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No matter how hopeless, no matter how far.
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Abstract
The dynamic nature of cyber threats presents significant challenges for modern

defense, as sophisticated adversaries continuously adapt their strategies to evade de-
tection and compromise valuable systems. Effective defense against these evolving
threats requires multiagent interaction, where human defenders must coordinate with
both other humans and AI systems to mount comprehensive responses. However,
current approaches fail to adequately model the cognitive mechanisms underlying
multiagent interactions in these complex environments. Without computational mod-
els of how humans adapt, collaborate, and make decisions in cybersecurity contexts,
we cannot build multiagent defense systems that leverage the full potential of human
and AI.

This thesis focuses on building computational cognitive models and cog-
nitive agents for multiagent interaction in cyber defense, including designing
adversarial cognitive agents (Chapter 3), modeling human decision-making in
multi-defender interaction (Chapter 4), and designing human-like AI agents
that can work with humans as a team (Chapter 5).

First, I investigate human behavior in cybersecurity at the individual level and
build adversarial cognitive agents that capture human-like adaptivity in cyber attack,
which pre-sent greater challenges to defenders than deterministic strategies. My
findings show that cognitive attackers driven by Instance-Based Learning Theory can
learn effective strategies that are more challenging for both human and autonomous
defenders to counter than optimal but predictable attack patterns.

Second, I explore cognitive mechanisms that enable effective decision-making
in multi-defender interactions. In cybersecurity, multiple defenders can share sen-
sitive information and collaborate on threat response, however, their willingness to
do so could impact the security posture of all connected defenders. I develop a
novel computational model for interdependent human decision-making and investi-
gate its validity in multi-defender interaction setting. The model incorporates three
key cognitive mechanisms: dynamic prosociality, which adjusts how individuals
value others’ outcomes based on expectation-reality discrepancies; category learn-
ing, which efficiently organizes social experiences into behavioral prototypes; and
contrast effects, which sharpen distinctions between these behavioral categories.

Finally, I examine the integration of human and AI decision-making in team
defense scenarios where humans and AI collaboratively protect computer networks. I
designed an AI agent that learns from experience to approximate human-like decision
processes. Through empirical studies in semi-supervisory frameworks, I demonstrate
that the human-like AI agent significantly enhances team performance and efficiency
in cybersecurity operations compared to heuristic or random agents.

v



vi



Acknowledgments
This PhD journey has been a tremendous learning experience that has shaped me

both as a researcher and as a person. I am deeply grateful to the many individuals
who have supported, guided, and inspired me throughout this process.

First and foremost, I would like to express my profound gratitude to my advisors,
Dr. Cleotilde Gonzalez and Dr. Fei Fang. Coty has shown me what it takes to
build a meaningful research career through his brilliance, unwavering discipline, and
exemplary mentorship. Fei has taught me to make every hour count and to strive
for excellence in all endeavors. Every interaction with her has reminded me of the
heights to which scholarship can aspire. I am deeply grateful to both for taking on far
more responsibilities than any advisor should reasonably bear, and for their patience
and dedication in guiding my development as a researcher.

I extend my sincere appreciation to my committee members for their invaluable
contributions to this work. Thank you to Dr. Prashanth Rajivan for supporting
my exploratory research when there was little evidence I could successfully execute
it. Thank you to Dr. Christian Liebere for providing crucial guidance in refining
both my proposal and dissertation, offering insights that substantially strengthened
this research. Thank you to Dr. Tiffany Bao for bringing essential cybersecurity
perspectives that enriched the interdisciplinary nature of this work.

My colleagues at DDMLab have been instrumental in my growth as a researcher.
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Chapter 1

Introduction

The cybersecurity landscape continues to face unprecedented challenges. The Identity Theft
Resource Center reported a 78% increase in data breaches in the US, with 3,205 incidents affecting
353 million individuals in 2023. Enterprise networks have expanded to include thousands to tens
of thousands of devices, creating vast attack surfaces with various entry points for adversaries.
The consequences of this expanding attack surface were dramatically illustrated by the 2017
WannaCry ransomware attack, which exploited unpatched vulnerabilities that affected more than
230,000 computers in 150 countries, resulting in damages estimated at billions of dollars. As
our technological infrastructure grows increasingly interconnected, the imperative to effectively
detect and mitigate cyber-attacks becomes critical for the secure operation of society’s essential
systems.

The dynamic nature of cyber threats presents significant challenges for modern defense,
as sophisticated adversaries continuously adapt their strategies to evade detection and compro-
mise valuable systems. Unlike traditional security approaches that rely on static defenses and
predictable patterns, modern attackers exhibit human-like adaptivity, learning from defensive
responses and modifying their tactics accordingly. This evolution in the threat landscape has
fundamentally changed the requirements for effective defense. Effective defense against these
evolving threats requires multiagent interaction, where human defenders must coordinate with
both other humans and AI systems to mount comprehensive responses. The complexity of mod-
ern networks and the speed of cyber operations make it impossible for individual defenders or
isolated systems to maintain security. Instead, defense must emerge from the coordinated actions
of multiple agents working together.

Cyber defense involves strategic interactions among attackers, defenders, and end-users, each
with different objectives and incomplete information about the network and other agents. The
security status at any moment depends on exogenous events and the strategies of all agents, which
are rarely common knowledge. Adversaries exploit this complexity through actions that conceal
their true intent, while defenders must anticipate and counter these moves. The adversarial
landscape is further complicated by the diversity of threat actors, from sophisticated nation
states to opportunistic script kiddies, who differ in motivation, resources, target selection, and
persistence. This dynamic environment, characterized by continuous adaptation and counter-
adaptation between attackers and defenders, makes the configuration of effective defense strategies
extremely challenging.
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Integrating human and artificial intelligence elements in decision-making processes intro-
duces additional complexity. Determining the appropriate level of autonomy for AI systems
involves complex trade-offs between immediate security responses and longer-term strategic
considerations that often require human judgment. Effective human-AI collaboration requires
clear communication and mutual understanding of capabilities and limitations. AI tools must
be not only reliable but also interpretable and cooperative, while cybersecurity professionals re-
quire training to effectively leverage these technologies. The complexity increases further when
collaboration extends across organizational boundaries, a necessity for robust defense against
sophisticated threats, but hindered by varying objectives, priorities, cultures, and trust issues
among different organizations. However, current approaches fail to adequately model the cog-
nitive mechanisms underlying multiagent interactions in these complex environments. Without
computational models of how humans adapt, collaborate, and make decisions in cybersecurity
contexts, we cannot build multiagent defense systems that leverage the full potential of human
and AI coordination.

First, I investigate human behavior in cybersecurity at the individual level and build ad-
versarial cognitive agents that capture human-like adaptivity in cyber attacks, which present
greater challenges to defenders than deterministic strategies. I developed cognitive agents based
on Instance-Based Learning Theory (IBLT) that learn from interaction experiences to simu-
late human-like attackers. Through experimental comparisons with both strategic (Beeline) and
stochastic (Meander) attackers, I demonstrated that these cognitive attackers present greater chal-
lenges to both human defenders and autonom-ous defensive agents. The experiments showed
that defenders were able to effectively learn and adapt against deterministic attack strategies, but
struggled significantly against cognitive attackers that dynamically adjusted their tactics based
on the defender’s behavior. My findings show that cognitive attackers driven by Instance-Based
Learning Theory can learn effective strategies that are more challenging for both human and
autonom-ous defenders to counter than optimal but predictable attack patterns. This finding
has important implications for cybersecurity training, highlighting the need to prepare against
adaptive human-like adversaries rather than only focusing on countering known attack patterns.

Second, I explore cognitive mechanisms that enable effective decision-making in multi-
defender interactions. In cybersecurity, multiple defenders can share sensitive information and
collaborate on threat response; however, their willingness to do so could impact the security
posture of all connected defenders. Through empirical studies using triadic Prisoner’s Dilemma
scenarios framed as a cybersecurity information sharing task, I systematically varied both the
structural incentives (K-index) and information availability to understand their effects on coopera-
tion. The results demonstrated that higher structural incentives promote stable cooperation by re-
ducing the temptation to defect, while experiential information (observing actions and outcomes)
significantly enhances cooperation compared to both minimal information and overly detailed
descriptive information (complete payoff matrices). I develop a novel computational model for
interdependent human decision-making and investigate its validity in a multi-defender interaction
setting. The model incorporates three key cognitive mechanisms: dynamic prosociality, which
adjusts how individuals value others’ outcomes based on expectation-reality discrepancies; cat-
egory learning, which efficiently organizes social experiences into behavioral prototypes; and
contrast effects, which sharpen distinctions between these behavioral categories.

Finally, I examine the integration of human and AI decision-making in team defense scenarios



where humans and AI collaboratively protect computer networks. I designed an AI agent that
learns from experience to approximate human-like decision processes. I designed and imple-
mented the Team Defense Game (TDG), an experimental platform where human participants
collaborate with autonom-ous agents to protect a network against external threats. By sys-
tematically comparing three types of autonomous teammates—cognitive agents based on IBLT,
heuristic agents using rule-based strategies, and random agents—I investigated how different
AI approaches affect team performance and human workload. Through empirical studies in
semi-supervisory frameworks, I demonstrate that the human-like AI agent significantly enhances
team performance and efficiency in cybersecurity operations compared to heuristic or random
agents. The results revealed that cognitive agents were more adaptive to the individual play styles
of human teammates, although they were sometimes perceived as inconsistent or unpredictable.
Competent agents (both cognitive and heuristic) required less human effort but sometimes led to
over-reliance, highlighting important trust calibration challenges in human-autonomy teaming.

My research has made several significant contributions to the field. I developed a human-like
adversary emulation method based on Instance-Based Learning Theory, accompanied by an in-
teractive defense game testbed and human-subject experiments showing that cognitive attackers
are more challenging for defenders than strategic attackers. These findings demonstrate that train-
ing against human-like adversaries is necessary to prepare against diverse adversary strategies.
I created an empirical evaluation framework for cross-organizational cooperation that revealed
how incentive structures and information availability influence information sharing behaviors.
By systematically varying the K-index of interdependence and the levels of information provided
to participants, I demonstrated that higher structural incentives promote stable cooperation, while
experiential information significantly enhances cooperation compared to minimal or overly de-
tailed descriptive information. I developed a cognitive model of interdependent decisions in
groups that integrates dynamic weighting, category learning, and contrast effects to explain how
individuals navigate multiple cooperative relationships simultaneously. This model successfully
reproduced human behavior patterns in information sharing experiments without parameter fit-
ting, providing insights into the psychological processes underlying group decision-making in
security contexts. I designed a team defense game platform and an experimental protocol that
enabled the systematic evaluation of human-AI collaboration in cybersecurity contexts. Through
controlled experiments, I demonstrated that cognitive agents based on instance-based learning
theory outperform both heuristic and random agents as teammates, improving both team perfor-
mance and human efficiency in cyber defense tasks.

In the following chapters, I will detail these contributions, beginning with a review of related
work on human and AI decision-making in cyber defense, followed by chapters describing my
completed research projects and their findings. We will conclude with a discussion of the
implications of this work for the future of cybersecurity operations and suggestions for future
research directions.



Chapter 2

Background

The landscape of cybersecurity continues to evolve with increasingly sophisticated threats and
defensive technologies. At the center of this evolution remains a critical component: the human
element. Whether as attackers, defenders, or end-users, humans significantly influence cyber-
security outcomes through their decisions, behaviors, and cognitive processes. This chapter
establishes the foundational concepts that inform our research, examining the human element in
cybersecurity, the cognitive architectures that model human decision-making, and methodological
approaches for studying these phenomena.

2.1 The Human Element in Cybersecurity
Cybersecurity has traditionally been approached as a technical challenge, with emphasis placed
on developing robust security mechanisms, detection systems, and defense-in-depth strategies.
However, research now recognizes that the effectiveness of these technical solutions depends
critically on human factors [210, 263, 46]. The human dimension of cybersecurity includes
both offensive and defensive aspects, with significant implications for system vulnerability and
resilience.

Human attackers show considerable variation in capability, motivation, and behavior that
influence their effectiveness. Unlike idealized computational attackers, human adversaries op-
erate with cognitive limitations that affect their decision-making [217, 218]. These limitations,
characterized as bounded rationality, often lead to suboptimal choices based on heuristics rather
than exhaustive analysis. Research by Oh et al. [181] and Alsharnouby et al. [8] shows that
these limitations create patterns in attack strategies that can be exploited by defensive systems
that understand human decision-making processes.

The risk tolerance of human attackers affects their choice of targets and attack methods
[257, 110]. As documented by Thomas and Sule [236], an adversary’s risk appetite can be
affected by their situational context and operational goals, emphasizing the need for continuous
threat assessment. Human attackers learn from their experiences and dynamically adapt to
encountered defenses, modifying their strategies accordingly [137, 89]. This adaptability makes
them increasingly dangerous over time as they become more adept at evading detection and
exploiting vulnerabilities. Studies by Shoetan et al. [215] provide insight into how adversaries’
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risk tolerance levels can adjust based on their past successes or failures, indicating a cycle of risk
evaluation and reassessment that influences future attack strategies.

Human attackers also leverage creativity when developing novel exploitation techniques.
Studies of phishing campaigns show that individual creativity predicts an adversary’s ability
to evade detection [198]. This capacity for innovation allows human attackers to discover
vulnerabilities and attack vectors that automated testing might miss. Research by Shashank
et al. [213] highlights how attacker creativity manifests in developing polymorphic malware that
continuously modifies its code structure and encryption patterns while maintaining functionality.
This enables it to evade signature-based detection systems that rely on static patterns. Similarly,
Huang and colleagues [111] documented cases where human attackers creatively chained together
seemingly low-risk vulnerabilities across different system components. They exploited subtle
trust relationships between authentication systems and application interfaces to achieve privilege
escalation through paths that automated vulnerability scanners consistently failed to identify or
prioritize.

On the defensive side, the effectiveness of cybersecurity defense depends equally on human
factors. Security operations centers (SOCs) face challenges with alert fatigue, where the volume
of security alerts overwhelms human analysts [176, 62]. This cognitive overload can lead
to missed detections of critical threats and represents a limitation in scaling human defensive
capabilities. Ban et al. [18] documented how alert fatigue leads to frustration and performance
degradation among security analysts, highlighting the need for AI-assisted techniques to combat
this problem. Beyond alert fatigue, defenders struggle with cognitive biases in risk perception
that affect security decision-making. Pfleeger and Caputo [190] show how inattentional blindness
prevents security professionals from noticing unexpected threats when focusing on primary tasks.
Work overload also impacts cybersecurity behavior, with research showing that excessive job
demands lead to burnout and compromised security practices [139]. Human vulnerabilities
extend to organizational contexts where interdepartmental coordination failures create security
gaps. Hadlington [95] found that even well-trained defenders struggle to maintain vigilance in
environments with poor security culture.

Defensive decisions frequently occur under conditions of uncertainty, time pressure, and
incomplete information. Research shows that these conditions affect risk assessment and re-
sponse selection [24, 59], often leading to suboptimal defensive strategies when the cognitive
demands exceed human capabilities. Under uncertainty, defenders must navigate an asymmetric
information environment where attackers can observe defense mechanisms while defenders have
limited visibility into attack methods and origins [263, 30]. This information disadvantage forces
defenders to make decisions with partial situational awareness, increasing reliance on heuristic
judgments rather than comprehensive analysis. When operating under severe time constraints,
defenders shift toward rapid, intuitive decision processes that prioritize immediate action over
analytical assessment [38, 51]. As shown by Hwang [112], time pressure alters decision strate-
gies, increasing reliance on recognition rather than calculation. This challenge is heightened
by the compressed timeframes of automated attacks. Defenders require extensive experience to
effectively counter dynamic and distributed attacks [125, 92]. The development of this expertise
follows patterns identified in studies of naturalistic decision making, where recognition-primed
decisions based on prior experiences guide expert responses [126, 125]. Klein’s model explains
how cybersecurity experts leverage pattern recognition to rapidly identify threat situations without



needing to compare multiple response options, enabling effective responses even with incomplete
information [128, 127]. However, this expertise-driven approach faces challenges in cyberse-
curity contexts due to the rapidly evolving threat landscape and the difficulty of accumulating
relevant experiences for novel attack vectors [224].

The traditional approach to improving defensive capabilities has focused on cybersecurity
training using games and simulations. Platforms like picoCTF and SecGen offer progressively
challenging tasks structured within immersive narratives, making complex concepts more acces-
sible [195, 171]. Studies by Hendrix et al. [104] and Tioh et al. [238] show increased knowledge
retention and skill acquisition when participants actively engage in game formats compared to
traditional learning approaches. However, these training platforms often rely on deterministic
adversary models that fail to capture the dynamic and adaptive nature of real human attackers, po-
tentially giving defenders false confidence in their abilities to counter actual threats [1, 97]. This
limitation presents a research opportunity to develop more realistic adversary models that better
reflect human cognitive processes and adaptability. By incorporating principles from cognitive
science into adversary simulation, as proposed in this dissertation, training environments can
better prepare defenders for the unpredictable and evolving tactics employed by human attackers
in operational environments.

2.2 Human Cognition in Decision Making
Modeling how humans make decisions in cybersecurity contexts requires frameworks that account
for cognitive limitations while capturing learning from experience. Two approaches provide the
foundation for our research: cognitive architectures that implement bounded rationality and
Instance-Based Learning Theory [81].

Cognitive architectures provide computational frameworks for modeling human cognition,
capturing constraints like memory limitations, attention bottlenecks, and information processing
capabilities [9, 173]. Unlike purely algorithmic approaches that optimize toward theoretical ide-
als, cognitive architectures prioritize psychological plausibility by adhering to known constraints
of human cognition. As Salvucci and Taatgen [206] note, these architectures allow for the inte-
gration of multiple theoretical accounts of cognition into unified computational systems that can
reproduce human behavior across diverse tasks.

The concept of bounded rationality, introduced by Simon [217, 218], recognizes that human
decision-makers operate with limited information about alternatives and consequences, cognitive
constraints that restrict computation and memory, and finite time for decision-making. These
limitations lead humans to employ heuristics and satisficing strategies rather than exhaustively
evaluating all possibilities [74, 239]. In cybersecurity contexts, bounded rationality manifests
in both attackers and defenders, creating predictable patterns of behavior that diverge from
theoretically optimal strategies [78, 45].

Studies by Moisan et al. [165] show that these cognitive limitations affect cooperation rates
in strategic interactions, with implications for security information sharing and coordination.
Research by Abbasi et al. [1] and Hamman et al. [97] has shown that understanding these
limitations can inform more effective training approaches for cybersecurity professionals by
aligning training scenarios with the cognitive constraints that shape real-world decision-making.



2.2.1 Instance-Based Learning Theory
Activation IBL models work by storing instances i in memoryM, composed of utility outcomes
ui and options k composed of features j in the set of features F of environmental decision
alternatives. These options are observed in an order represented by the time step t, and the
time step that an instance occurred in is given T (i). IBL models predict the value of options in
decision-making tasks by selecting the action that maximizes the value function. In calculating
this activation, the similarity between instances in memory and the current instance is represented
by summing over all attributes the value Sij , which is the similarity of attribute j of instance i to
the current state. This gives the activation equation as:

Ai(t) = ln

( ∑
t′∈Ti(t)

(t− t′)−d

)
+ µ

∑
j∈F

ωj(Sij − 1) + σξ (2.1)

The parameters that are set either by modelers or set to default values are the decay parameter d;
the mismatch penalty µ; the attribute weight of each j feature ωj; and the noise parameter σ. The
default values for these parameters are (d, µ, ωj, σ) = (0.5, 1, 1, 0.25). The value ξ is drawn from
a normal distribution N (−1, 1) and multiplied by the noise parameter σ to add random noise to
the activation.

Probability of Retrieval The probability of retrieval represents the probability that a single
instance in memory will be retrieved when estimating the value associated with an option. To
calculate this probability of retrieval, IBL models apply a weighted soft-max function onto the
memory instance activation values Ai(t) giving the equation:

Pi(t) =
expAi(t)/τ∑

i′∈Mk
expAi′(t)/τ

(2.2)

The parameter that is either set by modelers or set to its default value is the temperature parameter
τ , which controls the uniformity of the probability distribution defined by this soft-max equation.
The default value for this parameter is τ = σ

√
2.

Blended Value The blended value of an option k is calculated at time step t according to the
utility outcomes ui weighted by the probability of retrieval of that instance Pi and summing over
all instances in memoryMk to give the equation:

Vk(t) =
∑
i∈Mk

Pi(t)ui (2.3)

2.2.2 IBLT in Cybersecurity Applications
IBLT has been successfully applied to model various aspects of cybersecurity decision-making
across both offensive and defensive contexts. The theory provides a psychologically plausible ac-
count of how cybersecurity professionals and attackers learn from experience and make decisions
in dynamic environments characterized by uncertainty and incomplete information.



Input: default utility u0, a memory dictionaryM = {}, global counter t = 1, step limit
L, a flag delayed to indicate whether feedback is delayed.

repeat
Initialize a counter (i.e., step) l = 0 and observe state sl
while sl is not terminal and l < L do

Execution Loop
Exploration Loop k ∈ K do

Compute activation values Ai(t) of instances (ki, T (i)) by Eq: (2.1)
Compute retrieval probabilities Pi(t) by Eq: (2.2)
Compute blended values Vk(t) corresponding to k by Eq: (2.3)

end
Choose an action a corresponding to option kl ∈ argmaxk∈K Vk(t)

end
Take action a, move to state sl+1, observe sl+1, and receive outcome ul+1

Store t into instance corresponding to selecting kl and achieving outcome ul+1 in
M

If delayed is true, update outcomes using a credit assignment mechanism
l← l + 1 and t← t+ 1

end
until task stopping condition

Algorithm 1: Pseudo Code of Instance-Based Learning Process

Dutt et al. [60] showed how IBLT can model the situational awareness of cybersecurity
analysts, making concrete predictions about recognition and comprehension processes during
attack scenarios. Their model captured how analysts interpret security events based on similar
past experiences, explaining why analysts with different experiential backgrounds might reach
different conclusions when presented with identical security data. This work was extended by
Veksler et al. [244], who applied IBLT to predict attacker behavior and enhance analyst capability
to anticipate future threats.

In defensive contexts, Du et al. [57] showed that IBLT-based models can effectively capture
defender behaviors against various attack strategies. Their cognitive model learned to identify
patterns in attack sequences and adapt defensive responses accordingly, showing performance
comparable to that of human defenders with similar experience levels. Cranford et al. [45]
developed these models to incorporate social factors that influence defensive decision-making,
such as trust and deception, providing insights into how these psychological factors affect security
outcomes.

IBLT has proven useful for modeling phishing detection and response. Cranford et al.
[44] used IBLT to model how end-users identify phishing attempts, showing how variations in
experience and attention to specific features lead to different vulnerability patterns across users.
Similarly, research by Aggarwal et al. [4] explored how IBLT models can capture decision-
making about cyber attacks, revealing how attackers gradually learn effective strategies through
trial and error rather than through formal planning processes.

The application of IBLT to adaptive cyber defense has been explored by Lebiere et al.



[138], who showed how cognitive models can support the development of autonomous defense
systems that reflect human-like adaptivity while overcoming human limitations in processing
speed and attention. Building on this work, Gonzalez et al. [84] proposed that cognitive models
can serve as the foundation for predicting both attacker and defender behavior in cybersecurity
contexts, potentially enabling more effective defensive strategies through improved anticipation
of adversary actions.

Researchers have also applied IBLT to understand information sharing decisions in cyberse-
curity contexts. Monleon et al. [169] developed models that capture how trust and experience
influence decisions to share or withhold threat intelligence, showing patterns that closely match
those observed in human security professionals. Similarly, Nguyen and Gonzalez [174] ex-
tended IBLT to incorporate theory of mind capabilities, allowing models to predict not only
direct adversary actions but also how adversaries might reason about defender knowledge and
strategies.

Computational models based on IBLT differ from traditional machine learning or game-
theoretic approaches in cybersecurity by incorporating realistic cognitive constraints rather than
assuming unlimited computational resources, learning through experiences rather than requiring
explicit rule formalization, and generalizing to novel situations based on similarity to previous
experiences. As shown by Kheiri et al. [120] and Sanchez et al. [207], these properties make
IBLT-based models particularly suitable for predicting how humans will behave in complex and
dynamic cybersecurity scenarios, where conditions change rapidly and decision-makers must
adapt to evolving threats and defenses.

2.3 Human Model Validation in Cybersecurity
Several frameworks have been proposed for validating human models and studying human behav-
ior in cybersecurity contexts. Early frameworks focused primarily on technical aspects of security
[212], but researchers increasingly recognized the need for structured approaches to studying
human factors. Kraemer et al. [132] proposed a human factors taxonomy that categorized
cybersecurity failures based on cognitive and organizational dimensions. Pfleeger and Caputo
[190] developed a behavioral framework emphasizing psychological factors in security decision-
making. More recently, Gonzalez et al. [79] introduced a comprehensive multi-dimensional
framework that integrates levels of analysis, contextual representation, and cognitive complexity.
This thesis primarily builds upon the Gonzalez et al. framework due to its systematic approach to
experimental design and its explicit consideration of dynamic, interactive decision-making that
characterizes modern cyber threats.

Building on the framework proposed by Gonzalez et al. [79], our research employs a structured
approach that considers multiple dimensions and experimental paradigms. Cybersecurity research
spans multiple dimensions that must be considered when designing experiments and analyzing
results. These dimensions include the level of analysis (ranging from individual decision-makers
to teams and organizations), the contextual representation (from abstract tasks to naturalistic
environments), and the cognitive complexity (from static to dynamic and interactive decision-
making).

At the individual level, research focuses on the cognitive processes that influence a single



decision-maker’s actions and vulnerabilities. This includes studies of how security professionals
detect threats [24, 199] and how end-users respond to phishing attempts [246, 245]. Moving to
the dyadic level, research examines direct interactions between attackers and defenders, exploring
how each adapts to the other’s actions over time [1, 155]. This dyadic perspective provides
insights into the strategic dynamics that characterize cybersecurity encounters.

Group-level analysis extends beyond dyads to examine how multiple agents interact in net-
worked environments. Research at this level has explored phenomena such as information sharing
[161, 253] and coordinated defense strategies [154, 201]. The team level focuses on coordinated
action among interdependent agents with complementary roles, examining how team composition
and communication patterns influence defensive effectiveness [226, 28].

The representation of cybersecurity contexts ranges from highly abstract to richly naturalistic.
Abstract representations, such as game-theoretic formulations [7, 204], isolate key decision
mechanisms at the cost of ecological validity. Contextual representations incorporate domain-
specific elements while maintaining experimental control, as seen in simulated network defense
scenarios [199, 155]. Naturalistic representations provide high-fidelity simulations that closely
mirror real-world environments [34, 85], maximizing ecological validity but often reducing
experimental control.

The cognitive complexity of cybersecurity tasks varies widely. Static decision-making in-
volves one-time choices with fixed parameters, while sequential decision-making introduces path
dependencies as choices unfold over time [119, 248]. Dynamic decision-making adds complexity
by allowing parameters to change based on actions [120, 84], and interactive decision-making
introduces multiple agents whose actions influence outcomes [45, 138].

2.4 Synthetic Cyber Environments for Human Experiments
Various synthetic environments have been developed to study human behavior in cybersecurity
contexts, each offering different trade-offs between experimental control and ecological validity.
Early platforms like CyberCIEGE [113] and CyberProtect [59] focused on resource allocation
and security policy decisions. More sophisticated environments such as DETER [25] and SAIC’s
cyber range [68] provide high-fidelity network simulations but require significant technical ex-
pertise. Game-based platforms like HackIT [5] and abstract security games [166] offer accessible
interfaces for studying fundamental decision processes. Among these approaches, interactive
defense games strike a balance between experimental control and contextual relevance, making
them particularly suitable for studying cognitive mechanisms in cyber defense while maintaining
accessibility to diverse participant populations.

Our research employs interactive defense games as a primary experimental paradigm for
studying cybersecurity decision-making. These games provide controlled environments for
examining attacker-defender interactions while abstracting away technical details that might limit
participation to specialized populations. By systematically varying game parameters, we can
isolate the effects of specific factors on decision-making.

Interactive defense games typically involve participants making sequential decisions about
system protection, intrusion detection, or information sharing in the context of simulated cyber
threats. For example, the CyberCIEGE platform [113] places participants in the role of security



decision-makers who must allocate resources to protect networked systems while balancing
security against usability concerns. Similarly, the TRACER platform [155] simulates network
defense scenarios where participants must detect and respond to evolving attack patterns.

These games offer several methodological advantages. First, they allow for precise control
over experimental variables such as threat characteristics, resource constraints, and information
availability. Second, they facilitate detailed logging of decision processes, including choices,
reaction times, and information access patterns. Third, they enable systematic manipulation of
cognitive factors such as time pressure, uncertainty, and feedback timing.

Our approach to interactive defense games incorporates elements from both traditional exper-
imental paradigms and more naturalistic simulations. By calibrating game parameters based on
real-world cybersecurity challenges while maintaining experimental control, we aim to balance
internal and external validity. This approach aligns with recommendations from Gonzalez et al.
[79], who emphasize the importance of systematically varying contextual elements to identify
generalizable principles of cybersecurity decision-making.

This chapter covered the foundational concepts for studying human and AI decision-making
in cybersecurity from a multi-agent modeling perspective. I reviewed the critical role of human
factors in both attack and defense, introduced cognitive frameworks for modeling human-like
decision processes, and outlined methodological approaches for systematically investigating these
phenomena. In the following chapters, I build upon these foundations to examine specific aspects
of human and AI decision-making in cybersecurity, focusing on cognitive modeling of adversarial
behavior, multi-agent decision-making, and human-AI teaming in defense scenarios.



Chapter 3

Single-Agent Decision-Making in
Cybersecurity: Building Adversarial
Cognitive Agents1

3.1 Introduction
In the modern cybersecurity landscape, understanding attacker behavior is fundamental to effec-
tive defense. As established in Chapter 1, cyber defense inherently involves strategic interactions
between multiple agents with different objectives and incomplete information. Organizations fre-
quently use cyber wargaming and adversary emulation (i.e., Red Teams) to train defenders (i.e.,
Blue Teams) and develop appropriate defense algorithms [41, 69]. However, traditional adversary
emulation methods often rely on automated planning and underplay the role of human cognition,
consequently leaving defenders underprepared for human attackers who can think creatively and
adapt their strategies.

Existing automated adversary simulation methods primarily rely on deterministic patterns
or static behavioral models [96, 121, 2]. While these approaches offer technical fidelity, they
typically lack the dynamic adaptivity characteristic of human attackers [117]. Real adversaries
vary in risk tolerance, learn from their experiences, and modify their strategies in response
to defensive measures [258, 136]. As they interact with defenders, they become increasingly
adept at evading detection and exploiting vulnerabilities. This adaptivity presents a significant
challenge for defender training and highlights the limitations of conventional adversary emulation
techniques.

To address these limitations, cognitive models offer a promising approach. Unlike traditional
computational methods focused on optimal performance, cognitive models incorporate human
constraints such as forgetting, limited attention, and bounded rationality [80]. These models
can simulate the learning and adaptive processes characteristic of human attackers, potentially
providing more realistic and challenging training scenarios for defenders. Instance-Based Learn-
ing Theory (IBLT) [81] provides a particularly suitable framework for modeling human-like

1See Appendix .1 for published version of this chapter and Appendix .2 for more about the Interactive Defense
Game
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decision-making in dynamic cybersecurity contexts. Prior research has applied IBLT to model
cyber situation awareness of human analysts [61] and to develop defensive agents capable of learn-
ing to counter deterministic attacks [58]. However, research has rarely examined the real-time
social interactions between cognitive attackers and defenders in cybersecurity scenarios.

The strategic interplay between attackers and defenders creates unique dynamics that can
influence defensive effectiveness [250]. Notably, human defenders have been found to handle
random attacks more effectively than adaptive ones [167], suggesting that commonly used random
attack algorithms may be less effective for training than approaches that capture human-like
adaptivity. This finding aligns with studies of human attackers in phishing contexts, which
have demonstrated that individual creativity significantly predicts an adversary’s ability to evade
detection [200]. Cognitive biases and emotional factors further influence attacker behavior and
decision-making processes [115, 66], adding another layer of complexity that static models cannot
capture.

Building on these insights, this chapter demonstrates that cognitive agents built based on the
theoretical principles of Instance-Based Learning Theory make more challenging adversaries for
defenders than strategically optimal attackers. Our research offers three main contributions. First,
I develop a cognitive attacker model (IBLRed) and demonstrate how it can learn from experience
to become as efficient as optimal strategic algorithms against a strategic defender. Second, I show
that when pitted against cognitive defenders, the IBL attacker proves to be a more challenging
adversary while the IBL defender can learn to counter carefully crafted optimal attack strategies.
Third, I validate these findings through human experiments where participants play the defender
role, confirming that cognitive attackers are more challenging for human defenders than strategic
attackers.

These experiments contribute to both cybersecurity practice and cognitive science by showing
how cognitive agents that capture human-like adaptivity create more effective adversaries for
training purposes and by advancing our understanding of strategic interactions in cybersecurity
contexts. The findings inform future adversary emulation efforts and the training of cyber
defenders, demonstrating that preparation against adaptable, human-like adversaries better equips
defenders for real-world threats than traditional approaches focused on optimal but predictable
attack patterns.

3.2 Related work

3.2.1 Threat Modeling
Attackers in cyberspace range from novice script kiddies to highly organized state-sponsored
actors, each motivated by varying goals and equipped with different levels of skill, knowledge,
resources, access, and motives. This diversity in threat actors has made threat modeling essential
in the cybersecurity landscape, particularly as the sophistication and frequency of cyber threats
continue to increase. As cyber threats evolve in complexity and impact, traditional security
approaches have proven insufficient to address their dynamic nature. Threat modeling has
emerged as a critical methodology that enables organizations to systematically identify, evaluate,
and prioritize potential security threats before they can be exploited. By analyzing system



architectures, data flows, and potential vulnerabilities from an attacker’s perspective, threat
modeling creates a structured framework for security analysis that supports proactive defense
strategies. This systematic approach allows security teams to allocate resources more effectively,
focusing on high-risk areas and implementing appropriate countermeasures based on a thorough
understanding of the threat landscape.

The evolution of threat modeling has seen a transition from isolated methodologies to more
structured and systematic frameworks. Xiong and Lagerström [222] conducted a comprehensive
systematic review of the literature that underscored the importance of theoretical and practical
advances in the field, analyzing 176 articles and identifying three key research groups: new
methodological contributions, application of existing frameworks, and the foundational literature
on threat modeling processes. Their findings revealed that a significant majority of the studies
employed manual modeling techniques, highlighting an urgent need for automation tools to keep
pace with evolving cybersecurity threats. Graphical representations such as attack trees and fault
trees have been widely adopted in the literature as valuable tools for visualizing potential threats
and vulnerabilities [197]. The hierarchical structure of attack trees allows analysts to break down
complex attacks into manageable components systematically, facilitating a better understanding
of attack vectors and potential defenses.

The approaches to threat modeling have diversified significantly in recent years. Tatam et
al. [142] propose a classification of threat modeling methodologies into four primary categories:
asset-centric, system-centric, threat-centric, and data-centric approaches. Each approach offers
unique perspectives on how to identify and assess threats, highlighting the importance of context
in tailoring threat analysis to specific organizational needs. The asset-centric approach focuses
on the identification of critical organizational assets and their associated risks, thereby improving
protection strategies tailored to the value of assets [129]. In contrast, system-centric practices
analyze the architecture of software systems, providing a detailed examination of potential vul-
nerabilities within system components. The threat-centric or attacker-centric framework shifts
the focus towards understanding adversaries’ motivations and tactics, advocating for an approach
that anticipates potential assault mechanisms [50].

As Advanced Persistent Threats (APTs) evolve, threat modeling techniques have been refined
to effectively address these new challenges. APTs are characterized by their structured, multiphase
approach, requiring cybersecurity professionals to adopt a more nuanced understanding of threat
dynamics [130]. The development and integration of Cyber Threat Intelligence (CTI) into threat
modeling frameworks have dramatically transformed organizations’ ability to foresee and respond
to evolving threats. Sun et al. [73] elaborate on a structured six-step methodology to extract
CTI data, highlighting its vital role in informing threat modeling and risk assessment practices.
This methodology not only improves the identification of vulnerabilities but also assists in the
prioritization of threat responses based on real-time threat landscapes.

Several comprehensive frameworks have emerged that provide foundational structures for ef-
fective threat modeling. Lockheed Martin’s Cyber Kill Chain and MITRE’s ATT&CK framework
are two of the most influential tools that standardize and systematize threat modeling processes,
guiding organizations to understand and counter evolving threats [221]. The Cyber Kill Chain
outlines the stages of an attack, from reconnaissance to exploitation, allowing defenders to de-
velop focused countermeasures at each stage [47]. In parallel, MITRE’s ATT&CK framework
offers an extensive matrix of adversarial tactics and techniques, derived from documented real-



world incidents, enabling organizations to enhance their defensive capabilities through a better
understanding of adversary behaviors and methods. Integrating these frameworks into a cohe-
sive strategy helps organizations identify critical areas for improvement and aligns their security
efforts with emerging threats [53].

3.2.2 Computational Adversary Simulation
Despite technical fidelity, most automated adversary simulation methods ignored the social
context and lacked a dynamic behavior component [117]. Human attackers have varying levels of
risk tolerance, which might affect their choice of target and attack methods [258]. Human attackers
can also learn from their experiences [136], dynamically adapt to defenses they encounter, and
modify their strategies accordingly, making them more dangerous over time as they become
more adept at evading detection and exploiting vulnerabilities. Thus, to improve the training of
defenders, the emulated adversaries need to exhibit behavior similar to that of the human attackers
and have the capability to learn and adapt to the defender’s actions.

Early models of adversary simulation contained static patterns prescribed for the attacker
agents to follow [22]. These models eventually gave way to graph-based [29] and state-based [1]
attack simulation methods, which provide a useful characterization of the attacker’s profile, such
as goals, starting points, and available time. This group of simulation methods models and stores
generic attack patterns with preconditions and postconditions in a knowledge base. Additional
attack pattern attributes include the cost of attempts, execution time, base success probability,
and maximum attempts. Despite their utility, these approaches often result in deterministic and
predictable attack behaviors that fail to capture the complexity of human decision-making in
adversarial contexts.

An important aspect of adversary behavior is bounded rationality, which refers to the limits
of human decision-making capabilities. Adversaries often operate under the constraints of
information and cognitive biases, leading them to make suboptimal decisions that can affect their
operational success. For example, Oh et al. discuss how reinforcement learning can help optimize
responses to adversarial behavior by simulating limited rationality within attack strategies [182,
183]. Similarly, understanding the limitations of adversary decision-making processes can aid in
the development of better security measures tailored to exploit these bounded rationalities [6].

Moreover, it is posited that adversaries may prioritize strategies based on perceived immediate
gains rather than long-term outcomes, indicative of a bounded rationality mindset [3]. This
characteristic aligns with the findings of Kure et al., which highlight the need for a comprehensive
understanding of various threat elements, including the cognitive limits that drive adversarial
actions [134]. Thus, the modeling of bounded rationality can inform risk management frameworks
by introducing adaptive strategies that focus on the psychological and decision-making processes
of attackers [229].

Risk tolerance also plays a key role in adversary behavior, representing the degree to which an
adversary is willing to engage with uncertainty and potential loss in the pursuit of their objectives.
It varies across individuals and contexts, influencing the types and frequencies of cyberattacks
launched [237, 216]. Contextual factors, such as organizational pressures and perceived rewards,
shape this tolerance. For example, Thomas and Sule argue that an adversary’s risk appetite can be
affected by their situational context and operational goals, emphasizing the need for continuous



threat assessment [237].
Research by Shoetan et al. provides insight into how adversaries’ risk tolerance levels

can adjust based on their past successes or failures, indicating a cycle of risk evaluation and
reassessment that influences future attack strategies [216]. Thus, evaluating risk tolerance not
only assists in threat modeling, but can also be a critical factor in designing proactive defense
mechanisms that anticipate potential risks adversaries are willing to undertake [262].

The learning and adaptability of adversaries are crucial in understanding their evolving tactics
and techniques in cyber warfare. Adversaries continually learn from previous engagements and
adapt their strategies to improve outcomes [90]. Research suggests that adversaries use machine
learning to analyze the effectiveness of their attacks or adjust to countermeasures implemented by
organizations [182, 183]. Oh et al. underline the importance of dynamic models, showcasing how
the integration of reinforcement learning frameworks into cybersecurity can predict adversarial
adaptations over time [183].

In addition, organizational culture significantly influences this learning process. Gundu out-
lines the necessity for a continuous learning environment, where both adversaries and defenders
must engage in unlearning outdated strategies and acquiring new knowledge to remain effective
[90]. This adaptability can lead to a form of arms race, in which defenders must constantly update
their defenses in response to increasingly sophisticated adversarial techniques, highlighting the
fluid nature of cyber-security dynamics [184].

Adversaries often rely on cognitive biases and heuristic reasoning when making decisions
about attacks, which affects their effectiveness and strategy choices. These cognitive shortcuts can
lead to significant miscalculations in threat assessments and decisions about attack vectors [229].
For example, the work of Loi and Christen provides evidence that biases, such as overconfidence
in attack outcomes, can skew adversary planning and execution [148].

Understanding these biases enables defenders to implement countermeasures that exploit
adversaries’ faulty reasoning processes. Almansoori et al. emphasize that recognizing cognitive
flaws can inform the design of security systems that anticipate and mitigate likely adversarial
errors [6]. In this context, employing training programs for cybersecurity personnel to recognize
these biases could improve preparedness against unexpected adversarial behavior [52]. This
nuanced understanding of cognitive biases enriches the overall modeling of adversary behavior,
offering additional information on potential decision-making errors that can create opportunities
for effective countermeasures.

3.2.3 Cybersecurity Training with Games
While understanding adversary behavior is crucial, effectively training cybersecurity professionals
to counter these threats requires innovative training approaches. Cybersecurity training utilizing
games has emerged as an innovative approach to enhance awareness and skills in an age where
the frequency of cyber threats is steadily increasing. The categorization of these training methods
into a taxonomy begins with understanding the various types of games deployed. Serious games,
often including elements designed for educational purposes, can be further divided into simulation
games, digital games, and role-playing games [40]. This categorization mirrors previous findings
that focus on the depth of the game and user engagement, with an emphasis on how game
mechanics can support educational goals in cybersecurity [40, 225].



The consensus among researchers is that gamified training strategies positively influence
learning outcomes, particularly by promoting interaction and engagement among participants [94,
191]. For example, studies recommend incorporating gamified elements such as storytelling, team
challenges, and rewards to enhance the learning experience [225, 94]. Moreover, distinguishing
between formal and informal learning avenues - where games serve as informal pathways -
provides information on how players identify themselves with cybersecurity topics and issues
[40, 94]. Therefore, training strategies must align with the cognitive and social learning theories
that underpin successful gamification [14].

Noteworthy examples of game-based cybersecurity training include platforms such as pic-
oCTF and SecGen. These platforms have successfully used game design elements to create
immersive learning experiences. For example, picoCTF is a cybersecurity challenge platform
that offers users a series of progressively challenging tasks structured in a narrative, making com-
plex concepts more accessible [160, 23]. SecGen, alternatively, provides simulations that mimic
the tactics, techniques, and procedures (TTPs) used by real-world cyber adversaries, allowing
students to conceptualize and operationalize their knowledge in a controlled environment [191,
160].

The efficacy of these platforms has been documented in various studies, with findings indi-
cating that participants exhibit increased knowledge retention and skill acquisition when actively
engaged in game formats compared to traditional learning environments [191, 160, 114]. Fur-
thermore, studies reveal that combining theoretical knowledge with practical challenges in a
gamified context allows learners to develop critical analytical skills essential for responding to
cybersecurity incidents [94, 14, 133].

Building upon the human behavior components of adversary modeling discussed previously,
incorporating adversary simulation is essential to deepen the understanding of participants of
cybersecurity threats and defenses. Many platforms effectively simulate adversarial behavior
through game mechanics, allowing users to experience the intricate dynamics of a cybersecu-
rity breach from both the attacker and the defender perspectives [133, 232]. The importance of
adversary simulation becomes evident as simulations mirror real-world scenarios, providing play-
ers with the necessary information to preemptively devise protective measures against potential
attacks [144, 114].

A prime example of adversary simulation in cyber training is the Network Defense Training
Game (NDTG), which immerses players in a series of network defense scenarios against simulated
attacks. This setup fosters strategic thinking and mimics a real attack environment, enabling
participants to make timely decisions under pressure [14, 234, 17]. Research has highlighted
that adversary simulation games improve not only the technical skills of players but also their
decision-making capabilities when faced with rapid cyber threats [23, 144].

In addition, participating in adversary simulation prepares people for future scenarios in
which they may need to utilize cyber threat intelligence (CTI) effectively. Studies suggest a
profound impact on situational awareness when participants practice responding to simulated
cyber attacks, highlighting the need to combine academic knowledge with hands-on simulations
[133, 114]. Through adversary simulations, educators aim to build a resilient cybersecurity
workforce capable of anticipating, detecting, and responding to a myriad of cyber threats. This
dynamic is crucial in a landscape characterized by the ever-evolving nature of cybercrime.



3.2.4 Research Gap
Despite advances in threat modeling, computational adversary simulation, and gamified cyberse-
curity training, there remains a significant gap in the development of realistic adversary models
that effectively capture human cognitive processes. Most existing approaches rely on deter-
ministic and static patterns that fail to emulate the dynamic and adaptive nature of real human
attackers. This limitation results in suboptimal training for cyber defenders, as they learn to
counter predictable attack strategies rather than the complex, evolving tactics employed by actual
adversaries.

The absence of cognitively realistic attacker models creates several challenges for effective
cyber defense training. Defenders trained against deterministic attack patterns may develop false
confidence in their abilities to counter real-world attacks, as static adversary emulations fail to
prepare them for the adaptive and learning behaviors exhibited by human attackers. Traditional
models do not account for the bounded rationality, risk tolerance, and cognitive biases that
influence decision-making by humans. Furthermore, current training platforms lack adversaries
that can learn from experience and dynamically adjust their strategies based on defender responses,
severely limiting their effectiveness in preparing defenders for real-world scenarios.

Cognitive architectures and theories of human decision-making have made significant progress
in emulating human-like behavior in dynamic environments. Unlike typical computational algo-
rithms that aim to make optimal decisions, cognitive architectures adhere to human constraints
such as forgetting, limited attention, and bounded rationality. However, past work on cognitive
modeling in cyber security systems has rarely considered the real-time social interactions of
attackers and defenders together. The characteristics of human attackers have been studied in
specific contexts, such as phishing experiments, where individual creativity was found to be a pre-
dictor of an adversary’s ability to evade detection, but these insights have not been systematically
incorporated into comprehensive adversary models for training.

Therefore, there is a compelling need for cognitive models of cyber attackers that can more
realistically emulate human adversary behavior, provide more challenging training scenarios for
defenders, and ultimately improve cyber defense capabilities in real-world contexts. Our research
addresses this gap by developing and evaluating a cognitive attacker model based on Instance-
Based Learning Theory (IBLT) that captures human learning and decision-making processes,
demonstrating its effectiveness as a more challenging and realistic adversary for training cyber
defenders. This approach represents a significant advancement over deterministic strategies
by creating adversaries that are dynamic, adaptive, and able to learn from experience, more
accurately reflecting the behavior of human attackers in real-world scenarios.

3.3 Design of the Simulated Cyber Attack Environment
Testing attacker and defender agents requires a simulation or training platform that encapsulates
cyber elements in an integrated environment. We use the interactive defense game based on
CybORG AI gym with adversarial cyber-operation scenarios. Each combat between an attacker
and a defender is an episode of 25 steps, ensuring sufficient time to observe attack strategies.

Figure 3.1 illustrates the topology of the network. The network is divided into three subnets:
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Figure 3.1: Adaptation of the Cage Challenge Network

subnet 1 consists of user hosts that are not critical, subnet 2 consists of enterprise servers
supporting user activities, and subnet 3 contains the critical operational server and operational
hosts. Attackers typically establish their entry point through social engineering or spear phishing,
with host User0 serving as the entry point in our scenario.

Figure 3.2 summarizes attack phases (red arrows) and defensive countermeasures (blue ar-
rows). The Red agent starts by searching for hosts with DiscoverRemoteSystems, identifies vul-
nerabilities using DiscoverNetworkServices, obtains User-level access through ExploitRemoteSer-
vice, and escalates to Root-level with PrivilegeEscalate. The Blue agent can Remove adversaries
at User level, use Restore if the Red agent has escalated, Analyse activities, or passively Monitor
the network.

3.3.1 Agent Types
We developed three types of red agents to test against human defenders:

BeelineRed represents advanced, well-organized attackers with perfect knowledge. This agent
assumes prior knowledge of network topology and moves directly to the operational server follow-
ing a predetermined path (User0→ User1→ Enterprise1→ Enterprise2→ Op Server0)
in a predictive and deterministic way.

MeanderRed simulates novice ”script kiddie” attackers who rely on pre-made exploit pro-
grams without careful planning. This agent assumes no prior knowledge about network structure
and behaves stochastically, choosing random targets to advance.

IBLRed is our novel cognitive agent based on Instance-Based Learning Theory (IBLT).
This dynamic agent learns from experience and adapts its actions according to the environment



Figure 3.2: Effect of actions on the host state

conditions and defender responses. The instances that drive its decisions represent:
• State (sa): Features representing the attacker’s knowledge of network resources in various

states (Detected, Scanned, Exploited-User, Exploited-Root, Impacted)
• Action Space (aa): Dynamically constructed at each step based on the current network

state
• Utility (za): Rewards calculated based on attack success, with higher rewards for accessing

significant systems
For initial training and validation, we used two simulated blue agents: (1) a passiveSleepyBlue

agent that only monitors the network, and (2) a dynamic cognitive IBLBlue agent also based on
IBLT. Our preliminary simulation experiments demonstrated that IBLRed could learn effective
attack strategies over time, with 55% of IBLRed agents eventually outperforming the determin-
istic BeelineRed strategy. More importantly, when facing cognitive defense agents, IBLRed

maintained consistently higher performance while BeelineRed’s effectiveness rapidly declined as
defenders learned to counter its predictable pattern.

3.4 Experiment: Cognitive Attacker Against Human Defenders
While our simulation results provided strong evidence that cognitive attackers present greater
challenges than deterministic ones, we needed to validate these findings with human defenders.
The goal of this experiment was to compare the performance of human defenders when faced
with the three types of attackers (BeelineRed, MeanderRed, and IBLTrained

Red ) and to assess
whether humans display similar vulnerability patterns to those observed in our cognitive defender
simulations.



Experimental Design Human participants completed the same cyber defense task and scenario
using the Interactive Defense Game (IDG), which provides an interactive decision interface in the
cyber environment. The task interface displayed the network status, observed activities on each
host, and allowed participants to select hosts and defense actions (Monitor, Analyse, Remove,
Restore).

Participants We recruited 186 participants (124 men, 61 women, 1 N/A) aged 21 to 65 years
(M = 37.12 ± 10.15) through Amazon Mechanical Turk. Approximately 9% of participants (17
individuals) reported having more than 5 years of experience in network operation and security
along with at least a Master’s degree in a related field. Each participant was randomly assigned
to face one of the three red agents: BeelineRed, MeanderRed, or IBLTrained

Red .

Procedure After providing informed consent and completing a demographic questionnaire,
participants received task instructions followed by a quiz to verify their understanding. They then
watched a video introduction explaining the interface, game controls, and episode dynamics.

The experiment consisted of two phases: (1) a practice session with two short episodes
of 10 steps each, and (2) the main task with 7 episodes of 25 steps against the same type of
adversary. The practice episodes familiarized participants with the interface and game controls
using simplified scenarios. In the main task, no time restrictions were imposed, and the initial
network state was identical for all participants across episodes.

After completing the main task, participants filled out a post-experiment survey about their
performance, perceived strategy, and their experience in computer science and cyber defense.

3.4.1 Results
Human Defenders Perform Similarly Against Both Static and Dynamic Attackers. The
performance of the three attacker types against human defenders is shown in Figure 3.3. As human
participants learned from experience, BeelineRed agents initially performed better (M = 66.25,
SD = 5.39) than IBLTrained

Red agents (M = 55.51, SD = 4.70) in the first episode. However,
IBLTrained

Red agents posed a more persistent threat as the experiment progressed. The performance
ofBeelineRed agents deteriorated rapidly, withBeelineRed (M = 47.33, SD = 6.42) performing
worse than IBLTrained

Red (M = 54.141, SD = 6.191) in the last episode. MeanderRed agents
(M = 5.26, SD = 4.42) performed significantly worse than IBLTrained

Red across all episodes.
Consistent with our simulation predictions, IBLTrained

Red demonstrated persistent impact du-
ration and superior performance compared to MeanderRed (M = 0.817, SD = 1.488). While
IBLTrained

Red achieved a shorter impact duration (M = 1.29, SD = 0.18) than BeelineRed

(M = 3.15, SD = 0.39) in the first episodes, this gap decreased significantly by the final
episode.

Analysis of attack command distribution (Figure 3.4) revealed that IBLTrained
Red used the Impact

command most frequently, whileBeelineRed andMeanderRed were unable to consistently impact
the operational server and resorted primarily to ExploitRemoteService and PrivilegeEscalate.

Human Defenders Employ Consistent Defense Strategies Regardless of Attacker Type.
Analysis of human defensive actions (Figure 3.5) showed that participants tended to be more



Figure 3.3: Red Agents Performance when confronted by a Human defender. The average reward
per episode (left) and average impact duration (right).

passive, taking more Analyse and Monitor actions than active Remove and Restore actions.
Notably, humans maintained relatively consistent action preferences throughout the experiment,
although subtle adaptation occurred depending on the attacker type.

Cognitive Attackers Maintain Cognitive Load on Defenders. Figure 3.6 presents the
number of options available to humans during episodes. When facing BeelineRed, participants
could reduce their cognitive load by narrowing the option space between the first and last episodes.
In contrast, the option space remained approximately the same when facing MeanderRed and
IBLTrained

Red , indicating that stochastic and adaptive attackers maintain higher cognitive demands
on defenders.

Dynamic Cognitive Attackers Perform Best Against The Most Efficient Human De-
fenders. To further investigate individual differences, we categorized participants as ”Efficient
Defenders” (attacker reward below mean) and ”Inefficient Defenders” (attacker reward equal to
or above mean). Figure 3.7 reveals that IBLTrained

Red had significantly higher rewards against Effi-
cient Defenders in later trials (mean: 33.19 ± 33.31; Tukey’s HSD p=0.040), while BeelineRed

performed better against Inefficient Defenders (mean: 92.18 ± 53.36; Tukey’s HSD p=0.041).
This finding is particularly striking: even skilled human defenders struggled against cognitive

attackers, while less skilled defenders had more difficulty with deterministic attackers. Further
analysis of defender actions showed that efficient defenders paired with IBLTrained

Red employed
significantly more active defense strategies than those paired with other attackers, demonstrating
that countering cognitive attackers requires more sophisticated defensive approaches.



