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Execuion Environments in

Programming Languages and Operating Systems

Robert W. Schwenke

Abstract

"2,MVlulti-tasking operating system design is a thorough test of a programming methodology.
Such systems contain large and complex data and control structures, maipulate unsafe
hardware, require very efficient code, and must execute continuously for days at a time in
the presence of transient hardware errors. Furthermore, they must conform to real-time
constraints of hardware and users, and still satisfy throughput requirements.

The module construct in most recent methodology-based languages specifies only the
source language structure of programs However, the structure of the executable
representation of an operating system program is very complex, and need not be
isomorphic to the source structure. The operating system designer needs control over the
executable representation of the system especially when programming bootstrapping
facilities, system generation and configuration programs, interfaces to hardware dependent
modules, and managers for such execution facilities as address translation tables, process

state registers, interrupt vectors, dynamic storage, protection domains.

The goal of the thesis is to determine whether an explicit notationland methodology for
describing the executable representation of a system of programs, can improve our ability
to design and construct operating system We investigate this question by extending a
specific methodology, incremental machine design, with notations and techniques for
structuring executable representations. We exercise the extended methodology by applying
it to a set of realistic operating system design problems.

The thesis defines an execution environment to be an explicit set of resources for
implementing programs. In each environment the list of resources defines the interface
between the implementation language and the underlying operating system facilities. That is,
the translator implements program units using the set of resources -supplied by the
operating system

The methods proposed to carry out this theme include representing execution
environments as explicit modules in source-language programs; binding source language
program units to environments explicitly, in a way that allows both multi-environment
modules and mulit-module environments; including host machine and boostrapping execution
environments in operating system descriptions; and combining all program units into a single
comprehensive system description, which takes the form of a program to create an
operating system

Applying the system of methods to a set of operating system description problems
demonstrates that it clarifies many dependencies among operating components, provides a
sound place for system generation and bootstrapping code in the overall system structure,
and provides a basis for integrating operating system facilities directly into systems
implementation languages.
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CHAPTER 1

INTRODUCTION

Multi-tasking operating system design is a thorough test of a programming
methodology. These syitems contain large and complex data and control structures,
manipulate Liusfe hardware, require very efficient code, and must execute
continuously for days at a time in the presence of transient hardware errors.
Furthermore, they must conform to real-time constraints of hardware and users, and
still satisfy throughput requirements

Much of the recent research in programming methodology and programming
languages has focused on the module as a schema for structuring programs
Conceptually, a module is a group of program components that share information
about certain design decisions, such as the format of a data base or the queueing
structure used by a process scheduler. Several recent languages have provided
explicit module constructs, which permit the system designer to isolate a set of
related components such that changes to the shared design information affect only
the code within the module, and such that the interactions between the encapsulated
components and the rest of the system can be identified, characterized, and

controlled With such a tool, a system can be described, developed, and debugged,
module by module, resulting in a cleaner design, and facilitating error detection and
design changes.

The module construct in most recent methodology-based languages specifies only
the source language structure of programs. In operating systems, however, the
structure of the executable representation of the program is also complex, and need
not be isomorphic to the source structure. The representation of a single source-
language module may be spread across several execution environmet Programs
that invoke operations provided by a system's virtual memory manager, for example,
may affect the addressability of objects in ways that don't appear in the source
program Current languages do not provide any tools for specifying the structure
of the executable representation of a system of programs. The operating system
designer needs such tools for bootstrapping facilities, system generation and
configuration programs, interfaces to hardware dependent modules, and system
components which directly manipulate execution facilities, including address mapping
managers, process managera, exception handling mechanisms, and synchronization
facilities.

V. Al
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The goal of the thesis is to determine whether an explicit notation and
methodology for describing the executable representation of a system of programs,
can improve our ability to design and construct operating mWitems. We investigate
this question by extending a specific methodology, incremental machine design

[Habermann 78), with notations and techniques for structuring executable
representotions. We exercise the extended methodology by applying it to a set of
realistic operating system design problems. Then, we evaluate the notation and
methdology with respect to usefulness and generality, clarity and precision,
implementability, and robustness.

1.1. Whaet's in a Representation?

The representation of a program is often thought of as "whatever the compiler
produces" when presented with the program However, if we start from a more
formal definition of *representation, we are led to include a more extensive set of
objects than those produced directly by the compiler. The dependencies among
these objects can be complex. and different from source program dependencies.

We can borrow the definition of representation from data abstraction methodology
[Hoare 72), in which the representation function of an abstract object specifies a

mapping from the values of certain concrete variables to the value of the abstract
object A concrete variable may be involved in the representation of one or several
abstract objects. When the vriables named in a representation function determine
the representation of that one abstract object only, we tend to think of them as
being the representation of that object When one concrete variable is involved in
the representation of several abstract objects, we often say that the variable is used
to represent those objects. For example, a List Element data type might be
implemented by a single vector of list elements, with a central type manager which
handed out pointers to individual elements as they were needed The central vector
would be used to represent the elements.

Many of the same ideas apply to the representation of programs. In conventional
compiled language systems (eg. Pascal), the representation of a procedure is a
specific body of machine-language instructions. The representation of a process int,
say, Modula), however, would involve a stack of activation records, the process's
state vector, the representations of all of the procedures it invokes, and portions of
the process scheduler. The procedure code is needed to give an interpretation to
the program counter and other state variables. The process scheduler data
structures are needed to embody scheduling properties, such as estimated
completion time. Thus the procedures and the process scheduler would be used to
represent the active process.

Now, let us consider the nature of operating systems programs. An ordinary
sequential program has a well-defined beginning, middle, and end Its execution can

....... ... .. ....... .. .. ......." , ... . ... .. _ , . s ..;,L " . ..- ,. ... :... i ' " ... , . o =.-. :.. ..--



3

be understood quite independently from the process which carries out that
execution. However, a great many commercial application programs, and most
operating systems components, are cyclic and non-terminating [Flon 77). They
make use of data structures which endure (theoretically) for years; there may be
one or several "daemon processes" continuously executing code of the program;
and, there may be portions of the operating system's data structures permMently
reserved for the needs of the application or component Therefore, taking the
word program in this large-scale sense, the representation of a program may
involve processes and their representations, large data structures on secondary
storage, portions of operating system scheduling tables, virtual memory mapping
tables, and other operating system data structures. Not every structure will
necessarily have components dedicated to the individual program, but the
representation function of the program may include all of them in its domain.

Many of the interactions between program components cannot be derived solely
from their source-language descriptions. This is primarily because the organization
of the executable representation of the program may be very different from the
source-language organization To discuss this difference, we will need to be a bit
more formal about programs and their componenwt I will continue to use the term
program" in the broad, informal sense used aboveL To speak precisely about the

organization of programs, I will need the term module, as it is used in discussions
of data abstraction. A source language module is a syntactic unit of the source
language, defining a naming region (scopel, an interface to other modules, and a set
of program components, which may be variables, procedures, constants, macros,
inner modules, etca [Schwanke 78). A program, then, is simply a "main module".

Parnas has pointed out [Parnas 71) that the runtime structure of a program can
(and usually should) be quite different from its source-language structure, because
the runtime structure is based on the phases of processing, whereas the design
structure should often be based on the structure of the dats Consequently, there
need not (and should not) be a coherent machine-language object which is the
executable representation of a module. For example, some procedures defined in a
module may be "inline" procedures, whose machine code representation will appear
at each call site, rather than just in one place. in the module's executable
representation The converse also holds true -- the module may invoke an inline
procedure, whose machine-language body properly belongs to the representation of
another module. Furthermore, we have just seen that the data of one module (the
process scheduler) may be used to represent parts of several other modules
(programs declaring processes). Finally, modules can be composed into bigger
modules and systems of modules (often called subsystems), which might be spread
across a number of execution environments and multiple operating system layers.
Therefore, all of the mapping tables, resource managers, and protection mechanisms
which hold the subsystem together, must be accounted for in its representation

0' . . . . . .. - el l



4

Since there is not a one-to-one mapping from source to executable modules, we
shell instead define the concept of an execution environment Then we can talk
about the grouping of machine-language objects into execution environments, and
the relatonshps between source modules and those environments.

An execution environment is a coherent set of program execution facilities It is a
receptacle for programs and data. such that a given machine-language instruction
sequence would have the same meaning in any procedure placed in the environment
An execution environment may be characterized by-

" The regions of memory which are addressable by procedures in the
environment

* The memory which is available for containing procedures and data
UMemory may be addressable without being available).

" The set of legal machine instructions.

" The "virtual machine instructions" (a g. system functions, pr, ted
procedures. or ordinary procedures) which may be invok by
procedures residing in the environment

" The program support facilities (sometimes called run-time fa
available for synchronization, exception handling, message passing, oulk
storage, measuring time, general I/0, at cetera

Execution environments need not be disjoint For instance, two environments
might be identical except that not all of the memory addressable from one is
addressable from the other. This might be true of the environment containing the
iOplementation of a page fault mechanism, which would forbid the use of any
addresses which might generate page faults. Another example is two environments
which share a program support facility. Two user environments might rely on a
common virtual memory manager, whose data structures intermingle information
pertaining to the two environments.

A good example of multiple, overlapping environments is the VAX/VMS operating
system The lowest level of that system is the interrupt handling code, which
coordinates a variety of device communication tasks via cooperating interrupt
handlers. This level provides an environment for subsequent system layers, in which
devices may be thought of as processes which send and receive messages. The
process scheduler resides on top of the interrupt level, providing an environment in
which system and user processes can cooperate through shared data, event flags,
and inter-process interrupts. Subsequent layers of the operating system refine and
constrain these facilities, and also add facilities for process-private memory, multiple
memory protection rings, and for swapping both system and user memory. Thus
we may view each layer of VMS as executing in a distinctly different execution
environment, and in turn providing enhancements to that environment for use by
subsequent layers.
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1.2. Motivation

My personal motivation for this thesis comes principally from my work on the
FAMOS system Although the design of that system was methodologically elegant,
the implenentation was an unending source of frustration. It came at a time when
data abstraction languages were just beginning to appear in the literature. We
developed a paper language to use as a design notation, which we translated into
Bliss- 1l code During the later phases of the project we increasingly found pieces
of the Bliss- I I code, pertaining to enwronments, which had no adequate
representation in the design language, yet which we believed were methodologically
sound These pieces turned out to contain a disproportionate share of the bugs,
consuming vast amounts of time during system integration and test

Relationships among execution environments lie at the heart of an operating
system, permeating and often defining its structure. High level languages still do not
provide a notation for relating source language programs to execution environments,
nor for relating the executable representation objects collected in an environment to
the programs which implement that environment This notational lack prevents a
system designer from writing a unified, formal description of the structure of the
system Without such a description, claims about formal properties of the design
(e.g. hierarchy) can neither be verified nor disproved The ad hoc notations (e.g
linker command files) that fill the notational gap in real development efforts, violate
the principles of information hiding and locality. They must be rechecked for
consistency with the source code after every non-trival design chnge For
instance, design changes to environment management facilities can affect not only
disparate portions of the operating system, but also the compiler, linker, and loaders.
Automatic programming aids, including type checkers mn debuggers, cannot
adequately draw together information from different subsystems, leaving a significant
amount of consistency checking to be done haphazardly, at system startup, where
debugging tools (likewise limited by the notation) are at their most primitive.

Execution environment management has played an important role in operating
system design research. Multi-tasking, virtual memory operating systems first
appeared in the early sixties. By the late sixties, multiple processes and virtual
memory began to appear inside operating systems. For example, the THE operating
system [Dijkstra 68) had at its lowest ',vel a process manager; the rest of the
operating system was written as a collection of cooperating, sequential processes.
Multics [Janson 763, Hydra [Wulf 74a3, and FAMOS [Habermann 76) all used
virtual memory mechanisms to isolate system components from one another. CAP

(Needham 77), MUSIC [Loehr 77), and DAS [Goullon 78) have all followed suit

Many of these research operating systems were claimed to be hierarchical: some
relation between system components was found which formed a partial ordering
Multics had a hierarchy of protection rings, THE had a hierarchy of work delegation,

... . . . . .. . ............ :.-,;, . . .. . ., -.- . . ' ; . . . .
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Hydra eschewed hierarchy [Wulf 74b3 for the kernel approach, and FAMOS had a
functional hierarchy [Parnas 743. On closer examination, however, the hoopla over

hierarchy never aeemed to pay off. One often sensed that the ordering relation

was fme-tuned to fit the system rather than the system being designed to fit a

methodologically sound relation. The FAMOS system, for example, was supposed to

be partially ordered by the relation, "X calls and depends on the results of calling

Y'". However, we never found an adequate model for our loader or debugger within

that framework. We.also found difficulties with this model for the upper levels of

the hierarchy, when trying to organize modules rma g memory, addressing, and
processes, In order to make them form a hierarchy, we had to divide each

maager into several layers, to be interleaved with layers from other managers,

forming a hierarchical dependency relation The price we paid for hierarchy was a
modular decomposition within each manager that was unnatural in other respects.

The Mu&tics system suffered the same difficulty; Philippe Janson has proposed a

redesign of that system that solves some but not all) of the problems [Janson 76].

Even though multiple execution environments have become so common in operating

systems, data abstraction languages have so far provided little help in describing the

bindings between programs and execution environments. In conventional language

technology those bindings must be established instead by a linker. The compiler

translates source programs into sets of control and data sections; a linker, guided

by a command file, groups sections into memory segments. attaching various tags

and labels to each section; then, a loader files the segments into the environment

management tables.

Using a linker command file to represent parts of a system's structure has severe

drawbacks:

e The ragged interface between source language programs and linker
command files seriously interferes with the clarity of the system
description

* Inconsistencies between the programs and the linker command files
cannot be detected automatically.

* None of the programming aids developed for the programming
language apply adequately to the program/linker interface.

One place where these shortcomings are felt most acutely is in the environment

descriptors themselves. In FAMOS, for instance, each segment descriptor appeared
in the source code as an element of th segment table portion of an address space

descriptor. However, in order to know the parameters of an address space

descriptor, one had to have compiled all of the programs residing in that

environment and have written the linker command file. The debugging option on the

compiler changed the size of code sections, as well as creating data sections

containing symbol table information. Consequently, throughout the debugging phase

we were rewriting linker command files and address space descriptor declarations

....... • .. ,. • .v . : .,.. = ~. ... .,. .... . .... .
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almost daily. Icoastencies invariably arose between them, which were not
discovered until system startup. As with most development projects. a bug at that
point often necemsitated several hours of delay for recompilation and relinking

Because environment managers must manipulate objects produced by the language
system, and because the language system is not included in conventional system
descriptions, interactions betweoo environment managers and the language system
cannot be documented properly, and can thus become quite ill-structured For
example, one of the procedure linkages in Hydra/C.nmp permitted inter-page
procedure calls where the target page was not addressable at the beginning of the
calL The calling sequence specified both a page identifier (an index) and the address
of the procedure within that page Support for this linkage required cooperation
among the compiler, the linker, the loaders, and the debugger, without any notations
or support tools for programming the interfaces.

Several recent attempts have been made to create languages for systems
implementation that support multiple environments, including Concurrent Pascal,

Modula, and Gypsy. [Brinch Hansen 75:/Wirth 80, Ambler 77). Each of these
languages define synchronization constructs and device communication facilities that
severely constrain the class of operating systems for which the language is
appropriate [Loehr 77). In fact the run-time support software for these languages
(particularly Concurrent Pascal) resembles the kernel of an operating system

Some of the objects used to represent an execution environment are not only
used implicitly, by the instruction execution mechanism, but are also named
explicitly, in source programs, as parameters to operating system function calls.
This can lead to inconsistency between the state of the execution environment as
assumed by the language system, and the state as it actually exists. For example,
languages that provide a formal synchronization mechanism do not ordinarily provide
a means by which one process can abort the execution of another, because there is
no obvious way of communicating news of the death of one process to the other
processes with which it was cooperating A similar difficulty arises in memory
management mechanisms. In FAMOS we had a memorable bug involving
addressability. One of us came across a piece of code of the form,

If <logical variable> then
<statement 1>

else begin
<statement 1>;
<statement 2>;
<statement 3>
end

Thinking himself clever, he "optimized" it to say,
<statement 1>;
If not <logical variable> then

begin
<statement 2>;
<statement 3>
end
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However, the resulting program didnt world It turned out that <statement 1>
invoked an operation on the envronment's address mapping table, which removed
the segment containing <logical variable> from the virtual address space.
Consequently, the "optimized" code gave an addressng error.

Since so much of the static structure and actual code of operating systems
involves execution environment management a methodology and notation for
constructing and manipulating environments would benefit operating system design
and development greatly. Specifically, it would

* Permit a comprehensive system description to include environmental
interactions among components, thereby forming a broader basis for
formal analysis of system structure.

* Provide a framework for various programming aids, including
consistency checkers, system integration tools. and debuggers.

e Bring the benefits of data abstraction to the task of programming the
connections between source programs, their executable representations,
execution environments, and the managers of those environments

1.3. Scope of the Thesis

This thesis develops and evaluates a system of methods for designing and
constructk conventional multi-tasking operating systems. It is an extension of an
existing me#*dology, ine.r'emal mahine design [Habermann 78), and is also
based on the methods of data abstraction [Wulf 76].

I presume an implementation language that supports strongly typed data
abstractions, checked during compilation. The ability to precisely control the
interaction of system components, and the ability to compose program units in a
well defined way into progressively more abstract entities, are essential to coherent
design and development of large operating systems. Furthermore, I expect the
compiler for the implementation language to produce machine code that is
acceptably efficient for system software

This thesis addresses the description problems of large, complex operating
systems, such as commercial multi-tasking systems for conventional virtual memory
architectures. The techniques will of course apply to smaller systems, but I will not
be satisfied with toy solutions to toy problems.

In line with my intent to solve "real" problems, I presume a compilation-based
program development system, rather than one which is interpreter-based.
Furthermore, the methodology must apply to cross-compilation environments.
although it is not limited to them. (I mean specifically to exclude systems like Lw,

where one develops a system by "growing it" out of a simple interpreter. These
designs beg the question of how one designs and develops the interpreter and
assures its correctness.)

* j.~'
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One aspect of commercial systems I won't address is confidential source code.
This phenomenon of the marketplace unduly complicates the task of customized
configuration. Nonetheless, configuration methods that protect proprietary software
may eventually come out of the present work.

1.4, Preview of Results

"Methodology" literally means, "a system of methods". A set of methods is a
system when the methods work together to carry out an organizing principle. A
methodology is valuable when the principle and methods combine to produce better
programs

The organizing principle behind the proposed methodology is the following
An operating system and its implementation language are integral parts

of one another. The language system has no resources of its own.
Instead, it implements system components out of resources supplied by
the operating system itself. The language provides notations that both
facilitate and discipline use of the resources Each execution
environment is a set of these resources, provided by some level of the
system to support subsequent level&

The methods proposed to carry out this theme include the following
9 Representing execution environments as explicit modules in source-

language programs-

9 Using both compile-time and run-time mechanisms to enforce the
boundaries of environments.

9 Designing or sele an implementation language whose features
harmonize with the facilities of the particular system being designed

* Binding source language program units to environments explicitly, in a
way that allows both multi-environment modules and multi-module
environments.

• Including host machine and boostrapping execution environments in
operating system descriptions.

e Combining all program units into a single comprehensive system
description, that is a program to create an operating system

Applying the system of methods to a set of operating system description
problems, we shall see that it produces the following results

* A better interrupt synchronization method than is available in currentlanguages

" A strongly typed characterization of bootsrapping, that preserves the
modularity ad hierarchy of the system design.

" A demonstrably hierarchical source language specification of a real
operating system

. C ' -.
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1.5. Goals

What constitutes a "good" methodology? Because this thesis does not contain any
theorems or software by which to demonstrate the success of the methodology,
the reader and the author must agree upon a set of criteria by which to judge it
The criteria I propose are:

* Utility

o Clarity

* Fitness

* Flexibility

* Implementability

1.5.1. Utility

Adopting a new methodology requires a substantial investment in software support
tools and programmer training Therefore, the methodology must be sufficiently
useful to justify the cost. We shall consider the methodology useful if it makes
contributions to a varied collection of important operating system description
problems.

A description problem is the task of capturing a class of information about
operating systems directly in the text of the prograrns. For the information to be
considered adequately captured, it must be checkable for consistency with other
parts of the system of programs, and must be subject to the same encapsulation
and redundancy standards demanded of conventional program components

The problem set, to be broad enough, must represent a variety of different
stUrtling blocks of operating system implementation, including both theoretical
problems and problems known to cost time and manpower in real system
development effort

Section 2.2 will introduce a set of problems by which to test the utility of the
methodology.

1.5.2. Clarity

The methodology must lead to system descriptions in which a// of the connections

between a module and its neighbors are clearly represented,

Perlis et a/ [DeMillo 79J have argued that verifiability is more important than
verification for producing reliable programs. A notation must of course have a



precise, axiomatizabie meaing. but it must also be simple and clear, to help the
authors and readers of programs understand them Any new notations for
representing execution information must have meiungs that are sarle and
formeazable, in line with the embedding language Furthermore, although multiple
languages may be necesssy. for describing different aspects of the the system, the
total number of them must be kept small, and they must be sufficiently harmonious
that both human and automatic readers may easily understand the relationships
between parts written in different dialects

1.5.3. Fitness

The methodology must provide notations that fit the problem domains of operating
system description It must provide, or provide the means to construct notations
for the objects, structures, and operations with which the system designer must
deal, in a style which corresponds to the way the designer thinks and talks about
the problem domain. Thus assembly language would not be a fit language for
writing scheduling algorithms, nor would APL be a fit anguage for interrupt handling.

The main thrust of data abstraction languages has been to let the progranmer for
any particular domain construct the notations which fit his domain However, they
succeed only to the extent to which the class of abstractions the language supports
fits the class of abstractions needed for the domain. For instance, very few
languages provide iteration abstraction constructs, and the ones that do aren't yet
fully mature. Any new notations introduced must be motivated by the problem
domin, unsupportable in current languages, and general enough to find broad

1.5.4. FlexIbIlity and Transparency

The methodology must facilitate system construction without materially constraining

system design That is, it must be transparent enough to give system designer full
use of the hardware's capabilities, and flexible enough to assist the designer in a

broad range of design methods. While not all system design practices are worth
supporting; any system design style which can be defended should be possible

within the methodology.

The term "transparency" has several definitions in the computer science literatureL
I define the transparency of a programming methodology, and of its notation, as the

degree to which it makes the underlying machine's functionality available to the

system designer. A methodology should encourage certain uses of the machine and

and discourage or prevent others; however, the notation itself should only conceal
functionality that is demonstrably undesirable. For example, even though the
Bliss-i 1 language has no GOTO statement, its rich set of control flow structures

" -- . .. . -; * ' . . ... : '. ,..'..
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and highly optimizing compiler support newly all of the desirable code sequences
that an assembly language programmer might us& This definition of tanparency is
due to Parnes and Siewiorek [Parns 72a].

1.5.5. Implementambility

The methodology nust lead to programs whose performance is competitive with
conventional operating systems Also, the program development tools dictated by it
must be sufficiently simple that they are easier to verify than conventional operating
systems, and that their implementation costs don't outweigh their benefits

1.. Outline of the Thesis

This thesis contends that a methodology for operating system design should
incorporate an explicit notation and specific methods for relating the source-
language system design to the execution environments in which it will reside. I will
substantiate this claim by extending a particular methodology, incremental machine
design, with a notation and methods for describing execution environments, and then
using the extended methodology to develop solutions to several system design and
development problems

In Chapter 2 we will examine incremental machine design as it was used in the
development of the FAMOS system In that system we will see various examples
of important relationships between the source-language programs and the execution
environments in which they run, especially relationships which affect modularity and
hierarchy. From the FAMOS experience we will extract three significant problem
areas to address with the extended methodology interrupt synchronization,
bootstrapping; and verifying hierarchy.

In Chapter 3 we will generalize from the FAMOS address spaces to a broad model
of environments, and develop programming and system design techniques based on
the model. By examining various ways in which the representations of abstract
objects may overlap, we develop a model that supports many degrees of
cooperation between environments, from mutual suspicion to complete trust
Viewing compilers and linkers as providing the concrete representations of
programs, leads to an abstract data type model for the relationships between
compilers, linkers, and environments, thus providing the "missing link" betwen virtual
machine levels in system descriptions. Within that framework we then study the
programming techniques needed to incorporate environment information in source
programs, including new techniques for controlling the visibility of names, binding
program components to environments, relating system generation programs to
system descriptions, and initializing multi-layer systems

" +_ . . .. .. . .. . . .... - . 7 .- . -+. .
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Chapters 4, 5, and 8 appy the new mefthds to the problem areas identfied in
chaPter 2. both to elaborate the methodis and demnonstrate their usefulnesa in
Chapter 7 we messawe the extende mtdoiogy againt the goals set for it in
secto 1.5. Then, in chapter 8, we relate the methodology to other work in the
area. arwime the contributions of the theaws, and outline directions for future

work..
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CHAPTER 2
FAMOS: METHODs AND PROBLEMS

In this chapter we review the design of FAMOS. The FAMOS project produced a
methodology of operating system design. By reviewing FAMOS we can fevnulat
the principles used in that design, see how the principles appear in pr*%;bce, and
look for design and implementation problems that the methodology does not
address. This analysis will provide the basis for extending the methodology with
techniques and tools for dealing with execution environments in system designs, in
chapter 3 The second half of this chapter formulates three diverse operating
system design problems. arising from FAMOS but not unique to it, which will be
solved in later chapters using the extended methodology

* Interfacing to inconvenient hardware

* Verifying hierarchical relations

0 System integration

FAMOS is a suitable foundation for this investigation because progammng
methodology was a control issue in its design, and because it used many small
protection environments to achieve modularity within the operating system I do
not claim that the methods used in FAMOS are superior to those of other systems,
but only that they are suitable for extension to cover problems of environments. I
will from time to time cite examples from other systems, to show that the issues I
am addressing are of general concern.

2.1. The Methodology of FAMOS

The FAMOS project was an experiment in modular design of operating systems. It
tested the feasibility of designing a Family of Operating Systems in such a way as
to minimize the redesign and recoding effort required to create a new member of
the family. The family members might differ in underlying hardwire configurations
(anywhere from a single minicomputer to a large multiprocessor tystem) and in
expected application (from batch to interactive to real-time). The material shared
between family members could be actual shared code, or it could be a shared
module specification, with different Implementations to satisfy different
performance requirements.

...... M " -
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To achieve sharing among family members, the FAMOS designers employed two
stratei

" They identified a substantial set of design decisions that could be
shared among all family members

" They used program design and implementation methods that facilitated
module sharing among family memeZrs

Note carefully the distinction between the two strategies, and why both are
necesary being able to share code between family members is useless unless
their designs are sufficiently similar that some modules are worth sharing.
Conversely, unless two family members can actually share code, sharing design
decisions will not likely lead to savings in the overall cost of the systems, and the
designs will likely evolve in divergent directions.

The FAMOS methodology applies to more than just operating system families The
dimensions of variation among family members are the the same dimensions along
which a single, real operating system is likely to change over time. An operating
system ought to be able to adapt to changes in the underlying hardware and in user
needs, without radical changes in the basic design,

Since the emphasis of this thesis is on methodology rather than system families,
we will organize our review of FAMOS around its programming methods, rather than
around the shared design decisions. Three terms characterize the methodology of
FAMO.

* incremental machine design

e Modularity

* Hierarchy

Incremental machine design denotes building a system as a sequence of software
layers, where each layer defines a virtual machine, on which subsequent layers can
execute. The virtual machine features provided by a layer come from one or more
modules. chosen and specified such that redesign of one module is unlikely to
require re en of other modules. In FAMOS two or more features at
different levels sometimes share a design decision, such that changing that decision
would require that they all be re-implemented. Those features would all *reside in a
single modul Nonetheless. the entire set of procedures in FAMOS is partially
ordered (a hierarctry) according to functional dependency, defined as "X depends
on Y /ff X call, Y and depends on the results"

We shell discuss each of these concepts in some detail, then summarize the
important aspects as they relate to environment

......................... ,,..... ..',;...., ..
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2.1.1. Inrmonental Machine Design

incrmental machine desi has three importa't characteristics.

a Each layer enhaces only a portion of the underlying system

* Transferring control from one layer to another does not necessarily
imply any runtime overhead whatsoever

* The interfaces between layers can be viewed as virtual machines

Each software layer adds a facility or feature to the system, and conceals part of
the underlying system Specifically, each layer will only conceal those parts of the
system that it uses; all other system features are freely available to subsequent
layers. The resulting combination of new and old facilities defines the virtual
machine on which subsequent layers execute A layer may include several
independent features, which are each built upon the underlying system, but do not
make use of one another. For example, the two synchonization modules in FAMOS
both use the process manager to maintain waiting sets. but are otherwise unrelated
The layers of FAMOS are shown in figure 2-1:

Figure 2-1: Software Layers in FAMOS

User Programs

More Process management

Swapping

Block I1/0 management

Semaphores -- Path Expressions

Process Management

Clock management

Address Space Management

clock driver -- disk driver -- tape driver -- terminal driver

Software Interrupt management

Hardware

9 The hardware for the initial family member was a PDP- 11/40 with
memory mnagemrnt option.
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" The software interrupt queue provides a communication facility
between interrupt routines and device management modules, and
conceals the hardware priority register in the CPUL

" The device drivers conceal the physical device control registers,
replacing them with "virtual devices" th are less time-sensitive, and
that communicate with the device mrnagers via protected procedure
calls.

" The address space manager maintains static and dynamic address
spaces. and implements protected procedure calls. It defines the state
vector of a process, and provides context switching instructions. It
conceals the relocation hardware, and all physical memory.

" The clock manager provides a set of interval timing clocks that can be
be started and stopped individually. When an interval has elapsed, the
clock manager invokes the appropriate wskeup routine via the software
interrupt mechanism

" The process manager keeps track of all "in-core" procem It
multiplexes the processor among those processes that are ready to
run, and maintains the data type "waiting set" to hold sets of processes
that have been blocked The process manager uses and conceals one
of the interval timers, to measure time slices and signal when each one
ends.

" The semaphore facility and th path expression facility both use waiting
st to hold blocked processes, but are not directly related to each
other.

" The Block 1/0 manager schedules transfer requests between primary
and secondary storage, and blocks processes that are waiting for I/0.
It conceals the virtual device registers that were provided by the
corresponding drivers.

" The Swapping manager copies segments to and from disk, and
permnently conceals a fixed portion of the disk, devoted to this
purpose

" The upper-level process manager initiates and terminates processes,
and moves them between primary and secondary memory.

Because each software level conceals only those system features it uses, crossing
a level need not cost any execution time at alL For example, the address space
manager uses the software interrupt mechanism to report exceptional events, such
as running out of free space. The memory manager may invoke the software
interrupt mechanism as easily as the device driver can, no code is associated with
"crossing" the device level to invoke the software interrupt level

In FAMOS, each layer of the system is specified as a complete execution
environment, with memories, processors, instruction sets, registers, and peripheral
devices. At low levels, many of these environmental features are provided directly
by the hardware; at higher levels each is implemented or in some fashion managed
by the lower-level softwl'e

For example, the clock driver executes in the privileged Kernel Address Space, is
driven by ordinary hardware interrupts from the clock, and is able to manipulate the

[
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clock control and data registers directly. its execution environment includes only

one programmed feature, the software interrupt queua The clock driver implements
an abstract clock that is functionally identical to the hardware clock, except tha the
abstract clock won't lose time if the clock manager is delayed in responding to an
interrupt. Operations on the abstract clock are implemented as kernel calls (invoked

by the EMT instruction)

The virtual clock manager, in contrast to the clock driver, executes in an
unprivileged user address.space, maintained by the address space manager. It
communicates with the clock driver by invoking kernel calls, and by receiving virtual
(Le programmed interrupts from it

The combined set of new and old facilities available at each level define a virtual
machine in the sense that the available facilities are analogous to hardware features;
more importantly, the level is completely specified, such that every correct and
incorr ct use of the virtual machine produces a well-defined effect, and no
sequence of operations on it can break the underlying software. Each virtual
machine level defines a possible point of convergence between family members.
For example, the virtual machine defined by the process multiplexor level could have
different implementations for uni- and multi-processor configurations; two family
members could be identical above that level, and' different below it

2.1.2. Modularity

The FAMOS system was decomposed into modules according to the criteria
advocated by Parnas [Parnas 72b, Parnas 71]:

e Generality A good decomposition should keep viable as many useful
design alternatives as possible.

* Information hiding Any system facility that could be implemented in
several useful ways, should be concealed in a module whose
specification does not reveal which implementation method was chosen.

9 Sparse connections The connections between modules are the
assumptions the modules make about one another. A module's
specification lists all of the information that may be assumed about it;
in general this should be much less than the information that is known
about it by its implementors.

9 Hidden data structures: one aspect of a facility which is often
redesigned is the organization of its data Therefore, each data
structure should ordinarily be concealed in a module that provides all
of the operations necessary to access it, without revealing its
organization.

lw staltemnt asuimes the implwntat'ion is type safe. In general. if a program bug at a higher

level can produce an undetected address cornvputation error (such as an array index out of bounds), the
bug can pra e" to any part of the system. The protected addressing environment facility of FAMOS
is 1ntended to provide fiirewalls for defense aginst such problems; we will discuss this more in the
context of modu'irt.

- - ~ i i -,; I, - r 
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9 Desig, modules vs. execution modules: The operations which a module
provides for its facilities may be implemented as procedures, macros,
interprocess messages, or even access algorithms With this flexibility,
a single machine-language procedure could be made up of instructions
derived from several different design modules, provided that the
program development system includes an adequate translation tool.

