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Abstract

One key difficulty with text classification learning algorithms is that

they require many hand-labeled examples to learn accurately. This disser-

tation demonstrates that supervised learning algorithms that use a small

number of labeled examples and many inexpensive unlabeled examples

can create high-accuracy text classifiers. By assuming that documents

are created by a parametric generative model, Expectation-Maximization

(EM) finds local maximum a posteriori models and classifiers from all the

data—labeled and unlabeled. These generative models do not capture all

the intricacies of text; however on some domains this technique substan-

tially improves classification accuracy, especially when labeled data are

sparse.

Two problems arise from this basic approach. First, unlabeled data can

hurt performance in domains where the generative modeling assumptions

are too strongly violated. In this case the assumptions can be made more

representative in two ways: by modeling sub-topic class structure, and

by modeling super-topic hierarchical class relationships. By doing so,

model probability and classification accuracy come into correspondence,

allowing unlabeled data to improve classification performance. The second

problem is that even with a representative model, the improvements given

by unlabeled data do not sufficiently compensate for a paucity of labeled

data. Here, limited labeled data provide EM initializations that lead to

low-probability models. Performance can be significantly improved by

using active learning to select high-quality initializations, and by using

alternatives to EM that avoid low-probability local maxima.
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Chapter 1

Introduction

Suppose we work for a web site that maintains a public listing of job openings from

many different companies. A user of the web site might find new career opportunities

by browsing all openings in a specific job category. However, these job postings are

spidered from the Web, and do not come with any category label. Instead of reading

each job post to manually determine the label, it would be helpful to have a system

that automatically examines the text and makes the decision itself. This automatic

process is called text classification. In general, text classification systems categorize

documents into one (or several) of a set of pre-defined topics of interest.

Text classification is of great practical importance today given the massive volume

of online text available. In recent years there has been an explosion of electronic text

from the World Wide Web, electronic mail, corporate databases, chat rooms, and

digital libraries. One way of organizing this overwhelming amount of data is to

classify it into descriptive or topical taxonomies. For example, Yahoo maintains a

large topic hierarchy of web pages. By automatically populating and maintaining

these taxonomies, we can aid people in their search for knowledge and information.

How are automatic text classifiers created? Early attempts were based on the

manual construction of rule sets. Using this approach a person must compose a

detailed set of rules for automatically specifying the class of a document. For example,

one such rule might read “If the job posting contains the phrase ‘expertise in Java’

then the job category is computer programmer.” Highly accurate text classifiers were

built with this approach, but at significant cost. Constructing a complete rule set

requires a lot of domain knowledge and a substantial amount of human time to tune
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the rules correctly. With few exceptions, this is an impractical approach to text

classification.

A more efficient approach is to use supervised learning to construct a classifier.

Here, we provide an algorithm with an example set of documents for each class, and

allow it to find a representation or decision rule for classifying future documents. This

approach also gives high-accuracy classifiers, and is significantly less expensive than

manual construction because the algorithm automatically constructs the decision rule

itself. Supervised text classification algorithms have been successfully used in a wide

variety of practical domains. A few examples are: cataloging news articles (Lewis &

Gale, 1994; Joachims, 1998) and web pages (Craven et al., 2000; Shavlik & Eliassi-

Rad, 1998), learning the reading interests of users (Pazzani et al., 1996; Lang, 1995),

and sorting electronic mail (Lewis & Knowles, 1997; Sahami et al., 1998).

However, the supervised learning approach is not as effortless as we might hope.

One key difficulty with these algorithms is that they require a large, often prohibitive,

number of labeled training examples to learn accurately. Labeling must typically be

done by a person; this is a painfully time-consuming process. Take, for example,

the task of learning which newsgroup articles are of interest to a particular person

reading UseNet news. Work by Lang (1995) found that after a person read and hand-

labeled about 1000 articles, a learned classifier achieved a precision of about 50%

when making predictions for only the top 10% of documents about which it was most

confident. Most users of a practical system, however, would not have the patience

to label a thousand articles—especially to obtain only this level of precision. One

would obviously prefer algorithms that can provide accurate classifications after hand-

labeling only a dozen articles, rather than thousands. This need for large quantities

of expensive labeled examples raises an important question: what other sources of

information can reduce the need for labeled data?

The goal of this thesis is to demonstrate that supervised learning algorithms using

a small number of labeled examples and a large number of unlabeled examples create

high-accuracy text classifiers. In general, unlabeled examples are much less expensive

and easier to come by than labeled examples. This is particularly true for text

classification tasks involving online data sources, such as web pages, email, and news

stories, where huge amounts of unlabeled text are readily available. Collecting this

text can frequently be done automatically, so it is feasible to quickly gather a large set

of unlabeled examples. If unlabeled data can be integrated into supervised learning
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then building text classification systems will be significantly faster and less expensive

than before.

1.1 Unlabeled data? Are we crazy?

At first glance, it might seem that nothing is to be gained from unlabeled data. After

all, an unlabeled document doesn’t contain the most important piece of information—

its class. Here is an intuitive example of how unlabeled data might be useful. Suppose

we are interested in recognizing web pages about academic courses. We are given just

a few known course and non-course web pages, along with a large number of web

pages that are unlabeled. By looking at just the labeled data we determine that

pages containing the word homework tend to be about academic courses. If we use

this fact to estimate the classification of the many unlabeled web pages, we might

find that the word lecture occurs frequently in the unlabeled examples that are now

believed to belong to the positive class. This co-occurrence of the words homework

and lecture over the large set of unlabeled training data can provide useful information

to construct a more accurate classifier that considers both homework and lecture as

indicators of positive examples. In this thesis, we explain how unlabeled data can be

used to increase classification accuracy, especially when labeled data are scarce.

Formally, what information do unlabeled data provide? By themselves they give

us knowledge only of the distribution of examples in feature space. In the most gen-

eral case, distributional knowledge will not provide helpful information to supervised

learning. Consider classifying uniformly distributed instances based on conjunctions

of literals. Here there is no relationship between the uniform instance distribution

and the space of possible classification tasks and clearly, unlabeled data can not help.

We need to introduce appropriate bias into our learner by assuming some dependence

between the instance distribution and the classification task.

Even standard supervised learning with labeled data must introduce bias in order

to learn. In a well-known and often-proven result, Watanabe’s (1969) Theorem of

the Ugly Duckling shows that without bias all pairs of training examples look equally

similar, and generalization into classes is impossible. This result was foreshadowed

long ago by both William of Ockham’s philosophy of radical nominalism in the 1300’s

and David Hume in the 1700’s. Somewhat more recently, Zhang and Oles (2000)

formalized and proved that supervised learning with unlabeled examples must assume
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a dependence between the instance distribution and the classification task.

In this thesis we assume the dependence can be captured by a parametric genera-

tive model for text documents and their class labels—a statistical process that creates

the words and the class of a document. For example, our generative model encodes

which words are more common in one class than another. Using this, it creates a

document in a given class by randomly selecting words according to the class’s word

frequencies. We know this process is not realistic, and that statistical models will

not capture the subtleties of the authoring process. Nevertheless, these assumptions

encode a relationship between the document distribution and the classification task

that allow unlabeled data to be incorporated into learning.

For a specific classification task, we select the model’s parameter values using

the evidence contained in the labeled and unlabeled data. Given a parameterization

of a model, we can judge how probable it was that that model generated our data.

We learn a text classifier by searching for the parameter setting that would be the

most probable to have generated the labeled and unlabeled data. For this we use the

statistical technique Expectation-Maximization (EM) (Dempster et al., 1977). While

it typically does not find the most probable parameter values, it does find a local

maxima in parameter space. Once EM gives us a parameter setting, we can use the

generative model for text classification. Given a test document without a class label,

we evaluate which class label was most likely to have been generated for the words in

the given document. Our hope is that highly probable generative models found using

unlabeled data correspond to high-accuracy text classifiers, even when our models are

not perfect.

1.2 Questions asked

This thesis asks and answers four central questions:

Can a generative model approach use unlabeled data to improve text clas-

sification?

The types of generative models we propose to use for text classification are simple

in comparison to the complexity of human authoring. They maintain no sense of

syntax, context, or even word order. It’s certainly not obvious that maximizing the

probability of an imperfect model will increase classification accuracy. Will our mod-
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els be representative enough for the purposes of text classification? There is some

reason to be initially pessimistic. Similar generative model approaches for related

text tasks, such as part-of-speech tagging (Merialdo, 1994; Elworthy, 1994) and in-

formation extraction (Seymore et al., 1999) have shown that incorporating unlabeled

data into supervised learning decreases performance of these systems. However, text

classification is not as dependent as these tasks on model correctness at a local level.

We demonstrate that generative models are a helpful and valid approach to using

unlabeled data for text classification.

Can all text classification domains use the same generative model?

Different text classification domains very considerably in their properties. Some

have only very short documents; others have quite disparate lengths. Some tasks are

easy and well-understood; others are complex and ill-defined. Some classes are narrow;

others are multi-faceted. With such a wide variety of text, it is appropriate to wonder

whether all tasks can successfully use unlabeled data with the same generative model

class. We demonstrate that for some domains, unlabeled data is easily used with

the most straightforward generative model suggested. For other tasks, incorporating

unlabeled data with the basic model lowers classification accuracy.

Can we adapt our basic generative model to use unlabeled data on more

challenging text classification domains?

For unlabeled data to be useful in a generative model approach, classification ac-

curacy and model likelihood should be correlated. With a perfect model and sufficient

unlabeled data this is a given, but with our simple models of text there are no guaran-

tees. When our modeling assumptions do not approximate the true data distribution

well enough, unlabeled data will not improve classification. In these cases, it may

be possible to change or relax our assumptions to more closely match the data. We

adapt our models in two different directions by modeling the sub-topic structure of

a class, and the super-topic hierarchical class relationships. These adapted models

allow unlabeled data to be useful when learning text classifiers for these more difficult

domains.

Can we improve accuracy even further when labeled data are sparse?

When a generative model needs no adaptation unlabeled data improve accuracy

significantly, but even then they can not compensate for an extreme lack of labeled
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data. In these cases, the EM maximization process is unable to find highly probable

parameters. Viewing EM as an iterative hill-climbing algorithm, the initialization

given by sparse labeled data are the source of the trouble. We confront this weakness

in two ways: by selecting documents for labeling that provide higher-quality initial-

izations, and by using other likelihood maximization techniques that are insensitive

to poor initialization.

1.3 Road map

The outline of this thesis is as follows. The technical content is contained in the next

three chapters. Chapter 2 presents the baseline generative model for text documents

and classes. It derives the learning algorithm that incorporates unlabeled data into

supervised learning by likelihood maximization with EM. We show promising experi-

mental results showing significant benefit for using unlabeled data on some datasets.

For other datasets, this basic approach is inadequate and unlabeled data can hurt

classification accuracy.

Chapter 3 explores how to change the modeling assumptions in response to poor

performance of unlabeled data using the baseline model. For domains with multi-

faceted, complex classes, the sub-topic structure of a class can be more accurately

modeled by relaxing our assumption of a one-to-one correspondence between mixture

components and classes. For domains with a hierarchy indicating class similarities and

relationships, the super-topic structure can be more accurately modeled by relaxing

the assumptions about the independence between classes. Both of these enhancements

allow unlabeled data to improve text classification accuracy on domains unresponsive

to the basic approach.

Chapter 4 improves the performance of classifiers built with unlabeled data and

sparse labeled data. After an analysis of the effects of the limited labeled data, we

demonstrate that its use for EM initialization hinders performance. We improve accu-

racy by using a Query-By-Committee active learning approach to select high-quality

labeled documents for initialization. We also show that deterministic annealing, a

likelihood maximization technique similar to EM, is less sensitive to poor initializa-

tion and finds more accurate text classifiers.

Chapter 5 surveys the current state of text classification. It also relates different

approaches to combining labeled and unlabeled data, and contrasts them with the

6



approach taken in this thesis. Chapter 6 discusses the conclusions of this dissertation

and the answers to the questions already posed. It also proposes several avenues for

further research suggested by our findings.
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Chapter 2

Incorporating Unlabeled Data with

Generative Models

One way to incorporate unlabeled data into supervised learning is to assume
that a statistical process generates the documents. By precisely specifying the
generative model, we can use the statistical technique Expectation-Maximization
to find high-probability parameters of the model given a combination of la-
beled and unlabeled data. This model can then be turned around and used for
text classification, since the generative model has an embedded notion of class.
Experimental evidence shows that using unlabeled data with Expectation-
Maximization can increase classification accuracy. Additional evidence shows,
however, that this straightforward approach does not always perform well.
There are two hypotheses that could explain this: (1) the assumptions made
about the generative process result in an unrepresentative model, so that model
probability and classification accuracy are not well-correlated, or (2) the Expec-
tation-Maximization search suffers from getting stuck in local maxima with
low-probability models. The remainder of this thesis shows how to overcome
these problems.

2.1 Introduction

In this dissertation, we appeal to the framework of statistical modeling. Even though

text is written by people with a strong and complicated set of rules governing com-

position and grammar, we will specify a simple statistical generative model for the
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production of text documents. Implicit in this model are the assumptions that (1)

documents are generated from class-specific probability distributions, and (2) words

occur in documents independently of each other given the class. With this model it is

straightforward to find the most likely parameters given a set of labeled data. Despite

the oversimplifications in the generative process, practitioners have successfully used

this naive Bayes approach in text classification for many years. We begin by taking

the same approach, but with a combination of labeled and unlabeled data. Using the

same statistical model as naive Bayes, we add the evidence of unlabeled data when

finding high-probability generative parameters for our assumed model.

We introduce an algorithm for learning from labeled and unlabeled documents

based on the combination of Expectation-Maximization (EM) and a naive Bayes clas-

sifier. EM is an iterative technique for maximum likelihood or maximum a posteriori

parameter estimation in problems with incomplete data (Dempster et al., 1977). In

our case, the unlabeled data are considered incomplete because they come without

class labels. The algorithm first trains a classifier with only the available labeled docu-

ments, and assigns probabilistically-weighted class labels to each unlabeled document

by using the classifier to calculate their expectation. It then trains a new classifier us-

ing all the documents—both the originally labeled and the formerly unlabeled—and

iterates. EM performs hill-climbing in model probability space, finding the classifier

parameters that locally maximize the probability of the model given all the data—

both the labeled and the unlabeled. We combine EM with naive Bayes, a classifier

based on a mixture of multinomials, that is commonly used in text classification.

Experimental results, obtained using text from two different real-world tasks, show

that using unlabeled data reduces classification error by up to 30%. For a fixed clas-

sification error unlabeled data dramatically reduce the number of labeled examples

needed. For example, to identify the source newsgroup for a UseNet article with 70%

classification accuracy, a traditional learner requires 2000 labeled examples; alterna-

tively our algorithm takes advantage of 10000 unlabeled examples and requires only

600 labeled examples to achieve the same accuracy. Thus, in this task, the technique

reduces the need for labeled training examples by more than a factor of three. With

only 40 labeled documents (two per class), accuracy is improved from 27% to 43% by

adding unlabeled data. These findings illustrate the power of unlabeled data in text

classification problems, and also demonstrate the strength of the algorithms proposed

here.
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However, on a different dataset, we show that basic EM can suffer from a misfit

between the modeling assumptions and the unlabeled data. These results raise a

number of interesting questions that motivate the remainder of the dissertation.

The outline of this chapter is as follows. Section 2.2 specifies the naive Bayes

generative model, the baseline used throughout this thesis. Section 2.3 discusses

model probability as an optimization criteria for choosing parameter settings of the

generative model. Section 2.4 explains how to optimize model likelihood with a set

of labeled data and how to use a model for text classification purposes. Section 2.5

presents how to locally optimize model likelihood given a combination of labeled and

unlabeled data. Section 2.6 presents experimental results showing that using a com-

bination of labeled and unlabeled data can outperform the use of labeled data alone.

Section 2.7 discusses the findings and poses the challenges and questions addressed

by the rest of the dissertation.

2.2 A Generative Model for Text

This section presents a probabilistic framework for characterizing the nature of doc-

uments and classifiers. The framework defines a probabilistic generative model for

the data, and embodies three assumptions about the generative process: (1) the data

are produced by a mixture model, (2) there is a one-to-one correspondence between

mixture components and classes, and (3) the mixture components are multinomial

distributions of individual words—the words of a document are produced indepen-

dently of each other given the class. From these assumptions we can derive the naive

Bayes classifier, a simple and commonly-used tool for text categorization, by finding

the most probable parameters for the model.

Documents are generated by a mixture of multinomials model, where each mixture

component corresponds to a class. Let there be |C| classes and a vocabulary of size

|V |; each document d has |d| words in it. How do we create a document using this

model? First, we roll a biased |C|-sided die to determine the class of our document.

Then, we pick up the biased |V |-sided die that corresponds to the chosen class. We

roll this die |d| times, and write down the indicated words. These words form the

generated document.

Formally, every document is generated according to a probability distribution

defined by the parameters for the mixture model, denoted θ. The probability distri-
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bution consists of a mixture of components cj ∈ C = {c1, ..., c|C|}. Each component

is parameterized by a disjoint subset of θ. A document, di, is created by first select-

ing a mixture component according to the mixture weights (or class probabilities),

P(cj|θ), then having this selected mixture component generate a document according

to its own parameters, with distribution P(di|cj; θ).1 Thus, we can characterize the

likelihood of document di with a sum of total probability over all mixture components:

P(di|θ) =
|C|∑
j=1

P(cj|θ)P(di|cj; θ). (2.1)

Each document has a class label. We assume that there is a one-to-one correspon-

dence between mixture model components and classes, and thus use cj to indicate

the jth mixture component, as well as the jth class. The class label for a particular

document di is written yi. If document di was generated by mixture component cj

we say yi = cj. The class label may or may not be known for a given document.

A document, di, is considered to be an ordered list of word events, 〈wdi,1 , wdi,2 , . . .〉.
We write wdi,k for the word wt in position k of document di, where wt is a word in

the vocabulary V = 〈w1, w2, . . . , w|V |〉. For example, if this paragraph was document

7, then wd7,2 would be the word document. When a document is to be generated by a

particular mixture component a document length, |di|, is first chosen independently

of the component. (Note that this assumes that document length is independent

of class.2) Then, the selected mixture component generates a word sequence of the

specified length. We assume it generates each word independently of the length.

Thus, we can expand the second term from Equation 2.1, and express the proba-

bility of a document given a mixture component in terms of its constituent features:

the document length and the words in the document. Note that, in this general

setting, the probability of a word event must be conditioned on all the words that

precede it.

P(di|cj; θ) = P(〈wdi,1 , . . . , wdi,|di|〉|cj ; θ) = P(|di|)
|di|∏
k=1

P(wdi,k |cj; θ;wdi,q , q < k) (2.2)

1We use standard notational shorthand for random variables, whereby P(X = xi|Y = yj) is
written P(xi|yj) for random variables X and Y taking on values xi and yj .

2Previous naive Bayes formalizations do not include this document length effect. In the most
general case, document length should be modeled and parameterized on a class-by-class basis.

12



Next we make the standard naive Bayes assumption: that the words of a document

are generated independently of context, that is, independently of the other words in

the same document given the class label. We further assume that the probability of

a word is independent of its position within the document; thus, for example, the

probability of seeing the word homework in the first position of a document is the

same as seeing it in any other position. We can express these assumptions as:

P(wdi,k |cj; θ;wdi,q , q < k) = P(wdi,k |cj; θ). (2.3)

Combining these last two equations gives the naive Bayes expression for the prob-

ability of a document given its class:

P(di|cj; θ) = P(|di|)
|di|∏
k=1

P(wdi,k |cj; θ). (2.4)

Thus the parameters of an individual mixture component define a multinomial

distribution over words,3 i.e. the collection of word probabilities, each written θwt|cj ,

such that θwt|cj ≡ P(wt|cj; θ), where t = {1, . . . , |V |} and
∑
t P(wt|cj; θ) = 1. Since we

assume that for all classes, document length is identically distributed, it does not need

to be parameterized for classification. The only other parameters of the model are

the mixture weights (class probabilities), written θcj , which indicate the probabilities

of selecting the different mixture components. Thus the complete collection of model

parameters, θ, defines a set of multinomials and class probabilities: θ = {θwt|cj : wt ∈
V, cj ∈ C ; θcj : cj ∈ C}.

2.3 Model Probability as an Optimization Criteria

The ultimate goal of building a text classifier is to find one that will have high accuracy

on previously unseen examples. Since we don’t have these examples on hand with their

labels, we must find an alternative criteria to use when selecting classifier parameters.

3The astute statistician will note that the multinomial coefficients are missing and this is not
truly a multinomial distribution. This is because we have put a word order into our generative
model. A real mixture of multinomials uses no order, but gives exactly the same classifiers, as the
coefficients cancel out (McCallum & Nigam, 1998a).
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Several criteria have been described in the literature, all with a reasonable amount of

success when given a large set of labeled examples.

The first potential criteria is to maximize the classification accuracy on the labeled

examples at hand. This has been done with various gradient descent approaches

(Lewis et al., 1996). One problem with this approach is that it is quite easy to find

parameters that maximize classification accuracy on the labeled set, without getting

good generalization for future examples. This is because the dimensionality of text

classification is so large that it is easy to overfit the training data. Additionally, there

are many possible solutions that correctly classify the labeled data, so it is not clear

which to choose. Finally, it might be hard to imagine using unlabeled data with such

an optimization criteria, because without labels these examples do not play a role in

estimating classification accuracy.

A second criteria is to maximize the margin between the different classes. This

approach, used by Support Vector Machines, for example, is to find the linear separa-

tor between the classes that is furthest away from the data. This approach tends to

find separators that lie in valleys of low document density. This approach has been

adapted to work with labeled and unlabeled data (Joachims, 1999) and has shown

promising results. Intuitively, a classification boundary that separates the data and is

also far away from the data provides a method for achieving low classification error.

The presence of the assumed generative model in our scenario gives us a third way

to build a classifier. The approach that we will take is to maximize the probability

of the model given the training data. Since we are using a setting with a strong

probabilistic interpretation, it is very natural to talk about the probability of a model

parameterization given a set of data. If the generative model were correct, then

with an infinite amount of data the most probable solution would indeed give us the

solution that maximizes classification accuracy. When we don’t necessarily believe

the generative model, it is an interesting question to consider whether maximizing

model probability is a reasonable optimization criteria.

2.4 Naive Bayes Text Classification

This section presents the naive Bayes text classifier. It is traditionally trained using

a collection of labeled documents. Naive Bayes finds the most probable parameters

for the statistical model introduced in Section 2.2 given a set of labeled data. Naive
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Bayes is the foundation upon which we will later build when integrating unlabeled

data into supervised learning.

2.4.1 Training a Naive Bayes Classifier with Labeled Data

Learning a naive Bayes text classifier consists of estimating the parameters of the

generative model by using a set of labeled training data, D = {d1, . . . , d|D|}. The

estimate of the parameters θ is written θ̂. Naive Bayes uses the maximum a posteriori

(MAP) estimate, thus finding arg maxθ P(θ|D). This is the value of θ that is most

probable given the evidence of the training data and a prior.

To perform MAP estimation we must specify the prior distribution over our model

space. Our prior distribution is formed with the product of Dirichlet distributions—

one for each class multinomial and one for the overall class probabilities. The Dirichlet

is a commonly-used conjugate prior distribution over multinomials. The form of the

Dirichlet is:

P(θwt|cj) ∝
|V |∏
t=1

P(wt|cj)αt−1 (2.5)

where the αt are constants greater than zero. We set all αt = 2, which corresponds

to a prior that favors the uniform distribution. A well-presented introduction to

Dirichlet distributions is given by Stolcke and Omohundro (1994).