Figure 3.4: Distribution of attack commands against human defenders

3.5 Discussion and Conclusion
Our research demonstrates that cognitive agents emulating human-like adversaries present signifi-
cantly greater challenges to cyber defenders than deterministic strategies. While human defenders
effectively learned to counter predictable attack patterns, they struggled against cognitive attack-
ers that dynamically adjusted their tactics based on defender responses. These findings have
important implications for cybersecurity training and defense system evaluation.

Three key insights emerge from our research: First, training with deterministic attack patterns
may inadequately prepare defenders for real-world threats from adaptive human attackers. The
rapid decline in BeelineRed’s performance against experienced defenders contrasts sharply with
IBLRed’s persistent effectiveness, suggesting that current training approaches using static patterns
may create a false sense of security. Second, cognitive models based on IBLT provide a cost-
effective method for producing realistic adversaries that adapt to defender actions. These models
can be more effective in training cyber defense strategies than static and deterministic adversaries.
The cognitive attacker agent can serve as a training partner in interactive gaming platforms,
potentially addressing the scarcity of human experts for training exercises. Third, most strikingly,
our finding that cognitive attackers performed best against the most skilled defenders highlights
a critical vulnerability in current approaches. Even highly efficient defenders struggled against
adaptive attackers, suggesting that traditional expertise may not transfer effectively to countering
adaptive threats.

These results underscore the importance of training against human-like adversaries for im-
proved cyber defense. By incorporating cognitive agents into training regimes, defenders can
develop more robust strategies against the adaptive tactics employed by sophisticated human
attackers.

Limitations of this work include the fact that our cognitive agent does not fully capture all
aspects of human attacker behavior, such as heuristic reasoning and various cognitive biases.



Figure 3.5: Average action frequency of Human defender

Future work will enhance the cognitive attacker agent with additional psychological mechanisms,
test with expert defenders from security operation centers, and extend the approach to more
complex network environments that better reflect real-world conditions.



Figure 3.6: Average size of the Human defender’s option space in the first (left) and the last
episode (right)

Figure 3.7: Average red agent reward by episode, split between efficient and inefficient human
defenders.



Chapter 4

Multi-Agent Decision-Making in
Cybersecurity: Cognitive Mechanisms for
Multi-Defender Interaction1

4.1 Introduction
Cybersecurity challenges increasingly extend beyond individual defenders to complex networks
of interdependent actors. Organizations must collaborate to share threat intelligence while simul-
taneously managing competitive risks [162]. As cyber threats grow in sophistication, no single
organization can maintain comprehensive threat awareness independently, making information
sharing crucial for collective defense [241]. However, this creates a strategic dilemma—sharing
valuable threat intelligence benefits collective security but may expose the sharing organization
to reputational damage, legal liabilities, or competitive disadvantage [71].

While research has extensively studied bilateral information sharing relationships, real-world
cybersecurity contexts involve multiple simultaneous relationships under cognitive constraints.
Security Operation Centers (SOCs) maintain partnerships with multiple organizations, govern-
ment agencies, and Information Sharing and Analysis Centers (ISACs), each with different trust
levels, priorities, and information needs [98]. Analysts must decide which information to share
with each partner, considering both immediate strategic implications and long-term relationship
development.

Current approaches to modeling behavior in strategic group interactions typically fall into
two broad categories. Evolutionary approaches [208, 193] effectively capture population-level
outcomes, but often abstract away individual cognitive processes. Game-theoretic frameworks
[70, 228] provide precise mathematical formulations but rely on strong rationality assumptions
that rarely match human behavior. Between these approaches, cognitive modeling has emerged
as a promising third path that explicitly addresses how humans navigate social learning under
inherent limitations.

This chapter investigates how individuals make strategic decisions in multi-defender cy-
bersecurity environments through two complementary studies. First, I examine how incentive

1See Appendix .4 for the Multi-Defender Game and Appendix .5 for the Computational Model
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structures and information availability influence cooperation in triadic cybersecurity information
sharing contexts. By systematically varying both structural incentives and information partic-
ipants receive about their interdependencies, I reveal important patterns in how cooperation
emerges and stabilizes in small groups.

Building on these empirical findings, I then develop a broader cognitive theory that explains
how individuals navigate multiple relationships simultaneously despite cognitive limitations. This
theory integrates three key psychological mechanisms: dynamic weighting of others’ outcomes,
categorical learning for efficient relationship management, and contrast effects for comparative
evaluation of relationship partners. Together, these mechanisms enable individuals to process
multiple relationships efficiently while maintaining strategic flexibility.

This progression from specific cybersecurity experiments to general cognitive theory provides
crucial insights into both practical cybersecurity cooperation challenges and the fundamental
cognitive processes that underlie strategic social interaction. By understanding these mechanisms,
we can design more effective information sharing frameworks that align with natural cognitive
processes, ultimately improving collective cybersecurity outcomes.

4.2 Related work

4.2.1 Emergence of cooperation in groups
Cooperation within groups larger than two players has been widely studied in multiple disciplines,
including economics, social psychology, and evolutionary biology. This broader exploration of
group cooperation extends beyond the classic Prisoner’s Dilemma (PD) and includes diverse
game-theoretic and real-world scenarios. For instance, information sharing in cybersecurity
resembles a Prisoner’s Dilemma, as entities must decide whether to share valuable threat in-
formation (cooperate) or withhold it for their advantage (defect), facing risks if others do not
cooperate. In game theory, group cooperation is often studied through public goods games
and collective action problems, which introduce complexities not present in dyadic interactions.
Public goods games, for example, examine how individuals contribute to a shared resource pool
while dealing with incentives to ride free [64, 208]. Recent research highlights factors such as
group size, communication, and mechanisms for punishing free riders as critical to maintaining
cooperation [188, 233]. These studies show that group cooperation is more complex than dyadic
interactions due to greater mutual dependencies and coordination challenges.

The Prisoner’s Dilemma has also been extended to multiplayer versions, sometimes referred
to as the N-person Prisoner’s Dilemma. In these settings, individuals must decide whether to
cooperate with the entire group rather than just one other player. Research suggests that coopera-
tion in such multiplayer PD scenarios is influenced by factors such as reciprocity, reputation, and
social norms [179, 31]. However, multi-player dilemmas introduce unique challenges, including
coordination issues and an increased impact of individual decisions on group outcomes [86, 26].

In contrast to the N-person Prisoner’s Dilemma, our experimental design retains the fun-
damental 2-by-2 PD interactions within a triad context. This allows us to focus on pairwise
decision-making while examining how these interactions aggregate to influence the group. The
advantage of this design is that it enables us to capture both dyadic and triadic dynamics, providing



insights into how individual relationships affect broader group behavior. Unlike typical N-person
PD scenarios, where cooperation is assessed at the collective level, our approach provides a
detailed examination of the interplay between dyads within the group, revealing the conditions
under which cooperation is stabilized or disrupted from individual behavior.

To understand how cooperation emerges and is sustained in groups, it is crucial to consider
both structural and informational factors that influence decision-making. Here, we focus on two
key elements: incentive structures and information levels on mutual interdependence.

4.2.2 Incentive Structure and Social Preferences
The interplay between incentive structures and social preferences significantly shapes cooperative
behavior in group settings. Incentive structures, defined by the potential rewards or costs players
face based on their decisions to cooperate or defect, directly influence individual motivations.
Moisan et al. [168] demonstrated that as players’ cooperativeness increases, there is a sharp
transition from defection to cooperation, with the transition point depending on the game’s payoff
matrix. Their work showed that inequality aversion among players promotes cooperation by
transforming perceived incentives.

A well-established measure of expected cooperation in PD games with the payoff matrix is
shown in Table. 4.1 is Rapoport’s K-index [203], defined as K = (R − P )/(T − S), where
R represents the reward for mutual cooperation, P the punishment for mutual defection, T the
temptation payoff for unilateral defection, and S the sucker payoff for unilateral cooperation.
The K-index captures the expected cooperation by considering how much players benefit from
defecting versus the cost of mutual defection. When K is high (i.e. when T is not much larger
than S or P is numerically large), defection is less rewarding, and mutual defection is more costly,
making cooperation more likely.

P2: Cooperate P2: Defect
P1: Cooperate (R,R) (S, T )

P1: Defect (T, S) (P, P )

Table 4.1: Payoff matrix for the Prisoner’s Dilemma.

Prosociality [163] (e.g., Social Value Orientation (SVO)) adds another layer to this dynamic
by reflecting how individuals weigh their results against others. SVO can be represented through
a utility function u(πself, πopponent) = uself + α · uopponent, where α represents the weight given to
the opponent’s payoff. For any PD game, there exists a threshold ᾱ such that players with α > ᾱ
will prefer cooperation regardless of their beliefs about the behavior of others, while those with
α < ᾱ will consistently choose defection.

4.2.3 Information Levels and Decision Making
The effectiveness of incentive structures in promoting cooperation is highly dependent on the
information available to players about their mutual interdependence [247]. The Hierarchy of



Social Information (HSI) framework proposed by Gonzalez and Martin [82] conceptualizes three
main levels of interpersonal information. At the Minimal Information level, players know that
they are interdependent, but lack details about how their actions affect others. The Experiential
Information level allows players to observe others’ actions and outcomes over time, enabling
learning through experience about their interdependencies. The Descriptive Information level
provides complete information about the payoff structure upfront, in addition to experiential
feedback.

This framework suggests that providing more detailed information about interaction structures
can foster cooperation more effectively than limited or no social information. Gonzalez et al. [83]
found that continued visibility of the payoff matrix helps clarify the trade-off between short-term
and long-term rewards, while experiential feedback strengthens the understanding of reciprocal
relationships.

The combination of incentive structures and information levels creates a complex decision
environment where players must balance individual and collective interests. These factors have
been particularly relevant in cybersecurity contexts, where organizations must decide whether to
share threat information. Research has shown that rewarding and punishing certain actions can
significantly affect information-sharing behavior [241]. Similarly, studies on cybersecurity infor-
mation exchange have shown that clarity of feedback on interdependencies influences cooperation
rates [71].

The study of repeated strategic interactions between interdependent agents has a rich research
history. Early work focused on simple strategies with minimal partner modeling. Axelrod’s
seminal computer tournaments of the Iterated Prisoner’s Dilemma [15] demonstrated the success
of Tit-for-Tat (TFT), which only considers the partner’s last action. Although these simple
strategies proved to be remarkably effective in structured environments, subsequent research
revealed their limitations in noisy or complex settings [178]. This led to increasingly sophisticated
approaches incorporating richer agent modeling and learning mechanisms, culminating in modern
machine learning methods and cognitively inspired strategies. Two fundamental challenges have
emerged in this progression: the computational demands associated with memory and learning
and the complexity of modeling diverse agent strategies. Our work addresses these challenges by
incorporating cognitive mechanisms for efficient memory use and agent categorization.

4.2.4 Learning and Agent Modeling in Interdependent Interactions
A significant theoretical advancement in agent modeling came with [193]’s discovery of zero-
determinant strategies [193], which established mathematical boundaries on strategy effectiveness
and enabled unilateral control over payoff relationships. This discovery fundamentally changed
our understanding of what was possible in repeated interactions, showing that agents could
enforce linear payoff relationships regardless of their partners’ actions. [228] extended this
work by demonstrating that ”generous” variants often outperform purely extortionate strategies
in evolutionary settings, highlighting how successful strategies must balance exploitation with
mutual benefit.

The development of agent modeling approaches has followed several trajectories. Early work
focused on explicit prediction of others’ actions through pattern recognition [32], while later
approaches incorporated uncertainty and partial observability [77]. Modern machine learning



methods, particularly deep reinforcement learning, have demonstrated impressive success in
learning implicit representations of agent behavior [101, 149]. These approaches can uncover
sophisticated counterstrategies through extensive self-play and experience accumulation, often
exceeding hand-crafted strategies in complex environments.

However, the increasing sophistication of learning algorithms has led to an ”arms race”
in strategy complexity. Neural network-based approaches can learn highly non-linear decision
boundaries [140], allowing more nuanced responses, but also making strategies harder to interpret
and analyze. This complexity creates challenges for theoretical analysis and raises questions about
the robustness of the learned strategies. Some studies suggest that simpler strategies with clear
theoretical foundations may be more robust across diverse interaction partners [249].

The tension between strategy complexity and robustness has motivated research into hybrid
approaches that combine machine learning with domain knowledge. For example, [43] demon-
strated how the incorporation of simple mechanisms that promote mutual benefit into learning
algorithms can improve generalization between different interaction partners. Similarly, [123]
showed that learning algorithms constrained by the principles of game theory often develop more
stable and interpretable strategies.

Recent work has increasingly focused on multi-agent scenarios in which agents must si-
multaneously model and adapt to multiple partners [135]. This setting introduces additional
complexities, as agents must balance their responses between different partners while maintain-
ing coherent strategies. The challenge is compounded in settings with incomplete information or
when partners may change their strategies over time [105].

4.2.5 Memory Constraints and Cognitive Plausibility
While machine learning approaches have demonstrated impressive performance in agent model-
ing, they typically assume unlimited memory capacity and computational resources. These ap-
proaches often maintain complete interaction histories or complex state representations, enabling
sophisticated pattern recognition but diverging significantly from human cognitive constraints.
This disconnect raises important questions about the psychological plausibility and practical
applicability of such models.

Empirical studies reveal clear limitations in human memory use during strategic interactions.
Research consistently shows that humans typically access only 5-10 previous interactions when
making decisions [170], indicating a clear cognitive bottleneck. This limitation reflects broader
constraints on working memory capacity, which affects how individuals process and utilize
information in dynamic social situations. Memory traces follow systematic decay patterns [10],
with recent interactions more heavily weighted while maintaining the diminishing influence of
established patterns, a phenomenon known as the power law of forgetting.

The relationship between memory complexity and strategy performance follows an inverted
U-shaped pattern [106], suggesting optimal performance at intermediate levels of memory com-
plexity. This finding has profound implications for the design of strategies. Although too little
memory prevents recognition of important behavioral patterns, excessive memory complexity
can lead to overfitting and reduced adaptability. This balance reflects the fundamental principles
of bounded rationality [219], where cognitive constraints paradoxically contribute to more robust
and adaptable decision-making.



Recent work has attempted to bridge this gap between machine learning approaches and
cognitive constraints. For example, [227] demonstrated how memory-constrained models can
achieve performance comparable to that of more complex approaches by focusing on relevant
features and efficient information encoding. Similarly, [29] showed that the incorporation of
human-like memory decay mechanisms can improve the model predictions of actual behavior in
repeated games.

These findings suggest that effective strategies should not simply operate within memory con-
straints, but actively leverage them as design principles. Memory limitations can serve as natural
regularizers, promoting generalization by preventing overfitting to specific interaction patterns.
This perspective aligns with the ecological rationality frameworks [240], which emphasize how
cognitive constraints can improve decision-making in natural environments.

4.2.6 Categorical Learning and Contrast Effects
A fundamental challenge in social dilemmas is the wide space of possible peer strategies. As
the diversity of peers increases, the complexity of the modeling increases exponentially [143],
making the modeling of direct strategies computationally intractable. This challenge becomes
particularly acute in multi-agent settings where traditional modeling approaches often fail to scale
effectively or require unrealistic computational resources.

Humans address this complexity through sophisticated categorical learning mechanisms that
enable efficient but flexible social learning. Research shows that people actively form and update
categories based on patterns of interdependence in social interactions [156]. These categories
serve not just as simplifying heuristics, but as predictive models that guide future cooperation
decisions. For example, when individuals identify patterns of reciprocity or exploitation, they
develop categorical representations that help them anticipate and respond to similar behaviors in
new interactions [124].

What makes categorical learning particularly powerful is its ability to balance efficiency with
effectiveness. Although categorization reduces the granularity of social information, it paradoxi-
cally allows more sophisticated responses by capturing essential behavioral patterns [36]. People
continually refine these categories based on new experiences, maintaining a dynamic equilibrium
between stable categorical knowledge and adaptability to novel patterns. This process of category
refinement is strongly influenced by the social context: Individuals’ classifications of ”coopera-
tive” versus ”non-cooperative” behavior emerge relative to their broader social experience [252].

These categorical learning mechanisms have been demonstrated in various social dilemmas.
In cybersecurity information-sharing networks, Mermoud et al. [162] found that defenders
naturally categorize their peers into ”regular sharers” and ”free-riders” based on sharing patterns,
using these categories to guide their own sharing decisions even with new peers. Similarly, in
organizational contexts, studies of team-based resource allocation show that managers develop
categorical representations of ”reciprocators” versus ”opportunists” that influence future resource-
sharing decisions [99].

The power of categorical learning is particularly evident in repeated interaction settings.
For example, in public goods games, participants rapidly develop categories for ”consistent
contributors” and ”strategic free-riders,” with these categories shaping not only direct responses
but also reputation sharing within groups [65]. These categories prove to be remarkably stable -



once an individual is categorized as a reliable cooperator, isolated defections are often discounted
as anomalies rather than prompting immediate category reassignment [12].

Experimental studies of group cooperation reveal how categorical learning enables efficient
decision-making under time pressure. When faced with multiple potential cooperation peers,
participants don’t track detailed histories but instead maintain broader categorical assessments
like ”trustworthy,” ”unpredictable,” or ”exploitative” [118]. These categorical judgments are par-
ticularly influential in early interactions with new peers, where they serve as default expectations
until individual-specific evidence accumulates [256].

The categorical perception of peers introduces systematic contrast effects in behavior evalua-
tion. Rather than evaluating each pee’s actions in isolation, individuals evaluate behaviors relative
to their experiences with other peers [255]. These contrast effects are particularly pronounced
between categorically distinct peers. For instance, [122] demonstrated that players’ responses
to moderately cooperative behavior become more positive when they simultaneously interact
with clearly non-cooperative peers, suggesting that categorical boundaries enhance behavioral
discrimination.

The sophistication of categorical human learning extends beyond simple classification. Suc-
cessful players develop hierarchical category structures, with broad behavioral types that contain
subtypes that capture more nuanced patterns [202]. This hierarchical organization allows play-
ers to balance computational efficiency with strategic sophistication. Moreover, these learned
categories are effectively transferred between different economic games [189], suggesting that
categorical learning captures fundamental aspects of strategic behavior.

Cognitive Approaches to Social Learning

Category learning represents a fundamental cognitive mechanism that influences how individuals
perceive, process, and retain information about social interactions. [109] describe how atten-
tional mechanisms significantly impact social perception through category accentuation, where
individuals exaggerate differences between groups while minimizing within-group variations.
[214] further demonstrate that such cognitive biases can enhance memory for features associated
with majority groups while diminishing recall for minority group characteristics, highlighting
how categorization processes can systematically shape learning outcomes.

The contrast effect, a key phenomenon in category-based perception, is significantly influenced
by the psychological distance between learners and their interaction partners. Research indicates
that as psychological distance increases, learners tend to focus more on abstract goals rather
than concrete behaviors [116, 100]. [72] found that psychological proximity promotes more
faithful emulation of specific actions, whereas distance encourages goal-oriented imitation. This
relationship between distance and learning style suggests that the positioning of individuals
relative to their interaction partners fundamentally shapes how they process and internalize social
information.

Social dynamics further influence cognitive development through the cultural framework
of interactions. [107] argues that social learning facilitates cultural inheritance, highlighting
the intersection between associative learning mechanisms and cognitive evolution within social
contexts. [194] emphasize how internalization processes are shaped by cultural frameworks
that inform individual cognitive practices in social interactions. Furthermore, [243] underscore



the importance of recognizing varying contexts in shaping cognitive outcomes, including how
individuals perceive frequency and value in social behaviors.

Multiple theoretical frameworks have been proposed to explain these phenomena of social
learning. Reinforcement learning models [63] focus on outcome-based behavioral adjustments
but often struggle with the dynamic nature of social environments. Bayesian approaches [16]
represent uncertainty through probabilistic beliefs about others’ intentions, but frequently as-
sume unrealistic inferential capabilities. Theoretical frameworks of the mind [254] emphasize
meta-representational abilities but may overestimate typical cognitive capacities in complex sce-
narios. Heuristic approaches [75] propose that simple decision rules can achieve effective social
coordination despite limited information processing.

Among these various frameworks, the Instance-Based Learning Theory (IBLT) [81] offers a
particularly compelling account of social learning under cognitive constraints. Unlike approaches
that either oversimplify cognitive processes or assume unrealistic computational capabilities,
IBLT provides a psychologically grounded explanation for how individuals learn from specific
experiences while respecting memory limitations. Through mechanisms like activation decay
and similarity-based retrieval, IBLT naturally explains how categorical thinking emerges from
interactive experiences. Memory constraints guide attention toward meaningful patterns rather
than exhaustive details, leading to more robust and generalizable learning [106].

We built on the [83] model of dyadic interdependence because it offers a formal mechanism
(through the α parameter) for representing how individuals incorporate others’ outcomes into
their decision-making. This instance-based architecture provides a suitable foundation for imple-
menting categorical learning while maintaining cognitive plausibility. By extending this model
to incorporate categorical learning and contrast effects, we address the fundamental challenge
of managing multiple relationships within realistic cognitive constraints, enabling more efficient
processing of multiple social interactions.

4.3 Emergent Cooperative Decision-making in Triadic Prisoner’s
Dilemma: Effects of Incentives and Information

4.3.1 Experimental Design: The Multi-Defender Game
The Multi-Defender Game (MDG) was developed to study cooperation in three-person groups
through the lens of cybersecurity information sharing. This experimental paradigm simulates a
scenario where three defenders must decide whether to share threat intelligence with each peer
separately, creating a network of pairwise interactions that form a triad. The game incorporates
both immediate and long-term incentives: sharing information costs the sender 15 points but
provides the receiver with 35 points, while also reducing the receiver’s probability of being
breached in subsequent rounds according to the formula Prt+1 = Prt − (0.95 · Zt

i/2000), where
Zt

i represents the sharing points of defender i in trial t. This structure creates a Prisoner’s
Dilemma within each relationship, where mutual sharing provides net positive outcomes (+20
points each), but unilateral defection offers higher immediate rewards (+35 points) at the expense
of the cooperating partner (-15 points). The task ran for 50 rounds, with participants making



independent decisions in each round about whether to share with each of their two peers, allowing
for the emergence of complex relationship patterns and strategic adaptations over time.

The experiment systematically manipulated two key factors hypothesized to influence coop-
eration. First, structural incentives were varied through the K-index, a theoretical predictor of
cooperation defined as K = (R−P )/(T −S), where R represents mutual cooperation reward, P
represents mutual defection punishment, T represents temptation payoff, and S represents sucker
payoff. Groups were assigned to either a low incentive condition (K = 0.4) or high incentive
condition (K = 0.8), with higher K-index values theoretically promoting cooperation by reducing
the temptation to defect relative to the cost of mutual defection. Second, information availability
was manipulated across three levels based on the Hierarchy of Social Information framework:
Minimal Information (participants received only basic feedback on whether peers shared infor-
mation), Experiential Information (participants observed detailed outcomes of interactions with
each defender through a feedback table), and Descriptive Information (participants received the
complete payoff matrix in addition to experiential feedback). This created a 2×3 experimental
design with four key conditions analyzed: Game I (K = 0.4, Minimal Information), Game II (K
= 0.8, Minimal Information), Game III (K = 0.4, Experiential Information), and Game IV (K
= 0.4, Descriptive Information). A total of 519 participants (173 groups of 3 individuals) were
recruited from Amazon Mechanical Turk and randomly assigned to these conditions.

4.3.2 The Surprising Effect of Information on Cooperation
Contrary to theoretical predictions, the results revealed a surprising pattern in how information
availability affected cooperation rates. While the K-index influenced cooperation in the expected
direction (higher cooperation under K = 0.8 than K = 0.4), the relationship between information
and cooperation did not follow the anticipated progression. Instead, an inverse U-shaped rela-
tionship emerged where Experiential Information (Game III) produced the highest cooperation
rates (71.7%), followed by Minimal Information with high K-index (Game II, 68.1%), Minimal
Information with low K-index (Game I, 57.2%), and finally Descriptive Information (Game IV,
49.6%). This pattern directly contradicts the hierarchical prediction that more complete infor-
mation should lead to greater cooperation. Two-way ANOVA confirmed significant main effects
for both K-index [F(1, 19) = 67.656, p ¡ 0.001] and information level [F(2, 30) = 87.179, p
¡ 0.001]. The finding that descriptive information actually reduced cooperation compared to
minimal information represents a particularly counterintuitive result that challenges fundamental
assumptions about how information influences strategic decision-making in group contexts.

Analysis of decision patterns revealed distinct behavioral tendencies that help explain these
surprising results. When provided with descriptive information (Game IV), participants focused
more on short-term strategic calculations, becoming highly attuned to the immediate tempta-
tion payoff visible in the matrix. This heightened awareness of potential exploitation prompted
more defensive behaviors and pre-emptive defection. In contrast, participants with experiential
information (Game III) developed stronger reciprocity norms through direct observation of out-
comes, learning the value of sustained cooperation through experience rather than abstract payoff
descriptions. This learning process is evident in the conditional probabilities of cooperation:
participants in Game III were more likely to reciprocate cooperation (72.1%) than to retaliate
against defection (68.1%), while the opposite pattern emerged in all other conditions. The re-



You are player D1

Points available: 1000

Probability of attack: 53%

You have not been attacked.

Do you want to share information?

Yes No

Figure 4.1: Initial game interface show-
ing player status, including available points
(starting endowment: 1000 points), prob-
ability of attack, and attack status for the
current round. Players choose whether to
share information using Yes/No buttons.

You are player D1

Points available: 1000

Probability of attack: 53%

You have not been attacked.

Do you want to share information?

Yes No

With whom do you want to share information?

D2 D3 Both

Figure 4.2: Information sharing selection
interface, allowing players to choose spe-
cific recipients (D2, D3) or share with all
defenders.

You are player D1

You have not been attacked.

Stats for this round:
Points available: 1000

Probability of attack:  51%

Stats for next round:
New points available: 1025

New probability of attack:  48%

Done

Figure 4.3: End-of-round feedback screen
showing attack status, information sharing
outcomes, and updated statistics including
new points available and adjusted probabil-
ity of attack for the next round.

Figure 4.4: Interfaces used during the game: (a) Initial game interface, (b) Information sharing
interface, and (c) End-of-round feedback screen.



A. Minimal Information Level

Game Status Update:
• Defender 1 shared information with me
• Defender 2 didn’t share any information

B. Experiential Information Level

My Actions Defender 1 Defender 2

• Did not share with De-
fender 1
• Shared with Defender 2

• Shared information
•Was attacked
•My gain: +35
• Their cost: -15

• Did not share
• No points exchanged
•My gain: 0
• Their gain: 0

C. Descriptive Information Level

Additional to experiential information, players see the payoff matrix: (left: K=0.4; right:
K=0.8)

Share Don’t Share
Share (+20, +20) (-15, +35)

Don’t Share (+35, -15) (0, 0)

Share Don’t Share
Share (+30, +30) (-15, +35)

Don’t Share (+35, -15) (-10, -10)

Figure 4.5: Three levels of information provided to players. (A) Minimal Information provides
only basic sharing status. (B) Experiential Information shows detailed outcomes of interactions
with each defender. (C) Descriptive Information adds the complete payoff matrix to help players
understand potential outcomes.

gression analysis further confirmed that receiving information from peers in the preceding round
increased the likelihood of cooperation by 80-87%, highlighting the importance of direct reci-
procity in driving cooperative behavior. These findings suggest that experiential learning creates
more robust cooperative tendencies than explicit strategic information, particularly in complex
multi-agent environments where participants must manage multiple relationships simultaneously.

4.3.3 Emergence of Selective Cooperation
The evolution of cooperation patterns over time revealed additional insights into the learning
dynamics across conditions. In all games, cooperation initially dropped sharply during the first
ten rounds, a pattern commonly observed in repeated Prisoner’s Dilemma studies. However,
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Figure 4.6: Average Individual Cooperation Rate Over Time across experimental conditions. The
cooperation rate dropped sharply during the first ten rounds in all conditions, but continued to
decline notably in Game IV while remaining relatively stable in other conditions.

the subsequent trajectories diverged significantly: cooperation continued to decline in Game IV
(Descriptive Information) while stabilizing in the other conditions. This pattern suggests that
descriptive information not only initially suppressed cooperation but also inhibited the learning
processes that typically allow cooperation to re-emerge through experience. Analysis of initial
strategies revealed that most participants (66%) began with a prosocial approach, sharing with
both groupmates, while 33

The most distinctive feature of triadic interactions emerged in the analysis of how participants
managed multiple relationships simultaneously. Over time, a clear shift occurred from universal
cooperation (sharing with both peers) toward selective cooperation (sharing with only one peer).
Repeated measures ANOVA confirmed significant effects of both condition [F(3, 515) = 2.148,
p ¡ 0.001] and round [F(49, 25235) = 5.148, p ¡ 0.001] on sharing patterns. While participants
initially tended to treat both peers similarly, they increasingly differentiated between them as
experience accumulated, developing stronger cooperation with one peer at the expense of the other.
This selective cooperation strategy was particularly pronounced in the Experiential Information
condition, where participants received clear feedback about each peer’s behavior. Analysis of
sequential dependencies revealed sophisticated conditional strategies: after observing divergent
behaviors from their peers (one cooperating, one defecting), participants in Game III often
attempted to restore mutual cooperation, while those in Game IV more frequently matched their
peers’ previous actions, reciprocating cooperation with cooperators and defection with defectors.
These patterns highlight how information conditions shape not only overall cooperation rates but
also the specific strategies participants employ to navigate multiple relationships.
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Figure 4.7: Participant Strategies and Performance. (a) The proportion of participants categorized
by their initial sharing strategy: Pro-social (shared with both groupmates), Neutral (shared with
one groupmate), or Self-Interested (shared with no one). (b) Cumulative points earned by
participants at the end of the game, categorized by their initial strategy.

4.3.4 The Third-Player Effect: How Triads Differ from Dyads
Perhaps the most fascinating finding emerged in the analysis of third-player effects on dyadic
relationships. When a third player adopted a selective cooperation strategy (cooperating with
one peer but not the other), this had remarkably different effects depending on the existing
state of the relationship being influenced. For dyads already engaged in mutual cooperation,
selective cooperation by the third player strengthened and stabilized the relationship, increasing
cooperation levels beyond what was observed with universal cooperation or defection strategies.
For dyads engaged in mutual defection, selective cooperation by the third player similarly helped
to break the defection cycle and promote cooperation, though less dramatically. However, for
asymmetric relationships (one cooperating, one defecting), selective cooperation by the third
player frequently destabilized the relationship, often pushing it toward mutual defection rather
than mutual cooperation. This complex mediation effect reveals how third-party behaviors create
feedback loops that can either reinforce or undermine cooperation between pairs, demonstrating
that triadic interactions cannot be understood as simple aggregations of independent dyadic
relationships. These third-player effects were strongest when structural incentives were high (K
= 0.8) and participants received experiential information, highlighting the interactive nature of
the experimental factors in shaping group dynamics.

Further analysis of relationship dynamics within triads revealed how initially balanced or
imbalanced relationships evolved over time. When all members began with cooperation, rela-
tionships tended to stabilize with minimal differences in strength between pairs. However, mixed
initial strategies often led to growing disparities between pairs, creating persistent imbalances in
the triad. Even when one member cooperated while two defected, overall cooperation tended to
increase over time, but with noticeable gaps between pair relationships—the cooperative member
typically formed stronger bonds with whichever peer reciprocated first. These findings align with
social balance theory but extend it by demonstrating how asymmetric strategies create lasting
imbalances that resist equilibration, particularly in the context of information sharing decisions
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Figure 4.8: Evolution of sharing preferences over time. Participants gradually shifted from
sharing with both peers to selective sharing with one peer, particularly during the first 25 trials.

with both short-term and long-term consequences.

4.3.5 Implications and Conclusions
The findings from this study have important implications for understanding cooperation in multi-
agent systems and specifically for improving cybersecurity information sharing frameworks. First,
the surprising effect of information availability suggests that descriptive approaches emphasizing
theoretical benefits and payoff structures may be less effective than experiential learning mech-
anisms that allow participants to observe the concrete outcomes of cooperation. Information
sharing platforms should therefore prioritize clear feedback about successful threat mitigations
resulting from shared intelligence over abstract descriptions of potential benefits. Second, the
evolution toward selective cooperation indicates that tiered sharing frameworks may be more
sustainable than all-or-nothing approaches, as they allow organizations to maintain different lev-
els of information exchange with different partners based on reciprocity and trust. Finally, the
third-player effects highlight how group composition influences information sharing dynamics:
selectively cooperative organizations can either stabilize or destabilize existing sharing relation-
ships depending on initial conditions, suggesting that careful attention should be paid to group
formation in information sharing communities. Collectively, these insights provide a more nu-
anced understanding of how cooperative behavior emerges from the complex interplay of incentive
structures, information availability, and social dynamics in multi-agent contexts.

The triadic framework developed in this research represents a significant advancement in the
study of cooperation, moving beyond traditional dyadic analyses while maintaining analytical
tractability. By systematically varying both structural incentives and information availability
within the same experimental paradigm, this study provides a comprehensive examination of
how these factors interact to shape cooperative behavior in small groups. The findings challenge



Figure 4.9: Influence of the Third Player on Dyadic Cooperation. The y-axis shows the average
mutual sharing behavior from mutual defection (0) to mutual cooperation (2). Selective coop-
eration by the third player (”One”) had the strongest positive effect on initially cooperative or
defective pairs, but could destabilize mixed-strategy pairs.

prevailing assumptions about the relationship between information and cooperation, reveal sophis-
ticated strategic adaptations to multi-agent environments, and highlight the emergent properties
that arise when individuals must simultaneously manage multiple interdependent relationships.
Future research should examine how these dynamics scale to larger networks, investigate the cog-
nitive mechanisms that enable the concurrent management of multiple relationships, and test the
practical applications of these findings in real-world information sharing contexts. By advancing
our understanding of cooperation in small groups, this research contributes to both the theoretical
foundations of strategic interaction and the practical design of systems that facilitate collective
action in contexts where individual and group interests may conflict.

4.4 Toward a Cognitive Theory of Interdependent Decisions in
Groups: Dynamic Weighting, Categorization, and Contrast

The experimental findings on triadic cooperation raised a fundamental question: How do individ-
uals cognitively process and manage multiple strategic relationships simultaneously given limited
cognitive resources? This question extends beyond cybersecurity to any domain characterized by
strategic interdependence among multiple agents.

Human social systems are fundamentally characterized by strategic interdependence, where
individual decisions interact with collective outcomes. In real-world scenarios, individuals must
track, evaluate, and respond to multiple partners while operating with limited cognitive resources
[164, 227]. The cognitive mechanisms that enable effective management of multiple relationships
despite these constraints remain poorly understood.



Empirical evidence suggests that people do not maintain complete models of each interaction
partner. Studies consistently show that humans typically access only 5-10 previous interactions
when making decisions [170], operating under clear cognitive constraints. Yet somehow, indi-
viduals manage to navigate complex social environments effectively, suggesting the existence of
efficient cognitive mechanisms for processing multiple relationships.

4.4.1 Theoretical Framework
Building on the experimental results, I developed a broader theoretical framework that integrates
three key cognitive mechanisms to explain how people navigate complex social environments:

Dynamic Weighting

The first mechanism involves dynamically adjusting how much individuals value others’ outcomes
based on expectation-reality discrepancies. This builds on previous work by Gonzalez et al.
[83], who incorporated Social Value Orientation into Instance-Based Learning Theory through a
weighted additive rule:

Vk =
n∑

i=1

pik(xself + α · xother) (4.1)

Where xself and xother are the values of the player’s outcome and the peer’s outcome, respec-
tively, in instance i associated with option k; α represents the extent to which a player considers
others’ outcomes when making choices; pik is the probability of retrieving instance i associated
with alternative k from memory.

The original formulation updated α based on the absolute gap between expected and actual
outcomes:

Gap(t) = Abs(Vk(t− 1)− (xself + α(t)xother)) (4.2)

α(t+ 1)← (1− η)α(t) + η(1− Ĝap(t)) (4.3)

where Ĝap(t) ∈ [0, 1] is the normalized Gap(t), and η is the learning rate.
However, this formulation doesn’t distinguish between positive surprises (actual outcome

exceeds expectations) and negative surprises (actual outcome falls short). My refined formulation
addresses this limitation:

Gap(t) = Vk(t− 1)− (xself + α(t)xother) (4.4)

α(t+ 1)←

{
(1− η)α(t) + ηmax(α(t), Ĝap(t)), if Gap(t) ≥ 0

(1− η)α(t) + ηĜap(t), if Gap(t) < 0
(4.5)

This asymmetric update rule increases α when peers exceed expectations and decreases it
when they disappoint, allowing selective cooperation based on relationship history.



Figure 4.11 shows how this refined formulation enables differentiation between cooperative
and defective peers, unlike the original formulation which results in similar α values for both
types.

Category Learning

The second mechanism addresses how people efficiently organize social experiences into behav-
ioral prototypes. Rather than tracking each relationship individually, people categorize peers
based on behavioral patterns, allowing efficient generalization across relationships.

The model incorporates five behavioral dimensions to characterize interaction partners: (1)
Action tendency: Proportion of cooperative actions, (2) Entropy: Unpredictability in action
sequences, (3) Responsiveness: Correlation between current action and partner’s previous action,
(4) Recovery propensity: Rate of return to cooperation after defection, (5) Volatility: Frequency
of strategy changes.

These dimensions allow sophisticated but cognitively manageable social categorization. The
model constructs and maintains a hierarchical category structure through an iterative clustering
process described in Algorithm 2.

Function ComputeFingerprint(sequence):
return [action tendency, entropy, responsiveness, recovery, volatility];

end
Function MatchPrototype(fingerprint, prototypes):

foreach prototype p in prototypes do
similarity ← CosineSimilarity(fingerprint, p);
if similarity ≥ threshold then

return p;
end

end
return null;

end
Function UpdateCategories(unclassified agents):

if |unclassified agents| ≥ min cluster size then
clusters← HierarchicalClustering(unclassified agents);
foreach cluster c in clusters do

if IsStable(c) then
prototype← ComputeCentroid(c);
prototypes← prototypes ∪ {prototype};

end
end

end
end

Algorithm 2: Hierarchical Categorical Learning

When making decisions, agents retrieve instances not only from direct interactions with the



target peer but also from all peers within the same behavioral category. This categorical-based
retrieval enables efficient generalization while maintaining strategic flexibility.

Contrast Effects

The third mechanism involves amplifying perceived differences between behavioral categories
through contrast effects. When evaluating partners, people don’t assess each peer’s actions in
isolation, but rather relative to their experiences with other peers [255].

The model implements this through a spreading activation mechanism:

Ai = Bi + si
∑
j ̸=A

CAj

|O|
(4.6)

where Ai is the total activation for instance i, Bi is the base activation from recency and
frequency, si is a stereotype score representing how well the instance exemplifies its category,
CAj is the contrast strength between categories A and j, and O is the set of other categories.

The stereotype score is calculated as:

si =
∑
m∈M

wm(1− |vi,m − pc,m|) (4.7)

where M is the set of behavioral metrics, wm is the discriminative power weight for metric
m, vi,m is instance i’s value for metric m, and pc,m is category c’s prototype value for metric m.

This mechanism sharpens categorical boundaries and facilitates differential responses to
various relationship types by amplifying the activation of instances that strongly exemplify
category-distinctive behaviors.

4.4.2 Model Validation and Insights
I validated this cognitive model against data from information-sharing experiments involving 150
participants (50 triads). The model successfully reproduced human behavior patterns without
parameter fitting, capturing distinctive patterns observed in triadic interactions.

Figure 4.12 shows the close correspondence between model predictions and human behavior
for both overall cooperation rates and specific relationship patterns. The model accurately pre-
dicted how cooperation evolved over time, including initial declines and subsequent stabilization
at different levels depending on information conditions.

Analysis of the dynamic weighting parameter (α) revealed important social learning patterns:
• In mutual cooperation pairs, both partners developed high and stable α values (mean =

0.78), indicating increased concern for each other’s outcomes
• In mutual defection pairs, α values remained consistently low (mean = 0.18)
• In asymmetric relationships, α values diverged significantly, with the cooperative partner

maintaining higher values than the defective partner
The most striking insights emerged from the analysis of triadic dynamics. The model captured

how third-player behavior influenced relationship development between the other two members.



It correctly predicted that selectively cooperative third players would stabilize already cooperative
dyads while having minimal impact on defective dyads.

The model also predicted the emergence of ”social balance” effects, where triads tended
toward either all-positive or mixed-sign configurations, avoiding the unstable configuration where
two players have positive relationships with each other but negative relationships with the third.
This phenomenon, long documented in social balance theory [103], emerged naturally from the
interplay of dynamic weighting, category learning, and contrast effects without being explicitly
programmed.

This theoretical framework extends beyond cybersecurity contexts to explain how individuals
navigate multiple cooperative relationships in any domain characterized by strategic interde-
pendence. By integrating dynamic weighting, categorical learning, and contrast effects, the
model provides a psychologically plausible account of how humans efficiently process multiple
relationships despite cognitive limitations.

The model offers several key advantages over existing approaches: (1) Cognitive plausibility:
Unlike models that assume unlimited memory or processing capacity, this approach incorporates
established constraints on human cognition. (2) Scalability: The categorical processing mech-
anism allows efficient handling of multiple relationships without computational explosion. (3)
Emergent complexity: Complex social phenomena such as coalition formation and in-group/out-
group dynamics emerge naturally from the interplay of basic cognitive mechanisms.

These insights suggest ways to design interventions and systems that better align with natural
cognitive processes, potentially improving cooperative outcomes in domains ranging from cyber-
security information sharing to organizational collaboration. For example, information sharing
platforms could be designed to facilitate category-based processing by grouping organizations
with similar sharing behaviors, thereby reducing cognitive load while enhancing cooperative
responses.

4.5 Discussion and Conclusion
Our research examined cognitive mechanisms underlying multi-defender decision-making in cy-
bersecurity through two complementary approaches: controlled experimentation with triadic
information sharing and computational modeling of how individuals manage multiple simulta-
neous relationships. Together, these studies reveal fundamental insights about cooperation in
multi-agent cybersecurity contexts.

Three key findings emerge from this work. First, the experimental results revealed a counter-
intuitive inverse U-shaped relationship between information availability and cooperation. Experi-
ential information produced the highest cooperation rates (71.7%), while descriptive information
including complete payoff matrices actually suppressed cooperation (49.6%). This challenges as-
sumptions that transparency universally promotes cooperation and suggests that abstract strategic
information may trigger defensive behaviors while concrete outcome feedback fosters reciprocity
norms.

Second, our analysis uncovered distinctive triadic dynamics that cannot be reduced to dyadic
interactions. Participants evolved from universal cooperation toward selective strategies, with
third-party behaviors creating complex mediation effects. Selectively cooperative third players



stabilized existing cooperative dyads while potentially destabilizing mixed-strategy pairs, demon-
strating that n-person interactions exhibit emergent properties beyond paired relationships.

Third, our cognitive model demonstrates that these complex patterns can emerge from three
basic mechanisms: dynamic weighting based on relationship value (wi = Vi∑

j Vj
), categorical

processing to manage cognitive load, and contrast effects in partner evaluation. The model
successfully predicted empirical phenomena including social balance configurations and coali-
tion formation without explicit programming, validating the cognitive approach to multi-agent
decision-making.

These findings have important implications for cybersecurity information sharing. Rather
than emphasizing theoretical benefits, platforms should provide clear feedback about concrete
outcomes from shared intelligence. System designers must consider network-level effects of
selective cooperation, as bilateral sharing decisions influence broader group dynamics. The
cognitive mechanisms identified suggest that interfaces facilitating category-based processing of
partners could reduce cognitive load while maintaining cooperation.

Several limitations should be acknowledged. Participants were not cybersecurity profession-
als, potentially limiting generalizability. The three-person groups, while analytically tractable,
simplify real-world sharing networks. The specific payoff parameters may not reflect asymmetries
in actual cybersecurity contexts where sharing risks often exceed benefits. Future work should
validate findings with security practitioners, explore scaling to larger networks, and investigate
how time pressure affects categorical versus individuated partner evaluation. Integration of cog-
nitive models with autonomous agents could yield systems that leverage both human adaptability
and computational power for enhanced cyber defense.



Figure 4.10: Evolution of Dyadic Relationship Strengths in Triads under different initial con-
ditions. The shaded ribbon illustrates the growing disparity between strongest and weakest
relationships over time, demonstrating how initial asymmetries tend to amplify.
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Figure 4.11: Evolution of alpha values under different cognitive mechanisms across 50 trials, all
tracking interactions with peers of varying cooperation rates (0.1-1.0). (a) Baseline condition
showing individual alpha trajectories for each peer. (b) With category, learning enabled alpha
trajectories by learning behavioral categories rather than individual peers. (c) The combined
effect of category learning and contrast mechanisms demonstrates enhanced separation between
learned behavioral categories. Higher alpha values indicate greater weight given to an peer’s
outcomes in decision-making.
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Chapter 5

Human-AI Teaming in Cyber Defense:
Enhancing Collaborative Performance
Through Cognitive Integration1

5.1 Introduction
Modern cyber defense requires capabilities that neither humans nor autonomous systems can
provide in isolation. While humans excel at contextual understanding, critical thinking, and
adapting to novel threats, they struggle with the speed, scale, and continuous vigilance demanded
by today’s security operations. Conversely, automated systems offer tireless monitoring and
rapid response but lack the flexibility and judgment needed for complex, evolving threats. This
fundamental limitation of single-agent approaches has driven the emergence of human-autonomy
teaming (HAT) as a critical paradigm for effective cybersecurity.

HAT represents a fundamental shift from traditional human-machine interaction paradigms.
As defined by [wynne2018integrative], an ideal autonomous teammate is “a highly altruistic,
benevolent, interdependent, emotive, communicative and synchronized agent teammate, rather
than simply an instrumental tool.” This definition emphasizes that HAT involves true interde-
pendence and coordination rather than mere parallel operation or tool use.

Despite significant advances in autonomous systems for cyber defense, including intrusion
detection systems, security orchestration platforms, and automated incident response tools, these
systems often function as decision support tools rather than true teammates. They may provide
recommendations but typically lack agency and the ability to work interdependently with humans
toward shared objectives. Meanwhile, cybersecurity operations centers face growing challenges
of alert fatigue, information overload, and analyst burnout [177], creating ideal conditions for the
misallocation of attention [185].

To address these challenges, autonomous systems must evolve beyond mere recommender
systems and operate with higher levels of agency while maintaining appropriate human oversight
[145]. As noted by [131], the cybersecurity community is increasingly recognizing the necessity
of building autonomous agents that can act independently while collaborating effectively with

1See Appendix .3 for published version of this chapter
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human operators.
However, effective human-AI collaboration in cybersecurity contexts requires overcoming

significant challenges. Autonomous agents must adapt to human working styles, properly calibrate
trust, maintain appropriate transparency, and balance autonomy with human oversight. These
challenges are magnified in cybersecurity operations, which are characterized by high uncertainty,
time pressure, and the need for rapid adaptation to novel threats.

Although existing research has explored cognitive models of attackers and defenders in isola-
tion, there has been limited investigation into how cognitive mechanisms influence collaboration
effectiveness in human-AI defense teams. Understanding these mechanisms is crucial for design-
ing autonomous teammates that effectively complement human strengths while compensating for
human limitations.

This chapter examines the integration of human and AI decision-making in team defense
scenarios where humans and AI collaboratively protect networks. Through the design and im-
plementation of the Team Defense Game (TDG), a semi-supervisory teamwork paradigm, I
investigate how different types of autonomous agents affect team performance in cybersecurity
tasks. By comparing cognitive agents that learn from experience to approximate human-like
decision processes with heuristic and random agents, I demonstrate that cognitive mechanisms
significantly enhance team performance and efficiency in cybersecurity operations. The experi-
ments reveal both the potential of cognitively inspired agents to improve collaborative defense and
the challenges in building appropriate trust and reliance between humans and their AI teammates.

The findings advance our understanding of how to effectively integrate human and AI capabil-
ities in cybersecurity operations, with implications for the design of future autonomous defense
systems and team structures. By establishing how cognitive mechanisms influence collaboration
at the team level, this research complements the individual and group-level analyses presented
in previous chapters, providing a comprehensive framework for understanding human and AI
decision-making in cybersecurity.

5.2 Related work: Human-Autonomy Teaming
Human-Autonomy Teaming (HAT) has emerged as a critical research area that examines collab-
orative systems where humans and autonomous agents work together to achieve shared goals.
O’Neill et al. [180] conducted a comprehensive review of HAT literature, finding that effective
human-autonomy teams require careful consideration of task allocation, communication proto-
cols, and trust development. The integration of human factors into autonomous system design is
crucial for successful teaming, as highlighted by Bjurling et al. [27], who proposed a framework
specifically addressing design requirements for digital assistants in aviation contexts.

The theoretical foundations of HAT continue to evolve, with Lyons et al. [151] offering concep-
tual clarifications that differentiate HAT from traditional human-machine interaction paradigms.
Their work emphasizes that effective HAT involves interdependence and coordination rather than
mere parallel operation. This perspective is further supported by McNeese et al. [159], who iden-
tified trust as a fundamental component in facilitating effective collaboration between humans
and autonomous systems.

Experimental paradigms for studying HAT have also advanced significantly. Schelble et



al. [211] demonstrated how reinforcement learning can be leveraged to design experimental envi-
ronments that simulate realistic team interactions. Demir et al. [48] examined team coordination
dynamics in HAT contexts, finding that effective interaction styles significantly influence team
performance outcomes.

The growing literature on HATs in domains such as urban search and rescue [251] and hospital
management [37] has identified some critical factors for successful teamwork, but little is known
about HATs in cybersecurity. Teams in cybersecurity operations, especially those in 24/7 security
operations centers, have specific dynamics [186]. Due to these varied and unique applications,
a synthetic cyber task environment is needed to empirically evaluate HATs with different team
compositions in various cyber scenarios.

5.2.1 Challenges and Opportunities in Cyber HAT
Today, cyber analysts are a scarce resource and are often overloaded [177]. Security Operations
Centers (SOCs) combat the growing problem of alert fatigue, where the sheer volume of alerts
overwhelms SOC analysts and raises the risk of overlooking critical threats [21], creating ideal
conditions for misallocation of attention [185]. To address these challenges and meet the demands
posed by sophisticated adversaries, autonomous systems must evolve beyond mere recommender
systems and operate with higher levels of agency [145]. The cybersecurity technology community
is increasingly recognizing the necessity of building autonomous agents that can act independently
[131].

Recent advancements in HAT for cyber defense include the development of adaptive ap-
proaches that can respond to dynamic threat environments. Lohn et al. [147] explored how
autonomous cyber defense systems can be designed to enhance human capabilities while main-
taining appropriate levels of human oversight. Théron and Kott [235] examined potential future
scenarios where autonomous intelligent defense systems might engage with autonomous malware,
highlighting the need for robust HAT approaches in cyber warfare contexts.

It is essential, however, to explore autonomous agents that can account for the decision-
maker’s values or specific mission needs. For example, following a cyber attack, an AI-generated
decision engine may recommend disabling an application on the compromised computer system.
This action may neutralize the threat but could simultaneously endanger a mission, negatively
impact a user’s ability to perform critical tasks, or allow the adversary to extend the duration or
scope of the attack [145]. Human experts should remain in the loop to provide intuition, critical
thinking, and contextual information by approving or denying recommendations from AI decision
engines that may have negative impacts [209].

Different cybersecurity scenarios also pose unique challenges for HAT. For instance, in inci-
dent response and recovery, autonomous agents might focus on information triage while leaving
further analysis and strategic decision-making to humans. In adaptive defense, autonomous
agents can more efficiently adjust security mechanisms based on real-time threat intelligence,
with humans supervising and fine-tuning agent decisions only when necessary [145].



5.2.2 Research Gaps in HAT for Cyber Defense
Despite the increasing body of research on autonomous systems for cyber defense and cogni-
tive modeling of adversarial behavior, significant gaps remain in our understanding of human-
autonomy teaming for cybersecurity applications. While cognitive agents have been developed to
model both attackers and defenders in isolation [57, 55], there has been limited investigation into
how cognitive agents might function as teammates alongside human operators in collaborative
cyber defense scenarios.

The existing research has demonstrated the effectiveness of cognitive agents in simulating
adversarial behavior [54, 55] and in modeling individual cyber defense decisions [57], but has
not explored how cognitive agents might be integrated into HAT frameworks for operational
cybersecurity. This represents a critical gap, as the effectiveness of HAT in cybersecurity
contexts depends not only on the individual capabilities of autonomous agents but also on their
ability to collaborate effectively with human teammates.

Furthermore, while trust has been identified as a fundamental component of effective HAT
[159], there is limited empirical evidence regarding how trust develops between human operators
and cognitive agents in cybersecurity contexts. Understanding the factors that influence trust
formation and maintenance in cyber HAT could provide valuable insights for designing more
effective collaborative systems.

Additionally, although prior research has explored the role of cognitive models in predicting
human defensive behaviors [57], there has been little investigation into how cognitive agents
might adapt to the unique working styles and preferences of individual human teammates. This
adaptability is likely to be crucial for effective collaboration in complex and dynamic cybersecurity
environments.

Existing studies have also not sufficiently addressed the challenge of balancing agent autonomy
with human oversight in cyber defense contexts. While Lohn et al. [147] and Théron and
Kott [235] have explored the potential for autonomous cyber defense systems, the optimal division
of responsibilities between humans and autonomous agents in different cybersecurity scenarios
remains unclear.

Finally, there is a lack of empirical research comparing different types of autonomous agents
(e.g., heuristic-based, machine learning-based, and cognitive agents) in HAT for cyber defense.
Understanding the relative strengths and limitations of different agent architectures in collabora-
tive cybersecurity tasks could inform the development of more effective HAT systems.

5.2.3 Methodological Approaches to HAT Research
The development of robust methodologies for studying HAT continues to be an active area of
research. Neubauer et al. [172] introduced a Human-Autonomy Team Cohesion Scale, providing a
validated instrument for measuring team dynamics in HAT contexts. This scale offers researchers
a tool for assessing how different factors influence team cohesion when humans collaborate with
autonomous systems.

Guidetti et al. [87, 88] explored the use of neuroergonomic approaches in cyber vigilance tasks,
developing frameworks for measuring cognitive and physiological responses during network
defense activities. Their work demonstrates how multidisciplinary methods can provide insights



into the cognitive demands of cybersecurity tasks and inform the design of effective HAT systems.
The integration of human factors considerations into HAT research has been emphasized

by Ulusoy and Reisman [242], who argue for the importance of respecting human needs and
capabilities in the design of autonomous systems. Their work suggests that successful HAT
requires attention not only to technical system performance but also to human experience and
well-being.

For the partnership between humans and autonomous agents to be successful, the potential
benefits of HAT must be weighed against foreseeable negative human-autonomy interactions.
Unintended consequences that must be addressed include creating more (not less) work for
humans, failing to decrease required manpower, deskilling operators, reducing awareness, and
contributing to accidents [231, 93, 150]. These concerns highlight the importance of carefully
designed synthetic task environments for empirically evaluating HAT before implementation in
operational settings.