The clock manager illustrates several of these principles. It is specified such that
the clocks are not bound to any other system components. such as processes. That
allows higher system levels great flexibility in how clocks are used, whether to
measure tie-of-day, CPU slices, experimental phenomena, or program performance.
Conversely, the collection of clocks is specified as a set, rather than a vector or
list, so that the data structure organizing the clocks can be changed later if the
initial implementation is unsatisfactory. In fact, two implementations of the clock
manager have been built

" a finked list implementation, which handles an interrupt in constant time,
but resets a clock in time proportional to the number of running
clocks,

* a vector implementation, which handles an interrupt in time proportional
to the number of existing clocks, but resets a clock in constant time.

Both implementations satisfy the same external specification; a particular family
member would use the implementation best suited to its performance requirements.

The reader will have noticed that many of the principles of modularity listed above
have become codified in abstract data type programming methodologies The
FAMOS developers employed data abstraction techniques in several ways:

* The "programming standard" for the project dictated that the individual
program components be written as abstract data type managers

* Each major system facility is specified as a manager of some type,
where that type embodies some virtual machine feature.

* The protected address space facility was modelled after the module
concept now found in many programming languages.

FAMOS is programmed in a strongly typed data abstraction language, for which no
compiler exists. Instead the system is translated by hand into Bliss- 1. The Bliss
code reflects the type definitions and module declarations of the high-level
description, although Bliss itself does not support typed variables.

The process manager is an example of providing virtual machine features as an
instance of a type. It is specified as the manager for the types virtual processor
and waiting set. Each virtual processor provides a complete execution environment
identical to the virtual machine defined by the address space manager, except that a
virtual processor does not provide context switching instructions. Instead, it
provides the type waiting set with operations "block" and "wakeup". A waiting set
is simply a collection of virtual processors that have been blocked pending some
event The "block" operation moves the invoking process form the ready set to the
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specified waiting set "Wakeup' selects a process from the specified waiting set
and moves it back to the ready set

An address space in FAMOS consists of a set of code and data segments, a set
of entry points, and a list of "capabilities" representing the right to invoke other
address spaces A program executing in one address space invokes another
address space by means of a protected procedure call, naming an entry point of
the invoked address space, and passing paraneters An activation record for a
protected procedure has its own address mapping table and execution stack. Thus
there can be several processes executing in a single address space simultaneously.

The features of an address space are quite analogous to module facilities in
modern languages The entry points amount to exported procedure names; the
capabilities are imported module names; and, procedures can share code and data
freely within the address space, but not between address spaces. Furthermore, an
address space can be very small or very large, so that conceivably each execution
module of the system could be protected in a separate address space.

For example, in order to protect the process scheduling data structures from
errors in other system components, the process managers procedures and data are
isolated in their own virtual address space. Like the clock nnagrs address
space, it has no special privileges The process manager simply uses and conceals
the context switching instructions provided by the underlying virtual machine

The process manager exemplifies close correspondence between a design module
and its execution environment, All virtual processors descriptors, and all waiting
lists, are stored in the process managers address space. Each abstract operation is
implemented as a very simple macro, that sets up and invokes a protected
procedure call to the process address space. The correspondence is close because
the type manager is highly suspicious of its users Leaving any processor
descriptor or waiting list unprotected would make the entire system vulnerable:
damage to one of these could shut down the scheduler. However, there need not
be a one-to-one correspondence between design modules and protection
environments Other modules in FAMOS are less suspicious of their users, and are
correspondingly less protected:

" The sorted list module is used independently by several other modules.
Each of them has a separate instance of the manager's code and data,
placed in the using module's environment

" The semaphore module uses a waiting set to hold blocked processes.
The representation of the semaphore consists of a count field, placed
in the declarers environment for efficiency, plus a waiting set, kept in
the process address space for safety. A bug which destroys the
count field will certainly destroy the semaphore; however, it cannot
damage the waiting set, nor the scheduler itself.

" The clock manaer module represents a virtual clock with a clock
descriptor, kept in the clock address space for quick access on
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interrupts. plus a programmned interrupt vector, kept in the address
space manager's (kernel) address space. The clock manager has no
control over access to the interrupt vectors. Neither does the address
space manager check whether a request to set an interrupt vector
comes from its owner. Consequently. the wakeup routine register of a
virtual clock is not protected by any run time mechanism.

These examples serve to show that the partition of the FAMOS system into design
modules is different from its partition into execution modules Partition for design
is based on concern for human comprehension; partition for execution is based on
concern for protection, efficiency, space limitations, and other physical properties
The different partition for execution does not compromise the modularity of the
design it merely specifies mechanisms for run time checks on program integrity.

These examples also show different ways in which instances of a type appear in
different execution environments A methodology for dealing with environments
should provide tools for programming each of these type management styles

2.1.3. The Uses Hierarchy

Up to this point I have been somewhat informal about how the levels of the
FAMOS system interact with one another. in fact the interaction takes place via
function invocation, Le. by an operation of one level invoking an operation provided
by another level Furthermore, the interactions between system levels obey a
functional bierarchry, ordered by the uses relation

Hierarchy is a much-overworked term for a desirable property of system designs
It denotes a partial ordering of system components according to some relation
To define a hierarchy, one must state both how the system is divided into parts,
and the precise nature of the ordering relation between parts. A well-chosen
hierarchy, faithfully adhered to, can make a system much easier to understand,
leading to better design, easier debugging, and more straightforward verification

Parnas has surveyed [Parnas 74) the ordering relations most commonly appearing
in operating system designs, such as invokes, uses, gives work to. is composed of,
gives resources to, and is more privileged than. For example, the THE system
consists of a set of processes partially ordered by the relation gives work to

[Dijkstra 68). Each process is responsible for servicing a queue of tasks, each
of which it supposedly either carries out directly, or passes on to other processes.
If each process in THE can be shown to either carry out or delegate every task
given to it, then because of the partial ordering one can be convinced that all work
will eventually be done. If the relation were not a partial ordering, but were cyclic,
then tasks could be delegated indefinitely, and never carried out

The FAMOS system is partially ordered by the uses relation, over the set of all
operations defined by all virtual machine levels. The uses relation is defined as X
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uses Y if and only if X calls, and depends upon the results of calling, Y. A
program that calls procedure X ordinarily does not know or care whether or not X
calls some procedure Y. Since a failure in Y would ordinarily make X appear to
malfunction, X ordinarily depends on the results of calling Y. On the other hand,
suppose X is a file manager, and Y is a file-user's "end-of-file" routine. In that
case, X would be expected to call Y when the end of file was reached, and X
would not be blaned if Y malfunctioned Therefore, X would not be said to "use"
Y, even thoigh X would call Y.

Unfortunately, X will be blamed if Y enters an infinite loop, and never returns
control to X. Therefore, to call a procedure without using it requires some
guarantee that the procedure will terminst.

The FAMOS software trap mechanisrn embodies the "call-without-using" concept
directly. It provides a "virtual trap vector" in which high level modules can insert
protected procedure names. When a low-level module uncovers some condition
that must be signalled (e.g. "free space exhausted", "sleep interval terminated), it may
invoke the protected procedure, without knowing what the procedure does, or
depending on the outcome. It is the responsibility of the module defining the trap
handler to certify its termination 2 Roy Levin's exception mechanism [Levin 77)
would include the FAMOS mechanism as a special case. We will explore the impact
of exception protocols on modularity and hierarchy in chapter 4.

The uses relation, like the gives work to relation, aids proofs of system
properties. In general, to verify that a module is consistent with its specifications,
one must assume that the modules used by the given module meet their
specifications. Consequently, if the uses relation is acyclic over a system, then the
consistency of a system can, one might conjecture, be composed out of the
consistency proofs of individual modules. This might not be easier than verifying
the entire system at once, but the ordering should make verification easier
regardless of the method, simply because the system is more regular than an
unstructured one Testing, too, is simplified by a uses hierarchy. any subsystem
that is closed under the uses relation may be tested separately from the rest of the
system. If the uses relation is a partial ordering, then the ordering defines a natural
system integration sequence By testing the lowest module first then repeatedly
adding the next lowest module and testing again, one can avoid having to debug a
large number of interrelated modules simultaneously.

Although making the uses relation among functions be a partial ordering seems
essential to good system design, other ordering relations affect system design,

2 At one point during the system implementation effort Cooprider proposed a change to the

software trap mechanism that would protect the invoker from non-termination. There was not time to
explore the feasibility of the proposal.
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sometimes conflicting with the uses relation For example, modern programming
languages, and module interconnection languages. tend to highlight the composition

relation and the scope relation, by means of a module construct A module is said
to be composed of the modules declared within it: it may also control the scope of
the names defined within it, by making them available to. or hidden from, the
surrounding context The nested modules form a directed, tree-structured graph for
both relations.

The relations uses. is composed of, and controls the scope of, interact in FAMOS
as follows: A FAMOS module controls the scope of the names defined withing it
One function may use another only if the name of the latter is visible in the body
of the former. The uses relation defines a partial ordering of all functions in the
system; that partial ordering is partitioned into virtual machine levels, where the
functions within a level use only functions defined at the same and lower levels. A
virtual machine is composed of the functions of that level plus the next lower virtual
machine Figure 2-2 depicts these concepts. single letters denote functions.
arrows depict the uses relation, the dashed box denotes a module, and the solid
boxes denote virtual machines. Module M has chosen to conceal function C. so that
only functions J and K may use it. The latter two functions are not concealed
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Figure 2-2- Functions, Modules, and Levels in FAMOS

Because FAMOS is organized as a hierarchy of functions, rather than modules, a
single module could contain functions from several non-adjacent system levels. For
example, the memory management module (cf. figure 2-I) implements the software
interrupt layer, the address space management layer, and the swapping layer. This
formulation of the module concept conflicts with recent programming language
modules, because it makes the scope relation quite different from the composition



25

relation. For example, the virtual machine def ined by the process manager level is
composed of, among other fthigs the address space rmager, and yet some of the

features of the address space manager are concealed from the process manager,
but available to the swapping manager. I will address this issue in section 3.2,
presenting a new method for handling it, and apply that method in several of the
case studies in subsequent chapters

2.1.4. Summary

The design of FAMOS is organized as a sequence of virtual machines, from the
hardware to th user environment Each virtual machine is specified as an execution
environment on which subsequent layers can run A layer conceals only those
underlying system features that it uses, leaving the rest freely available to
subsequent layers

FAMOS is programmed using abstract data type methods, despite the fact that its
implementation Mguage does not support typed data It contains many examples
where the partition of the system into design modules is quite different from its
partition into execution modules. In particular it has many cases where several
different execution environments contain instances of the same type.

Since the development of FAMOS, programming methods based on abstract dat
types have crystallized into languages such as CLU, Modula, Mesa, Euclid, Alphard
and Ada. Several attempts have been made to build operating systems in data
abstraction languages. In each case, the entire system executes in a homogeneous
environment Those system components that must reside outside that environment
are either added to the programming language's "run time system". or simply
programmed in some other language. In contrast to such sytems, FAMOS is a
multi-layer, multi-environment system A strongly typed implementation language for
such a system would have to include facilities for describing execution environment
features, and for binding program elements to environments.

FAMOS claims to exhibit a hierarchical structure, based on the uses relation over
the set of virtual machine operations. However, this claim is hard to verify, or
disprove, because the bindings between virtual machine levels cannot be adequately
expressed in available notations.

In order to determine with any confidence that a programmed system exhibits
certain global properties, one must first be able to integrate all of the components
into a single, comprehensive system description, where all of the connections
between the pieces are represented explicitly. Without notations for representing
environments, such a system description is far from complete, and the system
designer must make do with ad hoc, piecemeal descriptions.
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In the next section we will discuss three problem aress where the lack of an
adequate methodology for dealing with environments, is keenly felt

2.2. System Description Problems

In Chapter 1 I proposed to develop a methodology for dealing with execution
environments, and to test that methodology by applying it to a set of operating
system design problems. In this section I will describe three problems to use for
the test

" System integration

" Interfacing to hardware

" Representing hierarchy

Each of the problems arises in FAMOS, but is not unique to that system Each
involves environment description in a slightly different way. System integration
requires environment descriptions to automate the translation, integration,
bootstrappng, and statup of a system The hardware interfaces in an operating
system are environment features; they must be represented in system descriptions in
a way that conveys their asynchronous nature, so that they may be coordinated with
the synchronization facilities of the implementation language To impose a
hierarchical structure upon a system, its representation must exhibit a// dependencies
between modules, including those between program units and their environments.
Together, thee three problems are broad and deep enough to test the clarity,
flexibility, and fitness of the proposed notation, and the overall usefulness of the
methodology.

For each problem, I will first give a concise .statement of the particular design task
to be executed, then discuss the problem area in general, and finally give some
desired properties of a solution to the task. The solutions to the problems will be
presented in chapters 5, 6 and 4, using the extended methodology of chapter 3.

2.2.1. HWrdwure Interfaces

The architecture of the computer upon which an operating system runs determines
n large part the character of the system However, language facilities for coping
with hardware features have so far been quite primitive, because hardware features
themselves do not mesh well with the kinds of abstractions most often found in
progrwming languages. Language designers have had to choose between providing
each hardware feature in its naked state, disjoint from other language features, or
providing it cloaked in some elegant language feture, making certain uses of the
hardware quite convenient, but others impossible.

Device communication hardware has received a great deal of attention in systems

Whig=,. . .,- . .
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implemntation languages, and so it is the focus of the design task for this problem

are
Integrate a modern architecture's interrupt mechanism into a system

design and system implementation language, such that all reasonable uses
of the hardware are available to the driver programs, and the resulting
facilities are available via abstract synchronization mechanisms, to higher
system levels.

Three typical hardware facilities that are poorly represented in implementation
languages are address translation managers, device drivers, and context switching
operations. For example, an address translation manager will usually contain some
data structure that resides on secondary storage, with pieces swapped into primary
memory as needed This overlaying of data must be done behind the compiler's
back, since the compiler assumes that all data mentioned in a program will be
present in the address space as needed3 . We discussed in section 1.2 a bug from
FAMOS in which a source program change that looked to be simply an optimization,
in fact changed the address translation tables, leading to an "illegal address" error.
Because the compiler knew nothing about address translation, it could not help
detect the error.

Peripheral devices pose two kinds of problems to the system designer and
language designer, giving the device driver programs access to the hardware, and
synchronizing interrupt routines with the rest of the operating system Operations
on device control registers are intrinsically hazardous to the entire system, at least
for devices that can read and write primary memory directly, because an incorrect
value placed in a data register could cause the device to overwrite the wrong part
of memory. No amount of type checking could prevent such an error. However,
systems must have that access, so recent languages (e.g Euclid, Modula) allow a
program to bind a variable to a specific memory location, thereby giving source-
language access to device registers.

Device synchronization problems are more difficult The asynchronous execution
of an interrupt routine fits poorly, at best, into modem synchronization constructs.
Masking interrupts by manipulating the interrupt priority level register of the CPU, is
likewise ckmsy and error prone. Concurrent Pascal, Modula, and Gypsy have each
token the approach of transforming the arrival of an interrupt into some more
abstract event, which could then be handled by a conventional synchronization
facility. Concurrent Pascal provides message channels and monitors, Modula has
device processes, monitors, and signals, and Gypsy has a general message system

To provide these abstractions, the language systems have had to incorporate fairly
elaborate run-time support packages, consuming significant amounts of memory and
CPU tirm Furthermore, these facilities actually constrain the class of operating

3A few riguge systems do exist that suport overlad data, but not for systems implementation.
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systems implemntabie in each language. Concurrent Pascal precluded virtual memory
operating systems, by concealing the interrupt structure inside its message queues.
Modula supports only non-preemptive scheduling of system processes, in order to
reduce the synchronization overhead for its monitor-like interface modules. Gypsy
provides a message system as its synchronization mechanism, thereby constraining
the message system component of the operating systems it is used to implement

Context switching operations are even more difficult to support in type-safe
languages than device register operations, because they must directly manipulate the
representations of programs. For example, a protected procedure call mechanism
must have access to facilities normally concealed by the language system, often
including access to its own representation. The resulting facility must be formally
integrated with a language system that will make it useful for subsequent layers.

A good methodology for dealing with hardware interfaces should give the system
designer two notations a transparent one for writing the programs that will deal
with the hardware directly, and another that conveys the abstract role of the
hardware component in subsequent system layers. For example, it would supply a
transparent notation for writing and synchronizing interrupt handlers, and an abstract
notation for synchronizing device managers with system and user processes.
Notations for each of these already exist; the methodology would contribute the
"glue" to connect levels written in different notations.

2.2.2. System Integraton

The integrate-and-test phase of system development has received very little
attention in programming languages, despite the large fraction of the total system
development time it often consumes. Many of the bugs that cause delays are due
to lack of coordination between system integration, generation. configuration,
initialization, down-loading, bootstrapping, and startup. This lack of coordination is
due in large part to the lack of a comprehensive system description tying together
all of the pieces.

A realistic problem in this area must be large enough to draw in several
environments and several levels. I propose the following

Give a set of module specifications for a simple operating system.
including the levels that provide static and dynamic storage mangement,
virtual memory, and process multiplexing The specifications must show
how system integration, initialization, bootstrapping, and startup interact
with one another in this system

Programming languages for individual compilation units have been comparatively
readable and meaningful since Fortran, and axiomatizable at least since Pascal. In
contrast, ianguages for system integration remained quite primitive until the work of
Deremer and Kron (DeRemer 75], and are still not commonplace [Tichy 80].
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Instead, most system integration information has been described by linker command
files, and ad hoc system generation programs. These notations are inappropriate for
two reasons: they don't support the kinds of system environment concepts the
programmer is trying to describe, and they don't mesh well with the programming
language used to describe the individual modules. Specifically, the linker command
languages do not typically provide any way to relate the object files to the source
language program entities they represent. nor to relate them to the operating system
programs that will manage the environment in which they are to residel This type
of shortcoming leads to curiosities like the 85000 swapping manager, which would
occasionally swap out the space manager. (This made all in-swapping impossible.)
The bug came about because the distinction between swappable and non-swappable
code was not adequately supported

Module interconnection languages were invented to address issues of name control
and system structure, which linker command languages could not handle. Tichy's
Intercol language, for example, supports visibility control with an Ads-like module
specification syntax, augmented with facilities to handle multiple versions of system
components However, Tichy's language describes only the source-language
structure of systems

Module interconnection languages provide the basis for automating the integration
of a multi-level, multi-environment system However, they still need a way of
representing execution environments, in order to automate the collection of
environment management data Objects to be managed include both explicitly
declared ones, such as processes, and objects created by the compiler to represent
programs, such as code and data segments Ad hoc schemes for assembling this
information tend to violate Parnas' information hiding principle, by requiring too much
connection information to appear in specifications.

Initialization, bootstrapping, and startup require coordination of hundreds of small
bookkeeping tasks, in multiple execution environments, for several different
purposes, in a very hostile debugging environment By "initialization" I mean inserting
a meaningful value into every variable. By "bootstrapping" I mean installing and
beginning to execute a complete system on a machine that initially has no program
running and nothing meaningful in primary memory. By "startup" I mean connecting
the system software being bootstrapped to the environment (hardware and
permanent data) present at load time. (This may include primary memory diagnostics,
reading in root directories off disks, or establishing communication with a network.)

Difficulties arise because all of these activities must go on simultaneously, and
because several of them require coordination between different execution
environments. For instance:

e Some startup routine may fail because it attempted to use a data
structure that was not initialized yet
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" The act of moving a piece of data from secondary to primary
memory, then executing it, is usually considered a type breach.

" The flow of control during bootstrapping is opposite to the usual
system hierarchy. Each virtual machine must, when done with its own
startup, transfer to a routine provided by its user.

" The loader must cooperate with the host-machine programs that write
the data it reads. Again, this interface is usually poorly specified

" System resources Imemory and processes especially) must be allocated
statically (during initialization), and also dynamically (on behalf of users).

" The bootstrapping and startup code itself must reside in special
execution environments that can be dismantled, and the resources
reused, once the system is running

Most of the above problems of system integration, initialization, bootsrapping and
startup occur because existing notations do not allow the programmer to coordinate
these activities adequately. System generation is normally handled by an ad hoc
program Loading is divided into a down-loading program on the host machine, and
a chain of bootstrapping programs on the target machine. Initialization is split
between the host and target machines, and on the target machine it is embedded in
the same procedures that do bootstrapping and startup, with no distinction among
them

A useful methodology for environment management should lead to system design
-ehiqe that
* Transmit program representation objects tag process descriptors) to

their managers automatically.

* Minimize the amount of relocation and linking that must wait until
statup

" Eliminate the necessity of type-breaching between virtual machine
levels.

" Encapsulate decisions that affect code on both host and target
machines

9 Rationalize the startup of successive system layers

" Dispose of "startup code" cleanly

2.2.3. Representing Hierarchy

In section 21 we discussed the benefits of modularization and hierarchy in
operating system design, but concluded that without explicit representation for
dependencies involving environments, claims about hierarchy would be impossible to
verify. To see whether the proposed methodology satisfactorily captures such
dependencies, I will attempt to

Give a program decomposition for a system that supports



31

multiprograming space allocation, and pag and swapping, such that
the "uses", "composition", and "environment" relations are all apparent in
the source code, and determine whether the relations are hierarchical.

Operating systems are promising candidates for the benefits of modularity and
hierarchy, because they are large, complicated, long-lived, and continuously evolving.
Furthermore, they must be able to recover from hardware errors gracefully, and
detect software errors without destroying user data irrecoverably. However, finding
a good hierarchical, modular system design is very difficult because the components
of an operating system interact with one another in subtle and complex ways, e.g.:

" Process management is usually separated from address space
management, yet memory mapping information is part of the execution
state of a process, and swapping managers need process
synchronization facilities.

* Device interrupt routines often suspend the execution of the current
process, then invoke synchronization operations provided by the
process scheduler.

* Access to devices, interrupt vectors, and processor registers is often
provided in the form of special memory locations, thus involving the
memory rnaegar in each of these other facilities.

Both FAMOS and MULTICS became entangled in a chicken-and-egg problem involving
process managers and memory managers: a process manager uses its memory
manager to move processes between primary and secondary memory; a memory
maager uses its process manager to keep track of processes that have incurred
page faults or need more memory. The heart of the problem is that a process
needs both memory and a processor to run Both FAMOS and MULTICS [Reed
76, Janson 76) had to divide up the relevant management programs in fairly
unconventional ways to achieve hierarchical organization. The resulting programs had
two or more versions of several descriptor types: a version for permanently
existing descriptors, to be multiplexed by a low level manager, and a version for
descriptors to be created and destroyed at will by a higher level module

Modem data abstraction languages have contributed a great deal to modular,
hierarchical system design. The relations "is composed of", "calls", and "has access
to", can all be documented directly in the source programs, with the help of module
definition facilities to prevent unintended dependencies. However, these languages
come up short in supporting other relations

0 Pertial Compositiorr In incremental machine design, each system layer
conceals only a part of the underlying system In current languages it
is hard to say that one module is composed of "part of" another
module

* Uses. Current languages make it hard to distinguish procedure
invocations that imply uses dependencies, from ones that do not
Current frontiers are exceptional condition handlers and iteration

e Scope Ideally a program component should only be able to name the
facilities it is allowed to use. However, the scopes of identifiers in
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most eante are tree-shaped, following the composition rules,
relation is often a directed, acyclic graph.

* Environment Bindings between source program entities and their
environments, are not describable in modern languages. Consequently,
many environment-based dependencies must be lumped under the calls
or uses relation, without differentitior

Data abstraction does indeed solve well the problems of data and program
composition. It generally assumes a base environment of independent primitive
objects, which can be composed fto more- abstract objects, and manipulated by
abstract operations defined by procedures. This methodology does not apply
equally well to data decomposition, however. In conventional language systems the
representation of programs is left to the language system implementor, the
programmer is allowed to think that he can create objects that are independent of
each other. In an operating system, however, there is only one basic object The
Machine. The job of the operating system is to decompose the machine into
independent objects that can be used to support independent program entities For
example, on most DEC systems all of the interrupt vectors must reside contiguously
in physical memory, even though they have nothing directly to do with each other.
The module that manages the interrupt vector table must arrange to decompose that
table into independent interrupt vectors, each paired with a device control register,
or some other hardwae feature Similarly, the very memory in which programs and
data reside is tightly coupled, through whatever mapping mechanism is used to
achieve virtual memory. The operating system must enforce a discipline on the use
of Oa mapping mechawam that will preserve the appearance of independence of
individual program entities.

The "chicken and egg problem of FAMOS and MULTICS involved the relationship
between static and dynamic versions of an object environmental dependencies
between memory and process management programs, and "uses" dependencies that
did not follow the compositional hierarchy. An effective methodology for
environment rmnagemen must facilitate identifying all dependencies between
program components, and recording those dependencies in the program text It
should also contribute some insight into the relevance of the various ordering
relations that have been advocated for structuring systems.

2.3. Summary

The three system design tasks posed in this section form a diverse sampling of
important problems involving the role of environments in system descriptions. The
system integration problem has enormous practical implications, because it addresses
an expensive aspect of system construction which has previously eluded formal
treatment The hardware problem is an interesting operating system topic by itself,
because it must interact both with synchronization and excepton-handling. It also
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raies general, practical questions, such as how much effort should go into tailored
language support for small system components. The hierarchy problem attempts to
bring theory a big step closer to practice, by capturing the ordering relations
directly in programs. In doing so we will be much better able to tell whether the
proposed hierarchies actually lead to reliable, economical software.

The tasks were inspired by difficulties in the implementation of FAMOS, but are
common to many operating systems. Their solutiont should give us a measure both
of how broadly useful the methodology is, and how deeply it penetrates three
diverse areas.

--- --- --
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CHAPTER 3

TECHNIQUES FOR ENVIRONMENT MANAGEMENT

The aim of the methodology is to describe an operating system completely within
a strongly typed notation, including the bindings between progvns, environments,
environment managers, language support systems, and the physical components of
the machine. Such a complete description will be a valuable aid to system design,
integration, and verificatiort

The system of methods I present in this chapter synthesizes

" the incremental machine design techniques used in the Family of
Operating Systems [Habermann 781,

" the data abstraction techniques represented in languages such as
Alphard and Ada,

" software management techniques based on a module interconnection
language fTichy 80)

" a new conceptual framework and notation for environment management

Our discussion of FAMOS in Chapter 2 gave an intuitive feel for the interaction of
environments, modules, and shared data in that system We begin this chapter by
defining an environment as an explicit list of memories and instruction execution
facilities. We discuss the features that may appear in environment specifications,
and how they relate to operating systems and to language systems.

Incremental machine design methods require that a machine layer conceal only
those parts of the underlying machine that it uses. Binding environment features to
the modules that build upon them, requires a notation for the concept of exclusive
access, which is different from simple access and from ownership by containment
We shall introduce such a notation, derive scope rules to support the concept of
partial concealment, and show now the notation clarifies the dependency
relationships among program modules.

Interfacing the implementation language system to a comprehensive operating
system description requires an integrated approach to the design of the two
systems. Because a systems implementation language should provide a fit, transparent
notation for using the features of each virtual machine layer, I propose that the
operating system be the run-time system for the language. To ensure harmonious

k....1.. PA K 5...-4 F"L
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design, the system and its implementation language should be designed together. An
environment specification defines the interface between the language and the
system. expressed as a set of types, variables, and procedures provided by one and
used by the other. For example, the operating system provides the types section
and segment, which the compiler uses to implement types such as procedure and
variable. More generally, a language would specify the minimum set of features
every environment module must provide. This view of languages and environments
lets us represent both compilers and environments as modules in comprehensive
system descriptions.

Programming in a multi-environment context requires the ability to place instances
of a single type in different environments. Coupling, through shared data, between a
type manager and instances of the type, affects the ways in which the scattered
type instances can be supportedL We shall survey several different type
managav@.,. styles, seeing how coupling occurs in each, and how each can be used
in multi-environment systems. We shall look at a specific case from FAMOS to
illustrate the ideas.

Next we propose a laiguage mechanism for binding program units to
environments. The mechanism is designed according to the following principles

" Binding a program element to an environment consumes resources, and
therefore should normally be controlled by explicit program directive&.

" A program unit may contain as much or as little binding information as
desired, including none at all. Binding directives should not clutter
programs unnecessarily.

* Binding a compound program unit to an environment should bind its
components as well, but in a way that is flexible enough to support
the full spectrum of type management techniques.

First I shall introduce a simplified notation for types and modules that clearly
separates definition from instantiation, and add to it a syntax for environment
annotations. I shall propose inheritance rules for propagating environment bindings
to inner modules, and show that these rules harmonize with the type management
styles identified earlier. By programming some examples derived from FAMOS, we
shall see that the language mechanism satisfies the goals of brevity, modularity,
information hiding, and utility.

To coordinate host machine and target machine activities in the system generation
process, I propose to view the host machine as one of the environments in which
the operating system resides. I shall program a small but realistic virtual machine,
using the new notation, showing the relationships between compilers, linkers, loaders,
initialization, bootstrapping, and startup. At the topmost level, the system description
is a program to create an operating system.
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3.1. Environmernt

In this section I shall detine the concept of an environment I take the view that
an environment is a definite entity, corresponding somewhat to a virtual machine. A
system designer creates environments, and places system components in
environments.

An environment is neither a source-program name context nor a run-time
protection environment instead, an environment is a source-program list of
execution facilities. A module may make use of several different environments, and
conversely, an environment may support several different modules. Furthermore, a
single execution environment may span several protection environments, and a single
protection environment may support several execution environments. An
enviornment need not be protected at all, or its protection may be implemented by
a combination of source language and run-time mechanisms.

Figure 3-1 shows how modules, environments, and protection facilities relate to
one aother, with respect to the memory portion of an execution environment The
system consists of two segments, S and T, two environments, E and F, and two
modules, M and N Environment E allows access to both segments S and T, whereas
environment F only allows access to segment T. Module M uses only environment E,
while Module N places procedures in both E and F. Procedure C can name the
variable B because B is visible in Module N; C can also access B because they reside
in the same environment In contrast, Procedure A cannot name C because C is not
visible in module M. Procedure D can name B, but cannot access it, because they
reside in different environments, even though they reside in the same segment.
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Module M Module N
provides B requires B. E. F
requires E

proc A var B proc C proc D

Environment E Environment F
requires S T require's T

codYA data B code C code D

Segment SSegment T

Figure 3-1: Modules. Environments, and Segments

The features of an execution environment can be roughly classified as memories.
instruction interpreters, registers and devices, and entry points. We shall first
discuss each class of feature as it appears in operating systems and language
systems. Then we shall define in more detail the minimum set of features an
environment must have to support the execution of programs.

3.1.1. Memories

A memory in an execution environment is any block of storage accessible by
instructions executing in that environment In operating systems we find both
virtual memory and physical memory. We also find the notion of a name space
(e.g in Multics). We must be careful to distinguish among these concepts.

We define the logical memory of an environment to be the set of objects
(variables and procedures) that a program executing in that environment can access
(read, write, or call). For the purposes of this thesis we need to define a global
naming system for objects, independent of individual execution environments. Each
object in the system shall have a unique identifier, its logical name. Each logical
name will denote a logical address, which specifies the r c. ory location containing
the object Typically, objects are collected into segments, for administrative
purposes. When this is the case, a logioal address is composed of a segment name
and a displacement within the segment
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Any given system may or may not provide a concrete realization of such a naming
scheme. A good software development control system might have a global symbol
table with logical names and addresses. On the other hand, a traditional compile-
link-load system might only have segment-relative names, and a segment identifier
might only be the name of a linker output file in the host file system Specifically,
however, not all objects having logical names will reside in the segment management
facility of the system under construction, since some of them will be used to
implement segment mnagement!

A virtual address is the means by which an individual machine language instruction,
within a given environment, refers to a particular location in the logical memory.
The language system is responsible for constructing the correct virtual address for
a given logical memory locatiort An operating system can move pieces of the
logical memory from place to place in the physical memory, and can even retain
several (identical) copies in different places, The execution environment is
responsible for translating each virtual address into the current physical address of
the designated location However, the correspondence between virtual addresses
and logical addresses need not be static, nor one-to-on It is both conceivable
and feasible in many systems to have more than one virtual address correspond to
the same logical location. Also, in environments where the total size of the logical
memory is larger than the virtual address space, such as in Hydra, FAMOS, and
RSX- 11, it becomes necessary to change the mapping between them dynamically, so
that the "working set" is addressable.

Since a logical address is defined to be independent of any particular execution
environment I define a local name, or simply name, to be the environment-relative
representation for a logical address For example, a Hydra execution environment
provides a "capability page set" (CPS) listing the segments (pages) that are accessible
from that environment A program refers to a logical page, in a system call, by its
CPS index 4

To illustrate the relationship between local names, virtual addresses, logical
addresses, and physical addresses, consider the following scenario from Hydra A
program in some environment wishes to increment the variable V. V is located in
segment S, at displacement d. The logical address of V is <Sd>. The language
system reserves a place, C, in the CPS for the segment S. The local name for V is
<Cd>. When the time comes for the program to access V, the language system
asks Hydra to make segment C addressable through relocation register R. The virtual
address of V at that time is <R.d>. At the same time, Hydra places logical segment
S in physical page frame P, making the physical address of V at that moment be
<P,d>.

4 Hyra actually uses the term "local name" to refer to elements of the "local name space", which is
the set of capbilities a program running in the environment may use. I confine my use of the term
to refer to objects that may be made addressable.



40

The Hydra addressing mechanism provides a separate CPS and relocation register
set for each addressing environment However, two environments within an
operating system might share address translation facilities. For example, the device
drivers and the address space manager in FAMOS coexist in the kernel address

space, even though their logical memories are nearly disjoint The fact that their
logical memories were designed to be disjoint, except for one segment, is sufficient
basis for saying that they reside in different environments.

Among the segments in the logical memory of an environment, we must distinguish
betwee,- those that are merely accessible from the environment, and those that
actually contain the programs residing in the environment An environment might
provide a set of utility procedures, in an execute-only segment The programs
compiled to execute in that environment would occupy storage allocated from a

different segment I define the term program region to denote the memory that
contains the programs residing in an environment

3.1.2. Instuction Interpreters

The basic instruction set for a given environment is simply the set of opcodes
acceptable to the CPU's instruction interpreter. This set may vary depending on the
privilege level in the program status register, but the possibilities are generally fixed
once the underlying architecture has been constructed and the microcode written
However, from time to time we will want to designate certain procedures as "virtual
instructions". For example, a "system call" instruction usually takes an immediate
operand designating a particular privileged subroutine. Each such subroutine can be
viewed as implementing a virtual instruction, whose "opcode" is defined by viewing
the immediate operand as an extension to the basic opcode.

