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Abstract

In this paper, we study the application of propositional decision procedures in hardware veri-
fication. We introduce the concept of bounded model checking. We show that bounded model
checking for linear temporal logic formulas can be reduced to propositional satisfiability. We also
present several optimizations that reduce the size of generated propositional formulas. To demon-
strate our approach, we have implemented a toolBMC . BMC accepts a subset of the SMV lan-
guage and uses state of the art SAT procedures to decide propositional satisfiability. As special
cases, equivalence checking and invariant checking can also be handled. In many instances, our
SAT-based approach can significantly outperform BDD-based approaches. We observe that SAT-
based techniques are particularly efficient in detecting errors in both combinational and sequential
designs.





1 Introduction

A complex hardware design can be error-prone and mistakes are costly. Formal verifi-
cation techniques such as symbolic model checking are gaining wide industrial accep-
tance. Compared to traditional validation techniques based on simulation, they provide
more extensive coverage and can detect subtle errors. Representing and manipulating
boolean expressions is critical to many formal verification techniques. BDDs [2] have
traditionally been used for this purpose. In this paper, we investigate an alternative ap-
proach based on propositional decision procedures.

Model checking [4] is an important technique for verifying sequential designs. In
model checking, the specification of a design is expressed in temporal logic and the
implementation is described as a finite state machine. Symbolic model checking uses
boolean encoding to represent the finite state machine. By replacing explicit state rep-
resentation with boolean encoding, symbolic model checking [3, 11] can handle much
larger designs than explicit state model checking.

By introducing the concept of bounded model checking, we are able to use efficient
propositional decision procedures for symbolic model checking. In bounded model
checking, only paths of bounded lengthk are considered. Bounded model checking
is thus concerned with finding bugs (or counterexamples) of limited lengthk. Given a
specification in temporal logic and a finite state machine, we construct a propositional
formula which is satisfiable iff there is a counterexample of lengthk. In practice, we
look for longer and longer counterexamples by incrementing the boundk, and after a
certain number of iterations, we may conclude that no counterexample exists and the
specification holds. For example, to verify safety properties, the number of iterations is
bounded by the diameter of the finite state machine.

There are known tradeoffs between SAT procedures and BDDs. These tradeoffs
are also reflected in SAT-based model checkers and BDD-based model checkers. In
particular, BDDs are canonical representations. Once the BDDs are constructed, oper-
ations on two boolean expressions can be done very efficiently. On the other hand, by
not using a canonical representation, SAT-based model checkers avoid the exponential
space blowup of BDDs. They can detect a counterexample without searching through
the entire state space. BDD-based approaches often require a good variable ordering.
The ordering is either manually generated or by dynamic variable reordering which
can be time consuming. In SAT-based model checkers, automatic splitting heuristics
are often sufficient. BDDs require a uniform variable ordering. SAT procedures allow
different splitting orderings on different branches. This often leads to more efficient
search. In bounded model checking, the propositional formula encodes the constraints
from the initial state and the specification. Both these constraints can be used to prune
the search.

Invariant checking and equivalence checking can both be treated as special cases of
bounded model checking. It can be easily shown that invariant checking corresponds
to bounded model checking where the boundk equals 1. Equivalence checking is a
special case of bounded model checking where the boundk equals 0. The tradeoffs
mentioned earlier are also reflected in SAT-based invariant checking and equivalence
checking techniques.
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We have implemented a toolBMC to demonstate our approach. It accepts a subset
of the SMV language in which the user can specify a finite state machine and a tem-
poral specification. Given a boundk, BMC outputs a propositional formula which is
satisfiable iff there is a counterexample of lengthk. Currently, we use SATO [17], an
efficient implementation of the Davis-Putnum technique, and PROVER [1] based on
Stålmarck’s Method [16] to decide propositional satisfiability.BMC can output propo-
sitional formulas in either DIMACS format [8] or PROVER format. If a counterexample
exists, SATO or PROVER generates a model of the propositional formula produced by
BMC . We also have developed a script that translates the model back to a sequence of
state transitions. We have run a number of examples usingBMC . We show cases where
BMC detected a counterexample in seconds where BDD-based approaches failed due
to memory limits.