With advances in computational power, network robustness, and machine learning capabil-
ities, a new form of team is emerging in cybersecurity operations: the human-autonomy team
(HAT). These teams integrate human analysts with autonomous agents, requiring both members
to depend on each other to achieve collective security goals [158]. Although research has exam-
ined the effects of agent performance [19] and perceived warmth [102] on HAT effectiveness,
there is increasing recognition that human-like qualities offer unique advantages for facilitating
human-agent cooperation [76, 187].

Despite this growing interest, there remains limited empirical investigation regarding how
humans collaborate with autonomous agents that emulate human cognitive processes [80]. This
gap is particularly pronounced in cybersecurity contexts, where teams face unique challenges
including high-stakes decisions, time pressure, and the need to adapt to novel threats.

Today’s cyber analysts are scarce resources and frequently overloaded [177]. Security Op-
erations Centers (SOCs) struggle with alert fatigue, where the sheer volume of security alerts
overwhelms analysts and increases the risk of overlooking critical threats [22]. This creates ideal
conditions for misallocation of attention and defensive failures. To address these challenges, au-
tonomous systems must evolve beyond mere recommender systems to operate with higher levels
of agency while maintaining appropriate human oversight [145].

The key questions this research addresses are: Do human-like cognitive agents have advan-
tages over optimally performing non-cognitive agents in HAT collaborations? How do humans
perceive the cooperativeness and trustworthiness of cognitive versus non-cognitive agents in
cybersecurity contexts?

5.3 Design of the Team Defense Game
To investigate these questions, I designed the Team Defense Game (TDG), an experimental
platform for studying how humans make decisions in collaboration with autonomous agents to
defend a network from cyber attacks. The TDG extends previous work on interactive defense
games [192] to incorporate teamwork dynamics through a semi-supervisory framework.

In TDG, human participants play the role of cyber analysts tasked with protecting a computer
network against external malicious activity. Each participant is paired with an autonomous cyber



defense agent who can make decisions and partially act independently to collaborate in network
defense. The human and autonomous agent must work together to monitor the network, detect
suspicious activity, and take appropriate defensive actions. Figure 5.1 shows the interface through
which participants interacted with the system.

Figure 5.1: Team Defense Game interface showing network status and interaction options

The framework implements a semi-supervisory structure that mirrors real-world cyber defense
teams. As shown in Figure 5.2, the autonomous agent has a set of pre-approved actions it can
execute independently (Monitor, Remove) and other actions (Restore, Misinform) that require
human approval before execution. This creates a hierarchical relationship where the human
maintains oversight while allowing the agent to operate with partial autonomy.

In each step of the game, both the human and the autonomous agent independently decide on
a target (which computer or server to protect) and an action to take. After both have submitted
their intentions, the human is presented with the agent’s intended action. If the agent selected a
pre-approved action, it executes automatically. If the agent selected a non-pre-approved action,
the human must validate or modify the action before it can be executed. If both team members
selected the same target, the human must resolve this overlap by modifying either their own or
the agent’s intention.

This design creates three key interaction scenarios that reveal team dynamics:(1) Overlap:
When human and agent select the same target, requiring coordination, (2) Supervision: When
the agent requires approval for non-pre-approved actions, (3) Backup: When multiple hosts are
compromised, requiring strategic allocation of team resources.
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Figure 5.2: Semi-supervisory framework showing pre-approved and non-pre-approved actions

5.3.1 Autonomous Agent Types
The study compared three types of autonomous agents as teammates:

1. Cognitive Agent: An IBLT-based agent that learns from experience to make decisions
based on similarity to past situations. The agent accumulates instances containing state,
action, and utility information, retrieving these based on similarity to current situations.
This agent adapts to the environment and to the human’s behavior through experience.

2. Heuristic Agent: Follows rule-based strategies derived from expert knowledge about
optimal network defense. This agent is highly competent but not adaptive, using fixed
decision rules based on the status of network hosts and the history of attacks.

3. Random Agent: Makes decisions randomly, serving as a baseline for comparison. This
agent has no strategic knowledge or learning capability.

Both the Cognitive and Heuristic agents were designed to achieve comparable performance
levels when operating independently, allowing the study to isolate the effects of cognitive mech-
anisms rather than simple competence differences.

5.4 Experiment: Human-Autonomy Cyber Defense Team Perfor-
mance

The experiment employed a between-subjects design with 156 participants randomly assigned to
work with one of the three agent types: Cognitive (n=42), Heuristic (n=48), or Random (n=66).
Each participant completed 7 episodes of the Team Defense Game, with each episode consisting
of 25 steps protecting a network against an adversary.

Measurements included: (1) Team Performance: Total loss (points lost due to successful
attacks and defensive actions) and recovery time (steps required to restore compromised hosts), (2)
Collaborative Process Metrics: Frequency and handling of overlaps, supervision situations, and
backup requirements, (3) Human Effort and Efficiency: Proportion of active versus passive actions
and efficiency (loss reduction per effort expended), (4) Human Perception: Post-experiment
ratings of agent trustworthiness and cooperativeness.



5.4.1 Key Findings
Team Performance

Teams with Cognitive agents achieved significantly better performance than those with other
agent types, as shown in Figure 5.3. HATs with Cognitive agents experienced lower average
loss (M=-52.85, SD=27.42) compared to teams with Heuristic agents (M=-59.69, SD=28.54) and
Random agents (M=-79.69, SD=49.11). Similarly, teams with Cognitive agents demonstrated
faster recovery from compromised hosts (M=1.45, SD=1.89) than those with Heuristic (M=2.15,
SD=2.09) or Random agents (M=3.92, SD=3.89). A two-way mixed measures ANOVA confirmed
a significant main effect for agent type on team loss, F(2,152)=11.037, p¡.05, with post-hoc tests
using Tukey’s HSD indicating that teams with Cognitive agents achieved significantly lower losses
than those with Heuristic or Random agents.
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Figure 5.3: Team performance by agent type across episodes: team loss (left) and recovery time
(right)

Collaborative Process Metrics

Analysis of collaborative processes revealed important differences in how teams functioned with
different agent types: Overlap Resolution: Overlaps (both team members selecting the same
target) occurred most frequently with Random agents. When resolving overlaps, humans were
more likely to adjust their own actions (rather than the agent’s) when working with Heuristic
agents (29%) compared to Cognitive (21%) or Random agents (14%). This suggests greater trust
in the Heuristic agent’s predictable decision-making. Supervision Dynamics: Random agents
required significantly more supervision (49% of actions) than Cognitive (37%) or Heuristic agents
(33%). More importantly, humans agreed with agent recommendations at much higher rates when



working with competent agents (73-74% for Cognitive and Heuristic) compared to Random agents
(35%). Figure 5.4 shows how this agreement proportion evolved over time, with humans rapidly
learning to trust competent agents while decreasing trust in Random agents. Backup Behavior:
Multiple breaches requiring team coordination occurred much more frequently with Random
agents (41%) than with Cognitive or Heuristic agents (14%). However, humans provided backup
less frequently when paired with Cognitive agents (11%) compared to Heuristic (17%) or Random
agents (20%). This suggests potential over-reliance on the Cognitive agent’s capabilities, with
humans less inclined to provide assistance even when needed.
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Figure 5.4: Evolution of human agreement with agent recommendations during the first episode
(right) and across all episodes (left)

Human Effort and Efficiency

Human effort (frequency of taking active actions vs. passive monitoring) decreased over episodes
across all conditions, but efficiency varied significantly by agent type. As shown in Figure 5.5,
participants working with Cognitive agents achieved the highest efficiency (M=39.40, SD=46.53),
followed by those with Heuristic agents (M=29.82, SD=38.32) and Random agents (M=16.80,
SD=27.02).

A two-way mixed measures ANOVA confirmed significant main effects for agent type
(F(2,152)=7.949, p¡.001), episode (F(3.46,630.77)=5.322, p¡.001), and their interaction (F(8.30,630.77)=2.435,
p=.012) on human efficiency. This indicates that Cognitive agents enabled humans to be more
efficient with their actions, achieving better results with similar effort levels.

Human Perception of Agents

Post-experiment questionnaires revealed that participants rated Cognitive and Heuristic agents
significantly higher than Random agents on both cooperativeness and trustworthiness dimensions,
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Figure 5.5: Evolution of human effort (left) and efficiency (right) across episodes by agent type

as shown in Figure 5.6. Approximately 52% of participants in the Cognitive condition and 50% in
the Heuristic condition agreed or strongly agreed that their agent was cooperative and trustworthy,
compared to only 33% in the Random condition.

Open-ended feedback revealed interesting differences in how participants conceptualized
their relationship with different agent types. Those working with Cognitive agents often noted
inconsistency but adaptability, while those with Heuristic agents appreciated predictability but
sometimes felt the agent was inflexible. Several participants with Random agents reported high
confidence in the agent despite its poor performance, suggesting potential overreliance based on
the agent’s perceived authority rather than demonstrated capability.

5.5 Discussion and Conclusion
The findings suggest three major implications for the design of autonomous agents in cybersecurity
teams.

Human-like Cognition Benefits Team Performance: Cognitive agents that emulate human
learning processes significantly enhanced team performance compared to both heuristic and
random agents. The ability to learn from experience and adapt to the individual play styles
of human teammates appears to be particularly valuable in the dynamic cybersecurity context.
However, the inconsistency and unpredictability of cognitive agents sometimes reduced human
trust compared to more predictable heuristic agents. This suggests that cognitive agents should
be designed to maintain adaptability while providing explanations for changing behaviors to
maintain human trust.

Competence Affects Trust and Reliance: Both cognitive and heuristic agents were perceived
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Figure 5.6: Human ratings of agent cooperativeness (left) and trustworthiness (right) by agent
type

as more trustworthy and cooperative than random agents, demonstrating that baseline competence
is a prerequisite for effective human-AI teaming. However, competent agents also required less
human effort, potentially leading to over-reliance. This highlights the importance of calibrating
trust appropriately by designing agents that actively signal when they require human assistance
or have uncertainty in their decision-making processes.

Trust Calibration Remains Challenging: The experiment revealed that human trust in agents
developed rapidly within the first episode and was strongly influenced by perceived competence.
However, this trust was not always well-calibrated to actual agent performance. Some participants
developed excessive trust in random agents despite poor performance, while others maintained
skepticism toward cognitive agents despite their superior performance. This suggests that trust
development in HAT contexts is influenced by factors beyond objective performance metrics,
including consistency, predictability, and transparency.

These findings contribute to our understanding of human-AI teaming in cybersecurity by
demonstrating how cognitive mechanisms influence collaboration effectiveness and trust dynam-
ics. The results highlight the potential of cognitive agents to enhance team performance while
also revealing important challenges in building appropriate trust and reliance.

5.5.1 Limitations and Future Work
While this study provides valuable insights into HAT dynamics in cybersecurity, several limita-
tions and future directions should be acknowledged. First, participants were not cybersecurity
professionals, potentially limiting the generalizability of findings to operational contexts. Future
work should validate these findings with expert participants from security operations centers.



Second, the experimental task, while capturing essential elements of cyber defense decision-
making, simplified many aspects of real-world security operations. Future research should explore
more complex scenarios with higher fidelity to operational environments, including variable threat
levels, resource constraints, and mission priorities.

Finally, the study focused primarily on performance and process metrics with limited inves-
tigation of how the agents’ decision-making processes were perceived and understood by human
teammates. Future work should incorporate explainable AI techniques to make cognitive agent
reasoning more transparent to human teammates, potentially enhancing trust calibration and team
coordination.

Despite these limitations, this research represents an important step toward understanding
how cognitive mechanisms influence human-AI collaboration in cybersecurity contexts. By
demonstrating the potential of cognitively inspired agents to enhance team performance, the
findings provide guidance for designing more effective human-autonomy teams for cyber defense.



Chapter 6

Conclusion & Future Directions

6.1 Conclusion
This dissertation has addressed fundamental challenges in cybersecurity by investigating the
integration of human cognitive processes with artificial intelligence capabilities through a mul-
tiagent modeling perspective. The research presented here moves beyond traditional approaches
to cybersecurity by systematically studying how cognitive mechanisms influence both offensive
and defensive behaviors in complex, dynamic environments. The empirical and computational
studies conducted across the three research dimensions reveal several profound insights about
the nature of decision-making in cybersecurity contexts. Perhaps most significantly, the findings
demonstrate that realistic modeling of human cognitive processes—including bounded rational-
ity, experiential learning, and categorical reasoning—is not merely an academic exercise but a
practical necessity for developing effective cybersecurity systems.

In examining human-like adversaries, this work challenges prevailing assumptions about at-
tacker modeling. The observation that even highly skilled human defenders struggle against
cognitive attackers while performing well against deterministic strategies reveals a critical vul-
nerability in current training approaches. This discovery suggests a fundamental reconsideration
of how we prepare cybersecurity professionals, shifting from static pattern recognition to adap-
tive response against dynamic threats. The cognitive attacker implementation demonstrates that
Instance-Based Learning Theory provides a viable framework for creating realistic adversary
emulations that capture the adaptive, learning behaviors characteristic of sophisticated human
attackers.

The investigation of multi-defender interactions revealed unexpected patterns in coopera-
tive behavior that contradict theoretical predictions about information and incentives. The in-
verse U-shaped relationship between information availability and cooperation—with experiential
information producing higher cooperation rates than both minimal and descriptive informa-
tion—challenges fundamental assumptions about strategic decision-making in group contexts.
Furthermore, the emergence of selective cooperation strategies and third-player effects on dyadic
relationships reveals that triadic interactions cannot be understood as simple aggregations of
independent pairs. These findings have significant implications for the design of information
sharing frameworks in cybersecurity, suggesting that experiential learning mechanisms may be
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more effective than abstract descriptions of theoretical benefits. The cognitive model devel-
oped to explain these findings—integrating dynamic weighting, category learning, and contrast
effects—provides a psychologically plausible account of how individuals navigate multiple co-
operative relationships despite cognitive limitations. This model successfully reproduced human
behavior patterns without parameter fitting, demonstrating its explanatory power. Beyond cy-
bersecurity, this theoretical contribution advances our understanding of human social learning in
complex environments with multiple interdependent relationships.

The exploration of human-AI teaming in cyber defense revealed both the potential and chal-
lenges of cognitive integration in operational contexts. Cognitive agents that learn from experi-
ence significantly enhanced team performance and human efficiency compared to both heuristic
and random agents. However, the findings also uncovered important challenges in trust calibra-
tion and relationship development. The observation that humans sometimes developed excessive
trust in random agents despite poor performance, while maintaining skepticism toward cognitive
agents despite superior performance, highlights the complex psychological dimensions of human-
AI collaboration. These insights extend beyond cybersecurity to inform human-AI teaming across
domains where appropriate trust calibration is critical.

Methodologically, this dissertation has introduced novel experimental paradigms—including
the Interactive Defense Game and Team Defense Game—that enable systematic investigation of
complex phenomena while maintaining experimental control. These platforms provide valuable
tools for future research at the intersection of cognitive science and cybersecurity, allowing for
controlled manipulation of factors such as information availability, incentive structures, and team
composition.

The overall findings from this research suggest a fundamental shift in how we conceptualize
cybersecurity operations—moving from isolated technical solutions toward integrated socio-
technical systems that acknowledge the cognitive dimensions of both threats and defenses. By
recognizing the distinctive cognitive processes that shape adversarial, cooperative, and collabo-
rative behaviors, we can develop more robust approaches to cybersecurity that leverage comple-
mentary human and artificial intelligence capabilities. This integrated perspective has important
implications for cybersecurity practice. For training and education, it suggests developing sce-
narios that incorporate adaptive adversaries rather than deterministic patterns. For information
sharing frameworks, it indicates prioritizing experiential feedback about concrete outcomes over
abstract payoff descriptions. For human-AI teaming, it emphasizes designing agents that can
adapt to individual human working styles while providing appropriate transparency about their
decision processes.

The cognitive modeling approaches developed in this dissertation provide a foundation for
future research across multiple domains. As artificial intelligence continues to evolve, under-
standing how to integrate human and AI decision-making will become increasingly crucial not
only for cybersecurity but for all domains characterized by complex, dynamic threats and re-
source constraints. By advancing our understanding of the cognitive mechanisms that enable
effective decision-making in multiagent contexts, this research contributes to the broader goal
of creating more secure and resilient systems through the thoughtful integration of human and
artificial intelligence.



6.2 Future Work: Human-like Adversaries Modeling
In our recent work, we demonstrated that cognitive attackers capable of learning from experience
and adapting their strategies present significantly greater challenges for defenders compared to
deterministic attack strategies. Building on this foundation, I propose integrating large language
models (LLMs) with human-like decision-making processes to create more realistic, adaptive
cyber adversaries for security training and testing. This approach promises to better prepare
defenders for the unpredictable and evolving tactics used by real human attackers in operational
environments. The proposed research will develop autonomous attackers that incorporate key
aspects of human cognition, including bounded rationality, risk assessment under uncertainty,
learning from past interactions, and strategic adaptation to defensive countermeasures. Un-
like traditional rule-based attack simulations that follow predetermined patterns, these cognitive
adversaries will exhibit the flexibility, creativity, and unpredictability characteristic of human
attackers, while maintaining the controllability needed for systematic training and evaluation.

Recent advances in LLMs have demonstrated promising capabilities for cybersecurity appli-
cations. Works like PenHeal have shown that LLMs can effectively model multistage penetration
testing workflows, combining reconnaissance, vulnerability assessment, and exploitation in co-
herent attack chains [108]. Similarly, PENTESTGPT has demonstrated that LLMs can generate
contextually appropriate attack strategies based on system descriptions and security configura-
tions [49]. These capabilities, when combined with cognitive models of decision-making under
uncertainty, create an opportunity to develop adversaries that not only execute technical attacks
but do so with human-like strategic reasoning. The technical approach involves developing
a multi-component system where an LLM handles higher-level attack planning and reasoning
about network configurations, while a cognitive decision-making module manages experience-
based learning, adaptation, and execution of attack sequences. This integration preserves the
human-like learning patterns that made our previous cognitive attackers effective, while adding
the sophisticated reasoning capabilities of modern language models.

Modeling Adversarial Biases A critical aspect of human attackers that distinguishes them
from current automated systems is their susceptibility to cognitive biases and limitations. Even
sophisticated attackers make non-optimal decisions due to information processing constraints,
risk perception biases, and emotional factors. These biases create exploitable patterns that de-
fenders can leverage if properly understood. Our proposed framework will incorporate these
cognitive limitations, modeling how attackers prioritize targets, balance exploration versus ex-
ploitation, and respond to deceptive defensive measures. By systematically investigating how
multiple biases interact in sequential attack decisions, we can identify network configurations and
defensive strategies that maximize attacker inefficiency while minimizing defensive resources.
The framework will support the exploration of adversarial biases in specific cyber scenarios. By
modeling how attackers with different cognitive profiles navigate the same network environment,
we can identify defensive configurations that exploit these biases most effectively.

Evaluation and Applications The system will be evaluated in simulated environments of
increasing complexity, measuring both technical performance (attack success rates, time to ob-



jective) and behavioral fidelity (similarity to human attack patterns observed in controlled exper-
iments and real-world incidents). Beyond serving as training tools, these human-like adversaries
can also be used to evaluate defensive systems, identify potential vulnerabilities in security pos-
tures, and develop novel defensive strategies that specifically target human cognitive weaknesses.
This approach moves beyond traditional static defenses toward adaptive systems that can reconfig-
ure to present the most challenging scenarios based on observed attacker behavior. For example,
certain network topologies or deceptive elements might be particularly effective against attackers
exhibiting specific cognitive biases like confirmation bias or availability heuristics. Recent work
by Singer et al. demonstrates the feasibility of using LLMs to execute multistage network attacks
[220], while Li and Zhu have explored symbiotic game models for cyber deception operations
[141]. The research extends beyond technical implementation to include fundamental questions
about adversarial cognition: How do attackers build and update mental models of target networks?
How do they allocate attention across multiple potential attack vectors? How do emotional fac-
tors like frustration or overconfidence affect their strategic decisions? Answering these questions
through computational modeling will not only improve our ability to create realistic training
scenarios but also enhance our theoretical understanding of adversarial behavior in cybersecurity
contexts.

6.3 Future Work: Toward Autonomous Intelligent Cyber Defense
The increasing complexity and scale of cyber threats necessitate advanced approaches to network
defense that can operate effectively in dynamic environments without constant human supervision.
As cyber attacks grow in sophistication, traditional defensive approaches that rely on static rules
or signatures become increasingly inadequate. My research aims to address this challenge by
developing autonomous intelligent cyber defense systems that can adapt to evolving threats,
anticipate attacker behaviors, and coordinate defensive actions across complex networks.

Advanced cyber defense requires intelligent systems that can demonstrate human-like rea-
soning capabilities while operating at machine speed. These systems must develop a sense
of causality that discovers relationships between objects and events, allowing incorporation of
temporal and spatial information into reasoning processes. They must also balance potentially
conflicting objectives while operating safely in poorly understood environments, requiring ad-
vances in risk-aware online planning [131]. As these systems grow more complex, they must
transition from isolated defensive tools to coordinated teams of defensive agents, working together
with human operators to protect critical infrastructure.

I have begun exploring this research direction through preliminary work on reinforcement
learning for adaptive cyber deception [56]. In this work, I demonstrated how a defender trained
through deep reinforcement learning could strategically deploy deceptive elements throughout
an attack graph to significantly delay attackers compared to static or heuristic approaches. By
learning through self-play, the defender developed strategies that dynamically responded to
attacker progression, maximizing the effectiveness of limited defensive resources. This initial
exploration proved the viability of reinforcement learning for cyber defense but also revealed
significant challenges that must be addressed for real-world deployment.

Over the next five years, my research will focus on two critical directions that build upon



this foundation: developing sample-efficient learning methods for cyber defense and advancing
multiagent reinforcement learning frameworks for cooperative defense. These directions address
key limitations of current approaches while pushing toward truly autonomous cyber defense
systems.

6.3.1 Sample-Efficient Learning for Complex Defense Environments
A fundamental challenge in applying reinforcement learning to cybersecurity problems is the
sample complexity of current approaches. Model-free reinforcement learning algorithms typically
require millions of interactions with the environment to learn effective policies—a requirement
that is impractical for operational networks. My research will address this challenge through three
complementary approaches to sample-efficient learning: model-based reinforcement learning,
incorporation of domain knowledge, and reinforcement learning from human feedback (RLHF).

Model-based reinforcement learning offers a promising path forward by enabling agents
to learn an internal model of environment dynamics. This approach allows for planning and
simulation-based learning that can drastically reduce the number of real-world interactions re-
quired during training [261]. In the context of cyber defense, I will develop techniques that enable
defenders to construct and refine mental models of attacker behavior patterns, vulnerabilities, and
network dynamics. The resulting models will allow defenders to anticipate potential attack vec-
tors through simulated what-if scenarios, effectively learning from imagined experience rather
than requiring extensive real-world interactions.

Research in understanding effective memory structure and processes will benefit from a
collaboration with cognitive scientists to understand memory in biological systems [11]. New
approaches are needed to address potential issues with memory systems such as catastrophic
forgetting, limited storage capacity, and development of new methods to efficiently use external
knowledge stores. My work will investigate how cognitive architectures can inform the design of
memory systems for cyber defense agents, drawing inspiration from human memory processes
to develop more robust and flexible learning mechanisms.

Domain knowledge incorporation represents another avenue for improving sample efficiency.
Cyber defense involves well-established principles and heuristics developed through decades of
operational experience. Rather than learning everything from scratch, my research will develop
methods for encoding this domain knowledge as inductive biases that guide exploration and
accelerate learning. This may include attack graph structures, common vulnerability patterns,
or established defense strategies. By structuring the learning problem with appropriate priors,
reinforcement learning agents can focus exploration on promising regions of the strategy space,
significantly reducing training time while improving generalization to new threats [35].

Reinforcement learning from human feedback (RLHF) offers a third approach to sample
efficiency by leveraging human expertise to guide agent learning. In cybersecurity contexts,
experienced defenders possess tacit knowledge that may be difficult to formalize but can be ex-
pressed through demonstrations or feedback. My research will develop frameworks for capturing
this expertise and incorporating it into reinforcement learning pipelines, allowing agents to learn
from both simulation and human guidance. This approach will be particularly valuable for teach-
ing agents about subtle signals or patterns that human defenders recognize but that might not be
obvious in raw network data [39].



Together, these approaches to sample-efficient learning will enable reinforcement learning
agents to develop effective defense strategies with substantially fewer training examples, making
deployment in operational environments more practical. By combining model-based reasoning,
domain knowledge, and human feedback, my research will produce cyber defense agents that learn
more efficiently while maintaining the adaptability that makes reinforcement learning appealing
for security applications.

6.3.2 Multiagent Reinforcement Learning for Cooperative Defense
As networks grow in scale and complexity, defense responsibilities are increasingly distributed
across multiple agents with specialized roles and capabilities. Effective protection requires
seamless coordination among these defensive components, along with adaptation to multiple
concurrent threats. My second research direction will focus on multiagent reinforcement learning
(MARL) frameworks that enable coordinated defensive actions across distributed agents.

Research in ad-hoc teamwork will enable entities (human and systems) to dynamically join
together to address specific problems, then pursue separate tasks after the problem is solved
[105]. In this type of teaming, there is no prior coordination between agents, and we cannot
assume that the entities share the same types of learning algorithms or reward structures or
that they have prior agreements regarding action coordination and information sharing. My
research will address important problems within ad-hoc teaming, including ensuring that actions
are understandable to fellow teammates, modeling the capabilities of team members, including
humans in the ad-hoc teams, and dynamically modeling the performance of both the team and
the individuals.

A key challenge in multiagent cyber defense is developing coordination mechanisms that bal-
ance local decision-making with team-level objectives. I will investigate techniques for enabling
coordinated defensive actions across network zones without requiring full observation sharing or
centralized control [91]. This approach is essential for large-scale networks where complete state
information may be unavailable or prohibitively expensive to communicate. My work will de-
velop efficient coordination mechanisms that enable defenders to perform complementary actions
that amplify overall security outcomes while respecting communication constraints.

Another critical aspect of multiagent defense involves integrating diverse defensive techniques
into a unified framework. While my preliminary work has focused primarily on deceptive de-
ployments, effective cyber defense requires a broader arsenal including moving target defense,
adaptive access control, and strategic resource allocation [145]. I will develop multiagent frame-
works that can simultaneously reason about these diverse defensive options, learning when and
how to deploy each technique for maximum combined impact. This integrated approach will
overcome the limitations of current systems that treat different defensive mechanisms in isolation,
failing to capture potential synergies between complementary tactics.

The presence of multiple attackers with diverse objectives and capabilities presents additional
challenges for coordinated defense. Real-world networks face concurrent threats ranging from
opportunistic attackers to targeted advanced persistent threats (APTs), each requiring different
defensive responses. My research will develop models for recognizing and differentiating between
multiple attacker profiles, enabling defenders to appropriately prioritize and respond to the most
critical threats [67]. This will involve both technical advances in threat attribution and strategic



reasoning about optimal resource allocation across multiple simultaneous engagements.
The culmination of this research direction will be a framework for multiagent cyber defense

that can scale to realistic network environments with thousands of nodes, heterogeneous ser-
vices, and complex interdependencies. This will require novel approaches to state abstraction
and hierarchical planning that can maintain computational tractability while capturing essential
security dynamics [131]. By incorporating both topological and semantic features of network
components, my methods will enable more nuanced defensive strategies that consider not just
connectivity but also the business context and criticality of protected assets.

Over the next five years, this comprehensive research agenda will advance the state of the art
in autonomous cyber defense, moving from theoretical models to practical deployable systems
that can significantly enhance the security posture of real-world networks. By addressing key
challenges in sample efficiency and multiagent coordination, my work will bridge the gap between
current research prototypes and operational security solutions. The resulting advances will not
only contribute to the academic understanding of reinforcement learning in adversarial contexts
but also provide concrete tools and techniques that security practitioners can deploy to protect
critical infrastructure against evolving cyber threats.

6.4 Future Work: Complementary Human-AI Teaming in Cyber
Defense

My dissertation research has opened several promising research directions in human-AI teaming
for cyber defense that I plan to pursue over the next five years. These directions build upon the
foundations established in my work and address fundamental challenges in developing effective
human-AI collaborative systems for cybersecurity operations.

6.4.1 Platform for Controlled Human-AI Team Experiments
The Team Defense Game (TDG) platform developed in this dissertation has demonstrated sig-
nificant potential for studying human-AI collaboration in cyber defense scenarios. This work has
revealed opportunities for platform advancements that would enable more sophisticated research
into team dynamics and coordination mechanisms in cybersecurity contexts.

A natural extension of the current platform would be a parametric task generation framework
that allows systematic control over the complexity dimensions of cyber defense scenarios. Such
a framework would enable controlled experimentation by manipulating state-space complexity,
strategic uncertainty, and interdependence patterns while maintaining ecological validity. As
suggested by [135], multi-agent experimental environments benefit significantly from parameter-
ized control over environmental complexity. The research direction involves creating structured
multi-agent decision tasks that can be grounded in specific domain contexts through declarative
schemas and language model prompting. This approach would facilitate the creation of realistic,
variable, and interpretable team tasks for both experimental and training purposes.

Current research in human-AI teaming frequently overlooks the systematic control of interde-
pendence structures between team members, focusing instead on varying the number of agents or



their observation capabilities. [157] have emphasized that emergent team cognition in human-AI
settings depends critically on the structure of interdependence between team members. My work
has revealed the importance of modeling both control and informational dependencies through di-
rected graph representations. This representation enables the investigation of how different team
structures—whether hierarchical, distributed, or hybrid—affect coordination dynamics and team
performance. The ability to vary interdependence patterns while maintaining other experimental
factors would provide unprecedented insights into optimal team configurations for different cyber
defense contexts.

Communication infrastructure represents another critical dimension for advancement revealed
by my dissertation work. While the current TDG implementation supports basic interaction
between humans and agents, future platforms require a more comprehensive communication
framework. Such a framework would encompass permission-based workflows for critical ac-
tions, explanation mechanisms for agent decision processes, and natural language channels for
flexible dialogue. As [152] demonstrate, communication strategies play a pivotal role in team
coordination, particularly in high-stakes environments like cybersecurity. This enhanced infras-
tructure would support investigations into how different communication modalities affect team
performance, trust development, and coordination efficiency in cyber defense scenarios where
rapid information exchange is crucial.

6.4.2 Human Behavior-Aware Agents as Team Members
Beyond platform enhancements, my research has opened significant opportunities for developing
more sophisticated autonomous agents specifically designed for effective human-AI collaboration
in cyber defense.

A primary direction involves designing agents with capabilities that complement rather than
replicate human cognitive strengths. My dissertation has demonstrated that human-AI teams
are most effective when their capabilities are complementary instead of redundant. [20] found
that complementary team performance improved when AI systems were designed to address
specific human cognitive limitations rather than mimic human expertise. Future work should
develop a formal framework for capability characterization that identifies the relative strengths of
humans and AI in different cyber defense sub-tasks. Such agents would excel at monitoring large
volumes of network data without fatigue, detecting subtle correlations across disparate sources,
maintaining comprehensive historical context, and rigorously quantifying confidence levels—all
capabilities that complement known human cognitive limitations in cyber defense contexts.

Another promising direction involves developing agents capable of participating in ad-hoc
teamwork scenarios where humans and systems dynamically join together to address specific
cybersecurity incidents without prior coordination. Such scenarios are increasingly common
in cybersecurity operations, where cross-organizational teams must rapidly form in response to
major security incidents. [230] pioneered research in ad-hoc agent teaming, and extending this
to human-AI contexts presents unique challenges. The research involves creating agents whose
actions remain understandable to human teammates without extensive training, while dynamically
modeling the capabilities of those teammates under limited observation. These agents must adapt
their coordination strategies based on emerging team dynamics and balance exploration (learning
about teammates) with exploitation (maximizing immediate team performance).



My work with cognitive models based on Instance-Based Learning Theory provides a foun-
dation for agents with enhanced theory of mind capabilities. Such agents would model and
predict human teammate behavior, including decisions about reliance and intervention. [175]
demonstrated that cognitive models can successfully develop theory of mind capabilities through
observation, enabling more accurate prediction of human decision processes. These models
would incorporate factors such as trust dynamics, cognitive load, and expertise level to antic-
ipate when humans are likely to appropriately rely on agent recommendations, unnecessarily
override agent decisions, require additional explanation, or experience decision fatigue. By accu-
rately modeling human teammates, agents can better adapt their behavior to complement human
capabilities and compensate for predictable limitations or biases.

The development of multi-level adaptation mechanisms represents another significant research
opportunity. My dissertation work suggests that effective agents must learn from interaction at
multiple complementary time scales: rapid adaptation to immediate team dynamics through re-
inforcement learning, retention of team-specific strategies across multiple interactions with the
same teammates, and acquisition of general principles for effective human-AI collaboration that
transfer to new teammates and contexts. [196] argue that human learning occurs at multiple
timescales, from immediate skill acquisition to long-term conceptual development, and AI sys-
tems that mirror this multi-level adaptation may collaborate more effectively with humans. These
adaptation mechanisms must balance stability (maintaining consistent, predictable behavior) with
flexibility (adjusting to changing team needs) to address a key challenge in human-AI teaming
for cybersecurity operations.

6.4.3 Benchmarking AI Agents in Human-AI Teaming
Benchmarking autonomous agents for human-AI collaboration represents a foundational research
direction that remains underdeveloped in current cybersecurity teaming frameworks. While
many existing systems are evaluated against simplistic baselines such as random agents or static
heuristics, a growing body of empirical work has demonstrated that the selection and design of
benchmarking agents significantly influence not only objective team performance but also human
trust calibration, reliance behavior, and overall teaming dynamics.

Recent studies in human-AI collaboration have revealed the limitations of self-play-optimized
agents when placed in mixed human-AI teams. For example, in cooperative domains such as
Overcooked and Hanabi, agents trained exclusively via reinforcement learning performed well
with other agents but failed to coordinate effectively with human partners due to misaligned
behavior models and unintuitive policies [33, 223]. In contrast, rule-based or behavior-cloned
agents that more closely matched human expectations—though potentially suboptimal in isolated
performance—were consistently preferred by human users. These findings underscore the need to
benchmark agents not solely by technical metrics but also by their ability to function as teammates
in realistic collaborative contexts.

A comprehensive benchmarking framework for human-AI teaming should incorporate mul-
tiple types of baseline agents beyond the random or naive comparator. These include: (1)
extitscripted agents that reflect domain-specific heuristics or expert-defined protocols; (2) ex-
titablated agents in which key architectural or behavioral components (e.g., explanation modules,
human modeling layers) are systematically removed; (3) extitcapability-matched agents whose



task performance is tuned to be comparable with human counterparts to avoid dominance effects;
and (4) extithuman-level proxies, such as behaviorally cloned agents trained on human data to
provide a reference for naturalistic teaming behavior. The inclusion of these diverse baselines
enables more diagnostic evaluation of proposed agents’ contributions to team effectiveness.

Equally important is the need to benchmark along theoretically grounded design dimensions
known to shape teaming dynamics. These include, but are not limited to: transparency and
explanation generation [20, 260], adaptivity to partner behavior [33, 146], coordination strategy
and timing [259], and levels of agent autonomy and initiative [205]. For example, slight changes
in the wording of explanations—shifting from hedging to confident language—can significantly
alter user acceptance and decision-making even when the underlying recommendation remains
unchanged. Similarly, the timing of agent errors (e.g., early versus late in an interaction) has been
shown to affect long-term trust trajectories. These findings highlight the necessity of rigorous
control in benchmark agent design and careful documentation of seemingly minor implementation
choices that may have outsized effects on human perception and teaming quality.

The research community has increasingly emphasized several best practices for benchmarking
human-AI collaboration. These include using standardized testbeds with reproducible configu-
rations [33], adopting within-subject or counterbalanced user studies to isolate treatment effects
[20], and reporting multi-dimensional outcome measures encompassing not only task success
but also human-centered metrics such as trust alignment, cognitive load, and perceived coop-
erativeness [260, 146]. In addition, recent work advocates for the open release of agent code,
experimental protocols, and evaluation data to facilitate reproducibility and comparative analysis
across research groups.

Cyber defense settings present unique challenges for agent benchmarking. Unlike tabletop
games or general assistance tasks, cyber operations are characterized by adversarial dynamics,
noisy and ambiguous data, and time-sensitive decision demands. Benchmarking agents in these
environments must therefore account for additional factors such as alert fatigue, the interpretability
of intrusion detection recommendations, and the robustness of trust calibration under uncertainty
and deception. Moreover, the interaction between agent autonomy and human oversight becomes
particularly critical when agents are authorized to perform disruptive actions, such as isolating
network nodes or blocking communications. Evaluating agents across varied scenarios that
simulate these conditions—while holding constant key contextual variables—will be essential to
identify designs that generalize across threat landscapes and organizational structures.

Taken together, these considerations underscore that benchmarking agents for human-AI
teaming is not merely a technical exercise but a complex methodological challenge. It involves
principled design of baseline agents, theoretically motivated variation along critical interaction
dimensions, and ecologically valid evaluation methodologies that reflect the demands of real-
world cyber defense operations.

6.4.4 Comprehensive Team Evaluation
My research has demonstrated that traditional cybersecurity metrics focused solely on technical
performance are insufficient for evaluating effective human-AI teams. This opens up research
opportunities for developing more nuanced evaluation methodologies that capture the quality of
collaboration alongside technical outcomes.



Trust calibration measurement represents a critical research direction. My work has shown
that trust is not uniformly beneficial; rather, appropriate trust calibration—trusting the right agent
for the right task at the right time—is crucial for team performance. [13] demonstrated that
calibrated trust in AI systems significantly improves team performance in deferred decision tasks,
particularly when humans appropriately adjust their reliance based on AI capabilities. Future
research should develop and validate quantitative measures of trust calibration that assess the
alignment between agent capability and human reliance, appropriate adjustment of trust levels
based on observed performance, situation-specific modulation of trust based on task characteris-
tics, and resistance to overtrust in high-confidence but incorrect agent recommendations. These
measures would enable more sophisticated evaluation of human-AI team dynamics beyond simple
trust or distrust dichotomies.

The study of team resilience under adversarial conditions represents another important direc-
tion emerged from my work. Cyber defense teams must function effectively even when under
attack or facing resource limitations. [153] argue that team resilience in cybersecurity contexts
involves not only technical robustness but also adaptive capacity in the face of unexpected chal-
lenges. Future research should develop experimental protocols for testing team resilience under
adversarial conditions, including scenarios with communication disruption that limit information
sharing between team members, resource constraints that force prioritization decisions under time
pressure, deception attempts where adversaries try to manipulate team trust relationships, and
recovery situations that test the team’s ability to reestablish effective coordination after failures.
These protocols would provide insight into the robustness of different team configurations and
identify specific vulnerabilities that can be addressed through training or agent design.

Cognitive workload distribution assessment has also emerged as a promising research direc-
tion. My work suggests that effective teams distribute cognitive workload appropriately across
members according to their capabilities and current capacity. [42] demonstrated that effective
command-and-control teams dynamically redistribute cognitive burden based on evolving task
demands and individual capacity. Future research should develop methods to assess cogni-
tive load distribution in human-AI teams through both behavioral and physiological measures
when possible. This research would determine whether human-AI teams successfully offload
appropriate cognitive burdens to autonomous agents while keeping humans engaged in decisions
that benefit from human judgment and expertise, and whether agents appropriately adjust their
autonomy level based on detected human cognitive load.

The research directions outlined in this section represent a comprehensive agenda for ad-
vancing human-AI teaming in cyber defense. By simultaneously developing more sophisticated
experimental platforms, designing team-aware cognitive agents, implementing nuanced evalua-
tion methodologies, and addressing open-world decision challenges, this agenda would address
fundamental questions about effective human-AI collaboration in complex cybersecurity environ-
ments. The long-term vision is to develop human-AI teams that achieve performance exceeding
what either humans or AI could accomplish individually, while maintaining appropriate human
oversight in critical decision contexts. This work would contribute not only to improved cyber-
security operations but also to broader understanding of complementary human-AI collaboration
in high-stakes environments.



Bibliography

[1] M. A. Abbasi, C. Dovrolis, and K. B. Parag. “Toward Realistic Models of Network
Security Games”. In: Journal of Information Security and Applications 15.1 (2010),
pp. 81–100.

[2] Robert K Abercrombie, Bob G Schlicher, and Frederick T Sheldon. “Security analysis of
selected AMI failure scenarios using agent based game theoretic simulation”. In: 2014
47th Hawaii International Conference on System Sciences. IEEE. 2014, pp. 2015–2024.

[3] Ibrahim Adedeji Adeniran et al. “Strategic Risk Management in Financial Institutions:
Ensuring Robust Regulatory Compliance”. In: Finance & Accounting Research Journal
(2024). doi: 10.51594/farj.v6i8.1508.

[4] P. Aggarwal et al. “Designing Effective Masking Strategies for Cyberdefense through
Human Experimentation and Cognitive Models”. In: Computers & Security 117 (2022),
p. 102671.

[5] Palvi Aggarwal, Cleotilde Gonzalez, and Varun Dutt. “HackIt: A real-time simulation
tool for studying real-world cyberattacks in the laboratory”. In: Handbook of Computer
Networks and Cyber Security. Springer, 2020, pp. 949–959.

[6] Afrah Almansoori, Mostafa Al-Emran, and Khaled Shaalan. “Exploring the Frontiers
of Cybersecurity Behavior: A Systematic Review of Studies and Theories”. In: Applied
Sciences (2023). doi: 10.3390/app13095700.
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[235] Paul Théron and Alexander Kott. “When Autonomous Intelligent Goodware Will Fight
Autonomous Intelligent Malware: A Possible Future of Cyber Defense”. In: (2019). doi:
10.1109/milcom47813.2019.9021038.

[236] D. R. Thomas and R. Sule. “Security evaluation of the risk tolerance of individuals to
cybercrime”. In: IEEE Security & Privacy 19.5 (2021), pp. 42–50.

[237] Godwin Thomas and Mary-Jane Sule. “A Service Lens on Cybersecurity Continuity and
Management For organizations’ Subsistence and Growth”. In: Organizational Cyberse-
curity Journal Practice Process and People (2022). doi: 10.1108/ocj-09-2021-0025.

[238] J. N. Tioh, M. Mina, and D. W. Jacobson. “Cyber Security Training Using Interactive
Game Mechanisms”. In: Journal of Cyber Security Technology 1.2 (2017), pp. 86–105.

[239] P. M. Todd and G. Gigerenzer. “Ecological Rationality: Intelligence in the World”. In:
Oxford University Press (2012).

[240] Peter M Todd et al. “Ecological rationality: Intelligence in the world”. In: Oxford Univer-
sity Press (2012).

[241] Deepak K. Tosh et al. “An evolutionary game-theoretic framework for cyber-threat infor-
mation sharing”. In: IEEE International Conference on Military Communications (2015),
pp. 585–590.

[242] Ulubilge Ulusoy and Garrett E. Reisman. “Human Factors Respect in Human Autonomy
Teams”. In: (2024). doi: 10.36227/techrxiv.171502760.01527479/v1.

[243] Jay J. Van Bavel et al. “Contextual Sensitivity in Scientific Reproducibility”. In: Proceed-
ings of the National Academy of Sciences (2016). doi: 10.1073/pnas.1521897113.

https://doi.org/10.1089/cyber.2020.0526
https://doi.org/10.1089/cyber.2020.0526
https://doi.org/10.6028/nist.ir.8286-draft2
https://doi.org/10.1145/3197091.3197123
https://doi.org/10.3390/info15090512
https://doi.org/10.1109/milcom47813.2019.9021038
https://doi.org/10.1108/ocj-09-2021-0025
https://doi.org/10.36227/techrxiv.171502760.01527479/v1
https://doi.org/10.1073/pnas.1521897113


[244] V. D. Veksler et al. “Cognitive Models in Cybersecurity: Learning from Expert Analysts
and Predicting Attacker Behavior”. In: Frontiers in Psychology 11 (2020), p. 1049.

[245] A. Vishwanath. “Mobile Device Affordance: Explicating How Smartphones Influence the
Outcome of Phishing Attacks”. In: Computers in Human Behavior 63 (2016), pp. 198–
207.

[246] A. Vishwanath et al. “Why Do People Get Phished? Testing Individual Differences in
Phishing Vulnerability within an Integrated, Information Processing Model”. In: Decision
Support Systems 51.3 (2011), pp. 576–586.

[247] Joel H. K. Vuolevi and Paul A. M. Van Lange. “On the boundaries of social exchange:
Vague systems and social interdependence”. In: Journal of Experimental Social Psychol-
ogy 48.1 (2012), pp. 100–111.

[248] J. Wang, R. Chellappa, and P. J. Phillips. “Safety in Cyberspace: A Cognitive Science
Perspective”. In: IEEE Systems, Man, and Cybernetics Magazine 1.3 (2015), pp. 27–34.

[249] Zhihui Wang et al. “Evolving strategies for the Iterated Prisoner’s Dilemma”. In: Scientific
Reports 8.1 (2018), pp. 1–8.

[250] Robert L West and Christian Lebiere. “Simple games as dynamic, coupled systems:
Randomness and other emergent properties”. In: Cognitive Systems Research 1.4 (2001),
pp. 221–239.

[251] R.W. Wohleber, K. Stowers, and Y. Lin. “Understanding and designing human-autonomy
team trust: A hierarchical cognitive task analysis approach in urban search and rescue”.
In: Applied Ergonomics 109 (2023), p. 107866.

[252] Junhui Wu et al. “Too much or too little? A meta-analysis of the social comparison effects
on cooperation”. In: Psychological Bulletin 146.7 (2020), pp. 651–679.

[253] Z. Yan et al. “Information Security Knowledge Sharing Behavior Analysis in Knowledge
Network”. In: Journal of Industrial Information Integration 16 (2019), p. 100100.

[254] Wako Yoshida, Raymond J. Dolan, and Karl J. Friston. “Game Theory of Mind”. In:
PLOS Computational Biology 4.12 (2008), e1000254. doi: 10.1371/journal.pcbi.
1000254.

[255] Jessica Young et al. “Attention and strategic decision making”. In: Cognitive Science 43.4
(2019), e12721.

[256] Dandan Zhang et al. “The dynamics of belief updating in human cooperation: findings
from inter-brain ERP hyperscanning”. In: NeuroImage 198 (2019), pp. 1–12.

[257] J. Zhang, J. Zhuang, and V. R. R. Jose. “The Role of Risk Preferences in a Multi-target
Defender-attacker Resource Allocation Game”. In: Reliability Engineering & System
Safety 169 (2018), pp. 95–104.

[258] Jing Zhang, Jun Zhuang, and Victor Richmond R Jose. “The role of risk preferences in
a multi-target defender-attacker resource allocation game”. In: Reliability Engineering &
System Safety 169 (2018), pp. 95–104.

[259] Qian Zhang et al. “Investigating AI Teammate Communication Strategies to Support
Human-AI Collaboration in Decision-Making”. In: Proceedings of the ACM on Human-
Computer Interaction (CSCW). Vol. 7. CSCW2. 2023, pp. 1–30.

https://doi.org/10.1371/journal.pcbi.1000254
https://doi.org/10.1371/journal.pcbi.1000254


[260] Qian Zhang et al. “You Complete Me: Human-AI Teams and Complementary Expertise”.
In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
ACM. 2022, pp. 1–19.

[261] [Author name] Zhao. “Model-based reinforcement learning: A survey”. In: [Journal
name] (2023).

[262] Qinian Zhong and Qian Kang. “Ransomware Detection With Opcode Analysis and GAN-
Based Unsupervised Learning”. In: (2024). doi: 10.21203/rs.3.rs-3819158/v1.

[263] V. Zimmermann and K. Renaud. “Moving from a ’Human-as-Problem” to a ’Human-as-
Solution” Cybersecurity Mindset”. In: International Journal of Human-Computer Studies
131 (2019), pp. 169–187.

https://doi.org/10.21203/rs.3.rs-3819158/v1


A Cyber-War Between Bots: Cognitive Attackers are More
Challenging for Defenders than Strategic Attackers
YINUO DU, Software and Social Systems Department, Carnegie Mellon University, Pittsburgh, United
States
BAPTISTE PREBOT, Department of Social and Decision Sciences, Carnegie Mellon University, Pittsburgh,
United States
TYLER MALLOY, Department of Social and Decision Sciences, Carnegie Mellon University, Pittsburgh,
United States
CLEOTILDE GONZALEZ, Department of Social and Decision Sciences, Carnegie Mellon University,
Pittsburgh, United States

Adversary emulation is commonly used to test cyber-defense performance against known threats to orga-
nizations. However, many adversary emulation methods often rely on automated planning and underplay
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1 Introduction
Cyber systems have gradually populated all the personal and collective layers of society. From
banks to hospitals, from electric grids to industrial facilities, the interconnectivity of systems has
created new opportunities for criminals. Cyber security is a domain of great complexity, defined by
uncertainty, lack of visibility, extreme speeds, and partial information. In this adversarial context,
defenders and attackers confront each other using digital weapons that are beyond the limits of hu-
man capabilities for perception and assessment. Defenders need extensive experience to effectively
defend against dynamic and distributed attacks.

Cyber wargaming and adversary emulation (i.e., Red teams) are common practices in organiza-
tions to train defenders (i.e., Blue teams) and to develop appropriate defense algorithms [10, 15].
However, the design of emulated adversaries can be expensive and time-consuming, especially for
scaled networks with a large attack surface and rich defense arsenals. Autonomous agents have
been developed to mitigate this problem [5, 47, 51]. For example, Kotenko [30] modeled a DDoS at-
tack, and Razak et al. [43] simulated network intrusions. However, these simulations do not specif-
ically portray the attacker. The early models contained static patterns prescribed for the attacker
agents to follow [22]. These models eventually gave way to graph-based [29] and state-based [1]
attack simulation methods, which provide a useful characterization of the attacker’s profile, such
as goals, starting points, and available time. This group of simulation methods models and stores
generic attack patterns with preconditions and postconditions in a knowledge base. Additional
attack pattern attributes include the cost of attempts, execution time, base success probability, and
maximum attempts.

Despite technical fidelity, most automated adversary simulation methods ignored the social con-
text and lacked a dynamic behavior component [28]. Human attackers have varying levels of risk
tolerance, which might affect their choice of target and attack methods [55]. Human attackers can
also learn from their experiences [31], dynamically adapt to defenses they encounter, and modify
their strategies accordingly, making them more dangerous over time as they become more adept
at evading detection and exploiting vulnerabilities. Thus, to improve the training of defenders, the
emulated adversaries need to exhibit behavior similar to that of the human attackers and have the
capability to learn and adapt to the defender’s actions.

Cognitive architectures and theories of human decision-making have made significant progress
in emulating human-like behavior in dynamic environments. Unlike typical computational
algorithms that aim to make optimal decisions, cognitive architectures adhere to human con-
straints such as forgetting, limited attention, and bounded rationality [16]. Cognitive models
based on instance-based learning theory (IBLT) [20] have been implemented in the context
of cybersecurity to model human cognitive processes. Dutt et al. [13] proposed an IBL model
that represents the awareness of cyber situation of a human analyst and is capable of making
concrete predictions about the recognition and comprehension processes of a security expert in
a cyber attack. A more recent model from Du et al. [12] uses a cyber security scenario in which
the IBL defender learns to defeat the most aggressive, optimal, but deterministic attack strategy.
Cognitive models have also been used as embedded computational agents to simulate human
interactions with software and networks [18, 35, 52]. Previous work has focused independently on
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understanding defense behaviors and developing cognitive models of blue agents [12, 13] or the
attack preferences and biases of the attacker [11]. However, past work on cognitive modeling in
cyber security systems has rarely considered the real-time social interactions of attackers and
defenders together.

The attacker and the defender can influence each other in cyber adversarial scenarios [53]. Such
dynamics between attackers and defenders can make defenders more vulnerable to adversarial ac-
tions compared to even random attackers [36]. For example, in a simple and abstract game, humans
were found to handle random attacks more effectively than adaptive attacks [36]. This suggests
that commonly used random attack security algorithms may be less effective than human-inspired
adaptive attack strategies in training human defenders. The characteristics of human attackers
have been studied in a phishing experiment. For example Rajivan and Gonzalez [42] found that
individual creativity is a predictor of an adversary’s ability to evade detection. Cognitive biases
and emotions are also believed to affect attacker behavior and decision-making [14, 26].

Given the current evidence on cyber wargaming and adversary emulation, we hypothesize that
cognitive agents that are capable of emulating human adversaries will be more challenging for
cyber defenders than deterministic attacker strategies. If this hypothesis is correct, then training
cyber defenders against cognitive adversaries will result in better-prepared defenders than the
current procedure for training cyber defenders against strategic attackers. This article aims to test
this hypothesis.

The contributions of this article are as follows: First, we propose a cognitive model of a red
agent that uses the theoretical principles of IBLT (that is, IBLRed ) [20]. In a simulation experiment,
we compare the performance of the IBLRed agent with that of a deterministic, highly accurate,
and targeted attack strategy (BeelineRed ) and with a strategy that explores the network without
prior knowledge about the location of targets (MeanderRed ). In Experiment 1, we demonstrate that
IBLRed is capable of learning and achieving performance similar to the optimal agent BeelineRed .
In Experiment 2, we tested the three red agents (IBLRed ,BeelineRed , and MeanderRed ) against a
cognitive defender IBLBlue to demonstrate that IBLRed is the most challenging attacker for IBLBlue .
In Experiment 3, we validate the simulation findings of Experiment 2 in an experiment in which
human participants play the role of defender. The results of the experiment confirm that cognitive
adversaries are more challenging to human defenders than strategic adversaries.

2 Instance-based Learning Theory
IBLT is a cognitive theory of decision-making. It is based on the idea that decisions are made
by recognizing similar past experiences, integrating them into generating the expected utility of
decision alternatives, and selecting the alternative with the maximum expected utility [20]. The
development of cognitive models for cyber defense is based on a large body of work on applying
cognitive science to cyber security (e.g., Reference [17]).

Although both the process and the mechanisms of IBLT have been published, we repeat the
mathematical formulations of the theory here for completeness. The central element of IBLT is the
“instance.” It represents a unit of memory resulting from evaluating potential choice alternatives.
Each decision is stored in an instance, structured with three elements that are built over time:
A situation state s that is composed of a set of characteristics f ; a decision or action a taken
corresponding to an alternative in state s; and an expected utility or experienced result x of the
action taken in a state. Concretely, for an IBL agent, an option k = (s,a) is defined by action a in
state s . At time t , assume that nkt different instances (ki ,xiki t ) for i = 1, . . . ,nkt , associated with
k . Each instance i in memory has an activation value, which represents the ease of retrieving this
information from memory [4]. Here, we consider a simplified version of the activation equation,
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which only captures recency, frequency, and noise in memory:

Λiki t = ln
( ∑

t ′ ∈Tiki t

(t − t ′)−d

)
+ σ ln 1−ξiki t

ξiki t
, (1)

where d and σ are the decay and noise parameters, respectively, and Tiki t ⊂ {0, . . . , t − 1} is the
set of previous timestamps in which instance i was observed. The rightmost term represents noise
to capture individual variation in activation, and ξiki t is a random number drawn from a uniform
distribution U (0, 1) at each step and for each instance and option.

