule is dependent on the time when it is first requested by any user.

Sorted Scheduler This scheduler is based on λi

sα
i

. For this offline scheduler, we consider λi to be the total

number of requests that arrived for file i during the whole time period.

Geometric Scheduler This is a refined version of the above, paying attention to both the request arrival
times, and popularity. Here, we divide the time period into small windows, consider requests for
a file arriving in different windows separately, and take a weighted sum of these numbers10. Also,
note that this offline scheduler has a computational cost of 0(m2). We tune the geometric scheduler’s
performance by experimenting with different window sizes, to get an idea of the best we could perform,
if we had enough computational resources and access to a perfect predictor (larger window sizes work
better with larger traces). Finally, there seems to be no easy adaptation of this heuristic to the online
scenario because it requires fine grained predictions. Moreover, this and Sorted would map to the same
online algorithm, if we used a limited look-ahead.

3.2 Results

Using the two step process (Sec. 3.1), we find the average response time across all requests, assuming an
infinite cache at each client. Our simulation includes client request queues, response queues, transmission
delays and link latencies (Table 5).

We evaluate our heuristics on traces from the Polygraph workload generator (Sec. 4.2). Our traces consist
of requests for variable sized files. We define the size of a trace to be the total size of all unique objects
requested in the trace. We use traces of size 5MB, 10MB, 20MB, and 50MB for our evaluation. We run our
algorithms on two different traces for each size, and present the average of the two results in Table 2. We
use threshold = 0.55 unless specified.

We make the following observations:

10Specifically, we calculate a score for each object i at the beginning of each time window j,

scoreij =

k=j−1∑

k=0

reqij +

k=n∑

k=j

reqij

ratiok−j−1

where reqij is the number of requests received for object i divided by sα
i

in the time window j, and ratio is a number greater
than 1 to weigh down the future requests. Empirically, we found ratio = 1.1 to work well, and use it for our evaluation.
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1. The Geometric scheduler is better than Sorted (α = 0), which in turn is better than Naive (Table 2).
This is in line with our expectations, based on the complexity and requirement of each heuristic. We
believe that the reason Naive performs only about 8% worse is because the popularity of files does not
change very rapidly either in real-life workloads, or in our traces.

2. The response time of any heuristic varies in a paraboloid fashion, as the threshold is increased from 0
(unicast links not being used) to 1 (greedy choice), with a minima close to threshold = 0.55 (Table 3).
This means that a heuristic which tries to balance the load on the unicast and broadcast links is likely
to perform well. A more popular object, instead of being sent by unicast (unless it is substantially
faster), should be sent via broadcast, so that it can later result in cache hits, and so as to reduce load
on the unicast links. Our GPop scheduler (Sec. 4.1) considers both the popularity and the greediness
for determining how and when to send an object.

3. For Sorted, the response time decreases with decreasing α, and we obtain the best result for α = 0. As
a result, we do not consider the size of objects in any of the online algorithms in the next section.

4 Simulation

In this section we evaluate the ability of several online heuristic schedulers to improve mean response time
for web access. We first describe the proposed schedulers. Next, we detail our evaluation methodology. We
then present our experimental results.

4.1 Practical Schedulers

We consider three scheduling heuristics: Greedy, Sorted, and GPop. Greedy and Sorted represent online
adaptations of the Naive and Sorted offline schedulers respectively. GPop is a hybrid. We omit the Geometric
scheduler of Sec. 3 as it has no online equivalent.

Like the Naive scheduler, Greedy ignores popularity and defaults to servicing requests via broadcast.
Because an online scheduler cannot employ the two-step process of Sec. 3, Greedy employs an alternate
method of shifting replies to the unicast links. On receiving a request, Greedy estimates the service time
over both links by assuming fair sharing of links by all requests enqueued on the link, and computing
size×queuelength/bandwidth. If the satellite is sufficiently congested that the modem link is faster, Greedy
sends the reply via modem. We also experimented with a variation of Greedy, GreedyDelay, that includes
link latency in the estimated service time. We observed that GreedyDelay performed worse than Greedy
because GreedyDelay is more likely to send small objects, which tend to be more popular, via modem than
Greedy. We thus omit detailed results for GreedyDelay.

The online form of Sorted sends every reply via unicast. Sorted maintains popularity information using
a counter ro for each object o. Initially, ro = 0 ∀o. Each time o is served via unicast, ro is incremented.
Any time o is served via broadcast, ro is reset to zero. Periodically, Sorted pushes the most popular objects
to users via the broadcast link, in order of popularity. Through simulations, we have found that a period of
one second gives the best results.