Protection-oriented operating systems often provide a "protected procedure call"
instruction, via the above mechanism This raises the possibility of viewing protected
procedures as virtual instructions also, especially those procedures that perform
utility services, and those procedures that support high level language features, such
as synchronization and files. Finally, there are times when ordinary procedures are
viewed as virtual instruction, such as when they are supplied by the language system
to make up for omissions from the basic instruction set

3.1.3. Registers and Devices

The assortment of registers and devices accessible in an execution environment
would include physical devices, virtual resources, and components of the
environments instruction interpreter.

A physical device is often accessible only through virtua; instructions, which
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protect it from abuse and also make it more convenient to use. The clock provided
by the FAMOS clock driver is such a device

Virtual resources come in at least two varieties: those that embody physical

resources, and those that simply provide system services. FAMOS virtual clocks
illustrate the former; waiting sets illustrate the latter. In both cases the
representations of the objects must be kept in a pool where the resource manager

can access them at all times. In FAMOS they were also outside the logical

memories of the environments that use them, although this would not always be
necessary.

Instruction interpreter features might include a virtual address translation facility, a
capability list, an exception handler, and a synchronization facility. These differ from

ordinary devices and resources in that operations on them affect the instruction
interpretation process itself. A successful methodology for environment
management should coordinate the language system and the operating system with
respect to such features For example, the languagc- system must know the

correspondence between logical and virtual addresses at all times. It should also be
able to relate the trap mechanism of the operating system to its exception handling
and synchronization features.

3.1.4. Entry Points

An entry point is a designated logical address in the program region of an
environment, to which control may be transferred from some other environment
This concept is intimately connected with virtual instructions and protection

Depending upon the protection mechanism separating two environments, a call from
one to the other might be implemented as a macro, an ordinary jump-to-subroutine
instruction, a trap instruction with literal argument or a special protected procedure

call instruction, with operands specifying the environment and address. The protocol
for any procedure is part of its specification. In friendly systems, the entry point
information could be the caller's responsibility, just as an ordinary assembly language

procedure relies on its caller to use the correct starting address. In a protection-
oriented system, an environment specification could include a dispatch table, to
contain the addresses of legitimate entry points. The protected procedure call
instruction would then take operands specifying an environment and an index into its
dispatch table.

M.1.5. Definition of an Environment

The concept of environment I wish to define should satisfy the following

properties
9 It should suggest how a system designer might define and construct
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environments as concrete entities, rather than deriving them from
other information. It must be possible for a system designer to select
the nunber and nature of the environments in his system, name the
memory and instructions in each, and name the runtime mechanisms that
will implement them.

" It should reflect only the machine code aspects of an execution
facility, and not source language constraints. In particular, it should not
constrain the scope of identifiers.

" It should permit one to partition a program's executable representation
independently from its source language organization. It must be
possible both for an environment to contain components of several
source modules, and for each of those modules to span several
environments.

" It should support transfer of control between environments.

* It should give the system designer the flexibility to trade off between
compile-time and run-time protection mechanisms.

Therefore, we shall define an execution environment to be
a specification for a virtual machine, sufficiently detailed and complete

that one could program that machine
Such a specification would include, but not be iimited to:

" a set of logical memory segments whose contents are accessible to
programs residing in the environment

" a program region within the logical memory

" an address mapping function defining the relations between logical
memory and virtual addresses

" an instruction set, including both basic and virtual instructions

* instruction interpreter registers, such as relocation facility and capability
list

" an entry point mechanism

" other, machine features

An environment specification could be represented in a strongly typed language as
a module specification. This will let a system designer use source language facilities
to define and construct environments. In section 3.3 we will discuss methods of

doing this.

An environment constrains the use of identifiers only by defining the logical
memory and address mapping function. An identifier in a source language procedure
denotes a logical address, independent of any environment Only when a procedure
is bound to a particular environment must the language system translate the
identifiers it uses into local names and virtual addresses. (In single-environment
systems this is customarily done by the linker.) In section a4 we will discuss
several type management styles. and assess the implications of placing type
instances in several different environments.
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More generally, environment specifications allow a language processor to determine
whether a given source language unit is feasible in a specific environment In
section 3.5 I will define a syntax for binding individual program units to
environments, and develop rules for propagating bindings to inner units, such that
multi-environment modules are feasible In particular, I will define a means of
designating entry points to environments, and for analyzing the feasibility of passing
parameters between environments.

The proposed approach to specifying environments not only distinguishes
environments from source modules, but also distinguishes them from the run-time
mechanisms used to implement them. This allows a system designer to use
compile-time mechanisms for enforcing protection. For example, the page-fault
handler in an operating system ordinarily cannot be allowed to generate a page fault
It must only access pages that are already in core. And yet, the handler code is
ordinarily mapped by the same page table as the other time-critical procedures of
the system A system designer could define an "in core" environment whose logical
memory contained only segments guaranteed to be in core. This environment could
use the same page table as other system environments, since the language system
would insure that only safe pages were actually used.

To see how environment specifications would fit into a system description, in
section 3.6 I shall develop a small example that shows the relationships between
several environments in a small bootstrap loader. Chapters 4, 5, and 6 illustrate the
same techniques in more realistic domains.

3.2. Partial Concealment of Machine Layers

Before pursuing the details of environment management we shall discuss a
shortcoming in existing facilities for scope control in high level languages, and
propose a remedy. I will use the remedy to help describe dependencies between
modules. This issue affects all operating system features, not just those that
implement environments However, since it does not directly affect the management
of individual environments, the reader may want to skip this section on first reading.
Section 33 begins on page 56.

Each of the virtual machine layers of FAMOS provides a rather long list of
machine features for use by subsequent layers. However, each level is only
incrementally different from the previous leveL A module at a given level
enhances just a few of the features provided by lower levels, leaving the rest
available, unmodified, for use by other modules. For example, one machine level in
FAMOS provides an address space management facility, a process multiplexor, a
clock manager, and a variety of I/0 devices. (Cf. figure 3-2.) One of the modules
at the next level uses the address space manager and one of the disks to provide
support for swapped segments. This module does not modify the process
multiplexor, clock manager, or other I/0 devices in any way.
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SUBSEQUENT LAYERS

provides Swapped Address Spaces

SWAPPER MODULE

conceals address space disk [0)
management

provides address space disk [0.7] processes clocks
management

PROCESS VIRTUAL MACHINE

Figure 3-2: Incremental virtual machines in FAMOS

A module that builds upon certain features of the underlying machine level, must
conceal those features from subsequent layers to protect its own integrity. For
example, a process scheduler can only guarantee fair scheduling if it has exclusive
access to the CPU's "process state register" (e.g. VAX's Process Control Block
Base register). If some other system module can switch process contexts without
the scheduler's consent the scheduler can fail to provide the service it promiese.

A strongly typed, modular program defines access to a program component by
specifying the scope of the component's name. Only those program modules in
which the name is visible can invoke the name (and thus use the feature. However,
existing and proposed scope control mechanisms are inadequate for describing
exclusive access to some portion of a module's features, because

* One module cannot enclose a portion of another module.

* An identifier's scope specification is distributed over most of the
modules that comprise the scope.

* Exclusive access cannot in general be verified by the compiler.

The acquires clause I shall propose is a localized specification of exclusive access,
that allows a module to conceal an identifier within its boundaries without enclosing
the module that provides the feature.

We shall begin the discussion by defining a simple notation for modules, that
captures the common properties of existing scope control mechanisms, and by
describing an access scenario to be specified by scope control. Then, we shall
examine how exclusive access can be specified with existing notations, by
considering two cases

* The module needing exclusive access encloses the module that defines
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the feature needed This strategy contorts and obscures the program
structure by cluttering the enclosing module with the names of a// of
the enclosed module's features, most of which it does not need

e The module needing exclusive access imports ( requires, uses ) the
needed feature. This strategy allows a change to a distant module
(requiring the name when it previously did not) to destroy the exclusive
access property without being detected by the translator.

Next we shall define the acquires clause, specifying its affe(1 on the scopes of the
identifiers it names, and illustrating its meaning with several examples. Finally, we
shall program the access scenario using the acqOires clause to specify exclusive
access, and see that it satisfies the goals of the probleam

3.2.1. A Conventional Scope Control Mechanism

To simplify the following discussion let us assume a data abstraction language with
a module construct for dividing programs into statically nested, closed scopes, and
two clauses, provides and requires, for allowing names to be visible in more that
one scope That is.

" A name is visible in the scope where it is declared

* A name visible within a module is visible outside that module if and
only if that module provides that name.

" A name visible immediately outside a module is visible within that
module if and only if that module requires that name.

This very simple language for modularization lacks many of the elegant properties of
existing and proposed module constructs, but it has two properties that they all
share: closed scopes are strictly nested, and visibility of names is regulated at the
boundary of each closed scope

To determine the scope of an identifier one must examine the defining module and
its neighbors, to determine what modules are reachable from the defining module
via provides and requires clauses that name the identifier. For a particular module
to have the use of an identifier, there must be a path from that module to the
defining module More formally, we define the following relations:

Di(M) Identifier i is declared in module M

Ri(M,N) Module M immediately encloses module N, and N requires i

Pi(M,N) Module N immediately encloses module M, and M provides i

ADJi(M,N) Pi U Ri (adjacency)

A program provides and requires correctly if and only if, for each i,

" there exists a unique M such that Di(M), and

" the graph defined by ADJi forms a tree with root M.

I7
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This formulation implies that an identifier may not be both required and provided

by the same module, and that all the modules in the base set of the relation are

reachable from the declaring module. The scope of i is the basis set of ADJi that

is,

The scope of i, where i is declared in module M, is { N I ADJi*(M,Nl)

3.2.2. An Access Control Problem

In incremental machine design, one often finds that a given module needs exclusive

access to only a subset of the facilities provided by the underlying virtual machine.

This most often happens when a set of facilities tha appear to be independent of

one another, according to their specifications, turn out to be coupled in their

implementation. For example, two different I/O devices might have no logical

relationship to one another, but might be coupled through shared use of interrupt

hardware and software. Therefore, a single module that encapsulates the design of

the machine's IO subsystem, would provide the names of all the I/0 devices

present on the machine.

As a basis for analyzing scope control mechanisms, we shall consider a system

consisting of

* A hardware module VMO, that provides the hardware devices "terminar ,

"disk", and "clock*;

* A Clock Manager module that uses the clock to provide a tirme-
stumping procedure.

* A File Manager module that uses the disk to implement files.

e A Graphics module that uses terminals to display graphical images

* A system of modules that use clocks, files and graphics

The hardware devices must all be declared within VMO for some unspecified but

unavoidable reason Each intermediate module needs exclusive access to the device

it uses, to maintain its integrity. Each intermediate module is programmed by a

different person, who is only dimly aware of the specifications of any modules his

program doesn't use. There are no hidden dependencies among the three

intermediate modules Informally, the virtual machine layers of this system would
look like
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Subsequent Layers
use

Time,Files,Graphics

Clock Manager File Manager Graphics Manager
provides provides provides

Time Files Graphics

conceals conceals conceals
Clock Disk Terminals

VMO
provides

Clock,Disk,Terminals

An adequate scope specification for these modules would have the following
properties:

" A module exporting an identifier should NOT control access to that
identifier in the surrounding text. (A module should work properly
regardless of how the facilities it provides are used)

* A module needing exclusive use of an identifier should be able to
declare that need in its specification, and have that declaration enforced
by the language. (The declaration should be localized and attached to
the program unit most affected)

* A module should control the scope of only those identifiers that are
relevant to it purpose. (t should only know what it needs to know.)

" The need for exclusive access should not contort the program
structure unduly.

3.2.3. Concealment By Containment

One way a module can be assured of exclusive access to a feature is by
containing the module that provides the festure. Abstractly, if module A is a virtual
machine providing features F, G, and H, and module B uses feature F to implement
improved feature I, then the modules would be composed as in figure 3-3.
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Module B

provides G, H, I

Module A
provides F, G, H
<<implementation of F, G, and H>>

end Module A

procedure I = ... << invocation of F >>...
<< other implementation details of B >>

end Module B

Figure 3-3: Concealment by Containment

Unfortunatly, this design does not adequately document the fact that module B
has not invoked resources G and H at all Not only did B have to specifically
export two items (G and H) that it didn't use, but presumably the specifications of G
and H had to be transmitted as well, showing that in fact B did not modify them

Although the clumsiness of this method may not seem burdensome in any
particular case, it has serious implications for the overall structure of a system
Essentially, it calls for a new virtual machine level for each management module.
This in turn imposes a total ordering on system features, some of which have no
intrinsic relation to one another. The access control problem defined earlier would
have to be programmed something like figure 3-4.

module VM3
provides graphics, files, time

module VM2
provides terminal, files, time

module VM 1
provides terminal, disk, time

module VlVIO
provides terminal, disk, clock

<< defines device hardware >>
end module VMO

proc time = . . << invokes clock >> ...
end module VM1

type files =
< type definition using disk >

end module VM 2

<<implementation of graphics facilities using terminal >

end module VMY3

Figure 3-4: Multi-level Concealment by Containment

The modules VM1, VM2, and VM3 have been totally ordered by containment, in
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order to achieve concealment This ordering is clumsy, and unnecessary, since
"graphics", "files", and "time" have nothing to do with one another. One could
imagine with even a moderately complex operating system, that the p ovi Ies clauses
could be clogged with unrelated names Furthermore, whenever an inner module
was modified to add a new feature, each subsequent module would have to add the
name of that feature to its provides clause.

This difficulty comes about when two or more v,'tual machine features at a given
level appear to be independent, in their specifications, but in fact are related in their
implementations. They must be declared in a single module, because they are
related, but can be used by different modules, because they are made to behave
independently. However, a module that needs only one such feature cannot control
its scope without controlling the scopes of all the objects exported from the same

module.

3.2.4. Concealment without Containment

An alternate design for modules A and B of the previous section would place
module A and module B side by side, and have module B import only the resources
it uses, as in figure 3-5. This design allows module B to leave undisturbed those
features of module A that it doesn't need; however, module B has not concealed
resource F, either! Indeed, it may not be possible to verify the correctness of
module B without external proof that resource F is not used elsewhere.

Module A
provides F, G, H

<< implementation of F, G, and H >>
end module A

Module B
requires F
provides I

procedure I <... invocation of F >>.

<< other implementation details of B >>
end module B

Figure 3-5: Importing as needed

To specify exclusive access, one must arrange the provides and requires clauses
to give the access needed, and refrain from providing or requiring the name
anywhere else. The access problem we've chosen would be specified as in figure
3-6.

Ai



50

Module VM 1
provides graphics, files, time

module VMO
provides terminal, disk, clock

<< definitions of device hardware >>
end module VMO

module Clock Manager
provides time
requires clock

proc time = << invocation of clock >>.
end module Clock Manager

module File Manager
provides files
requires disk

type files :
< type definition using disk >

end module File manager

module Graphics
requires terminal
provides facilities for graphics displays

<<implementation of graphics using terminal >>
end module graphics

end module VM1

Figure 3-6: Distributed Specification of Exclusive Access

This program specifies that for example, module Graphics has exclusive access to

the identifier terminal, by

0 requiring the identifier into the module Graphics,

* not requiring it into Clock Manager or File Manager, and

e not providing it out of the module VM.

Such a specification is inadequate because it imposes an unstated constraint on the
clock manager and file manager, namely that they not require "terminal".

Furthermore, if the programmer of either module overlooks or ignores the
constraint, and violates it by requiring the identifier, te violation will not be
detected This exclusive access specification is therefore unsatisfactory because it
is distributed over several modules that it should not involve, and unenforced by
the language system.
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3.2.5. The acquires Clause

To resolve ^- -a difficulties, I propose a simple addition to the set of ways one
can transport a name across a module boundary- the acquires clause. Informally, a
module that acquires an identifier "requires exclusive access" to it For example,

we would rewrite figure 3-3 as in figure 3-7.

I Module A
provides F. G, H

I << implementation of F, G, and H >>
end module A

Module B
acquires F << note change >>
provides I

procedure I = ... << invocation of F >> ...

<< other implementation details of B >>
end module B

Figure 3-7: Acquiring as needed

Here Module A provides unrelated resources F, G. and I- Resource F is "parcelled
outi to module B for management The acquires clause specifies that no other
module (outside A) may access resource F. (Remember that the reason F is declared
in A and not B is that the representation of F is coupled to other resources in A.)

To make the acquires clause testable and enforceable, we must specify precisely
the conditions under which it may be used, and its meaning under those conditions:

An identifier that would otherwise be visible in a scope may be
acquired by at most one module in that scope. Furthermore, it may only
be acquired when exglusive access can be guaranteed

Exclusive access can only be guaranteed if t following conditions are met

e The module enclosing the sco:neither requires nor provides the
identifier. This would risk use of the identifier outside the enclosingmodule
No other module in the scope requires or acquires the identifier.

* No other program unit (such as a procedure or declaration) in the
scope uses the identifier.

More formally, we redefine the scope rules for the language with the following
relations

Di(M) Identifier i is declared in module IVL

Ri(M,N) Module M immediately encloses module N, and N requires i

Pi(M,N) Module N immediately encloses module M. and M provides i
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Ai(MN) Module M inediately encloses module N, and N acquires i

ADJi(M,N) Pi u Ri U Ai (adjacency)

A program provides, requires., and acquires correctly if and only if, for each i,

" there exists a unique M such that DIOW,

" the graph defined by ADJi forms a tree with root M, and

" VX.Y,Z Ai(XY) A ADJi(X,Z) -t Y=Z

That is, if Y acquires i from X, then Y is the only module that obtains access to i
from module X. The scope of i is the basis set of ADJi, excluding those modules
from which i has been acquired That is, the scope of i, where i is declared in
;modue M, is

f N I ADJi*(MVN) A VP - Ai(NoP))

3.2.6. Examples

Let us consider some examples of how the acquires clause might be used
Suppose an identifier declared in a scope is acquired by a module

declared in the same scope. The visibility of that identifier is limited to
the inner module.

Module main

ver C

module B
acquires C

<< The scope of C is B1 >>
end module B

<< C is not visible here >>
end module main

-
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Suppose an identifier is provided to a module by one of the modules
declared within it. and mquired by another. The visibility of the identifier
is limited to the two inner modules

module main

module C
provides D

var D

<D may be used within this module >>
end module C

module B
acquires D

<< The scope of D is I B, C >>
end module B

<D D may not be used here >>
end module main

One might argue that using an acquired identifier inside the providing
module violates the exclusive access granted to the acquirer. However, if
such use affects the external behavior of the object, it will be
documented in the providing module's specification The acquiring module
only "knows about" the outermost specification for the identifier, and only
requires exclusive access relative to that specification

..............
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Suppose an identifier is provided by several modules enclosi its
declaration, then acquired The identifier may be used within any o the
providing modules. and within the innermost acquiring module.

module Main

Module Prov 1
provides X

Module Prov2
provides X

var X
<< X may be used here >>

end module Prov2

<< X may be used here >>
end module Prov l

module AcqI
acquires X

module Acq2
acquires X

<< The scope of X is
OProvI, Prov2, Acq2 >>

end module Acq2

<< X may not be used here >>
end module Acql

end module Main

To summarize, the essence of the acquires mechanism is that the identifier is
a/located from the outermost providing module to the innermost acquiring module
That innermost module is guaranteed exclusive use of the identifier. The allocation,
furthermore, is checkable at compile time.

3.2.7. The Access Problem, Revisited

Returning to the example of the three device managers, we may compose them

using acquires as in figure 3-8.
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Module VM1
provides graphics, files, time

module VMO
provides terminal, disk, clock

<< definitions of device hardware >>
end module VMO

module Clock Manager
provides time
acquires clock

proc time = ... << invocation of clock >> ...
end module Clock Manager

module File Manager
provides files
acquires disk

type files =
< type definition using disk >

end module File manager

module Graphics
requires terminal

<<implementation of graphics using terminal >>
end module graphics

end module VM1

Figure 3-8: Multiple Acquiring Modules
Note that each module needing exclusive access has a localized specification of

the need, enforced by the language. For example, if the File Manager's specification
were changed to require "terminal", the translator would detect the conflict with
Graphics, which acquires "terminal". Furthermore, the nesting structure of the
program generally reflects the natural compositional structure of the system Virtual
Machine 1 is composed of an underlying virtual machine (VMO) and three modules,
each of which conceals the features it uses.

An aside about aliases* Note that each of the modules provides a facility built
upon the acquired resource. If the resource were only required. this would create
an alias for the resource. Languages that attempt to prevent aliases, such as Euclid,
would forbid the latter construction However, by acquiring an identifier instead of
requiring it, a module actually removes that name from the surrounding environment
thereby removing the alias problem
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3.3. Environments as Modules

In section 31 we developed the notion of an environment by looking at operating
system protection environments and language run time systems. In this section we
shall clarify the roles of both language systems and environments in operating
system descriptions.

One purpose of a systems implementation language is to provide, for each
environment, a programming notation suited to the facilities available in that
environment Many of these facilities correspond to features of traditional high-
level languages These high-level language constructs pose the following dilemma

* A language construct can provide a valuable abstract notation for using
an operating system facility.

* Incorporating the construct in a language, before the system is
designed, prematurely commits the system to provide the facility.

" The price of not providing the language construct is a significant loss
of abstraction in the system description, and lost ability to verify or
enforce system properties based on syntactic structure.

To resolve this dilemma, I propose to design operating systems and the*
implementation languages simultaneously. Then, in each environment, the operating
system shall provide components of the implementation language support system

An environment specification in such a system defines the interface between the
language system and the operating system We shall study an example (from the
language Euclid) where the language allows a program to provide part of its own
run time support (dynamic storage management) by giving specifications for a
support module ( a zone module ) to be provided by the program and used by the
language system

The specification method used for Euclid zones may be applied to any ordinary
run-time facility, such as synchronization or exception handling. However, most
environment features require interaction between the compiler or linker and the
operating system, such as when the compiler places a variable in a section, linked
into a segment and generates instructions that use virtual addresses to access the
variable. To accommodate these features, we shall explore the. view that a compiler
is a type manager for the abstract type "program", which it implements using the
types section and segment and the primitive types of the execution environment
This view will allow ui to represent the compiler, linker, and environments as
ordinary modules in system descriptions.

. . . . ir .. . .. .



3.3.1. Language Systems In Operating Systems

A programming language is both a design notation and an implementation tool As
a design notation, it must fit the problem domain It must give the system designer
the ability to describe the system in a way that emphasizes the important attributes
of the system As an implementation tool, it must be precise and complete. That
is, it must describe everything about a system, exactly. A good language, both for
design and implementation, will allow the programmer to juxtapose pieces of
information that are interrelated, so that the reader of the design can study that
interaction without having to sift through lots of unrelated materiaL In order to
present the important material, the language must conceal irrelevant detail This
emphasis and concealment is often called abstraction.

Languages support abstraction in two ways by providing built-in abstractions, fag
infix arithmetic operators, semaphores), and by providing tools for constructing new
abstractions ag type definitions, macros). With an appropriate set of primitives and
good construction tools, one can construct a set of abstractions that fit the
problem domain.

However, sometimes the price of abstraction is loss of transparency or efficiency.
Certain programming techniques, such as performing arithmetic on pointers, are
impossible to achieve in most strongly typed languages. Languages that replace the
goto statement with rich vocabularies of control constructs, such as Bliss- 11, are
usually inadequate for expressing certain exception-handling techniques. Retaining
the gore statement often results in distributed overheads, either by preventing
certain optimizations or by making the cost of discovering them prohibitive

A anguage with good construction tools might still fail to support certain
abstractions because of inadequate primitives. For example, a language without
synchronization primitives might not be able to support good synchronization
4stractions. Even if the proper code sequences can be generated to implement
say, monitors, the language cannot provide the static checking needed to make sure
that monitor entry and exit are properly nested.

Recent systems implementation languages can be classified in two groups

" Transparent languages, such as Bliss and C, which emphasize access to
the machine and very good code generation, but do not enforce data
types

" Strongly typed languages, such as Euclid, Modula. and Gypsy, which
attempt to provide methodologically sound, type-safe abstractions
corresponding to the features of the underlying machine. Typical
abstractions provide multi-tasking, synchronization, and device
communication

Although transparency is often a desirable, even necessary language property, I
reject existing transparent languages for large system construction for their lack of
strong type facilities,
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The advantages of the strongly typed approach are three the compiler can use
special knowledge about the facility to generate better code, it can automatically
generate a management data structure customized to the program being compiled.
and it can perform static checks on the proper use of the facility. Modula, for
instance, by providing a particular form of monitors, was able to ensure mutual
exclusion without any run time overhead t monitor enr or exit Us.gs

transparent language to construct monitors requires the programmer to check for
himself that the entry and exit procedures are invoked at the proper times.

The disadvantages of built-in facilities are:

" Hidden structure such facilities usually require non-trivial run-time
support, which is normally excluded from system descriptions as a
"mere implementation detail".

" Lost transparency to protect the integrity of the built-in facility, the
language must prohibit any other access to the machine features upon
which it is built

" Imposed design const-aints: as mentioned in section 2.2.1, providing a
particular synchronization construct in a system implementation language
constrains the class of systems that can be built in that language.

Nevertheless, an operating system component should be written in a notation that
expresses the abstract properties of the facilities it uses. For instance, if a
message system is implemented as a set of cooperating processes. it should be
written in a language wih facilities for multiprogramming and synchronization

These built-in language facilities embody operating system-like functions. A
language that supports dynamic object creation needs a storage manager. A
language that supports multiprogramming must have a process scheduler. A
language that supports exception handling must have a software error reporting
mechanism. All of these are common operating system facilities. Because of the
similarity of purpose, we need a way to integrate language support software with
operating system facilities, such that there will not be duplication, excessive
overhead, or conflict

3.3.2. Incremental Programming System Design

To integrate an operating system 3nd its implementation language, they should be
designed together, Each virtual machine level of an incremental operating system
design defines one or more execution environments for use by subsequent levels.
For each environment. the implementation language should provide constructs that
embody the abstract properties and proper use of the available facilities. For
example, a programming language construct for exceptional condition handling might
be the methodologically "right" way of using software trap vectors

Starting with a language for sequential programming with abstract data types, the
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system designers would add facilities for multiprogramming, exception handling,
dynrnic objects, etc, as the corresponding facilities were being designed for the
operating system Specifically, each operating system facility would be designed
with a particular language construct in mind, so that the virtual machine level which
provided the facility could support programs that used the construct. Each
execution environment would support a dialect of the implementation language
tailored to the facilities of the environment In this way, each system level could be
progrmnned in a notation fitting both the requirements of the level and the facilities
avadaobe-

Looking back at FAMOS, it could have been designed as follows

Level Facility y Feature

VM5 Waiting Lists Semaphores, Path Expressions
VM4 Process Management Multitasking
VM3 Address Spaces Overlaying, Named Common"
VM2 Space Allocation Dynamic Objects
VM1 Interrupt Masking Critical Regions
Hardware Interrupt Vectors Exception Handling

Fige 3-9. FAMOS as a Language Support System

Actually implementing a separate language for each system level would be
outrageously expensive Instead, in chapter 7.4 we will discuss tools such as
preprocessors, parser generators, linkage editors, and compiler compilers, that make
the costs manageable by sharing most of the translation software among levels

Next we shall consider how to specify the interface between the operating system
and the language at each system level.

3.3.3. SpecIfying the Module Interface

Developing systems implementation languages concurrently with developing the
systems they are to implement, will only lead to serious delays in both off ts,
unless the interface between the two is carefully specified. The interface 'ust
provide the same quality of separation between the compiler and the environment
support facilities as between one operating system component and another.

Therefore I propose the following technique:
Each language dialect shall give a specification for the minimum features

it demands of the execution environments it will use This specification
will be in the form of an environment module, which shall define the
progrmnming interface between the language system and the operating
system

To - what form this specification might take, we shall look at the dynamic
storage management facility of the Euclid run time environment, which is specified
just this way. Euclid allows programs to manage their own dynamic storage pools,
called storage zones A dynamic record type in Euclid is called a collection; two



60

records from different collections have different types, even if the two collections
use the same base type to define the structure of individual instances. The
declaration of a collection may optionally name a storage zone module If it does,
all members of the collection will be created out of storage allocated from that
zone.

Euclid gives a set of abstract and syntactic specifications for a set of standard
procedures that every storage zone module must provide. However, these
specifications are only a minimal set of requirements. The module providing the
storage zone may provide any additional services that are appropriate, such as
statistics gathering facilities or "storage low" warnings. The user of a collection
invokes language operators new and free to create and delete objects; those
routines (presumably just a few in-line instructions) call the zone manager to obtain
and release space, and invoke the initialization and finalization code for the
collection's base type.

Whenever an object is created, a type transformation take place. The Euclid

language uses the type "allocation unit", implemented by an ordinary user module, to
implement the language feature "dynamic record". Another interesting type
transformation takes place within the zone manager, between storage units,
addresses, and pointers. A Euclid zone manager must somehow declare a variable
which occupies the storage it is to manage, then break up that variable into
allocation units according to the demands of the zone users. To facilitate this, the
language defines a type storage unit which has no operations defined on it, and no
distinguishable values However, there is a function which maps an array of storage
units into the address of the first element The type address is a subrange of the
integers, allowing arithmetic on addresses. There is also a guarantee that addresses
and pointers have the same standard representation This facility allows the zone
manager to declare a vector of storage units, compute the address of any position
in the vector, and create a pointer to it

To summarize, the Euclid storage zone mechanism has the following properties.

" The type conversion between allocation unit and dynamic record is
protected by the compiler

" The storage zone manager is written in essentially the same language
as the user program, and can be included like any other program
component in the overall system description.

" A program may invoke the zone manager directly, for instance to ask
how much space is available, or indirectly, via the language features
new and free.

" The language system uses the storage zone mechanism to represent
variables, without imposing significant constraints on storage allocation
policy.

* .i'he languae provides special-purpose types to aid in the
imlemntton Of zones

-._ .. . . . . . .t -' " 
I

. _ . , .-- -
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* The verification of the programs which use the storage zone can be
separate from the verification of the zone manager.

The storage zone is the only environment feature that a Euclid program is allowed
to supply for itself. However, the same approach ought to be suitable for process
management synchronization, exception handling, address space management.
capabilities, and message systems To generalize from the zone manager, observe
that for each language construct requiring environmental support, there are a set of
types, variable and procedures that characterize the interaction between the compiler
and the environent Each type is either implemented by the compiler and used by
the environment manager (eg. storage unit for zone manager, state vector for
process manager), or implemented by the environment manager and used by the
compiler (eg allocation unit for zone manager, waiting list for synchronization).

A language specification for an environment facility, therefore, would include.

" The specifications of the types the facility must provide

" The specifications of the operations which must accompany the type

" Those compiler-implemented types which the environment manager will
need to construct the types it provides

For zone managers, Euclid specifies the names of the allocation procedures,
including the types of their parameters, and provides the types storage unit,
address, and pointer for constructing storage managers A language which
supported cooperating processes would specify the routines any process manager
must provide, and define the type state descriptor which would contain that portion
of the execution state of a process for which the compiler was responsible. That
type would support operations like "load" and "unload', for installing it as the
currently exeouting program, without concerning the operating system designer with
details of which registers to save and restore. The process manager would then
construct the type process descriptor by combining the type state descriptor with
whatever other information was appropriate to the operating system design. The
operations provided to the language system would then deal in process descriptors
and state descriptors.

The types and procedures would not necessarily have to be implemented at the
time the compiler was generated; they might simply form a database which the
compiler used for code generation In that way, the development of the compiler
and the operating system could proceed independently. These issues will be
discussed more in Section 7.4.

By specifying the boundary between the language system and the operating system
in terms of types and procedures, we can separate those design decisions having to
do with code generation and optimality. from those dealing with environment
management and operating system structure. In particular, the translator can provide....... .F
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a mechanism for connecting an object (e.g process) to its container (eg. process
descriptor) without imposing policy about how that container is to be implemented

3.3.4. Compilers. Sections, Segments, and Systems

So far, we have discussed only specifications for conventional run time facilities.
However, most of the features of an environment require interaction between the
language system and the environment manager during translation, such as when the
compiler places a variable in a segment, then selects appropriate instructions and
virtual addresses to implement operations on the-variable. Compilers, linkers, and
loaders, in present technology, are processes which transform a source-language
program into a running system If we view them instead as type managers which
provide the concrete representation of an abstract program, we can use abstract
data types to describe "ne translation system's role in an operating system Then we
can sketch the specification of each kind of environment feature.

We take as our "atomic unit" of a compiled program, the section. A section can
be an arbitrary sequence of machine language instructions and data, whose value has
been determined by a compiler. A section might represent a variable, or a
procedure, or several variables and procedures, or whatever the compiler cares to
produce However, it must correspond to a contiguous sequence of memory
locations, so that the linker can ignore any internal divisions.

Let a compiler is a type manager for the abstract type program, where (for the
time being) we define program as the unit of source code given to a compiler for
translation. The concrete representation of a program shall be a group of sections
containing the code and data, plus whatever information about the program must be
recorded in the environment management data structures. The sections a compiler
creates for a program can be placed in different environments.

Let a linker be a type manager for the types segment and section A segment is
an administrative unit of the operating system's virtual memory manager. The internal
layout of objects in a segment is not known to the memory manager, although the
segment might be divided into pages, at run time, for efficient storage
administration The linker concatenates a sequence of sections into a segment, thus
fixing the displacements of identifiers within segments. The linker could provide a
global symbol table mapping logical names into logical addresses.