Activation of an instance i is used to determine the probability of retrieving an instance from
memory. The probability of an instance where a soft-max function defines i:

Piki t =
eΛiki t /τ∑nkt

j=1 e
Λjkj t /τ

, (2)

where τ is the Boltzmann constant (i.e., the “temperature”) in the Boltzmann distribution. For
simplicity, τ is often defined as a function of the same σ used in the activation equation τ = σ

√
2.

The expected utility of option k is calculated based on Blending as specified in discrete choice
tasks [19]:

Vkt =

nkt∑
i=1

Piki txiki t . (3)

The choice rule is to select the option corresponding to the maximum blended value. When the
agent receives delayed results, the agent updates the expected utilities using a credit assignment
mechanism [38].

3 Cyber Security Scenario
Testing attacker and defender agents requires a simulation or training platform that encapsulates
cyber elements in an integrated environment. On such a platform, defense agents can confront
attack agents in cyber scenarios and network simulations. Here, we use the interactive defense
game,1 based on CybORG AI gym [7, 8, 50] with adversarial cyber-operation scenarios to allow
users to train agents in a simple but realistic environment. We adopt the CAGE cyber defense
scenario [49] to perform experimental simulations using IBL agents as cyber defenders and cyber
attackers. This framework was also presented in References [12, 41], and in the following, we
outline its main structural elements and the particularities of the cyber defense scenario.

The attacker (hereafter the Red agent) interacts with the environment through high-level actions
that aim to progress and impact the network; the defender (hereafter the Blue agent) aims to stop
the progression of the attacker and remove it from the network. Each combat between an attacker
and a defender is an episode, and the duration of episode was set to 25 steps to ensure that the
Blue agent could fully observe the attack strategies.

Figure 1 illustrates the topology of the network chosen for this scenario. The network is divided
into three subnets: Subnet 1 consists of user hosts that are not critical, Subnet 2 consists of enter-
prise servers designed to support the user activities on Subnet 1, and Subnet 3 contains the critical
operational server and operational hosts. Attackers usually start with user subnets and establish
their entry point through social engineering or spear phishing. In this scenario, the entry point is
host User0.

Figure 2 summarizes the phases of a targeted attack led by the Red agent (red arrows) and
countermeasures for the Blue agent to stop it (blue arrows). The Red agent starts by searching

1http://janus.hss.cmu.edu:8084/
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User0 User1

Subnet 1

Defender Enterprise1 Enterprise2

Subnet 2

Op_Host0 Op_Server0
Subnet 3

Fig. 1. Adaptation of the cage challenge network.

Fig. 2. Effect of actions on the host state (diagram from Reference [49]).

for hosts on the network with DiscoverRemoteSystems. To identify vulnerabilities on a target host,
the next step is to DiscoverNetworkServices. A successful ExploitRemoteService on target can obtain
User level access for the Red agent, which can be escalated to a more privileged Root level by
PrivilegeEscalate. The Blue agent can Remove its adversary at the User level and use Restore if the
Red agent has escalated. It can also Analyse the activities for additional information or passively
Monitor the network.

3.1 Red Agents
We used three types of red agents: Two strategic attackers: (1) a highly efficient deterministic agent,
BeelineRed , and (2) a stochastic agent, MeanderRed ; and (3) a dynamic cognitive agent, IBLRed .

Advanced attackers well-funded by organizations or governments are well planned and highly
organized to increase the probability of the success of the attack [3]. This type of attackers
extensively research their target, collecting the necessary information and intelligence on the
assets of the organizations. Before launching attacks, the attackers can acquire details of the
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network layout, such as the types of switches, routers, anti-virus tools, firewalls, Web servers
used, and ports open. The attackers can then build attack plans using well-known vulnerability
databases such as the Common Vulnerabilities and Exposures List (CVE) and the NIST
National Vulnerability Database (NVD) [34]. These plans allow attackers not only to establish
a foothold, but also to penetrate deeper into the target’s network. BeelineRed assumes that the
attacker has prior knowledge of the network topology and moves directly to the operational
server following the red path (User0 → User1 → Enterprise1 → Enterprise2 → Op_Server0)
(see Figure 1) in a predictive and deterministic way.

Novice attackers (also known as “Script Kiddies”) who rely on pre-made exploit programs and
files (“scripts”) are usually not dedicated enough to their hacking [21]. Instead of making careful
plans and collecting the necessary tools beforehand, they tend to scan random IP blocks on the
Internet for weaknesses and exploit them as they are found. With the increasing amount of tools
and scripts available on the Internet for free, novice attackers can also do a lot of damage to well-
protected systems [9]. MeanderRed assumes no prior knowledge about the network structure and
behaves in a stochastic manner by choosing a random target to move forward.

In contrast, the cognitive agent, IBLRed , is a novel contribution to this research, and it is a
dynamic agent that learns from experience, as described in the IBLT section above. IBLRed intends
to represent cognitive memory-based decisions that can adapt their actions dynamically according
to the conditions of the environment and the actions of the blue agent. The instances represent
each decision made and are structured with the following three elements:

State, sa : The state of the instances of the IBLRed agent is composed of features, f , constructed
using the concept of Attack Models and Attack Graphs introduced by Sheyner et al. [48] to model
the security vulnerabilities of a network and their exploitation from the perspective of an attacker.
Specifically, contextual characteristics include the success status of the previous action of the
IBLRed agent and the resources it occupied. A slot is dedicated to each type of resource in var-
ious states, as shown in Figure 2.

Specifically, a subnet can be newly Detected or already Scanned, while hosts are classified as
Detected, Scanned, Exploited (User), Exploited (Root), Impacted.

The starting status denotes when the IBLRed agent has just successfully established its foothold
on the network on User0. At that point, only the User subnet is detected in addition to its entry
point User0, while the rest of the slots are empty. The most successful final state for the IBLRed
agent is where all hosts and servers are exploited at the Root level and when critical Op_Server0 is
impacted.

Action Space, aa : The action space for the IBLRed agent is dynamically constructed at each step
based on the status of each host on the network. Each action consists of a target host and an
applicable command. As shown in Figure 2, IBLRed can choose to collect more information about
hosts in the network or advance the attack status of known hosts.

Utility, za : A reward is calculated at each step, based on the attack status, as shown in Table 1.
Higher rewards are assigned when the IBLRed agent is able to access more significant systems.
Only root access to the systems and successful impact on the operational server are rewarded. The
agent IBLRed receives a reward of 0 for any other action.

3.1.1 Metrics for the Red Agent. The performance of the Red agent was evaluated for each
episode using the following metrics: (1) Reward: the cumulative rewards received during the
execution of the scenario; (2) Impact duration: the average number of steps per episode that the
Red agent successfully impacts the operational server; (3) Progress: the average number of steps
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Table 1. Utility in the IBL Model: Events and Actions Costs

Event or Action Reward
Administrator access on a Host 0.1
Administrator access on a Server 1
Successfully Impact Op_Server0 10

per episode that the Red agent took to penetrate Enterprise subnet and Operational subnet; and (4)
Action frequency: the average proportion of command usage at each step in an episode.

3.2 Blue Agents
We used two types of simulated blue agents: (1) a deterministic agent SleepyBlue and (2) a dynamic
cognitive agent IBLBlue . SleepyBlue does not attempt to stop the Red agent strategically and only
takes the Monitor action to passively observe the state of the network. This agent helps simulate
the situation where the defender fails to detect the existence of the stealthy attacker and thus does
not employ defense measures. IBLBlue is a dynamic agent proposed and tested in Du et al. [12].
It is also based on IBLT and has been demonstrated to resemble human-like defense decisions in
empirical studies [40]. The instances represent each decision made and are structured with the
following three elements:

State, sd : IBLBlue instance states are constructed to resemble the information that would be
presented to a human defender in the scenario. Specifically, there are two slots for each host or
server, representing the observed activity and the known compromised status of that host at a
certain step in an episode. The order of (Activity, Compromised Status) pairs for each host is fixed
to encode the identity of each host, i.e., the host name, IP address, and Subnet. The step index slot
is included to resemble the step counter within each episode. The IBL agent has to choose the host
to protect and the tool with which to protect it. Each action consists of a host and a command in
the format of cmd host.

Action Space, ad : At each step, based on the observed state of the network and the consequences
of the attacker’s previous actions, IBLBlue selects a host or server to act on and one of four possible
actions: Analyze is used to collect information on the level of compromise of the selected host;
Remove is used to remove a suspected malicious agent from the host or server; if the malicious
agent cannot be removed, then the blue agent can Restore a host or server to a previous stable
state; and Monitor to just continue observing the system, which has essentially no effect on the
state of the network.

Utility, zd : The utility of the blue agent is the negative of the utility of the red agent, as the game
is zero-sum.

3.2.1 Metrics for the Blue Agent. The performance of the Blue agent was also evaluated in terms
of: (1) Action frequency: proportions of command usages at each step; and (2) Number of op-
tions: the average number of defense choices available to the blue agent. Each option is a tuple
that contains the command and the target host.

4 Simulation Experiment 1: Red Agents against a Deterministic Defender, SleepyBlue

How well do the two strategic attackers (BeelineRed , MeanderRed ) compared to the cognitive red
agent (IBLRed ) perform against a passive defender (SleepyBlue )? The answer to this question pro-
vides a baseline for comparing the capabilities of the red agents.
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Fig. 3. Red agents performance when confronted by SleepyBlue : average reward per episode (left) and aver-
age impact duration (right).

Given that BeelineRed is the best-known strategy in our scenario, we expect that this agent
would perform better compared to the other two attackers (MeanderRed and IBLRed ). The
BeelineRed agent will consistently receive the highest reward and maximum impact on the op-
erational server, since BeelineRed represents a highly effective but deterministic attacker. We also
expect that the MeanderRed agent will consistently perform poorly against SleepyBlue , since this
red agent behaves stochastically, without strategic knowledge of the path to move forward against
the defender. In contrast, we expect that our newly proposed IBLRed agent will initially perform
poorly and similarly toMeanderRed when confronted with the SleepyBlue defender, but the IBLRed
agent would learn to take advantage of the ineffective SleepyBlue defender with practice and
achieve a level of performance comparable to the optimal and strategic BeelineRed agent.

4.1 Methods
For each type of red agent (i.e., BeelineRed , MeanderRed , and IBLRed ), we performed 40 runs, each
with 2,000 episodes. The IBLRed agents were run with default decay d = 0.5 and noise σ = 0.25
parameters. This means that the results presented here are all a priori predictions of the IBLRed
agent against the SleepyBlue defender.

4.2 Results
4.2.1 Dynamic Cognitive Agents Learn Effective Attack Strategies against Passive Defenders. The

left panel of Figure 3 shows the reward obtained by the Red agents against SleepyBlue defender.
We observe that the reward of the BeelineRed agents was consistently larger than the reward of the
MeanderRed agents. Also, the reward of the IBLRed agents was initially lower than the reward of
the BeelineRed agents; but the IBLRed agents learned over the course of the episodes, approaching
the rewards of the BeelineRed agents after 2,000 episodes.

These observations are tested with one-way analysis of variance between subjects using type of
attack as the main factor and reward of attacker as the dependent variable, aggregating for the first
500 and the last 500 episodes. As expected, the IBLRed agents (M = 59.09, SD = 43.78) performed
significantly worse than the BeelineRed agents (M = 112.8, SD = 0) against SleepyBlue in the first
500 episodes [F (1, 39998) = 30105,p < .001,η2 = 0.43]. In contrast, the IBLRed agents (M = 104.64,
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SD = 38.68) were able to achieve an average performance comparable to that of the BeelineRed
agents (M = 112.8, SD = 0) in the last 500 episodes. At the end of the 2,000th episode, 55%
of the agents IBLRed received a higher reward than BeelineRed , which requires them to quickly
penetrate the network to impact Op_Server0, and at the same time fully exploit the remaining
valuable systems when the opportunity arises. Most importantly, the agent IBLRed learned such
a complex and efficient strategy purely from experience according to IBLT [20] and without any
explicit encoding of any strategy.

4.2.2 Impact Duration. The main goal of the attacker is to maintain constant Impact over
Op_Server0. The right panel of Figure 3 shows the number of successive impacts performed by the
red agent on the Op_Server after the first impact is achieved. As observed, the BeelineRed agents
consistently maintain a longer impact duration than the MeanderRed agents. The IBLRed agents
start poorly compared to the BeelineRed and MeanderRed agents, but the IBLRed agents are able to
learn quickly and achieve a large number of impacts over the Op_Server0 with more task practice.

To test these observations, we performed a one-way ANOVA between subjects using attacker
type as the main factor and impact duration as the dependent variable, aggregating for the first 500
and the last 500 episodes. As expected, the IBLRed agents are capable of achieving a duration of
impact similar to that of the network (M = 6.4, SD = 1) as the BeelineRed agent (M = 9.0, SD =
3.37) when faced with SleepyBlue in the last 500 episodes [F (1, 39998) = 901.4,p < .001,η2 = 0.31].

5 Simulation Experiment 2: Red Agents against a Cognitive Defender, IBLBlue

After performing a baseline analysis of our three red agents against a passive defender, we com-
pared the three red agents against an adaptive cognitive defender, the IBLBlue agent. In Experiment
2, the strategies of the three agents, BeelineRed , MeanderRed , and IBLT r ained

Red , were kept the same
as in Experiment 1. This means that the agent IBLT r ained

Red was trained against the agent SleepyBlue
for 2,000 episodes and tested against the cognitive adaptive agent IBLBlue .

Since the IBLBlue agent can adapt to the strategies of the attackers, we expect that it will
be able to learn effective defense strategies against the two static attackers: the BeelineRed and
MeanderRed agents. However, predictions of the performance of the IBLBlue agent in defending
against IBLT r ained

Red are less clear.
We expect that BeelineRed will initially achieve a higher reward and a longer impact duration

than the agents IBLT r ained
Red and MeanderRed . However, we expect that the determinism and

static nature of BeelineRed will be exploited by the learning agent IBLBlue , resulting in a worse
attack performance of BeelineRed than IBLT r ained

Red with extended practice. We also expect that
MeanderRed will start with a lower reward and a shorter impact duration than IBLT r ained

Red .
Furthermore, although MeanderRed is stochastic, this attacker is not adaptive and is not a learning
agent. For these reasons, we expect that, ultimately, MeanderRed will be exploited and effectively
stopped by IBLBlue .

5.1 Methods
Similarly as in Experiment 1, we run 40 IBLBlue runs for each type of red agent (that is, BeelineRed ,
MeanderRed , and IBLRed ). The IBL agents (red and blue) were configured with default decay d =
0.5 and noise σ = 0.25 parameters.

5.2 Results: Attacker Behavior
5.2.1 Dynamic Cognitive Agents Learn Effective Defense Strategies against Static Attackers, but

Not Dynamic Ones.
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Fig. 4. Red agents performance when confronted by a cognitive defender, IBLBlue . The average reward per
episode (left) and average impact duration (right).

Attacker Reward. The left panel of Figure 4 shows the reward obtained by the Red agents against
the IBLBlue defender. We observe that the reward for the agents BeelineRed was initially higher
than the reward for the agents IBLRed . However, over time, as the agent IBLBlue learns to de-
fend the network more effectively, the reward of the agents BeelineRed drops significantly and
approaches the reward of the agents MeanderRed . Meanwhile, the adaptive nature of the agent
IBLRed makes it difficult to learn a defense strategy within the training period investigated here.

Given that the agent IBLBlue also starts naively learning from experience, the agents BeelineRed
performed better (M = 112.8, SD = 30.39) than the agents IBLT r ained

Red (M = 80.34, SD = 45.02)
in the first 500 episodes [F (1, 39998) = 20579,p < .001,η2 = 0.34]. However, BeelineRed agents
(M = 5.15, SD = 14.68) performed significantly worse than IBLT r ained

Red agents (M = 54.60, SD =
34.31) in the last 500 episodes [F (1, 39998) = 31185,p < .001,η2 = 0.44]. The MeanderRed agents
(M = 5.26, SD = 4.42) start with worse performance than IBLRed (M = 80.34, SD = 45.02)
[F (1, 39998) = 21185,p < .001,η2 = 0.42] and end with zero reward.

Impact duration. As shown in the right panel of Figure 4, the duration of the impact shows trends
similar to the reward obtained by the red agents against IBLBlue . IBLT r ained

Red achieves shorter im-
pact duration (M = 4.08, SD = 3.77) than BeelineRed (M = 8.93, SD = 2.34) in the first 500 episodes
[F (1, 39998) = 17240,p < .001,η2 = 0.95]. This relative disadvantage reversed in the last 500
episodes, where IBLT r ained

Red had a longer impact duration (M = 3.25, SD = 2.82) than BeelineRed :
(M = 0.18, SD = 1.11) [F (1, 39998) = 14699,p < .001,η2 = 0.94]. The agents MeanderRed start
with a worse performance (M = 0.8711282, SD = 1.118891) than IBLRed (M = 3.25, SD = 2.82)
[F (1, 39998) = 19122,p < .001,η2 = 0.32] and are unable to cause an impact in the last 500
episodes.

Attacker Progress. To further explore the behavior of red agents, we analyzed the number of
steps the attacker takes to reach a subnet (Enterprise and Operational). Taking into account the
layered network structure shown in Figure 1, the progress of the Red agents can be marked by
two milestones: penetration of the Enterprise subnet and the Operational subnet. The higher the
number of steps required to reach a specific subnet, the more effective the defense agent is at
protecting the network from attack.
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Fig. 5. Red agents progression capability when confronted by IBLBlue . Number of steps taken to reach the
Enterprise subnet (left) and Operational subnet (right).

We can observe the increasingly delayed and impeded forward progress ofBeelineRed in Figure 5.
In general, each red agent takes longer to access both the Enterprise and Operational subnets at the
end of the training period compared to earlier in the training, demonstrating that the IBLBlue agent
effectively learns to defend. At the end of the training period, BeelineRed takes, on average, 15 more
steps to enter the Enterprise subnet and 10 more steps to enter the Operational subnet compared
to earlier in the training. However, IBLT r ained

Red shows relatively stable rates of the number of steps
taken to reach these two subnets over the course of 2,000 episodes.

In the first 500 episodes, IBLT r ained
Red takes longer time to penetrate the Enterprise subnet

(M = 4.77, SD = 0.33) and the Operational subnet (M = 15.67, D = 0.61) than BeelineRed (En-
terprise (M = 4.59, SD = 0.33), Operational (M = 12.04, D = 0.38)) [Enterprise: F (1, 39998) =
66.02,p < .001,η2 = 0.06] [Operational: F (1, 39998) = 12489,p < .001,η2 = 0..93]. But this rela-
tive disadvantage reversed in the last 500 episodes, where the IBLT r ained

Red propagated faster into
the Enterprise subnet (M = 6.12, SD = 0.40) and the Operational subnet (M = 16.90, D = 0.52)
than the BeelineRed : Enterprise (M = 19.20, SD = 0.99) [F (1, 39998) = 74265,p < .001,η2 = 0.99],
Operational (M = 21.27, D = 0.97),F (1, 39998) = 7940,p < .001,η2 = 0.89].

The faster progress speed of IBLT r ained
Red emerges from its learning capability against IBLBlue

in addition to the stochasticity of its actions. Although MeanderRed acts stochastically, it is sig-
nificantly impeded by a lack of adaptation and takes, on average, 10 more steps to achieve each
milestone than IBLT r ained

Red .

5.2.2 Dynamic Cognitive Agents Learn Defense Strategies That Disrupt the Behavior of Static
Agents, but Not Dynamic Ones. Figure 6 compares the average distribution of the use of attack
commands at each step of the first 500 episodes (left panels) versus the last 500 episodes (right
panels). IBLT r ained

Red presents proportions of actions similar to BeelineRed at the beginning, with
higher Monitor proportion for IBLT r ained

Red . In the final episodes, BeelineRed and MeanderRed are
stuck in a loop of ExploitRemoteService and PrivilegeEscalate, while IBLT r ained

Red maintained a consis-
tent distribution. This comparison constitutes further evidence of the inefficacy of strategic attack
agents. The disappearance of Monitor, Analyse, and Impact actions can help explain the reason for
the rapid drop in reward within the episodes.
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Fig. 6. Red agents evolution of action frequency in the first 500 episodes (left) and the last 500 episodes
(right).

5.3 Results: Defender Agent Behavior IBLBlue

Since the adversarial scenario is a zero sum game (i.e., the loss of the defender corresponds to
the reward of the attacker), the performance results for IBLBlue can be derived from the perfor-
mance results of the red agents presented above. In particular, IBLBlue performed better against
MeanderRed and BeelineRed than against IBLT r ained

Red . It was able to learn to defend effectively
against MeanderRed and BeelineRed , eventually achieving near-zero losses in the last 500 episodes.
However, IBLBlue was only able to reduce the loss of attacks IBLT r ained

Red by half.
To provide a deeper understanding of these results, we focus this section on the exploration of

the defender’s behavior against the three attackers.

5.3.1 Dynamic Cognitive Agents Adapt Defense Actions Taken against Static Agents, but Not Dy-
namic Ones. As presented in Figure 7, the dynamics of the use of defensive commands by the agent
IBLBlue shows a difference when confronting the agents BeelineRed and MeanderRed in contrast
to the agent IBLT r ained

Red . IBLBlue agents faced with a strategic attacker are able to minimize the
proportion of costly Restore action and stop the attacker with Remove in an earlier state of the
cyber attack chain.

When the IBLBlue against are defending against an IBLT r ained
Red attacker, they do not adjust the

actions they take in a way that is able to respond appropriately to the attacker. This makes sense,
given the constantly adapting nature of the IBLT r ained

Red attacker’s behavior. These results indicate
that the dynamics of this environment make it difficult for an adaptive defense strategy to learn
effectively against an attacker that is also adapting their strategy.

5.3.2 Dynamic Cognitive Attackers Force Defenders to Choose from More Action Options
Compared to Static Attackers. Psychology and behavioral research has shown that a large number
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Fig. 7. IBLBlue evolution of action frequency in the first 500 episodes (left) and the last 500 episodes (right).

Fig. 8. Size of IBLBlue ’s option space in the first 500 episodes (left) and the last 500 episodes (right).

of options hinder learning speed [44, 46]. Defenders face this challenge of information overload.
Figure 8 analyzes the number of options available to the IBLBlue agent during the 25 steps of the
episodes. As shown in the left panel, when IBLBlue fought against BeelineRed or MeanderRed , it
was able to reduce the option space in the final 500 episodes compared to the first 500 episodes. In
contrast, the option space of IBLBlue stays about the same size from the first 500 episodes to the
last 500 episodes when facing the adaptive agent IBLT r ained

Red . That is, agent IBLBlue was unable to
simplify its option space by impeding its progress and minimizing the number of attacked hosts.
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In summary, IBLBlue is able to win the battle against BeelineRed and MeanderRed after 2,000
episodes of repetitive interactions. It is able to block the opponent’s progress, reduce the cognitive
load of himself, and eliminate loss. IBLT r ained

Red appears to be much more persistent, and IBLBlue
can only slightly alleviate its impact.

6 Experiment 3: Red Agents against Human Defenders
Although IBL models have shown successful replication of human behaviors in a variety of tasks,
including cyberdefense [17], empirical verification of the findings of Experiment 2 with human
defenders is needed. The first goal of this experiment is to compare the performance of human
defenders faced with the three types of attackers, BeelineRed , MeanderRed , and IBLT r ained

Red . The
second goal of this experiment is to validate the simulation results of predicted human behav-
ior when paired against these three attackers, by comparing human performance with simulated
IBLBlue defenders. The results of this experimentation will provide support for the theoretical
contribution of this work in motivating the use of cognitive agents to train cyber defenders.

6.1 Experimental Design
Human participants completed the same cyber defense task and scenario as IBLBlue , presented
in Section 3. They performed the task using Interactive Defense Game (IDG) [40, 41], which
provides an interactive decision game in the cyber task and environment.

6.2 Participants
Participants were recruited through Amazon Mechanical Turk to participate in a cybersecurity
study. The study was advertised to last between 30 and 45 minutes. The time it took between
participants was M = 47.29± 16.36 minutes. Participants received a base compensation of $4.50, and
up to $5.60 in bonus payment (M = 3.50±1.39) based on their final score.2 186 participants (124 men,
61 women, 1 N / A) aged 21 to 65 years (M = 37.12 ± 10.15) completed the study. Seventeen of the
186 participants (9%) had more than five years of experience in the network operation and security
area and at least a Master’s degree in a related field. Each participant was randomly assigned to
face one of the three red agents: BeelineRed , MeanderRed , or IBLT r ained

Red .

6.3 Procedure
After giving their informed consent and completing a demographic questionnaire, the participants
received instructions for the task followed by a short quiz to verify their basic understanding of
the instructions for the task. The participants had to correctly answer all the questions before
moving on to the next step of the experiment. The participants received feedback on the precision
of their responses. There was no limit in the number of attempts the participants had to answer
the questions correctly. However, we recorded the score of their first attempt and the number of
times they tried to answer the questions. The participants then watched a video introduction to
the IDG explaining the interface, the game controls, and the dynamics of an episode.

The participants then performed the task consisting of two phases: (1) a practice session and
(2) a main task. The practice session consisted of two short episodes (i.e., games) of 10 steps each.
The practice episodes were intended to familiarize participants with the interface and game con-
trols. To do so, the participants successively faced Beeline and Meander; however, since these two
deterministic attack strategies do not differ significantly during the first 10 steps, the participants
did not have enough information to discriminate between them during the practice session.

2As the score used in this experiment is negative (loss), the bonus payment was calculated by using the difference to the
maximum possible loss and attributing $0.005 per point: bonus=(total loss+1120)*0.005.
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Fig. 9. Red agents performance when confronted by a human defender. The average reward per episode (left)
and average impact duration (right).

Following the practice session, the participants performed the main task consisting of 7 episodes
of 25 steps against the same type of adversary. No time restrictions were imposed. The initial state
of the network was the same for all participants and for each of the episodes.

Subsequently, participants completed a post-experiment survey composed of two parts: (1) feed-
back on their performance and perceived strategy and (2) their experience in computer science
and cyber defense. Finally, the participants received their final score and were dismissed. Experi-
mental instructions, quizzes, and surveys, along with data and analysis scripts, can be accessed at
https://osf.io/8vxej/?view_only=c42691c2b5bb4c31a72b1ada00e38428.

6.4 Results: Attacker Behavior against Human Defenders
6.4.1 Human Defenders Perform Similarly to Dynamic Cognitive Defenders against Both Static

and Dynamic Attackers. The performance of three types of attackers (BeelineRed , MeanderRed ,
IBLT r ained

Red ) against human defenders shown in the left panel of Figure 9 is in alignment with
the simulation predictions shown in Figure 4. As human participants learn from experience, the
BeelineRed agents performed better (M = 66.25, SD = 5.39) than the IBLT r ained

Red agents (M = 55.51,
SD = 4.70) in the first episode [F (1, 124) = 2.187,p = 0.142,η2 = 0.017].

However, IBLT r ained
Red agents posed a more persistent threat to the human defender than

BeelineRed agents. The performance of the BeelineRed agents deteriorates rapidly. The BeelineRed
agents (M = 47.33, SD = 6.42) performed worse than the IBLT r ained

Red agents (M = 54.141,
SD = 6.191) in the last episode [F (1, 124) = 0.577,p = 0.449,η2 = 0.005]. The MeanderRed agents
(M = 5.26, SD = 4.42) perform significantly worse [F (1, 778) = 46.762,p < .001,η2 = 0.057] than
IBLT r ained

Red in 7 episodes.
Consistent with the simulation prediction shown in Figure 4, IBLT r ained

Red demonstrates the per-
sistent duration of the impact and is superior to MeanderRed (M = 0.817, SD = 1.488). In addition,
IBLT r ained

Red achieves a shorter impact duration (M = 1.29, SD = 0.18) than BeelineRed (M = 3.15,
SD = 0.39) in the first episodes [F (1, 872) = 53.1,p < .001,η2 = 0.95]. This gap decreased signifi-
cantly at the end of the seventh episode [BeelineRed : (M = 2.23, SD = 0.41), IBLT r ained

Red : (M = 1.44,
SD = 0.35)].
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Fig. 10. Distribution of attack commands against human defenders.

These results show that the ordering of the highest and lowest attacker rewards and impact
duration on early trials match between human and cognitive defenders. Additionally, the trends
in adjusting the performance of attackers throughout the learning of the defender are similar.
Overall, these results indicate a similar performance against all attack strategies between human
and dynamic cognitive model defenders.

6.4.2 Distribution of Attack Commands. As demonstrated in Figure 10, IBLT r ained
Red used the Im-

pact command the most often, while BeelineRed and MeanderRed are unable to exert a consistent
impact on the operational server and resort to ExploitRemoteService and PrivilegeEscalate.

6.4.3 Human Participants and Cognitive Defenders Behave Similarly against All Attacker Strate-
gies. Consistent with the predictions of the simulated human performance, there was a significant
difference in the mean reward by episode based on the type of Red agent (F(2,)=28.56, p<1e-10,
η2=0.5).

6.4.4 Action Frequency. Similar to IBLBlue , the use of defensive commands by the human de-
fender shows a difference when confronting the agent BeelineRed and MeanderRed in contrast to
the agent IBLT r ained

Red . Human participants are more passive and take more Analyse, Monitor ac-
tions than Remove, Restore actions. However, as shown in Figure 11, human participants have a
consistent preference for the choice of action throughout the course of 7 episodes.

6.4.5 Size of Option Space. Figure 12 presents the number of options available to the human
during the 25 steps of the episodes. Similarly to IBLBlue , human participants can alleviate their
cognitive load by narrowing down the option space when paired with BeelineRed . The size of the
option space remains approximately the same in the two stochastic conditions, that is,MeanderRed
and IBLT r ained

Red .

6.4.6 Dynamic Cognitive Attackers Perform Best against the Most Efficient Human Defenders.
To further investigate the human defenders against the various type of attacker models, we
split the human defenders according to the distribution of attacker reward for each type of red
agent. Efficient Defenders were those that resulted in attacker reward lower than the mean attack
reward, and Inefficient Defenders were those that were equal or above the mean attack reward.
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Fig. 11. Average action frequency of human defender.

Fig. 12. Average size of the human defender’s option space in the first (left) and the last episode (right).

Comparing performance in this way allowed us to determine if there was a clear difference in how
red agents performed versus human participants who were better or worse able to learn attacker
strategies. Furthermore, to compare performance once human defenders had enough experience
to learn the attacker strategy adequately, we limited the statistical analysis to later (>4) episodes of
the trial.

Figure 13 shows that IBLT r ained
Red had a significantly higher reward against efficient Defend-

ers in later trials (mean: 33.19 ± 33.31 (SD); Tukey’s HSD p=0.040). Meanwhile, BeelineRed had
a higher reward against Inefficient Defenders in later trials (mean: 92.18 ± 53.36 (SD); Tukey’s
HSD p=0.041). These results demonstrate that the IBLT r ained

Red strategy remained a challenge for
efficient Defenders throughout the experiment. Furthermore, the difficult but deterministic nature
of the BeelineRed strategy was more difficult for inefficient Defenders.
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Fig. 13. Average red agent reward by episode, split between efficient human defenders and inefficient human
defenders.

An explanation for the poorer performance of efficient Defenders against IBLT r ained
Red and inef-

ficient Defenders against BeelineRed is the defense style used by those groups. The four actions
taken in the task can be described as passive (monitor and analyze) or active (remove and restore)
[40]. Since BeelineRed quickly attacks the operational server, it could be that Inefficient Defenders
perform worse against BeelineRed . Similarly, because IBLT r ained

Red is both stochastic and adaptive
to defender behavior, it could be more difficult for efficient Defenders.

To test this explanation, we compared the proportion of active-type actions performed by ef-
ficient Defenders paired with IBLT r ained

Red , BeelineRed , and MeanderRed . This comparison demon-
strated a higher rate of active actions in efficient Defenders paired with IBLT r ained

Red than both
BeelineRed (p=0.007) and MeanderRed (p<0.001), but no significant difference between BeelineRed
and MeanderRed (p=0.457). This shows that achieving proficient performance against IBLT r ained

Red
required more active strategic actions.

7 Discussion
Adversary emulation strategies can be used to train cyber defenders, develop intelligent systems
for cyber defense, and test cyber defense capabilities. However, the process of developing effective
adversary emulations can be expensive, and their evaluation is often subjective [45, 54]. Existing
automated attacker strategies determine how an attacker could achieve a specific goal by assem-
bling vulnerabilities in a graph or by executing a sequence of actions (for example, reconnaissance,
escalate, exfiltrate, and lateral movement) in order [23]. Most of them are optimal, but also deter-
ministic and predictable, and therefore can be easily thrown off by human defenders [2]. The first
contribution of this article is to demonstrate that it is possible to evaluate intelligent cyber defense
systems using cognitive models, aimed at emulating adaptive human decision-making [18]. We
show that cognitive models that emulate human adversaries can be better test cases for cyber de-
fenders and for technological capabilities than strategic attack agents that execute a sequence of
actions in a fixed order.

Second, we present a cognitive model of an attacker based on IBLT [20], IBLRed . IBLRed is
first trained against a static and inactive defender, SleepBlue . The main feature of IBLRed is that
it can learn from interactive feedback on the task, and we show that it can reach the same level
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of effectiveness as the best adversarial strategy in this scenario. This result suggests that an IBL
cognitive agent can be an effective dynamic and adaptive emulator of attack behavior. Importantly,
the IBL attacker can adapt and learn according to the dynamics of the cyber defense environment.
In recent years, reinforcement learning (RL) has also made rapid progress as an approach to
building adaptive agents [33]. The difference is that RL algorithms are mostly focused on optimally
solving computational problems, while cognitive agents focus more on replicating the way humans
actually learn [16]. With advances in tool-supported RL agents [24] and human-autonomy teaming
[39], defenders are likely to face both optimal adaptive agents and a human attacker. Thus, it is
important to train against both types of adaptive attackers.

A third contribution of this article is to demonstrate the performance of an IBL model of the
defender IBLBlue when paired with three different types of emulated attackers: the optimal attack
strategy BeelineRed the stochastic attack strategy MeanderRed and a cognitive attacker IBLT r ained

Red
is more difficult for the IBLBlue defender to learn than an optimal but stable optimal attack strategy.
The explanation is that using a cognitive model to emulate attackers is more effective than using de-
terministic strategies. Cognitive models are dynamic and adaptive to the defender’s actions, while
the Beeline strategy is static and consistent. The agent IBLBlue was able to learn the Beeline strat-
egy and eventually take advantage of it, while it did not effectively hinder the progress of the agent
IBLRed . Our analyses show that it takes significantly more steps in time for BeelineRed to reach
the Enterprise subnet and, ultimately, more steps to reach the Operational server. The IBLBlue
learns over time to prevent these actions from this BeelineRed strategy. However, it is significantly
more difficult to prevent IBLRed from reaching the Enterprise and Operational servers. We further
verify that there is important learning that occurs from the first to the last episodes in terms of the
actions taken by the attacker. For example, the number of impact actions is significantly reduced
from the first to the last 500 episodes when the IBLBlue agent confronts the BeelineRed strategy,
but the reduction in impact actions is minimal when the IBLBlue agent confronts the cognitive
agent IBLRed . Exploring the actions taken by the agent IBLBlue suggests that the agent learns
to decrease the restore actions when confronted with the agent BeelineRed , while maintaining a
more consistent distribution of actions when confronted with the agent IBLRed . When analyzing
the options with which the agent IBLBlue is confronted at each particular time, we observed an
interesting effect: The IBLBlue agent learned to reduce its decision option space against BeelineRed ,
while the option space of the IBLBlue agent against IBLRed did not decrease substantially.

Finally, we corroborate the simulation predictions in an experiment involving human defenders
facing IBLr ed and BeelineRed and MeanderRed . Consistent with the simulation results in IBLBlue ,
we observe that the cognitive IBLRed attacker poses a greater challenge to human defenders than
the deterministic BeelineRed and MeanderRed strategies. In “Interactive Computer-based” cyberse-
curity skill training, trainees are faced with an adversary and must take a proper course of action
or face severe penalties [37]. In existing game training platforms such as CyberCIEGE [25] and Cy-
berNEXS [6], the adversary is played by experienced hackers or emulated by automated attackers.
The cognitive attacker agent can serve as another type of training partner in such interactive gam-
ing platforms and mitigate the scarcity of human experts. Combined with techniques that trace
the learning progress of trainees, the cognitive attacker agent can provide a personalized training
experience for future cyber professionals.

7.1 Conclusion and Limitations
In conclusion, we provide important steps towards establishing emulated adversaries that can
effectively train cyber defenders and support the development of autonomous cyber defenders.
We demonstrate that it is possible to use cognitive agents to produce adversaries that are adaptive
to defenders’ actions. These models can ultimately be more effective in learning cyber defense
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strategies than static and deterministic adversaries. In future work, we will also evaluate other
types of adaptive agents (e.g., reinforcement learning–based agents) to further investigate the role
of attacker adaptivity in human defender learning.

However, the cognitive agent in this work does not fully reflect the decision-making of the hu-
man attacker. In addition to learning through experience, human attackers also use various forms
of fast and slow reasoning, including heuristics. Such reasoning abilities can improve attackers’ ef-
ficiency but also make them vulnerable to biased decision-making. Defenders must prepare against
experienced attackers who can make fast decisions with heuristics. On the flip side, there is also the
potential to exploit these aspects of malicious actors, induce decision-making errors, and reduce
the impacts or success of an attack. In future work, we will imbue the cognitive attacker agent with
heuristic reasoning abilities. Through training against more human-like attacker agents, defenders
can learn to disrupt attacker cognition.

Another limitation of this work is that the participants recruited from MTurk are not necessar-
ily experts in cyber defense. Consistent with previous studies [27, 32], we found that defenders
with different expertise have a different learning behavior. In future research, we will control the
skill level of defenders by recruiting expert/novices from security operation centers and hacker
communities.

Finally, demonstrating the benefits of using cognitive models in real-world cybersecurity envi-
ronments remains a research challenge. Extending the scenario to the size of real-world networks
can exponentially expand the state space in the cognitive model, and research on partially ob-
servable states for the defender will be required to account for imperfect network monitoring
infrastructures. Future work will aim to improve the game model to be more representative of
real-world environments; in particular, we will address the development of a collaborative defense
environment to further explore human–AI collaboration in cyber defense.
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Abstract 

Given the increase in cybercrime, cybersecurity analysts (i.e. defenders) are in high demand. De- 

fenders must monitor an org anization ’s network to evaluate threats and potential breaches into the 

network. Adversary simulation is commonly used to test defenders’ performance against known 

threats to organizations. However, it is unclear how effective this training process is in preparing 

defenders for this highly demanding job. In this paper, we demonstrate how to use adversarial 

algorithms to in vestig ate defender s ’ learning using interacti ve cyber-defense games. We created 

an Interactive Defense Game (IDG) that represents a cyber-defense scenario, which requires mon- 

itoring of incoming network alerts and allows a defender to analyze, remove, and restore services 

based on the events observed in a network. The participants in our study faced one of two types of 

simulated adver saries. A Beeline adver sary is a fast, targeted, and informed attacker; and a Mean- 

der adversary is a slow attacker that wanders the network until it finds the right target to exploit. Our 

results suggest that although human defenders have more difficulty to stop the Beeline adversary 

initially, they were able to learn to stop this adversary by taking advantage of their attack strat- 

egy. Participants who played against the Beeline adversary learned to anticipate the adversary’s 

actions and took more proactive actions, while decreasing their reactive actions. These findings 

have implications for understanding how to help cybersecurity analysts speed up their training. 

Keywords: cyber defense; human behavior; cyber adversary; interactive games; training 

Introduction 

The rapidly evolving attack capabilities to deploy increasingly so- 
phisticated cyberattacks of unprecedented speed and scale require 
well-trained cybersecurity experts (i.e. defenders, analysts) [ 1 , 2 ]. Cy- 
ber analysts are responsible for protecting an organization’s com- 
puter network and digital assets. The job of these defenders consists 
of a wide variety of network-dependent tasks, including the exami- 
nation of a large number of alerts to identify intrusion activities and 
determine whether a network is under attack, the detection of flaws 
in the organization’s security, the development of appropriate protec- 
tions, and, of course, the mitigation of threats. These activities often 
include making time-sensitive decisions that may involve disrupting 
the organization’s work in order to protect their information. 

Typically, cyber wargaming and adversary simulation are used 
to evaluate defense algorithms and strategies and to train defenders 
against new threats [ 3 , 4 ]. Wargaming exercises mimic a potential 
threat to an organization by using threat intelligence to define what 
actions and behaviors an adversary may use. Wargaming emulators 
build scenarios that capture certain aspects of tactics, techniques, and 
procedures, to help test the efficacy of defense and identify vulnerabil- 
ity of the network [ 5 ]. Also, human defenders are usually recruited 
to interact with adversarial-simulated scenarios to help them learn 
from such an interaction [ 6 , 7 ]. 

Despite a growing interest in cyber-defense behaviors in recent 
years [ 8–12 ], our understanding of the cognitive demands faced 
by cyber analysts is still limited [ 13 ]. Many factors in adversarial 

1 © The Author(s) 2023. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
( https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly 
cited. 
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behavior may influence defense strategies. For example, the aggres- 
sor’s personality traits are known to influence their cyberattack 
behaviors [ 14 , 15 ]: Machiavellianism was found to be a predictor of 
stealthy attacks, while narcissism and psychopathy were associated 
with shorter and more aggressive attacks (i.e. “brute force”). 

Human-in-the-loop cyber defense laboratory research is required 
to study both defensive and offensive cyber operations and to de- 
velop training protocols tailored to different types of attack strate- 
gies [ 16 ]. However, conducting meaningful laboratory research with 
simulated adversaries to study defender behavior is challenging. Par- 
ticipants with the skills and knowledge required to test highly techni- 
cal tasks and sophisticated adversaries are hard to find and are often 
too busy to provide their time to test simulated adversaries [ 9 , 17 ]. 
The design of simulated adversaries of high fidelity in terms of tech- 
niques also requires extensive threat intelligence collected through 
long-term tracking and clustering of intrusion activities [ 18 ]. Given 
the continuous evolution of network environments and adversaries, 
it is also unrealistic to derive a future-proof defense strategy at the 
granularity of current techniques. 

To help mitigate this challenge, researchers have been using sim- 
ulation tools and simplified games [ 19 ]. In the context of cyberse- 
curity, these simplified testbeds are used to study the offensive and 
defensive sides of cyber deception [ 11 , 20 ], to understand how the 
general public classifies phishing emails [ 15 , 21 ], to investigate how 

the cybersecurity knowledge of the attacker affects the identification 
of attacks [ 22 ], and to study the behavior of the attacker under dif- 
ferent levels of uncertainty about the attacker’s strategy [ 23 ]. In this 
work, we adopt the Intrusion kill chain model [ 24 ] to simplify so- 
phisticated cyberattacks into three tactical phases Establish initial 
foothold , Propagate through network , and Act on objectives [ 25 ]. 
Consequently, countermeasures such as Monitor , Analyze , Remove , 
and Restore are adopted to disrupt each phase of the attack lifecycle. 
By pairing defenders with various adversarial strategies constructed 
with the above tactics, we can learn about the behaviors of human 
defenders and their processes to address different types of attackers 
and adapt to dynamic network environments. 

However, there is a lack of research on the impact of differ- 
ent adversarial strategies on defense behaviors and the development 
of defense strategies. Most adversarial cybersecurity games rely on 
game-theoretic approaches to determine the best defense strategies. 
These methods often only consider a particular adversary and as- 
sume that opponents act “rationally” (i.e. exhibit optimization be- 
havior). These techniques assume the availability of information to 
adversaries rather than uncertainty and provide individuals with an 
exact payoff matrix [ 26 , 27 ]. This leads to a misrepresentation of the 
reality of the highly dynamic cyber environment, where analysts must 
work with incomplete and flawed information. While game-theoretic 
approaches can be useful in determining the optimal defense strate- 
gies against known attacks, they provide an unrealistic representation 
of the attacker’s intentions [ 28–30 ]; leading to unrealistic representa- 
tions that might ultimately perform poorly in dynamic cyber-defense 
environments against unfamiliar adversaries [ 30–32 ]. 

Goals and research method 

In this research, we address the question of how human defenders 
behave against different attack strategies and how it affects the emer- 
gence of defense strategies. We defined two adversarial strategies in a 
particular but generic network setting. One adversarial strategy (i.e. 
Meander) was stealthy; and another one was direct and speedy (i.e. 
Beeline), reflecting two contrastic attack strategies. 

In a recent experiment, ref. [ 33 ] proposed a cognitive model based 
on Instance-Based Learning (IBL) theory [ 34 ] that acted as a defender. 

This model was paired with both, the Beeline and Meander adver- 
sarial strategies to provide predictions of the potential performance 
of human defenders. The simulation experiment captured the dif- 
ferences in attack strategies and their effect on defenders outcomes. 
Mainly, the Beeline strategy resulted in a worst performance for the 
model than the Meander strategy. But it showed that the IBL defender 
was able to learn over the course of repeated episodes of the defense 
task. While this is an interesting prediction, human data were not 
available to validate these observations. 

We designed an Interactive Defense Game (IDG) in a cybersecu- 
rity scenario and conducted a laboratory study to test human defense 
behavior against the two adversarial strategies. Similarly to ref. [ 33 ], 
we expect participants who face a Beeline strategy to have more dif- 
ficulty defending their network against intrusions than participants 
who face the Meander strategy; and we also expect that humans will 
learn over the course of repetitions of the defense task. 

Interactive defense game 

The IDG is a web-based interactive cyber-defense game developed 
to study how human defenders make decisions in a cybersecurity 
situation. The IDG does not require any installation and can be 
played remotely using a web browser (Demo of the game: http: 
// janus.hss.cmu.edu:8084/ ). It provides human participants with a 
graphical interface to observe network events and analyze the in- 
formation about a computer network, similar to the way Intrusion 
Detection Systems (IDS) present network events to human defenders. 
IDS are common tools to monitor the activities on a network and to 
help detect possible intrusions or attacks [ 13 ]. 

The task of a cyber defender in the IDG 

In the IDG, participants play the role of cybersecurity analysts hired 
by a fictitious manufacturing company to protect their computer 
network from external malicious activity. The network we use is a 
simplified version of common corporate network topologies. It is 
composed of hosts, staff computers, and servers grouped in sub- 
nets. Attackers are trying to gain access to the Operational Server 
(Op_Server0) to steal information and disrupt production. The eas- 
iest way for them to do so is to enter the network through one of 
the staff computers on the first subnet and progressively make their 
way up to the critical Op_Server0 by gaining administrator access to 
every host on their way. 

Each host on which an attacker got administrator-level access 
costs the defenders some points. The goal of the defender is to mini- 
mize the number of points lost. 

To perform this task, the defenders use the IDG interface shown 
in Fig. 1 . They must actively monitor the activity of the network to 
try to identify malicious activity and take actions to block the pro- 
gression of the attacker. The hosts of the network are characterized 
by the subnet to which they belong, an IP address, and a host name. 
Additionally, the system provides the defenders with two dynamic 
piece of information about each host, the Compromise level and the 
Activity. When targeting a host, the attacker will first try to gain 
user-level access to the machine, then try a privilege escalation to 
gain administrator-level access, and progress to the next target in the 
network. The Compromise level indicates the status of infection of 
the host. The second dynamic element provides information about 
the last Activity detected by the system, like scans or exploitation 
attempts performed by the attacker on this host. However, not all 
attacker’s activities can be detected by the system. More advanced 
actions, e.g. privilege escalation attempts and their consequences, are 
automatically detected. Thus, the defenders have to understand the 
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Figure 1. Illustration of the IDG user interface. 

observable activity and compromised levels to anticipate future ac- 
tions of the attackers. 

Based on these observable elements, defenders can select among 
a set of actions represented in buttons on the bottom right of the 
screen: Monitor, Analyze, Remove, and Restore. Human defenders 
can select a host by clicking on its row in the table and then choose 
one of the four actions to perform on that particular host. Only the 
Monitor action does not require to select a target, it applies to the 
whole network. 

Then, after clicking on the “next”button, the selected action takes 
effect, and the defender can see the result (i.e. amount of points lost) 
from the execution of that action in the “last round” value. A new 

and updated version of the environment is presented to the human 
defender, demonstrating the new state (activity and compromised lev- 
els) of the network elements. The “last round” outcome provides im- 
mediate feedback regarding the effectiveness of the past action, and 
the “total loss” presents the human defender with a cumulative ac- 
count of the loss during the game. Each game lasts a fixed number of 
steps , each step representing one action. 

Defense scenario and attack strategies 

Human defenders in the IDG are asked to defend a computer net- 
work against a red agent. The specific network we used in this sce- 
nario is illustrated in Fig. 2 . 

The network is composed of seven hosts (four computer hosts and 
three servers) distributed across three subnets. Subnet 1 consists of 
user hosts that are not critical, subnet 2 consists of enterprise servers 
designed to support the user activities on subnet 1, and subnet 3 con- 
tains the critical operational server and an operational host. 

Two types of attack strategy are implemented. They differ by the 
assumption of the attacker’s prior knowledge and illustrate attack 
behaviors that may result from differences in the attacker’s person- 
ality traits [ 14 , 15 ]. In the Beeline strategy, attackers route directly 
through subnet nodes to the Operational Server. The Meander strat- 
egy does not assume any prior knowledge of the network from the 
attacker. Attackers following this strategy wonder through the net- 
work, trying to gain privileged access to every host in a subnet before 
advancing further into the network. As a consequence, the Beeline 
strategy is a direct, rapid, and targeted strategy that can reach the 

Operational Server faster than an attacker following the Meander 
strategy. 

The outcome at each step is calculated as shown in Table 1 . If 
the attacker successfully gains administrator access to a user host, 
the defender loses 0.1 points, while losing administrator access to a 
server is penalized by −1.0 points. The loss is applied in each step as 
long as the attacker is not removed from that host or server by the de- 
fender. Defenders also receive a negative reward if they have to use the 
Restore action ( −1), because of the important consequences of this 
action on the system availability . Finally , if the attacker successfully 
perform the Impact action on the Operational Server, the defender is 
penalized by −10 points. As Beeline can reach the Operational Server 
earlier than Meander, it can repeatedly Impact the Operational Server 
for longer (unless stopped by the defender). As a consequence, and 
because of the weight accorded to the Impact action, Beeline is poten- 
tially more harmful than Meander. For the defender, the implications 
are a higher theoretical maximum loss against Beeline ( −160) than 
against Meander ( −100) (These results are estimated using a com- 
pletely passive defender. Attackers are able to perform their attack 
without being disturbed. Beeline then reaches the Operational_server 
five steps earlier than Meander). 

Methods 

Experimental design 

The goal of this experiment is to compare the behavior of human 
defenders faced with the two types of attack strategy discussed above: 
Beeline and Meander . 

Given the characteristics of the Beeline strategy that can be faster 
and more damaging to defenders compared to the Meander strategy, 
we expected that defenders would initially perform worse against 
Beeline than against Meander. This hypothesis was preregistered with 
the Open Science Framework ( https:// osf.io/ u3nfh ). 

Participants 

Participants were recruited through Amazon Mechanical Turk to par- 
ticipate in a cybersecurity study. The study was advertised to last be- 
tween 35 and 45 minutes. The time it took across participants was M 

= 47.02 ± 13.16 minutes. Participants received a base compensation 
of $4.5, and up to $5.6 in bonus payment ( M = 3.96 ± 1.39) based 
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Figure 2. Topology of the network being defended in the IDG scenario. The red line represents the path any attacker needs to take to access the Operational 

Server. 

Table 1. Cost table. 

Event or action Subnet Point cost 

Attacker has administrator access on a Host Subnet 1, 2, 3 −0.1 
Attacker has administrator access on a Server Subnet 1, 2, 3 −1 
Attacker runs IMPACT attack on Operational Server Subnet 3 −10 
Defender restore an Host or Server - −1 

This table was provided to the participants during the instruction phase and was accessible anytime during the experiment through a “help” button. 

on their final score (As the score used in this experiment is negative 
(loss),the bonus payment was calculated by using the difference to 
the maximum possible loss and attributing 0.005$ per point: bonus 
= ( total loss + 1120) ∗0.005). 

A total of 120 participants (89 male, 30 female, 1 N/A) aged 21–
65 years ( M = 36.77 ± 11.00) completed the study. A total of 12 of 
the 120 participants (10%) had more than 5 years of experience in 
the network operation and security area and at least a Master’s degree 
in a related field (In the follow-up survey, participants’ expertise was 
assessed through two likert-scale questions concerning their highest 
degree in network operation and security, and the years of experience 
in this area. A one-way ANOVA on those two groups (experts and 
novices) reveals no effect of the experience on the total losses [ F (1, 
2.07) = 4.2693, P = .17, η2 = .71)). 

Each participant was randomly assigned to face one of the two 
adversarial strategies. 

Procedure 

After giving their informed consent and completing a demographic 
questionnaire, participants received instructions for the task followed 
by a short quiz to verify their basic understanding of the task in- 
structions, including the network topology, attacker’s goal, and the 
loss calculation process. Participants had to correctly answer all the 

questions before moving on to the next step of the experiment. Partic- 
ipants received feedback on the accuracy of their responses and were 
allowed to modify their responses if they were incorrect. There was 
no limit in the number of attempts the participants had to answer 
the questions correctly. However, we recorded the score of their first 
attempt and the number of times they tried to answer the questions. 

Next, participants watched a video introduction to the IDG, ex- 
plaining the interface, the game controls, and the dynamics of an 
episode. 

Then, participants performed the task consisting of two phases: 
(1) a practice session and (2) a main task. The practice session con- 
sisted of two short episodes (i.e. games) of 10 steps each. The practice 
episodes were intended to familiarize participants with the interface 
and game controls. Each of the practice episodes was associated with 
one of the attacker strategies; however, since the two attack strategies 
do not differ significantly during the first 10 steps, the participants 
did not have enough information to discriminate between the two 
adversarial strategies during the practice session. 

Following the practice session, the participants performed the 
main task consisting of seven episodes of 25 steps each. No time 
restrictions were imposed. The experimental conditions were kept 
constant throughout the episodes, which means that each partici- 
pant played seven episodes against the same adversarial strategy. The 
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Table 2. Descriptive statistics (mean ± SD) regarding average loss, 

number of disruptions, recovery time, and success rate per 

episode. 

Beeline Meander 

Loss − 56.12 ± 50.73 − 34.76 ± 30.40 
Disruptions 0.94 ± 0.81 0.49 ± 0.52 
Recovery time (steps) 2.75 ± 3.55 1.31 ± 1.69 

For contextualization, the maximum loss per episode is −160 against Beeline 
and −100 against Meander. 

initial state of the network was the same for all participants and for 
each of the episodes. 

Subsequently, participants completed a postexperiment survey 
composed of two parts: (1) feedback on their performance and per- 
ceived strategy, and (2) their experience in computer science and cy- 
ber defense. Finally, the participants received their final score and 
were dismissed. The experimental instructions, quiz, and surveys, 
along with the data and analysis scripts, can be accessed at https: 
// osf.io/ u3nfh . 