GPop embodies the lessons learned in Sec. 3 by incorporating popularity, and attempting to avoid overus-
ing any link. In deciding whether to service a request via broadcast or unicast, GPop considers the service
time on both links, as in Greedy. To incorporate popularity, GPop maintains popularity in the same manner
as Sorted. GPop serves a request over the broadcast link if timebcast ≤ timeucast×satpref×ro. The satpref
parameter enables us to tune the behavior of GPop. We have found 0.06 to be a good value for satpref 11.

4.2 Methodology

We simulate the performance of the system running against synthetic web workloads. In order to properly
model client access patterns across web sites, we focus on proxy workloads rather than server workloads. The
simulations are conducted with an extended version of the ns-2 [11] network simulator which incorporates

11The Appendix provides details on tuning satpref.
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Table 4: Typical workload characteristics
Parameter Value

Simulation length 8 hours
Warmup period 4 hours

Mean request rate 0.4/client/sec
Mean requested file size 7KB
Max requested file size 2MB

# of users 1000

Table 5: Link characteristics
One-way Latency Bandwidth

Satellite 125ms 2.25 Mbits/sec
Modem 50ms 56 Kbits/sec

portions of the Polygraph [12] proxy benchmarking tool. The Polygraph benchmark was developed for the
annual Cache-off s[13].

To the extent possible, we use the stock polymix-4 workload from the Polygraph package. The aim of
the workload is to gauge how well the system performs under typical peak daily loads. One significant
modification is that we omit the multi-phase schedule of Polygraph for a shorter schedule. As we take
our measurements after the system has warmed up, we expect that the altered phase schedule does not
significantly alter the results.

We give characteristics of a typical Polygraph run in Table 4. Individual runs deviate slightly from
these nominal values. Table 5 gives the nominal characteristics of the modem and satellite links. Links are
scheduled with fair sharing12. Based on the analysis of [14], we choose the satellite bandwidth for our 1000
user system to be 2.25 Mb/sec.

Our simulations omit Internet and server delays. The client nodes enter every broadcast object into their
caches, and employ an LRU eviction policy.

4.3 OpCaching Benefits

We first consider the benefits of OpCaching. To isolate the benefits of OpCaching from the benefits of using
the downlink channel of the modem links, we examine the setting where only the satellite downlink is used.
We measure the reduction in minimum bandwidth required to meet user demand both with and without
OpCaching.

To determine the minimum bandwidth, we run simulations with varying satellite bandwidth. We start
with a high bandwidth setting and progressively reduce bandwidth until the system is saturated, as indicated
by a large queue on the satellite link. This procedure is run both with and without caching at the client
nodes.

Table 6 summarizes the results. The “Mean Resp” column gives the response time averaged over all
requests, with the time for a cache hit being zero. The “Mean Xfer” column gives the average response time
for cache misses only. Boldfaced entries denote configurations where the system failed to complete all client
requests.

We find that, without OpCaching, the system requires a minimum bandwidth of 21 Mb/s to meet user
demand. Increasing bandwidth beyond this point does not improve response time significantly, as overheads
such as the time to send the request comprise a large fraction of the response time in this setting. With
OpCaching, we can reduce bandwidth by 33%, to 14 Mb/s, while improving mean response time by 62%,
from 0.95s to 0.36s.

As an aside, it might seem surprising that a system with a 14 Mb/s link that employs OpCaching achieves
lower response times on cache misses than a system with a 35 Mb/s link that does not use OpCaching. Given

12The exception to this is that the Sorted scheduler sends objects on the broadcast link in strict popularity order.
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Table 6: OpCaching Benefits
Cache BW Mean Mean Resp Mean Xfer

(Mb/sec) Queue (sec) (sec)

none 20 3825 158.34 158.34
none 21 55.3 0.95 0.95
none 22 22.6 0.88 0.88
none 35 2.4 0.85 0.85

12GB 12 3918 68.00 148.22
12GB 13 268.5 1.00 2.11
12GB 14 17.8 0.36 0.76
12GB 22 2.4 0.33 0.69

Table 7: Heuristic Performance
Heuristic Mean

Resp
Hit
Rate

Modem
Frac

Mean
Sat

Mean
Modem

Modem
Queue

Greedy 1.72 0.36 0.517 2.86 2.65 1.33
Sorted 2.29 0.47 0.530 N/A 4.31 1.88
GPop 1.33 0.45 0.415 1.01 2.88 1.45

the higher bandwidth, and shorter queue, in the 35 Mb/s system, cache misses should see lower transfer
times in the high bandwidth setting.

