Learning Planning Operators by
Observation and Practice

Xuemei Wang

June 1996
CMU-CS-96-154

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Jaime G. Carbonell, Chair
Herbert A. Simon
Manuela M. Veloso
Jill Fain Lehman
Douglas H. Fisher, Vanderbilt University

Copyright © 1996 Xuemei Wang

This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant F33615-93-1-1330.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation thereon. Views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or
implied, of ARPA or the U.S. Government.

Keywords: Artificial intelligence, planning, problem solving, PRODIGY, knowledge ac-
quisition, machine learning, observation, practice.

Car n egie School of Computer Science

DOCTORAL THESIS
in the field of
Computer Science

Learning Planning Operation by Observation and Practice

XUEMEI WANG

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

6 /2[4

THESIS COMMITTEE CHAIR DATE

B/l

DEPARTMENT HEAD DATE

APPROVED:

T2 g2¢-9¢
12

DEAN DATE

Abstract

Acquiring and maintaining domain knowledge is a key bottleneck in applications of plan-
ning systems. This thesis describes a machine learning approach to automatic acquisition
of planning operators. Our approach is to learn planning operators by observing expert
solution traces and to refine operators through practice in a learning-by-doing paradigm.
During observation, our system uses the knowledge that is observable when experts solve
problems, without the need of explicit instruction or interrogation. During practice, our
system generates its own learning opportunities by solving practice problems.

The inputs to our learning system are: the description language for the domain, experts’
problem solving traces, and practice problems to allow learning-by-doing operator refine-
ment. The output is a set of operators, each described by a list of variables, precondi-
tions, and effects. The operators are learned incrementally using an inductive algorithm.
During practice, our system effectively generates plans using incomplete and incorrect
operators, repairs plans upon execution failures, and integrates planning, learning, and
execution.

Our approach has been fully implemented and tested in a system called 0BSERVER, which
is built in the context of the PRODIGY4.0 nonlinear planner. Empirical results in a
process planning domain and a version of the 34 meter Deep Space Network antenna
operation domain demonstrate the validity of our approach. These results show that our
system learns operators in these domains well enough to solve problems as effectively as
expert human-coded operators, and that learning by observation and learning by practice
both contribute significantly to the learning process.

Acknowledgements

It gives me pleasure to thank those who helped me through graduate school

This thesis would have not been possible without my advisor, Jaime Carbonell. Seven
years ago, when I came to CMU with a degree in Applied Mathematics from Beijing, I
knew little about Artificial Intelligence, or Computer Science. The transition was difficult,
but Jaime made it easy for me. He patiently initiated me into Artificial Intelligence; he
wisely guided me through the maze of graduate studies and research; he ceaselessly
gave me confidence when I doubted myself. How many times have I gone into his office
frustrated and discouraged about my research and come out smiling!

I thank my other committee members, Herb Simon, Manuela Veloso, Jill Fain, and Doug
Fisher, all of whom gave me much help in my research and in writing my thesis. Herb,
whose wisdom spans Artificial Intelligence, Economics, Psychology and many other areas,
helped me to look at my work from a global perspective. As a line from a Chinese poem
says, “To encompass the vista of thousand miles, climb up another flight of stairs.”
Manuela, with keen insights in the field of planning and machine learning, has never let
the smallest detail of my work pass her scrutiny. Jill, whose enthusiam never ceases to
amaze me, has push me much further in my research. Doug has always given me prompt
feedback on research ideas and papers, and has taught me that there is a world outside
CMU interested in my research.

I am also grateful to all the present and past members of the PRODIGY project. The
stimulating research environment of the PRODIGY group was one of the main rea-
sons that drew me to the project, and has never disappointed me! Many people in the
PRODIGY group provided invaluable technical support and substantial feedback on my
many presentations and papers: Manuelo Veloso, Alicia Pérez, Eugene Fink, Jim Blythe,
Scott Reilly, Rujith de Silva, Karen Haigh, and Peter Stone. And thanks to the past
members who have influenced this work: Oren Etzioni, Yolanda Gil, Robert Joseph, Dan
Kahn, Craig Knoblock, Dan Kuokka, and Steve Minton.

I thank many people, besides members of my thesis committee, who took the time to read
the thesis and gave me helpful comments: Steve Chien, Eugene Fink, Jonathan Gratch,

Henry Rowley, and Brian Surkan. Special thanks go to Steve Chien who has helped me
since the writing of my thesis proposal, the first document that led to this thesis.

I have enjoyed the School of Computer Science at Carnegie Mellon University since
the first day I was here. My wonderful officemates, Alicia Perez, Puneet Kumar, and
Henry Rowley made my office a pleasant place to be in and made my time at work more
delightful. They have helped in almost every aspect of my daily needs in the department,
from Unix commands to drawing Postscript pictures. I have also learned much from my
former officemates Rich Caruana, Daniel Julin, Ken Lang, Roni Rosenfeld, and Peter
Weyhrauch, and from my current officemates Po-Jen Yang and James Thomas. Other
friends in the department also made my graduate studies pleasant: Vincent Cate, Richard
Goodwin, Jaspal Subhlok, Sebastian Thrun, and many more. Special thanks go to Sharon
Burks, who has always greeted me with a pleasant smile when I walked into her office.
She has taken care of every administrative detail concerning me and much more.

Pittsburgh is the city where I have lived the longest except for my hometown Wuhan in
China. Throughout the years, I have grown to love this city, to love the many people I
have had the pleasure to share my time with. Thanks to Wei Zhang who offered me the
warmth of her home in Pittsburgh and innumerable delicious Chinese meals during my
visits. Thanks to my friends at the ballroom dance club and at Rosebud. Enrique Mu,
Heather Fisher, John Cheng, Andrew Huang, Mike Kajane, Fei Wong, Chris McConnell,
and Marlon Silva, all danced gracefully with me to inspiring music.

I want to thank my uncle, Monto Ho, who has become so very dear to me. He has been
father, friend, and mentor since the very first day I arrived in Pittsburgh. His love and
caring have carried me through many difficult times in this foreign land. He taught me
how to appreciate western culture while keeping my Chinese identity. He helped me to
grow confident of myself. His influence pervades all my days in Pittsburgh and beyond.

Finally, I want to thank my parents, who planted the idea of pursuing a Ph.D since my
childhood, and who taught me the value of hard work by their own example. Thanks
to Yanling for the simple fact of her being my sister. I have always felt their love and
support despite the fact that they are thousands of miles away.

Contents

1 Introduction 1
1.1 Machine learning and planning, ... 2
1.2 Methodology 3
1.3 Contributions L 5
1.4 Thesis Organization. 6

2 Learning by Observation and Practice—an Overview 7
2.1 [Initial Domain Knowledge 7
22 Inputand Qutput 8

221 Inpubt. e 9

222 Output. e 9

23 Assumptions. L 12

2.4 Architecture 13

2.5 Learning Operators as Concept Learning 15

2.5.1 Necessary properties of the learning algorithm 15

2.5.2 Learning operator preconditions 15

2.5.3 Learning operators effects 19
2.5.4 Learning the variable bindings—connecting the preconditions and

effects L 20

2.5.5 Summary of the learning method 21

2.6 Planning while Learning Operators 21

2.6.1 Interleaving planning and execution 22

2.6.2 Planning and plan repair L. .. 22

2.7 Summary . .o, .. e e e e e e e e e e e e 23

i

3 Learning Operators by Observation

3.1
3.2
3.3

3.4
3.5

3.6

Input and Qutput
Initializing the Operators
Learning Operators Incrementally
3.3.1 Learning variable bindings of the operators
3.3.2 Updating the S-rep of operator preconditions
3.3.3 Updating the operator effects
Complexity Analysis
Discussion e
3.5.1 Implication of Occam’s Razor
3.5.2 LearningtheS-rep

SUMMATY » .« & v e e v e e e e e e e e e e e e

4 Planning while Learning Operators

4.1
4.2
4.3

4.4

4.5

4.6

Domain Knowledge Imperfections
Issues in Planning while Learning

Planning with Incorrect Operators and Plan Repair

4.3.1 The Plan Repair Algorithm
4.3.2 Integrating planning, execution and plan repair . . .
Notes on Implementation
44.1 Resourcebounds
442 Binding generation
Discussion
4.5.1 Applicability to other operator-based planners

4.5.2 Strategies for interleaving planning and execution

4.5.3 Other plan repair strategies

SUMMATY .« + o v v v v o e e e e e e e e e e e e

CONTENTS

CONTENTS

5 Refining Operators by Practice

51 Inputand OQutput
5.2 Refining Operators e e
5.2.1 Updating the S-rep of operator preconditions
5.2.2 Learning the G-rep of operator preconditions
5.2.3 Refining operatoreffects 0oL
5.3 Complexity Analysis
54 Convergence Proof
5.5 Discussions e e

5.5.1 Trade-off between learning efficiency and learning rate
5.5.2 Negated preconditions

5.6 SUMINATY . . . ¢ v v e e e e e e e e e e e e e e e e e e

Empirical Results

6.1 Application Domains L oL
6.1.1 A process planning domain.,
6.1.2 DSN antenna operation domain

6.2 Design of Experimentation,
6.2.1 Phases for learning and testing
6.2.2 Randomly generated problems
6.2.3 Baselevelplanner. L L.

6.3 Overall Effectiveness of OBSERVER
6.3.1 Criteria for evaluation
6.3.2 Results.
6.3.3 = Summary of the effectiveness evaluation

6.4 Role of Learning by Observation

6.5 Roleof Practice
6.5.1 Method for demonstrating the role of practice
6.5.2 Results.
6.5.3 Summary of the role of practice

6.6 Summary e e e e e e e e e e e e e e e

57
60
60
62
65
66
69
70
70
71
71

v

7 Related Work

7.1 Rule Learning in Structural Domains

A The PRODIGY Problem Solver

B A Trace From Practice

7.1.1 Algorithms for learning in structural domains
7.1.2 Systems for learning in structural domains
7.2 Related Work in Planning
7.2.1 Machine learning in planning
7.2.2 Planning with incomplete information
7.2.3 Plan repair
7.2.4 Interleaving planning and execution

7.3 Knowledge Acquisition

Conclusions

8.1 Summary of the Thesis
8.2 Contributions
8.3 Future Work
8.3.1 Handling uncertainty
8.3.2 Learning with unobservable features

8.3.3 Control knowledge learning

CONTENTS

Chapter 1

Introduction

Consider the problem of learning to repair an aircraft engine, or to configure a local
computer network, or to produce a process plan to manufacture a metal part in a machine
shop. Human learning of such tasks combines book learning, observation /instruction and
repeated practice. First, the learner must know the vocabulary of the task domain. For
example, in the process planning domain, one must learn the names of machines and
tools, the properties that describe the part being created (e.g., geometrical attributes
such as shape, orientation, features, and surface properties such as polished, rough or
painted), as well as the relationships between machines, tools, and parts (e.g., the part
is being held by a holding device). Second, the learner must acquire knowledge of the
permissible actions and their preconditions and consequences, such as drilling, polishing,
turning, clamping, cutting, milling, and painting. For instance, the action model for
drilling requires that the part be securely clamped and oriented with the face pointed
upward and orthogonal to the perforation, and the drillbit of appropriate diameter affixed
to the drill press. Finally, methods for assembling effective and efficient plans out of these
building blocks need to be learned: plans that achieve their desired effect, that consume
minimal resources, and that can be generated as quickly as possible on demand.

This dissertation focuses on the second step of the complex-skill learning process, namely
how to acquire action models useful for planning and execution, given the basic domain
vocabulary. The third step, composition of effective plans in an efficient manner, is done

automatically by the PRODIGY planner [Carbonell et al., 1992, Veloso et al., 1995].

The problem of formulating the domain knowledge for planning (also known as “planning
operators”, “rules” or “action models”), which occurs primarily at the second step, is
a key bottleneck in real applications of planning systems [Chien et al., 1995]. This
is because it is difficult to write complete, consistent, and accurate operators—much
iterative refinement is required for human experts and, as we shall see, also for our

1

2 CHAPTER 1. INTRODUCTION

automated approach in the learning by practice phase. Traditional approaches to domain-
knowledge acquisition usually require the Al expert to learn about the domain, or the
domain expert to learn the syntax and semantics of Al programs. To facilitate knowledge
acquisition in this fashion, considerable research has focused on knowledge acquisition
tools for rule-based systems (see [Boose and Gaines, 1989] for a summary) and, to a lesser
extent, on using such tools for specialized planning systems [Chien, 1996]. These systems
all require considerable interaction with domain experts, and it usually takes months or
years to build the domain knowledge for an application domain. In particular, significant
effort has been devoted to writing and debugging planning operators for applications of
planning systems [Hayes, 1990, Gil, 1991, Chien, 1994].

To address this knowledge-acquisition bottleneck, this thesis focuses on automated ac-
quires planning operators using machine learning methods. Our approach is to learn plan-
ning operators by observing expert solution traces and to refine operators through prac-
tice in a learning-by-doing paradigm. During observation, our system uses the knowledge
that is observable when experts solve problems, without the need of explicit instruction
or interrogation. During practice, our system generates its own learning opportunities by
solving practice problems. Qur approach for automatic acquisition of planning operators
can significantly facilitate and speed-up applications of planning systems.

This chapter is divided into four sections. In the first section, we situate our work in
the context of machine learning and planning. The second section introduces the thesis
by briefly describing the methodology for operator learning. The third section discusses
contributions. Finally, we provide the reader’s guide to this dissertation.

1.1 Machine learning and planning

There are two primary reasons that learning is essential to transform planning systems
from research tools to useful applications in real world. First, the world we live in is
constantly changing. It is impossible to hand-code all the knowledge that will ever be
required by the system. To adapt to such changes, the application system must learn from
its experience and from the environment. Second, acquiring even the original base-level
knowledge for complex domains through knowledge engineering is a costly and laborious
process. Any significant automation that produces knowledge comparable in quality to
human-coded knowledge renders significant benefits. Accordingly, much previous work
has concentrated on machine learning in planning systems. These approaches can be
divided into three categories.

The first category, also known as “speed-up” learning, is on acquiring knowledge that

improves the efficiency of planning. Several techniques have been used in this framework,
including learning macro-operators [Fikes et al., 1972, Korf, 1985, Cheng and Carbonell,

1.2. METHODOLOGY 3

1986, Segre, 1988], learning control rules [Minton, 1988, Tadepalli, 1989, Etzioni, 1990,
Katukam and Kambhampati, 1994, Borrajo and Veloso, 1994a, Estlin and Mooney, 1996],
learning by analogy [Veloso, 1994], chunking [Laird et al., 1986], and learning abstraction
hierarchies [Knoblock, 1994, Christensen, 1990].

The second category is on acquiring heuristics to guide the planner to automatically
produce plans of high quality. Relatively little research has addressed this issue [Ruby
and Kibler, 1990, Iwamoto, 1994, Pérez, 1995].

The third category is on learning domain knowledge for planning. The goal of this type
of learning is to improve initially incomplete or inaccurate descriptions of operators, or to
learn operators from scratch. Several research efforts have focused on automatic acqui-
sition and refinement of planning operators using inductive learning techniques [Porter
and Kibler, 1986, Shen, 1994, Gil, 1992, Wang, 1995, Qates and Cohen, 1996]. Such is
the learning problem this thesis addresses.

1.2 Methodology

We are interested in fully automated acquisition of planning operators. We have broken
down the process of learning new operators into two phases: observation and practice.
Learning by observation, whether by human or by machine, is advantageous because it
is usually much easier for a domain expert to solve a problem than to explain the rules
he/she uses. Expert problem-solving traces are observable when experts solve problems
and, hence, are easily available to the learner.! Human learning usually involves practice
as well, because the knowledge obtained solely by observation is frequently incomplete and
inaccurate. Similarly, our learning system first acquires approximate operator definitions
by observation and then refines these operators during practice by solving problems. In
this practice phase, inconsistent and incomplete operators are diagnosed and repaired
incrementally.

In the first phase of learning, the system observes the sequence of steps employed by
domain experts in solving typical problems, noting all observable results of the actions.
This observation sequence is then generalized and converted into an initial set of plan-
ning operators, using an incremental inductive machine learning algorithm. The learning
algorithm identifies the common features of each action in the observations to form the
operator descriptions. The advantage of learning by observation is that the learning sys-
tem does not require explicit instruction from the domain expert. Therefore, it minimizes
the burden on the expert.

1The use of expert solution traces has also been a central motivation for case-based reasoning [Shank,
1982].

4 CHAPTER 1. INTRODUCTION

Initially learned operators are usually incomplete and incorrect (e.g., overly-specific pre-
conditions, overly-general preconditions, missing effects). These operators are refined in
a learning-by-doing fashion, using the training examples automatically generated by the
learning system. During practice, the learning system first tries to execute an action
(operator) regardless of the state conditions. This may lead to an execution failure, since
certain constraints that must be satisfied in order to execute the operator successfully
may not hold. Upon an execution failure, the learning system finds the differences be-
tween its current state and the generalization of the states in which this action has been
previously successfully executed. The system then tries to reduce some of these differ-
ences by applying other relevant actions, until the original operator can be executed
successfully. Operators are refined using both the successful and unsuccessful executions.

For example, suppose the learning system executes an operator to spot-drill a part when
the part is not held securely. This leads to an execution failure—the expected result
that the part has a spot hole does not occur. The learning system notices that when the
expert executed this operator, the part was always held securely. Therefore, it executes
another action to hold the part securely, and re-executes the action to spot-drill the part.
This time the part is successfully spot-drilled. If the only difference between the states
in which the action was executed successfully and the state in which it fails is that the
part is held securely in the former, then the operator is refined: the system learns that
the part must be held securely in order to execute the operator spot-drill successfully.
If there are more differences between the failure and successful states, additional plan
repair and learning may be required.

This dissertation addresses the following issues for this type of learning by observation
and practice:

¢ How to incrementally generalize operator preconditions and effects from a large
amount of data efficiently

e How to solve practice problems effectively, given incomplete and incorrect initial
operators, and to generate good training examples

¢ How to repair a failed plan, given that execution failures are inevitable when plan-
ning with incomplete or incorrect domain knowledge

e How to incrementally refine incomplete and incorrect operator description by prac-

tice

We have designed algorithms that automatically learn operators by observation and prac-
tice. Our algorithms have been fully implemented in a system called 0BSERVER, which is

1.3. CONTRIBUTIONS 3

built on top of the PRODIGY4.0 nonlinear planner [Carbonell et al., 1992]. The opera-
tors that are learned are exactly what are required by most operator-based planners such
as STRIPS [Fikes and Nilsson, 1971], TWEAK [Chapman, 1987], PRODIGY [Carbonell
et al., 1992, Veloso et al., 1995], SNLP [McAllester and Rosenblitt, 1991], and UCPOP
[Penberthy and Weld, 1992]. The validity of our approach has been demonstrated in two
application domains: a process plan domain [Gil, 1991, Gil and Pérez, 1994] and a DSN
antenna operations domain [Hill et al., 1995, Chien et al., 1996b], which are described in
further detail in Chapter 6. These two domains were chosen because they represent real
world planning problems.

Our approach is different from other research on learning planning operators—it requires
minimal domain knowledge, while some work requires initial approximate planning oper-
ators [Gil, 1992], or considerable background knowledge provided by the user to identify
relevant properties of the world state that should be considered during learning [Porter
and Kibler, 1986]. OBSERVER learns in complex structural domains [Haussler, 1989] while
some other work applies to smaller domains with much smaller number of states [Shen,
1994], or assumes simpler attribute-based domains [Oates and Cohen, 1996],

1.3 Contributions

The contributions of this dissertation can be summarized as follows:

e A fully automated approach for learning operators from observable expert solutions
traces, without requiring direct interaction with domain experts

e A novel method for refining incomplete and inaccurate operators using the system’s
own execution traces during practice, exploiting intentionally generated learning
opportunities

e The design of domain-independent algorithms for planning with incomplete and
incorrect operators, for plan repair upon execution failures, as well as for integrating
planning, learning, and execution

e Full implementation of all the algorithms designed in a system called 0BSERVER and
their integration with a nonlinear planner (PRODIGY4.0)

e Empirical demonstration of the validity of the approach in two realistic domains,
i.e., a process planning domain and an antenna operation domain for the Deep

Space Network (DSN).

6 CHAPTER 1. INTRODUCTION
1.4 Thesis Organization

The rest of the dissertation is organized as follows.

In Chapter 2, we present the architecture of the overall learning system. We describe the
initial domain knowledge given to OBSERVER, the input and output of 0BSERVER, and the
assumptions of the learning system. We discuss the necessary properties of the learning
algorithms and provide a high-level description of the algorithms for operator learning,
as well as for planning with incomplete and incorrect operators and plan repair.

Chapters 3, 4, and 5 give detailed description of the learning system. In particular,
Chapter 3 addresses the process of learning operators by observation. We describe how
OBSERVER generalizes the observations to learn the variables, preconditions, and effects
of the operators.

Chapter 4 focuses on the process of practice. We discuss how initially learned opera-
tors may be incomplete and incorrect and how planning is thus affected. We describe
OBSERVER’s algorithm for planning with incomplete and incorrect operators, as well as
for integrating planning, learning, and execution in a simulated environment. A trace
obtained from OBSERVER’s practice is shown in Appendix B.

Chapter 5 focuses on refining incomplete and inaccurate operators during practice. We
show how OBSERVER uses the positive and negative examples generated during practice
to update the preconditions and effects of the operators.

Chapter 6 introduces the two application domains, (i.e., the process planning and the
DSN antenna operation), used in our experiments, and presents detailed empirical re-
sults demonstrating the effectiveness of the learning system in two domains. First, we
demonstrate the effectiveness of the overall learning system. We show that the learned
operators are effective as human expert-coded operators in solving test problems. Second,
we demonstrate the role of observation. We show that the total number of solvable test
problems increases with the number of observation problems. Finally, we demonstrate
the role of practice. We show that the operators learned from initial observation and
then refined through practice are significantly more effective in problem solving than the
operators learned only by observation.

Chapter 7 discusses related work on rule learning in structural domains, on planning,
and on knowledge acquisition.

Finally, Chapter 8 summarizes the results, highlights the contributions of the thesis, and
discusses future research directions.

Chapter 2

Learning by Observation and
Practice—an Overview

This thesis is about automatic learning of planning operators without any initial knowl-
edge of the operators. Our approach is to learn operators inductively by observing expert
solution traces and by practicing in a learning-by-doing fashion [Anzai and Simon, 1979],
where each operator is described by a list of variables, preconditions, and effects.

This chapter gives an overview of this thesis. We first describe the initial domain knowl-
edge given to OBSERVER, the input and output of 0BSERVER, and the assumptions we make
for learning. We then give an overview of 0BSERVER’s architecture, which has three main
components: learning operators by observation, solving practice problems, and refining
operators by practice. We give high-level descriptions of our algorithms for learning
operators, and for planning with inaccurate operators. Details of these algorithms are
further described in Chapters 3, 4, and 5. Throughout the rest of this dissertation, we
will illustrate our algorithms with examples from the process planning domain.

2.1 Initial Domain Knowledge

Our learning system requires very little initial domain knowledge for learning—it does
not have any knowledge about the preconditions or effects of the operators. The system
is given at the outset only the domain vocabulary, which includes the following:

The domain object ontology. This includes the classes of objects that are used in the
domain. For example, Figure 2.1 shows the partial type hierarchy in the process
planning domain. In this domain, the types are fluid, tool, machine, holding-device,

7

8CHAPTER 2. LEARNING BY OBSERVATION AND PRACTICE—AN OVERVIEW

etc. Bach type may have subtypes. For example, there can be different types of
holding-devices, such as toe-clamp, v-block, or vise. The type hierarchy guides
OBSERVER in determining the types of the variables in the operators.

top-type

@ w cutting-tool lathe-toolbit @
Comann > Caminy Commrios D

Figure 2.1: A partial type hierarchy of the process planning domain.

The description language. This includes the predicates that describe the states and
the operators: is-clean, shape-of, holding are examples of predicates used in the
process planning domain.

Static domain knowledge. This includes domain constants, i.e., the objects that are
common in all the problems in a given domain. For example, the shape rectangular
and the six sides (side1, side2, etc) of a rectangular block are domain constants in
the process planning domain. Domain constants may occur in the preconditions or
effects of operators.

In many domains, such as the process planning domain and the DSN antenna opera-
tion domain, the domain vocabulary has been long studied and agreed upon by domain
experts, thus it is not difficult to acquire. In contrast, acquiring the preconditions and
effects of the operators is usually a time- and labor-consuming task, if at all feasible.
Thus, this thesis focuses on learning the preconditions and effects of the operators given
the description language of the domain.

2.2 Input and Output

OBSERVER accepts as input the observations of expert solution traces and the practice
problems to solve, and learns operator descriptions (i.e., variables, preconditions, and
effects). The input and output are described here.

2.2. INPUT AND OUTPUT 9

2.2.1 Input

The input to OBSERVER is the following:

1. Observations of an expert agent. An observation consists of:

e The name of each operator in the expert’s execution sequence

¢ The collection of literals that describes the state in which each action is ap-
plied, called pre-state

e The collection of literals that describes the state resulting from the execution of
each action, called the post-state. The delta-state is the collection of literals
that are added to or deleted from the pre-state as a result of the operator
application. The delta-state can be determined from the difference between
the post-state and pre-state

Figure 2.2 gives an example of an observation of the operator HOLD-WITH-VISE. The
pre-state and post-state are illustrated in Figure 2.3 and Figure 2.4, respectively.
Note that many literals in the pre-state are irrelevant to the successful application
of the operator.

2. Practice problems. The operators learned from observation are usually incomplete
or incorrect, because observations alone do not provide negative examples and will
not reveal the real relevant structure of the operator (more discussion on this can be
found in Chapter 4). DBSERVER uses the initial operators to solve practice problems
and further refines them based on its own execution traces.

2.2.2 Output

The output of learning is a set of planning operators. Each operator has a set of variables
whose types are specified using the type hierarchy of the domain. An operator also has
_ a precondition expression that must be satisfied in the state in order for the action to
successfully execute in the state. Finally, An operator also has a set of regular effects (i.e.,
primary effects) that indicate unconditional changes, i.e., the formulas that are added
to or deleted from the state when the operator is applied. An operator can also have
conditional effects, which describe changes to the world also in terms of formulas to be
added or deleted to/from the state, but as a function of a particular state configuration. A
conditional effect is composed by a condition expression (i.e., conditional preconditions)
and a regular effect. The effect should be added or deleted to the current state only if
the conditional preconditions are true when the operator is applied.

10CHAPTER 2. LEARNING BY OBSERVATION AND PRACTICE—AN OVERVIEW

op-name: held-with-vise

Pre-state:

(has-device drill0 viseO)
(on-table drill0 part0)

(is-clean part0)
(is-empty-holding-device viseO drill0)
(is-available-table drill0 viseO)
(holding-tool drill0 spot-drilloO)
(is-available-part partO)
(hardness-of partO hard)
(material-of partO iron)

(size-of partO width 2.75)
(size-of partO height 4.25)
(size-of part0 length 5.5)
(shape-of partO rectangular)

Delta-state:

adds:

(holding drill0 viseO part0 side5)
dels:

(is-empty-holding-device viseO drill0)
(on-table drillO part0)
(is-available-part partO)

Figure 2.2: An observation of the state before and
after the application of the operator HOLD-WITH-VISE.
This figure illustrates the delta-state, which is the dif-
ference between the post-state and the pre-state of the
observation. Note that many literals in the pre-states
are irrelevant to the successful application of the opera-
tor HOLD-WITH-VISE, e.g., the sizes of the part and the

material of the part.

Drillo

Spot—drillo H

Parto Vise0 | i

Table0

Figure 2.3: Pre-state of the observa-
tion in Figure 2.2.

Drillo

Spot—drillo “

Part0

Vise0

Table0

Figure 2.4: Post-state of observation
in Figure 2.2.

2.2. INPUT AND OUTPUT 11

operator = (OPERATOR rule-name
(preconds var-descriptor* pdl-ezpression)
(effects var-descriptor” effects))

var-descriptor = (Or type-names™)
| type-name
pdl-expression = (AND pdl-ezpressiont)
| not predicate
| predicate
effects = (effectt)
effect = (ADD predicate) | (DEL predicate) | conditional-effect
conditional-effect = (IF pdl-expression effects)
rule-name = id-name
type-name = id-name
var-name = < id-name >

Table 2.1: The syntax for operators learned by OBSERVER.

Table 2.1 gives rigid definitions of the description language for operators that 0BSERVER
learns. This is a restricted form of the description language PRODIGY4.0 uses, but
an extended version of the simple STRIPS operators—it has negated preconditions,
and conditional effects with their corresponding conditional preconditions. Details of
PRODIGY4.0’s complete description language and search algorithm can be found in
[Carbonell et al., 1992] and in Appendix A.

As an example, Figure 2.5 shows the operator HOLD-WITH-VISE learned by OBSERVER
by observation and practice. This operator represents the action of holding a vise.
Note that in Figure 2.5, (not (has-burrs <part>)) is a negated precondition, mean-
ing that HOLD-WITH-VISE can only be applied when (has-burrs <part>) is absent from
the state. Also note that (add (holding-weakly <machine> <holding-device> <part>
<side>)) and (add (holding <machine> <holding-device> <part> <side>)) are condi-
tional effects, with their corresponding conditional preconditions being (shape-of <part>
CYLINDRICAL) and (shape-of <part> RECTANGULAR). A conditional effect occurs only when
its corresponding conditional preconditions are satisfied. To apply an operator success-
fully, the regular operator preconditions must be satisfied, whereas the conditional pre-
conditions do not need to be satisfied.

12CHAPTER 2. LEARNING BY OBSERVATION AND PRACTICE—AN OVERVIEW

(Operator HOLD-WITH-VISE
(preconds ((<hd> Vise) (<side> Side) (<machine> Machine) (<part> Part))
(and (has-device <machine> <hd>)
(not (has-burrs <part>))
(is-clean <part>)
(on-table <machine> <part>)
(is-empty-holding-device <hd> <machine>)
(is-available-part <part>)))
(effects
(del (on-table <machine> <part>))
(del (is-available-part <part>))
(del (is-empty-holding-device <hd> <machine>))
(if (shape-of <part> CYLINDRICAL)
(add (holding-weakly <machine> <hd> <part> <side>))))
(if (shape-of <part> RECTANGULAR)
(add (holding <machine> <hd> <part> <side>))))

Figure 2.5: Operator HOLD-WITH-VISE from the process planning domain. This operator
specifies the preconditions and effects of holding a part with a vise.

