Abstracting Distributed, Time-Sensitive
Applications

Kyle Liang

CMU-S3D-25-120
September 2025

Software and Societal Systems Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jonathan Aldrich, Chair
Carlee Joe-Wong
Joshua Sunshine
Aviral Shrivastava (Arizona State University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

Copyright © 2025 Kyle Liang

This material is based upon work supported in part by the National Science Foundation (awards 1646235 and
1901033), the Department of Defense (awards H9823018D0008 and H9823023C0274), the Air Force Research Lab
with the Defense Advanced Research Projects Agency (BRASS award FA87501620042), and the U.S. Geological
Survey (award 170655-23048/G24AC00117-00).

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: programming languages, dataflow graphs, macroprogramming, case study, user
study

Abstract

Distributed and Time-sensitive (DT) cyber-physical systems are challenging to
design and develop. When writing systems in conventional languages, programmers
struggle to write programs at scale due to the complexity of intrusive, cross-cutting
concerns in a heterogeneous, distributed system with sensing and actuation timing
requirements.

This thesis proposes that a system using a macroprogramming language with
dataflow graph semantics can reduce barriers to entry for programmers and do-
main experts unfamiliar with designing distributed, time-sensitive applications. We
present TTPython: a domain-specific language and runtime system designed to write
shorter and cleaner code for challenging cyber-physical applications. Its novel,
timed, tagged-token dataflow graph execution model allows programmers to develop
applications at a macroprogramming scale while supporting timing specifications
such as periodicity and soft deadlines. The programmer specifies timing require-
ments and uses decorators and system-provided function calls to guide TTPython
in the placement of code while TTPython handles distribution, communication, and
coordination between devices. We have evaluated TTPython by comparing it to a
best-practice implementation of a 1/10th-scale connected autonomous vehicle appli-
cation. An in-progress case study on an intercity flooding application examines how
TTPython affects design and system decisions during development. These two case
studies serve as the foundation of a user study in which we ask users to write these
DT applications using either TTPython or vanilla Python with a message-broker
system. We find that programmers struggle when writing infrastructure code that
TTPython abstracts, and find TTPython straightforward and helpful.

Dataflow graphs have been applied in various contexts in parallelism and dis-
tributed computing, but little work has focused on token-tagged dataflow graphs.
This thesis will show how incorporating time in a token-tagged dataflow graph
makes it an effective tool for handling distributed, time-sensitive applications. We
contribute key abstractions that make programming DT applications at scale ap-
proachable. The modified dataflow graph serves as the initial framework towards
creating a standard digital distribution service for developing and deploying DT ap-
plications across shared devices, such as in a smart city.

v

Acknowledgments

First and foremost, I would like to thank my advisor, Jonathan Aldrich. He has always supported
me through my tumultuous journey of the Ph.D. and guided me through difficult times. He had
big shoes to fill when advising fell through, and I thank him for his strength and encouragement.
Jonathan has helped me grow as an engineer, a writer, and a researcher. Although this project
has quickly grown unmanageable, Jonathan helped me carve a piece out for me to feel proud of
the work.

The members of my thesis committee have been instrumental in shaping my research. Aviral
Shrivastava and Carlee Joe-Wong have been great mentors since the inception of my Ph.D. jour-
ney. Joshua Sunshine has been very helpful with my concerns on mentoring relationships and
his insights on human studies with relation to PL and systems.

My prior research advisors and mentors have been a key influence for me to pursue a Ph.D. I
want to thank Aydogan Ozcan, Steve Feng, Hatice Koydemir, Jens Palsberg, Christian Kalhauge,
and Jason Teoh for the great experiences I've had during my undergrad.

Out of the many friends prior to the Ph.D., Id like to give thanks to John Luu and Gauri
Ratra. John has been with me through thick and thin, and I admire his tenacious outlook on life.
He is like a brother to me; I somehow manage to collect all of his hand-me-downs. Gauri has
been an absolute joy in my life. She has helped retain my sanity throughout my undergrad and
during my Ph.D. as a source of fun and misery. Gauri perfectly embodies the phrase, ”The grass
is always browner on the other side.”

Maybe the real Ph.D. was the friends I’ve made along the way. I can’t imagine having better
officemates than Eli Claggett and Peter Carragher. I’ve had great fun at board games with Sam
Estep, Luke Dramko, Chenyang Yang, and Soham Pardeshi. The gym experiences were unpar-
alleled with Jenny Liang, Kush Jain, Manisha Mukherjee, and Nadia Nahar. I wouldn’t have
picked up ping pong/pickleball without the help of Vasu Vikram, Parv Kapoor, Simon Chu, Will
Epperson, Aidan Yang, and Alan Shen. Lunch and Learn would be much more difficult without
Maria Casimiro, Long Nguyen, and Jenny Tang helping out. I can’t forget my senior peers, in-
cluding Jenna Wise, Wode Ni, Zeeshan Lakhani, and David Widder. And last but not least, Jane
Hsieh and Leo Chen have always been there for me. I've truly loved the trips and experiences
we’ve had, from international travel to movie nights and questionably named ramen.

Although undocumented in this thesis, it would be remiss not to thank the teaching faculty
who have inspired and guided me. Thank you, Sol Boucher, for being an excellent mentor and a
co-instructor for 15-122. Thank you, Iliano Cervesato, for guiding us both in that class. Thank
you, Zack Weinberg, for your logistical mastery and for being a co-instructor for 15-213. And
finally, thank you, Michael Hilton, for inspiring me to pursue education in my future endeavors.

Last but not least, my family has always been part of my core supporters. I can’t thank my
dad, Ching-Ming Liang, enough for being there when I needed him. My mother, Hwei-Mei
Liang, has always given great advice (sometimes unsolicited), which I always appreciate. And
to my sister, Justine Liang, who will always be the fakest (real) doctor to me.

vi

Contents

2 TTPython|

D1

Problem and Approach| o oL

o)

TTPython System Overview|

[2.2.1 Example TTPython Program|

[2.2.3 Composing Time Constructs|

n3

Timed, Tagged-Token Dataflow Compilation|.

[2.3.2 Compilation Structure| L.

o

Timed, Tagged-Token Dataflow Semantics|

[2.4.1 Firing Rule: Immediate].
2.4.2 Firing Rule: Data-Validity|
[2.4.3 Firing Rule: Time-Based Trigger).

n3

Running an Application in TTPython|.

3 Case Studies|

[3.1.1 Methodology|
[3.1.2 Code Comparison| i
(3.1.3 Execution Analysis| o

B2

Urban Flooding Network|

[3.2.1 System Architecture| Lo L o
[3.2.2 Code Artifact Analysis|
[3.2.3 Future Case Study Directions|
[3.2.4 Modality Execution|. o

vil

4 Qualitative User Study)|

.1 Study Designl
4.1.1 mart Intersection| Lo L
4.1.2 Urban Flooding Network|
M.1.3 TaskChoicel. e
“4.1.4 Recruitment|. L
4.1 Tutorials]
4.1.6 Study Protocol|
4.1.7 Post Study Questionnaire and Interview|
[4.1.8 Research Questions|.

“4.1.9 Data Analysis Methodology|

4.2 Task: Asynchronous Data Generation (ADG)

4.2.1 'TTPython Implementation|

4.2.2 Python Implementation|

4.2 TVAtIONS| o e e e e e e e e e e e e e e

4.3 Task: Data Synchronization (DS)|

4.3.1 'TTPython Implementation|

“4.3.2 Python Implementation|

4.4 Task: Networking (NTWK)|.

4.4.1 'TTPython Implementation|

“4.4.2 Python Implementation|

4.5 Task: Time-Triggered Exception Handling (I'TEH)|

4.5.1 TTPython Implementation|

“4.5.2 Python Implementation|

4.6 Task: Code Evolution (CE)[.

4.8.1 Future Steps for TTPython|

4.9 Limitations and Threats to Validity|

5 Related Workl
[5.1 Distributed Systems and Time|

[5.2 Human-centered Programming LLanguage User Studies|

6 Conclusionl

viii

41
41
41
41
42
42
43
44
45
45
46
46
46
47
49
51
52
52
53
54
54
56
57
59
60
61
62
63
63
66
67
67
70
72
73
73

75
75
77

79

A Appendix 81

[A.1 User Study Materials| 81
[A.1.1 ST App Introduction| 81

[A.1.2 UF App Introduction| 82

Al3 Task ADGI 83

Al4 Task DS|. 91

AT TaskNTWEKlot e 100

AL6 TasKTTEH o oottt e 113

A L7 Task CEl. 121

[A.1.8 TTPython/Python Questionnaire| 135
Bibliography 137

ix

List of Figures

(1.1 A best-practices autonomous vehicle implementation of the smart intersection.|. . 2
[2.1 ~ Output of the sample sensor fusion app in Listing|1}| 6
2.2 Deadline DFG Compilation|. 10
[2.3 A dataflow graph node containing a + operation.|. 12
[2.4 Compilation graphs for If-Then-Else and Deadline.| 15
[2.5 Compilation graphs for Single Run and STREAMify,| 17
[2.6 'Time-Based Trigger Example Firing Semantics| 20
[2.7 'The components of a Scheduling Quantum|. 22
(3.1 Dataflow of a Connected Autonomous Vehicle (CAV) shown 1n blue and gray |
and a Connected Infrastructure Sensor (CIS) shown 1n blue. CAVs and CISs |

send their locally fused sensor data to the RSU and CAVs receive intersection |
control back which 1s used to actuate the steering and motors.|. 24

(3.2 Dataflow of a Road Side Unit (RSU) that gathers sensing data from the CAVs |
and CISs 1n the area, processes the global sensor fusion, and calculates the inter- |

[section controls to send back out to the CAVsintheareal 24
3.3 One tenth scale CAV with camera, LIDAR, and Nvidia Jetson Nano for on-board |
PIrOCESSING.| . . . v v v vt e i e e e e e e e e e e e 25

[3.4 One tenth scale CIS with camera using Nvidia Jetson Nano for on-board processing.| 25
[3.5 Overhead of one tenth scale CAV's shown driving within the figure 8 intersection.| 25
[3.6 Showcasing macroprogramming’s system-level view. The original implemen- |
tation had separate files designated for each device, while TTPython supports |
development of all constituent devices seamlessly none file.| 29

[3.7 A time graph of execution between the CAV and RSU. At time ¢t = n + 1, |
the CAV uses global_fusion data from time ¢. Data generated in the same |

[iterationsharesthesamecolors] 31
[3.8 A neighborhood in the UF app. 6 sensor boxes and a transducer talk to a LoRa |
gateway that forwards datatoaserver| 32

[3.9 A sensor box’s state transition graph..o oo 33
[3.10 Monitoring mode 1in the state transition diagram.|. 34
4.1 Sample quiz on the @ STREAM1 £ section 1n the TTPython tutorial.| 43
4.2 Sample Jupyter notebook tutorial introducing Python time and concurrency con- |
CePLS. . . e 44

X1

4.3 The system architecture presented to introduce the ADG Task.| 46
4.4 local_fusion requires a synchronized img and 1idar before executing. . . 51
4.5 Architectural description of the Smart Intersection application. The CAVs first |

send 1ocal_fusion to the RSU, which then replies with global_fusion |

[datal . . .o 54
4.6 Architectural description of the Urban Flooding Network application.| 55
.7 Architecture design for receiving an optical image with EXIF data from the op- |

tical camera to the thermal camera 1n the urban flooding network application.| . . 56

4.8 Starting instructions for vanilla Python implementation for the smart intersection.| 59
4.9 Starting mstructions for TTPython implementation for the urban flooding net- |

work. TTPython uses the terminology Plan B for time-triggered exception han- |

diing.| 60
4.10 Visualizes the code movement of calculate_angle from the RSU to each |

CAV. . . e 63
[A.1 Calibration mode 1n the state transition graph.| 81
[A.2 A connected autonomous vehicle (CAV).|. 82
[A.3 Anoptical cameradevice,|. L L L L oo 82
[A.4 Vanilla Python ADG architecture design of the CAV)] 83
[A.5 TTPython ADG architecture design forthe CAV.| 86
[A.6 Vanilla Python ADG architecture design for the optical camera.,|. 87
[A.7 ADG architecture design for the optical cameradevice| 89
[A.8 Data Synchronization between camera and LIDAR. 92
[A.9 Data Synchronization between camera and LIDAR. 94
[A.10 Data Synchronization between optical image, GPS, and IMUf. 96
[A.11 Data Synchronization between optical image, GPS, and IMU. 98
[A.12 System architecture describing CAV to RSU communication.| 100
[A.13 System architecture describing RSU to CAV communication.| 100
[A.14 System architecture describing RabbitMQ interface.|. 101
[A.15 System architecture describing CAV to RSU communication.| 104
[A.16 System architecture describing RSU to CAV communication.| 105
[A.17 System architecture describing the UFapp.| 107
[A.18 System architecture describing RabbitMQ interface.. 107
[A.19 System architecture describing the UFapp.| 111
[A.20 System architecture describing the vanilla Python Time-Triggered Exception Han- |

diingforthe RSU|. 113
[A.21 System architecture describing the TTPython Time-Triggered Exception Han- |

diingforthe RSU|. 115
[A.22 System architecture describing the vanilla Python Time-Triggered Exception Han- |

dling for the thermal camera.|o 0oL 117
[A.23 System architecture describing the TTPython Time-Triggered Exception Han- |

dling for the thermal camera.| o L. 119
[A.24 System architecture describing CAV to RSU communication.| 121
[A.25 System architecture describing RSU to CAV communication.| 121

Xii

[A.26 CE task system architecture change for the STapp,|. 122

[A.2°7 System architecture describing CAV to RSU communication.| 125
[A.28 System architecture describing RSU to CAV communication.| 125
[A.29 CE task system architecture change for the STapp.|. 126
[A.30 System architecture describing the UFapp.| 128
[A.31 CE task system architecture change for the UFapp.| 128
[A.32 System architecture describing the UFapp.| 134
[A.33 CE task system architecture change for the UFapp.| 134

Xiii

X1V

List of Listings

(1 A TTPython application adding two sine waves and tracking the average period- |

| 1cally every 0.5 seconds for 30 seconds.|, 7
[2 An updated example of the deadline construct with location specification with |
| adding twosine waves.| Lo Lo 9
[3 This example composes the deadline and data synchronization constructs by only |
| allowing one Plan B (1epton_planb)torunatatime. 11

[3.1 The oniginal application’s implementation of a CAV using Python’s time and |
| multiprocessing library with a user written APl over a 3rd-party communication |
| library. The timing, distribution, and concurrency code 1s highlighted respec- |

| tively 1n yellow, blue, and turquoise.|, 26
[3.2 The SI application rewritten using TTPython. Listing[3.1]s code 1s comparable |
[to LinesIH2/l o o o 27
‘4 The original application’s networking code. It sends data asynchronously to the |
| RSU and waits for only 10 milliseconds before continuing execution.|. 30

[5 'The GRAPHified main function of the autonomously deployed version of the UF |

... 35

[6 An equivalent execution of the alternative @ STREAM1 £y control token syntax |

[in Listing[Slon LinelS}|. 36
[/ The TTPython solution for the ADG Task 1n the UF app. The highlighted sec- |
| tions show a sample solution for the task.| 47
(8 The vanilla Python solution for the ADG Task of the UF app. The highlighted |
| sections show the additions for a sample solution.| 49
9 Buggy implementation of periodicity.| L. 50
(10 Sample solution for periodicity.. o oo 50
(1T The TTPython solution for the Data Sync Task in the UF app. The highlighted |
| sections show the additions for a sample solution.| 52
(12 A buggy vanilla Python solution for checking overlapping intervals.| 53
(13 A sample vanilla Python solution for checking overlapping intervals.| 54
(14 A sample TTPython solution for the UF app. The highlighted sections of code |
| show the delta between what 1s presented as starter code and the solution.| 56

[I5 An out-of-order presentation of SQs for labeling in the TTPython UF Task NTWK. |
| The first and last SQ 1n the order are to be assigned to the "1 r_camera" device.| 57
(16 ~ P1’s solution for TTPython’s UF NTWK Task. The highlighted line shows the |

XV

(17 P2’s solution for TTPython’s UF NTWK Task. The highlighted line shows the |
[visual difference between the solutions.] 58
(I8 A sample solution for 1isten_for_input. This code represents the receiv- |
ing capabilities foraparrofdevices.| o0 oL 58

(19 A sample solution for the TTPython UF TTEH Task. The highlighted sections |
show the additions for a sample solution. Line[291s shown to show the difference |

L between the starter code and the solution 61
20 A sample solution for the vanilla Python UF TTEH Task. The highlighted sec- |
tions show the additions for a sample solution.|. 62

21 SI'TTPython CE Task starter code description| 64
22 TTPython CE Task sample solution. The code 1s highlighted to emphasize the |
changes between21]|o o 65

23 TTPython UF CE Task sample solution. The participant’s starter code has Line |4| |
L uncommented and does not have Line[/lincluded) 67
[24 Part 1 of the starting code for the Python ADG Task of the STapp.| 84
[25 Part 2 of the starting code for the Python ADG Task of the STapp.| 85
[26 The starting code for the TTPython ADG Task of the Sl'app.| 86
[27 Part 1 of the starting code for the vanilla Python ADG Task of the UF app.|. . . . 88
[28 Part 2 of the starting code for the vanilla Python ADG Task of the UF app.| 89
29 The starting code for the TTPython ADG Task of the UFapp.|. 90
[30 Shared time library and testing code for the Python DS Task of the ST'app.[. . . . 91
(31 Part I of the starting code for the Python DS Task of the Slapp.| 93
(32 Part 2 of the starting code for the Python DS Task of the STapp.| 94
[33 The starting code for the T TPython DS Task of the STapp.| 95
[34 Part I of the starting code for the vanilla Python DS Task of the UF app.| 97
[35 Part 2 of the starting code for the vanilla Python DS Task of the UF app.| 98
[36 The starting code for the T'TPython DS Task of the UFapp.,|. 99
(37 The CAV’s starting code for the Python NTWK Task of the ST'app.|. 102
[38 The RSU’s starting code for the Python NTWK Task of the ST'app.|. 104
(39 The starting code for the T'TPython NTWK Task of the STapp,| 106
40 The optical camera’s starting code for the TTPython NTWK Task of the UF app.| 108
41 The thermal camera’s starting code for the T'TPython NTWK Task of the UF app.| 109
42 The router’s starting code for the TTPython NTWK Task of the UF app.| 110
43 The starting code for the TTPython NTWK Task of the UFapp.| 112
44 The starting code for the Python TTEH Task of the STapp.| 114
45 The starting code for the TTPython TTEH Task of the STapp.|. 116
46 'The starting code for the Python TTEH Task of the UFapp|. 118
7 The starting code for the TTPython TTEH Task of the UFapp.| 120
48 The RSU’s starting code for the Python CE Task of the STapp.| 123
49 The CAV'’s starting code for the Python CE Task of the STapp.| 124
[0 The starting code for the TTPython CE Task of the STapp.| 127
[T~ The optical camera’s starting code for the Python CE Task of the UF app.| 129
[52 The optical camera’s starting code for the Python CE Task of the UF app.| 131
[53 The router’s starting code for the Python CE Task of the UFapp.| 133

Xvi

[54 The starting code for the T'TPython CE Task of the UFapp.,|. 135

Xvil

XViil

List of Tables

(3.1 Breakdown of infrastructure lines of code. T TPython eliminates concurrent and

networking code with the DFG’s graph abstraction and dynamic network con-

4.1 An overview of the System Usability Scale [[11] and the NASA Task Load Index

(TLX) results [28]].] o o o

XiX

XX

Chapter 1

Introduction

1.1 Introduction

Distributed, time-sensitive (DT) applications are ubiquitous in cyber-physical systems (CPS).
Improvements in wireless, embedded, cloud, and networking technologies enable larger, more
interconnected applications that measure and control the physical world. For example, large
drone swarms determine their location and plan their path at millisecond or microsecond pre-
cision to form spectacular displays like Intel’s swarm at the 2018 Winter Olympics in South
Korea. Recent research is working towards autonomous vehicular networks with signal-free in-
tersections [32] in which vehicles coordinate their trajectories through the intersection to use the
space more efficiently and increase throughput. The vehicles must plan these trajectories with
millisecond precision to avoid colliding with each other.

When writing DT applications in conventional languages, programmers struggle to manage
the complexity of handling time as a control flow concept. Time-based control flow is difficult to
implement. Three common examples are periodicity, watchdog timers, and data synchronization.
Programmers encode periodic tasks with infinite for-loops that poll the system clock to wait until
the correct time. Watchdog timers depend on concurrent execution to interrupt the main process if
the time allotted has passed. Data synchronization means ensuring that computation occurs with
data aligned in time. For example, a vehicle in a smart intersection uses asynchronous processes
to control the LIDAR and camera and needs to ensure that incoming data is synchronized for
execution.

We present a sample best-practices application written in Python for the smart intersection
in Figure to illustrate these control-flow concepts. Lines[I3]and [14] depict periodicity, while
Lines and [24] show watchdog timers. Line [20| represents data synchronization, where the
processes will periodically generate data and remove stale data. The camera process is shown
from Lines 3|to[5] In general, these control schemes mimic timed execution with unintuitive or
asynchronous control mechanisms because current control schemes execute without respect to
time.

Time-based control flow is also difficult to specify. For example, a car in a smart intersection
depends on the agreement of object locations in its vicinity with nearby vehicles and infrastruc-
ture to increase traffic throughput. A complete description of its timing specification involves

0NN N R W=

the car listening to all nearby devices before making a decision. This involves sending its locale
information over the network to other constituent cars and infrastructure devices in the area. A
car should use a watchdog timer to gracefully degrade (i.e. slow down) if it does not hear back.
However, this specification is split by implementation when programmers need to specify global
timing requirements across files and separate applications, which increases code complexity and
can cause bugs. For example, split implementations led to a bug where the checkin function
on Line [24{uses a GET HTTP request with a timeout far longer than intended (1 second vs 100
milliseconds), which was fixed in our system. Furthermore, the checkin function’s receiving
device for the implicitly assumed that the last GET HTTP request it received from each vehicle
represented its most up-to-date position. GET requests are not guaranteed to arrive in order,
which can lead to a synchronization issue. Overall, the separation between time and data in
languages designed without DT systems in mind leads to verbose and convoluted code.

We define time-sensitivity in appli-

def sourceImagesProcess(...):
get cam_data
while not out_gqueue.empty () :
out_qgueue.get ()
out_queue.put (cam_data)

clear old data

in-order send

Start after 10 seconds

start_time = time.time() + 10_000_000
interval = 125_000 # Interval is 125ms
Spawn lidar and camera processes
target = start_time

while 1: # infinite loop

if (target <= time.time()):
now = time.time ()
lidar_received, camera_received =

polls rapidly

False, False
fallthrough = time.time () + fallthrough_delay
while (time.time() < fallthrough and not # polls
(lidar_received and camera_received)) :
Get lidar_received and camera_received
if lidar_received and camera_received:
send coordinates to global
response_message = rsu.checkin(...)
if response_message == None:
coast ()
else:
normal

sync

model
blocking

execution
else:
emergencyStop ()

target = target + interval

time.sleep(.001)

Figure 1.1: A best-practices autonomous vehicle im-
plementation of the smart intersection.

cations for cyber-physical systems as
having the following features: period-
ically generating data asynchronously,
synchronizing data, having timing re-
quirements across devices, and respond-
ing in the event of failure through time-
triggered exception code.

We present TTPython, a deeply em-
bedded domain-specific language ([55])
and runtime embedded in Python. Its de-
sign goals are to help programmers write
shorter and cleaner DT applications.
The programmer writes their applica-
tion in a single file while adding decora-
tors and system calls to specify distribu-
tion and timing requirements. TTPython
then handles the distribution, commu-
nication, and coordination between de-
vices to realize this. TTPython’s ab-
stractions for distribution are inspired by
macroprogramming frameworks [6} [7]
for selecting sets of devices, efficient
in-network aggregation, and interfaces
between heterogeneous devices in the
system. Programmers can then specify
time-triggered exception handling (Plan
B) [133] across devices.

Although we did not develop the first iteration of TTPython, we have expanded on the scope

of timing specifications in TTPython to incorporate time-triggered exception handling. We find
that time-triggered exception handling is a minimum requirement for many DT applications.
This thesis also provides and implements the semantic execution model of TTPython. To inte-

2

grate macroprogramming into a conventional host language, we compile code to a dataflow graph
(DFG) architecture, which is composed of nodes of computation and edges for data communica-
tion. The DFG intermediate representation adapts the MIT Tagged-Token Dataflow Architecture
(TTDA) [31] to the DT setting. The DFG provides abstractions for concurrency and communi-
cation, and these abstractions offer maximum flexibility to partition the program across devices
to maximize efficiency or take advantage of hardware resources. TTPython distinguishes itself
from prior literature by introducing time in the dataflow model. Data is encapsulated in tokens
with a tag to indicate the liveness of the value. The tag includes a time interval to indicate which
iteration of periodic execution the data belongs to. An extra control plane added to the TTDA
allows us to encode periodic and deadline behaviors at the graph level; thus, the programmer
can specify timing at the global system view. To our understanding, we are the first to explore a
time-based dataflow architecture.

1.2 Thesis Statement

The use of a macroprogramming language with timed, tagged-token dataflow graph semantics
enables users to write shorter and more robust networking, timing, and concurrent code in dis-
tributed, time-sensitive applications.

To evaluate this, we examine TTPython through two case studies and a user study.

1.3 Evaluation

We apply TTPython on two distributed, time-sensitive applications: a 1/10th-scale smart inter-
section with connected autonomous vehicles (CAV) and an urban flooding sensor network. These
applications vary in their time and distribution requirements. These case studies capture different
insights into TTPython. The smart intersection gives us comparable code artifacts by comparing
a DT application written in both TTPython and vanilla Python. We compare challenging timing
and distribution code that TTPython abstracts, present the amount of code reduced by these ab-
stractions, and run both applications to identify bugs and differences in the implementations. The
urban flooding network provides an additional data point of TTPython’s flexibility in describing
DT applications. Its use cases show how TTPython primitives can describe complex timing re-
quirements. These two case studies shed light on how TTPython affects design and development
and the challenges found in using TTPython.

These case studies were used as inspiration for task settings for a qualitative user study on
TTPython. Its purpose is to highlight the difficulties programmers face when using conventional
frameworks to write DT applications. Participants wrote these applications with both TTPython
and vanilla Python to identify the advantages gained with the abstractions TTPython offers. Each
application is broken down into five tasks for users to complete within an hour and a half. Partic-
ipants were able to run and test their code to check if their implementation matched the required
specifications. We collected a mix of quantitative and qualitative data: time spent programming,
bugs introduced, self-reported usability and mental load, and transcripts on perceived difficulty.
We found that participants struggle with recreating TTPython’s timing and distribution abstrac-

3

tions in vanilla Python. Participants reported that it was easier to manage isolated, cross-cutting
concerns; however, they also reported difficulty when composing distribution and timing require-
ments in TTPython. These reports indicate that TTPython’s success is linked with how well the
application’s system architecture is understood and specified.

1.4 Contributions

This thesis contributes the following work:

* Creating syntax for the time-triggered exception handling code (watchdog timer) and its
corresponding semantics in TTPython.

* Providing compilation and operational semantic rules for the timed, tagged-token dataflow
graph.

* Analyzing case study code and design patterns.

* Creating and running a qualitative user study on TTPython.

1.5 Outline

We first provide a high-level description of the TTPython system along with its syntax, compila-
tion, and dataflow graph semantics in Chapter 2] Section[3.1]describes a case-study in which we
evaluate the experience of designing a non-trivial DT application of a 1/10th-scale intersection
with connected autonomous vehicles (CAV). The Urban Flooding application is covered in Sec-
tion [3.2] and describes common design patterns observed when practitioners use TTPython. The
work culminates with a comparative user study in Chapter {] to observe how TTPython abstrac-
tions benefit programmers compared with other classical solutions. Chapter [5] describes more
in-depth description of research that inspired TTPython.

Chapter 2

TTPython

2.1 Problem and Approach

We identified four issues to define time-sensitive applications for cyber-physical systems. These
applications periodically generate data asynchronously, synchronize data, have timing require-
ments across devices, and respond to failures through time-triggered exception handling. To
address these issues, we created TTPython, a domain-specific language embedded in Python.
TTPython integrates physical time with data. The insight is that data needs time in DT appli-
cations. Data has a notion of “liveness” in that two values are valid to use together if they are
“close” enough in time. Consider an example of taking an average of temperature samples within
a building. Generally, the temperature of a building does not drastically change within a five-
minute interval. Temperature samples that differ within five minutes could be used together to
calculate an average ambient temperature. However, day and nighttime temperatures can vary
widely. Averaging temperatures taken hours apart might not be meaningful. The environment’s
characteristics define these time-liveness intervals. This forms the idea of data synchronization.
Data that is generated around the same time can be used together. Data synchronization appears
in TTPython as an execution rule for our dataflow graph.

TTPython’s time model uses wall-clock time. When generating data, each device will take
its local Unix time to generate timestamps. Time in TTPython appears as data (such as when
specifying a deadline) or as a context associated with data (its “liveness”). This context is defined
as a time interval composed of two Unix timestamps. These time intervals allow us to define what
“close” enough is and mitigate inaccuracies caused by jitter and desync.

We first see how TTPython abstracts asynchronous data generation and data synchroniza-
tion through function decorators (€ STREAMi fy and @SQ1fy) by walking through a “Hello-
World” style application. We then add multiple devices to create timing requirements across
devices and add deadlines so they can respond in the event of failure. These are han-
dled in TTPython by system-provided context managers and functions (TTConstraint and
TTFinishByOtherwise. The TTConstraint enables TTPython macroprogramming de-
sign and allows global timing specifications to be expressed without needing to break them down
as individual timers per device.

Although TTPython shares syntax with Python, its execution differs based on the level of

5

abstraction the programmer writes in. The €GRAPH1 £y decorator designates a main function
in which its body is converted to a dataflow graph. However, non-main function bodies execute
with ordinary Python semantics familiar to programmers. TTPython wraps these functions as
separate nodes in the dataflow graph and provides infrastructure code, which includes the nec-
essary data synchronization and networking between the functions in the main body. To clarify
when TTPython runs infrastructure code and when user code executes, we will first introduce
the compilation of TTPython syntax to the dataflow graph. This also shows how the dataflow
graph incorporates user-specified timing specifications, such as periodicity. We then describe its
operational semantics, describing how a node’s execution rules enforce data synchronization or
run time-triggered exception handling code.

2.2 TTPython System Overview

2.2.1 Example TTPython Program

We introduce the language with a sample sensor fusion application adding two simulated
periodic sine wave data sources as seen in Listing[I] For 30 seconds, the application adds data
from the sine waves (Line [44)) and keeps track of the average of one of the sine waves for 30
seconds (outputs depicted in Figure [2.1).

'ADD-16' output from device ‘runtime-manager’ 'movingAverage-17' output from device ‘runtime-manager’

0.7
0.6
.
1{ . . ‘ . 0.5
.

0.4 A

Token Vvalue
o
!
Token Value

0.3
* - -
ases
0.2 3 Lt
.
0.1

—3 ey 0.0 4 et :

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time

(a) The sum of two sine waves. (b) The moving average of one sine wave.

Figure 2.1: Output of the sample sensor fusion app in Listing

To create a TTPython program, the programmer first specifies the main function with the
function decorator @GRAPH1 fy, as seen on Line @GRAPH1 fy takes the associated function
and constructs a dataflow graph from its body. It requires that all expressions within the function
must be basic arithmetic, boolean expressions, or TTPython decorated functions with @SQ1i £y or
@STREAMI fy. The compiler automatically takes basic Python arithmetic and boolean operators
and converts them to their SQ (a node in the graph) counterpart. We use the term SQ (scheduling
quanta) to distinguish the timing characteristics it requires from its nodal counterpart in prior
literature.

| @STREAMi fy
rdef sinusoid_sampler (A, £, phi):

3
4

[

11

from math import sin, pi # local import
global sqg_state
if sqg_state.get ('count', None) is None:

sg_state['count'] = 1
sample = A * sin(sqg_state['count'] » 2 « £ / pi + phi)
sg_state['count'] += 1

return sample

@SQify # user defined SQ

i2def average (new_input) :

20

global sg_state # persistent local state

count = sqg_state.get ('count', 0)

avg = (sg_state.get('avg', 0) * count + new_input) / (count + 1)
sg_state['count'] = count + 1

sg_state['avg'] = avg

return avg

@GRAPHify # main program specifying SO linking

sidef add_sine (trigger) :

2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Al =1; £.1 = 0.25; phi_1 = 0
A2 =2; £2 =0.10; phi_ 2 = 0

with TTClock.root () as root_clock:
start_time = READ_TTCLOCK (trigger, TTClock=root_clock)
N = 30 # seconds
stop_time = start_time + (1_000_000 * N)

create a sampling interval by setting the

start and stop tick for one of the args

sampling_time = VALUES_TO_TTTIME (start_time, stop_time)

Al_sample = COPY_TTTIME (A_1l, sampling_time)

A2_sample = COPY_TTTIME (A_2, sampling_time)

sine_1 = sinusoid_sampler(# streamify call 1
Al_sample, f_1, phi_1,
TTClock=root_clock, TTPeriod=500_000,
TTPhase=0, TTDatalntervalWidth=100_000)

sine_2 = sinusoid_sampler (# streamify call 2
A2_sample, f_2, phi_2,
TTClock=root_clock, TTPeriod=500_000,
TTPhase=0, TTDatalntervalWidth=100_000)

output = sine_1 + sine_2 # sync data streams

y = average (output)
return output

Listing 1: A TTPython application adding two sine waves and tracking the average periodically
every 0.5 seconds for 30 seconds.

The GRAPHified function add_sine is populated by SQs created with the function deco-
rators @SQ1ify and @STREAMI fy. @SQ1 fy takes the associated function and translates it into
a node in the dataflow graph intermediate representation. Line [I1] shows @S0i £y applied to
the average function. It weights the existing average by the number of samples, adds the new
sample value, and divides by the new number of samples. The average implementation requires
tracking the number of samples taken between iterations. To account for this, TTPython reserves
and overloads the global variable sq_state to store local state between multiple executions
of a SQ. Note that this does not share semantics with Python’s global keyword. Instead, the
variable is only locally observable by the SQ, so accesses are to the local device’s version of the
SQ’s state. TTPython does not support global memory space: the data passed between SQs are
copied.

