
Meta-Management of Collections of
Autonomic Systems

Thomas J. Glazier

CMU-S3D-23-110

December 2023

Software and Societal Systems Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David Garlan, Chair

Bradley Schmerl
Fei Fang

Betty H.C. Cheng (Michigan State University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

Copyright © 2023 Thomas J. Glazier

This work was supported by the following funding: Navy N000141612961, NSF CNS1116848, ONR-N000141612961,
Stevens Institute of Technology RT119CMU20140623 and NSA Lablet H98230-18-D-0008.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Autonomic Systems, Meta-Management

To Bradley and Benjamin
The journey to your goals is long, winding, broken,

full of obstacles, and worth more than the destination.

To Chrissy
Anything with you and nothing without you

iv

Abstract
To meet the demands of high availability and optimal performance in dynamic

environments, modern systems deploy autonomic or self-adaptation mechanisms.
However, increasingly today’s enterprise systems are compositions of many sub-
systems, each an adaptive system. Currently, each autonomic manager operates
to maintain locally defined quality-of-service (QoS) objectives, but their indepen-
dent actions often lead to globally sub-optimal results. Commonly, human admin-
istrators handle situations in which the collection of autonomic systems is behaving
sub-optimally. However, generating a plan to change the configurations of the con-
stituent autonomic managers is a complex and challenging task in the management
of a single autonomous system, but the challenge is exacerbated where there may be
tradeoffs in how to balance configuration options across the collection of autonomic
subsystems.

These challenges can be addressed by introducing an automated approach, re-
ferred to as meta-management, that provides a formal basis for reasoning about
changes to the configurations of autonomic subsystems. The automated approach
to meta-management is then established as part of a framework that can be used to
instantiate a higher level autonomic manager, referred to as a meta-manager, that
provides assurance about, and improves the performance of a collection of auto-
nomic systems. This approach and framework includes a MAPE-K control loop
specialized to the needs of meta-management, a domain specific language, SEAM,
that enables the practical specification of adaptation policies, and a taxonomy of
strategy synthesis techniques. The practicality, effectiveness, and applicability of
the approach are then evaluated against three case studies.

The first is an AWS Shopping Cart system in which a meta-manager is estab-
lished to manage a collection of autonomic system represented by a front end user
interface, a middleware services tier, and a database services tier. This case study
was selected to evaluate the ability of the meta-manager to improve the homeostatic
operations of the collection of autonomic systems on popular architectural pattern,
code base, and operations platform that is in wide industrial use.

The second is the Google Control plane in which a meta-manager was estab-
lished to manage a collection of autonomic systems that suffered a significant out-
age. This case study was selected because it presented a well documented and spe-
cific failure scenario that occurred during the period of the research of this thesis that
cause of which was, partially, a result of human-centric management of a collection
of autonomic systems.

Finally, the third is a simulation of an electrical grid cascade failure that rep-
resents the Northeast Blackout of 2003. This case study was selected because it
presents an example of a failure of human-centric management of a collection of
autonomic systems that was exhaustively documented that occurred in a context out-
side of information technology and/or cloud based providers. This provides credi-
bility to the applicability claim of the thesis

vi

Acknowledgments
I would first like to thank my advisor, David Garlan, for taking on, working with,

teaching, and, on some days, tolerating a less than conventional PhD student. The
support, advice, knowledge, and skill he generously shared are invaluable and the
efforts he took to ensure my success will not be forgotten.

I would like to thank all the members of the ABLE group through out the years
especially Bradley Schmerl and Javier Cámara. Each and every one of them gave
the advice and support that was needed at the time, even if it was not what was being
asked for.

I would also like to thank the members of my committee, Bradley Schmerl, Fei
Fang, and Betty H.C. Cheng. Their efforts to assist on a PhD committee, especially
one so long delayed from the proposal, are greatly appreciated.

I would like to thank Bill Wilson, Al and Darren Simpson, and Vincent Dell’Anno,
each of which invested in me and provided the necessary assistance throughout the
years to ensure that one day a goal like this could be achieved.

I would like to thank Justin Lowe and his family, Sheila, Jax, and Zoe, for always
providing the helping hand, understanding ear, and support to my family when it was
needed most.

I would like to thank my mom, Christine Glazier, for imparting in me a life long
love of learning and her efforts to help me find and make my own path have been a
model for everything I do. I would also like to thank Norm Kerth, Randy Kerth, and
those who are no longer with us, Bradley Kerth and Dr. Leroy Kerth, each of which,
in their own way, provided the guidance, inspiration, and curiosity to look beyond
what the world presents to figure out how it works.

I would like to thank Bradley and Benjamin for their patience over the years for
the occasions I could not be with them or had to delay doing something with them.
Their understanding, compassion, and generosity with their support is an inspiration
to me.

Finally, and most importantly, I would like to thank my wife Chrissy. This jour-
ney would simply have not been possible without her unwavering support from the
first trip crammed into the back of a car while 7 months pregnant, to the temporary
relocation to Pittsburgh with a newborn, to my long absences, to everything else that
I have either forgotten about or did not know about through out the years. For all of
her sacrifices, love, support, and encouragement through out the years, I am forever
grateful.

viii

Contents

1 Introduction 1
1.1 Thesis . 4
1.2 Case Studies . 5
1.3 Contributions . 8
1.4 Thesis Layout . 8

2 Exemplar Scenario and Research Challenges 11

3 Related Work 18
3.1 Autonomic Systems . 18
3.2 Collections of Autonomic Systems . 19
3.3 Strategy Synthesis and Assurance in Autonomic Systems 20
3.4 Control Theory for Autonomic Systems . 21

4 An Automated Approach to Meta-Management 23
4.1 Meta-MAPE-K Loop . 33

5 The SEAM Language 39
5.1 Adaptation Policy . 41
5.2 Global Utility Function . 48
5.3 Global Knowledge . 49
5.4 Subsystem . 53
5.5 MetaManager . 59
5.6 Runtime Implementation . 60

6 Taxonomy of Synthesis Techniques 63
6.1 Discrete and Continuous Time Markov Chains . 64
6.2 Markov Decision Processes . 65
6.3 Partially Observable Markov Decision Processes 67
6.4 Concurrent & Turn-based Stochastic Multi-Player Game 68

7 Case Study: Amazon Web Services Shopping Cart 70
7.1 Background & Context . 70
7.2 Experiment . 73

ix

7.3 Results . 89

8 Case Study: Google Control Plane 93
8.1 Background & Context . 93
8.2 Experiment . 95
8.3 Results . 104

9 Case Study: Electrical Grid Cascade Failure 107
9.1 Background & Context . 107
9.2 Experiment . 111
9.3 Results . 121

10 Validation 123
10.1 Claims . 123

10.1.1 Practicality . 123
10.1.2 Effectiveness . 127
10.1.3 Applicability . 130
10.1.4 Thesis Statement . 131

10.2 Research Questions . 132

11 Discussion & Future Work 135
11.1 Assumptions . 135
11.2 Future Work . 140

12 Conclusion 143

A SEAM Specification for AWS Shopping Cart Case Study 145

B PRISM Specification for AWS Shopping Cart Case Study 154

C SEAM Specification for Google Control Plane Case Study 161

D PRISM Games Model for Google Control Plane Case Study 165

E IEEE 39 Bus System Technical Information 172

F Matlab Power Grid Simulation Model 175

G SEAM Specification for Electrical Grid Cascade 182

Bibliography 186

x

List of Figures

2.1 Exemplar System Diagram . 11
2.2 Exemplar of Autonomic Behavior . 13
2.3 Exemplar of Autonomic Behavior, New Configuration 14

4.1 Exemplar Representation of Uncertainty in Human-Centric Adaptation 25
4.2 Exemplar Representation of Uncertainty in Autonomic Manager-based Adaptation 26
4.3 Exemplar Transition Matrix for Human-based Adaptation 27
4.4 Exemplar Transition Matrix for Manager-based Adaptation 27
4.5 MAPE-K Diagram [57] . 33

5.1 Examples of Probability Distributions . 44
5.2 SEAM Runtime Component Architecture . 61
5.3 SEAM & Rainbow Component Architecture . 62

7.1 Shopping Cart Exemplar System - Architecture 73
7.2 Shopping Cart Exemplar System - Idealized Load Profile 76
7.3 AWS Shopping Cart - Baseline Results . 89
7.4 AWS Shopping Cart - Experiment Results . 90
7.5 AWS Shopping Cart - Meta-Manager Analysis . 91
7.6 AWS Shopping Cart - Experiment Results . 92

8.1 GCP Control Plane Architecture . 94
8.2 Experiment Platform Architecture . 96
8.3 Experiment - Normal Operations . 104
8.4 Experiment - Maintenance Operations . 105
8.5 Experiment - Meta-Manager Operations - 2 Clusters 105
8.6 Experiment - Meta-Manager Operations - 1 Cluster 106

9.1 Area Affected By The Blackout . 107
9.2 13:31 - Cleveland-Akron Cutoff . 109
9.3 16:08 - Ohio 345-kV Lines Trip . 109
9.4 16:10 - Eastern Michigan Trips . 109
9.5 16:11 - Michigan Trips, Ohio Separates from Pennsylvania 109
9.6 16:11 - Cleveland and Toledo Islanded . 110
9.7 16:11 - Western Pennsylvania Separates from New York 110
9.8 16:12 - Northeast Separates From Eastern Interconnection 110

xi

9.9 16:13 - New York and New England Separate, Multiple Islands Form 110
9.10 IEEE 39 Bus System Topology . 111
9.11 Connected Power Grid Test Bed Topology . 112
9.12 Test Bed Simulation Results, Branch 35 Tripped 115
9.13 Test Bed Experiment Results, Branch 35 Tripped, Spot Load Shedding 122
9.14 Test Bed Experiment Results, Branch 35 Tripped, Broad Load Shedding 122

xii

List of Tables

1.1 Case Study Comparison . 6

2.1 Sub System Properties . 12

9.1 Electric Grid Baseline Simulation Results . 115
9.2 Electric Grid Experimental Simulation Results . 121

E.1 Generator Parameter Values . 172
E.2 Generator Bus Values . 172
E.3 Transmission Line Data . 173
E.4 Transformer Data . 173
E.5 Load Data . 174

xiii

xiv

Chapter 1

Introduction

To meet the demands of high availability and optimal performance in dynamic environments,
modern systems deploy autonomic or self-adaptation mechanisms. These autonomic mecha-
nisms are responsible for continuously monitoring operating conditions and effecting changes in
the system to ensure defined quality objectives are achieved. For example, during cyber-Monday
and other periods of extreme traffic, a large web system like Amazon.com will add server ca-
pacity to guarantee acceptable performance for all users. When the traffic returns to normal, the
autonomic manager will remove the extra server capacity to prevent unnecessary costs.

However, increasingly today’s enterprise systems are compositions of many subsystems, each
an adaptive system. Each subsystem has its own defined objectives, reasoning methods, and
adaptation tactics. Additionally, they are often built by different vendors, hosted on multiple
platforms, and have different implementations. For example, a large web system will have dif-
ferent autonomic managers to oversee the product catalog and video playing user interfaces,
another for the middle tier common services, and potentially a fourth for the distributed database
system.

Currently, each autonomic manager operates to maintain locally defined quality-of-service
(QoS) objectives, but their independent actions often lead to globally sub-optimal results. For
example, the autonomic manager of an n-tiered enterprise system could be scaling up the capacity
of the middle tier while the manager for the database tier is scaling down: at least one of them is
likely to be inconsistent with the best global action. These globally sub-optimal behaviors are the
result of the subsystems having incomplete information about the current and future state of their
environment, interdependency between systems propagating detrimental behavior, and changes
in the global definition of optimal behavior due to shifting organizational priorities. Some of
these sub-optimal results can be potentially catastrophic to the collective system. For example,
the Northeast Blackout of 2003 was the result of a fault in a specific electrical grid, an autonomic
system, which eventually cascaded to over 100 power plants and affected 10 million people in
Ontario, Canada, and 45 million people in 8 US states with an estimated economic impact of
$6.4 billion [54].

Commonly, human administrators handle situations in which the collection of autonomic
systems is behaving sub-optimally. To do so, human administrators evaluate the current state
of their individual autonomic systems and the environments to determine if the global quality
objectives are likely to be met. When the administrator concludes that intervention is appropriate,

1

they generate a plan of changes to the configuration of the individual autonomic systems with
the goal of improving the collection’s performance against the global quality objectives.

However, generating a plan to change the configurations of the constituent autonomic man-
agers is a complex and challenging task. First, the human needs to analyze the current state
information for the local environments, the managed systems, and each autonomic manager and
predict the potential future states of each to determine the best course of action. Prediction of
future states is challenging with multiple dimensions of uncertainty, including how potential fu-
ture states affect the systems under management, how each autonomic manager will respond,
and the likely effect those adaptations will have on the individual systems. Understanding these
uncertainties is critical to the human administrator, as their comprehension of this information
will directly influence the effectiveness of their planned configuration changes. Second, the hu-
man needs to consider multiple quality objectives for the system. These quality objectives often
have multiple competing dimensions (e.g., cost and response time) and the relative priority of
those dimensions may change over time due to changes in organizational priorities. Third, the
human needs to select an appropriate set of configuration changes from a combinatorially large
set across the subsystems. Failure to properly consider the space of configuration options has a
direct impact on the effectiveness of the configuration changes. Finally, the decisions that hu-
mans need to make are often time critical to prevent further degradation in the collection’s ability
to meet global quality objectives.

These challenges are acute for a human in the management of a single autonomous system,
but the challenge is exacerbated where there may be tradeoffs in how to balance configuration
options across the collection of autonomic subsystems. The NERC report on the 2003 North-
east Blackout highlights these human limitations [54, p. 94-96] by concluding that the human
administrators of the primary power grid involved in the Northeast Blackout were only able to
determine that a critical system had failed after 40 minutes and were unable to determine the
total extent of the failure or the potential consequences of it despite having another 69 minutes
to respond before the ‘point of no return’. Consequently, the complex and ad-hoc nature of a hu-
man generating a plan to change the configuration of constituent autonomic managers is unable
to provide strong assurances (e.g., regarding optimality of the plan or minimization of risk).

These challenges can be addressed by introducing an automated approach, referred to as
meta-management, that provides a formal basis for reasoning about changes to the configura-
tions of autonomic subsystems. This automated approach is enabled by the fact that while each
subsystem can vary considerably in functional purpose, each of them is autonomic which pro-
vides three key advantages over collections of human-adapted systems that can be exploited to
enable an automated approach to meta-management: (1) the simplification of the state space, (2)
a reduction in the variance of the results of adaptation, and (3) the abstraction of the underlying
system. Each will be briefly discussed here, but see chapter 4 for additional detail.

First, as is common with the introduction of a control system, the administrator must identify
the key properties and quality of service objectives (QoS) that define the simplified model of the
system that will be used to reason about the current state of the system and any adaptations that
are needed. For many systems this manifests as an architectural model of the managed system
combined with the QoS objectives [25, 39, 120]. This simplified representation of the managed
system partially enables the computational scalability of analyzing changes to the configuration
of the autonomic subsystems.

2

Second, enabled by the simplified representation of the system, the introduction of an auto-
nomic manager provides a degree of predictability about the resulting state of the system and the
impact to the QoS properties as a result of taking adaptive actions. This predictability reduces the
number of potential outcomes that need to be specified which allows for the practical creation of
a specification of the autonomic behavior of a subsystem, referred to as an adaptation policy. This
partially enables an automated approach to meta-management by providing a simplified model
of the adaptive behavior of the autonomic subsystem that allows a meta-manager to reason about
potential changes.

Finally, the abstraction of the implementation details of the individual managed subsystems
by treating each of them as a black box autonomic system allows for two key assumptions.

First, we will assume that each autonomic subsystem has a set of configuration parameters
that can be used to tune the behavior of the subsystem to within a specified range of behaviors.
The autonomic configuration options are the interface by which human administrators establish
the organizational and business preferences/tradeoffs and constrain the behaviors of the auto-
nomic manager for each subsystem.

Second, an adaptation policy can be specified for the autonomic subsystem in which the
state(s) that could be the result of an adaptive action are dependent upon the state of the environ-
ment, the state of the managed system, and the the configuration parameters of the autonomic
manager. Due to the desired predictability of the results of adaptation gained with the introduc-
tion of an autonomic manager, it would be expected that if the same set of conditions were to
occur on two different occasions that the autonomic manager would select the same adaptation
option(s) in both circumstances. Therefore, if one is able to elaborate the states of the managed
system and the states of the environment, it is also possible to predetermine which adaptation
option(s) the autonomic manager would deploy and determine what the potential resulting states
of the managed system would be.

An automated approach to meta-management can be established as part of a framework 1

that can be used to instantiate a higher level autonomic manager, referred to as a meta-manager,
that provides assurance about, and improves the performance of a collection of autonomic sys-
tems. To simplify and enable the creation of the framework, the meta-manager will implement a
specialized MAPE-K control loop.

The MAPE-K control loop [57] is a commonly used architecture for the implementation of
autonomic managers which control the adaptive behaviors of a specific system. It is composed of
four elements, monitoring(M), analysis(A), planning(P), and execution(E), with shared knowl-
edge(K) that enables the process. For the purposes of a meta-manager, a specialized version of
the control loop, referred to as a Meta-MAPE-K loop, will be established. While each component
of the MAPE-K loop has specializations for the purpose of meta-management, the knowledge
and planning components are the most significantly impacted.

The Meta-Knowledge component of the Meta-MAPE-K control loop is responsible for at
least three kinds of knowledge. The first is the specification of the adaptive behavior of each
autonomic subsystem (i.e., the adaptation policies). The second kind of required information
is a global utility function that provides the definition of ‘good’ for the QoS objectives for the
collection of autonomic systems. The third is contextual information about the collection of au-

1By framework we mean a library of reusable code, a set of tools, and design principles

3

tonomic systems that is unknown or only partially known to the autonomic subsystems, referred
to as global knowledge. There are at least two types of global knowledge: (1) information on the
interrelationships between individual subsystems, local environments, and global properties and
(2) constraints on individual subsystems and global state. For example, often collections of au-
tonomic systems are composed together according to a plan referred to as a system architecture.
The system architecture creates a set of dependencies and correlations between the autonomic
subsystems that can be used to better predict the most likely state of the managed systems in the
future. Additionally, the context in which the collection of autonomic systems is operating has
constraints that must be adhered to (e.g., maximum operating cost).

The Meta-Planning component of the Meta-MAPE-K loop is responsible for synthesizing
a plan of changes, referred to as a meta-strategy, to the configurations of the autonomic sub-
systems to improve performance of the collection of autonomic systems against the global QoS
objective as defined by the global utility function. However, the choice of synthesis technique
(e.g., Stochastic multi-player game or Monte Carlo Analysis) used to generate adaptation strate-
gies is characterized by a tradeoff between timeliness, assurance, and computational scalability.
Each strategy synthesis technique has a profile for the timeliness of the technique to generate an
adaptation plan, the level of assurance that adaptation plan can provide, and the computational
scalability of the technique to handle systems of realistic size. Consequently, the selection of a
strategy synthesis technique for meta-management is a critical task that must carefully consider
the timeliness, assurance, and scalability requirements of the context in which the collection of
autonomic systems is operating to ensure the effectiveness of the meta-manager.

1.1 Thesis
An automated approach to the meta-management of collections of autonomic systems, as im-
plemented by a meta-manager, can address the ad-hoc and error-prone and costly process of
human-centric administration. Therefore, this thesis investigates the following claim:

Thesis Statement

We can provide engineers the ability to establish an automated solution to the autonomic
control of a significant subset of collections of autonomic systems that is effective, applica-
ble in a variety of contexts, and is practical to implement and maintain using the following
elements:

1. An automated approach to the management of collections of autonomic systems.
2. A domain specific language used to abstract and represent the adaptation behavior

for each autonomic subsystem.
3. Guidance to determine the appropriate strategy synthesis technique for the context in

which the collection of autonomic systems is operating.
4. A reusable software framework that simplifies the development of a meta-manager.

The key claims in this thesis relate to practicality, effectiveness, and applicability. Let us

4

expand on each of these individual claims.

Practicality: The framework will be practical with respect to:

1. Ease of Use. The framework will allow individuals with standard state-of-the-practice
knowledge in software engineering to use it to instantiate an automated solution to manage
an applicable collection of autonomic systems.

2. Human Feasible Configuration. The framework will provide methods that will allow a
human administrator to specialize a meta-manager to a particular collection of autonomic
systems including the specification of adaptive behavior for each subsystem, referred to as
an adaptation policy.

3. Scalability. The framework will be capable of scaling to handle systems of practical indus-
trial size.

Effectiveness: The framework will be effective with respect to:

1. Improved Performance. A collection of autonomic systems managed by an autonomic
manager will experience improved performance against defined global quality objectives
over human-based management.

2. Timeliness and Assurance. Because the framework and approach do not mandate a spe-
cific synthesis technique, an engineer implementing the framework can select a synthesis
technique that best fits the level of timeliness and assurance required for the context.

Applicability: The framework will be applicable to a significant subset of collections of auto-
nomic systems with the following characteristics:

• Each subsystem is non-adversarial2 in nature.
• Each of the subsystems provides an interface to adjust the configuration parameters of the

autonomic managers.
• The adaptive behavior that each autonomic subsystem will employ for a given state of the

environment under a set of configuration parameters can be specified.

1.2 Case Studies
The evidence for many of the arguments that substantiate the claims of this thesis is primarily
based on three case studies: (1) Amazon Shopping Cart Web System, chapter 7, (2) Google
Control Plane, chapter 8, and (3) Electrical Grid Cascde Failure, chapter 9. Therefore, the level
of realism represented in each of case studies and collections of autonomic systems under study
is important to understand. Therefore, this section will highlight the key properties and features
of each of the case studies and the realism present in each.

The comparison of the case studies across key dimensions is presented in table 1.1. The
following are descriptions of each of the key properties:

2Meaning that the individual autonomic subsystems have no motivation to act contrary to the global objectives
and accept the authority of the meta-manager.

5

AWS Shopping Cart Google Control Plane Power Grid
Functional Area IT Consumer IT Infrastructure Industrial

Instability No Yes Yes
Homeostatic Yes Yes No

Global Knowledge Yes No Yes
Actual or Simulation Actual Actual Simulation

Autonomic Manager ElasticBeanStalk
& DAX Autoscaling

GCP Managed
Instance Groups SCADA

Synthesis Method DTMC
with Simulation

Stochastic
Multiplayer Game

DTMC
with Monte Carlo

Synthesis Toolset PRISM PRISM-Games Matlab
Mimic Admin Action No Yes Yes

Table 1.1: Case Study Comparison

• Functional Area - The enterprise context in which the collection of autonomic systems
described in the case study are operating.

• Instability & Homeostatic - As discussed in chapter 4, the automated approach to meta-
management is capable of addressing both situations in which the goal is to continuously
improve the operations of the collections of autonomic systems, referred to as homeo-
static operations [93, 111], and also improving the response of the collection of autonomic
systems to rare edge case events which causes instabilities which can have severe conse-
quences.

• Global Knowledge - Whether the case study included the use of global knowledge or
information that was not available or only partially available to the individual subsystems.

• Actual or Simulation - Whether the case study was performed on real-world systems or
the collections of autonomic systems was simulated.

• Autonomic Manager - The type of autonomic control system(s) responsible for managing
the autonomic behaviors of the subsystems.

• Synthesis Method - The technique used to synthesize the meta-strategy for the use case.
• Synthesis Toolset - The program used to perform the analysis and synthesize the meta-

strategy.
• Mimic Administrator Action - If the actions of the meta-manager can be directly com-

pared to the actual or recommended actions of human administrators.

AWS Shopping Cart

The Amazon Web Services(AWS) Shopping Cart case study uses an actual system, not a repre-
sentative system. It uses the actual code base, architectural models, and products and services
which power countless production grade shopping cart systems for AWS customers. Specifi-
cally, it is based upon an open source and publicly available shopping cart system designed and

6

maintained by AWS [108]. The exemplar shopping cart is designed to have three architectural
tiers: (1) a front end user interface (UI), (2) a middleware services tier, and (3) a data services
tier. While all three tiers are controlled by autonomic management systems, the autonomic man-
ager(s) for the middleware services tier do not provide an interface to update their configuration
parameters. Therefore, the middleware services are not eligible for the automated approach to
meta-management presented in this thesis. However, the other two tiers are controlled by two
different, but related, autonomic managers in ElasticBeanStalk [103] for the FrontEndUI and
DAX [100] Autoscaling for the data services tier. The code base, architectural pattern, and the
products and services in-use are all realistic of thousands of shopping cart in use in production
grade situations.

This case study was selected to evaluate the ability of the meta-manager to improve the
homeostatic operations of the collection of autonomic systems on popular architectural pattern,
code base, and operations platform that is in wide industrial use.

Google Control Plane
The Google Control Plane case study is based upon an actual incident documented by Google
in [52] in which the system that processes changes in the networking configuration for Google
Cloud customers failed. While the technical details of the control plane system are not publicly
available, the experimental platform was instantiated using information from the Google incident
report using the same or similar services offered publicly to GCP customers. The most relevant
of which are the Managed Instance Groups (MIGs) which provide autonomic management ca-
pabilities to clusters of server instances. By autoscaling individual clusters of application server
instances, the MIGs are responsible for ensuring there is sufficient processing capacity available
to process the network change requests. As each of the clusters are designed to be practically
identical, there is very little diversity in the QoS objectives or autonomic configuration options
of each cluster. Additionally, while the control plane is an IT centric system, it does not handle
the same volume of requests as a front end website might and, due to the specific nature of its
function, its environment has only moderate variation in the number of requests sent for a given
period of time. The system used in this case study is, to the extent possible, using the same
architectural pattern, products and services as the actual Google Control Plane system.

This case study was selected because it presented a well documented and specific failure
scenario that occurred during the period of the research of this thesis that cause of which was,
partially, a result of human-centric management of a collection of autonomic systems.

Power Grid Cascade Failure
The exemplar system used in the power grid case is a simulated system as it is impractical to
perform research experiments on actual electrical grids. Additionally, because the behavior of
electrical grids is highly dependent on the topology of their physical components, there is no
pre-built simulation of specific events like the Northeast Blackout of 2003. The analysis of a
specific event is of limited value as, in the power grid research community, it is difficult to draw
meaningful conclusions that would generalize to other power grids. Therefore, the state-of-the-
practice in electrical grid research is to use one of several standard models of representative

7

power grids and, since the behavior of electrical grids is well described by sets of differential
equations, simulate the events of interest depending on the type of research being performed. To
perform such a simulation, two components are required: the simulation environment and the
model of an electrical grid.

In this case study, the simulation environment is established in Matlab 2023a [60] using the
MatPower [81, 128] set of open source libraries for electrical grid optimization and simulation
which has been cited in over 4000 papers [126]. Additionally, the AC-CFM libraries [86, 87],
which augment the MatPower libraries, simulate an electrical grid cascade failure. The electrical
grid model is based on the IEEE 39 Bus system model [5, 33] and has been cited over 750 times
[125]. The interconnection of the individual electrical grids to compose a larger electrical grid is
unique to this thesis, but follows a similar approach used in [66]. Therefore, while the exemplar
system presented in this case study is simulated, it follows the best practices of the electrical grid
research community with appropriate modifications necessary to test the automated approach to
meta-management presented in this thesis.

This case study was selected because it presents an example of a failure of human-centric
management of a collection of autonomic systems that was exhaustively documented that oc-
curred in a context outside of information technology and/or cloud based providers. This pro-
vides credibility to the applicability claim of the thesis.

1.3 Contributions
The contributions of this work are:

• Automated Approach: An automated approach to the meta-management for collections
of autonomic systems that provides a formal basis for reasoning about the changes to the
configuration of the constituent autonomic systems that improves the performance on a
time scale appropriate to the context.

• Strategy Synthesis Taxonomy: A taxonomy of strategy analysis and synthesis techniques
that provides guidance on each of their expected timeliness and assurance capabilities and
the types of contexts for which those techniques might be best suited.

• SEAM - A DSL for Meta-Management: A language that addresses the challenges of
representing the behavior of autonomic subsystems independent of the adaptation plan
synthesis techniques, represents the global objective of the collection of autonomic sys-
tems, and the global knowledge about the interdependencies between the individual auto-
nomic subsystems and/or the local environments and constraints on the operations of the
collection of autonomic systems.

• Implementation Framework: A reusable software framework that implements the com-
mon components and functional requirements for the implementation of a meta-manager.

1.4 Thesis Layout
The remainder of this thesis is organized as follows:

8

• Chapter 2 presents a motivating example of the management of collections of autonomic
systems and the research challenges it presents.

• Chapter 3 discusses the previous research related to this work.
• Chapter 4 presents the automated approach to meta-management and how that is imple-

mented in a specialized Meta-MAPE-K loop.
• Chapter 5 presented the details of the SEAM language specialized for the needs of meta-

management.
• Chapter 6 presents the taxonomy of strategy synthesis techniques
• Chapter 7 presents a case study based on an AWS Shopping Cart web system
• Chapter 8 presents a case study based on the Google Control Plane
• Chapter 9 presents a case study based on an electrical grid cascade failure
• Chapter 10 discussed how the claims presented in chapter 1 are validated.
• Chapter 11 discusses this approach and provides details on its applicability and its limita-

tions and provides direction for future work.
• Chapter 12 presents the conclusions of the thesis.

9

10

Chapter 2

Exemplar Scenario and Research
Challenges

This chapter presents a representative system that will be used throughout the remainder of the
thesis to illustrate and provide examples for many of the key concepts and motivate a set of
research questions that will frame the research carried out in this thesis.

Figure 2.1: Exemplar System Diagram

Consider a large scale
multipurpose system that is
built to handle a variety of
functional use cases and be-
cause each use case has a dif-
ferent set of quality objec-
tives, the global system is sub-
divided into subsystems that
are built for a specific use
case. For example, an e-
commerce platform, like ama-
zon.com, might be subdivided
into a shopping cart subsys-
tem, to manage the display
and purchase of individual
products, and a video play-
back subsystem. Addition-
ally, each of these user facing
systems is dependent upon a
common set of services that

are necessary to provide functionality to users. For example, both shopping cart and video
playback subsystems would need functionality related to individual users like their purchase
history and security and access authorizations. This results in the need for a middleware com-
mon services subsystem to provide the necessary functionality. Further, the raw information
about important entities such as the users and products will need to be stored and retrieved on-
demand requiring a data services subsystem. When a multipurpose system is subdivided into

11

System Primary Users Adaptation
Tactics

Utility
Dimensions

Config
Parameters

Video Playback
System

Internet Users
Add Server,

Change Fidelity
Response Time,
Runtime Cost

Capacity Buffer

Shopping Cart
System

Internet Users
Add Server,

Change Fidelity
Response Time,
Runtime Cost

Capacity Buffer

Middleware
Services

Front End
Systems

Add Server
Response Time,
Runtime Cost

Capacity Buffer

Data Services
Middle Tier

Systems

Add Server,
Change

Replication

Response Time,
Runtime Cost

Capacity Buffer

Table 2.1: Sub System Properties

functional units it is common to organize it into layers and tiers in a manner consistent with an
n-tier architecture pattern [37]. See figure 2.1 for a diagram of the exemplar system.

