
A Type System for JVM Threads ?

Gaetano Bigliardi and Cosimo Laneve

Department of Computer Science, University of Bologna, Italy.

Abstract. The current de�nition of the Java Bytecode Veri�er, as well

as the proposals to formalize it, do not include any check about consis-

tency of critical sections (those between monitorenter and monitorexit

instructions). So code is run, even if critical sections are corrupted. In

this paper we isolate a sublanguage of the Java Virtual Machine with

thread creation and mutual exclusion. For this subset we de�ne a se-

mantics and a formal veri�er that enforces basic properties of threads

and critical sections. The veri�er integrates well with previous formal-

izations of the Java Bytecode Veri�er. Our analysis of critical sections

reveals the presence of bugs in the current compilers from Sun and IBM.

1 Introduction

The Java Programming Language is compiled into an intermediate language,
called (Java) bytecode. The bytecode is then interpreted by the Java Virtual Ma-
chine (JVM, in the following) [1]. Most of the portability of the Java language
relies on the fact that JVM's have been de�ned for almost all the platforms. In-
deed, the present scenario is that the bytecode on some machine may be shipped
and executed on another one, which is the basis of Java code mobility.

However, bytecode mobility poses a sequel of problems, as bytecodes gen-
erated by hostile compilers, or created by attackers, or corrupted during the
migration. To contrast possible harmful bytecodes, Java developers have de�ned
the so-called bytecode veri�er, which checks the format of downloaded classes,
the presence of illegal conversions, jumps to invalid addresses, methods invoked
with a wrong number or type of actual parameters.

The oÆcial de�nitions of the bytecode veri�er consist of a prose description
and an implementation [12]. As usual, such de�nitions are not satisfactory as
regards formal reasoning and proof checking. Therefore, very recently, several
authors have developed formal speci�cations of parts of the bytecode veri�er, as
well as possible extensions [16, 6, 8]. Remarkablely, soundness proofs have been
given, and a bug of the Sun implementation of the bytecode veri�er has been
identi�ed.

There are at least two key features that escape from the present de�nitions of
the bytecode veri�er: concurrency and class loading (some progress in the formal

? This work is partially supported by the Microsoft Research Grant \The Design and

the Analysis of Concurrent Object Oriented Languages", the ESPRIT WG-21836

CONFER, and by the Italian MURST Research Program TOSCA.

de�nition of class loading has been recently done in [15]). In this paper we try
to �ll the �rst of them.

At the present time, the bytecode veri�er does not �lter out the following
codes:

1 aload 0

2 monitorexit

3 return

1 aload 0

2 monitorenter

3 return

where, the one on the left releases a lock (monitorexit instruction) without hav-
ing acquired it before, whilst the one on the right acquires the lock (monitorenter
instruction) without releasing it. As a consequence, the JVM must perform a
number of runtime checks in order to rise the following exception:

java.lang.IllegalMonitorStateException

(the Sun's JDK 1.2 rises no exception for the bytecode on the right).
We supply to these and other de�ciencies of the bytecode veri�er by designing

a type system, thus conforming with previous works of Stata-Abadi and Freund-
Mitchell. To this purpose, we de�ne the operational semantics of a fragment
of the Java Virtual Machine Language (in the following shortened into JVML)
encompassing multithreading and mutual exclusion, and we prove the correctness
of our typing system with respect to the operational semantics. Our analysis
reveals the presence of bugs in the current compilers from Sun and IBM.

The structure of the paper is the following. Section 2 overviews concurrency
in the JVM and in the bytecode, and gives a detailed sketch of what has been
achieved and how. Sections 3 and 4 de�ne the syntax and the operational model
of JVMLC , the sublanguage of JVML with primitives for thread creation and
mutual exclusion. The static semantics is de�ned in Section 5. In Section 6 we
discuss some sound extension of JVMLC with method invocations and with
exception handlers. In Section 7 we analyze the bugs we have found in Sun's and
IBM's compilers. We comment related works and conclude in Section 8.

2 Threads and mutual exclusion in the bytecode Java

Java supports concurrent programming through threads and monitors [11]. A
new thread of control may be created by (1) creating a (sub-)object of the
class java.lang.Thread of the standard Java libraries, and then (2) invoking
the start method of this class. The method start spawns a new thread and
returns. The control of this new thread is given to the run method of the object
by the Java Virtual Machine. A thread exits when the runmethod returns. Since
the default run of Thread does nothing, to design a parallel behaviour one must
de�ne a sub-class of Thread with a new run method.

Synchronization across threads is implemented through monitors. That is,
each object has an associated lock and synchronization is de�ned by acquiring
and releasing locks. Two forms of synchronization are provided: through syn-

chronized methods and through synchronized statements.

public void onlyMe(Foo f) f

synchronized (f)

f doSomething(); g

g

Method void onlyMe(Foo)

0 aload 1

1 astore 2

2 aload 2

3 monitorenter

4 aload 0

5 invokevirtual doSomething()

8 aload 2

9 monitorexit

10 return

11 aload 2

12 monitorexit

13 athrow

Exception table:

from to target type

4 8 11 any

Fig. 1. The method onlyMe and its sample bytecode of [12], section 7.14

If a thread invokes a synchronized method of an object, the invocation locks
the object and releases the lock when the method returns. In between, other
invocations of synchronized methods will be blocked. Synchronized methods are
usually implemented by the ACC SYNCHRONIZED
ag in the constant pool [12].
In particular, the method invocation checks whether the ACC SYNCHRONIZED
ag
of the method is set. In this case, the lock of the object is implicitly acquired;
and will be released when the method returns. Therefore no explicit bytecode
instruction is used to this purpose.

The statement synchronized (x) f S g models partial synchronization,
namely those cases where parts of the method bodies need to be synchronized.
Its semantics is to execute the parenthesized statement S in a mutual exclusive
way on the object x, by acquiring and releasing the lock at the beginning and at
the end of the execution. A sample compilation of synchronized is illustrated
in Figure 1. There, the method onlyMe acquires the lock of the argument f,
do something on the self object, then releases the lock and terminates. The
instructions 0-1 of the bytecode copy the argument of onlyMe in the variable
2. This allows to record in a \safe" place the object that is going to be locked.
This \safe" place is always a local variable, that will be called \protected" in the
following. The next two instructions attempt to acquire the lock of the argument.
The instruction 2 copies the pointer to the protected variable on the stack; the
monitorenter at 3 is executed provided the object on the stack is unlocked. Once
the monitorenter terminates, the control is given to the method doSomething

(instructions 4-5). When doSomething returns, the lock is released: at 8 the
reference in the protected variable is copied on the stack, and the monitorexit
at 9 takes this copy to relinquish the lock. In the section from 4 to 9 no other
thread may acquire the lock of the protected variable. This section will be called
critical section in the following. onlyMe returns at 10. Lines from 16 to 19 are

used to catch exceptions that occur in between instructions from 4 to 8 (see the
Exception table). They release the lock and re-bounce the exception to the caller
(instruction athrow).