The @SQify and @GRAPH1 fy constructs we have described so far are insufficient for de-
scribing computation called at fixed intervals of time (i.e. periodic computation). The function
decorator @STREAM1 fy creates a SQ that will repeatedly generate data once started. In short,
the STREAMified function will periodically execute while all its inputs are “live.” In the DFG,
a SQ communicates data across edges through fokens. Tokens pair time intervals with data. A
computation involving multiple data values can execute if these data share overlapping time in-
tervals, indicating that they share a common temporal context. We modify a token’s time interval
with internal functions TTPython provides to modify token structure. VALUES_TO_TTIME sets
the start and end timestamp of the output token’s time interval to be the values from the two in-
put tokens. COPY_TTIME creates a new token with the value of the first argument and the time
interval of the second argument. On Line by setting N=30, we specify that the stream is
allowed to emit data for the specified time interval of 30 seconds. These modifications allow us
to specify how long a STREAM ified function will run. A STREAMified function will generate
output tokens periodically until the current time no longer overlaps with the time intervals of
its input tokens. Concretely, in Listing |1}, we set A1_sample and A2_sample to have a time
interval of start_time and start_time + 30 seconds. The function will start running
periodically at start_time and stop executing periodically when 30 seconds pass since its
start.

The «call to sinusoid_sampler function needs periodicity information
via specially named keyword arguments TTClock, TTPeriod, TTPhase, and
TTDatalIntervalWidth. The TTClock specifies the degree of time synchronization
across devices. It is a placeholder and relates to hardware clock primitives that this thesis will
not discuss. The programmer can specify how often the SQ will trigger with TTPeriod.
A TTPhase=0 means that the sinusoid_sampler will trigger when an internal clock
counter reads 0 modulo the period; for TTPeriod=500000, a TTPhase=250000 would
trigger 250ms after the counter wraps around and every 500ms successively after (as a 500ms
period was specified). When running periodic computation, the SQ also needs to define the time
interval for its generated tokens. When the runtime executes this SQ, the runtime will take the
start and stop time for executing this SQ and take the average. The new interval is this timestamp
average, plus-minus the TTDataIntervalWidth divided by 2. The width of the resulting
interval is thus TTDataIntervalWidth. TTPython reserves keyword arguments that start
with TT as information used by the runtime and are not accessible by the function body during
execution.

1
2
3
4
5
6
7
8

@SQify
def deadline_check () :
return None

@GRAPHify
def add_sine(trigger):

with TTClock.root () as root_clock:

deadline_time = READ_TTCLOCK (sine_1, # deadline time
TTClock=root_clock) + 50_000

with TTConstraint (name="dev"): # assign to device 'dev'
safe_add = sine_1 + sine_2

safe_add = TTFinishByOtherwise (output,
TTTimeDeadline=deadline_time,
TTPlanB=deadline_check (),
TTWillContinue=True)

1f deadline fails, 1t produces a separate

value (similar to ternary operation:

a =y 1f clock.now < t else deadline_check())

average (safe_add) # downstream SQ

Listing 2: An updated example of the deadline construct with location specification with adding
two sine waves.

2.2.2 Time and Location Constraints

TTPython also offers two more constructs at the GGRAPH1 £y level to assist programmers in
dealing with space and time constraints. We modify our sinusoid program in Figure [2]to include
a deadline constraint on Line [23|for adding the two sine wave values and specifying the location
of the addition SQ to a particular device on Line

Specifying Location

Before graph execution, TTPython needs to decide how to map each SQ in the dataflow graph to
its host device. We offer a simple constraint syntax with the keyword TTConstraint where
the programmer can specify requirements on groups of SQs. These requirements can range from
required hardware for an SQ (e.g., a function that takes an image requires a camera on the device)
or software (e.g., a specific library for Fast Fourier Transforms). In this program, the programmer
has specified that the SQ within the with block on Line[I3|will be assigned to the device named
“dev”. If multiple devices fulfill a requirement, an arbitrary device is selected. Future work will
focus on optimizing this selection with respect to timing and other user-specified parameters.

Deadline Constructs

Timing requirements in TTPython have two compo-
nents: the time when the computation should fin-

Upstream SQs ish and the exceptional time handling code to run

if the execution doesn’t finish on time. In the
updated example in Figure 2] deadline_time
is generated and sent downstream by each itera-
data time tion of sinusoid_sampler. The TTPython SQ
L ! TTFinishByOtherwise construct ensures that data
Deadline __ has been generated on time by triggering a backup pro-
cedure (Plan B [33]]) if the data is not received by the
specified deadline, which is deadline_check in our
example. If Plan B is run, the programmer can spec-
ify different behaviors regarding downstream execution.
These behaviors are similar to those associated with
raising an exception. The timestamp generation comes
from READ_TTCLOCK on Line and offsetting it with
Figure 2.2: Deadline DFG Compila- an gddition. READ_TTCLOCK accest two Parameters:
a trigger value that upon token arrival will read the
clock and a clock from which to take the timestamp.
TTPython uses a clock to allow programmers to specify
the level of synchronization necessary between time-sensitive actions. The root clock, a proxy
for Universal Coordinated Time, is sufficient for the examples in this thesis.

The SQ TTFinishByOtherwise supports two recovery behaviors: replacing a “late”
value with a default value provided by Plan B or running a separate backup routine without exe-
cuting the rest of the data dependencies of that data variable. For example, a backup routine on
an autonomous vehicle that instructs the car to apply the brakes may not want downstream SQs
to execute after applying the brakes, as they could command the car to continue moving forward.
TTWillContinue accepts a boolean and indicates whether the programmer intends to execute
the downstream SQs from the data value given if Plan B is executed. If TTWillContinue is
True, then the default value passed on will be the value returned by the function call spec-
ified with TTP1anB. Downstream SQ execution will continue with this default value. This
pass-through procedure is visually represented in Fig by the red dotted line. Otherwise, if
TTWillContinue is False, the compiler will not include the red dotted line. The boolean
value True for TTWillContinue in Figure[2]indicates that the graph will always execute the
average SQ on line[23|regardless if Plan B occurred. The graph will use the value None from
the output of deadline_check as the value for safe_add if sine_1 does not arrive by
deadline_time.

Downstream SQs

tion

2.2.3 Composing Time Constructs

Having data synchronization (i.e. all tokens have overlapping time intervals) as a primitive al-
lows TTPython to describe interesting timing and control schemes. For example, consider the
following code in Listing

The function lepton_planb on Line 2|is used to reset a Thermal Imaging Camera FLIR

10

@SQify

rdef lepton_planb(): # resets the

3

© o 9 o wu A

10
11
12
13

set low for 5 seconds for pin 31

to trigger reset on breakout board
GPIO.output (pin, GPIO.LOW)

sleep(5.0)

reset to default state

return {}
@GRAPHify
def main(trigger) :

with TTClock.root () as root_clock:

lr = lepton_record(sample_window,
TTClock=root_clock,
TTPeriod=3_000_000, # periodic of 3 secs
TTPhase=0,
TTDataIntervalWidth=250_000)
lepton = TTFinishByOtherwise (lr,
TTTimeDeadline=timestamp + timeout_val,
TTPlanB=TTSingleRunTimeout (# prevents livelock
lepton_planb (), TTTimeout=10_000_000),
TTWillContinue=False)

Listing 3: This example composes the deadline and data synchronization constructs by only
allowing one Plan B (1epton_planb) to run at a time.

Lepton 3.5. As a cost-effective thermal camera, the Lepton sometimes becomes unresponsive.
An effective measure to recover from this hardware fault is to turn it off and on [34]. The
procedure to reset the Lepton 3.5 requires about five seconds time to cycle its power. However,
the Lepton is being called periodically every three seconds with TTPeriod=3_000_000 on
Line[T9] Without the TTSingleRunTimeout call enclosing the Plan B expression, the graph
will have livelock where calls to Plan B will be repeatedly called without chance to recover. For
example, when the Lepton first becomes unresponsive, Plan B will be called. As the Plan B
node takes five seconds to complete, it will finish before the next periodic iteration starts. The
next periodic iteration then attempts to wait for Lepton, which fails to respond because it is in the
process of restarting. This then creates another call to Plan B, which then spawns a new execution
attempting to power cycle the thermal camera. This leaves the graph in an unrecoverable state
of trying to reset the camera with Plan B but not letting enough time elapse for it to run to
completion.

To address livelock issues, TTPython provides the TTSingleRunTimeout function call.
This construct takes an expression as input and a keyword argument TTTimeout. It prevents the
expression from being evaluated more than once and waits for TTTimeout microseconds before
allowing the expression to be evaluated again. The construct introduces a dedicated token used

11

to synchronize the expression it encapsulates. This token acts similarly as a mutual exclusion for
the expression, as the SQ that uses this token needs to synchronize with this token and ensures
that this token is regenerated only generated once the expression completes. Its time interval is
initially set from [-00, co] to overlap with any interval. When lepton_planb is first called, the
mutex token is consumed with the trigger to the lepton_planb SQ. This data synchronization
step prevents other Plan B executions from occurring as other call attempts would lack this mutex
token. After lepton_planb produces a value, TTSingleRunTimeout needs to regenerate
the mutex token. It takes the time it finished execution as curr_t, the value in TTTimeout
as n, and sets the mutex token with time interval as [curr_t + n, oo]. Because the mutex can
only match with tokens that are generated after the Plan B execution with a delay specified by
TTTimeout, this prevents livelock by ignoring prior requests to reset the Lepton while it is
already in the process of resetting.

2.3 Timed, Tagged-Token Dataflow Compilation

To gain an intuition on how tokens travel through the graph, we first look at how the graph is
constructed. This gives insight on how function decorators and compound instructions (such as
TTFinishByOtherwise and TTSingleRunTimeout) are represented in the graph.

We first briefly introduce the original MIT TTDA architecture. The TTDA is a graph com-
posed of nodes of computation and edges as communication links between nodes. A sample
dataflow graph node is shown in Figure[2.3] Data travels through the edges as a token. The MIT
TTDA supports parallel architectures and can execute functions concurrently. It can do so by tag-
ging tokens with a context, which is used to identify which data belongs to the same execution.
In TTPython, this context is a time interval.

A SQ fires (executes computation) when
certain conditions are satisfied, known as its

@ firing rule. TTPython has three firing rules:
- the Data-Validity (DV), the Time-Based Trig-

ger (TBT), and Immediate. The DV is the

default firing rule for most SQs as it syn-

chronizes data. The TBT enables the DFG

‘ to encode deadlines. The Immediate rule al-

lows merging outputs from conditional branch
computation. If the firing rule is successful,
the SQ then applies its functional computation
to the data and updates the token’s context for
downstream SQ forwarding. Tokens are stored in a waiting-matching section, where tokens wait
until the SQ accumulates enough tokens with the same context to fire. We implement this as a
set that accumulates tokens for each input port.

Figure 2.3: A dataflow graph node containing a
+ operation.

12

2.3.1 Definitions

The dataflow graph G is represented by a set of scheduling quanta V. Each SQ has a set of named
input ports and a set of output ports. Edges are implicitly defined by the output ports, which are
represented as a list of the names x of the input ports they are connected to.

A SQ (v € V) is defined as (6 = f(i),r, s) where f is the function v is encapsulating, 7 is a
list of input ports, 0 is a list of output ports, r describes the firing rule for v, and s is the internal
state of the SQ. Input port names do not have to be unique. In our implementation, we derive
these names from source variables that may be used multiple times. Therefore, all input ports
that share a name will be delivered the same token.

f is of type List(Token) — Set(Pair(Token, Name)), where the name is the name of input
port(s) we are sending the corresponding token to. We assume the implementation of the function
does this by looking up what the SQ’s output ports are connected to. This abstraction gives a
function the option of choosing to generate an output token for each of its output ports. This
flexibility enables conditional branching.

Each input port has a set W, which holds tokens received by the port until the SQ fires. The
structure of an input port 7 is composed of (x,W). s is the internal state of the SQ for firing rule
purposes and differs from the functional sq_state as described in Section[2.2.1] This is used
to keep track of particular tokens for the Time-Based Trigger firing rule, which we will discuss
later in Section

Tokens

An execution of the graph involves tokens propagating through G. A token k is defined as
follows:
k= (d,t)

where d is data and ¢ is a time interval [t,,t.] where t; < t.. This timestamp represents the
context of the data. This data was generated at (¢5 + t.)/2 and can be used in computation with
other data that shares the same context (i.e. timestamps overlap). TTPython’s implementation
uses physical (Unix) time for each timestamp in the time interval. We also use time during
execution to check if a deadline has passed. This requires keeping track of what is current time
and going forward in time. To simplify our semantic model with these operations, we represent
t as elements of N.

By default, an output token’s time interval is the intersection of all the input tokens’ time
intervals. If the programmer needs to override this default, such as extending the lifetime of a
value beyond that of the data it was computed from, we provide APIs for this purpose. These
APIs are also used to set the time interval for tokens that specify the length of time to generate a
periodic stream, as was shown in Figure m

2.3.2 Compilation Structure

We now describe the translation of TTPython source code to a dataflow graph. The translation
rules we use are described below:

e—V;x

13

e is an expression that compiles to a set of SQs V. x is the name of the output port that a
future input port can be renamed to to receive tokens from the expression e.

Every dataflow graph must have at least one input. We reserve the name r as one of the
required inputs to the graph and use it as the initial trigger for the graph.

We assume that source variables have been defined before use. If so, the output port providing
the variable has been created either as an initial input to the graph or by another SQ. Referencing
a variable returns the name of the connector providing that value.

Compiling Expressions

Accessing a variable means accessing the named connector providing the data name in the graph.
The compilation returns the variable name.

ar

y—1{hy ’ 2.1

Getting a numeric or boolean value creates a SQ emitting that value. As it has no data
dependencies, the initial trigger r signals the start of its execution. The expression is first assigned
a fresh variable to describe the local value it produces, which may get renamed during variable

assignment. The CONST function takes a trigger token as input and creates a token with n as its
data field and [—o0, 00| as its time interval.

n : Val x fresh

T 2.2
n +— {([z] = CONST(r, const = n),Dv,) };z Vall 2

Arithmetic and boolean operations take two inputs, the left-hand side and right-hand side of
the operator. Their outputs are then supplied to the input of the operator SQ.

€1 — Vl, r1 €9t V2, Ty XT3 fresh
(] @ €y > V1 U V2 U {<[l’3] = @(x1,$2)>, DV, }, T3

An If-Then-Else expression in Python evaluates e and executes e; if e’s value is True or
es otherwise. We do not want to run both e; and e, without first checking the value from e
because e; and e, might have side effects. Therefore, we create vy, and v, that only allow
their respective subgraphs to execute depending on the test expression’s value. vy.,’s function
(branch) takes as input the test expression and the variables used in the then branch (i.e. free
in) and forwards them to the subgraph only if the first token’s data value is true. v, 1s handled
symmetrically with the not_branch function. This ensures that only one of the branches will
execute.

After creating v;p.,,, the connectors that the variables in the then branch reference should link
with vype,,’s output. Thus, vy, shadows the then branch’s free variables’ prior connectors. The
variable substitution operation ¢ implements this shadowingE] We also shadow input triggers for
SQs generated with Rule The merge SQ takes any of its inputs and emits it as its output.

Arithmetic (2.3)

2Substitution: e o @, where ¥(z — 2') € §. e[z — 2]

14

(a) Graph compilation of
Rule [{-Then-Else] where the
if branch and else branch use
the free variables a and b
respectively. vipen and vgge are
represented by the IF node.

(b) Graph compilation of

Rule [Deadline Raisel vgeqdiine

and vpenp are represented by
the DEADLINE node.

compilation of

(c) Graph

Rule [Deadline Catchl vgeqdiine

and vpenp are represented by
the DEADLINE node.

Figure 2.4: Compilation graphs for If-Then-Else and Deadline.

e—V;x
l; = free(ey)
ly = free(es)

O0={y—=>v|yelhUltU{r—r'} o fresh r'fresh

Uthen = {(list(l1) + [r]) 0 @ = branch(x,list(l;)), DV, -}
Verse = {(list(l2) + [r]) 0 @ = not branch(x,list(l3)), DV, -}

Vout = {[1‘3] = merge(xl, :Eg), Immediate, } x3 fresh

€1 — Vl;.’lfl
€9 > VQ;Z‘Q

2.4)

If-Then-Else

e1 1if e else ea = {Vhen, Veise, Vout } UV U (V1 00) U (Vo 00); 23

TTFinishByOtherwise follows a similar collecting and shadowing procedure for its
Plan B subgraph with the v}4,,, node. The test function will send the data token as output on x or
a token with value True on z;, depending on whether data comes in on time or Plan B needs to run. The
SQ containing the test function uses the Time-Based Trigger firing rule and the SQs state, which will
be discussed in below in Section[2.4] z corresponds to an on-time execution while xz;, will start the Plan B
subgraph. When TTWillContinue is False, TTPython will not substitute the value with the output
from Plan B. Plan B will run as a side effect, and downstream execution will not happen as it will lack the

data token necessary to execute.

15

eq — Vd; T4
ec— Ve,
| = free(ep)
0={y—19y|yel}U{r—r'} ¢ fresh r'fresh
x fresh x; fresh

Udeadline = <[.7J, xb] - teSt(l'd, xC)a TBT; <<_OO7 [—OO, _OO]>>> (25)
Uplany = ((list(l) 4 [r]) 0 § = branch(ay, list(l)),DV,)
ep = Vpixp

. . - - Deadline Raise
TTFinishByOtherwise(ey, TTTimeDeadline=e,,

TTPlanB=e,, TTWillContinue=False) —
Vd U Vc U (Vp © 9) U {Udeadlinea Uplanb}; x

When TTWillContinue is True, TTPython will substitute the value with the output from Plan B.
A merge SQ allows Plan B’s output to replace the data token for downstream execution.

eq — Vd; Tq
ec— Ve e
l = free(ep)
0={y—y|yellu{r—r'} ¢ fresh r'fresh
x fresh a3, fresh
Vdeadline = ([T, xp] = test(xg, xc), TBT, ((—00, [—00, —0])))
Uptany = ((list(l) + [r]) 0 @ = branch(ax, list(l)), DV, -)
ep — Vpiap
Vout = ([Tout] = merge(z,zp), Immediate,) oy fresh

(2.6)

.) X - Deadline Catch
TTFinishByOtherwise(eq, TTTimeDeadline=e,,

TTPlanB=e,, TTWillContinue=True) —
Vd U Vc U (Vp o 0) U {Udeadlmea vplanb; vout}; Lout

The TTSingleRunTimeout ensures that only one execution of e can occur in the graph. It does so
by using the DV firing rule and introducing a synthetic port x,,,. The token in x,, functions very similarly
to mutual exclusion, since it must be consumed before e can run. x,, allows vgqiper to wait until its
prior execution has finished before allowing further execution. When the graph is instantiated, a token
with a True data value is populated for x,, in this branch SQ. By construction, either a token is in
the waiting-matching section for x; or it has been consumed and the subgraph is firing. If e is executing,
no other executions can happen because they lack a token in ;. The SQS vgeiay and vVresample are used
to exclude synchronizations for the new token for x,,, by purposefully offsetting its time interval into the
future. The delay begins after e to ensure that any tokens generated during e’s execution is ignored. This
prevents it from matching with tokens generated before it was generated.

When delay runs, it takes the current time ¢ and either waits until first_offset time steps
later if specified and has not been run before, otherwise waits of fset time steps later. The function
resample takes its input token and reassigns its time interval. It takes the current time ¢ and set the
token’s new time interval as [t — start_offset,t+ end_offset]. We set end_offset to be oo to
match with any future tokens.

16

(a) Graph compilation of Rule

where the enclosed expression uses the free
variable a. Vgqather 18 represented by the SIN-
GLETON node. Both z,,’s point to the same
port.

(b) Graph compilation of Rule for
the function def f(z1,x2). Each cycle is re-
sponsible for periodically creating one of the
function’s parameters.

Figure 2.5: Compilation graphs for Single Run and STREAMi fy.

[= free(e) x, fresh

0={y—y|yellu{r—r} ¢ fresh r' fresh
Vgather = ((list(l) + [r]) 0 @ = branch(zy,, list(l)),DV, -)

e—V;x,

Vdelay = ([2] = delay(x,, offset = n),DV,) 27)
Uresample = {[Tm] = resample(a’, start_offset =0,
end-offset = 00),DV,) '
. . . Single Run
TTSingleRunTimeout (e, TTTimeout=n) — {Vgather, Vdelay} U (V 0 0); 2,
A function decorated with @SQ1 fv compiles to a SQ encapsulating that function.
Vi=1.n.e;— V;;x; x fresh
SQify Func
fler, - ,en) — (2.8)

U Viu{{[z] = f(21, - ,an), DV,) i@

Vi=1..n.

A function decorated with @STREAM1 £y compiles to a subgraph of SQs to describe periodic capa-
bilities. A STREAMified function produces tokens periodically from one set of synchronized inputs. It
will produce tokens with the specified period and phase until the current time no longer synchronizes with
the original synchronized inputs. This allows us to specify when periodic functions start and end. As
an execution consumes the input tokens, the graph needs to regenerate the input tokens repeatedly. The
SQs v;, v}, and v] are responsible for generating new tokens for the next iteration and timestamping them
accordingly. v; is responsible for propagating the first set of tokens to the STREAMified function f and

the regenerated ones over time. Its function repeat behaves differently if it gets tokens from x; (the start
of the periodic call) or z{ (generated from a prior iteration). The latest timestamped token k; received
on z; is saved in the SQ state s and then sent to the STREAMified function in vy. When tokens come in
from 2, they are compared to k;. If they are not synchronized with k;, they are not propagated to vy.
v; and v] create and timestamp tokens for the next iteration. v]’s function delay has a new parameter
first_offset where its first execution will delay by ny. All subsequent executions will delay by n.

Vi=1.n.e > Vi;xi
) fresh zf fresh 2/ fresh

v; = ([z}] = repeat(z;,27), Immediate, (—oo, [—00, —00]))
v = ([2] = delay(z}, first offset = ng,offset =ny),DV,")
v = ([2'] = f(af, - ,x}),DV,-) & fresh
vl = ([27] = resample(z], start offset = —ng/2,
end_offset =n3/2),DV,) (2.9)
vy = ([x] = resample(a’, start_offset = —ng/2
([] ple(a/, 3/2,

end_offset =n3/2),DV,-) z fresh

STREAMi fy Func
fle1, - ,en, TTPeriod=ny,

TTPhase=ng, TTDatalntervalWidth=ng) —

(V,LlJ Vi U{vi, v, v H U {og, 0 b
1=1..n.

Compiling Statements
Statements in a GRAPHified function provide variable names for expressions.

e—~Viz 0={(z—vy)}
y=e—Volby

Assign

Statements also allow for code blocks that provide runtime information such as mapping. with state-
ments provide runtime information through TTClock and TTConstraint constructs. These state-
ments add labels for the subgraph of SQs generated in its block. TTPython uses these labels during the
deployment of these SQs. We have not added these labels to the definition of SQs for brevity of compila-
tion and semantic rules.

2.4 Timed, Tagged-Token Dataflow Semantics

We first describe the system configuration C of the DFG. This is described as the tuple
C=(G,N,t)

where G is the dataflow graph, N\ is a set to hold onto tokens in transit through the network, and ¢ is the
current time for the system. An element of N is described as a tuple (k, x) where k is a token and x is the
name of the input port it is addressed to.

Sometimes, there are no possible actions for G because there are no fulfillable firing rules or tokens
are still traveling through the network . To simulate this, a rule describes the passage of time with no
actions from the dataflow graph or network. We represent this with the following rule

3This rule has lower precedence than the future rules described later in this section.

18

(©N 1) — (&N t+1) Metime 210
Tokens can also exit from the network. They are added to the waiting-matching set of their destination
input port.

(k,x) e N V={v|veG Ai€viA x=1ix}
V' ={v[i = (x,i,i.wU {k})]|v eV} (2.11)
GN8) — (G\VUV. N\ (ke RevTok

The notation for Line 2 in Rule is shorthand for updating the SQ’s input port with the new
waiting-matching set unioned with the token to be added. To start a nontrivial execution, an initial config-
uration begins with a nonempty A with tokens with that have as their input port destination. The system
generates new tokens by consuming tokens from its input ports and sending them to the network. A SQ’s
firing rule describes this behavior.

2.4.1 Firing Rule: Immediate

The immediate firing checks if a token is in the waiting-matching section of any of its firing ports. If so,
it will fire immediately while providing null values (None in Python) for all other input ports.

v= (0= f(i),DV,8) € G A len(i) =n Ai=[i], " ,in)
5. 1<j<n ANkeci;W
f(None,--- ,k,--- ,None) =* N/
W o=iw\ {k} 2.12)
v = <5: f(<213 a<ij'wi,>7"' ,in>),DV,S>
(G,N,t) — (G\ {v} U{'},NUN'T)

I-FR

2.4.2 Firing Rule: Data-Validity

A SQ v with the data-validity firing rule will fire if there exists a token on each input port of v such
that their time intervals overlap. Tokens k; = (d;, [t},t]) and k; = (dj, [t],l]) have overlapping time

intervals (k; N k; # 0) if t{ < ¢, and ¢} < t'. The firing rule is described by the rule below:

v= (0= f(1),DV,s) €G A len(i) =n A i=[i1, - i)
ky,- - kn.Va,bel.n.
a#b = ko CigWAkyCipWAkogNky#0

fkiy oo k) =* N (2.13)
Vjel.n.w =i;w\ {k;}
v'= (0= f((i1.x, W), -, (in.x,W,’)),DV, s)
DV-FR

(G,N,t) — (G\ {v}U{},NUN' t)

2.4.3 Firing Rule: Time-Based Trigger

A SQ with this firing rule has two input ports, delineated as ¢4 and ¢.. ¢4 corresponds to a data port, and
1. is the control port. We label tokens k; and k. for the ¢4 and i. input ports respectively. The list of
output ports o split computation into two branches: downstream SQs that use the data token and Plan B’s

19

Deadline at 1:10

Timing port . Timing port
Does not arrive
& Deadline —9+ Deadline
Data port Data port
l Current time is 1:00 l Current time is 1:00
Fires immediately,
discards timing token Fires at 1:10
(a) Normal Execution (b) Plan B Execution

Figure 2.6: Time-Based Trigger Example Firing Semantics

associated subgraph, so we simplify o to two output ports [04, 0. to perform normal or Plan B execution
respectively. The SQ acts as a pass-through when the deadline time is satisfactorily met.

The SQ will internally keep track of the last control token it has seen from 4. that caused Plan B to
run, which we denote as k{: This is tracked in v.s, the SQ’s internal state. k. encodes the deadline in its
time interval. k..ts denotes when the deadline was initiated and k..t. is the timestamp of the deadline.

The semantic rules guarantee that Plan B fires at most once per control token. It will either fire if the
data token does not arrive on time or discard the control token otherwise. We first describe the success
case. Summarily, success is when both conditions are satisfied:

1. Tokens arrive on time (i.e., they arrive before the deadline specified by the control token).

2. Data is synchronized with the control token (i.e., they overlap).

v = {[og,0¢] = test(ig,ic), TBT, (kL)) € G
kg €igW ke€icW t<kete kqNke#0
i = [(ia-%,1a-W\ {ka}), (ic. %, ic.W\ {kc})]
v' = ([og, 0] = test (i), TBT, (k.))

N ={{kg,z) |z € 04}

(G,N,t) — (G\ {v} U {'},NUN't)

(2.14)

TBT-S

Exceptional cases occur when either condition is not met.

1. Data is late (i.e., time t is greater than the control token k.’s end timestamp).

Plan B is run (Rule [TBT-F(ailure)-P(Tan)BC(ontrol)), and we will discard any data tokens that
would be synchronized to this control token (Rule [TBT-F(ailure)-P(Tan)BD(ata)). The function
max(k, k') returns the token with the greater ¢.

20

v = {[04, 0¢] = test(ig,ic), TBT, (kL)) € G
ke € 1. W kete <t
i7" = (ie.%, 00 W\ {ke})
v' = ([og, 0] = test(iq, i), TBT, (max(ke, k.)))
N = {{kc,x) |z € 0.}
(G,N,t) — (G\ {v}U{},NUN' t)

(2.15)

TBT-F-PBC

v = {[og,0¢] = test(ig,ic), TBT, (kL)) € G
kg € igW kgts < k‘é.te
7,3 = <id.x,id.W \ {kd}> (2.16)
v = ([og, 0] = test(il),i.), TBT, (k.))
(G,N,t) — (G\ {v} U{v'}, N 1)

TBT-F-PBD

2. Data has arrived but is unsynchronized.

This failed condition has three cases:

* Data token has arrived but there is no overlapping control token.

The SQ will wait for a control token to come.

* Control token arrives after its specified deadline.

As the deadline has already passed, the SQ must run Plan B immediately. This is already
encoded with Rule [TBT-F-PBC|

* Control and Data token do not match. Depending on the reliability of the network, some
tokens may never arrive at their destination. This raises concerns of memory impact, as un-
synchronized tokens will wait forever in the waiting-matching section without a policy to
evict them. The rule below addresses how to dispose of data tokens if their corresponding
control tokens never arrive for the TBTfiring rule. The DVfiring rule for cleaning unsynchro-
nized data tokens follows a similar format of using a timeout. The TTDA graph literature
describes this phenomenon as self-cleaning.

This rule depends on the order of the time intervals between the control and data tokens. We
assume here that kg N k. = 0.

If k4’s time interval is before k., the SQ will wait until time is greater than k4.t +Exp, where
Exp is a programmer-defined time extension to wait for the control token. Exp by default
is upper-bounded by the periodicity of the stream that k4 has been generated by. The default
ensures in-order operation for periodic streams. This implies that if iteration n of the control
token in the stream arrives, any tokens from iteration n — 1 are automatically late (unless if
Exp is set explicitly longer by the programmer).

v = ([og, 0¢] = test(ig,ic), TBT, (kL)) € G
kg € igW k. € i..W
kgte < kets kgte +Exp <t
7’3 = <id.X,id.W\ {kd}>
v = ([og, 0.) = test(i]},i.), TBT, (k)
(G,N,t) — (G\ {v} U {v'},N, 1)

(2.17)

TBT-F-US

21

If k.’s time interval is before kg4, the SQ waits for the corresponding data and control tokens
for each as the data for the next iteration has arrived earlier than expected.

2.5 Running an Application in TTPython

The programmer first compiles a TTPython program into a dataflow
graph. The TTPython architecture handles many runtime considera-

tions, such as SQ setup and distribution, SQ firing, code execution, and sQ
forwarding output to downstream SQs. The TTPython compiler struc- (Scheduling Quanta)
tures SQs in three components to aid the runtime. Each SQ has three o
. L . . Synchronization

components: Synchronization, Computation, and Communication, as S

e (firing time)
shown in Figure[2.77} Our abstractions manifest in Synchronization and
Communication; the Computation section is simply the user’s code. Computation
Synchronization implements the waiting-matching section and enables (perform the

Computation once the SQ’s firing rule is satisfied. Computation con- functionality)
tains the decorated functions specified by the programmer with @SQ1 fy
or @STREAM1 fy and runs to completion. We use the pathos frame-
work [42] 43]] to avoid Python’s GIL to run Plan B SQs in a timely
manner. Communication encapsulates data values into tokens with a
tag before sending them to downstream SQ(s) and, if necessary, over
the network. Figure 2.7: The components

To execute the program, the encoded DFG is provided to a Runtime of a Scheduling Quantum
Manager (RTM), i.e., a privileged device with knowledge of available
devices in the running application. The RTM maps the SQs constituting
the program onto those available devices based on program SQ constraints. Instantiating the program
across the devices in the system first requires knowledge of those devices. TTPython first holds a joining
phase, in which devices contact the RTM and inform it of their capabilities. This includes a unique
name, an IP address, hardware and software components, and a port through which the device will accept
messages. The RTM uses this to produce a dictionary linking names to network addresses. Before the
program starts, the RTM distributes this table among the online devices so they can communicate directly
with each other and run the program in a decentralized manner. Propagating the routing table across
devices allows them to run asynchronously without the RTM’s support. Once the RTM maps SQs to
devices, the SQs are sent over the network to the devices running those corresponding SQs. Each device
will unpack these SQs and await incoming tokens. When all devices acknowledge the SQs they will
run, the program is ready to begin. The RTM then creates and sends starter tokens to the SQs that take
externally sourced tokens. SQs that operate on no inputs (such as a stream generator or constant SQ) will
receive a dummy token. The dataflow graph begins executing and will continue until no tokens are left
and no stream generators remain active.

Each device that is running TTPython has three processes responsible for handling the components of
a SQ: Synchronization, Computation, and Communication.

Communication
(send results to
receiver nodes)

22

Chapter 3

Case Studies

TTPython has been used to implement two practical DT applications: the smart intersection (SI) and the
urban flooding (UF) network. The smart intersection concretizes code examples that show how TTPython
abstracts many implementation details necessary for DT systems. The urban flooding network general-
izes TTPython’s expressiveness in a different setting and shows how hardware considerations affect DT
application design. We motivate each application before discussing results in detail.

3.1 Smart Intersection

Cooperative autonomous vehicle intersections present a unique problem in terms of distribution and tim-
ing. The smart intersection uses roadside sensors with connected autonomous vehicles to cooperatively
coordinate vehicle planning and movement through the intersection. The goal of an autonomous vehicle
intersection is to allow the Connected Autonomous Vehicles (CAVs) to drive through the intersection as
close to the speed limit as possible without colliding [32]]. Vehicles traveling at high velocity near each
other have little margin for error. Accomplishing this feat requires precise timing, sensor fusion (the inter-
pretation of the environment state from different sensors), communication, and execution of the planned
path. Any deviation or failure could be catastrophic.