To ensure that each subsystem maintains its specific quality objectives, it is common to im-
plement an autonomic manager to monitor the state of the system under management and make
changes to the configuration of the system as necessary in response to various environmental
stimuli. However, autonomic managers do not typically react to the environmental stimuli di-
rectly. Instead, they track the values of key system metrics that directly relate to the desired qual-
ity of service (QoS) objectives (see table 2.1), which are dependent upon both the environment
and the architectural configuration of the managed system. For example, focusing specifically
on the shopping cart web system, the environment establishes the user load for the system, the
environmental stimuli, and the autonomic manager tracks the average web page response time,
which is influenced by both the user load on the system and various architectural properties such
as the number of servers in use and the fidelity of the content being presented.

When the autonomic manager determines that a QoS objective (e.g., average page response
time) is either not currently being met, referred to as reactive adaptation, or is unlikely to be met
within a particular time horizon, referred to as proactive adaptation, then the autonomic manager
examines potential alternative configurations for the architectural properties of the managed sys-
tem. For example, adding servers or lowering the fidelity of the content, or both, are potential
alternative architectural reconfigurations of the managed system that will influence the average
page response time.

However, typically, an autonomic manager does not simply select any course of action that
will improve performance against a quality of service objective; rather it attempts to select the
‘best’ course of action, referred to as an adaptation strategy, under some constraints and prefer-
ence conditions. For example, the local environment of the shopping cart system might increase
the user load causing the average page response time to rise above a preconfigured acceptable
level. This condition triggers a response from the autonomic manager which determines what the
‘best’ adaptation strategy is under the current set of configuration options and the current state
of the managed system. For the shopping cart system, the autonomic manager has the choice of
adding servers, which will raise the operating cost of the system or lowering the fidelity of the

12

content which will decrease the quality of the users’ interactions with the system. The organi-
zation’s preference for which of these choices should be deployed is commonly established in
the form of a utility function, which in this case might, for example, prioritize adding servers
up to a preconfigured maximum before reducing the fidelity of the content. The complete set
of adaptation strategies the autonomic manager takes in response to the combinations of the en-
vironmental conditions and states of the system is referred to as an adaptation policy and an
example adaptation policy for the shopping cart system is presented in figure 2.2.

Figure 2.2: Exemplar of Autonomic Behavior

The following are the descriptions of the individual columns in table 2.2:
1. Avg. Page Response Time - The average page response time for the managed system.

This is the monitored metric of the managed system.

2. Server Count - The current number of servers deployed for the solution.

3. Fidelity - The current setting for the content fidelity of the system.

4. Deployed Adaptation - The adaptation tactic that was deployed.

5. New Server Count - The new server count after the deployed adaptation tactic.

6. Buffer Servers - The number of servers that are added to account for the capacity buffer.

7. New Fidelity - The new value for the content fidelity after the deployed adaptation tactic.

8. Expected Cost - The expected run time cost of the servers.

13

As can be observed in figure 2.2, the local environment for the shopping cart system es-
tablishes the user load. However, the user load cannot be directly observed by the autonomic
manager, so the administrators have determined that the observable QoS property is the ‘Average
Page Response Time’ which is dependent upon the user load of the local environment. When
the ‘Average Page Response Time’ is below the target threshold of 2.5 seconds, the adaptation
manager deploys no adaptation strategy. However, when the ‘Average Page Response Time’
is above the target threshold at 3.0 seconds or 4.0 seconds the adaptation manager chooses to
deploy an adaptation strategy and make changes to its architectural configuration. Importantly,
the selection of which adaptation strategy to deploy is dependent upon the current state of the
managed system. For example, if the system is running below the maximum cost, $2000, then
the autonomic manager adds additional server capacity. However, if the system is running at the
maximum cost, then adding additional server capacity is no longer an available adaptation tactic
as part of an adaptation strategy and the system instead reduces the content fidelity.

However, the adaptation strategy the adaptation manager selects is dependent upon the set of
configuration options established in the autonomic manager (e.g., maximum cost and capacity
buffer). If the configuration options change, then the choices of which adaptation strategy to
deploy might also change.

Figure 2.3: Exemplar of Autonomic Behavior, New Configuration

In figure 2.3, the ‘maximum cost’ configuration option has been modified from $2000 to
$2500 which has resulted in changes to the adaptation decisions of the autonomic manager, high-

14

lighted in red. Specifically, because additional resources are available, the autonomic manager
chooses to deploy the ‘Add Server’ tactic as part of a strategy instead of ’Reduce Fidelity’.

In addition to the configured constraints (e.g., maximum cost) and preferences (e.g., adding
servers vs. decreasing content fidelity) that define the tradeoff space for the autonomic manager,
there is potentially an additional set of configuration options available to the autonomic manager
that serve as architectural guidelines that should be adhered to, but can be temporarily violated
or ignored as needed. For example, the autonomic manager for the shopping cart system might
have a ‘capacity buffer’ setting that sets the guideline for how much spare processing capacity
the web system should have available to handle small fluctuations in user load. In the event that
the shopping cart system is running near its maximum cost then this ‘capacity buffer’ setting
might be ignored in order to comply with that defined constraint. Finally, there are also defined
constants that are a result of something in the operating context of the autonomic manager and
managed system and cannot be changed. For example, the cost per server per unit time for
the shopping cart system is a constant defined by the context and potentially required for the
autonomic manager to make appropriate adaptation decisions.

While the autonomic managers for the managed systems in this exemplar are distinct with
different quality objectives, implementations, architectural properties, preferences, constraints,
constants, and guidelines they will all function similarly to the shopping cart example as de-
scribed. Table 2.1 outlines the similarities and differences between the subsystems in this exem-
plar.

However, while each subsystem serves a specific functional purpose, it is only when the indi-
vidual subsystems are composed into a collective system that the combination of them provides
the functional capabilities for which the global multipurpose system was designed. This global
system has its own set of quality objectives and constraints that must be met. For example, the
organization can define that a single user interaction with the shopping cart system should not
take longer that 3 seconds to respond. This interaction is dependent upon not just the shop-
ping cart system but also on the performance of the middleware common services and the data
services systems. If any one of the systems in the interaction chain fails to meet its individual
quality objectives, then the global quality objective is unlikely to be met. As such, the autonomic
managers are individually configured to try and maintain a level of service that will give the best
chance for the global objectives to be met. The individual autonomic managers can provide a
level of assurance about the performance of the systems they manage, but there is little assurance
about the collective performance.

Research Question 1: How to provide assurance on the behavior of the collection
of autonomic systems?

Human administrators address this lack of assurance by trying to configure the autonomic
managers for each of the subsystems to give the best chance for the global quality objectives to be
met. However, managing the performance of a collection of autonomic systems is a challenging
task for human administrators that is complicated by several factors.

First, the autonomic behavior of the individual subsystems is dependent upon at least three
factors: the state of the environment, the state of the system under management, and the current
configuration of the autonomic manager. The behavior of the autonomic manager for a single

15

subsystem is often only partially known by the human administrators due to the combinatorial
complexity in understanding how the dependencies between the environment, managed system,
and the configuration of the autonomic manager interact. This complexity is further increased by
uncertainty in both the current and future states of the local environment and the system under
management. This combinatorial complexity also provides a barrier to the practical specification
of the expected autonomic behaviors that could be useful to a human administrator.

Research Question 2: How to enable the practical analysis of adaptation policies
given the uncertainty in the future state of the managed system?
Research Question 3: How to enable the practical specification of adaptation poli-
cies for individual autonomic subsystems?

Second, the global quality objectives and constraints are dependent upon the interactions and
dependencies between the individual subsystems. Changes in the configuration of one subsystem
(e.g., the maximum cost constraint) can have a global impact beyond that individual subsystem.
The complex web of dependencies between changes to the configuration of individual autonomic
managers and the impacts of those changes on both the global quality objectives and on other
dependent subsystems is only partially understood by human administrators. In some scenarios,
human administrators will have to continuously make adjustments to the configurations of auto-
nomic subsystems to try and improve the performance of the collection of subsystems without
violating the constraints (e.g., the maximum cost of the autonomic manager configuration).

Research Question 4: How to synthesize a plan of changes to the configurations
of the autonomic subsystems that improves the performance of the collection of
autonomic systems?

Third, both the local quality objectives for the individual subsystems and the global quality
objectives for the composed collection are likely to have multiple quality objectives with of-
ten competing dimensions that are subject to change over time due to changes in organizational
priorities. Developing a plan of changes to optimize the configurations of each autonomic sub-
system to balance these competing and layered objectives is subject to significant error by human
administrators often resulting in sub-optimal results and sometimes in catastrophic outcomes.

Research Question 5: How to synthesize a plan of changes that balances compet-
ing organizational priorities?

Finally, the process of synthesizing an adaptation strategy to update the configurations of
the autonomic subsystems cannot take an unknown or unrestricted amount of time to complete.
The context in which each collection of autonomic subsystems operates will dictate the amount
of time in which the changes must be made or else the conditions will change which is likely
to invalidate the synthesized adaptation strategy. The amount of time required for a human to
understand the complexity of the adaptation policies and dependencies between the individual
systems can be prohibitive and is not a generally viable option for the effective management for
collections of autonomic systems in non-trivial systems.

16

Research Question 6: How to synthesize a plan of changes on a time scale appro-
priate to the context?

However, humans do have an advantage in the management of collections of autonomic sys-
tems. Because collections of autonomic systems are often composed according to well estab-
lished patterns (e.g., an N-Tier architecture), the human administrators have knowledge of how
the subsystems should interact with each other and the characteristics of those interactions. Ad-
ditionally, because the systems were designed and created by human engineers for a specific
functional purpose, the environments in which the subsystems operate must be at least partially
understood to ensure the systems fulfill their intended purpose. Human administrators can lever-
age this knowledge to better understand the current state of the collection of autonomic systems
and, potentially, better predict the future state of individual autonomic subsystems.

Research Question 7: How to leverage the knowledge about the structure of the
system and environments to improve the effectiveness of managing a collection of
autonomic systems?

These research questions define the primary challenges in developing an automated approach
to the management of collections of autonomic systems. Fortunately, there are several areas of
current research that can partially address some of these research questions. The following chap-
ter presents the current state of research in autonomic systems, collections of adaptive systems,
strategy synthesis and assurance in autonomic systems, and control theory for autonomic sys-
tems.

17

Chapter 3

Related Work

There are four key areas that were reviewed to see what potential options they offered in ad-
dressing the research questions provided in chapter 2: (1) autonomic systems, (2) collections
of adaptive systems, (3) strategy synthesis and assurance in autonomic systems, and (4) control
theory for autonomic systems. This chapter will explore each of these areas and elaborate on
how each relates to the research questions.

3.1 Autonomic Systems

Several of the research questions are at least partially addressed by existing work in autonomic
systems, see [71, 94] for surveys of the field. A key component of the approaches to autonomic
systems is that of a feedback loop that monitors the state of the system and the environment and
adapts the system as necessary to improve performance against defined quality-of-service (QoS)
objectives [14]. The predominant approach to the feedback loop is a common architectural pat-
tern referred to as the MAPE-K loop [57]. The MAPE-K architecture pattern establishes a closed
control feedback loop and is defined in [67]. MAPE-K includes five distinct components:

1. Monitor - Components gather and pre-process relevant context information from entities
in the execution environment.

2. Analyze - Supports decision making on the necessity of the adaptation.

3. Planning - Generates actions to affect the target system.

4. Execution - Implements the plan of action generated by the planner with the goal of adapt-
ing the managed system.

5. Knowledge - Enables data sharing and communication among the components of the feed-
back loop.

This type or architectural based approach offers several benefits, including the ability to ab-
stract the adaptive operations of the subsystems to the right level of detail to facilitate analysis
as opposed to lower level algorithmic details [70]. Additionally, architecture based adaptation
is beneficial because it allows for the potential specialization or reuse of existing architecture

18

analyses [59, 69, 116] to asses the impact of potential of changing the configuration of the auto-
nomic subsystems. The architecture based approach to adaptation, combined with an appropriate
strategy synthesis technique, has been shown to provide assurance on the behavior of individual
systems, see [24].

However, as popular as the MAPE-K approach is for the management and control of individ-
ual managed systems, it is not specifically designed for the more specialized task of providing
assurance on the behavior of a collection of autonomic systems (RQ1). Therefore, it is necessary
to define a specialized MAPE-K architectural pattern that can provide the required assurance.
One of the requirements for such a specialized pattern is the management of specific types of
knowledge including: (1) the adaptation policies for each of the autonomic subsystems which
relates to RQ2 and RQ3, (2) models for each of the autonomic subsystems, global system, and
local environments which relates to RQ2 and RQ3, (3) the global utility function which relates to
RQ5, and (4) the knowledge about the structure of the system and environments which relates to
RQ7. These models and information need to be maintained at run-time and used to reason about
the changes that should be made to the configuration parameters of the autonomic subsystems
which relates to RQ4.

3.2 Collections of Autonomic Systems
As previously discussed, to meet the complex functional objectives of organizations, autonomic
systems are often composed together into an ensemble. The most common architectural ap-
proach to composing individual autonomic systems into an ensemble is an agent based approach
as described in [64]. The primary benefit of this approach is that it is an effective way of parti-
tioning the problem space often in congruence with the organizational structure which allows for
the effective decomposition of complex problems [63]. These individual systems interact with
each other to achieve the functional objectives of the ensemble system. Agent based approaches
have been successfully implemented in a number of functional domains including manufacturing
[41], bioinformatics and health care [26], and robotics [28] to name a few. However, as noted
in [63], agent based software systems suffer from a significant drawback: the behavior of the
overall system is unpredictable because of the strong possibility of emergent behavior. This is
problematic in contexts which require high degrees of assurance and predictability in the future
states of the system.

However, there is recent work in multi-agent self adaptive systems. Specifically, [90] and [32]
details an approach to the coordination of adaptive activities among the individual autonomic
subsystems. While this is interesting in it own right, this does not provide guidance on any
of the research questions highlighted in chapter 2. This is because the goal of this thesis is to
modify the configurations of the autonomic subsystems to improve their performance against
the global objective, not coordinate their individual adaptive actions. Additionally, [3] proposes
a model that abstracts the autoscaling services of multiple cloud to provide a method about
reasoning about adaptive changes. While this method relates to RQs 2 and 3, the model that it
provides abstracts a specific set of services and would be impractical to support collections of
autonomic systems with different adaptive behaviors even if the authors do abstract the different
cloud vendors.

19

Further, [38] explores the ability of a collection of autonomic systems to learn by sharing
information amongst the individual autonomic subsystems, [29] explores the dynamic composi-
tion of collections of autonomic systems, and [4] proposes a domain specific language to describe
the activities that take place during a MAPE-K loop. While each of these methods tangentially
addresses elements of the RQs, none of them provide directly applicable approaches.

3.3 Strategy Synthesis and Assurance in Autonomic Systems
As discussed in section 3.1, the meta-analyze and meta-planning components of the proposed
meta-management approach will achieve two primary objectives: (1) improve the performance
of the collection of autonomic systems against a defined global objective (RQ5) and (2) provide
assurance about the expected outcomes of the adaptations (RQ1). Various analysis and synthesis
techniques have been successfully applied to address these functional objectives in the context
of a single autonomic system.

In [18], the authors detail an approach that uses stochastic multi-player games, to analyze
the potential variations in designs for the autonomous managers to determine which is most
likely to be effective. For example, some of the design time considerations the authors call out
are the balance between reactive and proactive adaptation, whether decision making should be
centralized or decentralized, and the differences and effect of concurrent execution of adaptations
versus sequential execution. In net effect, the authors approach synthesized a design time strategy
for the creation of the autonomic manager. The results demonstrated potential improvements
ranging between 8% and as high as 38% for the scenarios under consideration.

In [61], the authors use a stochastic multi-player game (SMG) to evaluate uncertainty in the
sensing of the current state of the environment at runtime. Their results demonstrated that the
use of a SMG to account for the uncertainty outperformed the baseline, which was uncertainty-
agnostic, and continued to do so to ever greater degrees as the amount of uncertainty, the standard
deviation on the sensed information, increased. This demonstrates that approaches in probabilis-
tic model checking can provide some measure of assurance about the expected outcomes of
adaptations even in the presence of uncertainty.

Probabilistic model checking has provided encouraging initial results in improving the perfor-
mance of and providing assurances about the outcomes of individual autonomic systems. Other
work has focused on the challenges, frameworks, benchmarks, and approaches to providing these
assurances at run-time including [121] and [23]. However, most of the existing work focuses on
the use of probabilistic model checking in the context of a single autonomic system. There is
some limited work in the probabilistic model checking of collections or ensembles of autonomic
systems including [8], [114], and [20]. This work focuses on verifying individual properties
about the communication or negotiation protocols amongst agent based systems, not on their
control or mitigation of globally undesirable behaviors.

One area in which no literature was found, and is a topic of this thesis, see chapter 6, is to
understand which probabilistic model checking and, potentially, game theory based techniques
would be most appropriate for analyzing the various concerns in collections of autonomic sys-
tems. For example, a stochastic multi-player game might be appropriate for examining one po-
tential concern (e.g., the reallocation of resources), but other potential techniques like non-zero

20

sum games, partially observable Markov decision processes (POMDP), discrete time Markov
chains, and several others might be more suited for other concerns (e.g., faulted or rogue system
analysis).

3.4 Control Theory for Autonomic Systems
Several of the research questions presented in chapter 2 address problems in hierarchical control
in which there is an extensive body of work.

Control theory has established a common approach to the creation of hierarchical control
systems which decomposes the complex behavior into individual units to divide the decision
making responsibility. Each unit of the hierarchy is linked to a node in the tree and commands,
tasks, and goals to be achieved flow down the tree from superior nodes, whereas sensations and
commands results flow up the tree [2, 31]. Each of the individual units can communicate directly
with their peers. There are two distinguishing features of hierarchical control systems related
to its layers: (1) each higher layer of the tree operates with a longer time interval of planning
and execution time than its immediately lower layer and (2) the lower layers have local tasks,
goals, and objectives which are planned and coordinated by higher layers which issue generally
dictatorial decisions. This approach is commonly referred to as a subsumption architecture [2,
31] and has been successfully implemented in many functional domains including airplanes and
automobiles, manufacturing, and robotics.

This well established model for hierarchical control certainly serves as a guideline for the
creation of a meta-manager for the collection of autonomic systems. However, the subsumption
architecture approach would not be appropriate for collections of autonomic systems. The control
theory approach to hierarchical control is dependent upon the ability to specify, typically in the
form of differential equations, the dynamics of the system under control. This approach would
be generally impractical, if not impossible, for collections of autonomic systems.

While the approach of control theory to hierarchical management would be challenged in
the context of autonomic systems, there are emerging efforts to adapt and adopt various control
theory techniques to self-adaptive systems. In [30] the authors present a control design process
which enables the analysis and synthesis of an autonomic manager (i.e., controller) that is guar-
anteed to have the desired properties and behavior. In [40], the authors address two principal
topics in the application of control theory to autonomic systems: automating control switching
with high level guarantees and bridging the gap between control and self-adaptive system prop-
erties. The work to bridge the gap between control theory and self-adaptive systems is nascent
and emerging, but it currently does not currently address the specific challenge of hierarchical
control of autonomic systems. However, it is expected that as this work progresses many of the
approaches to improve the individual autonomic controllers can also present advantages to the
proposed meta-management approach. For example, a meta-manager could potentially have a
tactic to swap out autonomic controllers for a specific constituent system and guarantees about
the behavior of the individual managers will aid the analysis and synthesis of a meta-strategy.

While the available literature in autonomic systems, collections of adaptive systems, strat-
egy synthesis and assurance in autonomic systems, and control theory for autonomic systems
partially address some of the research questions, it is still necessary to develop a automated

21

approach to the management of collections of autonomic systems that enables the practical spec-
ification and analysis of the adaptation policies of the individual autonomic subsystems. The
subsequent chapter presents an approach that addresses these challenges.

22

Chapter 4

An Automated Approach to
Meta-Management

This chapter presents an automated approach to meta-management that partially addresses the
research questions highlighted in the exemplar scenario presented in chapter 2. Specifically, this
approach provides assurance on the behavior of the collection of autonomic systems (RQ1), en-
ables the practical analysis of the adaptation policies (RQ2), and enables the synthesis of a plan
of changes to the autonomic configuration that improves the performance of the collection of
autonomic systems (RQ4) that also balances organizational priorities (RQ5). This chapter is or-
ganized as follows: (1) details of the differences between autonomic and non-autonomic systems
that enables the possibility and tractability of an automated approach to meta-management, (2)
the definition of an adaptation policy and how it can be used to analyze the behavior of autonomic
subsystems, (3) how the analysis can be enhanced with additional knowledge not available to the
subsystems, and (4) the definition of a meta-manager and how it improves the performance of a
collection of autonomic systems.

As discussed earlier, in a non-autonomic system, human administrators handle situations in
which the system is behaving sub-optimally. To do so, human administrators evaluate the current
state of the system and the environment to determine if the quality-of-service (QoS) objectives
are likely to be met. When the administrator concludes that intervention is appropriate, they
generate a plan of changes to the system with the goal of improving the performance against the
QoS objectives. Once the changes are complete, the human administrator evaluates the new state
of the system to determine if additional changes are required. This process continues until the
QoS objectives are likely to be met.

However, as a result of the complex combinatorial dependency between the system and the
environment in which it operates, human administrators are able to provide only minimal as-
surance about what the new state of the system will be and the impact to the QoS objectives.
Consequently, in practice human administrators configure and deploy an autonomic manager to
handle this complexity and provide a higher degree of assurance. As noted in the introduction,
and expanded upon here, instantiating an autonomic manager, a type of control system, provides
three key advantages over non-autonomic systems that can be exploited to enable an automated
approach to meta-management: the simplification of the state space, reduction of variance in the
outcomes of adaptive actions, and the abstraction of the underlying system.

23

Simplification of State Space

As is necessary with any control system, the implementation of an autonomic manager requires
the administrator to define the QoS objectives of the managed system that the autonomic manager
is intended to achieve. Additionally, the system properties influence the performance of the
managed system and can be modified by the adaptation strategies of the autonomic manager.
The combination of the system properties and the QoS objectives define the state of the managed
system and is a significant simplification of the managed system.

For example, in the shopping cart system presented in chapter 2, the ‘Average Page Response
Time’ is the QoS property that the autonomic manager is attempting to maintain and improve and
the ‘Server Count’ and ‘Content Fidelity’ are the system properties of the managed system that
influence the ‘Average Page Response Time’. The combination of the values of these properties
define a system state in the autonomic control system. For example, in figure 2.2 the ‘Average
Page Response Time’ having a value of 2.5 seconds with a ‘Server Count’ of 10 and high ‘Con-
tent Fidelity’ represents a different state of the system than having the same value for ‘Server
Count’ and ‘Content Fidelity’ with a ‘Average Page Response Time’ of 3.5 seconds. These three
properties are a simplification of the complete state of the managed system that could include
properties like the amount of processing speed and available memory available in each compute
unit which, to some degree, can influence the QoS properties but are determined to be not as
significant as the identified QoS or system properties.

The implementation of an autonomic manager also allows human administrators to define
the state of the environment in which the managed system operates. Identifying the observable
elements and properties of the environment is an additional simplification compared to all of the
possible values of all of possible elements of the environment. For example, the video playback
system presented in the exemplar scenario may be able to observe the number of user generated
requests for video playback. Similar to the state of the managed system, the state of the local
environment is characterised by the observable properties, and their associated values, identified
by human administrators as important to the management of the autonomic system and, as with
the system’s state, these are a subset of all of the possible observable properties that could be
used to characterize the subsystem’s environment.

The simplified representations of the state of the managed system and the local environment,
combined with the level of resolution for each metric, establishes the size of the state space and
partially establishes the effectiveness of the analysis through the fidelity of the model to reality
and the computational tractability of the analysis.

Reduction of Variance in the Outcomes of Adaptation Actions

When either a human or an autonomic manager adapts the managed system, the goal of the
adaptation plan is to achieve a state of the managed system that will maximize the performance
of the managed system against the QoS objectives. However, due to circumstances outside of the
control of the autonomic manager, the adaptation plan might fail to achieve the target state due
to uncertainties inherent to the adaptation process.

There are multiple sources of uncertainty that can impact the outcomes of adaptive actions.
One is the uncertainty in the results of adaptive actions. For example, in the shopping cart system

24

the autonomic manager might attempt to deploy a new server and have that request fail due to an
unexpected error in the underlying infrastructure.

Another source of uncertainty is due to circumstances in the environment and/or managed
system that might also inhibit the expected impact to the performance of the system against the
QoS objectives. For example, network traffic unrelated to any system presented in the exem-
plar might inflate the ‘Average Page Response Time’ regardless of any adaptation action taken.
Therefore, the state intended by any entity responsible for adaptation is a desired target state, but
is not the only state, and may not even be the most likely state, that could be the result of the
deployment of an adaptation strategy.

Other sources of uncertainty include the time it will take to deploy the adaptive actions, see
[82], errors in the measurements of the environment and/or managed system, and several more.
Therefore, when either a human or autonomic manager deploys an adaptation strategy there is
uncertainty in the outcome of the state of the managed system and, consequently, the impact to
the QoS objectives. However, while the outcome of deploying an adaptation strategy experiences
the same uncertainty in the outcome regardless of the entity responsible for adaptation, there is a
significant difference in how predictable the result will be between human based adaptation and
autonomic adaptation.

Figure 4.1: Exemplar Representation of Uncertainty in Human-Centric Adaptation

When a human administrator is responsible for performing the adaptive actions it is imprac-
tical to expect a human administrator to consider each of the relevant dimensions of both the

25

environment and the managed system, all of the options for each of those dimensions, and evalu-
ate them in the same manner with the same weights of importance each time they are considered.
Therefore, the adaptive actions of a human administrator present a degree of uncertainty that is
not present when the managed system is adapted by an autonomic manager as represented in
figure 4.1. Eliminating this source of uncertainty is a motivating factor in the deployment of au-
tonomic management systems, see [24] as is represented in figure 4.2. However, eliminating this
source of uncertainty, and the resulting increase in predictability, can be exploited to partially
enable an automated approach to meta-management. To understand how this can be exploited, it
is first necessary to characterize the process of adapting a managed system.

Figure 4.2: Exemplar Representation of Uncertainty in Autonomic Manager-based Adaptation

One method of characterizing the process of adapting a managed system with the results
subject to uncertainty is by representing the process of transitioning the system from one state
to another as a Discrete Time Markov Chain (DTMC). A DTMC is a stochastic process (Zn)n∈N
taking values from the finite set of all possible states of the system, S. This process has the
property that for all n ≥ 1 the probability distribution of Zn+1 is determined by the state Zn of
the process at time n, and does not depend on the past values of Zk for k ≤ n − 1, known as the
Markov property. If i, j ∈ S and E is the finite set of all possible states of the environment and
e ∈ E. Then the probability of moving from state i to state j is defined as:

Pi,j ∶= P(Zn+1 = j∣Zn = i, en) (4.1)

The result of equation 4.1 can be encoded into a matrix indexed by S2 = S × S which is referred
to as the transition matrix:

26

[Pi,j]i,j∈S = [P(Zn+1 = j∣Zn = i, en)]i,j∈S2,e∈E (4.2)

Each row of the transition matrix has the property that ∑j∈S Pi,j = 1.

Figure 4.3: Exemplar Transition Matrix for Human-based Adaptation

While unexpected conditions can affect the adaptive outcomes of any entity responsible for
adaptation actions, human based adaptation results in the variance or dispersion of potential
adaptation outcomes in the transition matrix to be higher than if an autonomic manager is de-
ployed, as represented in figure 4.3. This is because the primary goal of deploying an autonomic
manager is to increase the predictability in the adaptation results by eliminating the human’s
inability to consistently consider each of the relevant dimensions and options with the same
weight of importance. This increase in predictability results in the lower variance amongst the
possible outcomes of adaptation actions and is a key difference in the predictability between
human-centric and autonomic manager based adaptation.

Figure 4.4: Exemplar Transition Matrix for Manager-based Adaptation

This reduction in the variance of the potential outcomes of adaptive behavior can be leveraged
to partially enable an automated approach to meta-management by creating a smaller set of
potential resulting states that need to be specified as a result of actions taken by the autonomic
manager, as represented in figure 4.4 and highlighted by the red boxes. This enables the practical

27

creation of a specification of the autonomic behavior of a subsystem, referred to as an adaptation
policy by allowing for specification of only the groups of non-zero entries as opposed to the
potentially complete set of potential probabilities. See section 5.1 for additional information.

Abstraction of the Underlying Managed Systems

The introduction of the autonomic control system abstracts the managed system and, while the
functional purpose of each subsystem is diverse, the fact that each of them is autonomic provides
a homogeneous abstraction of each subsystem that allows two assumptions:

Assumption 1: Each autonomic subsystem has a set of configuration options that
can tune the behavior of the subsystem to operate within a range of behaviors.

The autonomic configuration options are the method by which human administrators es-
tablish the organizational and business preferences/tradeoffs and constrain the behaviors of the
autonomic manager for each subsystem. In the exemplar scenario, the maximum cost constraint
is an autonomic configuration option that limits the ability of the shopping cart subsystem to
add servers to improve the ‘Average Page Response Time’. If an autonomic manager adjusts
the ‘Maximum Cost’ constraint, the autonomic subsystem might have a different set of adap-
tation strategies available. For example, if the ’Maximum Cost’ was increased, the autonomic
subsystem might be able to add additional servers. The autonomic configuration options are
also the method by which a meta-manager would adjust the behavior of the subsystems using a
specialized type of adaptation tactic, referred to as a meta-tactic.

Assumption 2: The states of the system that could result from adaptive behavior
can be specified for any given state of the environment and managed system under
any configuration parameters.

The configuration options, state of the managed system, and the state of the environment
influence the adaptation strategy that is deployed, but the individual autonomic managers must
attempt to select the ‘best’ adaptation strategy available. To do this, the adaptation manager eval-
uates the targeted state of the managed subsystem that is the desired result of the application of
each adaptation strategy and determines its ability to meet the QoS objectives of the system. The
adaptation strategy that produces a state that will best meet the QoS objectives of the subsystem
is considered the ‘best’ adaptation strategy and is deployed. As a consequence of the predictabil-
ity gained from the introduction of an autonomic manager, if the same set of conditions were
to occur on two different occasions, the autonomic manager would select the same adaptation
strategy in both circumstances.