2.3 Assumptions

This thesis makes the following assumptions:

Deterministic operators. Since 0BSERVER is operating within the framework of clas-
sical planners, it assumes that the operators and the states are deterministic, i.e.,
if the same operator with the same bindings are applied in the same states, the
resulting states are the same.

Noise-free sensors. 0BSERVER assumes noise-free sensors, i.e., there are no errors in the
states. In other words, OBSERVER relies on the expert to give correct and complete
descriptions pre-states and post-states. Although this may not always be easy,
when experts miss part of the state descriptions, they tend to miss the parts that
are irrelevant to the operator. This only enables O0BSERVER to converge faster.

Conjunctive precondition expression. We notice that in most application domains,
the majority of the operators have conjunctive preconditions expression only. For
example, in more than 30 domains currently implemented in PRODIGY, more than
90% of the operators have only existential conjunctive preconditions. Furthermore,
the domain expert can always split an operator with disjunctive preconditions into
several operators with conjunctive preconditions. Therefore, OBSERVER assumes

24. ARCHITECTURE 13

that the operators have existential conjunctive preconditions. This assumption
greatly reduces the search space for operator preconditions without sacrificing much
of the generality of our learning approach.

Many issues complicate the task of learning operators by observation and practice, under
the above assumptions:

¢ There are many literals in the pre-states that are irrelevant to the successful ap-
plication of the operators. For example, in the process planning domain, there are
on average about fifty literals in the pre-state or post-state of an observation, and
about five to seven literals in the operator preconditions and three to five literals
in the operators effects

e The operators may have conditional effects

e The operators may have negated preconditions, which significantly increases the
space of possible precondition expression

2.4 Architecture

OBSERVER’s overall learning architecture is shown in Figure 2.6. There are three compo-
nents in the system: (i)learning operators by observation, (i) solving practice problems,
by planning and plan repair using learned operators and by executing plan steps in the
environment, and (#77) refining operators during practice.

Learning operators by observation: Given very little initial knowledge, OBSERVER
inductively learns an initial set of operators from the observations of expert solu-
tions. Details of the learning algorithm are described in Chapter 3.

Planning, plan repair, and execution: The set of operators learned from observa-
tion can be incomplete and incorrect in many ways. They are further refined
when OBSERVER uses them to solve practice problems. Given a practice problem,
OBSERVER first generates an initial plan to solve the problem. The initial plan is ex-
ecuted in the environment, resulting in both successful and unsuccessful executions
of operators. OBSERVER uses these executions as positive or negative training exam-
ples for further operator refinement. The planner also repairs the failed plans upon
unsuccessful executions. The repaired plans are then executed and this process is
repeated until the problem is solved, or until a resource bound is exceeded. Details
of the integration of planning, execution, and learning are given in Chapter 4.

14CHAPTER 2. LEARNING BY OBSERVATION AND PRACTICE—AN OVERVIEW

Learning by observation

..................

-~

expert Learning descri tic:
Input —_—f solution Jw=sfied from 4—_——(lan ape
: traces observation : quag
: N
initial
operators 5
F=F refined operators "
o Jrefining je—
= | operator
0utput > B in practice [
'Practice: planning, play repair, and execution
Y initial .
lans successfu
P executions
. . plan
practice .
Input —} problens execution
ripalr ired unsuccessful
plan repaire executions

plans

A

..

Figure 2.6: Overview of OBSERVER'’s learning architecture. There are three major compo-
nents in this architecture: (%) learning operators by observation, (i) solving practice problems,
by planning and plan repair using learned operators and by executing plan steps in the envi-
ronment, and (%) refining operators during practice.

Refining operators during practice: The successful and unsuccessful executions gen-
erated during practice are effective training examples that OBSERVER uses to further
refine the initial imperfect operators. The refinement method is described in Chap-
ter 5.

2.5. LEARNING OPERATORS AS CONCEPT LEARNING 15
2.5 Learning Operators as Concept Learning

Learning operators is a form of concept learning—given a set of positive and negative
examples, the algorithm identifies a generalized description that is consistent with the
positive examples but excludes the negative examples. The positive examples for learning
are observed expert solution steps and OBSERVER’s successful executions during practice.
The negative examples are OBSERVER’s unsuccessful executions during practice. This
section motivates 0BSERVER’s learning approach and gives a high-level description of the
learning algorithm.

2.5.1 Necessary properties of the learning algorithm

An algorithm for learning operators from observation and practice should have the fol-
lowing properties:

e The algorithm must handle new positive and negative examples efficiently. An
incremental algorithm is more advantageous than a non-incremental algorithm,
because it does not need to save all the previous examples and because it can be
more efficient in processing a new example

o The algorithm should learn operators that facilitate planning for solving practice
problems, and for plan repair upon possible execution failure. Refining operators
from practice is a crucial component introduced in this thesis, thus generating
effective training examples is important

OBSERVER'’s learning algorithm is designed according to the above criteria—it is incremen-
tal and learned operators can be used effectively for planning and plan repair. Figure 2.7
illustrates the incremental flavor of operator learning. Because of the incremental nature
of the learning algorithm, it is necessary to match the preconditions and effects of the
learned operators against the pre-states and the delta-states of new positive examples.

2.5.2 Learning operator preconditions

To learn operator preconditions, we need to identify the commonalities of the pre-states
of positive examples that exclude negative examples. In general, there are two directions
for learning—specific-to-general and general-to-specific.

Algorithms such as GOLEM [Muggleton and Feng, 1990] and the interference matching
algorithm [Hayes-Roth and McDermott, 1978] use specific-to-general learning based on

16 CHAPTER 2. LEARNING BY OBSERVATION AND PRACTICE—AN OVERVIEW

+

x(1) D
L
+ E
N D ———— a
Observation N .
{positive
examples) + K
ex(3)

ZXr»mr

L
&
(i) - -
Practice - 1
Costtve &0 L
examples) E
xin) -8

Figure 2.7: Incremental learning of planning operators. The observations of expert solution
traces provide positive examples, while OBSERVER’s own execution traces provide both positive
and negative examples. The positive examples are annotated with “+,” and the negative
examples with “.”

the literals held in common in positive examples. The operators thus learned usually
have extraneous preconditions and are overly-specific. If 0BSERVER uses these operators
for planning during practice, then the associated behavior for planning and execution is
conservative in the sense that it usually generates correct plans, but these plans usually
contain unnecessary operators. The planner often misses plans that could be generated
if the operators were correct.

Algorithms such as FOIL [Quinlan, 1990] and SAGE [Langley, 1985] learn a concept in a
general-to-specific fashion by identifying literals that separate the positive examples from
the negative ones. The operators thus learned usually miss some true preconditions. If
OBSERVER uses these operators for planning, it usually does not miss correct plans, but
may generate incorrect plans with missing steps.

The version-spaces approach [Mitchell, 1978] incorporates aspects of both methods by
learning a most specific hypothesis S-set and a most general hypothesis G-set. The con-
cept being learned is delimited by the two boundaries. The S-set is generalized whenever
a positive example is given. The G-set is specialized upon every negative example, so
that the learned concept does not include any negative examples. Using version-spaces
like approaches has the following advantages:

e It is incremental

2.5. LEARNING OPERATORS AS CONCEPT LEARNING 17

o It gives the system a self-knowledge of what it knows about the operators and
where the correct concept is (i.e., the true preconditions lie within the boundaries
delimited by the S-set and G-set). This is especially important during practice in
order to generate useful learning examples—an example is only useful for learning
if it lies in the boundaries delimited by the S-set and G-set

e The G-set can be used as operator preconditions for planning to generate an initial
plan quickly for practice problems. Executing the plan in the environment generates
effective positive and negative learning examples

¢ The S-set can be used during plan repair to identify what additional literals must
be achieved in order to make the failed operator applicable

The major problem with version-spaces like approaches is the complexity of computing
the S-set and G-set when learning in structural domain. [Haussler, 1989] has shown
that the size of the S-set and G-set can both grow exponentially and, hence, updating
them is exponentially hard. To address this, 0BSERVER uses an incremental algorithm to
learn the operator preconditions by building a general representation, the G-rep, and
a specific representation, the S-rep, in a manner similar to the version-spaces method
[Mitchell, 1978]. The G-rep is a conjunct of literals that represents a general boundary
of the concept to be learned, and the S-rep is a conjunct of literals that represents a
specific boundary. The G-rep is different from the most general boundary, the G-set,
in version-spaces in that it is not guaranteed to be the most general representation for
the negative examples. The G-rep contains concepts that are more general than would
be included in the S-set, but it can be updated in polynomial time. Similarly, the S-rep
differs from the S-set in that it is not guaranteed to be the most specific representation
for the set of positive examples. The S-rep contains concepts that are more specific than
would be included in the S-set, but can be updated in polynomial time.

The key ideas of OBSERVER’s algorithm for learning operator preconditions include the
following, as illustrated in Figure 2.8:

e OBSERVER keeps a single representation in the S-rep and G-rep instead of main-
taining a set of plausible hypotheses in the S-set and G-set in the version-spaces
approach. Keeping a single representation reduces the planning search space, be-
cause each representation corresponds to a different operator.

e The S-rep is initialized by parameterization of the pre-state of the first observation,
and updated using both observations and successful executions from practice. The
G-rep is Initialized to the empty set and updated using unsuccessful executions
during practice

18CHAPTER 2. LEARNING BY OBSERVATION AND PRACTICE—AN OVERVIEW

1 negated precs leamed

= ® more

; G-Tep general
E + negative examples

0

N

D

IT 'li positive examples

1 g more .
g S-rep specific

¢ negated precs leamed

Figure 2.8: Learning operator preconditions. The operator preconditions are represented by
the G-rep and the S-rep, which represent a general and specific boundary of the preconditions,
respectively. The S-rep is generalized given positive examples, but can be made more specific
upon learning negated preconditions. The G-rep is specialized given negative examples, but
can be made more general upon learning negated preconditions.

e The S-rep is a specific generalization of the pre-states of the positive examples,
although it is not always the most specific generalization. When learning by obser-
vation, OBSERVER conservatively generalizes the S-rep by removing from it those
literals that cannot be in any generalizations, without finding the most specific
common generalizations of the operator precondition and the pre-state of the new
observation. We use a heuristic that conservatively generalizes a constant to a
variable, similar to learn-one-disjunct-at-a-time [Vanlehn, 1987].

There is a tradeoff between the degree of generalization and the efficiency of
generalization—the usual version-spaces approach learns the most specific boundary
of the concept, but the time complexity for updating the boundary is exponential.
OBSERVER’s approach updates the specific boundary in polynomial time, but the
boundary is not guaranteed to be most specific. 0BSERVER trades off the degree of
generalization for the computational efficiency during updating.

When refining the S-rep during practice, since the bindings for the variables in
the operator are known, the S-rep can be generalized by removing from it those
preconditions, substituted with the bindings, that are not members of the pre-state

e The G-rep is a general boundary of the concept learned from near miss negative
examples. A near miss is an example for which only one literal is not covered by
the target concept. Thus the G-rep is not always the most general boundary as
the G-set in the version-spaces method.

There is also a tradeoff between the degree of specialization and the efficiency of

2.5. LEARNING OPERATORS AS CONCEPT LEARNING 19

specialization—the usual version-spaces approach learns the most general boundary
of the concept, but the time complexity for specialization the boundary is exponen-
tial. OBSERVER’s approach updates the general boundary in polynomial time, but
the boundary is not guaranteed to be most general. OBSERVER’s approach trades
off the degree of specialization for the computational efficiency of specialization

o OBSERVER can learn negated preconditions. Sometimes OBSERVER over-generalizes
the S-rep because it first assumes there are no negated preconditions. But it com-
pensates for this simplifying assumption by learning negated preconditions when
they are detected during practice

® Because of the presence of negated preconditions, the S-rep can also be specialized
and G-rep can be generalized when learning negated preconditions

2.5.3 Learning operators effects

Learning operator effects is to learn the regular effects of an operator, as well as condi-
tional effects with their corresponding conditional preconditions. The regular effects are
learned by identifying the commonalities of the delta-states of the positive examples. The
conditional effects are inferred from the subset of the delta-states that are not common
to all the delta-states of the examples. Fach conditional effect has its own conditional
preconditions that determine whether this conditional effect occurs when the operator
is applied. The conditional precondition for each conditional effect is also learned by
keeping its own G-rep and S-rep.

OBSERVER learns operator effects incrementally as they occur in the delta-states of the
observations or practice episodes. It does not try to conjecture all the possible conditional
effects before they are observed. While learning operator effects, 0BSERVER initializes the
effects to the parameterized delta-state of the first observation. Given a new observation,
OBSERVER incorporates Occam’s Razor [Blumer et al., 1987] to minimize the number of
conditional effects learned. For each operator effect, 0BSERVER finds all the literals in
the delta-state of a new observation or successful execution that are unifiable with it.
If the effect does not have any possible unifications, then it is learned as a conditional
effect. If an effect has exactly one possible unification, then the effect can be updated by
generalizing constants to variables, if appropriate. Otherwise, the effect is kept as it is.
Every literal in the delta-state that is not unifiable with any effect is parameterized and
learned as a conditional effect.

Refining operator effects during practice is similar to learning operator effects by observa-
tion, except that the variable mappings between the effects and delta-states are already
determined by the planner.

20CHAPTER 2. LEARNING BY OBSERVATION AND PRACTICE—AN OVERVIEW

OBSERVER learns operator effects in polynomial time, as proven in Chapters 3 and 5.

2.5.4 Learning the variable bindings——connecting the precon-
ditions and effects

The pre-state and delta-state always share some common objects. For example, in the
observation shown in Figure 2.2, the objects that appear in the delta-state of the observa-
tion, such as part0, drillo, and vise0, also appear in the pre-state of the observation.
Similarly, the preconditions and effects of an operator share common variables. For ex-
ample, in the operator shown in Figure 2.5, the variables <hd>, <part>, and <machine>
are shared by the preconditions and effects.

Knowing the bindings for the variables reduces the ambiguity in matching the precondi-
tions of an operator against the pre-states, as well as in matching the effects against the
delta-states. An extreme case of this is updating operators from OBSERVER’s own execu-
tions, where bindings for all the variables are determined by the planner. In this case, it
is trivial to generalize the S-rep of the operator: all that is required is to check whether
a precondition in the S-rep, substituted using the variable bindings, is a member in the
pre-state; however, when updating operators from observations, the variable bindings are
not known. How can we learn the variable bindings?

In the observations given to OBSERVER, the delta-states are usually much smaller than
the pre-states of observations, because delta-states do not have any irrelevant informa-
tion, whereas irrelevant information abounds in pre-states. Therefore, matching the
effects against the delta-states usually have much less ambiguity than matching the pre-
conditions against the pre-states. Thus, OBSERVER first matches the effects against the
delta-state to learn bindings for some variables in the operator. These bindings are then
employed in the refinement of preconditions.

We assume that different variables in an operator are never bound to the same value.
This is reasonable in almost all the domains, because operators that need to bind distinct
variables with the same values are rare. For example, this assumption holds in our two
application domains. The variables in an operator are initialized by parameterizing the
objects in the first observation of the operator. Every object is uniquely parameterized to
one variable. The domain constants are not not parameterized given the first observation;
however, they may be further generalized when a different constant is observed later. The
type of each variable is determined using the domain object ontology (i.e., type hierarchy)
given to OBSERVER as initial knowledge. Variables are removed from the operator if they
are no longer needed when the preconditions and the effects are generalized.

2.6. PLANNING WHILE LEARNING OPERATORS 21

2.5.5 Summary of the learning method

Operators are learned in two phases: first, they are learned from the observations of
expert solutions, then they are refined through practice. During learning by observation,
OBSERVER initializes the operator by parameterizing the first observation. Given other
observations, OBSERVER first learns variable bindings by matching the effects against
delta-state. It then updates the effects and generalizes the S-rep of the operator. During
operator refinement by practice, GBSERVER generalizes the S-rep and updates the effects
with positive examples. It learns negated preconditions (hence, specializes the S-rep)
and specializes the G-rep with negative examples. Table 2.2 shows what steps are
involved in learning and refining operators.

observation successful execution | unsuccessful execution
(positive examples) | (positive examples) | (negative examples)
(Chapter 3) (Chapter 5) (Chapter 5)

learning variables yes yes no

constant-to-variable yes no no

initialize S-rep first observation no no

initialize the G-rep the empty set no no

generalize the S-rep yes ves no

specialize the G-rep no no yes

learn negated preconds | no no yes

update regular and

conditional effects yes yes no

Table 2.2: This table summarizes what components (variables, preconditions, and effects) of
the operators are being learned by observation and practice. The inputs for learning consist of
the positive examples from observations of expert solution traces, as well as from positive and
negative examples collected during practices.

2.6 Planning while Learning Operators

The operators learned by observation are usually incomplete and incorrect. This incor-
rectness and incompleteness present difficulties for planning and execution, as classical
planners presume a correct domain model. To solve this problem, OBSERVER interleaves
planning and execution. It refines the operators based on its own execution traces, in-
cluding the successful and unsuccessful executions, and repairs the plan upon execution
failure. This section gives a high-level description of how OBSERVER integrates planning,
execution, and learning.

22CHAPTER 2. LEARNING BY OBSERVATION AND PRACTICE—AN OVERVIEW

We have built a simulator of the external environment. The simulator uses a complete and
correct set of operators to model the available actions (note that 0BSERVER does not have
access to this complete domain), similar to the simulators used in [Shen, 1994, Gil, 1992).
The simulator also has complete and correct knowledge of the state. When OBSERVER
executes an action, the simulator checks if the preconditions of the corresponding operator
used in the simulator are satisfied in the current state. If so, the simulator updates its
current state and provides the complete descriptions of the pre-state and post-state of the
execution to the learning system. Otherwise, the state is not changed, and the simulator
signals execution failure.

2.6.1 Interleaving planning and execution

When solving a problem using a set of imperfect operators, OBSERVER first generates an
initial plan that achieves the preconditions in the G-rep of each operator, but does not
require achieving preconditions in the S-reps of the operators. Then, DBSERVER executes
the plan in the simulator. During execution, if an operator executes successfully when
some preconditions in the S-rep are not satisfied in the state, the unsatisfied precondi-
tions are removed from the S-rep, resulting in a more accurate operator description. An
operator may fail to achieve its intended effects due to unmet preconditions, necessitating
plan repair and operator refinement.

2.6.2 Planning and plan repair

OBSERVER repairs a plan after an execution failure in order to bring the system to a
state in which the failed operator can be successfully executed, and in order to generate
learning opportunities for operator refinement. During plan repair, OBSERVER uses the
S-rep of the failed operator to determine which additional preconditions to achieve to
make the failed operator applicable. The plan repair proceeds as follows:

1. OBSERVER chooses a precondition randomly from unsatisfied S-rep preconditions,
and calls the planner to achieve this additional precondition, as well as all the
G-rep preconditions.

2. If the planner successfully generates a subplan to achieve the chosen precondition,
this subplan is concatenated with the rest of the original plan to form the repaired
plan. The repaired plan is immediately executed, without achieving other precon-
ditions in the S-rep. Further plan repair may be necessary if the failed operator
has more than one unsatisfied S-rep precondition, or if the subplans generated
during plan repair fail during execution.

2.7. SUMMARY 23

3. If OBSERVER cannot find any plan segments to achieve any additional preconditions
in the S-rep, it conjectures negated preconditions. It adds the negated precondi-
tions to the S-rep and generates plan segments to achieve the conjectured negated
precondition for plan repair.

4. If all of the above fails, 0BSERVER revises the original plan by abandoning the failed
operator and by proposing a different operator to achieve the goal that the failed
operator achieves.

The process of planning, execution, and plan repair continues until the problem is solved,
i.e., the goals are satisfied in the environment, or until a preset resource bound is exceeded,
or until the algorithm can no longer generate repaired plans. Some alternative methods
for plan repair and for integrating planning and execution, as well as their advantages
and disadvantages, are discussed in Chapter 4.

2.7 Summary

This chapter defined the scope of the thesis, i.e., learning planning operators, includ-
ing their preconditions and effects, without any initial knowledge of the operators. Our
approach is to learn planning operators by observing expert solution traces and by prac-
ticing in a learning-by-doing fashion [Anzai and Simon, 1979].

-The initial knowledge given to OBSERVER includes only the domain object ontology, the
description language of the domain, and static domain knowledge. Given observations
of expert solution traces and practice problems, OBSERVER learns operators from obser-
vations as well as from OBSERVER’s own execution traces. Thus, the learning system
consists of three components: (i) learning operators from observation, (7:) solving prac-
tice problems, by planning and plan repair using learned operators and by executing plan
steps in the environment, and (#ii) refining operators during practice. OBSERVER learns
a specific representation, the S-rep, and a general representation, the G-rep, of oper-
ator preconditions, in a manner similar to the version-spaces method. Both the G-rep
and S-rep are updated in polynomial time. OBSERVER also incrementally learns operator
effects, including conditional effects and conditional preconditions, in polynomial time.
The following chapters elaborate the main ideas discussed in this chapter.

24CHAPTER 2. LEARNING BY OBSERVATION AND PRACTICE—AN OVERVIEW

Chapter 3

Learning Operators by Observation

A primary contribution of this dissertation is a method of learning planning operators
from observations of expert’s solution traces. Qur approach is motivated by three factors:
(i) humans learn by observing others, (i) it is usually easier for a domain expert to solve
a problem than to explain the rules he/she uses, and (%i¢) the traces used for learning are
observable when experts solve problems.

The task of learning by observation is essentially learning the preconditions and effects of
the operators by generalizing the pre-states and post-states of the observations. In Sec-
tion 3.1, we describe the input and output of our learning algorithm. Section 3.2 describes
how the algorithm generate an initial operator description from the first observation. Sec-
tion 3.3 describes the details of learning operators incrementally by observation, which
includes learning the variable bindings by matching the effects against the delta-states,
updating the S-rep of the operator preconditions, and updating the operator effects.
Section 3.4 analyzes the complexity of the learning method and proves that it is polyno-
mial. Section 3.5 discusses issues related to learning by observation. Finally, Section 3.6
summarizes the chapter.

3.1 Input and Output

Formally, an observation is a triple <N, P, D>, where N is the name of the operator being
applied, P is the pre-state of the observation, and D is the delta-state of the observation.
The pre-state of an observation is a conjunct of ground literals that describes the state in
which an operator is applied. The delta-state is a pair <ADD, DEL>, where ADD and DEL
are both conjuncts of ground literals describing the literals that are added to and deleted
from the pre-state after the operator is applied. The delta-state is the difference between
the post-state and pre-state. An example of an observation is given in Figure 3.1.

25

26 CHAPTER 3. LEARNING OPERATORS BY OBSERVATION

op-name: hold-with-vise

Pre-state:

(has-device drill0 viseO)
(on-table drill0 part0)

(is-clean part0)
(is—empty-holding-device viseO drill0)
(is-available-table drill0 viseO)
(holding-tool drillO spot-drillO)
(is-available-part partO)
(hardness-of partO hard)
(material-of partO iron)

(size-of part0 width 2.75)
(size-of part0O height 4.25)
(size-of partO length 5.5)
(shape-of partO rectangular)

Delta-state:

adds:

(holding drillO viseO part0O sideb)
dels:

(is—empty—holding—device vise0 drill0)
(on-table drill0 partO)
(is-available-part part0)

Figure 3.1: An observation of the state before and
after the application of the operator HOLD-WITH-VISE.
This examples is a copy of the example shown in Fig-
ure 2.2. This figure illustrates the delta-state, which is
the difference between the post-state and the pre-state
of the observation. Many literals in the pre-states are
irrelevant for the successful application of the opera-
tor HOLD-WITH-VISE, e.g., the sizes of the part and the

material of the part.

Drillo

Spot-drill0 H

\TI
ViseO
Table0 —I

Figure 3.2: Pre-state of observation
in Figure 3.1.

Drill0

Spot-drill0 U

e
Vise0

Table0

Figure 3.3: Post-state of observation
in Figure 3.1.

3.2. INITIALIZING THE OPERATORS 27

Learning is triggered upon observations of expert solution traces. The pre-states of these
observations are generalized incrementally in a specific-to-general manner to form the
S-rep of the operator preconditions. The delta-states are generalized to form the effects
of the operator. Since the G-rep is only updated using negative examples, it is an empty
conjunct at the end of learning by observation.

3.2 Initializing the Operators

Given the first observation of an operator, 0BSERVER initializes the specific representation,
the S-rep, to the parameterized pre-state of the observation, and initializes the effects to
the parameterized delta-states. During parameterization, each object (except for domain
constants) is uniquely generalized to a typed variable. Domain constants are given to
OBSERVER as part of the input; they are only generalized to variables if 0BSERVER notices
a different constant in a later observation. The type for each variable in the operator is
the most specific type in the type hierarchy for the corresponding object. For example,
given the first observation of the operator HOLD-WITH-VISE shown in Figure 3.1, OBSERVER
generates an initial operator as shown in Figure 3.4. Note that constants such as width,
rectangular, and iron are not generalized to variables. Also note that the S-rep learned
from this one observation has many extraneous preconditions such as (size-of <vi>
height 2.75). They will later be generalized or removed with more observations and /or
practice.

3.3 Learning Operators Incrementally

These initial operators are generalized incrementally with more observations. First,
OBSERVER matches the effects of the operator against the delta-state of the new ob-
servation (Section 3.3.1). The matching produces partial bindings for variables in the
operator. Then, OBSERVER uses the partial bindings to update the specific representa-
tion S-rep of the operator preconditions (Section 3.3.2). And, finally, the effects of the
operators are updated (Section 3.3.3).

3.3.1 Learning variable bindings of the operators

This section describes in detail the procedure learn_variable_bindings, which learns
bindings by matching the effects of the operator against the delta-state of the observation.

Our algorithm for learning variable bindings incorporates Occam’s razor, which prefers a
simpler explanation given two explanations of the data and all other things being equal.

28 CHAPTER 3. LEARNING OPERATORS BY OBSERVATION

(operator hold-with-vise
(preconds ((<v3> Drill) (<v2> Vise) (<vi> Part) (<v5> Spot-drill))
(and (has-device <v3> <v2>)
(is-available-table <v3> <v2>)
(is-empty-holding-device <v2> <v3>)
(holding-tool <v3> <v5E>)
(size-of <v1> width 2.75)
(size-of <v1> height 4.25)
(size-of <v1> length 5.5)
(shape-of <v1> rectangular)
(on-table <v3> <vi>)
(hardness-of <vi> soft)
(is-clean <v1>)
(material-of <v1> copper)
(is-available-part <vi>)
(effects
(add (holding <v3> <v2> <v1> side5))
(del (on-table <v3> <vi>))
(del (is—available-part <vi>))
(del (is-empty-holding-device <v2> <v3>))))))

Figure 3.4: Learned operator HOLD-WITH-VISE when the observation in Figure 3.1 is given to
OBSERVER. The preconditions shown here is the S-rep of the operator preconditions.

Thus, in the presence of ambiguity during matching, the algorithm chooses the mapping
that leads to fewer conditional effects being learned. This heuristic implies that any
effect that is unifiable with a unique element in the delta-state should be unified; such
pairs of effect and delta-state are called unambiguous_pairs. The formal definition of
unambiguous_pair is given in Figure 3.5. In essence, a pair (e d), where e is an effect
and d is a member of a delta-state, is an unambiguous_pair if there is no element in the
delta-state other than d that is unifiable with e, and if there is no effect other than e that
is unifiable with d. Occam’s Razor enforces that the elements in the unambiguous_pair
be unified with each other so they are not learned as conditional effects.

Figure 3.6 gives the algorithm for learning the variable bindings. In steps 4-9, this
procedure repeatedly finds unambiguous_pairs. For each unambiguous pair (this-effect,
this-delta-state), where this-effect is an effect of the operator and this-delta-state is a
member of the delta-state of the observation, 0BSERVER learns new bindings by unifying
the unambiguous_pair (this-effect, this-delta-state). This process continues until all the
unambiguous_pairs are unified. Since the process of finding unambiguous_pairs is incre-
mental, different orderings of effects may, in theory, result in different updates of effects;

3.3. LEARNING OPERATORS INCREMENTALLY 29

definition: unambiguous_pair

Given: bindings, effects(op), delta-state(obs)
Define: unambiguous_pair(e, d), where e € effects(op), d € delta-state(obs) iff:

o for every e ceffects(op), € + e, unify (substitute(e, bindings),d) = NIL, and

o for every d' €delta-state(op), d' # d, unify (substitute(e, bindings),d) = NIL

Figure 3.5: Definition of unambiguous_pair. A pair (e,d), where e is an effect and d is an
element in the delta-state, is an unambiguous_pair if d is the only element in the delta-state
that is unifiable with e, and e is the only element in the effects that is unifiable with d.

however, this has not posed any problems in our experiments.

In addition to learning the bindings of the variables in the effects, CBBSERVER generalizes a.
constant to a variable if this constant is unified with a different constant in the bindings
(steps 10-13). It also generalizes the type of a variable to the least common ancestor
type of the type of the variable in the operator and the type of the corresponding object
in the bindings (steps 14 and 15).

For example, given the initial operator shown in Figure 3.4 and a new observation shown
in Figure 3.7, 0BSERVER matches the effects of the operator against the delta-state of the
observation. (holding <v3> <v2> <v1> side5) and (holding milling-machineil visel
partl side4) is an unambiguous_pair. Unifying them results in learning bindings =
{partl/<v1>, visel /<v2>, milling-machinel/<v3>,side4/side5}. Other unambiguous_pairs
are unified similarly. The type of the variable <v3> is generalized to the least common
type of milling-machine and drill, i.e., machine, and the constant side5 is generalized to
a new variable <v4> whose type is Side.