The smart intersection application consists of a multitude of sensor streams that must be combined
into a single worldview (global fusion), which is then used to determine the paths each CAV will follow in
the physical world. A connected infrastructure sensor (CIS) assists by providing a stationary camera that
provides localized information at the intersection. A Road Side Unit (RSU) takes the information from
the incoming CAVs and CIS to determine the paths each CAV should take. Figure [3.1]depicts a combined
CAV and CIS dataflow diagram. All processes of the CIS are depicted in blue while those of the CAV
are in blue and gray. A CAV has an extra LIDAR sensor and can actuate a steering and drive motor to
move, whereas the CIS sensor is just for sensing alone and has no actuation ability. All CAVs and CIS
sensors in the network must synchronize their sensor frequency within a tight margin so that sensor fusion
operates correctly. All CAVs and CISs must process and locally fuse their data to send to the RSU so that
the RSU has enough time to calculate the global fusion and intersection control [31]] (see Figure[3.2). The
data is then sent out to all the CAVs so they can actuate their steering and motors. This entire process
must happen within 0.125ms so that timing errors do not cause a crash of the CAVs. However, timing and
communication are very sensitive to problems. Even slight timing issues can cause the perceived positions
and trajectories of the CAVs to be estimated incorrectly, which can result in a crash as the CAV is actually
at a different position. Additionally, any late or out-of-order communications can result in a crash because

23

these errors may also affect the perceived positions.

Camera

Recognition Local Sensor

Fusion Motion :
LIDAR Planning Actuation

Recognition

et e
T ————————— -

CAV/CIS

\
So s

Figure 3.1: Dataflow of a Connected Autonomous Vehicle (CAV) shown in blue and gray and a
Connected Infrastructure Sensor (CIS) shown in blue. CAVs and CISs send their locally fused
sensor data to the RSU and CAVs receive intersection control back which is used to actuate the
steering and motors.

CAV/CIS O
Global Sensor Intersection

Fusion Control

CAV/CIS N

Figure 3.2: Dataflow of a Road Side Unit (RSU) that gathers sensing data from the CAVs and
CISs in the area, processes the global sensor fusion, and calculates the intersection controls to
send back out to the CAVs in the area.

This case study application was created using 1/10-scale autonomous vehicle models with scale-
accurate LIDAR and camera sensors shown in Figure[3.3] These work with a 1/10-scale connected infras-
tructure sensor (CIS), which is a stationary camera that also shares information with the intersection, as
shown in Figure[3.4] The 1/10-scale vehicles drive a figure eight loop with an intersection in the middle,
which can be seen in Figure[3.5] This intersection is controlled using an autonomous vehicle intersection
controller running on a Jetson TX2. The intersection has four scale CAVs to control, 2 scale CISs, and a
roadside unit (RSU) running the intersection controller.

Our research questions for this case study are as follows.

RQ 1 How do TTPython’s abstractions shorten infrastructure code in DT applications?

RQ 2 How do TTPython’s abstractions expose bugs in infrastructure code in DT applications?

3.1.1 Methodology

We took a completed 1/10-scale CAV application and rewrote it using TTPython. The developer (an
experienced DT application programmer) of the application was responsible for the conversion. We then

24

Figure 3.3: One tenth scale Figure 3.4: One tenth scale Figure 3.5: Overhead of one
CAV with camera, LIDAR, CIS with camera using Nvidia tenth scale CAVs shown driv-
and Nvidia Jetson Nano for on- Jetson Nano for on-board pro- ing within the figure 8 intersec-
board processing. cessing. tion.

performed a comparison of the code implementation and execution in the field. We highlight specific
code from the original application abstracted by TTPython’s timing and distribution constructs. The two
implementations were deployed on two CAVs and an RSU, and we observed execution behavior. We
collected various timing data, such as how long a periodic iteration ran before looping and how long it
took for the motor to actuate periodically.

3.1.2 Code Comparison

We compared the original code for the smart intersection application to a newly converted TTPython
version. To do so, we manually annotated the application code for both applications with labels that
involved infrastructure code. These were categorized into timing, concurrency, and networking. We
excluded extra newlines introduced by formatting, and then counted the labels. The original application
has 6415 lines of Python code, 624 of which is infrastructure code, which consists of code responsible for
timing, concurrency, and networking. The functionality of both code bases is identical from the application
output perspective. However, many of the internal structures were changed when migrating the original
Python code base to TTPython. These changes fall into three main categories: 1) timing management
code ensuring that sensors and devices sense and actuate at the proper time, 2) concurrency, including
pipelines for inter-process communication, and 3) networking code allowing all the different devices to
communicate. TTPython reduces the code needed for all three of these categories and eliminates 95% of
the code in these three categories combined, as seen in Table[3.1]

(LoC) Original App TTPython Variant

Timing 255 23
Concurrency 29 0
Networking 340 5

Table 3.1: Breakdown of infrastructure lines of code. TTPython eliminates concurrent and net-
working code with the DFG’s graph abstraction and dynamic network construction.

Timing Management Code is Drastically Reduced

With regards to [RQ 1} we see that TTPython localizes the timing requirements of the code when
creating specific timed control flow constructs. SQ firing rules ensure that the cameras and LI-

25

00NN R W=

PR — = —m e e —m = —
IS N R R R P o N U I N U R S)

24

DARs stay synchronized at the desired frequency and within a certain time interval. Having the
programmer specify timing before execution clarifies periodic and recovery mechanisms with Plan
B. This direct support for timing management improved the brevity of the code from 255 lines
of Python code to 23 lines of TTPython. For example, in TTPython a few lines of code such
as cam_sample = camera.sampler (cav_0, sample_window, TTClock=root_clock,
TTPeriod=125000, TTPhase=0, TTDatalntervalWidth=62000) replaced 30 lines of
manually written Python code to manage the timing and synchronization directly. These abstractions
enabled TTPython to reduce timing code by 90% while making the code more declarative and easier to
understand.

Listing 3.1: The original application’s implementation of a CAV using Python’s time and multi-
processing library with a user written API over a 3rd-party communication library. The timing,
distribution, and concurrency code is highlighted respectively in yellow, blue, and turquoise.

Start after 10 seconds
start_time = time.time() + 10.000.-000
interval = 125.000 # Interval is 125ms

Sleep until test start time
wait_until_start = (
start_time - time.time() -.01
)
if wait_until_start > 0:
time.sleep (wait_until_start)

Spawn the camera processing process

cam-out_queue = Queue ()

cameraProcess = Process (target=sourcelmagesProcess,
args= (cam-out_queue, settings, camSpecs,
simulation_time, data_collect_mode,
start_time, interval))

cameraProcess.start ()

Spawn the lidar processing process

lidar_out_queue = Queue ()

lidarProcess = Process (target=sourceLIDARProcess,
args=(lidar_out_queue, pipeFromC, pipeToC,
planner.lidarSensor, simulation_time,
data_collect_mode, start_time, interval))

lidarProcess.start ()

Spawn the communication process
manager = Manager ()

init = manager.dict ()
response = manager.dict ()
response["error"] =1

process initialization omitted, similar 3 lines
as above two process initializations

Sleep process until target time
target = start_time
while True:
if target <= time.time () :
now = time.time ()
lidar_received = False
camera.received = False

fallthrough = now + fallthrough_delay
while time.time() < fallthrough and not
(lidar_received and camera.received) :
Get the lidar
if not lidar_out_queue.empty () :

26

O 001 W A W —

Get the camera

if not cam.out_queue.empty () :
cam.returned = cam-out_queue.get ()
camera received = True

if lidar.received and camera.received:
normal execution

else:
deadline_check ()

Prep value to be sent, clear queue of old data

while not GUEIGUEUETEMPEYIOE

Dul
target = target + interval
time.sleep(.001)

Listing 3.2: The SI application rewritten using TTPython. Listing s code is comparable to

Lines

Comparable section to

N = 1_000

cav_0 = 0

starts N seconds later

start_time = READ_TTCLOCK (trigger, TTClock=root_clock) + 1.000-000 % N
stop_-time = GET_INFINITY (trigger, TTClock=root_clock)

sampling_time = VALUES_TO-TTTIME (start-time, stop-time)

cav_0_2 = COPY.TTTIME (cav.0, sampling_time)

with TTConstraint (name="cav0"):
cam_processed, cam_sample = camera_process (cav_0_2,
TTClock=root_clock,
TTPeriod=250_.000,
TTPhase=0,
TTDataIntervalWidth=500_000
TTFirstInstanceDelay=10_000_000,
TTPersistent=True)
lidar_sample = lidar_process (cav_0_2,
TTClock=root_clock,
TTPeriod=250_.000,
TTPhase=0,
TTDataIntervalWidth=500_000
TTFirstInstanceDelay=10_000_000,
TTPersistent=True)
fusion_result0 = local_fusion(cam_processed, lidar_processed,
cav_0_2, TTPersistent=True)
Comparable section to

with TTConstraint (name="rsu") :

rsu-deadlines, - = rsu-deadline_dummy (
sample_window,
TTClock=root_clock,
TTPeriod=250.000,
TTPhase=0,
TTDataIntervalWidth=550.000,
TTFirstInstanceDelay=10_000_000,
TTPersistent=True)

global_fusion_input_timeout = READ_TTCLOCK (rsu-deadlines, TTClock=root_clock) + 500.000

fusion_result_deadline_rsu = TTFinishByOtherwise (
fusion_result,

27

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

TTTimeDeadline=global_fusion_input-timeout,
TTPlanB=missed_fusion_input (),
TTWillContinue=True)
global_fusion_result_rsu = global_fusion/(
fusion_result_deadline_rsu)

with TTConstraint (name="cav0") :
local_fusion_timeout_cav0 = READ_TTCLOCK (cam_sample, TTClock=root_clock, delay=550_.000)
local_planner_timeout_cav0 = READ_TTCLOCK (cam_sample, TTClock=root_clock, delay=600-000)
global_fusion_result_deadline_cav0 = TTFinishByOtherwise (
global_fusion_result_rsu,
TTTimeDeadline=local_fusion_timeout_cavO,
TTPlanB=no_global_fusion(),
TTWillContinue=True)
lidar_processed_deadline_cav0 = TTFinishByOtherwise (
lidar_processed,
TTTimeDeadline=local_planner_timeout_cavo0,
TTPlanB=no_lidar (),
TTWillContinue=True)
command_velocity_cav0 = calculate_angle (
global_fusion_result_deadline_cavO,
lidar_processed_deadline_cav0, cav_0_2)
final_result = command_motors (command_velocity_cav0)

Examining Listing the original CAV application made direct use of the Python time library to
implement waiting for the right time to start computation and a while loop to implement periodic-
ity with a time.sleep () to run every millisecond. It checks the validity of the data by keeping
boolean flags to track its synchronization between the LIDAR and camera through 1idar_received
and camera_received. Its comparable implementaion is seen in Listing 3.2l TTPython separates
these concerns from the programmer into 4 steps: setting a start time, stop time, periodicity, and data
interval validity for downstream tokens. This code is built into the TTPython runtime system and thus
does not have to be written by the applications programmer; eliminating it is one of the reasons for the
reduction in code size mentioned above.

Concurrency is Eliminated and Networking Management Code is Reduced

We observe that the inherent concurrent behavior of dataflow graphs eliminates the overhead of concur-
rency and networking management. The DFG by construction creates data race free execution between
its SQs. The programmer writes functional aspects of the code combined with local state. State sharing
is managed through function calls that translate to message passing, so there is no need to write process
management code. This completely eliminates 29 lines of process creation and management from the
original application. Communication is also built into the TTPython dataflow architecture. The original
implementation used Flask, a Python web framework. Although it was a popular choice for networking,
it was not trivial to implement the interactions between the CAVs and RSU as discussed in Section [I.1]
Additionally, timing data structures, fallback routines, and routing tables had to be created manually,
whereas TTPython generates those automatically. TTPython thus reduced 340 lines of code to 5 with the
TTConstraint feature.

Referring back to Listing [3.1] there are explicit calls to the network queues used for connections to
other devices. This is seen in the out_queue variable after the function call camera_sampler. In
the original implementation, each device required a separate file responsible for handling communication.
TTPython avoids this by abstracting communication between devices through the dataflow graph. The
dataflow graph uses variables to name input and output ports for SQs. As SQs are the smallest unit of
execution, once the runtime manager maps and assigns all SQ locations, it can generate a routing table for
each device to specify where to send the output tokens per SQ. On Lines[25]and4] fusion_resultOis

28

sent to the RSU for its global_fusion function with no networking or synchronization code necessary
from the programmer side. This abstraction also makes it easy for the programmer to easily move code
across devices. The programmer simply needs to move code across with blocks. Under the hood,
TTPython modifies the routing tables during its mapping phase but does not need to touch the functional
aspect of the SQ. This further simplifies the project structure as shown in Figure [3.6] In the original
application, there are separate folders for the CAV and RSU code. Any shared communication would
first need to interface with the networking library before other devices could receive it. Sharing is simple
in TTPython, as with blocks with TTConstraint do not limit variable scoping. Sharing variable
names reduces the complexity of interfacing with different web frameworks and identifying properties
and invariants of the framework for correct execution. TTPython reduces programmer work concerning
concurrent and networking code.

3.1.3 Execution Analysis

To help answer RQ 2] we have

run both TTPython and the vanilla

Python implementation of the G
smart intersection to identify run- i P

time errors in the original imple- - T o reses = o roston(cmowt,
mentation. Two CAVs run con- —— Y- E—

nected to a shared RSU. Each im- —_——— .. e oecey 12 W
plementation is run 3 times to ob- —

on

with TTConstraint(name="rsu"):
global_fusion_result = global fusion(fusion_resulto,
183§

tain the averages for each of the - | .- ' Pton v ;

- - result = write to_file(global fusion_result)
following table data samples. We \{)

first allowed each implementation

1

@GRAPHi fy
def cav_app(trigger):
with TTClock.root() as root_clock:
Cav 0

to reach a steady state before track- Figure 3.6: Showcasing macroprogramming’s system-level
ing data over a 10-minute run. We - view. The original implementation had separate files desig-
wrote timing information to a file pated for each device, while TTPython supports development

to track how long an iteration takes ¢ »1] congtituent devices seamlessly in one file.
and how often code executes be-

tween periodic executions. The
timestamps from each CAV’s timing information file were then aligned for comparison.

We noticed that running the application in TTPython was noticeably slower than the original appli-
cation. The original application would complete a periodic cycle on the CAV within 125ms, while the
TTPython version would take around 250ms. We initially assumed that this was caused by TTPython’s
overhead, as TTPython adds extra data synchronization checks between each SQs. This would add data
synchronization between the asynchronous data generators (camera and LIDAR on the CAVs) and when
global_fusion runs with local fusion data from both of the CAVs. However, on closer inspection
of timing information and the networking code, we identified two bugs associated with the network in

Listing

1def processCommunications (comm_g, v_id, init, response, rsu_ip):
2 # initialization code

while 1:
if not comm_g.empty () :

a wn AW

29

18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

got = comm_g.get ()

response_message = rsu.checkin (xgot)

if response_message == None:
response["error"] =1

else:
response["error"] = 0
response["v_t"] = response_messagel["v_t"]
response["tfl_state"] = response_message["tfl_state"]
response["veh_locations"] = response_message["veh_locations"]

def cav(config, vid):

Spawn the communication thread

manager = Manager ()

init = manager.dict ()

response = manager.dict ()

response["error"] = 1

comm_g = Queue ()

commProcess = Process (target=processCommunicationsThread,
args=(comm_qg, vehicle_id, init,

response, config.rsu_ip))
commProcess.start ()

while True:
compute local fusion and send it over the network

comm_¢g.put (local_fusion_data)
time.sleep(.01)

if response["error"] != 0:
Cut the engine to make sure that we don't hit anything
egoVehicle.emergencyStop ()

else:
Update our various pieces

Listing 4: The original application’s networking code. It sends data asynchronously to the RSU
and waits for only 10 milliseconds before continuing execution.

The first bug is that there is a highly optimistic estimation for waiting for a network response from
the RSU. On Line [33] the CAV puts local fusion data into an asynchronous networking process running
processCommunications, which sends data to the RSU through HTTP. However, the following
sleep only waits for 10 milliseconds, as seen on Line [33] It is highly optimistic that the RSU execution
of global_fusion between two CAVs and a round-trip response will finish within 10 milliseconds of
sending the data. What occurs with this asynchronous send is a pipelining effect. The data it receives is
actually the global fusion data from the previous iteration’s run. A visualization of this can be seen in
Figure[3.7]

To confirm this, we reran the application by serializing the network execution. This ensures that the
CAV waits for the RSU to return from the current iteration’s local fusion data before continuing. We
allowed the CAV to run as fast as possible with this change. This change caused the original application’s
periodic iteration cycle time to slow down to 211.48 ms. This reaches parity with the speed found in

30

CAV RSU

send

receive
t=n | global fusion |

send

receive
t=n+1 | global_fusion |
=

send

receive
t=n+2 | globa

fusion

L
=

Figure 3.7: A time graph of execution between the CAV and RSU. At time ¢t = n + 1, the CAV
uses global_fusion data from time ¢. Data generated in the same iteration shares the same
colors.

TTPython’s initial testing. We set a periodic execution of 250 ms to avoid TTEH from executing at a
higher rate due to tight deadlines. We expect a similar expectation to be set for the original application if
it were updated.

The second bug we identified was a correctness issue in the asynchronous networking code. The
process responsible for networking responses either sets a shared memory location as failed or successful,
as seen on Lines [11] and [T3] respectively. However, as the main process (on Line [36) only reads if the
response has an error and does not invalidate if it uses it. This means that in an asynchronous execution,
the next iteration can incorrectly use the previous reading’s global fusion data. We saw in the Introduction
(Section[I.T)) that the checkin function takes up to 1 second before returning. As the application runs at
a 125ms period, using stale data for 1 second before the HTTP response error updates can be dangerous.

3.2 Urban Flooding Network

The urban flooding (UF) network focuses on wide-area sensing for detecting flooding of intercity sewer
systems [1]]. Elizabeth Carter from Syracuse University is working closely with the United States Ge-
ological Survey (USGS) and the city of Syracuse to develop this application. Uneven water levels in a
city sewage system can be caused by numerous external factors, such as impeding foliage or concentrated
rainfall. Identifying sewage blockage is imperative as treatment prevents the backflow of sewage from
violently expelling from house plumbing. The application combines thermal and optical imaging with
location sensors (GPS and IMU) to identify where flooding occurs within the sensor network deployed
across the city. If flooding is detected, the app will notify personnel to address the flooding. Furthermore,
the device that detected the flooding will notify surrounding devices to increase their sampling rate to bet-
ter gauge the water levels as the situation unfolds. The city of Syracuse plans to integrate this application

31

into its city infrastructure, which can provide a more stable environment in terms of power and internet
capabilities, while the USGS is interested in more remote locations where cell reception can be difficult
to find. As a member of the development team, our contribution to the application development includes
creating system architecture diagrams for future deployments and adding new features in TTPython to
accommodate for cost-effective hardware in sensor networks.

The urban flooding application consists of sensor boxes [53]], LoRa [54] routers/gateways, and remote
servers. A sensor box contains cameras, GPS, and an IMU. The autonomous version of the application
is described as follows. The optical camera generates an optical and near-infrared image that is tagged
with geolocational metadata from the GPS and IMU sensors. These images are combined with a long
wave infrared image from the thermal camera, forming a multiband image. The multiband image is fed
into a machine learning model to identify whether flooding occurs and is uploaded through LoRa (a radio
communication technique) to a remote server. The LoRa gateway acts as an intermediary between the
sensor box and server.

The UF case study is motivated by the following research question.

RQ What are the design patterns that developers use when using TTPython’s distribution and
timing abstractions?

The application is an ideal real-world testbed for TTPython as it provides unexplored system require-
ments for TTPython. Specifically, the UF app motivated the development of TTSingleRunTimeout
as seen in Section [2.2.3] support for multitenancy, and encoding unique modality execution based off of
environmental factors. The two latter aspects are discussed in a later section after discussing the proposed
system architecture of UF app and the code of the TTPython application.

3.2.1 System Architecture

LI &

Figure 3.8: A neighborhood in the UF app. 6 sensor boxes and a transducer talk to a LoRa
gateway that forwards data to a server.

The initial goals of the project have expanded from neighborhood analysis to multi-city deployments.
The project development is planned to go through three stages: device-level implementation, neighbor-
hood deployment, and city-wide deployment. As the current state of the application’s development is

32

still at the device level, the code artifact analysis will be limited to device-level interactions and develop-
ment. A discussion on the system design of a neighborhood deployment is presented below. We argue
that these graphical representations are amenable to TTPython’s graph execution model and highlight the
ease of taking high-level requirements and representing them in TTPython. We first present the system
architecture of a neighborhood in a city-wide deployment.

We define a neighborhood to be six sensor boxes, a submersible water level transducer sensor, a LoRa
gateway, and a remote server. These sensor boxes and transducers use LoRaWAN to send data wirelessly
while minimizing energy cost. The LoRa gateway sends LoRa radio packets to a remote server that inter-
prets LoRa packets into more traditional formats, such as IPv6. The remote server also hosts TTPython
code that coordinates communication between sensor boxes. We have opted for a centralized routing table
to allow for flexible neighborhood deployments, as routing table changes can be done much more easily
on the server side rather than on in-field devices. The six sensor boxes and transducers are unique per
neighborhood, while the LoRa gateways and remote servers may be shared across neighborhoods. The
transducer passively produces data and offers an API to change its sensing rate. The transducer is not
programmable and, as such, does not support TTPython. Its interactions are out of scope for the thesis
and can otherwise be modeled as external input or output per graph execution.

A sensor box running the autonomous version of the application has multiple modes. The state tran-
sition diagram is shown in Figure[3.9]

Device Wakeup

.

Calibration faled—— Calibration

<
<

-<«———Scheduled Wakeup.

Normal Execution

Monitoring No Flooding—p| Sleep I

—
4 \
—
. -<«———Neighbor Wakeu
Inactive <«—Network Shutdown{ Emergency ¢ p.
Emergency Timeout
—

Figure 3.9: A sensor box’s state transition graph.

When woken up, a sensor box starts with a calibration step. These steps are covered in Figure If
calibration is successful, it will move to a monitoring phase that samples the surrounding locale to check
if there is flooding. If no flooding occurs, the sensor box will go to sleep to conserve energy. If flooding
is detected, the device moves to emergency mode, alerts nearby sensors to go to emergency mode, and
constantly samples the environment while it is flooding. It keeps track of the area of the flooded location
in the image. Once flooding stops, the sensor box will send this tracked area to the server, which displays
the data on a dashboard.

The monitoring phase is shown in Figure[3.10] The graph is a visual representation of the autonomous
version of the application seen later in Section

33

Start Monitoring GPS + IMU data

O —— ot ISRISEESS \
v v

Thermal camera takes Optical camera takes
LWIR photo an optical and NIR
photo
Per-pixel temperature Embed GPS and IMU
change rate data into Image = |@&—
calculation EXIF/XMP

Flooding

Coregistration ——Multiband Photo Detected

S Y

Yes/Emergency Mode

Figure 3.10: Monitoring mode in the state transition diagram.

3.2.2 Code Artifact Analysis

The urban flooding application currently has two versions available. The first one is an on-demand version
where a user takes a camera box and presses a pushbutton to take a picture. This application version
is being used to accrue optical and thermal images for training data. This version is a subset of the
autonomous version described above, as it does not run code pertaining to flooding classification in an
image. The autonomous version is described in Listing [5] We discuss the main TTPython abstractions
found in the code below. These abstractions answer RQ]

This example already highlights many timing requirements already discussed in the prior Section [2}
including the composition of the TTFinishByOtherwise and TTSingleRunTimeout construct
on Line [I6] We instead focus on new additions to TTPython brought by the UF application: de-
sign patterns with STREAMified nodes for exceptional time handling, varied execution modes with the
TTPersistent flag, and alternative networking handling.

@STREAMi fy Control Flow Design Pattern

TTPython’s exceptional time handler TTFinishByOtherwise depends on its control tokens to spec-
ify when the deadline occurs. This means that each instance of TTFinishByOtherwise (Line [I6)
requires SQs (such as on Line to generate these deadline control tokens. The question is then when
READ_TTCLOCK should run. The intent is difficult to capture in the dataflow graph setting. In an imper-
ative language, deadlines would be generated at the start of the periodic control loop. However, TTPython
encodes periodicity at the firing rule level. READ_TTCLOCK could use the output of a STREAMified
function (such as get_t ime on Line[3)), but the deadline would begin from when the output token of the
STREAMiified function was produced. This would exclude the STREAMified function in the calculation
of the deadline, which might not be the programmer’s intent. A comparable translation of generating
deadlines at the start of the periodic loop is seen in Listing[6] The difference here is that the STREAMi-

34

1 @GRAPHify
rdef ttmain(trigger):

with TTClock.root () as root_clock:
alternative syntax for generating deadlines
loop_start, dirname = get_time(trigger,
TTClock=root_clock,
TTPeriod=10_000_000,

TTPhase=0,

TTDataIntervalWidth=1 000_000)
photo = take_optical_images (trigger, dirname, TTPersistent=True)
lepton_file_name = get_thermal_ image (dirname) # flaky call

deadline = READ_TTCLOCK (loop_start, TTClock=root_clock) + 5_000_000

lepton = TTFinishByOtherwise(# composition of timing constructs
lepton_file_name,
TTTimeDeadline=deadline,
TTSingleRunTimeout (lepton_planb (),
TTTimeout=10_000_000),
TTWillContinue=False)

ensures that multiple calls are sequentially handled

coreg_state = coregistration(dirname, lepton, photo,
TTPersistent=True)

seg_result = segformer (dirname, coreg_state, TTPersistent=True)

bitmap = compress_bitmap (seg_result) # bitmap sent over LoRa radio

lora_return = lora_token (bitmap) # bitmap received by server

y = call_shutdown (lora_return)

Listing 5: The GRAPHified main function of the autonomously deployed version of the UF app.

fied function has been moved to an i dent ity function from the get_t ime function. The identity
function’s purpose is to move the control loop to an explicit SQ. As a simple function, ident ity would
take negligible time to execute. Its output token can then be used to start the original loop and generate
deadline tokens at the same time. Referring back to Listing [5] on Line [5] we can then see the shorthand
notation for describing the timing nuance. get_t ime returns dirname after its execution to generate a
pathname dependent on the current time. This is used to store the optical and thermal images. Right before
running get_time, TTPython will emit a token (Loop_start) so that deadline can be computed
from the start of when get_t ime runs. The line is translated to the Lines [2}{7]seen in Listing [6]

The compiler needs two new rules to account for this change. First, we modify the DV firing rule in
the STREAMified SQ (vy) to emit a control token through ¢’ before executing its internal function f. We
denote this addition as DV’. ¢’ has its own resample node (v.) to update the emitted token’s timestamp
to the current iteration. We label the updates to the STREAMify rule below in red.

35

1
2
3

4
5
6
7
8
9

with TTClock.root () as root_clock:
loop_start = identity(trigger, # identity func to signal period start
TTClock=root_clock,
TTPeriod=10_000_000,

TTPhase=0,
TTDataIntervalWidth=1_000_000)
dirname = get_time (loop_start) # now SQified as periodic info moved

deadline = READ_TTCLOCK (loop_start, TTClock=root_clock) + 5_000_000

Listing 6: An equivalent execution of the alternative @STREAMify control token syntax in
Listing [5|on Line [5}

Vi=1.n.¢e — VZ';.I'Z'
) fresh zf fresh 2/ fresh
v; = ([2}] = repeat(z;,2Y), Immediate, (—oo, [—00, —c0]))
v = ([2] = delay(z], first offset = ng,offset =ny),DV,")
vp = ([, 2] = f(«f, - ,x)),DV,) fresh 2’ fresh
vl = ([27] = resample(z/, start offset = —ng/2,
end_offset =ng3/2),DV,-)
v, = ([z] = resample(z/, start offset = —ng/2,
end_offset =ng3/2),DV,-) = fresh
ve = {[c] = resample(d,start offset = —ng/2,
end offset =n3/2),DV,-} cfresh

: STREAMi £y’ Func
flex, -+ ,en, TTPeriod=ny,

TTPhase=ngy, TTDatalntervalWidth=ng) —

(U ViU{w, 0,0l }) U {vg, o0, 00} (¢, x)
Vi=1..n. (31)

The Assign statement rule also needs to change with this new syntax. This rule will only be applied
if the top level expression is a STREAMi £/, as it is the only expression that returns multiple names. We
highlight the changes in red once again.

e—Vi(d,z) 0={(z—y)}
0 ={(d —c)}
cy=er—Vololy

Assign’

Varied SQ Execution Modes

The TTPersistent flag seen on Line[23]in Listing[5]exposes SQ runtime considerations to the program-
mer. A SQ is composed of a Synchronization, Computation, and Communication phase as described in
Section[2.5] SQs without side effects can be spawned concurrently without producing issues. TTPython’s
execution strategy by default assumes that SQs do not have side effects. This increases throughput and
adheres to tagged-token dataflow graph semantics. However, not all SQs are written in a stateless manner.
Some SQs access OS resources and continue to hold those resources over their lifetime. Other SQs want

36

to be executed in a sequential manner. For example, coregistration uses many image processing
techniques in the OpenCV library [9] that are computationally expensive. This SQ takes a long time (40
seconds) in comparison to its periodicity (10 seconds). This means that the SQ will be called again in the
next iteration before its prior instance has finished. An eager approach to spawning a SQ execution for
each period can strain the device, especially if run on cost-effective hardware. The TTPersistent flag
specifies to the TTPython runtime to only allow one instance of the SQ to run at a time and synchronizes
all periodic calls to that instance.

This construct may seem similar to TTSingleRunTimeout in the sense of only allowing one
instance to occur, but its use cases are different. TTSingleRunTimeout operates over a subgraph
while TTPersistent is assigned per SQ. TTSingleRunTimeout also discards any calls to its ex-
pression if the expression is already being run, while TTPersistent SQs will queue up these calls.
TTPersistent allows the programmer to coordinate hardware and OS resources within an application,
but the UF application suggests that these need to be shared across applications. Further discussion of this
sharing is found in Section[3.2.3]

LoRa Handling

One advantage TTPython offers is network abstraction through the dataflow graph. As the code in List-
ing [5 only describes the monitoring mode of the device, it does not capture the networking challenges
TTPython handles in the UF application at the neighborhood level. At the neighborhood level imple-
mentation, the code on Line |28] would be on the sensor box while Line [27| would be on the server side
(Figure [3.8). Without TTPython, resolving the receiver of a LoRa packet would be much more difficult.
To minimize the payload size, the LoRaWAN protocol does not provide a standardized way to identify the
sending or receiving devices. This is quite different from an [P-based protocol, where that data is already
encoded in a packet. This means that programmers need to distinguish their LoRa packets into prede-
termined message types ad hoc per device. The burden lies on the programmer to encode the necessary
information to specify what type of data is in the payload, decode the packet when it arrives at the server,
and determine where to forward the data once it has determined what it is.

The advantage TTPython gives in this scenario is how it encodes data over the network. Data is sent
in the form of TTTokens with a TTTag to specify which SQ, device, and port it should be sent to. By
homogenizing data types with TTToken and abstracting its sending location as a symbolic reference
(uniquely defined by TTTag), the encoding, decoding, and forwarding procedure required by LoRa van-
ishes. Given a TTToken, TTPython first resolves symbolic device names with IP addresses and forwards
them to the correct device. Once the TTToken reaches the correct device, TTPython looks up the SQ and
places the TTToken into the SQ’s port number.

3.2.3 Future Case Study Directions

As the development at Syracuse University is still underway, there are open questions on TTPython unre-
solved by this thesis. We discuss these below.

Multitenancy

TTPython as a middleware can support different applications running on the same hardware. Although
applications can be designed in a monolithic manner, doing so makes it difficult for developers to design
in a modular fashion. For example, one of USGS’s requirements for the project includes the feature to take
images on demand for deployed sensor boxes. If flooding has been detected by a sensor, a human should

37

have the option to request an image from it for manual inspection. Deployed sensors can often be inaccu-
rate due to environmental circumstances, such as the camera having a dirty lens or being displaced from its
expected location. Having a human manually check if flooding occurs from on-demand images mitigates
false positives in flooding classification and prevents unnecessary human deployment. This requirement
would be implemented as a separately designed application running alongside the current autonomous
version of the application. The interest lies in how these applications share hardware requirements and
how the OS provides these accesses. For example, the Raspberry Pi’s camera API provides a unique han-
dle to the first process that it interfaces with. This means that if other user processes attempt to query
the camera while the original process still holds it, it will fail. These applications unknowingly interact
with each other as they require an optical image from the Raspberry Pi camera. The key insight is that
in a real-time setting, time can uniquely define data. If these two applications asked for an image at the
same time, a single image could satisfy both applications. Both these applications have a SQ related to
interfacing with the optical camera. During compile time, the programmer can specify to TTPython that a
particular SQ should be treated statically with respect to other applications. During runtime, the separate
applications call the same SQ to handle accessing the camera, which allows multiple applications to share
the camera.

These ideas of having unique access to hardware appear in other aspects of TTPython as well.
TTSingleRunTimeout introduces synchronization at the subgraph level within a graph, while multi-
tenancy takes this idea and applies it across multiple graphs. TTSingleRunTimeout’s use case was to
ensure that only one attempt of resetting the thermal camera was allowed during a period of time, while
multitenancy attempts to synchronize calls to the optical camera when used across the autonomous and
the on-demand versions of the application.

3.2.4 Modality Execution

As discussed in Section[3.2.1] a device’s execution can switch between monitoring and emergency mode.
The differences between each mode are small. In both modes, the device still takes images and runs
them through the flood detection model. The frequency at which it runs differs, though. The device
should continually run when the area is flooding. Furthermore, in emergency mode, the device needs
to send an image of the maximum flooded area when the device deems that it is no longer flooding. In
general, the differences are found in the periodicity and the data it sends to the server. In TTPython’s
current implementation, these states would need to be encoded as separate graphs. Periodicity is statically
encoded in the SQs. However, we could take advantage of the code that these states share. The graphs
would share a majority of the SQs they run, albeit with slight differences in periodicity and data handling.
Future work would look into encoding how to encode different modalities of an application and to take
advantage of the overlap of SQ and graph behavior.