Therefore, if one is able to enumerate the states of the managed system and the states of the
environment, within the simplified state space defined for each, it is also possible to predetermine
which adaptation strategy would be deployed by the autonomic manager and the possible new
states of the managed system given the state of the managed system, the state of the environment,
and the configuration of the autonomic manager. This specification is referred to as the adaptation
policy and is represented as a function:

28

P (c, e, s)→ η (4.3)

where:

• E is the finite set of states of the environment that can be elaborated from the autonomic
system environment model, e ∈ E, is a state

• S is the finite set of states of the managed system that can be elaborated from the autonomic
system model, s ∈ S, is a state

• C is the finite set of possible configurations and c ∈ C
• P is the adaptation policy of the adaptation manager which requires a state of the configu-

ration, c, a state of the environment, e, and a state of the managed system, s
• η is the transition vector for the Zn+1 distribution of the probabilities of transitioning from

the current state of the managed system, [Ps,j]s,j∈S .

For the purposes of the automated approach to meta-management in this thesis it is assumed
that the current state of the environment, e, and the current state of the managed system, s, has
a very low degree of variance and as such only the represented state of both is considered. This
causes the transition matrix to reduce to a transition vector, ηs, corresponding to a row of the
transition matrix, [Ps,j]s,j∈S . It is also assumed that each autonomic subsystem will behave as
specified in the adaptation policy. For a discussion of this assumption, please see section 11.1.

The three key advantages of autonomic systems, the simplification of the state space, re-
duction of variance in the outcomes of adaptive actions, and the abstraction of the underlying
managed system enable the creation of adaptation policies and work together to make an auto-
mated approach to meta-management possible and practical. However, there exists additional
opportunities that further enable the computational scalability and the effectiveness of an auto-
mated approach to meta-management: (1) the choice of analysis method for meta-analysis and
meta-synthesis and (2) the definition of a global system state, and (3) global knowledge.

Choice of Analysis Method for Meta-Strategy Synthesis
By providing the information about the autonomic behavior of each of the subsystems, the adap-
tation policies can be used to perform a variety of analyses to examine multiple potential scenar-
ios to determine which configuration for each autonomic subsystem would improve the quality
of service (QoS) for the collection of autonomic subsystems.

As already introduced, the adaptation policies represent a discrete time Markov chain, but
the adaptation policies can also represent a closely related Markov Decision Process (MDP). In
[11], a MDP is defined as a tuple, (S , A, T ,R) where S is a set of states, A is a set of actions, T
is a transition function, S ×A × S → [0,1], and R is a reward function, S ×A → R. Solving the
MDP consists of finding a policy, τ ∶ S → A, which determines the agent’s actions to maximize
the reward function.

An adaptation policy defines the state space, S , of the MDP as E × S ×C and the transition
function, T , as η, from equation 4.3. However, the adaptation policy does not define the actions,

29

A, of the autonomic manager. Instead, this approach to meta-management recognizes that the
actions of the autonomic manager will result in a new state of the managed system which maxi-
mizes the reward function established for that autonomic manager; τ ∶ (S → A) → Smax, where
Smax maximizes R.

Therefore, an adaptation policy defines the policy function of a MDP as τ ∶ S → Smax where
S = E × S ×C. Focusing on the pre and post adaptation states, and not on the actions or reward
function, provides an abstraction of the autonomic processes that (1) partially enables a practical
specification of the adaptive behaviors of each subsystem, see chapter 5, and (2) allows for a set
of available analysis methods that can be used to compose the adaptation policies into a single
MDP that is used to synthesize a plan of changes to the individual subsystems to improve their
performance against a global quality objective. Therefore, this automated approach to meta-
management does not mandate a specific type of analysis to determine the best configuration for
each subsystem.

However, the choice of analysis technique used to synthesize a plan of changes to the config-
urations of the autonomic subsystems, referred to as a meta-strategy, is a critical task to ensure
the effectiveness of the meta-manager as the timeliness, assurance, and tractability properties of
each technique should align, as best as possible, to the requirements of the operating context.
For example, if a particular synthesis technique can provide a high degree of assurance through
an exhaustive exploration of the state space (e.g., a stochastic multi-player game) for a collection
of autonomic systems with large configuration spaces, then it might require too much time to
synthesize an appropriate meta-strategy. This would make the technique inappropriate for that
specific context. However, that same synthesis technique might be preferred in a context in which
more time is available to perform the strategy synthesis and a higher degree of assurance is re-
quired (e.g., an electrical utility grid). Chapter 6 will provide more information on meta-analysis
and meta-synthesis techniques and the selection of an appropriate technique is addressed in each
of the case studies presented in chapters 7, 8, and 9.

Definition of Global System State
Similar to the state for the individual autonomic subsystems, the meta-manager also defines a
state that includes features beyond what is available in the states of the individual autonomic
subsystems and is known only at the global level. These global features can be an amalgamation
of properties from the individual subsystem states. In the exemplar scenario, the complete round
trip time for a user’s interaction with the shopping cart system would require adding the response
time for the shopping cart system, the middleware common services, and the data services. The
global features can also be information that is not available to any one autonomic subsystem.
In the exemplar scenario, the total maximum cost constraint for the entire systems could be an
important piece of information that is not available to any autonomic subsystem. The global
system state is represented as g and a global system transition vector, π ∶= [Pg,j]g,j∈G , which is
the probability of moving from the current state of the global system to any potential state of
of the global system due to changes to the configuration of autonomic subsystems through the
deployment of a meta-strategy.

A global system state allows for additional optimizations to improve the tractability of the
analysis for meta-strategy synthesis. For example, the effectiveness of the meta-manager can be

30

improved by allowing the meta-manager to consider optimizations against a global objective in-
stead of just improving instantaneous global aggregate utility. For example, in a security context,
it might be in the best interest of the system to hold the attention of the attacker by sacrificing
the currently compromised subsystem to allow time for the other systems to mitigate the threat
to themselves [79, 92]. Instead of improving global aggregate utility by mitigating the threat
immediately and increasing the raw utility of the collection, the meta-manager improves against
a global objective, maintaining security, even if that results in a lower utility score in the near
term.

Global Knowledge
In addition to the adaptation policies, the meta-manager also has additional information, referred
to as global knowledge, about the subsystems and the environments that might be only partially
known to the subsystems because it is a property of global system state or the global environment
in which it operates. There are at least two types of global knowledge: (1) information on the
interrelationships between individual subsystems, local environments, and global properties and
(2) constraints on individual subsystems and global state.

In the exemplar scenario, there is a relationship between subsystems where the request load
on the middle tier services is correlated with the user load on the shopping cart system. This
is a consequence of the architectural structure of the collection of autonomic systems. Similar
interrelationships can also exist between local environments and elements that are part of the
global state. This architectural structure and the resulting interrelationships can be exploited by
the meta-manager to better assess the current and future states of the collection of autonomic
systems and how it will perform against global quality objectives.

Additionally, constraints might also exist on the individual subsystems and elements of the
global state as a result of the architectural structure or operations of the collection of autonomic
systems. In the exemplar scenario, there is a constraint that defines the maximum cost the com-
plete collection of autonomic systems can utilize. While each of the individual subsystems is also
likely to have a maximum cost constraint, the operations of the collection of autonomic systems
might need to further relax or restrict this constraint to improve the performance against the QoS
objective.

Global knowledge is represented as a set of functions, K. The first type of function repre-
sents the relationships between elements of the autonomic systems represented by the function,
k(x) → x′, where x,x′ are states. These functions influence the analysis of the meta-manager
by determining the ‘best’ state of the environment or managed system to be used in strategy
synthesis. Specifically, the state of the environment for a subsystem, ei, the state of the managed
system for a subsystem, si, and the global state, g, in equation 4.7 are defined as:

ei = δ(en,KE)en∈Ej
(4.4)

and

si = δ(sn,KS)sn∈Sj
(4.5)

31

and

g = δ(gn,KG)gn∈G (4.6)

The function δ accepts an environment state for subsystem j, managed system state for sub-
system j, or global state at step n and the relevant subset of global knowledge functions, KE ,
where ∀k ∈ KE, x, x′ ∈ Ej for states of the environment or KS , where ∀k ∈ KS, x, x′ ∈ Sj for
states of the managed systems, or KG, where ∀k ∈ KG, x, x′ ∈ G for global system states where
Ej ∈ E , the set of all sets of possible states of the environments and Sj ∈ S , the set of all sets of
possible states of the managed systems, and subsystem i can, but does not have to, be the same
as subsystem j.

The second type of global knowledge are the constraints placed on the managed systems
and global states and are represented by a function, k(X) → X ′, where X ∈ {Si,G}. These
functions influence the analysis of the meta-manager by determining the set of available states of
a managed subsystem, Si, or the global state, G, that are present in equations 4.5 and 4.6.

Definition of Meta-Manager
With the definitions of an adaptation policy, P , and global knowledge, K, the meta-manager is
defined as a tupleM(G,U ,P,C,E ,S,K) where:

• G is the finite set of all states of the global system that can be elaborated from the global
system model, g ∈ G, is a state,

• U is the global utility function where U(π)→ [0..1]where π is the global transition vector,
[Pg,j]g,j∈G ,

• P is the set of all adaptation policies, P ,
• C is the set of all sets of possible configurations for the subsystems, C,
• E is the set of all sets of possible states of the environment for the subsystems, E,
• S is the set of all sets of possible states of the managed system, S,
• K is a set of functions, k ∈ K, representing the global knowledge.
The adaptation policies, P , are critical to the ability of the meta-manager to improve the per-

formance of a collection of autonomic systems against a global QoS objective. Specifically, the
goal of the meta-manager is to determine which configuration, c ∈ Ci, for a specific subsystem,
i, will maximize the global utility function, U , using a state of the environment, ei ∈ E, a state of
the managed system, si ∈ S, and the adaptation policy, Pi(ci, ei, si). Formally this can be stated
as:

∀Pi ∈ P; argmax
c∈Ci

U(λ(Pi(c, ei, si), g)) (4.7)

where Ci is the set of all possible configurations for subsystem i, λ is a function that returns the
global transition vector, π, given the transition vector, ηi, for subsystem i and the global state of
the collection of autonomic systems, g ∈ G.

32

4.1 Meta-MAPE-K Loop

Figure 4.5: MAPE-K Diagram [57]

The automated approach to meta-management presented in this thesis must be implemented
in a principled manner to ensure reusability across different types of collections of autonomic
systems. This is accomplished by creating a version of the MAPE-K [57] control loop special-
ized for the purposes of meta-management. This section details the similarities and differences
of implementations between the MAPE-K and Meta-MAPE-K control loops at both design time
and run time for each of the five components: knowledge(K), monitoring(M), analysis(A), plan-
ning(P), and execution(E) in the context of the exemplar scenario presented in chapter 2.

Meta-Knowledge
The purpose of the knowledge component in the original MAPE-K loop [57] is to enable the
data sharing and communications amongst the components of the MAPE-K feedback loop and
serves a similar critical purpose in the the Meta-MAPE-K control loop. The Meta-Knowledge
component of the Meta-MAPE-K control loop is responsible for, at least, four distinct pieces
of knowledge: (1) the adaptation policies for each of the autonomic subsystems, (2) models for
each of the autonomic subsystems, global system, and local environments, (3) the global utility
function, and (4) the global knowledge.

Adaptation Policies for Autonomic Subsystems

Adaptation policies are the specification of the states of the autonomic subsystem that could be
the result of adaptive behavior based upon the state of the environment, the state of the managed

33

system, and the configuration of the autonomic manager. For example, if the user load on the
shopping cart system was to cause a degradation in the ‘Average Page Response Time’ due to
changes in the local environment, the autonomic manager would evaluate the current state of
the managed system, specifically the number of servers currently deployed, to determine if the
system was running at the maximum configured cost, an element of the configuration of the
autonomic manager. Based upon that evaluation, the autonomic manager would make the choice
to do one of three things: (1) take no action, (2) deploy additional servers, or (3) reduce content
fidelity. The expected behavior of the autonomic manager in any given situation is the adaptation
policy.

At run time, the adaptation policies are what enable the meta-manager to reason about what
changes to the configuration of each autonomic subsystem, if any, can be made to improve col-
lective performance against the global QoS objectives. For example, by examining the adapta-
tion policies of the shopping cart system, the meta-manager can examine what the behavior of
the autonomic manager would be if the meta-manager adjusted the maximum configured cost
the system was allowed to operate under. This might have the net result of the shopping cart
system deploying additional servers, which improves the ‘Average Page Response Time’ and,
consequently, the collective performance of the collection of autonomic systems.

Adaptation policies are created at design time and are part of the configuration of the meta-
manager and updated as required. For example, the organization might update the utility function
for the automated subsystem to reflect new organizational priorities leading to a new adaptation
policy. An adaptation policy is typically created and maintained by human administrators and
is addressed as part of this thesis through the use of a domain specific language, referred to as
SEAM, see chapter 5.

Models for Autonomic Subsystems, Global State, and Local Environments

A meta-manager is dependent upon the current states of both the local environment and the man-
aged system for each subsystem as well as the current global state of the collection of autonomic
systems. As represented in equation 4.7, these run-time models of the systems are abstractions
of the running systems and are defined by the observable properties (e.g., server count of the
managed system or the user load on the shopping cart system) and the QoS objectives (e.g., page
response time) relevant for improving the performance of the collection of autonomic systems.

The determination of which observable variables and QoS objectives are included in the run-
time models for each subsystem and the global state is done by human administrators during
the implementation of the meta-manager. The selection of these elements and the scope of their
potential values is important as it partially determines the computational complexity the meta-
manager must handle to determine the best adaptation options for the collection of autonomic
systems. The selection of the elements also strongly influences the level of effort required by a
human to specify the adaptation policies for each of the autonomic subsystems. See section 5.1
for additional information.

It is also possible for the knowledge component of the Meta-MAPE-K control loop to contain
other run-time models that are not required, but can improve the ability of the meta-manager to
improve the QoS for the collection of autonomic systems. For example, historical models for
each of the autonomic subsystems and/or local environments can be used to predict the behavior

34

of those entities at later time steps leading to potentially improved meta-strategy synthesis and
improvement against the global QoS objectives. For example, a historical model of the local en-
vironment for the shopping cart system might allow the meta-manager to predict the seasonality
of the user load and synthesize a plan to proactively adjust the configurations of the subsystems
to improve or maintain the QoS properties of the collections of autonomic systems.

Global Utility Function

The global utility function provides the mechanism for the meta-manager to determine how
‘good’ any given state of the system is by providing a ‘score’ between 0 and 1. This allows
the meta-manager to examine potential alternative states that might result from changes to the
configuration of the autonomic subsystems to determine if any of those changes will result in an
improvement in the global utility score. If an improvement is possible, the adaptation strategy
that leads to the improved score is deployed by the meta-manager. If no improvement is possi-
ble, then no changes are deployed by the meta-manager. The global utility function is a required
piece of the knowledge component of the Meta-MAPE-K loop.

Commonly, global utility functions in adaptive systems are built upon expected utility theory
[9]. However, there are several other types of utility that can be used to achieve different types
of organizational objectives. For example, a rules based approach can be used to implement a set
of constraints for different conditions in which the goal of the meta-manager is to ensure that a
specific invariant is satisfied. Another option is to use rules to determine which utility function
should be used based upon different conditions in the collection of autonomic systems. The AWS
Shopping Cart case study presented in chapter 7 provides an example of this. The examination
of the different types of utility theory and their potential combinations is not a topic of this thesis,
but more information can be found in [50].

Global utility functions are established by human administrators at design time and reflect the
priorities of the organization. For example, in the shopping cart system a human administrator
could create a utility function that weighs the ‘Average Page Response Time’ higher than the
cost of the system to operate. This would reflect an organizational preference to ensure a higher
quality of service for the system ahead of ensuring the lowest possible cost to operate.

Global Knowledge

Global knowledge is the information that is primarily known at the global level of the collection
of autonomic systems. Global knowledge includes information on the interrelationships between
the individual autonomic subsystems, interrelationships between the individual local environ-
ments, and any constraints under which the collection of autonomic systems must operate. For
example, the ‘Average Page Response Time’ of the shopping cart system is dependent upon the
performance of both the middleware common services and the data services system. The global
knowledge for the exemplar collection of autonomic systems would capture these interdepen-
dencies through an equation that relates the ‘Average Page Response Time’ of the shopping cart
system to the key performance metrics of the middleware and data systems. The meta-manager
could use this information to make more accurate predictions of the future state of the shopping

35

cart system which would improve the effectiveness of both the meta-analysis and meta-planning
phases of the Meta-MAPE-K loop.

During the implementation of the meta-manager, the global knowledge is specified by human
administrators based upon their knowledge of the context in which the meta-manager is being
deployed.

Meta-Monitor

The meta-monitor phase of the Meta-MAPE-K loop is responsible for gathering and pre-processing
relevant contextual information from entities in the execution environment and updates the run
time models for each of the autonomic subsystems, the local environments, and the global sys-
tem state. Therefore, at run time, it is similar in function and purpose as the monitoring phase of
the original MAPE-K loop [68], but with one advantage. The primary difference is that all the
managed resources in the execution environment of the Meta-MAPE-K loop are all autonomic
subsystems. In some contexts, like the Google Control Plane case study presented in chapter 8,
this allows for a degree of abstraction and reuse of the meta-monitor objects.

Meta-Analysis & Meta-Planning

The analysis phase of a standard MAPE-K loop is responsible for supporting the decision making
on the necessity of adaptation and the planning phase is responsible for structuring a plan of
actions to make the necessary changes. This sequential two-step process in making adaptation
decisions is broadly applicable to reactive adaptation in which the autonomic control system
reacts after QoS properties of the managed system have already degraded [71, 94].

However, another approach is proactive adaptation [71, 94] in which the autonomic control
system adapts the managed system in anticipation of changes in conditions in the local environ-
ment and/or managed system. In this model of autonomic control the differences between the
analysis and planning phases of the MAPE-K loop are not distinct nor sequential. As discussed
in [82], it is often necessary to examine what the net benefit of deploying an adaptation strategy
would be over time to determine if it is worth adapting at all.

A meta-manager could operate in either a reactive or proactive manner as needed to meet
the requirements of the context to maintain a homeostatic system state and continuously improve
the collective state of the collection of autonomic systems under management. Therefore, for
the purposes of the Meta-MAPE-K loop, it is expected that the analysis and planning phases are
performed jointly.

The choice of the meta-manager acting in a reactive or proactive manner is one decision point
in the implementation of the analysis and planning phase of a Meta-MAPE-K loop. Another de-
cision point is the choice of technique to synthesize an adaptation strategy. In an implementation
of a standard MAPE-K loop, the choice of plan synthesis technique influences the quality of the
adaptation strategies deployed, which consequently impacts the ability of the autonomic man-
ager to meet the QoS objectives of the managed system. However, since a Meta-MAPE-K loop
is specialized for the control of autonomic systems, as represented by their adaptation policies, a
different set of criteria must be used in the evaluation of plan synthesis techniques.

36

The criteria for the evaluation of a strategy synthesis technique for meta-management should
include the level of assurance required by the context, the computational scalability of the tech-
nique, and the timeliness of the analysis. These properties are important to ensure that the meta-
manager can generate a plan that will meet the standard requirements of the context in which
it is operating. For example, the administrators of a web based system like the one presented
in chapter 2, might choose a technique that provides less assurance and less scalability as long
as the result is generated quickly because the consequences of a sub-optimal plan are minimal.
However, the administrator of an electrical grid might prefer a technique that provides a much
higher degree of assurance and scalability and takes longer to generate the adaptation strategy as
the consequences of a sub-optimal plan could be disastrous.

As will be detailed in chapter 5, it is possible to practically specify the complete state space
for the managed system, the environment, and the configuration options of the autonomic subsys-
tem. In a context in which that can be done, it is also possible to pre-generate the meta-strategy
offline, significantly reducing the importance of the computational scalability of the analysis and
synthesis technique. However, in contexts in which the specification of the state space is not
possible or impractical, then the meta-analysis and meta-synthesis technique likely needs to be
dynamically and repreatly run to determine the most appropriate meta-strategy. Additionally, in
some edge case contexts, the offine generation of the meta-adaptation plan could yield a result
that is too large to search and/or store due the complexity of the adaptation policies for the sub-
systems (e.g., the size of the state space and/or number of adaptation options) and the calculation
of the meta-strategy is actually more timely. In contrast, the adaptation policies for the auto-
nomic subsystems, for the purposes of this thesis, are considered static during the meta-analysis
and meta-planning phases because those adaptation policies are most commonly slowly chang-
ing, requiring only infrequent updates. However, there are contexts in which this assertion may
not hold. Please see chapter 11 for a more detailed discussion of this topic.

The individual plan synthesis techniques can also have considerations unique to the imple-
mentation of a Meta-MAPE-K loop. For example, if the administrator will be using a stochastic
multi-player game (SMG) [110], how the adaptation policies for the individual autonomic sub-
systems are composed into the specification of the game can have a significant affect on the
assurance, timeliness, and scalability of the approach. If each individual autonomic subsystem
and local environment is its own player, the analysis will have a potentially computationally in-
tractable state space. If the local environments and autonomic subsystems are consolidated into
coalitions, the state space might become computationally tractable but not provide as high a de-
gree of assurance because the model is less representative of the actual collection of autonomic
systems. Further, when the individual autonomic systems share a high degree of similarity, it
might be possible to limit the SMG to considering only one adaptation policy from one auto-
nomic subsystem and assume that the changes that are appropriate for one autonomic subsystem
are appropriate for all. Guidance on the methods, considerations, and scaling techniques is a
topic of this thesis and more information can be found in chapter 6.

Meta-Execution
The execution phase of the Meta-MAPE-K loop implements the plan of action that was generated
by the planner with the goal of changing the configuration of the relevant autonomic managers

37

so they may improve the performance of their managed subsystem against the global quality
objectives. This functional purpose does not significantly vary in purpose from the original
MAPE-K loop [57]. However, the meta-execution phase operates over a known type of managed
component, specifically the individual autonomic subsystems.

38

Chapter 5

The SEAM Language

The automated approach to meta-management presented in chapter 4, defines a set of require-
ments for the creation of a language specialized to the needs of meta-management. Specifically,
the language needs to provide methods of specifying:

• The state spaces and models for the managed system, the environment, the configuration
of the autonomic manager for each autonomic subsystem,

• The state space and model for the global system state,
• The set of initial states and the states of the managed systems that are the result of adaptive

actions,
• A probability distribution or explicit probabilities for the resulting states of adaptive ac-

tions,
• For which states a set of autonomic behaviors is applicable,
• The global knowledge, specifically, correlations and constraints,
• An adaptation policy,
• The global utility function using either expected utility function or a rules-based approach.

Many of these requirements have been previously elaborated on, however, an important item
to note is that the formula defined as part of the global utility definition, see equation 4.7, is
assumed to be used as part of an expected utility calculation [9]. This has the consequence that
the formula is used to score the states that could be the result of an adaptive action and aggregate
those scores weighted by the probability of the individual state occurring. This is necessary to
support collections of autonomic systems in which the primary goal of the meta-manager is to
maintain and improve homeostatic operations. However, a rules based utility [9], in which the
utility is dependent upon a set of invariant conditions is also necessary to support collections of
autonomic systems in which the primary goal of the meta-manager is to mitigate the effects of
extreme operational conditions.

This chapter presents SEAM, the domain-specific language created to address these require-
ments and facilitate the practical implementation of a meta-manager to improve a collection of
autonomic systems against the defined QoS objectives. As a top-level enumeration, the follow-
ing is the complete list of the elements defined in SEAM and which base elements are utilized
by which elements:

39

• Adaptation Policy

Predicate
Used to identify the set of initial and resulting states

Probability Distribution
Used to specify the probabilities of the resulting states

• Global Utility Function

Predicate
Used to specify the applicable states of the utility function and create a rules based
approach

Formula
Used to specify the utility function

• Global Knowledge

Predicate
Used to specify the applicable states of the global knowledge

Relationship
Used to specify global knowledge function

• Subsystem

Current State and Current Configuration
Used to define the current state models of the autonomic subsystem

Property
Used to define the elements of the state space

State Space
Used to specify the state space for the managed system, environment, and autonomic
manager configuration

Environment
Used to specify the current state, state space, and behavior of the environment

• MetaManager
SEAM is a declarative language based on the JavaScript Object Notation(JSON) [13] de-

signed to handle the specific needs of meta-management. The JSON specification for SEAM
is structured under a single root node, represented as $ (ASCII Decimal 36), yielding a single
JSON namespace. This eases the identification of specific elements within the namespace and
ease of use within many of the popular programming languages. Many programming languages,
e.g., Java and Javascript, .NET (VB and C#), Python, C++, and PHP all have easily available
libraries for the parsing, reading, and manipulation of JSON documents. Each of the elements
within SEAM have a specific JSON structure and these elements are defined and an example of
their implementation provided based upon the exemplar system presented in chapter 2. Further,
SEAM also leverages the JSON Path [55] notion to reference individual properties and elements
within the document. As there is no standardized syntax for embedding JSON Path statements
within a JSON document, SEAM will use a number or pound sign, # (ASCII Decimal 35), to
mark both the beginning and ending of the JSON Path statement

40

Additionally, to facilitate understanding of the specification of the individual elements, the
definitions include placeholders for specific values that are enclosed within guillemets (« »). For
example:

1 <<ExampleDescriptor>>

Listing 5.1: Specification Example

These statements, including the guillemets, are not part of SEAM syntax and are used to facilitate
human understanding of the definitions, and are replaced by appropriate values at the time of
implementation. To further facilitate understanding of the element specifications and examples,
each begins at the root JSON node to demonstrate where the element falls within the JSON
document and facilitate the use of JSON Path statements in the examples, comments to facilitate
clarity are included in green, and the SEAM reserved keywords are highlighted in blue.

This chapter is organized as follows: section 5.1 details the definition of the elements required
for the specification of the adaptation policy, section 5.2 details the definition of the global util-
ity function, section 5.3 details the definition of the elements required for the specification of
global knowledge, section 5.4 details the specification of a subsystem, and section 5.5 details the
definition of elements required for the specification of the meta-manager.

5.1 Adaptation Policy
As discussed in chapter 4, the adaptive behavior of each autonomic subsystem is influenced by
multiple factors including the state of the system under management, the state of the local envi-
ronment, and the state of the configuration of the autonomic manager. The complexity of how
each of these factors influence the adaptive behavior of a autonomic subsystem is what defines
the probabilities of the transition matrix of the adaptive behavior of the autonomic subsystem
and presents a substantial challenge to the practical specification of an adaptation policy. To ad-
dress this challenge, SEAM defines two elements necessary to specify an adaptation policy: (1) a
predicate that is used to identify the subsets of initial states and the subsets of the resulting states
and (2) a probability distribution or explicit probabilities that define the probability of the each
of the resulting states. However, to understand how these SEAM elements address the challenge
of specifying the adaptation transition matrix, it is first necessary to characterize the structure of
the information that influence the adaptation policy.

The base unit for the contextual information is a state which, for the purposes of SEAM,
is a collection of properties each of which has an associated value that is part of a finite set of
possible values. Therefore, a state of the environment can be formally defined as e = {x0, ..., xn}
where xi ∈ Xi where Xi is the finite set of possible values for xi, representing the set of values
a property of the environment can take. We can similarly define the state of the managed system
as s = {y0, ..., yn} where yi ∈ Yi where Yi is the set of possible values for yi and the state of the
configuration as c = {z0, ..., zn} where zi ∈ Zi where Zi is the set of possible values for zi. These
states can be used to define three sets, (1) the finite set of possible states of the local environment,
E, (2) the finite set of possible states of the managed system, S, and (3) the finite set of possible
states of the configuration of the autonomic manager, C.

41

The autonomic manager of the subsystem determines if an adaptation is necessary by evalu-
ating both the current state of the managed system and the current state of the local environment.
Consequently, the set of possible states that the autonomic manager considers is a combination
of the states of the environment local to the subsystem, E, and the states of the managed system,
S. This results in a new set of possible states referred to as the pre-adaptation set defined as:

A = E × S (5.1)

If an adaptation is necessary, the autonomic manager synthesizes a plan to make changes to
the managed system, referred to as an adaptation strategy, and executes that plan. If no adap-
tations are necessary then the autonomic manager takes no action. In either case, as elaborated
in chapter 4, this process can be characterized as the autonomic manager selecting a state, s,
of the managed system from the set of possible states of the managed system, S where s ∈ S.
Additionally, the representation of the contextual information must also account for the set of
possible states of the configuration, C, as the adaptive actions of the system are at least partially
dependent upon the current state of that configuration, c where c ∈ C, as discussed in chapter 4.
Therefore, the set of contextual information relevant to the specification of an adaptation policy
is:

Ω = C × (E × S) × S (5.2)

The combined set Ω represents the contextual information necessary to specify an adaptation
policy, but the elaboration of an adaptation policy for an individual autonomic system requires
a method of specifying which states of the configuration, C, relate to which states of the pre-
adaptation set, E × S, and the new state of the managed system, S. Referring back to the
exemplar presented in chapter 2, the values of Avg. Page Response Time define the state space
for the environment, E, the combination of values for Server Count and Content Fidelity define
the state space of the managed system, S, and the combination of values of the Maximum Cost
and Capacity Buffer define the state space of the configuration, C. The combination of the Avg.
Page Response Time, Server Count, and Content Fidelity define the pre-adaptation set, E × S,
and the set of resulting states, S, changes depending on the value of the Maximum Cost which is
part of the configuration of the autonomic manager.

In the specification of the adaptation policy, it is important to note that the adaptive actions
the autonomic subsystem deploys as part of an adaptation strategy are not important. What is
important is the combination of which states of the configuration, C, managed system, S, and
the environment,E, resulted in what end state of the managed system, S. Therefore, one method
of defining the relationship between these states is by specifying subsets of the combined set of
textual information, Ω, in which each subset equates to one or more adaptation strategies.

A method of defining a subset is through the use of an indicator function [117]. An indicator
function of a subset of a set is a function that maps the elements of a subset to one and all others
to zero, defined as:

1X(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈X,

0 if x ∉X
(5.3)

42

To define the necessary subsets of C, it is necessary to define a set of indicator functions, C1 =
{c1(x)0, ..., c1(x)n}, where x ∈ C with the properties that if c1(x)i = 1 then c1(x)j = 0 ∀i, j ∈ C1
where i ≠ j (uniqueness) and where ∀x ∈ C there exists i such that c1(x)i = 1 (completeness). A
similar approach can be taken to defining subsets of the pre-adaptation set of states, A = (E×S).
Specifically, A1 = {a1(x)0, ..., a1(x)n}, where x ∈ A with the property that ∀x ∈ A there exists i
such that a1(x)i = 1 (completeness).