The paper is organized as follows. In the following section, we present the con-
cept of bounded model checking and show the reduction of bounded model checking
to propositional satisfiability. In section 3, we present a number of optimization tech-
niques in generating propositional formulas. They help to reduce the complexity of the
propositional formula generated byBMC . In section 4, we show some experimental
results. We have testedBMC on a number of examples from symbolic model checking,
invariant checking and equivalence checking. Finally, we conclude the paper with some
directions for future work.

2 Bounded model checking

We now present our techniques for bounded model checking. First, we give some back-
ground and notational conventions that will be used in the rest of the paper. Then we il-
lustrate our approach with a simple example. Finally, we show the reduction of bounded
model checking to propositional satisfiability for LTL formulas in general.

2.1 Background

The specification of a system is expressed in linear temporal logic (LTL). We consider
thenext timeoperator ‘X’, the eventualityoperator ‘F’, the globally operator ‘G’, the
until operator ‘U’, and thereleaseoperator ‘R’. To simplify our discussion, we consider
only existential LTL formulas, i.e. formulas of typeE f whereE is the existential path
quantifier andf is a temporal formula that contains no path quantifiers. Note thatE is
the dual of the universal path quantifierA. Finding a witness forE f is equivalent to
finding a counterexample forA: f .

The implementation of a system is described as a Kripke structure. AKripke struc-
ture is a tupleM = (S; I ;T; `) with a finite set of statesS, the set of initial statesI � S, a
transition relation between statesT � S�S, and the labeling of the states`:S! P (A)

with atomic propositionsA . In symbolic model checking, we assume thatS= f0;1gn

and each state can be represented by a vector of state variabless = (s(1); : : : ;s(n))
wheres(i) for i = 1; : : : ;n are propositional variables. We define propositional formu-
las fI (s), fT(s; t) and fp(s) as follows: fI (s) iff s2 I , fT(s; t) iff (s; t) 2 T, and fp(s)
iff p 2 `(s). For the rest of the paper we simply useT(s; t) instead offT(s; t) etc. In

2



addition, we require that every state has a successor state. That is, for alls2 S there is
a t 2 S with (s; t) 2 T. For (s; t) 2 T we also writes! t. For an infinite sequence of
statesπ = (s0;s1; : : :) we defineπ(i) = si andπi = (si ;si+1; : : :) for i 2 IN. An infinite
sequence of statesπ is apath if π(i)! π(i +1) for all i 2 IN.

An LTL formula E f is true in a Kripke structureM (M j= E f ) iff there exists a path
π in M with π j= f andπ(0) 2 I . Model checking is concerned with the problem of
determining the truth value of an LTL formula in a given Kripke structure, or equiva-
lently, the problem of determining the existence of a witness for the LTL formula. We
now illustrate bounded model checking with a simple example.

2.2 Example

00

01 10

11

Fig. 1.A two-bit counter with an erroneous transition

Let’s consider a two-bit counter. The implementation of the counter is shown as a
Kripke structure in Figure 1. There are four states in the Kripke structure. Each states is
represented by two state variabless[1] ands[0], denoting the value of the high bit and the
low bit respectively. In the initial state, the value of the counter is 0. Thus the initial state
predicateI(s) is defined as:s[1]^:s[0]. The transition relationT(s;s0) describes the
increment of the counter at each step. We defineinc(s;s0) as(s0[0]$:s[0])^ (s0[1]$
(s[0]^s[1])), and we defineT(s;s0) asinc(s;s0)_(s[1]^:s[0]^s0[1]^:s0[0]). Note that
we deliberately add an erroneous transition from state(10) to itself.