3.3 Case Studies Conclusion

In these two case studies, we saw TTPython used to implement two realistic DT applications. TTPython’s
macroprogramming approach made networking components easy for users of TTPython to handle. Its
abstractions in the SI application reduced 340 LoC to 5 LoC in TTPython. Swapping between different
network interfaces is also easy for the user, as seen in the UF application. The custom encoding and
decoding requirements required for LoRa packet management are generalized for the user for the normal
case with TTPython’s TTToken encapsulation.

38

We also identified three bugs associated with concurrency in SI application. These appeared in concur-
rent code associated with asynchrony. The original application did not include rigorous checks to ensure
the data being used was synchronized. We saw bugs in the networking code leading to an unnecessarily
long timeout period, unintended pipelining effect, and staleness of data. When the CAV tries to send in-
formation of the network through a HTTP request, it waits up to 1 second before timing out. This is long
in comparison to its 8 Hz periodic loop and was unintended by the original designer. TTPython’s dataflow
graph execution semantics are inherently parallel and remove overhead from the programmer to inter-
face with low-level concurrency libraries. We believe that in scenarios where concurrency is used not for
performance but for availability, concurrent code should be designed in a functional/dataflow graph-like
manner. This approach separates infrastructure code from application code and focuses on correctness.
Debugging distributed applications in a real-time setting can be challenging, so removing overhead for the
programmer by reducing infrastructure code can be beneficial.

39

40

Chapter 4

Qualitative User Study

We conducted a user study to observe what programmers unfamiliar with DT applications find diffi-
cult when writing them. We wanted to observe how DT applications would be created from scratch in
TTPython and vanilla Python. Vanilla Python requires much more scaffolding and code, so we provided
custom libraries and a message broker to abstract networking. Participants created two applications de-
rived from the case studies: the smart intersection and urban flooding. These two applications are written
in both TTPython and vanilla Python with library support for timing and distribution, namely the Python
t ime library and a message broker, RabbitMQ. We chose RabbitMQ for the user study, as it is a popular,
open-source message broker and requires less setup compared to creating HTTP web servers, which were
used in the case studies. We ran this study with four programmers.

4.1 Study Design

The user completes five tasks in total for each application. These tasks focus on asynchronous data
generation, data synchronization, networking, time-triggered exception handling, and code evolu-
tion. We first present the background of each application before discussing the motivation for these task
selections.

4.1.1 Smart Intersection

The smart intersection architecture does not differ much from its original implementation. The user works
with two CAVs and a single RSU. The major difference is that the application the user first implements
has the CAV’s route planning on the RSU. This motivates the code evolution task by requiring the user
to move it back onto the cars. The movement of code requires users to also rewire the exceptional time
handlers on the CAVs. We discuss this in more detail in Section

4.1.2 Urban Flooding Network

In the urban flooding network, we decided to split the sensor box into an optical camera device, a thermal
camera device, and a router. This was both in part to reduce the amount of data streams necessary for the
user interface within the data synchronization task and to produce a more interesting system architecture
for the networking task. The optical camera device is assigned functions related to generating an optical
and near-infrared thermal image and tagging them with geolocational data. The thermal camera device

41

takes a long-wave infrared image and combines these images. The router hosts the ML model and uploads
it to the remote server.

4.1.3 Task Choice

We selected tasks representative of realistic settings when designing the SI and UF application. We chose
the four characteristics of distributed, time-sensitive applications as our first four tasks and added one
task examining what changes would be necessary when modifying system architecture in a completed
application. First, DT applications rely on asynchronous data generation for interesting, autonomous
devices. Data generation and handling are asynchronous to provide code that is robust to unresponsive
hardware or networks. The smart intersection features CAVs that periodically generate data from camera
and LIDAR sensors. The urban flooding network uses two cameras, a GPS unit, and an IMU unit to
detect flooding in the environment. Second, data in DT applications need to be synchronized before use.
Sensor data should be timestamped when they are generated, and operations on data need to account for
this timestamp. In practice, data is not generated simultaneously, so data must be synchronized to ensure
those operations are meaningful. Third, these applications require multiple devices to coordinate over
the network. In the smart intersection, the CAVs talk with the RSU and vice versa for local and global
sensor fusion. The urban flooding network combines the images generated from the thermal and optical
cameras into a machine learning model hosted on different devices. Fourthly, devices need to respond
if the network or sensors become unresponsive with time-triggered exception handling code. Within a
specified deadline, if a CAV hasn’t heard back from the RSU, it should take preventative measures, such
as applying the brakes. If one of the cameras in the urban flooding network becomes unresponsive, the
device can attempt to power cycle the camera unit to reset the connection and hardware state. Lastly, these
applications can change over time due to changing specifications and unforeseen complications found
during deployment. For example, in the smart intersection, redesigning the flow of information in the
system architecture can increase CAV autonomy. Specifically, the CAVs in the smart intersection only
need to stop if they are at the intersection and could autonomously move if there are no other CAVs in the
area. In the urban flooding network, device compute capabilities can widely vary due to the magnitude of
deployment. Running a machine learning model on cost-effective devices such as a Raspberry Pi can be
energy- and time-intensive. Instead, it might be cheaper to send the image over the network to a server
with stronger computing power to handle the classification task. Code evolution is a natural part of DT
application development.

4.1.4 Recruitment

We require participants to have at least 2 years of experience in programming, 6 months of experience
with Python code, and experience working with concurrency through a systems course or equivalent ex-
perience. The user study focuses on completing coding tasks, so we require participants to have prior
programming experience. To implement a vanilla Python application similar to TTPython, the participant
needs some systems background in understanding concurrency techniques, such as queues and processes.
We ask participants to specify their prior programming experience in Python, overall programming expe-
rience, and experience with using message brokers. During the sign-up process, participants take a short
quiz on their understanding of timing and process interactions to determine whether participants would
struggle with the timing and concurrency ideas in the study. Participants also specified if they had prior
experience with using RabbitMQ.

42

@ TTPython

Search docs

Creating Periodic Functions: @STREAMify

Read 2-streamify.ipynb. Answer the quiz once you are finished.
Overview

Core Concepts

B Tutorial Q1: Which of the following is/are true?
Tutorial - Highway Onramp Hint: Tokens are of the form (data, time_interval).Time is in HH:MM:SS
Application

Creating Time-Sensitive Functions:

@SQify All functions in a @GRAPHify section must have a TT function decorator
(@STREAMify or @SQify).

Creating Periodic Functions:

@STREAMify
STREAM ified functions only require the following TT keywords: TTClock,

Mapping Functions to Devices: TTPhase, and TTDatalntervalWidth.

TTConstraint

H?ndlfn8 Exc'epﬁoﬂal Time The token (0.5, [1:00:00, 1:00:01]) could have come from a STREAMified
Violations with Plan B: sample_magnetometer witha TTDataIntervalWidth=400_000
TTFinishByOtherwise

Tutorial - Conclusion The token (0.75, [1:00:02.250, 1:00:02.500])could have come from a

STREAMified sample_magnetometer witha TTDataIntervalWidth=250_000

Advanced Concepts

Reference Manual and APIs

M c

Figure 4.1: Sample quiz on the @ STREAM1 £y section in the TTPython tutorial.

4.1.5 Tutorials

For each system, we provided a tutorial explaining concepts used later in the tasks. The tutorials were
contained in a Jupyter notebook to simplify environment setup and code execution. Participants completed
quizzes at the end of each section to improve retention and learning of the material. These quizzes were
either included in the Jupyter notebook, with answers verbally confirmed with the study administrator, or
taken with multiple-choice questions from a web-based form. Participants were allowed to ask questions
about the material.

TTPython Tutorial

The TTPython tutorial, as seen in Figure 4.1] is divided into four main sections that correspond to the first
four tasks. The tutorial motivates TTPython with participants creating a highway on-ramp application.
Participants are first introduced to TTPython’s graph execution semantics and data synchronization prim-
itives with @SQ1 fy. They then create periodic streams with @ STREAM1 fy. The tutorial then introduces
the TTConstraint construct to handle SQ assignments to devices, and thereby abstracts networking
from the programmer. In the final section, participants learn about exceptional time handling with the
TTFinishByOtherwise construct. Participants were limited to 45 minutes to complete the tutorial.
The length is to give participants enough time to learn the dataflow graph semantics of TTPython.

Python Tutorial

The tutorial for the vanilla Python implementation, as seen in Figure [d.2] is composed of three sections:
timing, concurrency, and RabbitMQ. This tutorial provides a background for users to implement the data
structures and logic required for the tasks. As we are measuring the difference between two systems
achieving the same output per task, the vanilla Python tools have less material to cover. The timing section
introduces the primitives of Python’s time library and provides a framework for creating periodic code.
The concurrency section explains how to create processes in Python and the Queue API for interprocess
communication. This section also describes how to make non-blocking reads to the queue, which the

43

v M+ Python Tutorial

- [|
M+ Timing .
v M3 Quiz: Timing Python Tutorlal
ms Custom Library for Ti...
w4 Process Management This tutorial will cover timing, process management, and RabbitMQ. These topics will be
v M4 Quiz: Process and Que... used for the study.
M+ Nonblocking Queue R...
M4 RabbitM . .
SERIS Timing

The code below first prints the current time at the start of the program, sleeps (waits) for 1
second, and prints out the current time after waking up. We provide a function
time_to_str that prints the time to a readable format.

import time
from libs.DataGen import time_to_str

print(time_to_str(time.time()))
time.sleep(1)
print(time_to_str(time.time()))

L1 Python

o U A WN R

Figure 4.2: Sample Jupyter notebook tutorial introducing Python time and concurrency concepts.

participant uses to access multiple, asynchronous data streams in the first task. The final section teaches
the sending and receiving sample code found in the official "Hello World’ RabbitMQ documentation.
Participants were limited to 20 minutes to complete the tutorial. The length is shorter in comparison to
TTPython, as there are fewer dependencies required to complete the Python tasks. The tutorial is meant
to introduce Python’s API on the timing and concurrency standard library to give participants a fair level
of understanding before attempting the coding tasks. The vanilla Python tasks focus on programmers
building infrastructure with these lower-level libraries to achieve the same tasks in TTPython.

4.1.6 Study Protocol

Participants write an implementation for both the SI and UF application: one with TTPython and the other
with vanilla Python. Each application is broken down into five tasks: Asynchronous Data Generation,
Data Synchronization, Networking, Time-Triggered Exception Handling, and Code Evolution. Each
task is presented in a Jupyter Notebook to combine the task description and the code environment seam-
lessly. Participants either write their code directly in the Notebook or in files hyperlinked in the Notebook
to complete their task. As participants use both TTPython and vanilla Python in the study, we control the
type of application and the order of using each tool. Participants are randomly assigned an ordering and a
tool selection for each application. For example, Participant 1 writes the SI application first in TTPython
and the UF application in vanilla Python, while Participant 2 writes the UF application first in TTPython
and the SI application in vanilla Python. This gives us four different possible static protocols that a user
could experience (either TTPython or vanilla Python first, and which application is written first). Our four
participants were counterbalanced so that each participant ran a different permutation of the tool order and
implementation.

For each code task, the participant is briefed with an explanation of the task’s purpose. Each code task
has the same explanation provided, except for where the terminology would differ. For example, for con-
currency, the vanilla Python implementation requires the mult iprocessing library while TTPython
uses the SQ abstraction.

When completing the tasks, the user is directed by TODOs and specific directions on what to im-
plement. These TODOs can appear mechanical as they are precise and do not leave much for creative

44

interpretation. This was done to reduce the difficulty of the tasks, as participants are expected to im-
plement most of a the SI or UF app within their 1 hour and 30 minutes of allotted time. Many code
implementations are also dependent on the system architecture of the application. For example, data
synchronization is only necessary when data is used between different asynchronous sources. This is un-
necessary when data has already been synchronized. Network topology and process management make it
difficult to identify which sources are asynchronous, so we explicitly mention when it is required in the
TODOs for vanilla Python.

Participants have access to a code cell in the Jupyter Notebook to run their programs and a sample
solution output to compare their program output to. Each code task has a hard cutoff of 25 minutes to
prevent participants from spending too long on any task. The participant is given a warning at 20 minutes
to finish up before moving on to the next task.

4.1.7 Post Study Questionnaire and Interview

After completing both applications, participants filled out a questionnaire on their experiences with each
system. These questionnaires used a combination of System Usability Scale (SUS) [[11] questions on a
5-point scale and the NASA Task Load Index (TLX) [28] on a 10-point scale. SUS is an industry-standard
self-assessment to quantify the usability of a system. NASA TLX is widely used to measure demands,
performance, and effort when performing a task. We also had a short semi-structured interview after the
questionnaire to learn about their experience with using both systems. These questions focused on the
challenges that arise from the distributive, time-sensitive nature of the applications.

* How did your experience of using the tools compare from one another?

* What did you feel was difficult with specifying time/time-triggered exception handling/distributed
development in these two applications?

* What are the challenges when using TTPython/vanilla Python with RabbitMQ?

* Which tool did you prefer overall?

4.1.8 Research Questions

Our study answers the research questions listed below.

RQ 1 What are the challenges developers experience in vanilla Python/TTPython when writing...
a) timing code with concurrency?
b) networking with concurrent code?
c) time-triggered exception handling code?

RQ 2 How do programmers unfamiliar with DT applications react when using TTPython’s timing
and distribution abstractions?

45

4.1.9 Data Analysis Methodology

We collected data by capturing the screen and audio throughout the user study. We did not require
participants to engage in think-aloud; however, we did ask participants about their thoughts when they
seemed visibly confused. For each recording, we transcribed each participant’s interview first with Whis-
per Al [52] that was later manually cross-checked with the audio. We took this data to perform thematic
analysis [[10] and qualitative coding. Our task selection provided the framework for the questions we asked
during the semi-structured interview and the codes used to select our data and quotes. Each participant’s
performance on tasks was compared to the sample solution provided. Testing the vanilla Python ADG
and DS tasks was more granular due to the modularity of the code, so participants could create partial
solutions. The NTWK, TTEH, and CE tasks have nontrivial implementations, so success depended on
whether a participant’s solution matched the sample solution’s output. Since the tasks were designed on
TTPython’s base constructs, their task success was also based on matching outputs for the sample solution.
We discuss the success of each task in its respective subsections.

4.2 Task: Asynchronous Data Generation (ADG)

The first task has participants create asynchronous, periodically executing code. The sample system ar-
chitecture is shown below. The system architecture explains the scope of the ADG Task while explaining
the other data streams that will be used later in the study.

Camera Process Camera SQ

take_image() take_opt_image()

camera_queue i
. opt_img I _
Main CAV Process Main
get camera frame # get img
get LIDAR frame # get gps
get IMU
(a) Vanilla Python SI App (b) TTPython UF App

Figure 4.3: The system architecture presented to introduce the ADG Task.

Participants are tasked to first create a minimal DT application. This involves creating a main function
with one asynchronous data stream. We chose to use a camera as the main data stream to implement, as
it is used in both the SI and UF applications. Speciﬁcally the participant had to create a periodic control
loop call to a camera device and capture timing information with it. The code to get an image from the
camera was provided as a library call as starter code.

4.2.1 TTPython Implementation

In TTPython, creating asynchronous data-generating code requires two steps. First, the programmer has to
decorate a function with the @ STREAM1 £y decorator to make it valid for use with the TTPython compiler.
Secondly, the programmer uses the function in the compiled graph function (decorated by GGRAPH1 fy)

IRefer to to see the instructions given and the starter code.

46

and calls it with special TT keyword arguments to specify its periodic timing requirements. An example
solution is shown below in Listing |7}

1@STREAMify # solution

2def take_opt_image (trigger) :
3

4

5 AGRAPHify

sdef main(trigger) :

7 with TTClock.root () as root_clock:

8 start_time = READ_TTCLOCK (trigger, TTClock=root_clock) + 1_000_000
9 sampling_time = VALUES_TO_TTTIME (

10 start_time, GET_INFINITY (trigger, TTClock=root_clock))

11 sample_window = COPY_TTTIME (trigger, sampling_time)

13 ###### T Task 1:

14 # TODO: Make ‘“take_opt_image’ periodic and call it with a period of 2
15 # seconds. Have ‘take opt_image ™ use ‘sample window ™ as its trigger.

16 # Use a TTDataIntervalWidth of 500_000 microseconds and set TTPhase=0.
17 images = take_opt_image (sample_window, # solution

18 TTClock=root_clock,

19 TTPeriod=2_000_000,

20 TTPhase=0,

21 TTDatalIntervalWidth=500_000)

Listing 7: The TTPython solution for the ADG Task in the UF app. The highlighted sections
show a sample solution for the task.

In the code above, users have to add the ¢STREAMi fy decorator on Line [I] in Listing They
also call the STREAMified function take_opt_image in the @GRAPH1 fy section with TTClock,
TTPeriod, TTPhase,and TTDatalIntervalWidth. We provide participants with the period, phase,
and TTDataIntervalWidth as they are application-specific arguments and are dependent on the en-
vironment in which the application is deployed. These parameters are also given for the vanilla Python
version.

4.2.2 Python Implementation

The vanilla Python is more involved as participants must work with Python’s concurrency and timing
primitives to recreate what TTPython provides. To mimic SQ execution, vanilla Python has to run the
corresponding function in a different process. Participants create a child process responsible for produc-
ing images from the camera device with timing information. These are then sent to the main process
coordinating between all the devices’ data generators. We provide a solution in Listing 8]

1def approximate_data_timestamp (func, tolerance):

2 before = time.time ()

3 data = func()

4 after = time.time ()

5 taken_at = (before + after) / 2

47

6 time_interval = [taken_at - tolerance, taken_at + tolerance]
7 return (data, time_interval)

sdef take_opt_image (opt_cam_queue: mp.Queue, start_time, period,

10 tolerance) :

1 wait_until_start = start_time - time.time ()

12 if 0 < wait_until_ start:

13 time.sleep(wait_until_start)

14

15 target = start_time

16

17 # Init the camera class

18 opt_cam = DataSources.Camera ()

19

20 while 1:

21 if target <= time.time():

22

23 # Take the camera frame and process

24 image, timestamp_interval = approximate_data_timestamp (
25 opt_cam.take_camera_frame, tolerance)

26

27 print ('sending: '

28 f'{(image, [time_to_str(t) for t in timestamp_intervall)}"')
29

30 opt_cam_queue.put ((image, timestamp_interval))
31

32 print (f'received: {opt_cam_queue.get () [0]}")

33

34 # New target

35 target = target + period

36 time.sleep (.001)

37
ssdef opt_main():

39 start_time = time.time() + 1

40 period = 2

41 tolerance = 0.5

42 fallthrough_delay = 1

43

44 ### P Task 1-2: Spawn the camera processing process.

45 opt_cam_qgqueue = mp.Queue ()

46 opt_cam_process = mp.Process (target=take_opt_image,

47 args= (opt_cam_queue, start_time, period,
48 tolerance))

49 opt_cam_process.start ()

50 ### P Task 1-2

51

52 ### P Task 1-2: Wait until the start_time to start executing
53 wait_until_start = start_time - time.time ()

54 if 0 < wait_until_start:

55 time.sleep(wait_until_start)

56

57 next_time = start_time

48

58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82
83

P Task 1-2

P Task 1-2: make a loop periodic
while True:
curr_time = time.time ()
if next_time <= time.time () :
fallthrough = curr_time + fallthrough_delay

photo_came = False
while time.time () < fallthrough and not photo_came:
try:
while (time.time () < fallthrough
and not opt_cam_qgqueue.empty()) :
photo, interval = opt_cam_gqueue.get_nowait ()
photo_came = True
except queue.Empty:
pass

print (f'received: {photo}")

last_next_time = next_time

while next_time <= time.time () :
next_time = last_next_time + period
last_next_time = next_time

time.sleep (.001)
P Task 1-2

Listing 8: The vanilla Python solution for the ADG Task of the UF app. The highlighted sections
show the additions for a sample solution.

The participant completes four subtasks. The first subtask timestamps the output for a given function
as seen on Line[I] We require this timestamping procedure with function output to simulate working with
3rd-party libraries that do not inherently provide timestamped data. The participant then creates a control
loop to periodically generate image samples. This implementation is open-ended for the programmer
to design since periodicity can be implemented in different ways by Python’s t ime library. We are
particular in specifying that their periodic loop should continue to execute periodically based on the start
of execution. This is to prevent the drifting of the periodic loop. For example, say we want to generate
an image every 2 seconds. The code execution for taking an image and sending it over a queue takes a
nontrivial amount of time. This should not affect the high-level specification of producing images every
two seconds. The next task is to send the timestamped data through an ITP queue to the main program.
The main task interfaces with all the different data streams, as seen in Figure[4.3] The final task is to create
a periodic control loop and accept data from the child process when it becomes available. This involves
understanding how to call the ITP queue in a nonblocking manner. The participant wraps this under a
timer that tries to read from the queue until a deadline has passed.

4.2.3 Observations

The main challenge found in the TTPython section is for participants to use the @ STREAM1 £y annotation
correctly with its TT keywords. In general, participants referred back to the tutorial to review the required

49

keyword arguments. Participant 3 (P3) was initially confused by using the @SQify decorator before
switching to the @STREAM1 fy decorator. We believe this confusion is caused by the out-of-order nature
of the tutorial. The tutorial is structured in the following order for the TT constructs with @S01 fy,
@STREAMify, TTConstraint, and TTFinishByOtherwise.

For vanilla Python, half of our participants had difficulties with ensuring that their periodic loops
didn’t drift over time. The standard definition for a periodic execution is to have its next execution start
after a defined time interval from the beginning of the previous iteration of its control loop. For example, if
the body of a loop takes 0.5 seconds to execute for a target period of 1 second, it should run its execution
starting from time (t=0, t=1, t=2, ...), not (t=0, t=1.5, t=3, ...). In our vanilla Python tutorial, we did
not provide participants with a periodic implementation. We instead introduced the concept of using an
infinite while loop with sleep calls that almost approximates a periodic call. We wanted participants to
figure out the logic change required to account for the body’s execution time. We quizzed participants on
this timing nuance in the vanilla Python tutorial, so participants were well aware of this definition. Even
with this knowledge, two of our participants wrote an incorrect periodic loop. We examine a buggy code
example written by a participant below in Listing [0}

iperiod = 2
2while True:
3 timestamped_data = approximate_data_timestamp (
4 opt_cam.take_camera_frame, tolerance)
5 time.sleep (period)
Listing 9: Buggy implementation of periodicity.
1period = 2
2target = start_time # calculated from the start of the program
3while True:
4 if target <= time.time(): # polls repeatedly
5 timestamped_data = approximate_data_timestamp (
6 opt_cam.take_camera_frame, tolerance)
7 target = target + period # sets next time independent of the body
8 time.sleep (.001)

Listing 10: Sample solution for periodicity.

The buggy implementation sleeps for at least two seconds after running the body of the while loop.
However, it fails to take into account the time it takes to execute the body (Lines 3}4). A correct im-
plementation can be seen in Listing This implementation keeps track of time independently of how
long the body runs. It does so by storing the next time to iterate from the start of the periodic loop (on
Line [2) and modifying it by the period (on Line[7). After completing its current iteration, it polls repeat-
edly on Line [4] when the next time occurs and busy waits on Line [§] An alternative solution would be
to sleep until the next iteration starts to avoid busy waiting. This would work by replacing Line [8| with
time.sleep(target - time.time ()) andremoving Line[d] Although time.sleep does not
accept negative numbers, the code requirements specify not to worry about this case, which happens when
the body takes longer than the period to execute.

All of our participants spent the majority of the time writing the vanilla Python solution. There is
unavoidable code repetition to set up periodic control loops for the child and main processes that contribute

50

to this. Two of our four participants produced buggy solutions. Although P3 was unable to create a
nondrifting periodic loop in the first part of the task for the asynchronous data generator, they rectified
their misunderstanding when implementing the periodic loop for the parent process running the main loop.
Their mistake was forgetting to call start () on the asynchronous process after defining it. Although
this was a simple mistake, debugging this is very difficult. If the child process does not start, it does not
put any data into the queue for the parent process. From the parent process’s perspective, this shows as
no data going into the queue. The participant needs to identify that the error’s root cause stems from the
child process side and then continue debugging from there. P4 was unable to figure out how to accurately
create a periodic loop that did not drift over time for the child process. This led to them repeating the same
issue in the second part for creating a periodic loop in the parent main process.

4.3 Task: Data Synchronization (DS)

In this taskE] participants write code synchronize the asynchronous data streams created in the prior task.
The definition of synchronizing data for a given function is that each function call’s arguments have time
intervals that overlap for each pairwise comparison of the arguments’ intervals. For example, in the SI
app, we call local_fusion with an image and LIDAR data. The image and LIDAR data should be
generated around the same time (say, around 1:01) to prevent stale data from being used. If an image was
timestamped from 1:00-1:02 and LIDAR data was timestamped from 1:01-1:03, they can be used together
for a synchronized call for local_fusion. A visual explanation of this interval overlap between a pair
of data is seen in Figure [4.4]

img\ /lidar'

Main

img
get camera frame lidar [
get LIDAR frame] | | |

local_fusion(img, lidar) | | | —> Time

img: (i,[1:00,1:02])
lidar:(1,[1:01,1:03])

Figure 4.4: 1ocal_fusion requires a synchronized img and 11idar before executing.

In the smart intersection, the participant synchronizes data between the camera and LIDAR sensors for
the function 1ocal_fusion. In the urban flooding network, the participant synchronizes data between
an optical image, GPS, and IMU to create metadata associated with the image using the add_exif
function.

ZRefer to to see the instructions given and the starter code.

51

4.3.1 TTPython Implementation

TTPython provides data synchronization for free in its main GRAPHified function. SQs need to satisfy
their firing rule before they can execute their encapsulated function. The default Data Validity firing rule
satisfies the Data Synchronization Task. What remains is for the participant to understand the SQ DV
firing rule and to call the function with the correct arguments.

1@SQify

rdef add_exif (opt_img, gps_exif, imu_data):
3

4

5 @GRAPHify

sdef main(trigger) :

7 with TTClock.root () as root_clock:

8 o« o

9 opt_image = take_opt_image (sample_window,

10 TTClock=root_clock,

11 TTPeriod=2_000_000,

12 TTPhase=0,

13 TTDatalIntervalWidth=500_000)
14

15 gps_data = take_gps (sample_window,

16 TTClock=root_clock,

17 TTPeriod=2_000_000,

18 TTPhase=0,

19 TTDataIntervalWidth=500_000)

20

21 imu_data = take_imu(sample_window,

2 TTClock=root_clock,

23 TTPeriod=2_000_000,

24 TTPhase=0,

25 TTDataIntervalWidth=500_000)

26

27 #H##### T Task 2: Call “add _exif’ with “opt_image’, “gps_data’, and
28 # "imu_data’. Ensure that these values are synchronized, or that their
29 # data intervals overlap in time.

30 exif_img = add_exif (opt_image, gps_data, imu_data)

Listing 11: The TTPython solution for the Data Sync Task in the UF app. The highlighted
sections show the additions for a sample solution.

This task structure is quite similar to the ADG Task. Once again, the participant modifies two sections
of the code. First, they add the @501 £y decorator on Line[T]in Listing [TT]to make the function visible to
the TTPython compiler. They then use the SQified function add_exi £ on Line 30| to insert the SQ into
the compiled graph.

4.3.2 Python Implementation

Once again, participants need to write code with low-level timing libraries. The vanilla Python implemen-
tation would need users to both design a relationship between data and time and to synchronize data from

52

their timestamps. The former can be challenging to design, so we provide scaffolding in the form of a
library to separate data type design from synchronization implementation. A class named TimedData
is provided to pair arbitrary data with time interval (Interval) objects. These classes were introduced
in the tutorial with sample use cases provided. This scaffolding allows the user study design to abstract
the main goal of the task (synchronizing heterogeneous, asynchronously generated data) through devel-
oping code to compare timestamps. The design abstracts the different asynchronous data streams (i.e.
camera, LIDAR sensor) as sets that accumulate data over time. This design prevents participants from
needing to rewrite code from the ADG Task. Now, the participant only needs to write code to synchronize
TimedData objects within a set. The task is broken down into three parts: finding overlap between
two time intervals, removing a candidate synchronized pair or trio of data across sets, and using the two
steps above to find synchronized data arguments before calling the specified function with it. Finding if
intervals had a non-zero intersection was intentionally left open-ended for participants to write. As the set
interface design was predetermined, we provided clear scaffolding on how to implement set modification.
Otherwise, programmers would have to write more code interfacing with ITP queues and processes.

4.3.3 Observations

In TTPython, P2 forgot to add the @SQi £y decorator, which the TTPython compiler promptly rejected.
This requirement to have all function calls needing a TT decorator (@SQify or @STREAMify) was
quizzed in the TTPython tutorial. The compiler error stating how it failed to find a SQified or STREAMi-
fied function was enough to clue P2 to add the @SQ1 £y decorator. P2 and P4 remarked how TTPython’s
SQ abstraction automatically synchronized data before function calls, indicating their understanding of
the SQ’s DV firing rule.

In vanilla Python, one participant had a bug with a corner case by being too restrictive for intervals
that did overlap. To clarify how close their implementation is (found in Listing [I2), we compare it to a
sample solution in Listing[T3]

1def overlapping_timestamps (interval_x: Interval,

return True
interval_ y.start < interval_ x.end

2 interval_y: Interval) —-> bool:

3 # interval x.start < interval_ y.end

4 if interval_x.to_list () [0] < interval_y.to_list () [1]:

5 # interval_x.start > interval_y.start

6 if interval_x.to_list () [0] > interval_y.to_list () [0]:
7

8

9

S

if interval_y.to_list () [0] < interval_x.to_list () [1]:
interval_y.start > interval_x.start
11 if interval_y.to_list () [0] > interval_x.to_list () [0]:
12 return True
13 return False

Listing 12: A buggy vanilla Python solution for checking overlapping intervals.

1def overlapping_ timestamps (interval_x: Interval,

2 interval_y: Interval) —-> bool:
3 return not (interval_x.end < interval_y.start or
4 interval_y.end < interval_x.start)

33

Listing 13: A sample vanilla Python solution for checking overlapping intervals.

If we invert each clause of the solution’s return expression in Listing [[3] we see that the cases are
similar to the top-level i £ statements in the buggy implementation. However, the strict less-than compar-
ison on Lines[d]and] incorrectly excludes the case when interval_x and interval_y are the same
interval. Changing these lines is not enough, as Lines[6]and [[T] fail the same case.

P4 had some difficulty understanding the custom TimedData library APIL. The first part of the
task is to implement get_overlapping_data that compares between Interval classes to test
if there is an overlap. The second part of the task takes sets of TimedData (that contain Interval)
and calls overlapping_timestamps on those Interval fields. P4’s implementation was calling
overlapping_timestamps on the TimedData objects rather than their Interval fields. We
attribute this fault to Python’s dynamic typing, as we did not see this issue in other participants.

4.4 Task: Networking (NTWK)

In this taskEl participants complete an application and write the networking code to send data across
devices.

RSU

X
=

«*

CAVO

command_veloi—' -0 calculate_angle(.) Cﬁd velocity_ 1
1fe 1f1 — -
. . A S

take_image(...) take_image(...) -
take_LIDAR(..) take_LIDAR(..)

local_fusion(..) local_fusion(..)

global fusion(..)

command_motors(...) command_motors(...)

Figure 4.5: Architectural description of the Smart Intersection application. The CAVs first send
local_fusion to the RSU, which then replies with global_fusion data.

In the smart intersection, the CAVs first generate LIDAR and camera information and synchronize
them in 1local_fusion. It sends this to the RSU. The RSU calls global_fusion with info from
both CAVs. It plans each CAV’s routing with calculate_angle and sends it to each.

In the urban flooding network, the optical camera device combines an optical image with the GPS and
IMU data in add_exi f. It sends this to a thermal camera device, which calls coregistration with
it and a thermal image. This is then sent to the device "router" that calls has_flooding on it and
upload_status.

4.4.1 TTPython Implementation

TTPython uses a macroprogramming paradigm where the user declaratively specifies code assignments
across devices in the network. The participant uses the TTConstraint construct in TTPython to assign

3Refer toto see the instructions given and the starter code.

54

Optical Camera Thermal (IR) Camera Programmable Router

opt_img \\\ \\\
e S| <§§§>
::E:‘gg;zﬁ;‘g(m) take_thermal_image(...) has_flooding(..)
take:imu(‘..) coregistration(..) upload_status(..)
add_exif(..)

Figure 4.6: Architectural description of the Urban Flooding Network application.

SQs within its block to named devices. As TTPython will automatically assign SQs that are not specified
under TTConstraint to a default device, there is no good indication to the user that the SQ has been
assigned to that device without exposing implementation details. To avoid this, the instructions specify
that all SQs in the TODO block must be assigned to a device.

1 @GRAPHify
rdef main(trigger) :

3
4

[

with TTClock.root () as root_clock:

T Task 3:
NOTE: All SQs below should be assigned to a device.
TODO: assign “take opt_image”, ‘take gps’, “take_imu’, and
"add_exif' to the device named "opt_camera'.
TODO: Assign ‘take_thermal_image’ and “coregistration” to device
named "ir_camera”
with TTConstraint (name="opt_camera") :
images = take_opt_image (sample_window,
TTClock=root_clock,
TTPeriod=2_000_000,
TTPhase=0,
TTDataIntervalWidth=500_000)
gps_exif = take_gps (sample_window,
TTClock=root_clock,
TTPeriod=2_000_000,
TTPhase=0,
TTDataIntervalWidth=500_000)
imu_data = take_imu(sample_window,
TTClock=root_clock,
TTPeriod=2_000_000,
TTPhase=0,
TTDataIntervalWidth=500_000)
exif_img = add_exif (images, gps_exif, imu_data)

with TTConstraint (name="ir_ camera") :
lepton = take_thermal_image (sample_window,
TTClock=root_clock,
TTPeriod=2_000_000,
TTPhase=0,

55

35
36
37
38
39
40
41
42

TTDatalIntervalWidth=500_000)
multiband_image = coregistration(exif_img, lepton)

TODO: Assign “has_flooding ™ and ‘upload_status’ to the device named
"router".
with TTConstraint (name="router") :

classify = has_flooding (multiband_image)

uploaded upload_status(classify)

Listing 14: A sample TTPython solution for the UF app. The highlighted sections of code show
the delta between what is presented as starter code and the solution.