The parameter estimation formulae that result from maximization with the data

and our prior are the familiar ratios of empirical counts. The estimated probability of

a word given a class, θ̂wt|cj , is simply the number of times word wt occurs in the training

data for class cj , divided by the total number of word occurrences in the training data

for that class—where counts in both the numerator and denominator are augmented

with pseudo-counts (one for each word) that come from the Dirichlet prior over each

θwt|cj . The use of this type of prior is sometimes referred to as Laplace smoothing.

Smoothing is necessary to prevent zero probabilities for infrequently occurring words.

The word probability estimates θ̂wt|cj are:

θ̂wt|cj ≡ P(wt|cj ; θ̂) =
1 +

∑|D|
i=1 zijN(wt, di)

|V |+∑|V |
s=1

∑|D|
i=1 zijN(ws, di)

, (2.6)
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where N(wt, di) is the count of the number of times word wt occurs in document di

and where zij is given by the class label: 1 when yi = cj and otherwise 0.

The class probabilities, θ̂cj , are estimated in the same manner, and also involve a

ratio of counts with smoothing:

θ̂cj ≡ P(cj |θ̂) =
1 +

∑|D|
i=1 zij

|C|+ |D| . (2.7)

The derivation of these ratios-of-counts formulae comes directly from maximum

a posteriori parameter estimation. Finding the θ that maximizes P(θ|D) is accom-

plished by first breaking this expression into two terms by Bayes’ rule: P(θ|D) ∝
P(D|θ)P(θ). The first term is calculated by the product of all the document likeli-

hoods (from Equation 2.1). The second term, the prior distribution over parameters,

is the product of Dirichlets. The whole expression is maximized by solving the sys-

tem of partial derivatives of log(P(θ|D)), using Lagrange multipliers to enforce the

constraint that the word probabilities in a class must sum to one. This maximization

yields the ratio of counts seen above.

2.4.2 Classifying New Documents with Naive Bayes

Given estimates of these parameters calculated from the training documents accord-

ing to Equations 2.6 and 2.7, it is possible to turn the generative model backwards

and calculate the probability that a particular mixture component generated a given

document. We derive this by an application of Bayes’ rule, and then by substitutions

using Equations 2.1 and 2.4:

P(yi = cj|di; θ̂) =
P(cj|θ̂)P(di|cj; θ̂)

P(di|θ̂)

=
P(cj |θ̂)

∏|di|
k=1 P(wdi,k |cj; θ̂)∑|C|

r=1 P(cr|θ̂)
∏|di|
k=1 P(wdi,k |cr; θ̂)

. (2.8)

If the task is to classify a test document di into a single class, then the class with

the highest posterior probability, arg maxj P(yi = cj|di; θ̂), is selected.

Note that all the assumptions about the generation of text documents (mixture

model, one-to-one correspondence between mixture components and classes, word
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independence, and document length distribution) are violated in real-world text data.

Documents are often mixtures of multiple topics. Words within a document are not

independent of each other—grammar and topicality make this so.

Despite these violations, empirically the Naive Bayes classifier does a good job

of classifying text documents (Lewis & Ringuette, 1994; Craven et al., 2000; Yang

& Pedersen, 1997; Joachims, 1997; McCallum et al., 1998). This observation is

explained in part by the fact that classification estimation is only a function of the

sign (in binary classification) of the function estimation (Domingos & Pazzani, 1997;

Friedman, 1997). The word independence assumption causes naive Bayes to give

extreme (almost 0 or 1) class probability estimates. However, these estimates can

still be poor while classification accuracy remains high.

2.5 Learning a Naive Bayes Model from Labeled

and Unlabeled Data

In the previous section we showed how to find maximum a posteriori parameter

estimates given a set of labeled data. With labeled and unlabeled data, we would like

to similarly find MAP parameters. Because there are no labels for the unlabeled data,

the closed-form equations from the previous section are not applicable. However, using

the Expectation-Maximization (EM) technique from statistics, we can find locally

MAP parameter estimates for the same generative model.

The EM technique as applied to the case of labeled and unlabeled data with naive

Bayes yields a straightforward and appealing algorithm. A schematic of this algo-

rithm is shown in Figure 2.1. First, a naive Bayes classifier is built in the standard

supervised fashion from the limited amount of labeled training data. Then, we per-

form classification of the unlabeled data with the naive Bayes model. We note not

just the most likely class but the probabilities associated with each class. Then, we

rebuild a new naive Bayes classifier using all the data—labeled and unlabeled—using

the estimated class probabilities as true class labels. This means that the unlabeled

documents are treated as several fractional documents according to the class proba-

bilities. We iterate this process of classifying the unlabeled data and rebuilding the

naive Bayes model until it converges to a stable classifier and set of labels for the

data. The statistical foundation for this algorithm is described in the next section.
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Figure 2.1: A schematic for building text classifiers from labeled and unlabeled data with EM.

2.5.1 Expectation-Maximization

We are given a set of training documents D and the task is to build a classifier in

the form of the previous section. However, unlike previously, only some subset of the

documents di ∈ Dl come with class labels yi ∈ C, and the rest of the documents, in

subset Du, come without class labels. Thus we have a disjoint partitioning of D, such

that D = Dl ∪Du.

As in Section 2.4.1, learning a classifier is approached as calculating a maximum

a posteriori estimate of θ, i.e. arg maxθ P(θ)P(D|θ). Consider the second term of

the maximization, the probability of all the training data, D. The probability of

all the data is simply the product of the probabilities of each document, because

documents are independent of each other, given the model. For the unlabeled data,

the probability of an individual document is a sum of total probability over all the

classes, as in Equation 2.1. For the labeled data, the generating component is already

given by labels yi and we do not need to refer to all mixture components—just the

one corresponding to the class. Thus, the probability of all the data is:
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• Inputs: Collections Dl of labeled documents and Du of unlabeled documents.

• Build an initial naive Bayes classifier, θ̂, from the labeled documents,

Dl, only. Use maximum a posteriori parameter estimation to find θ̂ =

arg maxθ P(D|θ)P(θ) (see Equations 2.6 and 2.7).

• Loop while classifier parameters improve, as measured by the change in

lc(θ|D; z) (the complete log probability of the labeled and unlabeled data, and

the prior) (see Equation 2.11):

• (E-step) Use the current classifier, θ̂, to estimate component membership

of each unlabeled document, i.e., the probability that each mixture compo-

nent (and class) generated each document, P(cj|di; θ̂) (see Equation 2.8).

• (M-step) Re-estimate the classifier, θ̂, given the estimated component

membership of each document. Use maximum a posteriori parameter es-

timation to find θ̂ = arg maxθ P(D|θ)P(θ) (see Equations 2.6 and 2.7).

• Output: A classifier, θ̂, that takes an unlabeled document and predicts a class

label.

Table 2.1: The basic EM algorithm described in Section 2.5.

P(D|θ) =
∏

di∈Du

|C|∑
j=1

P(cj|θ)P(di|cj; θ)

×
∏
di∈Dl

P(yi = cj|θ)P(di|yi = cj; θ). (2.9)

Instead of trying to maximize P(θ|D) directly we work with log(P(θ|D)) instead;

a maximum in one is a maximum in the other. Using Equation 2.9, we write:

log P(θ|D) = log(P(θ)) +
∑
di∈Du

log
|C|∑
j=1

P(cj |θ)P(di|cj; θ)

+
∑
di∈Dl

log (P(yi = cj|θ)P(di|yi = cj; θ)) . (2.10)
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We call this the incomplete log probability, because the unlabeled data are not com-

plete without labels. (We have dropped the constant term log P(D) for convenience.)

Notice that this equation contains a log of sums for the unlabeled data, which makes

a maximization by partial derivatives computationally intractable. But, if we had

access to the class labels of all the documents (the set z containing all binary in-

dicators zij) then we could express the complete log probability of the parameters,

log Pc(θ|D, z), without a log of sums, because only one term inside the sum would be

non-zero.

log Pc(θ|D; z) = log(P(θ)) +
∑
di∈D

|C|∑
j=1

zij log (P(cj|θ)P(di|cj; θ)) (2.11)

If we replace zij for the unlabeled documents by its expected value according to

the current model (P(cj |di, θ̂)), then Equation 2.11 bounds from below the incomplete

log probability from Equation 2.10. This can be shown by an application of Jensen’s

inequality (e.g. E[log(X)] ≥ log(E[X])). As a result one can find a locally maximum

θ̂ by a hill climbing procedure. This was formalized as the Expectation-Maximization

(EM) technique and proven by Dempster et al. (1977).

The iterative hill climbing procedure alternately recomputes the expected value

of z and the maximum a posteriori parameters given the expected value of z. Note

that for the labeled documents zij is already known. It must, however, be estimated

for the unlabeled documents. Let ẑ(k) and θ̂(k) denote the estimates for z and θ at

iteration k. Then, the algorithm finds a local maximum of l(θ|D) by iterating the

following two steps:

• E-step: Set ẑ(k+1) = E[z|D; θ̂(k)].

• M-step: Set θ̂(k+1) = arg maxθ P(θ|D; ẑ(k+1)).

In practice, the E-step corresponds to calculating probabilistic labels P(cj|di; θ̂)
for the unlabeled documents by using the current estimate of the parameters, θ̂, and

Equation 2.8. The M-step, maximizing the complete likelihood equation, corresponds

to calculating a new maximum a posteriori estimate for the parameters, θ̂, using the

current estimates for P(cj |di; θ̂), and Equations 2.6 and 2.7.

Any initialization of the parameters will lead to some local maxima with EM. Many

instantiations of EM begin by choosing a starting model parameterization randomly.
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In our case, we can be more selective about the starting point since we have not

only unlabeled data, but also some labeled data. Our iteration process is initialized

with a priming M-step, in which only the labeled documents are used to estimate the

classifier parameters, θ̂, as in Equations 2.6 and 2.7. Then the cycle begins with an

E-step that uses this classifier to probabilistically label the unlabeled documents for

the first time.

The algorithm iterates until it converges to a point where θ̂ does not change from

one iteration to the next. Algorithmically, we determine that convergence has oc-

curred by observing a below-threshold change in the log-probability of the parameters

(Equation 2.11), which is the height of the surface on which EM is hill-climbing.

Table 2.1 gives an outline of the basic EM algorithm from this section.

2.5.2 Discussion

In summary, EM finds a θ̂ that locally maximizes the posterior probability of its

parameters given all the data—both the labeled and the unlabeled. It provides a

method whereby unlabeled data can augment limited labeled data and contribute to

parameter estimation. An interesting empirical question is whether these more prob-

able parameter estimates will improve classification accuracy. Section 2.4.2 discussed

the fact that naive Bayes usually performs classification well despite violations of its

assumptions. Will this still hold true when using unlabeled data?

Note that the justifications for this approach depend on the assumptions stated

in Section 2.2, namely, that the data are produced by a mixture model, and that

there is a one-to-one correspondence between mixture components and classes. If the

generative modeling assumptions were correct, then maximizing model probability

would be a good criteria indeed. The Bayes optimal classifier corresponds to the

MAP parameter estimates of the model. When these assumptions do not hold—

as certainly is the case in real-world textual data—the benefits of unlabeled data

are less clear. The next section will show empirically that this method can indeed

dramatically improve the accuracy of a document classifier, especially when there are

only a few labeled documents.

Expectation-Maximization is a well-known family of algorithms with a long his-

tory and many applications. Its application to classification is not new in the statistics

literature. The idea of using an EM-like procedure to improve a classifier with un-
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labeled data predates the formulation of EM (e.g., Titterington, 1976). A survey of

this related work is given in Section 5.2.1. Our application of EM with a mixture of

multinomials is the first application of this approach to text classification.

2.6 Experimental Results

In this section, we provide empirical evidence that combining labeled and unlabeled

training documents using EM outperforms traditional naive Bayes, which trains on

labeled documents alone. We present experimental results with three different text

corpora: UseNet newsgroups (20 Newsgroups), web pages (WebKB), and newswire

articles (Reuters).4 Results show that improvements in accuracy due to unlabeled

data are often dramatic, especially when the number of labeled training documents

is low. For example, on the 20 Newsgroups data set, classification error is reduced by

30% when trained with 300 labeled and 10000 unlabeled documents.

2.6.1 Datasets and Protocol

The 20 Newsgroups data set (Mitchell, 1997; Joachims, 1997; McCallum et al., 1998),

collected by Ken Lang, consists of 20017 articles divided almost evenly among 20

different UseNet discussion groups. The task is to classify an article into the one

newsgroup (of twenty) to which it was posted. Many of the categories fall into con-

fusable clusters; for example, five of them are comp.* discussion groups, and three

of them discuss religion. When words from a stoplist of common short words are

removed, there are 62258 unique words that occur more than once; other feature se-

lection is not used. When tokenizing this data, we skip the UseNet headers (thereby

discarding the subject line); tokens are formed from contiguous alphabetic characters,

which are left unstemmed. The word counts of each document are scaled such that

each document has constant length, with potentially fractional word counts. Our

preliminary experiments with 20 Newsgroups indicated that naive Bayes classification

was more accurate with this word count normalization.

The 20 Newsgroups data set was collected from UseNet postings over a period

of several months in 1993. Naturally, the data have time dependencies—articles

4These data sets are available on the Internet at http://www.cs.cmu.edu/∼textlearning and
http://www.research.att.com/∼lewis.
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nearby in time are more likely to be from the same thread, and because of occasional

quotations, may contain many of the same words. In practical use, a classifier for

this data set would be asked to classify future articles after being trained on articles

from the past. To preserve this scenario, we create a test set of 4000 documents

by selecting by posting date the last 20% of the articles from each newsgroup. An

unlabeled set is formed by randomly selecting 10000 documents from those remaining.

Labeled training sets are formed by partitioning the remaining 6000 documents into

non-overlapping sets. The sets are created with equal numbers of documents per

class. For experiments with different labeled set sizes, we create up to ten sets per

size; obviously, fewer sets are possible for experiments with labeled sets containing

more than 600 documents. The use of each non-overlapping training set comprises a

new trial of the given experiment.

The WebKB data set (Craven et al., 2000) contains 8145 web pages gathered from

university computer science departments. The collection includes the entirety of four

departments, and additionally, an assortment of pages from other universities. The

pages are divided into seven categories: student, faculty, staff, course, project, depart-

ment and other. In this thesis, we use the four most populous non-other categories:

student, faculty, course and project—all together containing 4199 pages. The task is

to classify a web page into the appropriate one of the four categories. For consis-

tency with previous studies with this data set (Craven et al., 2000), when tokenizing

the WebKB data numbers are converted into a time or a phone number token, if

appropriate, or otherwise a sequence-of-length-n token.

We did not use stemming or a stoplist; we found that using a stoplist actually

hurt performance. For example, the stopword my is an excellent indicator of a stu-

dent homepage and is the fourth-ranked word by mutual information. We limit the

vocabulary to the 300 most informative words, as measured by average mutual infor-

mation with the class variable. This feature selection method is commonly used for

text (Yang & Pedersen, 1997; Koller & Sahami, 1997; Joachims, 1997). We selected

this vocabulary size by running leave-one-out cross-validation on the training data to

optimize classification accuracy.

The WebKB data set was collected as part of an effort to create a crawler that

explores previously unseen computer science departments and classifies web pages

into a knowledge-base ontology. To mimic the crawler’s intended use, and to avoid

reporting performance based on idiosyncrasies particular to a single department, we
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test using a leave-one-university-out approach. That is, we create four test sets, each

containing all the pages from one of the four complete computer science departments.

For each test set, an unlabeled set of 2500 pages is formed by randomly selecting

from the remaining web pages. Non-overlapping training sets are formed by the same

method as in 20 Newsgroups.

The Reuters 21578 Distribution 1.0 data set consists of 12902 articles and 90 topic

categories from the Reuters newswire. Following several other studies (Joachims,

1998; Liere & Tadepalli, 1997) we build binary classifiers for each of the ten most

populous classes to identify the news topic. Since the documents in this data set

can have multiple class labels, each category is traditionally evaluated with a binary

classifier. We use all the words inside the <TEXT> tags, including the title and the

dateline, except that we remove the REUTER and &# tags that occur at the top and

bottom of every document. We use a stoplist, but do not stem.

In Reuters, the best vocabulary size differs depending on which category is of in-

terest. This variance in optimal vocabulary size is unsurprising. As previously noted

(Joachims, 1997), categories like wheat and corn are known for a strong correspon-

dence between a small set of words (like their title words) and the categories, while

categories like acq are known for more complex characteristics. The categories with

narrow definitions attain best classification with small vocabularies, while those with

a broader definition require a large vocabulary. The vocabulary size for each Reuters

trial is selected by optimizing accuracy as measured by leave-one-out cross-validation

on the labeled training set.

As with the 20 Newsgroups data set, there are time dependencies in Reuters. The

standard ‘ModApte’ train/test split divides the articles by time, such that the later

3299 documents form the test set, and the earlier 9603 are available for training. In

our experiments, 7000 documents from this training set are randomly selected to form

the unlabeled set. From the remaining training documents, we randomly select up

to ten non-overlapping training sets of just ten positively labeled documents and 40

negatively labeled documents, as previously described for the other two data sets. We

use a non-uniform number of labelings across the classes because the negative class is

much more frequent than the positive class in all of the binary Reuters classification

tasks.

Results on Reuters are reported as both classification accuracy and precision-recall

breakeven points, a standard information retrieval measure for binary classification.
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Accuracy is not always a good performance metric here because very high accuracy

can be achieved by always predicting the negative class. The task on this data set is

less like classification than it is like filtering—find the few positive examples from a

large sea of negative examples. Recall and precision capture the inherent duality of

this task, and are defined as:

Recall =
# of correct positive predictions

# of positive examples
(2.12)

Precision =
# of correct positive predictions

# of positive predictions
. (2.13)

The classifier can achieve a trade-off between precision and recall by adjusting

the decision boundary between the positive and negative class away from its previous

default of P(cj|di; θ̂) = 0.5. The precision-recall breakeven point is defined as the

precision and recall value at which the two are equal (e.g., Joachims, 1998).

The algorithm used for experiments with EM is described in Table 2.1. Classifi-

cation results are reported as classification accuracy averages over all trials with the

same number of labeled or unlabeled documents, as appropriate. When posterior

model probability is reported and shown on graphs, some additive and multiplicative

constants are dropped, but the relative values are maintained.

The computational complexity of EM is not prohibitive. Each iteration requires

classifying the training documents (E-step), and building a new classifier (M-step).

In our experiments, EM usually converges after about 10 iterations. The wall-clock

time to read the document-word matrix from disk, build an EM model by iterating to

convergence, and classify the test documents is less than one minute for the WebKB

data set, and less than three minutes for 20 Newsgroups. The 20 Newsgroups data set

takes longer because it has more documents and more words in the vocabulary.

2.6.2 EM with Unlabeled Data Increases Accuracy

We first consider the use of basic EM to incorporate information from unlabeled

documents. Figure 2.2 shows the effect of using basic EM with unlabeled data on the

20 Newsgroups data set. The vertical axis indicates average classifier accuracy on test

sets, and the horizontal axis indicates the amount of labeled training data on a log

scale. We vary the amount of labeled training data, and compare the classification
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Figure 2.2: Classification accuracy on the 20 Newsgroups data set, both with and without 10,000
unlabeled documents. With small amounts of training data, using EM yields more accurate classi-
fiers. With large amounts of labeled training data, accurate parameter estimates can be obtained
without the use of unlabeled data, and the two methods begin to converge.

accuracy of traditional naive Bayes (no unlabeled documents) with an EM learner

that has access to 10000 unlabeled documents.

EM performs significantly better than traditional naive Bayes. For example, with

300 labeled documents (15 documents per class), naive Bayes reaches 52% accuracy

while EM achieves 66%. This represents a 30% reduction in classification error. Note

that EM also performs well even with a very small number of labeled documents;

with only 20 documents (a single labeled document per class), naive Bayes obtains

20%, EM 35%. As expected, when there is a lot of labeled data, and the naive

Bayes learning curve is close to a plateau, having unlabeled data does not help nearly

as much, because there is already enough labeled data to accurately estimate the

classifier parameters. With 5500 labeled documents (275 per class), classification

accuracy increases from 76% to 78%. Each of these results is statistically significant

(p < 0.05).5 Another way to view these results is to consider how unlabeled data

reduce the need for labeled training examples. For example, to reach 70% classification

accuracy, naive Bayes requires 2000 labeled examples, while EM requires only 600

5For all statistical results in this chapter, when the number of labeled examples is small, we have
multiple trials, and use paired t-tests. When the number of labeled examples is large, we have a
single trial, and report results instead with a McNemar test. These tests are discussed further by
Dietterich (1998).
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Figure 2.3: A scatterplot showing the correlation between the posterior model probability and the
accuracy of a model trained with labeled and unlabeled data. The strong correlation implies that
model probability is a good optimization criteria for the 20 Newsgroups dataset.

labeled (and 10000 unlabeled) examples to achieve the same accuracy. These results

indicate that incorporating unlabeled data into supervised learning with generative

models can significantly improve the accuracy of text classification, especially when

labeled data are sparse.

How does EM find more accurate classifiers? It does so by optimizing on posterior

model probability, not classification accuracy directly. If our generative model were

perfect then we would expect model probability and accuracy to be correlated and

EM to be helpful. But, we know that our simple generative model does not capture

many of the properties contained in the text. Our 20 Newsgroups results show that

we do not need a perfect model for EM to help text classification. Generative models

are representative enough for the purposes of text classification if model probability

and accuracy are correlated, allowing EM to indirectly optimize accuracy.

To illustrate this more definitively, let us look again at the 20 Newsgroups ex-

periments, and empirically measure this correlation. Figure 2.3 demonstrates the

correlation—each point in the scatterplot is one of the labeled and unlabeled splits

from Figure 2.2. The labeled data here are used only for setting the EM initialization

and are not used during iterations.6 We plot classification performance as accuracy

6Section 4.2 shows that using the labeled data just for setting the starting point gives essentially
the same performance when we also use it in the EM iterations. We exclude the labeled data from

27



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 3000 5000 7000 9000 11000 13000

A
cc

ur
ac

y

Number of Unlabeled Documents

3000 labeled documents
600 labeled documents
300 labeled documents
140 labeled documents
40 labeled documents

Figure 2.4: Classification accuracy while varying the number of unlabeled documents. The effect is
shown on the 20 Newsgroups data set, with 5 different amounts of labeled documents, by varying
the amount of unlabeled data on the horizontal axis. Having more unlabeled data helps. Note the
dip in accuracy when a small amount of unlabeled data is added to a small amount of labeled data.
We hypothesize that this is caused by extreme, almost 0 or 1, estimates of component membership,
P(cj |di, θ̂), for the unlabeled documents (as caused by naive Bayes’ word independence assumption).

on the test data and show the posterior model probability.

For this dataset, classification accuracy and model probability are in good cor-

respondence. The correlation coefficient between accuracy and model probability is

0.9798, a very strong correlation indeed. We can take this as a post-hoc verifica-

tion that this dataset is amenable to using unlabeled data via a generative model

approach. The optimization criteria of model probability is applicable here because

it is in tandem with accuracy.

We have shown that as the amount of labeled data increases, accuracy also in-

creases. In Figure 2.4 we consider the effect of varying the amount of unlabeled data.