Outcome and process metrics 

We measured the outcome of the defense performance in the IDG 

using three metrics: � Loss : total number of points lost by the defender during the sce- 
nario. For reference, the maximum loss per episode resulting from 

Beeline actions is −160, while it is −100 against Meander. � Disruptions : number of server disruptions that occur within each 
episode. One disruption represents a set of consecutive steps be- 
tween a successful impact attack on the Operating Server and the 
successful recovery by the defender. � Recovery time : the average number of steps per episode that 
the defender takes to remove the attacker from the Operational 
Server after it is disrupted. 

We also measured defense process behaviors in addition to de- 
fender decisions (i.e. which action is chosen in each step). The at- 
tacker actions were also logged for each step and were used to ana- 
lyze the human behaviors and strategies of defense: � Proportion of defense actions : number of times that each of the 

four defense actions—Analyze , Monitor , Remove , and Restore —
is used by a participant within each episode, divided by the length 
of the episode (25 steps). � Proportion of attacker’s targets : number of times each host or 
subnet is being targeted by the attacker within each episode, di- 
vided by the length of the episode (25 steps). This is indicative of 
the attacker’s path in the network. � Proportion of defense strategy : the frequency with which each 
of three coded strategies of defense have been used ( Reactive , 
Proacti ve , and Passi ve ) within each episode. Details of calcula- 
tions of these strategies are presented in the “Defense strategies”
section below. 

Results 

Outcome metrics 

Table 2 presents the average loss, the number of disruptions, and 
the recovery time of the participants who played against the Beeline 
attack strategy and those who faced the Meander attack strategy. 

These observations corroborate some expected differences be- 
tween the two attack strategies in each of the three metrics for 

outcome performance. In general, the participants lost more points 
against the Beeline strategy than against the Meander strategy. The 
average number of disruptions to the operational server within one 
episode was larger when playing against the Beeline than when play- 
ing against the Meander strategy. It also took more steps within an 
episode to remove the attacker from the operational server when dis- 
rupted by the Beeline than the Meander attacker. 

We analyzed the outcome metrics over episodes to determine 
whether the defenders improve with practice against each of the two 
adversaries. Figure 3 shows the average of each of the three out- 
come metrics per episode. Generally, we observe more stability over 
episodes in the participants’ outcomes against the Meander adversary 
than against the Beeline adversary. In other words, the initially poorer 
performance of participants against a Beeline adversary improves 
with more practice with this adversary, while the performance of par- 
ticipants against the Meander adversary does not improve much over 
episodes. 

The participants’ losses are lower and relatively more stable 
against the Meander adversary; however, the participants’ losses are 
larger against the Beeline adversary, and they decrease with more 
practice against this adversary. In addition, the average number of 
server disruptions is initially higher for participants confronted with 
the Beeline adversary compared to those confronted with the Me- 
ander adversary. However, the number of disruptions decreases with 
more episodes against the Beeline adversary. A similar result is ob- 
served in the a v er age reco very time per episode; where the time is 
longer for participants playing against the Beeline adversary com- 
pared to the Meander adversary, but it decreases with more episodes. 

These observations were tested using mixed-effects analysis of 
variance (ANOVAs) that included the adversary as a between- 
subjects factor, the episode as a within-subjects factor, and their inter- 
action. The results for each of the three outcome metrics are reported 
in Table 3 . 

Statistical results indicate that the loss, disruptions, and recovery 
time of the defenders are significantly different when facing the Bee- 
line or Meander adversary. With the exception of a v er age reco very 
time , we also found consistent significant effects of the episode and 
the interactions between the adversary and the episode in the Loss 
and Disruptions. 

P ost-hoc one-way ANO VAs for each of the metrics confirm what 
we observed in the figure: loss and disruptions improved over the 
course of episodes only when participants confront the Beeline ad- 
versary, but not when paired against the Meander adversary. Losses 
were lower with more episodes only in the Beeline adversary [ F (4.29, 
278.7) = 7.69, P < .001, η2 = .02] but not in the Meander [ F (4.12, 
214.1) = 1.256, P = .29, η2 = .01]; and the number of disruptions 
decreased only in the Beeline adversary [ F (4.93, 320.45) = 10.70, P 

< .001, η2 = .08] and not in the Meander [ F (6, 312) = 1.95, P = .07, 
η2 = .02]. 

The analyses above demonstrate significant differences in defense 
outcomes when defenders confront Beeline or Meander adversary. 
The results suggest that Beeline is initially a significantly more dam- 
aging attack strategy than Meander. This makes sense by the defi- 
nition of the strategy, where the Beeline adversary advances directly 
through the subnets to the operational sever . However , importantly, 
participants were able to learn the behavior of the Beeline adver- 
sary and improve their defense in a way that the loss and number 
of disruptions improved with more episodes in the task. Participants 
were more successful against the Meander strategy; however, they 
were unable to significantly improve their performance with more 
episodes. 

In what follows, we further analyze the process by which par- 
ticipants behaved over the course of the episodes. We analyze the 

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/9/1/tyad022/7330894 by guest on 18 July 2025



6 Prebot et al. 

Figure 3. Outcome metrics over time with standard error of the mean. From left to right: loss; disruptions; and recovery time. 

Table 3. Results of the mixed ANOVAs regarding the effect of adversary type and episodes on outcome metrics. 

Metric NumDF DenDF F -value P P significance η2 

Loss 
Adversary 1 .00 117.00 8 .44 .004 ∗∗ .06 
Episode 4 .45 520.94 5 .99 < .001 ∗∗∗ .01 

Adversary:Episode 4 .45 520.94 3 .54 .005 ∗∗ .01 
Disruptions 

Adversary 1 .0 117.00 24 .24 < .001 ∗∗∗ .10 
Episode 5 .1 596.38 10 .08 < .001 ∗∗∗ .04 

Adversary:Episode 5 .10 596.38 4 .34 < .001 ∗∗∗ .02 
Recovery time 

Adversary 1 .0 117.00 8 .87 .004 ∗∗ .06 
Episode 4 .78 559.48 2 .09 .068 .00 

Adversary:Episode 4 .78 559.48 1 .62 .157 .00 

∗P < .05, ∗∗P < .01, and ∗∗∗P < .001. 

Table 4. Descriptive statistics (mean ± SD) regarding the average 

proportion of command usage per attacker type. 

Beeline Meander 

Analyze .20 ±.14 .19 ±.11 
Monitor .36 ±.20 .30 ±.19 
Remove .32 ±.19 .39 ±.22 
Restore .19 ±.09 .19 ±.09 

participants proportion of actions, the dynamics of defense actions 
over time, and characterize their defense strategies. We also explore 
the individual differences of these behaviors. 

Process metrics 

Defense actions 
We analyzed the defense actions taken by the participants while ex- 
ecuting the task. Table 4 presents the overall average proportion of 
use of each of the four defense actions—Analyze , Monitor , Remove 
and Restore —in each of the two adversary strategies. 

In general, the Monitor and Remove actions seem to be more pop- 
ular compared to the Analyze and Restore actions among defenders, 
regardless of the strategy. ANOVAs performed for each adversary 
group revealed significant differences on the proportion of use of 
these actions when facing Beeline [ F (3, 264) = 17.91, P < .001, η2 

= .17) and when facing Meander [ F (3, 208) = 18.80, P < .001, η2 

= .21]. Post-hoc comparisons using Tukey’s HSD corrections confirm 

that, regardless of the type of adversary, the proportion of use of 
Monitor and Analyze; Monitor and Restore; Remove and Analyze; 
and Remove and Restore were significantly different at P < .001. 

Overall, participants in both conditions used Monitor and Re- 
move actions significantly more often than Analyze and Restore (We 
noted a weak but significant positive correlation between the propor- 
tion of Analyze command used and the Cybersecurity background of 
participants (Spearman rank correlation: R s = .23, P = .011). “Ex- 
pert” subjects seemed to be overly focused on the Analyze action. 
However, the discussion of this result is beyond the scope of this 
paper). 

To observe the dynamics of the use of these defense actions over 
the course of episodes, we analyzed the proportions of actions on two 
levels: (1) across episodes, to observe potential learning and progres- 

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/9/1/tyad022/7330894 by guest on 18 July 2025



Human behaviors in adversarial cyberdefens 7 

Figure 4. Average proportion of defense action usage over episodes with standard error of the mean. 

Figure 5. Difference in average proportion of action usage between Meander and Beeline conditions. A positive value indicates a higher proportion of the 

command in the Meander condition, and a negative one indicates a higher proportion in the Beeline condition. 

sive establishment of a defense strategy, and (2) within episodes, ag- 
gregating all episodes and analyzing across the 25 steps of episodes. 

Figure 4 shows the average proportion of actions over the course 
of the seven episodes. The defender’s behavior appears to be very sim- 
ilar in both adversary strategies across episodes. The main differences 
observed are that the actions Monitor and Remove are more com- 
mon than the actions Analyze and Restore. In addition, the action 
Remove is more common when the defender confronts the Meander 
than when confronting the Beeline adversary. 

However, mixed-effect ANOVAs on the proportion of each of the 
action types only revealed a significant effect of the episode on the 
proportion of Analyze action [ F (4.33, 506.54) = 8.318, P < .001, η2 

= .02] when playing against the Beeline and also the Meander adver- 
saries. No effects of the type of adversary were found for any of the 
actions. 

We also analyzed the proportion of actions performed at each 
step over all episodes. To highlight the differences between the two 
adversaries, we calculated the difference between the proportion of 
actions taken by participants facing the Meander opponent and the 
proportion of actions taken by participants facing the Beeline oppo- 
nent. Figure 5 presents this difference. 

We observe a larger number of Remove actions initially in the 
Meander compared to the Beeline, and the larger number of Anal- 
yse actions in the Beeline compared to Meander in the first 10 steps. 
The difference in the proportion of actions is relatively consistent 
and stable during the first 10 steps. However, after step 10, we 
observe significant variability in this difference of the proportion 
of actions, noticing that the participants against the Beeline adver- 
sary engage in more Monitor actions than those playing against the 
Meander. 

The proportion of actions against Beeline and Meander was 
tested for each type of action during steps 1–10, and then during steps 
11–25. Table 5 indicates that the only significant difference is in the 
proportion of Monitor and Remove actions during steps 11–25. The 
proportion of Monitor actions for participants who confronted the 
Beeline strategy was higher than those who confronted the Mean- 
der strategy. Also, the proportion of Remove actions for participants 
who confronted the Meander strategy was higher than those who 
confronted the Beeline strategy. 

To explain these defense behaviors within episodes, we analyzed 
the types of targets that each of the adversarial strategies attacked in 
each of the steps aggregated across all episodes. Figure 6 represents 
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Table 5. Results of the ANOVA regarding the effect of adversary type in groups of steps 1–10 and 11–25. 

Command NumDF DenDF F -value P P significance η2 

1–10 
Analyze 1.00 686 .40 3 .53 .06 .08 
Monitor 1.00 670 .47 0 .08 .784 .03 
Remove 1.00 610 .51 2 .61 .107 .07 
Restore 1.00 685 .28 0 .27 .601 .04 

11–25 
Analyze 1.00 1014 .13 0 .08 .78 .03 
Monitor 1.00 1016 .06 38 .80 < .001 ∗∗∗ .23 
Remove 1.00 992 .60 24 .47 < .001 ∗∗∗ .20 
Restore 1.00 1025 .17 1 .72 .191 .05 

∗∗∗P < .001. 

Figure 6. Evolution of the proportion of attack by target across steps. 

the proportion of targets that each of the adversaries attacked on 
each step. 

We observe that both adversaries start by attacking Subnet 1, then 
move to User 1, then to Enterprise 1, and then to Subnet 2. This sim- 
ilarity of adversarial actions appears during the first eight steps of 
the game. After these steps, Meander starts to target different hosts, 
such as “Defender,” while Beeline moves on to Enterprise 2 and then 
directly to the Operational Server. This illustration explains the dif- 
ferences in the two attack strategies and explains why the human 
defenders’ actions vary after step 10 and differs in the Monitoring 
and Removing actions during steps 11–25. 

The analysis of defense actions provides evidence of an evolution 
in the dynamics of defender’s decisions throughout the experiment. 
We propose that this behavior is the result of the participant’s learn- 
ing to defend against their opponent, which explains the performance 
improvement observed in Fig. 3 . There are at least two possibilities 
to evaluate whether participants improved their understanding of the 
opponent’s strategy and the optimality of their decisions. 

Given the sequential nature of the game, the optimality of a de- 
cision at a specific step should be defined based on the effect that 
each particular action will have in future steps. Thus, it is possible 
but not trivial to calculate such “optimal” decision at each step. For 
each action taken by each individual participant, one would need to 
calculate the sequence of 25- n actions that would result in the lowest 

loss by the end of the episode at each step n and for all the future 
steps. This is a computationally intensive model and not a trivial op- 
timization algorithm that we considered but decided not to pursue. 

Instead, we looked to characterize defense strategies and devel- 
oped a set of defense heuristics, that may inform human behavior. 

Defense strategies 
To capture the level of understanding of the opponent’s strategy and 
to identify defense actions that would be cognitively plausible, we 
developed a set of defense heuristics and classified the defense ac- 
tions into three groups of strategies: Reacti ve , Proacti ve , and Passi ve 
strategies. 

In the cyber literature, proactive and reactive strategies usually 
refer to the general approach institutions have for their cybersecu- 
rity, i.e. anticipating future threats versus patching security flaws that 
could expose them to known threats [ 35–38 ]. Here, as we focus on 
the operational level rather than the organizational one, we catego- 
rized each individual decision and action according to the following 
definition: 

� The passive strategy represents defense actions that have no di- 
rect effect on the state of the network or slowing or stopping the 
progress of the adversary in the network. 
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Table 6. Heuristics. 

Behavior Strategy 

Recovering a compromised host at the user or 
administrator level 

Reactive 

Recovering the Operational Server when it is impacted Reactive 
Blocking an initial Impact attempt Proactive 
Preventing a host from being compromised Proactive 
Repeating a successful action Proactive 
Monitoring or Analyzing Passive 

Table 7. Descriptive statistics (mean ± SD) regarding the average 

proportion of defense strategy per attacker type. 

Beeline Meander 

Reactive .27 ±.15 .26 ±.16 
Proactive .19 ±.19 .15 ±.20 
Passive .48 ±.22 .45 ±.24 

� The reactive strategy represents actions that result in an improved 
state of the network, such as the recovery of infected hosts. These 
are actions that the defender takes after hosts have already been 
attacked by the adversary and defense points have been lost. � The proactive strategy is characterized by preventive actions. 
These are actions that reflect an anticipation of the next adver- 
sarial move or a prediction of the intention of the adversary, in 
a way that the defender is able to block the progression of the 
attack. 

Table 6 presents the set of high-level heuristics used to categorize 
defense actions into one of the three strategies. Using the defender 
action, the state of the network (e.g. is the defender targeting a host 
that is or has been attacked), and the effect of the defense action, we 
coded each of these heuristics. Using this coding scheme, 91% of all 
defender’s actions were categorized. 

In particular, we characterized proactive actions as a way to deter- 
mine whether the defenders were ahead of the attacker by choosing 
the action that would prevent the attacker from doing damage to the 
network in the future. A repetition of proactive actions reflects an 
advanced understanding of the opponent’s strategy, and explains the 
learning across episodes. 

The overall proportion of reactive, proactive, and passive strate- 
gies coded from the defenders’ actions when confronted with Bee- 
line and Meander adversaries are presented in Table 7 . The table 
indicates that passive strategies are more common than proactive 
strategies. 

Figure 7 presents the proportion of these strategies per episode. 
This figure illustrates that passive strategies are most common, re- 
gardless of the type of adversary. The proportion of reactive strate- 
gies decreases over the course of episodes, while the proportion of 
proactive strategies increases. This pattern appears to be very simi- 
lar for both adversaries, although the increase of proactive strategies 
appears to be faster against the Beeline adversary compared to the 
Meander adversary. 

The mixed-ANOVA results shown in Table 8 indicates a signifi- 
cant effect of the episode on the proportion of each strategy in both 
types of adversaries. It also shows a significant interaction between 
the episode and the type of adversary for the proportion of proactive 
strategy. 

Post-hoc one-way ANOVAs, and considering the Bonferroni ad- 
justed P -value ( P .adj), it can be seen that the simple main effect 
of Episode on the proportion of Proactive strategy was significant 
against Beeline [ F (2.46, 159.66) = 9.152, P .adj < .001, η2 = .04] 
but not against Meander [ F (3.11, 161.83) = 2.930, P .adj = .068, η2 

= .01]. 

Individual differences 
Figure 8 represents the proportion of each strategy fit per episode 
for each individual participant separately. Furthermore, these panels 
are organized according the overall loss of each of the participants, 
where the top-left panel represents the participant with the maximum 

loss and the bottom-right panel represents the participant with the 
minimum loss. 

This figure immediately reveals the variability in the individual 
behaviors and the connections between the strategy that each partic- 
ipant used and the individual loss. Many unsuccessful defenders use 
passive strategies more often, while more successful defenders were 
more proactive. 

Strategy and loss correlations 
The association between the strategy and the total loss across both 
adversaries, was also analyzed through correlations. Scatter plots in 
Fig. 9 represent the relationship between each individual defender’s 
total loss score and the proportion of each strategy. 

Spearman’s correlation tests indicate a strong significant posi- 
tive correlation between the participant’s loss and the proportion of 
proactive strategy (Spearman rank correlation: R s = 0.66, P < .001). 
That is, generally, defenders with a higher proportion of proactive 
behaviors are more likely to lose fewer points, i.e. to protect the net- 
work better. Being proactive, such as performing a Remove action 
that prevents a host from being exploited, is an efficient way to pre- 
vent loses and being more successful in protecting the network. 

Similarly, Spearman’s correlation tests indicate a moderate signif- 
icant negative correlation between the defender’s loss and its propor- 
tion of passive strategy (Spearman rank correlation: R s = −0.45, P 

< .001). Defenders with larger number of passive actions were more 
likely to lose more points since they are not taking any active defense 
action, i.e. they are not protecting the network. 

Finally, the correlation between the defender’s loss and the pro- 
portion of reactive strategy was not significant. 

Discussion 

We designed a simple cyber-defense game as a web-based applica- 
tion, to study human defense decisions against simulated adversaries. 
In this experiment, we measured the impact of two different deter- 
ministic attack strategies on defenders’ behaviors. To do so, we an- 
alyzed their performance, their defense choices and behaviors, and 
their strategies. 

As expected, the defenders performance reflects the difference in 
“aggressiveness” of the attack strategy in terms of Loss, Recovery 
Time, and number of Disruptions. Indeed, as an attacker following 
the Beeline strategy was quicker to reach the Operational Server than 
one following a Meander strategy, it resulted in significantly bigger 
Loss for the human defender, more Disruptions and longer Recov- 
ery Time. However, we have observed that, over the episodes and 
independently from the condition, participants have managed to im- 
prove their performance and lower their Loss. Two possible explana- 
tions can be investigated for the overall improvement: (1) the num- 
ber of Disruptions dropped while subjects learned to more efficiently 
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Figure 7. Average proportion of each strategy per episode. 

Table 8. Results of the mixed ANOVA regarding the effect of adversary type and episodes on the proportion of defense strategies. 

Strategy NumDF DenDF F -value P P significance η2 

Reactive 
Adversary 1 117.00 0.18 .675 .00 
Episode 4.15 485.82 8.83 < .001 ∗∗∗ .03 

Adversary:Episode 4.15 485.82 2.30 .550 .01 
Proactive 

Adversary 1 117.00 1.09 .299 .01 
Episode 3.03 354.99 9.23 < .001 ∗∗∗ .02 

Adversary:Episode 3.03 354.99 2.70 .045 ∗ .01 
Passive 

Adversary 1 117.00 0.66 .417 .00 
Episode 3.73 436.85 3.51 .009 ∗∗ .01 

Adversary:Episode 3.73 436.85 1.11 .352 .00 

∗P < .05, ∗∗P < .01, and ∗∗∗P < .001. 

prevent the attacker from reaching the Operational Server and/or, (2) 
the Recovery Time improved, i.e. subjects became faster to recover 
the Operational Server from a disruption. 

Results indicate a significant drop in the number of Disruptions 
recorded over time, while no amelioration is noticeable in terms of 
Recovery Time. This can be interpreted as the defenders learning to 
more efficiently block the progression of the attacker in the network, 
before it reaches the Operational Server. 

Overall, participants confronted with a Beeline attacker learned 
to develop an efficient Proactive defense strategy to improve their per- 
formance, be it in terms of loss, number of disruptions, and recovery 
time. Our interpretation is that, even though both attack strategies 
are deterministic, Beeline is more direct and consistent, and routing 
through a smaller number of hosts than Meander. This makes the 
Beeline strategy easier for the defenders to form a mental representa- 
tion of, and to predict the adversarial actions with increased defense 
experience. The predictability of the strategy of attack had a signifi- 
cant influence on how humans learn an effective defense strategy. 

Although participants who faced the Beeline adversary seemed 
to significantly improve their performance over time, they only suc- 
ceeded to achieve similar level of performance than participants who 
faced the Meander adversary. In some ways, the Beeline adversary 
leaves more room for improvement, which could also be a factor 
in the observed difference in learning pace. In past results involv- 

ing experiments with cognitive models on the same task [ 33 ], de- 
fense agents showed accentuated learning curves when confronted 
to a Beeline attacker but similar final performance after a large 
number of episodes. It would be interesting to see how humans are 
able to improve their strategies and how their performance evolves 
with more episodes. Also, in future work, longer episodes (i.e. more 
than 25 steps) could allow us to use patterns identification meth- 
ods and extended analysis of actions sequences, to refine the cate- 
gorization of defense strategies and perhaps identify more complex 
heuristics. 

In general, this study illustrates how the type of simulated adver- 
sary that human defenders face may influence the speed of learning 
and the development of an adequate defense strategy. A more ag- 
gressive but more predictive attacker was found to be easier to learn 
and exploit by human defender compared to a stealthy and less pre- 
dictable adversary. 

Cyber analysts have to work in a highly dynamic environment, 
with flawed and noisy information. Adversarial cyber-defense games 
and simulation tools like the IDG can help simulate such decision- 
making situations and better understand the cognitive demands faced 
by humans cyber defenders. 

This experiment also aimed to provide human data to assess 
the accuracy of human-like IBL defense agents, as presented in 
refs. [ 33 , 39 , 40 ]. In this context, our work sheds light on the 
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Figure 8. Proportion of each strategy per subject and episode. Subjects are ordered by Loss. Least performing subject (maximum loss) in the top-left corner. 

The loss value is displayed above each graph. 
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Figure 9. Scatter plot of subject’s total Loss and proportion of strategy. 

importance of providing less predictive attackers for the development 
and training of human defenders. These results support the findings 
of recent modeling experiments that have shown that dynamic at- 
tack strategies are a weakness for cognitive models and AI defense 
[ 33 , 40 ]. 

Future work needs to look into the effect of such fully dynamic 
and adaptive attackers on the human development of defense strate- 
gies. We formulate the hypothesis that cognitive dynamic and adapt- 
able attack agents that are able to learn, will present a bigger chal- 
lenge to defenders, and thus, it provide a better training opportunity 
for defenders. 

This is also a necessary evolution toward more realistic scenar- 
ios where expertise brings an advantage. The cybersecurity expertise 
in particular would be necessary in situations with complex envi- 
ronments and complex tools used in the workplace. In naturalistic 
settings, the diversification of strategies of attack and their dynamic 
adaptation to the opponent’s actions is indeed more common, and 
becoming a prominent topic with AI-led cyberattacks. 

Because participants with the skills and knowledge required to 
test highly technical tasks and sophisticated adversaries are hard to 
find and are often too busy to provide their time to test emulated 
adversaries, extensive care has been given to design a relevant cyber 
task that could be performed by a general population. 

Future work will aim to improve the task design to be more repre- 
sentative of real-world environments, with an increased complexity 
of the scenario (e.g. larger networks, simulated regular user activity), 
by providing more diverse opponents strategies and by introducing 
teamwork. In particular, we will look into the development of a col- 
laborative defense environment to further explore human–AI collab- 
oration in cyber defense and address some of the challenges of the 
cyber battlefield of the future. 
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 A B S T R A C T

Autonomous agents are becoming increasingly prevalent and capable of collaborating with humans on 
interdependent tasks as teammates. There is increasing recognition that human-like agents might be natural 
human collaborators. However, there has been limited work on designing agents according to the principles 
of human cognition or in empirically testing their teamwork effectiveness. In this study, we introduce the 
Team Defense Game (TDG), a novel experimental platform for investigating human-autonomy teaming in 
cyber defense scenarios. We design an agent that relies on episodic memory to determine its actions (Cognitive 
agent) and compare its effectiveness with two types of autonomous agents: one that relies on heuristic 
reasoning (Heuristic agent) and one that behaves randomly (Random agent). These agents are compared in 
a human-autonomy team (HAT) performing a cyber-protection task in the TDG. We systematically evaluate 
how autonomous teammates’ abilities and competence impact the team’s interaction and outcomes. The results 
revealed that teams with Cognitive agents are the most effective partners, followed by teams with Heuristic 
and Random agents. Evaluation of collaborative team process metrics suggests that the cognitive agent is more 
adaptive to individual play styles of human teammates, but it is also inconsistent and less predictable than the 
Heuristic agent. Competent agents (Cognitive and Heuristic agents) require less human effort but might cause 
over-reliance. A post-experiment questionnaire showed that competent agents are rated more trustworthy and 
cooperative than Random agents. We also found that human participants’ subjective ratings correlate with 
their team performance, and humans tend to take the credit or responsibility for the team. Our work advances 
HAT research by providing empirical evidence of how the design of different autonomous agents (cognitive, 
heuristic, and random) affect team performance and dynamics in cybersecurity contexts. We propose that 
autonomous agents for HATs should possess both competence and human-like cognition while also ensuring 
predictable behavior or clear explanations to maintain human trust. Additionally, they should proactively seek 
human input to enhance teamwork effectiveness.

1. Introduction

With advances in computational power, network robustness, cogni-
tive modeling, and machine learning capabilities, a new form of team 
is on the rise: the human-autonomy team (HAT; McNeese, et al., 2018). 
HATs are composed of at least one member of a team that meets 
the definition of an ‘autonomous agent’, another member is human, 
and the team members depend on each other to achieve a collective 
goal. Wynne and Lyons (2018) define an ‘ideal’ autonomous agent 
teammate as: ’a highly altruistic, benevolent, interdependent, emotive, 
communicative and synchronized agent teammate, rather than sim-
ply an instrumental tool’. Although existing work has examined the 
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effects of agent performance (Bansal et al., 2019) and warmth (Harris-
Watson, Larson, Lauharatanahirun, DeChurch, & Contractor, 2023) on 
the effectiveness of HAT, there is increasing recognition that human-
likeness offers unique ways to improve human attitude toward agents 
and facilitates human–agent cooperation (Glikson & Woolley, 2020; 
Pelau, Dabija, & Ene, 2021; Zhang, Chong, Kotovsky, & Cagan, 2023). 
Human participants have shown a higher level of trust in the aid 
of computer agents with a human-like appearance (de Visser et al., 
2012; Von der Pütten, Krämer, Gratch, & Kang, 2010), verbal com-
munication (Kulms & Kopp, 2019), and a display of emotion (Boone 
& Buck, 2003; Kay, Keller, & Lehmann, 2020). However, there is very 
limited information, empirical investigations and data regarding how 
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humans and autonomous agents that are human-like at the cognitive 
level collaborate (Gonzalez, 2024). Musick, O’Neill, Schelble, McNeese, 
and Henke (2021) explored how team composition affects team pro-
cesses and emergent team cognition. However, their teams consisted of 
only humans, and used a Wizard of Oz approach to make participants 
believe their teammates were autonomous agents. In contrast, our study 
implements genuine human-autonomy teams with actual autonomous 
agents working alongside human participants, providing empirical ev-
idence about the true human-autonomy interaction rather than merely 
perceived interaction.

Cognitive architectures and theories of human decision making 
have made significant progress in emulating human-like behavior in 
dynamic environments (Ritter, Tehranchi, & Oury, 2019). Unlike typ-
ical computational algorithms that aim to make optimal decisions, 
cognitive architectures adhere to human constraints such as forgetting, 
limited attention, and bounded rationality (Gonzalez, 2024). Cognitive 
models such as instance-based learning theory (IBLT; Gonzalez, Lerch, 
& Lebiere, 2003) have been implemented in various domains and 
demonstrated similarity to human decision making processes, includ-
ing repeated binary choice tasks (Gonzalez & Dutt, 2011; Lejarraga, 
Dutt, & Gonzalez, 2012), sequential decision-making (Bugbee & Gon-
zalez, 2022), and practical applications such as identifying phishing 
emails (Cranford, Lebiere, Rajivan, Aggarwal, & Gonzalez, 2019) and 
making decisions about cyber attacks (Aggarwal et al., 2022). More 
recently, cognitive agents have demonstrated a human-like theory of 
mind (Nguyen & Gonzalez, 2022), or the natural ability to predict the 
intentions and false beliefs of other agents (Geib & Goldman, 2009; 
Kautz, Allen et al., 1986). ToM has also been shown to be essential 
for HAT teamwork (Bendell, Williams, Fiore, & Jentsch, 2024)

The questions we pursue in this research are as follows: Do human-
like cognitive agents have any advantage over optimally performing 
non-cognitive agents in HAT collaborations? How do humans perceive 
the cooperativeness and trustworthiness of cognitive and non-cognitive 
agents in HATs? We explore the potential of cognitive theory to build 
human-like agents for HATs and compare such cognitive agents in a 
collaborative HAT applied to cyber defense. We developed a cognitive 
model that represents the human decision process and incorporated this 
agent into a HAT experiment where humans and autonomous agents 
interact and collaborate as a team to ensure the security of an computer 
network. To enable this investigation, we designed the Team Defense 
Game (TDG), a novel experimental platform that facilitates controlled 
studies of human-autonomy teaming in cyber defense scenarios. In an 
online experiment, we compare how a human defends against adver-
saries with the help of an autonomous defender that acts randomly, 
uses smart heuristics, or learns from experience interactively in the task 
(i.e., the cognitive agent). To evaluate team effectiveness (Hackman, 
1978; O’Neill, Flathmann, McNeese, & Salas, 2023), we measure the 
HATs’ performance in terms of their ability in a cyberdefense scenario 
that requires agents to prevent attacks and resolve network issues. In 
addition to performance in this task, we also measure human percep-
tion of agents in terms of trustworthiness and cooperativeness in a 
post-experiment questionnaire (Kocielnik, Amershi, & Bennett, 2019; 
Ragot, Martin, & Cojean, 2020). To better understand how different 
types of autonomous agents lead to different team outcomes, we mea-
sure three collaborative metrics during the teamwork process based 
on the dynamics of the cyberdefense task. At the general level, we 
hypothesize that the cognitive agent will be the best teammate, capable 
of cooperative interaction with humans during teamwork, lead to the 
best team performance, and be perceived as the most trustworthy and 
cooperative partner by humans. The following review of related work 
supports this general expectation.

2. Related work

2.1. Human-Autonomy Teaming (HAT) in cybersecurity

Autonomous systems have been used to control cyber operations
(Stevens, 2020) and network security challenges (Bécue, Praça, & 

Gama, 2021). Deep learning techniques have been used for the de-
tection of anomalies and malware (Tayyab, Khan, Durad, Khan, & 
Lee, 2022). Bayesian networks have been applied for the identification 
of attack paths and the correlation of incident intrusion (Albasheer 
et al., 2022). Game-theoretic methods have been used to model the 
interaction between the defender and the adversary as security games 
and offer optimal allocation strategies of defense resources (Fang, 
2021). However, it is clear that across cyber defense, many automated 
components are limited forms of adaptable automation; that is, they 
have low adaptability, or the adaptability is overly time-consuming. A 
typical example of the latter is an intrusion detection system in which 
a user configures alerts but has to manually adjust and maintain those 
settings and manage potential false alarms. Recently, the application 
of reinforcement learning has allowed adaptive cyber defense that is 
flexible to the dynamics of network/system security status (Du, Song, 
Milani, Gonzales, & Fang, 2022). However, much of this work still uses 
autonomous systems as decision-support tools. In this type of work, the 
autonomous system has no agency and is used to give recommendations 
to humans rather than to work with humans in a HAT collaboration.

Today, cyber analysts are a scarce resource and are often over-
loaded (Nobles, 2022). Security Operations Centers (SOCs) combat the 
growing problem of alert fatigue, where the sheer volume of alerts 
overwhelms SOC analysts and raises the risk of overlooking critical 
threats (Chhetri et al., 2024), creating ideal conditions for misallocation 
of attention (Parasuraman, Molloy, & Singh, 1993). To address this 
challenge and meet the demands posed by sophisticated adversaries 
and the need for agile responses, autonomous systems must evolve 
beyond mere recommender systems and operate with higher levels of 
agency (Linkov et al., 2023). The cyberdefense technology community 
is beginning to recognize the necessity of building autonomous agents 
that can act on their own (Kott, 2023).

However, it is essential to explore autonomous agents that can 
account for the decision-maker’s values or specific mission needs. For 
example, following a cyber attack, an AI-generated decision engine may 
recommend disabling an application on the compromised computer 
system. This action may neutralize the threat posed by the compro-
mised system, but could simultaneously endanger a mission, negatively 
impact a user’s ability to perform critical tasks, or allow the adversary 
to extend the duration or scope of the cyber attack (Linkov et al., 
2023). Human experts should stay in the loop to provide intuition, 
critical thinking, and contextual information by approving or denying 
recommendations from AI decision engines that may have negative 
impacts. Sarker, Janicke, Mohammad, Watters, and Nepal (2023).

In summary, autonomous agents should be able to operate with 
a degree of self-autonomy and self-directed behavior (agency) while 
at the same time working interdependently with humans to achieve 
a shared objective. For the partnership to be successful, the poten-
tial benefits of HAT must be weighed against foreseeable negative 
human-autonomy interactions. Unintended results of incorporating 
autonomous agents that must be addressed include creating more 
(not less) work for humans, failing to decrease required manpower, 
deskilling operators, reducing awareness, contributing to accidents, and 
loss of life (Gutzwiller, Clegg, & Blitch, 2013; Lyn Paul, Blaha, Fallon, 
Gonzalez, & Gutzwiller, 2019; Strauch, 2017). The critical factors for 
successful teamwork in HAT applications must be identified.

The growing literature on HATs in domains such as urban search 
and rescue (Wohleber, Stowers, Barnes, & Chen, 2023) and hospital 
management (Chiou, Lee, & Su, 2019) has identified some of these 
critical factors for successful teamwork, but little is known about HATs 
in cybersecurity. Teams in cybersecurity operations, especially those 
in 24/7 security operations centers, have specific dynamics (Paul, 
2014). Different cyberdefense scenarios also pose unique challenges 
for humans and autonomous agents working in teams. For example, 
in incident response and recovery, autonomous agents might focus on 
information triage. They would leave the task of further analysis and 
strategic decision-making to humans. In adaptive defense, autonomous 
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agents can be more efficient in dynamically adjusting security mecha-
nisms based on real-time threat intelligence. Humans would supervise 
and fine-tune agent decisions only when necessary (Linkov et al., 2023). 
Due to these varied and unique applications, a synthetic cyber task en-
vironment is needed to empirically evaluate HATs with different team 
compositions in various cyber scenarios. This environment would also 
provide humans with early exposure to demonstrations of simulated 
HATs before implementing them in the cyber workforce.

2.2. Cognitive models: Computational representation of human decision 
processes

The ability of autonomous systems to emulate human decision-
making can benefit human-autonomy teaming (Jiao, Zhou, Gebraeel, & 
Duffy, 2020; McNeese, Demir, et al., 2018; Prebot, 2020). As suggested 
by Gutzwiller, Espinosa, Kenny, and Lange (2018) and Zhang, McNeese, 
Freeman, and Musick (2021), creating autonomous agents that can 
work efficiently with humans should involve modeling team interaction 
and human cognition. It has the potential to ease the coordination of 
actions, improve trust in autonomous agents, and increase the perfor-
mance of the team. In fact, models of human cognition have already 
been used in tutoring systems, playing the role of a ‘‘simulated student’’. 
Computer tutors using cognitive models of students to build teaching 
instructions and provide directed feedback were shown to improve 
student performance by the same amount as conventional methods 
one third of the time (Anderson, Corbett, Koedinger, & Pelletier, 1995; 
Ferster, 2022; Matsuda et al., 2013).

Existing methods in human-autonomy teaming typically do not 
involve modeling the cognitive mechanisms that underlie dynamic de-
cision making (Ren, Chen, & Qiu, 2023). As a result, the actions of these 
autonomous teammates can be difficult for end users to understand, 
even if they are theoretically more optimal than the decisions made by 
more cognitively inspired agents (Li et al., 2023). Overall, the research 
on decision support systems in cyber defense has put a strong prefer-
ence for optimal decisions, rather than understandable and human-like 
decision making (Vegesna, 2023). In this work we investigate the abil-
ity of cognitively inspired autonomous agents to integrate with humans 
into a team, and compare it to more a optimally designed Heuristic 
model, which is described more fully in the following sections. Another 
motivation supporting the improved teaming afforded by more cogni-
tively inspired agents, compared to deterministically optimal ones, is 
that they can better adapt to the natural variation in human behavior 
and theoretically result in improved teaming performance.

Instance-Based Learning Theory (IBLT) emerged from the need 
to explain dynamic human decision-making processes, where a se-
quence of interdependent decisions is made sequentially (Gonzalez 
et al., 2003). IBLT provides a general algorithm and mathematical 
formulation of memory retrieval related to the well-known cognitive 
architecture ACT-R (Anderson & Lebiere, 2014). The theory proposes 
a representation of decisions and outcomes in the form of instances. In 
the past decade, cognitive models based on IBLT have been applied to 
represent the dynamic decision-making process in various domains that 
require real-time interactivity between models and humans (Nguyen, 
Phan, & Gonzalez, 2023). With this increased use of IBLT, the applica-
tion of models to tasks that involve multiple players is also becoming 
more common. The initial theoretical developments of IBLT in this 
direction involved two-person game theoretical models (Gonzalez, 
Ben-Asher, Martin, & Dutt, 2015). More recently, other interesting 
applications of IBLT models have been proposed, including the ability 
to predict other agents’ goals, beliefs, and intentions through the 
Theory of Mind reasoning (Nguyen & Gonzalez, 2020). In summary, 
existing work on learning-based cognitive modeling, specifically IBLT, 
has shown that these models operate in ways similar to humans. 
This similarity can enhance trust and understandability in HATs, as 
it allows more relatable and predictable interactions between human 
operators and autonomous agents. In addition, researchers can use the 

same mechanisms to build human-like models of the theory of mind 
by observing others’ behavior. Thus, IBLT provides critical building 
blocks for modeling shared cognition processes—memory, attention, 
and reasoning—central to Human-Autonomy Teaming.

In the context of cyber security, IBL models have been developed 
to represent individual human cyber defense decisions (Dutt, Ahn, 
& Gonzalez, 2011), human attacker decisions that can inform cyber 
defense strategies (Cranford, Gonzalez, et al., 2020; Cranford, Gonzalez, 
Aggarwal, et al., 2020; Gonzalez, Aggarwal, Lebiere, & Cranford, 2020), 
and end-user phishing classification decisions that can help improve 
cyber defense (Cranford et al., 2019; Xu, Singh, & Rajivan, 2022). 
However, there is no existing work that incorporates IBLT for the 
defense of human-autonomy teams.

2.2.1. Instance-based learning theory
Although both the process and the mechanisms of IBLT have been 

published in multiple papers, we reproduce the mathematical formula-
tions of the theory here for completeness. The central element of IBLT is 
the ‘‘instance’’. It represents a unit of memory resulting from evaluating 
potential choice alternatives. Each decision is stored in an instance, 
structured with three elements that are built over time: a situation state 
𝑠 which is composed of a set of features 𝑓 ; a decision or action 𝑎 taken 
corresponding to an alternative in state 𝑠; and an expected utility or 
experienced outcome 𝑥 of the action taken in a state. Concretely, for 
an IBL agent, an option 𝑘 = (𝑠, 𝑎) is defined by action 𝑎 in state 𝑠. At 
time 𝑡, assume that 𝑛𝑘𝑡 different instances (𝑘𝑖, 𝑥𝑖𝑘𝑖𝑡) for 𝑖 = 1,… , 𝑛𝑘𝑡, 
associated with 𝑘. Each instance 𝑖 in memory has an Activation value, 
which represents the ease of retrieving this information from mem-
ory (Anderson & Lebiere, 1998). Here, we consider a simplified version 
of the Activation equation, which only captures recency, frequency, and 
noise in memory: 

𝛬𝑖𝑘𝑖𝑡 = ln
⎛
⎜⎜⎝

∑
𝑡′∈𝑇𝑖𝑘𝑖𝑡

(𝑡 − 𝑡′)−𝑑
⎞
⎟⎟⎠
+ 𝜎 ln

1 − 𝜉𝑖𝑘𝑖𝑡
𝜉𝑖𝑘𝑖𝑡

, (1)

where 𝑑 and 𝜎 are the decay and noise parameters, respectively, 
and 𝑇𝑖𝑘𝑖𝑡 ⊂ {0,… , 𝑡 − 1} is the set of previous timestamps in which 
instance 𝑖 was observed. The rightmost term represents noise to capture 
individual variation in activation, and 𝜉𝑖𝑘𝑖𝑡 is a random number drawn 
from a uniform distribution 𝑈 (0, 1) at each step and for each instance 
and option.

Activation of an instance 𝑖 is used to determine the probability of 
retrieving an instance from memory. The probability of an instance 
where a soft-max function defines 𝑖: 

𝑃𝑖𝑘𝑖𝑡 =
𝑒𝛬𝑖𝑘𝑖𝑡∕𝜏

∑𝑛𝑘𝑡
𝑗=1 𝑒

𝛬𝑗𝑘𝑗 𝑡∕𝜏
, (2)

where 𝜏 is the Boltzmann constant (i.e., the ‘‘temperature’’) in the 
Boltzmann distribution. For simplicity, 𝜏 is often defined as a function 
of the same 𝜎 used in the activation equation 𝜏 = 𝜎

√
2.

The expected utility of option 𝑘 is calculated based on Blending as 
specified in discrete choice tasks (Gonzalez & Dutt, 2011): 

𝑉𝑘𝑡 =
𝑛𝑘𝑡∑
𝑖=1

𝑃𝑖𝑘𝑖𝑡𝑥𝑖𝑘𝑖𝑡. (3)

The choice rule is to select the option corresponding to the max-
imum blended value. When the agent receives delayed results, the 
agent updates the expected utilities using a credit assignment mech-
anism (Nguyen, McDonald, & Gonzalez, 2021).

The Instance-Based Learning process is formalized in Algorithm 1, 
which outlines the sequential decision-making procedure of an IBL 
agent. The algorithm begins with initialization parameters that include 
a default utility, an empty memory dictionary to store instances, coun-
ters to track time and steps, and a flag indicating whether feedback is 
delayed. For each decision cycle, the agent observes the current state 
and enters an execution loop where it explores the available options. 
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Within this exploration, the agent calculates the activation values 
for each instance using Eq. (1), computes the retrieval probabilities 
with Eq. (2), and determines the blended values through Eq. (3). The 
agent then selects the action corresponding to the maximum blended 
value, executes it, observes the resulting state, and receives feedback. 
This feedback is stored in memory as a new instance, and the out-
comes are updated through a credit assignment mechanism when the 
feedback is delayed. The process continues until a terminal state is 
reached or the step limit is exceeded, embodying the core principles 
of experience-based learning through memory activation and utility 
maximization.
Input: default utility 𝑢0, a memory dictionary  = {}, global 

counter 𝑡 = 1, step limit 𝐿, a flag 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 to indicate 
whether feedback is delayed.

repeat
Initialize a counter (i.e., step) 𝑙 = 0 and observe state 𝑠𝑙
while 𝑠𝑙 is not terminal and 𝑙 < 𝐿 do

Execution Loop
Exploration Loop 𝑘 ∈ 𝐾 do

Compute activation values 𝐴𝑖(𝑡) of instances 
(𝑘𝑖, 𝑇 (𝑖)) by Eq: (1)
Compute retrieval probabilities 𝑃𝑖(𝑡) by Eq: (2)
Compute blended values 𝑉𝑘(𝑡) corresponding to 𝑘 by 
Eq: (3)

end 
Choose an action 𝑎 corresponding to option 
𝑘𝑙 ∈ argmax𝑘∈𝐾 𝑉𝑘(𝑡)

end 
Take action 𝑎, move to state 𝑠𝑙+1, observe 𝑠𝑙+1, and receive 
outcome 𝑢𝑙+1
Store 𝑡 into instance corresponding to selecting 𝑘𝑙 and 
achieving outcome 𝑢𝑙+1 in 
If 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 is true, update outcomes using a credit assignment
mechanism

𝑙 ← 𝑙 + 1 and 𝑡 ← 𝑡 + 1
end 

until task stopping condition
Algorithm 1: Instance-Based Learning Process

3. Human-Autonomy Team Defense

3.1. Paradigm as HAT

A definition of HAT provided by the systematic review of O’Neill, 
McNeese, Barron, and Schelble (2022) states that a team includes 
autonomous agents as individual members who are recognized and seen 
as performing a unique role on the team with humans. Their work 
identified both interdependence (‘‘acting with other member activities 
and outcomes’’) and agency (‘‘involving independence of actions among 
autonomous agent members’’) as two major criteria for autonomous 
agents to be seen as teammates rather than tools. The first criterion 
speaks to the nature of the interaction, and the second speaks to the 
perceived capacity of the agent.

Interdependence. Interdependence can arise from the interrelatedness 
of the task for each team member, the team structure that requires 
interaction among team members, or the common goal and shared 
outcomes (Johnson & Johnson, 1989; Ramamoorthy & Flood, 2004). 
In TDG, human participants are monetarily rewarded based on the out-
comes achieved by the human participant and the autonomous agent 
together. The collaboration structure also creates an interdependence 
that necessitates an exchange of information (here, the intention of 
actions) between the autonomous agent and the human, similar to what 
happens in human-human cyber-teams.

Fig. 1. Differences in autonomy of action between human and agent teammates. The 
autonomous teammate has to ask the human for approval of the Restore and Misinform
actions.

Agency. One method of measuring the ‘agency’ of an autonomous 
agent is the Parasuraman Levels of Automation (LOA) paradigm (Para-
suraman, Sheridan, & Wickens, 2000). O’Neill et al. (2022) assert that 
an autonomous agent in a HAT should at least have partial autonomy, 
i.e., they can perform actions for themselves instead of suggesting 
alternatives for humans. In the TDG, the level of autonomous agents 
falls between level 5, where the agent proposes a course of action 
but will not enact its decision without human approval (‘‘non-pre-
approved’’ actions), and level 7, where the agent chooses and enacts 
its course of action, while notifying the human teammate.

3.2. Team Defense Game (TDG)

We designed the Team Defense Game (TDG), an online cyber de-
fense game developed to study how humans make decisions in collabo-
ration with an automated agent to defend a network from cyberattacks. 
TDG is an extension of the interactive defense game (see Prebot, 
Du, & Gonzalez, 2023) adapted from the CAGE challenge (Standen, 
Lucas, Bowman, Richer, Kim et al., 2021), a cyber defense compe-
tition created to foster autonomous cyber defense research. In TDG, 
human participants play the role of cyber analysts. They are tasked 
with protecting the computer network of a fictitious manufacturing 
company against external malicious activity. Finding critical security 
incidents among a large number of false alerts generated from separate 
security products is cognitively demanding and stressful, often leading 
to frustration and performance degradation (Ban, Samuel, Takahashi, 
& Inoue, 2021; Dykstra & Paul, 2018; Nobles, 2022). To combat fa-
tigue, human participants are paired with an artificial teammate, an 
autonomous cyber defense agent, who can make decisions and partially 
act independently to collaborate with the human defender in a team. 
Human and autonomous agents must collaborate efficiently to monitor 
the network, detect suspicious activity, and take appropriate actions to 
protect the network. The TDG provides human participants with a user 
interface to observe and analyze network events while interacting with 
an autonomous teammate protecting the same network and to supervise 
the actions of the teammate.

In human-human cyber teams (e.g., Cyber Protection Team, Incident 
Response Team, Security Operation Centers), analysts are provided 
with a set of pre-approved actions that they can execute without con-
sulting their superior (Boyarchuk, Khudyntsev, Lebid, & Trofymchuk, 
2021). If they consider that the situation requires actions that they 
cannot perform without approval from a superior, they need to submit 
their intention to their chain of command for validation before acting. It 
is a common practice to limit or expand the level of autonomy of human 
analysts through technical controls in the form of group memberships, 
password protection, firewalls, and even physical access. The idea that 
an autonomous teammate would have its level of autonomy controlled 
in a similar way makes it very similar to the technical controls that 
teams already use for human team members (Hauptman, Schelble, 
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Fig. 2. Interaction flow.

Fig. 3. User Interface example of the TDG.

McNeese, & Madathil, 2023). In TDG, we consider the autonomous 
agent a cyber analyst with a restricted set of pre-approved actions. 
As with its human counterparts in real-world settings, the autonomous 
agent can select an action that is not pre-approved but must submit for 
approval or modification to its (human) teammate. As shown in Fig.  1, 
the HAT consists of one human and one autonomous agent, each having 
a set of pre-approved actions. The agent takes the role of a low level 
analyst, and the human is the superior in the hierarchy. The agent’s 
pre-approved actions are a subset of the human’s pre-approved actions.

As shown in Fig.  2, in each step of the game, the decision to be made 
by a human analyst is a target (i.e., what computer or server to protect 
immediately) and an action to take on that target, and the same applies 
to the autonomous agent. Both make their decision without knowing 
the intention of their teammate. The human is presented with the 
agent’s intention after he submits his intention. If the agent’s intention 
involves one of the ‘‘pre-approved’’ actions (i.e., Monitor or Remove 
— see Fig.  1), it is ‘‘approved’’ by default, and the action is performed 
without the human’s involvement. If the agent chooses to perform a 
‘‘non-pre-approved’’ action (i.e., Restore or a Misinform), the human is 
prompted to validate or modify this intention by changing either the 

selected action or the target. If the human and autonomous agent select 
the same target, the human is prompted to resolve this overlap. To do 
so, they must modify either one of the intentions (human’s or agent’s). 
The human decides when to proceed to the next step of the game which 
will execute the two actions selected by the human and the agent. 
The agent’s decision is executed first. The order in which actions are 
executed does not affect the effects of these actions.

As an example shown in Fig.  3, the human decides to take the 
Remove action on host User1; the agent decides to take the Misinform 
action on the same host User1. In this situation, the human participant 
is prompted to resolve the conflict. The human participant is allowed 
to change the agent’s action, target, or his own action or target. The 
team will not be able to move to the next step until the overlap of the 
human’s target and the agent’s target is resolved.

3.3. Cyber scenario

As a simulated testbed, TDG allows customization of cyber sce-
narios. Each scenario consists of a simulated network, an adversary, 
and a defense team. TDG supports networks with arbitrary topologies 
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Fig. 4. Network configuration consisting of three subnets.

Table 1
Defender’s loss caused by attacker’s access and the cost of defense actions.
 Event or Action Subnet Cost (Points)  
 Attacker has administrator access on a Host Subnet 1 −0.1  
 Attacker has administrator access on a Host Subnet 2 −1  
 Attacker runs IMPACT attack on Operational Server Subnet 3 −10  
 Defender Restore an Host – −1  
 Defender Misinform (deploy a decoy) – −0.5/step (max 5 steps) 
 Defender disturb a regular User – −0.5  

and adversaries with various attack capabilities and strategies. In this 
section, we introduce the cyber scenario used in the human-subject 
experiment.

In this scenario, the network is a simplified version of a common 
corporate network. As shown in Fig.  4, the simulated computer network 
consists of 13 hosts (9 computer hosts and 4 servers) distributed over 
three subnets. Subnet 1 consists of user hosts that are not critical. Sub-
net 2 consists of enterprise servers designed to support user activities 
on Subnet 1. Subnet 3 contains the critical operational server (Server 
0), which maintains a service that is key to the operations of the system 
owners and some other operational hosts. The goal of the adversary is 
to navigate through the network to the Operational Server (Op_Server0) 
to steal valuable information and disrupt the network, which incurs 
a large cost to the defenders (see Table  1). The adversary algorithm 
follows a deterministic strategy that assumes prior knowledge of the 
network layout and is efficient, as it takes the shortest route to the op-
erational server (see the red path in Fig.  4). Following this attack path, 
the adversary enters the network from a staff computer (i.e., User1) on 
the first subnet and makes its way to the critical Op_Server0 by gaining 
administrator access to every host on their way. Each host on which 
an attacker has administrator-level access is costly for the defenders 
(represented in a loss of points).

The goal of the defense team is to minimize the number of points 
lost. To understand the costs associated with events and actions, the 
TDG interface provides human participants with a table representation 
of the computer network. Each element of the network is represented 
as a row in the table, associated with some static parameters (name, IP 
address, subnet to which it belongs) and dynamic parameters that rep-
resent the state of infection of the host (Compromise level) and the last
Activity detected by the system, such as scans or exploitation attempts 
performed by the attacker on this host. To add realism and complexity 
to the task, regular network activity is generated by simulated regular 
users who perform random scans. Specifically, a regular user scanned 
a randomly-chosen asset in approximately 5 steps out of the 25 steps 
in each episode. Therefore, defenders must understand the observable 

activity and compromise levels to discriminate suspicious activity and 
anticipate future actions of attackers. Based on these observable ele-
ments, Human participants and Agents in the defense team are given 4 
possible actions to choose from in each step: (1) Monitor the network 
(i.e., do nothing), (2) Remove user-level adversary access to hosts, (3)
Restore a system back to a standard configuration which will remove 
exploited privilege levels, (4) Misinform to deploy a decoy which can 
engage with the attacker to disrupt its operations and delay its progress.
Restoring a system is guaranteed to remove adversary activity, but it is 
assumed that restoring a system disrupts the activities of legal users on 
that system. Misinforming with the honey service also requires careful 
quarantine and consumes computing resources. Thus, using these two 
commands is costly for the defense team.

The scenario consists of 7 episodes, each composed of 25 steps. 
To evaluate learning across episodes, at the end of each episode, the 
network and the attacker’s progress are reset to the same initial state. 
At each step, the defense team takes two defense actions (one by the 
human and one by the autonomous agent), followed by an action by a 
regular user of the network. To add realism and complexity to the task, 
regular network activity is generated by simulated regular users who 
perform random scans. Specifically, a regular user scanned a randomly 
chosen asset in approximately 5 steps out of the 25 steps in each 
episode. Therefore, defenders must understand the observable activity 
and the levels of compromise to discriminate suspicious activity and 
anticipate future actions of attackers. Finally, the adversary algorithm 
observes the network and enacts an attack action. The cost to the 
defenders at each step is calculated based on the actions taken by 
the HAT as shown in Table  1, including the cost of losing hosts of 
various significance and the expense of Restore and Misinform actions. 
The cost of the previous round and the cumulative loss are displayed 
to the human participants. The goal of the defense team is to minimize 
cumulative costs.
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4. Autonomous Defender Agents

In this section, we introduce the three types of autonomous agents 
used in the TDG as partners with a human player, including: a Cognitive 
agent, a Heuristic agent, and a Random agent.