The JVM speci�cation is very demanding as regards the implementation of
synchronized statements by Java compilers. In [12], section 3.11.11, we �nd the
following commitment:

Proper implementation of synchronized blocks requires cooperation from
a compiler targeting the Java virtual machine. The compiler must ensure
that at any method invocation completion a monitorexit instruction
will have been executed for each monitorenter instruction executed
since the method invocation. This must be the case whether the method
invocation completes normally or abruptly 1.

In fact, the scheme described in Figure 1 is faulty, as it is possible for an
asynchronous exception ([12], section 2.16.1) to occur between the aload 2 in-
struction at 8 and the following monitorexit, in which case the monitor may
be left in a locked state. Actually, all the present compilers from Sun and IBM
do not ful�l the above commitment (see Section 7).

On the other hand, the JVM speci�cation is not so demanding as concerns
JVM implementations (see [12], section 8.13). Indeed, such implementations may,
but this is not required, enforce the following two rules, guaranteeing structured
locking. Let t be a thread and ` be a lock. Then:

1. The numbers of locks and unlocks performed by t on ` during a method in-
vocation must be equal, whether the method invocation completes normally
or abruptly.

2. At no point during a method invocation, the number of unlocks performed
by t on ` may exceed the number of locks performed by t on `.

Needless to say, a JVM missing the structured locking may be exposed to
deplored runtime errors, which are notoriously hard to diagnose, such as dead-
locks.

In this paper we integrate the Java Bytecode Veri�er with static checks of
structured locking. To this aim we have singled out the following three properties
a bytecode should satisfy:

Property 1. (Well-formedness) Instructions monitorenter and monitorexit

of a bytecode must be paired. Every pair has an associated variable, called
protected, that stores the monitor. The pair monitorenter/monitorexit
acquires/releases this protected variable (or one alias of its). Instructions
executed in between the pair monitorenter/monitorexit cannot update
the protected variable.

Property 2. (Correctness of jumps) Jumps are always inside their own critical
section, but outside inner critical sections.

1 A method invocation completes \abruptly" when its body causes a JVM-exception

that is not handled within the method.

Property 3. (Presence of Exception Handlers) Every (fragment of) critical sec-
tion is paired with a piece of code, its exception handler, that releases the
acquired lock (stored in the protected variable) as well as the locks of the
outer critical sections.

Note that Property 1 requires some form of aliasing analysis, since monitorenter
and monitorexit may take a copy of the protected variable, as in the following
bytecode:

1 aload 0

2 monitorenter

3 aload 0

4 astore 1

5 aload 1

6 monitorexit

Once the execution falls inside the critical section starting at line 3, the protected
variable 0 is copied into the variable 1. This copy is used at line 5 to load the
stack with the protected variable, before exiting from the critical section (line
6). To deal with aliases we use the same technique as in [6] and in the Sun JDK
veri�er. This technique consists of tracing copies of references by using the line
numbers of the instructions duplicating the references. Since we stick to a typed
approach, the line numbers will be stored into the types. Furthermore, Property
1 bans critical sections which update the protected variables. This constraint
supports exception handlers that, due to an asynchronous exception (see [12],
section 2.16.1), are able to release the right lock at every point of the execution
of a critical section (Property 4).

Properties 1{3 are implemented by a type system, in the same style of [16]
and [6]. Since a thread may modify objects which are in common with other
threads, we must carefully check that thread updates of shared data (objects
and object locks) do not invalidate the correctness of threads in parallel. To this
aim, our model contains the heap, a runtime area shared among threads. And
typability of a con�guration also takes into account the type of objects stored
into the heap. The other addition to systems in [16, 6] regards critical sections.
To keep track of them, we supplement the type system with block informations,
namely a sequence of pairs (i; x) specifying the critical section starting points (i)
and the protected variable (x). The type system veri�es that every instruction
can be properly typed with the block information de�ning the static nesting of
critical sections.

In the �rst part of the paper, for simplicity, we don't consider exception
handlers. Therefore the type system in Section 5 does not assure Property 3. We
discuss in Section 6.2 the integration dealing with exception handlers.

3 The syntax of JVMLC

The language JVMLC is a restriction of JVML that includes basic constructs
and instructions for concurrency. In JVMLC , a program is a collection of class
declarations:

class C f
super: Thread

fields: F

method run ()

P

g

where each class is actually a subclass of Thread and only contains the method
run. Fields F are �nite sequences of pairs a � , where a 2 Fid is an identi�er,
and � is an integer int or an object type � 2 T . Bodies P are partial maps from
addresses Addr to instructions. JVMLC has the following instructions:

Instruction ::= inc j pop j push0 j load x

j store x j if L

j new � j putfield �:a � j getfield �:a �

j start � j monitorenter x j monitorexit x

j return

where x ranges over a �nite set of variables Var, and L ranges over Addr.
Variables will be represented by positive integers, but we keep separate the sets
Int and Var.

The informal meaning of these instructions is as follows:

{ inc increments the content of the stack; pop and push0 perform the standard
operations on the stack; if L pops the top value o� the stack and either goes
through when that value is the integer 0 or jumps to the address L otherwise;

{ new � allocates a new object of type � , initializes it and puts it on top of the
stack; putfield �:a � pops the value on the stack and the underlying object
value, and assigns the former to the �eld a of the latter; getfield �:a �

pops the object on the stack and pushes the value in the �eld a;

{ start �, monitorenter x, and monitorexit are the concurrent instruc-
tions. The �rst one creates and starts a new thread for the object on top of
the stack. This operation corresponds to

invokevirtual java/lang/Thread/start()

namely, the standard operation to trigger new threads in the Java bytecode. 2

The instructions monitorenter and monitorexit are the synchronization
primitives that lock and unlock the object on top of the stack. Their argu-
ments are the protected variables;

{ return terminates program execution.