3.3.2 Updating the S-rep of operator preconditions

Figure 3.10 shows the procedure for updating the S-rep of the operator preconditions
from an observation. 0BSERVER updates the S-rep by removing those literals that are not
present in the pre-state of the observation, and by generalizing domain constants to vari-
ables if different constants are used in the pre-state. Determining which preconditions in
the S-rep are not present in the pre-state of the observation is nontrivial when bindings
for the variables are unknown. Different mappings of variables to objects result in differ-
ent generalizations of the S-rep, and the number of possible mappings is exponential. To
avoid the computational complexity, 0BSERVER only removes S-rep preconditions that
are definitely not present in the pre-state (i.e., is not unifiable with any literal in the

30 CHAPTER 3. LEARNING OPERATORS BY OBSERVATION

procedure: learn_variable_bindings

Given: observation obs, learned operator op corresponding to obs
Learn: bindings

1. effects-to-match « effects(op)
2. state-to-match + delta-state(obs)
3. bindings « NIL
4. (this-effect, this-delta-state)

+ find_unambiguous_pair (effects-to-match, state-to-match, bindings)
5. Repeat until there are no more unambiguous_pair
6. (new-effect, bindings)

+ unify (this-delta-state, substitute (this-effect,bindings))

7. effects-to-match « effects-to-match \ {this-effect}
8. state-to-match « state-to-match \ {this-delta-state}
9. (this-effect, this-delta-state)

+ find_unambiguous_pair (effects-to-match, state-to-match, bindings)

10. For every element (z/y) in bindings
(z is an object in the delta-state, and y is a variable or constant in the effect)

11. If y is a constant
then

12. new-variable « parameterize(z,y)

13. type_of(new-variable) «+ least_common_ancestor_type(z, y)
otherwise

14. type_of(y) + least_common_ancestor_type(z, y)

15. Return bindings

Figure 3.6: Learning variable bindings for operator by matching the effects of the operator
against the delta-state of the observation. Occam’s Razor is incorporated to minimize the
number of learned conditional effects in the operator.

pre-state) under all the possible bindings for the variables in the operator, provided that
they are consistent with the bindings returned by learn_variable_bindings.

To determine if a S-rep precondition, prec, is definitely not in the pre-state of an obser-
vation, OBSERVER unifies prec, substituted with the bindings returned by

learn_variable_bindings, with each literal in the pre-state of the observation. Dur-
ing unification, every term in preec, including domain constants, is treated as a vari-
able. We say that a literal /it in the pre-state is a potential-match of the precondi-
tion prec, iff: (i) they are unifiable, and (%) let new-bindings ({p1/l1,p2/l2, s Pn/ln})
= unify(substitute(prec, bindings), the number of P; that are domain constants (as op-

3.3. LEARNING OPERATORS INCREMENTALLY 31

op-name: hold-with-vise

Pre-state:

(has-device milling-machinel visel)
(on-table milling-machinel parti)
(is-available-table milling-machinel visel)

(is-empty-holding-device visel milling-machinel)

(is-available-tool-holder milling-machinel)
(is-available-part parti)

(is-clean partil)

(size-of partl length 4)

(size-of partl width 3)

(size-of partl height 2.25)

(shape-of partl rectangular)

(hardness-of partl soft)

(material-of partl bronze)

Delta-state:

adds:

(holding milling-machinel visel partl side4)
dels:

(is-empty-holding-device visel
milling-machinel)

(on-table milling-machinel parti)
(is-available-part parti)

Figure 3.7: The second observation of the operator
HOLD-WITH-VISE. The main differences from the first
observation shown in Figure 3.1 are that (i) the ma-
chine in use is a milling-machine instead of a drill, (%)
there is no drill-tool being held by the machine, and
(#it) the part is made of a different material and has a
different size.

milling-machinel

mi Vise1

Table1 l

Figure 3.8: Pre-state of observation
in Figure 3.7.

milling-machinel

Parti
Visel

Tablel

Figure 3.9: Post-state of observation
in Figure 3.7.

posed to variables) is at most one. That is, /it has at most one constant that is different

from prec.

In steps 3 and 4, if prec does not have any potential matches, then prec can not be present
in the pre-state no matter what variable bindings are given, thus it is removed from the
S-rep. Frequently this is because no literal in the pre-state has the same predicate name
as prec. In steps 5 and 6, if prec has exactly one potential match, then prec is generalized

32 CHAPTER 3. LEARNING OPERATORS BY OBSERVATION

procedure: update_S_rep_from_observation

Input: op, obs, bindings
Output: the S-rep

1. for each prec € the S-rep

2 potential-matches(prec) + find_potential_matches (prec,pre-state(obs),bindings)
3 if potential-matches(prec)= NIL

4 then S-rep < S-rep \{prec}

5. if potential-matches(prec) has 1 element

6 then S-rep + (S-rep \{prec}) U generalize(prec, bindings)

7 if potential-matches(prec) has more than 1 element

8 then do not modify the S-rep

Figure 3.10: Updating the S-rep of the operator preconditions given a new observation. The
algorithm is polynomial in the size of the pre-state.

as a result of the unification of prec with the unique potential match, /it, in the pre-state.
If one constant in prec is unified with another constant in the pre-state, the constant
in the S-rep is generalized to a variable. Otherwise, in steps 7 and 8, prec has several
potential matches, thus OBSERVER avoids this ambiguity by keeping prec as it is in the
S-rep.

In essence, 0BSERVER allows at most one constant-to-variable replacement for each S-rep
precondition. It generalizes a constant to a variable only when there is one difference be-
tween the precondition and the corresponding literal in the pre-state of the observation.
This is similar to the concept of learning-one-disjunct-at-a-time [Vanlehn, 1987]. A care-
ful ordering of traces by expert may, in theory, speed up the generalization. 0BSERVER’s
algorithm is still effective without that, as demonstrated in our empirical results, because
the number of domain constants is relatively small compared with the number of objects.

For example, consider the operator shown in Figure 3.4 and a new observation shown
in Figure 3.7. Procedure learn_variable_bindings learns a set of bindings bindings =
{<vi>/partl, <v2>/visel, <v3>/milling-machinel,side5/side4} by matching the ef-
fects of the operator against the delta-state of the new observation. Then, OBSERVER
computes the potential-matches for each precondition in the S-rep of the operator giving
bindings. We see that there are no potential-matches for (holding-tool <v3> <v5>) be-
cause no element in the pre-state has the predicate name holding-tool, i.e., for every lit
in the pre-state unify(/it, (holding-tool <v3> <v5>)) = NIL. Note that (size-of parti
width 3) is a potential-match of (size-of <vi1> width 2.75) because unify((size-of
partl width 3), (size-of <v1> width 2.75)) = {(3/2.75)}, which has exactly one con-

3.3. LEARNING OPERATORS INCREMENTALLY 33

stant substitution; however, (size-of parti length 5.5) is not a potential-match of
(size-of <v1> width 2.75), because unify((size-of partl width 3), (size-of <vi>
length 5.5)) = {(width/length,3/5.5)}, which requires two constant substitutions.
Here are some examples of what find_potential_matches returns:

potential-match((holding-tool <v3> <v5>)) = NIL;
potential-match((size-of <vi> width 2.75)) = {(size-of parti width 3)};

Therefore, ((holding-tool <v3> <v5>) is removed from the S-rep. (size-of <v1> width
2.75) is generalized to (size-of <v1> width <anything>) by unifying it with (size-of
partl width 3). Since <anything> is not constrained by any other preconditions in
the S-rep, OBSERVER learns that the width of a part can be any value and is irrel-
evant to the operator and thus is removed from the S-rep. Similarly, the precon-
ditions (size-of <v1> height 2.75), (size-of <v1> length 5.5), (material-of <v1>
copper) are removed from the S-rep. The modified operator is shown in Figure 3.11,
along with the extraneous preconditions that are removed from the initial operator.

3.3.3 Updating the operator effects

Figure 3.12 describes the procedure update_effects_from_observation, for updating
the effects of an operator from an observation. OBSERVER first generalizes the effects
that have unambiguous matches in the delta-state (steps 4-9). Steps 10-18 show how
OBSERVER learns conditional effects. If an effect of the operator does not unify with any
element in the delta-state of the observation, then it is learned as a conditional effect.
The specific representation of the preconditions of this conditional effect is initialized
to the S-rep of the preconditions of the operator (steps 10-13). Every element in the
delta-state that does not unify with any effect is also learned as a conditional effect (steps
14-18), and its specific precondition representation is the parameterized pre-state of the
current observation. OBSERVER does not update an effect that can be unified with more
than one literal in the delta-states.

To illustrate how OBSERVER generalizes an effect, consider the operator HOLD-WITH-VISE
as shown in Figure 3.4 and a new observation shown in Figure 3.7. Matching the ef-
fects of the operator against the delta-state of the observation generates the follow-
ing bindings: {partl/<vi>, visel/<v2>, milling-machinel/<v3>, side4/side5}. The ef-
fect (add (holding <v3> <v2> <v1> sideb)) is generalized to (add (holding <v3> <v2>
<vi> <v4>)) because the constant sideb in the effect is substituted with a different con-
stant side4 in the delta-state. Other effects are kept as they are. Also, since the mapping
between the effects and the delta-state is unambiguous, no conditional effects are learned.
The updated operator is shown in Figure 3.11.

34 CHAPTER 3. LEARNING OPERATORS BY OBSERVATION

(operator hold-with-vise
(preconds ((<v3> Machine) (<v2> Vise) (<v1> Part) (<v4> Side))
(and (has-device <v3> <v2>)
(is-available-table <v3> <v2>)
(is-empty-holding-device <v2> <v3>)
(shape-of <v1> rectangular)
(on-table <v3> <vi>)
(is-clean <vi>)
(hardness-of <v1> soft)
(is-available-part <vi>)
(effects
(add (holding <v3> <v2> <vi> <v4>))
(del (on-table <v3> <vi>))
(del (is-available-part <vi>))
(del (is-empty-holding-device <v2> <v3>))))

extraneous preconditions

(holding-tool <v3> <v5>)
(size-of <vi> width <v6>)
(size-of <vi1> height <v7>)
(size-of <v1> length <v8>)
(material-of <vi> <v10>)

Figure 3.11: Learned operator HOLD-WITH-VISE when the observations in Figure 3.1 and 3.7
are both given to OBSERVER. The preconditions listed here are the literals in the S-rep of the
operator. Note that the type of variable <v3> has been generalized to Machine from the initial
operator shown in Figure 3.4.

The next example illustrates how conditional effects are learned. Given a new observa-
tion shown in Figure 3.13 and the operator that was shown in Figure 3.11, OBSERVER
matches the effects of the operator against the delta-states of the observation. Bind-
ings {drill2/<v3>, part2/<v1>, vise2/<v2>} are learned. The effects (del (on-table <v3>
<v1>)), (del (is-available-part <v1>)), and (del (is-empty-holding-device <v2> <v3>))
each has an unambiguous match in the delta-states, i.e., (del (on-table drill2 part2)),
(del (is-available-part part2)),and (del (is-empty-holding-device vise2 drill2)),
respectively. The effect (add (holding <v3> <v2> <v1> <v4>)) is not unifiable with any
literal in the delta-state and therefore is learned as a conditional effect of the operator.
Delta-state (add (holding-weakly drill2 vise2 part2 side0)) is not unifiable with
any effect of the operator, and thus it is parameterized and learned as a conditional effect.
The resulting operator with conditional effect is shown in Figure 3.16.

3.3. LEARNING OPERATORS INCREMENTALLY 35
procedure: update_effects_from_observation
Input: bindings, learned operator op, new observation obs
Output: modified effects(op)
1. effects + Effects(op)
2. deltas + delta-state(0bs)
3. for every e € Effects(op)
4. if there 3 d € deltas s.t. is_unambiguous_pair(e,d) ;3 Figure 3.5
then
5. € generalize (e, bindings)
6. replace e with ¢’
7. if e is a conditional effect, update its conditional preconditions
8. effects « effects \ {e}
9. deltas « deltas \ {d}
10. for every e € effects
11. if V d € deltas, unify(e, d1) = NIL
then ;13 learning a conditional effect
12. conditional_effects(op) + conditional_effects(op) U e
13. S-rep(e) « S-rep(op)
14. for every d € deltas
15. if V el € effects, unify(el, d) = NIL
then 333 learning a conditional effect
16. new-effect = parameterize(d)
17. conditional_effects(op) + conditional_effects(op) U {new-effect}
18. S-rep(new-effect) < parameterize(pre-state(obs))

Figure 3.12: Updating the effects of an operator from a new observation. Every effect that has
a unique match with the delta-state is generalized according to the match. Every effect that is
not unifiable with any element in the delta-state, and every element in the delta-state that is

not unifiable with any effect, are learned as conditional effects.

36 CHAPTER 3. LEARNING OPERATORS BY OBSERVATION

op-name: hold-with-vise

Pre-state:

(has-device drill2 vise2)
(on-table drill2 part2)
(is-available-table drill2 vise?2)
(is-clean part2)
(is—empty—holding-device vise2 drill2)
(holding-tool drill2 spot=-drill2)
(is-available-part part2)
(size-of part2 diameter 4.75)
(size-of part2 length 5.5)
(material-of part2 bronze)
(hardness-of part2 soft)
(shape-of part2 cylindrical)

Delta-state:

adds:

(holding-weakly drill2 vise2 part2 sideO)
dels:

(is-empty-holding-device vise2 drill2)
(on-table drill2 part2)
(is—available-part part2)

Figure 3.13: The third observation of the operator
HOLD-WITH-VISE. Note that the effect has “holding-
weakly” instead of “holding.” OBSERVER thus learns
conditional effects.

Drill2

Spot-driliz [J
| pé;%2|; i vige2 i ;

Table2

Figure 3.14: Pre-state of observation
in Figure 3.13

drill2

Spot-drill2

Figure 3.15: Post-state of observa-
tion in Figure 3.13

3.3. LEARNING OPERATORS INCREMENTALLY 37

(operator hold-with-vise
(preconds ((<v3> Machine) (<v2> Vise) (<v1> Part) (<v4> Side))
(and (has-device <v3> <v2>)
(is-available-table <v3> <v2>)
(is-empty-holding-device <v2> <v3>)
(on-table <v3> <vi>)
(is-clean <vi>)
(hardness-of <v1> soft)
(is-available-part <vi>)
(effects (<v6> spot-drill))
(if (and (size-of <v1> diameter 4.75)
(size-of <v1> length 5.5)
(shape-of <v1> cylindrical)
(hardness-of <v1> soft)
(material-of <vi1> bronze)
(holding-tool <v3> <v6>))
(add (holding-weakly <v3> <v2> <v1> side0)))
(if (and (shape-of <v1> rectangular)
(has-device <v3> <v2>)
(is-available-table <v3> <v2>)
(is-empty-holding-device <v2> <v3>)
(on-table <v3> <vi>)
(is=clean <v1>)
(is-available-part <vi>)
(add (holding <v3> <v2> <vi1> <v4>)))
(del (on—-table <v3> <vi>))
(del (is-available-part <vi>))
(del (is-empty-holding-device <v2> <v3>)))))

extraneous preconditions:

(holding-tool <v3> <v5>)
(size-of <v1> width <v6>)
(size-of <v1> height <v7>)
(size-of <v1> length <v8>)
{material-of <vi> <v10>)
(shape-of <vi1> <v11>)

Figure 3.16: Operator HOLD-WITH-VISE after learning from observations shown in Figures 3.1,
3.7, and 3.13. Note the conditional effects and conditional preconditions.

38 CHAPTER 3. LEARNING OPERATORS BY OBSERVATION
3.4 Complexity Analysis

This section analyzes the complexity of learning by observation.

Let:
n = maximum number of literals in a state description (either pre-state or post-state)
m = maximum number of arguments in a literal
[= maximum number of conditional effects in an operator

Thus:

t} mber of literals in the delta-states 1

e nu 7 1N
S LIULLIOTL UL LT 11l vlIY UTiuvw o uauy

O(n)

v

unifying two literals has time complexity O(m)

Initializing the operators

Parameterizing each literal in the pre-state and delta-state has time complexity O(m).
There are O(n) literals in each pre-state or delta-state. Therefore, initializing an operator
has time complexity O(mn).

Learning the variable bindings

Learning variable bindings by matching the effect of an operator with the delta-state of
an observation requires that every effect be unified with every literal in the delta-state.
Since there are O(n) literals in the effects of an operator and O(n) literals in each delta-
state, there are O(n?) pairs of literals to unify. Therefore the time complexity for learning
the variable bindings is O(mn?).

Updating the S-rep

The computation for updating the S-rep comes from unifying every literal in the S-rep
with every literal in the pre-state in find_potential matches. There are O(n?) such
pairs to unify, because there are O(n) literals in each pre-state and O(n) literals in each
each S-rep. Since each unification has time complexity O(m), the time complexity for
updating the S-rep is O(mn?).

Updating the effects

Given variable bindings that are already learned, the effects of an operator is updated
in time O(mn), because there are O(n) effects in an operator and each effect is updated
in time O(m). Each conditional precondition is updated in time O(mn?). Since the
total number of conditional effects is bounded by [, the time complexity of updating
conditional preconditions is O(Imn?).

3.5. DISCUSSION 39

3.5 Discussion

We now discuss some issues related to the two heuristics that are used in learning by
observation.

3.5.1 Implication of Occam’s Razor

Our algorithm prefers simpler effects, i.e., it learns operators with as few conditional
effects as possible; however, if different alternatives have the same complexity, Occam’s
Razor does not favor one over another. For example, given an observation shown in
Figure 3.17, the operator learned from it shown in Figure 3.19, and a new observation
shown in Figure 3.18. There are two ways to update the operator effect using this new
observation, as shown in Figure 3.20 and Figure 3.21. Both updates result in the same
number of conditional effects being learned.

op-name: op-2 op-name: op-2
Pre-state: Pre-state:
(H a) (H ¢
(H b) (H 4
(F ab) (G c d)
Delta-state: Delta-state:
adds: (add (P a b)) adds: (add (P c d))
(add (Q a b)) (add (Q 4 ¢))
Figure 3.17: The first observation of the Figure 3.18: The second observation of
operator op-2. the operator op-2.

In theory, the above situation may occur; however, we have not yet encountered it in our
experiments. To resolve this ambiguity, one could pick one update at random, or ask the
expert to identify how the effects should be updated. Another way is for the expert to
separate the ambiguous predicate into two distinct predicates so that 0BSERVER can learn
the correct effect automatically. For instance, if the effect (add (P <x> <y>)) should be
learned as a regular effect and (add (Q <x> <y>)) should be learned as a conditional
effect, then the predicate Q can be represented using two distinct predicates: Q1 for the
first observation and Q2 for the second. The ambiguity is thus resolved.

40 CHAPTER 3. LEARNING OPERATORS BY OBSERVATION

op-name: op-2

(operator op-1
(preconds ((<x> TYPE_a)
-(<y> TYPE_b))
(and (H <x>)
(H <y>)
(F <x> <y>))
(effects
((add (P <x> <y>))
(add (Q <x> <y>))

Figure 3.19: The learned operator
from observation in Figure 3.17.

bindings ::{c/<x>, d/<y>}

(operator op2
(preconds ((<x> Type))
(and (H <x>)
(H <y>)))
(effects
(Cadd (P <x> <y>)))
(if (F <x> <y>)
(add (Q <x> <y>)))
(if (G <x> <y>)
(add (Q <y> <x>)))))

Figure 3.20: scenario 1: Learned
operator op-2. (Q <x> <y>) s
learned as a conditional effect.

bindings = {d/<x>, c/<y>}

(operator op2
(preconds ((<x> Type))
(and (H <x>)
(H <y>)))
(effects
((add (Q <x> <y>)))
(if (F <x> <y>)
(add (P <x> <y>)))
(if (G <y> <x>)
(add (P <y> <x>)))))

Figure 3.21: scenario 2: Learned
operator op-2. (P <y> <x>) is
learned as a conditional effect.

3.6. SUMMARY 41

3.5.2 Learning the S-rep

One way to learn the S-rep is to find the maximal specific common generalization of the
S-rep and the pre-state of the new observation. In our application domains, the number
of facts in the pre-state and post-state are typically much larger than the number of
preconditions and effects of the corresponding operators, because many facts in the state
are not relevant to the operator. For example, in the process planning domain, the pre-
state and post-state typically include fifty to seventy assertions, whereas an operator
usually has two to six preconditions or effects. In the absence of background knowledge
for identifying the portion of the world state relevant to the planning operator, it is
computationally expensive to find the maximally specific common generalization of the
pre-states. In fact, Haussler [Haussler, 1989] has proven that finding such generalizations
is NP-complete. OBSERVER does not learn the most specific generalization. Instead, it
trades off the amount of generalization for the efficiency of generalization. DBSERVER
generalizes the S-rep by a simple unification of each S-rep precondition with every
literal in the pre-state of the observation. A precondition is removed iff it is not unifiable
with any literal in the pre-state and the S-rep is not generalized in the presence of
ambiguity.

3.6 Summary

This chapter presented details of algorithms for learning operators by observation. The
input for learning are observations of expert’s solution traces, {0bs: (pre-state(obs), delta-
state(obs), op-name)}. Each observation consists of the operator name, the pre-state,
and post-state.

Given these observations, OBSERVER learns the S-rep of the operator preconditions by
generalizing the pre-states of the observations in an efficient specific-to-general manner
that does not find the most specific common generalization, and therefore avoiding the
computational intractability. The generalization process first matches the effects of the
operator against the delta-state of the observation to learn a set of partial bindings for the
variables in the operators. It then removes extraneous preconditions based on learning
the potential-matches for each precondition. Effects are learned by generalizing every
element in the delta-states of the observations. The literals that occur in some delta-
states of the observations but not in other delta-states are learned as conditional effects.
OBSERVER processes observations in polynomial time.

42

CHAPTER 3. LEARNING OPERATORS BY OBSERVATION

Chapter 4

Planning while Learning Operators

The previous chapter presented an algorithm for learning tentative operators from obser-
vation. These initial operators often include overly-specific preconditions, overly-general
preconditions, and incomplete effects. To further refine operators, 0BSERVER uses them
to solve practice problems and refines them based on plan execution traces. Refinement
requires that planning, execution, and learning be integrated. In our approach, when
solving a problem using incomplete and incorrect operators, 0BSERVER first generates
an initial plan that achieves the preconditions in the general representation (G-rep) of
each operator but does not require achieving preconditions in the specific representation
(S-rep) of the operator. The planner repairs the plan when execution failures arise,
by using the S-rep to determine which additional preconditions to achieve to make the
failed operator applicable.

This chapter describes how OBSERVER practices with initially incomplete and incorrect
operators. Section 4.1 describes ways in which operators can be incomplete and incorrect
and the impact of this incorrectness on the effectiveness of classical planning systems.
Section 4.2 discusses issues relevant to planning with imperfect operators. Section 4.3
presents a framework for integrating planning, execution, and learning, and describes
algorithms for planning with imperfect operators and for plan repair upon execution
failure. Section 4.4 describes some implementation details. Section 4.5 delimits the
generality of our approach. Finally, Section 4.6 summarizes this chapter.

4.1 Domain Knowledge Imperfections

Operators can be incomplete and incorrect in the following ways [Huffman et al., 1993]:
overly-general preconditions, overly-specific preconditions, incomplete effects, extraneous

43

44 CHAPTER 4. PLANNING WHILE LEARNING OPERATORS

effects, and missing operators. In this section, we explain why these types of domain
knowledge imperfections occur in OBSERVER and how they affect planning.

1. Quverly-specific preconditions: The S-rep of the operator preconditions can have
unnecessary preconditions and thus be too specific. Planning with overly-specific
preconditions forces the planner to do unnecessary search while achieving the extra-
neous preconditions of the operators. In cases where the extraneous preconditions
are not achievable, the planner cannot find solutions to problems that are solvable
with correct operators.

The G-rep may also be overly-specific due to 0BSERVER’s initial assumption that
there are no negated preconditions. If OBSERVER adds a precondition to the G-
rep in response to a near miss negative example, and if the true reason for the
unsuccessful execution of the operator is due to a missing negated precondition
(instead of the unsatisfied precondition in the S-rep), then the G-rep is over-
specialized.

2. Overly-general preconditions: The S-rep of the operator preconditions can be
overly-general—sometimes OBSERVER over generalizes the S-rep, because it first
assumes there are no negated preconditions. But it compensates for this simplify-
ing assumption by learning negated preconditions when they are detected during
practice. The G-rep of the operator precondition is general by definition. While
OBSERVER plans with overly-general preconditions, some true preconditions of the
operators in the plan are not considered. The plan may therefore miss some steps
and thus, an operator in the plan may fail to execute in the environment because
of unmet preconditions.

3. Incomplete effects: Some effects of an operator may not have been learned before the
operator is used during planning. For example, the effects of an operator can also
be masked by the pre-state—a literal that would otherwise be added in the effects of
an operator will not be detected by OBSERVER if the literal is already present in the
pre-state of the corresponding observation. These masked effects are not learned
as effects of the operators from one observation. They may be learned from future
observations of expert solutions and/or DBSERVER’s own successful executions where
the effects are not masked. Incomplete effects may cause the planner to have an
incorrect internal model of the state and, hence, the planner may generate incorrect
plans.

4. Exzxtraneous effects: Since OBSERVER records only effects that it sees, and because
the sensors are noise-free, no extraneous effects are learned.

4.2. ISSUES IN PLANNING WHILE LEARNING 45

5. Missing operators: An operator is missing from the domain knowledge if it is never
observed by our learning system. The only way to find the missing operator is by
observing an expert using it. The planner cannot solve a problem if the solution
requires a missing operators.

4.2 Issues in Planning while Learning

Learning operators automatically and incrementally during practice complicates the plan-
ning system in the following ways:

1. Classical planners presume a correct domain model. In our learning system how-
ever, the newly acquired operators are possibly incomplete and incorrect. How can
the planner generate plans to solve practice problems effectively and in the mean-
time generate learning opportunities for refining operators using incomplete and
incorrect domain knowledge?

2. Because of incomplete and incorrect operators used during practice, the plans gen-
erated by the planner may be incorrect, which in turn may lead to execution fail-
ures. Thus, plan repair upon execution failure is necessary. How can the planner
effectively repair the incorrect plan using incomplete and incorrect operators?

3. How can planning and execution be interleaved so that the system can solve practice
problems effectively and concurrently generate learning opportunities for refining
operators using incomplete and incorrect domain knowledge?

4.3 Planning with Incorrect Operators and Plan
Repair

OBSERVER learns both the S-rep and G-rep of the operator preconditions. Either the
S-rep or G-rep can be used for planning, each with different implications for the per-
formance of learning and planning. Using the S-rep for planning leads to conservative
system behavior in that generated plans usually have all the necessary steps but also
have unnecessary extra steps. Therefore, the plan steps can be executed successfully
to achieve their intended effects (except in the presence of incomplete operator effects);
however, the system would not have the opportunity to learn which preconditions are
extraneous. Using the G-rep for planning leads to more radical system behaviors in
that the plans may miss some steps because some unknown true preconditions may not

46 CHAPTER 4. PLANNING WHILE LEARNING OPERATORS

be achieved by the planner and, hence, execution failures may occur. The system can,
however, learn extraneous preconditions if a plan step is executed successfully.

Since 0BSERVER’s goals include both solving problems and learning operators, our ap-
proach uses the G-rep of the operator preconditions for planning. In this approach, the
individual plans generated for achieving the top-level goals achieve the preconditions in
the G-rep of each operator, but do not require achieving preconditions in the S-rep
of the operators. This has the advantage of generating an initial plan quickly and of
generating opportunities for operator refinement. During plan repair, the preconditions
in the S-rep are used to identify which additional preconditions should be achieved to
make the failed operator applicable.

4.3.1 The Plan Repair Algorithm

The plan repair algorithm is invoked upon OBSERVER’s execution failures. The algorithm
is given the following inputs:

e op, the operator that fails in the environment
e top-goals, the initial goals of the problem being solved
e current-state, the state in which the operator fails to execute, and

¢ plan, the remaining plan steps to be executed in order to achieve top-goals

In a nutshell, the plan repair algorithm first tries to generate a plan segment to achieve
one of the unmet preconditions in the S-rep of the failed operator. If this fails, it then
conjectures negated preconditions and tries to generate a plan segment to achieve one
of the negated preconditions. If this also fails, it generates a plan that does not use the
failed operator, but achieves the same goals as the failed operator.

Figure 4.1 gives a detailed description of the plan repair algorithm. In step 1, 0BSERVER
computes unmet-preconds, the preconditions in the S-rep of the failed operator op that
are not satisfied in the current-state. There are usually many such unmet-preconds. Since
some unmet-preconds may be extraneous preconditions of op, achieving all of them during
plan repair not only results in added search, but also prevents the system from generating
training examples for removing extraneous preconditions. Therefore, 0BSERVER generates
a plan segment to achieve only one unmet precondition, as described in steps 2-8. First,
OBSERVER chooses one precondition from unmet-preconds to achieve. Then, it calls the
basic planner to generate a plan segment to achieve goals-to-achieve (i.e., the union of
the chosen precondition and all the preconditions in the G-rep). If a plan segment is
found, a repaired plan is returned by concatenating the plan segment with plan, the

4.3. PLANNING WITH INCORRECT OPERATORS AND PLAN REPAIR 47

remaining plan steps to achieve top-goals; otherwise, the plan repair algorithm randomly
chooses another precondition (which may be the same as the previously chosen one) from
unmet-preconds to achieve by repeating steps 3-8. If unmet-preconds is the empty set, or
if OBSERVER cannot find a plan segment to achieve any unmet preconditions in the S-rep,
then OBSERVER conjectures negated preconditions and adds them to unmet-preconds, as
described in step 9. Then, the plan repair algorithm repeats steps 3-8 to generate a plan
segment to achieve one conjectured negated precondition. If the planner still cannot
generate a plan segment to achieve any unmet precondition, then it generates a plan to
achieve the effect that the failed operator op intended to achieve that does not use op

(step 12).

procedure: plan_repair_for_failed_op

Inputs: op, the operator that fails to execute in the environment,
top-goals, goals of the problem to solve,
current-state, a list of assertions that are true in the state,
plan, the remaining plan steps to be executed

Output: repaired-plan, a repaired plan for the failure

unmet-preconds « S-rep(op) \ current-state
Repeat until a repaired-plan is found:
precond < Choose_a_precond_to_achieve(unmet-preconds)
goals-to-achieve < G-rep(op) U {precond}
plan-segment + Plan(goals-to-achieve, current-state)
If (plan-segment # FAIL)
then ;; found a plan segment to achieve the precondition, return
repaired-plan + Concatenate(plan-segment, op, plan)
Return repaired-plan
unmet-preconds + Conjecture_negated_preconds
Repeat steps 3-8 for the new unmet-preconds
If (plan-segment = FAIL)
then ;; abandon the original plan, replan from scratch
12. new-plan + Plan(Goals-of(op) ,current-state)
13. Return Concatenate(new-plan,plan)

S T W

= = O 00 =7
=

Figure 4.1: OBSERVER’s plan repair algorithm. The algorithm generates a plan segment to
achieve an additional precondition in the S-rep of the operator or a conjectured negated pre-
condition, or it generates a plan that does not use the failed operator.