4.1. Cognitive agent

The Cognitive agent determines the actions to take according to the 
IBLT algorithm introduced in Section 2.2.1. This agent makes decisions 
under the guidance of cognitive principles and has been shown to make 
defense decisions similar to humans (Gonzalez, 2024). The instances 
represent each decision made and are structured with the following 
three elements:

State: instance states are constructed to resemble the information 
that a human defender would have access to and use to determine the 
action they take. Specifically, there are two attributes for each host or 
server, representing the observed activity and the known compromised 
status of that host. The order of (Activity, Compromised Status) pairs for 
each host is fixed to encode the identity of each host, i.e., the Host 
name, IP address, and Subnet. The Step Index slot is included to indicate 
the step counter within each episode.

Action Space: The decision is for the Cognitive agent to choose a host 
to protect and the tool to protect it. Each action consists of a host and 
a command in the format of cmd host. The action space consists of each 
of the four actions that target each host in the network for a total of 
40 possible actions.

Utility: The utility given to the Cognitive agent is the loss of the team 
from the last step in each step. As shown in Table  1, team loss is the 
sum of loss caused by attacker’s access to the network and the cost of 
defense actions.

The Cognitive agent accumulates memory of defense decisions and 
their utility while defending a network against the adversary. The 
amount of noise added during instance activation computation is set 
to the default value 0.25. The rate at which activation for previously 
experienced instances in memory decay with the passage of time is set 
to the default value 0.5. The memory retention limit is set to 250000
instances. Note that the Cognitive agent is essentially a zero-parameter 
model, as the decay and noise parameters were not manipulated, fitted, 
or adapted in any way to its partner’s behavior. During training, the 
cognitive agent gathers experience in an individual version of the TDG, 
where its actions are automatically approved. This training period lasts 
500 episodes, after which the model achieves an average cumulative 
episode loss of 68.95 ± 7.23 (see Table  1). When the agent makes 
a decision, during training and the main experiment, it does so by 
predicting the expected utility of each action that is available to it 
according to (3), and selecting the maximum utility action. During 
the training period, the agent successfully learns to defend against the 
attacker by selecting actions that maximize utility. Additionally, the 
memory capability of the IBL model allows it to continuously learn and 
change its action selection based on the utility that the team observes. 
It is important to note that the Cognitive agent does not directly 
observe or model its human teammate’s specific actions. Rather, it 
observes: (1) the joint utility achieved by the team, which integrates 
both players’ contributions, and (2) the resulting network states af-
ter both players act. Through its instance-based memory, it builds a 
repository of situation-action-outcome experiences, with more recent 
and frequent experiences having higher activation according to Eq.  (1). 
This is how the agent indirectly incorporates human influence into its 
decision-making process without explicit teammate modeling.

Input: Current network state 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑡𝑒
Output: Selected defense action
𝑜𝑝𝑡𝑖𝑜𝑛𝑠 ← ∅
𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝐻𝑜𝑠𝑡𝑠 ← GetHostsWithStatus(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑡𝑒, 
"Exploited")

𝑝𝑟𝑖𝑣𝐸𝑠𝑐𝑒𝑑𝐻𝑜𝑠𝑡𝑠 ← GetHostsWithStatus(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑡𝑒, 
"PrivEsced")

𝑎𝑡𝑡𝑎𝑐𝑘𝑃𝑎𝑡ℎ𝐻𝑜𝑠𝑡𝑠 ← GetHostsOnAttackPath(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑡𝑒)
𝑜𝑝𝑡𝑖𝑜𝑛𝑠.Add("Monitor")
if 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝐻𝑜𝑠𝑡𝑠 ≠ ∅ then

𝑚𝑜𝑠𝑡𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑 ←
GetMostImportantHost(𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝐻𝑜𝑠𝑡𝑠)

𝑜𝑝𝑡𝑖𝑜𝑛𝑠.Add("Remove " + 𝑚𝑜𝑠𝑡𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑)
end 
if 𝑝𝑟𝑖𝑣𝐸𝑠𝑐𝑒𝑑𝐻𝑜𝑠𝑡𝑠 ≠ ∅ then

𝑚𝑜𝑠𝑡𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑃 𝑟𝑖𝑣𝐸𝑠𝑐𝑒𝑑 ←
GetMostImportantHost(𝑝𝑟𝑖𝑣𝐸𝑠𝑐𝑒𝑑𝐻𝑜𝑠𝑡𝑠)

𝑜𝑝𝑡𝑖𝑜𝑛𝑠.Add("Restore " + 𝑚𝑜𝑠𝑡𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑃 𝑟𝑖𝑣𝐸𝑠𝑐𝑒𝑑)
end 
if 𝑎𝑡𝑡𝑎𝑐𝑘𝑃𝑎𝑡ℎ𝐻𝑜𝑠𝑡𝑠 ≠ ∅ then

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐻𝑜𝑠𝑡 ←
GetMostImportantHost(𝑎𝑡𝑡𝑎𝑐𝑘𝑃𝑎𝑡ℎ𝐻𝑜𝑠𝑡𝑠)

𝑜𝑝𝑡𝑖𝑜𝑛𝑠.Add("Misinform " + 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐻𝑜𝑠𝑡)
end 
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛 ← RandomChoice(𝑜𝑝𝑡𝑖𝑜𝑛𝑠)
return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛
Function GetMostImportantHost(ℎ𝑜𝑠𝑡𝑠):

Sort ℎ𝑜𝑠𝑡𝑠 by subnet importance (Subnet 3 > Subnet 2 > 
Subnet 1)
return first host in sorted list

Algorithm 2: Heuristic Agent Decision Making

4.2. Heuristic agent

As a baseline to compare the Cognitive agent, we designed the 
Heuristic agent that was formalized as a set of rules, which are applied 
according to the state of the network. The algorithm of the Heuristic 
agents is shown in Algorithm 2.

At each step, the Heuristic algorithm identifies compromised hosts 
and randomly selects contextually appropriate defense actions based 
on the current state of the network. These heuristics assume that an 
agent has full knowledge of the network structure, the losses associated 
with each action taken by adversaries, and knows which actions will 
have the best chance of preventing the progress of the attacker. Fur-
thermore, the performance of Heuristic agents share connections to the 
expected behavior of reinforcement learning (RL) after long periods of 
training (Sutton, Barto et al., 1998). After finding the optimal or near-
optimal decision strategy during training, the RL models show stable 
behavior.

Both agents, Cognitive and Heuristic, are dynamic, but the Heuristic 
agent relies on pre-defined rules, which do not change over the course 
of an episode of the task. Also, the Heuristic agent is as competent as 
the cognitive agent when performing the task in isolation, achieving 
an average cumulative episode loss of (66.20 ± 6.43). However, the 
Heuristic and Cognitive agents differ fundamentally in their underlying 
algorithms. The Heuristic agent uses fixed rule-based decision-making, 
selecting randomly from predetermined correct options based on the 
network state, while the Cognitive agent employs the IBLT algorithm 
to accumulate experiences and adapt its decision-making over time 
according to their cognitive mechanisms.

To illustrate the behavior of the Cognitive and Heuristic agents, 
Appendix (Behavior Analysis of the Autonomous Agents) shows the 
distribution of target selection patterns across simulation steps. The 
appendix suggests that the dynamics of the Cognitive and Heuristic 
agents are similar but also differ in concrete ways in which the agents 
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address the attacker’s progression over the User, Enterprise, and Opera-
tional subnets. This suggests that the Heuristic agent is a good baseline 
comparison to the Cognitive agent.

4.3. Random Agent

The key similarities between the Heuristic and Cognitive agents 
are their overall competence in the task and their ability to make 
decisions that directly depend on the network state of the cyber defense 
task. To get a more basic baseline, a Random agent was developed to 
evaluate teaming performance in the TDG, and to compare participants’ 
perception of trustworthiness and cooperativeness.

The Random agent selects actions by choosing a resource as a 
target at random and then choosing an action to perform at random. 
All resources and actions have an equal probability of being selected 
by the random agent. As a result, the performance of the Random 
agent acting in isolation is considerably lower than that of the IBL 
or Heuristic models, achieving an average cumulative episodic loss of 
121.39 ± 49.44. Due to this poor individual performance, the Random 
agent is not expected to achieve a high performance when paired with 
human participants, though results from this can clarify the relative 
improvements that are expected by using the Heuristic and cognitive 
agents.

Just as the Heuristic agent reflects the expected behavior of meth-
ods like RL, so does the Random agent. The Heuristic agent behaves 
similarly to an RL agent at the end of its training lifecycle, while the 
Random agent resembles an RL agent in the early stages of training. 
Early-stage RL agents typically exhibit roughly random action selection, 
which is often used in RL research to compare the performance of 
trained versus untrained agents (Sutton et al., 1998).

5. Experiment method

5.1. Participants

Participants were recruited through Amazon Mechanical Turk to 
participate in a cybersecurity study. The study was advertised to last 
about 60 min. The experiment took M = 56.20 ± 15.14 Minutes on 
average. Participants received a base compensation of $6, and up to 
$12 in bonus payment based on their final score1 for a total possible 
payment of $18. The average bonus payment was 11.41 ± 2.23. 156 
participants (63 female, 90 male, 3 N/A) aged 22–65 years (M = 
39.49 ± 9.35) completed the study. 66 (27 female, 36 male, 3 N/A) 
were paired with the Random agent, 48 (16 female, 32 male) with the 
Heuristic agent, and 42 (20 female, 22 male) with the Cognitive agent. 
The different number of participants for each condition is caused by 
random assignment. We remove data from participants who did not 
fully complete the experiment and the post-experiment questionnaire. 
Although no formal attention checks were implemented, strict data 
cleaning was carried out. Participants with more than one missing 
value and participants whose completion time deviated by more than 
±3 standard deviations from the mean were excluded from the anal-
ysis. We also excluded participants who showed signs of inadequate 
engagement, such as taking the same action throughout the game.

1 As the score used in this experiment is negative (loss), the bonus payment 
was calculated by using the difference to the maximum possible loss and 
attributing 0.005$ per point: bonus=(total loss+1120)*0.005. 1120 is the 
maximum total loss for seven episodes

5.2. Procedure

First, participants had to complete a demographic questionnaire 
and provide informed consent. Then, they received instructions for the 
task and were asked to complete a short quiz to verify their basic 
understanding of the instructions. The participants had to correctly 
answer all the questions before moving on to the next step of the 
experiment. They received feedback on the accuracy of their responses 
and were allowed to modify their responses if they were incorrect. 
There was no limit to the number of attempts by participants to answer 
the questions correctly. However, for control purposes, we recorded the 
score of their first attempt and the number of times they tried to answer 
the questions. The participants then watched a video introduction to 
the TDG explaining the interface, the game controls, and the dynamics 
of an episode. The participants were then led to a practice session 
consisting of 1 short episode (that is, a game) of 10 steps. The practice 
episode was intended to familiarize participants with the interface and 
game controls and present them with situations in which they must deal 
with supervision, overlap, and misinformation.

Following the practice session, each participant was randomly as-
signed to work in conjunction with one of the three types of au-
tonomous agents. The participants performed the main task, which 
consisted of 7 episodes with 25 steps each. No time restrictions were 
imposed. The experimental conditions were constant throughout the 
episodes, which means that each participant played 7 episodes with the 
same autonomous teammate. The initial state of the network was the 
same for all participants and for each episode. Subsequently, the partic-
ipants completed a post-experiment survey consisting of three parts: (1) 
a collaboration survey, (2) a trust survey, and (3) a background survey 
about their experience in computer science and cyber defense. Finally, 
the participants received their final score and were dismissed.2

5.3. Dependent measures

A summary of the metrics, their units and their description is shown 
in Table  2.

5.3.1. Team performance
We measured team performance with objective metrics: (1) Loss: 

the average cumulative episodic loss; (2) Recovery time: the average 
number of steps per episode that the adversary successfully impacts the 
operational server (that is, how long the team takes, on average, to stop 
an attack occurring on the operational server).

5.3.2. Collaborative process metrics
To evaluate how human and autonomous team members synchro-

nize each other’s activities in the interdependent team task, we measure 
their collaborative process in three situations: (a) Overlap, (b) Super-
vision, (c) Backup, which have the greatest potential to impact team 
performance.

Overlap. Overlap refers to situations in which the human player and 
the autonomous agent choose the same target. A high number of over-
laps could suggest a lack of coordination. We measure (1) Frequency 
of Overlap: the number of overlap cases per episode (2) Adjustment 
Rate: the rate of two possible types of adjustment human participants 
could use to resolve the overlap: adjust their own action or adjust 
the agent’s action. Self-adjustment demonstrates the willingness of 
human participants to adapt to the autonomous agent for cohesive 
collaboration.

2 The experimental instructions, quizzes, and surveys, along with the 
data and analysis scripts, can be accessed on Open Science Framework: 
https://osf.io/xk624/.
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Table 2
Metrics summary.
 Metric Unit/Scale Description  
 Team Performance Metrics
 Loss Points Average cumulative episodic loss (negative values indicate 

points lost). Lower values (closer to zero) indicate better 
performance.

 

 Recovery Time Steps Average number of steps per episode required to stop an 
attacker’s impact on the operational server. Lower values 
indicate faster recovery and better performance.

 

 Human–Agent Interaction Metrics
 Frequency of Overlap Proportion Rate of instances where human and agent selected the same 

target per episode (0–1 scale). Lower values indicate better 
coordination.

 

 Adjustment Rate Proportion Rate at which humans adjusted their own actions (vs. the 
agent’s) when resolving target conflicts (0–1 scale). Higher 
values indicate human adaptability.

 

 Frequency of Supervision Proportion Rate of instances per episode where the agent required 
human validation for non-pre-approved actions (0–1 scale).

 

 Agreement Rate Proportion Rate at which humans approved the agent’s actions without 
modification during supervision (0–1 scale). Higher values 
indicate greater trust.

 

 Frequency of Multiple 
Breaches

Proportion Rate of instances per episode when multiple hosts were 
compromised simultaneously (0–1 scale). Lower values 
indicate better defense.

 

 Backup Rate Proportion Rate at which humans attempted to recover breached hosts 
when multiple breaches occurred (0–1 scale). Higher values 
indicate better backup behavior.

 

 Human Effort and Efficiency Metrics
 Human Effort Actions/Episode Average number of active actions (Remove, Restore, 

Misinform) taken by humans per episode. Lower values may 
indicate less human workload.

 

 Human Efficiency Points/Action Loss reduction divided by human effort. Higher values 
indicate humans achieved better results with fewer actions.

 

Supervision. Supervision refers to the cases where the agent intends 
to take an action that requires the validation of its human teammate 
(i.e., Restore and Misinform). We measure (1) Frequency of supervision: 
the number of times per episode the Agent needs a validation of their 
action from the human; (2) Agreement Rate: the rate of times the human 
participant allows the agent to execute its intended action without 
modification, out of the total number of times the Agent needs a 
validation of their action from the human. A high Agreement Rate could 
indicate that the agent’s decision making aligns well with the human 
participant’s judgment and is trusted.
Backup. The challenging task of defending multiple hosts legitimately 
calls for backing-up behavior. We measure (1) Frequency of Multiple 
Breaches: the rate of times that more than one host in the network 
are compromised; (2) Backup Rate: the rate of times that the human 
participant attempts to recover a breached host, out of the total number 
of times there are multiple breaches in the network. A high Frequency of 
Multiple Breaches shows a high demand for both members of the HATs 
to contribute and recover the compromised host. A high Backup Rate
suggests that human participants can rise to the challenge and support 
their agent teammate when necessary.

5.3.3. Human Effort and Efficiency
Engagement (Sidner, Lee, Kidd, Lesh, & Rich, 2005) is another 

key process that underlies how effectively autonomous agents can 
interact with human partners (Holroyd, Rich, Sidner, & Ponsler, 2011; 
Sidner, Lee, & Lesh, 2003). To evaluate whether human participants 
are actively and effectively engaged in teamwork, we measure (1)
Human Effort : The frequency of humans taking active actions (Remove, 
Restore, Misinform) rather than passively monitoring per episode; and 
(2) Human Efficiency : Loss reduction divided by the total human effort 
during the episode. The loss reduction is calculated by the difference 
between the observed loss and the maximum loss over all participants 
in the experiment, to result in a positive value for our Efficiency metric.

5.3.4. Human perception of the autonomous agent
In the post-experiment questionnaire shown in Table  3, we mea-

sured Cooperativeness and Trustworthiness. The cooperativeness and 
trustworthiness survey questions were inspired by previous studies on 
automation trust, including discussions in Glikson and Woolley (2020), 
Schelble et al. (2022). We measured the perceived cooperativeness of 
the autonomous teammate through a home-made survey composed of 
6 items, each rated on a 5-step Likert scale. For the trustworthiness 
survey we kept all 6 items of Merritt’s trust scale (Merritt, Heimbaugh, 
LaChapell, & Lee, 2013) and adapted the questions to make reference to 
the ‘‘teammate’’ rather than the ‘‘automation’’. This survey is also based 
on a 5-step Likert scale. Given the novelty of the current study, where 
automation is used as a teammate, we could not rely on well established 
metrics. We used these questions simply to have a subjective metric of 
cooperativeness and trust, in addition to the objective metrics.

6. Results

In this section, we present the experimental results comparing 
the three agent types (Random, Heuristic, and Cognitive) in human-
autonomy teaming for cyber defense. We analyze team performance 
metrics, collaborative process patterns, human effort indicators, and 
participant perceptions of agent trustworthiness and cooperativeness. 
Table  4 summarizes the descriptive statistics in each of the three agent 
conditions, which will discuss and test for their significance.

6.1. Team performance

Fig.  5 presents the average loss of the team and the average recovery 
time of the team per episode for all HATs under the three conditions. 
The minimum possible loss per episode is 0 and the maximum is 160. 
As shown in Table  4, the HAT loss is largest when humans are paired 
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Table 3
Cooperativeness and Trustworthiness Questionnaire. Participants had to rate each item on a 5-step Likert 
scale.
 

Cooperation

My teammate and I coordinated our actions well together  
 My teammate and I coordinated our actions better over the course of the episodes.  
 My teammate and I contributed equally to the team performance  
 I had to carry the weight to make the team better  
 My teammate perceived accurately what task I was trying to accomplish.  
 I was able to understand and predict what task my teammate was trying to accomplish. 
 

Trust

I believe my teammate is a competent performer.  
 I trust my teammate.  
 I have confidence in the choices taken by my teammate.  
 I can depend on my teammate.  
 I can rely on my teammate to behave in consistent ways.  
 I can rely on my teammate to do their best whenever I validate its decision.  

Table 4
Descriptive Statistics: Mean and Standard Deviation of HATs with three types of agents.
 Metric Random Heuristic Cognitive  
 Team Performance
 Loss M = −79.69

SD = 49.11
M = −59.69
SD = 28.54

M = −52.85
SD = 27.42

 

 Recovery time M = 3.92
SD = 3.89

M = 2.15
SD = 2.09

M = 1.45
SD = 1.89

 

 Human–Agent Interaction
 Frequency ofOverlap M = 0.11

SD = 0.08
M = 0.08
SD = 0.08

M = 0.078
SD = 0.09

 

 Adjustment rate(of human actions) M = 0.14
SD = 0.24

M = 0.29
SD = 0.34

M = 0.21
SD = 0.33

 

 Frequency ofSupervision M = 0.49
SD = 0.10

M = 0.33
SD = 0.11

M = 0.37
SD = 0.13

 

 Agreement Rate M = 0.35
SD = 0.012

M = 0.74
SD = 0.017

M = 0.73
SD = 0.02

 

 Frequency ofMultiple Breaches M = 0.41
SD = 0.02

M = 0.14
SD = 0.021

M = 0.14
SD = 0.013

 

 Backup rate M = 0.20
SD = 0.02

M = 0.17
SD = 0.02

M = 0.11
SD = 0.03

 

 Human Effort and Efficiency
 Human Effort M = 10.67

SD = 7.13
M = 9.28
SD = 7.18

M = 8.38
SD = 7.52

 

 Human Efficiency M = 16.80
SD = 27.02

M = 29.82
SD = 38.32

M = 39.40
SD = 46.53

 

with Random agents, comparatively lower with Heuristic agents, and 
minimal when humans are paired with Cognitive agents. The HAT 
recovery time follows a similar pattern, with a longer time to recover 
a breached host when humans are paired with Random agents, a 
shorter duration with Heuristic agents, and the shortest duration when 
paired with Cognitive agents. These observations strongly suggest that 
Cognitive partners in HATs are human’s most effective team collabo-
rators. It is worth noting that Fig.  5 shows a sudden drop in loss from 
episode 4 to episode 5. Upon inspecting the human data, we found that 
two participants were able to stop the adversary earlier in episode 5 
compared to episode 4. This early intervention limited the adversary’s 
opportunities to launch Impact actions, reducing the average loss by 
approximately 10 points—roughly equivalent to preventing one Impact 
action. This finding aligns with the observed decrease in recovery time 
from episode 4 to episode 5.

A two-way mixed measures ANOVA was performed to compare 
the team loss of HATs with three types of agents over 7 episodes. 
The results indicated a significant main effect for the type of agent, 
𝐹 (2, 152) = 11.037, 𝑝 < .05, 𝜂2𝐺 = 0.086. There was no significant inter-
action between the type of agent and the episode, 𝐹 (11.26, 855.40) =
0.938, 𝑝 = 0.504, 𝜂2𝐺 = 0.005. There was also no significant effect of the 
episode 𝐹 (5.63, 855.40) = 0.938, 𝑝 = 0.821, 𝜂2𝐺 = 0.001. Post hoc tests 
using Tukey’s HSD indicated that HATs with Cognitive agent achieve a 

significantly lower loss than HATs with Heuristic agent (𝑝 = 0.029) and 
lower than Random agent (𝑝 < .001).

Similarly, the two-way mixed measures ANOVA for the recovery 
time of HAT indicated a significant main effect for the agent type, 
𝐹 (2, 152) = 18.297, 𝑝 < .05, 𝜂2𝐺 = 0.117 but no effect of the interaction 
between agent type and episode, 𝐹 (11.38, 864.78) = 0.95, 𝑝 = 0.744, 𝜂2𝐺 =
0.003; and no effect of episode, 𝐹 (5.69, 864.78) = 0.95, 𝑝 = 0.313, 𝜂2𝐺 =
0.005. Post hoc testing using Tukey’s HSD indicated that HATs with a 
Cognitive agent achieve a significantly shorter recovery time than HATs 
with a Heuristic agent (𝑝 = 0.007) and shorter with a Random agent 
(𝑝 < .001).

6.2. Conflict resolution

As illustrated in Table  4, overlap occurs more often in the Ran-
dom condition. A two-way mixed measures ANOVA was conducted to 
compare the overlap frequency of HATs with three types of agents in 
7 episodes. The results confirm a significant effect of the agent type, 
𝐹 (2, 152) = 4.912, 𝑝 = 0.009, 𝜂2𝐺 = 0.046, and Post hoc tests using 
Tukey’s HSD indicated that HATs with Random agent indeed observe 
significantly more overlap situations than HATs with Cognitive agent 
(𝑝 < .001) and HATs with Heuristic agents (𝑝 < .001).

Humans appear to mostly modify the action of agents when there 
are overlaps, even when they are paired with Heuristic and Cognitive
agents. A two-way mixed measures ANOVA was performed to compare 
the rates of Human self-adjustment with three types of agents over 
7 episodes. The results indicated a significant effect for the type of 
agent, 𝐹 (2, 65) = 4.607, 𝑝 = 0.013, 𝜂2𝐺 = 0.084, and a significant effect 
for the episode, 𝐹 (6, 390) = 3.670, 𝑝 = 0.001, 𝜂2𝐺 = 0.014. There was 
no significant interaction between the type of agent and the episode, 
𝐹 (12, 390) = 0.662, 𝑝 = 0.788, 𝜂2𝐺 = 0.005. As shown in Table  4, post 
hoc testing using Tukey’s HSD indicated that in overlap situations, 
when paired with a Heuristic agent, humans adjust their own decision 
significantly more than when paired with Cognitive (𝑝 = 0.015) and 
Random (𝑝 < .01)). When paired with Cognitive agent, humans also 
tend to adjust their own decision more than when paired with Random 
(𝑝 = 0.14). Further analysis revealed that about 80% of the time, 
they tend to resolve the conflicts by changing the agent’s command to
Monitor.

6.3. Supervision

As shown in Table  4, random agents require the most supervision. 
A two-way mixed ANOVA was performed to compare the frequency 
of HAT supervisory cases with three types of agents in 7 episodes. 
The results indicated a significant main effect for the type of agent, 
𝐹 (2, 152) = 76.811, 𝑝 < .001, 𝜂2𝐺 = 0.277. There was no significant inter-
action between the type of agent and the episode, 𝐹 (11.49, 872.98) =
0.957, 𝑝 = 0.133, 𝜂2𝐺 = 0.011. There was also no significant effect of 
the episode𝐹 (5.74, 8872.98) = 0.957, 𝑝 = 0.424, 𝜂2𝐺 = 0.004. Post hoc 
testing using Tukey’s HSD indicated that HATs with Random agents 
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Fig. 5. Evolution of team performance across the 7 episodes of the experiment composed of Team Loss per episode (left) and Team Recovery Time (right).

Fig. 6. Evolution of the rate of Human’s agreement with Agent’s intention during supervisory situations, throughout the first episode (right) and the entire experiment (left).

require significantly more supervision than HATs with Heuristic agents 
(𝑝 < .001) and Cognitive agents (𝑝 < .001).

The left panel of Fig.  6 presents the agreement rate throughout 7 
episodes. Humans agreed significantly more with the Cognitive and 
Heuristic agents starting from the first episode. The agreement rate in-
crease in the Heuristic condition is probably due to the consistency and, 
thus, predictability of the Heuristic agents. A two-way mixed measures 
ANOVA was conducted to compare the rate of human agreement of 
HATs with three types of agents across 7 episodes. There was a sig-
nificant interaction between agent type and episode, 𝐹 (8.73, 663.49) =
0.728, 𝑝 < .05, 𝜂2𝐺 = 0.254. Post hoc testing using Tukey’s HSD indicated 
that Cognitive agents and Heuristic agents get significantly more agree-
ments than random agents. Further inspection of the agreement rate 
within episode 1 is presented in the right panel of Fig.  6. By the end of 
the first episode, the agreement rate increased to approximately 75% 
in the Cognitive and Heuristic condition and dropped to approximately 
35% in the random condition, which indicates that humans are able to 
observe the competencies of teammates rapidly (Abele, Ellemers, Fiske, 
Koch, & Yzerbyt, 2021) during the initial exploration episode.

Closer examination of the agreement rate regarding the Restore vs. 
Misinform actions showed that human participants are able to differen-
tially place their trust in the autonomous agent intentions that vary in 
reliability. We observed that, independently of the type of teammate, 
humans tend to agree more with the Restore action (respectively 81%, 
80%, and 49% in Heuristic, Cognitive, and Random HATs), which 
has a deterministic benefit to the team, compared to the Misinform 
action (71%, 70% and 21% of agreement) that deploy traps which 
might not catch the adversary successfully every time. At the same 
time, human participants have the tendency to merge their trust across 

actions despite their differences in the actions’ reliability. Overtime, 
the consistent and accurate Restore actions from the Heuristic agent 
earned itself more trust and led to a higher false agreement rate to its 
Misinform actions in later episodes.

6.4. Backup behavior

We consider a Backup to be a state of the environment in which 
there are at least two hosts that are compromised simultaneously. 
As shown in Table  4, situations requiring backup behavior are more 
common in HATs with Random agents than with Cognitive or Heuristic 
agents. A 1-way ANOVA was performed to compare the frequency of 
multiple breaches between HATs with the three types of agents. The 
results confirmed a significant effect of the agent type, 𝐹 (2, 147) =
46.85, 𝑝 < .001, 𝜂2𝐺 = 0.174. A post-hoc test using Tukey’s HSD indicated 
that HATs with Random agents get significantly more multiple breach 
situations than HATs with Cognitive (𝑝 < .001) and Heuristic (𝑝 < .001).

Also shown in Table  4, Random agents encounter more backup 
states from their human teammates, with a higher rate of times (20%) 
when there is more than one breached host. Humans are not good 
at identifying the need to backup the agents, especially when the 
agents (i.e., Heuristic and Cognitive agents) appear capable. A two-
way mixed measures ANOVA was conducted to compare the rate of 
backup behaviors of Humans in HATs with three types of agents across 
7 episodes. The results indicated a significant effect for the agent type, 
𝐹 (2, 680) = 18.621, 𝑝 < .001, 𝜂2𝐺 = 0.093. There was also a significant 
effect of the episode, 𝐹 (1, 680) = 5.018, 𝑝 = 0.025, 𝜂2𝐺 = 0.065. The 
backup rate decreases overtime. There was no significant interaction 
between the type of agent and the episode, 𝐹 (2, 680) = 1.758, 𝑝 =
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Fig. 7. Evolution of Human Effort (left) and Human efficiency (right) across the experiment.

Fig. 8. Left: Cooperativeness Likert Scale, Right: Trustworthiness Likert Scale (1 - Strongly disagree, 2 - Disagree, 3 - Neither agree or disagree, 4 - Agree, 5 - Strongly Agree) - 
see Table  3.

0.173, 𝜂2𝐺 = 0.002. Post hoc testing using Tukey’s HSD indicated that 
Humans paired with a Cognitive agent provide significantly less backup 
to their teammates than Humans paired with a Heuristic agent (𝑝 <
.001) and a Random agent (𝑝 < .001). Humans contribute the most when 
paired with Random agents(20%); however, not enough to compensate 
for the deficiency of the agents.

6.5. Effort and Efficiency

Fig.  7 left panel shows a decrease in the frequency of humans taking 
active actions (Remove, Restore, Misinform) rather than passively mon-
itoring. A two-way mixed measures ANOVA was conducted to compare 
human effort in HATs with three types of agents across 7 episodes. In 
fact, there is a significant effect of episode 𝐹 (3.46, 526.09) = 5.463, 𝑝 <
.05, 𝜂2𝐺 = 0.036, where human effort decreases over episodes. There was 
no significant interaction between the type of agent and the episode, 
𝐹 (6.92, 526.09) = 0.561, 𝑝 = 0.79, 𝜂2𝐺 = 0.003 and there was no significant 
effect of the agent types 𝐹 (2, 152) = 1.801, 𝑝 = 0.169, 𝜂2𝐺 = 0.001.

Fig.  7 shows a higher efficiency in participants paired with Cogni-
tive agents compared to both Heuristic or Random agents. A two-way 
mixed measures ANOVA was conducted to compare the human effi-
ciency of the participants in HATs with three types of agents across 
the 7 episodes. The results indicated a significant main effect for 
the type of agent, 𝐹 (2, 152) = 7.949, 𝑝 < .001, 𝜂2𝐺 = 0.145, episode 
𝐹 (3.46, 630.77) = 5.322, 𝑝 < .001, 𝜂2𝐺 = 0.037 and interaction effect 

𝐹 (8.30, 630.77) = 2.435, 𝑝 = 0.012, 𝜂2𝐺 = 0.092. Tukey’s HSD indicated 
that HATs with Cognitive agents achieve significantly higher human 
efficiency than HATs with Heuristic agents (𝑝 = 0.0004) and Random 
agents (𝑝 < 0.001).

Although participants’ efforts did not show a significant differ-
ence between conditions, their efficiency did. This demonstrates the 
important relationship between autonomous agent strategy and the 
efficiency of humans in HATs. For HATs with Cognitive teammates, 
human participants achieved a high level of efficiency. This translates 
into a relatively low effort from the human participant compared to 
the improvement in performance observed. One possible explanation 
for this observed difference is that Cognitive agents are better suited to 
learning the individual play styles of participants, which can vary from 
more to less effortful, while the Heuristic and Random agents could not 
learn these differences. This is evidenced by the fact that in Cognitive 
and Heuristic HATs, participants begin with nearly the same efficiency 
on the first episode, which quickly diverges and remains higher for 
participants in Cognitive HATs.

6.6. Perception of agent cooperativeness and trustworthiness

As shown in Fig.  8, Cognitive and Heuristic agents are rated sig-
nificantly more cooperative and trustworthy than the Random agent 
in general. A one-way ANOVA was conducted to evaluate human’s 
perception of the cooperativeness and trustworthiness of the three 
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types of agents. The results indicated a significant effect of the type 
of agent on perceived cooperativeness, F (2, 153) = 7.23, p<.05, and 
trustworthiness F(2, 153) = 10.125, p<.05. 51.9% of participants in 
the Cognitive condition Agree or Strongly Agree that the Cognitive agent 
is cooperative and trustworthy, 49.8% in the Heuristic condition, and 
32.9% in the Random condition.

The open-ended feedback in the questionnaire revealed that par-
ticipants’ perception of agents might be affected by their various ex-
pectations of the autonomous agent before the experiment. As shown 
in the following quote, a participant that partnered with a Heuristic 
agent expected some level of communication with the agent to facilitate 
decision-making and planning. The absence of such a feature caused 
frustration. This participant answered Neither agree or disagree to most 
of the survey questions.

‘‘It was challenging because you had to work with an AI that 
cannot communicate. Made it difficult to come up with a plan or 
strategize’’.

Another participant that teamed with a Random agent, on the other 
hand, has a high level of confidence in the agent’s decision-making 
process. This participant selected Agree or Strongly agree to all of the 
survey questions.

‘‘I trusted the partner more than I trusted myself. I was glad it was 
AI, I assumed they were using an algorithm to make the decisions’’.

7. Discussion

Our results support three general implications for the design of 
autonomous agents that collaborate with humans in teams: (1) dynamic 
agents that emulate human-like cognitive processes are beneficial for 
HAT effectiveness, the benefit can be enhanced through providing 
explanations when the agents adjust their behavior; (2) competent 
agents are more trusted and can lead to better HAT performance but 
might cause over-reliance; (3) human trust in autonomous agents is 
dynamically shaped by their interactions during teamwork, and should 
be measured before, during, and after the collaboration.
Human-like cognition. Our first finding concerns the benefits of repli-
cating human cognitive processes in autonomous cognitive teammates. 
From the comparison between HATs with Cognitive and Heuristic 
agents (the Cognitive agent achieves the same level of competence 
as the Heuristic agent after learning), we found that humans who 
partnered with cognitive agents became more efficient in reducing 
team loss over time. HATs with Cognitive agents also delivered better 
team performance. In the post-experiment questionnaire, the Cognitive 
agent scores slightly higher than the Heuristic agents on trustworthi-
ness. However, there was no significant difference in human trust in 
autonomous agents. This suggests that human perception of teammate 
behavior may not be an effective metric for HAT performance. In su-
pervision situations, human participants agreed to approximately 75% 
agent decisions from the first episode in both conditions. The agreement 
rates slightly increased over time in the Heuristic condition but slightly 
dropped in the Cognitive condition. In the presence of conflicts, humans 
tend to resolve the overlap by adjusting their own actions rather than 
the agent’s actions. One explanation is that humans are less likely to 
adjust the behavior of the Heuristic agent more because of its consistent 
behavior. People can easily recognize the ‘rules’ it follows, making 
its actions predictable and understandable. In contrast, the Cognitive 
agent, despite its adaptability to the environment and the human 
teammate, exhibits less consistency and predictability. In summary, we 
found that autonomous agents endowed with human-like cognition can 
improve team effectiveness. However, agents must also employ certain 
behaviors, such as explanations, to maintain human trust.

Competence. Our second finding concerns the competence of auto
nomous teammates. From the comparison between the competent 
agents (i.e., Cognitive and Heuristic) versus the incompetent Ran-
dom agent, we found that Humans demonstrate a significantly higher 
level of trust toward the competent agent, both behaviorally and 
subjectively. HATs with competent agents were significantly more 
effective; however, it is worth noticing that humans are not good at 
identifying the deficiencies and failures of competent agents. Most of 
the participants did not contribute in situations that require backup 
behavior. Consistent with previous empirical studies on system-wide 
trust (Walliser, de Visser, & Shaw, 2023), humans also present a 
tendency to apply trust broadly rather than specifically to each specific 
function of the agent. The consistent and accurate Restore actions 
from the Heuristic agent earned itself more trust and led to a higher 
false agreement rate to its Misinform actions in later episodes. In 
sum, the competence of autonomous agents is essential to gain human 
trust and achieve desirable HAT performance. However, for effective 
collaboration between humans and autonomous agents, it is crucial 
that agents actively signal when they require human assistance and 
transparently communicate the level of uncertainty (Demir et al., 2019) 
in their decision-making processes (Tomsett et al., 2020).
Trust measurement. Our last insight concerns the measurement of hu-
man trust in autonomous agents. First, we observed a significant effect 
of the episode on the rate of agreement, which echoes the findings of 
previous research that human trust can be affected by their interaction 
experience with agents (Kulms & Kopp, 2019). When establishing trust, 
affective and competency-based dimensions interact to dynamically 
shape human behavior toward the agent. In teamwork settings, the 
improved or deteriorated trust caused by previous episodes can affect 
the interaction in subsequent episodes and spiral into a success or 
vicious cycle that drags down both team confidence and performance 
over time. Therefore, it is crucial to regularly assess the different 
dimensions of trust to adapt the agent’s behavior accordingly.

Second, we found that significant differences in agent cognitive 
ability and competence are more evident in behavioral measures than 
in self-reported scores. The post-experiment questionnaire showed that 
some participants had unrealistically high expectations of the agent, 
which later led to blind trust or great disappointment in their in-
teraction with the agents. We also observed a discrepancy between 
the actual contribution and the perceived contribution. Many par-
ticipants Agree or Strongly Agree that ‘‘I had to carry the weight to 
make the team better’’ while, actually, their agent made a greater 
contribution to the team. This could be due to the moral assumption 
that ‘‘even if the autonomous agent gains more agency, humans remain 
responsible’’ (Cummings, 2014).

Lastly, reinforcing the first two points of the discussion, our findings 
suggest that a high level of competency, when paired with strong 
predictability, can lead to over-reliance. We observed that humans 
tended to align more closely with the strategies of the heuristic agent, 
occasionally resulting in misplaced trust and reduced performance. 
In contrast, participants who worked with the cognitive agent were 
more critical of its decisions, which may indicate a more engaged and 
adaptive interaction. This suggests that cognitive agents could play a 
valuable role in dynamic trust calibration, helping to maintain team 
efficiency while preventing over-reliance. Measurement of behavioral 
adaptation, such as changes in human oversight, agreement with agent 
decisions, and response to unexpected agent actions, could then provide 
richer insights into trust dynamics than static self-reported trust ratings.

In summary, to better leverage human feedback on agents’ trust-
worthiness and cooperativeness, we recommend refining subjective 
measures to distinctly capture different dimensions of trust, including 
propensity to trust (Hoff & Bashir, 2015; Schoorman, Mayer, & Davis, 
2007), affective trust, and competency-based trust. Furthermore, trust 
levels should be unobtrusively monitored during teamwork using be-
havioral markers, while post-experiment questionnaires should clearly 
differentiate between taskwork and teamwork contributions.
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7.1. Implications on HAT for cybersecurity

In the context of cybersecurity, the system-wide trust problem is 
more prominent. Autonomous cybersecurity systems tend to integrate 
more than one function, such as analyzing alerts, validating security 
controls, and resolving incidents based on standardized procedures 
and playbooks. Each task can be accomplished with different levels of 
trustworthiness and might evolve to a different level of risk. Thus, it 
is important to further investigate system-wide trust mediation mech-
anisms and calibrate the reliance on the different functionalities of 
the same autonomous defense agents. This calibration helps prevent 
over-reliance on potentially fallible automation while leveraging its 
strengths, ultimately enhancing the safety and effectiveness of HATs. 
The assignment of credits and responsibilities is also important in 
settings such as cybersecurity, where each decision can be of high 
risk. Cyber workforce includes staff from very different specializations 
trained in cybersecurity. Special caution is needed when this type of 
staff is involved in human-autonomous teaming. As they may not have 
a ‘‘fair’’ judgment on the autonomous agents.

7.2. Limitations and future work

Human-like cognition. We designed an autonomous agent with human 
cognition based on instance-based learning theory (IBLT), which has 
enjoyed many successes in replicating individual human-like behavior 
in the cyber domain and other contexts (Gonzalez, 2024). However, 
the definition of human likeness in a team context needs further 
exploration. Future research may focus on conducting ‘‘Turing experi-
ments’’ in a team setting to better understand the desirable teamwork 
behavior and human-likeness. It is possible that ‘‘human-like’’ is not 
equivalent to ‘‘ideal autonomous teammate’’, and we might want the 
autonomous agents to avoid the limitations of humans in teamwork. 
For example, humans may prefer to reach consensus rather than pro-
pose objections and alternative solutions, which has a negative impact 
on teamwork effectiveness. Secondly, in our current design of the 
Cognitive agent, the agent leverages the accumulation of instance-
based knowledge, recognition-based retrieval, adaptive strategies, and 
feedback update mechanisms in IBLT. It is unclear how each individual 
underlying cognitive mechanism contributes to the human-likeness of 
agents. In future research, we will investigate the instance-based learn-
ing mechanisms in more detail to better understand the link between 
cognitive mechanisms and desirable human-like teamwork behavior. 
Finally, the current Cognitive agent treats the human teammate as part 
of the environment, while humans recognize each other’s strengths, 
weaknesses, and working styles to coordinate their actions and adapt 
their behavior to other team members. In future research, we plan 
to develop a Cognitive agent that includes a direct observation of 
human actions, so that we can give the Cognitive agent the ability 
to make predictions ahead of time regarding human intentions as in 
the work on Theory of Mid (Nguyen & Gonzalez, 2022). In addition to 
investigating specific cognitive mechanisms, future work could explore 
comparisons with other learning approaches, such as reinforcement 
learning, which has been applied in cybersecurity contexts (Du et al., 
2022). While our current study focused on IBL-based cognitive agents, 
understanding the relative advantages of different learning frameworks 
for human-autonomy teaming in cybersecurity would provide valu-
able insights for the field. Specifically, research could examine how 
different algorithmic approaches affect team dynamics, human trust, 
and overall performance in various cybersecurity scenarios and team 
configurations.

Human-automation communication. Our current interactive online team 
game only supports the action phase of teamwork, where the agent 
and human participants collectively protect a network through four 
defensive actions. Teams, in reality, also engage in another important 
phase of teamwork: the transition phase. It refers to periods of time 

when teams focus primarily on evaluation and/or planning activities 
to guide their achievement of a team goal or objective. Teams must 
take a look at how well they performed during the previous episode 
and prepare for the next. They compare current performance levels 
with goals and derive performance gaps. Closing these gaps, in com-
bination with current and anticipated future assignments, guides the 
development of future performance goals and strategies to achieve 
them. This phase is especially important in adversarial cyber scenarios, 
where team members need to develop a threat model and collectively 
develop a strategy against the attacker. In future work, we will enhance 
the platform with human–agent communication facilities to support a 
richer HAT teamwork experience.
HAT for cybersecurity. In the experiment reported in this work, we 
recruited participants with cybersecurity knowledge from Amazon 
MTurk. We preselected these participants based on their technical back-
ground and screened them according to their cybersecurity knowledge, 
but they are not necessarily experts in cyber defense. Another limitation 
comes from the simple cyber defense scenario, which involves a single 
attacker on a small network. Previous research shows that factors such 
as workload, stress, and risk can affect teamwork. In cybersecurity, high 
workload, stress caused by the presence of powerful attackers, and risks 
involved in defense decisions are very common and cannot be ignored. 
In future work, we will explore game scenarios with various levels of 
complexity and workload to better understand the unique challenges of 
HAT in cybersecurity. Our platform is in continuous development as we 
refine its capabilities and usability. Motivated by the need to develop 
open source testbeds and platforms for HAT research, we plan to 
make our development general and provide documentation for others 
to consume. The improvements will make it easier for researchers to 
conduct controlled experiments with minimal coding requirements. 
We are working to create more accessible interfaces, comprehensive 
documentation and ready-to-use experimental templates that will lower 
the entry barrier for researchers of diverse backgrounds. This enhanced 
platform will allow us to conduct experiments that resemble team 
configurations in real-world settings, such as including more than two 
members of the human or autonomous agent team. Such configurations 
would more accurately reflect operational security teams in which 
multiple analysts and automated tools work together to defend the 
network infrastructure.

8. Conclusion

In this work, we found that Cognitive agents are indeed better 
teammates than Heuristic and Random agents. HATs with Cognitive 
agents are more effective in protecting the network from breaches, re-
covering exploited hosts faster, and thus losing fewer points in the team 
task. Human participants partnered with Cognitive agents also showed 
higher efficiency. On the other hand, the adaptivity of Cognitive agents 
renders their behavior relatively unpredictable, which can undermine 
the trust between humans and agents.

This research makes several important contributions to the field 
of human-autonomy teaming. First, unlike previous studies that have 
relied on Wizard of Oz approaches in which humans simulate agent 
behavior (e.g., Musick et al., 2021), our work uses actual autonomous 
agents that operate independently according to their programmed cog-
nitive or heuristic mechanisms. This methodological advancement al-
lows us to investigate real human-autonomy interactions rather than 
perceived ones, providing more ecologically valid insights into the 
dynamics of HATs.

Second, we introduced the Team Defense Game (TDG), a novel 
experimental platform specifically designed to study human-autonomy 
teaming in cyber-defense contexts. The TDG provides researchers with 
a controlled environment to examine various aspects of HAT collabo-
ration, including conflict resolution, supervision dynamics, and backup 
behaviors. This platform offers significant advantages over existing 
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Fig. 9. Distribution of Agent Target Selection Across Steps by Agent Type. The plot shows the proportion of different host types (User, Enterprise, and Op) targeted by Random, 
Heuristic, and Cognitive agents over 25 steps of the simulation, averaged across all episodes.

Fig. 10. Temporal Progression of Agent Target Selection by Subnet Type. The plot illustrates the proportion of different subnet types (User, Enterprise, and Operation) targeted 
by the attacker against Random, Heuristic, and Cognitive agents across 25 simulation steps, averaged across all episodes, demonstrating their strategic priorities throughout the 
cyber defense scenario.

testbeds by incorporating realistic cyber defense scenarios while main-
taining experimental control, making it a valuable resource for future 
HAT research.

Third, our empirical findings demonstrate that cognitive architec-
tures based on human learning mechanisms offer substantial benefits 
for HAT effectiveness compared to both random and optimally designed 
heuristic agents. The cognitive agent’s ability to adapt not only to the 
task environment but also to its human teammate’s behavior patterns 
creates a more complementary partnership, leading to improved team 
performance despite the potential unpredictability introduced by its 
adaptive nature.

Using the case of cyber protection teams, this study demonstrated 
the possibility of effective human-autonomy teamwork and provided 
evidence of the value of cognitive modeling approaches in agent design. 

Our results highlight that the implementation of human-like cognitive 
processes in autonomous agents represents a promising direction for 
the development of collaborative AI systems. The balance between 
adaptability and predictability remains a key challenge, but our find-
ings suggest that the benefits of cognitive adaptation outweigh the 
costs in terms of overall team effectiveness. As autonomous systems 
become increasingly integrated into human teams in various domains, 
these insights can inform the design of agents that function not only 
as tools but as genuine teammates capable of complementing human 
capabilities and adapting to human work styles.
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Appendix. Behavior analysis of the autonomous agents

Fig.  9 illustrates the target selection patterns of three different agent 
types: Random, Heuristic, and Cognitive on the 25 steps of an episode, 
averaged across all episodes in the experiment.

As evidenced by the consistent distribution across all steps, the 
Random agent maintains approximately equal proportions of actions 
targeting the User, Enterprise, and Operational subnets throughout an 
episode.

In contrast, both the Heuristic and Cognitive agents demonstrate 
similar dynamic behaviors regarding the action proportions on the 
three subnets. The Heuristic agent initially executes more actions on 
the Enterprise subnet, gradually shifting their attention toward the 
Operational subnet as the episode progresses.

Interestingly, while the Cognitive agent initially demonstrates a 
similar frequency of actions as those of the Heuristic agent, the Cog-
nitive agent appears to prioritize Operational hosts slightly earlier 
(around Step 15) and more significantly in later steps than the Heuristic 
agent. Thus, both the Heuristic and Cognitive agents demonstrate dy-
namic allocation of their resources to protect the most vulnerable and 
valuable network assets as the attack progresses. The Cognitive agent 
demonstrates superior performance given its earlier prioritization of the 
actions on the Operational subnet.

Importantly, the progression of the adversary through the network 
topology (shown in Fig.  10) is essentially the same, regardless of the 
type of agents (Random, Heuristic, or Cognitive) used as a human 
teammate. The adversary begins in the User subnet, proceeding through 
the Enterprise subnet, and ultimately targets the critical Operational 
subnet. These two figures illustrate the competency of the Heuristic and 
the Cognitive agents to dynamically follow the attacker path of action 
to block it.
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Emergent Cooperative Decision-making in Triadic Prisoner’s
Dilemmas: Effects of Incentives and Information

A R T I C L E I N F O
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ation; Reciprocity; Strategy; Simula-
tion

A B S T R A C T
While pairwise cooperation has been extensively studied through the Prisoner’s Dilemma (PD),
our understanding of how cooperation emerges in small groups remains limited. We extend
the classic dyadic PD framework to a triadic framework, examining two sets of PD games
per individual and how individual strategies and relationships aggregate to group cooperation.
Through two experiments (N=519), we investigate: (1) how structural incentives shape coop-
eration by varying the K-index (0.4 / 0.8), a theoretical value that predicts greater cooperation
for higher K values, and (2) how different degrees of information about mutual interdependence
affect group behavior. We find that, under minimal information conditions, a higher K-index
promotes sustained cooperation in the triadic setting, in alignment with the theoretical definition
of the K-index. However, while experiential information (observing others’ actions/outcomes)
enhances cooperation, descriptive information (complete payoff matrices) paradoxically reduces
cooperation. Analysis of triadic interactions reveals that selective cooperation by a third player
in the group can stabilize cooperative dyadic relationships and destabilize defective dyadic
relationships. These findings provide insights for designing cooperative systems, particularly in
contexts where organizations must balance information sharing benefits against strategic risks.

1. Introduction
Cooperation is a cornerstone of human society, enabling collective endeavors from business partnerships to global

collaborations. Despite its importance, cooperation has been frequently studied in dyads, and understanding how
cooperation emerges and persists in groups of more than two individuals remains a significant challenge. Although
the Prisoner’s Dilemma (PD) has served as a foundational model for studying cooperation, its traditional focus on two-
person interactions leaves critical gaps in our understanding of group dynamics. Expanding this framework to capture
real-world complexity is essential, but doing so requires carefully balancing analytical tractability with ecological
validity.

Previous research has extensively studied cooperation in large groups to capture realistic social dynamics. However,
as the size of the group increases, interactions between individuals become difficult to disentangle, and aggregate results
often obscure individual contributions Barrett and Dannenberg (2017). Studies of the N-person Prisoner’s Dilemma
have revealed how group size affects cooperation rates Capraro, Jordan and Rand (2013) and strategy evolution
Grujić, Gracia-Lázaro, Milinski, Semmann, Traulsen, Cuesta, Sánchez and Moreno (2014), but aggregating multiple
relationships obscures individual decision-making. To address this limitation, researchers have turned to the study of
pairwise interactions when individuals work in groups, which provides clarity and allows a detailed study of strategies
such as tit-for-tat Taylor and Nowak (2007).

Building on these approaches, our research focuses on a Triadic PD, where each player in a group of three faces
a PD game with each of the other two individuals in a group. Previous research Juvina et al. (2011) demonstrated
the feasibility of studying PD in a group, but their focus on collective outcomes left open questions about pairwise
relationships and individual dynamics. We developed a framework that preserves the analytical clarity of pairwise
interactions while capturing essential group dynamics. Our approach examines how each participant simultaneously
manages relationships with two other players within a triad context, allowing the analysis of emergent properties such
as third-player effects and relationship imbalances. By examining three-person groups, we extend previous work to
reveal how individual strategies and dyadic relationships contribute to group cooperation. We examine two key factors
that influence cooperation in the Triadic PD: structural incentives and information availability.

Early work established the K-index Rapoport, Chammah and Orwant (1965) as a theoretical predictor of
cooperation by quantifying the interdependence between players. Subsequent research validated its predictive power in
dyadic settings - Moisan, ten Brincke, Murphy and Gonzalez (2018a) demonstrated a correlation with cooperation rates
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in two-person games, while Hilbe, Wu, Traulsen and Nowak (2014) showed how the K-index shapes the evolution of the
strategy. However, empirical validation in small groups remains scarce. Although some studies examined cooperative
dynamics in multiplayer contexts, the role of structural incentives captured by the K-index remains unexplored. By
experimentally varying the K-index in triadic PD games, this study provides novel evidence for how these incentives
shape dyadic and group-level cooperation.

Information availability represents another crucial factor. In dyadic settings, research has shown how the complete-
ness of information shapes cooperation strategies, from forgiveness under imperfect information to strict reciprocity
with perfect information Romano, Balliet, Yamagishi and Liu (2017). Gonzalez and et al. (2015) showed how different
levels of information affect learning and adaptation in two-person games, while Nax, Burton-Chellew, West and Young
(2023) extended this analysis to larger groups but focused on aggregate outcomes. These effects become particularly
complex in small groups, where the design of strategic information can be crucial to maintaining cooperation. However,
we lack a systematic understanding of how different levels of information about mutual dependence affect cooperation
as we move from dyads to larger groups. Building on these information effects in dyadic settings, our study examines
how participants navigate more complex information environments in small groups. By systematically varying the
visibility of interactions between group members, we reveal novel dynamics in how individuals process and integrate
information about multiple relationships simultaneously. This approach illuminates previously hidden interaction
effects between information structures and strategic choices, providing insight into how information availability shapes
cooperative behavior when actors must manage multiple interdependent relationships.

These theoretical contributions have significant practical implications in multiple contexts. In this research, we
study the particularly relevant context of cybersecurity, where organizations must balance the collective benefits of
information sharing regarding cyber defense with competitive risks Tosh, Shetty, Sengupta and Bagchi (2015). Previous
research shows that information sharing improves collective security Garrido, Sanner and Löhr (2016); however,
many organizations do not share information about their vulnerabilities and experienced attacks because revealing
such details could expose them to reputational damage, legal liabilities, or competitors’ exploitation. This competitive
tension makes it difficult for organizations to trust each other fully, even when collaboration would enhance overall
security. Existing models addressing these dynamics often oversimplify bilateral relationships by assuming uniform
trust or cooperation and struggle to account for the complexities of larger networks with multiple interdependencies.

The paper proceeds as follows. Section 2 reviews related work on cooperation in groups, the effects of incentives
and information levels, and outlines our proposed Triadic PD. Section 3 presents the design of the Triadic PD in a
multidefender game (MDG) in the cybersecurity domain. Section 4 presents the experimental design and methods to
study the effects of incentives and information availability in the MDG. Section 5 presents our experimental results at
the individual, dyad, and triad levels. Section 6 discusses the results and their implications for fostering cooperation in
practical settings, particularly within the cybersecurity domain.