2 Unlike the bytecode, our instruction start carries an argument, which is the type

(or the class name) of the object whose method must be triggered. This is an arti�ce

to de�ne the semantics of start : in the JVM the �rst address of the right method

run is found in the heap. Here, we prefer to keep the heap as simple as possible

and, therefore, we derive the address of run from the argument of start (see the

operational semantics in Figure 3).

The restriction to consider classes as extensions of Thread simpli�es our
analysis, since the method start may be safely invoked inside our programs.
For classes with constructors and initializers we refer to the analysis in [6] and
for classes with other methods see [7]. We assume that initialization is performed
at the same time of object creation by Java default initializers that put 0 in every
integer �eld and null in every object �eld.

The JVM instructions monitorenter and monitorexit take no argument.
Indeed, the declaration of the protected variable in these instructions is an ex-
pedient to de�ne its static semantics in JVMLC . (The protected variable does
not play any role in the operational semantics.) Later on, when exceptions will
come into the scene, the argument of monitorenter and monitorexit will be-
come super
uous and it will be dropped, thus recovering the standard syntax
(see Section 6.2). Declaring the protected variable in the monitorenter and in
the monitorexit seems annoying because it excludes multiple entry/exit points
of the critical section with di�erent objects on the stack (which are not aliases).
However, static checkers usually reject such codes because, in general, it is not
possible to establish the locked object when the analyzer �nds a monitorexit.

4 The operational semantics

The bytecode interpreter for JVMLC is de�ned using the same framework as
in [16, 6]. We brie
y review the framework before de�ning our concurrent model.

4.1 Notation, types and values

We start with addresses Addr. We assume that Addr and positive integers are
di�erent, even if we use the constant 1 and the operation + for the formers.
(Addresses will be considered integers in the type system of Section 5.) We
write dom[P] for the set of addresses of P , P [i] being the i-th instruction in P , if
i 2 dom[P]. If � is the type of the class of a program P , then we let 1� 2 dom[P],
for every P , be the �rst instruction of P . By extension, when Q is a set of class
bodies, we let 1� 2 dom[Q] be the the �rst instruction of the class body of the
class �.

Partial maps are used to represent most of our entities (heaps, memory func-
tions, etc.). If f is a partial map, we let f [x 7! v] be the updating operation, that
gives the function f where the value of x is v. The symbol " denotes the empty
map (the map unde�ned everywhere).

Types � are top, integers int, object types T and indexed object types bT .
Object types, ranged over by �, include all the class names of the program.
Indexed object types, ranged over by b�, are de�ned as follows:

bT = f�i j � 2 T and i 2 Addrg

The type �i is used for typing variables whose value of type � has been copied
at line i. Namely, all the variables that have the same type �i are aliases.

We de�ne an indexing operation over types � , in order to mark types when
variables are copied. Let �i, where i 2 Addr, be the following:

1. �i = � , when � = int or � = top (only copies of references are relevant);
2. �i = �i, if � = � (the �rst copy of the variable changes the type);
3. �i = b�, if � = b� (successive copies of a variable keep the type of the �rst

copy).

We also let Ind be a partial function from types to Addr de�ned as follows:
Ind [�i] = i; Ind is unde�ned otherwise.

For every �, we assume a countable set of object names, ranged over o; o0; � � �.
Let O be the set of all object names. Values v are integer constants or object
names. The type top includes all the values. The values of types � and �i, for
every i, are the same. As usual, we write v : � if v is a value of � .

Finally, for each type �, we de�ne � = [aj : �j
j2J], namely the record of

�elds that are speci�ed in the corresponding class de�nition. We address �elds
with the usual dot notation; therefore, [a : �; aj : �j

j2J]:a : � . Record values are
records [aj = vj

j2J], where vj are values.

4.2 The operational model

Each instruction performs a transformation of machine states, that are con�gu-
rations

`H hpc1; f1; s1; z1i; � � � ; hpcn; fn; sn; zni

with the following meaning:

{ H is the heap, namely a partial function whose domain is the setO and whose
range is the set of record values. The special �eld `, ` 62 Fid, represents the
lock associated with the object. (The instructions getfield and putfield

cannot read/write on the locks.) We assume that record values always have
a �eld `. We use the notation H(o:a) to retrieve the value of the �eld a in
H(o); and the notation H [o:a 7! v] to update the �eld a of o to the value v.

{ each tuple hpc
i
; fi; si; zii is a thread; pc

i
is the address of the instruction to

be executed; fi is a total map from the set Var of local variables to the set
of values; si is a stack of values; zi is a �nite subset of O and represents the
set of objects locked by the thread.

Let � be the type of the class whose run is invoked. The machine begins its
execution in the state `H0

h1� ; f0[0 7! o]; "; ;i, where

{ H0 = [o 7! ��], where �� is the record value of type � with �elds initialized
to 0 and null, according to they are integers or objects. The special �eld ` is
initialized to 0.

{ f0 maps the local variables to any values;
{ " is the empty stack.

The rules that de�ne the operational semantics of JVMLC are shown in Fig-
ure 2. In Figure 2 we letQ be a set of class bodies, each class body being identi�ed
by a di�erent set of addresses. We also leave the set Q implicit in the rewritings.
Every rule in Figure 2 actually mentions the components that participate to the

Q[pc] = inc

`H hpc; f; n � s; zi ! `H hpc+ 1; f; (n+ 1) � s; zi

Q[pc] = push0

`H hpc; f; s; zi ! `H hpc+ 1; f; 0 � s; zi

Q[pc] = pop

`H hpc; f; v � s; zi ! `H hpc+ 1; f; s; zi

Q[pc] = if L

`H hpc; f; 0 � s; zi ! `H hpc+ 1; f; s; zi

Q[pc] = if L

n 6= 0

`H hpc; f; n � s; zi ! `H hL; f; s; zi

Q[pc] = load x

`H hpc; f; s; zi ! `H hpc+ 1; f; f(x) � s; zi

Q[pc] = store x

`H hpc; f; v � s; zi ! `H hpc+ 1; f [x 7! v]; s; zi

Q[pc] = new �

o0 62 dom[H]

H 0 = H[o0 7! ��]

`H hpc; f; s; zi ! `H0 hpc+ 1; f; o0 � s; zi

Q[pc] = putfield �:a �

H 0 = H[o:a 7! v]

`H hpc; f; v � o � s; zi ! `H0 hpc+ 1; f; s; zi

Q[pc] = getfield �:a �

H(o:a) = v

`H hpc; f; o � s; zi ! `H hpc+ 1; f; v � s; zi

Q[pc] = start �

o 2 dom[H]