An environment is a module or type, and is implemented by the operating system
It provides an implementation of each of the conceptual environment components
described in section 3.1 including:

" A logical memory, perhaps of type set of segment, defining the
accessible logical names.

" A program region, composed of one or more segments, into which the
compiler may place sections.
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* An address mapping facility, giving access to the virtual memory
mechanism provided by the operating system

* A basic hardware instruction sel, defining the primitive types of the
target machine, the effects of instructions upon them, et cetera The
machine descriptions Cattell used for automatic generation of code
generators [Cattell 78] would be appropriate.

* A set of virtual instructions, including operations on special registers,
micro-coded procedures, extended opcodes for invoking kernel
procedures, and known entry points to other environments.

* An entry point set

* Runtime support facilities provided by lower system levels.

We shall discuss in section 3.6 how some of these sets could be generated
automatically, during translation, rather than having their contents listed statically.
Prime candidates for this are logical memory, known entry points, and the entry
point set

The environment module relates to the language system in the same way that
Euclid's zone managers do: the language defines the minimal set of facilities any
environment must provide, and accepts as an environment any module which
satisfies the requirements. The module may provide other facilities as well; also,
there can be many different environment modules, with different implementations.

We are accustomed to seeing compilers and linkers as "host machine" software.
Environments are, too! An environment must accumulate segments, virtual
instructions, entrypoints, and other program representation information, and
disseminate the information to the compiler. We will discuss in section 3.6 how
this can be done.

The translation support modules could be specified something like as shown in
figure 3-10. The linker and compiler modules can be thought of as a "standard
prelude" to a system descriptior The type section is managed by a particular
instance of the type segment The types procedure. variable. and task, each take
as a generic parameter the environment in which the particular instance will be
located The system description itself begins with a module which satisfies the
syntactic specifications for an environment

-,. ------
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module linker
provides type segment

type section
type logical name
4ype logical address
module symbol table

module compiler
requires linker
provides type procedure<environment>

type variabie<r-environmemt>
type task<Eenvironment>
st cetera

module BaseMachine -- an environment
requires segment, at cetera
provides var Inst-uctionSet

var LogicalSegmentSet
var ProgramRegion
module Address Map
module Capabilities
module Entrypoints
module Synchronization

Figure 3-11. Specifications for Translators

In this "modular decomposition" of the language support task, we have not said
very much about how control flow will pass through such a type description to
actually create a running system We will discuss that question at length in Section
7.4.

3.4. Type MaiMgement in Operating Systems

An operating system is responsible for decomposing a single object The Machine,
into useful components which behave as though they were independent of one
another (most of the time). Consequently, many of the type managers that appear in
operating systems use shared variables, descriptor pools, and management sets to
implement types whose instances appear, from the viewpoint of their users, to be
independent entities. Those users are often located in separate environments. Now
that we can describe environments, we can talk about programs whose components
reside in different environments. We approach the subject by identifying tour
classes of data type management commonly occurring in operating systems. For
each class we examine how coupling between type instances, via shared data,
affects the ways in which instances of such types might be scattered across
several environments. To illustrate the difficulties involved, we review the design of
the virtual clock manager in FAMOS.
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3.4.1. Kinds of Type Minigers

A type manager is the source-language program unit that implements a type One
dimension along which styles of type management vary is the degree to which the
type manager controls the instances of the type. I see four major bands in the
spectrum of possibilities:

1. Value types: The essential aspect of the type is its abstract value, and
the set of abstract functions available involving values of the type.
The primitive types of conventional programming languages are.
representative; the type manager for each of them merely supplies
functions over values of the type.

2 Object types: The essence of the type is not only its abstract value,
but also some sense of its state. For example, a stack is an object
type The primitive operations defined on a stack all take into account
its previous value, Le. its state. The notion of copying a stack variable
is not ordinarily meaningful. When a stack variable is first created, it
is in a distinguished state, uninitialized. None of the stack operations
may be applied to it until the "initialize" operation sets the stack's state
to empty.

3 Monitored types: The type manager has continuous access to all
instances of the type. It may operate on instances of a type
asynchronously with respect to operations invoked by owners. In
contrast a type manager for a value type or an object type has no
need to keep track of the set of existing variables of that type. For
value types, the type manager never has to access the type-user's
objects at all. (Ideally, the language system provides assignment and
equality operators automatically.) For object types, the type manager
must examine the object in order to correctly compute its next value,
but once an operation is complete t type manager relinquishes
access to the object of the operation. Garbage-collecting storage
managers implement the type pointer as a monitored type. The
storage manager keeps a reference to every pointer variable of the
user's program, so that the garbage collector can determine which
storage units are in use and which can be reclaimed

4. Allocated types- An allocated type has a limited number of instances,
usually because its instances are resources, or use resources. ,
type manager declares how many instances of the type there will he,
and provides operations to allocate instances to users on request
Obvious examples are hardware devices such as magnetic tape drives
and Arpanet connections; less obvious ones are user-level "jobs" in a
timesharing system, and operating system table entries An allocated
type is different from a monitored type in that the manager of a
monitored type does not control the number i,' instances of the type,
although it must have access to all of them; an allocated type manager
actually determines the number of type instances

Some of the differences between these classes of types can be seen in the
parameter mechanisms that are applicable to them. Value types may be passed by
any mechanism available: value, reference, name, copy, result, deferred evaluation,
etc. Object types may be passed by name, by reference or by read-only; copying
of the object would be disallowed Monitored types could be passed by reference,
but only if the type manager avoided (or documented) asynchronous changes to the
atstract state of its instances Allocated types cannot be passed by reference if
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the resource can be deallocated from the user, because it must be possible to
delete all outstanding references to the resource. Instead of passing the resource
object itself, the right to access an allocated object must be recorded in an instance
of an object or monitored type, analogous to a capability. Then, that capability
could be passed as a reference parameter.

3.4.2. Coupling

Two variables are coupled if an operation on one of them can change the value
of the other [Parnas 78a]. The extent to which type instances are coupled limits
the ways in which they can be distributed among different environments. Coupling
among instances of a type can occur at at least three levels:

* The abstract type specification may refer to an abstract object tha is
shared among the type instances, 9-g. a tree that is shared by all of its
nodes.

" The representation of instances may be coupled, as when some
property of an object is represented by its presence in a linked list of
objects having that property.

" The instances may be implemented using a shared resource, whether
allocated (eg. memory) or multiplexed (e.g. CPU)

The last two forms of coupling do not couple the abstract objects, but only their
representations. Furthermore, the last form would not even show the coupling in
the source-language representation of the program Two variables created from the
same storage pool have coupled representations, in the sense that they are both
components of the shared variable "vector of storage"; however, the storage
manager makes sure that during the lifetime of a variable, changes to the storage
vector do not cause changes in the value of the particular variable.

For each kind of type management we can examine how coupling might be
manifested

e Value type instances are never coupled, since replacing one value with
another in one variable does not disturb any other variable.

* Object type instances can be coupled either by representation, or by
resources, but not abstractly. The abstract state o' an object may not
be changed except by an explicit operation on that instance.

* Monitored type instances are coupled at some level. For example, a
wakeup operation on a waiting set changes the abstract state of some
process from "blocked" to "ready". A process scheduler may
reallocate a processor from one process to another, changing their
concrete states from "running" to "not running" and vice versa, withoLt
affecting the abstract states. A page of memory forced out of
primary memory to make room for another, is coupled to its
preemptor by resource usage.

e A/located type instances are generally coupled to the allocation data
structure, and often through resources, but may or may not have
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coupled representations or abstractions. Two magnetic tape drives may
be administered by a central allocator, but are otherwise independent
(unless they share a controller or trap vector).

3.4.3. Type Managers in Multi-environment Programs

The extent to which instances of a type are coupled determines the options
available for distributing them among multiple environments. The environments in

which they occur must be be sufficiently connected to support the coupling. For
example,

" A value type is never coupled, so its instances can be freely scattered
Each invocation of an operation may be an inline expansion of the
operation text If many invocations of an operation appear in the same
environment, a copy of the operation may be made into an executable
procedure and placed in the environment

" An uncoupled object type may be treated much like a value type,
insofar as simple operations are concerned. However, since object
types can be passed to procedures only "by reference", an object type
instance can only be passed between environments if the protected
procedure mechanism supports by-reference parameters.

" A coupled object type instance, and the objects with which it is
coupled, must all be addressable simultaneously, but only for the
duration of each operation on the instance. This implies that such an
operation can be executed in any environment that can access the
particular objects that are coupled.

" All instances of a monitored type must be located where they are
permanently accessible to the operations of the type manager.
Generally, this implies that either such objects are all located in a single
program region, with references to them handed out to their owners,
or that all objects are located in a known set of segments, which are
made accessible to whichever environments contain instructions that
must address them.

" An allocated type is constrained by the origin of the resources it
represents. Whatever environment has access to the basic resources
must also contain the declarations of the allocated type objects. For
example, device register variables on a PDP- 11 must be declared in an
environment that can address the physical memory segment containing
those device registers.

Choices among the options above cannot be automated with present technology,
nor should they be. The choices can have significant impact on performance and on
system structure, so we seek instead the tools to let the programmer describe the
bindings he wants. The constraints above will then allow automatic validation for the

proposed bindings.

We next examine in detail how monitored types were used in FAMOS, to gain a
deeper understanding of the problems they pose for multi-environment systems.

. . ... . . . -
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3.4.4 Monitored Types in FAMOS

Most of the facility managers in FAMOS could be characterized as managers of
monitored types. In this section we begin by describing the clock manager in that
fashion, and abstracting the general properties of the FAMOS facility managers that
make implementation using monitored types appropriate. However, the clock
manager was actually implemented as an allocated type manager, as were most of
the managers of permanent object. We shall discuss the actual implementation of
the clock manager, concluding that the discrepancy is due primarily to inadequacies
in the program development facility. Since FAMOS was implemented in an untyped
language, we first try to remedy the inadequacies by programming the clock
manager in a strongly typed language, Euclid We see that monitored types can be
programmed easily in that language, provided that the type instances are to be
created and deleted dynamically, and management sets are implemented as linked
lists However, many of the monitored types in FAMOS have only permanent
instances, and are implemented as static vectors. We attempt to program FAIOS
clocks this way, borrowing notations from several languages. We discover that
such a module places substantial demands on the program translation facility. In
particular, it must be able to elaborate arbitrarily complex type initialization
procedures during translation, and must allow those procedures to invoke the static
storage allocator of the translator itself.

The FAMOS clock manager implements an abstract type virtual clock which
embodies the timing facilities provided by the clock module. A virtual clock is
specified abstractly as an interval timer, with operations sart, stop, and settime.
The clock manager uses a single hardware interval timer to implement all the virtual
clocks. The hardware timer is set to interrupt when the first of the running clocks
is due to expire. When the interrupt occurs, the clock manager notifies the user of
the clock, and resets the timer for the next most imminent alarm The clock
manager must be able to access any instance at any time in order to determine
when to send a wakeup signal to the owner of the clock, but the correctness of
the implementation in no way depends on how many virtual clocks -are to be
managed Therefore the type virtual clock can be considered a monitored type.
To implement continuous access, the clock descriptors are all located in the clock
manager's addressing environment Conceptually, each module that declares a virtual
clock variable refers to it by a pointer into the clock manager's address space
Because the virtual clocks are all static objects, the pointers are load-time constants.
The clocks occupy consecutive storage locations in the clock manager's address
space. In one implementation they are iterated over by index. In the other, they are
linked into a list in order of least remaining time.

From the clock manager we can generalize to a class of type managers for
operating system resources, having the following characteristics.

9 Each facility is represented to the user as a virtual resource, that
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behaves like an idealized version of the actual resource. Examples are
clocks, processes, software trap vectors, disks. There can be any
number of instances of the virtual resource; the manager conceals how
many actual resources there are. The virtual resource can be
represented as a monitored type.

" The type used to bind a user to a virtual resource can be any of
several kinds. If the binding is permanent it can be a value type. such
as a pointer. The user may copy that pointer as he pleases. If the
binding is temporary, but not pre-emptible, the binding type can be an
object type, such as a variable containing a pointer. The owner may
control access to that variable as he chooses, but may not copy it
That way, the owner may acquire and give up a virtual resource, but
that resource can only be taken away as a consequence of an explicit
operation invocation. If the binding must be pre-emptible, then the
binding type must be a monitored type, so that the type manager can
revoke access asynchronously.

" The actual resources being managed are characterized by an allocated
type (e. processor, storage unit disk block). The actual resources
might be shared, allocated, or mu/tiplexed among the the virtual
resources (eg clocks, memory, processor respectively). The facility
manager would use the actual resources to implement the virtual
resources. Since the virtual resources appear as monitored types,
pre-emptible bindings are easily implemented Since the virtual
resources are usually monitored rather than allocated, the type binding
the user to the virtual resource would not have to be pre-emptibe,
and could thus be an object or a value type.

Although the clock manager could have been considered a monitored type, it was

actually programmed as an allocated type. The clock manager declared a fixed-size
vector of virtual clocks, where the size was a compile-time constant Some of the

clocks were statically allocated to certain higher-level modules. The allocation was
documented in a public file giving global names to certain clock table indices
Higher level modules referred to clocks only by name, never by index The types
static address space, software interrupt vector, protected procedure call stack,
and process, were likewise implemented as allocated types.

The allocated type implementation was used in FAMOS to prevent deadlock among
kernel services, to protect descriptors from addressing errors in the owner
modules, and to accommodate the program development facility in certain minor
ways. After discounting problems that are plainly due to that facility, there remain

two fundamental flaws in the approacft

" The allocation file must be constructed by hand, and reconstructed for
every configuration of FAMOS. Such bookkeeping tasks are prone to
trivial but costly errors.

" The allocation file violates Parnas's information hiding principle [Parnas
72b]. Every module that declares a process, for example, must write
into its external specification exactly how many it needs, including their
names. This sort of design decision is likely to change, leading to
changed specifications, and forcing changes to the allocation file.

A better design would be one in which a module using a monitored type could
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simply declare a private instance of that type, and let the instantiation code
configure the type manager to accommodate the new instance. The module
specification for the owner of the instance would state only that it used the type,
and not the number of instances (if any) it created

Since FAMOS was programmed in an untyped language, we must ask whether
simply using a modern strongly typed language would allow one to program a
monitored type more satisfactorily. Figure 3-11 gives a Euclid program fragment
defining a type vIrtual clock. A virtual clock is itself an object type, implemented
as a pointer to a clock descriptor. The clock descriptor is a monitored type; all
instances are linked into a master list headed by the variable FirstClock, so that the
clock manager can access any descriptor at any time. The clock manager also
specifies the storage in which the clocks will be located, by assigning the collection
of clock descriptors to the zone ClockStorage. Each time an owner creates a
virtual clock, the initialization code puts the new clock descriptor into the
maMagement set.

ver ClockManager. module
exports VirtualClock
Imports ClockStorage

type ClockDescriptor = forward

var ClockCollectiorn collection of ClockDescriptor
In ClockStorage

type ClockDescriptor = record
var NextCloclc A ClockCollection
var ClockData ...
end

ver FirstClock: A ClockCollection

type VirtualClock = module
Imports ClockCollection, FirstClock, ClockDescriptor

var cd A ClockCollection

Initially begin
ClockCollection.New cd)
cdA.NextClock := FirstClock
FirstClock := cd

end module VirtualClock

end module ClockManager
Pieu" 3-11: Clock manager, dynamically in Euclid

The key points that make this design work are that the type manager is notified
whenever an instance is created, and can carry out whatever bookkeeping may be
required. that the type manager is not responsible for allocating type instances, and
that the owner of an instance obtains a private, unforgeable name for his clock,
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without obtaining access to the whole set of clocks. These features all derive from
the Euclid dynamic record facility.

To obtain analogous benefits for the static vector representations used in FAMOS,
let us borrow language features from several sources. Alphard supports its full
procedure syntax in initialization clauses for permanent objects, and allows constant
fields of a record to be computed during its initialization. Algol 68 supports
flexible vectors md pointers into vectors. Dijkstra gives a suitable definition of the
HighExtend operator on flexible vectors [Dijkstra 76). Figure 3-12 shows a
vector implementation of monitored types Instead of using the NEW function to
create a new clock descriptor, it extends the vector of descriptors and binds CD
(now a constant) to refer to the new one.

ver clockmanager module
exports Virtual Clock
type Clock Data
var Count := 0
ver ClockTable flex vector [1 . Count) of Clock Data

type Virtual Clock (StartTime) = module
Imports Count ClockTable
const cd ref clocktable[0
Initially begin

HighExtend ( ClockTable I -- increases length by 1
Count := Count + 1
cd := ref ClockTable E Count 3 -- cd constant henceforth
SetTime ( C, StartTime)
end

end Virtual Clock
end Clock Manager

Figure 3-12: Clock Manager, using Flexible Vectors

Such a structure allows the compiler to know that "cd" is a constant but still
leaves the clock table as a dynamic object It also describes the initialization of
permanent clocks as part of creation, instead of needing a separate call in the
startup code In a system where all virtual clocks were permanent variables, the
variable Count would be a constant after system integration, as would be the size
of the flexible vector ClockTable. Suppose that a translation system were smart
enough to detect that "Count" was going to be a load time constant It could
provide this information to the optimizing phase of the compiler, allowing
considerable constant folding. Also, the starting time for each clock could be filled
in by the compiler, reducing the amount of initialization code needed at starting time.

However, there are substantial roadblocks to making the above supposition a
reality

" The initialization code for the type Virtual Clock uses procedure call,
flexes vectors, and increments variables. To initialize a permanent
clock would require a host machine implementation of the full source
language.

" The translator would have to compile the clock manager before
compiling owners of clocks, stretch the vector each time it
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encountered a clock declaration, then freeze the vector size in time
for IInkin%

* If the vector's elements were a program representation type, such as a
process descriptor, the compiler and operating system would have to
agree upon the specification of the type, so that the compiler itself
could invoke the type definition each time it compiled a process
decratio

A flexible vector implementation of FAMOS segment tables would require even
more interaction between inidialization code and the translation facility. The segment
manager must know the size of each segment in order to allocate enough storage,
and must have access to all segment descriptors at all times, but does not care
how many there are Many environments in FAMOS have static logical memories,
allowing individual segments to have local names that are compile-time constants.
However, the number and size of segments cannot be determined until after the
code and data residing in the environment has all been compiled and linked A
dynamic implementation as in the Euclid clock manager, above, would introduce
unnecessary overheads due to pointers. A flexible vector implementation would
require that the compiler and linker notify the segment manager each time a
segment declaration was translated, and also fill in the segment descriptors with the
actual segment sizes after they are determined, Furthermore, since the segment
manager in FAMOS actually resides in one of the addressing environments it
manages, the translator design would have to be very circumspect to avoid infinite
recursiorn

Thes difficulties are surmounted in conventional systems by ad hoc system

generation programs, and ill-structured interfaces between compilers, linkers, and
loaders. For example, the Modula process management facility is designed
somewhat like the Euclid clock manager in figure 3-11 except that the process

smt Set is not linked together until system startup. The compiler creates a
process descriptor each time it compiles a process declaration, and initializes it with
most of the initial state description for the process. However, the "main program"
must explicitly call an initialization routine for each process, during startup, at which
time the process is linked into the management set This design violates the
information hiding principle just as the FAMOS allocation files do, by requiring the
main program to know the name of every process.

In section 3.a4 we developed a type model for the relationships between the
compiler, linker, and environment that suggest the form of a solution. In section
a6 I will describe a simple bootstrap loading facility based on this model, which
treats the host machine as one of the execution environments of the operating
system This concept will allow elaboration of intricate initialization clauses for
permanent objects. In chapter 5 I will use monitored types in the host environment
to automate the configuration of environment management sets, such as process
sets and page tables
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In this section we have identified four interesting classes of type management
value, object, monitored, and allocated types. We have seen how coupling may be
manifested in each, and how coupling constrains the ways in which type instances
may be dispersed among several environments. We have seen that monitored types
could have been widely used in FAMOS, yet are difficult to program satisfactorily
when the type instances are permanent This is often the case for virtual resource
types such as segments, processes, and software trap vectors, when used within a
multi-layer operating system

In the next section we will develop a conceptual framework and notation for
binding program units to environments We will judge its suitability by seeing how
well it supports the type management classes identified above. In particular, we
shall look to see how monitored types can be supported in multiple environments
having overlapping logical nemories.

3.5. A Notation For Environment Bindings

We have now laid all the groundwork needed to develop and assess a notation
for programming the connections between program units and environment. We
have developed a way of representing an environment specification as a source
language module. We have identified four classes of type management that we
would like to support We have discussed examples of environments from several
operating systems, from which we can develop realistic protection scenarios.

The notation we develop should satisfy the following criteria

* Fitness it should let the system designer specify bindings between
environments and source language program units, rather than object
modules. The designer should have complete control over the use of
resources to support programs.

* Clarity. the notation should facilitate reasoning about the use of
environments in system&

e Brevity- binding information should not clutter programs unnecessarily.

e Flexibility the notation should support the type management techniques
and protection scenarios discussed earlier.

* Modularity- binding information should not corrupt the modularity of
the system

* Implementability: the notation should lead to a straightforwardimplementation.

First we shall define a notation for types and modules, which emphasizes the
distinction between an abstract definition and a concrete implementation. We shall
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discuss the appearance of these concepts in existing languages, but retain our own
notation for clarity.

Next we add to the module syntax the mechanism for environment binding. Each
kind of program unit can be viewed as a type implemented by the compiler. An
environment name attached to a program unit declaration becomes a generic
parameter to that instance of the type, The compiler uses the environment named
to implement the program unit Binding a source-language variable to a module
implies binding all of its primitive components to that environment Binding a
source-language procedure only constrains the procedure to be compiled for the
named environment, if and when it is instantiated. The translation system is
permitted the freedom to instantiste a procedure separately, expand it in line at its
call sites, or eliminate it altogether if it is not used Binding a type or a module to
an environment binds all of its component variables and procedures to that
environment, but not inner types.

In contrast to an ordinary procedure, binding an entry point procedure to an
environment normally causes instantiation of the procedure, since it may not be
known until runtime whether the procedure will be invoked, and it cannot be
expanded in line in some other environment This in turn forces instantistion of all
the procedures it calls. In addition, the environment module records the entry point
for integration with the protected procedure call mechanism Parameters to entry
point procedures can be by-reference, in operating systems that support segment
sharing between environments.

Next, we briefly discuss how to control access to an environment manager, i.e.
how to demarcate the set of system components that may may place code and data
in an environment Because an environment has a source language name, ordinary
scope mechanisms are sufficient We see how to describe FAMOS multi-level
environments using an acquires clause to limit the scope of the environment name.

To see how the notation thus defined works in practice, we apply it to the type
management techniques identified in section 3.4. We see that binding information
can be added to each of them conveniently. In particular, we see an example of
using an entrypoint procedure in the implementation of a monitored type without
making it visible outside the type management module. To gain further experience
with the notation, we reprogram FAMOS semaphores.

3.5.1. Definition vs. Declaration

Before we can develop a technique for binding program components to execution
environments, we need to understand tfhe relationships between an abstract
definition, which might be independent of any environment and a concrete
declaration, which must be attached to one or several environments.
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When we write a type definition, we give the structure of the object (in high-
level terms), and a set of operations on the object (written as type-safe algorithms).
The type definition itself is independent of the use to which the type will be put
As soon as we declare an object of that type, however, we are faced with
questions:

" Where will the object be located?

" How will the operations be implemented?

" What other objects must the operations be able to access?

" Which other objects will be coupled with the new object, and how?
In single-environment programming systems, all of these decisions can be left to the
compiler, which can do either something reasonable or something optimal. However,
to transform existing programming styles into ones which accommodate multiple
environments, we must come to grips with the relationship between a type definition
as an abstract entity and a type manager as a body of executable code.

The terms module and type have acquired very similar meanings in modern data
abstraction methodology. Each denotes a program component that can restrict
access to its constituent parts: a type restricts access to its component fields; a
module restricts access to its component variables and other elements. If there is a
difference, it is more one of nuance than substance In some languages, a type
definition describes a data structure with associated operations, which can be
instantiated many times, whereas a module is instantiated only once.

Although most of the examples I will write could be programmed in existing data
abstraction languages, I wish to emphasize the distinction between modules and
types, and to suppress many of the details of real languages. Therefore, I shall use
the following definitions and notation:

* A type definition is a group of variable, operation, and type definitions.
Each of the variable definitions (formally identical to variable
declarations) defines a component of the representation of the type.

* A variable declaration names the type of which the variable is an
instanceL Elaborating the declaration creates an instance of each of the
component variables of the type.

" A procedure defined in a type is privileged only in the sense that it
can use the names of components of the type. The first parameter to
a procedure may be written as a prefix parameter, to differentiate
identical procedure names defined on different types. However, if a
procedure takes additional arguments of the same type, it may access
the representation of each of them equally well, using the component
name&

* A none defined within a type and exported from it will normally be
referred to only as a component of an instance of the type, and not a
component of the type itself.

* Qualified names may be abbreviated wherever doing so does not cause
ambiguity.
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* A module is a shorthand way of combining a type definition with its
ongy instuice

type A is
provides D, F
vr B,C:integer
proc D ( X:A, Y:A Z-boolean)

If Z then X.B := Y.C -- full qualification

proc F ( XA, Zboolean I
If Z then B := 0 -- abbreviation

tye G in...

end type A

var H,i A
vor ,t H.G -- Type LG is a different type from RG

-- A.G would be illegal

module B Is... <<type body>> ...

Figure 3-13: Skeletal Program Showing Types

Figure 3-13 gives a schematic program which illustrates the notation. The module
B defined at the end is a shorthand for

type UniqueName is -- type body
var B UniqueName

Such a module definition would contain a group of variables, procedures, and types,
with import and export clauses, just as one would expect of a type it is merely a
combination of a type definition and a declaration for the only variable of that type.

A type definition has no built-in facility for declaring variables that are to be
shared among all type instances. That affect would be achieved by enclosing the
type definition in a :-nodule or another type definition. Consider the following

module A
provides B
var C

typ B Is
reuires C
provides ... «operations >>

<< type body >> ...
end type B

end module A

Since module A has only a single instance, there is only one instance of A.C, which
is visible within the implementation of type B, making it a shared variable. The
reason for not allowing shared variables within types, is that the shared variable
represents a central type manager. The structure above makes the manager's

existence more apparent

.. .. .. .. .. . .. ..n
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Sometimes one wishes several structurally identical yet distinct type managers,
such as storage managers This can be achieved by replacing the word "module"
above by the word "type", and derlaring several instances:

Type A Is
provides B
ver C

type B Is
requlre C
provides.. << operations >>_

... << type body >> ...
and type B

end module A

var X,Y,Z A
There are three distinct type managers, X, Y, and Z, managing the types X.B, Y.B,
and Z.B. Each distinct type has a copy of C to share among its instances

The definitions I have chosen for type and module will generally allow uncoupled
types to be described simply as type definitions. However, to describe a type
whose instances are coupled by shared data, one must imbed the type definition in
an enclosing module or type, so that there will be an explicit instantiation of the
shared data, and so that the type name is qualified with the name of that module or
type instance, which then becomes the type manager.

The concepts defined above appear in various combinations in current languages.
Let us examine four-. Modula, Euclid, Ada, and Alphard

In Modula, a module description is simply a collection of procedure and variable
declarations, with a boundary drawn around it to limit the visibility of names. A
module may also contain type definitions, which are non-forgeable templates for
declaring structured variables. There are no explicitly designated operations on such
types; there are only procedures declared in the same module as the type definition,
which may use it to access the representations of their parameters A Modula
module, therefore, defines a centralized type manager for the types within.
Although the type instances themselves may be located anywhere, they may be
operated on only by passing them to one of the explicitly-declared procedures

Euclid modules are patterned after Modula modules, but with one important
exception: a module description may be used as the text of a type definition.
Therefore, there can be any number of instances of a moduleL If the module
description includes a variable declaration, then each instantiation of the module
defines a distinct instantistion of the variable. If the module description includes a
type definition, then each instantiation of the module defines a distinct type.
Consequently, each time that type name is used, it must be qualified with the name
of the module instance which is to provide its implementation. Similarly, to invoke a
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procedure defined in a module, one must name the module instance which supports
the procedure There could be a separate procedure implementation for each
module instance, or the module name could be viewed as a "prefix parameter" to
the procedure. Euclid has explicitly allowed the translator this freedom; it goes
even further in stating that the notation Inline is considered non-binding advice to
the compiler. Since a type. management module in Euclid can itself be the text of a
type definition, there could be several different type managers for textually identical
types. This would be highly desirable if each type manager maintained a resource
pool for use by its instances

An Ada package is a module containing constant, variable, type, procedure, and
package definitions. It is the type manager for any types it exports. Procedures
may be marked Inline, so that the type manager need not be viewed as entirely
centralized Generic packages offer some flexibility for creating multiple instances
of a type manger. However, it is not possible to define a type whose instances are
type managers, nor is it possible to define a type, one of whose components is
another type

Alphard makes no distinction between a module and a type; both are written as
forms If several instances of a form are to be monitored by a central type
manager, that manager is usually written as an enclosing form, so that each
reference to the inner form must specify the outer form instance which will manage
it. See figure 3-14. Alphard allows a form to declare a variable to be shared by
all instances of the form This hidden variable would have to be accessible by
every instance of an operation on the form; thus, it forces centralized
implementation of the type manager without saying so in the specification.

form Set is spee
form Element
function Contains ( E:element

end spec
ImpI Set Is

impl element Is
ver data

var linklref elementand Imp[ element

vr Inlist : ref elemen
body/ Contains Is

Temp := Inlist
while Temp not equal NIL do

if Temp equal E then return TRUE
Temp :- Temp.next
end

return FALSE

end Impl SET
Figure 3-14: Monitored Forms (Alphard)

........ ..
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In the notation I have defined, creating a module, or an instance of a type,
involves creating only instances of the representation, and not necessarily the
operations They might be marked as Inline, or they might not be instantiated if
they are not invoked This is particularly significant if the type comes from some
library of type definitions. One would hope that creating an instance of a complex
number, for example, would not force creation of procedures for all the operations
which might have been defined with it in the library.

We will focus our discussion of binding on the relationship of variables to
environments. We must eventually ask, however, when it is that the operations do
become translated into real machine-language instructions.

3.5.2. Binding Program Units to Environments

We said in section 3.3.4 that environment information could be specified to a
compiler as a generic parameter to procedure and variable declarations. We shall
now integrate this notion into our notations for modules and types. We start by
reviewing the mechanisms by which a compiler places machine language objects into
environments. Then, we consider each kind of source language object in turn, from
the simple to the complex variables, procedures, modules, and types.

In the examples which follow, we use <pointed brackets> to indicate generic
parameters that are environment bindings, recognizing that the syntax is poor, but
explicit Remember, variables and procedures are themselves types; environment
names are parameters to instances of these types. The pointed brackets merely
highlight those parameters which happen to be environments.

3.5.2.1. Primitive Machine Language Objects

A compiler represents all program units as primitive code and data objects, as
supported by the environment for which it is compilin% A data object depends on
the environment to provide the storage in which it resides and to define the
instructions that implement the operations of its type. A code object depends on
the environment to provide storage, an instruction set, an instruction interpreter, and
a virtual memory mechanism A data object may be accessible from several
environments as long as they all support its primitive type, but normally a code
object may only be invoked from within the environment in which it resides,
because the virtual addresses it uses depend on the particular address translation
database of that environment A compiler is free to concatenate several primitive
objectU into a section, if they are to reside in the same segment The environment
module provides:

" the program region, with operations to allocate space for sections

* the virtual memory manager, with whatever operations the compiler
might need to determine virtual addresses
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e the name of the architecture description the compiler should use to
generate machine code

3.5.2.2. Variables

Assuming that an environment E is visible in a given scope, we would write a
variable declaration as

var<E> X: integer
Recall that var is a type implemented by the compiler; the environment parameter
provides the program region segment, and primitive type Integer, out of which to

build the var.

A user-defined type would be instantiated in a similar fashion Consider the
declaration

var<E> Y: usertype
Assuming that usertype is, say, a value type, like complex, each primitive
component of its representation would be instantiated in environment E

3.5.2.3. Procedures

The syntax for binding a procedure to an environment is analogous to that for
variables. Consider

proc<E> Y ( A,1Banytype
However, binding a procedure to an environment does not necessarily imply that the
procedure will be instantiated. Depending on the cleverness of the translator, the
procedure might be instantiated once, many times, or not at all. I take the position
that binding a procedure to an environment constrains that procedure to be
instantiated only within that environment A simple compiler would instantiate such a
procedure, exactly once. A language supporting inline procedures, such as Euclid,
could expand them at any call site within *he specified environment A more clever
compiler would choose whether the procedure were inline or out-of-line.

One might argue that the translator should be given even more latitude. The
environment binding might indicate the minimum requirements of the instantiation
environment The translator might be allowed to instantiate the procedure in any
environment whose logical memory contained that of the name J environment, whose
virtual memory was implemented by the same address translation database.
However, this possibility is quite speculative, so I will save it for future investigation
Instead, I simply allow a procedure to be explicitly marked free, meaning that it may
be instantiated in any environment that can access the objects it manipulates.

. ,
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3.5.2.4. Types and Modules

Attaching an environment name to a type definition attaches the environment name
to each constituent variable and procedure of the type. Instances of the type can
only be declared in source language modules in which the environment name is
visible, and are bound to that environment The operations on those instances are
constrained to execute in the same environment, unless they are marked fres. In
either case, the operations need not be instantiated unless they are used

Attaching an environment name to a module declaration is a shorthand for
attaching it to both the variable and the type embodied by the module. Thus, all of
the constituent variables and procedures named in the module would be bound to
that environment as would their constituents. Whether or not the procedures in
the module are instantiated depends on whether or not they are used.

Binding to a type or module is transitive to inner modules (because they are
constituent variables), but not to inner types. If an inner type is not exported, then
all of its instances will be bound anyway, being components of the outer module. If
the type is exported, binding it to the environment of the enclosing module would
be too restrictive. If te type is to be both bound and exported, the module would
import the environment name and bind the type explicitly.