48 CHAPTER 4. PLANNING WHILE LEARNING OPERATORS

Note that it is possible that more than one true precondition of a failed operator is not
satisfied in the state when execution failure occurs. Since OBSERVER needs to generate
near miss negative examples and that many preconditions in the S-rep may be unnec-
essary preconditions, the plan repair algorithm generates a plan segment to achieve only
one unmet precondition at a time. Therefore, it is often necessary to repair plan for
a failed operator several times before this operator can be executed successfully in the
environment.

4.3.2 Integrating planning, execution and plan repair

OBSERVER’s algorithm for integrating planning, execution, and learning is presented in
Figure 4.2. Given a problem to solve, OBSERVER first generates an initial plan (step 1)
using the learned operators. The G-rep of each operator in the initial plan is achieved by
the planner, but some preconditions in the S-rep may not be achieved. The current-state
is initialized to the initial-state of the practice problem. Whenever the top-level goals
of the problem are satisfied in the current state, 0BSERVER returns SUCCESS in solving
the problem. Each operator in the initial plan is executed in the environment, if the
preceding operator is executed successfully and if the goal this operator achieves is not
already satisfied in the state. The current-state is updated according to each execution.
When an operator is executed in the environment, there are two possible outcomes, which
generates either positive or negative training examples for refining operators:

1. The state does not change after executing op. In this case, we say that op is
executed unsuccessfully.

An operator executes unsuccessfully because DBSERVER achieves the preconditions
in the G-rep of each operator during planning without necessarily achieving all
the preconditions in the S-rep. This introduces the possibility of incomplete or
incorrect plans in the sense that a real precondition is unsatisfied. Unsuccessful
executions form the negative examples that 0BSERVER uses for refining operators as
discussed in Chapter 5. Upon each unsuccessful execution, 0BSERVER updates the
G-rep by learning necessary preconditions of the operator (step 10). 0BSERVER also
attempts to generate a repaired-plan (step 11). If such a plan is found, 0BSERVER
continues execution using the repaired plan; otherwise, 0BSERVER removes the failed
operator and continues execution with the remaining plan (steps 12-15).

2. The state changes after executing op. In this case, we say that op is executed
successfully.

Successful executions form the positive examples that OBSERVER uses for refining
operator as described in Chapter 5. Note that a successful execution may still have

4.3. PLANNING WITH INCORRECT OPERATORS AND PLAN REPAIR 49

procedure: practice_and_learn

Inputs: top-goals,

goals of the problem to solve

initial-state, initial state of the problem,

Output: SUCCESS or FAILURE in solving the problem

1.
2.

o N

10.
11.

12.
13.
14.
15.
16.

17.
18.
19.
20.

plan « Plan (top-goals, initial-state)
current-state < initial-state

if top-goals are satisfied in current-state then return(SUCCESS)
if plan = NULL then plan < Plan(top-goals, current-state)

if plan = FAIL

then return(FAILURE)

else

op « First_step_of(plan)
new-state < Execute_in_environment(op)
if (new-state = current-state)

then

;; unsuccessful execution, refine operator, repair plan

Update the G-rep
repaired-plan + plan_repair_for_failed op

(op, top-goals, current-state)
if (repaired-plan = FAIL)
then plan <+ plan \ (op)
else plan « repaired-plan
goto 3

if (new-state # current-state)

then

;; successful execution, refine operator
Update the S-rep and operator effects
current-state < new-state

plan « plan \ (op)
goto 3

Figure 4.2: OBSERVER’s algorithm for integrating planning, execution, and learning. When
solving a problem, OBSERVER starts execution when the planner has achieved all the precondi-
tions in the G-rep of the operators in the plan. OBSERVER refines operators based on executions.
Plan repair is invoked upon each execution failure.

50 CHAPTER 4. PLANNING WHILE LEARNING OPERATORS

incorrect predictions of how the state changes due to incomplete operator effects.
After each successful execution, 0BSERVER generalizes the S-rep by removing the
preconditions that are not satisfied in current-state, and generalizes the effects of op
if missing effects are observed in the delta-state of the execution (step 17). OBSERVER
then updates the current state and continues execution with the remaining plan
(steps 18-20).

Note that our notion of success or failure of execution is based on the correctness of
the operator preconditions, rather than on the correctness of the predictions by operator
effects.

4.4 Notes on Implementation

This section describes some implementation details in OBSERVER.

4.4.1 Resource bounds

Interleaving planning and execution is undecidable because even classical planning is un-
decidable. One common technique used for search in the space of an undecidable problem
is to use resource bound. The following resource bounds are used in OBSERVER during

practice: !

Maximum plan-repair depth

A parameter *max-plan-repair# is used as a limit for the maximum number of recursion
in repair one failed operator. ‘

Maximum number of executions allowed to solve a problem

Another resource bound is to limit the maximum number of trials of operator execu-
tions in the environment. In OBSERVER, two parameters *max-num-of-unsuc-exe* and
max-num-of-suc-exe are used to upper-bound the total number of unsuccessful and
successful executions that OBSERVER tries before it stops working on the problem.

1We have experimented with different heuristics (such as goal loop detection, heuristics for choosing
which operator to apply next) for planning and plan repair during practice. None of the heuristics
improves OBSERVER’s performance.

4.5. DISCUSSION 51

Maximum number of plan repairs allowed for each operator

When an operator fails to execute in the environment, 0BSERVER repairs the plan by
achieving one condition in the S-rep of the operator preconditions at a time and re-
executes the failed operator when the condition in the S-rep is achieved. When the
operator fails in the first place, there may be several necessary preconditions of this oper-
ator that are not yet learned as conditions in the G-rep. Therefore, it may take a number
of plan repairs before this operator becomes applicable, since the plan repair mechanism
achieves only one condition in the S-rep at a time. But if this failed operator contains
true preconditions that are not achievable under the current circumstance, 0BSERVER may
repair this operator endlessly as it may not know that some true preconditions are not
achievable. To prevent this from happening, a parameter *max-num-plan-repair-per-op#*
is used to limit the number of plan repairs for each failed operator.

4.4.2 Binding generation

OBSERVER’s underlying planner, PRODIGY4.0, generates bindings for every variable in
an operator. Since OBSERVER uses the G-rep for planning, it generates bindings for
every variable in the G-rep. The variables in the S-rep, but not in the G-rep, may
be extraneous variables, because the S-rep often contains extraneous preconditions. To
learn whether such variables are extraneous, 0BSERVER may execute the operator even
though there are no objects of the right type for these variables. If the operator executes
successfully under this circumstance, the preconditions using these variables are learned
as extraneous preconditions, and these variables are learned as extraneous variables.

4.5 Discussion

OBSERVER implements a framework for integrating planning, execution, and learning that
incrementally refines imperfect operators from practice. This section describes the scope
of this framework.

4.5.1 Applicability to other operator-based planners

Although O0BSERVER’s framework for integrating planning, execution, and learning is im-
plemented in the context of the PRODIGY4.0 planner, we argue that this framework can
be applied to most operator-based planners for the following reasons:

52 CHAPTER 4. PLANNING WHILE LEARNING OPERATORS

e Most operator-based planners use a similar representation of operators. These
operators all have preconditions, and effects that have the same semantics (i.e.,
preconditions of an operator denote the conditions under which the operator can
be applied successfully, the effects of the operator denote changes to the state of
the world when the operator is executed). The preconditions and the effects are
exactly what OBSERVER is learning.

o The planning and plan repair strategy used in OBSERVER is solely dependent upon
the representation of the learned operators. 0BSERVER does not depend on
PRODIGY4.0’s search principles of combining backward chaining and forward pro-
jection of the states. OBSERVER does not modify PRODIGY4.0’s search algorithm
either. Plan-space operator-based planners can generate plans for practice prob-
lems using the G-rep, and can repair a plan using the S-rep of the operator
preconditions, in the same way as PRODIGY4.0.

4.5.2 Strategies for interleaving planning and execution

When interleaving planning and execution, there are many strategies for determining
when to plan and when to execute. We discuss what the advantages and disadvantages
are of several strategies.

1. Achieve all the preconditions in the G-rep of the operator preconditions before
execution starts. This is 0BSERVER's strategy, which has the following advantages:

o OBSERVER does not need to achieve all the preconditions in the S-rep, thus
avoiding unnecessary search and facilitating the rapid generation of an initial
plan to achieve the top-level goals

® The system generates useful learning opportunities: if an operator executes
successfully when some preconditions in the S-rep are not satisfied in the
state, then the unsatisfied preconditions are learned to be extraneous pre-
conditions and are thus removed from the S-rep, resulting in more complete
operators

One potential problem of this approach is that initially, when the G-rep of operator
preconditions is overly-general, it may take a long time for the system to solve a
problem; however, empirical results, as shown in Chapter 6, demonstrate that this
strategy is effective for generating learning opportunities during practice and for
solving problems using incomplete and incorrect operators.

4.5. DISCUSSION 53

2. Achieve all the preconditions in the S-rep of the operator preconditions before
execution. The advantage of this approach is that the plans thus generated are
correct in the sense that they do not miss operators; however, such plans often
contain unnecessary extra operators. The disadvantage is that it may take a long
time to generate a plan when the S-rep is overly-specific and that training examples
for removing extraneous preconditions from the S-rep cannot be generated.

3. Start execution as soon as the first operator with satisfied G-rep is found by the
planner to achieve a top-level goal or a subgoal. This approach has the advantage
that it can quickly generate a plan step to execute. On the other hand, this strategy
does not use the knowledge the planner already has to plan ahead before execution
starts. Thus it may lead to executions of operators that are not needed for solving
the given problem. This is especially dangerous if many steps are irreversible.

4. Execute the plan when all the preconditions in the G-rep are achieved as well as
a subset of the preconditions in the S-rep are achieved. This can be a very good
strategy, if there are good heuristics that choose which subset of the preconditions
in the S-rep are more likely to be the true operator preconditions; however, there
is no obviously good domain-independent heuristic. Furthermore, to generate near
miss negative examples for specializing the G-rep, it is necessary to generate a
negative example where a true operator precondition is not satisfied in the pre-
state of the execution.

4.5.3 Other plan repair strategies

There are also several methods of plan repair that can be considered by 0BSERVER. In this
section, we discuss the following three types of plan repair that are relevant to 0BSERVER:
safe repair, unsafe repair, and inadmissible repair.

o A safe repair method ensures that the postconditions of the plan segment generated
during plan repair do not undo the preconditions that are needed for executions of
the rest of the initial plan

e An unsafe repair method may generate a plan segment whose postconditions undo
some preconditions that are needed for the execution of the rest of the initial plan;
however, the undone states can be re-achieved by other operators in the domain
(e.g., domains where every action is reversible)

e An inadmissible repair method may generate a plan segment whose postconditions
undo some preconditions that are needed for executions of the initial plan, and

54 CHAPTER 4. PLANNING WHILE LEARNING OPERATORS

‘that the undone states cannot be re-achieved by any operators in the domain (e.g.,
domains where some actions are irreversible)

Although a safe repair may seem more desirable than an unsafe repair, because the rest
of the operators in the initial plan can be executed without additional plan repair, it is
not so for the following reasons:

e The preconditions of an operator that are violated by earlier plan repair can be
easily achieved immediately before 0BSERVER executes this operator

o It takes much longer to repair a plan upon each execution failure using a safe
repair method, because the planner must consider the preconditions of the rest of
the initial plan as goals during plan repair

o A precondition of a later operator may be achieved and deleted several times before
this operator is executed, especially when the initial plan misses many steps and
much plan repair is required. Achieving such a precondition as soon as it is violated
may be unnecessary

An inadmissible repair is in general not desirable as it causes an operator in the rest of
the initial plan to be invalid, because its preconditions are violated and unachievable.
OBSERVER may nonetheless generate inadmissible plan repairs because it may not know
all the effects of the operators. This is not a serious problem, because OBSERVER is able
to choose a different operator instead of using the original operator, when the original
operator fails to execute. Furthermore, most planning domains are “almost-reversible”
in that most literals can be added and deleted by some operators.

4.6 Summary

This chapter described how OBSERVER practices for operator refinement. First, we dis-
cussed how planning operators can be imperfect due to overly-general preconditions,
overly-specific preconditions, incomplete effects, extraneous effects, and missing opera-
tors, and how each type of imperfection complicates classical planning.

OBSERVER uses the G-rep of operator preconditions for initial planning. Since the G-rep
may miss some true preconditions of the operator, operators in the initial plan may fail to
execute in the environment, necessitating plan repair. During plan repair, 0BSERVER uses
the S-rep of the failed operator to determine which additional preconditions to achieve
to make the failed operator applicable.

4.6. SUMMARY 55

We argue that OBSERVER algorithm is applicable to operator-based planners in general.
Some issues related to different strategies for plan repair and for integrating planning,

learning, and execution were discussed.

36

CHAPTER 4. PLANNING WHILE LEARNING OPERATORS

Chapter 5

Refining Operators by Practice

So far we have described how DBSERVER learns operators by observation, and how 0BSERVER
plans and repairs plans during practice. This chapter describes our algorithms for refining
operators, using both positive and negative examples of operator executions generated
during practice. As described in Chapter 4, there are two possible outcomes of operator
execution during practice: (i) if an operator causes the state to change, then the execu-
tion is successful. Such executions are used as positive examples for operator refinement;
(#1) if the operator does not cause any changes in the state, then the execution is un-
successful. Such executions are used as negative examples for operator refinement. In
Section 5.1, we formalize the input and output for operator refinement. In Section 5.2,
we give detailed descriptions of the learning algorithm. In Section 5.3, we analyze the
computational complexity of the learning algorithm described and prove that the algo-
rithm runs in polynomial time. We also prove convergence of the learning algorithm in
Section 5.4. In Section 5.5, we discuss some issues related to operator refinement in our
approach. And finally we summarize this chapter in Section 5.6.

5.1 Input and Output

During practice, OBSERVER executes plans to solve problems, using the initial operators
learned by observation. Each execution is a quadruple <0p, P, D, B>, where Op is the
operator being executed, P is the pre-state of the execution, D is the delta-state of the
execution, and B is the variable binding of the operator. We say that an execution is
successful if it causes the state to change (i.e., the delta-state is nonempty). We say that
an execution is unsuccessful if it does not cause any state changes (i.e., the delta-state is
the empty set). Since OBSERVER only executes an operator if its effect is not already true

57

98 CHAPTER 5. REFINING OPERATORS BY PRACTICE

(operator hold-with-vise
(preconds ((<v3> Machine) (<v2> Vise) (<v1> Part) (<v4> Side) (<v7> Side))
(and (has-device <v3> <v2>)
(is-available-table <v3> <v2>)
(is-empty-holding-device <v2> <v3>)
(on-table <v3> <v1>)
(is-clean <vi>)
(hardness-of <vi> soft)
(is-available-part <vi>)
(effects (<v6> spot-drill))
(if (and (size-of <vi1> diameter 4.75)
(size-of <v1> length 5.5)
(shape-of <v1> cylindrical)
(hardness-of <vi> soft)
(material-of <vi> bronze)
(holding-tool <v3> <v6>))
(add (holding-weakly <v3> <v2> <vi1> <v7>)))
(if (and (shape-of <v1> rectangular)
(has-device <v3> <v2>)
(is—available-table <v3> <v2>)
(is-empty-holding—-device <v2> <v3>)
(on-table <v3> <v1>)
(is-clean <v1>)
(is-available-part <vi>)
(add (holding <v3> <v2> <v1> <v4>)))
(del (on-table <v3> <vi>))
(del (is-available-part <vi>))
(del (is-empty-holding-device <v2> <v3>)))))

extraneous preconditions:

(holding-tool <v3> <v5>)
(size-of <vi> width <v6>)
(size-of <v1> height <v7>)
(size-of <vi> length <v8>)
(material-of <vi1> <v10>)
(shape-of <vi1> <vi1>)

Figure 5.1: Operator HOLD-WITH-VISE learned from observations of expert solutions. Note
that the operator preconditions and the conditional preconditions have extraneous literals.
This operator will be further refined during practice.

5.1. INPUT AND OUTPUT 59

in the state, an unsuccessful execution occurs only when some true preconditions are not
satisfied in the state.

Figure 5.1 is an example of operator HOLD-WITH-VISE that is learned by observation. Note
that both the regular and conditional preconditions have extraneous literals. Figure 5.2
is an example of a successful execution. Figure 5.5 is an example of an unsuccessful
execution. Note that operator refinement by practice differs from the initial observation
stage in that the variable bindings are determined by the planner and, hence, are known
to OBSERVER for learning.

op-name: hold-with-vise drilla

bindings: {drill4/<v3>, partd/<vi>,
vised/<v2>, sided /<v7>}

Pre-state:

(has-device drill4 vise4)

(on-table drill4 part4) E§%§3§$72;5ﬁ5;7
(is—available-table drill4 vise4)

(is-clean part4) e
(is-available-part part4)
(size-of part4 diameter 3.0) Figure 5.3: Pre-state of execution in
(size-of part4 length 4.5) Figure 5.2.

(shape-of part4 cylindrical)
(material-of part4 iron)
(hardness-of part4 hard) arille
(is-empty-holding-device vise4 drill4)

Delta-state:

adds:

(holding-weakly drill4 vise4 part4 side4d)
dels: Brté
(is-empty-holding-device vise4 drill4)
(on-table drill4 part4)
(is-available-part part4)

vised

Tabled

Figure 5.2: A successful execution of the operator Figure 5.4: Post-state of execution in
HOLD-WITH-VISE shown in Figure 5.1. Figure 5.2.

60 CHAPTER 5. REFINING OPERATORS BY PRACTICE

op-name: hold-with-vise (Figure 5.1)
bindings: {drill5/<v3>, part5/<v1>, vise5/<v2>}

Pre-state:

(has-device drill5 viseb)
(on-table drill5 part5) drills
(is-available-table drill5 vise5)
(is-clean part5)
(is-available-part part5)
(size-of part5 diameter 3.0)

(size-of part5 length 5.5) W
(material-of part5 bronze) TN Nl >
(hardness-of part5 soft) p““ vises 7
(shape-of partb5 cylindrical) Tables ‘

(size-of part6 length 4.75)
(size-of part6 width 3.5)

(size-of part6 height 4.5)
(shape-of part6 rectangular)
(holding drill5 vise5 part6 sidel)

Delta-state: NIL

Figure 5.6: Pre-state of the execution
in Figure 5.5. Holding devise vise5 is
not empty and, hence, it cannot hold
a second part (i.e., part5)

Figure 5.5: An unsuccessful execution of the opera-
tor HOLD-WITH-VISE shown in Figure 5.1. This op-
erator fails to execute because a true precondition of
the operator (i.e., (is-empty-holding-device <v2>
<v3>)) is not satisfied in the pre-state.

5.2 Refining Operators

This section presents OBSERVER’s algorithm for refining operators during practice. The
refinement involves: (i) updating the S-rep of operator preconditions, (ii) learning the
G-rep of the operator preconditions, and (iii) updating the effects, including conditional
effects and conditional preconditions.

5.2.1 Updating the S-rep of operator preconditions

Updating the S-rep of operator preconditions by practice is similar to learning the S-
rep by observation, except for two differences. The first difference lies in the variable
bindings of the operators. When learning by practice, the bindings are known, because

5.2. REFINING OPERATORS 61

they are uniquely determined by the planner. But when learning by observation, most
bindings are unknown, even though partial bindings can be determined by matching the
operator effects with the delta-state. As a result, the S-rep can be generalized more
effectively by practice than by observation. The second difference is that the S-rep may
also be specialized by practice—negated preconditions are conjectured and added to the
S-rep (thus specializing the G-rep) from unsuccessful executions where all the S-rep
preconditions are satisfied in the pre-states.

Figure 5.7 describes the procedure update_S_rep_by_practice for updating the S-rep
of operator preconditions by practice. Steps 1-2 concern learning from positive examples
(i.e., successful executions). The S-rep is generalized by removing all the preconditions
whose instantiations, given the variable bindings, are not satisfied in the pre-state. For
example, given the initial operator shown in Figure 5.1 and the successful execution
shown in Figure 5.2, OBSERVER first instantiates the preconditions in the S-rep using
the bindings of the execution ({drill4/<v3>, part4/<vi>, vise4/<v2>, side4/<v7>}).
OBSERVER then checks if each instantiated precondition is in the pre-state of the execution.
In this example, the precondition (hardness-of <v1> soft) is not satisfied in the pre-
state and, hence, is removed from the S-rep.

procedure: update_S_rep_by_practice

Input: learned operator op, execution eze
Output: the S-rep

1. If exeis a successful execution

then ;; removing extraneous preconditions
2. for each s € S-rep, if s ¢ pre-state(exe), then S-rep + S-rep \{s}
3. If ezeis an unsuccessful execution
4, and if Vp € S-rep, p Epre-state(eze)

then ;; learning negated preconditions
5. for each s € pre-state(eze), if s ¢ S-rep and s ¢ extraneous_preconds(op)
then S-rep¢« S-rep U{(not(s))}

&>

Figure 5.7: Update the S-rep of operator preconditions by practice. This includes removing
extraneous preconds from successful executions and adding conjectured negated preconditions
from unsuccessful executions.

Steps 3-6 concern learning from negative examples (i.e., unsuccessful executions). Negated
preconditions are learned from unsuccessful executions where all the preconditions in the
S-rep are satisfied in the pre-state. The potentially negated preconditions are the liter-
als that are true in the pre-state of the unsuccessful execution, but are not specified in

62 CHAPTER 5. REFINING OPERATORS BY PRACTICE

the S-rep of the operator preconditions, nor in the extraneous preconditions previously
removed from the operator. In other words, a literal (not p) is a potential negated precon-
dition if: (i) Substitute(p, bindings) is in the pre-state of the unsuccessful execution, (%)
p is not in the S-rep of the operator preconditions, and (i) p is not an extraneous pre-
condition. OBSERVER adds potential negated preconditions to the S-rep.! Once negated
preconditions are added to the S-rep, they are subject to refinement (i.e., removal or
permanent retainment), and are used for plan repair just as other preconditions in the
S-rep. Since many potential negated preconditions may be conjectured and added to
the S-rep from one unsuccessful example, the negated preconditions are removed from
the S-rep at the end of each practice problem, so as not to increase the size of the S-rep.

For example, consider an unsuccessful execution of operator HOLD-WITH-VISE, shown in
Figure 5.8. (has-burrs part7) is the only literal in the pre-state of the execution that is
not in the S-rep, nor in the extraneous preconditions of the operator. Therefore, (not
(has-burrs <vi1>)) is conjectured as a negated precondition and added to the S-rep.
Note that, in general, more than one negated precondition may be conjectured from one
unsuccessful execution.

5.2.2 Learning the G-rep of operator preconditions

The G-rep of an operator is initialized to the empty set. It is specialized using negative
examples by adding elements from the S-rep that 0BSERVER confirms to be true precon-
ditions of the operator. Traditional methods for updating the G-set of a version space use
every negative example; however, there are usually multiple ways to specialize the G-set
given one negative example. In fact, Haussler [Haussler, 1988] proved that specializing
the G-set is an exponential process and the size of the G-set may grow exponentially
with the number of examples. When the number of negative examples is large, the size
of the G-set becomes unmanageable.

To avoid problems stemming from the exponential growth of the G-set, OBSERVER spe-
cializes the G-rep only when there is a unique specialization of the G-rep given the
negative example. We assume that after learning by observation, the S-rep is general
enough such that (i) all the constants are generalized to variables, if they are to be in the
true preconditions of the operators, and (i) the types of the variables in the operators
are correctly learned. Thus, the G-rep can be uniquely specified given a negative exam-
ple where exactly one precondition in the S-rep is not satisfied in the pre-state. Such

In our implementation, negated preconditions may also be conjectured when there are unsatis-
fied preconditions in the S-rep. This occurs when learning from an unsuccessful execution for which
OBSERVER has exhausted resource bound in plan repair. This provides 0BSERVER with more opportunities
for learning negated preconditions.

5.2. REFINING OPERATORS 63

op-name: hold-with-vise (Figure 5.1)
bindings: {drill7/<v3>, part7/<vi>, vise7/<v2>}

Pre-state:

(has-device drill7 vise7)

(on-table drill7 part7)

(is-clean part7)
(is~empty-holding-device vise7 drill7)
(is-available-table drill7 vise7)
(is-available-part part7)

(hardness-of part7 soft)

(material-of part7 brass)

(size-of part7 width 2.5)

(size-of part7 height 4.0) ’El vise?
(size-of part7 length 5.75)
(shape-of part7 rectangular)
(has-burrs part7) part6 has burrs on it

P L L R p i

drill?

Table?7

Figure 5.9: Pre-state of execution in

Delta-state: NIL .
Figure 5.8.

Figure 5.8: An execution of the operator
HOLD-WITH-VISE. This execution is unsuccessful, since
the application of this operator does not lead to
any state changes (delta-state is the empty set).
(has-burrs part7) is a literal in the pre-state that is
not in the S-rep, nor.in the extraneous preconditions
of the operator, and is learned as a negated precondi-
tion.

negative examples are called near misses. When there are multiple ways to specialize
the G-rep, OBSERVER does not specialize the G-rep, but rather, stores the unsuccessful
executions to learn from them later, when the S-rep is further generalized.

Figure 5.10 shows OBSERVER’s algorithm for learning the G-rep. In step 1, the G-rep
is initialized to the empty set. OBSERVER incrementally learns from a training instance
(either a successful or unsuccessful execution) by practice (steps 3-10). If the execution
is unsuccessful, 0BSERVER checks whether it is a near miss. If not, 0BSERVER stores this
failure execution in the list of failed-states to use it if it becomes a near miss when the
S-rep is further generalized. If the unsuccessful execution is a near miss, (i.e., there
is exactly one precondition, say p, in the S-rep not satisfied in the pre-state), then p
is learned to be a true precondition of the operator and the G-rep is specialized by

64 CHAPTER 5. REFINING OPERATORS BY PRACTICE

procedure: learn_G _rep_by_practice

Given: a list of executions{eze}
Learn: the G-rep

1. G-rep=10
2. failed-states < @
3. for every execution eze
4, it eze is an unsuccessful execution

then
5. if eze is a near miss

i.e., 3 p € S-rep s.t. p is the only S-rep precondition not satisfied in pre-state

6. then

7. if p is a negated precondition
then ;; reset the G-rep when adding a negated precondition

8. G-rep =0
9. G-rep = G-rep U {p}
10. else failed-states < failed-states U {exe}
11. if eze is a successful execution

then
12. S-rep = update_S_rep_by_practice(eze)
13. for each fail € failed-states
14. if fail is a near miss
15. then repeat steps 5-9
16. failed-states < failed-states \ {fail}

Figure 5.10: Learning the G-rep of operator preconditions incrementally by practice. The
G-rep is updated only when the negative example is a near miss, i.e., there is a unique special-
ization of the G-rep based on the unsuccessful execution. The negative examples that are not
near misses are stored and considered later, when further S-rep generalizations render them
near misses.

adding p. Note that p may be incorrectly learned as a true precondition, if the reason
for the unsuccessful execution is a missing negated precondition. This potential error is
corrected later, when a negated precondition is added to the G-rep, by removing all the
non-negated literals from the G-rep. Should a non-negated literal thus removed be a
true operator precondition, it will be added back to the G-rep with future near misses.?

2Another method for correcting this potential error is to save all the previous near misses. When
a negated precondition is added to the G-rep (and therefore to the S-rep), previous near misses are
re-verified, so that the incorrectly learned true preconditions are removed from the G-rep while other
preconditions are retained. Since negated preconditions are rare, both methods are efficient.

5.2. REFINING OPERATORS 65

Steps 11-16 describe the case when the input is a successful execution. After generalizing
the S-rep, OBSERVER re-examines previous unsuccessful executions in failed-states for
near misses. The G-rep is specialized accordingly, if any previous unsuccessful executions
become near misses due to the generalization of the S-rep.

For example, consider the operator shown in Figure 5.1 and an unsuccessful execution
shown in Figure 5.5. OBSERVER notices that there is only one unmet precondition in
the S-rep, (is-empty-holding-device <v2> <v3>). This precondition is thus learned as
a true precondition and the G-rep is specialize by adding (is-empty-holding-device
<v2> <v3>); however, if a second precondition (e.g., (is-clean part5)) in the S-rep is
not satisfied in the pre-state, then the execution is not a near miss and OBSERVER does
not specialize the G-rep.

5.2.3 Refining operator effects

Figure 5.11 summarizes the algorithm for refining operator effects (including conditional
effects and preconditions) by practice. This procedure is very similar to the procedure up-
date_effects_by_observation for learning by observation, as described in Figure 3.12.
The only difference is that the variable bindings of the operators are determined by
the planner during execution, whereas but only partial bindings can be learned through
matching when learning by observation.

For example, consider the operator shown in Figure 5.1 and its successful execution shown
in Figure 5.2. The conditional effect (add (holding-weakly <v3> <v2> <vi> <v7>)) ap-
pears in the delta-state. Therefore, the S-rep of the conditional preconditions for this
conditional effect is generalized by removing those not satisfied in the pre-state. The con-
ditional effect (add (holding <v3> <v2> <vi> <v4>)) does not appear in the delta-state
and, thus, is not updated. The other parts of the effects are not updated either, since
they correctly predict the outcome of this execution. The resulting operator, given the
successful execution shown in Figure 5.2 and unsuccessful executions shown in Figure 5.5
and 5.5, is shown in Figure 5.12.