SEAM supports the specification of these functions through the use of predicates based upon
boolean algebra [49] with negation (!), AND (&), OR (|), and XOR (∧) operators and comparison
operators including greater then (>), less than (<), greater than equal to (>=), less than equal to
(<=), equal to (=), and not equal to (!=).

1 <<JSON Path>> <<comparison operator>> <<value>> <<boolean operator>>

Listing 5.2: Predicate Specification

The following is an example of a predicate for the shopping cart exemplar presented in chapter
2.

1 #$.ShoppingCart.CurrentState.ServerCount# > 10

Listing 5.3: Predicate Example

Individual statements can be combined to form complex statements as necessary using boolean
operators. For example:

1 #$.ShoppingCart.CurrentState.ServerCount# > 10 & #$.ShoppingCart.CurrentState.ContentFidelity# = "HIGH"

Listing 5.4: Multi-Statement Predicate Example

An indicator function, implemented as a predicate statement in SEAM, is appropriate when
the subset of the states of the contextual information, Ω, can be precisely defined. However, be-
cause the results of adaptive actions have a degree of uncertainty or variance, a more generalized
form of indicator function is required, specifically a membership function [127].

A membership function is defined as m ∶ U → [0,1] and instead of defining an element to be
a member of a set with a binary 0 or 1, like an indicator function, a membership function gives
a likelihood, between 0 and 1, that a particular element is included in a set. Using membership
functions, η1, the subsets of the set of states of the managed system post-adaptation, H , can be
defined as H1 = {η1(x)0, ..., η1(x)n}, where x ∈ S with the property that ∀x ∈ S there exists i
such that η1(x)i > 0 (completeness) and S is the set of possible states of the managed system.

SEAM represents membership functions as a probability distribution embedded into the pred-
icate statement. While there are many potential probability distributions that might be applicable
to describing the outcomes of adaptive behavior (see [36] for a comprehensive list), for the pur-
poses of this thesis it is expected that either a normal [62] distribution or the related generalized
Gaussian distribution [84] would service the needs of a significant majority of applications in
adaptive systems (see chapter 11 for more information).

A normal(N) or Gaussian probability distribution is a continuous probability distribution for
a real-valued random variable with the probability density function:

43

((a)) Normal Distribution ((b)) Symmetric Gaussian ((c)) Asymmetric Gaussian

Figure 5.1: Examples of Probability Distributions

f(x) = 1

σ
√
2π

e
1
2
(x−µ

σ
)2 (5.4)

where µ is the mean or expectation of the distribution and σ is the standard deviation with σ2

referred to as the variance. This probability distribution allows an administrator to specify a
particular result of an adaptive action as the expected or most likely result and set the variance to
indicate the amount of variation expected in that result. The relative simplicity of this distribution
means that it can be specified using only the notation N(µ,σ2).

The generalized Gaussian distribution (GGD) has two variations, the symmetric(SGGD) and
asymmetric(AGGD)[85] probability distributions. The symmetric probability distribution func-
tion is:

f(x) = β

2αΓ(1/β)
e−(∣x−µ∣/α)

β

(5.5)

where Γ(a) = ∫
∞
0 ta−1e−t dt and is referred to as the Gamma Function. This probability distri-

bution allows for a wider variety of shapes in the symmetric curves than defines the probability
distribution around the expected value. This probability distribution can be specified using the
notation SGGD(µ,α, β) where µ is the location or expectation, α is the scale or variance, and
β is the shape of the distribution.

The asymmetric generalized Gaussian distribution is a combination of two different general-
ized Gaussian distribution functions, one on each side of the expected value. This allows for an
administrator to specify the characterization of the uncertainty as a result of adaptive behavior in
even more detail. The asymmetric probability distribution function is:

f(x) =
⎧⎪⎪⎨⎪⎪⎩

β
(α1+α2)Γ(1/β)e

−[(−x+µ)/α1]β if x < µ,
β

(α1+α2)Γ(1/β)e
−[(x−µ)/α2]β if x ≥ µ

(5.6)

where µ is the expectation, α1 is the variance to the left of the expectation, α2 is the vari-
ance to the right of the expectation, β is the shape of the distribution, and Γ(a) is the same

44

has previously defined. This probability distribution can be can be specified using the notation
AGGD(µ,α1, α2, β). For the purposes of SEAM, it is assumed that each of the distributions
are representing a single independent variable as the specification and proper use of multivari-
ate probability distributions would be impractical for the purposes of specification, require more
specialized training in statistics than is common with IT administrators, and have limited value
in increasing the accuracy of the model.

The following is the SEAM specification for normal probability distribution, symmetric and
asymmetric Gaussian distributions:

1 //Normal Distribution
2 <<JSON Path>> = N(<<mean>>,<<variance>>)
3 //Symmetric GGD
4 <<JSON Path>> = SGGD(<<mean>>,<<variance>>,<<shape>>)
5 //Asymmetric GGD
6 <<JSON Path>> = AGGD(<<mean>>,<<left>>,<<right>>,<<shape>>)

Listing 5.5: Distribution Specifications

Additionally, there are some situations in which the state of the attribute is subject to uncer-
tainty, but cannot be easily described by a continuous probability distribution. For example, if
a server instance is added to the shopping cart system as discussed in chapter 2, there is a 99%
chance of that adaptive action occurring successfully, but a 1% chance of that action failing.
There is no practical way of using any of the previously mentioned probability distributions to
specify that situation. Therefore, SEAM provides the ability to define explicit probabilities on
the potential values of an attribute. The specification for explicit probabilities is defined here:

1 //Explicit Probabilities
2 <<JSON Path>> = [<<probability>>|<<value>>,...,<<probability>>|<<value>>]

Listing 5.6: Explicit Probability Specification

The individual probabilities are specified as a decimal between 0 and 1 and the combined total
must add to 1.

Each of the probability definitions offer practical options for the specification of uncertainty
of adaptive behavior by a human administrator and is applied to the values of the individual
properties that define a state. The following is an example of the use of the defined probability
distributions using the exemplar shopping cart system presented in chapter 2:

1 //Normal Distribution
2 #$.ShoppingCart.CurrentState.AvgPageResponse# = N(2.8,1.0)
3 //Symmetric GGD
4 #$.ShoppingCart.CurrentState.AvgPageResponse# = SGGD(2.8,1.0,2)
5 //Asymmetric GGD
6 #$.ShoppingCart.CurrentState.AvgPageResponse# = AGGD(2.8,1.0,1.5,3)
7 //Explicit Probabilities
8 #$.ShoppingCart.CurrentState.AvgPageResponse# = [0.5|1,0.3|2,0.2|3]

Listing 5.7: Distribution Examples

45

In each of the first three cases the probability distribution is set around the mean or expected value
of the AvgPageResponse value of 2.8 seconds. In the last case a set of explicit probabilities are
defined for the values 1, 2, and 3.

Predicates can also have a probability distribution defined for individual properties which
is used to define the membership function for the resulting states in an adaptation policy. For
example:

1 #$.ShoppingCart.CurrentState.AvgPageResponse# = N(2.8,1.0) & #$.ShoppingCart.CurrentState.ServerCount# =
↪ [0.99|10,0.01|9]

Listing 5.8: Predicate with Probability Distribution Example

With the use of predicates augmented with the option to define the probability distributions
for individual properties, an adaptation policy can be specified as a collection of elements that
defines the adaptation policy for a specific subsystem. The following is the specification of the
adaptation policy element:

1 { //Root Node
2 "<<SubsystemName>>":
3 {
4 "AdaptationPolicies":
5 [
6 {
7 "ConfigPredicate": "<<Config Predicate>>",
8 "isDefault": "<<Is Default: True or False>>",
9 "Behaviors": [

10 {
11 "StatePredicate":"<<State Predicate>>",
12 "ResultState": "<<Result Predicate>>",
13 "ConfigUpdate":"<<JSON Path>>"
14 }
15],
16 "BehaviorModifiers": [
17 {
18 "StatePredicate":"<<State Predicate>>",
19 "ResultState": "<<Result Predicate>>"
20 }
21]
22 }
23]
24 }
25 }

Listing 5.9: Adpatation Policy Specification

The AdaptationPolicies element is a collection of individual AdaptationPolicy elements.
The AdaptationPolicy element consists of three elements. The first is the ConfigPredicate
predicate that defines which states of the configuration of the subsystem a particular AdaptationPolicy
element is applicable for. The second is the isDefault element which is used to define which

46

of the AdaptationPolicy elements is the default. The third is the Behaviors element which is
a collection of elements with three potential properties. The StatePredicate is a predicate ele-
ments that defines the states of the managed system pre-adaptive action and the ResultState is
another predicate element that defines the expected states of the managed system post-adaptive
action. The ResultState is the predicate that would be likely to have a probability distribu-
tion defined as part of the predicate element. The ConfigUpdate element is only valid in the
AdaptationPolicies of the MetaManger as they specify which elements of the CurrentConfig
of the Subsystems can be updated by the MetaManager to adjust the autonomic behavior of
the subsystems. The BehaviorModifiers is a collection of the same elements that define the
Behaviors element. However, the elements in the BehaviorModifiers are used to change the
behaviors of the AdaptationPolicy element that is defined as the default. The StatePredicate
entry for the elements in the BehaviorModifiers must exactly match an entry in the Behaviors
element of the default AdaptationPolicy. The BehaviorModifiers allows an administrator to
create an additional AdaptationPolicy by only defining the changes as opposed to having to
define again a complete AdaptationPolicy element.

The following is an example of AdaptationPolicy elements as defined for the shopping cart
subsystem as presented in chapter 2.

1 { //Root Node
2 "ShoppingCart":
3 {
4 "AdaptationPolicies":
5 [
6 {
7 "ConfigPredicate":"#$.ShoppingCart.CurrentConfig.MaxiumumCost# = 2000 &

↪ #$.ShoppingCart.CurrentConfig.CapacityBuffer# = 10",
8 "isDefault":"True",
9 "Behaviors":

10 [
11 {
12 "StatePredicate":"#$.ShoppingCart.CurrentState.AvgPageResponse# <= 2.5 &

↪ #$.ShoppingCart.CurrentState.ServerCount# >= 10 &
↪ #$.ShoppingCart.CurrentState.ServerCount# <=15",

13 "ResultState":"#$.ShoppingCart.CurrentState.AvgPageResponse# = N(2.5,1) &
↪ #$.ShoppingCart.CurrentState.ServerCount# = 16"

14 },
15 {
16 "StatePredicate":"#$.ShoppingCart.CurrentState.AvgPageResponse# > 2.5 &

↪ #$.ShoppingCart.CurrentState.AvgPageResponse# <= 3.5 &
↪ #$.ShoppingCart.CurrentState.ServerCount# >= 10 &
↪ #$.ShoppingCart.CurrentState.ServerCount# <= 15",

17 "ResultState":"#$.ShoppingCart.CurrentState.AvgPageResponse# = N(3.5,1) &
↪ #$.ShoppingCart.CurrentState.ServerCount# = 16"

18 }
19]
20 },
21 {
22 "ConfigPredicate":"#$.ShoppingCart.CurrentConfig.MaxiumumCost# = 3000 &

↪ #$.ShoppingCart.CurrentConfig.CapacityBuffer# = 10",

47

23 "BehaviorModifiers":
24 [
25 {
26 "StatePredicate":"#$.ShoppingCart.CurrentState.AvgPageResponse# <= 2.5 &

↪ #$.ShoppingCart.CurrentState.ServerCount# >= 10 &
↪ #$.ShoppingCart.CurrentState.ServerCount# <= 15",

27 "ResultState":"#$.ShoppingCart.CurrentState.AvgPageResponse# = N(2.0, 1) &
↪ #$.ShoppingCart.CurrentState.ServerCount# = 20"

28 }
29]
30 }
31]
32 }
33 }

Listing 5.10: Adpatation Policy Example

This example demonstrates the implementation of two AdaptationPolicy elements. The first, is
the default AdaptationPolicy element which defines two behavior elements. The first behavior
element defines the state predicate which specifies the pre-adaptation set of states where the
AvgPageResponse is less than or equal to 2.5 seconds and the ServerCount is greater than or equal
to 10 and less than or equal to 15. This specification matches the adaptation policy represented
in the exemplar scenario presented in figure 2.2. It also defines the set of the resulting states of
the managed system with the ResultState in which a normal probability distribution is defined
over the values of the AvgPageResponseT ime with a mean of 2.5 seconds and a variance of
1 and where the ServerCount is equal to 16. The second AdaptationPolicy defines a behavior
modification that updates the behaviors of the default AdaptationPolicy.

5.2 Global Utility Function
A SEAM global utility element is used to define the global utility function for the collection of
autonomic systems and uses two SEAM elements: Formula and Predicate.

A formula is used to create a mathematical expression to be evaluated. It uses the standard
mathematical operators for addition (+), subtraction (-), multiplication (*), division (/), exponent
(∧), and remainder(%) and parentheses to ensure the proper order of operations and JSON Paths
to identify the necessary properties. The Objective property can be set to either Min or Max
and defines if the objective of the utility function should be maximized (i.e., a reward) or a
minimized (i.e., a cost). The Predicate defines the applicability of the utility function as defined
previously in listing 5.2. If the Predicate property is missing, then the global utility function is
applicable in all states.

The following is an example of a formula for a global utility function for the exemplar system
presented in chapter 2.

1 ((3 − #$.ShoppingCart.CurrentState.AvgPageResponse#) /3)

Listing 5.11: Formula Example

48

For the purposes of a global utility function, the Formula must result in a value between 0 and
1. The following is the specification for the global utility element:

1 { //Root Node
2 "MetaManager":
3 {
4 "GlobalUtility":
5 [
6 {
7 "Predicate": "<<SEAMPredicate>>",
8 "Formula": "<<SEAMFormula>>",
9 "Objective": "<<Min|Max>>"

10 }
11]
12 }
13 }

Listing 5.12: Global Utility Specification

The following is an example specification for a global utility element:

1 { //Root Node
2 "MetaManager":
3 {
4 "GlobalUtility":
5 [
6 {
7 "Predicate":"#$.MetaManager.CurrentState.IsCompromised# = False",
8 "Formula":"((3 − #$.ShoppingCart.CurrentState.AvgPageResponse#) /3)",
9 "Objective": "Max"

10 }
11]
12 }
13 }

Listing 5.13: Global Utility Example

In listing 5.13, the Predicate element defines the applicability criteria for the defined global
utility function. In this case the defined global utility function is only applicable when IsCom-
promised is false. The Formula element defines the global utility function which scales the utility
score by setting 3 seconds, or more, as the lowest utility score, 0, and any score less than 3 sec-
onds increasing towards the best possible score of 1. The Objective element specifies that the
utility function should be maximized as it is a reward as opposed to minimized in which it is
commonly characterized as a cost.

5.3 Global Knowledge
As discussed in chapter 4, global knowledge is the additional information that is available to the
meta-manager but might only be partially available to the individual subsystems. Examples of

49

this include interrelationships between subsystems in which the state of one subsystem can be
influenced or impacted by the state of another (e.g., load on a web server can impact load on the
database). Another example of global knowledge is a constraint that the collection of autonomic
systems must respect (e.g., a maximum cost constraint or the minimum resources that must be in
use).

The GlobalKnowledge element of SEAM has two properties. The first is an optional predicate
that defines the applicability of the entry as defined in listing 5.2. In the event that a predicate is
not defined, it is assumed that the entry is valid at all times. The second is a required relationship
that defines the information that is being specified.

While other types of relationship entities are possible, SEAM defines two types of relation-
ship entities: constraint and correlation. The constraint defines the relevant operating limits for
the collection of autonomic systems. For example, referring to the exemplar presented in chapter
2, the maximum cost of the complete web system, not just the maximum cost of the individ-
ual autonomic subsystems. Constraints restrain the meta-synthesis technique by limiting which
combinations of changes to the individual subsystems are valid. Correlations represent additional
information about the structure of the collections of autonomic systems. For example, referring
to the exemplar presented in chapter 2, the user load on the shopping cart subsystem directly
influences the request load on the middleware common services which influences the query load
on the data services system. These correlations can be used by the meta-synthesis technique to
better predict the current and future states of the systems leveraging information that might not
be available to the individual autonomic subsystems.

Constraint

A constraint establishes a boundary for a specific metric that is not to be violated. The constraint
is expressed in the form of a predicate which allows an administrator to establish, potentially
state dependent, rules that can constrain the potential options of the synthesis of meta-adaptation
policies. Without this option available, the meta-manager could implement changes to the auto-
nomic subsystems that put the collection of autonomic systems into an undesirable state.

The following is the specification for a constraint:

1 "Relation": {
2 "Type": "Constraint",
3 "Predicate":"<<predicate>>"
4 }

Listing 5.14: Constraint Property Specification

The following is an example of a constraint based upon the shopping cart system presented in
chapter 2 which says that the ServerCount for the ShoppingCart system should always be greater
than or equal to 10:

1 "Relation": {
2 "Type": "Constraint",
3 "Predicate":"#$.ShoppingCart.CurrentState.ServerCount# >= 10"

50

4 }

Listing 5.15: Constraint Property Example

It is possible to constrain a specific property for a specific system by establishing a constraint
relationship, but it is also possible to establish it by defining the scope of a critical element using
a SEAM property. It is recommended to establish the physical boundaries of a critical element
using a SEAM property and use a SEAM constraint to define organizational preferences that are
potentially subject to change over time. This is due to the fact that the specified SEAM property
elements also define the complete state space for the contextual information. If organizational
preferences were established by altering the state space of the contextual information, it could
result in the invalidation of defined predicates and, potentially, unexpected behavior from the
meta-manager. However, if it is a complex constraint dependent upon multiple factors, then a
SEAM constraint is the only option available.

Correlation

A SEAM correlation defines a relationship between two critical elements that share a depen-
dency. The relationships between subsystems are expressed in the form of correlations between
the properties of different subsystems. For example, an administrator could define a correlation
between the user load on the shopping cart system and the query load on the database system.
These correlations allow the meta-manager to have a more accurate evaluation of the state of
each of the subsystems at both the current time step as well as future time steps. For example,
if the meta-manager is expecting the environment to increase the user load on the shopping cart
system in the next time step, the correlation between the user load and the query load on the
database system allows for a more accurate state of the database subsystem which increases the
effectiveness of the meta-manager by improving meta-strategy synthesis.

The following is the specification of the correlation property:

1 "Relation": {
2 "Type": "Correlation",
3 "Target": "<<JSONPath>>"
4 "Formula":"<<SEAMFormula>>",
5 "Timedelay":<<timedelay>>
6 }

Listing 5.16: Correlation Property Specification

The Target defines the element that has a dependency on the elements defined in the Formula.
The Formula, as specified in listing 5.11, defines the correlation between the critical elements
in the collection of autonomic systems. The Timedelay property of the correlation is how many
time steps into the future the affect of the dependency between the elements can be observed.
This can be used by some meta-synthesis techniques to understand how long it takes into the
future to observe the effects of the correlation. The following is an example of the correlation
relationship implemented for the collection of autonomic systems described in chapter 2:

51

1 "Relation": {
2 "Type": "Correlation",
3 "Target":"#$.MetaManager.CurrentState.TotalResponseTime#",
4 "Formula":"1.2 * #$.ShoppingCart.CurrentState.AvgPageResponse# + 1.1 *

↪ #$.Middleware.CurrentState.ResponseTime#",
5 "Timedelay":2
6 }

Listing 5.17: Correlation Property Example

The example demonstrates how to define the correlation between elements from different sub-
systems and the global system state. Specifically, the global TotalResponseT ime is defined as a
correlation which is dependent upon the AvgPageResponse from the Shopping Cart subsystem
and the ResponseT ime from the Middleware Common Services subsystem. It further defines
that the effects of this dependency should be observable 2 time steps into the future.

The constraints and correlation elements are used in the following specification of the Glob-
alKnowledge element:

1 { //Root Node
2 "MetaManager":
3 {
4 "GlobalKnowledge":
5 [
6 {
7 "Predicate":"<<predicate>>",
8 "Relation": {
9 <<relation properties>>

10 }
11 }
12]
13 }
14 }

Listing 5.18: Global Knowledge Specification

The following is an example of a specification of a GlobalKnowledge element for the shopping
cart system as presented in chapter 2:

1 { //Root Node
2 "MetaManager":
3 {
4 "GlobalKnowledge": [
5 {
6 "Predicate":" #$.MetaManager.CurrentState.IsCompromised = False#",
7 "Relation": {
8 "Type": "Correlation",
9 "Target":"#$.MetaManager.CurrentState.TotalResponseTime#",

10 "Formula":"1.2 * #$.ShoppingCart.CurrentState.AvgPageResponse# + 1.1 *
↪ #$.Middleware.CurrentState.ResponseTime#",

52

11 "Timedelay":"2"
12 }
13 },
14 {
15 "Relation": {
16 "Type": "Constraint",
17 "Predicate":"#$.ShoppingCart.CurrentState.ServerCount# >= 10"
18 }
19 }
20]
21 }
22 }

Listing 5.19: Global Knowledge Example

This example defines two entries in the GlobalKnowledge element. The first is a correlation el-
ement that defines a correlation between the TotalResponseT ime and the AvgPageResponse
from the shopping cart subsystem and ResponseT ime from the middleware subsystem. How-
ever, this correlation is only valid if the current value of IsCompromised in the global current
state is false. The second element is a constraint that defines that the ServerCount for the
shopping cart system should never be less than 10.

5.4 Subsystem
A SEAM subsystem element describes an individual autonomic subsystem and defines four ele-
ments and one property.

The first is the CurrentState element which represents the current values for the set of prop-
erties that describe the current state for the managed system. This is a requirement for the au-
tomated approach to meta-management. Similarly, the second is the CurrentConfig element
which represents the current values for the set of properties that describe the current configura-
tion for the autonomic manager and is also a requirement for the automated approach to meta-
management. The third is the StateSpace element which contains two other elements, Properties
and Configuration. Both Properties and Configuration define the set of properties, and their
potential values, for the CurrentState and CurrentConfig elements. These elements, while not re-
quired for the approach to meta-management, allow for the definition of the state space for each
subsystem. This can be exploited by the meta-manager to ensure each of the predicate statements
are valid and the predicates address the complete state space. Additionally, the meta-manager
would require this state space definition to support some meta-analysis and strategy synthesis
techniques and in some other cases the meta-manager could use the state space definitions to
optimize the meta-analysis and meta-synthesis technique in use. The fourth element is the Adap-
tationPolices which is a collection of AdaptationPolicy elements as previously described and at
least one is required for the automated approach to meta-management.

Finally, the Subsystem defines one property, InstanceCount, that defines how many physical
subsystems the specification represents and is optional with the default value of 1. This allows
the administrator to define a single specification that can be reused as needed for physical systems
with a high degree of similarity avoiding unnecessary duplication in the specification.

53

The following is the specification of the subsystem element:

1 { //Root Node
2 "<<SubsystemName>>":
3 {
4 "InstanceCount":<<Integer>>,
5 "CurrentState": {
6 <<SEAMCurrentState>>
7 },
8 "CurrentConfig": {
9 <<SEAMCurrentConfig>>

10 },
11 "StateSpace": {
12 <<SEAMStateSpace>>
13 },
14 "AdaptationPolicies": [
15 <<SEAMAdaptationPolicy>>,
16 ...
17 <<SEAMAdaptationPolicy>>
18]
19 }
20 }

Listing 5.20: Subsystem Specification

A SEAM subsystem is a top level element that must appear directly under the root node of
the JSON document. A SubsystemName can be anything except for MetaManager and
Environment which are reserved names. Each complete specification must have at least one
subsystem element.

Current State & Current Configuration

The current state and current configuration elements of SEAM are used to elaborate the current
values of the key properties and the configuration for a specific autonomic subsystem. These
elements are defined as a JSON object composed of a set of name and value pairs representing
the property name and the current value for that property. The specification for the current state
element is:

1 { //Root Node
2 "<<SubsystemName>>": {
3 "CurrentState": {
4 "<<PropertyName>>":"<<PropertyValue>>", //String Value
5 "<<PropertyName>>":<<PropertyValue>>, //Numeric Value
6 ...
7 "<<PropertyName>>":"<<PropertyValue>>"
8 }
9 }

10 }

Listing 5.21: Current State Specification

54

Similarly, the definition of the current configuration element is:

1 { //Root Node
2 "<<SubsystemName>>": {
3 "CurrentConfig": {
4 "<<PropertyName>>":"<<PropertyValue>>", //String Value
5 "<<PropertyName>>":<<PropertyValue>>, //Numeric Value
6 ...
7 "<<PropertyName>>":"<<PropertyValue>>"
8 }
9 }

10 }

Listing 5.22: Current Configuration Specification

Referring back to the exemplar system presented in chapter 2, the following is an implementation
of the current state element for the shopping cart subsystem:

1 { //Root Node
2 "ShoppingCart": {
3 "CurrentState": {
4 "AvgPageResponse":2.6, //Numeric Value
5 "ServerCount":12, //Numeric Value
6 "ContentFidelity":"High" //String Value
7 }
8 }
9 }

Listing 5.23: Current State Example

Additionally, the following is an example implementation of the current configuration for the
shopping cart system from the exemplar presented in chapter 2:

1 { //Root Node
2 "ShoppingCart": {
3 "CurrentConfig": {
4 "MaximumCost":2000, //Numeric Value
5 "CapacityBuffer":10, //Numeric Value
6 "CostPerServer":100, //Numeric Value
7 }
8 }
9 }

Listing 5.24: Current Configuration Example

The values of both the current state and current configuration elements will be updated at
runtime by the meta-monitoring phase of the Meta-MAPE-K as defined in section 4.1. These
runtime values represent the current state of both the managed systems and the configuration of
the autonomic manager and, consequently, are likely to be referenced by JSON paths in other
parts of the SEAM specification. Therefore, the specification of both elements is necessary to
define where in the SEAM JSON structure the current state of both elements will be.

55

Property

A SEAM property is used to define the scope of the critical properties of the state space for
the CurrentState and CurrentConfig elements of the subsystems. SEAM defines two types of
property: a numeric property and a string property.

A numeric property is the most common type of definition that would be used. However,
as the implementation of the autonomic subsystem could be a ‘black box’ the string property
definition gives the administrator the ability to validate categorical properties that describe the
autonomic subsystem through the use of a regular expression [123]. This gives a flexible way
of handling a variety of potential cases in defining the scope for string based attributes and
configuration properties in a well-defined and widely supported manner. The specification for a
numeric property is:

1 "<<PropertyName>>": {
2 "Type":"Numeric",
3 "Min":<<MinValue>>,
4 "Max":<<MaxValue>>,
5 "Step":<<StepValue>>,
6 "Intervals":<<IntervalsValue>>,
7 "TimeCount":<<True|False>>
8 }

Listing 5.25: Numeric Property Specification

The Min field specifies the lower bound of the potential values for the property and the Max
field specifies the upper bound of the potential values for the property. The step field specifies
how big each step is between the lower and upper bounds for the value of the property. The
Intervals attribute defines that each individual value of the property can be further subdivided
into the defined number of intervals. The TimeCount property is a boolean value that specifies
that this value should act as a continuous ‘clock’ in the specification and should loop back to its
Min value after the Max value has been met. The TimeCount and Intervals property can be
used together to define a granular clock for the model in which larger units of time (e.g., hours)
are subdivided into smaller blocks (e.g., 5 min. intervals).

An example of a numeric property related to the exemplar shopping cart system presented in
chapter 2 is:

1 "ServerCount": {
2 "Type":"Numeric",
3 "Min":1,
4 "Max":20,
5 "Step":1
6 }

Listing 5.26: Numeric Property Example

The second type of property is the string property which is validated using a regular expres-
sion which allows for a wide variety of definition and validation options. The specification for
the string property is:

56

1 "<<PropertyName>>": {
2 "Type":"String",
3 "Regex": "<<RegEx>>"
4 }

Listing 5.27: String Property Specification

The following is an example of the definition of a string property relating to the shopping cart
system in the exemplar scenario presented in chapter 2.

1 "ContentFidelity": {
2 "Type":"String",
3 "Regex": "^(HIGH|LOW)$"
4 }

Listing 5.28: Numeric Property Example

As shown in the example, the string property can appropriately assist in validating a list of valid
values by specifying that list as part of a regular expression.

State Space

The StateSpace element has two elements defined. Both are collections of property elements
that define the complete state space of the attributes defined for both the CurrentState and Cur-
rentConfig elements. The Properties element contains the property elements that describe the
properties in the CurrentState element and Configuration contains the property elements that
describe the properties in the CurrentConfig element. The following is the specification of the
StateSpace element:

1 "StateSpace":
2 {
3 "Properties":
4 [
5 <<SEAMProperty>>
6 ...
7 <<SEAMProperty>>
8],
9 "Configuration":

10 [
11 <<SEAMProperty>>
12 ...
13 <<SEAMProperty>>
14]
15
16 }

Listing 5.29: State Space Specification

57

The following is an example elaboration of the StateSpace element for the shopping cart system
presented in the exemplar in chapter 2:

1 "StateSpace":
2 {
3 "Properties":
4 [
5 "ServerCount": {
6 "Type":"Numeric",
7 "Min":1,
8 "Max":20,
9 "Step":1

10 },
11 "AvgPageResponse": {
12 "Type":"Numeric",
13 "Min":0.0,
14 "Max":5.0,
15 "Step":0.1
16 },
17 "ContentFidelity": {
18 "Type":"String",
19 "Regex": "^(HIGH|LOW)$"
20 }
21],
22 "Configuration":
23 [
24 "MaximumCost": {
25 "Type":"Numeric",
26 "Min":100,
27 "Max":2500,
28 "Step":100
29 },
30 "CapacityBuffer":{
31 "Type":"Numeric",
32 "Min":0,
33 "Max":100,
34 "Step":10
35 }
36]
37 }

Listing 5.30: State Space Example

The example StateSpace elaboration defines the scope of the state space for the ServerCount,
AvgPageResponse, and ContentF idelity properties of the CurrentState element for the
shopping cart system. Additionally, the state spaces for the MaximumCost and CapacityBuffer
properties of the CurrentConfig element are also defined.

58

Environment

The SEAM environment element is a specialized subsystem with the reserved name of environment
that is a top level element which must appear directly under the root node of the JSON document.
This element provides the administrator the option to define the behavior of an additional sub-
system to represent the environment which can influence the current and future states of the
individual subsystems and is important for the effectiveness of some meta-analysis and meta-
synthesis techniques.