2. A Triadic PD Framework
Cooperation within groups has been widely studied in multiple disciplines, including economics, social psychology,

and evolutionary biology. In game theory, group cooperation is often studied through public goods games and
collective action problems, which introduce complexities not present in dyadic interactions. Public goods games, for
example, examine how individuals contribute to a shared resource pool while dealing with incentives to ride free
Fehr and Gächter (2000); Santos, Santos and Pacheco (2008). Recent research highlights factors such as group size,
communication, and mechanisms for punishing free riders as critical to maintaining cooperation Perc, Jordan, Rand,
Wang, Boccaletti and Szolnoki (2017); Szolnoki and Perc (2019). These studies show that group cooperation is more
complex than dyadic interactions due to greater mutual dependencies and coordination challenges.

The dyadic PD has also been extended to multiplayer versions, sometimes referred to as N-person PD. In these
settings, individuals must decide whether to cooperate with the entire group rather than just one other player. Research
suggests that cooperation in such multiplayer PD scenarios is influenced by factors such as reciprocity, reputation,
and social norms Nowak (2010); Capraro et al. (2013). However, multi-player dilemmas introduce unique challenges,
including coordination issues and an increased impact of individual decisions on group outcomes Grujić et al. (2014);
Van Lange, Balliet and Joireman (2020).

We extend the classic dyadic PD to triadic groups (as shown in Fig. 1), where each player in a three-person
group faces a PD game with each of the other two individuals in a group. This should allow us to examine the
individual, dyadic and group dynamics of cooperation and their effects of incentives and information availability. By
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incorporating insights about pairwise accountability and strategic information use, this framework addresses gaps in
existing game-theoretic models while providing actionable insights regarding collective, group behaviors. The triadic
structure captures essential features of information sharing networks while maintaining analytical clarity.

Player 1 Player 2

Player 3

Share: -15 points
Receive: +35 points

Share: -15 points
Receive: +35 points

Share: -15 points
Receive: +35 points

Payoff Matrix (Per Dyad)

Share Don’t Share
Share (R, R) (+20, +20) (S, T) (-15, +35)

Don’t Share (T, S) (+35, -15) (P, P) (0, 0)

Player Strategies
Universal Cooperation: Share with both peers
Selective Cooperation: Share with one peer
only

Universal Defection: Share with neither peer

K-index (Rapoport’s Index)

K-index = 0.4: 𝑅−𝑃
𝑇−𝑆 = 20−0

35−(−15) = 20
50 = 0.4

Higher K-index (0.8) = More cooperation
Lower K-index (0.4) = Less cooperation

K measures relative cost of mutual defection vs

temptation to exploit a cooperator

Figure 1: Structure of the Triadic Prisoner’s Dilemma. Each player engages in separate PD interactions with the other
two players. When sharing information, a player incurs a cost of 15 points while providing a benefit of 35 points to the
recipient. The K-index of 0.4 (low condition) indicates the cooperation incentive structure, calculated as the ratio between
mutual cooperation benefit and exploitation temptation. In our experiment, we compare this with a higher K-index of 0.8,
which theoretically promotes greater cooperation. Players must navigate these incentives while managing strategies across
multiple relationships simultaneously.

In contrast to N-person PD, our Triadic PD retains the fundamental 2-by-2 PD interactions within a triad context.
This allows us to focus on pairwise decision-making while examining how these interactions aggregate to influence
the group. The advantage of this design is that it enables us to capture both dyadic and triadic dynamics, providing
insights into how individual relationships affect broader group behavior. Unlike typical N-person PD scenarios, where
cooperation is assessed at the collective level, our approach provides a detailed examination of the interplay between
dyads within the group, revealing the conditions under which cooperation is stabilized or disrupted from individual
behavior.

Our Triadic PD framework is particularly valuable for understanding dynamic phenomena that emerge in
evolutionary game theory beyond static equilibrium states. While dyadic models can demonstrate basic cooperation
patterns, they often miss complex dynamics such as oscillations between strategies that occur in multiplayer contexts.
For example, the rock-paper-scissor dynamics observed in side-blotched lizards Sinervo and Lively (1996) show
how frequency-dependent selection can drive cyclic changes in strategy prevalence, similar to potential oscillations
in cooperation within small groups. Other relevant phenomena our framework can illuminate include contagious
outbreaks of cooperation or defection Helbing and Yu (2009) and the emergence of polarization where subgroups
adopt increasingly extreme strategies Yang (2023). By examining how incentive structures and information availability
affect these dynamics in triads, we bridge the gap between overly simplified dyadic models and intractably complex
large-group models, offering insights into how cooperation stabilizes or breaks down in real-world multi-agent systems.
2.1. Incentive Structure and Social Preferences

The interplay between incentive structures and social preferences significantly shapes cooperative behavior in group
settings. Incentive structures, defined by the potential rewards or costs players face based on their decisions to cooperate
or defect, directly influence individual motivations. Moisan et al. Moisan, ten Brincke, Murphy and Gonzalez (2018b)
demonstrated that as players’ cooperativeness increases, there is a sharp transition from defection to cooperation, with
First Author et al.: Preprint submitted to Elsevier Page 3 of 22



the transition point depending on the game’s payoff matrix. Their work showed that inequality aversion among players
promotes cooperation by transforming perceived incentives.

A well-established measure of expected cooperation in PD games is Rapoport’s K-index Rapoport (1967), defined
as𝐾 = (𝑅−𝑃 )∕(𝑇 −𝑆), where𝑅 represents the reward for mutual cooperation, 𝑃 the punishment for mutual defection,
𝑇 the temptation payoff for unilateral defection, and 𝑆 the sucker payoff for unilateral cooperation (see Fig. 1). The
K-index captures the expected cooperation by considering how much players benefit from defecting versus the cost of
mutual defection. When K is high (i.e. when T is not much larger than S or P is numerically large), defection is less
rewarding, and mutual defection is more costly, making cooperation more likely.

Prosociality Michael, McEllin and Felber (2020) (e.g., Social Value Orientation (SVO)) adds another layer to this
dynamic by reflecting how individuals weigh their results against others. SVO can be represented through a utility
function 𝑢(𝜋self, 𝜋opponent) = 𝑢self + 𝛼 ⋅ 𝑢opponent, where 𝛼 represents the weight given to the opponent’s payoff. For any
PD game, there exists a threshold 𝛼̄ such that players with 𝛼 > 𝛼̄ will prefer cooperation regardless of their beliefs
about the behavior of others, while those with 𝛼 < 𝛼̄ will consistently choose defection.

Furthermore, it is worth noting that recent developments in evolutionary game theory have expanded beyond the K-
index to characterize social dilemmas more comprehensively. The universal dilemma strength framework distinguishes
between Chicken-type dilemmas (𝐷𝑔′ = (𝑇 −𝑅)∕(𝑅− 𝑃 )) and Stag Hunt-type dilemmas (𝐷𝑟′ = (𝑃 − 𝑆)∕(𝑅− 𝑃 )),
offering additional dimensions to analyze the dynamics of cooperation Wang, Kokubo, Jusup and Tanimoto (2015);
Ito and Tanimoto (2018). In our experimental design, we use a structure similar to the Donor & Recipient game, where
these dilemma types maintain equal strength (Dg’ = Dr’), allowing us to meaningfully interpret changes in cooperation
through the K-index while acknowledging these broader theoretical developments.
2.2. Information Levels and Decision Making

The effectiveness of incentive structures in promoting cooperation is highly dependent on the information available
to players about their mutual interdependence Vuolevi and Van Lange (2012). The Hierarchy of Social Information
(HSI) framework proposed by Gonzalez and Martin Gonzalez and Martin (2011) conceptualizes three main levels of
interpersonal information. At the Minimal Information level, players know that they are interdependent, but lack details
about how their actions affect others. The Experiential Information level allows players to observe others’ actions and
outcomes over time, enabling learning through experience about their interdependencies. The Descriptive Information
level provides complete information about the payoff structure upfront, in addition to experiential feedback.

This framework suggests that providing more detailed information about interaction structures can foster cooper-
ation more effectively than limited or no social information. Gonzalez et al. Gonzalez, Ben-Asher, Martin and Dutt
(2015) found that continued visibility of the payoff matrix helps clarify the trade-off between short-term and long-term
rewards, while experiential feedback strengthens the understanding of reciprocal relationships.

The combination of incentive structures and information levels creates a complex decision environment where
players must balance individual and collective interests. These factors are relevant in many practical problems. In
particular, in cybersecurity contexts, organizations must decide whether to share threat information with others.
Research has shown that rewarding and punishing certain actions can significantly affect information exchange behavior
Tosh et al. (2015) and in cyberdefense these incentives together with the type of information exchange have shown that
clarity of feedback on interdependencies influences cooperation rates Garrido et al. (2016).

3. Triadic PD in a Multi-Defender Game (MDG) for Cybersecurity
To test our Triadic PD framework and the effects of incentives and information, we developed the Multi-Defender

Game (MDG). This game simulates a cybersecurity scenario in which three defenders must make decisions about
sharing threat information. Each participant plays through 50 rounds of decision making, managing their resources
while facing possible cyber attacks. Fig. 1 shows the Triadic interaction structure in our game and Fig. 2 illustrates
three steps during each round of decision making in the game.

First, Fig. 2a shows the initial interface where players receive their status information and make sharing decisions.
Second, when choosing to share information, players can select specific defenders or share with all members of the
group, as shown in Fig. 2b. This granular control over information sharing allows players to implement selective sharing
strategies.

The sharing interaction between each pair of defenders creates a PD interaction between each of the two players.
Sharing information costs the sender 15 points, but provides the receiver with 35 points. Therefore, mutual sharing
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results in a net gain of 35 − 15 = 20 points for each defender. When one defender shares while the other does not, the
sharer loses 15 points, while the receiver gains 35 points. If neither shares, both receive 0 points.

You are player D1

Points available: 1000

Probability of attack: 53%

You have not been attacked.

Do you want to share information?

Yes No

(a) Initial game interface showing player status, including avail-
able points (starting endowment: 1000 points), probability of
attack, and attack status for the current round. Players choose
whether to share information using Yes/No buttons.

You are player D1

Points available: 1000

Probability of attack: 53%

You have not been attacked.

Do you want to share information?

Yes No

With whom do you want to share information?

D2 D3 Both

(b) Information sharing selection interface, allowing players to
choose specific recipients (D2, D3) or share with all defenders.

You are player D1

You have not been attacked.

Stats for this round:
Points available: 1000

Probability of attack:  51%

Stats for next round:
New points available: 1025

New probability of attack:  48%

Done

(c) End-of-round feedback screen showing attack status, infor-
mation sharing outcomes, and updated statistics including new
points available and adjusted probability of attack for the next
round.

Figure 2: Interfaces used during the game: (a) Initial game interface, (b) Information sharing interface, and (c) End-of-round
feedback screen.

Information sharing has both immediate and long-term effects in the game. Beyond direct point exchanges,
receiving information helps strengthen a defender’s security posture, reducing their probability of being breached in
subsequent rounds. The probability of a breach in round t+1 is reduced according to the formula:

Pr
𝑡+1

= Pr
𝑡
−(0.95 ⋅𝑍𝑡

𝑖∕2000) (1)

where 𝑍𝑡
𝑖 represents the accumulated reward of defender i in trial t.

The accumulated reward of each player is updated each round based on three factors: their sharing decisions, attack
costs (-30 points when attacked), and information-sharing rewards:

𝑅𝑡
𝑖 = 𝑅𝑡−1

𝑖 +𝑍𝑡
𝑖 + (−30) ⋅ 𝐶 𝑡

𝑎 (2)
where 𝐶 𝑡

𝑎 represents the attack status in round t.
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4. Methods
This experiment examines how incentive structures and information availability shape cooperative behavior in

Triadic PD. The MDG frames Triadic PD in the context of cybersecurity, as it is an important area to illustrate
this tension between individual and collective interests. Our multilevel analysis approach allows us to examine how
cooperation emerges and evolves at the individual, dyadic, and group levels.

To investigate how incentive structures and information levels influence cooperative behavior, we conducted two
studies using the MDG. Study 1 examined the effect of incentive structures by varying the K-index (0.4 vs 0.8) under
minimal information conditions. Study 2 investigated the impact of information availability by comparing three levels
of feedback (Minimal, Experiential, Descriptive) while maintaining a constant K-index of 0.4.

The three different levels of information conditions are shown in Fig. 3. In the Minimal Condition, the participants
received only basic feedback on whether other players shared information with them. The Experiential condition
provided detailed information through a feedback table showing each defender’s actions, attack status, and the resulting
point exchanges. This allowed participants to learn about the consequences of their decisions and others’ behaviors
through direct experience. The Descriptive condition supplemented the experiential information with the complete
pay-off matrix, allowing participants to understand the full range of possible outcomes before making their decisions.

A. Minimal Information Level

Game Status Update:
∙ Defender 1 shared information with me
∙ Defender 2 didn’t share any information

B. Experiential Information Level

My Actions Defender 1 Defender 2

∙ Did not share with Defender 1
∙ Shared with Defender 2

∙ Shared information
∙ Was attacked
∙ My gain: +35
∙ Their cost: -15

∙ Did not share
∙ No points exchanged
∙ My gain: 0
∙ Their gain: 0

C. Descriptive Information Level

Additional to experiential information, players see the payoff matrix: (left: K=0.4; right: K=0.8)

Share Don’t Share
Share (+20, +20) (-15, +35)

Don’t Share (+35, -15) (0, 0)

Share Don’t Share
Share (+30, +30) (-15, +35)

Don’t Share (+35, -15) (-10, -10)

Figure 3: Three levels of information provided to players. (A) Minimal Information provides only basic sharing status. (B)
Experiential Information shows detailed outcomes of interactions with each defender. (C) Descriptive Information adds the
complete payoff matrix to help players understand potential outcomes.

This design resulted in four experimental conditions:
• Game I: K-index = 0.4, Minimal Information
• Game II: K-index = 0.8, Minimal Information
• Game III: K-index = 0.4, Experiential Information
• Game IV: K-index = 0.4, Descriptive Information
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Our hypotheses examine how the relative costs and rewards of cooperation influence group behavior and how
different levels of information about interdependence affect group cooperation.
Hypothesis 1. Groups in the high K index condition (𝐾 = 0.8) will demonstrate higher cooperation rates than those
in the low K index condition (𝐾 = 0.4), as the increased reward-to-cost ratio makes cooperation more attractive.

Hypothesis 2. A higher K-index will lead to stronger “lock-in” effects between dyads, where the pairs maintain
consistent cooperation or defection. This is because the reduced temptation to defect makes established cooperative
relationships more stable, while coordination challenges and the stabilization of defection as a safe strategy reinforce
existing defective relationships.

Building on the Hierarchy of Social Information framework, we examine how different levels of information about
interdependence affect group cooperation.
Hypothesis 3. Cooperation rates will increase with information level:

• Descriptive (complete payoff information) will show the highest cooperation

• Experiential (observing others’ actions/outcomes) will show moderate cooperation

• Minimal (basic awareness) will show the lowest cooperation

This progression reflects how greater awareness of mutual interdependence promotes cooperative behavior.

Hypothesis 4. In triadic interactions, increased information will lead to:

• Greater disparity in how individuals treat their two peers, as participants can make more informed choices about
selective cooperation

• Stronger mediation effects from third players, due to a better understanding of group dynamics

• a more balanced triad, reducing disparities in relationship strength as participants can better calibrate their
cooperative behaviors.

4.1. Participants
A total of 519 participants (173 groups of 3 individuals) from Amazon Mechanical Turk participated in groups of

3. About 32% reported having high school education, 53% a bachelor’s degree, 11% a master’s degree, and 4% reported
other forms of education. Of the 173 groups, 51 groups participated in Game I (K = 0.4, Info = minimum), 51 groups
in Game II (K = 0.8, Info = minimum), 34 groups in Game III (K = 0.4, Info = experiential), and 36 groups in Game IV
(K = 0.4, Info = descriptive). About 46% of the participants identified as female. Participants received a base payment
of $3 and could earn up to $1.75 additional bonuses based on their performance. The average time to complete the
experiment was 20 minutes (SD = 2.3).

This study was approved by the Carnegie Mellon University Institutional Review Board (IRB ID: IRB-
STUDY2015_00000418, "Social Cognitive Aspects of Decision Making in Cyber-Security"). All participants provided
informed consent before participating in the experiment.
4.2. Procedure

Participants provided informed consent and basic demographic information before receiving task instructions.
Their main objective was to maximize their points throughout the game. Before starting, participants completed a
comprehension test to test their understanding of the dynamics of the game. They received feedback on incorrect
answers and proceeded only after selecting the correct responses. They were informed that they would be part of
a three-player group and would receive feedback on information sharing in each trial. The experiment consisted of
50 trials, although the participants were not informed of this number in advance. After completion of all trials, the
participants completed a survey about their strategies.
4.3. Dependent Variables

To study the effects of incentives and information on emergent cooperative behavior in 3-person groups, we perform
multilevel analysis. We start from the individual level, moving on to pair-level analyses, and finally consider the triad-
level analyses to examine the role of a third player, and reveal how players affect each other during repeated interactions.
First Author et al.: Preprint submitted to Elsevier Page 7 of 22



4.3.1. Individual metrics
The choice between cooperation and defection is difficult, as its costs and consequences are not immediately clear.

Rapid decision making often contradicts the principles of a well-considered policy. The behavior of the participants
can be spontaneous and largely influenced by their basic attitudes. Therefore, it is important to understand whether
participants are naturally inclined to cooperate or to defect. We measure the behavior of the participants that might lead
to good individual performance (Success), their cooperation frequencies contingent on the preceding play, including
the other player’s response (Decision-conditioned Probabilities), the payoff (Outcome-Conditioned Probabilities), and
the attack status (Post-Attack Cooperation Probability).

Past research has shown that for an individual to perform well in a durable iterated Prisoner’s Dilemma, the rule
of thumb is to avoid unnecessary conflict by initiating cooperative behavior. Additionally, it is important to present
a predictable pattern and make it clear to the other player that both cooperation and defect will be reciprocated,
encouraging mutual responsiveness. We measure the participant’s (1) First move, which refers to their initial decision
in the game: sharing with both group mates; sharing with one group mate; and sharing with none. We quantify the
(2) Predictability of a participant’s behavior (𝑋) given the behavior of the other player in the last round (𝑌 ) with
conditional entropy:

𝐻(𝑋 ∣ 𝑌 ) =𝑃 (𝑌 = 𝐶) ⋅
(
−

∑
𝑥∈{𝐶,𝐷}

𝑃 (𝑋 = 𝑥 ∣ 𝑌 = 𝐶) ⋅ log2 𝑃 (𝑋 = 𝑥 ∣ 𝑌 = 𝐶)
)

+ 𝑃 (𝑌 = 𝐷) ⋅
(
−

∑
𝑥∈{𝐶,𝐷}

𝑃 (𝑋 = 𝑥 ∣ 𝑌 = 𝐷) ⋅ log2 𝑃 (𝑋 = 𝑥 ∣ 𝑌 = 𝐷)
) (3)

This metric captures how consistently a participant’s actions can be anticipated based on the actions of the other player.
Specifically, it measures the uncertainty in the response of a participant (cooperate or defect) given the previous move
of the other player (cooperate or defect), providing a sense of how predictable and stable their strategy is.
Post-Attack Cooperation Probability. In MDG, participants are faced with the possibility of being attacked at each
trial. To understand the effect of an attack on each individual’s behavior, we measured the probability of cooperating
after a play in which the participant was attacked (𝑃 (𝐶|𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑑)).
Decision-conditioned probabilities. To gain insight into how individuals adjust their strategies to share or not
information with other defenders based on their behavior, we measured the following conditional probabilities for
each individual in a pair of defenders: (1) Cooperation Inertia: the probability that Player 1 responds cooperatively
following their own cooperative response on the preceding play, regardless of Player 2’s behavior. (2) Defection Inertia:
the probability that Player 1 responds defectively following his own defecting response on the preceding play, regardless
of Player 2’s behavior.
Outcome-Conditioned probabilities. We also evaluate how a participant’s behavior changes depending on the past
reward: (1) Trustworthiness: This refers to the probability of cooperating following a play in which the participant
received the outcome 𝑅. (2) Forgiveness: This denotes the probability of cooperating following a play in which the
player received the outcome 𝑆. (3) Repentance: This describes the probability of cooperating after a play in which the
player received the result 𝑇 . (4) Trust: This is the probability of cooperating after a play in which the player received
𝑃 out.
4.3.2. Dyad metrics.

To find out the strength of interaction, we evaluate the correlation between the frequency of cooperative choices of
two dyad members (Imitation) and patterns presented in the sequence of plays (Player 1 Cooperate, Player 2 Cooperate
- CC; Player 1 Cooperate, Player 2 Defect - CD; Player 1 Defect, Player 2 Cooperate - DC; Player 1 Defect, Player 2
Defect, DD) generated by the dyads (Lock-in).
Imitation. If participants tend to imitate each other, we expect to see matched responses such as 𝐶𝐶 (both cooperate)
and 𝐷𝐷 (both defects) in each test. To examine whether the imitation effect operates in the sequence of individual
plays, we calculate the proportion of matched responses (𝜌𝑥). Here, we define the decisions of player 1 and player 2
as random variables, where 𝐴 represents the decision of player 1 and 𝐵 represents the decision of player 2 lagged by
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𝑥 plays. The formula for 𝜌𝑥 is:

𝜌𝑥 =
𝐼𝐶𝐶𝐼𝐷𝐷 − 𝐼𝐶𝐷𝐼𝐷𝐶√

(𝐼𝐶𝐶 + 𝐼𝐶𝐷)(𝐼𝐶𝐶 + 𝐼𝐷𝐶 )(𝐼𝐷𝐷 + 𝐼𝐶𝐷)(𝐼𝐷𝐷 + 𝐼𝐷𝐶 )
(4)

Where 𝐼𝐶𝐶 , 𝐼𝐶𝐷, 𝐼𝐷𝐶 , and 𝐼𝐷𝐷 represent the frequencies of each possible outcome pair in the sequence of plays:
𝐼𝐶𝐶 is the frequency of both players cooperating, 𝐼𝐶𝐷 is the frequency of player 1 cooperating while player 2 defects,
𝐼𝐷𝐶 is the frequency of player 1 defecting while player 2 cooperates, and 𝐼𝐷𝐷 is the frequency of both players defecting.
This formula computes the correlation coefficient between the players’ decisions, normalized to account for the different
frequencies of cooperation and defection by each player. In this context, 𝜌1 represents the reaction to what the other
player did on the immediately preceding play, while 𝜌2, 𝜌3, and 𝜌4 represent the degree of interaction with the other
player’s responses from 2, 3, and 4 plays ago, respectively. The window of 𝑥 plays is important because it allows us to
understand how far back the influence of one player’s decision extends in affecting the other player’s behavior.
Lock-in Effect. To inspect the patterns of interaction between dyads, we group the sequence of plays into blocks of
25 consecutive trials (a block) as a unit of analysis and characterize each unit by (1) 𝐹𝐶𝐶 , 𝐹𝐷𝐷: the fraction of times
the 𝐶𝐶 , 𝐷𝐷 state occurs within the 25 trials; and (2) 𝐿𝐶𝐶 , 𝐿𝐷𝐷: whether the dyad is predominantly in a particular
state toward the end of the block. 𝐿𝐶𝐶 = 1 if there are 10 or more 𝐶𝐶 from the last 13 plays in the block. The choice of
25 plays as the size of the block is to balance the need for sufficient data to observe patterns while keeping the analysis
manageable. Focusing on the last 13 plays within the block helps in understanding recent behavior and whether the
dyad has settled into a stable pattern.

We expect to see the imitation effect in all games. We expect to observe stronger Lock-in Effect in Game II
where the temptation to defect is relatively weak. We expect to see a weaker lock-in effect in Game IV where
participants are repeatedly presented with the payoff matrix, which potentially leads participants to break the pattern.
The Experiential information in Game III might reinforce the outcomes of actions and strengthen the Lock-in Effect,
or prompt participants to behave more strategically thus weaken the Lock-in Effect.
4.3.3. Group metrics

The behavior in triads can differ significantly from that in dyads. For example, a third player can act as a mediator
and influence the decisions of the other two. Faced with two other players, participants might adopt a dual strategy,
treating their interactions with each participant separately based on previous interactions. Participants may also
consider fairness and equality in their decisions, especially when the actions and consequences of the two peers are
displayed side by side. Alternatively, they might intentionally favor one peer due to personal preferences or previous
interactions. To study emergent group behaviors in triads, we evaluated how the presence of a third participant affects
cooperative behavior towards their two peers (Disparity and Sequential Dependence), the strength of dyads (Mediation
Effect), and the friendship dynamics in the group ( balance). Each of these metrics is explained below.

We expect a third player to enforce cooperation between the other two players, especially when the incentive
structure encourages cooperation, as in Game II. In Games III and IV, where detailed information about actions
and payoffs is provided, we expect participants to adopt more differential attitudes toward their peers. This detailed
information might lead participants to adjust their strategies based on the perceived level of cooperation of their peers.
Disparity. Disparity occurs when one player treats the other two players differently, leading to imbalances in
cooperation, trust, or reciprocity. A participant may favor one player over another if they believe that one player is more
likely to reciprocate cooperation than the other. We verify the existence of disparity using two metrics: (1) 𝐺𝑎𝑝𝐴𝐵,𝐴𝐶 ,
which calculates the difference between player A’s propensity to cooperate with each of the other two players B and C,
indicating a greater disparity with a larger gap; and (2) Sequential Dependence, which analyzes player decisions based
on actions of each of the other two players measuring specific dyad metrics. We identify patterns in the decisions of the
participants by calculating the proportion of four possible outcomes: the player cooperates with both peers, cooperates
with one peer and defects with the other, defects with one peer and cooperates with the other, and defects with both
peers, conditioned on the decisions of the peers in the preceding round. These metrics help us understand the extent of
the disparity in participant behavior by showing how differently a player treats their two peers based on past interactions
and the influence of the actions of each peer.
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Table 1
Regression Table

Predictor Odds Ratio CI P
(Intercept) 1.154 1.112 ∼ 1.198 < 0.001
Point 1.000047 1.000034 ∼ 1.000053 < 0.001
Probability of breach 0.953 0.914 ∼ 0.993 < 0.05
Attack status 1.185 1.160 ∼ 1.211 < 0.001
Last.received.peer1 1.807 1.778 ∼ 1.837 < 0.001
Last.received.peer2 1.877 1.847 ∼ 1.907 < 0.001

Mediation Effect. To evaluate how a third participant influences cooperation within a dyad over time, we calculate
(1) 𝜌𝑡ℎ𝑖𝑟𝑑−𝑑𝑦𝑎𝑑 , which measures the impact of the third participant’s type (prosocial, neutral, or self-interested) on the
level of cooperation within the dyad. This impact is analyzed using a mixed-effects model that accounts for the repeated
measures over time. We define the dyads and third party in groups as follows: dyad 1 consists of player 1 and player 2
with player 3 as the third party; dyad 2 consists of player 1 and player 3 with player 2 as the third party; dyad 3 consists
of player 2 and player 3 with player 1 as the third party.

𝐶𝑑𝑦𝑎𝑑,𝑡 = 𝛽0 + 𝛽1 ⋅ Category𝑡ℎ𝑖𝑟𝑑 + 𝛽2 ⋅ 𝑡 + 𝛽3 ⋅ (Category𝑡ℎ𝑖𝑟𝑑 × 𝑡) + 𝑢𝑖 + 𝜖𝑡 (5)
Where 𝐶𝑑𝑦𝑎𝑑,𝑡 represents the cooperation level within a dyad at time 𝑡; 𝛽0 is the intercept (baseline cooperation

level); 𝛽1 represents the fixed effect of the third player’s category on cooperation; 𝛽2 captures the fixed effect of time;
𝛽3 represents the interaction effect between the third player’s category and time; 𝑢𝑖 is the random effect for group 𝑖 that
accounts for between-group variation; and 𝜖𝑡 is the residual error term at time 𝑡.
Balance. When there is disparity or favoritism in a triad, it often leads to an imbalanced state. Such an imbalance
can create tension and drive changes in behavior. If two players have strong ties, the third player could either
form a cooperative relationship with at least one of them, creating a closed triad with strong dyads all around, or
remain excluded, leaving the triad unbalanced with strong and weak dyads coexisting. To examine the interplay
of dyad relationships in triads, we take advantage of the concept of "tie strength" from Granovetter (1973) and
operationalize it as (1) Dynamic strength of dyads, defined as 𝐷𝑆𝑡 =

𝐶𝑡+𝑅𝑡
2 . Here, 𝐶𝑡 is the cooperation rate up to

time 𝑡, calculated as 𝐶𝑡 =
Cumulative cooperative rounds up to t

𝑡 , and 𝑅𝑡 is the reciprocity index up to time 𝑡, calculated as
𝑅𝑡 =

Number of reciprocated cooperative actions up to t
Total opportunities for reciprocation up to t .

5. Results
5.1. Individual-Level Behavior
Regression Analysis. A logistic regression model with the sharing decision as the dependent variable and the
six predictors as independent variables (Cumulative points 𝑃𝑜𝑖𝑛𝑡, Probability of Breach 𝑃𝑏, Decisions from peer
1 (Last.received.peer1) and peer 2 (Last.received.peer2) in the preceding play, and MTurkId) helped determine the
effects of the various factors on the likelihood of cooperation. The regression model includes the MTurk id as an error
term to indicate the error margin in the model:

𝑠ℎ𝑎𝑟𝑒𝑑 ∼ 𝑃𝑜𝑖𝑛𝑡 + 𝑃𝑏 + 𝐴𝑡𝑘 + 𝑙𝑎𝑠𝑡.𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.𝑝𝑒𝑒𝑟1 + 𝑙𝑎𝑠𝑡.𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.𝑝𝑒𝑒𝑟2 + (1|𝑀𝑡𝑢𝑟𝑘𝐼𝑑).
The regression model suggests that points, probability of breach, attack status, and peers’ decisions in the preceding

play are predictive features of cooperation, as shown in Table 1. The odds ratio suggests that, overall, receiving
information from peers in the preceding game increases the chance of cooperation around 80% ∼ 87%. The participants
being attacked cooperate approximately 18.5% more than the safe participants. This could be explained by realistic
conflict theory Jackson (1993), when individuals or groups perceive a shared threat, they are more likely to put aside
internal conflicts and unite against the common enemy. Interestingly, the probability of being attacked (Pb) has a mildly
negative effect on cooperation, which reveals a discrepancy between decisions based on direct experience of risks versus
abstract descriptions of probabilities Rakow and Newell (2010). Points have a positive effect on cooperation. For every
extra 100 points, the odds that the outcome occurs increase by approximately 4.7%.

First Author et al.: Preprint submitted to Elsevier Page 10 of 22



Game Mean SD
I (0.4 Minimum) 0.572 0.374
II (0.8 Minimum) 0.681 0.345
III (0.4 Experiential) 0.717 0.350
IV (0.4 Descriptive) 0.496 0.381

Table 2
Mean and standard deviation of cooperation rate across all 50 rounds for each experimental condition (n=51, 51, 34, and
36 groups for Games I-IV, respectively).

Overtime Cooperation Rate. As shown in Table 2, 𝐼𝐼𝐼 > 𝐼𝐼 > 𝐼 > 𝐼𝑉 in terms of individual cooperation rate,
suggesting that both a higher K-index (IV) and more information (II) can promote cooperation as expected. The effect
of information is stronger. However, in contrary to our expectation, descriptive information (i.e., the display of the
payoff matrix in Game IV) backfired and the cooperation frequencies are the lowest among the four games.

As shown in Fig. 4, the cooperation rate dropped sharply during the first ten rounds in all four games, similar to
previous studies of PD. It then continued to decline notably in Game IV and remained relatively stable in the rest of
the game conditions. A two-way ANOVA was performed to examine the effects of the number of K-indices and the
information level and the round index on cooperation. There was a significant main effect of the number of K-index on
cooperation [F(1, 19) = 67.656, 𝑝 < 0.001] and a significant main effect of the information level [F (2, 30) = 87.179,
𝑝 < 0.001]. Furthermore, the round also had a nearly significant effect on cooperation [F(49, 14) = 1.255, 𝑝 < 0.109].
The interaction effects are not significant.
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Figure 4: Average Individual Cooperation Rate Over Time. The x-axis represents the game rounds (50 total), while
the y-axis shows the average cooperation rate for individuals under each game condition: Game I (K-index=0.4,
Minimal information, n=51 groups), Game II (K-index=0.8, Minimal information, n=51 groups), Game III (K-index=0.4,
Experiential information, n=34 groups), and Game IV (K-index=0.4, Descriptive information, n=36 groups).

The high rate of cooperation at the beginning of the game indicates that most of the participants entered the
experiment with a cooperative mind. As shown in Fig. 5(a), a further inspection of their first move revealed that most
of the participants (66%) are prosocial and share with both groupmates. The rest are Self-Interested (33%) and share
with no one. Very few participants start with selective sharing. This finding is consistent with other studies Ackermann,
Fleiß and Murphy (2016) that explicitly measure the SVO of participants. A bimodal pattern is commonly found in the
SVO index distributions, where most participants are quite self-regarding or rather prosocial. The nice gesture paid off
in this game. As shown in Fig. 5 (b), nicer participants perform significantly better than Self-Interested participants,
under all conditions (Pro-social: m = 3495, Neutral: m = 2098, Self-Interested: m = 1505).
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Figure 5: Participant Strategies and Performance. (a) The proportion of participants categorized by their initial sharing
strategy: Pro-social (shared with both groupmates), Neutral (shared with one groupmate), or Self-Interested (shared with
no one). (b) Cumulative points earned by participants at the end of the game, categorized by their initial strategy.

Conditional Propensities. To examine the cooperativeness of participants in more detail, we measure the compo-
nents of the cooperative rate, the conditional probabilities. As shown in Fig. 6(a), the overall tendency to retaliate and
to persist in defection is stronger than the tendency to respond cooperatively and to persist in cooperation. As shown
in Table 3, the only exception is Game III (Info = Experiential, K = 0.4), where the tendency to respond cooperatively
and persist in cooperation triumphs over the tendency to retaliate and persist in defection. One-way ANOVA showed
that the level of information on mutual interdependence has a significant or almost significant effect on persistence
[F(2, 347) = 3.953, 𝑝 < 0.05], reciprocate [F(2,347) = 2.812, 𝑝 = 0.061], and continue to tend [F(2,347) = 2.449,
𝑝 = 0.087]. The K-index of the incentive structure has a significant effect on revenge [F(1, 347) = 4.086, 𝑝 < 0.05],
reciprocates [F(1, 347) =, 𝑝 < 0.05] and continues the trend [F(1, 347) =, 𝑝 < 0.01].
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Figure 6: Behavioral Propensities Based on Past Decisions. (a) Cooperation rates conditioned on an individual’s or their
peer’s prior actions (e.g., persistence and vengefulness tendencies). (b) Cooperation rates conditioned on the outcomes of
prior interactions (e.g., trustworthiness and forgiveness tendencies).

In terms of state-conditioned propensities, as shown in Fig. 6(b), Trustworthiness 𝑥 > Forgiveness 𝑦 > Repentance
𝑧 > Trust 𝑤 in all four games. These four conditional probabilities correspond to a memory-1 strategy framework as
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Persistence Vengefulness Reciprocate Continue
I 0.743 0.716 0.685 0.655
II 0.730 0.676 0.658 0.667
III 0.647 0.681 0.721 0.708
IV 0.735 0.697 0.530 0.560

Table 3
Average cooperation rate conditioned on the actions in preceding play.

Trustworthiness
(x)

Forgiveness
(y)

Repentence
(z)

Trust
(w) Attacked Safe

I 0.742 0.466 0.418 0.324 0.556 0.559
II 0.733 0.550 0.434 0.266 0.672 0.684
III 0.650 0.434 0.303 0.278 0.765 0.783
IV 0.650 0.434 0.303 0.278 0.455 0.479

Table 4
Average cooperation rate conditioned on the reward and attack status in preceding play.

formalized by Hilbe, Martinez-Vaquero, Chatterjee and Nowak (2017), who demonstrate that strategies based only on
the previous round’s outcome can be highly effective in repeated social dilemmas. In their framework, a player’s strategy
is fully described by four parameters representing the probability of cooperation following each possible outcome state.
Since 𝑥, 𝑦, 1− 𝑧, 1−𝑤 represent the tendencies to repeat the previous response in each of the four states, respectively,
𝐶𝐶 , 𝐶𝐷, 𝐷𝐶 , 𝐷𝐷, taking the perspective of Player 1, as 𝑇 > 𝑅 > 𝑃 > 𝑆, we expect 1 − 𝑧 > 𝑥 > 1 − 𝑤 > 𝑦. This
theoretical expectation aligns with the adaptive dynamics model of LaPorte, Hilbe and Nowak (2023), who showed that
memory-1 strategies evolve differently depending on the payoff structure and population composition. The violation of
(a) 1−𝑧 > 𝑥 indicates a greater propensity to cooperate than one would expect from the payoffs. This cooperative bias
has been identified by Hilbe et al. (2017) as a characteristic of successful memory-1 strategies in environments that
favor long-term reciprocity over immediate exploitation. The violation of (b) 𝑥 > 1 −𝑤 indicates a greater propensity
to defect than one would expect from the rewards. The violation of (c) 1 − 𝑧 > 1 − 𝑤 is ambivalent since both are
propensities to defect. As shown in Table 4, the violation of the cooperative bias of (a) is present in all except the Info =
descriptive condition with the payoff matrix presented. The violation of the defecting bias of (b) is present in conditions
without information about the mutual interdependence between participants. (c) is present in all conditions, indicating
that fear of receiving 𝑆 rather than the hope of receiving 𝑇 is the most important factor in the persistent response
to defection. Interestingly, the different patterns observed across our experimental conditions align with the findings
of LaPorte et al. (2023), who found that different information environments can alter the adaptive value of specific
memory-1 strategies, particularly affecting how players weight immediate versus future payoffs. It is also worth noting
that participants are biased towards cooperation in all games except Game IV (Info = descriptive, K = 0.4). Finally,
unlike our expectation, being attacked or not in the preceding round has no significant effect on the cooperation rate,
as shown in Table 4.

In light of these findings, the next question naturally arises: Are these conditional cooperative behaviors noticeable
to the other party in the game as discernible patterns? To investigate this, we calculated the conditional entropy to
measure the randomness of the behavior of the participants. As shown in Fig. 7(a), the participants behave randomly,
that is, when the opponent chooses to cooperate, the participants might cooperate or defect. However, unlike our
expectation, the randomness of the behavior of the participants does not harm their performance. In contrast, as
demonstrated in Fig. 7(b) higher randomness leads to better performance.
5.2. Dyad-Level Behavior
Imitation Effect As shown in Table 5, correlation (𝜌) between the random variables C1 (player 1 share or not share)
and C2 (player 2 share or not share) showed that there is a significant correlation between the decision to share of
the participants and the decisions of their opponents in previous trials. The strength of the interaction decays with the
interval. The correlation (𝜌) is the smallest in Game IV (k = 0.4, Info = descriptive). Evidently, presenting the payoff
matrix obscures the effect of imitating the other’s last response.
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Figure 7: Relationship Between Behavioral Randomness and Performance. (a) Distribution of participants’ conditional
entropy values, representing the unpredictability of their responses based on their peers’ prior actions. (b) Relationship
between conditional entropy and cumulative points earned, showing how greater randomness in decision-making influences
performance across game conditions.

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5
I 0.274 0.221 0.177 0.162 0.163
II 0.287 0.231 0.209 0.168 0.155
III 0.299 0.217 0.143 0.120 0.067
IV 0.156 0.110 0.108 0.073 0.076

Table 5
Correlation between decisions of two paired participants.

Lock-in Effect As shown in Fig. 8, a bimodal distribution is observed with respect to the fraction of CC and DD
responses. It shows that the interaction between two participants tends to throw the performance toward one extreme,
lasting mutual cooperation, or mutual defect. Pairs of participants in games with higher K-index payoffs are more
prone to be locked in CC or DD traps. Pairs of participants in games with more information about their mutual
interdependence are less likely to be locked in CC or DD traps.
5.3. Triad-Level Behavior

Unlike dyadic interactions, players in triads must manage multiple relationships simultaneously. We first examine
how individuals distribute their cooperation between two peers. Then analyze how they develop differentiated strategies
based on each peer’s behavior. Building on these individual patterns, we investigate how the strategy of a third player
influences cooperation between pairs. Finally, we examine how these pairwise interactions combine to shape the overall
balance of relationships within the group.
Disparity We first examine whether participants tend to share information equally with both peers or favor one over
the other. Under high incentives (k-index = 0.8), participants shared with both peers 43% of the time and with only one
peer 26% of the time. Under low incentives (k-index = 0.4), the sharing was split more evenly: 29% with both peers
and 27% with one peer.

We performed repeated measures ANOVA and found a statistically significant effect of condition (F(3, 515) =
2.148, p < 0.001) and round (F(49, 25235)= 5.148, p < 0.001), while there was no significant effect of the interaction
between condition and round (F(147, 25235) = 2.849, p=1). A Tukey post hoc test suggested that participants increase
sharing with one defender over rounds and decrease sharing with two defenders under all conditions. Fig. 9 shows that
the participants started sharing with both players; however, the proportion of sharing with both reduced, while sharing
with one increased overtime (specifically in the first 25 trials).
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Figure 8: Horizontal: Fraction of CC/DD responses in a block of 25 plays; Vertical: Fraction of 25 blocks corresponding
to each fraction of DD responses

Sequential Dependence Building on the observed shift towards selective sharing, we analyzed how the treatment
of each peer evolved for the participants based on previous interactions. Fig. 10 shows the complete dynamics of
participants’ responses to their peers’ previous actions. After mutual cooperation (CC), the participants maintained
high levels of cooperation, with this tendency strengthening over time under all conditions. After mutual defection
(DD), participants in Game III showed a greater willingness to initiate cooperation (DD → CC, CD, or DC), although
this decreased with time. When peers made different choices (CD or DC), responses varied by information condition:
In Game III with experiential feedback, participants often attempted to restore mutual cooperation (CD/DC → CC),
while in Game IV with complete payoff information, they more frequently matched their peers’ previous actions (CD
→ CD, DC → DC).

Figure 11 examines the behavioral differences between the treatment of the two peers by participants in several
metrics: persistence, vengefulness, forgiveness, and trust. The "gap" metrics reveal fluctuations in how participants
differentiated their cooperative or retaliatory responses toward peers, with some variations observed across games and
rounds. For example, persistence and vengefulness metrics exhibit shifts that may reflect adjustments in participants’
approaches to maintaining or retaliating against cooperation, while forgiveness and trust show varying tendencies to
rebuild cooperation after negative interactions. These differences appear to be more pronounced in Games III and IV,
where higher levels of information could have encouraged more nuanced strategies. Although the results do not point
to a single clear pattern, they highlight the dynamic nature of triadic interactions and the potential for information
availability to influence relational strategies.

Overall, the individual’s behavior is not uniform across peers, with significant disparities in how they respond to
cooperation and defection. As expected, the disparity is more significant in games with higher levels of information
(Game III and IV), especially in terms of Persistence, Vengefulness, Forgiveness, and Trust. In Game III, the participants
become more Persistent in continuing their defection toward one peer than to another. Overtime, they view a peer as
more trustworthy and become more willing to take a risk with a peer after mutual defection in the preceding round
(Trust).
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Figure 9: Overtime sharing preferences of individual participants across the four experimental conditions. The y-axis
represents the proportion of participants who chose to share information with both groupmates (top) or with only one
groupmate (bottom) over 50 rounds. Game I (K-index=0.4, Minimal information, n=51 groups), Game II (K-index=0.8,
Minimal information, n=51 groups), Game III (K-index=0.4, Experiential information, n=34 groups), and Game IV (K-
index=0.4, Descriptive information, n=36 groups).

Mediation Effect Moving from individual behaviors to group dynamics, we examine how a third player’s cooperation
strategy affects the relationship between the other two players. We categorize third-player strategies as universal
cooperation ("All"), universal defection ("None"), or selective cooperation ("One"). Fig. 12 shows how these strategies
influence pair cooperation over time under different initial conditions.

Surprisingly, selective cooperation by the third player leads to the highest levels of pair cooperation when pairs
start with mutual cooperation (CC) or mutual defection (DD). However, this selective strategy can destabilize pairs
that begin with mixed strategies (CD/DC). In contrast, universal strategies (either "All" or "None") lead to more stable
but generally lower levels of cooperation, particularly when pairs start with unilateral cooperation.

These patterns suggest that selective cooperation by the third player can effectively promote cooperation in stable
pairs but may disrupt already unstable relationships. This finding highlights how third-party behavior can reinforce or
destabilize the dynamics of existing relationships.
Balance To understand how pairwise relationships interact within triads, we examine the relative strength of all three
dyadic relationships over time. Fig. 13 shows these dynamics under different initial conditions.

When all members begin with cooperation ("All, All, All"), relationships stabilize with minimal differences
in strength between pairs. Mixed initial strategies lead to growing disparities between pairs, creating persistent
imbalances. Even when one member cooperates while two defect ("All, None, None"), overall cooperation increases,
but with noticeable gaps between pair relationships, the cooperative member tends to form stronger bonds with
whichever peer reciprocates first.

Groups that start with universal defection can improve over time, although they plateau with persistent differences
between pairs. These findings align with social balance theory: Although consistent cooperation promotes stable,
balanced relationships, asymmetric strategies create lasting imbalances that resist equilibration.
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Figure 10: Sequential dependency between each individual’s sharing decisions in a round and his peers’ decisions in the
preceding round. E.g., Panel 𝐶𝐷 → 𝐷𝐶 represents when peer 1 cooperated and peer 2 defected in the preceding round
(𝐶𝐷), the proportion of participants choosing to defect peer 1 and cooperate with peer 2 (𝐷𝐶) in the current round
(𝑃 (𝐷𝐶 ∣ 𝐶𝐷)). Game I (K-index=0.4, Minimal information, n=51 groups), Game II (K-index=0.8, Minimal information,
n=51 groups), Game III (K-index=0.4, Experiential information, n=34 groups), and Game IV (K-index=0.4, Descriptive
information, n=36 groups).
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Figure 11: The ’gap’ quantifies differences in how individuals treat their two peers, measured through four dimensions:
persistence, vengefulness, forgiveness, and trust. A higher gap indicates greater differentiation in responses. The x-axis
shows the game rounds, and the y-axis represents the gap value for each metric across different game conditions.Game
I (K-index=0.4, Minimal information, n=51 groups), Game II (K-index=0.8, Minimal information, n=51 groups), Game
III (K-index=0.4, Experiential information, n=34 groups), and Game IV (K-index=0.4, Descriptive information, n=36
groups).

Figure 12: Influence of the Third Player on Dyadic Cooperation. The y-axis shows the average mutual sharing behavior
(0: mutual defection (DD), 1: unilateral sharing (CD/DC), 2: mutual sharing (CC)). Lines represent changes in dyadic
cooperation across game conditions and rounds. Game I (K-index=0.4, Minimal information, n=51 groups), Game II
(K-index=0.8, Minimal information, n=51 groups), Game III (K-index=0.4, Experiential information, n=34 groups), and
Game IV (K-index=0.4, Descriptive information, n=36 groups).
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Figure 13: Evolution of Dyadic Relationship Strengths in Triads. Each panel represents different initial cooperation and
defection patterns. Lines show the strength of individual dyadic relationships, and the shaded ribbon illustrates the disparity
between the strongest and weakest relationships over time.
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6. Discussion
Our research extends the current understanding of cooperation by examining how dyadic relationships aggregate

and evolve within three-person groups. The findings both support and challenge existing theoretical frameworks in
social dynamics and learning.

Study 1 demonstrated that structural incentives, represented by the K index, significantly influence information-
sharing behavior. Groups operating with higher K-index values (0.8) showed consistently higher rates of cooperation
compared to those with lower K-index values (0.4). This aligns with Rapoport’s predictions and extends the findings
of dyadic studies Moisan et al. (2018b) to triadic interactions. However, the effect was moderated by information
availability, suggesting that structural incentives alone cannot fully explain cooperative behavior in groups.

Study 2 revealed a nuanced relationship between information availability and cooperation. Contrary to our initial
expectations and previous findings in dyadic settings (Gonzalez et al., 2015), more information did not always lead
to better outcomes. Although experiential information promoted cooperation as predicted by Instance-Based Learning
Theory Gonzalez and Martin (2011), descriptive information decreased cooperation. This may occur because explicit
payoff matrices focus participants’ attention on short-term strategic calculations rather than long-term relationship
building. When participants can clearly see the immediate benefits of defection, they may be more tempted to exploit
cooperative partners, despite the long-term advantages of sustained cooperation. This aligns with research showing
that making payoff structures explicit can trigger more competitive mindsets (Chen, Geng, Chen and Fu (2024)).
Furthermore, the complexity of managing two relationships simultaneously can lead participants to default to simpler
competitive strategies when presented with complete strategic information.

The evolution from universal to selective cooperation strategies observed in our study provides empirical support
for theoretical models of cooperation development Nowak (2010). However, the mediating effects of the third
player extend beyond current theoretical frameworks. Although social balance theory predicts stability in balanced
relationships, our findings reveal how selective cooperation by a third party can either stabilize or destabilize existing
dyadic relationships, depending on initial conditions.

These findings advance our theoretical understanding in several ways. First, they demonstrate that triadic structures
fundamentally alter cooperation dynamics compared to dyads, particularly in how information is processed and
used strategically. Second, they suggest that learning mechanisms in group settings may differ from those in dyadic
interactions, with implications for cognitive modeling approaches. Third, they reveal how individual strategies
aggregate to produce emergent group patterns that cannot be predicted from dyadic interactions alone.

Our findings suggest specific mechanisms for improving cybersecurity information-sharing systems. Higher
cooperation in experiential learning indicates that platforms should provide clear feedback on successful threat
mitigations resulting from shared intelligence. For example, organizations could receive detailed metrics showing
how their shared indicators helped prevent attacks on partner organizations. The effectiveness of selective cooperation
strategies suggests the implementation of tiered sharing frameworks where organizations can maintain different levels
of information exchange with different partners based on reciprocity. Furthermore, the effects of the K-index indicate
that policy-makers should consider tax incentives or liability protections to improve the cost-benefit ratio of sharing
security intelligence.
6.1. Limitations and Future Work

Several limitations warrant consideration. The artificial nature of the laboratory setting may not fully capture
the complexity of real-world information-sharing decisions. Our pool of MTurk participants may not represent how
cybersecurity professionals make sharing decisions. The 50-round experimental design, while allowing for strategy
evolution, may not reflect the indefinite time horizons of real organizational relationships. Additionally, our focus on
three-person groups, while providing analytical clarity, may not be generalized to larger information-sharing networks
with more complex interdependencies.

From a theoretical perspective, our study focused on a specific class of social dilemma where the chicken-type
dilemma strength (𝐷𝑔′ = (𝑇 − 𝑅)∕(𝑅 − 𝑃 )) equals the stag hunt-type dilemma strength (𝐷𝑟′ = (𝑃 − 𝑆)∕(𝑅 − 𝑃 )),
as is characteristic of Donor & Recipient games Wang et al. (2015). This methodological choice provided analytical
clarity, but represents a limitation in generalizing our findings. In real-world scenarios, cooperative decisions may be
influenced by unequal fears of exploitation (stag hunt-type) versus temptations to exploit (chicken-type). The surprising
negative effect of descriptive information could be moderated by the relative balance between these dilemma types,
potentially explaining the variance in information-sharing behaviors in different contexts Ito and Tanimoto (2018).
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Future research directions should examine how these dynamics scale to larger networks and investigate how cog-
nitive processes influence the simultaneous management of multiple cooperative relationships. Particularly important
is understanding how Instance-Based Learning Theory can be extended to account for the concurrent management
of multiple relationships, and how social balance theory can incorporate the dynamic effects of selective cooperation
strategies.

Further studies should systematically vary the strengths of the dilemma independently to explore how they
interact with the availability of information and the effects of third parties in triadic structures. For instance, selective
cooperation by third players might have different mediating effects when fear of exploitation dominates versus when
greed dominates. This approach could help address an important question raised by our findings: Why does the third
player’s selective cooperation strategy produce different effects depending on the dyad’s initial state? The universal
framework for the strength of dilemmas suggests that the effectiveness of conditional strategies can depend on whether
a particular dilemma emphasizes fear of exploitation or the temptation to defect ?.

Future work should also test these findings with cybersecurity professionals in more realistic information-sharing
scenarios to validate their applicability to real-world contexts. These extensions would provide deeper insights into the
cognitive mechanisms underlying the strategic management of multiple interdependent relationships, with important
implications for designing effective information-sharing systems.
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Abstract

We analyze the dynamics of strategic interaction among a group of human agents through

a novel cognitive model that integrates three key psychological mechanisms: dynamic

prosociality, category learning, and contrast effects. The dynamic prosociality mechanism

enables individuals to adjust how much they value others’ choices and outcomes based on

expectation-reality discrepancies. The category learning mechanism captures how people

efficiently organize their social experiences into behavioral prototypes through hierarchical

clustering. The contrast effect sharpens the distinctions between these behavioral categories

by amplifying perceived differences between groups based on their relative positions along

behavioral dimensions. Using data from online group experiments, we demonstrate that

the model successfully reproduces human behavior patterns without parameter fitting.

Through detailed analysis of dynamic prosociality, we gain insight into the psychological

processes underlying how individuals evaluate and respond to others in group settings.

These findings advance our understanding of human cognition in complex social

environments and suggest ways to improve collective outcomes in real-world applications.

Keywords: Instance-Based Learning Theory, Prosociality, Category learning,

Contrast effect



TOWARD A COGNITIVE THEORY OF INTERDEPENDENT DECISIONS 3

Toward a Cognitive Theory of Interdependent Decisions in Groups: Dynamic

Prosociality, Categorization, and Contrast

Introduction

Human social systems are defined by strategic interdependence, where individual

choices collectively shape broader outcomes. While much research has focused on simple

dyadic interactions, real-world contexts demand the management of numerous simultaneous

relationships, all under cognitive limitations. Whether in cybersecurity information

sharing, organizational resource allocation, or international diplomacy, individuals must

continuously monitor, assess, and respond to multiple partners—often with constrained

cognitive bandwidth (CISA, 2023; Stevens et al., 2018; P. A. Van Lange et al., 2013).

Current approaches to modeling behavior in strategic team interactions typically

fall into three broad categories. Evolutionary approaches (Li et al., 2023) effectively

capture population-level outcomes, but often abstract away individual cognitive processes.

Game-theoretic frameworks provide precise mathematical formulations, but generally rely

on strong rationality assumptions that do not always align with human behavior. In

contrast, social dilemma research (D. Balliet & Van Lange, 2013; D. P. Balliet et al., 2017;

P. A. M. Van Lange et al., 2014) offers psychologically grounded insights into human

cooperation, often focusing on motivational and contextual factors rather than formal

rationality. Cognitive modeling has emerged as a promising fourth route, explicitly

addressing how humans navigate social learning under cognitive constraints (Gallotti &

Grujić, 2018; Martin et al., 2014; Shum et al., 2019). Although this approach has shown

success in dyadic settings (Gonzalez et al., 2015), extending these models to multi-agent

contexts presents unique challenges.