Suppose we are interested in the fact that the counter should eventually reach state
(11). We can specify the property asAFq, whereq(s) is defined ass[1]^s[0]. Namely,
for all possible execution paths, there exists a state such thatq(s) holds. Equivalently,
we can check whether there exists a path in which the counter never reaches state(11).
The new property is expressed asEGp, wherep(s) is defined as:s[1]_:s[0]. Note that
EGp is the dual ofAFq.

In bounded model checking, we restrict our attention to paths of lengthk, that is,
paths withk+1 states. We start withk = 0, and incrementk until a witness is found.
Let’s consider the case wherek equals 2. We name thek+1 states ass0, s1, s2. We now
formulate a set of constraints ons0;s1 ands2 in propositional logic. The constraints
guarantee that a path consisting ofs0;s1;s2 is indeed a witness ofEGp, or equivalently,
a counterexample forAFq.

First, we constrains0;s1;s2 to be a valid path starting from the initial state. Unrolling
the transition relation for 2 steps, we derive the propositional formula[[ M ]] defined as

3



I(s0)^T(s0;s1)^T(s1;s2), whereI andT are predicates for the initial state and the
transition relation defined earlier.

Second, we constraint the shape of the path. The sequence of statess0;s1;s2 can be
a loop. If so, there is a transition froms2 to the initial states0, s1 or itself. We usel L
defined asT(s2;sl ) to denote the transition froms2 to a statesl wherel 2 [0;2]. To be
consistent with the general translation in the next section, we use left subscript inl L.
We defineL as

W2
l=0 l L. Thus:L denotes the case where no loop exists.

We further constrain that the specified temporal propertyGp holds on the given path
s0;s1;s2. In order to be a witness forGp, the path must contain a loop. This constraint
has been formulated asL. In addition, propertyp must hold on every state of the path.
We derive a corresponding propositional formula[[ Gp ]] defined asp(s0)^ p(s1)^
p(s2). In the case where no loop exists,Gp does not hold and[[ Gp ]] is defined as
f alse. Finally, we combine all constraints.

[[ M ]]^ ((:L^ f alse)_
2_

l=0

(l L^ [[ Gp ]])) (1)

In general, the constraint imposed by the temporal specification depends on the con-
figuration of the loop. Thus in the formula (1), we put[[ Gp ]] within the scope of the
disjunction overl . For our particular example the constraint[[ Gp ]] is the same for all
loop configurations.

In this example, the formula is indeed satisfiable. The satisfying assignment corre-
sponds to a counterexample that is a path from the initial state(00) over(01) to (10)
followed by the self-loop at state(10). If the erroneous transition from state(10) to
itself is removed then formula (1) becomes unsatisfiable.

2.3 Translation

Given a Kripke structureM, an LTL formula f and a boundk, we will construct a
propositional formula[[ M; f ]]k. The variabless0; : : : ;sk in [[ M; f ]]k denote a finite se-
quence of states on a pathπ. Eachsi is a vector of state variables. The formula[[ M; f ]]k
represents constraints ons0; : : : ;sk such that[[ M; f ]]k is satisfiable iff f is valid along
π. To construct[[ M; f ]]k, we first define a propositional formula[[ M ]]k that constrains
s0; : : : ;sk to be on a valid pathπ in M. Second, we give the translation of an LTL formula
f to a propositional formula that constrainsπ to satisfy f .

Definition 1 (Unfolding the Transition Relation). For a Kripke structure M, k2 IN

[[ M ]]k := I(s0)^
k�1̂

i=0

T(si ;si+1)

Depending on whether a path is ak-loop or not (see Figure 2), we have two different
translations of the temporal formulaf . In Definition 2 we describe the translation if the
path is not a loop. The translation “[[ � ]]ik” maps an LTL formula into a propositional
formula. The parameterk is the length of the prefix of the path that we consider and
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SkSi SkSiSl

(a) no loop (b) (k; l)-loop

Fig. 2. The two cases for aboundedpath.

i is the current position in this prefix (see Figure 2(a)). When we recursively process
subformulas,i changes butk stays the same.