66 CHAPTER 5. REFINING OPERATORS BY PRACTICE

procedure: update_effects_by_practice

Given: successful execution eze
Update: the effects of the operator

1. effects « Effects(op)
2. deltas + delta-state(eze)
3. for every e € Effects(op)
4. if e € delta-state(eze)
then
5. if e is a conditional effect
6. then update_conditional_preconditions(e, eze)
7. effects < effects \ {e}
8. deltas < deltas \ {d}
9. for every e € effects
10. if e is not a conditional effect
then ;3; e not in the delta-state, learn a conditional effect
11. conditional_effects(op) + conditional _effects(op) U e
12. S-rep(e) + S-rep(op)
13. for every d € deltas ;73 d not predicted by the operator, learn a conditional effect
14. new-effect < parameterize(d)
15. conditional_effects(op) «+ conditional effects(op) U new-effect
16. S(new-effect) < parameterize (pre-state(eze))

Figure 5.11: Updating the operator effects by practice. This is similar to updating the operator
effects by observation, as described in Figure 3.12, except that variable bindings are already
known and need not be learned.

5.3 Complexity Analysis

This section analyzes the time complexity of refining an operator by practice.

Let:
n = maximum number of literals in a state (either pre-state or post-state)
m = maximum number of arguments in a literal
[= maximum number of conditional effects in an operator
k) = total number of successful executions (positive examples)

5.3. COMPLEXITY ANALYSIS 67

(operator hold-with-vise
(preconds ((<v3> Machine) (<v2> Vise) (<v1> Part) (<v4> Side) (<v7> Side))
(and (has-device <v3> <v2>)
(is~available~table <v3> <v2>)
(is-empty-holding-device <v2> <v3>)
(on-table <v3> <vi>)
(is-clean <vi>)
(is-available-part <vi>)
(not (has-burrs <vi>})))
(effects
(if (shape-of <vi> cylindrical)
(add (holding-weakly <v3> <v2> <vi> <v7>)))
(if (and (shape-of <v1> rectangular)
(has-device <v3> <v2>)
(is-available-table <v3> <v2>)
(is-empty-holding-device <v2> <v3>)
(on-table <v3> <vi>)
(is-clean <vi>)
(is-available-part <vi>)
(add (holding <v3> <v2> <vi> <v4>))))
(del (on-table <v3> <v1>))
(del (is-available-part <vi>))
(del (is-empty-holding-device <v2> <v3>))))))

G-rep: (is-empty-holding-device <v2> <v3>)

extraneous preconditions:

(holding-tool <v3> <v5>)
(size—of <vi1> width <v6>)
(size-of <v1> height <v7>)
(size-of <v1> length <v8>)
(hardness-of <vi1> soft)
(material-of <vi1> <vi10>)
(shape-of <vi> <vii>)

Figure 5.12: Refined operator HOLD-WITH-VISE, given the successful execution shown in Fig-
ure 5.2, and given the unsuccessful executions shown in Figure 5.2 and 5.5. Note that: (i)
negated precondition (not (has-burrs <vi1>)) is added to the S-rep (using negative exam-
ple), (i) the previous precondition (hardness-of <vi> soft) is removed {rom the S-rep (us-
ing positive example), (i) the conditional precondition for the effect (add (holding-weakly
<v3> <v2> <v1> <v7>)) is generalized, and (iv) (is-empty-holding-device <v2> <v3>) is
added to the G-rep.

68 CHAPTER 5. REFINING OPERATORS BY PRACTICE

Updating the S-rep

Updating the S-rep has two parts: removing extraneous preconditions using positive
examples and learning negated preconditions using negative examples.

Given a positive example (i.e., successful execution), S-rep is updated by removing every
literal that is not satisfied in the pre-state of the execution. Thus, for every literal [in
the S-rep (a total of O(n) literals), the algorithm substitutes the variables in ! using
the variable bindings (the substitution has time complexity O(m) for each literal), and
checks if the substitution is in the pre-state (this can be done in constant time using a
hash table to store the state, or in time O(mn) when searching linearly.). Thus the time
complexity for updating the S-rep is O(mn) (or O(m?n?) when not using a hash-table).

Given a negative example (i.e., unsuccessful execution), S-rep is updated by adding
potential negated preconditions. Each literal in the pre-state (a total of O(n) literals)
of the unsuccessful execution is generalized using the variable bindings (this has time
complexity O(m) for each literal). Each generalization is tested for membership in the
S-rep and the extraneous preconditions of the operator (the membership test can be
done in constant time when using a hash-table to store the S-rep, or in time O(mn)
otherwise.) Thus, the complexity of learning negated preconditions from one negative
example is O(mn) (or O(m?n?) when not using a hash-table).

Updating the G-rep

Learning the G-rep is “semi-incremental,” because the negative examples that were not
near misses are re-examined whenever the S-rep is generalized. Thus, in the worst case,
a negative example may be examined k; times after every generalization of the S-rep
using a successful execution.

Given one negative example, 0BSERVER identifies which literals in the S-rep are not sat-
isfied in the pre-state of the execution. The time complexity is the same with updating
the S-rep, i.e., O(mn) (or O(m?n?) when not using a hash-table).

Updating the effects

The number of conditional effects that can be learned from one successful execution is
O(l). Updating each S-rep and G-rep of the conditional preconditions takes O(mn) (or
O(m?n?) when not using a hash-table) time. Therefore, the time complexity for updating
the effects is O(Im?n?) for each example.

5.4. CONVERGENCE PROOF 69

5.4 Convergence Proof

Theorem: If the operator does not have negated preconditions and the S-rep
learned by observation is general enough such that: (i) all the constants are
generalized to variables if they are in the true preconditions of the operators,
and (ii) the types of the variables in the operators are correctly learned, then
if the S-set and G-set in the version-spaces approach converge using all the
negative examples, then using only the near miss negative examples suffices
to converge.

Let:

P = {e | e is a positive example from practice}
F = {e | e is a far miss negative example}

M = {e | e is a near miss negative example}

N = {e | e is a negative example} = F U M
S-rep = {1y, L, ..., L.}

We need to prove that, if the set of examples (P U F U M) is sufficient for convergence
using the version spaces algorithm by learning S-set and G-set (i.e., S-set = G-set = C),
then the P U M (i.e., using only the positive examples and near miss negative examples)
is also sufficient for convergence of the S-rep and G-rep.

We assume that (%) all the constants are generalized to variables if they are in the true
preconditions of the operators, and that (7i) the types of the variables in the operators
are correctly learned. Thus, the G-set should be a conjunct of a subset of the literals
in the S-rep. We now prove that if the negative examples (F U M) are sufficient for
converging the G-set, then the G-rep learned using only the near misses (M) will also
converge.

Suppose the G-set converges to C = {l;,|1 < 1, < n} C S-rep using the candidate elim-
ination [Mitchell, 1978] algorithm. To prove that learning the G-rep using 0BSERVER’s
algorithm will also cause the G-rep to converge to C, it suffices to show that, for every
[; € C, there exists a near miss negative examplem € M, such that [; is the only element
in m that is not satisfied in the pre-state of m. Suppose this does not hold. Then 3 I, €
C such that there is no near miss where [, € S-rep is the only unsatisfied precondition.
This implies that for every negative example e € N , there is at least one other element
Iy € C, ly # g, such that [y is not satisfied in the pre-state of the negative example e.
This is because in every negative example, there is at least one element in the S-rep
that is not satisfied in the pre-state (by definition of unsuccessful execution) and that I,
cannot be the only literal in e not satisfied in the pre-state (by our assumption of [;).
Then, let C' = C \ {l,}. We see that:

70 CHAPTER 5. REFINING OPERATORS BY PRACTICE

e C' is more general than C

e C' is a general boundary of the operator preconditions, since none of the negative
examples is more specific than C'. This is because in every negative example, at
least one element l; # [, is not satisfied in C

This is a contradiction with the fact that G-set is the most general boundary of the
concept given all the positive and negative examples.

Q.E.D.

This theorem has two premises. First, the S-rep learned from observations must be gen-
eral enough so that (%} all the constants are generalized to variables if they are in the true
preconditions of the operators, and (i) the types of the variables in the operators are cor-
rectly learned. These premises are important, because OBSERVER’s algorithm for refining
operators by practice cannot generalize constants to variables or generalize the types of
the variables. Our algorithm can be extended if we allow OBSERVER to experiment more
during practice; however, this requires more systematic experimentation methods that
are not within the scope of this thesis. Nevertheless, as demonstrated by the empirical
results in Chapter 6, 0BSERVER is able to generalize the S-rep enough so that the overall
operator learning is effective.

Second, the proof of the theorem assumes that there is no negated preconditions. Since
negated preconditions are rare in most application domains, this theorem covers the
majority of the situations for learning operator preconditions.

5.5 Discussions

This section discusses issues related to refining operators by practice.

5.5.1 'Trade-off between learning efficiency and learning rate

OBSERVER learns a specific boundary S-rep of the operator preconditions incrementally
in a way that does require finding the most specific common generalization of the S-
. rep and the pre-state. The S-rep contains concepts that are more specific than would
be included in the S-set, but can be updated in polynomial time, but it is updated in
polynomial time. The G-rep is only specialized using near miss negative examples. The
G-rep contains concepts that are more general than would be included in the S-set, but
it can be updated in polynomial time. OBSERVER’s approach has the following advantages
over the strict version-spaces approach, which learns the most specific and most general
boundaries:

5.6. SUMMARY 71

o It is much faster to compute the S-rep and G-rep (polynomial vs. exponential
time)

e Both the S-rep and G-rep are single generalization, whereas there are usually
many hypotheses in the S-set and G-set. Keeping a single generalization per bound-
ary facilitates planning as it eliminates a choice point for planning, i.e., the choice
of which operator hypothesis to use to achieve a goal during planning

5.5.2 Negated preconditions

The planning operators O0BSERVER learns may have negated preconditions, whereas the
S-set of a version space is represented with existential conjunctive concepts that do not
have negations. We notice that negated preconditions are rare in most application do-
mains. For example, in our process planning domain, there are only twenty-five negated
preconditions among three-hundred and fifty preconditions in the human expert-coded
operators. In many other domains implemented in PRODIGY and other classical plan-
ners, such as the extended-strips domain, there are no negated preconditions at all. Thus,
DBSERVER first assumes there are no negated preconditions and corrects this simplifying
assumption by learning negated preconditions when they are detected during practice.

5.6 Summary

This chapter presented the learning method for refining operators by practice. The input
for learning are execution traces obtained during practice where executions = {eze: (pre-
state(exe), delta-state(exe), op, bindings(op))}. If delta-state(eze) is not empty, then this
execution is successful; otherwise, it is unsuccessful.

During operator refinement by practice, the S-rep is generalized by removing the literals
not satisfied in the pre-states of the successful execution. S-rep can also be specialized by
learning negated preconditions from an unsuccessful execution where all the preconditions
in the S-rep are satisfied.

The G-rep is specialized using near miss negative examples where all but one literal
in the S-rep are satisfied in the pre-state. The G-rep can also be generalized—when
OBSERVER adds a negated precondition to the G-rep, it removes all the non-negated
literals that may be previously learned incorrectly due to OBSERVER’s initial assumption
that there are no negated preconditions.

Effects, including conditional effects and conditional preconditions, are refined using
positive examples.

72

CHAPTER 5. REFINING OPERATORS BY PRACTICE

Chapter 6

Empirical Results

The previous chapters described our methods for learning planning operators from ob-
servations of expert solutions and for refining operators during practice in a learning-
by-doing fashion. The learning algorithms described in this thesis have been fully im-
plemented and tested in the context of PRODIGY4.0 [Carbonell et al., 1992]. In this
chapter, we present empirical results that demonstrate the effectiveness of our learning
system, including the significance of and the synergism between learning by observation
and learning by practice. All the experiments are conducted in two domains: the process
planning domain [Gil, 1991, Gil and Pérez, 1994] and a DSN antenna operations domain
[Hill et al., 1995, Chien et al., 1996b).

We begin by introducing the two application domains used in our experiments (Sec-
tion 6.1). We describe the design of our experiments (Section 6.2). The empirical eval-
uation consists of three parts. First, we evaluate the overall effectiveness of the learning
system (Section 6.3). This includes a comparison of problem solving with learned op-
erators and human expert-coded operators. We show that problems can be solved as
effectively using learned operators as using expert-coded operators according to several
criteria. Second, we evaluate the role of observation (Section 6.4). We show that the
total number of solved test problems increases with the number of observation problems
the system is initially given, and thus, learning by observation is a crucial component of
the learning system. Finally, we evaluate the role of practice (Section 6.5). We show that
the operators learned by observation and practice are more effective in problem solving
than the operators learned by observation only, using the same training problems.

73

74 CHAPTER 6. EMPIRICAL RESULTS
6.1 Application Domains

The methods described in this thesis were tested and evaluated in two domains: a process
planning domain and an antenna operation domain for the Deep Space Network (DSN).
These two domains were chosen because they are real world planning problems.

6.1.1 A process planning domain

Process planning is one of the crucial intermediate steps of production manufactur-
ing [Doyle, 1985, Nau, 1987, Hayes, 1990]. The first stage in preparation for manufac-
turing is engineering, which entails building a model that satisfies a set of specifications,
selecting the proper materials, ascertaining the proportions and desired physical prop-
erties, and configuring parts into larger assemblies. In the next step process plans are
delineated. This includes listing the steps or operations and the dependencies among
them, i.e., the process plans, and designating the machines, equipment, and tools needed
and performance expected. A process plan, for instance, may require cutting metal stock,
machining it into a desired shape, drilling holes for bolt-assembly, and polishing its sur-
face. On the basis of the process plans, operation routines are planned in detail. This
phase is called production planning. The last phase is one of scheduling multiple process
plans on available machines and allocating time, resources, and human operators. The
parts are then manufactured according to the production plans and the master schedule.

Of all the processes involved in process planning, we have concentrated on the machining,
joining, and finishing operations. Machining refers to the art of creating parts, usually
metal, by carving raw material with power tools such as bandsaws, lathes, milling ma-
chines, and drill presses, and using processes such as drilling, milling, and turning [Hayes,
1990]. Joining and assembly processes include soldering, welding and bolting. Finish-
ing processes change the surface properties of a part, including cleaning it or removing
burrs [Gil, 1991, Gil and Pérez, 1994]. In our implemented model, there are seventy-three
distinct action schemas, where the number of preconditions ranges from one to six with
an average of five, and the number of effects ranges from one to five with an average of
three.

6.1.2 DSN antenna operation domain
The Deep Space Network (DSN) is a set of world-wide antenna networks which is main-

tained by the Jet Propulsion Laboratory (JPL). Through these antennae, JPL is respon-
sible for providing the communications link for a multitude of spacecraft. Operations

6.1. APPLICATION DOMAINS 75

personnel are responsible for creating and maintaining this link by configuring the re-
quired antenna subsystems and performing test and calibration procedures. The task
of creating the communications link is a manual and time-consuming process which re-
quires operator input of over a hundred control directives and the constant monitoring of
several dozen displays to determine the exact execution status of the system. Recently,
a system called the Link Monitor and Control Operator Assistant (LMCOA), has been
developed to improve operations efficiency and reduce pre-calibration time. The LM-
COA provides semi-automated monitor and control functions to support operating DSN
antennae. One of the main inputs to the LMCOA is a Temporal Dependency Network
(TDN). A TDN is a directed graph that incorporates temporal and behavioral knowledge.
This graph represents the steps required to perform a communications link operation.
In current operations, these TDNs are developed manually. DPLAN [Hill et al., 1995,
Chien et al., 1996b, Estlin et al., 1996] has been designed to automatically generate these
TDNs based on input information describing the antenna track type and the necessary
equipment configuration.

DPLAN has access to several information sources to determine track operations. First,
it has access to information on spacecraft activities in the form of a Project Sequence
of Events (SOE). The SOE specifies the spacecraft activities, such as downlinks and
bit-rate changes. Second, the planner has access to a Project Profile which specifies
information on how to interpret the Project SOE, such as default frequencies. Third,
the planner is given an equipment configuration which details the exact pieces and types
of equipment assigned to the track. Fourth, the planner has access to the Temporal
Dependency Network (TDN) Knowledge Base which specifies all of the actions available
to the planner and their preconditions and postconditions. Finally, DPLAN has access
to the track request specification, which corresponds to the goal specification.

The actions in this domain include: moving an antenna to point, configuring subsystems
(e.g., antenna controller, receiver, exciter, transmitter, microwave controller, telemetry
string), calibrating subsystems, and turning test translators on or off. The resulting
output plan configures and calibrates the antenna and its subsystems properly in order to
perform required services such as telemetry, ranging, or commanding. In our implemented
model, there are twenty-four distinct action schemas, where the number of preconditions
ranges from one to seven with an average of three, and the number of effects ranges from
one to three with an average of two.

The implemented portion of the DSN domain covers nominal operations for the 34-meter
Beam Wave Guide antenna, and as such covers six of twenty-three antenna subsystems in
the full DSN domain and three of seven service request types (goals). The operator-based
representation of the DSN domain does not capture certain aspects of plan quality (such
as the desire to constrain nominal operations [Chien et al., 1996a]). Nevertheless, the
implemented portion of the DSN domain is representative of the precondition and effect

76 CHAPTER 6. EMPIRICAL RESULTS

relationships of the DSN domain as a whole and thus represents a real-world test for the
OBSERVER operator learning system.

6.2 Design of Experimentation

This section describes the design of our experiments, including the different phases in-
volved for learning and testing.

6.2.1 Phases for learning and testing

Our experiments include the following three phases:

1. Learning operators by observation. In this phase, OBSERVER is given the expert so-
lution traces for each problem in the observation training set. O0BSERVER learns an
initial set of operators from observation, using the algorithms described in Chap-
ter 3.

2. Refining operators during practice. In this phase, OBSERVER solves problems in
the practice training set, using planning and plan repair mechanisms described in
Chapter 4. It then refines operators based on its own execution traces using learning
methods described in Chapter 5.

3. Testing. In this phase, we compare the effectiveness of problem solving with the
learned operators and human expert-coded operators, according to several criteria.
In our experiments, we assume that the expert-coded operators are correct. These
correct operators are used to model the environment in the simulator.

6.2.2 Randomly generated problems

We have built a random problem generator for each testing domain to generate problems
for observation, practice, and testing.

The random generator for the process planning domain is based on that used in [Pérez,
1995]. The problems generated have between one to three top-level goals. In our ex-
periments, we have concentrated on goals of cutting parts to desired sizes according to
their three dimensions, and on drilling holes of several different types (counterbored,
countersink, tapped, and reamed) in any of the six part sides, because these are the most
basic problems in this domain. The randomly generated problem initial state specify the

6.2. DESIGN OF EXPERIMENTATION 7

manufacturing environment (i.e., what and how many machines, tools, holding devices,
and so on, are available).

For the DSN antenna operation domain, the problems used have between one to three
top-level goals. The type of goals include telemetry, ranging, or commanding, or any
combinations of them. The randomly generated problem initial state specify the initial
availability of the antennae and their subsystems, that is, what type of subsystems (e.g.,
antenna controllers, receivers, exciter controllers, command processors, microwave con-
trollers, telemetry strings) are available and how many of each type are available. These
problems capture nominal operations for the 34-meter Beam Wave Guide antenna.

6.2.3 Base-level planner

OBSERVER is implemented in the context of PRODIGY4.0 [Carbonell et al., 1992], a
nonlinear, operator-based planner (see Appendix A for the overview of the planner).
Many different kinds of search heuristics and modes exist for PRODIGY4.0. We use a
version of PRODIGY4.0 that chooses to apply as long as there are any active applicable
operators (called SAVTA) [Veloso and Stone, 1995]. There are many choice points during
plannings: choice points for choosing a goal, for choosing an operator to achieve the
goal, and for choosing a set of bindings for’ an operator, etc. In the absence of control
knowledge, PRODIGY4.0’s default strategy is to always choose the first alternative. This
pre-determined order is arbitrary and introduces a systematic bias in the search time. To
remove this bias, we introduced a random selection mechanism at each choice point in
our experiments. We ran the planner multiple times to measure the average performance.

In the experiments we report in this chapter, the following resource bounds are used for
the planner so that the experiments terminate in reasonable time:

Depth_bound: As search proceeds depth-first in our planner, a depth bound in terms
of the number of choice points is used. In our experiments, depth_bound = 50.

Max_node_bound: This resource bound is used to limit the maximum number of plan-
ning nodes generated, where each node corresponds to a choice point. When plan-
ning using incomplete and incorrect operators, this bound limits the sum of the
nodes generated during initial planning and the nodes generated during plan re-
pair. In our experiments, during testing, Max.node_bound = 1500, while during
practice, Max_node_bound = 5000.

We varied the above resource bounds in our experiments and the variation does not
qualitatively affect the empirical results presented in this chapter.

78 CHAPTER 6. EMPIRICAL RESULTS

6.3 Overall Effectiveness of O0BSERVER

This section presents empirical results to demonstrate the overall effectiveness of 0BSERVER.
We first discuss the criteria for evaluating the quality of learned operators. We then
present results in the two domains to demonstrate that the OBSERVER-learned operators
are as effective in problem solving as human expert-coded operators according to these
criteria.

In the process planning domain, the domain knowledge (i.e., a set of operators) was first
acquired by an Al expert over several years when developing a special-purpose planner
for this domain [Hayes, 1990]. The domain knowledge was then encoded in PRODIGY by
another Al expert in six months as a half-time project [Gil, 1991]. In the DSN antenna
operations domain, initial knowledge acquisition took ten experts six months each and
then was encoded into PRODIGY operators by an Al expert in three months. In both
cases, knowledge acquisition required significant direct interaction between AI experts
and domain experts.

6.3.1 Criteria for evaluation

To evaluate the overall effectiveness of 0BSERVER, we compare the performance of problem
solving with OBSERVER-learned operators and human expert-coded operators, according
to the following criteria:

1. The total number of solved test problems.

When using expert-coded operators, test problems are either solvable without ex-
ecution failure or unsolvable within the resource bound, because these operators
are correct. When using the learned operators to solve test problems before the
end of learning, the initial plan generated may fail to execute when applied in the
environment, because these operators may be imperfect. Since OBSERVER has the
ability to repair failed plans, the problem can be solved if all the failures can be re-
paired. Therefore, when using learned operators, a problem could be either solved
without plan repair (i.e., without execution failure), or solved with plan repair, or
not solved even with plan repair. Thus we measure:

e Total number of solved test problems without plan repair

e Total number of solved test problems, including the problems that required
plan repair

We expect that for both measurements, the total number of solved problems should
increase with increased training, i.e., with more observation and more practice.

6.3. OVERALL EFFECTIVENESS OF 0BSERVER 79

2. The average number of failures that must be repaired to solve each test problem.

We expect that with more observation and practice, the learned operators should
become more accurate, and therefore there should be fewer execution failures.

3. The average number of operator executions required to solve each test problem.

The average number of operator executions measures the efficiency of the solutions
generated, which is one measurement of plan quality. The smaller the number of
executions, the better the plan. We expect that the average number of operator
executions to solve each test problem should decrease with learning, and that at the
end of learning, the average number of operator executions using learned operators
should be comparable to that using human expert-coded operators.

When using OBSERVER-learned operators to solve test problems, the operator execu-
tions include both the successful and the unsuccessful executions. Since we assume
the human expert-coded operators are correct, the average number of operator ex-
ecutions to solve each test problem using human expert-coded operators is simply
the solution length of the plan generated.

4. The average number of planning nodes required to solve each test problem.

When our planner is solving a problem, it explores the search space by building
a tree of nodes. Each node represents a decision made by the planner. Thus, the
average number of planning nodes measures the efficiency of planning (as opposed
to plan erecution). We expect that the average number of planning nodes should
decrease with learning, and that at the end of learning the average number of
planning nodes using learned operators should be comparable to that using human
expert-coded operators.

When using OBSERVER-learned operators to solve test problems, the average number
of planning nodes to solve each test problem is the sum of the number of nodes
to generate the initial plan and the nodes for plan repair. It is compared with
the average number of planning nodes to solve a test problem using expert-coded
operators.

All the measurements according to these criteria vary for different runs due to the plan-
ner’s random choice at decision points. Therefore, we measure the results five times
during testing and compute the averages. We also compute the standard derivation of
the performance of expert-coded operators from the different runs. We consider the per-
formance of learned operators to be comparable to expert-coded operators if it is within
one standard derivation from the average of the human level of performance.

80 CHAPTER 6. EMPIRICAL RESULTS

6.3.2 Results

We now present the empirical results to evaluate the overall effectiveness of OBSERVER in
the process planning and the DSN antenna operation domains.

In the process planning domain, thirty-three operators are learned from observation of
expert solutions traces for one hundred problems. The test set consists of thirty-three
randomly generated, previously unseen problems. The performance of the learned oper-
ators on the test set is measured after the initial operators are learned from observation,
and then after OBSERVER refines the operators by practicing on additional batches of
fifteen problems.

In the DSN antenna operations domain, twenty-four operators are learned from observa-
tion of expert solutions traces for twenty-four problems. The test set consists of thirty
randomly generated, previously unseen problems. The performance of the learned oper-
ators on the test set is measured after the initial operators are learned from observation,
and then after OBSERVER refines the operators during practice on additional batches of
eight problems.

6.3.2.1 Total number of solved problems

Figure 6.1 shows the total number of solved test problems using learned operators and
expert-coded operators in the process planning domain and in the DSN antenna operation
domain. The results in this graph show that:

1. Total number of solved test problems, with and without plan repair, increases with
the number of practice problems.

2. At the end of learning, the total number of solved test problems using 0BSERVER-
learned operators is the same as using expert-coded operators.

3. The number of solved test problems when plan repair is used during testing increases
much faster than if plan repair is not used. This indicates that our methods for
planning with incomplete and incorrect operators and plan repair are effective for
solving problems when domain knowledge is imperfect. It is important to be able
to cope with imperfect domain knowledge, given gradual convergence for acquiring
correct operators.

4. We see that in the process planning domain, before learning has completed, more
test problems can be solved using learned operators with plan repair, than using
human expert-coded operators. This is because the planner is given a resource
bound max node_bound during planning. Problems are considered not solvable

6.3. OVERALL EFFECTIVENESS OF 0BSERVER 81

The Process Planning Domain:

25 -
P] Tt Y CUTRIE: ST T T DT RPIP PPN I AR A

15

10

total number of solved problems

[} A 1 L L]]
50 100 150 200 250 300

number of practice problems

T

=
@

DSN Antenna Operations Domain:

30|-

total number of solved problems

0: L I L

10 20 30 4I0 SIO GID
number of practice problems

—-— human expert-coded operators: average

--------- human experi-coded operators: one standard derivation
—— learned operators: without failure

o—— learned operators: with plan repair

Figure 6.1: Total number of solved test problems, as a function of the number of practice
problems in training.

82

CHAPTER 6. EMPIRICAL RESULTS

if no plan is generated within the node limit bound. Note that OBSERVER uses
the G-rep (see Section 5) for planning, and that before learning is complete, the
G-rep contains fewer preconditions than the human coded operators. Therefore
OBSERVER needs to achieve fewer preconditions when using incomplete operators for
initial planning. Thus, OBSERVER can sometimes generate plans for problems that
are not solvable using human coded operators within the node limit. The plan repair
mechanism then effectively repairs the plan by achieving additional preconditions
in the S-rep. In this domain while learning is progressing, the G-rep happens to
form an effective abstraction hierarchy for the operators, and therefore 0BSERVER
can solve more problems using incompletely learned operators than using human
expert-coded operators.

This phenomenon (i.e., more test problems are solved using learning operators with
plan repair than using human expert-coded operators), does not occur in the DSN
antenna operation domain. Thus we do not make any general conclusions about
the abstraction hierarchy 0BSERVER naturally learns.

6.3.2.2 Average number of failures in solving a test problem

Figure 6.2 shows how the average number of failures that must be repaired to solve a
test problem depends on the amount of practice. We see that:

1. The average number of failures before solving a test problem decreases as the num-

ber of practice problems increases.

2. At the end of learning, 0BSERVER can solve problems without any failures. The

average number of failures can be used by OBSERVER to determine when to stop
learning.

6.3.2.3 Average number of operator executions to solve each test problem

Figure 6.3 shows the average number of operator executions required to solve a test
problem using learned operators and expert-coded operators.

For the learned operators, the average number of operator executions is the average
of the sum of the number of operators that execute successfully and the number that
execute unsuccessfully. For the human expert-coded operators, the average number of
operator executions is simply the length of the plan, since we assume that the expert-
coded operators are correct.

The following phenomena are worth noting from Figure 6.3:

6.3. OVERALL EFFECTIVENESS OF 0BSERVER 83

The Process Planning Domain:

25 -

15

10

average number of failures per problem

0 50 100 150 200 250 300
number of practice problems

T

=
(¢

DSN Antenna Operations Domain:

16

average number of failures per problem

LT]
number of practice problems

Figure 6.2: Average number of failures that must be repaired to solve each test problem, as a
function of the number of practice problems in training.

84 CHAPTER 6. EMPIRICAL RESULTS

The Process Planning Domain:

40
4

35

30

25

20

average number of executions

15

10 ¢

4 50 1'aa 1;17 2;70 2;0 3;)0
number of practice problems

The DSN Antenna Operations Domain:

30
28 |-
26
24

22

average number of executions

20

18

AR

16

1] 10 210 .‘ila 4I0 510 6I0
number of practice problems
—-— human expert-coded operators: average

--------- human expert-coded operators: one standard derivation
¢——>o |earned operators

Figure 6.3: Average number of operator executions required to solve each test problem, as a
function of the number of practice problems in training,.

6.3.

OVERALL EFFECTIVENESS OF 0BSERVER 85

At the end of learning, the average number of operator executions to solve each test
problem using the learned operators is comparable to that using expert-coded op-
erators in both domains. This indicates that the efficiency of the solutions (i.e., the
plan quality) using learned operators is comparable to the solutions using expert-
coded operators.

In both domains, the average number of executions decreases (with minor exception
in the DSN domain, as explained below) with more practice until equilibrium. The
decrease stems from higher accuracy of the learned operators.