1 { //Root Node
2 "Environment":
3 {
4 "CurrentState": {
5 <<SEAMCurrentState>>
6 },
7 "CurrentConfig": {
8 <<SEAMCurrentConfig>>
9 },

10 "StateSpace": {
11 <<SEAMStateSpace>>
12 },
13 "AdaptationPolicies": [
14 <<SEAMAdaptationPolicy>>,
15 ...
16 <<SEAMAdaptationPolicy>>
17]
18 }
19 }

Listing 5.31: Environment Specification

5.5 MetaManager
A SEAM MetaManager element describes the global state of the collection of autonomic systems
and includes the defintions of the autonomic behaviors of the meta-manager, global knowledge,
and global utility. Additionally, it also provides the optional CurrentState and CurrentConfig ele-
ments and a corresponding StateSpace element. While these elements are optional, this provides
the administrator the option of defining a global state space and configuration for the collec-
tion of autonomic systems under management that could include information outside of what is
available from each of the subsystems (e.g., the result of an outside security scan) which can
be exploited by the meta-manager to improve the effectiveness of the meta-analysis and meta-
synthesis techniques.

The following is the specification of the MetaManager element:

1 { //Root Node
2 "MetaManager":

59

3 {
4 "GlobalKnowledge": {
5 <<SEAMGlobalKnowledge>>
6 },
7 "CurrentState": {
8 <<SEAMCurrentConfig>>
9 },

10 "CurrentConfig": {
11 <<SEAMCurrentConfig>>
12 },
13 "StateSpace": {
14 <<SEAMStateSpace>>
15 },
16 "GlobalUtility": {
17 <<SEAMGlobalUtility>>
18 },
19 "AdaptationPolicies": [
20 <<SEAMAdaptationPolicy>>,
21 ...
22 <<SEAMAdaptationPolicy>>
23]
24 }
25 }

Listing 5.32: MetaManager Specification

A SEAM MetaManager is a top level element that must be named MetaManager and each
specification must have exactly one.

5.6 Runtime Implementation
To facilitate the practical implementation of SEAM as part of a meta-manager, a reusable parser
and engine were created with the following elements:

• JSON Parser
The component that parses the SEAM specification, ensures that it is semantically correct,
and adheres to the defined specification for each SEAM element and produces the raw
JSON structure of the SEAM specification.

• JSON Path Resolver
The component that recursively examines the raw JSON structure for JSON Paths, deter-
mines the current values referenced by those paths, and places the references values into
the place of the JSON path and outputs the resolved JSON structure.

• Native Language Converter
The component that convert various elements, principally predicate statements, into state-
ments that can be evaluated by the native programming language in use (e.g., C# or Java)
and outputs the native language object structure.

• Synthesis Tool Compiler
The component that uses the resolved object structure to compile the script specific to a

60

Figure 5.2: SEAM Runtime Component Architecture

particular tool and synthesis technique. This process is facilitated by the ability to define
a template that can be leveraged to handle common tool or synthesis technique specific
configuration. Additionally, the compiler is created to handle configurable plug-ins for
each tool and synthesis technique to allow the compiler to be easily extended to additional
tool and technique options.

• Synthesis Engine
The component that uses the tool and technique script and interfaces with the specific tool
to run the script and produce the synthesis results. This component supports a plug-in for
the individual tool and synthesis technique to allow it to be easily extensible for additional
tool and technique options.

• Results Interpreter
The component that interprets the synthesis results and determines what the recommended
changes to the configurations of the autonomic subsystems are and converts those into an
adaptation plan.

The SEAM parser and engine was incorporated into the Rainbow [24] adaptation framework.
As discussed in section 4.1, the analysis and planning phases of the standard MAPE-K loop
have been combined in defining the Meta-MAPE-K loop to accommodate both proactive and
reactive adaptation. Therefore, referring to the component architecture presented in figure 5.3,
the SEAM parser and engine take the functional place of the model analyzer and the adaptation
manager in the Rainbow adaptation framework. The components implement the same interfaces
and communicate with the Meta-Models Manager to leverage the SEAM specification and the
current state models of the managed system, environment, and autonomic configuration of each

61

Figure 5.3: SEAM & Rainbow Component Architecture

subsystem. Further, additional probes were created to interface with the autonomic subsystems
for each of the case studies and gather the required information necessary to update the elements
in the meta-model manager.

This chapter presents SEAM, a domain specific language created to address the require-
ments for the automated approach to meta-management presented in chapter 4 including the
specification of the state spaces and models for the managed systems, environment, autonomic
configuration, and the global system state, the adaptation policy that is dependent upon the au-
tonomic configuration, the global knowledge, and the global utility function. The specifications
of these elements are implemented and integrated into the Rainbow adaptation framework [24]
where they provide the information necessary for a meta-synthesis technique to generate an meta-
strategy. The selection of a meta-synthesis technique appropriate to the context is a non-trivial
design decision and is the subject of the subsequent chapter.

62

Chapter 6

Taxonomy of Synthesis Techniques

A key feature of the automated approach to meta-management presented in chapter 4 is that it
does not mandate a specific meta-synthesis technique and/or toolset. This allows the implement-
ing administrator to select which technique and toolset is appropriate for the unique demands
of the context in which the meta-manager will be operating. However, the automated approach
to meta-management does characterize the actions of the individual autonomic managers using
a discrete notion of time in which the local environment and the autonomic manager take turns
making actions. This is in contrast to a continuous notion of time in which the environment
and autonomic manager could take actions simultaneously. Additionally, while there are other
ways of meeting the requirements of the automated approach to meta-management (e.g., a sim-
ple heuristic approach), this approach builds upon the state-of-the-practice in autonomic systems,
see 3.1, and would be expected to dynamically generate a meta-strategy using model checking
techniques.

Consequently, this taxonomy will include analysis techniques that deal with a discrete notion
of time such as Discrete Time Markov Chains (DTMC), Markov Decision Processes (MDP),
Partially Observable Markov Decision Processes (POMDP), and Turn-based and Concurrent
Stochastic Multi-Player Games (SMGs). It will not include analysis and synthesis techniques
such as Probabilistic Time Autonoma (PTA), Partially Observable Probabilistic Timed Autonoma
(POPTA), and Turned-based Probabilistic Timed Games because each has a continuous notion
of time. However, this taxonomy will include information on Continuous Time Markov Chains
(CTMC) as the extension of SEAM to include the necessary items is discussed in section 11.2.

Therefore, this chapter presents the taxonomy of meta-analysis and synthesis techniques to
provide guidance on their suitability for various contexts of collections of autonomic systems.
Each section will include the following information about each of the examined techniques:

• Description - A brief description of the model checking technique and will include refer-
ences to comprehensive source material.

• Timeliness - A discussion regarding the key properties that relate to the speed in which
the technique can produce a result.

• Assurance - A discussion regarding the level of confidence and administrator can have in
the result the technique produces.

• Computational Scalability - A discussion of how well the technique can scale to models

63

of larger sizes.
• Guidance on Applicability - A discussion of the suitability of the technique to operate in

various contexts of collections of autonomic systems.

However, there are some related items that are not examined as part of this taxonomy as they re-
late to lower level issues and concerns that are beyond the scope of this taxonomy. For example,
the properties of the individual computer hardware the technique is run on will impact its timeli-
ness and assurance, but that relationship is not of primary concern in determining the suitability
of a technique to a particular context in which a collection of autonomic systems is operating.
Similarly, it is also beyond the scope of this taxonomy to provide guidance on the efficiency of
the implementation of any particular analysis algorithm. Additionally, the relationship between
the fidelity of the model and the level of assurance provided by the technique is a fundamental
trade-off in the use of any control system and therefore will not be explored. Therefore, the dis-
cussions of the assurance provided by any technique are assumed to be subject to the limitations
relating to the fidelity of the model provided.

6.1 Discrete and Continuous Time Markov Chains
Description A discrete time Markov chain (DTMC) [72] is a characterization of a process
with a set of states and a transition matrix that defines the probability of moving from one state
to another state. Using the exemplar scenario from chapter 2, one state of the shopping cart
subsystem would be having 10 servers and there would be a probability of it moving to a state
with 11 servers and another probability for moving to 9 servers. A path is a sequence of states that
the system transitions between and each transition in the path represents a single discrete-time
step.

A continuous time Markov chain (CTMC) [72] is similar to a DTMC, except its transition
matrix defines the rate at which one state transitions to another which can be used to determine
the probability of transitioning from one state to another in a specific number of time steps.
Consequently, the transitions between the states do not represent a discrete time-step.

The probability transitions of a DTMC and the transition rates of a CTMC represent the
probabilistic choice of each of the models which causes different paths to be generated depending
on the starting state and the transitions that are made. Therefore, to analyze a DTMC or CTMC,
it is common to generate a set of paths, potentially with varying conditions like changing the
starting state of the model, that are representative of the set of behaviors of the system.

Using different logic specifications like probabilistic computational tree logic (PTCL)[56],
the set of paths can be analyzed to answer questions like; what is the probability of the shopping
cart system moving from 10 servers to 11 servers within 3 time steps? More relevant to meta-
management is the question; what is the maximum reward the system can accumulate over 5
time steps? For the purposes of this approach to meta-management, the reward is determined by
scoring the value of each state in the path using a utility function [9, 10].

Timeliness The use of DTMCs and CTMCs for meta-analysis and meta-strategy synthesis
are advantageous because of the ability to tune different parameters of the analysis to suit the

64

context. Specifically, the number of steps each path has in it, representing the time horizon for
the analysis, and the number of paths to be generated and subject to analysis. The lower each of
these values are the less time will be required to complete the analysis and vice-versa. However,
the lower the number for either of these parameters, the less assurance the technique will be able
to provide.

Assurance The analysis of DTMCs and CTMCs uses, primarily, a technique of generating a
set of paths that are representative of the potential behavior of the collection of autonomic sub-
systems. Therefore, this technique does not guarantee that every possible path is examined which
results in uncertainty in the answer to questions like: what is the highest reward the system can
accumulate? The analysis can only answer this question based upon the generated representative
paths of the behavior of the system, not all possible paths. Therefore, it is possible that a higher
reward is actually possible, but that path was not included in the set of generated paths. This
means that the assurance of the system is based upon the most likely behavior of the collection of
autonomic systems. However, the longer the paths (i.e., time horizon) and the higher the number
of paths generated the higher the degree of assurance can be established, but will take longer to
produce a result.

Computational Scalability Another advantage of the analysis of DTMCs and CTMCs is that
because of the use of generating samples of the behavior of the collection of autonomic systems
they can be used to analyze models of significant size.

Guidance on Applicability DTMCs and CTMCs have been used in a variety of contexts in
self-adaptive systems, see [15, 16, 83], and for the purposes of the meta-management of a col-
lection of autonomic systems was used in the case studies presented in chapters 7 and 9 of this
thesis. It is most appropriate in situations where the level of assurance may not be the critical
concern of the administrator implementing a meta-manager. For example, the consequences of
lower assurance in collections of autonomic systems serving as a web site, back end IT infras-
tructure, home automation system, asset monitoring systems, and others is likely to be minimal.
However, the consequences of lower assurance in other collections of autonomic systems serving
as an autonomous vehicle, naval warship, or similar might be severe requiring a higher degree of
assurance than the analysis of DTMCs and CTMCs can provide.

6.2 Markov Decision Processes
Description A Markov Decision Process (MDP) [35] is a characterization of a process with
a set of states, a set of actions, and a transition matrix which defines the probability of moving
from one state to another state depending on the action selected. Using the exemplar scenario
from chapter 2, if the shopping cart system is in a state with 10 servers and selects the action to
add servers, there is a different set of probabilities for what the resulting state would be than if the
action to decrease fidelity was selected. The selection of the resulting state is non-deterministic
and represents the probabilistic choice of the MDP. The MDP also defines a reward or cost

65

function that determines the score of the transition based upon the state of the system and the
action taken.

The analysis of a MDP is based upon formal verification or the systematic approach that ap-
plies mathematical reasoning to obtain guarantees about the correctness of the system and model
checking is one approach [35]. Model checking is based on the construction and analysis of the
system model in which states represent the possible configurations of the system and transitions
between states capture the way the system can evolve over time [35]. This approach can answer
questions to determine if a model meets a desired property like; will the system be in a state with
11 servers deployed? This type of question is of limited use in meta-management analysis and
synthesis, but a generalized form of model checking, referred to a probabilistic model checking is
of more use. By analyzing the complete set of states and transitions the analysis of an MDP can
answer questions like: what is the probability of the average page response time going under 2.5
seconds in 3 time steps? These questions are expressed in a logic referred to as the probabilistic
computational tree logic (PTCL) [56].

Timeliness The timeliness of the analysis of an MDP is dependent upon two factors: (1) the
efficiency of the algorithms in the toolset or framework being used and (2) the complexity of
the model being analyzed. As previously mentioned, for the purposes of this taxonomy and the
automated approach to meta-management, it is assumed that there are no practical improvements
to be made to the implementation of the algorithm that would impact its timeliness. Therefore,
the complexity of the model has a critical impact on the timeliness of the model. The complexity
of the model is characterized by the number of states, the number of transitions, and the degree
of variance in the statistical options. The higher any of these measures are the larger the model
of the system that will need to be generated and analyzed and the longer it will take to complete,
can be in the range of minutes to hours.

Assurance The probabilistic model checking of an MDP examines the complete model of the
system, not a representative set of paths. Therefore, it provides a higher degree of assurance
about the result than sampling techniques.

Computational Scalability It is possible to create a model that is too large to be held within
the defined memory space of the toolset or framework. While this is often a limitation of the
toolset or framework in use, there is a point at which the model will become computationally
intractable to analyze regardless of any other conditions.

Guidance on Applicability The use of an MDP directly in self-adaptive systems is common,
but in a more specialized form, please see Stochastic Multi-Player Games later in this chapter, but
for the purpose of the meta-management of a collection of autonomic systems it would be most
appropriate in situations where the level of assurance is of primary concern and the timeliness of
the analysis is secondary.

66

6.3 Partially Observable Markov Decision Processes

Description A Partially Observable Markov Decision Process (POMDP) [88] is an extension
of a Markov Decision Process (MDP) with the difference being that MDPs operate over states
of the system, POMDPs operate over observations of the system. Using the exemplar scenario
presented in chapter 4, if the shopping cart system is currently using 10 servers, in an MDP,
that is considered the state of the system. However, in a POMDP, the measurement that the
shopping cart is using 10 servers is considered an observation, allowing for the possibility that the
observation of the system and the actual state of the system might be different. This means that
the actual state of the system cannot be directly determined. For the purposes of this taxonomy
and as relevant to meta-management, the remaining properties of a POMDP function similarly to
a MDP including the reward structures and the specification of the expressions using probabilistic
computational tree logic (PTCL) [56].

However, in the analysis of an MDP you can use efficient computational techniques to iterate
to build a sequence of strategies until an optimal one is found and value iteration to calculate
increasing precise approximations of a value [88]. Since a POMDP is undecidable [76], these
techniques are not available. Instead, the analysis method approximates the optimal value by
calculating the upper and lower bounds of the value to give an approximation.

Timeliness The timeliness of a POMDP is similar to the timeliness of a standard MDP with
the exception being that a POMDP will have increased sensitivity to the size of the model.
A POMDP introduces uncertainty on the current state of the system in addition to the non-
determinism and probabilistic behavior in standard MDPs. This can cause the number of ele-
ments that are part of the analysis to increase causing the technique to take longer to complete
than a standard MDP.

Assurance The introduction of uncertainty in the current state of the system can account for
other situations relevant to the meta-management of collections of autonomic systems and, con-
sequently improve the assurance of the result. However, the final result can only be approximated
within an upper and lower bound.

Computational Scalability Similarly to a MDP, there is a point at which the model will
become computationally intractable to analyze regardless of any other conditions.

Guidance on Applicability There are examples of POMDPs in use within self-adaptive sys-
tems, see [80, 124]. However, for the purposes of meta-management the primary consideration
is the advantage that accounting for uncertainty in the state of the system provides over the de-
creased levels of timeliness and an approximated result. As such the technique might be best
appropriate in IoT systems like the meta-management of a collection of oil wells or robotic sys-
tems in which the collection of the current state information can be unreliable and the longer
time to a results and approximated results might be acceptable trade-offs.

67

6.4 Concurrent & Turn-based Stochastic Multi-Player Game
Description A Turn-Based Stochastic Multi-Player game is a specific type of Markov Deci-
sion Process in which each player has a specific set of actions available to them and sequentially
rotates which player is making the choice of which action to take in that discrete time step, see
[21, 115]. In the event that a player in the game is established to make choices that are op-
posed to the goals of the other players, this is referred to as an adversarial game. Additionally,
SMGs also allow for the definitions of reward structures based upon the scoring of the state of
a player. Referring to the exemplar scenario presented in chapter 2, the shopping cart system is
one player with a set of actions available, the adaptive tactics, and is trying to reduce the average
page response time, the established reward structure. However, another player can be established
to represent the environment in which the shopping cart is operating that makes choices to in-
crease the average page response time of the shopping cart system. The interactions between
these two players would constitute an adversarial stochastic multi-player game. A Concurrent
SMG game shares all of the same characteristics as a Turn-Based SMG except that instead of the
players making their choices sequentially, they can make them simultaneously, see [74] for more
information.

Similarly to an MDP, the analysis of a SMG, turn based or concurrent, is a formal verification
accomplished by model checking in which a model is built and analyzed that represents the pos-
sible states of the players and the actions they take capture the way the game evolves over time.
Using the probabilistic alternating-time temporal logic with rewards [21] the model checking can
determine what is the maximum or minimum reward that can be achieved if each player makes
the best possible choice to achieve their objective at each opportunity. An adaptation strategy
can be determined by examining the set of choice the player made to maximize that reward.

Timeliness The timeliness of a SMG is subject to the same limitations of a standard MDP
which is highlighted by its sensitivity to the size of the model.

Assurance As the analysis of a SMG is based upon probabilistic model checking, the analysis
considers the complete model of the system, not a representative set of paths. Therefore, it
provides a higher degree of assurance about the result than sampling techniques.

Computational Scalability The computational scalability of a SMG is subject to the same
limitations as an MDP in that it is possible to create a model that is too large to be held within
the defined memory space of the toolset or framework and at some point would become com-
putationally intractable. However, there might be some context dependent optimizations and
assumptions that can be used to assist with this limitation. The Google Control Plane case study,
presented in chapter 8, makes an assumption that because all of the autonomic subsystems are
practically identical it was not necessary to model each one as an individual player. Instead only
one system was modelled and any changes were applied to all uniformly.

Guidance on Applicability There are numerous examples of SMGs being used in the context
of self-adaptive systems, see [15, 16, 17, 18]. For the purposes of meta-management, the Google

68

Control Plane Case Study presented in chapter 8 uses a SMG to perform meta-analysis and meta-
strategy synthesis. However, as can be seen in that case study, the potential size of the model
presents a practical challenge to the use of this method. Additionally, in the context of self-
adaptive systems, most SMGs are constructed to be adversarial with a system playing against the
environment. Consequently, their results are limited to either the best or worst case scenario as
appropriate for the context. This is in contrast to a discrete time Markov chain (DTMC) which
provides the ‘most likely’ scenario. Therefore, SMGs are most appropriate in contexts in which
a conservative approach to meta-management is preferred and the timeliness requirements are
not as demanding. It is also appropriate in contexts in which external factors, like the actions of
the environment, play a significant role in the meta-management. This might include contexts
like a building climate control system which has to manage multiple air conditioning, heating,
humidity, and other systems while accounting for the actions of the weather and the timeliness
requirements will tolerate the analysis of the model taking minutes to hours to complete.

This chapter presents a taxonomy of meta-synthesis techniques and provides guidance on
their applicability to the various contexts in which collections of autonomic systems operate.
This is a critical design time decision for the implementing administrator as the selection of an
inappropriate technique for the context can compromise the scalability and effectiveness of the
approach. The use of several of these techniques is a subject of the case studies presented in
subsequent chapters to evaluate the automated approach to managing collections of autonomic
systems.

69

Chapter 7

Case Study: Amazon Web Services
Shopping Cart

Similar to the exemplar scenario presented in chapter 2, this case study examines a common
use case for Amazon Web Services(AWS), the creation and operations of a web based system,
specifically a shopping cart. The complete information on the validity and selection of this case
study can be found in section 1.2. However, this case study was selected to evaluate the ability of
the meta-manager to improve the homeostatic operations of the collection of autonomic systems
on popular architectural pattern, code base, and operations platform that is in wide industrial use.

7.1 Background & Context

One of the many reasons AWS, and other similar public cloud services like Azure and Google
Cloud, are popular platforms for web based systems is the ability to cost effectively create and
operate a highly available and scalable web-based system with minimal effort dedicated to infras-
tucture and other lower level concerns. There are many different features of AWS that contribute
to this objective such as multiple operating regions and availability zones within each region,
redundant hardware and network resources, and security systems. At the application level AWS
also offers multiple methods of providing autonomic management capabilities to address, pri-
marily, performance and scalability QoS concerns.

The primary method is through the use of AWS Elastic BeanStalk (AWS ELB) [103]. The
primary feature of AWS ELB is the ability to auto scale an application, both up and down, to
maintain configured performance levels. The primary mechanism for this is referred to as an
auto scaling group. An auto scaling group has several different options configurations available
some of which are:

• Instances: The minimum and maximum number of virtual machines that can be deployed
to maintain configured performance levels.

• Fleet Composition: The type of instances the auto scaling group should use, on-demand or
spot

• On-Demand Base: The minimum number of on-demand instances the auto scaling group

70

provisions before considering spot instances.
• On-Demand above base: The percentage of on-demand instances above what is required

to maintain configured performance levels
• Capacity Rebalancing: Whether or not the capacity should be automatically rebalanced in

response to a spot recall notification.

An important factor in establishing auto scaling groups is the use of on-demand versus spot
instances. An on-demand instance is a virtual machine that is specifically requested by an account
and, once provisioned, is under the exclusive control of the account. In the absence of any other
specific agreement, an on-demand instance is billed for every second it is in the ‘running’ state
at a flat published rate. However, a spot instance is excess virtual machine capacity that AWS
has available that can be bid on to provide additional capacity to an application. Spot instances
can be up to 90% cheaper than an equivalent on-demand instance, but are not guaranteed to be
available. However, if AWS projects it will need the additional capacity that is currently being
utilized by spot instances, AWS can send a ‘recall’ notification which gives the application 120
seconds to appropriately adjust to the forced reclamation of those resources.

The choice of which instance type, on-demand instances versus spot instances, is most ap-
propriate for a particular application is non-trivial and subject to change depending on conditions
in the organization and the environment. For example, it is common for a web system to have an
inter-day seasonality to its traffic demand, a scale up in the morning in the local geography and
a scale down in the evening. It might be cost effective to handle this scaling with spot instances.
However, if the capacity is ‘recalled’ then the application might not have the capacity available
to meet the demand and fail to meet its quality objectives. Conversely, a solution that uses on-
demand instances might become economically challenged in response to sudden and transient
spikes in traffic demand.

An application can also leverage multiple cloud native AWS services. Cloud native services
are managed services which means that it will service the needs of multiple AWS customers on
the same underlying infrastructure. As a consequence, while these services can be an autonomic
subsystem in an application that guarantees multiple QoS objectives related to availability and
performance, the configuration of the autonomic management capabilities is not available to any
individual AWS customer. Therefore, these services are considered a ‘black box’ autonomic
subsystem that cannot be subject to this approach to meta-management. However, some AWS
cloud native services offer additional add-on services to give application greater flexibility in the
autonomic capabilities of the service.

As a relevant example, Amazon DynamoDB is a fully managed large scale columnar data sys-
tem that implements the underlying data storage and retrieval system described in [27]. However,
an additional service complimentary to DynamoDB is available with configurable autonomic ca-
pabilities. Amazon DAX [100] is a caching service that sits in between the application and the
primary DynamoDB instance to store selected data in memory to support fast retrieval use cases.
The DAX cluster is customer specific and some the autonomic capabilities of the cluster are
configurable by the customer. However, while the basic autonomic options are similar (e.g., add
compute instances) there is a different set of architectural concerns in using these mechanisms.

The two configurable properties with potentially significant impact on the ability of the data
services tier to meet the QoS objectives and the overall solution cost are the instance type and the

71

number of instances deployed. For the representative purposes of this exemplar, there are two
relevant instance types, fixed and burstable. A fixed instance type allocates a specific percentage
of a virtual CPU (vCPU). The instance can use up to that allocated capacity, but that capacity
is always available to the application it is allocated for. A burstable instance type establishes a
baseline at a baseline amount. If the application uses less than the baseline then vCPU credits
accrue up to a maximum. However, when the application uses above the baseline the credits are
drawn down. If the burstable instance is configured for standard mode then when your application
is above baseline and no accrued credits are available the system gradually reduces the in-use
compute capacity back to the baseline. If the burstable instance is configured for unlimited mode
the application will be provided all necessary compute capacity which will be billed at the end
of the 24 hour period at a rate higher than the equivalent fixed capacity.

These options differ from the on-demand verses spot instances available in Elastic BeanStalk
because the Amazon DAX application must maintain its state, specifically the cached data, to
be effective. The Elastic Beanstalk autonomic manager has the underlying assumption that the
individual instances can be added and removed to impact capacity without compromising the
functionality of the application itself. However, that assumption is not appropriate for a data-
centic application like Amazon DAX. Therefore, the scaling mechanism is more granular by
dynamically allocating the compute units available to the instances themselves. The stateful
nature of Amazon DAX also influences the choice of the number of instances to deploy.

In a each DAX cluster there is a single primary node which fulfills requests for data, handles
write operations to DynamoDB, and coordinates the actions of the other ‘read replica’ nodes
which are responsible for answering queries and evicting data from the cache. Adding additional
nodes will increase throughput and, consequently, improve the ability of the system to meet
its QoS objectives, but will take time to come online and receive a copy of the cache and will
increase costs. Handling the effects of an adaptation tactic taking time to be effective, referred to
as latency aware adaptation, is beyond the scope of this thesis, see [82], therefore only the effects
of the increased cost and the performance benefit are considered.

Additionally, the database system will have a different seasonality to its traffic load than the
web servers. For example, it is common for enterprises to run large data processing jobs during
night time hours to ensure their load does not interfere with the seasonality of the web traffic.
This leads to the database having a load profile that aligns with the load profile of the web servers
during prime hours, but significantly diverges under the expanded and consistent load for the data
processing jobs. This clear separation in the types of work mean that it is easily predicatable to
choose between the different instance types for the database tier, burstable for the prime web
hours and fixed for the overnight data processing jobs. Therefore, that choice is not considered
as part of this case study. However, that load pattern does provide a second critical choice, the
allocation of available resources. Since the demand for the services from the web tier of the
application are significantly reduced but the demand on the data tier is quite high, it might be
advantageous to the global system to reallocation resources (e.g., monetary budget) from the web
tier to the database tier during the off-peak hours and then reset the resource allocation for the
peak hours. This reallocation of resources, leading to additional database instances, allows the
database tier to more effectively meet its QoS objectives.

72

7.2 Experiment

To evaluate the applicability and effectiveness of using a meta-manager in the context of im-
proving the continuous operations of a web based system on Amazon Web Services (AWS). An
exemplar web based system was established using an open source shopping cart system running
on multiple native AWS services commonly available on the AWS public cloud. Additionally,
a test bench was established that simulates a representative daily traffic load to the front end
web based user interface. A meta-manager was then established to monitor the conditions of
the individual subsystems to discover potential optimizations in the configurations of their au-
tonomic managers with the goal of reducing cost to maintain the quality-of-service objectives.
This section is organized as follows: (1) describes the architecture of the exemplar shopping
cart system, (2) describes the SEAM specification of the meta-manager, (3) the resulting PRISM
model that is used to perform the meta-analysis and meta-strategy synthesis and (4) describes the
load simulation method used to exercise the exemplar system.

Architecture

Figure 7.1: Shopping Cart Exemplar System - Architecture

The exemplar shopping cart system uses the open source AWS Serverless Shopping Cart System
[108] provided by AWS as part of its AWS Samples package and hosted on Github [107] and
augmented with a front end user interface hosted on Amazon EC2 instances managed by Elastic
BeanStalk. Each of these elements and services will be described in detail and organized as (1)
Front End UI, (2) Middle Tier Services, and (3) Data Services.

73

Front End User Interface

The front end user interface consists of three components: (1) the web application, (2) the Ama-
zon EC2 instances, and (3) the Amazon Elastic BeanStalk management service. The front end
user interface consists of an ASP .NET application, v. 4.7.2 which randomly accesses the ser-
vices provided by the middle tier services and is the target of the load testing service to generate
an appropriate user load for experimental purposes.

Amazon EC2 The Amazon Elastic Compute Cloud (EC2) [102] provides the ability to deploy
and manage virtual machines as needed to support the needs of an application. For the purposes
of this exemplar the front end user interface is hosted on Microsoft Windows 2022 Server Base
using the t2.micro instance type. Details of the instance types can be found at [104].

Amazon Elastic BeanStalk The Amazon Elastic BeanStalk service (EBS) [103] manages the
auto scaling capability of Amazon EC2 virtual machine instances and is acting as the autonomic
manager for the Front End UI subsystem in the collection of autonomic systems that compose
the shopping cart system. To manage the auto scaling the service was configured with a single
auto scaling group with the following relevant properties with the described initial configuration:

• Instances: Minimum:1 and Maximum:10
• Fleet Composition: On-demand
• On-Demand Base: 1
• On-Demand above base: 0%
• Capacity Rebalancing: Enabled
The EBS service leverages the capabilities of another AWS service, CloudWatch [98], to

examine the state of the cluster of virtual machine instances and determine if scaling is necessary.
In this case, EBS and CloudWatch, were configured to scale up if the number of requests per
instance exceeded 500 requests per instance.

Middle Tier Services

The middle tier services provide the functionality necessary to perform the activities required
of a shopping cart. For example, a product catalog with the standard CRUD (Create, Retrieve,
Update, and Delete) operations, and similarly, CRUD operations for the shopping cart itself.
To enable this functionality the shopping cart system is composed of four components: (1) the
API gateway, (2) the individual AWS Lambda functions, (3) the identity and access management
(IAM) with Amazon Cognito, and (4) a queuing service with Amazon SQS. However, all of the
AWS services used in the middle tier are managed cloud services meaning that it will service
the needs of multiple AWS customers on the same underlying infrastructure. As a consequence,
while the managed service is an autonomic subsystem that guarantees multiple QoS objectives
related to availability and performance the configuration of the autonomic management capa-
bilities is not available to any individual AWS customer. Therefore, for the purposes of this
exemplar, the middle tier services are considered a ‘black box’ autonomic subsystem that cannot
be subjected to this approach to meta-management.

74

Amazon API Gateway The Amazon API Gateway [97] provides the REST API endpoint
management necessary to service web API interactions at scale. It will manage the intake of the
message, the proper routing of that message, and any response as needed. It serves as the primary
point of contact for the front end UI system.

Amazon Lambda Amazon Lambda [105] is a serverless, event driven compute service that
allows the user to run code for many different types of application or backend service without
having to provision or manage servers. In this exemplar it is used to provide the code that
implements the business logic for the following shopping cart functions:

• Add To Cart
• Update Cart
• List Cart
• Migrate Cart
• Delete From Cart
• Checkout Cart

It also provides the code for a similar set of functions for the ‘Product Service’.