Although binding a type or module to an environment constrains the procedures
defined within, binding an instance of a type does not constrain the operations on
that instanx. Because there might be other instances of the type in other
environments, and because the type might define binary operations on instances, we
must allow each instance to be operated on from any environment that can access
it

The rules I have chosen above rrmay appear to be unduly irregular. Certainly I could
have chosen to make all bindings transitive to all inner units, using the free attribute
to override this when necessary. Instead I have chosen the "defaults" that I believe
will fit the most common usage. In addition to attaching an environment name to a
declared object one can pass environments as ordinary declaration parameters, or
place them in provides, requires and acquires clauses. Thus when one desires to
bind only certain components of a module or type, he may import the environment
or make it a generic parameter, and specify exactly which components are bound.

Observe that the rules above make it possible to place an ordinary self-contained
program, of any size or complexity, into a single environment, by a single annotation.
The program is a module, so binding that outer module to an environment binds the
representations of all variables and procedures in the module, at any nesting depth.
Types defined within the module would be bound according to how they were usect
the variables of that type, occurring within the module, would be bound by the top-
level binding If the module exports a type, then any type instances occurring
outside the bound module would not be bound

I
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3.5.2.5. An example: FAMOS semaphores

Although we have not yet discussed how entry points provide inter-environment
coimunication in the proposed notation, we have sufficient tools to describe the
static structure of a multi-environment type.

We referred in Section 2-1.2 to FAMOS semaphores, whose representations
spanned two environments. We could program the representation of such
semaphores as in figure 3-15. The semaphore S would have its WaitCount in the
environment E, yet its WaitingList would be in the process environment If the
semaphore were a permanent object there would never be a run time computation
of the address of Sw based on the address of S. Instead, wherever S.w appeared,
the linker would substitute the address, in the process environment of the waiting
list

type WaitingList Is
requires ProcessEnv
provides Insert, Remove
ver<ProcessEnv> WList [ProcessDescriptorJ

end WaitingList

type Semaphore is
requires ProcessEnv
va, WaitCount integer -1
vwr W: WaltingList

end Semaphore

var<E> S: Semaphore
Figure 3-15: FAMOS Semaphores, With Environments

In section a5.4 we will expand this example with the operations on semaphores
and waiting lists, showing how the entrypoint procedures connect the environments

&.2.& Proteated Procedures

We have defined an entry point, in Section 3.1.4, as a designated logical address
in the program region of an environment, to which control may be transferred from
some other environment. In Multics, Hydra, and FAMOS the entry points of address
spaces were used to implement protected procedures, so that a module could obtain
runtime address protection for its data structures. To incorporate such runtime
facilities into the implementation language, we must analyze its role in the
relationship between source modules, environments, and protection domains.

A procedure call can cause any of the following transitions.

" between modules

" between environments
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e between protection domains

Since two modules might reside in the same environment, not every module
interface procedure should be an entry point Since two environments might coexist
in the same protection domain, not every entry point to an environment will cause a
change of address space. Since a single module might occupy several interacting
environments, entry points should be concealable.

Therefor, we adopt land adapt) the technique used for Hydra and FAMOS, namely,
providing in the implementation language a way to explicitly mark the procedures
that are points of entry to environments. In Bliss- 11 the denotation was used only
to generate the proper procedure linkages; we shall also use it to record the entry
point in the environment description. The syntax is straightforward

entryproc<E> P(... 
This gives the author of the procedure the right to designate it as invocable from
other environments. Anywhere an entryproc can be named, it can be invoked
Compiling such a call would entail reoieving from E the necessary protocol, and
possibly also place in the invoking environments representation capabiity for P.

With entryprocs so defined, we can now restrict the use of non-entry
procedures:

A procedure bound to an environment may be invoked only by other
procedures bound to the same environment

Thus, control may flow from one environment to another only via entryproca.

Since entryproas are to be explicitly-named entities in source programs, they can
concealed within modules. We will shortly see an example where a module
provides ordinary, unbound procedures to its users, each of which contains a
concealed call to an entryproc of the module's protected environment The module
could even conceal ft very existence of its private environment

Parameters to entrypoint procedures require special support from both the
operating system and the language system The parameter mechanism support will
often involve the address translation facility and the overall protection mechanism of
the operating system Even if the operating system can support by-reference
parameters between environments, the translation system might still have to specify
when to make the actual parameters addressable.

Segmented virtual memories combined with capability systems, such as in Multics
and Hydra, make possible by-reference parameters to entryprocs, between
otherwise suspicious environments. Each protected procedure refers to its formal
parameters by local names reserved for them The protected procedure call
mechanism sets up the local name translation table entry to refer to the actual
parameter segment VAX/VMS, in contrast, provides protected procedure calls only
for entering protection rings. In that system, the caller's address space is always a
subset of the environment it is entering, so by-reference parameters are
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implemented simply by passing addresses In general, one would expect system
designs exhibiting some mixture of these two approaches. Sometimes the callers
and callee's address spaces will be disjoint sometimes they will intersect; sometimes
one will contain the other; and sometimes they will be identical. Depending on the
degree of overlap between environments, an appropriate protocol can be found
(perhaps with the help of a pragme), to bring about the transition between
environments without undue overhead

3.5.3. Limiting Acoess to Environments

By making environments explicit objects in system descriptions, we have made it
possible for a single module to declare objects in several environment. However,
in so doing we have given up the right to create a single list of all the objects in a
given segment We did so willingly, but we still need to be able to limit the set
of objects in an environment, so that only "authorized" modules have access to it.

Scope limitation facilities in modern languages provide a perfectly reasonable
means for doing this. A module defining an environment provides a name denoting
the right to create objects in it (Typically, this would be the allocation procedure.)
A system designer would limit the right to place objects in an environment by
limiting the scope of that name. He would define the modules allowed to place
sections in a given environment by surrounding them with a module which did not
export the name of its allocation procedure In many cases a suitable module would
already be present, delimiting a virtual machine. In other cases, more selective
access control is required

Sometimes a system designer might wish to protect a module from most of its
users, by placing it in a protected addressing environment, but still allow the
possibility of adding more procedures to the environment from within a higher level
modul. This arrangement occurred frequently in FAMOS [Habermann 76J The
specification of the protected module cannot regulate what modules would have
access to its program region; that would imply that the correctness of the module
depended on how it was used Instead, the higher-level module which was to fill
up the environment would acquire it, as in figure 3-16.
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module BaseMachine is
provides BaseEnv, OtherThings

end module BaseMachine

module Feature 1 Is
requires OtherThings-- but not BaseEnv

endmodule Feature 1

module Feature2 Is
requires OtherThings-- but not BaseEnv

end module Feature2

module MoreBaseMachine
acquires BaseMachin&ProgramRegion

end module MoreBaseMachine

Figure 3-16: Selective Access to a Program Region

If MoreBaseMachine were not present, Feature1 and Feature2 could both require
BaseMachireProgramRegion. This is perfectly proper, since MoreBaseMachine is the
only module whose correctness depends on keeping Feature1 and Feature2 out of
the BaseMachine environment

3.5.4. Binding Type Managers to Environmehts

Our notation for environment bindings is now essentially complete. To gain
familiarity with it, and explore its utility, let us look at how various classes of type
managers (identified in section 3.4 ) would be programmed using these binding
notations.

A value type would be written as a pure, unbound type, probably with all of. its
operations marked Inline. Any particular instance could be bound to an environment
The compiler would have the freedom to instantiate the operations in any
environment that can access the instances. Values could be freely passed from one
environment to another, as value or copy parameters. Each formal parameter to an
entryproc could be a separate instance of the type.

Uncoupled object types would be treated in the same way as value types, except
that they cannot be passed as value parameters. Each operation on the instance
would have to occur within an environment which could address its representation.
Binary operations pose certain problems, however, as in figure 3-17.
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type T
provides BinOp
proc BinOp( X,Y:T)

end 'peT

var<E> X: T
vw<F> Y: T

XBinOp( Y

Figure 3-17: Binary Operations on an Object Type

The invocation "X.BinOp( Y " would have to occur in an environment which could
address the program regions of both E and F. This could happen ;F one
environment's logical address space contained the program region of the other.
Another way of handling it would be to pass Y as a by-reference parameter to a
protected procedure provided by E; this would bring Y into E for the duration of
the call, and thereby enable X.BinOp to do its work.

A coupled object type could be programmed as in figure 3-18. The Bank has a
central cash supply through which all monetary transactions must flow. The Bank
alltws its customers tusers) to examine balances, but not change them directly.
Instead, the customer must present the account to the bank for each transfer. The
central fund and transfer procedure are both bound to environment E, but individual
accounts may be created in other environments. A customer may examine his
account without entering environment E, but must go there to transfer money
between the central fund and his account Conversely, the bank cannot move money

out of an account unless the customer calls transfer.

6I
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moduleCE> Bank

provides Account [wit Examine), Transfer

type Account In
provides Examine, Balance

ver Balance dollars
proo Examine ( uocount) dollars

return A.Balance
end type account

var CentralFund dollars

entypoccE> Transfer ( A..aoount, S.-dollars) ErrCode=
if S >= - A6BaWane then begin

CentralFund := CentralFund - S
ABalance := A68alance + S
return success
end

else return failure
end transfer

end module Bank

Figure 3-18: Coupled Object Type
For an example of programming monitored types, we rewrite fth clock manager

of figure 3-12 as in figure 3-19.
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module<C"ockEnv> ClockManager Is
providqs Virtual Clock

type Clock Data
vu' Count := 0
ver ClockTable: flex vector El . Count] of Clock Date

type Virtual Clock (StartTime) =
requires Count ClockTable
provides Start, Stop, Reset
cont Cd: ref ClockArrayr"

entryproc<ClockEnv> Start C C: Virtual Clock) =

entryproc<ClockEnv> Stop (C: Virtual Clock .

entryproc<ClockEnv> Reset (C: Virtual Clock ) =

entryproc<ClockEnv> Create returns ref ClockTable-I :
HighExtend ( ClockTable)
Count := Count + 1
return ref ClockTable f Count I
and

initially begin
Cd := Create ()
Reset ( self, StartTime)
end

end Virtual Clock

end Clock Manager

Figure 3-19: Multiple Environment Virtual Clocks

ClockTable is a component of the module "ClockManager", so it will be attached to
ClockEnv. The type "VirtualClock" is not bound to "ClockEnv"; instances can be
created anywhere. A "VirtualClock" obtains a pointer to an element of "ClockTable"
during initialization, by invokk;ig the entryproc "Create". Recall that a constant is a
variable whose value doesn't change after initialization.

Observe that although "Create" is an entryproc, it is not visible in the source
program outside the type definition for "VirtualClock". Therefore, it can be used
only as described there, namely, to obtain a table entry for a VirtualClock.

This "invisible" entryproc satisfies a major goal of modular programming it
distinguishes the structure of the executable representation from the structure of
the source program [Parnas 71). The entryproc is unquestionably a feature of the
run-time interface between the clock environment and other environments; yet
because the compiler can invoke the environment manager to create the entry point
its existence is known (in the source language description) only to the type manager
for virtual clocks. Should that type be reimplemented, changing the specifications
for the entryproc, no other system components would be affected
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The Virtual Clocks thus created are now implemented such that each clock user is
oblivious to how many other clocks there are the right to request operations on a
clock descriptor is protected by the source language type mechanism; the clock
descriptors are protected by the addressing mechanism; the number of clocks is
determined by demand, rather than by fiat and, all of the clock descriptors are
continuously addressable by the clock management module

Type managers for allocated types require no further programming innovations.

The objects themselves are private to the managing module, and created in the
corresponding environment The manager must define and export an unbound type
which can hold a capability for a resourca If the resource is pre-emptible, the
holding type must be monitored If the resource is dynamically allocated, but not
pre-emptible, then the holding type need only be coupled to the management data
structures. If the resource is allocated statically, the binding type may be a value
type.

Each variable in each example above was associated with just one environment
Som modules contained elements bound to different environments, but each type
kept all of its immediate representation in a single environment Let us reexamine
FAMOS semaphores once more, to see the implications of declaring an unbound
procedure which operates on a multi-environment object. In figure 3-20 I have
reproduced figure 3-15, with the addition of the procedures WaitingList.Insert,
Pause, and Semaphore.P
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type Waitwgist Is
requires ProcessEnv
provides Insert Remove
varcProcessEnv> W1,1lst tProcessoescriptor)

proc Insert ( W WaitingList, P ProcssDescriptor)
requires ProcessEnv.ProgranRegiori

-the usual list insertion text has been omitted

end Waitinguist

ver<ProcessEnv> ReadyQueue: O~ueue of ProcessDescriptor
vwr'ProcessEflv> CurrentProc: ref ProcessDescriptor

entryproocProcessEnv> Pause (W: Waiting~it)=
Suspend (CurrentProd)
Insert ( W. CurrentProc)
CurrentProc .=Remove(ReadyQueue)
Continue (CurrentProd)

type Semaphore Is
requires ProcessEnv.ProgramRegion
var WaitCount Integer :-1
var W Waiting~ist

proc P ( S: semaphore)
If (Waitcount := Waitcount + 1i) >0

-- indivisible increment and test

proc V ( S: semaphore)

end Semaphore

verCE> S: Semnaphorf
Figure 3-20: FAMOS Semaphores, With Procedures Added

The procedure Insert is not bound to any environment, but its text refers to
WaitingLists, so it requires the program region to which they are bound. In a
language where a procedure is an open scope, the need for that program region
would have to be derived from the text

The procedure Pause is bound to ProcessEnv, so it is assured of access to both
the waiting fists and the ready queue.

The procedure P passes its waitinglist to Pause, without ever addressing it
However, imagine the situation if Pause were an unbound procedure, rather than an
entryproc. The compiler would deduce that, since WaitingListlaisert needed to
address the waitinglist so would Pause, and so would P. Therefore, semaphore
operations would only be allowed in environments which could address
ProcessEnv.PrograrmRegiort

These two versions of the semaphore module Ri ustrate two ways of using multi-
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environment objects: passing the components explicitly to the appropriate
environments, and deducing legal operations by induction on parameter chains. Either
way, the notation gives enough information to determine from the source text
whether the desired operation is feasible and accomplishes the intended deed

f 3.5.5. Summary

We have defined a notation for types and modules, and for describing the
associations between program elements and execution environments. Let us
consider how the notation measures up to the criteria we stated for it

" Fitness: The system designer can attach an environment binding to any
piece of a program, large or small.

" Clarity By embedding environment bindings in the source text, one can
relate that information to other aspects of the system structure.

* Brevity: The transitivity of bindings allows simple systems to use few
binding clauses.

" Flexibility The notation supports unbound types, types with bound
representations but free operations, and bound types. Each of the
four classes of type management identified earlier can be programmed
conveniently in a multi-environment domain. We were also able to
reprograr parts of FAMOS conveniently.

* Modularity Access to entrypoints and access to program creation
facilities can be controlled with the same scope mechanisms as other
source language entities, without violating the source language
modularity of the system

" Implementabilit. Each environment binding directs the compiler to the
program implementation resources it needs, in a straightforward
fashion. Section 7.4 contains a detailed discussion of implementation
issues.

3.6. Comprehensive System Descriptions

In this section I will show how to use envirorment bindings to integrate all the
pieces of a multi-level, multi-environment system into a single, comprehensive
system description. The notation defined in the previous section allows us to
describe the structural relationships between system components. In this section
we will detail the structure of a typical cross-compiled system, and describe the
control flow between levels during translation, initialization, system generation,
loading, and startup. When we can trace that control flow from the beginning of
translation to the end of startup, we will have achieved a comprehensive system

description.

We will address two interrelated problems: how to include host-machine activities
in the overall system design, and how to sort out the initial bookkeeping activities at
each system level so that they can be correctly sequenced

Al
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I shall incorporate the host activities by treating the host as one of the
environments comprising the system The lowest system level is a module
containing both host and target components, which communicate with one another
via the medium used for loading. Typically the host component is a "down-loader"
that writes a segment to. say, a tape. The target component is a bootstrap loader,
which reads the segment from the tape Each subsequent system level may bind
components to both host and target environments. These components communicate
via whatever facilities are provided by lower levels.

I shall differentiate three classes of bookkeeping tasks that take place during the
instantiat ion of a system, initialization, system generation, and startup. The
initialization activities of a level take place before it is used to implement subsequent
levels, and consist primarily of putting the data structures of the level into well
defined initial states System generation actions take place during and after
instantiation of subsequent levels, but before the system is transmitted to the target
machine Startup activities are sequenced "bottom to top" on the target machine.
Each system level receives control from the underlying virtual machine, activates its
own facilities, and passes control on to the next higher levelv

A system description is elaborated in order from lowest to highest virtual machine
level. Each module, in whatever environment, may specify an initialization clause that
is to be elaborated when that module is instantiated The system generation
activities of a given level are written as host-environment procedures, which can be
invoked during elaboration of subsequent virtual machine levels, either directly from
initialization clauses, or by the translator when, say, instantiating a monitored type.
The startup activities of a level are written as target procedures invoked by a
handler for the condition startup.

I present the problems and their solutions in the context of an extended example:
a small loader for a PDP- 11. The system has four execution environment the
host environment, the bootstrapping environment the loading environment, and the
user environment I present partial descriptions of each module and environment
with commentary on the conceptual relationships between components and on the
details of key system interactions. Assembling the module descriptions thus
presented gives the skeleton of a comprehensive system description, with enough
detail to understand the flow of control from the beginning of translation to the end
of strtup.

3.6.1. A Simple Loader

The example I have chosen to describe is just about the smallest "operating
system" one could conceive a loader. It is a "toy problem" in the sense that one
can understand how a loader works without the environment concepts and notations
developed in this thesis. However. even such a small system contains several
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distinct execution environments, has components on both host and target machines,
and requires careful sequencing of initialization, generation, and startup. I have
purposely chosen a small example so that the reader may concentrate on the
representation of the solution without first having to grasp the design of a
complicated system, and without having to wade through a great deal of detail In
chapter 5 we will examine the system instantiation problems of a more substantial
system, to assess the power of the proposed methodology in more realistic
situations.

The system we will describe is a very conventional loader for a PDP- 11. It
consists of a bootstrap loader residing in block 0 of a DecTape, which loads and
starts whatever program starts in block 1 of that tape That program is itself a
loader, which loads and runs the user program residing later on the tapeL This
second loader might be there for the purpose of allowing the user to choose
interactively among several programs on the tape, to set up debugging aids, and so
on. Problems faced here include: transmitting information about the size of the
second loader and the user program; coordinating tape usage among several system
levels; coordinating use of primary memory during loading; and formalizing the
sequence of bootstrapping operations taking place on the target machine.

3.6.2. The Host Environment

Conventional system instantiation technology operates as a series of passes over
the system description A compiler translates the source files into a set of object
files. A linker translates the object files and linker command files into a set of
segments, again in file& A system generation program connects the segments.
constructing segment descriptors and process descriptors, coordinating linking and
relocation, allocating memory for system components, and so on A separate
down-loading program transfers the entire system to some medium suitable for
loading. On the target machine, a chain of bootstrap loaders brings the system into
memory and sets it in motion

Assembling objects into segments and constructing environment management data
structures are as much a part of an operating system as scheduling processes and
handling page faults. In order to include these activities in system descriptions, we
shall include the host environment as one of the environments in which the
operating system resides. This allows us to declare system generation procedures
just like other procedures, the only difference being the particular environment they
are bound to.

Because they execute in different environments and are usually written in different
languages. host and target machine portions of an operating system have customarily
been kept in completely separate modules, which communicate with each other via
the loading medium Since the programs that generate a system and the programs

,___ -_,__ -__._,______
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that load it share information about a great many design decisions, they ought to be
combined into modules that conceal the shared information. We would like to
transform the multi-pass view of system instantiation into one in which the host-
machine representation for each program component resides in a host data structure
provided by the environment manager responsible for it Each environment maager
would provide host-machine procedures to enter program representation information
into the structures, and to communicate the contents of those structures to the
target machin

These host data structures would use the primitive type segment to contain the
representatio of target-machine program units. The linker would appear in a
system description as a host-machine module providing the abstract type segment,
and a host-machine representation for them. One possible representation would be
the name of the host file containing the segment, together with some indication of
whether the segment has been linked yet With segments as atomic data items, the
operating system can include host programs which link a segment, define its
relocation base, examine its length, and copy it to a tape, disk, or communication
line Such programs could also build tables of segment descriptors, create
directories, allocate storage, lay out page tables, and so on.

The specification for a linker would look something like the following:

module<host> Linker Is
provides Segment, Section, CoreBlock, LogicalNameTable, LogicalMemory

type<host> segment Is
reuires Section
provides Insert Link, Copy

path Insert*; Link ; Copy* end

proo Insert ( Se; segment, Sea section) I
proc Link ( Seg segment)
proc Copy ( Seg segment, TB. tape block) =...

end "typ segment

type<host> Section is ...
type<host> CoreBlock Is ...
module LogicalNameTabie Is ...

-- Maintains global symbol table
type<host> LogicalMemory Is ...-- a set of segments accessible to an environment

end module Linker

The type segment actually takes several optional parameters specifying size, base
address, and so on. One of them is the core block in which the segment is to
reside. The linker can check whether two or more segments residing in the same
core block will overlap, or it can compute the base address of one from the
limiting address of another. The type section is the unit of program representation
that the compiler can place in a segment, via the procedure Insert All sections
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must be inserted before linking takes place. After linking, the system generation
program can make as many copies of the segment as it needs. The logical name
table maps each target object identifier in a system description to an ordered pair
<segment, displacement>. It conceals the problem of unresolved references,
maintaining whatever "fixup lists" are needed The type ':DgicalMemory will be used
by environment modules to record the logical segments addrossble in a particular
environment It provides operations to test whether a given symbolic address is
defined in any of the member segments, so that the language system can determine
if a procedure compiled for a given environment will be able to access the objects
it needs.

3L6.3. Initialization vs. Generation vs. Startup

In section 2.2.2 we described the many sorts of problems which arise during
system integration, often due to lack of coordination between initialization,
generation, and startup.

At each system level one can usually separate initialization actions from generation
actions, and those from startup actions. However, one cannot simply initialize all
levels, then generate a system, ten start it up. If each system level is going to
participate in the representation of higher levels, then at least the host machine
portions of a level must be fully activated before the next level can be translated
Conversely, if a system level is going to contain static data structures configured to
the needs of the program it is managing, then the target machine portion of a
system level cannot be generated until the program it is managing has been
compiled Part of the problem comes from the distinction between "compile time"
and "run time". If we insist on compiling an entire system, then running it, we will
not be able to describe the system generation process.

In single-environment compilation technology, it is no longer necessary to
distinguish "compile time" from "run time". One speaks simply of elaborating a
program Each module of a system may contain initialization code, which is
executed immediately after the module is created Assuming the module is
permanent it is initialized before any subsequent module is created The initialization"
code for the outermost module is none other than the "main program".

If one were to apply this paradigm to cross-cornpilation technology, one would be
tempted to view the initialization code for each module as serving the needs both
of initialization and startup: any actions that a virtual machine must perform before
beginning to execute the programs it is managing, would be stated in the initialization
section. However, this would not work, because some actions must take place on
the host machine, and some on the startup machine, at different times.

9 Some startup actions require interaction with the hardware and
permanent data on the target machine The translator could not
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simulate those actions on the host machine, and would therefore have
to put off all initialization until after the system was compiled.
generated, and transported to the target machins.

9 Even if startup could be accomplished on the host machine, requiring
all modules at a given level to be started before translating the next
level, would preclude customizing the static structures of a level to the
program it is managing.

Instead, we shall separate initialization from startup, in such a way that initialization
can be performed during compilation, and startup deferred until after loading

First, we observe that the concept of a "main program" simply does not apply to
an operating system A running system does not normally have a master procedure
that carries out the task of running a machine Instead it is simply a set of
facilities, which are invoked by user programs, or which respond to external events.
S Bootstrap loading can be viewed as a chain of responses to an event. namely
someone pressing the "start" switch on the consola This is analogous to the way
existing systems typically recover from a crash A trap routine letches a simple
loader from some secondary storage location That loader dumps the core image
into an error log. then patches the system back together and restarts it

We shall write each bootstrap procedure as an exception handler for the condition
"startup", raised by the underlying virtual machine This allows each system level,
from the bottom up, to obtain control of the cpu for the purpose of setting itself
in motion, loading the program it is supposed to support then signalling "startup" to
that program

The exception handling I have in mind follows the work of Levin, in that one can
declare an exceptional condition, provide a handler for a condition, or raise a
condition (sinal that the condition has arisen) [Levin 77). A condition may be
s"nalled oyv from within the scope in which it is declared At this level we allow
only one handler for each condition, and require that handler to be permanently
enabled for handling the condition

A condition must be associated with an environment. &t least insofar as the
representation of the condition handler register must be placed somewhere. I adopt
the convention that placing a condition in an environrent constrains its handler to be
'-vocable from that environment

With itartup thus taken care of, the initialization clauses of modules can be used
exclusively for actions associated with module instantistion. Elaborating a program
takes place in the order in which modules appear in a system description As the
translator instentiates each permanent module, it carries out the specified initialization

Some FAMOS family memos hod no system procse at ll.
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code Regardless of what envronment the module is bound to, the representation
of the module, once instantiated, is accessible to the translator. Therefore, should
the initialization code of a later module invoke operations provided by an earlier
module. the translator can carry out the specified actions on the host representation
of the earlier module Initialization clauses could not contain forward references, as
this would imply the use of objects not yet instantiated

Once a module has been instantiated, its host components are available to
participate in system generatiot For example, an address space manager instantiated
at one level could be invoked to build address translation tables for subsequent
levels. In general, the system generation activities of one level are triggered by the
initialization activities of higher levels.

One of the system instantiation phases I have lumped under system generation is
downloading. After all of the target code and data objects have been created, they
must be transmitted to the target machine via some storage or communication
medium. The order of transmission must be explicitly programmed This can be
achieved by invoking the downloading code from the initialization clause of the
outermost module of the system Each level would provide a downloading
procedure for its level, which would clean up its own data structures, call the
downloading procedure of the level below, then download the programs it has been
given to manage

We can now program the initialization, generation, and startup of the first level of
a PDP- 11. We will need a specification of the target hardware environment in
which the bootstrap loader will run, and host facilities for placing the bootstrap
loader onto the tape. To be complete, I also insert the module specification for the
compiler, although it doesn't contain anything interesting

Module'host> compiler Is
requires linker
provides type procedure, variable, task, etc.

end module compiler



98

Module PDP- 11
requires Linker

provides W, CommArea Biewironment

ver Mp: CoreBlock[ 177777] -- full configuration

module CommArea Is
requires Linker
provides TrapSeg, IOSeg, TrapVectors, Devices, etc.

vat TrapSeg: segment (.at 0 ii ~ p, legth 240, volatile)
-- trap vector declarations go here

ver lOSeg segment
(at 16000 in Mp, length 20000, volatile)

-- device register declarations go here

end module ConmArea

type Boot Environment Is -- an environment
requires Linker
provides ProgramRegion, LogicalSegmentSet Startup

ver Prograrnlegiofagment
(at 1000 in NI, length 512 bytes)

var LogicalSegmentSet LogioalMemory
(TrapSeg, IOSeg, ProgramRegion)

conditlon<Boot Environment> Startup
end type Boot Environment

end module PDP-11

TrapSeg and iOSeg are descriptions of te physical machine. They are listed as
volatile so that the linker will not produce a host representation for their contents,
nor allow initial data to be stored in them during transltiort

I have wr;.tn BootEnvironment as a type rather than a module, because a single
operating system could in fact have several boot blocks residing on different
secondary storage devices. The condition startup defined in BootEnvironment
represents the mechanism by which the primitive loader residing in ROM on the bare
POP-i 1 transfers control to the program resiing in the BootEnvironment

Observe that elaborating the above module definition does not require any
interaction with the target machine. The only concrete actions that would be taken
are the creation of host machine descriptors for two volatile segments, and creation
of a CoreBlock to track the relocation of segments

Now that we have a type definition for a bootstrap environment, we can create
one and provide the host machine facilities necessary to support it

- - ~ ---r
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Module Bootstrap
rluires PrJP- 11, DecTapelmaeile
prevides SootEnv, DownLoad, HostDT

vu<host> HostDT: DecTapelmageFlle

var BootEnv. BootEnvironment
proc<host> DownLoad :

init (HostDT)
Uink (BootEnv.ProgRegion)
Write (HostDT, BootEnv.ProgRegion, Block = 0)

end module Bootstrap

ELaborating this module would result in creating a segment to hold a boot block, a
logical memory descriptor, a file to hold the generated system for transfer to a
dectape, and a host procedure for downloading BootEnv. It would also place an
instance of the condition Startup in the host representation of BootEnv. Again,
nothing has actually been done on the target machine.

We have now completely described a very simple virtual machine, consisting of a
32K word address space that contains only 256 words of usable program region
If we were to concatenate the definitions of the loader, compiler, PDP- 11, and
BootStrap, and elaborate them, we would be creating a virtual machine. We could
then proceed to create a tiny program and place it in BootEnv, and call DownLoad
to place it on tape. The tiny program would consist entirely of a handler for the
condition BootEnv.Startup.

We shall now use BootStrap to support a loader that can fetch an arbitrarily large
program from the DecTape. We presume that one of the device control registers
declared in POP- 11 is named TargetDT, and controls the DecTape.
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Module DecTapeLoader Is
acquires BootStrapBootEnv, Bootstrap.Download
requires POP-i11, HostDT
provides SimpleEnv, DownLoad, Startup

module SirnpleEnv is -- an environment
provides ProgramRegion. LogicalSegmentSet

var ProgramRegion: segment
(after BootEnv.ProgRegion in NO)

'iar LogicalSe~nentSet logical memory

CondltIon<SimpleEnv> Startup

varcBootEnv> RegionLength, Region~ase

procchost> DownLoad =
Link (SimnpieEnvProgRegion)
RegionLength := length (SiV~i nv.Proegion
Region=as /n Base (mpe'nv.ProgRegion)

Wrt aHstT SieEnv.ProgRegion, Block= 1)
end

handlercBootEnv> for BootEnv.Startup=
TargetC)T.Read(biock = 1, length=RegionLength,

Address = RegionBase)
raise DecTapeLoader.Startup
*rod

end module DecTapeLoader

SimpleEnv provides a program region of unspecified size, located immediately
following the boot block in primary memory. A program residing there will be
allowed to use the trap segment and the 1/O segment but not the boot block. One
of Mhe things a program residing there can do is handle the condition
-DecTapeLoadr.Stsrtup-.

The DecTapeLoader records the size and starting address of the SimpleEnv
program region in a pair of target variables, RegionBase and RegionLength. Rather
than writing their values out onto the tape separately, these values are recorded
right in the BootEnv. Observe how this happens: the host procedure
DecTape.Downioad links the program region and records its attributes in the two
variables before calling BootStrap.Download After the bootblock is recorded on the
tape, DecTapeLoader.Download puts the contents of SimpleEnv.ProgRegion on tape
stating at block 1. DecTapeLoader enables a handler for BootEnv.Startup, which
uses Region~lase and RegionLength to move SimpleEnv.ProgRegion from tape to
primary memory-

Elaborating the module DecTapeLoader still does not require any interaction with
the target machine. Each of the target-machine objects created is represented in
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some segment, which in turn is represented as a host machine file. Even enabling
the handler for BootEnv.Startup only requires proper placement of the compiled
code in the tiny progrim region The module definition does not call for any target
machine procedures to be invoked.

(This example does not attempt to solve the problems of allocating tape space in
a modular fashion and reusing target machine memory for successive layers Such
issues will be addressed in Chapter 5.)

So far we have declared two host machine procedures: BootStrap.DownLoad and
DecTapeLoader.DownLoad. Each procedure embodies the system generation program
for the corresponding machine level, namely linking the managed segment and
moving both the customized machine and the managed segment to tape. However,
we have not called for either of these procedures to actually be invoked. Below
we will do so, after first elaborating an arbitrary user programr

Module<SimpleEnv> UserProgram is
requires SimpeEnv.Startup

handler for SimpeEnv.Startup is
- This is user's main program on PDP- 11

admodule UserProgram

-- Outermost initialization generates a system:

Begin
DectapeLoader.DownLoadO

End
end module System

The user's program is a single module, bound to SimpleEnv Elaborating that
module places its code and data in SimpleEnv.ProgramRegion When the translator
elaborates the outermost initialization clause, it invokes the DecTapeLoader's
download procedure, which precipitates the entire system generation process. To
get an overview of that process, we shall first abstract the modules defined in this
section and combine them into a single, abbreviated system descriptior
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module system is

moduiechost> Linker Is
provides Segment Section. CoreBlock,

LogicalNameTable, LogicalMemnory

type chost> segment is
requires Section
provides Insert Link, Copy

Modulechost> compiler is
requires linker
provides type procedure, variable, task, etc.

Module PDP- 11
requires Linker
provides Mp., CommArea, BootEnvirornent

module CommArea Is
requires Linker
provides TrapSeg, lOSeg. TrapVectors,

Devices, etc.[type Boot Environment Is -- an environment
requires Linker
provides ProgramnRegion. LogicalSegmentSet.

startup

Module Bootstrap
requires PDP- 11, DecTapeimageFile
provides BootEnv. DownLoad. HostDT

Module DecTapeLoader is
acquires BootStrap.BootEnv, Bootstrap.Downioad
requires PDP- 11, HostDT
provides'SimpieEnv, DownLoad, Startup

module SimpleEnv is -- an environment
requires Linker
provides ProgramnRegion. LogicaiSegmentSet

We can trace the flow of control through this system description by expanding
the various downioaders and condition handlers in line, as follows:
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" Link (SimpleEnv.ProgRegion)

* RegionLength := length (SimpleEnv.ProgRegion)

" RegionBase := Base (SimpleEnv.ProgRegion)

" init (HostDT)

" Link (BootEnv.ProgRegion)

* Write (HostDT, BootEnv.ProgRegion, Block = 0)

* Write (HostDT, SimpleEnv.ProgRegion, Block=1)

* Person copies HostDT to real DecTape

* Person carries tape to a PDP- 11

* Person sets boostrap address, presses start switch

* Bootstrap ROM loads DecTape block 0 into location 1000 ff.