A central challenge is that humans often struggle to track interactions with multiple

partners simultaneously, a limitation shaped by fundamental cognitive constraints in

working memory and attention. As it was established long time ago, the human working

memory capacity is limited (Cowan, 2001; Miller, 1956; Simon, 1974), making it
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challenging to simultaneously track the detailed behavioral histories of numerous

interaction partners (Stiller & Dunbar, 2007). Evidence from social network studies

confirms this constraint, with some researchers demonstrating that cognitive limitations

restrict the number of concurrent relationships humans can maintain (Dunbar, 1998).

Macrae and Bodenhausen (2000) showed that when cognitive resources are stretched thin,

humans resort to categorical processing of social information rather than individual

processing. For instance, when managing multiple workplace relationships simultaneously,

people may classify colleagues as ’reliable team players’ or ’self-interested actors’ rather

than maintaining detailed records of each person’s specific actions and motivations. This

fundamental constraint on human information processing is especially problematic in

multi-agent contexts, where the number of unique dyadic relationships increases

quadratically with the number of agents (Dziura et al., 2023). When interacting with only

one partner, people can dedicate sufficient cognitive resources to track detailed sequential

behavioral patterns, but this capacity can quickly become overwhelmed as the social

environment becomes more complex.

Our research addresses these challenges by proposing a novel cognitive framework

for interdependent decisions in teams. Our new model integrates three key psychological

mechanisms to navigate complex social environments: (1) dynamic prosociality, a refined

version of the surprise-driven weight update mechanism of (Gonzalez et al., 2015) that

addresses limitations in the original formulation, allowing more discriminative responses to

different partners; (2) category learning that allows individuals to efficiently manage

multiple relationships by grouping similar partners rather than tracking each one

individually (Rosch, 1978); and (3) contrast effects that sharpen distinctions between

different sequential behavior patterns, facilitating more effective discrimination between

cooperation partners (Wu et al., 2020b).

Based on Instance-Based Learning Theory (IBLT) (Gonzalez et al., 2003), our

proposed framework captures how people process multiple social relationships through
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prototype-based categorization (Tamarit et al., 2018), evaluate actions through social

comparison (Chierchia et al., 2017), while at the same time dynamically adjusts their

prosocial strategies based on observed reciprocity (D. Balliet & Lindström, 2023;

Kleiman-Weiner et al., 2016a). Our research demonstrates how these cognitive

mechanisms, dynamic prosociality, category learning, and contrast effects, enable effective

multi-agent strategic decision making despite inherent human cognitive limitations. We

validated our model using data from online group experiments involving strategic social

dilemmas, demonstrating its ability to reproduce human behavior patterns without

parameter fitting. The detailed analysis of the dynamic prosociality parameter (α) reveals

significant practical implications beyond theoretical understanding, including how

individuals develop differential responses to cooperation partners based on their interaction

history. These findings suggest design principles for interventions and systems that better

align with natural cognitive processes, potentially improving cooperative outcomes in

various domains of interdependent decision making. By bridging cognitive mechanisms

with strategic sophistication, our work offers a foundation for understanding and enhancing

cooperation in complex social environments where individuals must manage and navigate

multiple concurrent relationships.

Related Work

The study of repeated strategic interactions between interdependent agents has a

rich research history. Early work focused on simple strategies with minimal partner

modeling. Axelrod’s seminal computer tournaments of the Iterated Prisoner’s Dilemma

(Axelrod, 1984) demonstrated the success of Tit-for-Tat (TFT), which only considers the

partner’s last action. Although these simple strategies proved to be remarkably effective in

structured environments, subsequent research revealed their limitations in noisy or complex

settings (Nowak, 2006). This led to increasingly sophisticated approaches incorporating

richer agent modeling and learning mechanisms, including modern machine learning

methods and cognitively inspired strategies. Two fundamental challenges have emerged in
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this progression: the computational demands associated with memory and learning and the

complexity of modeling diverse agent strategies. Our work addresses these challenges by

incorporating cognitive mechanisms for efficient memory use and agent categorization.

Learning and Agent Modeling in Interdependent Interactions

A significant theoretical advancement in agent modeling came with Earnest (2013)’s

discovery of zero-determinant strategies, which established mathematical boundaries on

strategy effectiveness. Zero-determinant strategies allow an agent to enforce specific

relationships between its own payoff and that of its partner, effectively controlling the

distribution of payoffs without the partner’s cooperation. Stewart and Plotkin (2013)

extended this work by demonstrating that "generous" variants often outperform purely

extortionate strategies in evolutionary settings, highlighting how successful strategies must

balance exploitation with mutual benefit.

The development of agent modeling approaches has followed several trajectories.

Early work focused on explicit prediction of others’ actions through pattern recognition

(Carmel & Markovitch, 1995), while later approaches incorporated uncertainty and partial

observability (Gmytrasiewicz & Doshi, 2005). Modern machine learning methods,

particularly deep reinforcement learning, have demonstrated impressive success in learning

implicit representations of agent behavior (Harper et al., 2017; Lowe et al., 2017). These

approaches can uncover sophisticated counterstrategies through extensive self-play and

experience accumulation, often exceeding hand-crafted strategies in complex environments.

However, the increasing sophistication of learning algorithms has led to an "arms

race” in strategy complexity. Neural network-based approaches can provide highly complex

patterns in how agents respond to different situations (Leibo et al., 2017), allowing more

context-sensitive and adaptive responses, but also making strategies harder to interpret

and analyze. This complexity creates challenges for theoretical analysis and raises

questions about the robustness of the learned strategies. Some studies suggest that simpler

strategies with clear theoretical foundations may be more robust among diverse interaction
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partners (Wang et al., 2018).

The tension between strategy complexity and robustness has motivated research

into hybrid approaches that combine machine learning with domain knowledge. For

example, Crandall et al. (2018) demonstrated how the incorporation of simple mechanisms

that promote mutual benefit in learning algorithms can improve generalization between

different interaction partners. Similarly, Kleiman-Weiner et al. (2016a) showed that

learning algorithms constrained by the principles of game theory often develop more stable

and interpretable strategies.

Recent work has increasingly focused on multi-agent scenarios in which agents must

simultaneously model and adapt to multiple partners (Lanctot et al., 2017). This setting

introduces additional complexities, as agents must balance their responses between

different partners while maintaining coherent strategies. The challenge is compounded in

settings with incomplete information or when partners may change their strategies over

time (Hernandez-Leal et al., 2019).

Memory Constraints and Cognitive Plausibility

While machine learning approaches have demonstrated impressive performance in

agent modeling, they typically assume unlimited memory capacity and computational

resources. These approaches often maintain complete interaction histories or complex state

representations, enabling sophisticated pattern recognition but diverging significantly from

human cognitive constraints. This disconnect raises important questions about the

psychological plausibility and practical applicability of such models to emulate human

interdependencies in multi-agent scenarios.

Empirical studies reveal clear limitations in human memory use during strategic

interactions. Research consistently shows that humans typically access only a handful of

previous interactions when making decisions (Moreira et al., 2013), indicating a clear

cognitive bottleneck. This limitation reflects broader constraints on working memory

capacity, which affects how individuals process and utilize information in dynamic social
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situations. Memory traces follow systematic decay patterns (Anderson & Schooler, 1991),

with recent interactions more heavily weighted while maintaining the diminishing influence

of established patterns, a phenomenon known as the power law of forgetting.

The relationship between memory complexity and strategy performance follows an

inverted U-shaped pattern (Hertwig & Erev, 2009), suggesting optimal performance at

intermediate levels of memory complexity. This finding has profound implications for the

design of strategies. Although too little memory prevents recognition of important

behavioral patterns, excessive memory complexity can lead to overfitting and reduced

adaptability. This balance reflects the fundamental principles of bounded rationality

(Simon, 1990), where cognitive constraints paradoxically contribute to more robust and

adaptable decision making.

Recent work has highlighted the critical role of cognitive constraints in shaping

human decision-making, especially in multi-agent contexts where individuals must

concurrently track and respond to multiple peers. Human cognitive constraints such as

limited working memory and attentional resources directly influence how effectively

individuals manage and learn from multiple ongoing interactions. For example, empirical

studies demonstrate that humans typically rely on simplified cognitive strategies, such as

categorization of the type of partners, when faced with the complex task of tracking

multiple interaction partners (Macrae & Bodenhausen, 2000; Stevens et al., 2018). This

reliance on simplified strategies in multi-agent contexts suggests that cognitive constraints

may play a critical role in determining how robust and adaptable human strategies are in

group interactions, and that strategies such as categorization of partners may be a coping

mechanism to address the cognitive limitations into models of interdependent

decision-making.

Overall, these findings suggest that effective strategies should not simply operate

within memory constraints but actively leverage them as design principles. Memory

limitations can serve as natural regularizers, promoting generalization by preventing
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overfitting to specific interaction patterns. This perspective aligns with the ecological

rationality frameworks (Todd et al., 2012), which emphasize how cognitive constraints can

improve decision making in natural environments.

Categorical Learning and Contrast Effects

A fundamental challenge in social dilemmas is the wide space of possible peer

strategies. As the diversity of peers increases, the complexity of the modeling increases

exponentially (Lim et al., 2016), making the modeling of direct strategies computationally

intractable. This challenge becomes particularly acute in multi-agent settings where

traditional modeling approaches often fail to scale effectively or require unrealistic

computational resources.

Humans address this complexity through sophisticated inductive categorical

learning mechanisms that enable efficient but flexible social learning. Research shows that

people actively form and update categories based on patterns of interdependence in social

interactions (Martin et al., 2014). These categories may serve not just as simplifying

heuristics, but as predictive models that guide future cooperation decisions. For example,

when individuals identify patterns of reciprocity or exploitation, they develop categorical

representations that help them anticipate and respond to similar behaviors in new

interactions (Kleiman-Weiner et al., 2016b).

What makes categorical learning particularly powerful is its ability to balance

efficiency with effectiveness. Although categorization reduces the granularity of social

information, it paradoxically allows more sophisticated responses by capturing essential

behavioral patterns (Chierchia et al., 2017). People continually refine these categories

based on new experiences, maintaining a dynamic equilibrium between stable categorical

knowledge and adaptability to novel patterns. This process of category refinement is

strongly influenced by the social context: Individuals’ classifications of "cooperative” versus

"non-cooperative" behavior emerge relative to their broader social experience (Gonzalez

et al., 2015; Wu et al., 2020b).
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These categorical learning mechanisms have been demonstrated in various social

dilemmas. In cybersecurity information-sharing networks, Mermoud et al. Mermoud et al.

(2019) found that defenders naturally categorize their peers into "regular sharers" and

"free-riders" based on sharing patterns, using these categories to guide their own sharing

decisions even with new peers. Similarly, in organizational contexts, studies of group-based

resource allocation show that managers develop categorical representations of

"reciprocators" versus "opportunists" that influence future resource-sharing decisions

(Hámornik & Krasznay, 2017).

The power of categorical learning is particularly evident in repeated interaction

settings. For example, in public goods games, participants rapidly develop categories for

"consistent contributors" and "strategic free-riders," with these categories shaping not only

direct responses but also reputation sharing within groups (Fehr & Schurtenberger, 2019).

These categories prove to be remarkably stable - once an individual is categorized as a

reliable cooperator, isolated defections are often discounted as anomalies rather than

prompting immediate category reassignment (Andreoni & Miller, 1993).

Experimental studies of group cooperation reveal how categorical learning enables

efficient decision making under time pressure. When faced with multiple potential

cooperation peers, participants may not track detailed histories, but instead maintain

broader categorical assessments like "trustworthy," "unpredictable," or "exploitative" (Kelley

& Stahelski, 1970). These categorical judgments are particularly influential in early

interactions with new peers, where they serve as default expectations until

individual-specific evidence accumulates (Zhang et al., 2019).

The categorical perception of peers introduces systematic contrast effects in

behavior evaluation. Rather than evaluating each peer’s actions in isolation, individuals

evaluate behaviors relative to their experiences with other peers (Young et al., 2019).

These contrast effects are particularly pronounced between categorically distinct peers. For

instance, Kirchkamp et al. (2016) demonstrated that players’ responses to moderately
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cooperative behavior become more positive when they simultaneously interact with clearly

non-cooperative peers, suggesting that categorical boundaries enhance behavioral

discrimination.

The sophistication of categorical human learning extends beyond simple

classification. Successful players develop hierarchical category structures, with broad

behavioral types that contain subtypes that capture more nuanced patterns (Rand et al.,

2020). This hierarchical organization allows players to balance computational efficiency

with strategic sophistication. Moreover, these learned categories are effectively transferred

between different economic games (Peysakhovich & Lerer, 2018), suggesting that

categorical learning captures fundamental aspects of strategic behavior.

Cognitive Approaches to Social Learning

Category learning represents a fundamental cognitive mechanism that influences

how individuals perceive, process, and retain information about social interactions. Huang

and Sherman (2018) describe how attentional mechanisms significantly impact social

perception through category accentuation, where individuals exaggerate differences

between groups while minimizing within-group variations. Sherman et al. (2009) further

demonstrate that such cognitive biases can enhance memory for features associated with

majority groups while reducing recall of minority group characteristics, highlighting how

categorization processes can systematically shape learning outcomes.

The contrast effect, a key phenomenon in category-based perception, is significantly

influenced by the social distance between learners and their interaction partners. In social

networks, the principle of homophily—the tendency of individuals to associate with others

who are similar to themselves—plays a crucial role in shaping these interactions (Centola,

2011; McPherson et al., 2001). Research indicates that as social distance increases,

individuals are more likely to focus on abstract goals rather than concrete behaviors

(Hansen et al., 2016; Kalkstein et al., 2016). In contrast, individuals who perceive

themselves as similar to their interaction partners are more likely to closely observe,
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imitate, and learn specific behaviors from these partners, consistent with homophily-driven

interactions (Centola, 2011). This relationship between social distance and learning style

suggests that the position of individuals relative to their interaction partners

fundamentally shapes how they process and internalize social information.

Multiple theoretical frameworks have been proposed to explain how individuals

navigate and learn from social interactions. Reinforcement learning models (Erev & Roth,

2006) focus on outcome-based behavioral adjustments but often struggle with the dynamic

nature of social environments. Bayesian approaches (Baker et al., 2011) represent

uncertainty through probabilistic beliefs about others’ intentions, but frequently assume

unrealistic inferential capabilities. Theoretical frameworks of the mind (Yoshida et al.,

2008) emphasize meta-representational abilities but may overestimate typical cognitive

capacities in complex scenarios. Heuristic approaches (Gigerenzer & Gaissmaier, 2011)

propose that simple decision rules can achieve effective social coordination despite limited

information processing.

Among these various frameworks, the Instance-Based Learning Theory (IBLT)

(Gonzalez et al., 2003) offers a particularly compelling account of social learning under

cognitive constraints. Unlike approaches that oversimplify cognitive processes or assume

unrealistic computational capabilities, IBLT provides a psychologically grounded

explanation for how individuals learn from specific experiences while respecting memory

limitations. Through mechanisms like activation decay and similarity-based retrieval, IBLT

naturally explains how categorical thinking emerges from interactive experiences. Memory

constraints guide attention toward meaningful patterns rather than exhaustive details,

leading to more robust and generalizable learning (Hertwig & Erev, 2009). However, the

use of IBLT in social dilemmas and multi-agent interactions is significantly

under-developed.

Gonzalez et al. (2015) proposed a model of dyadic interdependence using the

Prisoner’s Dilemma as an example (named IBL-PD). The IBL-PD model captures how
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individuals learn to cooperate or defect in repeated two-player interactions by retrieving

experiences stored as instances in memory. Decisions depend on activation and blending

mechanisms that estimate the value of actions based on past outcomes. A unique aspect of

this model is its dynamic prosociality parameter (α), which quantifies how much a player

values the outcomes of their interaction partner relative to their own outcomes, adapting

based on the history of interactions.

However, the original IBL-PD formulation is insufficient to model larger groups

because it focuses exclusively on dyadic (two-player) interactions, which do not fully

capture multi-agent social environments. When interactions expand beyond two

individuals, managing cognitive load and maintaining effective cooperation becomes

significantly more challenging, demanding mechanisms beyond simple memory retrieval

and outcome-weighting for a single other agent.

Thus, we build upon the IBL-PD model by extending it with two additional

cognitive mechanisms—category learning and contrast effects. Category learning helps

individuals efficiently organize multiple partners by grouping similar peers into manageable

behavioral prototypes, thus reducing cognitive complexity. The contrast effect sharpens the

perceptual distinctions between these categories, enhancing the discriminative capacity of

individuals to respond appropriately to various interaction partners. By integrating these

new components, our extended model addresses the fundamental challenge of managing

numerous social relationships within realistic cognitive constraints, allowing for a more

accurate representation and prediction of human behavior in multi-agent strategic

interactions.

Instance-Based Learning Theory for Dyadic Interactions

IBLT provides a formal framework to model how humans learn from experience

while respecting cognitive constraints (Gonzalez, 2024). In social dilemmas, instances

represent specific interaction experiences, storing not only outcomes but also information

about the social context and others’ actions. The IBL-PD model captures how individuals
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learn to cooperate or defect in the Prisoner’s Dilemma through repeated two-player

interactions by retrieving and blending memory traces of past outcomes (Gonzalez et al.,

2015). For each dyadic interaction, agents store instances in memory of the form

[PeerIndex, MyAction, PeerAction, MyOutcome, PeerOutcome], which allows them to

track both their own and their partner’s behavior over time.

The core mechanism of IBL-PD lies in its activation and blending processes.

Instances i are stored in memoryM and become more or less accessible depending on their

frequency, recency, and similarity to the current context. Activation for an instance i is

computed as:

Ai(t) = ln

 ∑

t′∈Ti(t)
(t− t′)−d


 + µ

∑

j∈F
ωj(Sij − 1) + σξ (1)

The parameters are: d for decay, µ for mismatch penalty, ωj for feature weights, and

σ for the scale of Gaussian noise ξ ∼ N (0, 1). Default values are

(d, µ, ωj, σ) = (0.5, 1, 1, 0.25). The similarity term Sij reflects how closely the stored

instance matches the current context.

IBL-PD uses a blending process to compute the expected value of each action

option k based on retrieved instances. Crucially, Gonzalez et al. (2015) incorporated social

preferences into this blended value by introducing a dynamic prosociality parameter α,

which represents the degree to which the agent values the peer’s outcomes:

Vk(t) =
n∑

i=1
Pik(xself + α(t) · xother) (2)

Here, xself and xother are the outcomes for self and peer in instance i, and Pik is the

retrieval probability for instance i under action k (computed using a softmax function over

the activation values). The dynamic prosociality parameter α(t) is updated after each

interaction:



TOWARD A COGNITIVE THEORY OF INTERDEPENDENT DECISIONS 15

Gap(t) = Abs(Vk(t− 1)− (xself + α(t)xother)) (3)

α(t + 1)← (1− η) α(t) + η (1− ˆGap(t)) (4)

Where ˆGap(t) ∈ [0, 1] is the normalized gap and η is the learning rate. This learning

rule captures the intuition that agents reduce regard for peers when outcomes deviate from

expectations.

A Correction to Dynamic Prosociality

While intuitive, this formulation fails to distinguish between "good" and "bad"

surprises. For example, if a peer consistently defects, they become predictable, resulting in

a low gap and a higher α even though they are not cooperative. This creates a problematic

learning dynamic in which predictability is mistaken for trustworthiness.

To address this limitation, we propose a refined update rule that conditions the

update on whether the peer exceeded expectations or fell short:

Gap(t) = Vk(t− 1)− (xself + α(t)xother) (5)

α(t + 1)←





(1− η) α(t) + η max
(

α(t), ˆGap(t)
)

, if Gap(t) ≥ 0,

(1− η) α(t) + η ˆGap(t), if Gap(t) < 0.

(6)

This rule ensures that α increases only when a peer exceeds expectations and

otherwise decreases. The exponential moving average structure preserves gradual

adaptation while differentiating between positive and negative deviations from

expectations.

To demonstrate the limitations of the original α formulation in Gonzalez et al.

(2015) and validate our proposed correction, we conducted a controlled simulation

experiment. We created two sets of 100 identical IBL-PD agents, differing only in their α

update mechanism - one set using the original formulation from Gonzalez et al. (2015) and
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the other using our revised formulation. Each agent played 50 rounds of the Prisoner’s

Dilemma against two fixed-strategy peers simultaneously: a fully cooperative peer (100%

cooperation rate) and a fully defective peer (0% cooperation rate). We tracked the

evolution of each agent’s α value toward each peer over these 50 rounds, averaging results

across all 100 agents for each formulation. Figure 1 presents these average α trajectories.

Under the original formulation (Figure 1a), agents develop similarly high α values for both

peers despite their opposing behaviors. With our revised formulation (Figure 1b), agents

appropriately discriminate between peers, developing high α values (approximately 0.9) for

cooperative peers while maintaining low values (approximately 0.1) for defective peers.
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Figure 1

Alpha trajectories for a focal agent interacting with a fully cooperative (red) and a fully

defective (purple) peer. (Left) Under the original formulation, the agent converges to

similar α values for both peers. (Right) With the revised formulation, the agent assigns a

higher α to the cooperative peer while maintaining a near-zero α for the defective peer.

To verify that our revised α formulation preserves the core behavioral dynamics

captured in Gonzalez et al. (2015), we paired 100 IBL-PD agents using our revised α

formulation to play 200 rounds of the Prisoner’s Dilemma against each other, as done by

Gonzalez and colleagues. Each agent received complete information on the actions and

outcomes of both players after each round. All model parameters except the α update rule

remained identical to those in Gonzalez et al. (2015): default values of d = 5 for memory
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decay and r = 1.5 for noise. Figure 2 shows the mutual cooperation rate averaged across all

agent pairs in each trial. The simulation reproduces the characteristic pattern observed in

human data: an initial cooperation rate around 0.55 that quickly declines to approximately

0.20 by trial 50, followed by a gradual increase to about 0.40 by trial 200. This U-shaped

cooperation curve closely matches the human behavior reported in the original study,

confirming that our modification to the α update mechanism preserves the model’s ability

to capture dynamic cooperation patterns.
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Figure 2

Cooperation behavior over 200 trials in the dynamic prisoner’s dilemma task. The curve

illustrates our model’s predictions showing the characteristic pattern observed in human

behavior: initial high cooperation that quickly declines as strategic adaptation occurs,

followed by a gradual increase in later trials. This pattern successfully replicates the

findings reported by (Gonzalez et al., 2015), validating that our revised α formulation

preserves the core behavioral dynamics.

IBL-Group: A New Model of Interdependent Decisions in Groups

While the dynamic prosociality parameter α enables discriminatory decision making

between two peers, scaling to larger groups requires more sophisticated cognitive

mechanisms to process multiple relationships. Our IBL-group model addresses this

challenge with three cognitive mechanisms: (1) a revised dynamic prosociality mechanism

that adapts α based on individual experiences (explained above), (2) category learning to
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organize social experiences, and (3) contrast effects to improve perceptual distinctions

between behavior types.

Category learning allows agents to efficiently process multiple relationships by

organizing peers into behavioral prototypes. Each prototype represents a distinct

behavioral pattern characterized by a multidimensional feature vector that captures the

essential dimensions of strategic behavior. As illustrated in Figure 3, category learning

guides memory retrieval by identifying similar peers (for example, P1 and P3 share

Prototype 1), allowing the agent to access experiences from multiple related peers while

making decisions about one of them.

Contrast effect then sharpens how we perceive differences between categories. In

social perception, this means that distinctive behaviors become more prominent when

contrasted with different types of behavior. When evaluating the instances accumulated

through interaction with a partner who consistently chose action A (80% of the time in the

past), the presence of another partner showing predominantly opposite behavior will lead

to relatively higher activations for instances with action A through the contrast effect, as

shown by the darker shading in the activated instances. These mechanisms work

sequentially: category learning determines which experiences are retrieved, while the

contrast effect modulates how strongly each retrieved experience influences the current

decision through activation adjustment.

Category Learning

Each behavioral category is defined by a five-dimensional feature vector that

includes action tendency, entropy, responsiveness, recovery propensity, and volatility. The

action tendency indicates the proportion of times an agent chooses a particular action from

their available options. Entropy reflects the unpredictability or randomness in an agent’s

action sequence. Responsiveness measures how much an agent’s current action is influenced

by their partner’s previous action, capturing the reactive nature of strategic interactions.

Recovery propensity represents how quickly an agent returns to a consistent behavior
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pattern following a deviation. Volatility characterizes the frequency with which an agent

changes their action choices over time. Together, these features provide a comprehensive,

yet parsimonious description of strategic behavior observed in various repeated interaction

contexts (Axelrod & Hamilton, 1981). Although additional features (e.g., memory length)

could be considered, this five-dimensional framework strikes a balance between capturing

the essential elements of decision making and keeping the model computationally

manageable. Moreover, the partial overlap among these features helps filter out random

noise and highlights subtle differences in behavior that might be overlooked by less

transparent statistical methods like principal component analysis.
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Figure 3

Illustration of the decision-making process for peer P1. Instances associated with P1 and

related peers (e.g., P3) that belong to Prototype 1 are retrieved from memory, then

selectively enhanced through contrast effects. The resulting activation levels directly update

the dynamic prosociality parameter αP 1, which shapes future cooperation decisions.

Activation intensity is represented by shading.

The model employs prototype-based categorization with dynamic category learning.

Initial classification attempts to match agents with predefined prototypes. Unmatched

agents enter a clustering process, where stable clusters can be promoted to new prototypes.
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Existing work has shown psychological evidence that humans approach interactions with

pre-existing behavioral schemas (Fiske & Taylor, 2020). These initial categories serve as

cognitive anchors that facilitate the rapid assessment of interaction partners. This matches

the findings that people first assess others using broad dispositional categories before

developing more nuanced impressions through experience (Gilbert & Malone, 1995). We

choose to start with two contrasting behavioral prototypes that serve as natural reference

points. This anchoring approach allows the system to bootstrap learning while maintaining

the flexibility to discover intermediate clusters (Kelley & Stahelski, 1970). So we can

capture how cognitive agents initially categorize others along fundamental behavioral

dimensions before developing more sophisticated representations.

When computing blended values for potential actions, the agent retrieves instances

not only from direct interactions with the target agent but also from all agents within the

same behavioral category. This categorization-based retrieval affects the surprise

calculation through the blended value Vk, which now incorporates the instances of

categorically similar agents. Consequently, the gap between expected and actual outcomes

reflects a deviation from category-level expectations rather than purely individual-level

predictions. The resulting surprise value updates the values of α for all agents within the

same category, capturing how cognitive systems could adjust their regard to groups of

similar actors rather than processing each relationship in isolation.

As detailed in Algorithm 1, interaction experiences with peers are processed

through fingerprint-based categorization. Using a sliding window of size w, the algorithm

calculates a five-dimensional fingerprint vector (lines 2-3). This fingerprint is compared

with existing prototypes using cosine similarity, with a confidence threshold θconf

determining classification (lines 4-8).

For these unclassified agents, Algorithm 2 is applied to dynamically discover new

behavioral categories. When the number of unclassified agents exceeds the minimum

cluster size m, hierarchical clustering is used to group similar behavior patterns (lines 2-3).
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Algorithm 1 Individual Agent Categorization
Require: Action sequence, prototypes P , window size w, confidence threshold θconf

1: Initialize agent fingerprint f , category c

2: if sequence length ≥ w then

3: f ← ComputeFingerprint(sequence[-w:]) ▷ Action tendency, entropy, responsiveness

4: (strategy, conf)← MatchPrototypes(f, P )

5: if conf ≥ θconf then

6: c← strategy

7: else

8: c← "unclassified"

9: end if

10: end if

11: return c, f

The algorithm maintains a record of historical fingerprints - computed from previous

classification attempts - to monitor cluster stability over time (lines 4-5). Once a cluster

exhibits consistent behavior across θstab observations, it is promoted to prototype status by

computing the centroid of its member fingerprints (lines 6-10). This two-phase process,

where Algorithm 1 categorizes individual agents and Algorithm 2 refines and expands the

set of prototypes, ensures efficient categorization while retaining adaptability to novel

behavioral patterns.

The divisive clustering algorithm (Algorithm 3) balances two competing cognitive

requirements: the need to form meaningful behavioral categories that guide future

interactions, and the constraint of human working memory capacity (Miller’s 1956 magic

number 7± 2) (Miller, 1956). This constraint motivates our limit of 9 total groups, as

research shows that humans struggle to maintain and effectively utilize more complex

categorization schemes in real-time strategic interactions (Stevens et al., 2018). At each

decision point, the algorithm selects the split metrics based on their discriminative power,
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Algorithm 2 Cluster Management and Prototype Promotion
Require: Unclassified fingerprints F , min cluster size m, stability threshold θstab

1: Initialize cluster history H, prototype updates Pnew

2: if |F | ≥ m then

3: labels← Cluster(F ) ▷ Hierarchical clustering

4: for each valid cluster k in labels do

5: H[k]← H[k]∪ {fingerprints with label k}

6: if |H[k]| ≥ θstab then

7: stability ← ComputeStability(H[k])

8: if stability ≥ θstab then

9: pnew ← Mean(H[k])

10: Pnew ← Pnew ∪ {pnew}

11: end if

12: end if

13: end for

14: end if

15: return Pnew

measured by the range of observed values (r = max(F [:, m])−min(F [:, m])). This

approach reflects how natural categories often form around observable behavioral variations

that meaningfully distinguish between different strategies (Rosch, 1978). The algorithm

identifies potential category boundaries by looking for natural gaps in behavioral metrics

(differences > r/10), similar to how humans tend to form categories around clusters of

similar experiences rather than through arbitrary divisions (Martin et al., 2014).

The algorithm terminates when: reaching the maximum of 9 groups (cognitive

capacity constraint), having too few agents to meaningfully divide (< 4 per group) or

exhausting behaviorally meaningful splits (r ≤ threshold). This helps ensure that the

resulting categorization scheme remains both cognitively manageable and strategically
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useful (Hertwig & Erev, 2009). If the natural clustering process ends with a tree depth less

than 2, we force a binary split using the action_tendency metric. This mechanism ensures

that categorization maintains at least a basic level of strategic discrimination (Macrae &

Bodenhausen, 2011).

Algorithm 3 Divisive Clustering for Agent Categorization
1: function Divide(agents, metrics, depth)

2: if CountLeaves() ≥ 9 or |agents| < 4 then

3: return LeafNode(agents)

4: end if

5: m∗ ← SelectMetricWithMaxRange(metrics)

6: r ← ComputeRange(m∗, agents)

7: if r ≤ threshold then

8: if depth < 2 and action_tendency ∈ metrics then

9: return ForceBinarySplit(agents, action_tendency)

10: end if

11: return LeafNode(agents)

12: end if

13: gaps ← FindNaturalGaps(m∗, agents)

14: subgroups ← SplitOnGaps(agents, gaps)

15: metrics′ ← metrics \ {m∗}

16: for group in subgroups do

17: Divide(group, metrics′, depth + 1)

18: end for

19: return BranchNode(m∗, subgroups)

20: end function
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Contrast Effect

Contrast Effect is rooted in the well-established psychological phenomenon, where

the perception of a stimulus is influenced by the context in which it is presented (Kenrick

& Gutierres, 1980). We implement this effect using inspiration from a fundamental

mechanism in cognitive architectures where an activated memory trace spreads activation

to related traces and influences their accessibility (Anderson, 1983).

Building on this theoretical framework, we propose that memory activation spreads

between agents in strategic interactions - when evaluating one agent, experiences with other

agents influence memory activation levels. This effect amplifies memories that highlight

behavioral contrasts. For example, when an agent with a particular behavioral tendency is

evaluated with the existence of an agent with an opposing tendency, memories that

emphasize the distinctive characteristics of the first agent become more strongly activated.

To formalize this process, we introduce an algorithm that computes the contrast

effect using retrieved instances (Algorithm 4). activation (B) represents the initial

activation level of each instance. For each retrieved instance i associated with a peer

belonging to category ci, we calculate a stereotype score si as:

si =
∑

m∈M

wm(1− |vi,m − pci,m|)

where M is the set of behavioral metrics, vi,m is instance i’s value for metric m, and pci,m is

category ci’s prototype value for metric m. This formulation ensures that instances are

scored based on how closely they match their category’s prototype. We then calculate the

contrast between category ci and each other category cj using weighted cosine similarity

between their prototypes:

C(pci
, pcj

) =
∑

m∈M wm · pci,m · pcj ,m√∑
m∈M wm · p2

ci,m
·

√∑
m∈M wm · p2

cj ,m

where pci
and pcj

are the prototypes of categories ci and cj respectively, and wm is the

discriminative power coefficient for metric m. The final activation value for instance i
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combines its activation with contrast effects from all other categories:

Augmented-Activation(i, ci) = Ai +
∑

cj ̸=ci

cf · C(pci
, pcj

) · si

where cf = 1/(n− 1) is the contrast factor (with n being the number of categories) that

determines the relative contribution of contrast against every other category. The

activations of instances that strongly exemplify their category’s characteristic patterns are

amplified through this process.

Algorithm 4 Calculate Contrast-Augmented Activation for Retrieved Instances
Require: Retrieved instances R from category ci, Set of other categories {cj}j ̸=i, activation

A (Eq. 1)

1: for each instance i in R do

2: Calculate stereotype score si = ∑
m∈M wm(1− |vi,m − pci,m|)

3: Set contrast augmentation CAi = 0

4: for each other category cj where j ̸= i do

5: Calculate contrast strength C(pci
, pcj

) using weighted cosine similarity

6: CAi = CAi + cf · C(pci
, pcj

) · si

7: end for

8: Total activation: AAi = Ai + CAi

9: end for

Emergence of Categorical Social Learning

To demonstrate how our proposed mechanisms—category learning and contrast

effects—influence an agent’s development of prosociality regarding each peer (α), we

instantiated our cognitive model in a repeated Prisoner’s Dilemma setting. In this setup, a

focal agent interacts one-on-one with multiple peers, independently across rounds.

Importantly, peers don’t interact with each other (only with the focal agent), as these peers

serve as fixed-strategy agents while we focus on the focal agent’s learning behavior.
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In this specific context, our general behavioral metrics take domain-specific forms:

the agent’s general action tendency manifests as cooperation rate, responsiveness

corresponds to reciprocal behavior, and recovery propensity reflects willingness to

cooperate again after experiencing defection. We initialized our model with two

fundamental categories for PD: a purely cooperative category and a purely defective one,

which serve as cognitive anchors for the category learning process.

We compared learning trajectories under three conditions while simultaneously

interacting with peers who showed systematically varied cooperation rates (0.1− 1.0). This

choice was motivated by two key considerations. First, since our agent can learn from

experiences, it naturally develops tit-for-tat-like behavior, which would elicit

predominantly mutual cooperation from classic iterated prisoner’s dilemma strategies (as

shown in Figure A1’s TitForTat panel in the Appendix), masking the differential effects of

our cognitive mechanisms. Second, cooperation rate is the most discriminative

characteristic for strategy categorization. By systematically varying this key metric

through fixed-rate peers, we obtain more discriminable behavioral patterns, allowing

clearer observation of category formation and contrast effects.

In the baseline condition (Figure 4a), each line represents the α value trajectory for

a single peer, showing how the agent’s prosociality toward each individual develops over

time. We observe that α values gradually differentiate based on the cooperation rates of

the individual peers, with higher cooperators generally receiving higher weights. This

demonstrates a basic form of reciprocity, where the agent learns to adjust its prosociality

based on each peer’s individual behavior.

When category learning is enabled (Figure 4b), the agent no longer maintains

separate α values for each individual peer. Instead, it clusters peers into behavioral

categories and develops shared α values for all peers assigned to the same category. Each

line in this panel represents the α trajectory for a distinct category, not an individual peer.

Two categories were initialized with cooperative and defective prototypes, serving as
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cognitive anchors. Peers whose behavior closely matches these prototypes (cooperation

rates near 1.0 or 0.1) are assigned to these predefined categories. Additionally, "learned

categories" emerge when the agent encounters peers whose behavior patterns fall between

these extremes but demonstrate internal consistency (e.g., peers with cooperation rates of

0.4-0.6). This categorical learning leads to more stable trajectories and a clearer separation

between behavioral types, demonstrating how categorization can help manage multiple

relationships more efficiently.

With both category learning and contrast effects active (Figure 4c), these

category-based α trajectories become even more distinct. Each line again represents a

category, not an individual peer. The agent develops consistently higher α values for the

cooperative category and lower values for the defective category, with the learned

categories maintaining stable intermediate values. For example, learned category 1 receives

intermediate but relatively high α values because it includes peers whose behavior is

generally cooperative but not consistent enough to qualify for the cooperative prototype.

This enhanced separation demonstrates how contrast effects strengthen categorical

perception: the presence of clearly cooperative or defective peers makes behavioral

differences more salient, leading to more pronounced differentiation between categories

while maintaining stable within-category treatment.

Figure 5 shows the focal agent’s cooperation rates when interacting with peers of

varying cooperation probabilities under the three conditions. The cooperation rates

positively correspond to the prosociality (α) values shown in Figure 4. In the baseline

condition, the agent’s cooperation gradually adapts to match the cooperation level of each

peer, demonstrating basic reciprocity. When category learning is enabled, we observe more

pronounced differentiation in cooperation rates across peers, with higher rates for

cooperative peers and lower rates for defective ones, reflecting the agent’s ability to

recognize and respond to distinct behavioral patterns. The addition of contrast effects

further amplifies this differentiation, showing how the agent’s cooperation becomes more
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selective—maintaining high cooperation with cooperative peers while reducing cooperation

more dramatically with defective ones. This pattern demonstrates how our cognitive

mechanisms enable more sophisticated and adaptive social behavior beyond simple

reciprocity.

Figure 4

Evolution of alpha values under different cognitive mechanisms across 50 trials, all tracking

interactions with peers of varying cooperation rates (0.1–1.0). (Top) Baseline condition

showing individual alpha trajectories for each peer. (Bottom-left) With category learning

enabled, alpha trajectories reflect learning of behavioral categories rather than individuals.

(Bottom-right) The combined effect of category learning and contrast mechanisms

demonstrates enhanced separation between learned behavioral categories. Higher alpha

values indicate greater weight given to a peer’s outcomes in decision-making.
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Figure 5

Cooperation rates of the focal agent when interacting with peers of varying cooperation

probabilities (0.1–1.0) across 50 trials under different cognitive mechanisms. (Top) Baseline

condition showing adaptation toward matching peer cooperation levels. (Bottom-left) With

category learning enabled, the focal agent demonstrates more differentiated cooperation

patterns based on peer categories. (Bottom-right) With both category learning and contrast

effects, the focal agent shows amplified selective cooperation—maintaining high rates with

cooperative peers while reducing cooperation with defectors.
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Empirical Validation with Human Data

In this section, we will validate our IBL-Group model on a dataset collected from a

controlled online experiment involving 150 participants (50 three-person groups) (Du et al.,

2025). In this experiment, players play a repeated three-player game in the context of

cybersecurity information sharing. In each round of the game, the players can choose to

share information with other players or not. The players need to play strategically, and

their outcomes are interdependent based on their joint actions. More specifically, the game

consists of 50 rounds. Each player began with a one-time 1,000-point endowment and a

53% chance of being breached in the first round. In each round, participants first learned

whether they had been attacked (incurring a 30-point penalty) and then chose whether to

share that attack status with one or both groupmates; sharing cost the sender 15 points

and granted 35 points to each recipient. Following each round, players saw updated point

totals, their groupmates’ sharing decisions, and attack outcomes, enabling strategic

adaptation. Before starting, participants provided informed consent, reviewed detailed

instructions, and passed a comprehension quiz to ensure full understanding of the task

mechanics

To evaluate IBL-group’s fit to human behavior, we ran 50 simulation replicates—one

per experimental triad—each with three agents (150 agents total) interacting over T = 50

rounds under the same payoffs (breach penalty = 30, share cost = 15, share benefit = 35).

Since IBL-group model extends the individual IBL-PD model to a group setting, we first

set individual agent’s IBL-PD model parameters values following existing work (Gonzalez

et al., 2015): memory decay d = 0.5, mismatch penalty µ = 1, feature weights ωm = 1,

retrieval noise σ = 0.25, initial prosociality α(0) = 0.5, and learning rate η = 0.1. For the

new parameters introduced by IBL-group, we choose the parameters based on insights from

closely related cognitive model literature. Specifically, we set the sliding window w = 5 in

category learning, as it reflects the working memory capacity, the prototype matching

threshold θconf = 0.8, minimum cluster size m = 2, and stability threshold θstab = 5.
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Figure 6A plots the overall cooperation rate—defined as the proportion of rounds in

which a participant shared with at least one groupmate—across all 50 rounds. The

IBL-group model closely matches the human data, yielding a mean squared deviation of

MSD = 0.02 and a Pearson correlation coefficient of r = 0.86 (p < 0.001). Both curves

experience their steepest decline over approximately the first 15 rounds, after which the

rate of change diminishes, indicating an initial phase of strategic learning followed by more

stable behavior.

The model also closely matched the distribution of the sharing decisions, as shown

in Figure 6. It reproduced the shifts from initially sharing with both peers to increasingly

sharing with just one partner over time. The MSD values were 0.01 and 0.02 for the

proportions of sharing with both and one, respectively. The correlations were also strong

for sharing with both (r = 0.90, p < 0.001), although weaker for sharing with one (r =

0.35, p < 0.05), potentially due to more variability in human strategies.

One divergence appears in the “shared with one” category: participants did so in

27% of rounds, while the IBL-group model predicted 25%, an absolute gap of 2%. The

“shared with both” rates were nearly identical (human: 29%, model: 30%). This minor

underprediction likely reflects stochastic variability in human sharing decisions around the

model’s central tendency. Despite the small divergence, the model successfully reproduced

two principal empirical patterns: (1) the declining overall cooperation rate across 50 rounds

(Figure 6A) and (2) the shift from predominantly “shared with both” to increasing “shared

with one” behavior over time (Figure 6B). This quantitative alignment confirms that the

model’s combination of dynamic instance-based retrieval and category-learning mechanisms

captures the core temporal and distributional features of human sharing behavior.
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Figure 6

Model predictions versus human behavior in the information-sharing game. (A) Overall

cooperation rates over 50 rounds. (B) Proportions of participants sharing information with

both, one, or neither of their peers over time. Shaded regions represent 95% confidence

intervals.

Psychological interpretation of α with model-tracing

To understand how the prosociality parameter α develops in human participants, we

use model tracing (Anderson & Schooler, 1991). This approach applies our IBL-Group

model to each participant’s actual sequence of decisions and outcomes. For each

participant, we create an agent that follows our cognitive model with the default

parameters. As the participant progresses through the experiment, we populate the agent’s

memory with instances directly from the human’s behavioral data. Each instance contains

the participant’s sharing decision, their attack outcome, and the corresponding peer

responses observed in that trial. The agent processes these instances and updates its

internal α values according to our learning mechanism, without generating new decisions.

This trial-by-trial memory population produces a trajectory of α values that reflects how

each participant likely valued their peers’ outcomes throughout the interaction sequence.

This procedure follows the decision-from-experience model-tracing method (Anderson &

Schooler, 1991) and its adaptation to cybersecurity research (Cranford et al., 2019).
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Dyadic Analysis

Our model proposes that players develop their prosociality regarding each other’s

outcomes (α) through repeated interactions. Although previous analysis has shown how a

focal agent develops different α values for each of the peers in a triad with distinct

behavioral patterns, here we examine the bidirectional nature of the dynamics of α

between pairs of players. This analysis reveals how mutually sharing decisions shape the

evolution of prosociality in dyadic relationships. We categorize dyadic relationships based

on players’ sharing rates over the 50-round interaction period. High sharing is defined as

sharing information in more than 70% of opportunities, while low sharing is defined as a

lower share rate than 30%. We then analyze the correlation between the paired α values

and their temporal development patterns.

Figure 7 illustrates these relationship patterns by presenting the average trajectories

of the dynamic prosociality parameter (α) within dyadic pairs, categorized based on their

sharing rates across 50 rounds: mutual high-sharing (both players shared more than 70% of

the time), mutual low-sharing (both shared less than 30%), and asymmetric relationships

(one shared frequently, while the other did not). Within each dyad, each agent maintains a

separate α value representing their prosocial regard toward their opponent. To summarize

these patterns clearly, we first identified within each dyad the agent who ended with the

higher final α (greater prosocial regard toward their opponent) and the agent who ended

with the lower final α. We then averaged these “higher” and “lower” α trajectories

separately across all dyads within each relationship type. In mutual high-sharing pairs,

both players exhibit closely synchronized trajectories, rapidly converging to similarly high

α values, indicating mutual responsiveness and reciprocal prosociality. In mutual

low-sharing pairs, both players’ α values simultaneously decline and stabilize at low levels,

reflecting mutual defection or lack of reciprocity. In contrast, asymmetric pairs show

distinctly diverging trajectories, with the more cooperative partner maintaining high α

values while the less cooperative partner’s values decline, capturing imbalanced
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responsiveness and limited reciprocity. This clear differentiation highlights the model’s

capability to capture the interdependent evolution of prosocial behavior based explicitly on

observed patterns of cooperation.
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Figure 7

Trajectories of α for different dyadic relationship types across 50 trials (shaded areas

represent standard errors). Left: Mutual high-sharing pairs (>70% sharing rate). Middle:

Mutual low-sharing pairs (<30% sharing rate). Right: Asymmetric relationships. For each

relationship type, trajectories are shown for each pair’s relatively higher and lower alpha

values.

Analysis of α trajectories reveals systematic patterns in different types of dyadic

relationships. In pairs of mutual high sharing (N = 17), the values of α showed a strong

positive correlation (r = .91, p < .001) and converged to similar high levels (mean = .87,

SD = .04) at trial 30. The mean absolute difference between the values of paired α in these

relationships remained small (mean = .06, SD = .04), indicating synchronized prosociality.

Mutual pairs of low-sharing (N = 9) demonstrated a coordinated decline in α values,

stabilizing at lower levels (mean = .19, SD = .08) with moderate correlation between

paired values (r = .61, p < .001). The temporal pattern shows a rapid initial decline

followed by stabilization around trial 25. The asymmetric relationships (N = 22) produced

the most divergent α trajectories. The high-sharing players maintained significantly higher

values of α (mean = .82, SD = .08) compared to their low-sharing peers (mean = .28, SD
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= .11; t(21) = 15.33, p < .001). The correlation between the values of the pairs’ α in these

relationships was weak (r = .29, p = .196), reflecting the disconnect in prosociality.

Triadic Analysis

Beyond dyadic relationships, we examine how prosociality develops at the group

level, specifically testing whether strong cooperative relationships between some members

influence cooperation with others. This analysis addresses a key question: does the

emergence of trust between two players create spillover effects that facilitate cooperation

throughout the entire group? Understanding these indirect effects is crucial for predicting

when and how cooperative clusters emerge in larger social networks. We categorize triads

based on how quickly the dyads of players achieve mutual high α values. Specifically, we

define a pair as having mutual high” α if both players’ α values exceed 0.7. Triads are thus

classified as early-forming” if at least one pair achieves mutual high α within the first 10

trials, and as “gradual” if no pairs reach this level within that initial period.

The analysis reveals two key patterns. First, when a pair of players establish

mutually high α values, this successful relationship shapes how the third player develops

their α values for both peers. The third player tends to develop relatively high and stable

α values (around 0.6) for both members of the strong pair, suggesting that α development

is influenced not just by direct interactions but also by observed relationship strength

between peers. Second, triads with early-forming strong relationships show distinctly

different evolution patterns from gradual triads. In early-forming triads, the initial strong

relationship appears to create positive conditions for the remaining relationships, leading to

higher and more stable α values throughout the triad. In contrast, gradual triads show

lower α values (0.2-0.4) and more differentiation between pairs, indicating that the absence

of an early strong relationship leads to more tentative cooperation throughout the group.

Figure 8 illustrates these patterns by tracking the development of the third player α

towards each partner in both types of triads.
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Figure 8

Development of α values from the third player’s perspective in different triad formations

over 50 trials (shaded areas represent standard errors). Left: In early-forming triads (where

one pair establishes mutual cooperation α > 0.6 within 10 trials), the third player develops

relatively high and similar α values for both peers. Right: In gradual triads (no early high

mutual α), the third player’s α values remain lower and more differentiated between peers.

Discussion

Our findings offer a cognitively grounded account of how individuals make

interdependent decisions in group contexts, revealing how dynamic prosociality, category

learning, and contrast effects represent adaptive cooperation under cognitive constraints.

The proposed IBL-Group model advances the literature by expanding the IBL-PD beyond

dyadic interactions, addressing a gap identified in previous work (Gonzalez et al., 2015)

and responding to long-standing concerns regarding the scalability and cognitive

plausibility of agent models in multiparty strategic environments (Macrae & Bodenhausen,

2000; Stiller & Dunbar, 2007).

The proposed IBL-Group model successfully reproduces core patterns of human

social behavior observed in multiagent experimental settings. Specifically, we show that

dynamic prosociality enables agents to calibrate their cooperative tendencies based on

observed reciprocation, producing distinct α trajectories toward cooperative peers versus

defective peers.
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Category learning allows efficient representation of multiple peers by clustering

them into prototypes, preserving essential behavioral distinctions without exceeding

cognitive limits. The integration of category learning with instance-based memory provides

a cognitively plausible explanation for how humans efficiently process multiple

relationships despite memory limitations. The model’s ability to match human cooperation

rates (r = 0.86) without parameter tuning underscores the model’s explanatory power. The

results suggests that categorical processing is not merely a coping mechanism for cognitive

constraints but a fundamental aspect of social learning. This aligns with recent research

showing that cognitive limitations can paradoxically foster robust social strategies (Stevens

et al., 2018).

Contrast effects sharpen those distinctions, enhancing the discrimitation between

behavioral categories and improving responsiveness to diverse partner types. This

mechanism offers new insights into how the social context shapes cooperative decisions.

Model-tracing further reveals that prosociality develops not only as a function of direct

interaction, but also in relation to peer dynamics and social structure within triads. The

early emergence of strong dyadic cooperation fosters greater respect from third-party

observers, highlighting the social signaling role of reciprocal ties. Our tracing analysis

reveals that agents develop significantly different α values for categorically distinct peers

(mean difference = 0.75, p < 0.001), consistent with empirical findings that humans

evaluate cooperation relative to broader social experiences (Wu et al., 2020a). This

contextual processing may explain why cooperative clusters emerge in network simulations,

as local reference points reinforce categorical boundaries between cooperative and

non-cooperative regions.

These results underscore the utility of cognitive mechanisms not only as

approximations of human limitations but as strategic assets. Our findings challenge the

dominant assumption in the computational modeling literature that rich agent modeling

requires exhaustive memory or complete partner tracking (e.g., (Leibo et al., 2017; Lowe
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et al., 2017). Instead, we demonstrate that cognitively efficient processes—specifically

categorical abstraction and contrastive amplification—can yield robust, generalizable social

strategies.

Despite its strengths, our model has some limitations. First, the model assumes

that agents have perfect and equal access to others’ actions and outcomes. This

idealization overlooks the informational asymmetries and noise common in real-world

environments (e.g., organizations, cybersecurity, or social network settings). Second, we

currently assume identical cognitive parameters across agents. This limits the exploration

of individual differences in prosociality, working memory, or learning rate, all of which

likely influence the dynamics of group-level cooperation. Finally, the model operates in

static triads. It remains an open question how these mechanisms scale to fluid social

environments, with changing memberships, reputations, and social ties.

Several avenues for future research emerge from this work. Introducing uncertainty

in feedback and differing observational abilities could test the robustness of categorical and

contrast-based learning mechanisms under more realistic conditions. Incorporating

heterogeneous agent traits would also allow for a detailed exploration of group composition

effects. Future work should extend this model to larger networks and dynamic group

memberships. Specifically, understanding how categorical processing adapts to fluid group

boundaries and how contrast effects operate across multiple reference groups will be critical

for applications in cybersecurity information sharing and organizational collaboration.

Finally, based on the model results, future work can design and test behavioral

interventions to promote cooperation. by leveraging human categorization and social

evaluation tendencies.
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Appendix

Behavioral Clustering of Classical IPD Strategies

To demonstrate that peer strategies can be effectively categorized through their behavioral

patterns, we use three different focal agents, TitForTat, Cooperator, and Defector, to play

against a set of peers using classic strategies in iterated prisoner’s dilemma (Knight et al.,

2015). As shown in Figure A1, the clusters depend on the interaction history and thus are

different for each focal agent. When interacting with TitForTat (left panel), the strategies

showed a clear separation between highly cooperative behaviors (cooperation rate > 0.8,

high reciprocity) and more defensive or reactive strategies (moderate cooperation rates

with varying reciprocity). The Cooperator focal agent (middle panel) elicited the most

pronounced cooperative behaviors, with many strategies showing both high cooperation

rates and high reciprocity. In contrast, the Defector focal agent (right panel) demonstrated

how strategies adapt to persistent defection, with most strategies showing lower cooperation

rates and a negative correlation between cooperation rate and reciprocity. Some strategies,

particularly cyclic (Cyc) and random (Ran) strategies, showed distinctive behavioral

patterns across the three reference agents, as their behavior is not dependent on the peer.
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Figure A1

Behavioral clustering of IPD strategies based on their cooperation rate and reciprocity after

50 rounds of interaction (using a sliding window of 5 rounds for behavioral metrics). Each

panel shows the same set of peer strategies interacting simultaneously with a different focal

agent (TitForTat, Cooperator, or Defector). Strategies are colored by their classified

behavioral type. The varying distribution of strategies across panels demonstrates how peer

behavior depends on the focal agent’s strategy.
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Figure A2

Hierarchical clustering of peer strategies when interacting with different focal agents:

TitForTat (Top-left), Cooperator (Top-right), and Defector (Bottom). The decision trees

show how strategies are categorized based on behavioral metrics, with red labels indicating

the splitting criteria at each node. Each terminal node (blue) corresponds to a group of

strategies with similar behavioral patterns, as detailed in the accompanying tables. The

varying tree structures across focal agents demonstrate how peer classification depends on

the focal agent’s strategy, with more complex distinctions possible against TitForTat and

simpler categorizations emerging against persistent defection.
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Figure A2 shows the hierarchical clustering process. In all three cases, the

cooperation rate serves as the primary splitting criterion at the root, reflecting its

fundamental role in strategy differentiation. Subsequent levels incorporate reciprocity, with

forgiveness and retaliation metrics enabling finer distinctions at lower levels. Against

TitForTat, this creates nuanced groupings, for instance, distinguishing Anti-TitForTat and

Random strategies from Cycler-CCD, while grouping Cooperator with TrickyCooperator

based on their similar behavioral patterns. When facing a Cooperator, the tree maintains

multiple reciprocity-based splits, effectively separating strategies like WinStayLoseShift

from pure cooperators. With a Defector as the focal agent, the tree becomes more

compact, requiring fewer splits to categorize strategies, as persistent defection tends to

elicit more uniform responses. These trees demonstrate how behavioral metrics can be

systematically applied to classify strategies in a context-dependent manner.
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