For five different quantities of labeled documents, we hold the number of labeled doc-

uments constant, and vary the number of unlabeled documents in the horizontal axis.

Naturally, having more unlabeled data helps, and it helps more when there is less

labeled data.

Notice that adding a small amount of unlabeled data to a small amount of labeled

data actually hurts performance. We hypothesize that this occurs because the word

the iterations to allow model probability numbers to be comparable across trials.
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Iteration 0 Iteration 1 Iteration 2
intelligence DD D

DD D DD
artificial lecture lecture

understanding cc cc
DDw D? DD:DD
dist DD:DD due

identical handout D?

rus due homework
arrange problem assignment
games set handout

dartmouth tay set
natural DDam hw

cognitive yurttas exam
logic homework problem

proving kfoury DDam
prolog sec postscript

knowledge postscript solution
human exam quiz

representation solution chapter
field assaf ascii

Table 2.2: Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common
course-related words appear. The symbol D indicates an arbitrary digit.

independence assumption of naive Bayes leads to overly-confident P(cj|di, θ̂) estimates

in the E-step, which cause each unlabeled document to be heavily weighted to only

one class even without strong evidence for this. (Without this bias in naive Bayes, the

E-step would spread the unlabeled data more evenly across the classes.) When the

number of unlabeled documents is large, however, this problem disappears because

the unlabeled set provides a large enough sample to smooth out the sharp discreteness

of naive Bayes’ overly-confident classification.

To provide some intuition about why EM works, we present a detailed trace of the

evolution of the classifier over the course of several EM iterations. Table 2.2 shows

the changing definition of the course class in the WebKB dataset. Each column shows

the ordered list of words that the model indicates are most predictive of the course
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Figure 2.5: Classification accuracy on the WebKB data set, both with and without 2500 unlabeled
documents. When there are small numbers of labeled documents, EM improves accuracy. When
there are many labeled documents, however, EM degrades performance slightly—indicating a misfit
between the data and the assumed generative model.

class. Words are judged to be predictive using a weighted log likelihood ratio.7 The

symbol D indicates an arbitrary digit. At Iteration 0, the parameters are estimated

from a randomly-chosen single labeled document per class. Notice that the course

document seems to be about a specific Artificial Intelligence course at Dartmouth.

After two EM iterations with 2500 unlabeled documents, we see that EM has used the

unlabeled data to find words that are more generally indicative of courses. The clas-

sifier corresponding to the first column achieves 50% accuracy; when EM converges,

the classifier achieves 71% accuracy.

7The weighted log likelihood ratio used to rank the words in Figure 2.2 is:

P(wt|cj; θ̂) log

(
P(wt|cj; θ̂)

P(wt|¬cj; θ̂)

)
, (2.14)

which can be understood in information-theoretic terms as word wt’s contribution to the average
inefficiency of encoding words from class cj using a code that is optimal for the distribution of words
in ¬cj. The sum of this quantity over all words is the Kullback-Leibler divergence between the
distribution of words in cj and the distribution of words in ¬cj (Cover & Thomas, 1991).
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Precision-Recall Breakeven Classification Accuracy

Category NB EM NB vs. EM NB EM NB vs. EM

acq 69.4 70.7 +3.3 86.9 81.3 -5.6

corn 44.3 44.6 +0.3 94.6 93.2 -1.4

crude 65.2 68.2 +3.0 94.3 94.9 +0.6

earn 91.1 89.2 -1.9 94.9 95.2 +0.3

grain 65.7 67.0 +1.3 94.1 93.6 -0.5

interest 44.4 36.8 -7.6 91.8 87.6 -4.2

money-fx 49.4 40.3 -9.1 93.0 90.4 -2.6

ship 44.3 34.1 -10.2 94.9 94.1 -0.8

trade 57.7 56.1 -1.6 91.8 90.2 -1.6

wheat 56.0 52.9 -3.1 94.0 94.5 +0.5

Table 2.3: Precision-recall breakeven and accuracy showing performance of binary classifiers on
Reuters with naive Bayes (NB) and basic EM (EM) with labeled and unlabeled data.

2.6.3 EM with Unlabeled Data Can Hurt Accuracy

On some datasets, like 20 Newsgroups, EM increases accuracy. But with the WebKB

data set, we see that the incorporation of unlabeled data can also decrease classifi-

cation accuracy. The graph in Figure 2.5 shows the performance of basic EM (with

2500 unlabeled documents) on WebKB. Again, EM improves accuracy significantly

when the amount of labeled data is small. When there are four labeled documents

(one per class), traditional naive Bayes attains 40% accuracy, while EM reaches 55%.

When there is a lot of labeled data, however, EM hurts performance slightly. With

240 labeled documents, naive Bayes obtains 81% accuracy, while EM does worse at

79%. Both of these differences in performance are statistically significant (p < 0.05),

for three and two of the university test sets, respectively. Here EM hurts performance

because the data do not fit the assumptions of the generative model—the mixture

components that best explain the unlabeled data are not in precise correspondence

with the class labels.

On WebKB EM hurts accuracy when there is a relatively large amount of labeled

data. However, EM can also hurt performance when labeled data are sparse. Ta-

ble 2.3 shows this for the Reuters dataset. When incorporating the unlabeled data

into parameter estimation, both precision-recall breakeven and classification accuracy

decrease more often than not. This indicates that our generative model is not accurate
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enough for this dataset. For each of the Reuters categories EM finds a significantly

more probable model, given the evidence of the labeled and unlabeled data. But

frequently this more probable model corresponds to a lower-accuracy classifier—not

what we would hope for.

2.7 Discussion

From our experimental results, we see on two domains that when labeled data are

sparse, using unlabeled data helps classification considerably. This is a significant

finding because it demonstrates that some text classification tasks can be addressed

with significantly less human labeling effort than before. It was not clear from the

beginning whether maximizing the probability of our simple generative model was a

reasonable optimization criteria when using unlabeled data. For some text classifi-

cation tasks, likelihood and accuracy correspond to each other; the generative model

approach works well in these cases.

However, on two domains we see unlabeled data hurting, sometimes with sparse

labeled data and sometimes with plentiful labeled data. There are several reasonable

hypotheses that could explain why sometimes EM does not do so well.

One hypothesis that would explain the mixed performance of EM goes back to

the assumed generative model. As we discussed before, text documents are blatantly

not generated by a mixture of multinomials process. EM maximizes the probability

subject to the assumption that the generative model is correct, but there are no

guarantees that EM will produce a reasonable classifier for our simple models of text.

EM will give high-probability parameters based on the unlabeled data, but they may

not give good accuracy.

Take, for example, the WebKB dataset. Even when labeled data were sufficient

to saturate the learner, we still had an order of magnitude more unlabeled data. In

this case, the great majority of the data determining the parameter estimates comes

from the unlabeled set. We can think of EM as almost performing unsupervised clus-

tering in a mixtures of multinomials world, since the model is mostly positioning the

mixture components to maximize the likelihood of the unlabeled documents. When

the mixture model assumptions are even just a little bit off, the natural clustering of

the unlabeled data may produce mixture components that are not in correspondence

with the class labels, and are therefore detrimental to classification accuracy. For
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other text tasks, posterior probability maximization has also been detrimental when

the amount of labeled data is reasonable. While EM increased the likelihood of the

parameters, the accuracy of part-of-speech taggers (Merialdo, 1994; Elworthy, 1994)

and information extractors (McCallum et al., 2000) went down. For these tasks, each

example is defined by just a small amount of local context. Here, the correctness

of the model is much more important, because there are only a few, very correlated

features. In text classification, documents are much longer, and not as sensitive to

the local correctness of the generative model.

It is also understandable that the performance on Reuters often decreased with

the addition of unlabeled data. Consider the validity of the generative model for this

newswire domain. One multinomial component models documents about a single

topic, like trade. Documents for all other topics are modeled by the second multino-

mial component. It is overly-optimistic to try to model “all documents but trade”

with a single multinomial; the entire newswire has many sub-clusters of documents

in it. Also, consider the relation between the desired classification task and the most

probable clustering of the data with only two multinomials. It seems unlikely that the

natural clustering with two multinomials would correspond to this unusual separation

of the data. A better generative model would take into account both the classification

task and the natural distribution of unlabeled documents.

A second hypothesis to explain why EM does poorly in using unlabeled data is

that EM gets caught in poor local maxima in model probability space during the hill-

climbing process. This trouble can arise even when model probability and accuracy

are in good correspondence. EM is guaranteed to converge only to a saddlepoint or

local maxima and does not guarantee the best global solution. In fact, with the high-

dimensional parameter space used by our mixture of multinomials, it is a certainty

that local maxima are everywhere. For example, in the case of a mixture of two

Gaussians, each data point introduces a singularity into the likelihood surface (Day,

1969). In practice, statisticians have always been concerned about poor local maxima

with EM. The most standard approach for combatting this problem is to run EM

many times from randomly chosen starting points, and to select the local maximum

with the highest probability. We have not adopted this approach here because the

presence of the labeled data already indicate a good starting point. However, other

approaches can be used to find more probable maxima that have not been addressed

in this chapter. If indeed, models with higher probability could be found, these may

correspond to classifiers with higher accuracy.
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The remainder of this thesis explores these two hypotheses in detail. Chapter 3

addresses the concerns of the first hypothesis by changing the generative model in two

different ways. These changes bring model probability and accuracy into correlation

for complex datasets. Chapter 4 addresses the second hypothesis and shows two ways

to reduce the cost incurred by local maxima. These approaches further increase the

benefit of unlabeled data when the model is representative.
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Chapter 3

Enhancing the Generative Model

When the generative modeling assumptions vary too much from reality the addi-
tion of unlabeled data hurts classification accuracy. This happens when models
with high probability on the unlabeled data do not correspond to high-accuracy
classifiers on test data. This negative effect can often be reversed by using a
more accurate statistical model for the domain in question. There may be fur-
ther structure between or within classes that is not represented in the generative
model. For example, we may improve the model to represent sub-topic struc-
ture by modeling each class as a mixture of several subtopics, instead of just a
single topic. Or, we may capture super-topic structure by integrating a model
of hierarchical relationships between the classes. Experimental evidence shows
that with these more sophisticated model classes, higher-probability models
give more accurate text classifiers. When the use of the basic model hurts
classification performance, these improved models allow supervised learning to
benefit by the inclusion of unlabeled data.

3.1 Introduction

In the previous chapter, we assumed that a simple statistical model had generated the

text documents in our dataset. By taking a model posterior maximization approach

we were able to estimate parameters of the model from all the data—both the labeled

and the unlabeled. The addition of the unlabeled data enabled us to find much more

probable parameters with EM than we would using labeled data alone—especially

when labeled data were sparse. We saw that in some domains the probability of
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Figure 3.1: An example of learning with labeled and unlabeled data when the generative model is
not representative. Here, the presence of the unlabeled data hurts classification accuracy.

the model parameters was strongly correlated with classification accuracy; here using

the unlabeled data to select parameterizations gave more accurate classifiers. In

other domains model probability and accuracy are not well-correlated because the

generative model was not representative; on these datasets using unlabeled data hurt

classification performance. In this chapter we confront this problem by changing

the generative assumptions in two different ways to make our models representative

enough that unlabeled data will help text classification on these more challenging

domains.

Why will unrepresentative models decouple the relationship between accuracy

and model probability? Consider a binary classification task on the non-text dataset

shown in Figure 3.1. If we assume a generative model that is a mixture of two

Gaussians, one per class, with fixed uniform covariance matrices, we can estimate its

parameters from the data shown. Note this is the wrong generative model, as the two

clusters in the data would best be represented with quite different covariance matrices.

Yet, if we use maximum a posteriori methods to build a classifier (indicated by the

linear separator) using only the five labeled datapoints shown, it performs reasonably

accurately. Consider what happens if we add in all the unlabeled data, indicated by

the dots. Now, when model maximization is performed, the large mass of negative

examples not captured by the small positive Gaussian will draw over the positive
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Gaussian during the iterations of EM. This will result in the scenario shown on the

right hand side, where classification accuracy is poor indeed.

What went wrong? Our generative model was not representative of the data. EM

found that the most probable parameterization put each mixture covering one side of

the negative class, leaving the positive class unattended. If the model had been more

representative and had not fixed the covariance matrices unrealistically, EM would

be able to model the data better and give an accurate classifier.

For our text classification domains we have made three strong assumptions about

the generative model of text documents. They are (1) the documents are generated

by a mixture model, (2) there is a one-to-one correspondence between mixture com-

ponents and classes, and (3) each mixture component is a multinomial distribution

over words. As authors, people do not actually compose documents in this fashion.

Yet for some domains posterior model probability and accuracy are correlated for

this generative model, allowing unlabeled data to be helpful for classification. In

cases where this correlation does not hold, our toy example suggests that we should

modify our assumptions to be more representative of the true data distribution. In

this chapter we relax in turn each of the first two assumptions about text documents.

In Section 3.2 we consider the assumption that each class is modeled by a single

mixture component. Often a classification task will demand that a single class cover a

complicated and multi-faceted topic. In this case it would be unrealistic to model this

class with only one mixture component. A more representative model would instead

use multiple mixture components to allow each sub-topic of the class to be expressed

separately. In the previous chapter the Reuters dataset had this characteristic, and

with the original generative model, unlabeled data hurt classification performance.

With multiple mixture components per class, including unlabeled data into parameter

estimation makes our text classifiers more accurate.

In Section 3.3 we consider the assumption that the data are produced by a mixture

model. This means that the documents of each class are unrelated to the others.

However, it is often the case that there is a natural hierarchical organization of the

classes, with some classes being more similar than others. Given such a hierarchy,

we model the class relationships to allow parameters shared between classes to be

estimated more accurately. The Cora dataset, a collection of computer science research

papers, has a hierarchy of the sub-fields of CS. Experimental results show that by

leveraging the hierarchy we can improve classification accuracy using unlabeled data,
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Figure 3.2: An example of data that violates the assumption of a one-to-one correspondence between
mixture components and Gaussians. With the labeled and unlabeled data indicated, maximizing
the probability of an incorrect model gives a poor classifier.

where with the basic model classification accuracy decreases.

3.2 Modeling Sub-topic Structure

The second assumption of our generative model states that there is a one-to-one

correspondence between classes and components in the mixture model. When this

assumption is strongly violated, incorporating unlabeled data with model estima-

tion can hurt classification performance. For example, let us return to our Gaussian

mixture model of the previous section. There, we saw that the assumption that

all mixture components had the same covariance matrix was unrealistic and harm-

ful. Figure 3.2 shows an example of some labeled and unlabeled data that violates

instead the assumption that each class has exactly one mixture component. The

positive class is well-modeled with one Gaussian, but the negative class is not. The

data are distributed like a “clumpy sea of examples” with the positive class being one

small island.

What would be a more representative model? Instead of modeling a sea of negative

examples with a single mixture component, it might be better to model it with many

components. In this way, each negative component could, after maximization, capture

one clump of the sea of examples. Figure 3.3 shows the same data modeled with

six mixture components for the negative class. Here, we see a much more realistic
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Figure 3.3: The same data as Figure 3.2, but this time modeled with six mixture components for
the negative class. Here the assumed generative model is much more representative.

modeling of the data.

This section takes exactly the approach suggested by this example for text data,

and relaxes the assumption of a one-to-one correspondence between mixture compo-

nents and classes. We replace it with a less restrictive assumption: a many-to-one

correspondence between mixture components and classes. This allows us to model

the sub-topic structure of a class.

In text classification, an analogous scenario is not unusual. Consider the task

of text filtering, where we want to identify a small well-defined class of documents

from a very large pool or stream of documents. One example might be a system that

watches a network administrator’s incoming emails to identify the rare emergency

situation that would require paging her on vacation. Modeling the non-emergency

emails as the negative class with only one multinomial distribution will result in an

unrepresentative model. The negative class contains emails with a variety of sub-

topics: personal emails, non-emergency requests, spams, and many more. Perhaps

with multiple mixture components we could more accurately model the negative class.

This would allow model probability maximization with labeled and unlabeled data to

give a classifier that provides significantly higher accuracy.

In Section 3.2.1 we show how to relax our assumptions and how to use EM for

the new generative model to estimate highly probable parameters given our data.

In Section 3.2.2 we return to the problematic Reuters dataset where incorporating
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unlabeled data with the original model hurt performance. Section 3.2.3 shows that

with this more representative model, improving the model probability with EM also

improves classification accuracy.

3.2.1 EM with Multiple Mixture Components per Class

With a many-to-one correspondence between mixture components and classes, the

original generative model of the previous chapter is no longer applicable. The new

generative model must account for the sub-topic structure. As in the old model, we

first pick a class with a biased die roll. Each class has several sub-topics; we next

pick one of these sub-topics, again with a biased die roll. Now that the sub-topic is

determined, the document’s words are generated. We do this by first picking a length

(independently of sub-topic and class) and then draw the words from the sub-topic’s

multinomial distribution.

Unlike previously, there are now two missing values for each unlabeled document—

its class and its sub-topic. Even for the labeled data there are missing values; although

the class is known, its sub-topic is not. Since we do not have access to these missing

class and sub-topic labels, we must use a technique such as EM to estimate local MAP

generative parameters. As in Section 2.5, EM is instantiated as an iterative algorithm

that alternates between estimating the values of missing class and sub-topic labels,

and calculating the MAP parameters using the estimated labels. After EM converges

to high-probability parameter estimates the generative model can be used for text

classification by turning it around with Bayes’ rule. Table 3.1 gives an overview of

the modified EM algorithm.

To derive the details of this algorithm we use as a starting point the notation

introduced in Chapter 2. The new generative model specifies a separation between

mixture components and classes. Instead of using cj to denote both of these, cj ∈ C
now denotes only the jth mixture component. We write ta ∈ T for the ath class

(“topic”); when component cj belongs to class ta, then qaj = 1, and otherwise 0. This

represents the pre-determined, deterministic, many-to-one mapping between mixture

components and classes. We indicate the class label and sub-topic label of a document

by xi and yi, respectively. Thus if document di was generated by mixture component

cj we say yi = cj, and if the document belongs to class ta then we say xi = ta.

If all the class and sub-topic labels were known for our dataset, finding MAP
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• Inputs: Collections Dl of labeled documents and Du of unlabeled documents.

• Set the number of mixture components per class by cross-validation (see Sections 3.2.3).

• Initialize each mixture component by randomly assigning non-zero P(cj|di; θ̂) for each labeled
document based on the document’s class label.

• Build an initial classifier θ̂ from the labeled documents only. Use maximum a posteriori
parameter estimation to find θ̂ = arg maxθ P(D|θ)P(θ) (see Equations 3.1, 3.2 and 3.3).

• Loop while classifier parameters improve, measured by ∆lc(θ|D; z), the change in complete
log probability of generative model:

• (E-step) Use the current classifier, θ̂, to estimate the class and sub-topic memberships
of each document (see Equations 3.4 and 3.5). Restrict the membership probability
estimates of labeled documents to be zero for components associated with other classes
and renormalize.

• (M-step) Re-estimate the classifier, θ̂, given the estimated component member-
ship of each document. Use maximum a posteriori parameter estimation to find
θ̂ = arg maxθ P(D|θ)P(θ) (see Equations 3.1, 3.2 and 3.3).

• Output: A classifier, θ̂, that takes an unlabeled document and predicts a class label using
Equation 3.5.

Table 3.1: The modified algorithm for integrating unlabeled data with EM when using multiple
mixture components per class.

estimates for the generative parameters would a straightforward application of closed-

form equations similar to those for naive Bayes seen in Section 2.4. The formula for

the word probability parameters is identical to Equation 2.6 for naive Bayes:

θ̂wt|cj ≡ P(wt|cj; θ̂) =
1 +

∑|D|
i=1 N(wt, di)P(yi = cj |di)

|V |+∑|V |
s=1

∑|D|
i=1 N(ws, di)P(yi = cj |di)

. (3.1)

The class probabilities are analogous to Equation 2.7, but using the new notation for

classes instead of components:

θ̂ta ≡ P(ta|θ̂) =
1 +

∑|D|
i=1 P(xi = ta|di)
|T |+ |D| . (3.2)

The sub-topic probabilities are similar, except they are estimated only with reference
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to other documents in that component’s class:

θ̂cj ≡ P(cj |ta; θ̂) =
1 +

∑|D|
i=1 P(yi = cj |di)∑|C|

j=1 qaj +
∑|D|
i=1 P(xi = ta|di)

. (3.3)

At classification time, we must estimate class membership probabilities for an

unlabeled document. This is done by first calculating sub-topic membership and then

summing over sub-topics to get overall class probabilities. Sub-topic membership is

calculated analogously to mixture component membership for naive Bayes, with a

small adjustment to account for the presence of two priors (class and sub-topic)

instead of just one:

P(yi = cj |di; θ̂) =

∑|T |
a=1 qajP(ta|θ̂)P(cj |ta; θ̂)

∏|di|
k=1 P(wdi,k |cj; θ̂)∑|C|

r=1

∑|T |
b=1 qbrP(tb|θ̂)P(cr|tb; θ̂)

∏|di|
k=1 P(wdi,k |cr; θ̂)

. (3.4)

Overall class membership is calculated with a sum of probability over all of the class’s

sub-topics:

P(xi = ta|di; θ̂) =
|C|∑
j=1

qajP(yi = cj|di; θ̂) (3.5)

These equations for supervised learning are applicable only when all the training

documents have both class and sub-topic labels. Without these we use EM. The

derivation of the EM process used to find parameters of this model from labeled and

unlabeled data runs analogously to Section 2.5.1. The M-step, as with basic EM,

builds maximum a posteriori parameter estimates for the multinomials and priors.

This is done with Equations 3.1, 3.2, and 3.3, using the probabilistic class and sub-

topic memberships estimated in the previous E-step.

In the E-step, for the unlabeled documents we calculate probabilistically-weighted

sub-topic and class memberships (Equations 3.4 and 3.5). For labeled documents, we

must estimate sub-topic membership. But, we know from its given class label that

many of the sub-topic memberships must be zero—those sub-topics that belong to

other classes. Thus we calculate sub-topic memberships as for the unlabeled data,

but setting the appropriate ones to zero, and normalizing the non-zero ones over only

those topics that belong to its class.
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For the original generative model we initialized EM using the labeled data. We

use the same approach for multiple mixture components, but there are no initial sub-

topic labels provided. Thus, we randomly spread each labeled training example across

the mixture components that belong to its class. That is, components are initialized

by performing a randomized E-step in which P(cj|di; θ̂) is sampled from a uniform

distribution over mixture components belonging to the document’s class.

If we are given a set of class-labeled data, and a set of unlabeled data, we can now

apply EM if there is some specification of the number of sub-topics for each class.

However, this information is not typically available. As a result we must resort to

some techniques for model selection. There are many commonly-used approaches to

model selection such as cross validation, AIC, BIC and others. Since we do have

the availability of a limited number of labeled documents, we use cross-validation to

select the number of sub-topics for classification performance.

There is tension in this model selection process between complexity of the model

and data sparsity. With as many sub-topics as there are documents, we can perfectly

model the training data—each sub-topic covers one training document. With still a

large number of sub-topics, we can accurately model existing data, but generalization

performance will be poor. This is because each multinomial will have its many pa-

rameters estimated from only a few documents and will suffer from sparse data. With

very few sub-topics, the opposite problem will arise. We will very accurately estimate

the multinomials, but the model will be overly restrictive, and not representative

of the true document distribution. Cross-validation should help in selecting a good

compromise between these tensions with specific regard to classification performance.