Consider the formulah := p U q and a pathπ that is not ak-loop for a givenk2 IN
(see Figure 2(a)). Starting atπi for i 2 IN with i � k the formulah is valid alongπi with
respect to the bounded semantics iff there is a positionj with i � j � k andq holds
at π( j). In addition, for all statesπ(n) with n 2 IN starting atπ(i) up to π( j �1) the
propositionp has to be fulfilled. Therefore the translation is simply a disjunction over
all possible positionsj at whichq eventually might hold. For each of these positions
a conjunction is added that ensures thatp holds along the path fromπ(i) to π( j �1).
Similar reasoning leads to the translation of the other temporal operators.

Definition 2 (Translation of an LTL Formula without a Loop). For an LTL formula
f and k; i 2 IN, with i� k

[[ p ]]
i
k := p(si) [[ :p ]]

i
k := :p(si)

[[ f ^g ]]
i
k := [[ f ]]ik^ [[ g ]]

i
k [[ f _g ]]

i
k := [[ f ]]ik_ [[ g ]]

i
k

[[ G f ]]ik := false [[ F f ]]ik :=
Wk

j=i [[ f ]] j
k

[[ X f ]]ik := if i < k then [[ f ]]i+1
k else false

[[ f U g ]]
i
k :=

Wk
j=i

�
[[ g ]]

j
k ^
V j�1

n=i [[ f ]]nk

�
[[ f R g ]]

i
k :=

Wk
j=i

�
[[ f ]] j

k ^
V j

n=i [[ g ]]
n
k

�

Now we consider the case where the path is ak-loop. The translation “l [[ � ]]
i
k” of an

LTL formula depends on the current positioni and on the length of the prefixk. It also
depends on the position where the loop starts (see Figure 2(b)). This position is denoted
by l for loop.

Definition 3 (Successor in a Loop).Let k; l ; i 2 IN, with l; i � k. Define the successor
succ(i) of i in a (k; l)-loop assucc(i) := i +1 for i < k andsucc(i) := l for i = k.
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Definition 4 (Translation of an LTL Formula for a Loop). Let f be an LTL formula,
k; l ; i 2 IN, with l; i � k.

l [[ p ]]
i
k := p(si) l [[ :p ]]

i
k := :p(si)

l [[ f ^g ]]
i
k := l [[ f ]]ik ^ l [[ g ]]

i
k l [[ f _g ]]

i
k := l [[ f ]]ik _ l [[ g ]]

i
k

l [[ G f ]]ik :=
Vk

j=min(i;l) l [[ f ]] j
k l [[ F f ]]ik :=

Wk
j=min(i;l) l [[ f ]] j

k

l [[ X f ]]ik := l [[ f ]]succ(i)
k

l [[ f U g ]]
i
k :=

Wk
j=i

�
l [[ g ]]

j
k ^
V j�1

n=i l [[ f ]]nk

�
_

Wi�1
j=l

�
l [[ g ]]

j
k ^
Vk

n=i l [[ f ]]nk ^
V j�1

n=l l [[ f ]]nk

�
l [[ f R g ]]

i
k :=

Vk
j=min(i;l) l [[ g ]]

j
k _

Wk
j=i

�
l [[ f ]] j

k ^
V j

n=i l [[ g ]]
n
k

�
_

Wi�1
j=l

�
l [[ f ]] j

k ^
Vk

n=i l [[ g ]]
n
k ^

V j
n=l l [[ g ]]

n
k

�
The translation of the formula depends on the shape of the path (whether it is a loop

or not). We now define a loop condition to distinguish these cases.