`H hpc; f; o � s; zi ! `H hpc+ 1; f; s; zi; h1�; f0[0 7! o]; "; ;i

Q[pc] = monitorenter x

H(o:`) = 0

H 0 = H[o:` 7! 1]

`H hpc; f; o � s; z n fogi ! `H0 hpc+ 1; f; s; z [fogi

Q[pc] = monitorenter x

H(o:`) = n (n > 0)

H 0 = H[o:` 7! n+ 1]

`H hpc; f; o � s; z [fogi ! `H0 hpc+ 1; f; s; z [fogi

Q[pc] = monitorexit x

H(o:`) = 1

H 0 = H[o:` 7! 0]

`H hpc; f; o � s; z] fogi ! `H0 hpc+ 1; f; s; zi

Q[pc] = monitorexit x

H(o:`) = n (n > 1)

H 0 = H[o:` 7! n� 1]

`H hpc; f; o � s; z [fogi ! `H0 hpc+ 1; f; s; z [fogi

Fig. 2. The operational semantics of JVMLC

rewriting. Of course the rewriting applies to every con�guration that contains
the components. More explicitly, let Lock [T] be the collection of objects locked
by threads in T , namely Lock [T] =

S
hpc;f;s;zi2T z. Then, for every rewriting

rule of Figure 2, we use the rule:

(Context)

`H T1 ! `H0 T2 (Lock [T1] [Lock [T2]) \ Lock [T] = ;

`H T1; T ! `H0 T2; T

where T , T1 and T2 are sets of threads. The side-condition (Lock [T1][Lock [T2])\
Lock [T] = ; bans moves of con�gurations where two threads locks the same
object.

We skip every discussion about the �rst ten rules of Figure 2, because they
are essentially the same as in previous works (see [16, 6]). On the contrary, the
last �ve rules are new and peculiar of our contribution.

The rule modelling the instruction start � creates a new thread of control.
The new thread begins into a state where the �rst instruction of the class � must
be executed, and with the variable 0 containing the object on top of the stack.
In particular, none of the locks held by the caller thread is retained by the new
thread.

The other rules de�ne the semantics of monitorenter and monitorexit. The
two rules for monitorenter state that a thread can acquire a lock of an object if
(1) the object is unlocked; or (2) it already owns the lock of that object. Observe
that we have suÆcient information to establish whether a thread can acquire the
lock or wait for it. In particular, the special �eld ` stores the number of times
the object has been locked (by the same thread); whilst the �eld z in the thread
collects the set of locks it owns. When the object o is unlocked, monitorenter
sets the lock �eld to 1 and stores o in the component z of the thread. In this
case, the rule is de�ned for con�gurations with z such that o 62 z. Alternatively,
when the thread holds the object lock, monitorenter only increases the lock
value. In the two rewriting rules, the argument of monitorenter is never used.

The rules for monitorexit performs the reverse operations with respect to
those of monitorenter.

5 The static semantics

In this section we develop the static semantics of JVMLC , according to the
proposals in [16, 6].

Let � be the set of classes of our program Q in JVMLC and let fP� j � 2 �g
be the collection of bodies therein. We conclude that the programQ is well-typed,
in notation F; S;B ` Q, if, for every � 2 �, there exist F � , S� and B� such
that:

F �; S� ; B� ` P� :

The partial maps F � and S� give the types of local variables, of the stack and
of the set of locks when the program points at a given address. The partial map

B� de�nes critical sections, that enclose all the instructions between the one
following a monitorenter and the matching monitorexit.

Precisely, these maps have domain Addr and codomain de�ned as follows
(i 2 Addr):

1. F � [i] is a map from local variables to types at location i;

2. S� [i] is a sequence of types of the operand stack at location i;

3. B� [i] is a sequence (i1; x1) � � � (ik; xk), where ij 2 Addr and xj 2 Var.
These sequences are well-formed, namely addresses and variables are pairwise
di�erent. We refer to addresses and variables in B� [i] with Addr [B� [i]] and
Var [B� [i]], respectively.

We let F �

top be the function that maps 0 to � and all the other variables to
top. The application of a partial map G to address i is often abbreviated into
Gi.

The rule that proves F � ; S�; B� ` P� is:

F �[1�] = F �

top

S�[1�] = "

B� [1�] = "

8i 2 dom[P�]: F
� ; S�; B� ; i ` P�

F �; S� ; B� ` P�

The top three premises regard the �rst instruction of the body P� . They just set
that a new thread starts with a value in the local variable 0 of type � (see the
semantics of start �; whilst the stack and the set of acquired locks are empty.
The lowest premise checks that every instruction is well-typed. Figure 3 de�nes
the rules for the judgment F � ; S�; B� ; i ` P� (in the �gure we have always drop
the index �).

To be as much as possible conservative with respect to previous proposals,
we have arranged premises of rules in such a way that those in the top conform
with the premises of the corresponding rules in [16] and in [6]. The new premises
mostly concern the function B. Among these rules, we discuss If, Load and
Store.

To type if L at i, one must verify that both the instruction at i+1 and that
at L can be typed with the same values of F , S and B. This allows to abstract

out of the branch that will be taken at run-time. Remark that Bi = Bi+1 = BL

means that the instructions at i, i+1 and L belong to the same critical section.
Said otherwise, it is not possible to jump outside a critical section (because the
top pair of BL should have a di�erent address) or inside inner critical sections
(because the lengths of Bi+1 and BL should be di�erent).