Note that our use of multiple mixture components per class allows us to cap-

ture some dependencies between words on the class-level. For example, consider a

sports class consisting of documents about both hockey and baseball. In these doc-

uments, the words ice and puck are likely to co-occur, and the words bat and base

are likely to co-occur. However, these dependencies cannot be captured by a sin-

gle multinomial distribution over words in the sports class. With multiple mixture

components per class, one multinomial can cover the hockey sub-topic, and another

the baseball sub-topic. In the hockey sub-topic, the word probability for ice and

puck will be significantly higher than they would be for the whole class. This makes

their co-occurrence more likely in hockey documents than it would be under a single

multinomial assumption.
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3.2.2 Dataset and Protocol

As a test domain for our new generative model we return to Reuters, the collection of

newswire articles used in the previous chapter. Since the documents in this dataset

can have multiple class labels, each category is traditionally evaluated with a binary

classifier. Using the original generative model, the negative class covers up to 89

distinct categories, and we expect this task to strongly violate the assumption that

all the data for the negative class are generated by a single mixture component.

For this reason, we model the positive class with a single mixture component and

the negative class with between one and forty mixture components, both with and

without unlabeled data.

We pre-process the data and follow the experimental protocol as described in

Section 2.6.1. Only ten positive and 40 negative documents are labeled, and 7000

are unlabeled. Classification results are reported both as precision-recall breakeven

points and as classification accuracy. The algorithm used for experiments with EM

is described in Table 3.1.

When leave-one-out cross-validation is performed in conjunction with EM, we

make one simplification for computational efficiency. We first run EM to convergence

with all the training data, and then subtract the word counts of each labeled document

in turn before testing that document. Thus, when performing cross-validation for a

specific combination of parameter settings, only one run of EM is required instead of

one run of EM per labeled example. Note, however, that there are still some residual

effects of the held-out document.

3.2.3 Experimental Results

Table 3.2 contains a summary of the precision-recall breakeven results on Reuters.

The NB1 and EM1 columns reproduce the results from Section 2.6.3 with the original

generative model of one mixture component per class. Remember that more often

than not, incorporating unlabeled data with EM hurts performance. We hypothesize

that because the negative class is truly multi-modal, fitting a single naive Bayes class

with EM to the data does not accurately capture the negative class word distribution.

The NB* column shows the results of modeling the negative class with multiple

mixture components, but with just the labeled data. In the NB* column, the number

of components has been selected to optimize the best precision-recall breakeven point.
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Category NB1 NB* EM1 EM* EM* vs NB1 EM* vs NB*

acq 69.4 74.3 (4) 70.7 83.9 (10) +14.5 +9.6

corn 44.3 47.8 (3) 44.6 52.8 (5) +8.5 +5.0

crude 65.2 68.3 (2) 68.2 75.4 (8) +10.2 +7.1

earn 91.1 91.6 (1) 89.2 89.2 (1) -1.9 -2.4

grain 65.7 66.6 (2) 67.0 72.3 (8) +6.3 +5.7

interest 44.4 54.9 (5) 36.8 52.3 (5) +7.9 -2.6

money-fx 49.4 55.3 (15) 40.3 56.9 (10) +7.5 +1.6

ship 44.3 51.2 (4) 34.1 52.5 (7) +8.2 +1.3

trade 57.7 61.3 (3) 56.1 61.8 (3) +4.1 +0.5

wheat 56.0 67.4 (10) 52.9 67.8 (10) +11.8 +0.4

Table 3.2: Precision-recall breakeven points showing performance of binary classifiers on Reuters with
traditional naive Bayes (NB1), multiple mixture components using just labeled data (NB*), basic
EM (EM1) with labeled and unlabeled data, and multiple mixture components EM with labeled and
unlabeled data (EM*). For NB* and EM*, the number of components is selected optimally for each
trial, and the median number of components across the trials used for the negative class is shown in
parentheses. Note that the multi-component model is more natural for Reuters, where the negative

class consists of many topics. Using both unlabeled data and multiple mixture components per class
increases performance over either alone, and over naive Bayes.

The median number of components selected across trials is indicated in parentheses

beside the breakeven point. Note that even without unlabeled data, using this more

complex representation improves performance over traditional naive Bayes. EM au-

tomatically finds a high-probability division of the negative class into sub-topics that

help improve classification.

The column labeled EM* shows results of EM with multiple mixture components

using labeled and unlabeled data, again selecting the best number of components.

Here performance is better than both NB1 (traditional naive Bayes) and NB* (naive

Bayes with multiple mixture components per class), where with only one component

per class EM was worse. This increase with unlabeled data, measured over all trials

of Reuters, is statistically significant (p < 0.05). This indicates that while the use

of multiple mixture components increases performance over traditional naive Bayes,

the combination of unlabeled data and multiple mixture components increases per-

formance even more. By using a generative model that is more representative of the

multi-modal data, increasing model likelihood with EM also increases classification
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Category NB1 NB* EM1 EM* EM* vs NB1 EM* vs NB*

acq 86.9 88.0 (4) 81.3 93.1 (10) +6.2 +5.1

corn 94.6 96.0 (10) 93.2 97.2 (40) +2.6 +1.2

crude 94.3 95.7 (13) 94.9 96.3 (10) +2.0 +0.6

earn 94.9 95.9 (5) 95.2 95.7 (10) +0.8 -0.2

grain 94.1 96.2 (3) 93.6 96.9 (20) +2.8 +0.7

interest 91.8 95.3 (5) 87.6 95.8 (10) +4.0 +0.5

money-fx 93.0 94.1 (5) 90.4 95.0 (15) +2.0 +0.9

ship 94.9 96.3 (3) 94.1 95.9 (3) +1.0 -0.4

trade 91.8 94.3 (5) 90.2 95.0 (20) +3.2 +0.7

wheat 94.0 96.2 (4) 94.5 97.8 (40) +3.8 +1.6

Table 3.3: Classification accuracy on Reuters with traditional naive Bayes (NB1), multiple mixture
components using just labeled data (NB*), basic EM (EM1) with labeled and unlabeled data, and
multiple mixture components EM with labeled and unlabeled data (EM*), as in Table 3.2.

accuracy.

Table 3.3 shows the same results as Table 3.2, but for classification accuracy, and

not precision-recall breakeven. The general trends for accuracy are the same as for

precision-recall. However for accuracy, the optimal number of mixture components

for the negative class is greater than for precision-recall. By its nature precision-recall

focuses on modeling the positive class, where accuracy focuses more on modeling

the negative class, because it is much more frequent. By allowing more mixture

components for the negative class, a more accurate model is achieved.

It is interesting to note that on average EM* uses more mixture components than

NB*. This suggests that the addition of unlabeled data supports the use of a more

complex model. Without the unlabeled examples, the data sparsity problems are more

severe, and the best tradeoff between model representation and parameter generally

lies with fewer mixture components per class. When unlabeled data are present and

plentiful, more complex models are more representative and accurate.

We can provide scatterplots of model probability versus accuracy that demonstrate

that they become correlated with multiple mixture components. We do so for the

acq classification task, and compare the use of ten mixture components (the median

number picked for acq) to the use of only one. To provide fair comparisons across
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Figure 3.4: A comparison of models when using unlabeled data for the Reuters acq task. Accuracy
is best when using ten mixture components for the negative class, and incorporating unlabeled data.
With only one mixture component, EM finds high-likelihood models that do not correlate with
high-accuracy classifiers.

different training set splits, we use the labeled data only to set the EM initialization1

and fix the vocabulary to the top 500 words using all the training data (500 is the

median vocabulary size selected). We vary the number of labeled data, using ten

random training set splits for each amount. Figure 3.4 shows that using ten mixture

components consistently gives the best classification accuracy compared to EM with

a single mixture component or naive Bayes. Note that EM with just one component

does quite poorly—significantly worse than naive Bayes.

The scatterplots tell why a single component is a poor representation. Figure 3.5

shows the correlation between model probability and classification accuracy for one

mixture component (on the left) and ten mixture components (on the right). Note

that with one component, the correlation is very strong (r = −0.9906), but in the

wrong direction! Models with higher probability have significantly lower classification

accuracy. By examining the solutions found by EM, we find that with only two

mixture components (one positive, one negative) the most probable clustering of the

data has one component that has the majority of negative documents and the second

with most of the positive documents, but significantly more negative documents. Thus,

1Section 4.2 shows that using the labeled data just for setting the starting point gives essentially
the same performance when we also use it in the EM iterations.
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Figure 3.5: Scatterplots showing the relationship between model probability and classification accu-
racy for the Reuters acq task. On the left, with only one mixture component for the negative class,
probability and accuracy are inversely proportional, exactly what we would not want. On the right,
with ten mixture components for negative, there is a moderate positive correlation between model
probability and classification accuracy.

the classes do not separate with high-probability models.

With ten mixture components the story is quite different. Figure 3.5 on the right

shows a moderate correlation between model probability and classification accuracy

in the right direction (r = 0.5474). For the solutions here, one component covers

nearly all the positive documents and some, but not many, negatives. The other ten

components are distributed through the remaining negative documents. This model

is more representative of the data for our classification task because classification

accuracy and model probability are correlated. This allows the beneficial use of

unlabeled data through the generative model approach.

Tables 3.4 and 3.5 show the complete results for experiments using multiple mix-

ture components with and without unlabeled data, respectively. Note that in general,

using too many or too few mixture components hurts performance. With too few com-

ponents, our assumptions are overly restrictive and our model is not representative.

With too many components, there are more parameters to estimate from the same

amount of data and we suffer from (unlabeled) data sparsity. With substantially

larger amounts of unlabeled data, we hypothesize we would be able to support more

mixture components, up to the point where the model is no longer representative.

One obvious question is how to automatically select the best number of mixture

components without having access to the test set labels. We use leave-one-out cross-
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Category EM1 EM3 EM5 EM10 EM20 EM40

acq 70.7 75.0 72.5 77.1 68.7 57.5

corn 44.6 45.3 45.3 46.7 41.8 19.1

crude 68.2 72.1 70.9 71.6 64.2 44.0

earn 89.2 88.3 88.5 86.5 87.4 87.2

grain 67.0 68.8 70.3 68.0 58.5 41.3

interest 36.8 43.5 47.1 49.9 34.8 25.8

money-fx 40.3 48.4 53.4 54.3 51.4 40.1

ship 34.1 41.5 42.3 36.1 21.0 5.4

trade 56.1 54.4 55.8 53.4 35.8 27.5

wheat 52.9 56.0 55.5 60.8 60.8 43.4

Table 3.4: Performance of EM using different numbers of mixture components for the negative

class and 7000 unlabeled documents. Precision-recall breakeven points are shown for experiments
using between one and forty mixture components. Note that using too few or too many mixture
components results in poor performance.

validation, with the computational short-cut that entails running EM only once (as

described at the end of Section 3.2.2). Results from this technique (EM*CV), com-

pared to naive Bayes (NB1) and the best EM (EM*), are shown in Table 3.6. Note

that cross-validation does not perfectly select the number of components that perform

best on the test set.

3.2.4 Discussion

In these experiments we see that it can be advantageous to explicitly model sub-topic

structure for text classification when a single multinomial is too restrictive a model

for a class. We do this by allowing multiple multinomial mixture components per

class, and fit their parameters with EM. The use of the new model and the unlabeled

data improves classification accuracy over naive Bayes with labeled data in all ten

Reuters classification tasks.

When choosing how complex a model to use, our method of cross-validation con-

sistently selects too few mixture components. By using cross-validation with the

computational short-cut, we bias the model towards the held-out document, which,

we hypothesize, favors the use of fewer components. The computationally expensive,
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Category NB1 NB3 NB5 NB10 NB20 NB40

acq 69.4 69.4 65.8 68.0 64.6 68.8

corn 44.3 44.3 46.0 41.8 41.1 38.9

crude 65.2 60.2 63.1 64.4 65.8 61.8

earn 91.1 90.9 90.5 90.5 90.5 90.4

grain 65.7 63.9 56.7 60.3 56.2 57.5

interest 44.4 48.8 52.6 48.9 47.2 47.6

money-fx 49.4 48.1 47.5 47.1 48.8 50.4

ship 44.3 42.7 47.1 46.0 43.6 45.6

trade 57.7 57.5 51.9 53.2 52.3 58.1

wheat 56.0 59.7 55.7 65.0 63.2 56.0

Table 3.5: Performance of EM using different numbers of mixture components for the negative class,
but with no unlabeled data. Precision-recall breakeven points are shown for experiments using
between one and forty mixture components.

Category NB1 EM* EM*CV EM*CV vs NB1

acq 69.4 83.9 (10) 75.6 (1) +6.2

corn 44.3 52.8 (5) 47.1 (3) +2.8

crude 65.2 75.4 (8) 68.3 (1) +3.1

earn 91.1 89.2 (1) 87.1 (1) -4.0

grain 65.7 72.3 (8) 67.2 (1) +1.5

interest 44.4 52.3 (5) 42.6 (3) -1.8

money-fx 49.4 56.9 (10) 47.4 (2) -2.0

ship 44.3 52.5 (7) 41.3 (2) -3.0

trade 57.7 61.8 (3) 57.3 (1) -0.4

wheat 56.0 67.8 (10) 56.9 (1) +0.9

Table 3.6: Performance of using multiple mixture components when the number of components
is selected via cross-validation (EM*CV) compared to optimal selection (EM*) and straight naive
Bayes (NB1). Note that cross-validation usually selects too few components.

but complete, cross-validation should perform better. Other model selection methods

may also perform better, while maintaining computational efficiency. These include

more robust methods of cross-validation Ng (1997), Minimum Description Length

(Rissanen, 1983), and Schuurman’s (1997) metric-based approach, which also uses
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unlabeled data. Research on improved methods of model selection for our algorithm

is an area of future work.

We believe that when learning with a generative model approach, situations with

labeled and unlabeled data require a closer match between the data and the model

than those using labeled data alone. If the intended target concept and model differ

from the actual distribution of the data too strongly, then the use of unlabeled data

will hurt instead of help performance. However, with just labeled data things are

somewhat more resilient. For example, in Figure 3.1 we assumed equivalent covariance

matrices for both classes, but with labeled data alone, the derived classifier is rather

accurate. Similarly, naive Bayes for text or non-text can give good classification

even when class probability estimates are poor, because only the linear boundary

is important for classification (Domingos & Pazzani, 1997; Friedman, 1997). With

unlabeled data, the dependence upon the generative model is much stronger, because

the model is used to give the unlabeled data their estimated class labels. For the

Reuters example, we did see improvements in the labeled data case with the expanded

generative models. But with labeled and unlabeled data, the differences were much

larger.

3.3 Modeling Super-topic Structure

In the previous section we modeled sub-topic structure by relaxing the assump-

tion about the relationships between a class and mixture components. Now we

model super-topic structure by changing the assumption about the relationship among

classes themselves. Mixture models require that the parametric form of each class be

independent of all other classes. In this section we model dependencies between the

classes with hierarchical relationships.

In many text domains the classes of interest are arranged in a hierarchy. For

example, there are many hierarchical organizations of the Web; Yahoo is the canon-

ical example. The Dewey Decimal system assigns books in a hierarchical fashion.

All patents are classified into a very large hierarchy of different fields of innova-

tion. Research is also arranged hierarchically; the Computing Research Repository

(http://arxiv.org/) uses the ACM Computer Science Hierarchy to categorize each

submitted research paper.

With complex datasets with many classes even a large amount of unlabeled data
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Italian food

Gardening

Mexican food
Figure 3.6: A simple hierarchy demonstrating relationships between classes.

may not be sufficient to model the document distribution accurately. When this

happens, likelihood maximization will find parameters that model the unlabeled data

well, but that do not reflect the true distribution of the data. In this way, our

algorithms can overfit the unlabeled data. With significantly more unlabeled data,

this problem would be alleviated, but in many domains, only a finite amount of

unlabeled data may exist.

When presented with this scenario, unrepresentative generative models can exac-

erbate the problems of overfitting. For example, consider the three-way classification

task in Figure 3.6. The frequency of generic cooking words like skillet and grill are

likely to be very similar in the Italian food and Mexican food classes. However, given

our basic generative model, these classes are assumed to be independent; thus these

word frequencies must be estimated for each class using its available data. Each es-

timate will be different, matching the peculiarities of the documents in its class. If

our model instead noted the relationship between them, the training data for these

classes could be pooled together to form more accurate estimates for these generic

cooking word frequencies.

By using a more representative model that encodes hierarchical class relationships,

we help ensure that models with high-likelihood on the unlabeled data are also high-

likelihood models on the true data distribution. When this relationship holds, this

helps parameter estimation find high-accuracy classifiers.

In Section 3.3.1 we show how to learn high-likelihood parameters of a hierarchical

model with EM. In Section 3.3.2 we present the Cora dataset, a collection of computer

science research papers that comes with a class hierarchy that describes the sub-fields
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• Inputs: A collection of unlabeled training documents, a class hierarchy, and a few keywords
for each class.

• Generate initial labels for as many of the unlabeled documents as possible by term-matching
with the keywords in a rule-list fashion.

• Split the data into two disjoint subsets, Dw and Ds.

• Initialize the shrinkage weights P(an|cj; θ), to be uniform along the path from each leaf node
to the root of the hierarchy.

• Estimate word probability and class prior parameters using the initially labeled data (Equa-
tions 3.11 and 3.9).

• Loop until parameter convergence:

• (E-step) Use the current classifier to estimate the class labels of each document (Equa-
tion 3.6). Accumulate the ancestor word generation counts using only documents in Ds

(Equation 3.7) .

• (M-step) Re-estimate the shrinkage weights by normalizing the ancestor word counts
(Equation 3.8). Re-estimate the class priors and word probability parameters using
only documents in Dw (Equations 3.11 and 3.9).

• Output: A text classifier that takes an unlabeled document and predicts a class label using
Equation 3.6.

Table 3.7: The modified outline for likelihood maximization from unlabeled data using a hierarchical
model and EM.

of CS. Section 3.3.3 demonstrates that by using a more representative model, we learn

parameters from unlabeled data that increase classification accuracy, where with the

basic model, accuracy decreases. Section 3.3.4 discusses the implications of these

results.

3.3.1 Estimating Parameters of a Hierarchical Model

We leverage the hierarchy through a technique known as shrinkage (Carlin & Louis,

1996). Hierarchical shrinkage calculates word probability estimates for each leaf class

by calculating a weighted average of the estimates along the path from the leaf to the
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root. This technique balances a trade-off between specificity and reliability. Estimates

in the leaf are most specific but unreliable; further up the hierarchy estimates are more

reliable but unspecific. These mixture weights can be set by EM at the same time

that the word probability parameters are being set by EM, both using labeled and

unlabeled data. This joint EM process is described in Figure 3.7.

One can think of hierarchical shrinkage as a generative model that uses the hier-

archy. Every leaf in the hierarchy is a class. First, pick a class with a biased die roll

based on class priors. Then pick a document length (independently of class). When

generating words for the document, some will be very generic words and others will

be class-specific. Thus, choose one hierarchy ancestor of the class node (along the

path from the root to the leaf, including possibly itself) according to the shrinkage

weights. Choose one word from the multinomial of the selected ancestor. Repeat this

process of choosing an ancestor and picking a word for each position in the document.

In this way, the document created will be a mixture of specific and general words that

are drawn using the hierarchical relationships provided.

Let us introduce some notation to describe hierarchies. As originally, let cj be

a class; there is one class for each leaf node of the hierarchy. Let any node in the

hierarchy be denoted by an. Note that we make a distinction between a class and

a node. A leaf in the hierarchy has both a node and a class. The ancestors of a

class, ancs(cj), include all nodes on the path from a leaf to the root, inclusive of

both. Conversely, the set leaf(an) contains all class leaf nodes below (and possibly

including) node an in the hierarchy. The hierarchical shrinkage weights we denote

with P(an|cj; θ). Note the shrinkage weights are dependent on the class, implying

that each class has a set of weights over all nodes in the tree. However, the weight of

any node that is not an ancestor of the class is always zero.

If we ran EM to set both the word probabilities and the shrinkage weights using the

same set of data, the shrinkage weights would concentrate in the leaves. This would

happen because the most-specific model would best fit the training data. This would

result in exactly the overfitting we are trying to prevent. To avoid this problem, we

split our training data into two disjoint sets. We use the documents in subset Dw to

estimate the word probability and class prior parameters. For the shrinkage weights,

we use subset Ds. We concurrently perform EM to set the shrinkage weights with

EM to set the multinomials.

In the E-step, we must estimate the class label of each unlabeled document. Cal-
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culating class probabilities is the same as in previous sections:

P(cj |di; θ) =

P(cj|θ)
|di|∏
k=1

P(wdi,k |cj; θ)

|C|∑
r=1

P(cr|θ)
|di|∏
k=1

P(wdi,k |cj; θ)
. (3.6)

In the E-step for the shrinkage weights, we accumulate counts of how many words

in each class would have been generated by each ancestor node. We accumulate these

counts, N(an, cj) over just the documents in subset Ds:

N(an, cj) =

∑|Ds|
i=1

∑|di|
k=1 P(cj|di; θ)P(an|cj; θ)P(wdi,k |an; θ)∑|Ds|

i=1

∑|di|
k=1

∑
am∈ancs(cj) P(cj|di; θ)P(am|cj; θ)P(wdi,k |am; θ)

. (3.7)

For the M-step, we take these estimates of the class labels of each document

and the counts of the word sources and calculate new parameter estimates that will

be of higher likelihood than before. Up until now, we have always used maximum

a posteriori parameter estimation. The motivation for this was to prevent word

probabilities of zero for infrequently occurring words. Here, we will accomplish this

in a different way. We augment the given hierarchy by placing a new root node on

top of the old one. We permanently fix the word probabilities of this root node to

be uniform across the vocabulary. This uniform multinomial ensures that all word

probabilities, when mixed over the path from a class to the root, are non-zero. Thus,

with this extra hierarchical twist, we can use maximum likelihood estimation instead

of maximum a posteriori estimation. One benefit of using this approach is that

each class determines for itself the best amount of smoothing. Before, with Laplace

smoothing, we fixed the Dirichlet prior whereas now the data determines how much

smoothing is needed. This effect is true for the shrinkage weights at all levels of the

hierarchy. For classes with a lot of data, or word distributions very different from

its ancestors, we would expect the shrinkage weights to favor the leaf node. But for

classes with very sparse training data we would expect significantly higher dependence

on the shared ancestors, including the uniform root node.

Calculating the new shrinkage weights is quite easy. We simply take the accumu-

lated counts and normalize them into probabilities:
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P(an|cj; θ) =
N(an, cj)∑

am∈ancs(cj)N(am|cj; θ)
. (3.8)

Estimating the class probabilities is done just by summing up the fractional mem-

berships over all documents, exactly as we did with the original generative model:

P(cj|θ) =
1 +

∑|Dw|
i=1 P (cj |di; θ)
|C|+ |D| . (3.9)

We calculate the new word probabilities in two steps. First, using only documents

in Dw, we calculate the ancestor node word probabilities by pooling the counts from

its leaf classes, and calculating maximum likelihood estimates:

P(wt|an; θ) =

∑|Dw|
i=1

∑
cj∈leaf(an)N(wt, di)P(cj |di; θ)∑|V|

s=1

∑|Dw|
i=1

∑
cj∈leaf(an)N(ws, di)P(cj |di; θ)

. (3.10)

Then, to calculate our new word probability parameters for each class, we take a

weighted average over the ancestors using the shrinkage weights:

P(wt|cj; θ) =
∑

an∈ancs(cj)

P(an|cj; θ)P(wt|cj; θ). (3.11)

That completes the explanation of the EM iterations. In the dataset used below,

no labeled data are available during parameter estimation with EM. This makes the

EM initialization process quite different then before. Instead of labeled data, for

the domain in question, we are provided with a small number of key words and

phrases for each class. We use these keywords to assign initial labels to some of

the unlabeled documents by term-matching in a rule-list fashion: for each document,

we step through the keywords and place the document in the category of the first

keyword that matches. If a document matches no keywords, it is not used during

initialization. We treat these initial labels as our class membership estimates. We

initialize the shrinkage weights to be uniform along the path from each leaf to the root.