Definition 5 (Loop Condition). For k; l 2 IN, let l Lk := T(sk;sl ); Lk :=
Wk

l=0 l Lk

Definition 6 (General Translation). Let f be an LTL formula, M a Kripke structure
and k2 IN

[[ M; f ]]k := [[ M ]]k^

 �
:Lk^ [[ f ]]0k

�
_

k_

l=0

�
l Lk^ l [[ f ]]0k

�!

The left side of the disjunction is the case where there is no back loop and the
translation without a loop is used. On the right side all possible start positionsl of a
loop are tried and the translation for a(k; l)-loop is conjuncted with the corresponding
l Lk loop condition. The following theorem shows the correctness of our translation.

Theorem 1. M j= E f iff [[ M; f ]]k is satisfiable for some k2 IN.

3 Conversion to CNF

Many propositional decision procedures assume the input problem to be in conjunctive
normal form. In this section, we focus on techniques for converting arbitrary boolean
formulas to conjunctive normal form. In particular, we investigate optimization tech-
niques that reduce the number of variables and clauses in the CNF generated. Satisfia-
bility test for propositional problems is NP-complete. All known propositional decision
procedures are exponential in the worst case. However, they may use different heuristics
in guiding their search and exhibit different complexity in subsets of the propositional
problems. Precise characterizations of the “hardness” of propositional problems is dif-
ficult and is likely to be dependent on specific propositional decision procedures used.
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Reducing the size of CNF may not always reduce the complexity of the problem. Our
optimization techniques are heuristics in nature as well. Experimental results show that
these optimization techniques reduce the size of the CNF as well as the time for satisfi-
ability test.

A formula f in conjunctive normal form is represented as a set of clauses, each
clause is a set of literals, and each literal is either a positive or negative proposi-
tional variable. In other words, a formula is a conjunction of clauses, and a clause
is a disjunction of literals. For example,((a_:b_ c)^ (d_:e)) is represented as
ffa;:b;cg;fd;:egg. Conjunctive normal form is also referred to as clause form.

Given a boolean formulaf , one may replace boolean operators inf with :;^ and
_ and apply distributivity rule and De Morgan’s law to convertf into its conjunctive
normal form fCNF. The size offCNF can be exponential with respect to the size off .
For example, the worse case occurs whenf is in disjunctive normal form. To avoid the
exponential explosion, we use a structure preserving clause form transformation [14].

procedure bool-to-cnf(f ,vf )
f

if (cached(f ,v)) return(clause(vf $ v));
case

atomic(f ) : return(clause(f $ vf ));
f == hÆg:

C1 = bool-to-cnf(h,vh);
C2 = bool-to-cnf(g,vg);
assert(cached(f ,vf ));
return(clause(vf $ vh Ævg) [C1 [C2);

easc;
g

Fig. 3.An algorithm for generating conjunctive normal form.f , g andh are boolean formulas.v,
vh andvg are boolean variables. ‘Æ’ represents a boolean operator.

Figure 3 outlines our procedure. Given a boolean formulaf , bool-to-cnf( f ,true) re-
turns a set of clausesC which is satisfiable ifff is satisfiable. The procedure traverses
the syntactical structure off , introduces a new variable (e.g.vh, vg) for each subex-
pression, and generates clauses that relate the new variables. Ifu and v are boolean
variables,u$ v is equivalent toff:u;vg;fu;:vgg. If v, vh, vg are boolean variables
and ‘Æ’ is a boolean operator,v$ (vh Ævg) has a logically equivalent clause form with
no more than 4 clauses, each of which contains no more than 3 literals. Note thatC is
not logically equivalent to the original formulaf , but it preserves the satisfiability off .

We represent a boolean formulaf as a directed acyclic graph (DAG), i.e., common
subterms off are shared. The DAG representation is important in practice. For ex-
ample, the size of formulainc(a) is linear with a DAG representation, and is quadratic
otherwise. In the procedurebool-to-cnf(), we preserve the sharing of subterms. Namely,
for each subterm inf , only one set of clauses is generated. The sharing is reflected in
line 1 ofbool-to-cnf. For any boolean formulaf , bool-to-cnf( f ,true) generates a clause
setC with O(j f j) variables andO(j f j) clauses, wherej f j is the size of DAG forf .