Amazon Cognito Amazon Cognito [99] is an identity and access management (IAM) system.
In this exemplar it is used to ensure the user is authenticated before allowing operations to alter
the cart or confirm the purchase. However, for the purposes of this experiment it is configured
with a single authenticated user with sufficient permissions to perform all necessary actions.

Amazon SQS Queue Amazon Simple Queue Service (SQS) [106] provides the ability to send,
store, and receive messages between different software components. In this exemplar, it is used
to queue interactions for batch processing as a best practice for transactions that remove data
items from the data services provider in this case AWS DynamoDB.

Data Services

The data services tier of the exemplar shopping cart system is implemented on Amazon Dy-
namoDB [101]. Amazon DynamoDB is a fulled managed large scale columnar data system that
implements the underlying data storage and retrieval system described in [27]. While Amazon
Dynamo is a fully managed service with autonomic capabilities that cannot be configured by
customer accounts, an additional service complimentary to DynamoDB is available with config-
urable autonomic capabilities. Amazon DAX [100] is a caching service that sits in between the
application and the primary DynamoDB instance to store selected data in memory to support fast
retrieval use cases. The DAX cluster is customer specific and some the autonomic capabilities of
the cluster are configurable by the customer. The two properties most relevant to this exemplar
and their initial values are:

• Instance Count: 1
• Node Type Family: T-Type (Burstable), T2.Small (Standard)

75

Figure 7.2: Shopping Cart Exemplar System - Idealized Load Profile

For a DAX cluster, the instance type cannot be changed once the cluster is provisioned and
running. To change the instance type, the cluster must be replaced.

Load Simulation

The load for the shopping cart system was artificially generated using the load testing capabilities
of Visual Studio 2019. The load test generates requests that target the front end user interface
of the AWS shopping cart system which, in turn, generates load for the middle tier and database
services. The amount of requests generated varies with time by using random load generation
mechanism that follows a load profile as depicted in figure 7.2.

This load profile mimics a common load pattern for a shopping cart system by simulating a
standard business day running between 6am on one day, hour 1 in figure 7.2, to 6am the next
business day, hour 24 in figure 7.2. For the first 6 hours of the day, between 6am and 12pm, the
load steadily increases and peaks. From 12pm to 6pm the load steadily drop down to a minimum
established level. This pattern is followed for both the front end UI and the database system.
However, while the front end UI maintains a varying but consistent load from 6pm to 6am and is
continuously serviced by the database system, the load on the database system peaks due to the
scheduled nightly data processing jobs that are common in enterprises.

SEAM Specification

The complete SEAM specification for this case study can be found in appendix A, but this sec-
tion will provides details on several key areas including the definitions of global utility, global
knowledge, the environment, the shopping cart system, and the database system.

Global Utility The global utility definition for the shopping cart case study can be found in
listing 7.1. It defines four different utility functions, using predicate statements, depending on

76

the state of the FrontEndUI and Database systems. Specifically, whether the ratio between
the CurrentLoad and CurrentCapacity for each system is current above or below the ideal
target of 0.66 or 66% of total capacity leading to four different possibilities. Each of the utility
functions is a weighted function, commonly used in expected utility [9], that provides equal
weight (0.25 or 25%) to each of four factors: the difference between ideal and current value of
the ratio of current load to current capacity for the ShopCart and Database systems and the
cost for both of those systems as a difference from the MaxCost.

1 {
2 "MetaManager": {
3 "GlobalUtility": [
4 {
5 "Predicate":"(#$.FrontEndUI.CurrentState.CurrentLoad# /

↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) > 0.66 &
↪ (#$.FrontEndUI.CurrentState.CurrentLoad# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ <= 1 & (#$.FrontEndUI.Database.CurrentLoad# /
↪ #$.FrontEndUI.Database.CurrentCapacity#) > 0.66 &
↪ (#$.FrontEndUI.Database.CurrentLoad# / #$.FrontEndUI.Database.CurrentCapacity#) <= 1",

6 "Formula":"0.25 * (1 − (#$.FrontEndUI.CurrentState.CurrentLoad# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) − 0.66) + 0.25 *
↪ ((#$.FrontEndUI.CurrentConfig.MaxCost# − #$.FrontEndUI.CurrentState.CurrentCost#)/
↪ #$.FrontEndUI.CurrentConfig.MaxCost#) + 0.25 * (1 −
↪ (#$.Database.CurrentState.CurrentLoad# / #$.Database.CurrentState.CurrentCapacity#) −
↪ 0.66) + 0.25 * ((#$.Database.CurrentConfig.MaxCost# −
↪ #$.Database.CurrentState.CurrentCost#)/ #$.Database.CurrentConfig.MaxCost#)"

7 },
8 {
9 "Predicate":"(#$.FrontEndUI.CurrentState.CurrentLoad# /

↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) <= 0.66 &
↪ (#$.FrontEndUI.CurrentState.CurrentLoad# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ >= 0 & (#$.FrontEndUI.Database.CurrentLoad# /
↪ #$.FrontEndUI.Database.CurrentCapacity#) <= 0.66 &
↪ (#$.FrontEndUI.Database.CurrentLoad# / #$.FrontEndUI.Database.CurrentCapacity#) >= 0",

10 "Formula":"0.25 * (1 − (0.66 − #$.FrontEndUI.CurrentState.CurrentLoad# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#)) + 0.25 *
↪ ((#$.FrontEndUI.CurrentConfig.MaxCost# − #$.FrontEndUI.CurrentState.CurrentCost#)/
↪ #$.FrontEndUI.CurrentConfig.MaxCost#) + 0.25 * (1 − (0.66 −
↪ (#$.Database.CurrentState.CurrentLoad# / #$.Database.CurrentState.CurrentCapacity#)) +
↪ 0.25 * ((#$.Database.CurrentConfig.MaxCost# − #$.Database.CurrentState.CurrentCost#)/
↪ #$.Database.CurrentConfig.MaxCost#)"

11 },
12 {
13 "Predicate":"(#$.FrontEndUI.CurrentState.CurrentLoad# /

↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) <= 0.66 &
↪ (#$.FrontEndUI.CurrentState.CurrentLoad# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ >= 0 & (#$.FrontEndUI.Database.CurrentLoad# /
↪ #$.FrontEndUI.Database.CurrentCapacity#) > 0.66 &
↪ (#$.FrontEndUI.Database.CurrentLoad# / #$.FrontEndUI.Database.CurrentCapacity#) <= 1",

14 "Formula":"0.25 * (1 − (0.66 − (#$.FrontEndUI.CurrentState.CurrentLoad# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) − 0.66)) + 0.25 *
↪ ((#$.FrontEndUI.CurrentConfig.MaxCost# − #$.FrontEndUI.CurrentState.CurrentCost#)/

77

↪ #$.FrontEndUI.CurrentConfig.MaxCost#) + 0.25 * (1 −
↪ (#$.Database.CurrentState.CurrentLoad# / #$.Database.CurrentState.CurrentCapacity#) −
↪ 0.66) + 0.25 * ((#$.Database.CurrentConfig.MaxCost# −
↪ #$.Database.CurrentState.CurrentCost#)/ #$.Database.CurrentConfig.MaxCost#)"

15 },
16 {
17 "Predicate":"(#$.FrontEndUI.CurrentState.CurrentLoad# /

↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) > 0.66 &
↪ (#$.FrontEndUI.CurrentState.CurrentLoad# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ <= 1 & (#$.FrontEndUI.Database.CurrentLoad# /
↪ #$.FrontEndUI.Database.CurrentCapacity#) <= 0.66 &
↪ (#$.FrontEndUI.Database.CurrentLoad# / #$.FrontEndUI.Database.CurrentCapacity#) >= 0",

18 "Formula":"0.25 * (1 − (#$.FrontEndUI.CurrentState.CurrentLoad# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) − 0.66) + 0.25 *
↪ ((#$.FrontEndUI.CurrentConfig.MaxCost# − #$.FrontEndUI.CurrentState.CurrentCost#)/
↪ #$.FrontEndUI.CurrentConfig.MaxCost#) + 0.25 * (1 − (0.66 −
↪ (#$.Database.CurrentState.CurrentLoad# / #$.Database.CurrentState.CurrentCapacity#)) +
↪ 0.25 * ((#$.Database.CurrentConfig.MaxCost# − #$.Database.CurrentState.CurrentCost#)/
↪ #$.Database.CurrentConfig.MaxCost#)"

19 }
20]
21 }
22 }

Listing 7.1: Shopping Cart Case Study - SEAM Global Utility Specification

Global Knowledge The global knowledge for this case study, in listing 7.2, includes a con-
straint that defines the relationship between the MaxCost properties for the ShopCart and
Database subsystems. Specifically, the total of the systems MaxCost cannot exceed 500. This
does not mean that the individual systems will actually consume up to their MaxCost, just that
the combination cannot exceed that amount. This allows the meta-manager the flexibility to
determine the preferred setting for the MaxCost for each system.

1 "GlobalKnowledge": [
2 {
3 "Relation":
4 {
5 "Type":"Constraint",
6 "Predicate":"#$.Database.CurrentConfig.MaxCost# = 500 − #$.FrontEndUI.CurrentConfig.MaxCost#"
7 }
8 }
9]

Listing 7.2: Shopping Cart Case Study - SEAM Global Knowledge Specification

Environment The complete definition for the environment can be seen in appendix A, but
listing 7.3 presents the adaptation policy for the Environment. The first adaptation policy ap-
plies for the first 6 hours of the day (e.g., 6am to 12pm) in which the environment impacts the

78

CurrentLoad on CurrentState the ShopCart subsystem which also sets the CurrentLoad
on the Database subsystem. The CurrentLoad for the ShopCart system is set using an asym-
metric Gaussian Distribution which is ‘right skewed’. This models the increase load on the web
system during this period of the day. Conversely, the second adaptation policy represents the
second six hour period of the day and defines a ‘left skew’ asymmetric Gaussian distribution for
the CurrentLoad of both systems as the load on the web system drops through the end of the
peak hours. The third and fourth policies define the CurrentLoad for the third and fourth six
hour periods in which there is a fixed load on the database system in addition to the reduced but
still active load due to the CurrentLoad on the FrontEndUI which is specified using a normal
Gaussian distribution.

1 "Environment": {
2 "AdaptationPolicies": [
3 {
4 "ConfigPredicate":"#$.Global.CurrentState.HourOfDay# <= 6",
5 "Behaviors": [
6 {
7 "StatePredicate":"",
8 "ResultState":"#$.FrontEndUI.CurrentState.CurrentLoad# =

↪ AGGD(#$.FrontEndUI.CurrentState.CurrentLoad#, 3, 1, −0.5) &
↪ #$.Database.CurrentState.CurrentLoad# = #$.FrontEndUI.CurrentState.CurrentLoad#"

9 }
10]
11 },
12 {
13 "ConfigPredicate":"#$.Global.CurrentState.HourOfDay# > 6 & #$.Global.CurrentState.HourOfDay# <=

↪ 12",
14 "Behaviors": [
15 {
16 "StatePredicate":"",
17 "ResultState":"#$.FrontEndUI.CurrentState.CurrentLoad# =

↪ AGGD(#$.FrontEndUI.CurrentState.CurrentLoad#, 1, 3, 0.5) &
↪ #$.Database.CurrentState.CurrentLoad# = #$.FrontEndUI.CurrentState.CurrentLoad#"

18 }
19]
20 },
21 {
22 "ConfigPredicate":"#$.Global.CurrentState.HourOfDay# > 12 & #$.Global.CurrentState.HourOfDay# <=

↪ 18",
23 "Behaviors": [
24 {
25 "StatePredicate":"",
26 "ResultState":"#$.FrontEndUI.CurrentState.CurrentLoad# =

↪ N(#$.FrontEndUI.CurrentState.CurrentLoad#, 0.2) &
↪ #$.Database.CurrentState.CurrentLoad# = 150 + #$.FrontEndUI.CurrentState.CurrentLoad#"

27 }
28]
29 },
30 {
31 "ConfigPredicate":"#$.Global.CurrentState.HourOfDay# > 18 & #$.Global.CurrentState.HourOfDay# <=

79

↪ 24",
32 "Behaviors": [
33 {
34 "StatePredicate":"",
35 "ResultState":"#$.FrontEndUI.CurrentState.CurrentLoad# =

↪ N(#$.FrontEndUI.CurrentState.CurrentLoad#, 0.2) &
↪ #$.Database.CurrentState.CurrentLoad# = 150 + #$.FrontEndUI.CurrentState.CurrentLoad#"

36 }
37]
38 }
39]
40 }

Listing 7.3: Shopping Cart Case Study - SEAM Environment Specification

Front End UI The complete specification of the FrontEndUI can be found in appendix A,
however, the definition of the two adaptation policies are presented in listing 7.4. The first adap-
tation policy defines the autonomic behaviors of the subsystem when the ‘on-demand’ instance
type is being used, ($.F rontEndUI.Configuration.InstanceType = 0). The first entry spec-
ifies that the adaptation manager will add capacity, CurrentCapacity, and cost, CurrentCost,
when the ratio between CurrentLoad and CurrentCapacity is above 0.75 or 75%. The second
specifies the behavior of the subsystem when the ratio is less then 0.5 or 50% when it removes
capacity and cost. The third specifies that nothing happens when the ratio is between 0.5 or
50% and 0.75 or 75%. Finally, when an adaptation is made, either adding or removing capacity,
there is a ‘cooldown’ period in which no additional adaptation can be made. This is a limita-
tion of the underlying AWS ELB infrastructure. The fourth behavior defines that forced lack of
adaptive behavior. The second adaption policy is for the case when ‘spot’ instances are used
($.F rontEndUI.Configuration.InstanceType = 1) and is similar to the first with two key
differences The first is the cost of adding a ‘spot’ instance is 90% less than the ‘on-demand’
instance and, second, the availability of a ‘spot’ instance is not guaranteed so there is an explicit
probability definition in which the capacity provided by a ‘spot’ instance is available 80% of the
time.

1 "FrontEndUI": {
2 "AdaptationPolicies": [
3 {
4 "ConfigPredicate":"#$.FrontEndUI.Configuration.InstanceType# = 0",
5 "Behaviors": [
6 {
7 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ >= 0.75",

8 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity# + 10 &
↪ #$.FrontEndUI.CurrentState.CurrentCost# = #$.FrontEndUI.CurrentState.CurrentCost# + 10
↪ & #$.FrontEndUI.CurrentState.AdaptDelay# = 3"

9 },
10 {

80

11 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &
↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ <= 0.50",

12 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity# − 10 &
↪ #$.FrontEndUI.CurrentState.CurrentCost# = #$.FrontEndUI.CurrentState.CurrentCost# − 10
↪ & #$.FrontEndUI.CurrentState.AdaptDelay# = 3"

13 },
14 {
15 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ > 0.50 & (#$.FrontEndUI.CurrentState.CurrentCost# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) < 0.75",

16 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#"

17 },
18 {
19 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# > 0",
20 "ResultState":"#$.FrontEndUI.CurrentState.AdaptDelay# =

↪ #$.FrontEndUI.CurrentState.AdaptDelay# − 1"
21 }
22]
23 },
24 {
25 "ConfigPredicate":"#$.FrontEndUI.Configuration.InstanceType# = 1",
26 "Behaviors": [
27 {
28 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ >= 0.75",

29 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ [0.2|0,0.8|#$.FrontEndUI.CurrentState.CurrentCapacity# + 10] &
↪ #$.FrontEndUI.CurrentState.CurrentCost# = #$.FrontEndUI.CurrentState.CurrentCost# + 1
↪ & #$.FrontEndUI.CurrentState.AdaptDelay# = 3"

30 },
31 {
32 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ <= 0.50",

33 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity# − 10 &
↪ #$.FrontEndUI.CurrentState.CurrentCost# = #$.FrontEndUI.CurrentState.CurrentCost# − 1
↪ & #$.FrontEndUI.CurrentState.AdaptDelay# = 3"

34 },
35 {
36 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ > 0.50 & (#$.FrontEndUI.CurrentState.CurrentCost# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) < 0.75",

37 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#"

38 },

81

39 {
40 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# > 0",
41 "ResultState":"#$.FrontEndUI.CurrentState.AdaptDelay# =

↪ #$.FrontEndUI.CurrentState.AdaptDelay# − 1"
42 }
43]
44 }
45]
46 }

Listing 7.4: Shopping Cart Case Study - SEAM Front End UI Specification

Database The complete specification for the Database system is available in appendix A, but
listing 7.5 presents the three adaptation policies for Database subsystem. The first adaptation
policy applies for all the hours of the day excluding 12 and 24 and defines the scaling policies
for the Database subsystem. The first behavior adds capacity and cost when the ratio between
the CurrentLoad and CurrentCapacity is above 0.75 or 75%. The second behavior removes
capacity and cost when the ratio between CurrentLoad and CurrentCapacity is below 0.5
or 50%. The third behavior specifies no adaptive action when the ratio is between 0.5, 50%,
and 0.75 or 75%. The second adaptation policy specifies the scheduled adaptation of scaling up
the capacity of the database in advance of the expected load due to due the nightly processing
of data jobs. The third adaptation policy specifies the scheduled adaptation of removing the
capacity required for the processing of data jobs.

1 "Database": {
2 "AdaptationPolicies": [
3 {
4 "ConfigPredicate":"#$.MetaManager.CurrentState.HourOfDay# != 12 &

↪ #$.MetaManager.CurrentState.HourOfDay# != 1",
5 "Behaviors": [
6 {
7 "StatePredicate":"(#$.Database.CurrentState.CurrentCost# /

↪ #$.Database.CurrentState.CurrentCapacity#) >= 0.75 &
↪ (#$.Database.CurrentState.CurrentCost# < #$.Database.Configuration.MaxCost#) + 10",

8 "ResultState":"#$.Database.CurrentState.CurrentCost# = #$.Database.CurrentState.CurrentCost# +
↪ 10 & #$.Database.CurrentState.CurrentCapacity# =
↪ #$.Database.CurrentState.CurrentCapacity# + 10"

9 },
10 {
11 "StatePredicate":"(#$.Database.CurrentState.CurrentCost# /

↪ #$.Database.CurrentState.CurrentCapacity#) <= 0.50 &
↪ (#$.Database.CurrentState.CurrentCost# < #$.Database.Configuration.MaxCost#) + 10",

12 "ResultState":"#$.Database.CurrentState.CurrentCapacity# =
↪ #$.Database.CurrentState.CurrentCapacity# − 10 & #$.Database.CurrentState.CurrentCost#
↪ = #$.Database.CurrentState.CurrentCost# − 10"

13 },
14 {
15 "StatePredicate":"(#$.Database.CurrentState.CurrentCost# /

↪ #$.Database.CurrentState.CurrentCapacity#) > 0.50 &

82

↪ (#$.Database.CurrentState.CurrentCost# / #$.Database.CurrentState.CurrentCapacity#) <
↪ 0.75",

16 "ResultState":"#$.Database.CurrentState.CurrentCapacity# =
↪ #$.Database.CurrentState.CurrentCapacity#"

17 }
18]
19 },
20 {
21 "ConfigPredicate":"#$.MetaManager.CurrentState.HourOfDay# = 12",
22 "Behaviors": [
23 {
24 "StatePredicate":"",
25 "ResultState":"#$.Database.CurrentState.CurrentCapacity# = 200 &

↪ #$.Database.CurrentState.CurrentCost# = 200"
26 }
27]
28 },
29 {
30 "ConfigPredicate":"#$.MetaManager.CurrentState.HourOfDay# = 1",
31 "Behaviors": [
32 {
33 "StatePredicate":"",
34 "ResultState":"#$.Database.CurrentState.CurrentCapacity# =

↪ #$.FrontEndUI.CurrentState.CurrentCapacity# & #$.Database.CurrentState.CurrentCost# =
↪ #$.FrontEndUI.CurrentState.CurrentCost#"

35 }
36]
37 }
38]
39 }

Listing 7.5: Shopping Cart Case Study - SEAM Database Specification

PRISM Model

The model generated by the meta-manager for strategy synthesis is defined as a discrete time
Markov chain (DTMC) that is implemented in PRISM [73] v.4.8. The meta-manager uses this
model to run different Monte Carlo simulations, referred to as simulations in PRISM, each of
which has a different set of parameters configured. To facilitate the strategy synthesis, the PRISM
model must be updated by the meta-manager ahead of each run of simulations to provide the
current state of the autonomic subsystems. A complete specification of the PRISM model with
initial values can be found in appendix B, however, elements of the specifications of the global
utility and properties, the environment, the front end UI, and the database, and the meta-manager
will be presented here.

Global Utility and Properties The global utility definition of the PRISM model is presented
in listing 7.6 and contains the definition of four similar utility functions that align to the SEAM
specification of the utility functions presented in listing 7.1. The utility functions are weighted

83

functions, each factor with an equal 0.25 or 25% weighting with two factors for each subsystem,
FrontEndUI and Database. The first factor is the percentage difference from the ideal value,
0.66 or 66%, for the ratio of CurrentLoad to CurrentCapacity. The further away from 0.66
the ratio of CurrentLoad to CurrentCost is the lower the utility score. The second factor for
each subsystem is the percentage difference away from the MaxCost. The further away the
actual value is from MaxCost the higher the utility score.

1
2 rewards "GlobalUtility"
3 ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) > 0.66) & ((FrontEndUI_CurrentLoad /

↪ FrontEndUI_CurrentCapacity) <= 1) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) > 0.66) & ((Database_CurrentLoad / Database_CurrentCapacity)
↪ <= 1):

4 (0.25 * (1 − ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) −0.66))) + (0.25 *
↪ ((MetaManager_FrontEndUI_Config_MaxCost − FrontEndUI_CurrentCost) /
↪ MetaManager_FrontEndUI_Config_MaxCost)) + (0.25 * (1 − ((Database_CurrentLoad /
↪ Database_CurrentCapacity) −0.66))) + (0.25 * ((MetaManager_Database_Config_MaxCost −
↪ Database_CurrentCost) / MetaManager_Database_Config_MaxCost));

5
6
7 ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) <= 0.66) & ((FrontEndUI_CurrentLoad /

↪ FrontEndUI_CurrentCapacity) >= 0) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) <= 0.66) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) >= 0):

8 (0.25 * (1 − (0.66 − (FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity)))) + (0.25 *
↪ ((MetaManager_FrontEndUI_Config_MaxCost − FrontEndUI_CurrentCost) /
↪ MetaManager_FrontEndUI_Config_MaxCost))+ (0.25 * (1 − (0.66 −
↪ (Database_CurrentLoad / Database_CurrentCapacity)))) + (0.25 *
↪ ((MetaManager_Database_Config_MaxCost − Database_CurrentCost) /
↪ MetaManager_Database_Config_MaxCost));

9
10 ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) <= 0.66) & ((FrontEndUI_CurrentLoad /

↪ FrontEndUI_CurrentCapacity) >= 0) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) > 0.66) & ((Database_CurrentLoad / Database_CurrentCapacity)
↪ <= 1):

11 (0.25 * (1 − (0.66 − (FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity)))) + (0.25 *
↪ ((MetaManager_FrontEndUI_Config_MaxCost − FrontEndUI_CurrentCost) /
↪ MetaManager_FrontEndUI_Config_MaxCost)) + (0.25 * (1 − ((Database_CurrentLoad /
↪ Database_CurrentCapacity) −0.66))) + (0.25 * ((MetaManager_Database_Config_MaxCost −
↪ Database_CurrentCost) / MetaManager_Database_Config_MaxCost));

12
13 ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) > 0.66) & ((FrontEndUI_CurrentLoad /

↪ FrontEndUI_CurrentCapacity) <= 1) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) <= 0.66) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) >= 0):

14 (0.25 * (1 − ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) −0.66))) + (0.25 *
↪ ((MetaManager_FrontEndUI_Config_MaxCost − FrontEndUI_CurrentCost) /
↪ MetaManager_FrontEndUI_Config_MaxCost)) + (0.25 * (1 − (0.66 −
↪ (Database_CurrentLoad / Database_CurrentCapacity)))) + (0.25 *
↪ ((MetaManager_Database_Config_MaxCost − Database_CurrentCost) /
↪ MetaManager_Database_Config_MaxCost));

84

15 endrewards

Listing 7.6: Shopping Cart Case Study - PRISM Global Utilities Specification

For each simulation PRISM must have an objective to which each individual run can converge
towards. This objective is expressed in PRISM’s property specification language which includes
several well-known probabilistic temporal logics including PCTL [6, 7] which is used for spec-
ifying the objective in DTMCs and listing 7.7 presents the property used for meta-management.
Specifically, it instructs PRISM to to maximize the GlobalUtility of the model along all paths
in which MODEL_Sink is true. The meta-manager constructs the model in such a manner that
MODEL_Sink is set to true to end all paths of the model.

1 R{"GlobalUtility"}max=? [F MODEL_Sink]

Listing 7.7: Shopping Cart Case Study - PRISM Global Utilities Specification

Environment The PRISM model generated for the environment contains four behaviors cor-
responding to the four behaviors defined in the SEAM specification in listing 7.3 and the full
PRISM specification for the environment can be found in appendix B, but two specific behaviors
will be presented here. The first represents the behavior of the environment between hours 1
and 6 of the day and is the result of the specification of a ‘right skew’ asymmetric generalized
Gaussian distribution (AGGD) and is presented in listing 7.8.

1 [] (MODEL_TurnCount < MODEL_MaxTurns) & (MODEL_Turn = ENVMNT_Turn) &
↪ (MetaManager_HourOfDay <= 6) −>

2 0.10 : (FrontEndUI_CurrentLoad’ = FrontEndUI_CurrentLoad) & (Database_CurrentLoad’ =
↪ Database_CurrentLoad) & (MODEL_Turn’ = FrontEndUI_Turn) & (MODEL_TurnCount’ =
↪ MODEL_TurnCount + 1)

3 + 0.55 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_2) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_2) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

4 + 0.08 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_2) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_2) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

5 + 0.25 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_5) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_5) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

6 + 0.02 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_5) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_5) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1);

Listing 7.8: Shopping Cart Case Study - PRISM Environment Specification - Behavior 1

The probabilities that define the likelihood of each given action are generated by the meta-
manager from the definition of the AGGD in the behavior specified in the SEAM definition.
As there are potentially an infinite number of potential values, the meta-manager has a config-
uration option on how many options to calculate on either side of the mean. In this case the

85

meta-manager was configured to determine the probabilities for two points on either side of the
mean at 2 and 5 units away from the defined mean. The net effect of this behavior is that the
CurrentLoad of the FrontEndUI and Database trend to being steadily increased, with poten-
tial upward and downward spikes, for hours 1 to 6 of the defined day.

Similarly, the third behavior of the Environment, presented in listing 7.9, defines the be-
havior of the environment in hours 13 to 18. This behavior is the result of the normal Gaussian
distribution specified in the SEAM definition of the environment presented in listing 7.3. The
net effect of this behavior is that the CurrentLoad on both the FronEndUI and Database
fluctuate around the mean value. This behavior also introduces the consistent load due to the
Database subsystem due to the nightly run of data processing jobs.

1 [] (MODEL_TurnCount < MODEL_MaxTurns) & (MODEL_Turn = ENVMNT_Turn) &
↪ (MetaManager_HourOfDay > 12) & (MetaManager_HourOfDay <= 18) −>

2 0.70 : (FrontEndUI_CurrentLoad’ = FrontEndUI_CurrentLoad) & (Database_CurrentLoad’ = 150 +
↪ FrontEndUI_CurrentLoad) & (MODEL_Turn’ = FrontEndUI_Turn) &
↪ (MODEL_TurnCount’ = MODEL_TurnCount + 1)

3 + 0.10 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_2) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

4 + 0.10 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_2) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

5 + 0.05 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_5) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

6 + 0.05 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_5) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1);

Listing 7.9: Shopping Cart Case Study - PRISM Environment Specification - Behavior 3

Front End UI The PRISM specification for the FrontEndUI contains eight defined behav-
iors which correspond to the eight behaviors defined in the SEAM specification presented in
listing 7.4 and the full specification can be found in appendix B, but the same two behaviors for
different settings of the autonomic subsystem configuration will be presented here. The first set of
behaviors, presented in listing 7.10, defines the adaptive behavior of the FrontEndUI when the
CurrentLoad is greater than 0.75, or 75%, of the CurrentCapacity, which triggers a scale up,
and below 0.50, or 50%, which triggers a scale down. In both cases, the InstanceType = 0 which
represents an ‘on-demand’ AWS instance and adds or removes ten units to both CurrentCost
and CurrentCapacity.

1 //FrontEndUI − Behavior 1
2 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &

↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) >= 0.75) &
↪ (FrontEndUI_Config_InstanceType = 0) −>

86

3 1: (FrontEndUI_CurrentCapacity’ = FrontEndUI_Formula_CurrentCapacity_Upper_10) &
↪ (FrontEndUI_CurrentCost’ = FrontEndUI_Formula_CurrentCost_Upper_10) &
↪ (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = 3);

4
5 //FrontEndUI − Behavior 2
6 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &

↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) <= 0.50) &
↪ (FrontEndUI_Config_InstanceType = 0) −>

7 1: (FrontEndUI_CurrentCapacity’ = FrontEndUI_Formula_CurrentCapacity_Lower_10) &
↪ (FrontEndUI_CurrentCost’ = FrontEndUI_Formula_CurrentCost_Lower_10) &
↪ (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = 3);

Listing 7.10: Shopping Cart Case Study - PRISM FrontEndUI Specification - Behaviors 1 & 2

The second set of behaviors, presented in listing 7.11, also defines the adaptive behav-
ior of the FrontEndUI under the same conditions for the ratio between CurrentLoad and
CurrentCapacity. However, the InstanceType = 1 represents the AWS ‘spot’ instances which
adds one unit to cost and ten units to capacity, representing a 90% dicount on ‘spot’ instances.
However, the behavior also defines the probability of the actually being able to acquire a ‘spot’
instance at 0.8 or 80% with a 0.20 or 20% chance of being unable to acquire one. This is a result
of the explicit probability definition in the SEAM specification for this behavior presented in
listing 7.4.