Using the initial labels and the shrinkage weights we calculate the word probability

parameters. This gives us an initialization for EM. After the first priming M-step,

these initial labels are discarded and are replaced by the E-step estimates in each

iteration thereafter. In this way, we use limited domain knowledge given by the

keywords to provide a reasonable initialization for EM.
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Figure 3.7: A subset of Cora’s computer science hierarchy with the complete keyword list for each
of several categories. These keywords are used to find unlabeled documents to initialize EM. The
complete hierarchy and keywords are detailed in Appendix A.

3.3.2 Dataset and Protocol

As a test domain for our hierarchical generative model we use the Cora dataset, a

collection of computer science research papers classified into 70 sub-fields of CS. This

dataset is used to build text classifiers to automatically place research papers spidered

from the Web in postscript format into their appropriate sub-field. This taxonomy,

along with a search engine over the papers and an automatically-constructed citation

graph, is a publicly-available resource for researches and practitioners (McCallum

et al., 2000). To support the taxonomy, there is a hierarchy of computer science

topics, part of which is shown in Figure 3.7. The hierarchy was created by examining

conference proceedings and computer science sites on the Web. A small test set was

created by expert hand-labeling of a random sample of 625 research papers from the

30,682 papers in the Cora computer science archive at the time of these experiments.

Of these, 225 (about one-third) did not fit into any category and were discarded—

resulting in 400 labeled documents. Some of the discarded papers were outside the

area of computer science (e.g., astrophysics papers), but most of these were papers

that with a more complete hierarchy would be considered computer science papers.

The class frequencies of the data are skewed, but not drastically; on the test set, the

most populous class accounted for only 7% of the documents.

Each research paper is represented as the words of the title, author, institution,

references, and abstract. These segments are automatically extracted using a trained
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hidden Markov Model. The extraction is performed independently of the classification

task and is described in detail by Seymore et al. (1999). Words occurring in fewer

than five documents and words on a standard stoplist are discarded. No stemming is

used.

Since only 400 documents have labels, we use all of these documents as a test set

to measure classification accuracy. This does not leave any documents available for la-

beled training data. As a replacement for labeled data, we use several human-provided

key words and phrases for each class to set the starting point of EM. Keywords are

much quicker to generate than even a small number of labeled documents. We use

keywords to generate initial labels for some unlabeled documents; these initial labels

are used to set the EM starting point. Figure 3.7 shows examples of the number and

type of keywords selected for our experimental domain. The complete hierarchy and

the keywords are detailed in Appendix A.

Since we provide only a few keywords for each class, classification by keyword

matching is both inaccurate and incomplete. Keywords tend to provide high-precision

and low-recall; this brittleness leaves many documents unlabeled. Some documents

match keywords from the wrong class. In our experimental domain, for example,

59% of the unlabeled documents do not contain any keywords. Among documents

containing keywords, the precision of the keyword matching on the test set is 75%.

The complete algorithm used for the hierarchical experiments is given in Table 3.7.

In our experiments we use 3000 randomly-selected documents to estimate the shrink-

age weights and the remaining to estimate the word probabilities. Many fewer docu-

ments are needed to accurately estimate the relatively small set of shrinkage param-

eters.

3.3.3 Experimental Results

In this section, we provide empirical evidence that using EM with unlabeled data and

a hierarchy produces a high-accuracy text classifier. Table 3.8 shows classification

results with different classification techniques used. Two interesting baselines provide

a sense of the difficulty of the classification task. With 399 labeled documents (using

our test set in a leave-one-out-fashion), naive Bayes reaches 47% accuracy. The test set

was also relabeled by a second human expert; the agreement with the original labeling

was only 72%, showing that the classification task in question is a challenging one.
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Method # Labeled # Initially Labeled # Unlabeled Accuracy

Naive Bayes 399 — — 47%

Human Agreement — — — 72%

Keyword Matching — — — 46%

Naive Bayes — 12,657 — 63%

EM: shrinkage only — 12,657 — 63%

EM: w/o hierarchy — 12,657 17,625 58%

EM: with hierarchy — 12,657 17,625 66%

Table 3.8: Classification results with different techniques: keyword matching, naive Bayes, and EM
with and without a hierarchical generative model. The classification accuracy, and the number of
labeled, keyword-matched initially labeled, and other unlabeled documents used by each variant are
shown. Best algorithmic performance is achieved using all the unlabeled data with a hierarchical
generative model.

We begin by using keywords to initially label some documents for the EM starting

point. The keywords themselves, when applied to the test set, give 46% accuracy.2

When applied to the unlabeled data, the keywords generate initial labels for 12,657 out

of 30,282 documents. If we use these initially labeled documents to build a naive Bayes

classifier treating the labels as correct, we get 63% accuracy. If we fix these labels,

and run only EM for shrinkage, ignoring the remaining documents, accuracy does not

increase further. If we use the original generative model without the hierarchy, EM

finds parameters with higher likelihood on the unlabeled data. However, classification

accuracy decreases to 58%. Thus, likelihood maximization for the naive Bayes model

does not do well for this complex classification task with sparse data.

When we switch to our hierarchical model, we see that now likelihood maximiza-

tion increases classification accuracy. Hierarchical EM with all the unlabeled data

improves accuracy to 66%. This shows that by using a more representative genera-

tive model, we are able to overcome the negative effects of overfitting.

3.3.4 Discussion

The most interesting experimental result is the difference in performance between

EM with and without the hierarchy. Without the hierarchy likelihood maximization

2The 43% of documents in the test set containing no keywords are not assigned a class by the
rule-list classifier, and are assigned the most populous class by default.
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with EM lowers classification accuracy. However with the more representative model,

increasing likelihood with EM also increases classification accuracy. With a less rep-

resentative model and sparse data, models with higher likelihood on the unlabeled

data do not correspond to higher accuracy classifiers, due to overfitting.

It is interesting to notice that hierarchical shrinkage on its own does not improve

the performance of the data. With only labeled data classification accuracy does

not increase with a better model. This provides further evidence that learning from

labeled and unlabeled is more sensitive to the match between the data and the model

than is regular supervised learning without unlabeled data.

Hierarchical models for text have been used in the literature for both unsupervised

clustering and for purely supervised clustering from labeled data. McCallum et al.

(1998) use hierarchical shrinkage to form more reliable parameter estimates from

sparse labeled training data for text classification. They show improved classification

accuracy for datasets with a hierarchy. Hofmann and Puzicha (1998) used a very

related model to create a hierarchy in an unsupervised fashion from a collection of

scientific abstracts. The work in this chapter is the first to apply these models to

learning from a combination of labeled and unlabeled data.

In this chapter we changed two of the three generative assumptions. Other studies

have examined relaxing the word independence assumption for supervised learning

from labeled data. In the context of a multi-variate Bernoulli generative model,

Sahami (1996) allows for limited word dependencies within each class. Specifically he

allows each word to depend on exactly one other, in essence creating a dependency

tree. He finds that classification performance with this model is higher than a strict

word independence model.

The multinomial distributions we use are equivalent to unigram language models.

Mladenic and Grobelnik (1999) explore using a more sophisticated bigram language

model for classification. In this model, a word occurrence probability depends on the

word previous to it in the document. Their findings show that this bigram modeling

gives better classification performance.

Other work (Li & Yamanishi, 1997) relaxes the one-to-one correspondence dif-

ferently then here. They allow instead for a one-to-many correspondence between

clusters and classes, instead of a many-to-one relationship. They use the same num-

ber of mixture components as there are classes, but they introduce a probabilistic

relationship between components and classes.
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The models of this chapter can be extended in several natural ways. The use

of multiple mixture components per class and hierarchical generative models can be

combined. This approach would be suggested when a hierarchy is provided, and each

class in the hierarchy is complex and multi-faceted. The hierarchical model can also

be naturally extended to model directed acyclic graphs, instead of restricting class

relationships to be expressed with tree structures.

In summary, this chapter has demonstrated that when using the generative model

approach, it is necessary to use a representative model. If model probability and

accuracy are not well-correlated, then the use of unlabeled data will hurt classifi-

cation, instead of help. Often, if needed, the generative model can be improved.

We have shown two different ways of making models more representative, and have

demonstrated that with them, unlabeled data can be successfully used in learning

text classifiers.
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Chapter 4

Finding More Probable Models

We have demonstrated that by assuming a generative model we can incorpo-
rate unlabeled data into supervised learning to improve the accuracy of text
classification. This chapter provides two ways to improve performance with
unlabeled data even further when the generative model is representative and
labeled data are sparse. Under these conditions, the number of labeled examples
is a bottleneck for more significant improvements. This bottleneck is caused
when the sparse labeled data provide a poor EM initialization that results in a
low probability local maximum. Traditionally this is mitigated by running EM
many times from different random starting points. For text domains, the best
classifier from many random initializations is not better than the one initial-
ized deterministically from the labeled data. The parameter space is too large
to randomly explore for good initializations. One alternative technique is to
use limited interaction with a human labeler; then specific documents can be
selected for labeling by the learning algorithm. This allows the learner to influ-
ence the EM initialization. We use a Query-by-Committee approach to active
learning that requests labels for documents that are prototypical but have high
classification variance. Experimentally, data labeled in this fashion provide a
higher accuracy initialization, and after EM, a more accurate classifier. An-
other way to improve on the weakness of EM is to consider other maximization
techniques. Deterministic annealing is a technique that avoids local maxima
by maximizing first on a very smooth probability surface and gradually mak-
ing it more bumpy, tracking the maximum as the surface gets more complex.
Experimentally, deterministic annealing finds more probable models (and thus
higher-accuracy classifiers) when labeled training data are sparse.
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Figure 4.1: Classification accuracy on the 20 Newsgroups data set, both with and without 10,000
unlabeled documents. Using unlabeled data helps, but when labeled data are sparse, there is still
significant room for improvement.

4.1 Introduction

In the previous chapter, we saw several datasets that did not make good use of

unlabeled data with the basic algorithm of Chapter 2. When the generative model

assumptions were strongly violated by the true data distribution, parameters with

high probability did not correspond to classifiers with high accuracy. By modifying

the assumed generative model to be more representative of the data, classification

accuracy and model probability came into correspondence. Integrating the evidence

of the unlabeled data with this improved model allowed us to find classifiers with

higher accuracy.

In this chapter we explore how to further improve learning performance when

classification accuracy and model probability are already in good correspondence. For

example, in Section 2.6.2 we presented experimental evidence for the 20 Newsgroups

dataset showing that (1) classification accuracy and model probability are in strong

correspondence, and (2) integrating unlabeled documents through posterior model

maximization improves text classification accuracy. When labeled data were sparse

the improvements were the largest, but performance was still substantially below that

achieved with plentiful labeled data. These findings, originally shown in Figure 2.2,

are shown again here in Figure 4.1.
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Figure 4.2: With an infinite amount of unlabeled data, the true parameters of the generative model
can be recovered. Then, with just a few labeled examples, each class can be assigned to its cluster,
resulting in the Bayes-optimal classifier.

Sometimes having only sparse labeled data does not matter. For example, consider

the case of estimating two univariate normal distributions for classification. With an

infinite amount of unlabeled data we will recover the global maximum a posteriori

parameters for each mixture component, as indicated in Figure 4.2. Then, using just

a few labeled examples, we can correctly match up classes to components and have

the Bayes-optimal classifier (Castelli & Cover, 1995). Things are much different in

reality where we have a large but not infinite amount of unlabeled data and high-

dimensional feature spaces. Here, local maxima abound in the probability surface,

and we cannot easily find the global maximum. However, this is not reason to be

resigned to weak performance with sparse labeled data; there could be more juice to

be had from the unlabeled data. By modifying our algorithms, we may be able to

make more effective use of the unlabeled data on hand.

This chapter explores ways to improve performance when the generative model is

representative but labeled data are limited. In these cases performance suffers from

getting stuck in local maxima during the EM search in model probability space. Sec-

tion 4.2 shows this is primarily caused by the poor EM initializations given by the

labeled data. Section 4.3 shows that the standard approach of multiple EM runs with

random initialization is unlikely to be helpful for text classification. In Section 4.4

an active learning algorithm, in conjunction with a labeler, provides improved initial-

izations that lead to classification accuracy increases. Section 4.5 demonstrates that
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 79 1 1 . . 1 2 3 1 . . . . . 4 88 4 4 3 9
1 1 43 110 1 . 7 9 3 3 . . 4 . . 11 4 . 1 3 .
2 1 2 176 . 1 1 5 2 . 2 . 2 . . . 4 1 . 3 .
3 . 7 100 18 15 . 52 4 1 . 1 . . . 1 . . . 1 .
4 . 3 79 4 33 4 58 7 1 . . . . . 1 3 . 1 6 .
5 . 13 142 . 1 33 . 1 1 . . 1 . . 5 1 . . 2 .
6 . 3 14 1 4 1 136 12 4 . 2 1 2 1 7 2 3 1 6 .
7 1 . 2 . . 1 6 168 7 . . . 3 . 2 1 1 . 7 1
8 . . 1 . 1 . 2 158 33 . . . 1 . . . . . 3 1
9 . 1 1 . . 1 2 2 . 127 55 . . . 1 1 . 2 7 .

10 . 2 . . . . . . . 1 186 1 . . 1 3 . . 6 .
11 . 1 15 . . 1 . 3 1 . 1 160 . 1 5 1 7 . 2 1
12 2 10 32 3 15 1 17 58 4 3 1 6 21 . 22 1 . . 4 .
13 4 11 2 1 . 4 1 16 9 . 2 . 2 35 15 27 6 1 64 .
14 2 2 1 . 1 . 2 3 1 1 . 3 1 . 153 8 2 . 20 .
15 . . 2 1 . 2 . . . . 1 . . . 1 186 . . 1 3
16 1 5 . . 1 . 1 2 1 . . 2 . 2 . 30 139 3 13 .
17 . . . . . . . 1 1 2 . . . . 1 10 . 181 3 1
18 6 1 1 . . . . 4 1 . 1 2 . . 7 63 59 11 41 3
19 42 2 1 . . . . 2 1 . . 2 . . 3 112 12 3 7 13

Table 4.1: One randomly selected confusion matrix for the test set with 60 labeled documents (3 per
class) for 20 Newsgroups. True classes are in rows, and predicted clusters are in columns. The pre-
ponderance of documents lying along the diagonal indicates that the class-to-cluster correspondence
is not a significant factor in classification accuracy.

deterministic annealing, a maximization algorithm similar to EM, achieves higher

model probability and classification accuracy by local maxima avoidance.

4.2 The Influence of Labeled Examples

Understanding the role labeled data play in our algorithm will help us see why perfor-

mance could be better when labeled data are sparse. When learning with labeled and

unlabeled data, the labeled data influence the result of our algorithm in three ways:

they (1) correlate each cluster with a class, (2) influence parameter estimation during

the EM iterations, and (3) initialize the starting point of EM. In this section we ex-

amine the relative strengths of these influences, and conclude that the initialization

is the most important role played by the labeled data.
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Figure 4.3: Classification accuracy on the 20 Newsgroups data set with labeled and unlabeled doc-
uments using class reassignment. The benefits of reassignment are minimal, indicating that faulty
class correlation is not a significant factor for classification.

Even when EM finds a high-probability model, classification can be very poor if we

simply swap the class identities around among the clusters. For example a classifier

that perfectly distinguishes between sports and arts will suddenly get 0% accuracy if

we swap their definitions. In our experiments clusters are correlated with classes by

assigning each cluster to the class of the documents it was initialized with. Thus,

we make the implicit assumptions that (1) the initialization places each cluster in

the right neighborhood for its class, and (2) each cluster successfully tracks the same

class through the EM iterations. In contrast to this approach, the correlation process

could also be done after iterations are complete, by seeing into which cluster each

class’s labeled documents fall. When the clustering is perfect this method requires

only a very small amount of labeled data to correctly match up each cluster with its

class (Castelli & Cover, 1995).

Is this correspondence happening poorly for us when labeled data are sparse? Ta-

ble 4.1 shows a typical confusion matrix for 20 Newsgroups with only three labeled

documents per class. In all but one case, each cluster is assigned to the class that has

the plurality of its documents. Anecdotally, the diagonal of our confusion matrices

has always been dominant in this way. We can measure our loss in accuracy due to

incorrect class correspondence by greedily reassigning classes to maximize accuracy
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Figure 4.4: A comparison of EM performances, with differing use of the labeled data. The top line
shows normal EM with labeled and unlabeled data. The second line, almost overlapping the first,
shows performance of EM when the labeled data is used only to set the initial parameters for EM.
Their strong similarity indicates that the power of the labeled data comes not from its use during
the iterations, but in setting the initial parameters.

based on the performance of the test data.1 Figure 4.3 shows these results; they indi-

cate only a minimal loss from poor reassignment. For example, with only two labeled

documents per class (40 total), class correspondence problems lower accuracy from

45% to 43%. From this we deduce that classification accuracy with a small amount

of labeled data does not suffer significantly due to class correspondence problems.2

Let us now consider the effect of the labeled data during the iterations of EM.

One way to think about our application of EM is that it performs semi-supervised

clustering. The labeled data provide supervision during the iterations of EM by

remaining fixed to their correct class. However, with several orders of magnitude more

unlabeled documents than labeled ones, the great majority of the data comes from

the unlabeled set. Thus during the EM iterations, we would expect the class mixture

components to be mostly positioned to maximize the likelihood of the unlabeled

documents.

We can explicitly measure the effect labeled data has during these iterations with

1To optimally reassign classes is not feasible for a 20 class problem, as it would involve considering
all permutations. For smaller classification problems, this would not be a factor.

2For a problem with a huge number of classes, this will likely become a more significant factor,
as the number of possible errors grows.
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a simple experiment. We test this effect by performing our regular algorithm, but

withholding the labeled data during the EM iterations. This compares the effects of

using the labeled data for just for the initialization to using it for both the initialization

and the iterations. The results of this experiment for 20 Newsgroups are shown in

Figure 4.4. The accuracy of classifiers built without labeled data in the iterations is

essentially the same as our typical algorithm especially when labeled data are sparse.

For example with two labeled documents per class accuracy is 43% for both cases.

The curves only start to (marginally) diverge when there is a large amount of labeled

data. This indicates that the influence of the labeled data during the EM iterations

is quite minimal.

These two simple experiments have eliminated two of the three possible effects

of the labeled data—class-to-component correspondence and influence during EM

iterations. From this we deduce that limited labeled data hinder the use of unlabeled

data in our approach primarily by giving poor EM initializations.

Why would the initialization have so much effect? One possible explanation is that

with a more probable initialization, many poor local maxima will be completely by-

passed. That is, since model probability can only increase with EM, any initialization

successfully avoids all local maxima with a lower probability. A second explanation

could be that there is regularity in the probabilities of the local maxima. An initial-

ization may direct EM towards regions in parameter space that tend to have higher

maxima. Some optimization algorithms in other domains focus explicitly on this effect

and model the regularities of the local maxima to select good initializations (Boyan,

1998).

There are three different ways to address the problem that limited labeled data

give poor EM initializations. First, we could choose the initializations in a different

way, without a strong dependence on the labeled data. Second we could continue

using labeled data to initialize EM, but ensure that the labeled data are of high-

quality. The third idea is to dispense with EM and use a different algorithm for

maximizing the model posterior that is not so sensitive to the labeled data. These

three directions are addressed by the following sections in turn. The next section

explores using random initialization instead of using labeled data deterministically.

Section 4.4 uses active learning to select high-quality labeled data. Section 4.5 uses

deterministic annealing instead of EM to avoid poor local maxima.
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4.3 Using Many Random Starting Points

In the previous section it was demonstrated that when learning text classifiers the

labeled data have their primary influence when they are used to form the initial

parameter estimates for EM. When labeled data are plentiful, the initial parameters

have high probability and accuracy; EM can then incorporate the evidence of the

unlabeled data and output a high-accuracy classifier. On the other hand, when labeled

data are sparse the initial parameter estimates will have a much lower probability.

As a result EM gets caught in a local maximum that gives improved accuracy, but

significantly below what could be obtained with a better initialization.

In our algorithm, we have always initialized the parameter estimates to the MAP

estimates derived from the labeled data alone. This initialization places the classifier

into an approximate neighborhood of parameter space that corresponds to document

and class distributions. In many other applications that use the EM framework there

is no analog of the labeled data from which to set the starting point. In these cases,

EM is typically initialized with random parameter estimates.

A single random parameter initialization frequently results in a poor local maxi-

mum because the parameter space has so many local maxima in which only a small

minority are of high probability. To overcome this, it is standard practice to run

EM many times from many different random initializations. Given the set of all EM

results, the one with the highest model probability is then selected as the best pa-

rameterization. Multiple random runs allow an exploration of the local maxima and

provide a robustness against any one poor parameter initialization.

We apply this same approach to our text classification task. When using unlabeled

data, setting the starting point deterministically with only a few labeled examples

does help classification. But, there is still room for improvement. The hope is that

by randomly selecting many starting points we will find better a better initialization

than the deterministic one, and produce a higher-accuracy classifier. However, it may

be hard in practice to find a better initialization because the labeled data provide

significant information on their own.
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4.3.1 Choosing Random Starting Points

There are many ways of using randomness for parameter initializations. For exam-

ple, one possibility would be to set all word probability parameters to some small

perturbation of the uniform distribution. If nothing were known about the domain,

this might be a reasonable approach. For our situation, though, this would be a poor

implementation choice, because this setting does not represent any basic knowledge

of text. For example, if one mixture component had significantly higher-than-average

probabilities for a few very common words such as the or and, then it is likely that

in the first round of EM all unlabeled documents would be classified as belonging to

that cluster. Running EM from this initialization would give a terrible classification

model. Some of our preliminary experiments with random initializations showed that

this consistently got very low probability models.

In text domains we already have some good guesses about some of the word

probabilities by looking at the limited labeled data and the vast unlabeled data.

Many words will not have large differences in their probabilities across classes; a class-

unconditional estimate would be a fair approximation. Instead of using a uniform

distribution as the baseline we can use a mixture of the word frequencies in the

labeled and unlabeled data as our baselines. Specifically, for our experiments we use a

priming E-step to assign uniform classification posteriors to each unlabeled document.

Then, we set the baseline of each initial component to the MAP parameter estimate

from the limited labeled documents and the spread-out unlabeled ones. This baseline

accurately represents both the knowledge from the labeled data, as well as significant

influence from the unlabeled.

To introduce randomness into this baseline, we need to perturb these estimates

appropriately. How do we do this? We can again use our generative model approach.