According to Load, to verify load x at i, the top element of the type stack
Si+1 must be the type of the variable x. Actually, since load x performs a copy of
a variable, the type left on the stack is an i-indexed object type. Correspondingly,
the type of Fi+1[x] is changed, too. Observe that this rule may be applied only

(Inc)

P [i] = inc

Fi = Fi+1
Si = int � � = Si+1
i+ 1 2 dom[P]

Bi = Bi+1

F; S;B; i ` P

(Push)

P [i] = push0

Fi = Fi+1
int � Si = Si+1
i+ 1 2 dom[P]

Bi = Bi+1

F; S;B; i ` P

(Pop)

P [i] = pop

Fi = Fi+1
Si = � � Si+1
i+ 1 2 dom[P]

Bi = Bi+1

F; S;B; i ` P

(If)

P [i] = if L

Fi = Fi+1
FL = Fi+1

Si = int � Si+1 = int � SL
i+ 1; L 2 dom[P]

Bi = Bi+1 = BL

F; S;B; i ` P

(Load)

P [i] = load x

x 2 dom[Fi]

Fi[x] = �

Fi[x 7! �i] = Fi+1
�i � Si = Si+1

8� 2 Si: i 6= Ind [�]

8y 2 dom[Fi]: i 6= Ind [Fi[y]]

i+ 1 2 dom[P]

Bi = Bi+1

F; S;B; i ` P

(Store)

P [i] = store x

x 2 dom[Fi]

Fi[x 7! �] = Fi+1
Si = � � Si+1
i+ 1 2 dom[P]

Bi = Bi+1

x 62 Var [Bi]

F; S;B; i ` P

(New)

P [i] = new �

Fi = Fi+1
� � Si = Si+1
i+ 1 2 dom[P]

Bi = Bi+1

F; S;B; i ` P

(Putfield)

P [i] = putfield �:a �

�:a : �

Fi = Fi+1
Si = � � � � Si+1
i+ 1 2 dom[P]

Bi = Bi+1

F; S;B; i ` P

(Getfield)

P [i] = getfield �:a �

�:a : �

Fi = Fi+1
Si = � � S0i
� � S0i = Si+1
i+ 1 2 dom[P]

Bi = Bi+1

F; S;B; i ` P

(Return)

P [i] = return

Bi = "

F; S;B; i ` P

(Start)

P [i] = start �

Fi = Fi+1
Si = � � Si+1
i+ 1 2 dom[P]

Bi = Bi+1

F; S;B; i ` P

(Monitorenter)

P [i] = monitorenter x

Fi = Fi+1
Fi[x] = b�

Si = b� � Si+1
i+ 1 2 dom[P]

i 62 Addr [Bi]

x 62 Var [Bi]

Bi+1 = (i; x) � Bi

F; S;B; i ` P

(Monitorexit)

P [i] = monitorexit x

Fi = Fi+1
Fi[x] = b�

Si = b� � Si+1
i+ 1 2 dom[P]

Bi = B0

� (i0; x) � B00

Bi+1 = B0

� B00

F; S;B; i ` P

Fig. 3. The static semantics of JVMLC

if no i-indexed object type already occurs in Si or Fi. This prevents those run-
time situations where two di�erent object values may have the same statically
computed indexed type.

The rule Store veri�es that the type stack at i+ 1 is the one at i without
the topmost type. This type is recorded into Fi+1[x]. Store also veri�es that
the updated variable is not protected (premise x 62 Var [Bi]), namely it has not
been used to record a locked object. This is crucial to keep consistent B and for
the correctness of our analysis.

The rules Start, Monitorenter and Monitorexit are new, and we ex-
amine them one by one. Rule Start is straightforward because no static check
is undertaken for the new thread, that is a run-time entity.

Rules Monitorenter as well as Monitorexit require that the type stack
have an indexed object type b� at the top. According toMonitorenter, b� must
be equal to the type of the protected variable|the argument of monitorenter.
Missing such argument, it should not be possible to establish this equality. More-
over,Monitorenter also checks that the variable x has not been used to record
the object locked in an outer control section (premise x 62 Var [Bi]) and sets the
critical section for the next instruction (premise Bi+1 = (i; x) � Bi).

Rule Monitorexit requires that the type on top of Si must coincide with
that of the argument (the protected variable). Furthermore, since the next in-
struction is outside the critical section, Monitorexit constraints Bi+1 to be
Bi without the pair (i0; x). Note that, by the well-formedness of Bi, there is
exactly one pair with the variable x. Again, the argument of the monitorexit

is essential.

5.1 A program and its typing

To illustrate our type system we compute the type informations for a sample
bytecode in Figure 4. This bytecode di�ers from the body of the method onlyMe

in Figure 1 in two ways: (1) there is no reference stored in the variable 1; (2) the
invocation to doSomething has been replaced by an updating of the �eld val of
the object stored in the variable 0.

In Figure 4, we have speci�ed the value of F for the variables 0 and 1, since
the other variables are always mapped to top. The rightmost column de�nes
the value of the function B. Observe that B is not empty in the critical section
only (instructions from 5 to 9) and, therein, B keeps the name of variable 1, to

forbid possible updates. Remark that B10 = ", this enforces the property that
objects locked by the method have been properly unlocked on exiting.

5.2 Main properties

Our main result is the following:

Theorem 1. Let Q be a well-typed JVMLC program and let T be a con�guration

reached during an execution of Q. Then

i P [i] Fi[0] Fi[1] Si Bi

1 load 0 Sample top � �

2 store 1 Sample
1

top Sample
1
�� �

3 load 1 Sample
1

Sample
1

� �

4 monitorenter 1 Sample
1

Sample
1

Sample
1
�� �

5 load 0 Sample
1

Sample
1

� (4; 1) � �

6 push0 0 Sample
1

Sample
1

Sample
1
�� (4; 1) � �

7 putfield Agent:ref int Sample
1

Sample
1

int � Sample
1
�� (4; 1) � �

8 load 0 Sample
1

Sample
1

� (4; 1) � �

9 monitorexit 1 Sample
1

Sample
1

Sample
1
�� (4; 1) � �

10 return Sample
1

Sample
1

� �

Fig. 4. A program and its static type informations

1. (Threads are owner of locks they release) Every thread in T always releases

locks that have been previously acquired.

2. (Objects are locked by active threads) Every thread in T , upon termination,

releases all the locks it acquires.

The operational semantics in Figure 2 is too rough to directly support the
properties of Theorem 1 because of the component z of con�gurations. Indeed,
to verify properties on the ordering of lock releases, we require that z is a stack,
rather than a set. The reader can �nd the proof of Theorem 1 in the full paper [3].

Another important property of the type system in Figure 3 makes possible to
recover the structure of the synchronized-statement out of well-typed bytecodes
with nested critical sections.

Theorem 2. Let Q be a well-typed JVMLC program where every monitorexit

releases the variable on top of B. It is possible to reorder the instructions of

every method in Q in such a way that critical sections are contiguous blocks of

instructions starting with a monitorenter and ending with a monitorexit, and

possibly containing nested critical sections. Jumps are always inside their own

critical section and outside inner critical sections.