" TargetDT.Read(block = 1, length=RegionLength Address = RegionBase)

" raise DecTapeLoader.Startup

Thus we see that we have successfully written a program to create and run an
operating system, albeit a trivial one. The fact that we can trace the entire system
generation process gives us confidence that the system description is

comprehensive, as we had hoped.

3.7. Summary

We have made the concept "execution environment" a concrete entity in system

descriptions, by using it to define the interface between the implementation language
and the system We have defined a notation for explicitly programming the
associations between source program units and execution environments, so as to
support both multi-environment modules and multi-module environments. 'e found
the notation sufficient to express a variety of type management styles in multi-
environment systems, including monitored types. By introducing the host machine as
one of an operating system's execution environments, we were able to program
initialization and system generation activities as par of the modules tht manage the
generated programs. The resulting system description is a complete program to
create the operating system

The acquires clause introduced in section 3.2 facilitates programming incremental
machine designs that span multiple environments. By supporting partial concealment
it facilitates static representation and checking of the uses relation among system
components. In particular, it provides a way for a module to obtain exclusive
access to an environment defined below it, so that the module controls what code
can be placed in that environment
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The toy problemn solved in the last section was contrived to ilhjWate system
generation, and is not by itself a doemnWatio of the value of the methodology. In
the next three chapters we shall assess the power of the concepts end notations I
have introduced by applying them to the systemn description problems identified in
section 2.2-



105

Cti, R 4
RELATING TO HARDwARE

In this chapter we apply the proposed methodology to the description of
hardware device communication facilities. Interrupt handling and device handling
programs are some of the most likely programs to be written in assembly language
rather than a higher-level language. Interrupts themselves don't fit into conventional
synchronization methodologies Priority levels likewise are foreign to high-level
languages Because short routines involving volatile storage are less likely to benefit
from optimizing compilers, the explicit control available in assembly language seems
to out weigh the benefits of strong typing and notational uniformity.

Device registers also pose a name control problem quite apart from interrupts and
priorities. If the device control registers are considered to be a set of objects
provided by the module "hardware", then each module that uses and conceals a
device register must build on top of the hardware module, rather than simply
importing the device control register, in order to ensure that no other module has
access to that device. This imposes a total ordering on the modules that handle
interrupts, an ordering which must be made to fit other ordering constraints
imposed by interrupts and priorities

Modula and Concurrent Pascal both abstract away from the interrupt level
altogether, providing the programmer instead with a high-level synchronization
construct, the monitor (or interface module, in Modula), with which to describe
device communication. In section 2.2.1 I argued that each of these languages
substantially encumbered system design by burying interrupt handling in the language
runtime system

A fit language for describing device interactions must contain both a suitable
construct for defining interrupt routines, and a suitable means for describing the
effect of priority levels. The language must also be highly transparent, in order not
to impose overhead or constrain design.

This chapter presents the design of a device communication subsystem for a DEC
VAX- 1l, similar to the system used in the VAX/VMS operating system The
individual device control registers and interrupt vectors are declared in a module that
is responsible for the entire machine description. This module provides an Interrupt
module for each device, containing both its interrupt vector and its control and data

]H
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registers. The interrupt vector is represented in the system inplementation language
as an exceptional oondltlon, as defined by Levin [Levin 77]. The language defines
the minimum set of features an Interrupt module must define. Each internt
module is aquired by the module that is tO manage the device. That module
enables one handier, permanently, for responding to the interrupt The handler is
written in the form of en ordinary procedure.

Interrupt routines usually communicate with other system components through
shared variables Synchronization can be implemented either by manipulating the
interrupt priority level of the processor, or by masking interrupts from individual
devices. A language for describing such synchronization should allow the system
designer as much control over priority end selective masking as reasonable, but need
not support unreasonable control I postulate that in a reasonable program the
priority at which each statement executes should be determinable at compile time. I
propose a locking protocol that is only a slight restriction from primitive data locks,
and show how to compute the priority for each program statement that is both
necessary and sufficient to implement the requested locks.

I represent selective masking by defining the action defer on a condition, defined
in terms of Levin's primitive actions on conditions. I again show how to determine
the necessary and sufficient priority for each statement this time including
knowledge about which handlers might be deferred.

The priority determination method could be automated and incorporated into a
software development control facility. For the purposes of this thesis I indicate the
priority of each statement explicitly, so that the reader can see if a change to one
part of the system might change the necessary and sufficient priority of some other
part of the system Whether the priorities are computed by the language system or
simply verified sufficient, incorporating priority manipulation into the language
provides significant assistance in producing reliable software, without unduly
constraining the system design space.

4.1. Interrupts as Exceptional Conditions

I briefly introduced Levin's exceptional condition mechanism in section 3.6, using it
to describe bootstrap loading. The mechanism he defines is very general, suitable
for programming unusual function returns, reporting data structure inconsistencies,
handling arithmetic overflow, and soliciting the return of unneeded resources when
the pool runs low, as well as interrupt handling, all in a multiprogramming context
He is careful to point out that specific applications do not need the full generality
of the mechanism, and would be more efficient if only the needed features were
implemented Also, he conjectures that certain usage patterns will occur so
frequently as to justify special language features that implement them even more

efficiently. He envisions a large system containing several different exceptional
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condition reporting facilities, unified by a common syntax and semantics, but each
supporting only a subset of the mechanism

I shall define a subset of Levin's handler mechanism that models the behavior of
interrupts and interrupt routines, and gracefully supports customary programming
methods. I shall define a special language feature, defer, to model the effect of
turning off interrupts from a particular device, in terms of the basic operations on
conditions.

An interrupt is an event signalling the occurrence of some condition on some

object or process For hardware devices, it normally signals the completion of
some command, or the occurrence of some asynchronous event such as the
expiration of a time interval or the arrival of a message from a network. A
memory violation interrupt signals a condition on the currently executing process
However, for the purposes of this chapter we will limit our discussion to conditions
on objects. A handler for a condition is a procedure designed to respond to the
occurrence of the event When a device or program raises a condition (signals its
occurrence), the handler for the condition is executed. The handler may use
variables defined in the scope in which it is declared, and may also receive
parameters from the device or program that raises a condition. (Device status
registers would be accessed as shared variables, not as parameters Certain
hardware conditions in VAX. such as memory violations, push parameters on the
stack) There may be more than one handler for a condition, but a handler is only
invoked if it is enbled for that condition A handler may be enabled for the
duration of some program statement, such as a loop or procedure call, or may be
enabled for the lifetime of the object on which the condition is defined An
interrupt condition may have at most one handler enabled for it at one time.
Normally that handler will be enabled permanently.

Levin's mechanism dictates that when a condition occurs, its handler is invoked
immediately. Since the CPU interrupt priority level may delay the invocation of a
handler, we must make some kind of accommodation I choose to define the
interrupt dispatcher of the CPU as an intermediary between the hardware devices
and the software handlers Each device may raise a condition, which the dispatcher
handles by setting a flag indicating that it occurred Whenever the interrupt priority
level falls, the dispatcher checks its flags to see what conditions should be signalled
The condition thus signalled is different from the one the device raised, because it
reflects both a property of the device and a property of the interrupt priority level
register, eg, "the clock has ticked recently and priority is now below level 15". In

practice the priority is used only for controlling the urgency of computation and for
mutual exclusion. I will add notations for explaining these properties later.
Meanwhile, we shall assume that by coincidence no interrupt ever occurs during the
execution of another interrupt handler.
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Let us define a language system interface for interrupt vectors and devices. The
language will provide the following constructs to users of interrupt conditions:

handler for condition = procedure body
raise condition
defer condition

The handler clause declares and enables a handler for the condition. For interrupt
conditions it shall only appear in a permanent module instance, making it a
permanently enabled handler. The language system must know what parameters, if
any, will be passed by the signaller to the handler, and must give the exception
handling mechanism the address of the handler. For software interrupts, the user of
the condition may also raise it The language system must invoke an operation on
the exception mechanism when this occurs, transmitting the necessary parameters
Many device registers support operations to suspend interrupts from an individual
device, regardless of the current priority level To defer a condition means to
postpone invoking the handler for the duration of some sequence of statements
To support this, the language system will need operations to mask and unmask the
interrupts from that device at the beginning and end of the statement sequence.

An interrupt module shall have the following form
Interrupt module module name Is

provides condition, priorityL defer, raise]

condition ( parameter list)
const priority = integer
proc set ( identifier : address ) = procedure body

-- called to enable a handler

-- The following are optional. Their presence indicates
-- that the corresponding language features are supported

pro. mask = procedure body
pro. unmask - procedure body
proc signal ( paramneter list) = procedure body

end module module name

The facilities that are to be used only by the language system, namely set, mask,
unmask, and signal, are not provided, and so cannot be invoked directly by other
modules instead, the module provides the correspon Atng language feature, leavig
it to the language system to perform the transltion. w language er leaving
support modules, an interrupt module may provide any other facilities that are
appropriate, such as access functions for the device registers associated with the
interrupts.
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4.2. VAX Interrupt and Device Hardware

The VAX architecture provides 16 levels of hardware interrupts, and 15 (lower)

levels of programmable interrupts. Interrupt handlers may execute either on the

kernel stack (provided that no other handler is running at the time the handler is

dispatched) or on the interrupt stack. Each interrupt routine begins execution at the

same priority level as the interrupt itself, but may raise or lower that priority.

However, the priority at the end of the handler execution must be at least as high

as when it started, because the REI (return from exception or interrupt) operation
will fail if completion would cause an increase in priority. Also, there is a kernel

stack for each process in the system, and the context swapping routines must use

the REI instruction, so any routine that calls the context swapping code must be

executing at a lower priority level than the level of the context swapping code.

Device control registers on VAX are accessible through ordinary memory read and

write operations, just like on PDP- 1's. Each device is assigned a separate

interrupt vector, so that interrupt routines don't need to poll several devices to find

the origin of an interrupt The interrupt vectors are located in the "system control

block", which is identified to the CPU by the "system control block base" register.

4.3. VAX Device CommunIcation Subsystem

We can now program the device registers and interrupt vectors for VAX. For

convenience we shall draw upon the simple system described in section 3.6 so as

not to become mired in repetitive detail. We shall build an execution environment

that supports all devices and can access all of primary memory, through a page
table that provides an identity map for primary memory pages, and a suitable

address range for the device registers. One practical use for such an environment
would be an interactive loader that could select system components from

directory-structured devices, in response to console commands. Here is the overall

structure of the system
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module system Is

module<host> Linker is
provides Segment, Section, CoreBlock, LogicalNameTable,LogicalMemory

Module compiler is

requires linker
provides type procedure, variable, task, etc.

Module VAX
requires Linker

provides Np, BootEnvironment, Devices

type Boot Environment Is -- an environment
requires Linker
provides ProgramRegion, LogicalSegmentSet,

Startup

type Devices Is 1
provides Console, Disk 1 - DiskN, I

DiskController, etc.

Module Loader Is
requires VAX, HostDisk
provides SimpleEnv, DownLoad, Startup

Module Bootstrap
requires VAX, PseudoDisk
provides BootEnv, DownLoad, HostDisk

IModul*SimpleEnv> 10 is
provides TransferRequest, lOPostQueue, ]

The components that pertain to device communication are

* VAX declares the device registers

* Devices: defines the software control block containing all interrupt
vectors, and pairs up each interrupt vector with the corresponding
device registers in an interrupt module.

* 10 declares the queues through which input and output request blocks
pass going to and from the devices, and declares procedures and
condition handlers that process device commands

The linker and compiler perform functions analogous to their counterparts in the
PP-I 1 loader. This loader is capable of placing a core image in primary memory
and raising the condition startup, to be handled by the program residing in that
image. (This condition is implemented by setting the initial program counter to the
address of the handler, rather than through the interrupt mechanism) Most of the
details of the loader are irrelevant to this example, and will be omitted.

- -
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43.1. The Module VAX

The module VAX defines the physical characteristics of the hardware, including the
CPU registers, the primary memory and device communication memory, and the
interrupt vector& This is its general form:

module VAX Is
requires linker
provides Mp, BootEnvironment. Devices

vr Mp. IOMem, IOSeg, DeviceRegisters...

module CPU Is
provides SCBB.

type BootEnvironment is
requires PTType, Linker,
provides ProgramRegion, LogicalSegmentSet, PageTable, Startup

type Devices(SCBSegment Segment) Is
provides ConsoleRec, ConsoleSend, DiskController,

MagTapeController, Softint 1 . Softint 15, ...

Interrupt module ConsoleRec

Interrupt type DiskControllerType Is

Interrupt type SoftintType(tSoftlntlndex) Is

end type Devices
end module VAX

IOMem is the range of physical addresses set aside for device control and status
registers. I declare the segment IOSeg to completely fill that range of addresses.
All of the device control registers are bound to OSeg, as follows.

var Mp: CoreBlock(1 Megabyte)
var IOMem: CoreBlock (Base 512M, length 1M)
var lOSeg segment (at 0, length 1 M, in Omem, volatile)
ver<lOSeg> DeviceRegisters : record

var ConsoleRegisters
var DiskRegisters
var TerminalRegisters

etc

Bootstrap loading on VAX is performed through a console that includes an LSI- 11
microcomputer and one or two floppy disk drives. The console can load an entire
binary file from a floppy disk into primary memory while the VAX CPU itself is
halted To simplify this system description, I assume a console command file that
initializes the system page table pointer to zero, implying that the first part of every
load file should be a page table. I document this design decision in the definition of
BootEnvironment, which contains a segment for the page table and one for the
remainder of primary memory. BootEnvironment also defines the condition Startup,
which is implemented by a console command to start execution at the address of

-" .
Z =' ' ' L
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the handler code. BootEnvironment is a type rather than a module so that a system
may create more than one core image, for different purposes.

type BootEnvironment Is
requires PTType. Linker,
provides ProgranRegion, LogicalSegmentSet, PageTable. Startup

var MapSeg: segment (at 0, length 16K, in Np)
var ProgramRegion: segment (at 16K, in Wp)
varcMapSeg> PageTable: PTtype :

NMaSeg.BootEnv.ProgramRsgion, lOSeg)
var LogicaiSegmentSet LogicalMemory

(MapSeg,BootEnv.ProgramRegion,lOSeg)
end type BootEnvironment

Devices is a type rather than a module because VAX allows the interrupt vectors
to reside anywhere in primary memory. They are made known to the CPU through
the System Control Block Base ISCBB) register. The record SCB (for System
Control Block) defines names for each of the interrupt vector&.

varcSCBSegmnt> SCBpacked record
aligned mod 512
var unused 1: Interrupt vector
var MachineCheck- Interrupt vector fintStack)
var KernelStackNV: Interrupt vector (lntStack)
var PowerFail: Interrupt vector (KernStack)

var SoftlntVec: array [Softintindex) of interrupt vector (KernStack)

var ConsoleReceive: Interrupt vector (lntStack)
var ConsoleTransmit Interrupt vector (lntStack)
var DiskController array [Diskindex) of Interrupt vector (IntStack)

end record SCB

The type Devices acquires DeviceRegisters so that the registers will be used only
through the interrupt modules. Each interrupt module acquires the device control
and status registers and the interrupt vector it needs. For example, here is the
interrupt module for the Console Receiver

interrupt module ConsoleRec
acquires; ConsoleReceive, ConsoleRecReg
provides condition, priority, defer, Console receive operations

condition Ino, parameters)
const priority = 1 4HEX
proc mask Is

ConsoieRecReg-mask true
proc unmask Is

Console~ecReg.mask false
-- other operations on Console Receive go here

end module ConsoleRec

Because there is an interrupt vector for each disk controller on VAX, thoere mo.st
be a separate interrupt module for each Therefore, I define an Interrupt type
giving the f orm of the module, and then declare as many instances as I need
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Interrup type DiskControllerType is
acqulres SCB.DiskController,DeviceRegistersDiskController
provides condition, priority, defer, Disk command ops

end module DiskControllerType

vu" DiskController. array [Diskindex] of DiskControllerType

Software interrupt vectors support raising conditions as well as handling then
Interrupt type SoftntTypetSoftintIndex) is

acquires SoftlntVec
provides condition, priority, raise

condition (no parameters)
conat priority = I
pro. signal =

CPU.SoftwarelnterruptRequestRegister I

end type SoftintType
vyt Softint1: SoftntType(l)

Vi" Softlnt 15: SoftlntType(15)

Although the text of the type devices is rather lengthy, the only primitive objects
instantiated in it are the interrupt vectors themselves. The rest of the type simply
defines the interrupt conditions. Creating an instance of devices creates an SCB in
the environment of the instance. Here is an abbreviated definition of the entire
module Devices, to show how the pieces fit together:.

I.

y. ~ .-
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type Dvices(SCBSegmene Seiamnt Is
provides ConsoleRec. ConsoleSend. DiskController.

MmgT*Cpntroller, Softintl . Softlnt 15,.
vwcSCS*gmwvSCBpacked record

aligned mod 512
ver unusedl 1interrupt vector
var MachineCt -.; interrupt vector (intStack)
var KernelStackNV: interrupt vector (IntStack)
var SoftlntVec: array [SoftiindexJ

of iftntert vector (KernStack)
var ConaoleReceive: Interrupt vector (IntStack)
var ConsoleTransmit Interrupt vector (lntStack)
ver DiskController array [Disklndex)

of Interrupt vector (lntStack)

end record SCB

proc SetSCB is
CPU.SCBB := address of SCB

Interrupt module ConsoleRec
acquires ConsoleReceive, ConsoleRecReg
provides condition. priority, defer, Console receive operations

condition (no parameters)
const priority = 1 4HEX
proc mask Is

ConsoieRecReg.mask true
proc unmask is

ConsoleRecReg~mask false
end module ConsoleRec

Interrupt type DiskControilerType is
acquires SCB.DiskControllerDeviceRegisters.DiskCorntroller
provides condition, priority, defer. Disk command ops

end module DiskControllerType

var DiskController array EDisklndexJ of DiskControflerType

interrupt type SoftintType(I:Softlntlndex) Is
acquires SoftlntVec
provides condition, priority, raise

condition (no parameters)
const priority = I

prc C"USoftwarelnteruptRequestRegister :I

end type SoftintType
var Softlnt 1: SoftlntType( 1)

var Softint 15: SoftlntType(I 5)

end type Devices
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4.3.2. The Module Loader

The loader must define a useful execution environment and arrange to have it
transported from the host to the target machine. It creates a BootEnvironment,

and places an instance of Devices in it PageTable contains an identity map of
primary memory followed by a map of IOSeg. This defines the virtual addresses of
the device registers, and makes it easy to compute the physical address of SCB for
recording in SCBB.

module Loader Is
requires VAX, HostDisk
provides SimpieEnv, Devices, DownLoad, Startup

var SimpleEnv. Boot Environment
vwr<SimpleEnv> Devices: VAX.Devices(SimpleEnv.ProgramRegion)
condition Startup
handler<SimpleEnv> for SimpleEnv.Startup =

SotSCB
raise Startup

4.4. Synchronizing Interrupt Routines

Interrupt modules supporting conditions provide an adequate mechanism for
implementing interrupt routines for a strongly typed language. However, interrupt
routines ordinarily communicate with other portions of a system through shared
variables. The procedures that access them typically protect them from race
conditions by raising the interrupt priority levels high enough to block competition
from interrupt handlers, or by suspending interrupts from individual devices. A fit
language for synchronizing interrupt routines would provide a great deal of control
over the interrupt priority level, while at the same time providing as much help as
possible in verifying mutual exclusion for shared variables,

Simply providing direct access to the interrupt priority level (IPL) register is
unacceptable, because the language system cannot give any assistance in verifying

synchronization constraints. Instead, the program ought to state which variables are
to be locked, and when. I shall define a set of primitives for locking individual
variables, and show how to implement the locking primitives as operations on the
IPL register, such that the interrupt priority at any give time is both necessary and
sufficient to implement the locking commandL:

It is reasonable to expect that for any given statement of a program, the set of
variables that are to be locked during its execution should be determinable at
compile time. Interprocedural data flow analysis techniques allow us to determine
which variables might be locked during a given statement; prudence dictates that

they must be locked for that statement This restriction allows the priority
requirements to be determined at compile timeL
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Masking and unmasking individual interrupts can also benefit from language support
Data flow analysis can determine which handlers might not be masked during a
given statment; by assuming they will not be masked, we can again determine the
necessary and sufficient priority for mutual exclusion.

Data locks and handler masking are unacceptably clumsy programming tools. I shall
introduce the language construct defer, defined in terms of primitive operations on
conditions, and implemented with mask and unmask. Similarly, many reasonable
synchronization constructs can be implemented as data locks. I choose a form of
critical regions, which names the variables to be locked, and which can span either
procedures or entire modules. I shall demonstrate that the construct is immune to
the lnon)problem of nested monitor calls [Parnas 78b].

Using critical regions and interrupt condition handlers, I shall show how to program
a device communication subsystem for VAX, much like the one actually present in
VAX/VMS. By imbedding the priority and masking functions in the implementation
language, I can express the needed synchronization in abstract terms, while retaining
reasonable control over changes in priority.

4.4.1. Analyzing Programs That Use Locking Primitives

One can describe the mutual exclusion requirements of a system of programs by
inserting explicit lock and unlock operations on individual variables. In general this
technique is unacceptable, because two processes that lock the same set of
variables in different orders may become deadlocked This problem can be avoided
by imposing a strict ordering on variables, such that a process must lock the
variables it uses in a predetermined order. Because we intend to implement locks
with priorities, we know that the ordering implied by priority levels will impose a
locking order on the variables. Therefore, the excess generality of locking primitives
in this situation is harmless. In fact, the problem of implementing locking with
priorities reduces to the problem of assigning variables to priority levels. To lock a
variable, one raises the current priority level to the level of that variable.

Because interrupt routines must share a single call stack, an interrupt routine must
be allowed to run to completion once it has begun execution. To block an interrupt
routine, one must prevent it from being dispatched at all. So, to lock a variable X,
one must determine all the interrupt routines that might access X, and choose a
priority level sufficiently high to prevent any of those interrupt routines from being
dispatched

I assume that a variable will be locked if it is to be used I do not prevent the
przigrammer from using a variable without locking it nor do I detect such uses.
One can determine all of the variables a handler locks by forming the transitive
closure of the calls relation, and for each procedure in callAsH), mark the variables

-- WO i
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locked in that procedure as locked by handler R The priority level needed to lock a
variable V is the maximum initial priority among all handlers that lock V.

To implement a completely dynamic locking mechanism, one would add to the state
description of a process a locking set naming the variables currently locked The
procedures lock and unlock would change the set, and adjust the interrupt priority
level to fit However, this mechanism would be entirely too expensive for use in
the interrupt routines of an operating system Furthermore, a program in which the
priority of a statement could not be determined until run time, would be hard to
understand Therefore, I make the following restriction

If a variable V might be locked when control reaches statement S,
then variable V will be locked when control reaches S.

Later, when I propose a specific language construct for synchronization, I will be
making more restrictions This one simply limits the class of constructs I am
interested in supporting

We determine what variables might be locked at a given point P by interprocedural
data-flow analysis A variable V might be locked at P if there exists a path to P,
from the beginning of any handler or process, in which the variable is locked and
not subsequently unlocked This is nearly identical to determining the set of
available expressions at a point P, if one views lock(V) as defining V and unlock(V)
as killing V. The only difference is that for available expressions we require every
path to define the expression

However, we now discover that the restriction above might be too strong A
utility procedure that makes no reference to any shared variable might be called
from two places: one which locks some variable V, and one which does not The
restriction would require V to be locked for both calls. Instead, if we view each
invocation of a procedure as a separate copy of the procedure, the conceptual
problem disappears When we imbed the lock operations in a more structured
synchronization tool, we will see that actually making separate copies is unnecessary.

Having determined the set of variables that might be locked at each point P, a
compiler can generate instructions to adjust the priority levels at each lock and
unlock operation, such that the priority is always high enough to protect the locked
variables, but never higher than necessary.

4.4.2. Masking Individual Interrupts

Most device control registers contain a flag that determines whether or not the
device will interrupt the CPU when it completes a command An error recovery
procedure could obtain mutual exclusion for the device register by turning off
interrupts from that device. Although priority manipulation is a more common form
of synchronization, I wish to demonstrate that this forn, too, can benefit from
language support
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Consider a program containing both locking primitives and masking primitives (mask
and unmask). For a dynamic implementation one would add a masking set to each
process state descriptor. The necessary and sufficient priority at any time would
be the maximum initial priority of any non-masked handler that, if dispatched, might
lock one of the variables in the locking set. Each locking and masking operation
would recompute the priority to accommodate the changed set.

Again, we would like to make the priority determination at compile time. By
;nterprocedural data flow analysis we can determine the handlers that will have been
masked when execution reaches a given point P. We again view different
invocations of a procedure as separate copies, since one invocation might mask a
given handler, and another not For each invocation, if there is uncertainty, we
assume that the handler in question will not be masked Knowing the handlers that
will be masked at each point a compiler can generate the necessary IPL register
settings to protect the locked variables

4.4.3. A Synchronization Notation

Individual data locks are sufficiently primitive that many well-known synchronization
mechanisms can be built out of them For the purposes of this thesis I choose a
very simple one, just elaborate enough to support the programming example I will
be presenting I see great opportunity for further research to discover which
synchronization constructs can be simply implemented with priorities

I choose a critical region construct that names the variables the region is to
protect

crit ( A, B, C)
statement-sequence

end ait
I also allow an entire module or type to be declared a critical region:

module M is
requires ...
provides...

rit ( A, B, C)

end module
All critical regions that protect a given variable must mutually exclude one another.
A critical module or type is simply an abbreviation for making every procedure body
defined therein critical. Critical regions have dynamically nesting scope. Consider
procedures P and Q, where P calls Q. Any variables protected by a region spanning
the call of Q shall be protected for the duration of the call as well:
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ver A, B
proc P Is

rit ( A)

calla

end writ

proc Q
writ (B 

end rit
The variable A is protected throughout each invocation of P, even while P is waiting
for the completion of C.

To represent masking of interrupts from particular devices, I choose to define a
construct to defer a conditio. Levin's general condition mechanism allows a
handler to be enabled for the duration of any statement, written as follows-

<statement> [condition-name : handler-body]
A handler enabled this way supercedes handlers enabled farther down the call stack.
Also, if there is a handler statically enabled for the same condition, this handler
takes priority over the other handler. I now define the operation defer by the
following rewrite rule:

<statement> [defer condition-name J
becomes

begin
boolean flag := false;
<statement> [condition-name: flag := true];
If flag then raise condition-name

end
This rewrite rule describes what a typical device actually does when it is masked
upon completing a command it sets an internal flag; if that flag is set when the
device is unmasked, it sends an interrupt

44.4. Implementing Critical Regions

Critical regions could be implemented dynamically by maintaining a multi-set for
each process listing the variables currently protected by that process, and locking or
unlocking individual variables as appropriate. However, critical regions can easily be
translated directly into priority manipulations

The function callso") tells which variables a handler locks, by revealing which
critical regions it enters. The priority class of a variable follows from this
information as before. The priority of a given critical region is determined from the
priority classes of its variables and the priority of the dynamically enclosing region.
The entry code for a critical region shall push the current IPL value on the
execution stack, and replace it with a higher priority, if needed, to protect the
variables of the region Exit code simply restores the old value of the IPL register.

.. ..OE... ... .. . ..M -J+ , '-z''' ,+ . y,:- .,i - , * .
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This implementation of critical regions removes the need to make separate copies
of a procedure that is invoked from different locking contexts. Each caller of a
given procedure will set the IPL register sufficiently high to protect the variables
locked prior to the call; the called procedure will maintain a priority at least that
high.

A system designer may need to know at what priority each critical region actually
runs, in order to assess response time for time-critical handlers. A software
development control facility could easily display the determined priorities in the
source text for this purpose. Lacking that, a language designer could ask the
programmer to specify the priority of each critical region, and have the translator
verify the mutual exclusion For the remainder of his chapter I will specify the

priority of a region in the source text whenever it is significant.

4.4.5. Implementing Defer

An interrupt module will define the operations msk and unmask if the device
being described is to support the defer construct To allow for nested defer
regions, the translator would supply a counter for each process and each handler,
to record the number of dynamically nested defer regions entered for a given
handler by the given process.

Defer regions also affect the priority computations, howaver, and here we
discover a minor unpleasantness, Although we can determine, for each critical
region, exactly which handlers are certain to be masked when executing in the
region, we must either generate separate copies of procedures invoked from
different masking contexts, or assume the handlers in question are not locked

4.4.6. Coordination with Process Multiplexing

The design described so far will fail for VAX if the operating system's process
multiplexor suspends the currently executing process and begin executing another
during any critical region, because the interrupt priority level is maintained on a per-
process basis. VAX/VMS deals with this problem by doing context swapping at a
priority below all device-handling priorities, so that all critical regions that involve
devices will block context swapping as well. To incorporate this idea into the
current design, we specify that every critical region will execute at a priority at
least as high as the context switching priority, so that a critical region can
synchronize ordinary processes even if no interrupt handlers are involved.
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4.4.7. Nested Monitor Calls

Monitors were involved recently in a controversy surrounding the *problem of
nested monitor calls". The debate surrounds the question of whether a process
calling monitor Y from within monitor X should be thought of as "leaving" monitor
X If not, then deadlock can result should another process call X from within
Y. Parnas argues that the answer to the question depends entirely on the individual
program [Parnas 78b]. Modula avoids this alleged problem by forbidding all calls
out of an interface module. This means that all communication between handlers
must pass through ordinary processes, which is unacceptable.

A critical module, as I have defined it. strongly resembles a monitor. Let us
consider how it would answer the question for the following example:

module M Is
aquires ConsoleReceiver
requires Q
provides P

var A
srit ( A, priority = ConsoleReceiver.priority)
handler for ConsoleReceiver.condition Is .

proc P =

caol 0

end proc P

end mole M

module N is
provides Q

ver B
srit ( B, priority = ContextSwap.priority)
proc Q = ...

end module N

proc R =
call P
call 0

end proc P
Assume that the interrupt priority of the ConsoleReceiver is 14, and that Q is not
called by any handier, directly or indirectly. (This makes the priority for N be the
context switching priority, say 2). All of the code within module M would execute
at priority 14 or higher. When procedure P calls procedure Q, priority would
remain at 14. However, because the handler for ConsoleReceiver.condition does not
call 0, the priority class for B is not affected by it. Thus, when R calls Q, the
priority at which Q is executed can be lower than 14.
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Suppose that the priority class of N were 10. rather than 2, because a new
handler at priority 10 uses 0. That handler could not enter N during the execution
of P because the IPL would be too high Furthermore, no handler could enter P
during the execution of Q, because that handler's initial priority would be less than
or equal to 10, and therefore it would not be dispatched

In general. a process executing in one critical region may enter another critical
region without leaving the first and not risk deadlock. The priorities used to
implement the regions define a locking order for them, so that there cannot be a
deadly embrace.

4.5. Device Drivers for VAX

VMS allocates four hardware priority levels and four software priority levels to
I/0 handling, in addition to one level of each f .r the interval timer. The general
design paradigm for interrupt handling is that a device driver running at a software
interrupt priority level maintains the request queue for a device, passing one
command at a time to the hardware priority level. The hardware interrupt handler
simply copies the status information into the command description block, and puts
that block in the driver's queue of completed commands. At a still lower software
interrupt level, VMS maintains a queue of all completed user requests, sending the
completion notices on to the appropriate processes.

To illustrate device communication, I shall describe a subsystem that provides a
command to initiate I/O transfers, and a queue of completed requests. A request is
described in a Transfer Request Block (TRB). The overall structure of the subsystem
is as follows-
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module 10 Is
acquires loader.devices
provides IOPostQueueTransferRequest TRO

module lOPostaueue is
acquires Softnt4
provides IODone, SendlOPost, GetlOPost

module lODoneQ 11 is
acquires Softlnt 11
requires DiskComplete, MagTapeCompiete.
provides IODone 11

module lODoneQ 10 Is . . .
module lODoneQ9 is ...
module lODoneQ8 is...

Module DiskManager is
requires lODoneQ 11, SendlOPost
provides DiskSubmit DiskComplete

type Driver(t Disklndex) is
acquires Devices.DiskController
requires IODone 11
provides Submit, Complete

var Cont array [Diskindex] of ref driver

module MagTapeManager is ...
module NetworkManager Is...
module TerminalManager Is ...

The IOPostQueue collects the completed requests, raising a condition each time a
new entry is placed in the queue. The type TRB has all of the data for a request
plus link fields for placing it in queues. The procedure TransferRequest examines
the request and routes it to the proper device driver. The l0DoneQ's administer
four software priority levels for processing I/O completions. The individual
hardware interrupt handlers each place the completed blocks in these queues, to
minimize execution time spent at the hardware priority levels, thus reducing the
chance of a missed interrupt The disk manager contains an array of controllers,
with a separate request queue for each.

4.5.1. Transfer Request Queues

The VAX/VMS hardware supports four indivisible operations on doubly linked lists.
insert and remove, at head or tail. They might be defined in a standard prelude as
follows:
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type DequeDef initionE T: typeJ
provides deque. d"qet value

Inserti-ead. lnsertTail. RemoveHead. RemoveTail
InResults, RemnResults

type Etag: [member, header)
type EUnion ( tag Etag ) = record

var head, tait ref ELnion Iany)
case tag of

nmember [var value: T)
header 0

end record

type deque = EUnion (T, header)
type deqeft = EUnion CT, member)

type inResults = wasempty, wasnonempty 3
type RemnResults = wasempty. nowempty, nonempty 3

proc Empty ( d deque ) b: boolean
proc Insert4ead ( d deque. e: deqelt )rinResults

proc InsertTail (d: deque, a deqelt )rInResults .

proc Removel-ead ( d: deque, earef deqet ) rRemRssults=

proc RemoveTail ( d: deque, eref deqelt ) rRemnResults-.

end module QueueDefinition
The module is generic in the type of value to be stored in elements of the deque.