Given the labeled and uniformly-spread unlabeled data, our baseline for each class

is the MAP estimate, arg maxθj P(θj|D). In other words, the training data speci-

fies a probability distribution over the parameters of the mixture components; until

now we have used the most probable parameterization from that distribution. We

can introduce randomness by selecting our parameters according to the probability

distribution given the labeled and unlabeled data, instead of just choosing the most

probable one.

Using the notation introduced in Chapter 2, the data define a Dirichlet distribution

over the multinomial parameters of each class:
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P(θj|D) ∝
|V |∏
t=1

P(wt|cj; θ)αt−1 (4.1)

where αt is the smoothed number of word occurrences seen in the training data for

that class:

αt =
∑
di∈D

P(cj|di)N(di, wt) + 2. (4.2)

The Dirichlet distribution is the commonly-used conjugate prior distribution for

multinomials. A good intuitive introduction to Dirichlet distributions is given by

Stolcke and Omohundro (1994).

Sampling from a Dirichlet distribution is relatively straightforward. This is per-

formed by drawing weights, vtj, for each word wt and class cj from the Gamma

distribution: vtj = Gamma(αt). Then we set the parameters θwt|cj to the normalized

weights by θwt|cj = vtj/
∑
s vsj. Sampling from the Gamma distribution is also not

hard; one method is detailed by Press et al. (1993).

Thus, we can initialize our parameters randomly by using the generative model

assumptions. This enables us to choose parameters that fall within the reasonable

range of text space but also provide a generous amount of variation. These random

initializations are used by EM to find different local maxima of which at least one

hopefully will give a high probability (and thus high accuracy) model.

4.3.2 Dataset and Protocol

For the remainder of this chapter, we use a subset of the 20 Newsgroups dataset.

This subset, News5, is the five confusable comp.* classes (comp.graphics, comp.os.ms-

windows.misc, comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, and comp.windows.x).

The dataset contains 4982 documents, nearly evenly divided among the five classes.

The data are pre-processed the same as 20 Newsgroups, as described in Section 2.6.1.

Briefly, we use a stoplist, do not stem, and ignore all the UseNet headers, even Subject

and From.

In order to provide comparable model probability numbers, we fix a single vo-

cabulary for all our experiments. We use the top 4000 words by mutual information
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Figure 4.5: A comparison of different techniques for choosing a starting point. The best performance
is achieved with a single deterministic initialization from the labeled data. When the most probable
model from many random initializations is used, accuracy is worse than before when labeled training
data is sparse. However, if classes and clusters are matched up perfectly, results are about the same
as the deterministic initialization.

measured over the entire labeled dataset. Chapter 6 discusses the issue of feature

selection for learning from labeled and unlabeled data.

In our experiments, 600 random documents per class (3000 total) are treated

as unlabeled. A fixed number of labeled examples per class are also randomly se-

lected. The remaining documents are used as a test set. For each experiment with a

fixed number of labeled examples, we perform ten random test/train/unlabeled splits.

These splits are paired across all conditions. That is, the exact same splittings are

used to compare each algorithm.

When performing multiple random restarts, we run EM 100 times per split, and

select the run with the highest model probability. Each random starting point is

chosen as described in Section 4.3.1. Out of these 100, the model with the highest

probability is selected as the chosen model for which to measure classification accuracy

on the test data.
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4.3.3 Experimental Results

Figure 4.5 shows the accuracies achieved by using multiple random restarts. With at

least a moderate amount of labeled data random initialization performs at essentially

the same accuracy as deterministic initialization. With just a few training examples

per class, however, accuracy of random initialization is significantly worse than deter-

ministic initialization. For example, with two labeled documents per class (10 total),

random initialization finds a model with 50% accuracy; the single deterministic ini-

tialization get a model with 58% accuracy. One problem with choosing the starting

points randomly is that the randomness can overcome the signal in the labeled data

(remember that labeled data are used in choosing the random initialization). This

problem is worst when there are only a small amount of labeled data; then, the base-

lines for each the mixture component are quite close to each other. Random variation

can easily throw off the class-to-component correspondence.

Measuring the strength of this class-correspondence effect is easy. We make use of

the test data to reassign classes to components to maximize classification accuracy on

the test set. This way we can identify cases where, for example, the data cluster for the

comp.graphics.misc class is actually represented by the mixture component initialized

to be comp.windows.x. The results of this analysis are also shown in Figure 4.5,

demonstrating an upper-bound on the performance of our random initialization. The

accuracy of random initializations with optimal class assignment is essentially the

same as deterministic initialization across all labeled set sizes. For example with two

labeled documents per class we now improve from 50% to 57%, compared to 58% for

a single initialization. This indicates that random initializations will not dramatically

improve performance when labeled data are sparse, even if we could perfectly correlate

clusters and classes.

One might think about what these results suggest about our belief that model

probability and accuracy are correlated. The multiple random initialization approach

could be finding more probable models then the deterministic approach. After all,

it has 100 chances to find different local maxima. If indeed this were so, then we

would wonder whether model probability and accuracy were so strongly correlated

after all. But by analyzing the results, we find that it is not the case that random

initializations find more probable models.

Figure 4.6 shows a scatterplot indicating the relationship between model proba-

bility and accuracy for both random and deterministic initializations. We show two
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Figure 4.6: A scatterplot showing the relationship between model probability and accuracy for both
random initialization and deterministic initialization from labeled data. Both cases are distributed
similarly, reinforcing the evidence that model probability and accuracy are strongly correlated.

points for each test/train/unlabeled set used in Figure 4.5—one indicating the result

of the deterministic starting point and the other showing the best of many random

initializations. Two findings are of interest. First, we again see a strong correlation

between accuracy and model probability, as seen with the 20 Newsgroups dataset.

This is not too surprising because News5 is a subset of 20 Newsgroups, and shares

many properties with it. More importantly, note that the random initializations have

approximately the same distribution as deterministic initializations. Both have the

same correlations between accuracy and model probability. This indicates that the

relationship between accuracy and model probability holds even outside the strict

subspace defined by the deterministic starting points given by labeled data.

4.3.4 Discussion

Our experiments have shown that with a fair bit of random exploration, we do not find

EM initializations that are better than the one from just the labeled data. Of course,

with an infinite amount of random exploration, all maxima would be discovered, and

the best one identified. Thus, it seems that (1) there are a lot of local maxima, which

makes it difficult to find the good ones, and (2) the labeled data do a pretty good job

of getting us into regions with reasonable local maxima. It’s when the labeled data
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are sparse that things get difficult.

In the previous section we argued that there when labeled data are sparse, there is

still significant room for improvement and that improvement could come from finding

better initialization parameters for EM. In this section, we have experimented with

finding good initializations by random exploration. Even by allocating two orders

of magnitude more time for random exploration, we have not found any gains in the

quality of our starting points. This suggests that we look elsewhere for improvements.

4.4 Actively Finding Good EM Initializations

Creating labeled data inherently involves human effort. In many real-world domains

only a small amount of labeled data can be expected. Typically documents are

selected randomly for labeling from all available documents. However it certainly

seems reasonable that learning algorithms could perform better if they were able to

select which documents get labeled.

In machine learning, the active learning setting does exactly this by using a limited

amount of interaction with a human labeler. In this setting, the learning algorithm

selects which examples to present to the labeler for hand-classification. The task of

the learner is to select the most informative examples for labeling, and then learn

a classifier from these examples. Typically, active learning is used with algorithms

that learn only from labeled data. But the active learning framework by its nature

has access to many unlabeled documents (since it must have a selection of documents

to choose from). It is then natural to think of applying active learning to learning

with labeled and unlabeled data; all the examples that were not selected for labeling

provide valuable information if incorporated by algorithms that explicitly use them.

The key idea of this section is that we can use an active learning algorithm to

carefully select a few unlabeled documents for labeling. We will use these informative

labeled documents to provide high-quality initial values for our model parameters.

From this, EM should find high-accuracy parameters using the labeled documents

and all the remaining unlabeled documents. We expect this approach to work better

than the traditional method of randomly selecting documents for labeling.
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4.4.1 Query-by-Committee Active Learning

Active learning aims to select the most informative example—in many settings defined

as the one that, if its class label was known, would maximally reduce the error of the

classifier trained with that extra example. If one assumes the learner is unbiased then

reducing classification error is equivalent to reducing classification variance over the

data distribution. This follows from the decomposition of error into bias and variance

(Geman et al., 1992). In some cases the expected variance reduction can be estimated

empirically, and data can be iteratively selected for labeling by this approach (Cohn

et al., 1996).

Frequently, calculating this expected variance reduction in closed-form is pro-

hibitively complex and impractical at best. In these cases active learning can proceed

by appealing to the Query-by-Committee (QBC) framework (Freund et al., 1997).

Here, instead of selecting a document that maximally reduces classification variance,

QBC selects a document for labeling that has high classification variance itself. In

a consistent error-free learning framework, getting a label for a document with high

classification variance eliminates all hypotheses that do not agree with the label. In

these cases QBC provides exponential speed-ups in the learning rate over random

selection of documents to label (Freund et al., 1997). When the learning task is not

so theoretically clean, the intuition behind QBC is that documents with high classi-

fication variance lie in regions where the learning algorithm needs help. By getting a

true label in that region, significant uncertainty can be eliminated. This approach has

been successfully applied to such real-world text tasks as part-of-speech tagging with

a HMM representation (Argamon-Engelson & Dagan, 1999) and text classification

with Winnow and Perceptron learners (Liere, 1999).

Query-by-Committee gets its name from how it measures the classification vari-

ance of an example. It does so by creating a committee of several classifier vari-

ants suggested by the data labeled so far. QBC then classifies unlabeled docu-

ments with each committee member, and measures the disagreement between their

classifications—thus approximating the classification variance. QBC asks for a class

label of a document on which the committee disagrees strongly. The newly labeled

document is then included in the training data, and a new committee is sampled for

making the next set of requests.

With a probabilistic framework for classification the labeled training data specify

a posterior distribution over classifiers. Thus, selecting committee members is the

77



• Inputs: Collections Dl of labeled documents and Du of unlabeled documents.

• Calculate the density for each unlabeled document (Eq. 4.6).

• Loop while person willing to label:

- Loop k times, once for each committee member:

+ Create an initial committee member θm by sampling from the Dirichlet
distribution defined by the labeled training data (Equation 4.1).

+ Use θm as the initialization for EM and combine the labeled and unlabeled
data to find a more likely θm (Table 2.1).

+ Use θm to probabilistically label all unlabeled documents (Eq. 2.8).

- Calculate the disagreement for each unlabeled document (Eq. 4.4), multiply by
its density, and request the class label for the one with the highest score.

• Run EM to combine the labeled and the remaining unlabeled data, creating a classifier
(Table 2.1).

• Output: A classifier, θ̂, that takes an unlabeled document and predicts a class label.

Table 4.2: Our active learning algorithm for finding EM initializations. The step in italics is optional.

same as sampling from this posterior distribution over classifiers. This approach was

used successfully by Argamon-Engelson and Dagan (1999). With our probabilistic

generative model this approach will be applicable here. When no such framework

exists, more ad hoc approaches are taken, such as different random initializations

(Liere, 1999).

4.4.2 QBC for Text Classification

This section details how to apply QBC active learning for finding good initializations

for EM when learning from labeled and unlabeled data. To do this we need to specify

three things: (1) how to form committee members, (2) how to measure committee

disagreement, and (3) how to select a document using the disagreement metric. The

resulting algorithm is summarized in Table 4.2.

We form a committee of size k to approximate the distribution of classifiers indi-
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cated by the labeled data in two different ways. Individual committee members are

denoted by m. As discussed in Section 4.3.1, the distribution over classifiers induced

by labeled data is a set of Dirichlet distributions, one for each class mixture compo-

nent. Thus, for each committee member, we draw a parameterization from this set of

Dirichlets. In the first approach, “committees of initializations,” these parameters are

the committee member. Thus the committee approximates the distribution of EM

initializations and the direct goal is to select a document to improve the initialization.

In the second approach, “committees of maxima,” we use the draws from the

Dirichlets as initialization for EM, and incorporate the unlabeled data to change

the parameters. After EM converges, this classifier becomes a committee member.

Here, we approximate instead the parameter distribution over the corresponding local

maxima, and try to select a document that will improve the initialization, in the

sense that it puts the initialization in a region with high local maxima. Note that

for both these techniques we set the Dirichlets using only the labeled data, and not

any unlabeled data. Previously, in Section 4.3, we also used unlabeled data to set the

Dirichlets because we wanted our initializations to capture some information about

the class-unconditional word frequencies. Here we do not take that approach, as we

want to focus on the explicit weaknesses of the labeled data, and not cover them up.

For measuring committee disagreement, Dagan and Engelson (1995) suggest the

use of vote entropy—the entropy of the class label distribution resulting from having

each committee member vote with probability mass 1/k for its winning class. One

disadvantage of vote entropy is that it does not consider the confidence of the commit-

tee members’ classifications, as indicated by the class probabilities Pm(cj|di; θ̂) from

each member.

As an improvement, we measure committee disagreement for each document us-

ing Jensen-Shannon divergence (Lin, 1991). Unlike vote entropy, which compares

only the committee members’ top ranked class, Jensen-Shannon divergence measures

the strength of the certainty of disagreement by calculating differences in the com-

mittee members’ class distributions, Pm(C|di).3 Each committee member produces

a posterior class distribution, Pm(C|di), where C is a random variable over classes.

Jensen-Shannon divergence is an average of the Kullback-Leibler divergence between

3While naive Bayes is not an accurate probability estimator (Domingos & Pazzani, 1997), naive
Bayes classification scores are somewhat correlated to confidence; the fact that naive Bayes scores
can be successfully used to make accuracy/coverage trade-offs (Craven & Slattery, 2001) is testament
to this.
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each distribution and the mean of all the distributions:

1

k

k∑
m=1

D (Pm(C|di)||Pavg(C|di)) , (4.3)

where Pavg(C|di) is the class distribution mean over all committee members, m:

Pavg(C|di) = (
∑
m Pm(C|di))/k.

Kullback-Leibler divergence, D(·||·), is an information-theoretic measure of the

difference between two distributions, capturing the number of extra “bits of informa-

tion” required to send messages sampled from the first distribution using a code that

is optimal for the second. The KL divergence between distributions P1(C) and P2(C)

is:

D(P1(C)||P2(C)) =
|C|∑
j=1

P1(cj) log

(
P1(cj)

P2(cj)

)
. (4.4)

After disagreement has been calculated by our metric, a document must be se-

lected for a class label request. We consider three ways of selecting documents:

stream-based, pool-based, and density-weighted pool-based. Some previous applica-

tions of QBC (Dagan & Engelson, 1995; Liere & Tadepalli, 1997) use a simulated

stream of unlabeled documents. One at a time a document is considered, measur-

ing classification disagreement among the committee members, and deciding, based

on the disagreement, whether to select that document for labeling. Dagan and En-

gelson (1995) do this heuristically by dividing the vote entropy by the maximum

possible entropy to create a probability of selecting the document. Disadvantages of

using stream-based sampling are that it only sparsely samples the full distribution of

possible document labeling requests, and that the decision to label is made on each

document individually, irrespective of the alternatives.

An alternative that aims to address these problems is pool-based sampling. It

selects from among all the unlabeled documents the one with the largest disagreement.

However, this loses one benefit of stream-based sampling—the implicit modeling of

the data distribution—and it may select documents that have high disagreement, but

are in unimportant, sparsely populated regions.

We can retain this distributional information by selecting documents using both

the classification disagreement and the density of the region around a document. This

density-weighted pool-based sampling method prefers documents with high classifica-

tion variance that are also similar to many other documents. The stream approach
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approximates this implicitly; we accomplish this more accurately (especially when

labeling a small number of documents) by modeling the density explicitly.

We approximate the density in a region around a particular document by measur-

ing the average distance from that document to all other documents. Distance, Y ,

between individual documents is measured by using exponentiated KL divergence:

Y (di, dh) = e−β D(P(W |dh) || (λP(W |di)+(1−λ)P(W ))), (4.5)

where W is a random variable over words in the vocabulary; P(W |di) is the max-

imum likelihood estimate of words sampled from document di, (i.e., P(wt|di) =

N(wt, di)/|di|); P(W ) is the marginal distribution over words; λ is a parameter that

determines how much smoothing to use on the encoding distribution (we must ensure

no zeroes here to prevent infinite distances); and β is a parameter that determines

the sharpness of the distance metric.

In essence, the average KL divergence between a document, di, and all other

documents measures the degree of overlap between di and all other documents; expo-

nentiation converts this information-theoretic number of “bits of information” into a

scalar distance.

When calculating the average distance from di to all other documents it is much

more computationally efficient to calculate the geometric mean than the arithmetic

mean, because the distance to all documents that share no words words with di can be

calculated in advance, and we only need make corrections for the words that appear

in di. Using a geometric mean, we define density, Z of document di to be

Z(di) = e
1
|D|
∑

dh∈D
ln(Y (di,dh))

. (4.6)

We combine this density metric with disagreement by selecting for labeling the

document that has the largest product of density (Equation 4.6) and disagreement

(Equation 4.3). This density-weighted pool-based sampling selects the document

that is representative of many other documents, and about which there is confident

committee disagreement.

We have presented algorithmic choices for QBC along several dimensions. We

can either form committees of initializations or committees of maxima. We can se-

lect documents by simulating a stream, picking straight from the unlabeled pool, or

using density weighting when picking from the pool. In the following sections we
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experimentally evaluate these choices and empirically show that active learning finds

initializations for EM that give higher-accuracy classifiers.

4.4.3 Dataset and Protocol

We again use the News5 data, described in Section 4.3.2. On each experimental trial,

20% of the documents are randomly selected for placement in the test set. Initially

only one randomly-selected document per class is given as labeled; the remaining

documents are unlabeled. Learning proceeds as described in Table 4.2. Experiments

are run for 200 active learning iterations, each round selecting one document for

labeling. Smoothing parameter λ is 0.5; sharpness parameter β is 3. We made little

effort to tune β and none to tune λ. For QBC we use a committee size of three

(k=3); our initial experiments showed that committee size had little effect. All EM

runs perform seven EM iterations; we never found classification accuracy to improve

beyond the seventh iteration. All results presented are averages of ten runs per

condition.

4.4.4 Experimental Results

We begin by evaluating selection strategies for QBC. We compare (1) stream-based

sampling, (2) pool-based sampling, and (3) density-weighted pool-based sampling.

We also calculate the baseline of random selection of documents. For each of these

techniques we draw committee members directly from the Dirichlet, and do not run

EM to get their associated local maxima. Figure 4.7 shows the quality of the EM

initialization in each of these cases, as measured by its classification accuracy.

The best selection technique, density-weighted pool-based sampling achieves 51%

accuracy after acquiring only 30 labeled documents. To reach the same accuracy,

unweighted pool-based sampling needs 40 labeled documents. If we switch to stream-

based sampling we need 51 labelings for 51% accuracy. Our random selection baseline

requires 59 labeled documents. Density-weighted pool-based sampling is statistically

significantly better than each of the other methods (p < 0.005 for each pairing). It

is interesting to note that the first several documents selected by this approach are

usually FAQs for the various newsgroups. This is clearly an effect of the density

weighting as the content of a FAQ is representative of a whole class of documents.

Incorporating density-weighting also biases selection towards longer documents, since
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Figure 4.7: A comparison of selection strategies for QBC shows that density-weighted pool-based
sampling gives higher-accuracy EM initializations than other strategies. Note that the order of the
legend matches the order of the curves and that for resolution the vertical axes do not range from 0
to 100.

these documents have word distributions that are more representative of the corpus

as a whole. It is generally better to label long rather than short documents because

for the same labeling effort a long document provides information about more words.

Now we compare the two committee creation techniques. For this we use density-

weighted pool-based sampling, as this provided the best initializations. Figure 4.8

shows the accuracy of the initializations and the accuracy of the final classifier after

EM, compared to the random-selection baseline. Starting with the 30 labeling mark

again, committees of initializations reaches 64% accuracy after EM incorporates the

unlabeled documents. Committees of local maxima lag only slightly, requiring 32

labeled documents for 64% accuracy. Random selection needs 51 labeled documents.

The two committee selection techniques are not statistically significantly different

(p = 0.71 N.S.); these two are each statistically significantly better than random

selection at this threshold (p < 0.05).

Interestingly, although both committee selection methods perform roughly equally

after EM incorporates the unlabeled documents, committees of initializations provide

more accurate starting points for EM than committees of local maxima. We can

understand this by remembering that the two committees focus their attentions dif-

ferently. Committees of initializations consider specifically the accuracy of the EM
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Figure 4.8: The performance of using active learning to select the EM initialization. The two
committee formation techniques perform about the same. Both are better than random selection.
Note that the order of the legend matches the order of the curves and that for resolution the vertical
axes do not range from 0 to 100.

starting point. This indirectly improves the final classification because the quality of

the EM starting point is correlated with accuracy of the final classifier. Committees

of local maxima focus on the final accuracy, and not the initializations. Thus it is not

surprising that this technique’s initialization accuracy is lower. What is interesting is

that this technique recovers this loss during EM.

4.4.5 Discussion

Other studies have used QBC with probabilistic classifiers in a similar way, and several

studies have used active learning to improve text classification. A survey of active

learning is given in Section 5.2.4. No previous work has used active learning in

combination with algorithms using unlabeled data.

In comparison to previous active learning studies in text classification domains

(Lewis & Gale, 1994; Liere & Tadepalli, 1997), the magnitude of our classification

accuracy increase is relatively modest. Both of these previous studies consider binary

classifiers with skewed distributions in which the positive class is very rare. With

a very infrequent positive class, random selection should perform extremely poorly

because nearly all documents selected for labeling will be from the negative class. In
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tasks where the class distributions are more even, random selection should perform

much better—making the improvement of active learning less dramatic. In sepa-

rate work (McCallum & Nigam, 1998b), we experiment with our selection technique

on the Reuters domain, which has these skewed prior distributions, and show much

larger improvements there. We conclude that our accuracy improvements are good,

given that with unskewed class priors, Random selection provides a relatively strong

performance baseline.

The results of this section indicate that by actively selecting the labeled examples,

we can increase the accuracy of the EM initial parameterization, and thus increase

the accuracy of the final classifier. The use of active learning is especially important

when only a small number of examples will be labeled; that is when performance with

random selection is weakest.

4.5 Avoiding Local Maxima with Deterministic

Annealing

In the previous sections of this chapter, we have taken the approach of finding better

EM initializations. Through this, with modest success, we have been improving our

use of unlabeled data and finding more accurate classifiers. However, local maxima

are still a significant problem for EM, especially when labeled training data are sparse.

Perhaps it is time to seek alternatives to EM for finding highly probable models. In

this section we use a different maximization technique that is more robust to local

maxima, deterministic annealing.

Typically variants of, or alternatives to, EM are created for the purpose of speeding

up the rate of convergence (McLachlan & Krishnan, 1997, Chapter 4). In the domain

of text classification however, we have seen that convergence is very fast. Thus, we

can easily consider alternatives to EM that improve the local maxima situation at the

expense of slower convergence. Deterministic annealing makes exactly this tradeoff.

The intuition behind deterministic annealing is that it begins by maximizing on

a very smooth, convex surface that is only remotely related to our true probability

surface of interest. Initially we can find the global maximum of this simple surface.

Ever-so-slowly, we change the surface to become both more bumpy, and more close

to the true probability surface. If we follow the original maximum as the surface
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• Inputs: Collections Dl of labeled documents and Du of unlabeled documents.

• Initialize β to a small number near zero.