The explanation for this seeming discrepancy is that transfer time comprises only a small fraction of
response time in high bandwidth environments13. OpCaching reduces overhead costs, such as the time to
send a request, by reducing contention on the modem uplink. It is for this reason that the lower bandwidth
system with OpCaching attains lower response times on cache misses than the higher bandwidth system.

4.4 Heuristic Evaluation

Herein, we compare the performance of the proposed heuristic schedulers using the environment described
in Tables 4 and 5. Hereafter, we use 4GB caches at the client nodes. Table 7 summarizes the results. The
“Modem Frac” column reports the fraction of requests which are served by modem. “Mean Sat” and “Mean
Modem” give the response times for requests served via satellite and modem respectively. “Modem Queue”
gives the average size of the link queue seen by requests served via modem.

We see that GPop outperforms both Greedy and Sorted. GPop wins over Greedy for two reasons. First,
by employing popularity in its decision, GPop achieves a higher hit rate. Second, Greedy adds objects to
the broadcast link queue so long as broadcast is faster than unicast. Thus, when user demand is greater
than broadcast capacity, Greedy effectively slows the broadcast link to the same speed as the unicast links.
Consequently, as seen in the mean satellite response times, requests serviced via satellite with Greedy do
poorly compared to their counterparts under GPop.

We also find that the Sorted scheduler performs quite poorly. It is outperformed by both GPop, and by
Greedy, which uses no popularity information at all. At first glance, this is surprising, given that Sorted
has the highest hit rate of the three schedulers. To understand Sorted’s performance relative to GPop,
we examine the fraction of requests satisfied via modems. We observe that the Sorted scheduler has a
significantly larger fraction of requests serviced via the modem link than GPop. The reason that Sorted
serves a larger fraction of requests via modem is that, whereas GPop (and Greedy) can service a cache miss
via either the satellite link or the modem link, Sorted only services misses via the modem link.

To explain Sorted’s performance compared to Greedy, we consider the length of modem queues under
both schedulers. As noted above, Sorted services all cache misses via modem. This yields longer modem

13For example, in the 14 Mb/s case, the expected transfer time for a 7KB object is 71 ms, which is only 10% of the total
response time.
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Figure 2: Broadcast Object Utility

queues, and hence, longer response times, for Sorted. Thus, although Sorted serves only slightly more
requests via modem than Greedy, it performs worse overall14.

Sorted clearly uses the links less efficiently than the other schedulers. To understand this inefficiency,
we consider the utility of the objects sent over the broadcast link under the three schedulers. Specifically,
we ask how many requests are served by each object transmitted over the broadcast link. For the Sorted
scheduler, this is exactly the number of cache hits for the object. For the Greedy and GPop schedulers, this
is the number of cache hits plus one, as the initial transmission of an object satisfies an outstanding user
request.

Fig. 2 plots the inverse CDF of object utility. From this graph, we see that fewer than 40% of the
objects that are sent over the satellite with the Sorted scheduler are ever used. This suggests an important
counterpoint to Sec. 4.3. While OpCaching is beneficial, using the broadcast channel for prefetching only
hurts performance because many of the pushed objects are never used.

4.5 Performance Under Varied Loads

Thus far, we have focused on performance under high loads. We now consider performance under fixed
bandwidth, but with varied loads. We fix the bandwidth to be 2.25 Mb/sec and scale load by adjusting
the mean request rate. This enables us to assess performance under both low and high load conditions.
We compare against a simple system (“SatOnly”) that employs OpCaching but does not use the modem
downlink channels. An ideal system will perform as well as SatOnly under light loads, where the satellite
link alone has sufficient capacity, while exhibiting better performance under high loads, where the satellite
becomes overloaded. We include ModemOnly, a configuration in which only the modem links are used, for
completeness.

In the SatOnly system, as the satellite link becomes overloaded, queue lengths grow to infinity, and
response times grow arbitrarily large. In practice, however, users are likely to adapt their behavior to the
performance of the system. For example, when the system is sluggish, users may abort their requests. As
a simple approximation of this behavior, we implement a per-user limit on the number of outstanding and
queued requests. Briefly, a given user may have four requests outstanding (issued to the server) at any given
time. When more than four requests are outstanding, further requests are queued. The queue depth is itself
limited to four requests. When the queue fills, any further requests generated by the user are discarded.