4.4.2 Python Implementation

In the vanilla Python code, the participant uses RabbitMQ as the message broker to handle network con-
nections. Unfortunately, RabbitMQ also uses the queue terminology as its network abstraction. We could
not avoid the overloading of the queue concept between RabbitMQ and the Queue class in concurrency.
To distinguish between this and interprocess queues used for concurrency, we specify that RabbitMQ
queues are network queues while interprocess queues are ITP queues. For each network connection in the
application, the participant must do the following for the sending and receiving devices.

* Initialize the RabbitMQ connection on the sender.
* Send data through the network queue on the sender.
* Set up a child process on the receiving device to listen on the network queue.

The 3rd item is implemented once with 1isten_for_input, which the participant writes. Its high-
level implementation is shown below in Figure [4.7]

RabbitMQ
network
connection
from “opt_cam?”,

def listen_for_input(..)

listening for “opt_cam”
send “exif_img to main
process through
“opt_cam_queue”

opt_cam_queue
Thermal (IR) Camera
Main Thermal Cam Device Process

wait for “opt_cam_queue”
interprocess queue
coregistration(exif_img, ..)

Figure 4.7: Architecture design for receiving an optical image with EXIF data from the optical
camera to the thermal camera in the urban flooding network application.

56

This implementation closely follows the send . py code found in the RabbitMQ section in the vanilla
Python tutorial. The difference is the abstraction to work with differently named network queues and ITP
queues. The TODOs that the participant follows are exact as they describe initialization code required to
set up the receiving network connection and how to create a callback function to receive messages. The
participant implements a RabbitMQ network queue with given name that listens with separate process, as
reading from a network queue is a blocking operation. A child process running 1isten_for_input
does this and abstracts the network receiving as an asynchronous data generation source. The user can
then interface with this as Python set, similar how the task in Section 4.3 was presented.

4.4.3 Observations

An unintentional design in the UF TTPython variant was to present the SQs out of order. The presented
order is seen in Listing T3}

1# TODO: assign ‘take opt_image”, ‘take_gps’, ‘take imu’, and

2 # ‘add _exif® to the device named "opt_camera'.

3# TODO: Assign “take thermal_image ™ and ‘coregistration” to device
4# named "ir_ camera

slepton = take_thermal_image(...)

6 images = take_opt_image(...)
7gps_exif = take_gps(...)

simu_data = take_imu(...)

9exif_img = add_exif (...)
omultiband_image = coregistration(...)

Listing 15: An out-of-order presentation of SQs for labeling in the TTPython UF Task NTWK.
The first and last SQ in the order are to be assigned to the "ir_camera" device.

The SQs take_thermal_ image and coregistration should be assigned to the
"ir camera" device. P1 and P2 presented two different valid solutions for TTPython in Listings
and[I7] respectively.

iwith TTConstraint (name="opt_camera") :

2 images = take_opt_image(...)

3 gps_exif = take_gps(...)

4 imu_data = take_imu(...)

swith TTConstraint (name="ir_ camera'") :

6 lepton = take_thermal_image(...)

7 multiband_image = coregistration(...)

Listing 16: P1’s solution for TTPython’s UF NTWK Task. The highlighted line shows the visual
difference between the solutions.

1with TTConstraint (name="ir_ camera") :
2 lepton = take_thermal_image(...)
3with TTConstraint (name="opt_camera") :

57

4
5
6
7
8

1

= B NV B NS U R)

S)

11

images = take_opt_image(...)
gps_exif = take_gps(...)
imu_data = take_imu(...)
with TTConstraint (name="ir_camera") :
multiband_image = coregistration(...)

Listing 17: P2’s solution for TTPython’s UF NTWK Task. The highlighted line shows the visual
difference between the solutions.

P1 moved the take_thermal_image SQ and grouped it with the coregistration SQ. This
move does not change the program’s semantics because the movement does not change the graph con-
struction (as no data dependencies are modified). The TTConstraint construct only labels the SQs,
and the runtime manager for TTPython assigns the labeled SQs to the named devices that subscribed be-
fore the program begins execution. This is what allows P2’s solution to also be valid. P2 did not move the
take_thermal_image SQ and instead inserted a new TTConstraint for it.

Our participants faced numerous challenges in the vanilla Python NTWK task. P1 stated their con-
fusion about the initialization of sending and receiving code on the CAV for the SI app. They had to be
reminded about the network architecture in Figure 4.5|to understand the difference between the construc-
tors for network queues and ITP queues. Implementing 1isten_for_input (as seen in Listing [T8)
was challenging for all four of our participants.

def listen_for_input (rabbitmg_gqueue_name, interprocess_queue: mp.Queue) :
connection = pika.BlockingConnection (
pika.ConnectionParameters (host='localhost"'))
channel = connection.channel ()
channel.queue_declare (queue=rabbitmg_gqueue_name)

def callback(ch, method, properties, body):
interprocess_queue.put (decode_data_bytes (body))

channel .basic_consume (queue=rabbitmg_gqueue_name,
on_message_callback=callback,
auto_ack=True)
channel.start_consuming ()

Listing 18: A sample solution for 1isten_for_input. This code represents the receiving
capabilities for a pair of devices.

P1, P2, and P4 initially put in a constant string instead of the rabbitmg_gueue_name parameter
for their queue to listen, but later fixed this when they supplied the arguments when creating their child
process. P3 was initially confused about what to put in the callback function and attempted to publish
data through the channel, when the callback here instead specifies that it had received data from that spe-
cific channel. They needed clarification that the rabbitmg_gueue_name corresponded to the named
RabbitMQ network queue, while the interprocess_queue was the queue connecting between the
child and the main process for that device. P3 then forgot to add the default exchange for the sending
code, but had no other issues after.

P2 ultimately timed out at 25 minutes after being very confused about the RabbitMQ architecture for
the ST app. They were confused about the extra process queue from the CAV side, as they forgot that

58

each receiver needed an ITP queue to send its information back to the parent process. They also ran
into naming issues for their network queues when they realized they needed separate queues to send and
receive between the RSU and each CAV. This culminated in accidentally using the same network queue
name for sending and receiving on each CAV, which led to unexpected behavior.

4.5 Task: Time-Triggered Exception Handling (TTEH)

In this taskEl participants create time-triggered exception handling code when a deadline is missed. Be-
cause we have designed robust data synchronization before execution with the Task DS, the code will
not run if one of the synchronized data sources becomes unresponsive. This robustness can be further
improved by detecting when actions are late. For example, if a device is waiting for upstream data for
too long (thereby passing a deadline), we can run exception handling code. This exceptional handling
in response to a deadline appears in TTPython with the TTFinishByOtherwise construct with TT
keywords or in vanilla Python with a watchdog timer. We first discuss why this situation can occur for
each application.

In the smart intersection, the CAVs send their 1ocal_fusion data to the RSU over the network.
Networks are unreliable, so the device code needs to be resilient to external failures. Let’s say the con-
nection to "cav0" is unreliable while "cav1" is always available. Although global_fusion ideally
should have information from CAVs before making a decision, it can still make assumptions from the last
time it heard from "cav0" and with "cav1"’s current position. global_fusion could still run even
if a CAV becomes unresponsive for a while. The "rsu" could run time-triggered exception handling code
to still run global_fusion knowing that "cavO" was unresponsive. In this task, participants write
code that calls global_fusion (missing_fusion_input (), 1£f1l) (where 1f1is "cavl"’s
local_fusion) when "cav0" becomes unresponsive. Figure .8 explains the application’s control
logic for the ST app’s TTEH code.

RabbitMQ
(network)
take camera
take LIDAR
1fo =
local_fusion(..) # Watchdog Timer: periodically try to consume
from rabbitmg queue for 0.5 seconds.
publish 1fe to # if it has returned before 0.5 second
rabbitmgq queue cavl_fusion = 1f0

global_fusion(cave_fusion, ..)

else use output from “missing_fusion_input”
and call “global_fusion® with its output
cave_fusion = missing_fusion_input()
global_fusion(cave_fusion, ..)

Figure 4.8: Starting instructions for vanilla Python implementation for the smart intersection.

In the urban flooding network application, the thermal camera takes an image and combines it with
an optical image to create a multiband image. It sends this multiband image to a machine learning model

“Refer toto see the instructions given and the starter code.

59

to detect flooding. Adding infrared bands in the classified image gives more accurate information, as
the visible spectrum information can vary depending on lighting conditions and color monotonicity. The
hardware in this application is cost-effective and can have unexpected hardware failures. Specifically, the
thermal camera (Flir Lepton 3.5) is flaky and can become unresponsive [34]. A power cycle (turning the
camera off and on again) is used to reset the camera. Participants call the reset_cam function if the
thermal camera is unresponsive and does not produce an image by the deadline. Figure [4.9]explains the
application’s control logic for the UF app’s TTEH code.

Thermal (IR) Camera

Plan B: periodically wait for thermal

img for 1 second.

success_img = take_thermal_img()

if it has returned before 1 second
coregistration(exif_img, ..)

else run “reset_cam’ and call coreg with
its value

replaced_val = reset_cam()
coregistration(replaced_val, ..)

Figure 4.9: Starting instructions for TTPython implementation for the urban flooding network.
TTPython uses the terminology Plan B for time-triggered exception handling.

4.5.1 TTPython Implementation

TTPython uses the TTFinishByOtherwise construct to implement time-triggered exception han-
dling. The participant writes in the corresponding TT keywords to specify the data that it is waiting
for, the deadline with TTTimeDeadline, the Plan B function (time-triggered exception handler) with
TTPlanB, and a flag with TTWillContinue to specify whether to continue execution after executing
Plan B. This is similar to a try/except exception handler, with either handling or raising the deadline
time violation. If TTWillContinue is True, the execution will continue substituting the output with
the output from Plan B. Otherwise, it will stop, and downstream SQs will be unable to fire due to miss-
ing the token necessary for synchronization. The participant also modifies the downstream SQs to use
the TTFinishByOtherwise output. This is seen in Listing[T9 on Line 29} The coregistration
SQ is dependent on thermal_img. When thermal_img is replaced by the TTEH’s output with
successful_img, coregistrationshould be switched to use successful_img as well.

1 @GRAPHify
2def main(trigger) :
3 with TTClock.root () as root_clock:

with TTConstraint (name="ir_camera") :
t_img_start_time, thermal img = take_buggy_image (

N o w»n A

60

sample_window,
TTClock=root_clock,
TTPeriod=2_000_000,
TTPhase=0,
TTDataIntervalWidth=500_000)

T Task 4:

TODO: Call the Plan B ‘reset_cam() for “thermal_ img' before

‘coregistration® if function ‘take_buggy_image’ does not return

within “deadline_time . Make sure that ‘coregistration” still

runs i1f Plan B fires.

deadline_time = READ_TTCLOCK (t_img_start_time,

TTClock=root_clock) + 1 _000_000

successful_img = TTFinishByOtherwise (thermal_img,
TTTimeDeadline=deadline,
TTPlanB=reset_cam(),
TTWillContinue=True)

TODO: replace ‘thermal_ img ™ with output of the Plan B handler.
Make sure that ‘coregistration® still runs if Plan B fires.

the starter code is shown below

multiband_image = coregistration (exif_img, thermal_img)
multiband_image = coregistration(exif_img, successful_img)

Listing 19: A sample solution for the TTPython UF TTEH Task. The highlighted sections show
the additions for a sample solution. Line[29]is shown to show the difference between the starter
code and the solution.

4.5.2 Python Implementation

We see a sample solution of the SI application in Figure 20]

1def rsu_main(start_time):

periodic control loop for the CAV
while True:

curr_time = time.time ()

if next_time <= curr_time:

deadline_time = curr_time + deadline_offset

T Task 4

NOTE: This is the normal path if everything comes in on time.
You don't need to do anything here.

success = False

1f0_came = False

1f1_came = False

while time.time () < deadline_time and not success:

61

T Task 4
This is the exceptional handling time. This should occur if
the "rsu" fails to synchronize data between both CAVs.
if not success and not 1f0_came:
cav0_fusion = missing_fusion_input (next_time)

find cavl match
cavl_fusion = extract_fusion(cavl_fusions,

cav0_fusion.interval)

if cavl_fusion is not None:
interval = cavl_fusion.interval

gf = global_fusion(cavO_fusion.data, cavl_fusion.data)

command_velocity_ 0 = calculate_angle(
gf, cav0_fusion.data, cav_0)
command_velocity_1 = calculate_angle (
gf, cavl_fusion.data, cav_1l)
cv0 = TimedData (command_velocity_ 0,
interval.to_list())
cvl = TimedData (command_velocity_1,
interval.to_list ())
channelO.basic_publish (exchange="",

routing_key=queue_name0,
body=encode_data (cv0))
channell.basic_publish (exchange="",
routing_key=queue_namel,
body=encode_data (cvl))

Listing 20: A sample solution for the vanilla Python UF TTEH Task. The highlighted sections
show the additions for a sample solution.

To reduce the difficulty of creating a watchdog timer, the participant does not have to worry about
writing timing code to generate a timer. They are guided by a series of TODOs that abstract time-triggered
exception handling by checking boolean flag changes. These TODOs are direct as there is a lot of changes
between using the TimedData classes and its field data. The participant writes these boolean flags
on Line P2] The participant needs to recreate the functional path of missing a deadline and sending
the output of the time-triggered exception handler code over the network. We do require participants to
unpack data from our custom class TimedData, as we assume that the underlying libraries and code
operate on untimed data. This unpacking is seen on Line [34] for cav0_fusion. Although the Python
implementation requires less of an understanding of the design of the system, the participant has more
code to write and has to ensure that the object types are correct with the functions they use.

4.5.3 Observations

For the SI TTPython Task, P3 originally set TTWillContinue=False when instead it should have
been set as True. They later commented on how they misread what the option does. We believe that this

62

flag option is more difficult to understand than similar options in @ STREAM1 £y as it specifies a specific
change in the control plane of the dataflow graph. Most TT options in TTPython are static parameters
dependent on the environment, such as TTPeriod and TTDataIntervalWidth. P3 and P4 wanted
to explore the semantics of TTFinishByOtherwise by adding extra Python code. P3 attempted to
write control code to check for missed deadlines, similar to how the vanilla Python implementation does
in its corresponding TTEH task. The control code includes if statements that are not implemented
in TTPython’s dataflow graph structure. This would still be difficult even if TTPython supported if
statements, as this approach would lack the preemptive interrupt required to implement a deadline timing
decision. P4 tried to add print statements in the GRAPHified main body, but the TTPython compiler
failed to find a SQified print function.

In vanilla Python, P1, P2, and P4 expressed confusion on what data type to provide to the function
running after the exception handler (such as the call to global_fusion on Line[32). A quick check of
the function’s signature, coupled with the TODO, clarified some of the confusion. This was a recurring
pattern in the vanilla Python implementation for the CE Task, which has similar type requirements for its
application-specific functions.

4.6 Task: Code Evolution (CE)

In this taskEl, participants take a completed application from the additions in the previous two tasks and
refactor the code to run on different devices and/or use different time-triggered exception handling code.
The prior tasks have been designed to be as parallel as possible, but the evolution task is tailored to each
application. Thus, we explain each application with its TTPython and Python implementation separately.

4.6.1 Smart Intersection

J
\\’¢

“

i

global fusion(..)

MMH%E

calculate_angle(..) calculate_angle(..)
command_motors(..) command_motors(..)

Figure 4.10: Visualizes the code movement of calculate_angle from the RSU to each CAV.

SRefer toto see the instructions given and the starter code.

63

The high-level architecture is repeated below, and a visual representation can be seen in Figure 4.3
The CAVs first generate LIDAR and camera information and synchronize them in local_fusion.
It sends this to the RSU. The RSU calls global_fusion with info from both CAVs. It plans rout-
ing for each CAV with calculate_angle and sends it to each CAV, which uses this information in
command_motors.

The current architecture described is overly restrictive for the CAV’s autonomy. In practice, the
RSU is only used to make decisions when CAVs arrive at the intersection to resolve ambiguity on
which car has priority for moving. To reflect this architectural change, the route calculation done in
calculate_angle can be done locally on each CAV. This can be used with a time-triggered excep-
tion handler to only use the CAV’s local_fusion output if the CAV fails to hear from the RSU’s
global_fusion in time. In this application, the participant moves the code for calculate_angle
onto each CAV and changes the corresponding time-triggered exception handler. The overall flow of data
is unchanged with this new application: the CAVs still produce sensor information locally, send this to the
RSU, which responds to the CAVs with global information. The challenge in the smart intersection code
evolution task is to keep track of the type of data being sent over the network and change the functional
code in response.

TTPython Implementation

The pertinent portion of the program to modify is shown in Listing [2T]

| ###### T Task 5

cwith TTConstraint (name="rsu") :
3 “ e
gf = global_ fusion(cav_0_fusion, cav_1l_fusion)

TODO: Move each ‘calculate_angle” for "cav0" and

"cavl" to run on its respective device "cav0" and "cavl".
command_velocity_0 = calculate_angle(gf, 1f0, cav_0)
command_velocity_1 = calculate_angle(gf, 1fl, cav_1)

® N o w»n A

9
iowith TTConstraint (name="cavO0") :

11 velocity_0 = TTFinishByOtherwise (command_velocity_0,

12 TTTimeDeadline=cav_0_deadline,
13 TTPlanB=emergency_stop (),

14 TTWillContinue=True)

15 final_result_0 = command_motors(velocity_0, cav_0)

rwith TTConstraint (name="cavl") :

18 velocity_1 = TTFinishByOtherwise (command_velocity_1,

19 TTTimeDeadline=cav_1_deadline,
20 TTPlanB=emergency_stop(),

21 TTWillContinue=True)

2 final_result_1 = command_motors (velocity_1, cav_1l)

Listing 21: SI TTPython CE Task starter code description

| ###### T Task 5
cwith TTConstraint (name="rsu") :

64

3
4
5
6
7

14

gf = global_fusion(cav_0_fusion, cav_1_fusion)

with TTConstraint (name="cav0") :
safe_gf0 = TTFinishByOtherwise (gf,
TTTimeDeadline=cav_0_deadline,
TTPlanB=no_global_fusion (),
TTWillContinue=True)
velocity_0 = calculate_angle(gf0, 1f0, cav_0)
final_result_0 = command_motors (velocity_0, cav_0)

with TTConstraint (name="cavl") :
safe_gfl = TTFinishByOtherwise (gf,
TTTimeDeadline=cav_1_deadline,
TTPlanB=no_global_fusion (),
TTWillContinue=True)
velocity_1 = calculate_angle(gfl, 1f1l, cav_1)
final_result_1 = command_motors (velocity_1, cav_1l)

Listing 22: TTPython CE Task sample solution. The code is highlighted to emphasize the
changes between

calculate_angle in Listing on Lines and needs to be moved after the
TTFinishByOtherwise for each respective CAV, as seen in Listing 22 on Lines [T1] and [19]
TTFinishByOtherwise now checks if gf arrives over the network in time, so any downstream SQs
using gf on the CAVs need to be modified as well. calculate_angle’s gf argument then needs to
be updated to the output of TTFinshByOtherwise in Lines[7]and[I3] which is coined as safe_gf in
the solution Listing. Its TTP 1anB (exception handler) is also updated to no_global_fusion instead.

Python Implementation

We first discuss the changes on the RSU before talking about the code changes in the CAVsﬂ The par-
ticipant first moves the code for calculate_angle to each respective CAV. The data being sent over
the network queue is changed to the output from global_fusion. The global_fusion data also
needs to be synchronized with the particular periodic iteration before it can be used, which requires users
to remember the interface they designed in Task DS. For each respective CAV file, the participant changes
the local variable names responsible for handling the network data. We believe this is necessary as the
code should accurately reflect the data type being sent to avoid future misconceptions. The difficulty in
the vanilla Python task is finding all the locations to change the pertinent code while working between
different files.

Observations

P3 and P4 completed the TTPython implementation. Both P3 and P4 struggled with understanding
the architectural changes necessary for moving calculate_angle from the RSU to the CAV. The
starter code has TTFinishByOtherwise checking whether sending command_velocity from
calculate_angle was successfully sent over the network. When calculate_angle is moved

SRefer to to see the starter code.

65

to the CAVs, the data being sent over the network changes to the RSU’s global fusion data (gf). There-
fore, the TTPython solution requires not only code movement across TTConstraint with blocks
but also TTFinishByOtherwise modifications. This requires a solid understanding of the appli-
cation architecture. P3 had difficulty understanding that they needed to change the gf parameter for
calculate_angle to safe_gf, the output of the updated TTFinishByOtherwise. P4 initially
placed calculate_angle beforeits TTFinishByOtherwise Once they clarified their misconcep-
tion of how calculate_angle interacts with the TTEH on the CAVs, they were able to complete the
necessary changes.

P1 and P2 completed the Python implementation. P1 had issues with variable renaming to reflect
the change of data from command_velocity to gf for each cav. P2 stated that it was difficult to
know when to use the custom-timed data library for function calls. The TimedData library is nec-
essary when data is being synchronized between different asynchronous data streams or sent over the
network, but is not required when it is sequentially generated. For example, command_motors uses
calculate_angle’s output (command_velocity) asits argument. In the original implementation,
command_velocity was sent over the network and needed to be wrapped in a TimedData object
as it could arrive out-of-order. However, once it is moved to the CAYV, it no longer needs this encapsula-
tion as the local execution is ordered. The command_velocity argument to command_motors then
changes from TimedData to only the base data and no longer needs to be unwrapped.

4.6.2 Urban Flooding Network

The high-level architecture is repeated below, and a visual representation can be seen in Figure The
optical camera device takes an image and combines this with the GPS and IMU data in add_exif. It
sends this to the thermal camera device, which calls coregistration with it and a thermal image.
This is then sent to the device "router", which calls has_floodingonitand upload_status.

In this task, we will move coregistration (on the thermal camera device) to the router, as it has
better computing power. The challenge in the urban flooding network code evolution task is the change
of network topology. The optical camera device no longer sends its optical image to the thermal camera
device; instead, it sends it to the router, as it is where coregistration is being run. The thermal
camera changes the data it sends to the router: from a multiband image to a thermal image.

TTPython Implementation

TTPython’s macroprogramming approach makes this task trivial. Because data dependencies are
symbolically linked at compile time and network routing is done at runtime, the network changes
to implement this are given for free as long as the participant defines the variables correctly. A
single line change is required to move coregistration on Line [in Listing 23] from the
TTConstraint (name="ir_ camera") block to the TTConstraint (name="router") block
on Line[7l

iwith TTConstraint (name="ir_camera") :

2 ###### T Task 5:

3 # TODO: Move ‘coregistration’ to the device "router".

4 # multiband_image = coregistration (exif img, successful_img)
5

swith TTConstraint (name="router") :

7 multiband_image = coregistration(exif_img, successful_img)

66

9

classify has_flooding (multiband_image)
uploaded = upload_status(classify)

Listing 23: TTPython UF CE Task sample solution. The participant’s starter code has Line
uncommented and does not have Line[/|included.

Python Implementation

The vanilla Python implementation is more involved in the architectural changes, as the participant has
to handle networking requirementsm Firstly, the RabbitMQ connection from the optical camera to the
thermal camera must be changed to go to the router instead. Secondly, the code to synchronize an optical
image with a thermal image needs to be modified to work on the router. Most of the control logic can
stay unchanged, but the participant needs to ensure that the overall application logic stays consistent over
the refactor. Finally, the data type from the thermal camera being sent over the network changes. To
streamline this, the participant comments and uncomments code responsible for unpacking and packing
code in our TimedData custom class.

Observations

P1 and P2 completed the TTPython implementation. P1 seemed hesitant about their solution with a single
line change. They confirmed their answer with the sample output and moved on. Interestingly, P2 was
extremely confident in their solution and finished in record time, taking less than 2 minutes.

P3 and P4 completed the Python implementation. P4 had an interesting pause when considering the
queue names for the RabbitMQ network queue linking. The movement of coregistration to the
router meant that the optical camera changes its outbound device from the thermal camera to the router.
The thermal camera was connected by the RabbitMQ queue name 'ir_to_router'. P4 first changed
the optical camera’s queue name to ' router'. P4 then saw the original connection between the thermal
camera and the router, referred back to their optical camera code, and then changed the queue name for the
optical camera to the 'ir_to_router', mistaking the network connection. They then realized their
mistake after visiting the TODO to set up the 1isten_for_input on the router between the optical
camera.

4.7 Results

4.7.1 Post Study Questionnaire

We ran the user study with 4 participants. After completing both applications, participants filled out a
questionnaire on their experiences with each system. These questionnaires used a combination of System
Usability Scale (SUS) [11] questions on a 5-point scale and the NASA Task Load Index (TLX) [28] on
a 10-point scale. These questions collect data on perceived workload and system usability to help us
understand the challenges participants faced using each system.

"Refer to to see the starter code

67

Table 4.1: An overview of the System Usability Scale [11] and the NASA Task Load Index
(TLX) results [28]].

Description Distribution

System Usability Survey [11]

I think that I would like to use this system TTPython

frequently. 0% I 50%
75% | 25%
Vanilla Python

I found the system unnecessarily complex. TTPython
75% 0%
0% 50%
Vanilla Python
TTPython

I thought the system was easy to use. 0% Y 0%
25% 0%
Vanilla Python

I think that I would need the support of a TTPython

technical person to be able to use this system. 50% 25%
75% 0%
Vanilla Python

I found the various functions in this system TTPython

were well-integrated. 0% I [00%
25% [I 50%
Vanilla Python

I thought there was too much inconsistency in ~ TTPython

this system. 75% | 0%
75% | 25%
Vanilla Python

I would imagine that most people would learn ~ TTPython

to use this system very quickly. 0% — .
25% | — 25%
Vanilla Python

I found the system very cumbersome to use. {Zo;f)y thon .
50% 259,
Vanilla Python

I feel very confident using the system. i{/op ython .
50% I 25%
Vanilla Python

68

I needed to learn a lot of things before I could TTPython

get going with this system. 25% I 50%
50% I 25%
Vanilla Python

M 1 - Strongly disagree 2 3 4 W5 - Strongly agree

Description Distribution

NASA Task Load Index (TLX) [28]

How mentally demanding was the task? (1 - TTPython

Very low, 10 - Very high) 50% 50%
0% 75%
Vanilla Python

How physically demanding was the task? (/ - TTPython

Very low, 10 - Very high) 1007 I 070
100% 0%
Vanilla Python

How hurried or rushed was the pace of the TTPython

task? (1 - Very low, 10 - Very high) 75% 25%
0% 75%
Vanilla Python

How successful were you in accomplishing TTPython

what you were asked to do? (I - Perfect, 10 - 50% 25%

Failure) 50% 50%
Vanilla Python

How hard did you have to work to accomplish ~ 7TPython

your level of performance? (I - Very low, 10 - 100% 0%

Very high) 0% 25%
Vanilla Python

ml-2 3-4 5-6 7-8 9-10

Looking at the SUS questions in Table [d.T] we see that TTPython does well in questions such as ““/
thought the system was easy to use.”, “I found the various functions in this system were well-integrated.”,
and “I found the system very cumbersome to use”. This trend in the data suggests that TTPython’s abstrac-
tions do well describing our selected tasks. It suggests that DT applications have timing and distribution
cross-cutting concerns for participants to favor TTPython. P4 said,

What I’m balancing between [for TTPython] is having less custom stuff to work with versus
having a good framework that takes away a lot of the complexities.

TTPython also does relatively well on self-reported task load with the NASA TLX questions. Par-
ticipants were split on how mentally demanding TTPython was. We hypothesize this is caused by diffi-
culty understanding TTPython’s dataflow graph semantics. For example, P3 and P4 struggled more with
TTPython’s TTEH task as discussed in Section[d.5.3] Furthermore P4 said,

It’s like something that’s almost sequential but also separate processes, so that’s interesting

69

tome. ...It’s something you have to spend a little bit of time to get used to, but once you get
used to it it’s pretty straightforward to use.

TTPython does very well in Q5 (How hard did you have to work to accomplish your level of perfor-
mance?). We believe that TTPython scores well in this category due to the localization of the solution.
Each TTPython variant of the tasks is much smaller (in lines of code) in comparison to their vanilla Python
solution. P1 commented,

For the first one [vanilla Python], while I was following the TODOs, I was trying to keep in
my head everything I was doing, and at one point, I kind of got really confused, and I had to
step back and think about everything really hard. ...I felt a lot of mental load because there
was just a lot more code. ... There were a lot more little things that I could get wrong in any
given place.

The declarative nature of TTPython coupled with the smaller amount of code edits required to specify or
make architecture modifications contributes to the perceived difficulty. P2 said,

... for the second one [TTPython], it was part of the framework itself. There’s a decoupling
of the computation that you’re doing from where it’s being run. You tell it this runs here and
this one’s here. That was easier to think about.

TTPython’s orthogonality in expressing different timing and distribution requirements reduces the partic-
ipants perceived cognitive load.

TTPython was a lot more straightforward. It was like, this decorator does this, and this is
how you call it. It was just a lot more straightforward.

4.8 Discussion

A common theme throughout the vanilla Python tasks was the amount of information participants had to
keep track of while coding the solution. P1 remarked:

For the first one [vanilla Python], while I was following the TODOs, I was trying to keep in
my head everything I was doing, and at one point, I kind of got really confused, and I had to
step back and think about everything really hard.

Each comparable vanilla Python task to its equivalent TTPython version has a larger amount of startup
code required and can have varying cross-cutting concerns. We can see this example in both timing and
distribution requirements.

For timing, P3’s statement about Task DS captures the major differences between the TTPython and
vanilla Python implementation.

I did more numbers specification in TTPython, but I didn’t have to do as much logical spec-
ification compared to [vanilla] Python ...

For distribution, we saw how participants had trouble keeping track of their RabbitMQ network queue
names. The separation between sending and receiving code in different files and devices is a major chal-
lenge. P3 states,

70

With vanilla Python, if I had multiple networks to keep track of, that would be a lot more
confusing. I have to keep track of the name of the channel and things moving around.
Whereas TTPython, it’s just tell it to [assign SQs to] the device, which [is] way simpler.

P2 had great difficulty with the vanilla Python NTWK task and timed out at 25 minutes. They men-
tioned how the virtualization of the CAVs and RSU on a single device was hard to keep track of when the
source code for each device was next to each other. P2 said,

Setting up all the listeners and senders and making sure that they’re all coordinated [in Rab-
bitMQ] is really difficult to think about and to organize.

We believe this highlights the advantage of TTPython’s macroprogramming language design. In
TTPython, the code assignment is declaratively specified at the SQ level, while vanilla Python implic-
itly specifies this at the file level. The user then does not have to worry about how to interface with
network connections across files through a queue abstraction; instead, they are concerned with what data
is used across different TTConstraint blocks.

One major challenge that participants faced when writing in vanilla Python was the amount of code
necessary to reach a minimal amount of testing. Many of the vanilla Python tasks are difficult to de-
bug because participants interact with different timing, networking, and concurrency code. TTPython’s
appearance to vanilla Python makes it easy enough for most participants to start writing immediately.

If I were to choose one for the purposes of experimentation, I might go with the first one
because it’s easier to get started and easier to dip my toes in the water.

P3 remarked,

...all of the timing is handled in the backend. That’s really nice because there’s a lot less
implementation on the front end. So I thought TTPython was easier because a lot of it
[concurrency/timing implementation] was just abstracted away.

We had mixed reactions to the difficulty of understanding TTPython’s TTEH Task, specifically for
TTFinishByOtherwise’s semantics. P3 remarks,

I was definitely confused by the exceptional time handling. With vanilla Python, if it goes
over time, then send the “reset” and it’s fine. TTPython felt more complicated ... [with
having to] rewrite a bunch of the functions. It makes sense now, but it was hard to wrap my
head around at first.

While P2 said,

I would end up writing my own function for it, where the API looked exactly like
TTPython[’s] ... where you have how long you should wait and the callback. The TTPython
API is exactly how that would look.

In the previous tasks, participants did not have to interact with the dataflow graph semantics of TTPython.
The abstraction of TTPython decorators and TTConstraint in the with block works similarly to their
imperative counterparts. However, TTFinishByOtherwise specifically works as edge modification
in the dataflow graph. Our initial findings indicate that the application’s architecture affects the under-
standing of how to use the time-triggered exception handler. We note that P3 did complete the TTPython
tutorial much faster than other participants at around 22 minutes, while P2 took 53 minutes. Including
pilot data, most participants finish the TTPython tutorial around 35-45 minutes.

71

4.8.1 Future Steps for TTPython

Although TTPython was favored among the four participants, the participants did highlight some nega-
tives. P3 brought up a common complaint when visualizing dataflow graphs [56].

The graphs were nice, but as soon as they got beyond the tutorial graphs, I didn’t think
they were going to be helpful. So I didn’t even look at them. ... The lines were already
overlapping so many times that it was hard to tell which labels went on which line.

Some participants were hesitant to use TTPython due to their unfamiliarity with dataflow graph execution
semantics. P1 spoke about how the vanilla Python system still had merits in comparison to TTPython.

I would want to know more details about how the timing is done [in TTPython] if I were to
do systems stuff. Just so that I don’t get caught in some sort of weird timing bug and to have
more control over the system. The nice thing about the [vanilla Python] RabbitMQ example
is that you have that control and you know where any potential errors are coming from. But
it’s also really annoying to deal with. I had a suboptimal solution the first time [for Task
ADG] and then changed it to be more accurate but also more annoying [to implement].

P4 had a similar sentiment.

It (vanilla Python) allows you to define more customized ... time management, whereas
TTPython ... [is] more structured, and it’s easier for someone to get into without much
experience. With someone with more experience or with some more complex application,
perhaps the customizability would be more desired.

One challenge for TTPython was creating a tutorial for the purposes of the user study. A tutorial had
previously been designed to explain TTPython with a more holistic approach, teaching the intricacies of
the dataflow graph semantics. We initially decided that such an approach was not appropriate for the user
study due to time constraints. P1 spent the most time out of all other participants on the tutorial and spoke
about the difficulty of the level of depth for the tutorial.