In the DSN domain, the average number of executions using learned operators
dips significantly below the result using human expert-coded operators after learn-
ing from a number of practice problems, but before learning is complete. This is
because before learning is complete, fewer test problems are solved using learned
operators than using human expert coded operators (see Figure 6.1 for the number
of problems solved). These solved problems are simpler than the problems that are
solved using human expert-coded operators in that their solutions are shorter. To
demonstrate this, Figure 6.4 shows the ratio of operator executions using learned
operators to the operator executions using human coded operators, on the problems
that are solved in both cases, where

operator_execution_ratio =

num_of _operatior_ezecutions_using_learned_operators

num_of _operatior_executions_using_human_coded _operators

on the same problems that are solved in both cases.

We see that in both domains, this ratio decreases almost monotonically with more
practice until it converges to one.

6.3.2.4 Average number of planning nodes to solve each test problem

Figure 6.5 compares the average number of planning nodes to solve each test problem
using learned operators with that using human expert-coded operators. For the learned
operators, the average number of planning nodes is the sum of the average number of
nodes generated for initial planning and for plan repair. For the expert-coded operators,
this number is simply the number of nodes generated during initial planning.

The following phenomena are worth noting:

86 CHAPTER 6. EMPIRICAL RESULTS

The Process Planning Domain:

3.50
4

3.00

2.50 -

2.00

1.50 |-

ratio of number of executions

1.00 —

0.50 |-

0. 00 L 1 1 L i J
o 50 100 150 200 250 300

number of practice problems

The DSN Antenna Operations Domain:
2,00
1.80
1.60 |
1.40 |-
1.20

1.00

ratio of number of executions

0.80 -

0.60 -

0.40 |-

0.20

0.00 L i 1 1 L J
0 10 20 30 40 50 60

number of practice problems

— -— human expert-coded operators: average
--------- human expert-coded operators: one standard derivation
¢—> |earned operators

Figure 6.4: Operator-ezecution ratio, as a function of the number of practice problems in

training.

6.3. OVERALL EFFECTIVENESS OF 0BSERVER 87

The Process Planning Domain:

350 -
300
250

200

average number of nodes

150

100 -

50

] 50 141“0 1;0 2;70 2‘50 3;)0
number of practice problems

The DSN Antenna Operations Domain:

140

1204

100

80

average number of nodes

60|

20 -

L L L i
[10 20 30 40 50 60

0 i 1

number of practice problems

—-— human expenrt-coded operators: average
--------- human expert-coded operators: one standard derivation
o——¢ learned operators

Figure 6.5: Average number of planning nodes generated to solve each test problem, as a
function of the number of practice problems in training.

88

CHAPTER 6. EMPIRICAL RESULTS

1. At the end of learning, the average number of planning nodes generated to solve

each test problem using the learned operators is comparable to that using human
expert-coded operators in both domains.

. The curves exhibit significant oscillation, because of the high variance in the num-

ber of planning nodes when the planner makes random choices at different decision
points. If the planner makes a wrong choice, it may perform a great deal of un-
necessary search before it backtracks to find the right decision. But if the planner
makes the right choice the first time, it may find a plan very quickly.

- In the result for the DSN domain, the average number of planning nodes using

learned operators dips significantly below the result using human expert-coded op-
erators after learning from a number of practice problems, but before learning is
complete. As with the number of operator executions, this is because before learn-
ing is complete, fewer problems are solved using the learned operators than using
human expert-coded operators (see Figure 6.1 for the number of problems solved).
These solved problems are simpler in that the planning nodes for solving these
problems are fewer. To demonstrate this, Figure 6.6 shows the ratio of planning
nodes using learned operators to the number of planning nodes using human coded
operators, on the problems that are solved in doth cases, where planning_nodes_ratio

num_of _planning_nodes_using_learned _operators

num_of _planning_nodes_using.human_coded _operators
on the same problems that are solved in both cases.

We see that in both domains, this ratio decreases almost monotonically with more
practice until it converges to one.

6.3.3 Summary of the effectiveness evaluation

In summary, the empirical results demonstrate that 0BSERVER learns operators in the
process planning and DSN antenna operations domains well enough to solve problems as
effectively as with expert-coded operators, according to the following criteria: the total
number of solved test problems, the average number of failures in solving a test problem,
the average number of operator executions to solve each test problem, and the average
number of planning nodes to solve each test problem. Moreover, 0BSERVER learns equally
effectively in two very different domains, providing evidence for the generality of our
learning methods.

6.3. OVERALL EFFECTIVENESS OF 0BSERVER 89

The Process Planning Domain:

1.80 -
1.60
1.40
1.20

1.00

ratio of number of nodes

0.80

0.60 |-

0.40 |-

0.20

0.00
0

5IO 1;10 1I50 2:)0 2l50 3270
number of practice problems

The DSN Antenna Operations Domain:

1.60
1.40

1.20

ratio of number of nodes

1.00

0.80 -

0.60

0.40

0.20 -

0.00 A i 1 L 1 d
0 10 20 30 40 50 60

number of practice problems

—-— human expert-coded operators: average
--------- human expert-coded operators: one standard derivation
¢——= learned operators

Figure 6.6: Planning-nodes ratio, as a function of the number of practice problems in training.

90 CHAPTER 6. EMPIRICAL RESULTS

6.4 Role of Learning by Observation

This section evaluates the role of learning by observation. We describe the method for
such evaluation and present empirical results.

To evaluate the role of observation, OBSERVER is run multiple times. During each run,
OBSERVER is given the same problems during practice, but a different number of initial
observation problems that are randomly drawn from a fixed set of problems. We measure
the first criterion, i.e., the total number of solved test problems, after observation and
practice, given a different number of initial observation problems.

Figure 6.7 shows the total number of solved problems, given a different number of obser-
vation problems, but the same set of practice problems.

The results in both domains show that:

1. The total number of solved test problems increases as the number of observation
problems given to the system increases

2. Learning by observation eventually reaches saturation. After observations of solu-
tion traces for eighty problems in the process planning domain, and twenty problems
in the DSN domain, more observation problems do not significantly improve per-
formance. When OBSERVER stops benefiting from more observation, it should start
practicing

These empirical results in the two domains indicate that learning by observation con-
tributes significantly to the learning process. This significance is due to the fact that
generalization of domain constants to variables, as well as climbing up the type hierarchy
for the variables are only feasible when learning by observation. This was a conscious
decision when designing the learning system. Allowing 0BSERVER to experiment with dif-
ferent domain constants or with types of objects not observed in expert solutions would
dramatical increase the search space for planning with imperfect operators, and thus
reducing the effectiveness of practice.

6.5 Role of Practice

In this section, we present empirical results to illustrate the role of practice. We describe
our evaluation methods and then present empirical results.

6.5. ROLE OF PRACTICE 91

The Process Planning Domain:

25

15

10

number of solvable test problems

20 Lommemmmm e s cnecsensisase e aisaenesann e neninnansecrannbeas

20 40 GIO 30 1;70 12’0
number of observations

The DSN Antenna Operations Domain:

22

19

16

14

11

number of solvable test problems

24 |-

I '

5 10 1|5 20 25 3IO
number of observations

-— human expert-coded operators: average

=== human expert-coded operators: one standard derivation

#*——%k probs solved without failure

Figure 6.7: Total number of problems solved, using the same set of practice problems, but

varying the amount

of observation before practice. We see that after eighty observation training

problems in the process planning domain and twenty problems in the DSN domain, more
observation problems do not significantly increase the solvability. This indicates the appropriate
point where learning by observation reaches saturation and where practice should start.

92 CHAPTER 6. EMPIRICAL RESULTS

6.5.1 Method for demonstrating the role of practice

To demonstrate the role of practice, we show that, after initial operator acquisition
by observation, OBSERVER learns operators better and faster if it practices using the
planning and plan repair algorithms described in Chapter 4, than if it just continues
observing expert solutions. To do so, we compare the learned operators in the following
two scenarios, where the same initial problems are used for learning by observation, in
terms of the total number of solved test problems.

scenario 1: OBSERVER is given a set of problems to practice. During practice, 0BSERVER
uses its planning and plan repair algorithms to solve practice problems, and re-
fines any incorrect or incomplete operators using both successful and unsuccessful
executions.

scenario 2: OBSERVER is given the same set of problems as in scenario 1; however,
OBSERVER is only allowed to refine the operators based on the expert solutions
for these problems, and is not allowed to practice (i.e., 0OBSERVER does not generate
successful or unsuccessful executions for operator refinement.)

The evaluation of this criterion includes the following two measurements:

1. Total number of solved test problems without plan repair

2. Total number of solved test problems, including the problems that required plan
repair

6.5.2 Results

Figure 6.8 illustrates the comparison of the learned operators that are refined through
practice (scenario 1) with the operators that are refined based on observation only (sce-
nario 2), in the total number of solved problems in the test set without ezecution failure,
and therefore without requiring plan repair. We see that:

e If OBSERVER practices after learning by observation, the total number of solved test
problems without execution failure increases steadily as the number of training
problems increases

e If OBSERVER is only given the expert solution traces of the same problems used
during practice in scenario 1, it cannot solve any test problems without failures

6.5. ROLE OF PRACTICE 93

The Process Planning Domain:

23 muvarnan see oen seeasesnacmaarcanaanarananpan
21 +

18

16

13

11

total number of solvable problems without failure

[50 17 ;JO 1;0 2;]0 2;0 32)0 3I50
number of learning problems

The DSN Antenna Operations Domain:

27

24

21

19

16

13

10

] J
0 10 20 30 40 50 60 70

.1‘ L L L i

total number of solvable problems without failure

number of learning problems

—-— human expert-coded operators: average

--------- human expert-coded operators: one standard derivation

=—& scenario 1: learning from practice after initial learning from observation
*——k scenario 2: learning from observation only

Figure 6.8: Total number of solved test problems without execution failure during testing, as
a function of the number of practice problems in training. In both scenarios, OBSERVER first
learns a set of operators from observation, as indicated by the first one hundred problems in
the process planning domain and the first twenty-four problems in the DSN antenna operations
domain. Then, OBSERVER refines operators from practice in scenario 1 or learns by observation
only in scenario 2. The performances differ significantly in two scenarios.

94

total number of solvable problems using plan repair

CHAPTER 6. EMPIRICAL RESULTS

The Process Planning Domain:

25 -

22

PY: 3 ELLTUTTIOPITTEPPPPORPRPPIRN 1A 3t AN, SRR

18

15

121

10+

L
50 100

1 J
300 350

number of learning problems

The DSN Antenna Operations Domain:

total number of solvable problems using plan repair

27

24

21

19

16

13

10

0 10 20 .‘;0 4'0 5IO 6|0 7|0‘
number of learning problems

—-— human expert-coded operators: average
human expert-coded operators: one standard derivation

s——a scenario 1: learning from practice after initial learning from observation
*—k scenario 2: learning from observation only

Figure 6.9: Total number of solved test problems allowing ezecution failure and plan repair
during testing, as a function of the number of practice problems in training. In both scenarios,
OBSERVER first learns a set of operators from observation, as indicated by the first one hundred
problems in the process planning domain and the first twenty-four problems in the DSN antenna
operations domain. Then, OBSERVER refines operators from practice in scenario 1 or learns by
observation only in scenario 2. The performances differ significantly in two scenarios.

6.6. SUMMARY 95

Figure 6.9 compares the two learning scenarios in terms of the total number of test
problems that are solved, including problems solved where executions failures occur but
are subsequently repaired using our plan repair algorithm. We see that:

e In both scenarios, the total number of solved test problems increases as the number
of training problems increases, whether OBSERVER uses the training problems for
practice or as observation

e The total number of solved problems increases much faster in scenario 1, where
OBSERVER practices using our planning and plan repair algorithms, than in sce-
nario 2, where OBSERVER is only given the expert solution traces of the same prob-
lems

e OBSERVER learns operators as well as a human expert if it practices, but is far from
the human level of performance when it learns solely by observation

The above results can be explained by the fact that 0BSERVER uses the G-rep for plan-
ning, and that the correctness of the plans generated depends on how well 0BSERVER has
learned the G-rep. With practice (scenario 1), DBSERVER is able to learn the G-rep of
the operator preconditions using unsuccessful executions. But without practice (scenario
2), OBSERVER can never specialize the G-rep, because observations of expert solutions
do not contain negative examples.!

6.5.3 Summary of the role of practice

In both comparisons (i.e., the total number of solved test problems without ezecution
Jailure and the total number of solved test problems if plan repair is used), we see that
significantly more test problems are solved using the learned operators in scenario 1,
where OBSERVER refines operators during practice, than scenario 2, where 0BSERVER can
only learn by observation. We conclude that practice using our planning and plan repair
algorithms is a crucial component of 0BSERVER’s learning architecture.

6.6 Summary

This section presented empirical results that demonstrated the effectiveness of our learn-
ing system, including the significance of and the synergism between learning by observa-
tion and learning by practice.

10One could also use the S-rep for planning to solve the test problems; however, the S-rep usually
contains so many extraneous preconditions when learning only by observation that the planner cannot

generate a plan within reasonable time.

96 CHAPTER 6. EMPIRICAL RESULTS

The empirical results are presented in two domains: a process planning domain and a
DSN antenna operations domain. Empirical results show that learned operators are as
effective in problem solving as human expert-coded operators, and that both learning by
observation and learning during practice contribute significantly to the learning process.

These two domains are significantly different. The empirical results are qualitatively the
same in both domains in terms of the convergence properties and learning rate, although
they are different quantitatively due to the differences between these two domains.

Chapter 7

Related Work

This chapter describes other research in areas closely related to this dissertation. Qur
work is a contribution to machine learning in structural domains, so the first part of
related work is devoted to this area. Second, our work is a contribution to planning,
including machine learning for planning systems, plan repair, and the integration of
planning, learning, and execution. Related work in these areas are discussed. We also
mention briefly more remotely related areas such as knowledge acquisition.

7.1 Rule Learning in Structural Domains

Much work in machine learning is concentrated on atfribute-based domains in which
each instance of a concept is characterized solely by a vector of values for a given set of
attributes [Quinlan, 1986]. The operators that 0BSERVER learns are in structural domains,
in which each instance is composed of many objects and is characterized not only by the
attributes of the individual objects it contains, but also by the relationships among these
objects. In this section, we first review different algorithms developed for learning in
structural domains. We then describe a number of implemented systems that learn in
structural domains.

7.1.1 Algorithms for learning in structural domains

Version-spaces algorithm

Mitchell [Mitchell, 1978] gave an elegant framework for learning simple existential con-
junctive concepts. The set of all hypotheses that are consistent with the sample is called
the version space of the sample. The version space can be represented by maintaining

97

98 CHAPTER 7. RELATED WORK

two boundaries of the version space: the S-set of the most specific hypotheses and the
G-set of the most general hypotheses in the version space. The target concept consistent
with all the data given so far lies in the space delineated by the S-set and G-set inclu-
sively. Mitchell uses the candidate elimination algorithm to update the S-set and G-set
and thereby reduce incrementally the set of consistent hypotheses. Given a new positive
instance, the algorithm generalizes the S-set as little as possible so that they cover the
new instance and remain consistent with past data, and it removes those elements of the
G-set that do not cover the new instance. Given a new negative instance, the algorithm
specializes elements of the G-set so that they no longer cover the new instance yet remain
consistent with past data, and removes from the S-set those elements that cover the new
negative instance.

Our approach to learning preconditions is different from the version-spaces approach in
the following ways:

e The sizes of the S-set and G-set in the version spaces can grow exponentially in
the number of examples, whereas OBSERVER’s the S-rep and G-rep are single

generalizations

e The S-set and G-set in the version spaces approach are always the most specific
and most general representation, respectively, that are consistent with the given
examples, whereas the S-rep and G-rep are not guaranteed to be the most specific
and most general boundary

e The S-set can only be generalized with more examples and the G-set can only be
specialized; however, the S-rep can also be specialized and the G-rep be general-
ized when negated preconditions are learned. Such negated preconditions are not
handled in the basic version-spaces formalism

e Unlike the version-spaces algorithm, OBSERVER handles typed variables. The vari-
ables used in the operator preconditions follow the object type hierarchy given as
initial knowledge to OBSERVER. When updating the S-rep and G-rep, OBSERVER
also updates the types of the objects

One computational problem associated with the version-spaces method is that the size
of the S-set and G-set can become exponentially large in the number of examples [Haus-
sler, 1989], and, thus, updating both S-set and G-set is exponential. The incremen-
tal Non-Backtracking focusing (INBF) algorithm [Smith and Rosenbloom, 1990] learns
strictly tree-structured concepts, using the version-spaces approach, in polynomial time.
When learning concepts with tree-structured features, the S-set contains exactly one con-
cept [Bundy et al., 1985] and can be computed in polynomial time; however, the G-set
can still grow exponentially [Haussler, 1989]. The INBF algorithm updates the G-set by

7.1. RULE LEARNING IN STRUCTURAL DOMAINS 99

only processing near misses. This approach is very similar to our approach for updating
the G-rep of the operator preconditions. Smith and Rosenbloom have proved that, if
we use the INBF algorithm, the positive examples plus the near misses will be sufficient
for convergence if the initial set of examples is convergent. This is similar to our proof in
Chapter 5; however, the description language for operators that 0BSERVER learns is more
complex than the strictly tree-structured concepts of INBF.

Learning maxmimal specific generalizations

Winston’s [Winston, 1975] work on structural learning served as a precursor to the other
learning methods in learning in structural domains. His system learns concept descrip-
tions that characterize simple toy-block constructions. The toy-block assemblies are
initially presented to the computer as line drawings. A knowledge-based interpreta-
tion program converts these line drawings into a semantic-network description. Winston
also uses this semantic-network representation to describe the current concept and some
background knowledge about toy blocks. The generalization algorithm uses the training
instances incrementally to update a single current concept description in a depth-first
fashion. The learning system does not concern itself with the possibility that the training
instance matches the hypothesis in multiple ways or with the problem that there are mul-
tiple ways of generalizing or specializing the hypothesis. The learning system assumes
that the training instances are presented in good pedagogical order, so that ambiguity
is unlikely to arise. It also assumes that negative instances are near misses. These as-
sumptions make it impossible to apply to more complex situations, such as our operator
learning problem.

Vere’s counterfactuals algorithm [Vere, 1980] learns concepts that are consistent with a set
of positive and negative examples, by computing “counterfactuals.” A “counterfactual”
is a set of conditions which must be false if a generalization is to be satisfied. It com-
putes multilevel counterfactuals by recursively reducing the original induction problem
to a smaller “residual” problem, whose generalization gives the desired counterfactual.
The counterfactuals algorithm can learn concepts with conjunctions, disjunctions, and
negations. But it is not an incremental algorithm and it requires both positive and neg-
ative examples. Moreover, the counterfactual algorithm requires the computation of the
maximally specific common generalizations of two given positive example, which is an
exponential process.

Hayes-Roth’s interference matching algorithm [Hayes-Roth and McDermott, 1978] is a
heuristic algorithm that learns existential conjunctive concepts given positive examples
only. The interference-matching algorithm starts out as a breadth-first search of all
possible matches of one positive example with another. The search proceeds by “growing”
common subexpressions until a space limit is reached. Unpromising matches are then
pruned with a heuristic utility function and the growing process continues in a depth-first

100 CHAPTER 7. RELATED WORK

fashion. The utility of a partial match is equal to the number of predicates matched less
the number of variables matched; however, this heuristic is likely to prefer matches that
miss some true preconditions.

Inductive Logic Programming (ILP)

Inductive logic programming [Muggleton, 1992] focuses on induction of logic programs
from examples and has roots in early work in generalization in logic [Plotkin, 1970] and
logic-program [Shapiro, 1983]. Given background knowledge, ILP induces complex con-
cepts represented in Horn-clause logic; thus it learns in structural domains. A weakness
of ILP methods is their inability to use existing knowledge to guide search through the
extremely large space of possible concepts. As a result, search in an ILP system is often
guided using an existing domain theory [Bergadano and Giordana, 1988, Cohen, 1991,
Pazzani and Kibler, 1992] or by human [Sammut, 1996]. It remains a challenge to apply
ILP to complex concept learning systems. We describe several well-known ILP algorithms
related to OBSERVER’s learning algorithm.

FOIL [Quinlan, 1990] is an inductive learning system that learns Horn-clause theories.
Its outer loop is a greedy covering algorithm that learns one clause at a time. Each
clause is constructed to maximize coverage of positive examples while excluding all neg-
atives. Clauses are constructed by adding one literal at a time, using steepest-ascent
hill-climbing. At each step, the literal that maximizes an information gain metric is
added to the clause. Literals are added until all negative examples are removed. FOIL
requires both positive and negative examples and it is not incremental; therefore, it
cannot be used for learning operator preconditions by observation.

Golem [Muggleton and Feng, 1990] is an ILP system which learns a set of conjunctive
clauses that cover a given set of positive and negative examples and extensional back-
ground knowledge. Clauses are induced by choosing a random seed instance from the set
of positive instances and generalizing in a specific to general fashion as much as possible
without covering any negative instances. Golem cannot be applied directly to OBSERVER’s
learning problem, because: (i) Golem is not an incremental learning algorithm, (ii) Golem
does not learn negated literals, (ii7) Golem requires both positive and negative examples,
whereas negative are not available to OBSERVER while learning by observation, and (iv)
Golem cannot be applied to learn the operator effects.

Progol [Muggleton, 1995] is another ILP algorithm similar to Golem. Progol begins by
taking the description of a single positive example and saturates the description by adding
to it literals derived from background knowledge. Progol permits mode declarations to
restrict the application of predicates to avoid an explosion in the number of literals that
the saturation procedure may try. When saturation is completed, Progol has a most
specific clause to serve as a bound on a general-to-specific search. Beginning with the

7.1. RULE LEARNING IN STRUCTURAL DOMAINS 101

most general clause, i.e., one with an empty body, Progol tries to find a subset of the
most specific clause that satisfies a minimum description length criterion. Due to the
large number of possible literals in the saturation procedure, Progol has mainly been used
with human guidance in its mode declaration [Sammut, 1996]. For the same reasons as
in Golem, Progol is not a good tool for learning operators preconditions and effects. But
is a promising tool for learning functions and constraints for operators (for descriptions
of functions see [Carbonell et al., 1992]).

7.1.2 Systems for learning in structural domains

A number of systems have been implemented that learn in structural domains using the
algorithms described above or other more specialized algorithms. We compare 0BSERVER
with these systems, along the following dimensions.

The type of learned knowledge. This falls into two broad areas: concept learning
and control learning. Research in concept learning focuses on learning concept def-
initions from both classified examples and/or an existing incomplete and/or incor-
rect domain theory. Research in control learning focuses on learning search-control
knowledge that improves the performance of an existing problem-solver. 0BSERVER
is a concept learning system, where the concept learned is planning operators.

The source of learning. Generally, two types of input sources can be explored by a
learning system. One source comes from expert solution traces and the other comes
from examples the learning system generates in a learning-by-doing fashion. Some
systems explore one type of source of knowledge, whereas others combine both
sources. OBSERVER learns from both types of inputs.

The learning algorithm. Many different types of learning algorithms are feasible for
learning in structural domains, including inductive learning algorithms, for exam-
ple, ILP, explanation-based learning algorithm, and inverse resolution. Different
types of learning algorithms may be combined. OBSERVER uses an inductive learn-
ing method similar to the version-spaces approach.

Initial knowledge. Systems for learning heuristics assume initial correct domain knowl-
edge. Systems that learn domain knowledge may either learn from scratch or refine
existing partially correct domain knowledge. OBSERVER starts with very little initial
knowledge, i.e., it has no knowledge about the preconditions or the effects of the
operators at the start of learning.

102 CHAPTER 7. RELATED WORK
LEX

LEX [Mitchell et al., 1983] is a system that learns heuristic problem-solving strategies
through experience in the domain of symbolic integration—LEX starts with operators
with exact preconditions for matching the integral but lacks preconditions (control rules)
for determining when the operators should be applied. LEX acquires and modifies heuris-
tics by iteratively applying the following process: (i) generate a practice problem, (i)
use available heuristics to solve this problem, (i) analyze the search steps performed
in obtaining the solution, and (#v) propose and refine new domain-specific heuristics to
improve performance on subsequent problems.

LEX learns problem-solving heuristics, whereas O0BSERVER learns the preconditions and
effects of the operators. The left-hand side of the heuristics is similar to the operator
preconditions—they are both conjunctive literals. The left-hand side of LEX’s heuristics
are represented as version-spaces and thus the size of the G-set and S-set grow expo-
nentially in terms of the input. This does not pose a big problem for LEX, since it is
not concerned with learning from observing other agents, which would have caused the
exponential growth of the S-set. OBSERVER learns the preconditions by keeping the G-
rep and S-rep, each of which is a single boundary and is learned in polynomial time.
The right-hand side of the heuristics is simply the decision of choosing which operator to
apply when the left-hand side is satisfied, whereas the operator effects, with the add and
delete lists and conditional effects, are much more complex. LEX uses its own problem
solving traces to refine its heuristics, whereas OBSERVER is also concerned with learning
from observations of other agents.

Since LEX learns search heuristics where the domain operators are given, the applicability
of a heuristic can be determined from a problem-solving episode. 0BSERVER learns domain
operators, and the applicability of an operator can only be determined by execution the
operator in the environment. Since execution failure may occur, O0BSERVER integrates
planning, execution, and plan repair; this issue does not arise in LEX.

ALEX

ALEX [Neves, 1985] is a program that acquires rules to solve simple linear algebraic
equations by learning from worked-out examples in a textbook and from its own problem
solving traces. Each rule is learned only once from one example, using several heuristics,
and cannot be refined using multiple examples. ALEX’s problem solver uses mean-ends
analysis and is much simpler than the PRODIGY planner used by 0BSERVER.

7.1. RULE LEARNING IN STRUCTURAL DOMAINS 103

Porter and Kibler

Porter and Kibler [Porter and Kibler, 1986] examined the process of learning problem-
solving heuristics using Experimental Goal Regression (EGR). The learner first forms
heuristic rules from the user’s suggestions and these heuristics are then used to guide the
problem solver on subsequent problems. The learner also generates training examples au-
tomatically by perturbation. Perturbation automates the generation of training instances
by making small changes to a single training instance supplied by the teacher. The learner
than solves these problems and classify the examples as positive or negative. The posi-
tive examples are used for refining the heuristics. The left-hand side of the heuristics are
learned in a conservative specific-to-general manner, which involves dropping conditions,
turning constants to variables, and climbing concept hierarchy trees. This is similar to
learning the S-rep of the operator preconditions in 0BSERVER; In addition to learning
from positive examples, EGR learns from positive examples only, because their negative
examples may be incorrectly classified. In addition to learning from positive examples,
OBSERVER also learns from negative examples during practice.

The idea of perturbation is similar to near miss negative examples that OBSERVER uses
for specializing the G-rep. A near miss is a perturbation on the S-rep of the operator
preconditions, but not necessarily on the pre-state of a positive example. EGR first
generates a perturbation and then solves the problem, whereas 0BSERVER reverses this
order by solving a practice problem using planning, plan repair, and execution, and thus
generating a near miss (i.e., perturbation). The reverse of the order is due to the fact
that there may be many extraneous preconditions in the S-rep and achieving all of them
during planning is resource-consuming and unnecessary.

OBSERVER also differs from EGR in that OBSERVER repairs plan for execution failures.
EGR does not have sophisticated problem solving capability; thus, if a learned episode
fails to solve a problem, no additional search (i.e., repair) is performed to find a solution.

Another contribution of Porter and Kibler’s work is their algorithms for preventing over-
generalization by adding needed constraints using background knowledge. Built-in biases
(such as prefer more primitive relations) reduce the branching factor for searching a
constraint with maximal coverage and minimal complexity. This may be incorporated in
OBSERVER to learn functions and constraints of the operators (for descriptions of functions
see [Carbonell et al., 1992]).

SIERRA

SIERRA [Vanlehn, 1987] is a program that learns algebraic procedures incrementally
from examples, where an example is a sequence of actions. SIERRA requires the teacher
to give a sequence of “lessons,” where a lesson is a set of examples that is guaranteed to

104 CHAPTER 7. RELATED WORK

introduce only one new subprocedure. The conditions (left-hand sides) of the procedures
are learned in a conservative specific-to-general fashion, using the candidate elimination
algorithm for updating the S-set in version-spaces. OBSERVER differs in that it does not
require the expert to give perfectly ordered examples; thus imposing much less burden
on the expert. OBSERVER also generates training examples during practice for further
operator refinement.

ARMS

ARMS [Segre, 1988] is an EBL system that acquires the ability to plan sequences of robot
motions to accomplish assembly of simple mechanisms. It learns by unobtrusively ob-
serving an expert guide the robot through an assembly task via the robot arm’s teaching
pendant. Given an observation of an expert solution sequence, ARMS first builds a causal
model to understand (explain) how the user solves the problem, using its domain the-
ory. ARMS domain knowledge is represented using five different categories of schemata
and is fairly sophisticated. ARMS then generalizes the explanation to produce a new
composite operator schema, which can be subsequently used for both understanding and
planning. Since ARMS uses explanation-based learning to learn from single example,
good domain knowledge is crucial. In contrast, 0BSERVER is an inductive learning system
that generalizes from multiple examples.

LEAP

LEAP [Mitchell et al., 1990] is a learning apprentice system for digital circuit design.
It provides interactive advice to a circuit designer on how to hierarchically decompose
abstract circuit modules into submodules, eventually resulting in a gate-level circuit de-
sign. It uses explanation-based learning and is able to learn new rules for decomposing
circuit modules, as well as rules for choosing among alternative decompositions. LEAP is
limited to learning rules for designing circuits with fairly simple functional specifications
(primarily boolean functions), since its EBL methods require verification of the correct-
ness of user circuits in order to generalize them. In contrast, 0BSERVER uses an inductive
learning technique.

DISCIPLE

DISCIPLE [Kodratoff and Tecuci, 1991] is a learning apprentice system that learns rules
used for designing detailed manufacturing technologies, for establishing the assimilation
strategy of a new product, and for aiding the manager of a computer center in the decision
activity. It uses both explanation-based and similarity-based learning methods.