7



In Figure 3, we assume thatf only involves binary operators. Unary operator, i.e.
negation, can be handled similarly. We also extended the procedure to handle operators
with multiple operands. In particular, we treat conjunction and disjunction as N-ary
operators. For example, let us assume thatvf represents the formula

Vn
i=0 ti . The clause

form for vf $
Vn

i=0 ti is ff:vf ; t0g;f:vf ; t1g; : : : ;f:vf ; tng;fvf ;:t0; : : : ;:tngg. If we
treat^ as a binary operator, we need to introducen�1 new variables for the subterms inVn

i=0 ti . For instance, with this optimization, the comparison between two 16 bit registers
r ands occurring as a subformula,

V15
i=0(r[i]$ s[i]), can be converted into clause form

without introducing new variables.

4 Experimental Results

We have implemented a model checkerBMC based on bounded model checking. Its
input language is a subset of the SMV language [11]. It outputs a propositional formula.
Two different formats for the propositional formula are supported. The first format is
the DIMACS format [8] for satisfiability problems. The SATO tool [17] is an efficient
implementation of the Davis & Putnam Procedure [6] and it uses the DIMACS format.
We also support the input format of the PROVER Tool [1] which is based on St˚almarck’s
Method [16]. As comparisons, we use the official version of the CMU model checker
SMV and a version by Bwolen Yang from CMU with improved support for conjunctive
partitioning. We refer to them asSMV1andSMV2respectively.

4.1 Model Checking

As benchmarks we chose examples that are difficult for BDD-based approaches. First
we investigated a sequential multiplier, the shift and add multiplier of [5]. We formu-
lated asmodel checkingproblem the following property: when the sequential multiplier
is finished its output is the same as the output of a combinational multiplier (the C6288
circuit from the ISCAS’85 benchmarks) applied to the same input words. These mul-
tipliers are 16x16 bit multipliers but we only allowed 16 output bits as in [5] together
with an overflow bit. We proved the property for each output bit individually and the
results are shown in Table 1. Note that the overflow bit depends on all the bits of the
sequential multiplier and occurs in the specification. Thus, the cone of influence reduc-
tion could not remove anything. For BDD-based model checkers, we used a manually
chosen variable ordering where the bits of registers are interleaved. Dynamic reordering
failed to find a considerably better ordering in a reasonable amount of time.

In [10] an asynchronous circuit for distributed mutual exclusion is described. It con-
sists ofn cells forn users that want to have exclusive access to a shared resource. We
proved the liveness property that a request for using the resource will eventually be
acknowledged. This liveness property is only true if each asynchronous gate does not
delay execution indefinitely. We model this assumption by a fairness constraint for each
individual gate. Each cell has exactly 18 gates and therefore the model hasn�18 fairness
constraints wheren is the number of cells. Since we do not have a bound for the max-
imal length of a counterexample for the verification of this circuit we could not verify
the liveness property completely. We only showed that there are no counterexamples of
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SMV1 SMV2 SATO PROVER
bit sec MB sec MB sec MB sec MB
0 919 13 25 79 0 0 0 1
1 1978 13 25 79 0 0 0 1
2 2916 13 26 80 0 0 0 1
3 4744 13 27 82 0 0 1 2
4 6580 15 33 92 2 0 1 2
5 10803 25 67 102 12 0 1 2
6 43983 73 258 172 55 0 2 2
7 >17h 1741 492 209 0 7 3
8 >1GB 473 0 29 3
9 856 1 58 3
10 1837 1 91 3
11 2367 1 125 3
12 3830 1 156 4
13 5128 1 186 4
14 4752 1 226 4
15 4449 1 183 5

sum 71923 2202 23970 1066

Table 1. 16x16 bit sequential shift and add multiplier with overflow flag and 16 output bits (sec
= seconds, MB = Mega Byte).

particular lengthk. To illustrate the performance of bounded model checking we have
chosenk= 5;10. The results can be found in Table 2.