In some ways, it’s a little too abstract because I'm left with a lot more questions. I think
having a lot of good examples or clear documentation that’s written at different levels [of
systems familiarity] of documentation would probably be really helpful.

We saw that misunderstanding TTPython’s semantics led to issues when users tried to debug in the
@GRAPHify body. P3 and P4 attempted to add Python code that would not pass the TTPython compiler
due to not being implemented yet or calling functions that were not SQified. Instead, they had to move
their debugging to within a SQ. This highlights a weakness in TTPython where it is difficult to add runtime
debugging at the graph level. Because the @GRAPH1 £y body textually represents a dataflow graph, using
standard debugging procedures would introduce intrusive, system-wide changes. This raises questions on
how to incorporate nonintrusive, system-level tools to debug program behavior for macroprogramming
frameworks.

In general, the participants expressed how vanilla Python is more general and requires more effort to
implement than TTPython, but is less structured. TTPython offers a tradeoff between the flexibility of a
generic language and a structured, orthogonal framework for timing and distribution specifications.

72

4.9 Limitations and Threats to Validity

Most of our participants are college students and do not interact with distributed, time-sensitive appli-
cations. None of our participants specified experience working with message brokers in general. Ad-
ditionally, although we required participants to have systems knowledge to ensure that they were fa-
miliar with processes, we did not require users to have prior experience using Python’s time and
multiprocessing libraries. The tutorial lengths between TTPython and vanilla Python are also dif-
ferent. We attribute this to needing to learn a new system and understanding dataflow graph semantics in
TTPython. There are fewer concepts to understand in the vanilla Python implementation. Our sample size
also makes it difficult to make any general claims about the system.

Although we randomized the order of the tool used by participants, we did not randomize the order in
which the tasks were presented. More data needs to be collected to answer whether a learning effect was
present.

Because the time library given for the vanilla Python implementation was custom-developed to mimic
TTPython’s synchronization capabilities, its design choices made it difficult to treat application functions
as a black box. To minimize the impacts of this design choice, we explicitly specified in the instructions
when to unpack or pack data with our custom library. This led to the vanilla Python tasks to become more
mechanical than their TTPython counterparts, so it becomes unclear if participants reach the same under-
standing in the vanilla Python implementations. Prior pilots attempted to follow a high-level description
like TTPython but found the difficulty unmanageable. The amount of code required by vanilla Python’s
implementation to replicate TTPython’s capabilities also contributes to the difficulty. The TTEH Task
used to include implementing the watchdog timer/timing code, but was cut down due to time constraints.
Our results suggest that TTPython’s structure allows participants to reason at a higher level than Python
because it separates cross-cutting concerns.

We provided a sample environment for participants to run their code and compare their output against
a sample solution for correctness. However, the tasks outside of vanilla Python’s ADG and DS tasks are
almost all-or-nothing, as these implementations cannot easily be incrementally tested. TTPython’s tasks
do not suffer as much when compared to their vanilla Python counterparts, as its search choice is more
limited. The size of the code and executing in real-time contribute to this difficulty, so it becomes unclear
whether providing a realistic environment helped participants understand the code.

4.10 Conclusion

DT applications are challenging to write and manage due to their cross-cutting concerns. TTPython lever-
ages common timing and distribution concepts found in these applications, presenting them through a
macroprogramming language and dataflow graph execution model. In this study, we examined difficulties
when writing two realistic DT applications in TTPython and in vanilla Python with a message-broker sys-
tem. We demonstrate that writing periodic code for asynchronous data streams, synchronizing data across
them using time intervals and sets, and managing multiple RabbitMQ network queues is challenging in
Python. We also find that mixing timing and distribution concepts can be difficult for TTPython users. Our
preliminary results indicate that a timed, tagged-token dataflow graph model with a macroprogramming
language shows promise as a learnable and usable abstraction for timing and distribution.

73

74

Chapter 5

Related Work

5.1 Distributed Systems and Time

Addressing distributed systems challenges has a rich history. X10 [[12]] is an object-oriented programming
language targeting high-performance systems and introduced concurrency with partitioned global address
spaces. It took Java as a base language and extended it to handle asynchronous activities in a distributed
setting. Frameworks have also been language agnostic for handling generic computation. MapReduce [20]]
separated computation from the data it works on by presenting basic types such as sets and lists as ab-
stractions for programmers to use while dealing with underlying system challenges of where data is stored
and how to share computation. These large frameworks inspired work examining how to create better ab-
stractions with distribution frameworks in mind, such as Spores [44]]. It focused on designing functional
code in a principled manner to avoid errors found in a distributed, concurrent environment. These bodies
of work inspired the approach to memory management and code separation of SQs in TTPython.

Wireless Sensor Networks (WSN) [59] are often viewed as a precursor to modern cyber-physical
systems, particularly those that rely on wireless communications. WSN research considered a wide variety
of programming paradigms [47]]. Node-centric programs may be written in low-level languages like C, in
domain-specific variants like NesC[25]], or as a set of high-level interpreted instructions as in Maté [37].
Popular embedded system languages and frameworks such as PRET-C [4] allow programmers to carefully
manage resources on a device-level basis for small applications, but the mechanisms they provide prove
unscalable when applications begin to expand over many devices. The underlying problem is that they
lack the abstractions necessary to coordinate CPSs to work at larger scales. Many approaches sought
a more holistic view than node-centric programming by introducing abstractions to handle locality via
region formation [50, 58], efficient in-network aggregation [29,40], and shared-memory based on locality
[26].

Macroprogramming frameworks were designed to address heterogeneity in the system at scale [0, [7]].
They provide abstractions for selecting sets of devices, efficient in-network aggregation, and interfaces
between heterogeneous devices in the system. These often take a host-coordination language approach
in which the host language, such as C or Java, is used for platform specific code and the coordination
language encodes communication channels, message formats, and code location to hardware. These mod-
els almost exclusively use message-passing architectures and encode the macroprogram in a graph-based
intermediate representation before mapping chunks of code to devices. The devices typically host middle-
ware to handle communication, interfaces, and other common runtime mechanisms that are non-specific
to the application. Their functionality reflects many ideas found in Links, which pioneered multitier/tier-

75

less programming [16]]. Links has programmers write client/server applications within a single file and
designate functions with annotations where code should be placed. This shortens the distance between
functional interfaces from different files (one for a client application and one for the server) into a single
file, making it easier to reason about the flow of data in communication between client and server. In
this way, Links removed interaction mismatches and centered focus around the programmer’s application
code. TTPython uses a macroprogramming framework to abstract networking code from the user. The
function decorator @GRAPH1 fy specifies the interactions between devices, while the context manager
TTConstraint specifies where functions decorated by €SQify and @STREAMi fy go. This forms
clear delineations, where TTPython adds timing specifications (periodicity, data synchronization, and
time-triggered exception handling code) where they are needed most, between different functional aspects
of the code.

Real Time Systems (RTS) frameworks like the Time Triggered Architecture (TTA) [35)] and PTIDES
[60], which are node-centric and host-coordination approaches, respectively, take a more rigorous ap-
proach to timing. These frameworks provide strong guarantees about the behavior of the system and
application, a necessity for safety-critical systems, but require deep knowledge of each component of the
system. Their approach to time is based heavily on compile-time analysis and formal verification. The
devices that compose the system are over-provisioned to ensure that critical components, such as dead-
lines on motor actuation, are guaranteed to be met. Such over-provisioning becomes more challenging
as non-determinism increases, increasing the cost of the system. TTPython focuses more on providing
runtime capabilities for the programmer. It provides flexibility for programmers to specify where data is
synchronized and when deadlines are checked. TTPython aligns closer with soft real-time systems, where
late processing is not completely and immediately catastrophic.

Macroprogramming frameworks have slowly begun to include time as a central component. Early
frameworks such as Kairos [26] did not include timing constructs within the framework. They opted to
leave timing handled by its host language, leading to intrusive intermingling of application and system
behaviors. COSMOS [6] introduced timing at the system-level overview, but lacks time-specification
outside of periodicity. Lingua Franca (LF) [39] represents programs as a dataflow graph of actor-like nodes
with strong deterministic properties, which helps avoid common error-sources in concurrent systems.
LF and PTIDES use “logical time” in each node for deciding when to act upon time-sensitive inputs.
Timing uncertainty is estimated for each node at compile time, and inter-node messages may be delayed
by the maximum uncertainty to assert in-order-ness of inputs. They introduce timing constructs to specify
periodicity and deadlines at the function level or their relation across direct edges between actors. This
makes it difficult to understand global timing specifications. The programmer needs to intuit global timing
specifications by understanding actor code and how time changes across edges. TTPython prevents these
timing specifications from being split by managing timing and deadlines as SQ firing rules and explicit
nodes for time management. The programmer has the option to implement their own timing information
not managed by TTPython within a SQ.

Synchronous languages like Esterel [8]], Lustre [27], and SIGNAL [22] provide programmer-friendly
ways to reason about time and synchrony in real-time, parallel systems by using signal-based abstractions.
These languages use logical clocks to hide explicit time management of timestamps. This turns inputs and
outputs into time-triggered signals, which are an effective model for many cyber-physical applications.
Synchrony is achieved by designating a generic input signal as a clock and starting computation based
on the availability of the signal. These languages also commonly follow a data-flow paradigm, which
TTPython employs as well. In contrast, Functional Reactive Programming offers a principled approach in
extending a host language with notions of time flow by using types, as seen in Fran [23]] and Yampa [18]].
It uses both continuous and logical time to support different types of inputs depending on the input’s

76

tendency to change values. Work has been done to integrate these timing-focused languages with tierless
programming. HipHop takes synchronous reactive programming and showcases how these translate well
in a web programming environment. Reynders et al. proposed combining multi-tier ideas with tierless
programming for client-server architectures. Scalal.oci [57] expands on this with placement types to
describe the data communicated across different actors, allowing it to express a wider range of applications
in a tierless model. The ideas of event abstractions appear in TTPython with its time-triggered exception
handling code. TTPython’s deadline model relaxes the notion of simultaneity as synchronization between
its control and data planes. When applying these ideas with other timing specifications, however, these
languages and paradigms do not translate well. Global timing dependencies must be split over multiple
devices to realize, which makes it difficult to reconstruct the intended specification. These languages
struggle in interfacing between heterogeneous compositions of distributed devices in the network.

Dataflow graphs were first introduced in the seminal paper by Dennis [21]. Its key insight was iden-
tifying that shared data bottlenecks parallelism; therefore, parallel computation should be guided by the
availability of data. The semantics were later refined with the U-Interpreter paper [46] by assigning labels
to data, allowing nodes to work asynchronously from each other. These labels allowed for-loop execution,
as the labels identify which data corresponds to a specific iteration. Data must share the label’s context
before it can be used for execution. These ideas were later refined in the MIT Token-Tagged Dataflow
paper [51]] to work well within the context of a von Neumann machine. Our work builds on the foundation
of token-tagged dataflow and introduces time as a specific “tag,” which allows us to extend dataflow to
account for DT applications.

Timing in distributed systems has been represented in various ways. One such representation is to
view timestamps not as singular values, but as distributions, of which uniform intervals are the most
common [5, 17, 41]]. In the TrueTime API within Google Spanner [17]], time intervals are used to establish
global event ordering and versioning for broadly distributed and replicated databases. This is similar to the
purpose of Lamport and Vector Clocks [36, 38], but requires fewer message exchanges between servers,
instead relying on time synchronization services like GPS, IEEE 1588 (PTP) [2]], or NTP [45]. These
intervals represent an uncertainty of when the computation happened. This idea aligns with TTPython’s
execution rules using time intervals. In TTPython, data is assigned a time interval. This gives it a context
in which it can be used with other data. An interpretation is that data was generated sometime within this
time interval, so it can be treated as synchronously generated with other data that overlap with this time
interval. TTPython’s abstractions with pairing data with time intervals can mitigate the effects of time
jitter and gradual desync, but work best when paired with a time synchronization service.

Dataflow graphs have also incorporated other types of timing abstractions. Naiad [48]] includes a
logical timestamp within its records (tokens) to order tokens in a distributed fashion. This prevents it
from performing out-of-order execution. The timed, tagged-token dataflow graph opts to use physical
timestamps to increase asynchrony across its devices. A logical timeline requires agreed synchronization
on generated data to make it unambiguous which data can be used with it. Physical timestamps retain
more timing information and allow separation between the data generation and its sinks. This flexibility
makes multitenancy much easier to implement, as data streams can be shared across different applications
without having to synchronize outputs for each specific application. This is a future goal for TTPython.

5.2 Human-centered Programming Language User Studies
Programming languages have begun to look at Human-Computer Interaction techniques to help evalu-

ate language design and usability. Coblenz et al. [15] provides a process and framework for iterative,
human-centered language design. This technique has given rise to two new languages, Glacier [13] and

77

Obsidian [[14)]. These have also inspired usability studies on identifying challenges associated with inte-
grating new language paradigms into popular languages, such as Liquid Types in Haskell [24]. However,
programmer user studies are still very challenging due to large investments in time to develop domain
knowledge of study design and to create one [19].

User studies have also been extended to examine the usability of concurrency and distribution in lan-
guage design. Nanz et al. [49] proposed an experimental design between two object-oriented languages
designed for concurrency (Java and SCOOP). This was conducted in a Software Architecture class setting
in a 4-hour controlled setting and laid the foundation for larger-scale studies. Hochstein et al. [30] took
a different approach by comparing different parallel programming models (message-passing vs. parallel
random-access machine) through a take-home assignment. A holistic study [3] compared 69 participants
using distributed data processing platforms for different data science problems over the course of the
semester. They collected preference ranking and System Usability Survey [[11] scores for each participant
to quantify usability results. To our knowledge, there is no prior user study on testing timing specifica-
tions.

78

Chapter 6

Conclusion

Without the domain knowledge of CPSs, many programmers would struggle to use the advantages of in-
field sensor networks and embedded systems. One of the major benefits of DT applications includes the
assistance in data gathering, reacting, and understanding for in-field experts of natural phenomena, such as
meteorology and traffic control. Sensor networks vastly improve the quantity of data while keeping quality
at a reasonable level. Distributed systems interacting with the physical world require a timeline not only
for ordering events but also for coordinating physical I/O and determining concurrency to compare or
combine data values. The technical knowledge to program devices in a heterogeneous network while
accounting for timing specifications is challenging.

Designing applications for cyber-physical systems is difficult due to various distribution and time-
sensitive requirements. These issues stem from working with heterogeneous devices that asynchronously
cooperate in real-time. We identified common distribution and timing patterns found in these DT appli-
cations through two current university research projects. The smart intersection application provided an
opportunity to compare TTPython’s capabilities with a vanilla Python implementation. The urban flood-
ing application provided use cases to compose TTPython’s constructs and to explore its expressiveness in
wireless sensor networks. These patterns led to the creation of TTPython, a language and system designed
to abstract these patterns found in DT applications. Our system reduces barriers to entry in understanding
how to coordinate communication and timing between multiple devices while providing safety mecha-
nisms for the programmer. It provides timing constructs to create asynchronous data streams, synchronize
and mutually exclude data, and provide time-triggered exception handling. Its macroprogramming design
abstracts networking decisions to variable assignments and makes it simple to move code across devices.
Under the hood, TTPython uses a timed, tagged-token dataflow graph architecture to realize these abstrac-
tions. We provide a compilation and semantics for this novel execution style. TTPython’s abstractions
were tested with a within-subjects user study to determine their effect. The task design for the user study
was inspired by TTPython’s prior case studies. We found that these abstractions in isolation do well in
comparison to their vanilla Python counterpart.

79

80

Appendix A
Appendix

|
Start Calibration

,, l

Get Current Battery

Get Temperature Get Relative Humidity

GPS and IMU data

| Level collected .
Battery. GPS + IMU data |
Inactive— >

I
! Temperature———— Healthy?
|
|

I Yes/Start Monitoring

S T |

Figure A.1: Calibration mode in the state transition graph.

A.1 User Study Materials

The following materials show what the participant in the qualitative user study sees as starter code. Some

of the code that the user does not interact with has been omitted.

A.1.1 SI App Introduction

The goal of this application is to create a smart intersection where connected autonomous vehicles (CAV)
(pictured above) communicate with each other to navigate through a lightless traffic intersection. A device
named the roadside unit (RSU) assists the vehicles by fusing their data before choosing one of them to

81

Figure A.2: A connected autonomous vehicle (CAV).

move through the intersection. The CAVs first take an image and LIDAR sample, and fuse them together
with local_fusion. They send it to the RSU, which will globally fuse data from all CAVs. The RSU
then returns movement instructions on what to do back to the CAVs that will then actuate their motors in
response.

A.1.2 UF App Introduction

The goal of this application is to create code for urban deployed devices to detect flooding. There are
three devices: an optical camera device, a thermal camera device, and a router. The created optical image
is tagged with geolocation information from the IMU and GPS sensors. The thermal and optical camera
image is then coregistered (superimposed) by the thermal camera device. The combined image is then
sent over the network to a programmable router that hosts a machine learning model to detect if flooding
occurs in the image. The result is then saved on a remote server.

Figure A.3: An optical camera device.

82

A.1.3 Task ADG
SI App

In this task, you will write code to set up a camera data stream, one of the three sensors on the optical cam-
era device. You will create a camera process that will call take_image, which periodically generates
images and sends them back asynchronously to the main process through an interprocess Queue.

Camera Process

take_image()

camera_queue

~

Main CAV Process

get camera frame
get LIDAR frame

N /

Figure A.4: Vanilla Python ADG architecture design of the CAV.

You will do the following:

* Approximate Data Timestamps

* Make a periodic loop.

* Send images through an interprocess Queue.
In the next Jupyter Notebook for Task 1:

* Create the camera process in the main process and read from the optical camera queue.

| ###### P Task 1: Part 1

2 # Create an approximated timestamp of when ‘func's output was produced (say
3# taking an image). We time the start and end of “func®, average it, and add
4# a tolerance to account for hardware jitter. A visual 1s shown below:

5 # A B

6 # time.time () func () time.time ()

7# / / /

8# time —————— >

9 # / / /

10 # e > K >

1 # tolerance tolerance

12# The interval's midpoint is defined (A + B)/2. ‘time_interval’ is a list of
13# length 2 with [‘start”, ‘end’].
4 # “start’ is defined as midpoint - tolerance.

15# “end” is defined as midpoint + tolerance
icdef approximate_data_timestamp (func, tolerance):

17 # TODO: fill in the “time_interval’ below.

18 data = func()

19 time_interval = [..., ...]

20 print ((data, [time_to_str(t) for t in time_intervall]))
21 return (data, time_interval)

22

3 # period is in seconds

udef take_image (camera_queue: mp.Queue, start_time, period, tolerance):
25

26

27 # inits camera

28 camera = DataSources.Camera ()

29

30 ###### P Task 1: Part 2

31 # Make a periodic call to ‘approximate_data_timestamp’™ with a period of
32 # parameter ‘period’ (unit: seconds) and continue indefinitely. Execute
33 # every ‘period’ seconds relative from the start (i.e. period=1, runs at
34 # 1:00, 1:01, 1:02). Do not worry about the case when the code takes

35 # longer than the period to complete.

36

37 # TODO: Make this code periodic

38 timestamped_data = approximate_data_timestamp (camera.take_camera_frame,
39 tolerance)

40 ###### P Task 1: Part 3

41 # TODO: in your created periodic loop above, put ‘timestamped_data’ into
42 # the interprocess queue ‘camera_queue .

43

44 ###### P Task 1: Part 3

45

46 ###### P Task 1: Part 2

47

48 # NOTE: you may use this to test your queue in your periodic loop.

49 # print (f'received: {camera_queue.get () [0]}")

Listing 24: Part 1 of the starting code for the Python ADG Task of the SI app.
In this Jupyter Notebook for Task 1:

* Create the camera process in the main process and read from the optical camera queue.

tdef cav_main():

2

P Task 1: Part 4

TODO: Create an interprocess Queue.

v W

84

TODO: Create and start the camera process.

target is ‘take_image’, args are the queue you made, ‘start_time’ as
defined below, period of 1 second, and tolerance of 0.250 seconds
start_time = time.time() + 1

period = 1.0

tolerance = 0.25

P Task 1: Part 4

try:
P Task 1: Part 5
TODO: Make a periodic loop of period 1 secnod. Execute every 1
second relative from the start (i.e. runs at 1:00, 1:01, 1:02,

o...).

TODO: In the periodic body loop, try to get from the camera
process's queue until either 0.5 seconds (fallthrough_delay) passes
or you get a value from the queue and print it. Make sure that
reading the queue is a non blocking operation.

fallthrough_delay = 0.5

#
#
#
#

TODO: if you get a value from the queue, print it
print ('received: {value}') # uncomment me!

P Task 1: Part 5

Listing 25: Part 2 of the starting code for the Python ADG Task of the SI app.

In this task, you will write code to set up a camera data stream for a CAV. You will make
take_image generate images periodically and asynchronously.
You will do the following:

* Make take_image periodic and call it in @GRAPHi fy.

1def take_image (trigger) :

from libs import DataSources
global sg_state

Init the camera class
if sqg_state.get ('cam_recog', None) is None:
sg_state['cam_recog'] = DataSources.Camera ()

cameraRecognition:DataSources.Camera = sq_state['cam_recog']

value = cameraRecognition.take_camera_frame ()
print (f'got: {value}')

return value

85

Camera SQ

take_image()

image

™o)

Main

get camera frame
get LIDAR frame

- /

Figure A.5: TTPython ADG architecture design for the CAV.

15 @GRAPHify
isdef cav(trigger):

17 with TTClock.root () as root_clock:

18 start_time = READ_TTCLOCK (trigger, TTClock=root_clock) + 2_000_000
19 sampling_time = VALUES_TO_TTTIME (start_time,

20 GET_INFINITY (trigger,

21 TTClock=root_clock))
22 sample_window = COPY_TTTIME (trigger, sampling_time)

23

2 ###### T Task 1:

25 # TODO: Make ‘“take_image’ periodic and call it with a period of 1
26 # second. Have ‘take_image use ‘sample_window’ as its trigger.

27 # Use a TTDataIntervalWidth of 500_000 microseconds and set

28 # TTPhase=0.

Listing 26: The starting code for the TTPython ADG Task of the SI app.

86

UF App

In this task, you will write code to set up a camera data stream, one of the three sensors on the optical
camera device. You will create a camera process that will call take_opt_image, which periodically
generates images and sends them back asynchronously to the main process through an interprocess Queue.

Camera Process

take_opt_image()

opt_cam_queue

y ~

Main Opt Cam
Device Process

get img
get gps
get IMU

Figure A.6: Vanilla Python ADG architecture design for the optical camera.

You will do the following:

* Approximate Data Timestamps

* Make a periodic loop.

* Send images through an interprocess Queue.
In the next Jupyter Notebook for Task 1:

* Create the camera process in the main process and read from the optical camera queue.

| ###### P Task 1: Part 1

2 # Create an approximated timestamp of when ‘func's output was produced (say
3# taking an image). We time the start and end of “func®, average it, and add
4# a tolerance to account for hardware jitter. A visual is shown below:

5 # A B

6 # time.time () func () time.time ()

7 # / / /

8# time —————— >

9 # / / /

10 # e > e >

1 # tolerance tolerance

12# The interval's midpoint is defined (A + B)/2. ‘time_interval® is a list of
13# length 2 with [’'start”, ‘end’].

4 # “start’ is defined as midpoint - tolerance.

15# “end” is defined as midpoint + tolerance

87

icdef approximate_data_timestamp (func, tolerance):

17 # TODO: fill in the “time_interval’ below.

18 data = func()

19 time_interval = [..., ...]

20 print ((data, [time_to_str(t) for t in time_interval]))
21 return (data, time_interval)

22

B # period is in seconds

udef take_opt_image (opt_cam_gueue: mp.Queue, start_time, period, tolerance):
25 # waits until start_time

26

27

28 # inits opt_cam

29 opt_cam: DataSources.Camera = DataSources.Camera ()

30

31 # Make a periodic call to ‘approximate_data_timestamp’™ with a period of
32 # parameter ‘period’ (unit: seconds) and continue indefinitely. Execute
33 # every ‘period’ seconds relative from the start (i.e. period=2, runs at
34 # 1:00, 1:02, 1:04). Do not worry about the case when the code takes

35 # longer than the period to complete.

36

37 # TODO: Make this code periodic

38 timestamped_data = approximate_data_timestamp (opt_cam.take_camera_frame,
39 tolerance)

40 # TODO: in your created periodic loop, put ‘timestamped _data’ into the

41 # interprocess queue ‘opt_cam_queue’.

Listing 27: Part 1 of the starting code for the vanilla Python ADG Task of the UF app.

1def opt_main():
P Task 1: Part 4
TODO: Create an interprocess Queue.

[S]

N o »n R W

TODO: Create and start the camera process.
target is ‘take_opt_image”, args are the queue you made,
‘start_time’ as defined below, period of 2 seconds,

8 # and tolerance of 0.250 seconds

9 start_time = time.time () + 1

10 tolerance = 0.25

1 period = 2

12

13 ###### P Task 1: Part 4

14

15 ### Wait until the start_time to start executing

16 wait_until_start = start_time - time.time ()

17 if 0 < wait_until_start:

18 time.sleep(wait_until_start)

19 ###

20

21 ###### P Task 1: Part 5

2 # TODO: Make a periodic loop of two seconds. Execute every 2 seconds

88

23 # relative from the start (i.e. runs at 1:00, 1:02, 1:04).
24

25 # TODO: In the periodic body loop, try to get from the camera process's
26 # until either 1 second (fallthrough_delay) passes or you get

27 # a value from the queue and print it. Make the reading from

28 # the queue is a nonblocking operation.

29 fallthrough_delay = 1

30

31 # TODO: if you read a value from the queue, print it

32 # print (f'received: {value}') # uncomment me!

33

34 ###### P Task 1: Part 5

Listing 28: Part 2 of the starting code for the vanilla Python ADG Task of the UF app.
In this task, you will write code to set up a camera data stream for a CAV. You will make
take_opt_image generate images periodically and asynchronously.

Camera SQ

take_opt_image()

opt_img

Main

get img
get gps
get IMU

Figure A.7: ADG architecture design for the optical camera device.

You will do the following:

* Make take_opt_image periodic and call it in @GRAPHi fy.

1def take_opt_image (trigger) :

2 from libs import DataSources

3 global sqg_state

4

5 # Init the optical camera

6 if sqg_state.get ('opt_cam', None) is None:

7 sg_state['opt_cam'] = DataSources.Camera ()

8 opt_cam: DataSources.Camera = sqg_state['opt_cam']
9 value = opt_cam.take_camera_frame ()

10 print (f'got: {valuel}')

89

12 return value

14 QGRAPHify
isdef main(trigger) :

16 with TTClock.root () as root_clock:

17 start_time = READ_TTCLOCK (trigger, TTClock=root_clock) + 1_000_000

18 sampling_time = VALUES_TO_TTTIME (

19 start_time, GET_INFINITY (trigger, TTClock=root_clock))

20 sample_window = COPY_TTTIME (trigger, sampling_time)

21

2 ###### T Task 1:

23 # TODO: Make ‘take_opt_image ™ periodic and call it with a period of 2
24 # seconds. Have ‘take_ opt_image ™ use ‘sample_window ™ as its trigger.

25 # Use a TTDatalIntervalWidth of 500_000 microseconds and set TTPhase=0.

Listing 29: The starting code for the TTPython ADG Task of the UF app.

90

A.14 Task DS

1class Interval:

2 # you can assume that start <= end

3 def _ init_ (self, start, end):

4 self.start = start

5 self.end = end

6

7 if end < start:

8 raise Exception("Invalid interval range")
9

10 def = str_ (self):

11 return (f'Interval:[{DataGen.time_to_str(self.start)}, '
12 f'{DataGen.time_to_str(self.end)}]"'")
13

14 def to_list(self):

15 return [self.start, self.end]

17class TimedData:
18

19 def _ init_ (self, data, interval: List[float]):
20 self.data = data

21 self.interval = Interval (interval[0], interval[l])
2

23 def _ repr_ (self):

24 return f'TimedData<data:{self.data}, {self.interval}>"'
25

26if _ name_ == "__main__ ":

27 x_interval = Interval (0, 10)

28 y_interval = Interval(5, 15)

29 z_interval = Interval(7, 17)

30 outside_interval = Interval (30, 50)

31

32 x = TimedData (0, x_interval.to_list())

3 # access its Interval through ‘x.interval’

34 y = TimedData(l, y_interval.to_list())

35 z = TimedData (2, z_interval.to_list())

36 outside = TimedData (4, outside_interval.to_list ())
37

38 set_1: set[TimedData] = set ()

39 set_2: set[TimedData] = set ()

40 set_3: set[TimedData] = set ()

41 set_outside: set[TimedData] = set ()

)

43 set_1.add(x)

44 set_2.add(y)

45 set_3.add(z)

46 set_outside.add (outside)

Listing 30: Shared time library and testing code for the Python DS Task of the SI app.

91

SI App

The CAV generates image and LIDAR data asynchronously. We want to first synchronize data before
using it, as an image from the camera and data from the LIDAR if used together should be taken at about
the same time. We say they are synchronized when the time intervals associated with the two pieces of
data overlap.

camera_queue\ /LIDAR_queue

Main CAV Process

img
get camera frame lidar [
get LIDAR frame | | | |
local_fusion(img, lidar) | | | |

» Time

img: (i,[1:00,1:02])
lidar:(1,[1:01,1:03])

Figure A.8: Data Synchronization between camera and LIDAR.
You will do the following.
* Determine if two intervals overlap in time. You can assume that endpoints are inclusive.

* Find synchronized data between 2 sets.

* Call local_fusion with a synchronized image and LIDAR data.

| ###### P Task 2: Part 1
2 # Check whether two intervals are overlapping in time (i.e. synchronized)
sdef overlapping_ timestamps (interval_x: Interval,

4 interval_y: Interval) -> bool:
5 # TODO: return True if there is an overlap of time intervals
6 return False

7
s ###### P Task 2: Part 2

9# Check from 2 sets 1if there is synchronized data (data that overlaps in
10# time with each other), and return that pair if so. return any arbitrary

u# pair.

i2def get_overlapping_data (

13 data_set_1: set[TimedData],

14 data_set_2: set[TimedData]) —-> Optional[tuple[TimedData, TimedDatal]]:
15 # TODO: returns (data_1, data_ 2) where “data 1" and “data 2 's time

16 # interval overlap and ‘data_{num}’ is in ‘data_set_{num}’, otherwise

17 # return None

18 return None

0 ###### P Task 2 : Part 3
20# This function removes synchronized data from its respective set if there

92

22
23
24
25
26
27
28
29
30

1

is a synchronized set of data
def extract_overlapping_data (
data_set_1: set[TimedDatal,
data_set_2: set[TimedData]) —-> Optional[tuple[TimedData, TimedDatal]]:
TODO: call ‘get_overlapping_data’.
TODO: If the return 1is not None, it will return (data_ 1, data_Z2).
Remove “data_{num} > from each ‘data_set_{num} respectively.
TODO: Return output from ‘get_overlapping data’.
return None

Listing 31: Part 1 of the starting code for the Python DS Task of the SI app.
In the body of cav_main, you will extract overlapping data from the camera and LIDAR. If there
is a synchronized match, you will assign them to their corresponding variables. The output should be a
tuple of (data, time_interval) where data is a list of 2 elements each having the same value
increasing in time. A sample output is given below.

def cav_main() :

images = set ()
lidars = set ()
try:

periodic loop
while True:
curr_time = time.time ()
if next_time <= curr_time:

P Task 2: Part 4

TODO: Extract an overlapping pair of image and lidar data
from “images’ and “lidars’ . If a set of data is synchronized
(return is not None), assign it to “image’ and “lidar’
respectively (otherwise set them to None). They will be used
in the call to “local_ fusion(...)"

image = None

lidar = None

BT S S S S

P Task 2: Part 4

if (image is not None and lidar is not None):
image: TimedData
lidar: TimedData
1f0 = local_fusion(image.data, lidar.data)
interval = intersect_list (image.interval.to_list (),
lidar.interval.to_list())
print (
f'local fusion: {(1f0, [time_to_str(t) for t in interval]l)}'
)
else:
print (f'local fusion: No synchronized data')

93

35
36

Listing 32: Part 2 of the starting code for the Python DS Task of the SI app.

The CAV generates image and LIDAR data asynchronously. We want to first synchronize data before
using it, as an image from the camera and data from the LIDAR if used together should be taken at about
the same time. We say they are synchronized when the time intervals associated with the two pieces of
data overlap.

img\ /1idar‘

Main

img I
get camera frame lidar I
get LIDAR frame | [| |

local_fusion(img, lidar) | | | —> Time

img: (i,[1:00,1:02])
lidar:(1,[1:01,1:03])

Figure A.9: Data Synchronization between camera and LIDAR.

You will do the following:

* Call local_fusion in the GRAPHified function cav.

* Use TTPython’s synchronization rules to make sure data it operates on is synchronized in time.

1@STREAMify

rdef take_image (trigger) :

3

4

s @STREAMify

sdef take_ LIDAR(trigger) :

7

8

9def local_fusion(image, lidar):

10 if image != lidar:

11 print (f'cav0 img: {image} not same as lidar: {lidar}')
12 else:

13 print (f'{[image, lidar]}"')

15 return [image, lidar]

17 @GRAPHify

94

isdef local_ fusion_ttpy(trigger):

19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

with TTClock.root () as

root_clock:

start_time = READ_TTCLOCK (trigger, TTClock=root_clock) + 1_000_000
sampling_time = VALUES_TO_TTTIME (

start_time, GET_INFINITY (trigger, TTClock=root_clock))
sample_window = COPY_TTTIME (trigger, sampling_time)

image = take_image (sample_window,

lidar

#H#### Task 2:

TTClock=root_clock,
TTPeriod=1_000_000,
TTPhase=0,
TTDataIntervalWidth=250_000)

take_LIDAR (sample_window,

TTClock=root_clock,
TTPeriod=1_000_000,
TTPhase=0,
TTDatalIntervalWidth=250_000)

TODO: Call “local_fusion® with ‘image” and “lidar . Ensure that

these values are
overlap 1in time).

synchronized (their data intervals

Listing 33: The starting code for the TTPython DS Task of the SI app.