7.1. RULE LEARNING IN STRUCTURAL DOMAINS 105

CAP

CAP [Hume and Sammut, 1991] is a system that observes sequences of actions performed
by other agents and forms a theory that can be generalized and tested by experimentation.
CAP uses inverse resolution to search for a theory, while 0BSERVER uses induction. The
training examples generated by CAP are dependent upon the current state of the world
and, hence, it is “opportunistic” in the sense that it attempts to test hypotheses as
circumstances permit. In contrast, 0BSERVER uses sophisticated planning and plan repair
algorithms to generate its own learning examples.

LIVE

LIVE [Shen, 1989, Shen, 1994] is a system that learns and discovers from the environ-
ment. It integrates action, exploration, experimentation, learning, and problem solving;
however, it does not learn from observing others. LIVE has only been tested in sim-
plistic domains (e.g., the Little Prince World with about fifteen possible states), and
does not scale up to large domains. LIVE also avoids the complexity of planning with
incomplete and incorrect operators by using a set of domain-dependent search heuristics
during planning. These heuristics are part of the input to LIVE. 0BSERVER differs in
that it deals explicitly with imperfect operators without relying on any human-coded,
domain-dependent heuristics.

EXPO

EXPO [Gil, 1992, Gil, 1994] is a system that refines initial approximate planning opera-
tors through learning by experimentation. EXPO is given incomplete operators with
missing preconditions and effects. Learning is triggered when plan execution mon-
itoring detects a divergence between internal expectations and external observations.
EXPO designs experiments to learn the missing preconditions and effects, using domain-
independent heuristics. OBSERVER differs from EXPO in the following ways:

e The initial knowledge given to the two systems is different. EXPO starts with a
set of operators that miss some preconditions and effects, whereas OBSERVER starts
with no knowledge about the preconditions or the effects of the operators

e OBSERVER learns from observations of expert solution traces, whereas EXPO does
not

e EXPO only copes with incomplete domain knowledge, i.e., overly-general precon-
ditions and incomplete effects of the operators, whereas OBSERVER also copes with

106 CHAPTER 7. RELATED WORK

incorrect domain knowledge, i.e., operators with overly-specific preconditions and
overly-general preconditions

e Operators are learned in a general-to-specific manner in EXPO, whereas 0BSERVER
uses a version-spaces like approach that generalizes the S-rep using positive exam-
ples and specializes the G-rep using near miss negative examples

The Operator Learner

The Operator Learner [desJardins, 1994] is an inductive learning-based tool for knowledge
engineering within SOCAP, a prototype military operations planning system based on
AT generative planning technology [Wilkins, 1988]. The system is given a set of partial
operators that are edited by experts and inductively “fills in the blanks” of these partial
operators, identifying approximate preconditions for the operators by generalizing using
feedback from evaluation models, as well as from user’s planning choices. 0BSERVER starts
with much less knowledge about the planning operators and learns from observing expert
solution traces in addition to learning from its own execution traces.

Benson’s work

Benson’s system [Benson, 1995] learns action models from its own experience and from
its observation of a domain expert. Benson’s work uses a much simpler action model
formalism that is suited for reactive agents without complex deliberation, which is differ-
ent from STRIPS operators. It uses GOLEM [Muggleton and Feng, 1990] for inductive
learning. It does not have a complicated planning and plan repair mechanism and relies
on an external teacher when an impasse is reached during planning.

QOates and Cohen’s work

Oates and Cohen [Oates and Cohen, 1996] described a method for learning planning
operator with context-dependent and probabilistic effects. In their domain model, the
agent is assumed to have a set of m sensors and a set of n possible actions. At each time
step, each sensor produces a single categorical value. Thus, their state is represented
as a vector and their precondition learning is a type of learning for attribute-based do-
mains, as opposed to structural domains, as in 0BSERVER. In addition, OBSERVER learns
incrementally whereas [Oates and Cohen, 1996] is nonincremental.

To summarize, 0BSERVER differs from all the algorithms and systems described above
in that it uses a novel polynomial inductive algorithm for learning operators, and that
OBSERVER learns from observations of experts as well as from its own execution traces
that are actively generated using planning.

7.2. RELATED WORK IN PLANNING 107

7.2 Related Work in Planning

The second major part of the contribution of this thesis is related to planning, hence
we review related work on planning, learning, and coping with less-than-perfect domain
knowledge.

7.2.1 Machine learning in planning

Most work on learning in planning systems has focused on learning control knowledge
in order to speed up learning. The methods for speed-up learning include explanation-
based learning (EBL) [Korf, 1985, Sacerdoti, 1977, Mitchell, 1983, Laird et al., 1986,
Chien, 1989, Minton, 1988, Minton et al., 1989, Mostow and Bhatnagar, 1987], analogical
learning [Veloso, 1994], and learning abstraction hierarchies [Knoblock, 1994]. Other
work in learning control knowledge has addressed the issue of increasing the plan quality
[Iwamoto, 1994, Pérez, 1995).

Our work differs in that OBSERVER learns domain models, i.e., planning operators. This is
a important and challenging problem, because knowledge engineering is a key bottleneck
for fielding planning systems. Some work that addressed the issue of learning planning
operators in the context of classical planning systems includes [Gil, 1992, desJardins,
1994, Wang, 1995]. More recent work addressed the issues of learning planning operators
with probabilistic effects [Tae and Cook, 1996, Qates and Cohen, 1996).

7.2.2 Planning with incomplete information

Early work in planning assumed complete information (see [Allen et al., 1990]). As
planning moves on to real-world problems, this assumption is no longer valid. Information
for planning can be incomplete in several ways, including incomplete information about
the state of the world, or the preconditions and/or effects of actions. In our work, we have
extended the classical planning framework to handle incomplete and incorrect operators
in the context of operator learning, which is a key characteristic that distinguishes our
work from most other work in planning with incomplete information.

State information can be incomplete in several ways. Some researchers addressed the issue
of planning with incomplete initial state information [Genesereth and Nourbakhsh, 1993,
Kushmerick et al., 1995]. Different approaches are taken to address the issues of planning
with incomplete state information and planning to seek for relevant information [Etzioni
et al., 1992, Draper et al., 1994].

Knowledge of actions in the domain can be incomplete in several ways. Numerous
probabilistic techniques for dealing with sensor and actuator noise have been proposed

108 CHAPTER 7. RELATED WORK

and explored in the context of mobile robotics [Cassandra et al., 1994, Simmons and
Koenig, 1995]. And a more general model for dealing with probabilistic knowledge
in states, state transitions, and external events is being developed in [Blythe, 1994,
Blythe, 1996].

7.2.3 Plan repair

Several previous investigations have addressed the problem of plan repair after an execu-
tion failure or unexpected external events, but none has addressed the issue of planning
and plan repair in the context of incomplete and incorrect operators, as in 0BSERVER.

CHEF [Hammond, 1989] is a case-based planning system for cooking. In CHEF, failures
are all due to unforescen goal interactions. The CHEF system classifies a failure, infers
a missing goal, and applies a critic to repair the plan. This problem differs from our
replanning problem—in our case, the problem is not an unrecognized goal interaction
(the PRODIGY planner takes care of goal interactions) but an execution failure where
some preconditions of the operator are not satisfied. Thus, instead of applying a critic
as in CHEF, OBSERVER uses the specific representation of the operator preconditions to
determine which additional preconditions must be achieved to repair the failed plan.

SIPE [Wilkins, 1988] also performs replanning in response to unexpected external events
that change the state. SIPE first classifies the failure type and then uses this classification
to apply a critic to repair the plan. SIPE assumes that the planner has correct domain
knowledge, whereas OBSERVER uses an incomplete and incorrect domain knowledge and
relies on the environment (or a simulator) to provide feedback.

Knoblock [Knoblock, 1995] developed a system for information gathering from large net-
works of distributed information. His approach integrates previous work on planning,
execution, sensing, and replanning, and extends previous work to support simultaneous
and interleaved planning and execution. The role of replanning is to recover from exe-
cution failure. The planner replans the failed portion of the plan while maintaining as
much of the executional plan as possible. This is supported by requiring the domain
designer to define a set of domain-specific failure handlers. When a failure occurs, the
failure handler removes the failed portion of the plan and updates the model to avoid
the same failure when the failed actions are replanned. 0BSERVER differs in that it uses
domain-independent method for plan repair and, hence, does not rely on the domain
expert.

Some other previous work concentrates on adapting an existing plan (or case) to the new
problem situation [Veloso, 1994, Kambhampati, 1990, Simmons, 1988]. These algorithms
involve adding and deleting activities from the original plan based on an analysis of
the applicability of the dependencies to the current problem context. OBSERVER differs

7.3, KNOWLEDGE ACQUISITION 109

from these work in two ways: first, 0BSERVER does not have a correct domain model
for planning, whereas these systems do. Second, OBSERVER interleaves planning and
execution, whereas these systems use a plan-then-ezecute paradigm, because they assume
a correct domain model.

7.2.4 Interleaving planning and execution

Interleaving planning and execution has received some attention in the planning commu-
nity. Earlier work developed frameworks for integrating planning and execution [Ambros-
Ingerson and Steel, 1988, Kuokka, 1990]. Later work focused more on specific methods
for interleaving planning and execution. [Firby, 1987, Beetz and McDermott, 1992] em-
phasize the ability to react to unexpected situations rather than assuming that a plan
will usually work. [Etzioni et al., 1992] uses execution to find missing information needed
by planning. [Genesereth and Nourbakhsh, 1993] uses execution to make planning more
efficient. [Knoblock, 1995] integrates planning and execution to allow the system to plan
for new goals as they arrive, replan failed actions, and exploit sensing operations. [Haigh
and Veloso, 1996] learns planning knowledge from execution. OBSERVER [Wang, 1996]
differs in that learning operators is a primary goal.

7.3 Knowledge Acquisition

Considerable research has focused on knowledge acquisition for rule-based expert systems
[Boose and Gaines, 1989, Davis, 1979], and for object-oriented/inheritance knowledge
bases with procedures and methods [Gil and Tallis, 1995]. These research concentrates
on knowledge acquisition tools and all requires significant amount of direct interactions
between Al experts and domain experts. These tools enable domain experts to write
and debug domain theories without relying on Al people. 0BSERVER differs from all these
approaches in that it is fully automated and learns domain knowledge through observing
expert’s solution traces and through direct interactions with the environment during
practice.

110 CHAPTER 7. RELATED WORK

Chapter 8

Conclusions

In this final chapter, we summarize this thesis and its contributions. We also outline
some directions for future work.

8.1 Summary of the Thesis

We have developed a general framework for automatic acquisition of planning opera-
tors. Our approach is to learn operators by observing expert solution traces and to
incrementally refine these operators through practice in a learning-by-doing paradigm.
During observation, OBSERVER uses the knowledge observable when experts solve prob-
lems, without the need for explicit instruction or interrogation. During practice, the
system generates its own learning opportunities by solving practice problems and refines
the initial incomplete operators using the training examples thus generated.

The main research issues we addressed in this thesis span the areas of machine learning
and planning. From a learning perspective, 0BSERVER incrementally learns operators
using inductive learning techniques from observation of expert solution traces and from
its own execution traces during practice. OBSERVER learns operator preconditions by
building a general representation, the G-rep, and a specific representation, the S-rep, in
a manner similar to the version-spaces method. Both the G-rep and S-rep are updated
in polynomial time. OBSERVER also incrementally learns the variables and effects of the

operators.

From a planning perspective, OBSERVER integrates planning, learning, and execution,
and effectively generates learning examples for operator refinement. During practice, the
individual plans generated for top-level goals achieve the preconditions in the G-rep of
each operator, but do not require achieving preconditions in the S-rep. This has the

111

112 CHAPTER 8. CONCLUSIONS

advantage of quickly generating an initial (although possibly erroneous) plan, which will
provide opportunities for operator refinement. OBSERVER then executes the plan in the
environment. If an operator executes successfully when some preconditions in the S-rep
are not satisfied in the state, then they are removed from the S-rep, resulting in more
general operators; however, an operator may fail to achieve its intended effects due to
unmet preconditions, necessitating plan repair. During plan repair, the preconditions
in the S-rep are used to determine which additional preconditions need to be achieved
to make the failed operator applicable. The near miss negative examples are used for
specializing the G-rep.

We have fully implemented the algorithms and applied them to a process planning domain
and a DSN antenna operations domain. Empirical results in both domains show that
learning converges to the human level of performance in a reasonable amount of time.
The results also show that the automatically learned operators can solve problems as
effectively as expert human-coded operators according to four criteria: () total number of
solved test problems, () average number of failures in solving a test problem, (éit) average
number of operator executions to solve each test problem, and (iv) average number of
planning nodes required to solve each test problem.

In addition, empirical results show that both observation and practice are crucial com-
ponents of the learning system. The total number of solvable problems in a test set
increases with the number of observation problems the system is initially given, but
eventually reaches saturation. OBSERVER is able to learn operators better and faster (i.e.,
solving more problems using the learned operators) if it practices using the planning and
plan repair algorithms described in Chapter 4, than if it just continues observing expert
solutions.

8.2 Contributions

To summarize, this thesis has made the following contributions:

e A novel, domain-independent approach to automatic acquisition of planning op-
erators (i.e., learning by observation and practice). This thesis addressed a key
knowledge acquisition bottleneck for building useful planning systems. Our ap-
proach does not require much interaction with domain experts

e A framework for integrating planning, learning, and execution. This framework has
shown to be effective in both operator learning and problem solving with incomplete
and incorrect domain knowledge

e A polynomial inductive algorithm for learning operator preconditions and effects

8.3. FUTURE WORK 113

o An effective algorithm for planning and plan repair, which solves problems using
incomplete and incorrect operators

o A demonstration of the effectiveness of integrated learning and planning in two
complex domains, a process planning and a DSN antenna operations domains

8.3 Future Work

This thesis has addressed an important issue in fielding planning systems for realistic
domains—the knowledge acquisition bottleneck. Our framework for learning planning
operators opens some new areas for future research, as discussed in this section.

8.3.1 Handling uncertainty

OBSERVER assumes deterministic operators and error-free perception. Relaxing this as-
sumption is an interesting and important direction for future work. There are several
sources of uncertainty in a domain. The first is perception noise in which observation
of states may be incorrect—some properties may be missing in the observation, while
some others may be erroneously observed. The second form of uncertainty is in the
operators—operators may have probabilistic effects. The third type of uncertainty comes
from external exogenous events that change the state in a manner not fully predictable
by the planner.

To develop a learning system to handle uncertainty in the domain, one must first study
what types of noise are present. Assuming no noise in the domain enables 0BSERVER to
converge quickly in complex domains; however, our framework for learning operators by
observation and practice is also valid for acquiring operators in the presence of noise.
The learning algorithm can be extended to handle noise by, for example, maintaining
an occurrence count for each literal in the S-rep and G-rep. The system would only
remove preconditions from the S-rep if the occurrence count is lower than a pre-specified
frequency, and only add a precondition to the G-rep if the occurrence count is higher
than a pre-specified frequency. The frequency is essentially a function of the maximal
level of noise the system will tolerate. The learning rate will likely be much slower,
however, if there is noise in the domain. Some recent work along this direction [Qates
and Cohen, 1996, Tae and Cook, 1996) has only been applied to simple domains.

114 CHAPTER 8. CONCLUSIONS

8.3.2 Learning with unobservable features

Consider the set of predicates that describe the operators and states. Most predicates
in the process planning domain, such as SHAPE-OF and HAS-CENTER-HOLE, are
directly observable. But a subset of the predicates may be unobservable, e.g., HOLDING-
WEAKLY. In this thesis, we assume that the learner can observe all these features;
however, this assumption can be easily relaxed. We can provide the learning system with
a set of observable and unobservable predicates. To learn under this circumstance, we
assume that these unobservables can be determined by the system while it is executing
its own plans (i.e., during practice). Consider HOLDING-WEAKLY as an example.
Although the system cannot observe whether the expert is holding weakly or strongly,
when it is applying the action itself, HOLDING-WEAKLY is observable. Therefore,
the unobservables can be learned during the system’s own plan execution. A similar
example is the predicate HEAVY. The weight of an object is not determinable by remote
observation, but is determinable by actual manipulation.

Having unobservable facts in the state of the other agent means that the observed state is
a subset of the real state. Therefore, the operators we learn may miss some preconditions
and effects that involve the unobservable facts. Assuming that these unobservable facts
can be determined in the system’s own state when it is executing plans, these missing
preconditions and effects may be learned as follows:

e When OBSERVER executes an operator during practice, if some unobservable facts
of the state are potentially present in the pre-state or delta-state, they can be
added to the preconditions or effects of the operator. The relevance of the added
preconditions will be determined in later practice and will be retained or disposed
of accordingly

e When an operator fails to execute even though all its preconditions are satisfied,
then the planner knows that it is missing some preconditions. The system can
propose potentially unobservable facts as the preconditions of this operator, then
generate plans to achieve them. If the operator is successfully applied in the envi-
ronment after achieving a potentially relevant but unobservable precondition, that
proposed precondition is added to the operator

8.3.3 Control knowledge learning
Another area of future research is the acquisition and maintenance of control knowledge

in the context of changing domain knowledge. Control knowledge is used by planning
systems to speed up planning [Korf, 1985, Sacerdoti, 1977, Mitchell, 1983, Laird et al.,

8.3. FUTURE WORK 115

1986, Chien, 1989, Minton, 1988, Mostow and Bhatnagar, 1987], and to generate plans of
higher quality [[wamoto, 1994, Pérez, 1995]. Previous work on control knowledge learning
presumes a correct model of operators; however, domain knowledge frequently changes in
the process of knowledge acquisition as OBSERVER incrementally learns operators. Since
control knowledge is dependent on the domain knowledge, the validity of previously
acquired control knowledge is open to question. Can we learn control knowledge reliably
while the domain representation is still being formed? What type of control knowledge
learning is suitable for this situation?

In [Wang and Veloso, 1994], we investigated ways to apply previous work on derivational
reuse of planning episodes [Veloso, 1994] in the presence of evolving domain knowledge.
We show how learned control knowledge may still be useful in guiding a planner even
when the domain theory is incrementally changing, if we allow for flexible reuse of the
learned guidance. For instance, planning steps from past planning episodes may be
skipped when the corresponding preconditions are no longer part of the domain and new
planning steps may be added when new preconditions or effects change the course of
planning.

Another possible approach is structure control knowledge as planning episodes of different
levels of granularity, such as macros, and to flexibly reuse these acquired macros [Yang
and Fisher, 1993]. Macro operators have the advantage that their validity can be justified
solely based on the preconditions and effects of the operators. As long as the preconditions
and effects of each operator in a macro operator are properly indexed, a macro operator
can be easily updated and used as control knowledge when the operators in the domain
change.

116 CHAPTER 8. CONCLUSIONS

Appendix A

The PRODIGY Problem Solver

This Appendix is adapted from the Appendix in [Pérez, 1995).

PRODIGY is a domain-independent problem solver that serves as a testbed for planning
and machine learning research. Given an initial state and a goal expression, PRODIGY
searches for a sequence of operators that will transform the initial state into a state that
matches the goal expression. The current version of PRODIGY, PRODIGY4.0, is a nonlinear
and complete planner. It follows a means-ends analysis backward chaining search proce-
dure reasoning about multiple goals and multiple alternative operators relevant to achiev-
ing the goals. Detailed descriptions of PRODIGY4.0 appear in [Carbonell et al., 1992,
Veloso et al., 1995]. [Fink and Veloso, 1996] presented a formal description of the plan-
ning algorithm used in PRODIGY4.0.

PRODIGY4.0 provides a rich action representation language coupled with an expressive
control language. A planning domain is defined by a set of types of objects, i.e., classes,
used in the domain, and a library of operators and inference rules that act on these
objects. Each operator is defined by its preconditions and effects. The description of
preconditions and effects of an operator can contain typed variables. In addition variable
bindings (i.e. values a variable can take) can be constrained by arbitrary Lisp functions.
Preconditions in the operators can contain conjunctions, disjunctions, negations, and
both existential and universal quantifiers. The effects of an operator consist of a list of
predicates to be added or deleted from the state when the operator applies. An operator
may also have conditional effects that are to be performed depending on particular state
conditions. Inference rules deductively change a particular planning state by adding
semantically redundant information to the state, in constrast to operators which specify
real changes to the state. They have the same syntax as operators. PRODIGY4.0 allows
two types of inference rules: eager inference rules fire automatically every time there is
a change in the state whenever their preconditions are satisfied; they are used only in a

117

118 APPENDIX A. THE PRODIGY PROBLEM SOLVER

forward-chaining manner. Lazy inference rules are used for backward chaining; they only
fire on demand and PRODIGY4.0 subgoals on their preconditions if they are not true. A
truth-maintenance system (TMS) keeps track of all the inference rules (both eager and
lazy) that are fired. When an operator is applied, the effects of inference rules whose
preconditions are no longer true are undone.

A planning problem is defined by (1) a set of available objects of each type, (2) an initial
state I, and (3) a goal statement G. The initial state is represented as a set of literals.
The goal statement is a logical formula equivalent to a preconditions expression, i.e.
it can contain typed variables, conjunctions, negations, disjunctions, and universal and
existential quantifications. A solution to a planning problem is a sequence of operators
that can be applied to the initial state, transforming it into a state that satisfies the goal.

Table A.1 describes the basic search cycle of PRODIGY4.0’s nonlinear planner [Veloso,
1989]. This search algorithm involves several decision points, namely:

e Which goal to subgoal on, from the set of pending goals.
e Which operator to choose in order to achieve a given goal.
o Which bindings to choose in order to instantiate the selected operator.

o Whether to apply an applicable operator (and which one) or defer application and
continue subgoaling.

Control knowledge may direct the choices in each of these decision points. In PRODIGY,
there is a clear division between the declarative domain knowledge (operators and infer-
ence rules) and the more procedural control knowledge. This simplifies both the initial
specification of a domain and the incremental learning of the control knowledge. Control
knowledge can take the form of control rules (usually domain-dependent), complete prob-
lem solving episodes to be used by analogy [Veloso, 1994], domain-independent heuristics
[Blythe and Veloso, 1992, Stone et al., 1994], and control knowledge trees [Pérez, 1995].

Control rules are productions (if-then rules) that indicate which choices should be made
(or avoided) depending on the current state and other meta-level information based on
previous choices or subgoaling links. They can be hand-coded by the user or automati-
cally learned. They are divided into these three groups: select, reject, and prefer rules.
Select and reject rules are used to prune parts of the search space, while prefer rules
determine the order of exploring the remaining parts. Alternatives pruned by select and
reject control rules are not tried should the planner backtrack to the node where the rule
fired. Control rules choose goals, operators, bindings, or subgoaling versus apply. They
can also choose nodes to backtrack to.

119

1. Check if the goal statement is true in the current state, or there is a reason to suspend
the current search path.

If yes, then either return the final plan or backtrack.

2. Compute the set of pending goals G, and the set of possible applicable operators A.
A pending goal is a precondition of an operator previously expanded (in Step 4) that is
not true in the current state. An applicable operator is an operator whose preconditions
are true in the state.

3. Choose a goal G from G or select an operator A from .4 that is directly applicable.
4. If G has been chosen, then

o get the set O of relevant operators for the goal,
e choose an operator O from O,

e get the set B of possible bindings for O,

e choose a set B of bindings from 5,

e go to step 1.

5. If an operator 4 has been selected as directly applicable, then

e apply A,
e go to step 1.

Figure A.l: A skeleton of PRODIGY4.0’s nonlinear planning algorithm (adapted
from [Veloso, 1989]). Problem solving decisions, namely selecting which goal/subgoal
to address next, which operator to apply, what bindings to select for the operator, or
where to backtrack in case of failure, can be guided by control knowledge. PRODIGY’s
trace provides all the information about the decisions made during problem solving so it
can be exploited by machine learning methods.

PRODIGY is designed with a “glass-box” approach: all the decisions made by the search
engine and all the information available to make those decisions are captured in a prob-
lem’s trace. This provides an information context in which learning can take place.
Figure A.2 shows the learning modules developed in PRODIGY, according to their learn-
ing goal, namely: learn control knowledge to improve the planner’s efficiency in reach-
ing a solution to a problem [Minton, 1988, Etzioni, 1990, Pérez and Etzioni, 1992,
Knoblock, 1994, Veloso, 1994, Borrajo and Veloso, 1994b]; learn control knowledge to
improve the quality of the solutions produced by the planner([Borrajo and Veloso, 1994b,
Iwamoto, 1994, Pérez, 1995]); and learn domain knowledge, i.e., learn or refine the set of
operators specifying the domain([Gil, 1992] and this thesis), or acquire them through a

120 APPENDIX A. THE PRODIGY PROBLEM SOLVER

LEARNING CONTROL KNOWLEDGE
TO IMPROVE PLANNING EFFICIENCY

PRODIGY/EBL STATIC ALPINE PRODIGY/ANALOGY

Explanation-based Static domain Generation of Analogical reasoning

learning \ evaluation abstraction hierar(Vl

X /
~N 7

PRODIGY

HAMLET
Incremental and inductive
explanation and refinement

OBSERVER
Expert observation

and own practice / Planner
/ ¥ P

EXPO APPRENTICE QUALITY
Controlled experiments Graphical knowledge Evaluation and quality
refine incomplete domain acquisition analysis of alternative plans
LEARNING PLANNING LEARNING CONTROL KNOWLEDGE
DOMAIN KNOWLEDGE TO IMPROVE PLAN QUALITY

Figure A.2: The learning modules in the PRODIGY architecture (from [Veloso et al.,
1995]).

graphical apprentice-like dialog [Joseph, 1992].

The machine learning and knowledge acquisition work supports PRODIGY’s casual-commitment
method', as it assumes there is intelligent control knowledge, exterior to its search cy-

cle, that it can rely upon to make decisions, both to make planning more efficient and

to obtain good quality plans. PRODIGY has been applied to a wide range of planning

and problem-solving tasks: robotic path planning [Haigh et al., 1994], the blocksworld,
several versions of the STRIPS domain, matrix algebra manipulation, discrete machine-
shop planning [Gil and Pérez, 1994] and scheduling, computer configuration, logistics
transportation planning, and several others. Other research in the PRODIGY project has
focused in studying different planning techniques and heuristics [Blythe and Veloso, 1992,
Veloso and Blythe, 1994, Stone et al., 1994, Blythe, 1994].

In a casual-commitment strategy at each decision point the planner commits to a particular alter-
native, and backtracks upon failure. This is in contrast to a least-commitment strategy where decisions
are deferred until all possible interactions are recognized.

Appendix B

A Trace From Practice

Here is an example of how planning, learning, execution, and plan repair is integrated
in OBSERVER in the process planning domain. The practice problem is illustrated in
Figure B.1. Figures B.2, B.3, B.4, and B.5 illustrate some partially learned operators
that are relevant to solving this practice problem. The G-rep, S-rep, and previously
learned extraneous preconditions of these operators are shown.

In this example, OBSERVER first generates an initial plan to achieve the top-level goals
of the problem. OBSERVER then starts executing the plan. The first operator in the
plan, hold-with-vise, fails to execute in the environment. Since every precondition in
the S-rep of the operator hold-with-vise is satisfied in the state, OBSERVER conjectures
that (not (has-burrs <v3>)) is a negated precondition. OBSERVER then generates a plan
segment (operators 3 and 4) to achieve this negated precondition. Note that during
plan repair, the preconditions in the G-rep of the failed operator hold-with-vise (i.e.,
(is-clean part0)) must also be achieved. After plan repair, the plan now includes four
operators: operators 3, 4, 1, and 2. OBSERVER successfully executes operators 3 and 4 (i.e.,
(remove-burrs part0) and (clean part0)). When OBSERVER successfully executes opera-
tor 1 (hold-with-vise), it adds the negated precondition (not (has-burrs part0)) to the
G-rep of this operator, since this operator has previously failed to execute, and it is ex-
ecuted successfully now because the precondition (not (has-burrs <v3>)) is satisfied in
the state. After 0BSERVER successfully executes operator 2 (i.e., drill-with-spot-drill),
the top-level goal is achieved and 0BSERVER returns SUCCESS.

The trace for problem solving is as follows:

121

122 APPENDIX B. A TRACE FROM PRACTICE

initial plan:
1. <hold-with-vise drill0 viseO partO side6 sidel>
2. <drill-with-spot-drill
partO hole0 spot-drill0 viseO viseO drillQ 0.75 0.5 sidel>

plan = {1,2}

operator (1) executes unsuccessfully,
calling the learning module with negative example:
#<Hold-with-vise [<v1> drill0] [<v2> vise0] [<v3> part0]
[<v4> side6] [<v5E> sidel] [<v6> (OI1>

goal: (holding drill0 vise0 partO sidel)
goal-stack: ((has-spot part0 holeO sidel 0.5 0.75))
not-satisfied-lits-S-rep: nil
adding the following negated preconds to operator: #<op: hold-with-vise>
(© (has-burrs <v3>)))
plan repair for goals:
(and (* (has-burrs part0)) (on-table drill0 part0) (is-clean part0))

new plan segment:
3. <remove-burrs part0 vise0 drillQ>
4. <clean partO vise0O drillO>

pla-n = {3: 4’ 1, 2}
operator (3) executes successfully,
deleting the following literals from the state:

((has-burrs part0) (is-clean part0))

calling the learning modifying with positive example:
#<remove-burrs [<v19> part0] [<v25> vise0] [<v23> drillQ]>

Plan = {4’ 1, 2}
operator (4) executes successfully,
adding the following literals to the state:

((is-clean part0))

calling the learning modifying with positive example:
#<clean [<v28> part0] [<v34> vise0] [<v32> drillO]>

123

plan = {1, 2}

operator (1) executes successfully,
adding the following literals to the state:
((holding drillO viseO partO sidel))
deleting the following literals from the state:
((is-available-part part0)
(is-empty-holding-device vise0 drill0)
(on-table drill0 part0))

calling the learning modifying with positive example:
#<hold-with-vise [<v1> drill0] [<v2> viseO] [<v3> partO]
[<v4> sideB] [<v5E> sidel] [<v6> ()]>
updating the \grep\ of operator hold-with-vise by adding the following precondition:
(* (has-burrs <v3>)

plan = {2}

operator (2) executes successfully,
adding the following literals to the state:

((has-burrs part0) (has-spot partO holeO sidel 0.5 0.75))
deleting the following literals from the state:

((is-clean part0))

calling the learning modifying with positive example:

#<drill-with-spot-drill [<v137> partO] [<v136> holeO] [<vi44> spot-drillO]
[[<v143> vise0] [<v142> vise0] [<v141> drillo]
[<v230> 0.75] [<v229> 0.5] [<v228> sidel]>

TOP~LEVEL-GOALS~ACHIEVED
SUCCESS

124 APPENDIX B. A TRACE FROM PRACTICE

(setf (current-problem)
(create-problem

(objects

(drill0 drill)

(spot-drill0 spot-drill)

(viseO vise)

(mineral-oil mineral-oil)

(part0 part)

(hole0 hole))

(state

(and
(holding-tool drill0 spot-drillO)
(has—-device drillQ vise0)
(is-available-table drill0 vise0)
(is-available-holding-device viseO)
(material-of part0 brass)
(hardness-of part0 soft)
(size-of partO length 4)
(size-of partO width 2.75)
(size-of partO height 2.25)
(shape-of part0 rectangular)
(on-table drill0 partO)
(is-empty-holding-device vise0 drill0)
(is-available-part partO)
(is-clean part0)
(has-burrs part0)))

(goal (has-spot partO hole0 sidel 0.5 0.75))))

Figure B.1: Problem definition, which consists of the initial state and a goal description.