We repeated the experiment with a buggy design. For the liveness property we sim-
ply removed several fairness constraints. Both PROVER and SATO generate a coun-
terexample (a 2-loop) instantly (see Table 3).

4.2 Invariant Checking

Safety properties can be verified by providing aninductiveinvariant that has to hold at
the initial state, is preserved by the transition relation and implies the safety property
[7]. These three conditions can all be formulated as propositional satisfiability problems
and verified by a propositional decision procedure. We implemented this approach in the
tool BMC as follows. The user formulates the model as usual and specifies the invariant
as a safety property (withAG). ThenBMC generates two instances of a satisfiability
problem. One formula for checking that the invariant is preserved by the transition
relation and another formula for checking that the invariant holds initially. The third
condition has to be formulated by the user.

As an example for this technique we verified that two different implementations of
a queue of a particular length behave the same. This example is taken from [12] and it is
known that no variable ordering exists such that the (RO)BDDs for the set of reachable
states remain small. In columns SMV1 and SMV2, we used two versions of SMV to
verify the safety property that the outputs of the two queues are always the same. In
the other experiments of Table 4 an invariant was used that relates the contents of the
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SMV1 SMV2 SATO PROVER SATO PROVER
k= 5 k= 5 k= 10 k= 10

cells sec MB sec MB sec MB sec MB sec MB sec MB
4 846 11 159 217 0 3 1 3 3 6 54 5
5 2166 15 530 703 0 4 2 3 9 8 95 5
6 4857 18 1762 703 0 4 3 3 7 9 149 6
7 9985 24 6563 833 0 5 4 4 15 10 224 8
8 19595 31 >1GB 1 6 6 5 16 12 323 8
9 >10h 1 6 9 5 24 13 444 9
10 1 7 10 5 36 15 614 10
11 1 8 13 6 38 16 820 11
12 1 9 16 6 40 18 1044 11
13 1 9 19 8 107 19 1317 12
14 1 10 22 8 70 21 1634 14
15 1 11 27 8 168 22 1992 15

Table 2.Liveness for one user in the DME (sec = seconds, MB = Mega Bytes).

SMV1 SMV2 SATO PROVER
cells sec MB sec MB sec MB sec MB

4 799 11 14 44 0 1 0 2
5 1661 14 24 57 0 1 0 2
6 3155 21 40 76 0 1 0 2
7 5622 38 74 137 0 1 0 2
8 9449 73 118 217 0 1 0 2
9 segmentation172 220 0 1 1 2
10 fault 244 702 0 1 0 3
11 413 702 0 1 0 3
12 719 702 0 2 1 3
13 843 702 0 2 1 3
14 1060 702 0 2 1 3
15 1429 702 0 2 1 3

Table 3.Counterexample for liveness in a buggy DME (sec = seconds, MB = Mega Bytes).
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two queues. As discussed above, three conditions have to be verified for each particular
length of the queues. Beside propositional decisions procedures (see columns SATO
and PROVER in Table 4), we also used model checking, similar to [7], to prove their
correctness (see columns SMV3 and SMV4).

These experiments indicate that invariant checking can handle larger designs than
traditional fixpoint computations. This result also applies to BDD-based approaches but
the real potential of invariant checking becomes apparent when used in combination
with propositional decision procedures.