Here are the details of the transfer request queue structures:
Type TRBTag = [disk, magtape, network, terminal A)

Type TRBdata Is record

case tag TRtBtag of
disk: record

var controllerDiskindox
var command
var status
end record

magtap:...

end cs
end record

var 1O0usueDef: DequeDef inition [TRBdata)

type TRB = IOQueueOef.Deqelt
There is a variant of the TRBdats type for each type of device. The disk request
block indicates which controller is to receive the request, as well as containing
fields for the command to be given and the status information to be received.

lOQueueDef defines a particular kind of deque, whose elements have a value of
type TR~dMta This deque is used throughout the module 10. In particular, the
deque element type is renamed TIRB.
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Both lOPcvstQueue and lO~oneQ. lO0ongO 1 are all implemented with deque'.
module lOPostQueue Is

acquires Softlnt4
requires 1O0ueueDef, TPB
provides lODone, SendiOPost. GetiOPost

rename lO0one = Softlnt4

var IOPostO.~ Deque

proc SendlOPost I C: TRB)
lnsertTail ( lOPostQ, C)
raise lODone

proc GetlOPost (C: TRO PRem~lesults =
Removel-ead ( IOPostQ, C)

end module IOPostQueue

module lODoneQ 11 Is
acquires Softlntl 1
requires DiskComplete. MagTapeComplete,. . .
provides lODone 1

var DoneQ. Deque

proc lODone 1 1 IC: TRS)=
lnsertTail ( DoneQ, C)
Raise Softlntl 1

handler for Softtntl 1
var C: TRB
while not Remove-ead( DoneQ, C I wasempty do

case Ctag of
Disk: DikCmlete (C) I
MagTape: MagTapeComplete C C

end case
end handler

end module lODoneQ 1

module lODoneQ 10 I. ...
module lODoneQ9 Is..
module lODoneQ8 Is..

IOPostQueue uses priority level 4, and signals lODone CSoftlnt4) for each completion.
Typikslly the procedure GetlOPost would be used inside a handler for 10done, which
would loop until the queue was empty. Because the hardware queue instructions
are uninterruptible. no critical sections are needed to synchronize Send and Get

lODoneQ1 11 maintains a queue of completed TRB's for disk, magnetic tape, and
network controllers. Its handler drains the queue each time it is invoked, using the I

tag field of each TRB to determine which completion procedure to invoke. Again,
no critical regions are needed. lODoneQ 10 . ODoneOB would have the same
form, for different devices.
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4.5.2. Disk Orivers

Recall that module devices defined a vector of hardware disk controllers. Each
controller driver maintains a single sorted list of transfer requests. To simplify this
example I have used a strict FIFO scheduling policy. Each driver maintains a flag
indicating whether a command is in progress, and a variable containing the TRB being
processed

type Driver(l: Disklndex) Is
acquires Devices.DiskController
requires IODone 11
provides Submit Complete

var DiskQueue: Deque
var Current TRB
var Busy Boolean := False

proc SelectCommand ( . driver) =
ver C: TRB
crit ( Busy. priority = Softint 1 .priority I
If RemoveHead (DiskQueue, C) = wasempty
then Busy := false
else Current := C

DiskController I].Command := C.Command
end crit

handler for DiskController[l].condition is
Currentstatus := DiskController[IJ.Status
IODone 11 (Current)

proc Complete ( . driver) =
If << error >> then <<retry>> else
SendlOPost ( Current )
Selectcommand

proc Submit ( D. driver, C: TRB) =
InsertTail ( DiskQueue, C)
crit ( Busy, priority = Softlnt I 1.priority I
If not busy then

Selectcommand
and crit

end type driver
The driver synchronizes initiation, interrupt handling, and completion without using
critical regions, by programming them such that only one can be underway at any
one tim

" The procedure SelectCommand removes a TRB from the queue,
records it, and starts the controller.

" When the controller interrupts the CPU, the handler copies the status
register into the TRB, and moves it to IODoneQ 11.

" IODoneQ 11 passes the TRB to the procedure Complete, which either
retries it (if it failed) or starts a new one.

However, critical regions are needed to protect the Busy flag for each driver.
Since the interrupt handler does not lock Busy, the priority needed to protect Busy
is that of the handler for IODoneOll, namely 11.
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To round out the module DlskManager. we declare a vector of drivers, and the
routines DiskSubmit and DiskComplete to route TRB's to the appropriate drivers.
TranferRequest is likewise straightforward

ver Cont array (Diskindex) of ref driver
Wit
for I :=DiskIndex do Cont1 :l= new driveri)
end Init

pro. DiskSubmit ( C: TRB)
Submit ( Cont (C-controller], C

proc DiskComplete (C TRBI
Complete ( Cont[Ccontroller)

end module Disk Manager

module MaglTapeManager Is ..
module NetworkManager is..
module TerminalManager Is..

proc TransferRequest ( R TRB)
caoo RtTRBtag of

diskc DisikSubmit R)

eond case

Having discused the individual modules, we now juxtapose them in an abbreviated
description of the entire module 10.
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modulo 10 Isladdece
acquires lae~eia
provides lOPostQueueTransf orRequest, TRB

module 10PostQuoe Is
acquires Softlnt4
requires 0usueDef, TRB
provides lO0one, SendlOPost, GetlOPost

rename lODone = Softlnt4
var IOPostQL Dque
proc SendlOPost f C: TRB)
proc GetlOPost ( C TRB ):RemResults=

end module I0PostQueue

module IODoneQ 11 is
acquires Softlnt I1I
requires DiskComplete. MagTap.Complete,..
provides lO13one 11

var DonoQ Deque
proc lODone 11 1 C: TRB)..
handler for Softlnt 1

end module IO0oneQ 11

module lODonsQ 10 is ...
module lODoneQ9 Ins...
module iO0oneQ8 In ...

Module Disk~ianager Is
requires lODoneO 11, SendlOPost
provides DiskSubmit, DiskComplete

type Drivert DiskIndex) Is
acquires Devices.OtskController
requires lODone 1
provides Submit, Complete

var DiskQueue: Deque
var Current TRB
vor Busy Boolean := False
proc SelectCommand ( D. driver)
handler for DiskController [I).conditioni is
proc Complete (D0 driver)
proc Submit (Da. driver, C: TRB)

end type driver
var Cant aray [Diskindex) of ref driver
proc DiskSubmit ( C: TRB ) =...

edproc DiskCormplete ( C: 1'RB)
edmodule Disk Manager

module MagTapsManager Is ...
module NetworkManager In ...
module TerminalManager Is..

proc TransferRequest IR: TRB) .

end module 10
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4.5.3. Ref lemtion

The example from VAX/VMS actually says as much about when not to use explicit
synchronization as about when to use it The VAX architecture helps considerably in
supporting interrupt handiing the conditions and critical regions simply imbed the
obvious program structures in a strongly typed notation. Had the queue operations
not been indivisible, they would have been placed in critical regions. In such
situations, the priority computation techniques would be very helpful in assuring
mutual exclusion. The critical region construct is a significant improvement over both
Modula and Concurrent Pascal, in that it allows direct communication among various
device drivers and interrupt routines, via dynamically nested critical regions.

Still, one might argue persuasively that the effort of putting a specialized feature
into one's implementation language solely for this purpose, would not be
economically justifiable. For any individual operating system, this might well be true.
Nonetheless, modelling interrupts as conditions and deriving priorities from locks
provides the formal basis for verifying system properties, even if the translation is
done by hand In section 7.4 we will discuss implementation techniques that might
bring costs within acceptable limits for specific situations.

4.6. Summary

We have introduced hardware and software interrupt facilities into system
descriptions as support for strongly type conditions. We have integrated the IPL
register into the implementation language in support of critical regions, as a
convenient special case of data locks. The proposed methodology contributed to
this system design in the following ways:

" The device registers were declared in an environment having access to
the hardware I/0 memory, then acquired by their managers.

" The acquires construct allowed exclusive access by each device
manager to its device, without unnecessary levels in the contains
hierarchy.

" The language system specifies the form of interrupt modules, but
allows the operating system to supply the contents.

" The language system can either translate critical regions into priorities,
or verify that the indicated priorities are sufficient at compile time.

" The interrupt vectors in the software control block can be initialized
during system generation, rather than during startup, without requiring a
central list of all handler&
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CHAPTER 5

BOOTSTRAPPING

This chapter describes the design of a bootstrapping mechanism for a DEC
VAX-1l operating system, similar to the mechanism actually used in VAX/VMS. The
design identifies the execution environments involved in the bootstrap sequence, and
describes the mechanisms that connect them, to configure, load and start the
operating system The design is novel in the following ways:

* It describes segment layout using an abstract data type, layout.

" Each environment manager initiates its environment by signalling a
startup condition.

" Each system module can place configuration code in the system
generation environment

" Address translation, primary memory allocation, and demand paging
facilities conform to the same modularity and hierarchy in the bootstrap
sequence as they do in the running system. In particular, the
permanent environment will load and run correctly whether or not the
demand paging facility is present

" The "trick" used to turn on virtual memory mapping without abrupt
discontinuity in control flow, is confined to a few lines of code in a
startup condition module, where its (rather peculiar) connections to
other system components can be identified.

" The mechanism for disposing of startup code is embedded in the
startup condition's termination protocol, where its connections likewise
can be scrutinized

Although one purpose of the case study is to demonstrate tha the methodology is
effective for real systems, the reader would quickly tire of the bookkeeping details
present in a complete implementation Therefore, I give only the specifications of
certain modules.

RA

. PAi3 511E-MOT flih,



132

5.1. Segment Layout Description Language

To describe the paged environments of VAX, we shall need data abstraction to
describe how segments are arranged in address spaces. Most linkers use some
form of sequence or tree language to describe layout (see, for example, RSX- 11
Overlay Description Language ERSX 78]). The language described here is sufficient
to support the loading example that follows, and furthermore can be generalized to
support intricate combinations of overlapping address spaces.

Layout :: Leaf
LayoutVariable
(Layout {,Layout I

Leaf z= Segment I
AddressConstant I
Pool

LayoutVariable -= Identifier

Two leafs occurring consecutively in a layout are to occupy consecutive virtL. I
addresse& The attributes of a segment are associated with the segment itself, not
with the layout (or layouts) in which it appears. An address constant appearing in a
layout specifies the endpoints of the leafs adjacent to it. A pool is a shorthand
declaration for both a vector-of-storage and the segment in which it resides,
where the size of the vector is determined by the layout in which it occurs (A
pool may appear in exactly one layout)

Layout variables obey "object semantics" when they appear in other layouts, thus
providing a nvchanism by which two layouts may share sublists. Any individual
layout may only contain one occurrence of any particular leaf, but the collection of
layouts in a system form a forest, with common subtrees. Layout variables are also
a forward reference mechanism a layout appearing early in a system description
can include a previously-declared layout variable, as a place-holder for segments
that have not yet been declared.

This language definition is sufficient for the example of this chapter. More
generally, however, a layout could be any directed, acyclic graph Multiple
occurrences of a segment only constrain the extent to which that segment may be
inter-linked with other segments. In computer systems with instruction sets
supporting PC-relative addressing, two segments may be linked relative to one
another if they have a unique least common ancestor. (A common ancestor of a
pair of leafs is least if none of its descendants are common ancestors of the pair.)

I
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5.2. Startup Conditions

Exception handling mechanisms for startup require close cooperation between the
operating system and the language system The former must supply the execution
environment in which the latter elaborates a procedure invocation. Here I shall
propose a simple model for the interaction, sufficient to characterize the VAX
solution, but not a detailed proposal for a real system

Executing an exception handler is very much like executing an ordinary procedure
call. The main differences are that the procedure address must be retrieved from a
set of eligible handlers (rather than being known at compilation time), and that the
procedure receives parameters from both the signalling and the enabling contexts
These differences might be implemented by additions to the procedure invocation
protocol such as instructions to set up and tear down the interpretation stack
frane In general, one might expect the exception protocol to add instructions

1. Before transferring to the procedure

2. Just after transferring

3. Just before return

4. After return

In multi-environment systems the protocol might also effect a transfer to another
execution environment For example, a context switch operation in general can be
decomposed into the steps:

* S-ve context

e Change "Current Context' register

9 Load context

These steps would be carried out at handler entry, then reversed at handler exit

Since each startup condi,ion is (potentially) specialized to a particular environment,
we shall define the protocol for each startup mechanism in the module that declares
the condition, as a pair of parameterless procedures named Init and Quit.

For example, the condition handler to start up a bare machine would have to set
up the execution stack pointer. If the handler finished executing without some
ordinary process taking over the CPU, the handler might execute a "busy waiting"
loop waiting for device interrupts. Here is the condition module:

-.
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Condition Module Startup is
provides

conditionO
const Priority = MinPriority
proc <host> Set ( StartingPoint address )

var ExecStack: Stack (MinDepth) of StorageLocation
proc Init =

CPU.StackPointer := ExecStack.TopPointer

proc Quit =
while true do { Blink console lights' I

One additional detail of startup handlers must be mentioned here. Since oftentimes
a loader and the segment it loads reside on different storage devices, the starting
address of the code being loaded is normally stored with the segment rather than
with the loader. To avoid relinking, the starting address is usually stored at some
known location (such as the first one!) in that segment We shall refer to that
location as the transfer vector of the segment, and treat it as a component field of
the type segment.

5.3. Bootstrap environments for VAX/VMS

The major components of the VAX system address space are linked together by
only a small number of pointers. This allows the size of many tables to be
configured during bootstrapping, including the system page table itself' VAX/VMS
accomplishes this by executing a substantial piece of system code before enabling
memory mapping. That code interrogates the operator for changes in system
parameters, then sets the sizes of the appropriate tables, allocates the system page
table, reads in the kernel code and data, and enables mapping. Further initialization
code, executed with mapping enabled, resides in a separate segment that is
discarded afterwards. The distinct execution environments of VAX/VMS may be
characterized as follows:

1. Memory configuration environment ROM code in the memory
controller arranges the mapping from physical addresses to working
memory modules in a convenient pattern.

2. VMB environment essentially a bare machine, except that the floppy
disk drive is known to contain a directory-structured set of files. The
program VMBoot constructs a bit map identifying the working pages of
the physical address space, provides various device communication
services to higher levels, sets up the SysBoot environment, and reads
in its program segment from one of several permissible bootstrap
devices.

3. SysBoot environment like VMB, except that it presumes the bit map
and device services. The SysBoot environment is used both by
SysBoot (the VMS loader) itself and by various diagnostic programs.
The program SysBoot configures the system tables, initializes the
system page table and page frame management data structures, reads
in executive code and data, enables memory mapping, and transfers
control to the executive initialization code.



135

4. Permanent environment those portions of the operating system that
are permanently core resident, including process multiplexing, paging,
swapping, and other facilities

5. System environment provides access to all system segments except
the "throw away" segment Contains no initialization code per se. Can
be entered by trap, interrupt or Change Mode instruction while
executing either on the interrupt stack or in a full process context

6. Init environment uses the interrupt stack, and virtual memory (system
space only), including all of the memory initially addressable. The
initialization code resides in a small "throw away" segment that is
removed from the system page table when initialization is complete.

7. Multi-processing environment large fixed-size set of process
contexts, with full synchronization facilities. All system activities
except interrupt and context swap code execute within processes,
either by system call from user processes, or from dedicated system
processes

The program skeleton on the next page shows the relationships between
environments 2 through 7. At this point we depart from the "rear VMS
bootstrapping sequence and discuss instead my simplification of it For example,
the skeleton shows a startup condition for several environments, whereas VAX/VMS
simply transfers control from one loader to the next In preparing this case study I
have taken care to confront each step of VAX/VMS bootstrapping, to see whether
it could be incorporated into my redesign. The abstraction presented here includes
the major design obstacles I uncovered, but suppresses many of the ordinary
chores.
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1 environmnent module VMBEnv is
requires HostEnv, linker. VAXDevices;
provides var AdSac AddressSPace. var PR: ProgramnRegion

condition module VmbStart procchost> download

Module VMBoot
requires llostlnv, VMBEnv
provides device drivers. var PtnBits: MemoryPageAllacation~itstring

Ienvironment module SysBootEnv
I requires VmnbEnv
I provides var AdSpc: AddressSpace. vsr PR ProgranRagion I

condition module Sys~ootStart

Module Sys~oot
requires llostEnv. SysBoot~nv. VAX.Devices
provides

module SptManager
provides type PermSdg. var SptSeg: PermSeg

var SptMap: layout var Spt PageTable
proc lnitSptAddressSpace

vsr SysPerm, lntStkSeg. ScbSeg. lOSeg. LockedPoolSeg. GPTSg PermSeg

environment module PermEnv

I provides var AdSpc: Address Space I
I ~(SptOANage.Map. ( Permanent segments )

I va PR Program~legion
={ subset of permanent segments )

type PagedSe. war Pt nSeg. SysPtidSeg- PermSeg
var Sy&SvvapSeg6 ThrowSeg. PagedPool: PagedSeg
vsr SysSWgoolA. Bhmc*Slotslayout

Ienvironment module SysEnv
I provides var AdSpc: AddressSpace :% (SptManager.Map,

( alt segments except ThrowvSeg ) ) I
I var PR ProgramnRegion {all available segments I

9,evironmynt module initE-4v
I provides var AdSpc AddressSpace

I C( SptManager.Map. ( all initial segments )
Ivsr PR PrograrnRegion {ThrowvSeg1
I proc ThrowAway
I condition module Syslnit

handler<SysBootEnv> for SysflootStart
-- Build initial segment list
-- Configure LoadSized segments

initSptAddressSpace
-- raise Sysinit

module ProcessManager
requires SptManiager. Host~nv, SysEnv. PermEnv
provides

environment type Process

This overview shows three significant features that we shall investigate:
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" Three environments supply startup conditions that form the
bootstrapping chain

" The three mapped environments, PermEnv, SysEnv, and lnitEnv, all
originate in the SysBoot module, which both constructs the necessary
data structures initially and supplies the routines and access functions
needed to manipulate them during normal opertion.

" The system page table and the permanent environment are introduced
without reference to demand paging, even though the permanent and
paged segments all reside in the same system page table.

5.3.1. General properties of the loaders

Each loader in the system is responsible for accumulating a set of segments on
the host machine, identifying a starting address within that segment set, transmitting
the segments to the target machine, loading them into the execution environment
and transferring to the starting address. Each loader uses the module Linker to
implement the types Segment, Layout, and AddressSpwce. We shall assume tha the
type segment results in a token that can be used both on the host machine and the
target machine to locate the segment on the bootstrapping disks.

Module linker
provides

type SegmentAttribute = Absolute,Volatile,LinkSized,
LoadSized,Uninitialized

type SegAttrList = set of SegmentAttribute
type segment( attr- SegAttrList
type layout
type AddressSpace is record

segments segmentset
Map: layout

With these types, a loader can use a layout to determine the base addresses of a
set of segments, cause them to be linked, download them to the bootstrap medium,
and load them on the target machine. Once in place, the loader uses a startup
condition (implemented with a transfer vector) to initiate execution of the program it
has loaded The handler for that condition would be the next loader in the
bootstrapping sequence. Thus the primitive bootstrap function provided by the VAX
"intelligent console" loads VMBoot into VMBEnv and signals VmbStart. VMBoot loads
SysBoot into SysBootEnv and signals SyslootStart. SysBoot constructs the system
page table, creates the configured system tables, loads the operating system code
and data segments, and signals Syslnit. To illustrate these concepts, here is a more
detailed description of the module VMBoot
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Module VM/oot
requires VMBEnv
provides device drivers, SysBootEnv, SysBootStrt, PfnBits, MemoryPool

var<VmbEnv> PfnBit&- bitstring[0 . PhysicalCoreMax-1)

environment module SysBootEnv
requires VmbEnv
provides AdSpc, PR, MemoryPool

var Program segment
var MemoryPool: pool
var AdSpc: AddressSpace

AdSpc.Map = (VmbEnv.AdSpc.Map, Program,
MemoryPool, [PhysicalCoreMax)

AdSpc.Segments = Leaf s(AdSpc.Map)
var PR ProgramRegion (Program)

condition module SysBootStart is
requires Program
provides condition, priority

condition <SysBootEnv>O -- handlers must reside in SysBootEnv
proc<host> Set ( startingpoint address ) =

ProgramTransferVector := startingpoint
end module SysBootStart

end module SysBootEnv

proc<host> DownLoad =
-- Link Program and MemoryPool using AdSpc.Map

Write Program to disk
VmbEnv.Download

handler<VmbEnv> for VmbStart =
-- Fill in PFNbits, checking pages for errors
-- load SysBootEnv.Program into its base address
AbsoluteGoTo(ProgramTransf erVector)

VMBoot implements the environment SysBootEnv, providing it with an address space,
a program segment, a storage pool, and a startup condition The downloading
procedure links the program segment and places it on the boot disk. The loading
procedure is implemented as the handler for VmbStart During translation some
subsequent module enables a handler for SysBootStart which causes the language
system to call SysBootStartSet, recording the starting address in the transfer vector.
After the loader reads in the program segment, it can fetch and go to the starting
address

5.3.2. Modularity vs. Bootstrapping

The SysBoot procedure must carry out numerous bookkeeping details on behalf of
several different modules of the operating system Therefore, we must consider it
to be an integral part of the operating system, rather than a separate module. In
the proposed structure, the SysBoot module implements the system page table, the
page frame allocation module, the demand paging mechanism for paged system
segments, and all of the storage allocation zones in the system virtual address
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space. Code to initialize these structures resides in the SysBoot environment

whereas code for conventional manipulation of these structures resides in the three

mapped system environments.

Although not part of this design, if subsequent system levels needed to perform

initialization in the SysBoot environment, the SysBoot module could define another

condition in that environment, and signaP it from within the handier for SysBootStart

5.4. Address Translation, Page Frame Allocation, and Demand Paging

These three services interact closely in VAX/VMS, as in most operating systems.

Inter dependencies among them can foil attempts to maintain a hierarchical system
structure The interaction is especially apparent during bootstrapping, where

" page frames are allocated to contain the address translation and
demand paging facilities

" address translation is set up for the page frame allocation and demand
paging facilities

" the page frame management and address translation tables are filled
with information needed by the page fault handler.

VAX/VMS keeps the mechanisms reasonably cleanly separated, but makes no claim

of hierarchy. The description I propose generally reflects the VAX/VMS structure,
but also admits the possibility of hierarchy. ( A detailed design would be beyond

the scope of this chapter.)

5.4.1. Table Sizes

In VAX/VMS the sizes of the address translation table and page frame management

table depend upon one another. Both tables occupy physical page frames (affecting
the page frame management table) and virtual pages (affecting the system page
table). A good system design would make the system page table exactly big

enough to translate the system address space, and make the page frame table
exactly big enough to keep track of those page frames that are not occupied by
the resident monitor. We shall see how VMS approximates this ideal, and how it

could be accomplished while still maintaining separation between the two modules

The size of a VAX page table is 1/128th of the size of the address space it is
mapping. That address space contains four classes of segments:

1. System page table (SPT)

2. Page frame table (PFT)

3, other Permanent Segments PS)

4. Non-Permanent segments (MPS)

L IN-
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Using the above acronyms loosely to ref or either to the segments themselves or to
the sizes of the segments, we can write the formula for SPT as

SPT = r(PS + NPS + PFT + SPT)/ 1281
The VAX page frame table contains 18 bytes for every (512 byte) page of
dynamically allocated storage. That storage is the amount of primary memory left
over when all of the permanent segments have been allocated, so

PFT = rioreMax -PS -SPT -PFT) *I1/5121
The first recurrence relation can be resolved as

SPT= rPS + NPS + PFT)/ 1271
but the second one is more difficult Rather than an analytic solution. DEC chose a
conservative method, namely computing the size of the PFT before expanding the
SPT to accommodate the PFT itself. However, a more exact solution may be
obtained using a polynomial root-finding method, such as bisectior

Proc PreSetPft =
I CoreMax. PS, NPS, PFT, SPT in units of one page
Function NewSpt = (PS + NPS + PFT + 126 DIV 127
Function NewPft = ((CoreMax - PS - SPT ) * 18+529) DIV 530
PFT :0
SPT :NewSpt
PFT High :=NewPft -- Biggest possible PFT
SPT NewSpt
PFT : Low := NewPft -- Smallest possible PFT
While Low < High do begin

PFT :=Mid := Low High) DIV 2
SPT : NewSpt
If ( Coremax - PS- SPT - PFT) > I PFT* 512) DIV 18 then

PFT : Low : Mid + I
else High Mid
end

The initial value for High, above. is the size for PFT used by DEC The difference
between High and Low initially could be as great as 10 pages when VAX becomes
available with a gigabyte of physical memory, but for presently available systems the
difference would be at most one page, and there might be no difference at all.

Nonetheless, to preserve separation between the address translation and page
frame management modules, we would like to conceal the amount of storage
overhead each module introduces Let the SptMnager provide a function whose
value is the difference between the size of the physical memory and the combined
sizes of the permnently resident segment This information can be computed
before atiually allocating space for those segments, as long as the individual sizes
have been specified Should the size of any segment be changed (eg. the PFT
segment). the value of that function would change correspondingly

The bisection procedure would look like this
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Procedure SetSize ( S: segment; size: integer ) { provided by SPT manager }
Function FreeSpace: integer f private to SPT manager I
Proc PreSetPft =

Function NewPft = ( ( FreeSpace + PFT ) * 18 + 529 ) DIV 530
SetSize(PTseg, 0)
High := NewPft -- Biggest possible PFT
SetSize( PFTseg• High ) -- VAX/VMS stops here
Low := NewPft -- Smallest possible PFT
While Low < High do begin

Mid := (Low + High) DIV 2
SetSize(PFTseg, Mid)
SPT := NewSpt
If FreeSpace > ( Mid * 512 ) DIV 18 then

Low := Mid + 1
else High := Mid
end

SetSize(PFTsegHigh)
By this technique we can accommodate the discrete jumps in the size of the SPT
without making the PFT manager aware of its implementation. Should the system
page table be redesigned, no further changes to the PFT manager would be needed
The conservative solution used by DEC is embodied in the first three steps of the
program above.

5.4.2. Keeping Demand Paging Separate

Having disentangled the size of the SPT from the size of the PFT, we can

consider how to keep the demand paging data separate from the address translation
and storage allocation information Fortunately, data abstraction provides a
straightforward solution. Both the SPT and PFT are vectors of records, where part
of the contems of each record is solely for the paging mechanism, and of no
interest to the table manager (except for its size). Therefore, we define two types,

SectionTablePointer and PfnData, which are required by the SPT and PFT modules,
respectively, but only so that they can be embedded in records. The SPT manager

embeds the section table pointer in a variant field of a page table entry, indicating
which segment contains the missing page. The page frame table manager embeds
the PfnOata in a dynamic record type, providing a pool of such records (1 per page
framel, with facilities for allocation, deallocation, and building doubly circularly linked
lists.

II
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type SoctionTablePointer is forward -- only fth size is needed by PTE

type PageTableEntry is

case valid boolean of
true: ...
false: STP SectionTablePointer

type PageTable( s: size I=array[ -0. s-1) of PageTableEntry

Module SptManager
requires PageTable, PageTableEntry, PfnBitsManager
provides

type PermSeg
var SptSeg :PermSeg( (LoadSized, Uninitialized) I
var<SptSeg> Spt PageTable

Type PfnData is forward

module Pfn~sa~ese
requires Pfn~itsManager, Sptanager, Pfn~ata
provides

var PfnSeg PermSeg ( (LoadSized.Uninitialized)
type Pflndox
type PfnOescriptor is record

succ, pred: Pf Index
data: Pfr~ata

var PfnTable array [PFlndex) of Pf nDescriptor
type PfnList -- linked list of PfnDescriptor
proc AllocPfn( Size: integer YPfnList
proc Free ( L PfnList)

module PagedSegManager
requires Pfnoastalase, SptManager, SegDesc
provides

type PagedSeg
vWr SysPhdSeg: PermSeg (LoadSized, Uninitialized)
type SectionTablePointer
type PfnData
type SectionTable(var PT.PageTable)
var<SysPhdSeg> SysSectionTable: SectionTable(Spt)

With this data organization, the permanently resident segments are protected from
being swapped, in two ways:

I. The paged segment manager does not have access to their segment
descriptors (indeed, their descriptors are not addressable in any of the -

mapped environments)

2- The pages that the permanent segments occupy are excluded from the
Pfn~ataBase.

When a page fault occurs, the paging module can examine the SPT to find the entry
for the fasulting page. and use its SectionTablePointer to find the paged segment in
which the page resides. The page replacement algorithm would select from lists of
occupied page frames, all of which would by definition comes from the PfnDataBase.
Therefore, the paged segment manager would never swap out a page from a
permanent segmnent (Some page replacement schemes periodically scan the entire
page table, collecting usage information from every entry. Such a procedure would

now".
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use the page frame number in the page table entry as an index into the PfnTable,
discarding information on pages beyond the bounds of the table)

54.3. Putting the pleces together

The modules as described above obey a total ordering according to the uses
relation, except for the two forward type definitions. (Even these could as well
have been generic parameters to the modules) The SPT manager provides the
system page table. the ability to create permanently resident segments, and a pool
of leftover space. The PfnDataBase resides in a permanent segment, and converts
the leftover space into a pool of page frames. The PagedSegment manager uses
the SPT and page frame pool to implement demand paging. To complete the
analysis, however, we must examine the startup sequence, to see whether the
design is feasible, and to see whether the modularity is preserved

The sysboot loader must perform the following tasks:

1. Set the sizes of configured segments

2. Allocate storage for permanent segments

3. Build the system page table

4. Initialize the Pfn pool

5. Allocate storage for paged segments

6. Load the code and data segments from disk

To accomplish them in an orderly fashion, we group them according to the modules
they affect, and find that both modularity and hierarchy can be preserved

The system page table, which is lowest in the hierarchy of the three modules
considered, must be initialized after all other segment sizes are set, and before the
Pfn pool can be constructed Therefore, the SPT manager supplies an initialization
procedure that computes the size of the SPT, allocates space for the SPT segment
and all other permanent segments, and fills in their page table entries:

Proc StartSpt
fprecondition: all segment sizes other than SptSeg

have been set)
Determine SPT size from SptManager.Map
SetSize(SPTseg, computed value)
Allocate primary storage for all permanent segments
In SptSe construct system page table entries

for all permanent segments
Initializing the PFN pool involves activities both before and after setting up the SPT.
The size of the PFN segment must be set before the system page table can be
built; after setting up the SPT, the PFN segment is available to contain the page
frame descriptor pool:
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Proc StartPfn
{precondition: all segment sizes other than PfnSeg and SptSeg

have been fixed)
PreSetPfn
StartSpt
InitPfnPool

To start up the paged segment manager, we must start up the PfnOataBase, then
allocate space and fill in page descriptors for paged segments. The positions of
those segments in the SPT are defined by SptManager.Map.

Proc StartPagedSeoManager
{precondit6n: same as for StartPfn]
StartPfn
AllocPagedSegs

Finally, we can describe the "main program" of the SysBoot loader-.
handler <SysBootEnv> for SysBootStart =

Initialize segment sizes for configured segmentsStrtPagedSegment~anger

Load code and data segments
Signal startup of the mapped environments

Although control flow passes between modules several times during startup, the
startup code conforms to the same modularity as the running system Furthermore,
the cal/s relation during startup totally orders these three modules, suggesting that
higher modules could be removed and the lower modules would still start and run
correctly.

5.5. Starting Up The Mapped Environments

As with most virtual memory architectures, there is no elegance whatsoever in the
manner in which VAX/VMS first enables memory mapping. However, one would like
to encapsulate the peculiar act in a small portion of the system, where it can be
understood long enough to debug, and then can be ignored First we shall discuss
the trick that VAX/VMS uses, then see how it can be encapsulated in a startup
condition

5.5.1. How It works

Enabling memory mapping normally causes a discontinuity in control flow, because
the CPU suddenly begins interpreting the addresses in the program counter, stack
pointer, and other registers as virtual rather than physical addresses. Normally the
new interpretation is not a valid one, unless the designer chooses carefully what the
initial memory mapping will be. An identity mapping, for example, assures continuity.

On a PDP- 11 an identity mapping, in low core, is convenient, because the interrupt
and trap vectors appear at predefined, low addresses which are virtual if mapping is
enabled, or physical if not However, the VAX architecture requires the operating
system to occupy addresses in the upper half of the virtual address space, which



145

are all greater than the largest physical address. Therefore, a simple identity map
will not solve the problem Instead, VAX/VMS brings about the transfer in two
steps, involving three address spaces. The VAX address mapping architecture uses
three page tables: a system page table for translating addresses in the upper half
of the virtual address space, and a pair of page tables for translating addresses in
the lower two quarters of the virtual address space. The system page table is
shared by all processes, whereas there is a separate pair of "user page tables" for
each process. The initialization procedure is present simultaneously in the sysboot
environment's unmapped address space, in a process-private address space, and in
the system address space. Sysboot constructs the process-private page table to
supply an identity map for the "Map enable" instruction, removing the original
discontinuity. The instruction following "Map enable" is an unconditional jump to the
very next instruction -- but using its address in the system address space. The
three instructions, and the address spaces in which they execute, are as follows:

CPU.MapEnable := true -- Physical address space
Go To A -- process private address space

A Continue -- system address space
This is the heart of the "trick", but there is more: The process-private page table
is constructed by "equivalencing" the system page table! Since the initialization
procedure is present in the system address space, the page containing it is
described in the system page table. VMS looks up the physical page frame number
of the page containing the the startup procedure, and selects a subrange of the
system page table to be the process page table, such that the entry describing the
relevant page will occupy the same virtual and physical pages. (This implies that
many other system pages are also twice-mapped, but the process-private page
table is only used to execute one instruction.)