1 //FrontEndUI − Behavior 5
2 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &

↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) >= 0.75) &
↪ (FrontEndUI_Config_InstanceType = 1) −>

3 0.80: (FrontEndUI_CurrentCapacity’ = FrontEndUI_Formula_CurrentCapacity_Upper_10) &
↪ (FrontEndUI_CurrentCost’ = FrontEndUI_Formula_CurrentCost_Upper_1) &
↪ (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = 3)

4 + 0.20: (FrontEndUI_CurrentCapacity’ = FrontEndUI_CurrentCapacity) & (FrontEndUI_CurrentCost’ =
↪ FrontEndUI_CurrentCost) & (MODEL_Turn’ = Database_Turn) &
↪ (FrontEndUI_AdaptDelay’ = 3);

5
6 //FrontEndUI − Behavior 6
7 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &

↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) <= 0.50) &
↪ (FrontEndUI_Config_InstanceType = 1) −>

8 1: (FrontEndUI_CurrentCapacity’ = FrontEndUI_Formula_CurrentCapacity_Lower_10) &
↪ (FrontEndUI_CurrentCost’ = FrontEndUI_Formula_CurrentCost_Lower_1) &
↪ (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = 3);

Listing 7.11: Shopping Cart Case Study - PRISM FrontEndUI Specification - Behaviors 5 & 6

Database The PRISM definition for the Database contains five defined behaviors which cor-
respond to the behaviors defined in the SEAM specification presented in listing 7.5 and the full
specification can be found in appendix B, but two set of behaviors are presented here. Simi-
lar to the FrontEndUI , the first set of behaviors presented in listing 7.12, define the behav-
ior of the database for when the hour of the day is not 1 or 12 and add or remove capacity

87

and cost to CurrentCapacity and CurrentCost depending on the ratio of CurrentLoad to
CurrentCapacity being greater than 0.75 or 75% or below 0.50 or 50%.

1 //Database − Behavior 1
2 [] (!MODEL_Sink) & (MODEL_Turn = Database_Turn) & (MetaManager_HourOfDay != 12) &

↪ (MetaManager_HourOfDay != 1) & ((Database_CurrentLoad / Database_CurrentCapacity)
↪ >= 0.75) & (Database_CurrentCost < Database_Formula_CurrentCost_Upper_10)−>

3 1: (Database_CurrentCapacity’ = Database_Formula_CurrentCapacity_Upper_10) & (Database_CurrentCost’ =
↪ Database_Formula_CurrentCost_Upper_10) & (MODEL_Turn’ = MetaManager_Turn);

4
5 //Database − Behavior 2
6 [] (!MODEL_Sink) & (MODEL_Turn = Database_Turn) & (MetaManager_HourOfDay != 12) &

↪ (MetaManager_HourOfDay != 1) & ((Database_CurrentLoad / Database_CurrentCapacity)
↪ <= 0.50) & (Database_CurrentCost < Database_Formula_CurrentCost_Upper_10) −>

7 1: (Database_CurrentCapacity’ = Database_Formula_CurrentCapacity_Lower_10) & (Database_CurrentCost’ =
↪ Database_Formula_CurrentCost_Lower_10) & (MODEL_Turn’ = MetaManager_Turn);

Listing 7.12: Shopping Cart Case Study - PRISM Database Specification - Behaviors 1 & 2

The second set of behaviors, presented in listing 7.13, define the autonomic behavior of the
Database when the hour of the day is either 1 or 12. In hour 12, the Database preemptively
adds 200 units of capacity in advance of the nightly database processing jobs. In hour 1, the
Database subsystem resets the capacity of the Database system to be back in-line with the load
on the FrontEndUI .

1 //Database − Behavior 4
2 [] (!MODEL_Sink) & (MODEL_Turn = Database_Turn) & (MetaManager_HourOfDay = 12) −>

↪ (Database_CurrentCapacity’ = 200) & (Database_CurrentCost’ = 200) & (MODEL_Turn’ =
↪ MetaManager_Turn);

3
4 //Database − Behavior 5
5 [] (!MODEL_Sink) & (MODEL_Turn = Database_Turn) & (MetaManager_HourOfDay = 1) −>

↪ (Database_CurrentCapacity’ = FrontEndUI_CurrentCapacity) & (Database_CurrentCost’ =
↪ FrontEndUI_CurrentCost) & (MODEL_Turn’ = MetaManager_Turn);

Listing 7.13: Shopping Cart Case Study - PRISM Database Specification - Behaviors 4 & 5

Meta-Manager The full PRSIM definition of the MetaManager module can be found in
appendix B, but for a DTMC in PRISM the module principally provides model administration
and control functions. However, as presented in listing 7.14 the MetaManager module does
define the global knowledge presented in the SEAM specification in listing 7.2.

1 const int MetaManager_Database_Config_MaxCost = 500 − MetaManager_FrontEndUI_Config_MaxCost;

Listing 7.14: Shopping Cart Case Study - PRISM Meta-Manager Specification - Global
Knowledge

88

((a)) Front End UI ((b)) Database

Figure 7.3: AWS Shopping Cart - Baseline Results

7.3 Results

Baseline

The baseline results, presented in figure 7.3, were established by applying load to the config-
ured FrontEndUI and Database ElasticBeanStalk (EBS) applications over a period of 96 minutes
in which each 1 minute of the simulation represents 15 minutes in the daily cycle of the AWS
Shopping Cart scenario presented earlier. Therefore, the simulation is composed of 24 cycles
each representing an hour of the scenario and each cycle is divided into 4 intervals, each rep-
resenting 15 minutes of the simulated hour. For the first 6 cycles the load is steadily increases
on the front end UI which makes a query to the database system and returns the results of the
request resulting in a peak of 4375 requests per minute. Over the next 6 cycles the lead steadily
decreases. At cycle 13, the load between the two systems diverges as a specific load is applied
to the database system, representing the nightly data processing jobs, which remains consistent
through hour 24. Both of the systems add additional service capacity in correlation with the load
on the system up to their default configured maximum of 10 instances and both the FrontEndUI
and Database systems use on-demand instances exclusively.

As mentioned previously, this case study was selected to demonstrate the effectiveness of
the meta-manager in improving the homeostatic operations of the AWS Shopping Cart system.
These baseline results establish the utility generated by the collection of autonomic systems
without the use of the meta-manager. The experimental results, presented next, establish the
utility generated by the collection of autonomic system with the use of the meta-manager.

Experimental

The experimental results, presented in figure 7.4, were established by applying the same load
profile to the same configured FrontEndUI and Database ElasticBeanStalk (EBS) applications
in the same manner as the baseline results with the principal difference being that in this run, the

89

((a)) Front End UI ((b)) Database

Figure 7.4: AWS Shopping Cart - Experiment Results

systems were also under the control of a meta-manager configured as described in section 7.2
with a 4 hour time horizon.

The behavior of the FrontEndUI system is presented in figure 7.4(a) shows a different pattern
of behavior than the baseline results. Specifically, at hour 2 (time steps 8-12) the meta-manager
performs an analysis and determines that the global utility of the collection of autonomic systems
is maximized, specifically at 125.118 in figure 7.5(a), by the use of AWS spot instances with a
balanced set of resources set at 250 for each system. Hence, the FrontEndUI starts the load
cycle using AWS spot instances. However, at hour 4 (time steps 16-20) the meta-manager reruns
the analysis and finds that the utility is maximized, specifically at 150.819 in figure 7.5(b), using
AWS on-demand instances with a balanced set of resources at 250 for each system. This change
causes the EBS manager to begin to swap out the spot instances for on-demand instances which
causes the temporary drop in the number of instances. Then at hour 10 (time steps 40-44) the
meta-manager determines that the utility is maximized, specifically at 86.982 in figure 7.5(c),
by using spot instances for the FrontEndUI system and changing the balance of the resources
from even to 200 for the FrontEndUI and 300 for the Database system. This results in the
meta-manager changing the maximum number of instances for the FrontEndUI from 10 to 6
and from 10 to 14 for the Database system in the EBS configurations.

The change in available resources for the Database system, specifically the change of the
maximum number of available instances from 10 to 14, causes the behavior of the system to
deviate from the baseline behavior. Specifically, the Database system scales up the number of
instances in use to 13 of the available 14 to ensure it has the capacity to handle the additional
load placed on it from hours 12 - 24 (time steps 48-96). Each run of the simulation for the
meta-manager takes between 22 and 49 seconds.

To determine the effectiveness of the meta-manager in improving the homeostatic operations
of the AWS Shopping Cart test system, the global utility of the system for both the baseline
and experimental test runs was compared and presented in figure 7.6(a). It shows that the meta-
manager maintains a modest increase in utility for the first 12 hours (48 time steps) of the daily
cycle. Examination of the components that make up the global utility, presented in figures 7.6(b-
e), show that the improvement in the global utility during that period is due, principally, to the

90

((a)) Meta-Manager Analysis Hour = 2 ((b)) Meta-Manager Analysis Hour = 4

((c)) Meta-Manager Analysis Hour = 10

Figure 7.5: AWS Shopping Cart - Meta-Manager Analysis

improvement in the cost to operate the system due to the use of spot instances for a portion of the
daily load, see figure 7.6(c). This results in an improvement in the cumulative (integral) utility
score of 29.3 to 42.4, a 44% improvement.

However, for the second 12 hour period (time steps 49-96) there are additional improvements
in the global utility score due to the ability of the Database system to stand up additional in-
stances, as presented in figure 7.6(d). This results in an improvement in the cumulative (integral)
utility score of 66.4 to 82.2, a 23.8% improvement.

These improvements in the cost utility of the FrontEndUI system and the capacity utility
of the Database system contribute to the improvement of the overall global utility score from
49.6 to 57.7, a 16% improvement.

91

((a)) Total Utility

((b)) Front End UI Capacity Utility ((c)) Front End UI Cost Utility

((d)) Database Capacity Utility ((e)) Database UI Cost Utility

Figure 7.6: AWS Shopping Cart - Experiment Results

92

Chapter 8

Case Study: Google Control Plane

The Google Control Plane case study is based upon an actual incident documented by Google
in [46] in which the system that processes changes in the networking configuration for Google
Cloud customers failed. The complete information on the validity and selection of this case study
can be found in section 1.2. However, this case study was selected because it presented a well
documented and specific failure scenario that occurred during the period of the research of this
thesis the cause of which was, partially, a result of human-centric management of a collection of
autonomic systems.

8.1 Background & Context
On June 2, 2019, Google Cloud Platform (GCP) experienced a major outage in its scope, du-
ration, and impact [52]. The outage caused network packet loss, up to 100%, resulting in an
inability to access critical services for over 4 hours and caused a significant degradation of ser-
vices for major websites including youtube.com, Gmail, GSuite, Nest, Snap, Discord, and Vimeo
[112]. This section will detail, to the extent possible given publically available information, the
architectural components and requirements of the system determined to be the root cause, how
the outage progressed, the critical events during the remediation process, and a review of the
preventive actions that resulted from Google’s own post-mortem analysis.

Architecture

As is common with cloud providers, each customer has the ability to setup and customize a pri-
vate networking space, known as an autonomous system (AS) or more commonly as a virtual
private cloud (VPC) [118], for their application. Due to the high degree of customization avail-
able, changes in the networking configuration of these VPCs are commonplace which mandates
that a system is continuously processing these changes and making the relevant updates to the
configuration of the physical networking hardware. This system is referred to as the network
control plane.

While the technical details of the network control plane are not publicly available, figure
8.1 presents what is believed to be a high-level and functionally accurate representation of the

93

Job Queue

Svr 1 Svr N Svr 1 Svr N Svr 1 Svr N

Manager Manager Manager

...

Maintenance Manager

Data Center 1 Data Center 2

Network Control Plane

Config Router 1 Router N... Router 1 Router N...

AS1 AS2 AS3 AS4 AS5 AS6 AS7

Data Center 2Data Center 1

Customer Platform
Internet

Figure 8.1: GCP Control Plane Architecture

system based on the information provided in the outage details in [52]. The network control plane
consists of a set of autonomous clusters composed of individual nodes and managed by cluster
management software that enables various cluster control functions, like auto-scaling. Each of
the nodes will process jobs to update the network configuration as needed. The exact mechanism
behind this is unknown, but it has been represented as a queue. It would not be expected for this
queueing system to be dedicated to the network control plane, but instead is an enterprise wide
platform serving multiple applications.

These individual clusters are run under a specific GCP service known as Google Compute
Engine [51, 112] which leads to the belief that the nodes are individual virtual machines. These
clusters are distributed throughout various regions and availability zones to ensure a highly avail-
able and responsive network control plane. When the network control plane finishes processing
a job, the new network configuration is distributed to the relevant networking equipment to en-
able proper packet routing to the individual autonomous systems. Due to the expectations of
customers and the criticality of changes in network configuration, the network control plane is
constantly processing jobs maintaining very low processing time, anecdotally less than 5 sec-
onds.

When maintenance of the network control plane is required, the maintenance system will
either move jobs from one individual cluster to another or stop the processing of jobs and resume
it after the maintenance on the cluster has been completed. In similar situations, maintenance is
typically done in a ‘rolling’ fashion which allows one cluster to be under maintenance while oth-
ers continue processing jobs, a strategy that prevents an interruption and degredation of service.
Further, in the event of a failure of the entire network control plane, the physical network is setup
to be ‘fail static’, meaning that the network will continue to run normally on the current known
good configuration for a period of time to allow administrators to resolve the problem.

Outage Details

The GCP outage was the result of two misconfigurations and a software defect. Specifically, the
network control plane jobs and their infrastructure were included in a specific type of automated
maintenance event, the instances of the cluster management software were also included in the
maintenance event type, and finally, the maintenance software had a defect allowing it to de-
schedule multiple independent software clusters at once, even if they were in different physical
locations.

94

At 11:45 US/Pacific the maintenance event started and began to shutdown the clusters running
the network control plane jobs. Once the network control plane failed, the physical network
continued to operate normally for a few minutes. After this, the routing configuration was invalid
resulting in significant packet loss, up to 100%, and end users began to be impacted between
11:47-11:49 US/Pacific. The Google engineers were alerted to the networking failures 2 minutes
after it began and started their incident management protocols.

Troubleshooting of the failure was significantly hampered by severe network congestion
caused by all of the consumers of GCP services which triggered the engineering team to begin
another set of incident management protocols to mitigate the tool failures. Specifically, engineers
had to travel to the physical data centers and reprioritize network traffic to allow the tooling traf-
fic to take precedence. By 13:01 US/Pacific, the root cause of the incident had been determined
and the engineers began to re-enable the network control plane and its supporting infrastructure.
Due to the length of the outage and the shutdown of the network control plane instances across
different physical locations, the configuration data had been lost and needed to be rebuilt. The
rebuilt configuration for the network control plane began to roll out at 14:03 US/Pacific.

As the network control plane started to come back online, new network configurations began
to roll out and service started to recover at 15:19 US/Pacific and full service was restored at 16:10
US/Pacific.

Post-Mortem Actions

In the wake of the outage, the GCP administrators took a number of short term actions to prevent
an immediate reoccurrence of the problem and a number of planned changes to prevent the prob-
lem from reoccurring in the long term. First, the administrators halted the datacenter automation
software responsible for descheduling jobs for maintenance events. Second, they hardened the
cluster management software to reject requests to de-schedule jobs at multiple physical locations.
Third, the network control plane will be reconfigured to handle the maintenance events correctly
and persist its configuration so that it will not need to be rebuilt. Finally, the GCP network will
be updated to continue in a ‘fail static’ mode for a longer period of time in the event of a loss of
the control plane [52].

8.2 Experiment
To examine the applicability and effectiveness of an automated approach to meta-management,
the evaluation created a representative workload against a realistic experimental platform and
evaluated three scenarios: normal conditions, maintenance conditions, and maintenance con-
ditions with a meta-manager. To determine and compare the effectiveness of the automated
approach to meta-management, two measures were used: (1) the integral of the time of the old-
est message in the queue, referred to as the inverse utility, and (2) the integral of the cost (i.e.,
number of servers in use per unit-time). The ideal value for each of these is the minimum that
can be achieved. This appropriately evaluates the GCP case study as the control plane has the
assumed quality attribute of processing the requested changes to the network configuration with
minimal delay consistently over time; an inverse aggregate utility.

95

Subscription

Svr 1 Svr N

Svr 1 Svr N

...

...

Maintenance Manager
Pub/Sub

USA-Central1-A

Meta Manager

TopicLoad
Generator

Managed Instance Group 1

Managed Instance Group 1

Message Push

Key

Message Pull

Maintenance Command

Meta-Manager Command

Application Boundary

Application Component

Figure 8.2: Experiment Platform Architecture

Additionally, the evaluation also examines the scalability of the approach by exploiting the
fact that each of the network control plane clusters are practically identical. This enables an
assumption that the set of meta-tactics appropriate for one cluster is applicable to all clusters.
It is then possible to consolidate and simplify the analysis which increases the computational
scalability of the approach. To test this, the scenario was re-run with maintenance and a meta-
manager to determine if there was a notable change in the aggregate utility as a result of applying
the proposed model scaling technique.

Platform Implementation

The experiment was designed to mimic the GCP control plane architecture described in Section
8.1. Therefore, it was instantiated on GCP using as many of the standard features as possible.
The technical platform consists of five principal components, as diagramed in Figure 8.2: (1)
Load Generator, (2) Pub/Sub Queue, (3) Managed Instance Groups, (4) Maintenance Manager,
and (5) the Meta-Manager.

The load generator is a custom developed utility that uses the Google provided SDK to gen-
erate random well-formed messages to be placed on the Pub/Sub queue. The rate at which it
places messages on the queue and the length of the run are both configurable.

The Pub/Sub queue is a standard GCP product offering [53] which provides message queue-
ing and subscriber capabilities with guaranteed delivery mechanisms. This was configured with
a single topic and a single pull subscription.

A managed instance group (MIG) is a cluster of virtual machines (VMs) that are man-
aged by an external controller that will auto-scale the cluster depending upon configured pa-
rameters. Each instance group is configured to auto-scale to maintain the Pub/Sub metric old-
est_unacked_message_age less than or equal to 5 seconds. This metric represents the age of the
oldest message in the Pub/Sub queue. Each instance group is also configured, by default, with a
60 second cool down time between auto-scale actions and a minimum of 1 VM and a maximum
of 10. Each of these VM instances is created from a base operating system template running a
custom utility that is configured to check for and, if present, pull messages from the Pub/Sub
queue once every second. Processing of the messages is then simulated by determining a ran-
dom amount of time, between 250 and 1500 milliseconds, the system pauses before discarding
the message and moving to the next.

The maintenance manager is a custom developed utility running on a static virtual machine

96

that uses the Google SDK to interface with the configuration and state of the MIGs. Specifically,
it can place the MIG into a ‘Rolling Replace’ update in which each VM in the cluster is replaced
by a new one.

The meta-manager is an implementation of the approach presented in this thesis that collects
current state information from the managers of the MIGs, uses that information to update a
model, presented in section 8.2, triggers the analysis of the model to determine the ‘best’ set of
meta-tactics to deploy, and carries out those actions against the managed subsystems.

SEAM Specification

The experiment used a SEAM specification to describe the behaviors of the autonomic subsys-
tems under management, specifically, the ManagedInstanceGroups and the Environment.
The complete specification can be found in appendix C, but the principal elements will be de-
scribed in this section.

Global Utility The specification of the global utility for the GCP control plane uses the maxi-
mum message time allowed, 2500 ms, to determine a score between 0, the low, and 1, the high,
based upon how close the oldest message time is to that maximum. The following is the specifi-
cation of GlobalUtility for the GCP control plane:

1 { //Root Node
2 "Global": {
3 "GlobalUtility": [
4 {
5 "Predicate":"#$.MIG.CurrentState.OldestTimeMsg# <= 2500",
6 "Formula":"(2500 − #$.MIG.CurrentState.OldestTimeMsg#) / 2500",
7 "Objective":"Min"
8 },
9 {

10 "Predicate":"#$.MIG.CurrentState.OldestTimeMsg# > 2500",
11 "Formula":"0"
12 }
13]
14 }
15 }

Listing 8.1: SEAM Specification - Global Utility Definition

The first entry of the global utility structure is the primary definition of the utility function and is
gated by a predicate ensuring the OldestT imeMsg is below 2500 ms. The second entry gives a
utility score of 0 for any state in which the OldestT imeMsg is above 2500 ms.

Environment The specification of the Environment for the GCP control plane defines the
CurrentState, StateSpace, and AdaptationPolicy for the environment for the GCP control
plane. The following is the specification for the Environment:

97

1 { //Root Node
2 "Environment":
3 {
4 "CurrentState": {
5 "QueueLoad": 250
6 },
7 "StateSpace": {
8 "Properties":
9 [

10 "QueueLoad": {
11 "Type":"Numeric",
12 "Min":0,
13 "Max":500,
14 "Step":50
15 }
16]
17 },
18 "AdaptationPolicies": [
19 {
20 "ConfigPredicate":"",
21 "isDefault":"True",
22 "Behaviors": [
23 {
24 "StatePredicate":"",
25 "ResultState":"#$.Environment.CurrentState.QueueLoad# =

↪ #$.Environment.CurrentState.QueueLoad# + 250"
26 }
27]
28 }
29]
30 }
31 }

Listing 8.2: SEAM Specification - Environment Definition

The StateSpace defines the QueueLoad property of the environment and the CurrentState
sets the current value of the QueueLoad. Finally, the AdaptationPolicy for the environment
adds 250 messages to the current value of the QueueLoad.

Managed Instance Group The specification of the managed instance group, MIG, defines
the Subsystem element including the CurrentState, CurrentConfig, StateSpace, and the
default AdaptationPolicy elements for the GCP control plane. The full specification for the
MIG can be found in appendix C, but the following is the specification describing the default
AdaptationPolicy element of the full Subsystem element:

1 { //Root Node
2 "MIG": {
3 "InstanceCount":2,
4 "AdaptationPolicies": [
5 {

98

6 "ConfigPredicate":"",
7 "isDefault":"True",
8 "Behaviors": [
9 { //Maintenance

10 "StatePredicate":"#$.MIG.CurrentConfig.CanMaintenance# = 1",
11 "ResultState":"#$.MIG.CurrentConfig.CanMaintenance# = 0 &

↪ #$.MIG.CurrentState.ServerCount# = 1"
12 },
13 { //AddCapacity
14 "StatePredicate":"#$.MIG.CurrentState.OldestTimeMsg# >

↪ #$.MIG.CurrentState.MaxOldestTimeMsg# & #$.MIG.CurrentState.CoolDownTime# = 0",
15 "ResultState":"#$.MIG.CurrentState.ServerCount# = #$.MIG.CurrentState.ServerCount# + 1 &

↪ #$.MIG.CurrentState.CoolDownTime# = #$.MIG.CurrentConfig.CoolDownDuration#"
16 },
17 { //RemoveCapacity
18 "StatePredicate":"#$.MIG.CurrentState.OldestTimeMsg# <=

↪ #$.MIG.CurrentState.MaxOldestTimeMsg# & #$.MIG.CurrentState.CoolDownTime# = 0",
19 "ResultState":"#$.MIG.CurrentState.ServerCount# = #$.MIG.CurrentState.ServerCount# − 1 &

↪ #$.MIG.CurrentState.CoolDownTime# = #$.MIG.CurrentConfig.CoolDownDuration#"
20 },
21 { //CoolDown
22 "StatePredicate":"#$.MIG.CurrentState.CoolDownTime# > 0",
23 "ResultState":"#$.MIG.CurrentState.CoolDownTime# = #$.MIG.CurrentState.CoolDownTime# −

↪ 1"
24 },
25 { //Process Jobs
26 "StatePredicate":"",
27 "ResultState":"#$.MIG.Environment.QueueLoad# = #$.MIG.Environment.QueueLoad# − (150 *

↪ #$.MIG.CurrentState.ServerCount#)"
28 }
29]
30 }
31]
32 }
33 }

Listing 8.3: SEAM Specification - Managed Instance Group Adaptation Policy Definition

The AdaptationPolicy specifies five behaviors labeled ‘Maintenance’, ‘AddCapacity’, ‘Re-
moveCapacity’, ‘CoolDown’, and ‘Process Jobs’. The ‘Maintenance’ behavior establishes the
pre-adaptation set of states to the post-adaptation set of states where the ServerCount is 1. The
‘AddCapacity’ behavior establishes the pre-adaptation states as when the MaxOldestT imeMsg
is greater than the OldestT imeMsg and the CoolDownTime is greater then or equal to 0 to the
post-adaptation set of states where the ServerCount is increased by 1 and the CoolDownTime
is equal to the configured value. The ‘RemoveCapacity’ behavior is the inverse of the ‘AddCa-
pacity’ behavior. The ‘Cool Down’ behavior establishes the pre-adaptation states for anytime
the CoolDownTime is greater than 0 and the post-adaptation states where the CoolDownTime
is one less than the previous value. Finally, the ‘Process Jobs’ behavior establishes any pre-
adaptation state not established by any other behavior entry to the post-adaptation states where
the QueueLoad is reduced to simulate the processing of the control plane jobs. The property
InstanceCount is also specified at 2 which means that this subsystem specification represents

99

two physical subsystems which is modified as part of the experiment.

PRISM Model Definition

The model used by the meta-manager for strategy synthesis is defined as a Stochastic Multi-
player Game (SMG) that is implemented in PRISM-Games [22] v.2.1. This method was selected
because the simplifying assumption that the meta-strategy developed for one managed instance
group is applicable to all allows for a reduction of the state space and this method provides for a
worst case scenario analysis for a system with high availability and reliability requirements. The
meta-manager uses this model to synthesize an adaptation strategy for the meta-manager to de-
ploy. This strategy synthesis is first attempted during the experiment runtime using data from the
running system. However, if the analysis of the model cannot be completed in an experimentally
relevant time horizon, the synthesis is performed off-line and loaded into the meta-manager for
execution using default values. The meta-manager generates the PRISM model by populating a
template that contains basic structure to properly run the model. This section will provide the
details of the model and will annotate the template provided information.

Global Items The lines in listing 8.4 define two elements that are part of the PRISM template
provided with the framework. The first element is the Model_Sink which provides the end state
for all paths of the model. The second element is the Model_Max_Turns which provides an
upper limit on the number of turns the model can take to ensure that the model will complete.

1 global Model_Sink : bool init false; //Template
2 const int Model_Max_Turns = 150; //Template

Listing 8.4: Global Items

Reward Structures The reward structures presented in listing 8.5, represent the global utility
function, U presented in equation 4.7. This reward structure is setup to assign the same number
of ‘points’ to each environment state weighted by the time of the oldest message in the queue.

1 rewards "GlobalUtility"
2 [EnvAction1] MIG_OldestTimeMsg <= 2500: (2500 − MIG_OldestTimeMsg) / 2500;
3 [EnvAction1] MIG_OldestTimeMsg > 2500: 0;
4 endrewards

Listing 8.5: Reward Structures

Control Module The control module provides the administration for the model. Specifically,
it tracks what the current turn is, Model_Turn, the turn count, Model_TurnCount, and a series
of synchronized actions to update the current turn.

100

1 module ControlModule
2
3 Model_Turn : [0..2] init 0;
4 Model_TurnCount : [0..1000] init 0;
5
6 [EnvAction1] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
7 [MIG1Action1] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
8 [MIG1Action2] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
9 [MIG1Action3] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
10 [MIG1Action4] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
11 [MIG1Action5] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
12 [MIG2Action1] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
13 [MIG2Action2] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
14 [MIG2Action3] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
15 [MIG2Action4] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
16 [MIG2Action5] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
17 [MM] (!Model_Sink) −> (Model_Turn’ = 0) & (Model_TurnCount’ = Model_TurnCount + 1);
18
19 endmodule

Listing 8.6: Control Module

The element Model_Turn tracks which player in the game has the current turn. By default
in the template, the Environment has the first turn, the managed system the second, and the
Meta-Manager the third. The Model_Turn element is then reset to 0 to start the process
again. The Model_TurnCount element counts the number of turns to compare against the
Max_Model_Turns elements to guarantee the model stops.

Player Definition In the definition of the PRISM model, there are four players: (1) Environ-
ment, (2) MIG1, (3) MIG2, and (4) MetaManager. Listing 8.7 shows the model player defini-
tions.

1 player ENV [EnvAction1], ENVMNT endplayer
2 player MIG1 [MIG1Action1], [MIG1Action2], [MIG1Action3], [MIG1Action4],[MIG1Action5] endplayer
3 player MIG2 [MIG2Action1], [MIG2Action2], [MIG2Action3], [MIG2Action4],[MIG2Action5] endplayer
4 player MM [MM] endplayer

Listing 8.7: Player Definition

101

The first player is the environment which is presented in listing 8.8 and defines the element
ENV _QueueLoad which is the number of messages available on the queue. The definition also
defines two behaviors. The first is the behavior of the player to add additional messages to the
queue. The second is a template behavior to end the model when the maximum number of turns
has been reached.

1 global ENV_QueueLoad : [0..500] init 250;
2
3 module ENVMNT
4 [EnvAction1] (Model_Turn = 0) & (Model_TurnCount < Model_Max_Turns) −> (ENV_QueueLoad’ =

↪ ENV_QueueLoad + 250);
5 [](Model_Turn = 0) & (Model_TurnCount >= Model_Max_Turns) & (!Model_Sink) −> (Model_Sink’ = true);

↪ //Template
6 endmodule

Listing 8.8: Environment Definition

The second player, presented in listing 8.9, is the managed instance group (MIG1) with 5
possible actions: (1) process jobs from the queue, (2) undertake maintenance, (3) add server
capacity, (4) remove server capacity, and (5) cool down after adding or removing capacity. The
actions within the module align with the specification of the adaptation policy presented in listing
8.3. The formula elements in the listing set new values for individual properties by ensuring that
the new value is in between the min and the max values established for the element.

1 const int MIG1_Model_Turn = 1;
2
3 global MIG1_ServerCount : [1..20] init 2;
4 global MIG1_OldestTimeMsg : [0..3000] init 100;
5 global MIG1_MaxOldestTimeMsg : [0..3000] init 150;
6 global MIG1_CoolDownTime : [0..2] init 0;
7 global MIG1_CanMaintenance : [0..1] init 0;
8 global MIG1_CoolDownDuration : [0..2] init 1;
9

10 formula MIG1_Formula_QueueLoad1 = (ENV_QueueLoad − (MIG1_ServerCount * 150) < 0) ? (0) :
↪ ((ENV_QueueLoad − (MIG1_ServerCount * 150) > 500) ? (500) : (ENV_QueueLoad −
↪ (MIG1_ServerCount * 150)));

11 formula MIG1_Formula_ServerCount1 = (1 < 0) ? (0) : ((1 > 20) ? (20) : (1));
12 formula MIG1_Formula_ServerCount2 = (MIG1_Server_Count + 1 < 0) ? (0) : ((MIG1_Server_Count + 1) ? (20)

↪ : (MIG1_Server_Count + 1));
13 formula MIG1_Formula_ServerCount3 = (MIG1_Server_Count − 1 < 0) ? (0) : ((MIG1_Server_Count − 1) ? (20)

↪ : (MIG1_Server_Count − 1));
14 formula MIG1_Formula_CoolDown1 = (MIG1_CoolDownDuration < 0) ? (0) : ((MIG1_CoolDownDuration > 2)

↪ ? (2) : (MIG1_CoolDownDuration));
15 formula MIG1_Formula_CoolDown2 = (MIG1_CoolDownDuration < 0) ? (0) : ((MIG1_CoolDownDuration > 2)

↪ ? (2) : (MIG1_CoolDownDuration));
16 formula MIG1_Formula_CoolDown3 = (MIG1_CoolDownTime − 1 < 0) ? (0) : ((MIG1_CoolDownTime − 1) ?