• Build an initial naive Bayes classifier, θ̂, from the unlabeled documents Du spread
evenly over classes and the labeled documents Dl. Use maximum a posteriori param-
eter estimation to find θ̂ = arg maxθ P(D|θ)P(θ) (see Equations 2.6 and 2.7).

• Loop while β < 1:

• Loop until convergence:

• (E-step) Using the current classifier, θ̂, calculate the expected value of the
cluster membership of each unlabeled document, ẑij (see Equation 4.14).

• (M-step) Re-estimate the clustering parameters, θ̂, given the expected
cluster membership of each document. Use maximum a posteriori param-
eter estimation to find θ̂ = arg maxθ P(D|θ)P(θ) (see Equations 2.6 and
2.7).

• Increase β.

• Output: A classifier, θ̂, that takes an unlabeled document and predicts a class label.

Table 4.3: The Deterministic Annealing algorithm described in Section 4.5.1.

gets more complex, then when the original surface is given, we’ll still have a highly

probable maximum. In this way, it avoids many of the local maxima that EM would

otherwise get caught in.

4.5.1 Deterministic Annealing

In this section we sketch the derivation of deterministic annealing as it specifically

applies to learning with labeled and unlabeled data for text classification. A more

general treatment of deterministic annealing is given by Rose et al. (1992). Where

otherwise not mentioned we use the notation introduced in Chapter 2. The deter-

ministic annealing algorithm is summarized in Table 4.3.

Let’s approach the problem of learning a classifier with labeled and unlabeled
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data as one of semi-supervised clustering. The cluster assignments are given for the

labeled data and unknown for the unlabeled data. Each cluster is parameterized by

a multinomial distribution. When our semi-supervised clustering is complete, each

multinomial distribution will correspond to a class and we will have a naive Bayes

classifier. We represent the clustering assignments made as the matrix of binary

indicator variables z, zi = 〈zi1, . . . , zi|C|〉, where zij = 1 iff yi = cj else zij = 0; each

non-zero entry gives the cluster membership of a datapoint.

We treat semi-supervised clustering as an optimization problem. Our loss func-

tion for this optimization is a function of both the model parameters and the class

assignments:

E(θ, z|D) = −
∑
di∈D

∑
cj∈C

zij log(P(cj|θ)P(di|cj; θ)). (4.7)

This loss function is the negative complete data log probability (Section 2.5.1) when

given a mixture of multinomials model and deterministic class labels. As we have

seen through this thesis, minimizing this loss function is a good target for building

a classifier. Although our loss function is motivated by model probability we do not

explicitly assume our data were generated by our target parameterization. We think

of the parameters as a classifier instead of a model of data generation.

Finding a model for a fixed loss

As a way of finding a model and class assignments that minimize loss let us first solve

a related task. The task is to find and select a clustering that has a specific given loss

value. The next subsection will give an algorithm for minimizing loss that uses this

first step as a sub-component.

For a fixed value E of the loss function there will be a set of pairs of models and

cluster assignments that have this loss. If we are given a target loss, and asked to

select only one, how would we know which of these pairs to choose or which would be

the most likely? To answer this question we apply the principle of maximum entropy

(Jaynes, 1957; Good, 1963; Csiszár, 1996). This principle says that in the absence of

knowledge, an estimated probability distribution should be as uniform as possible—

have maximal entropy. This principle has been commonly and successfully applied for

many learning tasks. If we can find the maxent distribution over model parameters

given our data we can select the most likely model parameters as our solution. Thus
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when given a target loss, our goal is to find the most likely parameters for the maxent

distribution over parameters and assignments that give the target loss.

This target distribution over model parameters and cluster assignments is the one

that maximizes the entropy4, H:

H = −
∑
θ,z

P(θ, z) log P(θ, z) (4.8)

subject to the constraints:

∑
θ,z

P(θ, z) = 1 (4.9)

−
∑
di∈D

∑
cj∈C

zij log(P(cj |θ)P(di|cj; θ)) = E (4.10)

The first constraint enforces the requirement that the target distribution must be a

valid probability distribution. The second constraint enforces our fixed value for the

loss on the model parameters and cluster labels.

By solving this constrained maximization problem using Lagrange multipliers we

find the solution to our maxent problem has a Gibbs distribution:

P(θ, z|D) =

exp(β
∑
di∈D

∑
cj∈C

zij log(P(cj|θ)P(di|cj; θ)))∫
exp(β

∑
di∈D

∑
cj∈C

zij log(P(cj|θ′)P(di|cj; θ′)))dθ′
, (4.11)

where β is a Lagrange multiplier determined by the value of E, the desired loss. β

can range between 0 (when the desired loss is very large) and ∞ (when the desired

loss is very small). Given this form for the joint likelihood of models and cluster

assignments, how would we select a single classification model? Remember that the

cluster assignments for the unlabeled data are only incidental for our purposes of

finding a classifier. We can express the probability of each classifier parameterization

4Looking ahead, we will want to incorporate priors into the parameters to avoid word probabilities
of zero. This is easily done by replacing maximum entropy as our criteria with minimum relative
entropy to the prior distribution. The generalization of this derivation to minimum relative entropy
is straightforward, but notationally complex. For simplicity, we present the maxent derivation, but
give and use the minimum relative entropy algorithm.
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independent of the labelings for the unlabeled data by marginalizing Equation 4.11

over z:

P(θ|D) =
∑
z

P(θ, z|D) (4.12)

By substituting, simplifying and taking the logarithm, we get an expression for

log-likelihood of a classification model:

l(θ|D) =
∑
di∈Du

log
∑
cj∈C

[P(cj|θ)P(di|cj ; θ)]β

+
∑
di∈Dl

log([P(yi = cj|θ)P(di|yi = cj; θ)]
β). (4.13)

Note that with the exception of the β’s, this equation and Equation 2.10 (the incom-

plete model probability under generative assumptions) are identical. When β = 1,

they are identical. As before, it is computationally intractable to find the most likely

model because of the log of sums for the unlabeled data in Equation 4.13. Analogously

to Section 2.5 we can apply the EM framework to find a local maximum likelihood

solution by iterating the following steps:

• E-step: Calculate the expected value of the class assignments,

ẑ
(k+1)
ij = E[zij] =

[P(cj|θ̂(k))P(di|cj; θ̂(k))]β∑
cr∈C

[P(cr|θ̂(k))P(di|cr; θ̂(k))]β
. (4.14)

• M-step: Find the most likely model using the expected class assignments,

θ̂(k+1) = arg maxθP(θ|D; ẑ(k+1)). (4.15)

The M-step is identical to that of Section 2.5, while the E-step includes reference

to the loss constraint through β. Note there is a pedagogical distinction to be made

between the E-step of Section 2.5 and the EM process here. There we were calculating

the expectation of the class labels with respect to the assumed generative distribution

of documents. Here we calculate the expectation of the class labels with respect to

the maximum entropy distribution over all class labelings and classifiers that have

our target loss.
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Finding a low-loss model

Given that we can find a (local) maximum likelihood (or maximum a posteriori) model

for a fixed loss, we would like to find the model with the minimum loss. Consider

how the log-probability of the models (Equation 4.13) is affected by different target

losses. When the target loss is very large, β will be very close to zero; the probability

of each model will very nearly be its prior probability as the influence of the data will

be negligible. In the limit as β goes to zero, the probability surface will be convex

with a single global maximum. For a somewhat smaller loss target, β will be small

but not negligible. Here, the probability of the data will have a stronger influence.

There will no longer be a single global maximum, but several. When β = 1 we have

our familiar probability surface of the previous chapters, with many local maxima.

These observations suggest an annealing-like process for finding a low-loss model.

Let the temperature of our algorithm be the inverse of β. If we initialize our temper-

ature to be very high, we can easily find the global maximum a posteriori solution

with EM, as the surface is convex. When we lower the temperature the probability

surface will get slightly more bumpy and complex, as the data likelihood will have

a larger impact on the probability of the model. Although more complex, the new

maximum will be very close to the old maximum if we have lowered the temperature

only slightly. Thus, when searching for the maximum with EM, we can initialize it

with the old maximum and will converge to a good maximum for the new probability

surface. In this way, we can gradually lower the temperature of our system, all the

while tracking a highly probable solution. Eventually, when the temperature (and

β) becomes 1, we will have a good local maximum for the probability of the model

given our maximum entropy (minimum relative entropy) and fixed loss assumptions.

Conveniently, this will also be a good local maximum for our generative model as-

sumptions, as the probability surfaces are identical at this point. Thus, we will have

found a high-probability local maximum from labeled and unlabeled data that we can

then use for classification.

Note that the computational cost of deterministic annealing is significantly higher

than EM. While each iteration takes the same computation, there are many more

iterations with deterministic annealing, as the temperature is reduced very slowly. For

example, in our experiments, we performed 390 iterations for deterministic annealing,

and only seven for EM. When this extra computation can be afforded, the benefit is

more accurate classifiers.
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Figure 4.9: The performance of deterministic annealing compared to EM. If class-to-component
assignment was done perfectly deterministic annealing would be considerably more accurate than
EM when labeled data are sparse. Although the default correspondence is poor, this can be corrected
with a small amount of domain knowledge.

4.5.2 Experimental Results

In this section we see empirically that deterministic annealing finds more probable

parameters and more accurate classifiers than EM when labeled training data are

sparse. For the experimental results, we again use the News5 dataset. We use the

same setup and protocol as described in Section 4.3.2. For running the deterministic

annealing, we initialize β to 0.02, and at each iteration we increase β by a multi-

plicative factor of 1.01 until β = 1. We made little effort to tune these parameters.

Deterministic annealing proceeds according to Table 4.3. Since each time we increase

β the probability surface changes only slightly, we run only one iteration of EM at

each temperature setting.

Figure 4.9 compares classification accuracy achieved with deterministic annealing

to that achieved by regular EM. The initial results indicate that the two methods

perform essentially the same when labeled data are plentiful, but deterministic an-

nealing actually performs worse when labeled data are sparse. For example with

two labeled examples per class (10 total) EM gives 58% accuracy where determinis-

tic annealing gives only 51%. A close investigation of the confusion matrices shows

that there is a significant detrimental effect of incorrect class-to-component corre-

spondence with deterministic annealing when labeled data are sparse. This makes
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Figure 4.10: A scatterplot comparing the model probabilities and accuracies of EM and deterministic
annealing. The results show that deterministic annealing succeeds because it finds models with
significantly higher probability.

sense. When the temperature is very high, the global maximum will have each multi-

nomial mixture component very close to its prior. Since the priors are the same,

each mixture component will be essentially identical. As the temperature lowers and

the mixture components become more distinct, one component can easily track the

cluster associated with the wrong class.

In an attempt to remedy this, we alter the class-to-cluster correspondence based

on the classification of each labeled example after deterministic annealing is com-

plete. The word counts of each example are subtracted from the final classifier, but

there will still be some effect of the example in the cluster. Figure 4.9 shows both

the accuracy obtained by empirically selected correspondence, and also the optimal

accuracy achieved by perfect correspondence. We see that by empirically setting the

correspondence, deterministic annealing improves only marginally. Where before it

got 51%, by changing the correspondence we increase this to 55%, still not better than

EM at 58%. However if we could perform perfect class correspondence, accuracy with

deterministic annealing would be 67%, considerably higher than EM.

To verify that the higher accuracy of deterministic annealing comes from finding

more probable models, Figure 4.10 shows a scatterplot of model probability versus

accuracy for deterministic annealing (with optimal class assignment) and EM. Two

results of note stand out. The first is that indeed deterministic annealing finds much
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comp.graphics
jpeg 0.0315
image 0.0255
graphics 0.0157
images 0.0122
gif 0.0104
format 0.0059
pub 0.0046
ray 0.0045
tiff 0.0039
siggraph 0.0039

comp.os.ms-windows.misc
windows 0.0287
ei 0.0061
win 0.0056
um 0.0051
dos 0.0050
ms 0.0047
ini 0.0044
microsoft 0.0043
nt 0.0040
el 0.0037

comp.sys.ibm.pc.hardware
scsi 0.0262
ide 0.0234
drive 0.0202
controller 0.0164
bus 0.0106
dx 0.0092
bios 0.0091
drives 0.0085
mb 0.0074
card 0.0070

comp.sys.mac.hardware
apple 0.0227
mac 0.0205
lc 0.0081
duo 0.0079
nubus 0.0069
fpu 0.0068
centris 0.0063
quadra 0.0061
iisi 0.0060
powerbook 0.0056

comp.windows.x
window 0.0174
widget 0.0119
motif 0.0119
xterm 0.0112
server 0.0099
lib 0.0085
entry 0.0081
openwindows 0.0066
usr 0.0060
sun 0.0059

Table 4.4: The top ten words per class of the News5 dataset. The words are sorted by the weighted
log-likelihood ratio. Note that from just these ten top words, any person with domain knowledge
could correctly correspond clusters and classes.

more probable models, even with a small amount of labeled data. This accounts

for the added accuracy of deterministic annealing. A second note of interest is that

models found by deterministic annealing still lie along the same probability-accuracy

correlation line. This provides further evidence that model probability and accuracy

are strongly correlated for this dataset, and that the correlation is not just an artifact

of EM.

4.5.3 Discussion

The experimental results show that deterministic annealing indeed could help clas-

sification considerably if class-to-component correspondence was a solved problem.

Deterministic annealing successfully avoids getting trapped in some poor local max-
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ima and instead finds more probable models. Since these high-probability models are

correlated with high-accuracy classifiers, deterministic annealing makes good use of

unlabeled data for text classification.

The class-correspondence problem is most severe when there are only limited la-

beled data. This is because with fewer labeled examples, it is more likely that small

perturbations can lead the correspondence astray. However, with just a little bit of

human knowledge, the class-correspondence problem can typically be solved trivially.

In all but the largest and most confusing classification tasks, it is straightforward

to identify a class given its most indicative words, as measured by a metric such as

the weighted log-likelihood ratio (Equation 2.14). For example, the top ten words

per class of our dataset by this metric are shown in Table 4.4. From just these ten

words, any person with even the slightest bit of domain knowledge would have no

problem perfectly assigning classes to components. Thus, it is not unreasonable to

require just a small amount of human effort to correct the class correspondence after

deterministic annealing has finished. Thus, when labeled training data are sparsest,

deterministic annealing will successfully find more probable and more accurate models

than traditional EM.

If this limited domain knowledge is not available, it should be possible to do the

class correspondence automatically. One could perform both EM and deterministic

annealing on the data. Since EM solutions generally have the correct class corre-

spondence, this model could be used to fix the correspondence of the deterministic

annealing model. That is, we can measure the distance between each EM class multi-

nomial and each deterministic annealing class multinomial (with KL-divergence, for

example). Then, we can use this matrix of distances to assign the class labels of

the EM multinomials to their closest match to a multinomial in the deterministic

annealing model.

Another possible way is to make explicit use of deterministic annealing’s insensitiv-

ity to the labeled data. Since deterministic annealing is insensitive to its initialization

and the influence of the labeled data is minimal, we could perform deterministic an-

nealing using only the unlabeled data. In this way, there would be no residual effects

of the labeled data when performing cluster correspondence. This would be exactly

the recommendation of Castelli and Cover (1995).

Deterministic annealing was first introduced by Rose et al. (1990) as a way to con-

struct a hierarchy during unsupervised clustering. It was motivated through a strong
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analogy to statistical physics. The most related deterministic annealing applications

are using it to estimate the parameters of a mixture of Gaussians from unlabeled

data (Ueda & Nakano, 1995) and constructing a text hierarchy from unlabeled data

(Hofmann & Puzicha, 1998).

This chapter has addressed techniques for improving the use of unlabeled data

when labeled data are sparse. These conditions provide the best opportunity to ben-

efit from unlabeled data, but also pose some significant challenges. Specifically, our

process of integrating unlabeled data through the use of generative models suffers

from poor initialization of our EM optimization. We have improved the use of un-

labeled data in two different ways. First, if the learning algorithm can interact with

a human during their limited labeling effort, it can carefully select which documents

get labeled. This helps by finding higher-quality initializations for EM, which lead

to more accurate classifiers. We have also used a tempered variation of EM. Deter-

ministic annealing avoids local maxima and finds more probable and more accurate

classifiers. With these two different techniques we have made better use of unlabeled

data when labeled data are sparse.
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Chapter 5

Related Work

The field of text classification is rich with existing and ongoing scientific research.

Related theoretical and empirical approaches for incorporating unlabeled data into

supervised learning provide a strong foundation for this thesis work. This chapter

surveys the current state of these fields and their intersection.

5.1 Text Classification

Text classification has been around in different forms for some time. One of the early

application of text classification was to author identification. The seminal work by

Mosteller and Wallace (1964) examined authorship of the different Federalist papers

using Bayesian analysis of features such as word and sentence length, frequency of

function words, and vocabulary diversity. More recently text classification has been

applied to a wide variety of practical applications: cataloging news articles (Lewis &

Gale, 1994; Joachims, 1998); classifying web pages into a symbolic ontology (Craven

et al., 2000); finding a person’s homepage (Shavlik & Eliassi-Rad, 1998); automati-

cally learning the reading interests of users (Pazzani et al., 1996; Lang, 1995); auto-

matically threading and filtering email by content (Lewis & Knowles, 1997; Sahami

et al., 1998); and book recommendation (Mooney & Roy, 2000).

An early and popular machine learning technique for text classification is naive

Bayes (Lewis, 1998; Mitchell, 1997). Its straightforward probabilistic nature has made

it amenable to a variety of extensions. Limited word dependencies can be modeled

using TAN trees (Sahami, 1996). Leverage of a class hierarchy can be provided
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through statistical shrinkage (McCallum et al., 1998) or other more ad-hoc techniques

(Koller & Sahami, 1997). The one-to-one class-to-component correspondence can be

relaxed (Li & Yamanishi, 1997). This thesis has extended naive Bayes through the

inclusion of unlabeled data.

There are two different generative models that have been used for naive Bayes.

The one used in this thesis is a multinomial (or in language modeling terms, “uni-

gram”) model, where the classifier is a mixture of multinomials and tracks the number

of times a word appears in a document (McCallum & Nigam, 1998a). This formula-

tion has been used by numerous practitioners of naive Bayes text classification (Lewis

& Gale, 1994; Joachims, 1997; Li & Yamanishi, 1997; Mitchell, 1997; McCallum et al.,

1998; Lewis, 1998). A second formulation of naive Bayes text classification instead

uses a generative model where each word in the vocabulary is a binary feature, and is

modeled by a mixture of multi-variate Bernoullis (Robertson & Sparck-Jones, 1976;

Lewis, 1992; Larkey & Croft, 1996; Koller & Sahami, 1997). Empirical comparisons

show that the multinomial formulation yields classifiers with consistently higher ac-

curacy (McCallum & Nigam, 1998a).

A variety of machine learning techniques other than naive Bayes have been applied

to text classification. Support vector machines have recently shown much promise

(Joachims, 1998; Dumais et al., 1998). Other approaches have used maximum en-

tropy (Nigam et al., 1999), neural nets (Wiener et al., 1995; Shavlik & Eliassi-Rad,

1998) and several rule learning algorithms (Apte et al., 1994; Cohen & Singer, 1996;

Moulinier et al., 1996; Craven et al., 1998). Still others have used memory-based

methods like k-nearest neighbor (Yang & Chute, 1994; Cohen & Hirsch, 1998), and a

variety of boosting approaches (Schapire & Singer, 2000; Apte et al., 1998; Sebastiani

et al., 2000). To date, no single technique has emerged as clearly better than the

others, though some recent evidence suggests that kNN and SVMs perform at least

as well as other algorithms when there is a lot of labeled data for each class of interest

(Yang, 1999).

Most studies into text classification use the simple document representation of

bags-of-words, tracking the number of times each word occurs in a document, or even

just whether or not it occurred. Consistently, efforts to include more substantial

linguistic or semantic information have provided at most modest improvements to

classification accuracy. Furnkranz et al. (1998) uses shallow syntactic phrase patterns

and finds some improvements to naive Bayes and rule learning algorithms. Mladenic
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(1998) selects variable-length phrases for text classification of web pages into the

Yahoo hierarchy. Two studies have incorporated into text classification information

from WordNet, a semantic network of the English language (Rodriguez et al., 1997;

Scott & Matwin, 1998).

5.2 Learning with Labeled and Unlabeled Data

We turn now to a survey of combining labeled and unlabeled data. Much initial work

in this area started in statistics, and has recently been joined by the machine learning

community.

5.2.1 Likelihood maximization approaches

The idea of learning classifiers from a combination of labeled and unlabeled data is

an old one in the statistics community. At least as early as 1968, it was suggested

that labeled and unlabeled could be combined for building classifiers with likelihood

maximization by testing all possible class assignments (Hartley & Rao, 1968). The

seminal paper by Day (1969) presents an iterative EM-like approach for parameters

of a mixture of two normals with known covariances from unlabeled data alone. Sim-

ilar iterative algorithms for building maximum likelihood classifiers from labeled and

unlabeled data followed, primarily for mixtures of normal distributions (McLachlan,

1975; Titterington, 1976).

Dempster et al. (1977) presented the theory of the EM framework, bringing to-

gether and formalizing many of the commonalities of previously suggested iterative

techniques for likelihood maximization with missing data. Its applicability to estimat-

ing maximum likelihood (or maximum a posteriori) parameters for mixture models

from labeled and unlabeled data (Murray & Titterington, 1978) and then using this

for classification (Little, 1977) was recognized immediately. Since then, this approach

continues to be used and studied (McLachlan & Ganesalingam, 1982; Ganesalingam,

1989; Shahshahani & Landgrebe, 1994). Three excellent surveys of the history of EM

and its application to mixture modeling are the books by McLachlan and Basford

(1988), McLachlan and Krishnan (1997) and McLachlan and Peel (2000).

Using likelihood maximization of mixture models for combining labeled and un-

labeled data for classification has only recently made its way to the machine learning
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community (Miller & Uyar, 1996; Nigam et al., 1998; Baluja, 1999). However, other

work used this approach earlier for similar purposes. Mixture models have been used

as a generative model for unsupervised clustering, whose parameters have been fit

with EM (Cheeseman et al., 1988; Cheeseman & Stutz, 1996; Hofmann & Puzicha,

1998). Ghahramani and Jordan (1994) use EM to fill in missing feature values of

examples when learning from incomplete data by assuming a mixture model. Hier-

archical mixtures-of-experts are similar to mixture models, and their parameters are

typically set with EM (Jordan & Jacobs, 1994). The work in this dissertation is the

first to explore combining labeled and unlabeled data for text classification.

5.2.2 Discriminative approaches

A transductive support vector machine (Vapnik, 1998) discriminatively finds param-

eters for a linear separator when given labeled data and the data it will be tested

on. In general, this approach is equally applicable to scenarios with labeled and un-

labeled data. At a high level, they work by finding the linear separator between the

labeled examples of each class that maximizes the margin over both the labeled and

unlabeled examples. Joachims (1999) demonstrates the efficacy of this approach for

several text classification tasks. Bennett and Demiriz (1999) find small improvements

on some UCI datasets with a computationally easier variant of transduction. It seems

that the intuition behind transductive SVMs is that they assume decision boundaries

lie between classes in low-density regions of instance space, and that the unlabeled

examples help find these areas. However, Zhang and Oles (2000) argue both theo-

retically and experimentally that transductive SVMs are unlikely to be helpful for

classification in general.