Fig. 3 presents the fraction of completed requests for Greedy, GPop, Sorted, SatOnly, and ModemOnly.
We find that the capacity of the SatOnly system is 0.07 requests/client/sec. Beyond this point, SatOnly fails

14In fact, recalling that Greedy effectively slows the broadcast link to the same speed as a modem, the fraction of requests
that sees “modem-like” speeds is higher for Greedy than Sorted. This is outweighed, however, by the effect of the long modem
queues under Sorted.
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Figure 3: System Capacity
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Figure 4: Response Time

to complete a significant fraction of requests. When the system is configured to use modems, in contrast,
the system maintains a stable request completion rate. This is as expected, because the modems alone have
sufficient capacity to meet user demand.

Fig. 4 presents mean response time for the same scenarios. The most dramatic feature of response time
performance is that SatOnly is essentially unusable beyond an offered load of 0.06 requests/client/sec. We
note that both GPop and Greedy behave in the manner that we would like. At low loads, they perform
comparably to SatOnly. As load increases, they gradually offload requests to the modems (Fig. 5), and
their performance degrades gracefully. As explained in Sec. 4.4, GPop outperforms Greedy at high loads.
Meanwhile, Sorted performs relatively poorly, due in part to the fact that it serves nearly half of requests
via modem links, even at low loads.

4.6 Large Object Performance

Subscribers to high-speed Internet services, are unlikely to be satisfied with fast loading of web pages alone.
A large draw of broadband Internet access is the ability to quickly access large files such as music or movie
trailers. A danger of focusing on mean response time is that we may neglect the performance of retrieving
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Figure 5: Object Offloading
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Figure 6: Large Object Performance

these large objects. Specifically, in typical web workloads, large objects account for only a small fraction of
the number of requests [15]. Thus, it may be possible to achieve good overall performance, as measured by
mean response time, while doing poorly for large objects.

We begin with the best overall performer, GPop. We examine GPop’s performance on large objects
in Fig. 6. The graph shows response time performance for the configuration described in Tables 4 and 5.
“Expected Modem Time” gives the expected service time over a modem link, accounting for contention from
other requests. “GPop” gives the actual performance of GPop in simulation. “Expected Satellite Time”
is analogous to Expected Modem Time. Ideally, the slope of the GPop line would be close to the slope of
Expected Satellite Time. The conclusion that we draw from Fig. 6 is that large requests do in fact suffer
poor performance with the GPop scheduler.

To explain why large requests do poorly, we review the GPop algorithm. As explained in Sec. 4.1, GPop
serves a request using the satellite link timebcast ≤ timeucast × satpref × r. When satpref ≤ 1, as in our
simulations, an object must have seen multiple requests, or the expected service time on the satellite link
must be lower than the expected modem service, for the request to be served via satellite. In particular,
with a low satpref , an object must be very popular, or the expected satellite service time much lower than
the expected modem service time. The latter is infrequently true because the shared nature of the broadcast
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Figure 7: Large Object Performance With GPopLarge. The inset graph focuses on small objects.

Table 8: Overall Performance with GPopLarge
Scheduler Mean Resp Std Dev

GPop 1.31s 3.40
slarge=100KB 1.72 2.74
slarge=250KB 1.56 2.58
slarge=500KB 1.46 2.70
slarge=750KB 1.42 2.96
slarge=1000KB 1.38 3.00

link. Thus, large objects, which are generally unpopular [12], are unlikely to be sent on the satellite link.
We might expect that Greedy, which does not bias against large objects in the manner of GPop, would

provide lower response times than GPop on these objects. In Fig. 6 we see that Greedy does do slightly
better than GPop, but that the speed of transfer for large objects remains much closer to modem speeds
than satellite speeds. This is a direct consequence of Greedy’s tendency to maintain long queues on the
satellite link, thereby slowing satellite-served requests.

To improve large object performance, we consider a simple revision of GPop, which we call GPopLarge.
We set a threshold size slarge for large objects. Objects larger than slarge are sent via the satellite link if
they would have been sent via satellite under GPop, or if the expected service time via satellite is less than
the expected service time via modem. Given the typical satellite queue lengths in our configuration, the
latter is the typical case.