95

UF App

The optical camera has processes asynchronously generating GPS and IMU data to provide metadata to
the optical image (its EXIF data). We want to first synchronize data before using it, as an image from the
camera and data from the GPS and IMU if used together should be taken at about the same time. We say
they are synchronized when the time intervals associated with the two pieces of data overlap.

opt_cam_quek ‘ GPS_queue/MU_queue

Main Opt Cam Device Process img —
gps NI
z SZE égztlcal) img imu —
| | | | . T
get IMU T 1 1 > Time

add_exif(img, gps, imu)

img: (i,[1:01,1:03])
gps: (g,[1:00,1:02])
imu: (m,[1:01,1:03])

Figure A.10: Data Synchronization between optical image, GPS, and IMU.

You will do the following.
* Determine if two intervals overlap in time. You can assume that endpoints are inclusive.
* Find synchronized data between 3 sets.

* Call add_exif with a synchronized optical image, GPS, and IMU data.

| ###### P Task 2: Part 1
2 # Check whether two intervals are overlapping in time (i.e. synchronized)
sdef overlapping_timestamps (interval_x: Interval,

4 interval_y: Interval) -> bool:
5 # TODO: return True if there is an overlap of time intervals
6 return False

7
s ###### P Task 2: Part 2

9o# Check from 3 sets if there is synchronized data (data that overlaps in time
w# with each other), and return that trio if so. return any arbitrary trio.
ndef get_overlapping_data (

12 data_set_1: set[TimedData], data_set_2: set[TimedDatal,

13 data_set_3: set[TimedData]

14) —> Optional[tuple[TimedData, TimedData, TimedDatall]:

15 # TODO: returns (data_1l, data_Z2, data_3) where data_ 1, data_2, and

16 # data_3's time interval overlap and data_{num} is in data_set_ {num},
17 # otherwise return None

18 return None

96

20 ###### P Task 2 Part 3

20# This function removes synchronized data from its respective set if there

n# 1s a synchronized set of data
1sdef extract_overlapping_data (

24 data_set_1: set[TimedData], data_set_2: set[TimedDatal,

25 data_set_3: set[TimedData]

%) —> Optional[tuple[TimedData, TimedData, TimedData]l]:

27 # TODO: call ‘“get_overlapping_ data’.

28 # TODO: If its return is not None, it will return (data_1, data_2,
29 # data_3). Remove data_{num} from each data_set_{num} respectively.
30 # TODO: Return output from ‘get_overlapping data’.

31 return None

Listing 34: Part 1 of the starting code for the vanilla Python DS Task of the UF app.
In the body of opt_main, you will extract overlapping data from the optical camera, gps, and imu
sets. If there is a synchronized match, you will assign them to their corresponding variables. The output
should be a tuple of (data, time_interval) where data is a list of 3 elements each having the

same value increasing in time. A sample output is given below.

1def opt_main () :

4 opt_imgs = set ()

5 imus = set ()

6 gpss = set ()

7

8 try:

9 while True:

10 curr_time = time.time ()

11 if next_time <= curr_time:
12 fallthrough = curr_time + fallthrough_delay
13

14 ###### P Task 2: Part 4

‘add_exif(...) "

TODO: Extract an overlapping trio of camera,
gps data from “opt_imgs”, “imus’, and ‘gpss’ respectively.
If a set of data is synchronized (return is not None),

18 # assign it to ‘opt_img°, ‘imu_data’, and ‘gps_data’
#
#

imu, and

respectively. They will be used in the call to

21 opt_img = None

22 imu_data = None

23 gps_data = None

24

25 ###### P Task 2: Part 4

26

27 if (opt_img is not None and imu_data is not None
28 and gps_data is not None) :
29 opt_img: TimedData

30 imu_data: TimedData

31 gps_data: TimedData

97

32
33
34
35
36
37
38
39
40
41
42
43
44
45

exif_img = add_exif (opt_img.data, imu_data.data,
gps_data.data)

interval = intersect_list(
intersect_list (opt_img.interval.to_list (),
imu_data.interval.to_list ()),
gps_data.interval.to_1list())
print (

flexif: {(exif_img,
[time_to_str(t) for t in intervall])}'
)
else:
print (f'exif: No synchronized data')

Listing 35: Part 2 of the starting code for the vanilla Python DS Task of the UF app.

The optical camera has processes asynchronously generating GPS and IMU data to provide metadata
to the optical image (its EXIF data). We want to first synchronize data before using it, as an image from
the camera and data from the GPS and IMU if used together should be taken at about the same time. We
say they are synchronized when the time intervals associated with the two pieces of data overlap.

opt_img\ ‘ gps_data /mu_data

Main img |
gps NN

get (optical) img imu [r—

get gps 1 | I I

1 » Time

get IMU
add_exif(img, gps, imu)

img: (i,[1:01,1:03])
gps: (g,[1:00,1:02])
imu: (m,[1:01,1:03])

Figure A.11: Data Synchronization between optical image, GPS, and IMU.

You will do the following:

* Call add_exif in the GRAPHified function main.

* Use TTPython’s synchronization rules to make sure data it operates on is synchronized in time.

1...

2
3
4

def add_exif (opt_img, gps_exif, imu_data):
if opt_img != gps_exif or opt_img != imu_data:

98

print (f"data doesn't match -> opt_img: {opt_img}, "
f'gps: {gps_exif}, imu: {imu_datal}l')
else:
print (f'add_exif: {[opt_img, gps_exif, imu_datall')

return [opt_img, gps_exif, imu_datal

12 @GRAPHify
13def main(trigger) :

14

with TTClock.root () as root_clock:
start_time = READ_TTCLOCK (trigger, TTClock=root_clock) + 1_000_000
sampling_time = VALUES_TO_TTTIME (start_time,
GET_INFINITY (trigger, TTClock=root_clock))
sample_window = COPY_TTTIME (trigger, sampling_time)

opt_image = take_opt_image (sample_window,
TTClock=root_clock,
TTPeriod=2_000_000,
TTPhase=0,
TTDataIntervalWidth=500_000)
take_gps (sample_window,
TTClock=root_clock,
TTPeriod=2_000_000,
TTPhase=0,
TTDataIntervalWidth=500_000)
take_imu (sample_window,
TTClock=root_clock,
TTPeriod=2_000_000,
TTPhase=0,
TTDataIntervalWidth=500_000)

gps_data

imu_data

T Task 2

TODO: Call ‘“add _exif® with ‘opt_image’, ‘gps_data’, and ‘imu_data’.
Ensure that these values are synchronized, or that their data

intervals overlap in time.

Listing 36: The starting code for the TTPython DS Task of the UF app.

99

A.1l.5 Task NTWK
SI App

You will implement the network capabilities between the CAV and the RSU. The CAV wants to send
the output of local_fusion to the RSU for its call to global_fusion. The RSU then figures out
each CAVs next direciton with calculate_angle and sends it back to them. The CAV then calls
command_motors with that information.

RSU

CAVO

RabbitMQ RabbitMQ
(network) ’* (network)
“ D ——— =
take camera # take camera
take LIDAR # take LIDAR
1fo = 1f1 =
local_fusion(..) # consume from rabbitmg local_fusion(..)
queue for “1f0°

publish “1fo" to # consume from rabbitmq # publish “1f1° to
rabbitmg queue # queue for "1f1° # rabbitmgq queue

global_fusion(1lfe, 1f1)

Figure A.12: System architecture describing CAV to RSU communication.

global fusion(..)
calculate_angle(..)

command_veldcity_0 velocity_ 1

command_motors(...) command_motors(...)

Figure A.13: System architecture describing RSU to CAV communication.

You will be using RabbitMQ as a message broker to communicate between devices. Each device will
create processes to listen for incoming data on the network queue. This is because RabbitMQ connections
are blocking, and each device needs to run periodically. The process will take the data from the network
and send it to the main process through an interprocess queue.

You will do the following:

* Initialize RabbitMQ connection on "cav0", publish 1f0 to "rsu", receive from "rsu" on
RabbitMQ connection, and set up processes and queues to read from RabbitMQ.

100

RabbitMQ RabbitMQ
network network

connection def listen_for_input(..) def listen_for_input(..) connection

from “cave” # listening for “cave” # listening for “cavil” from “cavl”
send “1f@° to main send “1f1° to main
process through process through
“cav@_queue” “cavl_queue’

cave_queue \ / cavl_queue

Main RSU Process

wait for “cav@_queue”
and “cavl_queue”

interprocess queue
global_fusion(1lfe, 1f1)

Figure A.14: System architecture describing RabbitMQ interface.

* Initialize RabbitMQ connection on "cav1", publish 1f1 to "router", receive from "rsu" on
RabbitMQ connection, and set up processes and queues to read from RabbitMQ.

* Initialize RabbitMQ connection on "router", receive from "cav0" and "cav1" on RabbitMQ
connection, and set up processes and queues to read from RabbitMQ.

You will modify task3_p_cav0.py, task3_p_cavl.py, and task3_p_rsu.py. Itis sug-
gested you modify the files in this order. You can use the cell below to test your code.

1def cav0_main(start_time) :
2
3

4 ###### P Task 3

5 # TODO: initialize a RabbitMQ queue connection to device "rsu"

6 # As a reminder...

7 # # instantiate a new pika blocking connection connected to localhost.

8 # * Get the channel from the connection.

9 # * Use the default exchange (''), declare the queue with a name of your
10 # choice.

11 ###### P Task 3: Part 1.

13 # NOTE: Skip the initialization task below until you finish the
14 # implementation for “listen_for_input® found in (task3_p_rsu.py).

16 ###### P Task 3

17 # TODO: Create an interprocess Queue for the processes listening for "rsu".
18 rsu_queue =

19 # TODO: Create a process with target ‘listen_for_input . These should

20 # listen to the device "rsu". The rabbitmq_queue_name should match your

21 # respective RabbitMQ queue name from "rsu" to "cav0". Use ‘rsu_queue for
2 # your interprocess queue.

23 rsu_process = .

24 # TODO: Start the process.

26 ###### P Task 3

101

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

make a loop periodic

images = set ()
lidars = set ()
cavO0 = 0

try:

while True:
curr_time = time.time ()
if next_time <= curr_time:

fusion_output = local_fusion_wrapper (images, lidars)
if fusion_output is not None:
1f0 = TimedData (#fusion_output)

P Task 3: Part 2

TODO: Publish “1f0° to device "rsu" using the default
exchange ('') and your chosen name of the queue as the
routing_key. Call “encode_data (1f0)" for the body.

NOTE: uncomment if you want debugging
print (f'cav0 sending {1f0}")
#H##### P Task 3: Part 2

NOTE: Move to “task3_p _rsu.py' and finish Part 3.

Listing 37: The CAV’s starting code for the Python NTWK Task of the SI app.

| ###### P Task 3: Part 3
2# This is the target function for a process listening to a RabbitMQO queue.
sdef listen_for_input (rabbitmg_gqueue_name, interprocess_queue: mp.Queue) :

4

5
6

N

TODO: initialize a RabbitMQ queue connection to ‘rabbitmqg_queue_name’
TODO: Create a callback function that should send data through the

the interprocess queue paramater ‘interprocess_queue’

TODO: Call ‘“decode_data_bytes(...) on the body in your callback

TODO: Call ‘basic_consume”~ on ‘rabbitmg_queue_name’ with your created
callback function. Set ‘auto_ack® as True.

TODO: start consuming.

pass

17 ###### P Task 3: Part 3
isdef rsu_main(start_time):

19
20

102

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

#HA##H

P Task 3

TODO: Create two interprocess Queues for the processes listening for
"cav0" and "cavl".
cav0_queue =
cavl_queue =

HH ¥ H K

CAV.

TODO

#HAFHA

#HA##H

TODO:

#HAF#A

#HA##H

TODO:

Make
for

#HA##H

try:

TODO: Create two processes with target
These should listen to the
rabbitmg_queue_name should match your respective RabbitMQO queue name per

"cavO0" and "cavl"

“listen_for_input".
device. The

Use ‘cav0_queue’ and ‘cavl_queue’ for your interprocess queue.
cav0O_process =
cavl_process =

: Start the processes.

P Task 3

P Task 3

P Task 3

P Task 3

"cavO".

P Task 3

while True:

curr_time = time.time ()

initialize a RabbitMQ queue connection to device

initialize a RabbitMQ queue connection to device
sure the connection you create 1is different from the one you made

if next_time <= curr_time:
fallthrough = curr_time + fallthrough_delay

1f0_came = False
1fl_came = False

while time.time () < fallthrough and

cav0_queue,

cav0_fusions,

"CaVO "

"cavl"

(not 1f0_came

or not 1fl_came):
1f0_came = safe_poll_TD_and_insert_TD (

fallthrough)

1fl1_came = safe_poll_TD_and_insert_TD (

cavl_queue,

cav_lfs = extract_overlapping_data(cav0_fusions,

cavl_fusions,

if cav_1fs is not None:
cav0_fusion: TimedData
cavl_fusion: TimedData
cav0_fusion, cavl_fusion = cav_1fs
g_fusion = global_fusion(cav0O_fusion.data,

cavl_fusion.data)

intersect = cav0O_fusion.interval.intersection/(

103

fallthrough)

or 1f0_came

or 1fl_came

cavl_fusions)

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

cavl_fusion.interval) .to_list ()

command_velocity_0 = calculate_angle (
g_fusion, cav0_fusion.data, cav_0)
command_velocity_1 = calculate_angle(

g_fusion, cavl_fusion.data, cav_1l)

cv0 = TimedData (command_velocity_0, intersect)
cvl = TimedData (command_velocity_1, intersect)

P Task 3

TODO: Publish “cv0" to device "cav0" using the default
exchange ('') and your chosen name of the queue as the
routing key. Call ‘encode_data (cv0) for the body.

TODO: Publish “cvl® to "cavl" using the default exchange
(''") and your chosen name of the queue as the
routing key. Call ‘“encode_data (cvl) for the body.

=

=

NOTE: uncomment 1if you would like debugging.
print (f'rsu sending {cv0} and {cvi}')

Listing 38: The RSU’s starting code for the Python NTWK Task of the SI app.

You will implement the network capabilities between the CAV and the RSU. The CAV wants to send
the output of local_fusion to the RSU for its call to global_fusion. The RSU then figures out
each CAVs next direciton with calculate_angle and sends it back to them. The CAV then calls
command_motors with that information.

CAV O

take camera

take LIDAR

1fo =
local_fusion(..)

TTPython handles
networking

(network) (network)
——————————

take camera
take LIDAR
1f1 =

use var "1f0° local_fusion(..)

use var "1f1°

global_fusion(1lfe, 1f1) # TTPython handles

networking

Figure A.15: System architecture describing CAV to RSU communication.

You will do the following:

* Specify that "cavO0" and "cav1" will run sensor code and local_fusion.

* Specify that "rsu" will run global_fusion and calculate_angle.

* Specify that "cavO0" and "cavl" will run command_motors from the RSU’s data.

104

command_ve

global fusion(..)
calculate_angle(..)

city o

command_motors(...)

velocity 1

command_motors(...)

Figure A.16: System architecture describing RSU to CAV communication.

| @GRAPHify
rdef smart_intersection(trigger) :
with TTClock.root () as root_clock:

3
4

5
6

N

T TASK 3:
Set up 3 devices: CAVs running “take_image’,
'take LIDAR®, and “local_fusion’ . The RSU runs

calculate_angle’.

outputs to call “command _motors’.

cav_0
cav_1

0
1

‘global_fusion® and

Both CAVs receive their respective ‘velocity’

NOTE: All SQs below should be assigned to a device.

TODO: Map the following S0Os to run on

imageO

lidar0

1f0 =

TODO: Map the following S0Os to run on

imagel

take_image (sample_window,
TTClock=root_clock,
TTPeriod=1_000_000,
TTPhase=0,

TTDatalIntervalWidth=250_000)

take_LIDAR (sample_window,
TTClock=root_clock,
TTPeriod=1_000_000,
TTPhase=0,

TTDatalIntervalWidth=250_000)

"cavO".

local_ fusion(image0O, lidar0O, cav_0)

take_image (sample_window,
TTClock=root_clock,

105

"cavl".

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

TTPeriod=1_000_000,
TTPhase=0,
TTDataIntervalWidth=250_000)
lidarl = take_LIDAR (sample_window,
TTClock=root_clock,
TTPeriod=1_000_000,
TTPhase=0,
TTDatalIntervalWidth=250_000)
1f1 = local_fusion(imagel, lidarl, cav_1)

TODO: Map the following to run on "rsu".
gf = global_ fusion(l1£f0, 1f1)

velocity_0 = calculate_angle(gf, 1£f0, cav_0)
velocity_1 = calculate_angle(gf, 1fl, cav_1)

TODO: Map the following to run on "cav0O"
final result_0 = command_motors (velocity_0, cav_0)

TODO: Map the following to run on "cavl"
final_ result_1 = command_motors (velocity_1, cav_1l)

Listing 39: The starting code for the TTPython NTWK Task of the SI app.

106

UF App

You will implement the network capabilities between the the optical camera, thermal camera, and the
router. The optical image device will send optical images with EXIF data to the thermal camera. The
thermal image device will send coregistered images from the optical camera device and its thermal image
to the router.

Optical Camera Thermal (IR) Camera Programmable Router

: ,@o; (RabbitMQ) (RabbitMQ) \\\\\\\\
V] \\Q \\\ >,
;:*1‘74,‘-'7 N \A\\\ S,
i E:t: Zgg_l?su # consume from rabbitmq # consume from rabbitmg
exif_img =’ # queue for “exif_img" # queue for “multiband_image
add exif(..) multiband_image = has_flooding(..)
- - coregistration(exif_img, ..) upload_status(..)

publish “exif_img”

to rabbitmq queue # publish “multiband_img"

to rabbitmg queue

Figure A.17: System architecture describing the UF app.

You will be using RabbitMQ as a message broker to communicate between devices. Each device will
create processes to listen for incoming data on the network queue. This is because RabbitMQ connections
are blocking, and each device needs to run periodically. The process will take the data from the network
and send it to the main process through an interprocess queue.

RabbitMQ
network
connection
from “opt_cam”,

def listen_for_input(..)
listening for “opt_cam”
send “exif_img® to main
process through
“opt_cam_queue’

opt_cam_queue
Thermal (IR) Camera
Main Thermal Cam Device Process

wait for “opt_cam_queue”
interprocess queue
coregistration(exif_img, ..)

Figure A.18: System architecture describing RabbitMQ interface.

You will do the following:
* Initialize RabbitMQ connection on "opt_cam" and publish exif_imgto "ir_cam".

* Initialize RabbitMQ connection on "ir_cam", receive from "out_cam" on RabbitMQ connec-
tion, set up processes and queues to read from RabbitMQ, and publish ntwk_multiband_img
to "router".

107

* Initialize RabbitMQ connection on "router", receive from "1ir_cam" on RabbitMQ connec-
tion, and set up processes and queues to read from RabbitMQ.

You will modify task3_p_opt_cam.py, task3_p_ir_cam.py, and
task3_p_router.py. It is suggested you modify the files in this order. You can use the cell
below to test your code.

tdef opt_cam main(start_time):

4 ###### P Task 3: Part 1

5 # TODO: initialize a RabbitMQ queue connection to device "ir_ cam”

6 # As a reminder...

7 # + instantiate a new pika blocking connection connected to localhost.

8 # + Get the channel from the connection.

9 # = Use the default exchange, declare the queue with a name of your choice.
10 ###### P Task 3: Part 1

11

12

13

14 try:

15 while True:

16 curr_time = time.time ()

17 if next_time <= curr_time:

18

19

20 exif = add_exif wrapper (opt_imgs, imus, gpss)

21

2 if exif is not None:

23 exif_img = TimedData (*exif)

24 ###### P Task 3: Part 2

25 # TODO: Publish ‘exif img’ to "ir _cam" using the default
26 # exchange and your chosen name of the queue as the

27 # routing key. Call ‘“encode_data (exif_img) "~ for the body.
28

29 print (f'opt cam sending {exif_img}')

30 ###### P Task 3: Part 2

Listing 40: The optical camera’s starting code for the TTPython NTWK Task of the UF app.

| ###### P Task 3: Part 3
2# This is the target function for a process listening to a RabbitMQO queue.
sdef listen_for_input (rabbitmg_gqueue_name, interprocess_queue: mp.Queue) :

4 # TODO: initialize a RabbitMQ queue connection to ‘rabbitmq_queue_name’
5

6 # TODO: Create a callback function that should send data through the

7 # interprocess queue paramater “interprocess_queue’.

8 # TODO: Call ‘“decode_data_bytes(...) on the body in your callback.

108

TODO: Call ‘“basic_consume’™ on ‘rabbitmg queue_name’ with your created
callback function. Set ‘auto_ack® as True.

TODO: start consuming.
pass

16 ###### P Task 3: Part 3

17

isdef ir_ cam main(start_time) :

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

P Task 3: Part 4

TODO: Create an interprocess Queue.

opt_cam_queue =

opt_cam_process =

TODO: Create a process with target “listen_ for_input’.

This should listen to the "opt_cam" device. The rabbitmqg queue_name
should match your "opt_cam" RabbitMQ queue name. Use “opt_cam_queue’
for your interprocess queue.

TODO: Start the process.

HH W H W H

P Task 3: Part 4

P Task 3: Part 5
TODO: initialize a RabbitMQ queue connection to device "router"
P Task 3: Part 5

try:
while True:
curr_time = time.time ()
if next_time <= curr_time:

multiband_img = coregistration_wrapper (exif_ imgs,
thermal_imgs)

if multiband_img is not None:
ntwk_multiband_img = TimedData (»multiband_img)
P Task 3: Part 6
TODO: Publish ‘ntwk_multiband _image ™ to "router" using
the default exchange and your chosen name of the queue
as the routing key. Call
“encode_data (ntwk_multiband _img) for the body.

P Task 3: Part 6
print (f'ir cam sent {ntwk_multiband_img}"')

109

Listing 41: The thermal camera’s starting code for the TTPython NTWK Task of the UF app.

1def router_main (start_time) :

4 #H##### P Task 3: Part 7

5 # TODO: Create an interprocess Queue.

6 thermal_ cam_gueue =

7 thermal_ cam_process =

8 # TODO: Create and a process with target “listen for_input .

9 # This should listen to the "ir _cam" device. The rabbitmg queue_name
10 # should match your "ir_cam" RabbitMQ queue name. Use

1 # ‘thermal_cam _queue’ for your interprocess queue.

12 # TODO: Start the process.

13

14 ###### P Task 3: Part 7

15

16

17

18 try:

19 while True:

20 curr_time = time.time ()

21 if next_time <= curr_time:

2 fallthrough = curr_time + fallthrough_delay

23

24 multiband_img_came = False

25 while time.time () < fallthrough and not multiband_img_came:
26 try:

27 multiband_img: TimedData = thermal_cam_qgueue.get (
28 block=False)

29 print ('router heard back from thermal camera:
30 f'{multiband_img}")

31 multiband_img_came = True

32 except queue.Empty:

33 multiband_img = None

34

35 if multiband_img_came:

36 classify = has_flooding(multiband_img.data)

37 upload_status (classify)

Listing 42: The router’s starting code for the TTPython NTWK Task of the UF app.

You will implement the network capabilities between the the optical camera, thermal camera, and the
router. The optical image device will send optical images with EXIF data to the thermal camera. The
thermal image device will send coregistered images from the optical camera device and its thermal image
to the router.

You will do the following:

* Specify that "opt_camera" will run take_opt_image, take_gps, take_imu, and
add_exif.

110

Optical Camera Thermal (IR) Camera Programmable Router

S
(network) (network) \\\\\ \\\

—_— _— \R\\\\

S
Qe

i ::t: 22§_1¥§U # use var “exif_img # use var “multiband_image

exif_img =’ coregistration(exif_img, ..) has_flooding(..)
ada_exif(m) upload_status(..)

TTPython handles networking

TTPython handles
networking

Figure A.19: System architecture describing the UF app.

* Specify that "ir_camera" will run take_thermal_image and coregistration

* Specify that "router" will run has_flooding and upload_status.

1 @GRAPHify
2def main(trigger):
3 with TTClock.root () as root_clock:

T Task 3:
NOTE: All SQs below should be assigned to a device.
TODO: assign ‘take_opt_image , ‘take gps’', ‘take_imu’, and
9 # "add_exif' to the device named "opt_camera'.
#
#

P - N RN

oo

TODO: Assign ‘take_thermal_image’ and ‘coregistration’ to device
named "ir._camera"

12 lepton = take_thermal_ image (sample_window,

13 TTClock=root_clock,
14 TTPeriod=2_000_000,
15 TTPhase=0,

16 TTDataIntervalWidth=500_000)
17

18 images = take_opt_image (sample_window,

19 TTClock=root_clock,

20 TTPeriod=2_000_000,

21 TTPhase=0,

22 TTDhataIntervalWidth=500_000)
23

24 gps_exif = take_gps (sample_window,

25 TTClock=root_clock,

26 TTPeriod=2_000_000,

27 TTPhase=0,

28 TTDatalIntervalWidth=500_000)
29

30 imu_data = take_imu(sample_window,

31 TTClock=root_clock,

Y TTPeriod=2_000_000,

111

33
34
35
36
37
38
39
40
41
42

TTPhase=0,
TTDatalIntervalWidth=500_000)

exif_img = add_exif (images, gps_exif, imu_data)
multiband_image = coregistration(exif_img, lepton)

TODO: Assign ‘“has_flooding™ and ‘upload_status’ to the device named
"router".

classify = has_flooding (multiband_image)

uploaded = upload_status(classify)

Listing 43: The starting code for the TTPython NTWK Task of the UF app.

112

A.1.6 Task TTEH
SI App

You will implement a watchdog timer to handle time-triggered exception handling in the case of some

action not happening by a specified deadline. In the smart intersection, global_fusion could still run

even if a CAV becomes unresponsive for a while. You will write a time-triggered exception handler in

"rsu" thatruns missing_input_fusion toreplace "cav0"’s 1£0 inthe call global_fusion.
You will do the following:

* Call missing_fusion_input if deadline passes (success is False and 1f0_came is
False).

* Continue execution with the output of missing_fusion_input if the deadline passes.

CAVO

RabbitMQ
(network)
take camera
take LIDAR
1fo =
local_fusion(..) # Watchdog Timer: periodically try to consume
from rabbitmg queue for 0.5 seconds.
publish 1f@ to # if it has returned before 0.5 second
rabbitmq queue cave_fusion = 1f0

global_fusion(cave_fusion, ..)

else use output from “missing_fusion_input”
and call “global_fusion® with its output
cave_fusion = missing_fusion_input()
global_fusion(cave_fusion, ..)

Figure A.20: System architecture describing the vanilla Python Time-Triggered Exception Han-
dling for the RSU.

1def rsu_main(start_time) :

4 try:

5 # periodic control loop for the CAV

6 while True:

7 curr_time = time.time ()

8 if next_time <= curr_time:

9

10

11 ###### T Task 4

12 # NOTE: This is the normal path if everything comes in
13 # on time. You don't need to do anything here.

14 while time.time () < deadline_time and not success:

113

T Task 4
This is the exceptional handling time. This should occur
1f the "rsu" fails to synchronize data between both CAVs.
TODO: Replace the if statement checking if “success’ 1is
False and "1f0_came” is False.
if False:

TODO: Call the exceptional time handling recovery

function ‘missing_fusion_input (next_time) " to

replace “cav0_fusion’.

find cavl match
cavl_fusion = extract_fusion(cavl_fusions,
cav0_fusion.interval)

if cavl_fusion is not None:
interval = cavl_fusion.interval

TODO: Call ‘“global_ fusion® with the replaced value
for its parameter ‘cav0_fusion.data ™ and
‘cavl_fusion.data’. Use the ‘.data' field for

both arguments.

HH W H

TODO: Call ‘“calculate_angle’ with ‘global_fusion’'s
output, the replaced value for its parameter
‘cav0_fusion”, and ‘cav_0°. Use the “.data field
for the replaced ‘cav0_fusion’.

H W W

This “calculate_angle” is done for "cavl"
command_velocity_1 = calculate_angle (
gf, cavl_fusion.data, cav_1l)

TODO: Put the output of ‘calculate_angle” for

"cav0" here.

cv0 = TimedData (..., interval.to_list())

cvl = TimedData (command_velocity_1, interval.to_list())

TODO: Send “cv0' to the device "cav0" over the
RabbitMQ connection. Look at its initializer above
for the RabbitMQ queue name. Remember to use
‘encode_data (cv0) ® on the body.

HH W H W

TODO: Send ‘cvl™ to the device "cavl" over the
RabbitMQ connection. Look at its initializer above
for the RabbitMQ queue name. Remember to use
‘encode_data (cvl) on the body.

HH o H K

H

NOTE: You can uncomment this for debugging
print (f'rsu sent cv0:{cv0} and cvl:{cvi}")

Listing 44: The starting code for the Python TTEH Task of the SI app.

114

You will implement Plan B to handle time-triggered exception handling in the case of some action
not happening by a specified deadline. In the smart intersection, global_fusion could still run
even if a CAV becomes unresponsive for a while. You will write a Plan B for "rsu" that waits up to
0.5 seconds (deadline_time) for "cav0"’s data before running global_fusion. Specify that
Plan B will replace "cav0"’s local fusion data with the Plan B handler missing_fusion_input.
Thus, global_fusion should still fire periodically either with "cav0"’s data or from the output of
missing_fusion_input.

You will do the following:

* Callmissing_fusion_input if 1£0 not received by deadline_time.

* Continue execution with the output of missing_fusion_input if Plan B occurs.

(network)
take camera
take LIDAR
1fe =
local_fusion(..) # Plan B: periodically wait for 1f@ for
0.5 seconds.
TTPython handles # if it has returned before 0.5 second
networking cav@_fusion = 1f@

global_fusion(cave_fusion, ..)

else use output from “missing_fusion_input”
and call “global_fusion® with its output
cave_fusion = missing_fusion_input()
global_fusion(cave_fusion, ..)

Figure A.21: System architecture describing the TTPython Time-Triggered Exception Handling
for the RSU.

1@SQify

cdef missing_fusion_input () :

3 print ('running plan B!")

4 return None

5

6# T Task 4:

7 @GRAPHify

sdef cav_to_rsu_fusion(trigger) :

9 with TTClock.root () as root_clock:

10

11

12 with TTConstraint (name="cav0") :

13 « o

14 1f0 = local_fusion(image_0, lidar_0, cav_0)
15

16 with TTConstraint (name="cavl") :

115

T Task 4
with TTConstraint (name="rsu") :
local_deadline = identity(cav_0,

TTClock=root_clock,
TTPeriod=1_000_000,
TTPhase=0,
TTDataIntervalWidth=250_000)

T Task 4:

HH o R R K

TODO: Call the Plan B recovery function "missing fusion_ input’
for the "1f0° data before “global_fusion’ runs 1f the RSU does
not hear back from cav0 within 500_000 microseconds. This
500_000 deadline is given below. We still want to run global
fusion with a replaced value for "1f0°.

deadline_time = READ_TTCLOCK (local_deadline,

#
#

gf

TTClock=root_clock) + 500_000

TODO: Use the new var checking for “1f0°. We want to
still run “global_ fusion' even 1if "1f0° is missing.
= global_fusion(1£f0, 1f1)

velocity_0 = calculate_angle(gf, 1£f0, cav_0)
velocity_1 = calculate_angle(gf, 1fl, cav_1l)

with TTConstraint (name="cavO0") :
final result_0 = command _motors(velocity_0, cav_0)

with TTConstraint (name="cavl") :
final_result_1 = command_motors (velocity_1, cav_1)

Listing 45: The starting code for the TTPython TTEH Task of the SI app.

116

UF App

You will implement a watchdog timer to handle time-triggered exception handling in the case of some
action not happening by a specified deadline. The thermal camera is flaky and can become unresponsive,
so we set a deadline that if reached, the code should call reset_cam. You will inform the "router"
that the thermal camera is unresponsive by sending it the output of the call to reset_cam.

Thermal (IR) Camera

Watchdog Timer: periodically try to get
from thermal_cam_queue for 1 second.
success_img = take_thermal_img()

if it has returned before 1 second
coregistration(exif_img, ..)

else run “reset_cam’ and call coreg with
its value

replaced_val = reset_cam()
coregistration(replaced_val, ..)

Figure A.22: System architecture describing the vanilla Python Time-Triggered Exception Han-
dling for the thermal camera.
You will do the following:

* Call reset_cam if the deadline passes (thermal_image_came is False and success is
False).

* Send the output of reset_camto the "router" if the deadline passes.

1def ir_cam _main(start_time) :

4 try:

5 while True:

6 curr_time = time.time ()

7 if next_time <= curr_time:

8 C

9 success = False

10 ###### T Task 4

1 # NOTE: This is the normal path if everything comes in on
12 # time. You don't need to do anything here.

13 while time.time () < deadline and not success:
14

15

16 ###### T Task 4

117

1
2
3
4
5
6
7

TODO: Replace the if statement checking if
‘thermal_img came’ and ‘success’ 1s False.
if False:
exif_img_td = extract_data(exif_imgs,
Interval (0, time.time()))
TODO: Call the exceptional time handling recovery
function ‘reset_cam(next_time) to replace
“thermal_img’.

if exif_img_td is not None:
exif img exif img_td.data
interval = exif_img_td.interval

TODO: call ‘coregistration” with ‘exif data’
and the replaced value for its parameter

“thermal_ img . Remember to use its “.data’

field, 1like how ‘exif img' is created above.

TODO: put the output of ‘coregistration’ here.
ntwk_multiband_img = TimedData(...,
interval.to_list())

TODO: Send ‘ntwk_multiband _img"~ to the device
"router" over the RabbitMQ connection. Look at
its initializer above for the RabbitMQO queue

name. Remember to use

‘encode_data (ntwk_multiband _img) " on the body.

print (f'ir cam sent {ntwk_multiband_img}"')

T Task 4

Listing 46: The starting code for the Python TTEH Task of the UF app.