The maximum entropy discrimination framework (Jaakkola et al., 2000) is an-

other margin-based classification approach that can make use of unlabeled data. It

finds the maximum entropy (or minimum relative entropy) distribution over classifier

parameters, subject to the (soft) constraints that each labeled example is at least a

fixed margin from the decision boundary. Classification is then performed by cal-

culating by integration the expected value of the example’s class over the induced

parameter distribution. Unlabeled data can be used here by adding a distribution

over the unknown class labels that is jointly estimated by maximum entropy. With

this approach, margin constraints are also added for the unlabeled data to encourage

the estimation to commit to labels for the unlabeled examples. To make this distribu-
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tion estimation practical, an iterative relaxation algorithm is proposed that converges

to a local minima of relative entropy. Encouraging experimental results are given for

combining labeled and unlabeled data in the context of predicting DNA splice points.

Recent work by Szummer and Jaakkola (2001) uses unlabeled data in classification

through kernel expansion. In essence, the features of each labeled datapoint include

the kernel densities between it and all other examples, labeled and unlabeled. Using

these features, either the maximum entropy discrimination framework or maximum

likelihood derives a linear separator for the classification task. The intuition is that

the unlabeled data are used to weight the relative importance of the labeled data

based on the instance density. The weighting informs the discriminative training

about which examples are more important, and which are less so. In this approach

it is essential to carefully select the form and width of the kernel to accurately model

the underlying instance distribution. How this should best be done is an open and

challenging question.

5.2.3 Theoretical value of unlabeled data

There has been some effort to quantify the relative value of labeled and unlabeled

examples when learning a mixture distribution for classification. Unsurprisingly,

most results in the literature concern mixtures of two Gaussians. Ganesalingam and

McLachlan (1978) calculate a first-order approximation to the asymptotic relative

efficiency of labeled and unlabeled examples for classification with univariate normals

with known and equal variances. O’Neill (1978) goes one step further and quantifies

the asymptotic relative efficiency for multivariate normals with equivalent and known

covariance matrices. Ratsaby and Venkatesh (1995) perform a similar analysis, but

within the PAC framework. For more general cases beyond mixtures of Gaussians,

less is known. For a class of mixture distributions (including normals), Chen (1995)

bounds the rate of convergence of parameter estimates from unlabeled examples where

the number of mixture components is bounded but not known. These results cover

only parameter estimation and not classification error. All of these mentioned results

assume (1) the global maximum likelihood parameterization can be found without any

problems of local maxima, and (2) the data were actually generated by the model

used. For the more general and challenging cases applicable to this thesis, there are

no known results.

In an often-cited result, Castelli and Cover (1996) show that labeled examples
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are exponentially more valuable than unlabeled examples. These results apply only

when estimating the class probability parameters where the underlying component

distributions are known and correct. In a related result, they show that labeled data

reduce error exponentially fast with an infinite amount of unlabeled data when the

component distributions are known, but the class-to-component correspondence is not

(Castelli & Cover, 1995). In a recent study, Zhang and Oles (2000) examine the value

of unlabeled data for discriminative trainers such as transductive SVMs and also for

active learning. As mentioned above, they question the generality of the helpfulness

of transductive SVMs.

5.2.4 Active Learning

Although often not explicitly stated, selective sampling is another way of integrating

unlabeled data into supervised learning. Selective sampling (Cohn et al., 1994) is a

form of active learning where one must select an existing example for labeling. One

approach for selecting examples is to try to maximally reduce the variance component

of classification error (Cohn et al., 1996). Another approach, the one taken in this the-

sis, is that of query-by-committee (Seung et al., 1992; Freund et al., 1997), whereby a

committee of classifier variants is used to select an example that has high classification

variance itself. A theoretical analysis shows that in a consistent error-free learning

domain, QBC can exponentially reduce the number of labeled examples needed for

learning (Freund et al., 1997). QBC has also shown to be a powerful paradigm in

practice. Argamon-Engelson and Dagan (1999) use a query-by-committee approach

to learn a part-of-speech tagger. Similarly to the work in Section 4.4, they use sta-

tistical models of their classifiers to create the committee. In contrast, they use

stream-based sampling and vote entropy to measure committee disagreement. For

text classification, we have shown that pool-based sampling and a Jensen-Shannon

divergence based metric perform better. Liere (1999) uses committees of Winnow or

Perceptron learners for QBC active learning for text classification. Here, a document

is selected for labeling for which two randomly selected committee members disagree

on the class label. Committee members are formed by multiple random initializations

of the classifiers.

Several other studies have investigated active learning and selective sampling

specifically for the domain of text categorization. Lewis and Gale examine uncer-

tainty sampling and relevance sampling in a pool-based setting (Lewis & Gale, 1994;
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Lewis, 1995). These techniques select documents based on a single classifier instead

of a committee, and thus do not approximate classification variance. Uncertainty

sampling selects for labeling the example that is classified with the most uncertainty

(uniform class posteriors), where relevance sampling chooses the example with the

most certainty (peaked class posteriors). Schohn and Cohn (2000) use an approach

very similar to uncertainty sampling, but for support vector machines. They select

for labeling the example that is closest to the linear decision boundary given by the

classifier. Tong and Koller (2000) also perform selective sampling with support vector

machines, but their approach is motivated by trying to maximally reducing the size

of the version space of good hypotheses. All of these studies have shown significant

benefit from active learning when applied to text classification domains.

5.2.5 Other uses of unlabeled data for supervised learning

The co-training setting allows unlabeled data to be used in new ways. It specifies that

every example is described by two disjoint views onto the data. For example, with

a web classification task, each instance has words occurring on a web page, and also

words on hyperlinks pointing to the web page. Blum and Mitchell (1998) show that

under certain theoretical assumptions, a weak learner can be arbitrarily improved

given sufficient unlabeled examples. They also present the co-training algorithm that

iteratively selects an unlabeled example, gives it a label, and relearns. Nigam and

Ghani (2000) argue that the co-training algorithm and its variants succeed in part

because they are more robust to the assumptions of their underlying classifier repre-

sentations. Collins and Singer (1999) present a boosting-based algorithm, coBoost,

for learning in the co-training setting; it tries to minimize the disagreement on the

unlabeled data between classifiers that use different views of the data. Goldman

and Zhou (2000) show that co-training approaches can succeed on datasets without

disjoint views when carefully selected underlying classifiers are used.

Several developments using distantly labeled data have proven to be useful. Dis-

tantly labeled data are data labeled for a related task, but do not have a direct

map to the task at hand. The AutoSlog-TS system (Riloff, 1996) takes documents

labeled as in or out of the domain of interest and automatically extracts indicative

case frames that often match items to be extracted. Seymore et al. (1999) have used

distantly-labeled data to estimate output parameters of an HMM used for informa-

tion extraction in the research paper domain. In a similar vein, Zelikovitz and Hirsh
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(2000) use unlabeled data as background knowledge to augment a nearest-neighbor

classifier. Instead of matching a test example directly to its closest labeled example,

they instead match a test example to a labeled example by measuring their similarity

to a common set of unlabeled examples.

Several bootstrapping techniques allow learning algorithms to begin with nearly

no labeled data and iteratively develop a concept of interest. Riloff and Jones (1999)

start with just a small dictionary of known locations and a set of unlabeled data to

bootstrap a much larger dictionary of locations and case frame patterns indicative

of locations. Yarowsky (1995) bootstraps a word sense disambiguation algorithm

starting with a small set of seed collocations of words and senses.

Unlabeled data have also been used to reduce or prevent overfitting. For example,

there is strong evidence for overfitting when the disagreement on the unlabeled data

between two candidate classifiers or regressors is larger than the sum of their errors

on labeled data. This observation has been used for selecting the best complexity

of a polynomial for regression (Schuurmans, 1997) and for pruning decision trees

(Schuurmans & Southey, 2000). Cataltepe and Magdon-Ismail (1998) use unlabeled

or test data to reduce overfitting in linear regression by augmenting the minimization

criteria of mean squared error with terms based on unlabeled data.
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Chapter 6

Conclusions

This dissertation has addressed the problem of integrating unlabeled data into su-

pervised learning for text classification. Labeled data are expensive to collect, as a

human must take the time and effort to label it. Thus it is frequently the case that

labeled training data are sparse. By contrast unlabeled data are often inexpensive

and plentiful. This is especially true for text classification tasks where almost any

type of text is readily available in electronic form.

6.1 Findings

There are five significant findings of this dissertation:

Unlabeled data are useful for text classification.

We have taken the approach of first specifying a simple statistical generative model

class for documents, and then choosing parameters for the model that are highly

probable given the evidence of the labeled and unlabeled documents. Our basic

model of the document distribution is a mixture model where each mixture component

generates documents for a class with a multinomial distribution over words. With

labeled data alone this is the familiar naive Bayes text classifier, where the maximum

a posteriori parameters are found with closed form equations. When there is also

access to unlabeled data, we can find a local maximum for these parameters given

all the data using the Expectation-Maximization (EM) technique. The parameters of
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this model can be turned around by Bayes’ rule and used for classification. In some

domains there is a strong correspondence between model probability and classification

accuracy; here finding more probable parameters yields more accurate classifiers. In

experiments detailed in Section 2.6 we use labeled and unlabeled data to build text

classifiers for 20 Newsgroups, a collection of UseNet articles. For this dataset we

show that (1) classification accuracy and model probability are strongly correlated,

and (2) the use of unlabeled data reduces classification error by 30% when labeled

training data are sparse. Thus we conclude that integrating unlabeled data into

supervised learning can reduce the error of text classifiers.

Initially it may seem surprising that a generative model approach and EM can

increase text classification accuracy using unlabeled data. The intricacies of text

documents are not captured by a mixture of multinomials model. What is interesting

in this finding is that even though our model is an approximation, maximizing the

probability of this model provides increased accuracy in our classifiers. The model

captures enough information from the documents for the purposes of classification.

Modeling sub-topic structure makes models more representative.

Some datasets cannot be adequately modeled with the basic generative process. In

these cases using unlabeled data for parameter estimation can actually increase clas-

sification error by finding parameters that only poorly match the true data distribu-

tion. When a class is complex, with several or many sub-topics, a single multinomial

mixture component is insufficient; a more representative model is required. In Sec-

tion 3.2.3 we use multiple mixture components per class for the Reuters dataset to

model a single class containing news stories about many topics. Using unlabeled data

there with the basic model often increases classification error. However, a generative

model with multiple mixture components per class is representative enough for this

dataset to bring model probability and classification accuracy into correlation; clas-

sification error decreases by 39% across topics compared to using labeled data alone.

Thus, with a sufficiently representative model, maximizing the model posterior prob-

ability finds more accurate classifiers using labeled and unlabeled data.

With labeled data alone, other researchers have shown that generative models that

allow for some class-conditional word dependencies yield more accurate classifiers.

When unlabeled data are used, the same principles of model representation also arise,

but even more strongly. We assume model correctness when labeling the unlabeled
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data during parameter estimation; if this assumption is too strongly violated, then the

generated class labels will reflect the biases of the model and will not provide useful

or accurate model parameters. In these cases it is necessary to adjust the bias for

the assumed parametric form of the model more closely matches the true document

distribution.

Modeling super-topic hierarchical class relationships reduces overfitting.

Many classification domains have hierarchical relationships among its classes. The

basic generative process ignores these relationships when it models each class as an

independent mixture component. Therefore, parameters in different classes that are

closely related must be re-estimated for each class separately. This increases the op-

portunity for overfitting the unlabeled data. By explicitly modeling hierarchical class

relationships, we make more efficient use of our unlabeled data by estimating these

shared parameters only once with more data. This approach reduces overfitting by

making the model probability given the unlabeled data more closely match the model

probability over the true document distribution. The Cora dataset has a computer

science hierarchy that can be leveraged in just this way. In Section 3.3.3 we show

that without the hierarchy unlabeled data reduce classification error. With the more

representative hierarchical model, we make more efficient use of the data and error is

reduced by 33% over a naive Bayes baseline relative to human performance. Thus,

we conclude that modeling known hierarchical relations in the generative process can

more efficiently use unlabeled data and produce more accurate text classifiers.

Active learning creates improved EM initializations.

In our algorithm for incorporating unlabeled data into supervised learning, the labeled

and unlabeled data play different roles. The primary effect of the labeled data is to

initialize the maximization process; the unlabeled data have their significant effect

during the EM iterations. The quality of the initialization is typically the first-order

determinant of the accuracy of the resulting classifier. This provides an opportunity

to use unlabeled data to further improve text classification accuracy. With limited

interaction with a human labeler, we use Query-by-Committee active learning to select

which unlabeled documents should get labeled to provide high-quality initializations

for EM. In Section 4.4.4 we apply this approach to the News5 dataset. By initializing
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EM from actively selected documents we reduce by 41% the number of labelings

needed to reach a given accuracy threshold for our classifier. Thus, we conclude that

actively selecting unlabeled documents for labeling reduces the bottleneck imposed

by labeled data.

Deterministic annealing finds more accurate text classifiers than EM.

The reason the EM initialization strongly influences classification accuracy is that

EM gets trapped in one of the many local maxima in probability space. However,

EM is not the only approach for performing this maximization. An alternative tech-

nique is deterministic annealing. It is more robust to local maxima because is first

maximizes on a very smooth surface and then gradually makes the probability surface

more bumpy, maximizing along the way, and ending with a maximum in the origi-

nal probability surface. Through this cooling-like process, deterministic annealing is

able to track a high-probability maximum and settle on a high-accuracy classifier. In

Section 4.5.2 we apply this technique to the News5 dataset. Deterministic annealing

consistently finds more probable solutions than EM, especially when labeled data are

sparse and the initializations are poor. Deterministic annealing is more prone to er-

rors in class-to-component correspondence, but these can be easily corrected with a

minimum of human effort. With its more probable parameters, deterministic anneal-

ing gives classifiers that reduce classification error by 21% over EM. Thus we conclude

that deterministic annealing finds more probable models (and thus more accurate text

classifiers) than EM by more effectively avoiding local maxima.

In summary, we have given a basic approach for using unlabeled data for classi-

fication: maximizing the probability of statistical generative models. This approach

works well when the model is representative enough so that classification accuracy

is correlated to model probability. When the basic model is not representative, a

more accurate model can often be found and used successfully. With a representative

model, unlabeled data help, but labeled data is still the bottleneck for even better

performance. This issue can be addressed by actively selecting the labeled data, or

by using maximization techniques that are not so sensitive to the labeled data.
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6.2 Future Directions

The work of this thesis suggests several directions of further research that are deserv-

ing of attention. We outline a few of them here.

When to use a generative model approach

Other recent approaches for incorporating unlabeled data into supervised learning

do not take a generative model approach (Joachims, 1999; Szummer & Jaakkola,

2001; Jaakkola & Haussler, 1999). They take a discriminative approach, in that they

focus on directly estimating the decision boundary between classes. One interesting

and important area of future work is to understand what types of domains are more

amenable to one approach or the other. As an extreme example, if the data really were

generated by our statistical model, then a posterior model maximization approach

would be better; the bias of the algorithm would be exactly correct and allow the

most efficient use of the data. We know, however, that any real-world text dataset

will not be completely captured in a statistical model. If a sufficiently representative

model for the data can not be found, then it is likely that a discriminative approach

would be more appropriate.

The discriminative approaches make assumptions of their own that are subject

to violations. For example, transductive SVMs (Joachims, 1999) assume there is a

low density region through which the linear separator passes. For some domains, this

need not be the case, and a generative approach would be more suited. It would be

exciting to understand how much the assumptions of each approach can be violated.

Ideally there would be a test, based on the unlabeled and limited labeled data,

that could predict which approach would be more beneficial. For example, there are

a number of statistical goodness-of-fit tests for multinomial and mixture of multino-

mials distributions (e.g., Chen, 1998; Zelterman, 1987; Cressie & Read, 1984). If a

probability-based parameterization proved to have a poor fit to a mixture of multino-

mials distribution, this may suggest that a discriminative approach would be better

suited to the domain. However, we hypothesize that in many cases the fit to the

model will not be good even when the model is representative enough for beneficial

use of generative approaches. Thus, existing tests may not be sufficient.

A better approach might directly compare the relative accuracies of the document

distributions as measured by both a mixture of multinomials and a non-parametric
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kernel-based density estimator. If the non-parametric estimator was a much better

predictor of previously-unseen data, kernel-based discriminative approaches (Szum-

mer & Jaakkola, 2001) may perform best.

Another possibility would be to explicitly examine the correlation between the

probability of a generative model and the classification accuracy. With a modest

but not extremely small set of labeled examples, accuracy can be measured on many

different parameter settings found by totally unsupervised clustering. The strength

of the correlation may be a good predictor for the appropriateness of a generative

model. For example, in Section 4.3.3 we performed many runs of EM with random

initializations. On that data, displayed in Figure 4.6, the correlation between model

probability and accuracy was high, 0.8915, perhaps indicating the appropriateness of

our approach on this dataset.

Feature Selection and Multiple Classification Tasks

Taken to an extreme, the generative model approach suggests there is only a single

classification task per domain. For example, there is just one global maximum param-

eterization for a mixture of five multinomials for the News5 data, and we have set this

parameterization as our goal. However, documents are not typically authored with

the intent of fitting into arbitrary categories. Additionally, we can imagine several

different classification tasks for the same domain. For example, in addition to the

given task of newsgroup source, we might be interested in classifying the same data

by nationality of author, relevance to computer science researchers, or relevance to

system administrators. How might we reconcile the contradiction of using generative

models for multiple classification tasks on the same data?

One way to reconcile this is through the use of feature selection. With different sets

of features for the domain and generative model, there can be dramatically different

maximum a posteriori parameterizations. Feature selection is often an essential step in

building a text classifier from labeled data alone (Yang & Pedersen, 1997). However,

with only limited labeled data it is difficult to select an appropriate set of features

considering that many words have not even occurred in the labeled data.

We hypothesize that there is a new and interesting set of feature selection al-

gorithms that would be appropriate for application to combinations of labeled and

unlabeled data. One promising direction should be iterative feature selectors, per-

haps in the style of Improved Iterative Scaling (Della Pietra et al., 1997) or Boosting

110



(Schapire & Singer, 2000). The model maximization and the feature selection could

be interleaved, allowing for influence from the unlabeled data while still maintaining

the direction given by the labeled data. This may also provide some robustness to

overfitting and local maxima in the same way as deterministic annealing.
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Appendix A

Complete Hierarchy and Keywords

This appendix presents the entire hierarchy and key words and phrases used for the

Cora experiments in Section 3.3.

• Information Retrieval

• Retrieval
- information retrieval

• Extraction
- information extraction
- wrapper induction
- wrapper www

• Filtering

- text classification
- document classification
- document categorization
- document filtering

• Digital Library

- digital library

• Encryption and Compression

• Encryption
- encryption
- cryptographic
- cryptology
- cryptanalyzing
- cryptanalysis
- cryptography
- mutual distrust
- decentralized authority
- secure secret

• Security
- computer security
- security hole

- security holes
- security attack
- SSL
- network security
- firewall kerberos

• Compression
- compression
- entropy code
- video audio
- audio coding
- video coding
- MPEG

• Human Computer Interaction

• Multimedia
- multimedia

• Interface Design

- GUI
- interface design

• Graphics and Virtual Reality

- virtual reality
- telepresence
- computer graphics
- siggraph

• Cooperative
- cscw

• Wearable Computers

- wearable computers
- wearable computer
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• Artificial Intelligence

• Expert Systems

- expert systems

• Knowledge Representation

- knowledge representation

• Machine Learning

• Reinforcement Learning
- reinforcement learning
- temporal difference learn-

ing
• Genetic Algorithms

- genetic algorithms
- genetic algorithm
- genetic programming
- natural selection evolu-

tionary
- evolutionary computa-

tion
• Probabilistic Methods

- bayes rule
- density estimation
- bayesian network
- bayes network
- bayesian networks
- bayes networks
- belief revision
- uncertain inference
- probabilistic reasoning
- uai

• Neural Networks
- neural network
- neural networks
- gradient descent
- projection pursuit
- self-organizing map
- ijcnn

• Theory
- pac
- colt
- warmuth freund schapire

• Rule Learning
- rule learning
- ILP

• Case-Based

- case based

- instance based
- memory based

• Robotics

- robotics robot robots

• Vision and Pattern Recognition

- pattern recognition
- pami
- computer vision

• Speech

- speech recognition

• Planning

- planning
- temporal reasoning
- reasoning time

• NLP

- NLP
- natural language process-

ing

• Theorem Proving

- theorem proving

• Agents

- agent agents multiagent
- artificial life

• Games and Search

- game search
- combinatorial optimization
- stochastic optimization

• Data Mining

- data mining
- database mining

• Databases

• Temporal

- database temporal
- databases temporal

• Deductive

- deductive database deduc-
tive databases

• Concurrency

- concurrency database

• Query Evaluation

- query-evaluation database
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- database queries

• Object Oriented

- oodbms
- object oriented database

• Relational

- relational database
• Performance

- database real-time
- databases real-time
- database parallel
- databases parallel
- database scalable

• Programming

• Garbage Collection

- garbage collection

• Semantics

- programming language se-
mantics

- denotational semantics pro-
gramming language

• Compiler Design

- compiler design
- compiler algorithm
- parallelizing compiler
- compiler language
- optimized code
- compiling programs

• Debugging

- debugging

• Java

- java

• Object Oriented

- object oriented programming
- smalltalk

• Functional
- functional programming
- lisp

• Logic

- logic programming
- logic programming
- prolog
- prolog

• Software Development

- software engineering
- design tools
- software metrics
- programming environments
- computer aided engineer-

ing
- software reuse
- software portability
- configuration management

• Operating Systems

• Memory Management

- memory management
- shared memory

• Distributed

- distributed system
- distributed computing
- distributed computing
- distributed os
- distributed system
- distributed systems
- distributed network environ-

ment
- distributed operating sys-

tems
- distributed operating sys-

tem
- distributed file system
- distributed file systems
- network file system
- mobile computing
- networks of workstations
- cluster of workstations
- distributed storage system

• Realtime

- realtime
- real time
- RTSS

• Fault Tolerance

- fault tolerance
- tolerate faults

• Networking

• Protocols

- network protocols
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- communication protocol
- communication protocols
- multicast
- mbone
- atm
- tcp/ip
- udp

• Routing

- routing
- qos
- switched networks
- switched network
- routing networks

• Internet

- internet
- internet architecture
- web caching

• Wireless

- wireless network
- wireless networking
- mobile network

• Hardware and Architecture

• High Performance Computing

- high performance comput-
ing

• VLSI

- VLSI

• Memory Structures

- memory structures
- TLB NUMA hardware

• Distributed Architectures

- distributed architectures
- distributed architecture
- distributed hardware

• Microprogramming

- microprogramming
- microprocessor controller

• Logic Design

- circuit
- circuits
- CMOS
- logic design
- gate level

- multi-level circuit
- analog circuits
- analog systems
- analog converters
- gate circuit
- gate circuits
- circuit transistor
- circuit fan

• Input Output and Storage

- disk drive
- SCSI
- i/o

• Data Structures, Algorithms and The-
ory

• Randomized

- randomized algorithms

• Parallel

- parallel algorithms

• Formal Languages

- finite state machine method
- context-free languages
- formal model automata
- theory automata

• Computational Complexity

- space complete
- complexity of deciding
- complexity class
- bounds complexity

• Sorting

- sorting

• Hashing

- hashing

• Computational Geometry

- computational geometry

• Logic

- finite model theory
- program verification
- format analysis verification
- modal logic

• Quantum Computing

- quantum
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