In Fig. 7 we see that this simple approach can significantly improve performance for large objects. A 3MB
file, for example, achieves a speedup of 3.79 with slarge=100KB as compared with GPop. For slarge=500KB,
the speedup increases to 6. Thus, even under high loads, large objects can achieve reasonable performance
with GPopLarge.

The inset in Fig. 7 shows that the improvements come at the cost of slightly worse performance for
small objects. Table 8 quantifies the impact of GPopLarge on mean performance. For slarge=100KB and
slarge=500KB mean response time increases by 31% and 11% respectively. Although the gains in large
object performance are not free, they are likely to outweigh the losses. In plain terms, a user is less likely to
be concerned about small differences in page load times for small web pages than the ability to access large
files, such as music and video, quickly.

The ability to accelerate the retrieval of large objects necessarily depends on the workload. At the ex-
treme, if the workload consists of nothing but requests for large and unpopular documents, then accelerating
large objects will be infeasible. For this reason, we evaluate the performance for large objects on heavier
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Figure 8: Large Object Load
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Figure 9: Large Object Performance on BU 95

tailed workloads than PolyMix-4. For this purpose, we configure Polygraph to generate workloads similar
to measured web client behavior. Specifically, we configure Polygraph to generate file sizes according to the
hybrid Lognormal-Pareto models reported in [15]. Fig. 8 shows the load attributable to large objects in the
resulting workloads. The models, based on traces of web users at the Boston University Computer Science
Department, clearly show heavier tails than PolyMix-4.

Fig. 9 and Table 9 give results for BU 95 while Fig. 10 and Table 10 give results for BU98. For both BU
95 and BU 98, we find that setting slarge < 500KB achieves little improvement. For BU 95, slarge = 500KB
improves large object response time by a factor of 2.8, with a 20% slowdown on overall mean response time.
GPopLarge performs better on BU98, where it achieves a factor 8 speedup for large files, with only a 4.3%
slowdown on overall mean response time.

Thus, although the ability to accelerate access to large objects is workload-dependent, GPopLarge
achieves significant improvement for typical workloads.

5 Related Work

There is a large body of work on optimizing data retrieval in networks with broadcast or multicast capabilities.
We describe the most relevant theoretical and system design work below.
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Table 9: Overall Performance on BU95
Scheduler Mean Resp Std Dev

GPop 2.02s 15.26
slarge=100KB 2.80 18.92
slarge=250KB 2.77 33.47
slarge=500KB 2.47 9.93
slarge=750KB 2.53 8.37
slarge=1000KB 2.47 8.36

0 1e+06 2e+06
Size (bytes)

0

100

200

300

400

500

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

GPop only
s

large
=100KB

s
large

=250KB

s
large

=500KB

s
large

=750KB

s
large

=1MB

Figure 10: Large Object Performance on BU 98

Table 10: Overall Performance on BU98
Scheduler Mean Resp Std Dev

GPop 0.92s 6.78
slarge=100KB 1.13 4.73
slarge=250KB 1.05 3.38
slarge=500KB 0.96 2.99
slarge=750KB 0.92 3.19
slarge=1000KB 0.92 3.22
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Many different variants of the broadcast scheduling problem have been theoretically evaluated in the past.
An early study of broadcast scheduling by Acharya and Muthukrishnan [16] provides a nice introduction to
the problem. Finding a broadcast schedule which minimizes the maximum response time is considered in
[17]. Recently, the problem of minimizing the total response time has been shown to be NP-Hard, even if all
the files have unit sizes [18]. This result is interesting as there are very few hardness results for scheduling
problems where jobs have the same size. All current results to minimize total response time are limited
to using resource augmentation [6] and unit size jobs. Kalyanasundaram et al. [19] give a 1

ε
speed, 1

1−2ε

approximation for this problem and Gandhi et. al. [20] give an improved 1
ε

speed, 1
1−ε

approximation
algorithm.

In Sec. 2.2, we showed that for the case when the file sizes are variable and they have release times, our
problem is a more general case of the classic and hard problem of minimizing the weighted response time on
a single machine. Becchetti et al. [21] give a (1 + ε)-speed, (1 + 1

ε
) competitive algorithm for the problem of

weighted response. Hence, our result (with the same performance guarantee) generalizes their result.
Some past studies consider scenarios closer to our own. For example, [22] shows that there is no o(

√
n)

competitive algorithm for sending variable sized objects over the broadcast channel, with no caching. [23]
considers a system in which the clients have a cache. However, their focus is on the various memory
management policies for the cache and they do not consider the scheduling of the broadcast channel at all.