You will implement Plan B to handle time-triggered exception handling in the case of some action not
happening by a specified deadline. The thermal camera is flaky and can become unresponsive, so we set
a deadline that if reached, the code should call reset_cam. You will inform the "router" that the
thermal camera is unresponsive by sending it the output of the call to reset_cam.

You will do the following:

* Call reset_camif thermal_img notreceived by deadline_time

* Continue execution with the output of reset_cam if Plan B occurs.

@SQify
def reset_cam() :
import time

print ('Thermal Camera deadline reached: resetting...')

time.sleep (0.5)
print ('done')

118

Thermal (IR) Camera

Plan B: periodically wait for thermal

img for 1 second.

success_img = take_thermal_img()

if it has returned before 1 second
coregistration(exif_img, ..)

else run “reset_cam® and call coreg with
its value

replaced_val = reset_cam()
coregistration(replaced_val, ..)

Figure A.23: System architecture describing the TTPython Time-Triggered Exception Handling
for the thermal camera.

8 return "Thermal Camera failed to respond"
9

10 @GRAPHifYy

nndef main(trigger):

12 with TTClock.root () as root_clock:

13

14

15 with TTConstraint (name="ir_camera"):

16 t_img_start_time, thermal img = take_buggy_image (

17 sample_window,

18 TTClock=root_clock,

19 TTPeriod=2_000_000,

20 TTPhase=0,

21 TTDatalIntervalWidth=500_000)

22

23 ###### T Task 4:

24 # TODO: Call the Plan B ‘reset_cam() for “thermal_ img before
25 # “coregistration® if function “take_buggy_image’ does not return
26 # within ‘deadline_time . Make sure that ‘coregistration’ still
27 # runs 1f Plan B fires.

28 deadline_time = READ_TTCLOCK (t_img_start_time,

29 TTClock=root_clock) + 1_000_000

30

31 # TODO: replace ‘thermal_img’ with output of the Plan B handler.
32 # Make sure that ‘coregistration’ still runs if Plan B fires.
33 multiband_image = coregistration(exif_img, thermal_img)

34

35 with TTConstraint (name="router") :

36 classify = has_flooding (multiband_image)

119

37

uploaded = upload_status(classify)

Listing 47: The starting code for the TTPython TTEH Task of the UF app.

120

A.1.7 Task CE
SI App

You will modify the existing code of the smart intersection. The current architecture is shown below and
split across two diagrams for clarity of code execution order.

CAV 0

e & e &
take_image(...) take_image(...)
take_LIDAR(..) take_LIDAR(..)

local_fusion(..) local_fusion(..)

1f1

Figure A.24: System architecture describing CAV to RSU communication.

The CAVs first generates LIDAR and camera information and synchronizes them in
local_fusion. It sends this to the RSU. The RSU call global_fusion with info from both CAVs.
It plans routing for each CAV with calculate_angle and sends it to each.

global fusion(..)
calculate_angle(..)

command_veldcity_© velocity 1

command_motors(...) command_motors(...)

Figure A.25: System architecture describing RSU to CAV communication.

To make the cars more autonomous, calculate_angle can be done on the car. Ensure that when
moving calculate_angle to the CAVs that the corresponding exception handler is also changed as

121

1

N - RV S N OC R)

well.

global fusion(..) gf

gf B ,

calculate_angle(..) calculate_angle(..)
command_motors(...) command_motors(...)

Figure A.26: CE task system architecture change for the SI app.

You will do the following:

* Move the functions calculate_angle for each CAV to their respective file
(calculate_angle for CAVO to "task5_p_cavO.py"). The "rsu" sends gf in-
stead.

* Modify each CAV to listen for gf instead. Modify the exceptional time handling code to call
no_global_fusion instead.

You will modify task5_p_rsu.py, task5_p_cav0.py, and task5_p_cavl.py. You can
use the cell below to test your code.

def rsu_main (start_time) :

try:
periodic control loop for the CAV
while True:
curr_time = time.time ()
if next_time <= curr_time:

P Task 5
TODO: uncomment me
ntwk_gf = TimedData (gf, intersect)

skips odd iterations to introduce failure in the system
if cav0_fusion is not None and cav0_fusion.data[0] % 2 ==

P Task 5:

TODO: Move ‘calculate_angle’ to "cav0"

(task5_p_cav0.py) and "cavl" (task5_p_cavl.py).
command_velocity_0 = calculate_angle(

122

22 gf, cavO_fusion.data, cav_0)

23 command_velocity_1 = calculate_angle(

24 gf, cavl_fusion.data, cav_1)

25

26 # TODO: Remove the follownig code.

27 cv0 = TimedData (command_velocity_ 0, intersect)
28 cvl = TimedData (command_velocity_1, intersect)
29

30 # TODO: Change ‘“encode_data(...) to

31 # “encode_data (ntwk_gf) "

32 channelO.basic_publish (exchange="",

33 routing_key=queue_name0,
34 body=encode_data (cv0))
35 channell.basic_publish (exchange='"",

36 routing_key=queue_namel,
37 body=encode_data (cvl))
38 ###### P Task 5

39

40 else:

41

Listing 48: The RSU’s starting code for the Python CE Task of the SI app.

1def cav_mainO (start_time) :
2

P Task 5

TODO: Rename ‘velocities”™ to “gfs’
velocities = set ()

P Task 5

D R T Nt

11 try:

12 # periodic control loop for the CAV

13 while True:

14 curr_time = time.time ()

15 if next_time <= curr_time:

16

17

18 # listening to the RSU

19 moving_success = False

20 while time.time () < rsu_deadline and not moving_success:
21 ###### P Task 5

2 # TODO: Rename the var ‘velocities' below to “gfs’.
23 # TODO: Rename “command_velocity’™ to ‘gf".

24 safe_poll_TD_and_insert_TD (rsu_qgueue,

25 velocities, rsu_deadline)
26 command_velocity = extract_data(

27 velocities, Interval (start_time, rsu_deadline))
28 if command_velocity is not None:

123

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

moving_success =

if not moving_success:

P Task 5

True

TODO: Change “emergency_stop(...) to

‘no_global_fusion (start_time)

TODO: Rename “command_velocity' to gf
= emergency_stop (start_time)

command_velocity

print ('cav0 emergency stop')

if 1f0 is None:

print (f'catastrophic error for cav0')

else:

P Task 5

TODO: Move ‘calculate_angle’™ from (task5_p_rsu.py) here

use "1f0° instead of the cav{cav_num}_fusion. Use
‘gf.data’ and “1f0.data’ for its arguments.

TODO: Use ‘command_velocity ™ instead of its ‘.data’
field once changes above have been made.

This should use the output of

‘calculate_angle’.

command_motors (command_velocity.data, cav_0)

P Task 5

Listing 49: The CAV’s starting code for the Python CE Task of the SI app.

124

You will modify the existing code of the smart intersection. The current architecture is shown below
and split across two diagrams for clarity of code execution order.

take_image(...)
take_LIDAR(..)
local_fusion(..)

take_image(...)
take_LIDAR(..)
local_fusion(..)

Figure A.27: System architecture describing CAV to RSU communication.

The CAVs first generates LIDAR and camera information and synchronizes them in
local_fusion. It sends this to the RSU. The RSU call global_fusion with info from both CAVs.
It plans routing for each CAV with calculate_angle and sends it to each.

global fusion(..)
calculate_angle(..)

command_veldcity_© velocity 1

command_motors(...) command_motors(...)

Figure A.28: System architecture describing RSU to CAV communication.

To make the cars more autonomous, calculate_angle can be done on the car. Ensure that when

moving calculate_angle to the CAVs that the corresponding Plan B is also changed as well.
You will do the following:

* Move the respective SQ calculate_angle for each device onto their respective device.

125

gf global fusion(..) gf

calculate_angle(..) calculate_angle(..)
command_motors(...) command_motors(...)

Figure A.29: CE task system architecture change for the SI app.

* Change Plan B to work with gf instead of command_velocity_ ##.

1 @GRAPHify
2def smart_intersection(trigger) :
3 with TTClock.root () as root_clock:

with TTConstraint (name="rsu") :

P - N RN

oo

cav_0_fusion = TTFinishByOtherwise (1£0,
TTTimeDeadline=deadline,
TTPlanB=missing_fusion_input (),
TTWillContinue=True)

cav_1l_fusion = TTFinishByOtherwise (1£f1,
TTTimeDeadline=deadline,
TTPlanB=missing_fusion_input (),
TTWillContinue=True)

gf = global_fusion(cav_0_fusion, cav_1l_fusion)

T Task 5

TODO: Move each ‘calculate_angle” for "cav0" and "cavl" to
run on its respective device "cav0" and "cavl".
command_velocity_0 = calculate_angle(gf, 1£f0, cav_0)
command_velocity_1 = calculate_angle(gf, 1fl, cav_1l)

with TTConstraint (name="cav0") :

TODO: this Plan B handler safeguards against network

transmission of ‘command_velocity_0°. Once moving

“calculate_angle®, this should safeguard against the

transmission of “gf°. Change the Plan B function to

"no_global_fusion'. The other parameters will stay the same.

velocity_0 = TTFinishByOtherwise (command_velocity_0,
TTTimeDeadline=cav_0_deadline,

126

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

TTPlanB=emergency_stop (),
TTWillContinue=True)
command_motors (velocity_0, cav_0)

final result_O0

with TTConstraint (name="cavl") :
TODO: this Plan B handler safeguards against network
transmission of ‘command_velocity_1°. Once moving
‘calculate_angle”, this should safeguard against the
transmission of “gf°. Change the Plan B function to

"no_global_fusion'. The other parameters will stay the same.

velocity_1 = TTFinishByOtherwise (command_velocity_1,

TTTimeDeadline=cav_1_deadline,

TTPlanB=emergency_stop (),
TTWillContinue=True)
final_result_1 = command_motors(velocity_1, cav_1l)

Listing 50: The starting code for the TTPython CE Task of the SI app.

127

UF App

You will modify the existing code of the urban flooding observation application.

Optical Camera Thermal (IR) Camera Programmable Router

s
- S
opt_img \\\\\\\\\\\\
> 4
Er:N‘ <
EZE?‘EﬁEﬁ?E('") take_thermal_image(..) has_flooding(..)
take_imu(..) coregistration(..) upload_status(..)

add_exif(..)

Figure A.30: System architecture describing the UF app.

"opt_cam" device takes an image and combine this with the GPS and IMU data in add_exif.
It sends this to "thermal_cam" device, which calls coregistration with it and a thermal image.
This is then sent to the device "router" which calls has_floodingonitand upload_status.

In this task, we will move coregistration (on "thermal_cam") to "router", as it has
better computing power. Device "opt_cam" should send its exif_img to the "router" instead.
Device "thermal_cam" will now send its thermal_img.

Thermal (IR) Camera Programmable Router

multiband_ing \\\\\ \\\\\

coregistration(..)
has_flooding(...)
upload_status(..)

take_thermal_image(..)

Optical Camera

opt_img

take_opt_img(..)
take_gps(...)
take_imu(...)
add_exif(..)

Figure A.31: CE task system architecture change for the UF app.

You will do the following:
* Change where "opt_cam" is sending exif_imgto ("router" device).

* Move the function coregistration to "router". The "thermal cam" sends
thermal_img instead.

128

* Create a process listening for "opt__cam"’s RabbitMQ network queue connection on "router".

1def opt_cam _main(start_time) :

4 # Create RabbitMQ connection

5 connection = pika.BlockingConnection (

6 pika.ConnectionParameters ('localhost'))
7 channel = connection.channel ()

9 ###### P Task 5

10 # TODO: Send this to the "router" instead of "ir _cam"
11 queue_name = 'opt_to_ir'
12 channel.queue_declare (queue=gqueue_name)

13 ###### P Task 5

Listing 51: The optical camera’s starting code for the Python CE Task of the UF app.

1def ir_cam_main (start_time) :

4 ### Listen to optical camera on RabbitMQ.

5 ###### P Task 5

6 # TODO: Comment/Delete this code since “opt_cam’™ doesn't talk to “ir_cam’
7 # anymore.

8 opt_cam_queue = mp.Queue ()

9 opt_cam_process = mp.Process (target=listen_for_input,

10 args=('opt_to_ir'",

11 opt_cam_queue))
12 opt_cam_process.start ()

13 exif _imgs = set ()

14 #HAE#HH

18 ###### P Task 5

19 # TODO: Comment/Delete this code since “opt_cam’ doesn't talk to “ir_cam’
20 # anymore.
21 remove_old_data_and_insert (opt_cam_queue, exif_imgs, start_time)

2 ###### P Task 5

24 try:

25 while True:

26 curr_time = time.time ()

27 if next_time <= curr_time:

28 deadline = curr_time + deadline_offset

129

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

thermal_img_came = False
success = False

P Task 5

TODO: Comment/Delete this code since “opt_cam’™ doesn't

talk to “ir_cam’ anymore.
exif img_came = False
while time.time () < deadline and not success:

P Task 5

TODO: Comment/Delete this code since “opt_cam’™ doesn't

talk to ‘ir_cam’ anymore.

exif_img_came = safe_poll_ TD_and_insert_TD (
opt_cam_queue, exif_imgs,
deadline) or exif_img_came

P Task 5

thermal_img_came = safe_poll_and_insert_TD (
thermal_ cam_queue, thermal_imgs,
deadline) or thermal_img_came

synchronize between exif and thermal imgs
P Task 5:

TODO: This synchronization code between ‘exif imgs' and
‘thermal_imgs ™ needs to move to "task5 p_router.py".

Most of the code structure mimics what you will do in

"task5_p_router.py". After modification, none of this

code should be here. —-———————————————————————

data_pair = extract_overlapping_data_pair(
exif_imgs, thermal_imgs)

get a synchronized pair of ‘exif_img’® and ‘opt_img".

if data_pair is not None:
opt_img: TimedData
thermal_ img: TimedData
opt_img, thermal_img = data_pair

P Task 5

TODO: Copy this function ‘coregistration® to the

"router" device.

multiband_img = coregistration (opt_img.data,
thermal_img.data)

#HA##H
interval = opt_img.interval.intersection (
thermal_img.interval) .to_list ()
else:
multiband_img = None
####AF <-————

Code above should be removed/moved.
P Task 5:

TODO: Uncomment the following code to get
a “thermal_img’.

130

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

thermal_img = extract_data (thermal_imgs,
Interval (0, time.time()))

TODO: Change the flag to ‘thermal_img’ instead of
"multiband_img".
if multiband_img is not None:

success = True

TODO: Remove this line
ntwk_multiband_img = TimedData (multiband_img,
interval)

TODO: Change the body to

'encode_data (thermal_img) '.

channel .basic_publish (
exchange="",
routing_key=router_qgqueue_name,
body=encode_data (ntwk_multiband_img))

print (f'ir cam sent {multiband_img}")

#H##HFH#

Exceptional handling if thermal cam 1s unresponsive
if not success and not thermal_ img_came:

exif_img_td = extract_data(exif_imgs,
Interval (start_time,
time.time ()))
response = reset_cam(start_time)

P Task 5

TODO: Remove following code

multiband_img = coregistration(exif_img_td.data,
response.data)

interval = exif_img_td.interval

ntwk_multiband_img = TimedData (multiband_img,
interval.to_list ())

TODO: Change “encode_data(...) to
“encode_data (response) "
channel.basic_publish(
exchange="",
routing_key=router_qgueue_name,
body=encode_data (ntwk_multiband_img))
print (f'ir cam sent issue:{ntwk_multiband_img}"')
P Task 5

Listing 52: The optical camera’s starting code for the Python CE Task of the UF app.

1def router_main (start_time) :

2
3

131

N o v A

P Task 5

opt_cam_gueue = mp.Queue ()

opt_cam process =

TODO: Listen to "opt_cam" with a separate Process. Set the target as
"listen_for_input’, and args as the rabbitmqg_queue_name specified in
“task5_opt_cam.py’ and the interprocess queue as ‘opt_cam queue .

It should look similar to listening to "ir_cam".

#H####

exif_imgs = set ()

P Task 5
TODO: Rename "multiband_imgs™ to
multiband_imgs = set ()

‘thermal_imgs"

try:
while True:
curr_time = time.time ()
if next_time <= curr_time:
deadline = curr_time + deadline_offset

P Task 5

TODO: Rename ‘multiband_img_came’ to
multiband_img_came = False

exif img_came = False

‘thermal_img_came .

TODO: Change the second clause of ‘while® check to include

exif img_came.

‘and (not multiband_img_came or not exif_ img_came)

while time.time ()

< deadline and not multiband_img_came:

exif img_came = safe_poll_ TD_and_insert_TD (

opt_cam_qgueue, exif_ imgs,

deadline)

or exif img_came

multiband_img_came = safe_poll_ TD_and_insert_TD (
thermal_cam_queue, multiband_imgs,

deadline) or multiband_img_came

P Task 5
TODO: Synchronize a

‘extract_overlapping data_pair(exif imgs,

‘exif img® and “thermal_img with

thermal_ imgs)

TODO: Replace if statement with check if
“extract_..._pair® call above is not None

if multiband_img_came:

The return should be

TODO: uncomment and assign a synchronized ‘opt_img' and
“thermal_img' from the call above.

a tuple.

opt_img =

thermal_img =

TODO: delete/comment below

multiband_img = extract_data(multiband_imgs,

132

56
57
58
59
60
61
62
63
64

Interval (start_time,
time.time ())) .data

TODO: move ‘coregistration’ into this body of code

classify = has_flooding (multiband_img)
upload_status (classify)

Listing 53: The router’s starting code for the Python CE Task of the UF app.

133

You will modify the existing code of the urban flooding observation application.

Optical Camera Thermal (IR) Camera Programmable Router

. . . S
opt_img multiband_img \\\\\\\\\\\\\\
‘
m{g o
:ZEE_ZgEIi?g(M) take_thermal_image(..) has_flooding(..)
take_imu(...) coregistration(..) upload_status(..)

add_exif(..)

Figure A.32: System architecture describing the UF app.

"opt_cam" device takes an image and combine this with the GPS and IMU data in add_exif.
It sends this to "thermal_cam" device, which calls coregistration with it and a thermal image.
This is then sent to the device "router" which calls has_floodingonitand upload_status.

In this task, we will move coregistration (on "thermal_cam") to "router", as it has
better computing power. Device "opt_cam" should send its exif_img to the "router" instead.
Device "thermal_cam" will now send its thermal_img.

Thermal (IR) Camera Programmable Router

multiband_img \\\\

coregistration(..)
has_flooding(...)
upload_status(..)

take_thermal_image(..)

Optical Camera

opt_img

take_opt_img(..)
take_gps(..)
take_imu(..)
add_exif(..)

Figure A.33: CE task system architecture change for the UF app.

You will do the following:

* Move ‘coregistration® to device “’router”‘.

1 @GRAPHify
rdef main(trigger) :

134

with TTClock.root () as root_clock:

with TTConstraint (name="ir_ camera") :

t_img_start_time, thermal_ image = take_buggy_image (
sample_window,
TTClock=root_clock,
TTPeriod=2_000_000,
TTPhase=0,
TTDataIntervalWidth=500_000)
deadline = READ_TTCLOCK (t_img_start_time,
TTClock=root_clock) + 1 _000_000
successful_img = TTFinishByOtherwise (thermal_image,
TTTimeDeadline=deadline,
TTPlanB=reset_cam(),
TTWillContinue=True)

#H##### T Task 5:

TODO: Move ‘coregistration’ to the device "router".

multiband_image = coregistration(exif_img, successful_img)

with TTConstraint (name="router") :
classify = has_flooding (multiband_image)
uploaded = upload_status(classify)

Listing 54: The starting code for the TTPython CE Task of the UF app.

A.1.8 TTPython/Python Questionnaire

The following questions were rated by participants from either a 1-5 or a 1-10 scale.

I think that I would like to use this system frequently.
I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical person to be able to use this system.
I found the various functions in this system were well-integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very quickly.
I found the system very cumbersome to use.

I feel very confident using the system.

I needed to learn a lot of things before I could get going with this system.
How mentally demanding was the task?

How physically demanding was the task?

135

* How hurried or rushed was the pace of the task?
* How successful were you in accomplishing what you were asked to do?

* How hard did you have to work to accomplish your level of performance?

136

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]
[10]

[11]

[12]

[13]

Grant G21AP10626 Cornell University — highergov.com. www.highergov.com/grant/
G21AP10626/}2018. 3.2

IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and
Control Systems. IEEE Std 1588-2019 (Revision of IEEE Std 1588-2008), pages 1-499, 2019.

Bilal Akil, Ying Zhou, and Uwe Rohm. On the usability of Hadoop MapReduce, Apache Spark
& Apache flink for data science. In 2017 IEEE International Conference on Big Data (Big Data),
pages 303-310, 2017. 5.2]

Sidharta Andalam, Partha Roop, Alain Girault, and Claus Traulsen. PRET-C: A new language for
programming precision timed architectures. PhD thesis, INRIA, 20009.

Fatima Anwar, Sandeep D’souza, Andrew Symington, Adwait Dongare, Ragunathan Rajkumar, An-
thony Rowe, and Mani Srivastava. Timeline: An operating system abstraction for time-aware appli-
cations. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 191-202. IEEE, 2016.

Asad Awan, Suresh Jagannathan, and Ananth Grama. Macroprogramming heterogeneous sensor
networks using cosmos. ACM SIGOPS Operating Systems Review, 41(3):159-172, 2007. [T} [5.1]

Amol Bakshi, Viktor K. Prasanna, Jim Reich, and Daniel Larner. The Abstract Task Graph: a
methodology for architecture-independent programming of networked sensor systems. In Proceed-

ings of the 2005 Workshop on End-to-End, Sense-and-Respond Systems, Applications and Services,
EESR 05, page 19-24. USENIX Association, 2005. [I.1}[5.1]

Frédéric Boussinot and Robert De Simone. The ESTEREL language. Proceedings of the IEEE, 79
(9):1293-1304, 1991.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

Virginia Braun and Victoria Clarke. Using thematic analysis in psychology. Qualitative Research in
Psychology, 3(2):77-101, 2006.

John Brooke. SUS: A quick and dirty usability scale. Usability Eval. Ind., 189, 1995.
A.I5.2

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA °05, page 519-538. As-
sociation for Computing Machinery, 2005.

Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. Glacier:

transitive class immutability for Java. In Proceedings of the 39th International Conference on Soft-
ware Engineering, ICSE 17, page 496-506. IEEE Press, 2017.

137

www.highergov.com/grant/G21AP10626/
www.highergov.com/grant/G21AP10626/

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. Can advanced type
systems be usable? an empirical study of ownership, assets, and typestate in Obsidian. Proc. ACM
Program. Lang., 4(O0OPSLA), November 2020.

Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste Barnaby, Joshua
Sunshine, Jonathan Aldrich, and Brad A. Myers. PLIERS: A Process that Integrates User-Centered
Methods into Programming Language Design. ACM Trans. Comput.-Hum. Interact., 28(4), 2021.
5.2

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web Programming Without
Tiers. In Formal Methods for Components and Objects, pages 266—296. Springer Berlin Heidelberg,
2007. 511

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, Jeffrey John
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, et al. Spanner:
Google’s globally distributed database. ACM Transactions on Computer Systems (TOCS), 31(3):
1-22,2013. [5.1]

Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In Proceedings of the
2003 ACM SIGPLAN Workshop on Haskell, Haskell *03, page 7-18. Association for Computing
Machinery, 2003. [5.1]

Matthew C. Davis, Emad Aghayi, Thomas D. Latoza, Xiaoyin Wang, Brad A. Myers, and Joshua
Sunshine. What’s (Not) Working in Programmer User Studies? ACM Trans. Softw. Eng. Methodol.,
32(5),2023.5.2

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107-113, 2008.

Jack B. Dennis and David P. Misunas. A Preliminary Architecture for a Basic Data-Flow Processor.
In Proceedings of the 2nd Annual Symposium on Computer Architecture, ISCA °75, page 126-132.
Association for Computing Machinery, 1974.

Alexandre Donzé. On signal temporal logic. In International Conference on Runtime Verification,
pages 382-383. Springer, 2013. [5.1]

Conal Elliott and Paul Hudak. Functional Reactive Animation. In International Conference on
Functional Programming, 1997.

Catarina Gamboa, Abigail Reese, Alcides Fonseca, and Jonathan Aldrich. Usability Barriers for
Liquid Types. Proc. ACM Program. Lang., 9(PLDI), 2025. [5.2]

David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. The
nesC language: A holistic approach to networked embedded systems. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation, PLDI ’03, page
1-11. Association for Computing Machinery, 2003.

Ramakrishna Gummadi, Nupur Kothari, Ramesh Govindan, and Todd Millstein. Kairos: a macro-

programming system for wireless sensor networks. In Proceedings of the twentieth ACM sympo-
sium on Operating systems principles, SOSP 05, pages 1-2. Association for Computing Machinery,

2005. 5.1

Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9):1305-1320, 1991.

Sandra G. Hart and Lowell E. Staveland. Development of NASA-TLX (Task Load Index): Results of

138

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Empirical and Theoretical Research. In Peter A. Hancock and Najmedin Meshkati, editors, Human
Mental Workload, volume 52 of Advances in Psychology, pages 139-183. North-Holland, 1988.

(document), {.1.71[4.7.1]

Timothy W Hnat, Tamim I Sookoor, Pieter Hooimeijer, Westley Weimer, and Kamin Whitehouse.
MacroLab: a vector-based macroprogramming framework for cyber-physical systems. In Proceed-
ings of the 6th ACM conference on Embedded network sensor systems, pages 225-238, 2008.

Lorin Hochstein, Victor R. Basili, Uzi Vishkin, and John Gilbert. A pilot study to compare pro-
gramming effort for two parallel programming models. Journal of Systems and Software, 81(11):
1920-1930, 2008.

Mohammad Khayatian, Rachel Dedinsky, Sarthake Choudhary, Mohammadreza Mehrabian, and
Aviral Shrivastava. R2IM — Robust and Resilient Intersection Management of Connected Au-
tonomous Vehicles. In proceedings of The 23rd IEEE International Conference on Intelligent Trans-
portation Systems, 2020. [3.1]

Mohammad Khayatian, Mohammadreza Mehrabian, Edward Andert, Rachel Dedinsky, Sarthake
Choudhary, Yingyan Lou, and Aviral Shirvastava. A Survey on Intersection Management of Con-
nected Autonomous Vehicles. ACM Trans. Cyber-Phys. Syst., 4(4), 2020.

Mohammad Khayatian, Mohammadreza Mehrabian, Edward Andert, Reese Grimsley, Kyle Liang,
Yi Hu, Ian McCormack, Carlee Joe-Wong, Jonathan Aldrich, Bob Iannucci, and Aviral Shrivastava.
Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures. ACM Trans.
Cyber-Phys. Syst., 6(3), 2022. [1.1, 2.2.2]

Ben Kluwe and Luke Van Horn. Lepton 3 port of basic capture code for raspberry pi, 2018. URL
https://groups.google.com/qg/flir-lepton/c/y7333gnWIoM.

Hermann Kopetz and Giinther Bauer. The time-triggered architecture. Proceedings of the IEEE, 91
(1):112-126, 2003. 5.1]

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM,
21(7):558-565, 1978.

Philip Levis and David Culler. Maté: a tiny virtual machine for sensor networks. In Proceedings
of the 10th International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS X, page 85-95. Association for Computing Machinery, 2002.

Barbara Liskov and Rivka Ladin. Highly available distributed services and fault-tolerant distributed
garbage collection. In Proceedings of the fifth annual ACM symposium on Principles of distributed
computing, pages 29-39, 1986.

Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A Lee. Toward a Lingua Franca
for deterministic concurrent systems. ACM Transactions on Embedded Computing Systems (TECS),
20(4):1-27, 2021.

Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. TinyDB: An ac-

quisitional query processing system for sensor networks. ACM Transactions on database systems
(TODS), 30(1):122-173, 2005.

Keith Marzullo and Susan Owicki. Maintaining the time in a distributed system. In Proceedings of
the second annual ACM symposium on Principles of distributed computing, pages 295-305, 1983.

Michael McKerns and Michael Aivazis. pathos: a framework for heterogeneous computing, 2010.

139

https://groups.google.com/g/flir-lepton/c/y7333qnWI9M

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

URL https://ugfoundation.github.io/project/pathos.

Michael M McKerns, Leo Strand, Timothy Sullivan, Andy Fang, and M Michael G Aivazis. Building
a framework for predictive science. In Proceedings of the 10th Python in Science Conference, 2011.

Heather Miller, Philipp Haller, and Martin Odersky. Spores: A type-based foundation for closures in
the age of concurrency and distribution. In European Conference on Object-Oriented Programming,
pages 308-333. Springer, 2014.

David L Mills. Internet time synchronization: the network time protocol. IEEE Transactions on
communications, 39(10):1482-1493, 1991. 5.1]

Arvind Mithal and Kim Peter Gostelow. The U-Interpreter. Computer, 15(02):42-49, 1982. [5.1]

Luca Mottola and Gian Pietro Picco. Programming wireless sensor networks: Fundamental concepts
and state of the art. ACM Computing Surveys (CSUR), 43(3):1-51, 2011.

Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martin Abadi.
Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles, pages 439-455, 2013.

Sebastian Nanz, Faraz Torshizi, Michela Pedroni, and Bertrand Meyer. Design of an empirical
study for comparing the usability of concurrent programming languages. Information and Software
Technology, 55(7):1304-1315, 2013.

Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macroprogramming system. In 2007
6th International Symposium on Information Processing in Sensor Networks, pages 489-498. IEEE,
2007.

Rishiyur S Nikhil et al. Executing a program on the MIT tagged-token dataflow architecture. /IEEE
Transactions on computers, 39(3):300-318, 1990. [L.1}[5.1]

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision, 2022.

Manu Shergill. Mandeeps/su-watercam: Software for a Raspberry Pi-based environmental monitor-
ing system, 2021. URL https://github.com/mandeeps/SU-WaterCam. [3.2]

Nicolas Sornin, Miguel Luis, Thomas Eirich, Thorsten Kramp, and Olivier Hersent. LoRaWAN
Specification. LoRa alliance, 1:16, 2015.

Josef Svenningsson and Emil Axelsson. Combining deep and shallow embedding of domain-specific
languages. Computer Languages, Systems & Structures, 44:143-165, 2015. [L1]

Tommaso Venturini, Mathieu Jacomy, and Pablo Jensen. What do we see when we look at networks:
Visual network analysis, relational ambiguity, and force-directed layouts. Big Data & Society, 8(1),

2021. B8]

Pascal Weisenburger, Mirko Kohler, and Guido Salvaneschi. Distributed system development with
Scalaloci. Proc. ACM Program. Lang., 2(O0OPSLA), 2018.

Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: a neighborhood abstrac-
tion for sensor networks. In Proceedings of the 2nd international conference on Mobile systems,
applications, and services, pages 99-110, 2004.

Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network survey. Computer
networks, 52(12):2292-2330, 2008. [5.1]

140

https://uqfoundation.github.io/project/pathos
https://github.com/mandeeps/SU-WaterCam

[60] Jia Zou, Slobodan Matic, Edward A. Lee, Thomas Huining Feng, and Patricia Derler. Execution
Strategies for PTIDES, a Programming Model for Distributed Embedded Systems. In 2009 15th
IEEFE Real-Time and Embedded Technology and Applications Symposium, pages 77-86, 2009.

141

	1 Introduction
	1.1 Introduction
	1.2 Thesis Statement
	1.3 Evaluation
	1.4 Contributions
	1.5 Outline

	2 TTPython
	2.1 Problem and Approach
	2.2 TTPython System Overview
	2.2.1 Example TTPython Program
	2.2.2 Time and Location Constraints
	2.2.3 Composing Time Constructs

	2.3 Timed, Tagged-Token Dataflow Compilation
	2.3.1 Definitions
	2.3.2 Compilation Structure

	2.4 Timed, Tagged-Token Dataflow Semantics
	2.4.1 Firing Rule: Immediate
	2.4.2 Firing Rule: Data-Validity
	2.4.3 Firing Rule: Time-Based Trigger

	2.5 Running an Application in TTPython

	3 Case Studies
	3.1 Smart Intersection
	3.1.1 Methodology
	3.1.2 Code Comparison
	3.1.3 Execution Analysis

	3.2 Urban Flooding Network
	3.2.1 System Architecture
	3.2.2 Code Artifact Analysis
	3.2.3 Future Case Study Directions
	3.2.4 Modality Execution

	3.3 Case Studies Conclusion

	4 Qualitative User Study
	4.1 Study Design
	4.1.1 Smart Intersection
	4.1.2 Urban Flooding Network
	4.1.3 Task Choice
	4.1.4 Recruitment
	4.1.5 Tutorials
	4.1.6 Study Protocol
	4.1.7 Post Study Questionnaire and Interview
	4.1.8 Research Questions
	4.1.9 Data Analysis Methodology

	4.2 Task: Asynchronous Data Generation (ADG)
	4.2.1 TTPython Implementation
	4.2.2 Python Implementation
	4.2.3 Observations

	4.3 Task: Data Synchronization (DS)
	4.3.1 TTPython Implementation
	4.3.2 Python Implementation
	4.3.3 Observations

	4.4 Task: Networking (NTWK)
	4.4.1 TTPython Implementation
	4.4.2 Python Implementation
	4.4.3 Observations

	4.5 Task: Time-Triggered Exception Handling (TTEH)
	4.5.1 TTPython Implementation
	4.5.2 Python Implementation
	4.5.3 Observations

	4.6 Task: Code Evolution (CE)
	4.6.1 Smart Intersection
	4.6.2 Urban Flooding Network

	4.7 Results
	4.7.1 Post Study Questionnaire

	4.8 Discussion
	4.8.1 Future Steps for TTPython

	4.9 Limitations and Threats to Validity
	4.10 Conclusion

	5 Related Work
	5.1 Distributed Systems and Time
	5.2 Human-centered Programming Language User Studies

	6 Conclusion
	A Appendix
	A.1 User Study Materials
	A.1.1 SI App Introduction
	A.1.2 UF App Introduction
	A.1.3 Task ADG
	A.1.4 Task DS
	A.1.5 Task NTWK
	A.1.6 Task TTEH
	A.1.7 Task CE
	A.1.8 TTPython/Python Questionnaire

	Bibliography