(operator hold-with-vise
(preconds ((<v1> machine)) (<v2> vise)
(<v3> part) (<v4> side)
(<v5> side))
(and (is-empty-holding-device <v2> <vi>)
(has—-device <vi1> <v2>)
(is—clean <v3>)
(is-available-part <v3>)
(on-table <vi1> <v3>))
(effects ((<v6> toe-clamp))
((if
(and
(is-empty-holding-device <v6> <v1>)
(shape-of <v3> cylindrical)
((add (holding-weakly
<v1> <y2> <v3> <véd>)))))
(if (and (shape-of <v3> rectangular))
((add (holding <vi> <v2> <v3> <v5>))))
(del (on-table <vi> <v3>))
(del (is-available-part <v3>))
(del (is-empty-holding-device
<y2> <vi>))))
:G-rep
((on-table <vi> <v3>)
(has-device <vi> <v2>)
(is—clean <v3>))
:extraneous-preconds
((is—empty-holding-device <v6> <vi>)
(is-available-tool <v8>)
(is—available-tool <v9>)
(is-available-tool <vi1>)
(holding-tool <vi> <vi2>)
(is-available-holding-device <v6>)
(hardness—of <v3> <v10>)
(shape-of <v3> <v417>)
(is-available-table <vi> <v2>)
(size-of-drill-bit <v9> <v13>)
(size—-of <v3> diameter <vi4>)
(size—of <v3> length <vib>)
(material-of <v3> <vi16>)
(diameter-of-drill-bit <v8> <vi7>)))

Figure B.2: Incomplete operator
HOLD-WITH-VISE used to solve the practice
problem.

Figure
DRILL-WITH-SPOT-DRILL used to solve the
practice problem.

125

(operator drill-with-spot-drill
(preconds
((<v137> part) (<v136> hole)
(<v144> spot-drill) (<v143> vise)
(<v142> (or vise toe-clamp)) (<vi41> drill)
(<v230> number) (<v229> number)
(<v228> side))
(and
(is-clean <v137>)
(has-device <vi41> <v142>)
(has-device <v141> <v143>)
(holding-tool <v141> <v144>)
(holding <v141> <v142> <vi37> <v228>)))
(effects
((del (is-clean <v137>))
(add (has-spot
<v137> <v136> <v228> <v229> <v230>))
(add (has-burrs <vi37>))))
:G-rep
((holding-tool <v141> <vi44>)
(holding <v141> <v142> <vi37> <v228>)))
rextraneous-preconds
((is-available-tool <v138>)
(is~available-tool <v139>)
(is-available—-tool <v140>)
(hardness—of <v137> <v1768>)
(diameter-of-drill-bit <v139> <v424>)
(size-of <v137> length <v231>)
(material-of <vi37> <v232>)
(shape-of <v137> <v233>)
(diameter-of-drill-bit <v138> <v235>)
(diameter-of-drill-bit <v140> <v234>)
(is-empty-holding-device <v143> <vi41>)
(size-of <v137> height 4.25)
(size-of <v137> width 3))

B.3: Incomplete operator

126 APPENDIX B. A TRACE FROM PRACTICE

(operator remove-burrs
(preconds ((<v19> part) (<v25> vise)

(operator clean (<v23> (or drill milling-machine)))

(preconds ((<v28> part) (<v34> vise) (and
(<v32> (or drill milling-machine))) (is-available-part <v19>)
(and (is~empty-holding-device <v25> <v23>)

(effects

(is-available-part <v28>)
((if (and (is-clean <v19>))

(is-empty-holding-device <v34> <v32>)))

(effects ((del (is-clean <v19>))))
((add (is-clean <v28>)))) (del (has-burrs <vi9>))))
:G-rep :G-rep

((is-available-part <v19>))
:extraneous-preconds
((is-empty-holding-device <v24> <v23>)
(has~-burrs <vi9>)
(is-available-tool <v22>)
(is-available-tool <v20>)
(is-available-tool <v21>)
(has-device <v23> <v24>)

((is-available-part <v28>))
:extraneous—-preconds-preconds
((is-empty-holding-device <v33> <v32>)

(is-available-tool <v31>)

(is-available-tool <v29>)

(is-available-tool <v30>)

{(holding-tool <v32> <v35>)

(has-device <v32> <v34>)

(has-device <v32> <v33>)

(shape-of <v28> <v189>)

(size-of <v28> length <v190>)
(size-of <v28> height 4.25)

(size-of <v28> width <v113>)
(material-of <v28> <v114>)
(hardness—of <v28> <v116>)
(diameter-of-drill-bit <v30> <v115>)
(angle-of-drill-bit <v31> 80)
(is-available-machine <v32>)))

(has-device <v23> <v25>)
(holding-tool <v23> <v26>)
(shape-of <v19> <v179>)
(size-of <v19> length <v180>)
(size-of <v19> height 4.25)
(size-of <v19> width <viQ1>)
(material-of <v19> <v102>)
(hardness-of <vi19> <v104>)
(diameter-of-drill-bit <v21> <v103>)
(angle-of-drill-bit <v22> 80)
(is—available-machine <v23>))

Figure B.4: Incomplete operator clean

used to solve the practice problem. Figure B.5: Incomplete operator

remove-burrs used to solve the practice
problem.

Bibliography

[Allen et al., 1990] James Allen, James Hendler, and Austin Tate. Readings in Planning.
Morgan Kaufmann Publishers, San Mateo, CA., 1990.

[Ambros-Ingerson and Steel, 1988] Jose’ A. Ambros-Ingerson and Sam Steel. Integrating
planning, execution and monitoring. In Proceedings of the Sizth National Conference
on Artificial Intelligence, 1988.

[Anzai and Simon, 1979] Yuichiro Anzai and Herbert A. Simon. The theory of learning
by doing. Psychological Review, 86:124-140, 1979.

[Beetz and McDermott, 1992] Michael Beetz and Drew McDermott. Declarative goals
in reactive plans. In Proceedings of the First International Conference on AI Planning
Systems, College Park, MD, 1992.

[Benson, 1995] Scott Benson. Inductive learning of reactive action models. In Proceedings
of Twelfth International Conference on Machine Learning, Tahoe City, CA, July 1995.

[Bergadano and Giordana, 1988] F. Bergadano and A. Giordana. A knowledge intensive
approach to concept induction. In Proceedings of Fifth International Workshop on
Machine Learning, Ann Arbor, MI, June 1988.

[Blumer et al., 1987] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Man-
fred Warmuth. Occam’s razor. Information Processing Letters, 24:377-380, 1987.

[Blythe and Veloso, 1992] Jim Blythe and Manuela Veloso. An analysis of search tech-
niques for a totally-ordered nonlinear planner. In Proceedings of the First International

Conference on AI Planning Systems, College Park, MD, June 1992.

[Blythe, 1994] Jim Blythe. Planning with external events. In Proceedings of the Confer-
ence on Uncertainty in Al Seattle, WA, 1994.

127

128 BIBLIOGRAPHY

[Blythe, 1996] Jim Blythe. Decompositions of markov chains for reasoning about exter-
nal change in planners. In Proceedings of the Third International Conference on Al
Planning Systems, Edinborgh, Scotland, 1996.

[Boose and Gaines, 1989] John H. Boose and Brian R. Gaines. Knowledge acquisition for
knowledge-based systems: Notes on the state-of-the-art. Machine Learning, 4:377-394,

1989.

[Borrajo and Veloso, 1994a] Daniel Borrajo and Manuela Veloso. Incremental learning
of control knowledge for nonlinear problem solving. In Proceedings of the European
Conference on Machine Learning, ECML94, Sicily, Italy, 1994. Springer Verlag.

[Borrajo and Veloso, 1994b] Daniel Borrajo and Manuela Veloso. Incremental learning of
control knowledge for improvement of planning efficiency and plan quality. In Working
Notes of the AAAI 1994 Fall Symposium Series, Symposium on Planning and Learning:
On to Real Applications, New Orleans, November 1994.

[Bundy et al., 1985] Alan Bundy, Bernard Silver, and D. Plumer. An analytical compar-
ison of some rule-learning programs. Artificial Intelligence, 27, 1985.

[Carbonell et al., 1992] Jaime G. Carbonell, and the PRODIGY Research Group:
Jim Blythe, Oren Etzioni, Yolanda Gil, Robert Joseph, Dan Kahn, Craig Knoblock,
Steven Minton, Alicia Pérez, (editor), Scott Reilly, Manuela Veloso, and Xuemei Wang,.
PRODIGY4.0: The manual and tutorial. Technical Report CMU-CS-92-150, School
of Computer Science, Carnegie Mellon University, June 1992.

[Cassandra et al., 1994] Anthony Cassandra, Leslie Kaelbling, and Michael Littman.
Actin optimally in partially observable stochastic domains. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, AAAI9/, Seattle, WA, August
1994. AAAI Press/The MIT Press.

[Chapman, 1987] David Chapman. Planning for conjunctive goals. Artificial Intelligence,
32:333-378, 1987.

[Cheng and Carbonell, 1986] Patricia Cheng and Jaime Carbonell. The FERMI system:
Inducing iterative macro-operators from experience. In Proceedings of the National
Conference on Artificial Intelligence, pages 490-495, Philadelphia, PA, 1986.

[Chien et al., 1995] Steve Chien, Randal W. Hill Jr., Xuemei Wang, Tara Estlin, Kristina
Fayyad, and Helen Mortensen. Why real-world planning is difficult: A tale of two
applications. In M. Ghallab, editor, Advances in Planning. IOS Press, 1995.

BIBLIOGRAPHY 129

[Chien et al., 1996a] Steve Chien, Tara Estlin, and Xuemei Wang. Hierarchical task net-
work and operator-based planning: Competing or complementary? Technical Report
JPL Technical Document D-13390, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, 1996.

[Chien et al., 1996b] Steve Chien, Xuemei Wang, Tara Estlin, and Anita Govindjee. Au-
tomatic generation of temporal dependency networks for antenna operations. Telecom-
maunications and Data Acquisition, 1996.

[Chien, 1989] Steve Chien. Using and refining simplifications: Explanation-based learn-
ing of plans in intractable domains. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, pages 590-595, Detroit, MI, 1989.

[Chien, 1994] Steve Chien. Towards an intelligent planning knowledge base development
environment. In AAAI-94 Fall Symposium Series: Planning and Learning: On to Real
Applications, New Orleans, LA, 1994.

[Chien, 1996] Steve Chien. Static and completion analysis for planning knowledge base
development and verification. In Proceedings of the Third International Conference on
Al Planning Systems, Edinborgh, Scotland, 1996.

[Christensen, 1990] Jens Christensen. A hierarchical planner that creates its own hier-
archies. In Proceedings of the Fighth National Conference on Artificial Intelligence,
pages 1004-1009, Boston, MA, 1990.

[Cohen, 1991] William W. Cohen. Learning approximate control rules of high utility.
In Proceedings of Eighth International Workshop on Machine Learning, Evanston, IL,
June 1991.

[Davis, 1979] R. Davis. Interactive transfer of expertise: Acquisition of new inference
rules. Artificial Intelligence, 12, 1979.

[desJardins, 1994] Marie desJardins. Knowledge development methods for planning sys-
tems. In AAAI-94 Fall Symposium Series: Planning and Learning: On to Real Appli-
cations, New Orleans, LA, 1994.

[Doyle, 1985] Lawrence E. Doyle. Manufacturing Processes and Materials for Engineers.
Prentice-Hall, Englewood Cliffs, NJ, third edition, 1985.

[Draper et al., 1994] Denise Draper, Steve Hanks, and Dan Weld. Probabilistic planning
with information gathering and contingent execution. In Proceedings of the Second
International Conference on Al Planning Systems, Chicago, 1L, 1994.

130 BIBLIOGRAPHY

[Estlin and Mooney, 1996] Tara A. Estlin and Raymond J. Mooney. Multi-strategy learn-
ing of search control for partial-order planning. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, Portland, OR, August 1996. AAAI
Press/The MIT Press.

[Estlin et al., 1996] Tara Estlin, Xuemei Wang, Anita Govindjee, and Steve Chien. Dplan
deep space network antenna operations planner version 1.0 programmer’s manual.
Technical Report JPL Technical Document D-13377, Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, Pasadena, CA, 1996.

[Etzioni et al., 1992] Oren Etzioni, Steve Hanks, Daniel Weld, Denis Draper, Neal Lesh,
and Mike Williamson. An approach to plannin with incomplete information. In Pro-
ceedings of the Third International Conference on Principles of Knowledge Represen-
tation an Reasoning, pages 115-125, Cambridge, MA, 1992.

[Etzioni, 1990] Oren Ftzioni. A Structural Theory of Ezplanation-Based Learning. PhD
thesis, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, 1990.
Also appeared as Technical Report CMU-CS-90-185.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nilsson. STRIPS: a new ap-
proach to the application of theorem proving to problem solving. Artificial Intelligence,
2(3,4):189-208, 1971.

[Fikes et al., 1972] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and
executing generalized robot plans. Artificial Intelligence, 3:251-288, 1972.

[Fink and Veloso, 1996] Eugene Fink and Manuela Veloso. Formalizing the Prodigy plan-
ning algorithm. 10S press, Amsterdam, Netherlands, 1996.

[Firby, 1987] James R. Firby. An investigation into reactive plannin in complex domains.
In Proceedings of the Sizth National Conference on Artificial Intelligence, Seattle, WA,
1987.

[Genesereth and Nourbakhsh, 1993] Michael Genesereth and Illah Nourbakhsh. Time-
saving tips for problem solving with incomplete information. In Proceedings of the
Fleventh National Conference on Artificial Intelligence, Washington D.C, 1993.

[Gil and Pérez, 1994] Yolanda Gil and M. Alicia Pérez. Applying a general-purpose plan-
ning and learning architecture to process planning. In Working Notes of the AAAI
1994 Fall Symposium Series, Symposium on Planning and Learning: On to Real Ap-
plications, pages 48-52, New Orleans, November 1994.

BIBLIOGRAPHY 131

[Gil and Tallis, 1995] Yolanda Gil and M. Tallis. Transaction-based knowledge acqui-
sition: complex modifications mode easier. In Proceedings of the Ninth Knowledge
Acquisition for Knowledge-Based Systems Workshop, 1995.

[Gil, 1991] Yolanda Gil. A specification of process planning for PRODIGY. Technical
Report CMU-CS-91-179, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, August 1991.

[Gil, 1992] Yolanda Gil. Acguiring Domain Knowledge for Planning by Ezperimentation.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
August 1992.

[Gil, 1994] Yolanda Gil. Learning by experimentation: Incremental refinement of in-
complete planning domains. In Proceedings of Eleventh International Conference on
Machine Learning, New Brunswick, NJ, July 1994.

[Haigh and Veloso, 1996] Karen Z. Haigh and Manuela M. Veloso. Interleavin planning
and robot execution for asynchronous user requests. In Working Notes of the AAAI
1996 Spring Symposium Series, Symposium on Planning with incomplete information
for robot problems, Stanford University, CA, March 1996.

[Haigh et al., 1994] Karen Zita Haigh, Jonathan Richard Shewchuk, and Manuela Veloso.
Route planning and learning from execution. In Working Notes of the AAAI 1994 Fall
Symposium Series, Symposium on Planning and Learning: On to Real Applications,
pages 58-64, New Orleans, November 1994.

[Hammond, 1989] Kristian Hammond. Case-Based Planning: Viewing planning as a
memory task. Academic press, New York, NY, 1989.

[Haussler, 1988] David Haussler. Quantifying inductive bias: Al learning algorithms and
valiant’s learning framework. Artificial Intelligence, 36:177-221, 1988.

[Haussler, 1989] David Haussler. Learning conjunctive concepts in structural domains.

Machine Learning, 4:7-40, 1989.

[Hayes-Roth and McDermott, 1978] Frederick Hayes-Roth and John McDermott. An
interference matching technique for inducing abstractions. In CACM, volume 26, pages
401-410, 1978.

[Hayes, 1990] Caroline C. Hayes. Machining Planning: A Model of an Expert Level
Planning Process. PhD thesis, The Robotics Institute, Carnegie Mellon University,
December 1990.

132 BIBLIOGRAPHY

[Hill et al., 1995] Randal Hill, Steve Chien, Kristina Fayyad, Crista Smyth, Trish Santos,
and Richard Chen. Sequence of events driven automation of the deep space network.
Telecommunications and Data Acquisition, 1995.

[Huffman et al., 1993] Scott Huffman, Douglas Pearson, and John Laird. Correcting im-
perfect domain theories: A knowledge-level analysis. In Susan Chipman and Alan L.
Meyrowitz, editors, Foundations of Knowledge Acquisition: Congitive Models of Com-
plez Learning. Kluwer Academic Publishers, Boston/Dordrecht/London, 1993.

[Mume and Sammut, 1991] David Hume and Claude Sammut. Using inverse resolution
to learn relations from experiments. In Proceedings of Eighth Machine Learning Work-
shop, Evanston, IL, July 1991.

[Iwamoto, 1994] Masahiko Iwamoto. A planner with quality goal and its speedup learning
for optimization problem. In Proceedings of the Second International Conference on
AT Planning Systems, pages 281-286, Chicago, IL, 1994.

[Joseph, 1992] Robert L. Joseph. Graphical Knowledge Acquisition for Visually-Oriented
Planning Domains. PhD thesis, Carnegie Mellon University, School of Computer Sci-
ence, August 1992. Also appeared as Technical Report CMU-CS-92-188.

[Kambhampati, 1990] Subbarao Kambhampati. A theory of plan modification. In Pro-
ceedings of the Eighth National Conference on Artificial Intelligence, Boston, MA,
1990.

[Katukam and Kambhampati, 1994] Suresh Katukam and Subbarao Kambhampati.
Learning explanation-based search control rules for partial order planning. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence, pages 582-587,
Seattle, WA, July 1994. AAAT Press/The MIT Press.

[Knoblock, 1994] Craig A. Knoblock. Automatically generating abstractions for plan-
ning. Artificial Intelligence, 68, 1994,

[Knoblock, 1995] Craig A. Knoblock. Planning, executing, sensing, and replanning for
information gathering. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, Montreal, CA, 1995.

[Kodratoff and Tecuci, 1991] Yves Kodratoff and Gheorghe Tecuci. DISCIPLE-I: Inter-
actlve apprentice system in weak theory fields. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, Sydney, Australia, 1991.

[Korf, 1985] Richard E. Korf. Macro-operators: A weak method for learning. Artificial
Intelligence, 26:35-77, 1985.

BIBLIOGRAPHY 133

[Kuokka, 1990] Daniel R. Kuokka. The deliberative integration of planning, ezecution,
and learning. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1990.

[Kushmerick et al., 1995] Nick Kushmerick, Steve Hanks, and Dan Weld. An algorithm
for probabilistic planning. Artificial Intelligence, 76, 1995.

[Laird et al., 1986] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in
SOAR: The anatomy of a general learning mechanism. Machine Learning, 1:11-46,
1986.

[Langley, 1985] Pat Langley. Learning to search: From weak methods to domain-specific
heuristics. Cognitive Science, 9:217-260, 1985,

[McAllester and Rosenblitt, 1991] David McAllester and David Rosenblitt. Systematic
nonlinear planning. In Proceedings of the Ninth National Conference on Artificial
Intelligence, 1991.

[Minton et al., 1989] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R.
Kuokka, Oren Etzioni, and Yolanda Gil. Explanation-based learning: A problem-
solving perspective. Artificial Intelligence, 40:63-118, 1989.

[Minton, 1988] Steven Minton. Learning Effective Search Control Knowledge: An
Ezplanation-based Approach. Kluwer Academic Publishers, Boston, MA, 1988. PhD
thesis available as Technical Report CMU-CS-88-133, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

[Mitchell et al., 1983] T. Mitchell, P. Utgoff, and R. Banerji. Learning by experimen-
tation: Acquiring and refining problem-solving heuristic. In Machine Learning, An
Artificial Intelligence Approach, Volume I. Tioga Press, Palo Alto, CA, 1983.

[Mitchell et al., 1990] Tom M. Mitchell, Sridhar Mahadevan, and Louis I. Steinberg.
LEAP: A learning apprentice system for VLSI design. In Yves Kodratoff and Ryszard
Michalski, editors, Machine Learning: An Artificial Intelligence Approach, volume III,
pages 271-289. Morgan Kaufmann, San Mateo, CA, 1990.

[Mitchell, 1978] Tom M. Mitchell. Version Spaces: An Approach to Concept Learning.
PhD thesis, Stanford University, 1978.

[Mitchell, 1983] Tom M. Mitchell. Learning and problem solving. In Proceedings of the
International Joint Conference on Artificial Intelligence, IJCAIS83, volume 2, pages
1139-1151, Karlsruhe, Germany, 1983. Computers and Thought Lecture.

134 BIBLIOGRAPHY

[Mostow and Bhatnagar, 1987] Jack Mostow and Neeraj Bhatnagar. Failsafe — a floor
planner that uses EBG to learn from its failures. In Proceedings of the Tenth Interna-
tional Joint Conference on Artificial Intelligence, Milano, Italy, 1987.

[Muggleton and Feng, 1990] Stephen H. Muggleton and Cao Feng. Efficient induction of
logic programs. In Proceedings of the First Conference on Algorithm Learning Theory,
Tokyo, Japan, 1990.

[Muggleton, 1992] Stephen II. Muggleton. Inductive logic programming. Academic press,
New York, NY, 1992.

[Muggleton, 1995] Stephen H. Muggleton. Inverse entailment and Progol. New Genera-
tion Computing, 13:245-286, 1995.

[Nau, 1987] Dana S. Nau. Automated process planning using hierarchical abstraction.
Texas Instruments Technical Journal, Winter:39-46, 1987.

[Neves, 1985] David Neves. Learning procedures from examples and by doing. In Pro-
ceedings of IJCAI 85, 1985.

[Oates and Cohen, 1996] Tim Oates and Paul R. Cohen. Searching for planning opera-
tors with context-dependent and probabilistic effects. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, Portland, Oregon, August 1996. AAAI
Press/The MIT Press.

[Pazzani and Kibler, 1992] Michael Pazzani and Dennis Kibler. The utility of back-
ground knowledge in inductive learning. Machine Learning, 9:57-94, 1992.

[Penberthy and Weld, 1992] J. Scott Penberthy and Dan Weld. UCPOP: A sound, com-
plete, partial order planner for ADL. In Proceedings of KR-92, 1992.

[Pérez and Etzioni, 1992] M. Alicia Pérez and Oren Etzioni. DYNAMIC: A new role for
training problems in EBL. In D. Sleeman and P. Edwards, editors, Machine Learn-
ing: Proceedings of the Ninth International Conference, ML92, pages 367-372. Morgan
Kaufmann, San Mateo, CA., 1992.

[Pérez, 1995] M. Alicia Pérez. Learning search control knowledge to improve plan qual-
ity. Technical Report CMU-CS-95-175, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, July 1995. PhD thesis.

[Plotkin, 1970] Gordon D. Plotkin. A note on inductive generalization. Machine intelli-
gence, 5:153-163, 1970.

BIBLIOGRAPHY 135

[Porter and Kibler, 1986] Bruce Porter and Dennis Kibler. Experimental goal regression:
a method for learning problem-solving heuristics. Machine Learning, 1:249-284, 1986.

[Quinlan, 1986] Ross Quinlan. Induction of decision trees. Machine Learning, 1:81-1086,
1986.

[Quinlan, 1990] Ross Quinlan. Learning logical definitions from relations. Machine
Learning, 5:239-266, 1990.

[Ruby and Kibler, 1990] David Ruby and Dennis Kibler. Learning steppingstones for
problem solving. In Proceedings of the Darpa Workshop on Innovative Approaches to
Planning, Scheduling and Control, pages 366-373, San Diego, CA, November 1990.

[Sacerdoti, 1977] Earl Sacerdoti. A Structure for Plans and Behavior. Elsevier, North
Holland, New York, 1977.

[Sammut, 1996] Claude Sammut. Using background knowledge to build multistrategy
learner. In Proceedings of Third International Workshop on Multistrategy Learning,
Harpers Ferry, WV, 1996.

[Segre, 1988] Alberto Maria Segre. Machine Learning of Robot Assembly Plans. Kluwer
Academic Publishers, Boston, MA, 1988.

[Shank, 1982] Roger C. Shank. Dynamic Memory: a theory of reminding and learning
wn computers and people. Cambridge University Press, Boston, MA, 1982.

[Shapiro, 1983] Ehud Y. Shapiro. Algorithmic Program Debugging. MIT press, Cam-
bridge, MA, 1983.

[Shen, 1989] Wei-Min Shen. Learning from Environment Based on Percepts and Actions.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,

1989.

[Shen, 1994] Wei-Min Shen. Autonomous Learning from the Environment. Computer
Science Press, W.H. Freeman and Company, 1994.

[Simmons and Koenig, 1995] Reid Simmons and Sven Koenig. Probabilistic robot nav-
igation in partically observable environments. In Proceedings of the fourteenth Inter-
national Joint Conference on Artificial Intelligence, Montreal, CA, 1995.

[Simmons, 1988] Reid G. Simmons. A theory of debugging plans and interpretations. In
Proceedings of the Seventh National Conference on Artificial Intelligence, pages 94-99,
St Paul, MN, 1988. Morgan Kaufmann.

136 BIBLIOGRAPHY

[Smith and Rosenbloom, 1990] Benjamin Smith and Paul Rosenbloom. Incremental non-
backtracking focusing: A polynomial bounded generalization algorithm for version
space. In Proceedings of the Eighth National Conference on Artificial Intelligence,
Boston, MA, 1990.

[Stone et al., 1994] Peter Stone, Manuela Veloso, and Jim Blythe. The need for different
domain-independent heuristics. In Proceedings of the Second International Conference
on AT Planning Systems, AIPS-94, pages 164-169, Chicago, IL, June 1994,

[Tadepalli, 1989] Prasad Tadepalli. Lazy explanation-based learning: A solution to the
intractable theory problem. In Proceedings of the Fleventh International Joint Con-
ference on Artificial Intelligence, pages 694-700, Detroit, MI, 1989.

[Tae and Cook, 1996] Kang Soo Tae and Diane J. Cook. Experimental knowledge-based
acquisition for planning. In Proceedings of Thirteenth International Conference on
Machine Learning, Bari, Italy, July 1996.

[Vanlehn, 1987] Kurt Vanlehn. Learning one subprocedure per lesson. Artificial Intelli-
gence, 31(1):1-40, 1987.

[Veloso and Blythe, 1994] Manuela Veloso and Jim Blythe. Linkability: Examining
causal link commitments in partial-order planning. In Proceedings of the Second Inter-
national Conference on Al Planning Systems, AIPS-94, pages 170-175, Chicago, IL,
June 1994.

[Veloso and Stone, 1995] Manuela Veloso and Peter Stone. Flecs: Planning with a flexi-
ble commitment strategy. Journal of Artificial Intelligence Research, 3, 1995.

[Veloso et al., 1995] Manuela M. Veloso, Jaime G. Carbonell, M. Alicia Pérez, Daniel
Borrajo, Eugene Fink, and Jim Blythe. Integrating planning and learning: The
PRODIGY architecture. Journal of Ezperimental and Theoretical Artificial Intelli-

gence, 7(1), January 1995.

[Veloso, 1989] Manuela M. Veloso. Nonlinear problem solving using intelligent casual-
commitment. Technical Report CMU-CS-89-210, School of Computer Science,

Carnegie Mellon University, 1989.

[Veloso, 1994] Manuela M. Veloso. Planning and Learning by Analogical Reasoning.
Springer Verlag, Berlin, Germany, 1994. PhD thesis available as technical report CMU-
CS5-92-174, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

[Vere, 1980] Steven. A. Vere. Multilevel counterfactuals for generalizations of relational
concepts and productions. Artificial Intelligence, 14:139-164, 1980.

BIBLIOGRAPHY 137

[Wang and Veloso, 1994] Xuemei Wang and Manuela Veloso. Learning planning knowl-
edge by observation and practice. In ARPA/Rome Laboratory Knowledge- Based Plan-
ning and Scheduling Initiative, Tucson, Arizona, February 1994.

[Wang, 1995] Xuemei Wang. Learning by observation and practice: An incremental
approach for planning operator acquisition. In Proceedings of Twelfth International
Conference on Machine Learning, Tahoe City, CA, July 1995.

[Wang, 1996] Xuemei Wang. Planning while learning operators. In Proceedings of the
Third International Conference on Al Planning Systems, Edinborgh, Scotland, 1996.

[Wilkins, 1988] David Wilkins. Practical Planning: Eztending the Classical AI Planning
Paradigm. Morgan Kaufmann, San Mateo, CA., 1988.

[(Winston, 1975] Patrick. H. Winston. Learning structural descriptions from ezamples.
McGraw-Hill, New York, 1975.

[Yang and Fisher, 1993] Hua Yang and Douglas Fisher. Planning speedup by learning,
reusing, and patching macro operators. In Proceedings of Third International Workshop
on Knowledge Compilation and Speedup Learning, Amherst, MA, 1993.