The technique works by collecting the fragments of the code which have the
same stack in B. Each step may require adjustments of addresses and the inser-
tion of jumps. According to the type system, every block created has exactly one
monitorenter instruction and may have several corresponding monitorexit.
Replace all monitorexit except the one in the bottom with goto-instructions
to the remaining monitorexit. Finally, blocks are nested one inside the other,
according to the structure of B. The well-typing guarantees that jumps are cor-
rectly performed.

6 Extensions

In this section we discuss the extensions of JVMLC and its type system we have
studied. Section 6.1 deals with method invocations; whilst Section 6.2 is devoted
to exception handlers. The reader is referred to the full paper [3] for the analysis
of the extension of JVMLC with the three Java primitives to control thread
execution: wait, notify and notifyAll.

6.1 Method invocation

The JVM provides four instructions to model method invocation, according to
the called method is public (instruction invokevirtual) or is implemented by an
interface (instruction invokeinterface) or is private (instruction invokespecial)
or is static (instruction invokestatic).We discuss the instruction invokevirtual
(the other ones may be dealt with in similar ways) and, for simplicity, but with-
out loss of generality, we consider void methods with no argument.

Consider the language JVMLm
C
, that extends JVMLC with the instruction

Instruction ::= � � � (as in section 3)
j invokevirtual �:m

where �:m is a method descriptor, namely a pair (class-name, method-name) that
uniquely identi�es a method body. (In general, descriptors also contain method
types.) We assume that the initial address of a method �:m is 1�:m.

The formal de�nition of invokevirtual amounts to introduce the concept
of frame, a memory area that stores data and partial results. More precisely,
a frame is a tuple (pc; f; s), where pc is the address of the instruction to be
executed, f is the map of local variables and s is the stack. A thread is now a
pair h�; zi, where � is a nonempty sequence of frames and z is the set of locked
objects. The intended meaning is that the control is owned by the initial frame
of �. It ceases to own the control either when it invokes another method or when
it returns. In the former case, a new tuple is added at the beginning of �; in the
latter case the �rst frame is removed and the control is given back to the second
frame. Notice that all the frames share the same set of locks. (In the JVM, locks
are per-thread.)

The rules de�ning the operational semantics of JVMLm
C

are those of Fig-
ure 2 patched with frames, plus those in Figure 5. Observe that the instruction
invokevirtual uses the object on top of the stack of the caller to initialize the
variable 0 of the new frame. This is the self-object of the invoked method. Ob-
serve also that return is unspeci�ed when the length of the sequence of frames
is 1.

The static semantics. Since the bytecode veri�er checks a program method by
method, the analysis of invokevirtual does not require any involved test. The
inference rule in Figure 6 only veri�es that the type of the object on top of the
stack matches with the class of the invoked method. (We let Q be the whole
program.)

P [pc] = invokevirtual �:m

`H h(pc; f; o � s) � �; zi ! `H h(1�:m; f0[0 7! o]; ") � (pc; f; o � s) � �; zi

P [pc] = return

`H h(pc; f; s) � (pc0; f 0; o � s0) � �; zi ! `H h(pc0 + 1; f 0; s0) � �; zi

Fig. 5. The operational semantics of JVMLmC

(Invokevirtual)

P [i] = invokevirtual �:m

Fi = Fi+1
Si = � � Si+1

i+ 1 2 dom[P]; 1�:m 2 dom[Q]

Bi = Bi+1

F; S;B; i ` P

Fig. 6. The static semantics of invokevirtual.

The properties of Theorem 1 are still valid for the language JVMLm
C
; the

details are in [3].

6.2 Exception handlers

When an exception occurs during the execution of a program, the JVM looks
for an handler in the corresponding exception table. The exception table is a
sequence of tuples (from; to; target; type), where the �rst three components
are addresses and the last one is the type of the exception. So, if the exception
occurred at j, the JVM looks for the �rst tuple (i; i0; i00; type) in the exception
table such that i � j � i0 and the type of the exception �ts with type. In
this case the control is given to the instruction at i00, otherwise the exception is
rethrown to the caller. If no handler is found for that exception, the program
terminates (in an abrupt way).

Actually, the tuple (i; i0; i00; type) is inadequate with respect to the structured
locking in Section 2. In particular, to implement structured locking, entries of the
exception table that concern critical sections should also specify the protected
variable that have to be released. Therefore, in the following, we will assume that
entries of the exception table may also have the shape (i; i0; i00; type; x), where
x is the protected variable.

We remark that the protected variable in (i; i0; i00; type; x) is super
uous in
the outputs of current compilers. In such bytecodes, it is possible to deduce
this variable from the structure of exception handlers of critical sections. For
instance, in the Sun's JDK 1.3, the protected variable is always the argument

Q[pc1] = athrow

(pci 62 dom[E])i21::n�1

E[pcn] = (j; j0; k)

`H h(pc1; f1; o1 � s1) � � � (pcn; fn; on � sn) � �; zi ! `H h(k; fn; o1) � �; zi

Fig. 7. The operational semantics of athrow

of the second instruction of the exception handler (a load instruction|see
Section 7).

To model the type of exceptions, we augment the set of object types T with
the type throwable. For simplicity, we drop the last component of entries
of exception tables (the type component), assuming that the type is always
throwable.

We also assume that a method body is now a pair (P ; E), where E is the
exception table, namely a partial map from dom[P] to dom[P]�dom[P]�dom[P]
or to dom[P] � dom[P] � dom[P] � Var. E[pc] gives the �rst tuple (i; i0; k; x)
or (i; i0; k) in the exception table E such that i � pc � i0. By extension, E
will also denote the function that is the union of the exception tables in every
method of the program Q. Finally, exceptions are supposed to be thrown only
by instructions athrow.

Let JVMLe
C
be the following extension of JVMLm

C
:

Instruction ::= � � � (as in section 6.1 without monitorenter x and monitorexit x)
j monitorenter j monitorexit

j athrow

Remarkablely, the argument of monitorenter and monitorexit|the protected
variable|has been dropped, thus retrieving the standard syntax of the JVM.
As we will see, the type system will retrieve the protected variable from the
exception table entry. The operational semantics of athrow is de�ned in Figure 7.
Observe that, when an exception is thrown, the JVM looks for the �rst frame
which has an entry in the exception table. If such a frame is found, the control
is given to the corresponding handler that begins with a stack containing the
exception. All the previous frames are deleted.