5.5.2. Relating the "trick" to Environments

We shall embed the map enabling trick in Sys1nit, the startup condition for the
mapped environments. The condition's set procedure records the logical address of
the handler. The signal procedure, invoked in the SysBoot environment, determines
the virtual address of the handler using SptManger.Map, looks up its physical
address, sets up the process-private page table, and transfers control to the handler
by jumping to its physical address.

To insert the "clever" instructions into the handler code, the condition module
defines a handler initiation procedure, which the language system expands in line at
the beginning of the handler. This code sets up interrupt stack pointer and other
environment features, enables mapping, jumps to the system address space, and then
invalidates the process-private page table.
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condition module Syslnit is
requires SptManager
provides condition, priority, signal

condition <lnitEnv>O -- handlers must reside in InitEnv
var<SysBootEnv> InitAddress: Logical Address

Proc<host> set ( LA, LogicalAddress ) =
InitAddress := LA

Proc<sysbootenv> Signal =
X VirtualAddress(SptManager.Map,lnitAddress)
Y : Translate(SPT, X)
set up private page table
AbsoluteGoTo(Y)

proc Init =
-- set up stack -pointer, et cetera
CPU.MAPEN := TRUE
AbsoluteGoTo(A)
-- private page table length := 0

end module Syslnit

5.6. Disposing of startup code cleanly

Because startup code can be quite lengthy, and is executed only once, the virtual
and physical memory it occupies can and should be "recycled" when startup is
cornpleta Ideally, there should be no trace of the startup code remaining when
startup is complete, but this can be difficult Like jumping in a hole and pulling the
dirt in after you, it is hard to dispose of the code that disposes of the startup
code, without creating more code needing disposal.

One common technique for doing so places the startup code into a free storage
pool without notifying the storage manager that the space is in use. When control
transfers to the newly loaded system, the storage manager will "believe" that the
storage is unoccupied VAX/VMS uses this technique twice: to recycle memory
from the unmapped environments, and to get rid of the program region for
InitEnv, which contains all of the once-only initialization code for the kernel
system

The code and data of VmbEnv and SysBootEnv reside in the lowest pages of
physical memory, which eventually become part of the PFN pool. During SysBoot.
physical pages are allocated for permanent segments from the high end of physical
memory first, leaving the low end undisturbed. When the PFN manager collects the
unused storage to construct the PFN pool, it record the low-end pages as free
even though they are still in use, but places them at the end of the free list so that
they will not be allocated until much later, after mapping is enabled.

The program segment for lnitEnv is a paged segment, rather than a permanent one,
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so that it can be deleted and its pages reused When the startup handler has
finished its tasks and is ready to signal the process dispatcher, it must first delete
4s own program segment The code to do so is written as "position independent
code"; the startup handler copies the code into a storage pool intended for device
handlers, then jumps to it The code deletes the segment, then jumps to the
process dispatcher.

I have not yet designed a representation for the InitEnv disposal mechanism
However, it could be embedded in the handler termination protocol for the Sys/nit
condition Specifically, the startup handler would signal the process dispatcher via
the software interrupt mechanism, then terminate. " After disposing of the startup
segment, the termination protocol would execute a "return from interrupt"
instruction, triggering the process dispatcher interrupt routine.

5.7. Summary

The proposed methodology has provided a useful conceptual framework for
relating the many facets of bootstrapping in the VAX/VMS operating system
Startup conditions allow control to flow from lower system levels to higher level
without violating hierarchy, and provide a logical place to connect the map enabling
code and "disposal" code. Multi-environment modules integrate bootstrapping
operations with conventional operations on page tables and storage pools.
Incorporating the host environment in the system description allows operations on
segments as bona fide data objects, making clear the relationships between address
translation, storage allocation, and demand paging.

The design ideas presented here cannot be fully explored without actually building
a language system and an operating system However, each step in the
bootstrapping phase of VAX/VMS has a place in the proposed methodology, and a
niche in the resulting system description,
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CHAPTER 6
HIERARcHY IN OPERATING SYSTEMS

In this chapter we shall identify dependencies among several VAX/VMS modules
brought about by composition, procedure call, environment support, and data access,
and verify that the union of these dependency relations defines a partial ordering of
the modules involved To do so we shall recast the relevant portions in a strongly
typed notation, and in a way that was probably not envisioned by the system
designers Nonetheless, the redesign does not change the executable representation
in any material way; only the source-language structure is different

This study depends heavily on the study in the previous chapter. There we
identified two relevant execution environments, SysEnv and PermrEnv, which both
used the System Page Table to implement their address translation. In fact, the
logical address space of PermEnv is a subset of the logical address space of
SysEnv. We shall use the fact that code executing in PermEnv can never cause a
page fault, to help prevent a potential cycle in the module dependency graph.8 As
with other examples, this one simplifies certain details that would greatly complicate
the description without posing any new technical problems.

6.1. Overview

The process management facilities in VMS consist of the following modules:

* Page Frame Manager keeps track of the contents of all primary
memory pages

* Paged Segment Manager keeps track of all the pages associated with

pageable segments, moving them in and out of memory on command

" Dispatcher multiplexes the processor among ready processes

" Scheduler maintains a queue of processes for each oossible process
state

* Pager manages all user page tables

* Swapper moves processes in and out of primary memory

6Because these two environments are already defined, this case study can be much briefer than the

other two.

i~kiz zDmu p ~~S 5s A ak-NO n i1J
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Some of the interesting relations among modules form partial or total orderings.
When they do, they follow the order given above. The calls and implements
environment of relations both conform to that ordering.

However, the data structures themselves seem to imply an ordering quite opposite
to tf others The Dispatcher and Scheduler manipulate process descriptors, which
include page tables thai are themselves paged Furthermore, the process descriptors

themselves may be swapped by the Swapper. These dependencies contradict the
calls and environment ordering, causing the overall system structure to degenerate

into an unordered digraph

By careful use of generic module definitions, we shall structure the data in such a

way that the dependencies involving data structures conform to the same hierarchy

as the other relations. Intuitively the ordering ought to exist, because te dispatcher

and scheduler never access non-permanent memory, and the pager never accesses a
non-resident page table.

6.2. The Data Structures

A process in VAX/VMS is rooted in a software process control block (Software
PCB). This PCB contains a pointer to a process header (PHD). The process header

contains the hardware process control block (Hardware PCB), working set and

segment table information, and the process-private page tables (P0 and P1). A
boolean variable in the software PCB indicates whether the process is executable

(i.e. whether PHD is in core). Should the process be swapped out, the PHD pointer
is replaced by a pointer to the process image in the swapping file.

6.3. The Page Frame Manager and Paged Segment Manager

These two modules have already been discussed in Chapter 5. Briefly, the Page
Frame Manager allocates and deallocates primary memory pages, and provides a

page descriptor facility for use by the Paged Segment Manager. The paged
segment manager defines the Section Table data type, which keeps track of all of

the pages associated with a given page table. Its representation includes a working
set, which lists the incore pages in a form convenient for page replacement

algorithms.

In Chapter 5 we defined the paged segment manager to also declare one particular

section table, to accompany the system page table. In this chapter we will declare a

section table for each incore process.
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6.4. The Scheduler and Dispatoher

The scheduler and dispatcher incorporate the concept that some processes might
not be executable, but do not access the information that is stored to describe a
non-executable process. The scheduler provides the types SoftPCB and Phd, and
preserves the property that an Executable SoftPcb contains a pointer to a valid Phd

To reduce the complexity of this example, we shall suppress details of the
Dispatcher inside the Scheduler. The Scheduler provides the following services-

" The type SoftPcb

" The type StateQueue, a circular list of SoftPcb's

" A particular state queue, the ReadyQueue

" Processor multiplexing

" The current process's SoftPcb

The scheduler resides in PermEnv, as does all the data that it accesses. One might
wonder how the scheduler avoids accessing the user page table, which could cause
a page fault The scheduler's responsibility concerning these tables is limited to
multiplexing the processor among ready processes. Only the executing process
itself accesses the user page tables.

Type ProcessStateType = (Ready, IOWait, PageWait, SwapWait.

Type <PermEnv> SchedulerType [SwapDataTypo, PageDataType: Type] is
requires ProcessStateType, HardPcb
provides

type PHD is record
HPCB: HardPcb
PageDatz PageDataType

type SoftPcb is record
prev.next A SoftPcb -- private
state: ProcessStateType
case Executable: boolean of -- ReadOnly

true: (exstate: A Phd<PermEnv>) -- ReadOnly
false: (swapdat: SwapDataType)

accounting: ...

Proc MakeExecutable( Proc: SoftPcb, StateVector APhd
VProc MakeNonExeci Proc: SoftPcb ):APhd

function CurProc: SoftPcb -- current process

type <PermEnv> StateQueue is queue of SoftPcb
proc ChangeState(Old,New-.StateQueue)

var ReadyQueue: StateQueue -- examine but not change
proc MakeReady ( Proc: SoftPcb, OldState: statequeue)
proc MakeWaiting ( Proc: SoftPcb, NewState: statequeue)
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6.5. The Pager

The pager defines the notion of a pageable process. It supplies paging data to
the Phd, and supplies page tables for the HPCB. It creates a vector of such
pageable processes

The page tables for user processes are themselves demand paged Because the
pager accesses these tables, it might be considered to reside in SysEnv rather than
in PermEnv. Nonetheless, it cannot afford to incur a page fault while accessing
such a page, because this would cause a recursive invocation of the page fault
handler. To prevent this, the pager .always "locks in core" any page table page it
must acces& To represent this concept, one could either distribute the pager
across both PermEnv and SysEnv such that only a few key procedures were in
SysEnv; or, one could redefine PermEnv such that its logical address space changed
dynamically. For this example, however, we shall not page the user page tables.

The pager supplies the page fault handler for the hardware condition translation
error. It examines the faulting address to decide which address space caused the
fault and calls the appropriate routine. That routine, if necessary, signals the
condition "page not in core", which the page fault handler responds to by blocking
the current proces,

Type<PermEnv> PagerTypeC[ SwapDataType: type] ( Poolsize: integer I is
requires SchedulerType, SectionTable
acquires PageFault -- condition signalled by hardware
provides

var scheduler SchedulerType[SwapDataType, SectionTable)
var PhdPool: array C O..Poolsize-1 ] of record

Header Phd
POPT: page table
P 1PT: page table
end

proc HandleFault ( addr, address I

handler for PageFault =
if address in system space

then call PagedSegManager.HandleFault(address
else call HandleFault(address)
endif [ on PageNotlnCore:

MakeWaiting( CurProc, PageFsutQueue I J

6.6. The Swapper

The swapper defines the notion of a swappable process. It defines a swapped
out process to consist of the Phd and all of the pages in the process's working
set When it swaps out a process it first makes the process non-executable, then
copies out the Phd and pages, then returns the Phd to the pager's pool of Phds
The swapper code and data reside in PermEnv.
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module <PermEnv> swapper is
requires SchedulerType. PagerType, PermEnv, SysEnv,

BalanceSetSize, MaxProcs, PfnDataBase.FreeListSizp
acquires PageFault
provides

type SwapData is private
var Pager. PagerType [ SwapDats I (BalanceSetSize)
var ProcessPool: array E 0MaxProcs-1 I of SoftPcb
proc Balance -- analyzes process mix and swaps accordingly

6.7. Analysis

We wish to derive the dependency relation over these modules and the modules
defined in Chapter 5. Because we have formulated environments as explicit
program elements, we can obtain that relation from the program text directly. The
domain of the relation is the set

{ PermEnv, PfnDataBase, PagedSegManager, SchedulerType,
PagerType, Swapper)

Each identifier required by a module connects it to the module providing that
identifier.

Requiring Module Modules it depends upon

PermEnv none

PfnDataBase PermEnv

PegedSegManager PermEnv
PfnDataBase

SchedulerType PermEnv

PagerType PermEnv
PfnData so
PagedSegManager
SchedulerType

Swapper PermEnv
PfnOataBase
SchedulerType
PagerType

From this we conclude that the modules implementing storage allocation,
scheduling, demand paging, and swapping are totally ordered with respect to one
another.
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6.8. Summary

This example is very short because the SysBoot module provided a permanent
environment which did not depend in any way on paging. The chicken-and-egg
problem in earlier systems came about because of inadequate distinction between
address translation and paging. By making that distinction I have broken the
dependency cycle; by making the distinction explicit in the program text the module
ordering can be derived directly from the provides and requires clauses.

The ordering among these modules is highly desirable during system development
because it allows debugging of lower system levels without the complications of
demand paging and swapping. It is desirable for formal analysis of system
properties, because it allows the designer to isolate the one place where recursive
page faults might occur, namely where the pager accesses a user page table. t is
desirable for development of parallel versions, because it allows specialization for
systems that do not require swapping and/or demand paging.

A subtle point about using generic modules: the scheduler is written to operate
correctly regardless of the number and arrangement of SoftPcb's and Phcrs. The
pager defines the number of Phd's; the swapper defines the number of SoftPcb's.
This approach differs from Janson's and Reeds approaches in Multics in that it
views the type definition as more fundamental than the number of instances and
how they are instantiated

I
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CHAPTER 7

EVALUATION

In chapter 1 we defined a set of criteria by which to evaluate the goodness of a
methodology. Now that we have developed the methodology and applied it to
several problems, we can use those criteria to evaluate the proposal.

7.1. Utility

Does the proposed methodology facilitate operating system design and
construction? In each of the problem areas we found that the methodology
contributed significantly to the solution of the problem

" Device communication: By integrating the language system with the
operating system, we were able to model interrupts as exceptional
conditions This allowed more flexible synchronization schemes than
were possible in Modula or Concurrent Pascal. Controlling access to
the I/O segment by means of environment descriptions allowed explicit
control over access to individual devices.

* System Integration: By incorporating the host and unmapped target
environments into the overall system description, we were able to
combine system generation, linking, bootstrapping, initialization, and
startup activities into a single, comprehensive system description. This
iows automatic propagation of changes across environment

management levels, static analysis of the bootstrapping sequence, better
understanding of the relationship between initialization and startup,
coordination of static and dynamic memory allocation, and a host of
3ther consistency checks that are difficult on a piecemeal description

* Hierarchy: By distinguishing address translation from demand paging,
and by distinguishing data type definition from instantiation, we were
able to impose and abstract structure on the VAX/VMS process
management flacility that exhibited a total ordering over the dependency
relation By recording environment dependencies explicitly in the
program text, we were able to verify that the program actually obeyed
the claimed ordering.
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7.2. Clarity and Fitness

Does the methodology and its notation significantly increase the clarity and
understandability of operating system descriptions? Is the meaning of the notation
itself well understood? Is the notation appropriate to the problem domain?

Clarity and fitness contributed to the success of each case study. Condition
modules, made possible by the integrated language/system approach, provided both a
model and a notation for interrupt routines, that faithfully reflected their usual role
in systems, and facilitated synchronization. Incorporating host and bootstrapping
environments into system descriptions clarified many connections between system
components that previously were defined obscurely through ad hoc system
generation and initialization programs. Furthermore, it brought data abstraction tools
to the problems of integration, boostrapping, and startup. The distinction between
PermEnv and SysEnv clarified the dependencies between the pager and other system
code, resulting in a demonstrably hierarchical structure.

The significant notations introduced in this thesis are:

9 A syntax for types and modules. This notation was just one more
variation on a set of well understood language features

9 Environment modules. These are ordinary modules that must supply
certain specified features. The specifications themselves are ordinary
program specifications. Making environment modules explicit entities
fits the problem domain, because an operating system designer thinks
in term of explicit domains.

e Acquires clause. The syntax and semantics of the clause are directly
analogous to the conventional requires clause, with the additional
constraint of exclusive access. The notation was introduced
specifically to fit that concept, which appears commonly in system
designs.

e Environment annotations on program units. This notation requires more
justification than others, because it embodies the most novel aspect of
the methodology. The notation highlights the fact that a program unit
is an instance of an abstract type, whether the unit embodies data,
control, or both The environment annotation is in the form of an
instantiation parameter, specifying the resource pool and type
that implement the program unit. I have not undertaken a formal
specification of the meaning of the annotation. However, one can
conceptualize it by distinguishing between the abstract meaning of the
program unit, which is not affected by the annotation, and the
executability of the program, which must be derived from the
environment information. In section 3.5.5, we discussed the notation in
more detail, concluding that it was clear, fit, flexible, and terse. These
conclusions were confirmed in the bootstrapping case study, where we
found it suitable for describing the bootstrapping environments.

Another, less important notation was also introduced

* Condition modules. For this feature we used the specification
technique used in Euclid to specify storage zone modules, and followed
the semantics proposed by Levin We found the condition modules
suitable for describing interrupts, including synchronization, and startup.
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To surnmarize, each of the notations introduced is similar in form and meaning to
some existing, well accepted notation. The notations and methods together produce
comprehensive system descriptions that clarify important structural properties of
systems.

7.3. Flexibility

Does the methodol9gy fabilitate system construction without unduly constraining
system design? Facility and transparency have shaped the methodology at every
step. Execution environments are defined in a way that accomodates both
suspicious and cooperative environments. The operating system and its
implementation language are integrated in a way that allows the language to facilitate
use of the system's resources while removing only that transparency which the
system design dictates be removed. The environment binding notation accomodates
a broad range of type management styles in multi-environment systems (cf section
3.5.5). The interrupt condition, with priority-based synchronization, is more
transparent than either Concurrent Pascal or Modula, and still provides mutual
exclusion All three case studies dealt with real-world hardware and software
systems. We were able to develop a hierarchical description of the VAX/VMS
process and memory management facilities without changing their implementation
The bootstrapping description, likewise, was faithful to the actual VAX/VMS design
Although some system designs are not worth saving, if the methodology applies to
designs that were developed without its benefit, then one has some confidence that
the methodology does not constrain the design space unduly.

7.4. Implementability

We have deferred until this time almost all discussion of implementation issues.
Although a detailed implementation of the language support tools implied by the
methodology would be premature, we seek some indication that they are feasible
and practical. To investigate this, we shall sketch a design for the program support
facility, then consider each of the implementation problems implied by the overall
design

An operating system written under the proposed methodology could conceivably
be written as a single program, that is translated and elaborated as a single unit by
an appropriate compiler. However, the size of the system dictates that we be able
to decompose it into separately compilable modules for purposes of development
and testing, and that we be able to recompile selected portions of the system and
reintegrate them with previously compiled components Waiter Tichy (richy 803
has already shown how to control the development of large software systems
through a module interconnection language, including automating selective
recompilatiorL Special problems posed by multi-environment systems includf

' • .. . . ... .. . ,, . . .. . . . . ,, . . . . , iil [ .. . iT I . - . ...#.. .. .. . . I 11
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" The system integration phase is Oxplicitly programmed rather than
following the standard compile-link-load sequence. How can the
language system inte@rte incremental changes without completely
retranslating the system?

* How much code optimization can be carried out between separately
compiled modules?

" How shall the translator accommodate variations in the implementation
language supported in different environments? How shall the translator
make effective use of user-supplied environment implementation
software?

7.4.1. Separate Compilation

Compilation under the proposed environment management paradigm is different
than the status quo in the following ways:

" Translating a type definition never implies any code generation Only
instantiating a type or translating a module does.

" The size and contents of a permanent data structure may fluctuate
during translation of subsequent system components, prior to linking
the data structure into a segment

* Consecutive program units within a single file may reside in different
segments

To accommodate these differences, we identify the following stages in the
translation of a program unit

1. Specification processing extracting the syntactic information needed
to check the syntactic correctness of other units.

2. Parsing translating the program text into an internal representation
(presumably syntax trees, a symbol table, and some representation for
permanent variables), and verifying its consistency with the
specifications of other units.

a Code generation producing "object code" representation of individua!
procedures (leaving unresolved external identifiers), and constructing an
interpretable representation for the sequence of actions implied by
elaborating the program text

4. Initialization carrying out the actions implied by elaborating the
program text, including storage allocation and explicit initialization code.

5. Linking finalizing the layout of permanent data structures, determining
the logical addresses of code and data objects, and resolving external
references. This phase is radically different from the previous ones, in
that linking happens simultaneously to all objects in a segment, whereas
each previous phase happens at the same time to all objects in amodule. Linking, in fact, is simply an abstract operation on a segment,
carried out by host-environment procedures of the module responsible
for the segment, usually as part of the down-loading phase initiated by
the the outermost module

With this model of translation in mind, we may deterine which phases must be
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carried out simultaneously for the whole system, which phases may be carried out
sequentially, and which phases can be carried out for each module independently.

1. Specification processing: carried out independently for each program
unit Programming languages like Ada allow the specifications to be
compiled before the implementation is even written.

2. Parsinj; a program unit may be parsed as soon as all specifications
have been collected for the program units it invokes. Changing the
implementation of a program unit without changing its specification will
not force reparsing of any other program unit

3. Code generation code for a program unit may be generated as soon
as parsing is complete for the program units it uses. Generated code
is not placed in segments until the initialization stage.

4. Initialization the program units must be initialized in the order in which
they appear in the system description. Forward references during
initialization might not be feasible (an open research/engineering
question). On the other hand, there may be large classes of
initialization actions that can be .carried out covertly during code
generation.

5. Linking linking a segment terminates host-environment access to the
variables contained in it A segment can be linked any time this is
acceptable; the actual time of linking must be programmed explicitly as
part of the host machine activities of the operating system.
Presumably there will be portions of the linking activity that can be
carried out earlier, and will not need to be redone after each
incremental change.

Thus we see that each of the first three stages can be carried out on each
module independently, as soon as the modules upon which it depends have finished
the previous phase Only during the initialization must the modules be processed
sequentially. Even then, the state of the system may be saved at any point, so that
the state of the earlier (lower-level) system components need not be reinitialized
after a change to a later part In particular, the segments containing code and data
for lower system levels might be linked quite early in the initialization phase, and
therefore rarely need to be relinked

7.4.2. Inter-module optimization

Under the translation paradigm given above, the code generator has access to the
syntax-tree representation of all of the program units being invoked. Depending on
the sophistication of the code generator, this allows inline expansion of procedures,
optimization of access functions, and so on Some value-dependent optimizations
may be precluded because the values are not known until initialization. Inter-
environment optimizations are usually possible, except when a procedure or data
structure is explicitly bound to a particular environment
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7.4.3. Customized Language Run-time Support Software

We have gypothesized the ability to use different implementation languages in
different execution environments within our system This will be practical only if
the languages are closely related dialects of a single language. Variations should
only be necessary to remove unsupported features and accommodate peculiarities of
the operating system design itself. The case studies presented in the last three
chapters have so far permitted the use of a single language throughout, except that
some features might not be available in some environments. Should the need arise
to specify a dialect, it could be defined in the environment module interface. For

example, whether or not a particular feature is available to a particular program unit
depends primarily on whether or not the support module is present in the intended
execution environment Thus a single compiler could implement many subsets of a
language, where the subset is defined by the provides clause of the environment
module

The translator applies support software for a given language feature by translating
uses of the feature into invocations of the support module. First it parses the user
and supporter of a given f' ture separately. The user must adhere to the language
syntax of the feature; the supporter must adhere to the language specification for
the support module. Then, the parser replaces each occurrence of the feature in
the parse tree with the appropriate invocation of its implementation. (Recall that
support modules do not export any names that are reserved to the transistor, so
that a program may use these names only via the language feature. See, for
example, Sten Andler's implementation of abstract types in Algol68S [Andler 79).)
The parser having established the connection, the code generator can troat the
invocations just like ordinary procedure calls and data accesses.

Undoubtedly there are a great many implementation difficulties that will not surface
wii an implementation is actually attempted Nonetheless, by dividing the translation
into the stages identified above, the program development environment can support
incremental recompilation, inter-module optimization, and program-supplied language
support software.

7.5. Summary

For each of the criteria established in Chapter 1, we have found the methodology
satisfactory.

9 It is useful for solving both theoretical and practiacl problems.

e It clarifies system descriptions, with notations that fit their problem
domains.

9 It is flexible enough to support a broad range of design approaches,
facilitating system construction without constraining system design
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e It appears to be imp/eimntble with available techniques, albeit applied
in novel combinations.

AIL:
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CHAPTER 8
CONCLUSIONS

This thesis presents a methodology for describing the executable representation of
a program, and uses the methodology to investigate significant description problems
in operating systems. The methodology integrates an operating system with its
implementation language, so that the language can facilitate use of system
components without interfering in their design The system designer can define
execution environments as bona fide source program entities; each is a set of
resources that the language system uses to implement programs. The methodology
improves the system designer's ability to describe many system properties directly in
the program text, as demonstrated in the areas of interrupt synchronization,
bootstrapping, and hierarchical structure,

To conclude this thesis we shall first compare the methodology to other work in
operating system design methodology, then summarize the contributions of the work,
and discuss future directions the research might take.

8.1. Relationship to Other Work

References to other work are scattered throughout this thesis, providing a basis
for developing new techniques. In this section we shall compare the outcome of
the thesis to the ideas and techniques previously known. The discussion is
organized by topic rather than by project Some projects appear under more than
one topic.

8.1.1. Implementation Languages Supporting Synchronization

Concurrent Pascal, Modula, and Gypsy all provide synchronization mechanisms
explicitly in the language syntax. Concurrent Pascal provides monitors, Modula
provides interface modules, and Gypsy provides mailboxes. Each of these
mechanisms requires runtime support, supplied by a language support kernel defined
outside the language.

Such language support kernels are actually supplying a portion of the operating
system, namely an execution environment that supports cooperating sequential

PkW=zrMW AM ILAIK-aWT Flum
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processes. Under the proposed methodology the language definition could specify
the facilities the language kernel would supply, but leave the implementation of the
kernel to the operating system designer.

These languages incorporate device communication into the same synchronization
mechanism Concurrent Pascal represents its I/0 devices as hypothetical processes
communicating with the program via queues and signals Modula defines a device
interface module which contains a device process. That process may communicate
only with ordinary processes. The interface module enforces mutual exclusion using
priority. An interrupt process cannot cause pre-emptiot

The interrupt condition module defined in chapter 4 is more transparent more
flexible, and more fit for device communication than the mechanisms described
above, while still providing an acceptable synchronization mechanism An interrupt is
modeled by a procedure call rather than a signal or message, allowing the interrupt
routine to pre-process the arriving information without the overhead of a full
process context switch. Two devices may communicate directly via shared
variables, again without the overhead of context swapping. Traps and programmed
interrupts can be described with the same notation, which is appropriate considering
that they are defined analogously in most architectures.

Peter Loehr, describing his attempts to write a virtual memory operating system in
Concurrent Pascal [Loehr 77), claims that systems implementation languages should
have fewer specific mechanisms and greater extensibility. Although I agree with his
reactions to Concurrent Pascal, a context-sensitive language notation can facilitate
static analysis and enforce methodological principles in ways that run-time
mechanisms cannot The methodology allows the system designer to select the
language mechanisms appropriate to the system being designed, and to retain control
over the implementation of the mechanisms.

8.1.2. Hardware Access In High-Level Languages

Euclid and Modula both give programs access to ha-oare-defined device
registers, by means of special variable declarations. I presume such a feature in my
implementation language, and use environment definitions to specify which program
units may declare such variables or access them Rather than have each individual
device register declared within the module that manages it, I declare all hardware-
defined objects in modules corresponding to their hardware implementations, then let
the managers acquire the objects they control

'-Ad
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8.1.3. Process and Memory Management Methods

Janson observed that environment management greatly complicated the structure of
Multics, threatening to make the dependency graph cyclic. For example, he thought
he might need capability lists to implement capability lists. He resolved this problem
by defining the notion of a "map" dependency, and then differentiating between a/f
types (allocated and freed as needed) and c/d types (created and deleted at will). He
viewed a/f types as more fundamental than c/d types. Reed [ReedThesis]
proposed a sirnii- scheme for process management

In my hierarchy case study I defined the scheduler in such a way that it would
work correctly regardless of how many process descriptors existed, and regardless
of whether the number was fixed or varying The swapper determined that there
would be a fixed number of them, but could easily have made them dynamically
allocated and deleted Thus the multiplexor did not need to be responsible for the
size of the management set

Incorporating the host environment in the operating system description explains the
relationship between permanent and non-permanent instances of a type, allowing
them to be derived from the same type definition but instantiated from different
resource pools.

8.1.4. "User-supplied" Runtime Support

Euclid storage zones illustrate how a language can specify the characteristics of its
runtime support system, letting programs supply their own implementations of the
support My methodology generalizes this technique to cover all of the basic
environment features, plus the condition module.

8.1.5. Module Interconnection Languages

Tichy's module interconnection language and processor, and the Gandalf system,
provide the basis for the software development control system needed for
operating systems. It allows control over the development of multiple serial and
parallel versions. keeping enough information to minimize the amount of retranslation
needed to reconstruct a runnable system after a program change. However, Tichy's
scheme presumes a classical compile-link-load scheme. My comprehensive system
description replaces that scheme with a more detailed breakdown of the translation
steps: process specifications, parse, generate code, and initiate (including linking and
loading). The modified translation scheme does not materially impact the other
Gandalf facilities for software development control, allowing the operating system
designer to obtain the same benefits available to single-environment systems.
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8.2 Contributions of the Thesis

This thesis contributes three distinct kinds of knowledge about operating system

design and implementation:

e Ideas about the relationships between langauges, execution
environments, and operating systems

* Methods for describing the executable representation of programs,

e Solutions to three diverse operating system description problems,

8.2.1. Ideas about Execution Environments

A systems implementation langauge can facilitate system construction by providing
notations for multi-tasking. synchronization, device communication, and so on.
However, in doing so, the language imposes constraints on the operating system

design Therefore, the system designer must choose (or design) an impelementation
language that harmonizes with the design he envisions. The operating system then
becomes the "run-time system" for the language. Execution environments define the
interface between the language and the operating system

An execution environment is a complete set of operating system resources that

together provide everything the language needs to implement programs. We
distinguish the concept "execution environment" both from the concept "surrounding

scope" and the concept "runtime protection domain". Every module has a different

"surrounding scope", whereas an operating system contains a relatively modest
number of coherently-designed execution environments. "Runtime protection

domains" define the possible actions of arbitrary machine language programs,

whereas operating systems programs are (or ought to be) written in strongly typed
languages with powerful tools for defining and enforcing modularity. By defining
execution environments explicitly in source-language terms, the system designer
gains the ability to write multi-environment modules and multi-module environments,
and to choose a blend of compile-time and run-time protection mechanisms for
enforcing the boundaries of execution environments.

8.2.2. Methods for Describing Executable Representations

The exact details of the proposed methods are highly speculative, and I would
expect them to change considerably when tested experimentally. Nevertheless, I

expect the following principles to endure:

e An execution environment appears in a source program as an explicit
list of facilities, such as a module.

e That list defines the interface between the compiler and the operating
system, for all program units residing in that environment
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* A translator is a type manager for the abstract type "program unit",
implementing it with the resources supplied by the operating system
The particular environment supplying the resources for a given program
unit is a generic parameter to that instance of the type.

* The host environment and bootstrapping environments are bona fide
components of the operating system

e A complete system description is a host-machine program to create an
operating system

8.2.3. Specific Solutions

The interrupt condition mechanism of Chapter 4 is a strongly typed yet highly
transparent characterization of interrupt hardware. It provides an acceptably
powerful synchronization tool without pre-empting operating system design
decisions.

In designing this mechanism we studied the tension between abstraction gained and
transparency lost when a language provides a synchronization mechanism We
observed that a context-sensitive notation can facilitate static analysis and enforce
methodologically sound design priniciples in ways that the runtime support for the
mechanism cannot From this we conclude that systems implementation languages
should include such features, even though they constrain system design; choosing
the language features should be part of the operating system design process.

In chapter 5 we outlined the design of the VAX/VMS bootstrapping mechanism
We were able to embed it in the same module structure that defines te running
system We used the startup condition to pass control from lower to higher system
levels without violating hierarchy. We used the host environment to create
permanent and paged segments using the same type definitions as are used in the
running system The startup condition provided a place to represent the memory
map enabling trick and the mechanism for disposing of startup code. Overall, we
found that every piece of the bootstrapping mechanism of VAX/VMS had a place in
the system description.

We were only able to look briefly at the problem of defining handler initialization
and finalization protocols. Further investigation in this area will benefit not only
bootstrapping, but also exceptional condition handling generally.

In chapter 6 we developed a demonstrably hierarchical description of a real
operating system By using source language type checking and modularity for
protection, we allowed two execution environments to share the system page table.
This broke the cycle in the dependency graph between process multiplexing and
demand paging

To resolve the distinction between process multiplexing and prwess creation and
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deletion, we defined a generic scheduling module that was insensitive to the number
and location of process descriptors. Without environment bindings, we would have
informally placed the burden of addressability on the module instantiating a particular
scheduler. With environment bindings, we could specify directly the addressing
constraints for the scheduler code, process descriptors and process state vectors.

The acquires clause defined in section 3,2 supplies a source-language replacement
for a runtime protection paradigm. In the Family of Operating Systems we
introduced multi-level modules as a way of explaining that certain facilities provided
by the lower level were accessible to only those upper level procedures residing in
the same module. By using the acquires clause to declare exclusive access, we can
define protection environments independently from source language modules, using
the visibility of the environment name to specify which modules may place code and

data in it

More generally, the acquires clause expresses more precisely the composition
relation in a system description. Statically nested program units by themselves
support only those composition relations that are trees. The acquires clause
supports composition relations that are directed acyclic graphs.

8.3. Future Directions

Demonstrating that explicit execution environments clarify the structure of
operating systems opens up many avenues for future research, including

e Refining the concept of an execution environment

e Implementing the translation paradigm, especially the initialization phase
executing in the host environment

* Designing and implementing a systems implementation language that
includes notations for environment bindings, exceptional conditions
(including interrupt and startup conditions), capabilities, synchronization,
multiple processors, protected procedures, and other operating system
facilities

* Operating systems implementation experiments to test the usefulness
of the methodology.
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