SMV1 SMV2 SMV3 SMV4 SATO PROVER
L sec MB sec MB sec MB sec MB sec MB sec MB
12 18 10 4 55 11 17 7 51 60 7 9 2
13 44 13 6 60 29 20 11 56 68 8 11 2
14 109 19 11 70 37 27 20 65 287 12 15 2
15 291 31 18 86 82 40 36 81 102 10 19 2
16 711 55 43 196 207 66 80 197 411 6 6 2
17 2126 102 159 393 573 119 191 393 1701 16 45 3
18 6103 195 459 753 1857 223 422 754 302 14 58 3
19 23405 3831491 920 5765 430 1101 817 1551 20 70 3
20 >17h >1GB 30809 845 9136 977 1377 20 86 3
21 >1GB >1GB >40h 99 3
22 120 3
23 149 4
24 167 4

Table 4. Comparison between queues (L = length of queues, SMV3 = SMV1 with invariant
checking, SMV4 = SMV2 with invariant checking, MB = Mega Byte, sec = seconds). In the case
of invariant checking the accumulated time and the maximal memory requirements are shown.

4.3 Equivalence Checking

Recently, there has been a lot of progress in boolean equivalence checking[9,13]. State-
of-the-art equivalence checkers can handle designs with more than 1 million gates.
These tools utilize the correspondence between internal signals and partition large cir-
cuits into much smaller ones. If the two circuits to be compared have significantly differ-
ent structures, equivalence checkers can perform poorly, even on much smaller designs
(less than 10K gates). Most equivalence checkers are BDD-based. We have investigated
how propositional decision procedures (SAT procedures) can be used instead of BDDs
for checking equivalence.

To determine if two given circuits are equivalent, we useBMC to convert the equiv-
alence checking problem to a propositional satisfiability problem. The output ofBMC
is a formula in CNF which is fed into SATO. We observed that SATO can verify almost
all designs with less than 10K gates, even if the two circuits are significantly different.
In Table 5, we list some industrial circuits that cannot be processed by state-of-the-art
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equivalence checkers (based on BDDs and similarity of the two circuits) but that can
be verified by SATO. In all cases, state-of-the-art equivalence checkers cannot finish
within one day.

Circuit #ins #outs #gatessec
Industry1 203 8 738 233
Industry2 317 232 15242 8790
Industry3 96 32 1032 210

Table 5.Equivalence checking using SAT procedures (sec = seconds).

In our first example, Industry1, the logic of one circuit has been considerably opti-
mized and the other is unoptimized. The structure of the two circuits is quite different
and BDDs cannot be built for them because of their complex logic functionality. SATO
finishes the verification in four minutes.

In the second case, Industry2, because of the size and the dissimilarity of the two
circuits, we never expected the verification to finish. The result suggests that efficient
SAT procedures have real potential in handling hard equivalence checking problems.
For both Industry1 and Industry2, we applied logic optimization using SIS [15] on the
circuits before submitting them for equivalence checking. This extra step of logic op-
timization greatly speeds up our verification. Without it, Industry1 takes 8246 seconds
and Industry2 takes more than 1 day. The use of logic transformation to speed up SAT
procedures seems promising for future research.

Industry3 is another particularly interesting example. In the two circuits that are
compared, some outputs are not equivalent. However, only a small fraction of the in-
put patterns can differentiate the two circuits (220 out of 296). There is little hope that
random simulation can identify the non-equality. Also, due to their complex logic func-
tionality, BDDs cannot be built for the circuits. SATO could identify counterexamples
in a few seconds for every non-equivalent output! SATO’s heuristics to generate case-
splitting variables work very well in this case. This example supports our belief that
SAT-based approaches can detect errors efficiently.

5 Conclusion

Our results demonstrate the potential of SAT-based techniques in various domains of
hardware verification. We believe that SAT-based approaches complement the existing
BDD-based approaches well. There are some promising directions of future research.
Optimization techniques in generating propositional formulas need to be further inves-
tigated. Previous work from other fields such as artificial intelligence may be relavant as
well. Also, heuristics of SAT procedure need to be studied for the domain of hardware
verification. For instance, in BDDs, interleaving the bits often provides a good variable
ordering. Similar techniques may work well as splitting heuristics for SAT procedures.
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