Static semantics. To type exception tables, we begin by re�ning the notion of
well-typed program (see also [7] for a similar development). Let � be the set
of classes of the program Q and let f(P�;E�) j � 2 �g be the collection of
bodies therein. The program Q is well-typed, in notation F; S;B ` Q, if, for
every � 2 �, there exist F � , S� and B� such that:

F � ; S�; B� ` (P� ;E�) :

(Athrow)

P [i] = athrow

Si = throwable � S0

Bi 6= ")

�
E[i] = (j; j0; k; x)

Bi = Bk

F; S;B; i ` (P ;E)

(Monitorenter-exc)

P [i] = monitorenter

Fi = Fi+1
Fi[x] = b�

Si = b� � Si+1
i+ 1 2 dom[P]

i 62 Addr [Bi]

x 62 Var [Bi]

Bi+1 = (i; x) �Bi

E[i+ 1] = (i+ 1; i0; k; x)

F; S;B; i ` (P ;E)

(Monitorexit-exc)

P [i] = monitorexit

Fi = Fi+1
Fi[x] = b�

Si = b� � Si+1
i+ 1 2 dom[P]

Bi = B0

� (i0; x) � B00

Bi+1 = B0

�B00

E[i] = (i0; i; k; x)

F; S;B; i ` P

Fig. 8. The static semantics of athrow and (the re�nement of) monitorenter.

and for every tuple � 2 E[dom[P]], F �; S� ; B� ` � handles P� . This last judg-
ment is de�ned by the rule:

i; i0; k 2 dom[P�]
Sk = throwable

Bi = Bk

8y 2 Var [Bi]: Fi[y] = Fk[y]
8y 62 Var [Bi]: Fi[y] = top

Bi = (i00; x) �B0

F �; S� ; B� ` (i; i0; k; x) handles P�

(the rule for tuples (i; i0; k) misses the premise in the bottom). The above rule is
more restrictive with respect to rule (wt handler) in [7]. The reason is twofold.
Firstly, we have a rudimentary form of subtyping polymorphism, namely top

is the type of every value. Variables that are not used by the handler are given
type top, rather than a suitable super-type. Secondly, it is not possible to clean
variables that are protected when the exception is thrown because they will be
used by the handler to unlock the right objects. For this reason we also impose
the constraint Bi = Bk.

Figure 8 de�nes the rule for the static correctness of athrow and a re�nement
of Monitorenter and Monitorexit. Rule Athrow checks that the object
on top of the stack is of type throwable and the existence of an handler if the
instruction athrow occurs inside a critical section. In this case, both the handler
and the address of athrow must have the same value of B. Indeed, operationally,
athrow is a jump and this constraint is similar to one found in the rule If.

RuleMonitorenter-exc adds one constraint toMonitorenter requiring
a suitable entry of the exception table to handle exceptions occurring in the criti-
cal section. This premise is crucial in our veri�er. Indeed, E[i+1] = (i+1; i0; k; x),
in combination with the rule for typing entries of the exception table, guarantee
that the initial instruction of the handler is typed with the same value of B of

the critical section. Consequently, by rule Return, a well-typed handler may
return provided its code releases every lock in the block information. Similarly,
Monitorexit-exc adds the constraintE[i] = (i0; i; k; x) toMonitorexit. This
constraint allows to retrieve the protected variable of the critical section.

Therefore, we may conclude with the following property (that yields a weak
form of Property 3 in Section 2).

Theorem 3. Let Q be a well-typed JVMLe
C
program and let T be a con�guration

reached during an execution of Q. If exceptions are due to athrow instructions

then T , upon termination, always releases every lock that has acquired.

This theorem gives no guarantee against exceptions that are not raised by
athrow instructions. To extend this result, the veri�er should check that every
line i, which is typed with a not empty Bi, is protected by an exception handler
whose initial instruction has the same Bi. We detail this question in [3]; Section 7
contains a bytecode that �ts with the above extension.

7 Compilation of synchronized in current Java compilers

In this section we analyze the outputs of three Java compilers: the Sun's JDK 1.2
and 1.3 and the IBM's Jikes. As speci�ed in [12] these compilers should conform
to the commitment in Section 2. As we will see, all of them de�nitely fail this
goal.

Consider the method onlyMe in Figure 1. Figure 9 illustrates the outputs
of JDK 1.2 and 1.3. Note that the output of JDK 1.2 is almost the same as
the bytecode compiling the onlyMe method in Figure 1 (that is taken from [12],
section 7.14): the di�erence is not meaningful for the following discussion.

While the JDK 1.2 output is correct if exceptions are only raised by athrow

statements, it is faulty if asynchronous exceptions may occur (see [12], sec-
tion 2.16.1). In particular, it is possible for an asynchronous exception to oc-
cur between the aload 2 instruction at location 8 (or at 13) and the following
monitorexit. In this case the monitor may be left in a locked state because the
exception table does not protect instructions at 9, 13 and 14.

To remedy to this problem, the designers have chenged the compiler in the
JDK 1.3 version, as illustrated by the output in Figure 9. However, the solution
proposed by this bytecode is still bugged. Very strangely, the block protected
by the exception handler is widened from 4 to 13 (and the exception handler
begins at 13 itself). Therefore, if an exception is raised at line 10, the lock of
the object released at line 9 will be released a second time at line 14, thus caus-
ing an exception IllegalMonitorStateException. Furthermore, the exception
handler itself is compiled in a di�erent way. In JDK 1.2, the lock is immedi-
ately released by the exception handler and the exception is thrown again. In
JDK 1.3, the �rst instruction of the exception handler stores the exception in a
variable. Afterwards, this variable is reloaded and the exception thrown again.
This di�erent scheme is not clear: it seems as the same work is done using 5
instructions rather than 3.

Method void onlyMe(Foo)

0 aload 1

1 astore 2

2 aload 2

3 monitorenter

4 aload 0

5 invokevirtual doSomething()

8 aload 2

9 monitorexit

10 goto 16

13 aload 2

14 monitorexit

15 athrow

16 return

Exception table:

from to target type

4 8 13 any

Method void onlyMe(Foo)

0 aload 1

1 astore 2

2 aload 2

3 monitorenter

4 aload 0

5 invokevirtual doSomething()

8 aload 2

9 monitorexit

10 goto 18

13 astore 3

14 aload 2

15 monitorexit

16 aload 3

17 athrow

18 return

Exception table:

from to target type

4 13 13 any

JDK 1.2 JDK 1.3

Fig. 9. Compilations of the synchronized statement by Sun's JDK 1.2 and JDK 1.3

The IBM Jikes 1.11 compiler follows the same pattern of JDK 1.3, with a
fragment of code at the end which seems unreachable. Therefore Jikes 1.11 shares
the same criticisms with JDK 1.3.