In summary, while this theoretical problem has received much attention recently, past efforts differ in
various fundamental ways from our approach. First, none of the previous works deal with scenarios where
the clients have a cache. Secondly, none of them looks at the general problem where there are both unicast
and broadcast channels. Thirdly, all of them assume that files have a fixed unit size. These differences play
an important role. For example, while the no-cache version is NP-hard even for the unit file size case, our
problem can be solved exactly in polynomial time in the case of unit size files.

Several system designs also consider the use of broadcast or multicast to deliver files. [24] and [25] explore
a design in which a sender periodically transmits objects from a fixed library across a broadcast channel. In
this system, the periodicity of a particular object is governed by its popularity. Other works extend this basic
design by incorporating client “pull” requests for objects [26, 27, 16, 28], object dependence relationships
(to model embedded objects in web pages) [29] and the use of multiple downlink channels [30, 31].

A few systems explicitly consider the use of satellite channels. [32] proposes an architecture for em-
ploying satellites to distribute web content to caches. DirecPC service includes a “webcast” [33] feature,
which automatically broadcasts popular websites to users. However, technical details about this service are
unavailable.

The prior work in system design differs from our own in three significant ways. First, previous work
either considers only a single downlink, or assumes a small number of unicast downlink channels of the same
speed as the broadcast channel. Second, most prior work ignores the ability to cache objects requested by
other users. Third, we consider a web-like workload of millions of data items while prior work considers
smaller workloads of at most ten thousand objects.

6 Conclusions and Future Work

We have considered the problem of optimizing response time in a network comprised of broadcast and unicast
links, where caching is inexpensive. A driving force behind our approach is the idea that we can improve
performance by exploiting the fundamental properties of system elements.

From a theoretical perspective, we find that both the general problem, and several simplifications, are
NP-Hard. Where possible, we give approximation algorithms. Despite the hardness of the problem, we find
that heuristic approaches can effectively leverage system elements to improve performance. They provide
similar performance to existing systems at low loads, and dramatic improvements in capacity and response
time at high loads.

An interesting area of future work is to consider where else basic system properties can be exploited. One
example is that broadcast networks enable lightweight invalidation-based consistency management. Without
broadcast capability, providing such consistency requires tracking all the users who hold a data item. We
need to know both if we need to send an invalidation, and where to send it. With broadcast, we need
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only determine if an invalidation is required. A mechanism such as leasing [34] might provide a lightweight
answer to this question.
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Table 11: Effect of satpref on GPop Performance
satpref Mean Resp Sat Util Mean Mean

Sat Queue Mod Queue

0.02 1.4519 0.899 1.9493 1.501
0.04 1.3804 0.992 3.7719 1.478
0.06 1.3149 0.998 5.8904 1.433
0.08 1.3191 0.999 7.8599 1.423
0.1 1.3089 0.999 10.469 1.405
0.2 1.3254 0.999 20.772 1.375

APPENDIX

Tuning the GPop Scheduler

How should we choose a value for satpref? Like Greedy, GPop serves a request over the link that has the
higher available bandwidth at the time the request arrives. However, GPop modulates this decision by the
popularity of an object, as measured by prior accesses to the object. Considering the case of satpref = 1, for
example, if object o has three accesses, then GPop will send o over the broadcast link even if the broadcast
link has only 1/3 the available bandwidth as the unicast link. Higher values of satpref make GPop more
likely to serve a request via broadcast. That is, as satpref increases, the speedup that GPop will require for
using the satellite link decreases.

To find a good value for satpref , we run simulations with the parameters listed in Tables 4 and 5. We
summarize the results in Table 11. We find that the key tradeoff in choosing satpref is balancing satellite
and modem performance. As we increase satpref , the length of modem queues decrease, and thus, modem
performance improves. Simultaneously, satellite queues increase, causing satellite performance to degrade.
A good value for satpref balances this tradeoff to optimize response time.

Note that an additional factor should be considered when the GPopLarge scheduler (Sec. 4.6) is used.
Because the satellite link is shared fairly between all queued requests, the ability to accelerate large objects
will depend on the queue length. More precisely, the acceleration achieved is inversely proportional to the
queue length. Hence, satpref should be chosen so as to minimize satellite queue length while still balancing
the above tradeoff.
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