7.1 Self-protecting exception handlers

We have reported our analysis to Sun and IBM developers. Sun developers will
repair JDK 1.3 in the next version 1.4 in order to solve the above problems. At
the present, we are not aware of their solution. Here we illustrate a correct (with
respect to our type system) solution.

The common problem in the bytecodes of Figure 9 is the menagement of
asynchronous exceptions raised when the interpreter is running the code of the
exception handler. For example, if the exception occurs at line 14 of the two
bytecodes, the
ow of the computation is deviated to the caller, thus preventing
any release of the lock. Therefore a correct exception table for the JDK 1.3
output should be:

Exception table:

from to target type

4 9 13 any

13 15 13 any

The reader may observe that the protected block of the critical section goes,
correctly, from 4 to 9. In fact, these are the instructions where the lock ac-
quired at line 3 is helded. However, the main di�erence from other bytecodes

is the presence of a further entry in the exception table. This entry guarantees
a \self-protection" to the exception handler: if an exception is raised while the
exception handler is running and the handler has still not released the lock then
the exception must be managed by the handler itself. In our case, if an exception
is raised from 13 to 15, the old exception is discarded and the new exception is
handled in the usual way at line 13.

The above solution seems at odd with Sun's compilers, which generate code
without \self-protecting" exception handlers (see [12], section 4.9.5).

8 Related works and concluding remarks

As already remarked, our work is strongly based on the framework developed
in a series of papers by Stata-Abadi [16] and Freund-Mitchell [6, 7, 8], with the
admitted aim of covering most of the static analysis problems of JVML. Other
approaches to bytecode veri�cation, that don't cover concurrency issues, are
based on data
ow analysis [9], typed assembly languages [13] and the Haskell
type checker [17].

As regards the bytecode, a very detailed semantics can be found in Bertelsen's
works [2]. However Bertelsen does not address the semantics of multi-threading,
as well as that of monitorenter and monitorexit (in his work these instructions
have been regarded with the same semantics of pop). Another formal semantics
of a sublanguage of JVML has been independently de�ned by Qian [14]. Also
Qian misses the concurrent fragment.

Moving away from the bytecode, other works that share the same approach
about static analysis concern the Java language (see [4] and the references
therein). To be fair, we admit that most of the problems addressed in this paper
disappear in the high-level language. Because the synchronization statement
explicitly de�nes the critical section and the locked object. Therefore, the inte-
gration of the previous works with the concurrent primitives should not be diÆ-
cult. Nevertheless, this comment does not weaken at all the results of the present
paper. What makes the Java language a distinguished programming language
is that its bytecode may be transmitted across di�erent machines. A security
layer|the bytecode veri�er|is needed to safeguard machines from executing
hostile bytecodes.

There are two kinds of extensions that have not been considered yet.

The �rst one concerns the integration of our veri�er with other features of
the JVM, in the same style of Section 6. Among the others, subroutines seem
problematic because they require a form of polymorphism on local variables that
are not used therein. We are con�dent that methods already developed in [16, 8]
should be easily integrated inside our veri�er.

The second kind of extensions concerns behavioural properties (i.e. safety and
liveness properties, see Chapters 2 and 3 of [11]). To this respect, the studies
for detecting race conditions among threads in [5] and those about deadlock
freeness [10] provide a source of inspiration because they strongly rely on type

systems. In any case, the formal model de�ned here should be a ground basis
for every veri�er aiming at checking concurrent properties.

References

[1] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,

1996.

[2] P. Bertelsen. Semantics of Java byte code. Technical report, Department of

Information Technology, Technical University of Denmark, March 1997.
[3] G. Bigliardi and C. Laneve. A type system for jvm threads. Technical Report

UBCLS 2000-06, Dept. of Computer Science, University of Bologna, July 2000.

[4] S. Drossopoulou and S. Eisenbach. Java is type safe | probably. In ECOOP '97 |

Object-Oriented Programming 11th European Conference, Jyv�askyl�a, Finland, vol-

ume 1241 of Lecture Notes in Computer Science, pages 389{418. Springer-Verlag,

1997.
[5] C. Flanagan and M. Abadi. Types for safe locking. Lecture Notes in Computer

Science, 1576:91{108, 1999.

[6] S. N. Freund and J. C. Mitchell. A type system for object initialization in the

Java bytecode language. In OOPSLA '98 Conference Proceedings, volume 33(10)

of ACM SIGPLAN Notices, pages 310{328, 1998.

[7] S. N. Freund and J. C. Mitchell. A formal framework for the Java bytecode

language and veri�er. In Proceedings of the Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, pages 147{166, 1999.

[8] S. N. Freund and J. C. Mitchell. A type system for java bytecode subroutines and

exceptions. Technical Report STAN-CS-TN-99-91, Stanford Computer Science

Technical Note, August 1999.

[9] M. Hagiya and A. Tozawa. On a new method for data
ow analysis of Java Virtual

Machine subroutines. Lecture Notes in Computer Science, 1503:17{32, 1998.

[10] N. Kobayashi. A partially deadlock-free typed process calculus. In Proceedings,

Twelth Annual IEEE Symposium on Logic in Computer Science, pages 128{139.

IEEE Computer Society Press, 1997.

[11] D. Lea. Concurrent programming in Java: design principles and patterns. The

Java series. Addison-Wesley, 1996.

[12] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation. The Java

Series. Addison Wesley Longman, Inc., second edition, 1999.

[13] R. O'Callahan. A simple, comprehensive type system for Java bytecode subrou-

tines. In Conference Record of POPL'99: The 26th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 70{78. ACM Press,

1999.

[14] Z. Qian. Formal speci�cation of a large subset of Java virtual machine instructions

for objects, methods and subroutines. In Formal Syntax and Semantics of Java,

Lecture Notes in Computer Science. Springer-Verlag, Berlin Germany, 1998.

[15] Z. Qian, A. Goldberg, and A. Goglio. A Formal Speci�cation of Java Class Load-

ing. Technical report, Kestrel Institute, Palo Alto, March 2000.
[16] R. Stata and M. Abadi. A type system for Java bytecode subroutines. ACM

Transactions on Programming Languages and Systems, 21(1):90{137, 1999.

[17] P. M. Yelland. A compositional account of the Java virtual machine. In Conference

Record of POPL 99: The 26th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, San Antonio, Texas, pages 57{69, 1999.