↪ (2) : (MIG1_CoolDownTime − 1));
17
18 module MIG
19
20 [MIG1Action1] (Model_Turn = MIG1_Model_Turn) −> (ENV_QueueLoad’ = MIG1_Formula_QueueLoad1);

102

21
22 [MIG1Action2] (Model_Turn = MIG1_Model_Turn) & (MIG1_CanMaintenance = 1) −> (MIG1_Server_Count’

↪ = MIG1_Formula_ServerCount1) & (MIG1_CanMaintenance’ = 0);
23
24 [MIG1Action3] (Model_Turn = MIG1_Model_Turn) & (MIG1_OldestTimeMsg > MIG1_MaxOldestTimeMsg)

↪ & (MIG1_Cool_Down_Count = 0) −> (MIG1_Server_Count’ = MIG1_Formula_ServerCount2) &
↪ (MIG1_CoolDownTime’ = MIG1_Formula_CoolDown1);

25
26 [MIG1Action4] (Model_Turn = MIG1_Model_Turn) & (MIG1_OldestTimeMsg <=

↪ MIG1_MaxOldestTimeMsg) & (MIG1_Cool_Down_Count = 0) −> (MIG1_Server_Count’ =
↪ MIG1_Formula_ServerCount3) & (MIG1_CoolDownTime’ = MIG1_Formula_CoolDown2);

27
28 [MIG1Action5] (Model_Turn = MIG1_Model_Turn) & (MIG1_CoolDownTime > 0) −>

↪ (MIG1_CoolDownTime’ = MIG1_Formula_CoolDown3);
29
30 endmodule

Listing 8.9: MIG Definition

The third player, MIG2, is included in the complete specification found in listing D.1 as part
of appendix D, however, it is functionally equivalent to MIG1.

The fourth player is the MetaManager module, presented in Listing 8.10, and it has a set of
actions that represent the available meta-tactics. Each of these meta-tactics updates the configu-
ration of MIG. The guards on each of these actions are identical and each part of them is strictly
to ensure the proper operation of the model, they do not influence which meta-tactic could be
selected. This is important, as this is the uncertainty that will be resolved by the tool when it
synthesizes a strategy to determine the best use of these meta-tactics; determining the adaptation
strategy the meta-manager will use. This process is what is represented by equation 4.7. The
tool uses the current state of the environment, the current state of the managed system (MIG),
and the current configuration to determine which configuration change is going to improve the
global utility function, see listing 8.5. The first statement is a pass-through with no effect on
other components. This allows for the MetaManager to take ‘no action’.

1 const int MM_Model_Turn = 3;
2
3 module MetaManager
4
5 [MM](Model_Turn = MM_Model_Turn) −> (Model_Sink’ = Model_Sink);
6 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CoolDownDuration’ = 0);
7 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CoolDownDuration’ = 1);
8 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CoolDownDuration’ = 2);
9 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CanMaintenance’ = false);

10 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CanMaintenance’ = true);
11 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CoolDownDuration’ = 0);
12 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CoolDownDuration’ = 1);
13 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CoolDownDuration’ = 2);
14 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CanMaintenance’ = false);
15 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CanMaintenance’ = true);
16
17 endmodule

Listing 8.10: MetaManager Definition

103

Properties This is a rewards based property that causes the tool to search for the strategy that
minimizes the reward, see section 8.2, that can be guaranteed by the players MM and MIG.

1 <<MIG,MM>> Rmin=? [Fc Model_Sink]

Listing 8.11: Properties

8.3 Results
Each of the four scenarios, normal conditions, maintenance conditions, maintenance conditions
with a meta-manager, and maintenance conditions with a meta-manager and only one cluster
modelled, was run by generating a workload of 250 messages per minute for 30 consecutive
minutes with an additional 5 minute warm-up and cool-down period against an enterprise pro-
duction grade cloud system, not a simulation. All scenarios were run in a single 3 hr. window to
control variability in the underlying systems.

The first scenario, presented in figure 8.3, exercises the system under normal operating con-
ditions without the interference of the maintenance manager or the assistance of a meta-manager.
This scenario results in an aggregated inverse utility of 1137 with an aggregated cost of 431.

The second scenario, presented in figure 8.4, exercises the system with the interference of
a maintenance manager. The maintenance manager is configured to perform a rolling restart of
cluster 1 at time step 10 and a rolling restart of cluster 2 at time step 15. This scenario results in
an aggregated inverse utility of 3024 with an aggregated cost of 334.

The third scenario, presented in figure 8.5, exercises the system with the interference of a
maintenance manager, which is configured identically as the previous scenario, and the assistance
of a meta-manager. In this scenario, the meta-manager first attempts to set the cool down period
of each of the clusters from 60 seconds, the default, to the minimum available, 15 seconds at time
step 7. Then at time step 12, the meta-manager configures each cluster to ignore the requests
of the maintenance manager to perform rolling restarts. While the rolling restart has already
been started for MIG1, this action does prevent the rolling restart of cluster 2 at time step 10.
Due to the state space expansion of modelling both MIGs explicitly, it was necessary to reduce

Figure 8.3: Experiment - Normal Operations

104

Figure 8.4: Experiment - Maintenance Operations

the MAX_TURNS to 40 which took a total of 642 seconds generating 12,299,356 states and
35,734,291 transitions. Because of the amount of time required to run this model, the meta-
strategy was precalculated offline and preloaded into the meta-manager. This scenario results in
an aggregated inverse utility of 1157 with an aggregated cost of 298.

Finally, the fourth scenario, presented in figure 8.6, exercises the system identically to the
third scenario. The difference being that the model used by the meta-manager has only one rep-
resentative cluster, see listing D.2, with two physical clusters, under the assumption that because
the physical clusters are identical, the proposed meta-tactics appropriate for one would be appli-
cable to all others. Similarly to scenario 3, the MetaManager reconfigures the cool down period
for each cluster at time step 6 and configures each cluster to ignore the maintenance manager at
time step 13, again preventing the rolling restart of cluster 2 at time step 15. The model took a
total of 216 seconds to generate a strategy for the MetaManager generating 2,772,379 states
with 6,840,217 transitions with a MAX_TURNS of 150. The scenario results in an aggregated
inverse utility of 1095 with an aggregated cost of 269.

The experimental results show a 61.7% improvement, from 3024 to 1157, in the aggregate
inverse utility between scenario 2, maintenance conditions, and scenario 3, maintenance condi-

Figure 8.5: Experiment - Meta-Manager Operations - 2 Clusters

105

Figure 8.6: Experiment - Meta-Manager Operations - 1 Cluster

tions with a meta-manager. Further, the results also show that the meta-managed scenario had a
10.7% improvement in the aggregated cost. Additionally, this is only a 1.75% difference between
the normal operating conditions, scenario 1, and the meta-managed maintenance conditions, sce-
nario 3. Based on these experimental results, it can be reasonably concluded that the automated
approach to meta-management would have improved the performance of the network control
plane in the GCP case study.

Finally, the difference in aggregate inverse utility between the meta-managed scenarios, sce-
nario 3, with 2 MIGs modelled, and scenario 4, was 5.4% decrease in aggregate inverse utility
and 9.7% decrease in aggregated cost. While a 5.4% difference in the aggregated inverse utility
could be significant in some contexts, it is believed that this difference is acceptable in a wide
variety of contexts and can therefore conclude that the automated approach to meta-management
would scale sufficiently to meet the needs of an enterprise system similar to the one presented in
the GCP case study.

106

Chapter 9

Case Study: Electrical Grid Cascade
Failure

This case study simulates the Northeast Blackout of 2003 and was selected because it presents
an example of a failure of human-centric management of a collection of autonomic systems that
was occurred in an industrial context outside of information technology. Please refer to section
1.2 for additional information on the selection of the case study.

9.1 Background & Context

Figure 9.1: Area Affected By The Blackout

On August 14, 2003, the
Northeast of the United States
and Eastern Canada experi-
enced a significant power out-
age that affected 55 million
people with an estimated eco-
nomic impact of $6.4 bil-
lion [34, 54]. This inci-
dent was caused by a se-
quence of individually minor
events that triggered a cascade
failure of multiple electrical
grids. This section will de-
tail what caused the cascade
failure including information
on the basic operating con-
ditions of an electrical grid,
the sequence of events that led
to the failure, how the failure
progressed, and a review of
the actions that could have been taken to prevent the outage from occurring. Comprehensive

107

information on the failure can be found in [34, 54].

Primer on Electrical Grid Operations
Due to the physics of how energy is produced, consumed, and transmitted, an electrical grid
is carefully balanced to provide the amount of electricity required to meet the demand of the
customers. Simply, in AC electrical systems, this is due to Ohm’s Law [1] which is stated as
V = IZ and relates the voltage(V) across a conductor to the current (I) and the impedance(Z)
which can vary depending on a number of factors. Intuitively, voltage is the measure of the
volume of electricity, current is the speed at which the volume of electricity is flowing, and
impedance is a measure of how much resistance there is in transmitting the electricity.

Therefore, if there is an increase in demand for electricity, referred to as load, the generators
hold the voltage steady then the impedance of the line will drop which is compensated for by an
increase in the current of the system. To hold the voltage steady there are two broad categories
of power generation. The first is fixed capacity generation which provides a constant source of
electricity and is typically slow to react to changes. The second is reactive generation which is
added and removed from the grid as needed.

Small fluctuations in load resulting in changes to voltage, current and impedance are a stan-
dard part of electrical grid operations and are routinely handled. However, under some abnormal
conditions, when the current on an electrical line increases significantly, the physical properties
of the line and the environment can cause the line to heat up which can cause the line to sag and
come into contact with neighboring items, like trees and other foliage, and begin transmitting
electricity to them; a condition referred to as a ‘short circuit’. These conditions can cause dam-
age to the lines which can be prohibitively expensive to replace. Therefore, each line is rated
to carry a specific amount of current and voltage at which they are safe to operate and each end
of the line is often equipped with an impedance relay. Impedance relays will ‘trip’ and isolate
the line from the electrical grid if they detect a significant drop in the impedance of the line. If
the impedance drop is due to a ‘short circuit’, then the load that line would normally handle is
distributed across other available lines and the operations of the grid remain stable.

However, if there is a sudden increase in the demand for electricity and the combined fixed
and reactive generators are unable to immediately compensate, there is a drop in the voltage on
the line which also causes a drop in impedance and an increase in current. This condition will
also trigger the impedance relays to protect the line with one significant difference. Since the
conditions on the original line had already reached the critical mass necessary to trigger a failure
of the line, as the load is distributed to other lines those conditions are likely to cause failures on
those lines as well. This pattern cascades until the electrical grid fails.

Due to the interconnected nature of the individual electrical grids, often operated by different
companies with competing interests, there are several independent system operators (ISOs) or
regional transmission operators (RTOs) which oversee the electrical grid operations for large
regions by monitoring the conditions of the individual grids and coordinate corrective actions as
necessary to maintain reliable operations.

Details of the 2003 Northeast Blackout

108

Figure 9.2: 13:31 - Cleveland-Akron Cutoff

Figure 9.3: 16:08 - Ohio 345-kV Lines Trip

Figure 9.4: 16:10 - Eastern Michigan Trips

Figure 9.5: 16:11 - Michigan Trips, Ohio Separates
from Pennsylvania

The following is an abbreviated description of the sequence
of events that led to the 2003 Northeast Blackout, a compre-
hensive description can be found in [54] and [34].

At 12:15pm eastern daylight time (EDT), the Midwest
Independent System Operator (MISO) entered incorrect in-
formation into their state estimator (SE) and real time contin-
gency analysis (RTCA) tools. A SE tool is used to improve
the accuracy of raw sampled data from the electrical grids by
mathematically processing it to make it consistent with the
electrical grid models. The RTCA runs a simulation of the
electrical grid using the current state of the system to evalu-
ate various conditions. It is run on a regular schedule and if
the RTCA does not have accurate information or a situation
is produced outside of accepted limits an alert is generated.
At this time the MISO RTCA solution produced a solution
with a high mismatch because it was not configured with the
information that the Bloomington-Denois Creek 230v line
was out of service. This rendered the analyses produced by
the system to be of little or no value to the MISO operators.

At 13:31pm EDT, the Eastlake Unit 5 generation plant
(597 MW) went offline in Northern Ohio due to equipment
failure. At this time, the Cleveland-Akron area elecrtical
grid was able to compensate by drawing reactive power from
other regional grids with a total load of 12,080MW of power
load and 2,575MW (21% of total) was imported reactive
power.

At 14:02pm EDT, the Dayton Power & Light’s (DPL)
Stuart-Atlanta 345-kV line tripped offline due to a tree con-
tact. Due to the problems with MISO’s SE and RTCA sys-
tems, the loss of this line was not properly reflected in the
calculations which prevented any form of contingency anal-
ysis within its reliability zone. At 14:14 - 14:20 EDT,
the First Electric supervisory control and decision analysis
(SCADA) alarm and logging software failed which caused
the failure of several remote EMS consoles and the opera-
tors and IT support personnel were unaware of the failure.

At 14:27 EDT, the Star-South Canton 345 kV transmis-
sion line tripped between First Energy(FE) and American
Electric Power(AEP). AEP contacts FE to confirm the ac-
tion, but the FE operators discuss the information as not
accurate because their alerting system is not registering the
failure.

At 15:05 EDT, Harding-Chamberlin 345-kV line tripped
due to contact with overgrown trees within the right of in-

109

cursion at only 45% of its rated load.

Figure 9.6: 16:11 - Cleveland and Toledo Islanded

Figure 9.7: 16:11 - Western Pennsylvania Sepa-
rates from New York

Figure 9.8: 16:12 - Northeast Separates From East-
ern Interconnection

Figure 9.9: 16:13 - New York and New England
Separate, Multiple Islands Form

At 15:32 EDT, Hanna-Juniper 345-kV line tripped due
to contact with trees.

At 15:41 EDT, Star-South Canton 345-kV line tripped
due to contact with trees.

Between 15:39 and 15:58 EDT, seven 138-kV lines
tripped due to overload and sagging into underlying distri-
bution lines.

At 15:59 EDT, the West Akron bus tripped due to a
breaker failure causing another 5 138-kV lines to trip.

From 16:00 to 16:08 EDT, 4 additional 138-kV lines
tripped due to overload and the Sammis-Star 345-kV line
tripped due to high current and low voltage.

This constitutes the ‘point of no return’ for the electri-
cal grid cascade. Up until this point, a full 2 hours and 6
minutes after the first line tripped, it might have been possi-
ble to enact mitigation measures to prevent the cascade fail-
ure. Specifically, if First Engery had shed 1,500-2,500 MW
of power from the Cleveland-Akron area, the cascade might
have been prevented. However, due to the lack of awareness
due to the failure of the monitoring systems, no such effort
was made.

From 16:08 - 16:12, the cascade failure moves from
Northern Ohio into Michigan and Niagra, New York. Penn-
sylvannia separates from Ohio and the cascade continues to
Ontario, Canada, and through out New York. New England
and PJM, servicing New Jersey also separated from New
York.

The collapse of the electrical grid results in several ‘is-
lands’ in which the local electrical grid was disconnected
from the others around it and was able to balance generation
and demand through the use of under frequency load shed-
ding (UFLS). UFLS results in the emergency disconnect of
power to individual consumers in an effort to save service to
as many as possible. The following are the automatic UVLS
operations that day:

1. Ohio shed 1,883 MVA beginning at 16:10 EDT

2. Michigan shed a total of 2,835 MV

3. New York shed 10,648 MW beginning at 16:10 EDT

4. PJM shed a total of 1,324 MVA at 16:10 EDT

5. Ontario shed 7,800 MW at 16:10 EDT

6. New England shed 1,098 MW.

110

Post-Mortem Actions

Both reports [34, 54] identify multiple recommendations and corrective actions that could prevent
a recurrence of the cascade failure. Most of the recommendations involve proper vegetation
management, IT system management, and other human-centric process improvements. However,
one recommendation states:

7. Available system protection technologies were not consistently applied to op-
timize the ability to slow or stop an uncontrolled cascading failure of the power
system. The effects of zone 3 relays, the lack of under-voltage load shedding, and
the coordination of underfrequency load shedding and generator protection are all
areas requiring further investigation to determine if opportunities exist to limit or
slow the spread of a cascading failure of the system. [54, p. 99]

This recommendation highlights the need for an automated solution, like a meta-manager, to
detect and prevent electrical grid cascade failures.

9.2 Experiment

Figure 9.10: IEEE 39 Bus System Topology

To evaluate the applicability and
effectiveness of using a meta-
manager in the context of a cas-
cade failure of an electrical grid, a
test bed was established that sim-
ulated a cascade failure that prop-
agates across multiple electrical
grids. A meta-manager was then
established to monitor the con-
ditions of the complete electrical
grid, similar to the role of an in-
dependent system operator (ISO),
and take action in the event a cas-
cade failure is detected. This sec-
tion is organized as follows: (1)
a detailed description of the test
bed, (2) the details of the elec-
trical grid simulations and their
baseline results, (3) detailed de-
scription of the implementation of
the meta-manager, and (4) the re-
sults of the electrical grid simu-
lations with the meta-manager in
use.

111

Electrical Grid Test Bed

The electrical grid test bed is composed of two elements: (1) the simulation platform and (2) the
electrical grid model.

Simulation Platform

The technical platform of the electrical grid test bed was established using MatLab R2023a [60]
and was augmented with MatPower [81, 128] a research standard open source set of libraries for
electrical grid optimization and simulation and the AC-CFM [86, 87] set of open source libraries
to simulate an electrical grid cascade failure.

Electrical Grid Model

The electrical grid test bed also requires a model of an electrical grid. The test bed for this case
study uses the IEEE 39 Bus system model [5, 33]. The IEEE 39 bus model is a power network
in the New England area of the United States. The system consists of 10-generators, 39 bus bars,

Figure 9.11: Connected Power Grid Test Bed Topology

112

and 12 transformers. All of the technical information on the IEEE 39 bus system can be found
in appendix E but the topology of the network can be found in figure 9.10.

While the IEEE 39 bus system is a well established model of a single electrical grid, it does
not represent a larger regional set of interconnected electrical grids operating in different ge-
ographic locations with different operating companies. Therefore, five instances of the IEEE
39 bus model were composed together and interconnected by creating a logical link between
different power generation sources. The combined topology of the electrical grids and the inter-
connections between them are presented in figure 9.11.

Simulation Model

The simulation model for the electrical grid test bed is implemented in Matlab 2023a. The
complete simulation model can be found in appendix F.

Initial Values The listing 9.1 presents the initial values for the simulation model.

1 %Setting the initial conditions for Grid 1, similar implementations for Grid 2 − 5
2 grid1 = case39;
3 enableGrid1 = true;
4 collapsedGrid1 = false;
5
6 %Sets the maximum number of loops
7 maxLoops = 25;
8
9 %Sets the initial conditions for the casade failure simulation

10 settings = get_default_settings();
11 settings.verbose = 0;
12 settings.max_recursion_depth = 1;
13
14 %Sets which bus is first to fail in the simulation
15 initial_contingency1 = ic;

Listing 9.1: Power Grid Simulation Model - Initial Values

Each of the five entries for the grids has the same initial setup. For example, grid1 is the variable
that holds the instance of the IEEE 39 bus model for grid 1, if enableGrid1 is true then the
grid will be be analyzed for a cascade failure, and if collapsedGrid1 is true then the analysis
has determined that the electrical grid has collapsed. The maxLoops variable sets the maxi-
mum number of loops the script will run before ending. The variable settings establishes the
initial configuration for the cascade failure analysis. The max_recursion_depth variable of the
settings establishes how many iterations of the analysis will be performed. This is set to 1 so the
failure analysis of each grid can be run simultaneously as elements from other connected grids
fail. Finally, initial_contingency1 establishes which branch of grid number 1, grid1, will fail
first to potentially start a cascade failure.

Grid Cascade Analysis The listing 9.2 presents the code that performs the cascade failure
analysis for electrical grid 1.

113

1 if enableGrid1 && ~collapsedGrid1
2 grid1 = accfm(grid1, struct(’branches’, initial_contingency1), settings);
3
4 % 1 to 2 Branch 34, Gen 34
5 if grid1.branch_tripped(34) == 1 || grid1.gen(5,8) == 0
6 enableGrid2 = true;
7 initial_contingency2 = 34;
8 end
9

10 %1 to 3 − Branch 33, Gen 33
11 if grid1.branch_tripped(33) == 1 || grid1.gen(4,8) == 0
12 enableGrid3 = true;
13 initial_contingency3 = 33;
14 end
15
16 %1 to 5 − Branch 39, Gen 36
17 if grid1.branch_tripped(39) == 1 || grid1.gen(7,8) == 0
18 enableGrid5 = true;
19 initial_contingency5 = 39;
20 end
21
22 collapsedGrid1 = nnz(ismember(grid1.G.Nodes.Type, [’success’]) == 1);
23 end

Listing 9.2: Power Grid Simulation Model - Cascade Analysis

Each of the five electric grids has an entry in the simulation model similar to that presented in
listing 9.2. The function accfm, on line 2, runs the cascade failure analysis for grid1 with the
failure of a specific branch in the electrical grid as part of the initial_contingency1. The other
entries, on lines 5-8 for example, establish the link between the individual power grids. On line
5, if branch 35 or generator 5 fails then enableGrid2 is set to true which enables the cascade
failure analysis for grid 2 with the appropriate initial contingency set for the element that has
failed. The other lines establish similar connections from Grid 1 to Grid 3 and from Grid 1 to
Grid 5. The final line, line 22, determines if the cascade analysis has completed.

Baseline Results

To establish the baseline results for the electrical grid test bed, a simulation was run in which
each of the 46 branches of the IEEE 39 bus instance for grid 1 were tripped and then the cascade
analysis was allowed to run to determine what the end state of the complete interconnected power
grid would be. Table 9.1 gives the results of the simulation. The column ‘Grid 1 Branch Tripped’
is the identifier of the branch in Grid 1 that was failed to begin the simulation. The ‘Total Branch
Failures’ column is the number of branches that tripped through out the complete electrical grid
simulation model. The ‘Percentage’ column is the percentage of tripped branches through out
the simulation model out of a total of 230, 46 branches times 5 grids. The entries in the table
represent those branches that resulted in the failure of more than the initial branch.

114

(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 6 (e) t = 9 (f) t = 12

Figure 9.12: Test Bed Simulation Results, Branch 35 Tripped

Grid 1
Branch
Tripped

Total
Branch
Failures

Percentage

9 9 3.91%
13 13 5.65%
14 13 5.65%
18 30 13.04%
19 33 14.34%
20 28 12.17%
23 36 15.65%
27 25 10.86%
28 28 12.17%
32 28 12.17%
33 42 18.26%
34 36 15.65%
35 72 31.30%
37 20 8.69%
38 29 12.60%
39 38 16.52%
42 3 1.34%
46 18 7.82%

Table 9.1: Electric Grid Baseline
Simulation Results

To further establish the baseline results for the electrical
grid test bed, the simulation was rerun focusing on the initial
condition in which the branch 35, the branch between bus 21
and 22 in 9.10, was tripped and the progressive failure of the
electrical grid was observed.

The subfigure A in figure 9.12 shows the state of the
complete electrical grid prior to the trip of branch 35 where
the dots are individual buses and generators and the edges
are the individual branches or electrical lines connecting
them and black represents normal operation and red repre-
sents the failure of that component. Subfigure B shows the
state of the electrical grid one time step after branch 35 is
failed, this causes the failure of 3 additional branches. Sub-
figure C shows the failure of additional branches at time step
3 and the cascade has started to spread to another intercon-
nected electrical grid. Subfigure D shows the state of the
electrical grid at time step 6 and the branch failures are sig-
nificant but still contained; this would constitute a reasonable
‘point of no return’. Subfigure E shows the state of elec-
trical grid at time step 9, the first time step in which there
is at least one branch failure in all five electrical grids. Fi-
nally, subfigure F shows the final state of the electrical grid
in which all five electrical grids have suffered a significant
number of branch failures and multiple islands have formed
due to under voltage load shedding balancing with the local
generation available.

Meta-Manager
SEAM Specification

The experiment used a SEAM specification to describe the behaviors of the individual electrical
grids including the use of global knowledge and probability distributions. The complete spec-

115

ification can be found in appendix G, but the principal elements, the electrical grid, the global
knowledge, and the global utility will be described in this section.

Electrical Grid The SEAM specification only includes a single definition of an electrical grid,
but as the adaptation policies for each of the 5 simulated grids are the same, the specification
uses the InstanceCount property to create the full compliment of electrical grids. The SEAM
specification of the electrical grid abstracts the operations of the individual electrical grids to the
percentage of the total electrical branches down, PerBranchesDown, which can vary between
0 and 30 percent. Under normal electrical grid operations branches can and do fail, or be taken
out of service for maintenance, without significant consequences to the electric grid (e.g., 5% of
branches). However, if the total number of failures of the branches reaches a critical mass (e.g.,
20%), then the complete electrical grid will fail with significant indiscriminate power outages.
The level of power outages are represented in the model by the CustomerOutageLevel which
can very between 0 (no outages) to 5 (wide spread failure). Additionally, the CurrentConfig
element defines one property, EmergencyLoadShed, which causes an electrical grid to drop
pre-specified load in response to extreme conditions. These elements are defined as part of the
CurrentState of the electrical grid as specified here:

1 "Grid":
2 {
3 "InstanceCount":5,
4 "CurrentState": {
5 "PerBranchesDown": 10,
6 "CustomerOutageLevel": 0
7 },
8 "CurrentConfig": {
9 "EmergencyLoadShed": "0"

10 }
11 }

Listing 9.3: Electrical Grid SEAM Specification - Current State and Instance Count

There are two adaptation policies defined for the electrical grid. The first describes the adap-
tive behavior of the grid when the grid is not configured for EmergencyLoadShed conditions:

1 "Grid":
2 {
3 "AdaptationPolicies": [
4 {
5 "ConfigPredicate":"#$.Grid.CurrentConfig.EmergencyLoadShed# = 0",
6 "isDefault":"True",
7 "Behaviors": [
8 {
9 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# <= 10",

10 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =
↪ N(#$.Grid.CurrentState.PerBranchesDown#, 0.5) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 0"

11 },

116

12 {
13 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# <= 20 &

↪ #$.Grid.CurrentState.PerBranchesDown# > 10",
14 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =

↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, 0.5) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 3"

15 },
16 {
17 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# > 20",
18 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =

↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, −1) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 5"

19 }
20]
21 }
22]
23 }

Listing 9.4: Electrical Grid SEAM Specification - Default Adaptation Policy

The first defined behavior describes the behavior of the electrical grid with less than 10% of
electrical branches down. In this case it is expected that the electrical grid will maintain the
percentage of lines down as described by a normal distribution with a mean around the previous
value and variance of 0.5. The second behavior describes the behavior of the electrical grid when
the percentage of branches down is between 10% and 20%. Specifically, the resulting percent-
age of branches down will be the result of an asymmetric Gaussian distribution which is skewed
to increasing the percentage of branches out. This skewed probability distribution reflects the
physical nature of the electrical grid which tends to fail faster as the percentage of tripped elec-
trical branches increases. Additionally, the increased percentage of electrical branches tripped
also results in the substantial level of customer outage. The final behavior describes how the
electrical grid reacts when the percentage of tripped electrical lines is greater than 20%. The
resulting percentage of electrical grid lines tripped is again the result of a more severely skewed
distribution and a more severe state of customer outage.

The second adaptation policy defines the behavior of the electrical grid when it is under
emergency load shed conditions:

1 "Grid":
2 {
3 "AdaptationPolicies": [
4 {
5 "ConfigPredicate":"#$.Grid.CurrentConfig.EmergencyLoadShed# = 1",
6 "isDefault":"False",
7 "Behaviors": [
8 {
9 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# <= 10",

10 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =
↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, 1) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 1"

11 },

117

12 {
13 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# <= 20 &

↪ #$.Grid.CurrentState.PerBranchesDown# > 10",
14 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =

↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, 1) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 2"

15 },
16 {
17 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# > 20",
18 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =

↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, 1) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 3"

19 }
20]
21 }
22]
23 }

Listing 9.5: Electrical Grid SEAM Specification - Emergency Load Shed Adaptation Policy

The defined behaviors for the second adaptation policy are similar to the behaviors specified
for the first adaptation policy with two differences. The first is the probability distributions are
defined with a skew towards lowering the percentage of electrical branches that have been tripped
and less severe customer outages. This is a result of an electrical grid taking deliberate actions
to reduce load to prevent the collapse of additional electrical branches. The second difference is
that the severity of the customer outages is reduced due to the deliberate action of the electrical
grid.

Global Knowledge The SEAM specification includes the definition of global knowledge.
Specifically, the global knowledge defines 5 correlations between the percentage of electrical
branches down between the individual grids. These correlations represent the interconnections
between the grids as specified here:

1 {
2 "Global": {
3 "GlobalKnowledge": [
4 "Relation": {
5 "Type":"Correlation",
6 "Target":#$.Grid2.CurrentState.PerBranchesDown#,
7 "Formula":"N(#$.Grid1.CurrentState.PerBranchesDown#, 0.5)",
8 "Timedelay": 2
9 },

10 "Relation": {
11 "Type":"Correlation",
12 "Target":#$.Grid3.CurrentState.PerBranchesDown#,
13 "Formula":"N(#$.Grid1.CurrentState.PerBranchesDown#, 0.5)",
14 "Timedelay": 2
15 },
16 "Relation": {
17 "Type":"Correlation",

118

18 "Target":#$.Grid2.CurrentState.PerBranchesDown#,
19 "Formula":"N(#$.Grid3.CurrentState.PerBranchesDown#, 0.5)",
20 "Timedelay": 2
21 },
22 "Relation": {
23 "Type":"Correlation",
24 "Target":#$.Grid4.CurrentState.PerBranchesDown#,
25 "Formula":"N(#$.Grid2.CurrentState.PerBranchesDown#, 0.5)",
26 "Timedelay": 2
27 },
28 "Relation": {
29 "Type":"Correlation",
30 "Target":#$.Grid5.CurrentState.PerBranchesDown#,
31 "Formula":"N(#$.Grid4.CurrentState.PerBranchesDown#, 0.5)",
32 "Timedelay": 2
33 },
34 "Relation": {
35 "Type":"Correlation",
36 "Target":#$.Grid1.CurrentState.PerBranchesDown#,
37 "Formula":"N(#$.Grid5.CurrentState.PerBranchesDown#, 0.5)",
38 "Timedelay": 2
39 }
40]
41 }
42 }

Listing 9.6: Electrical Grid SEAM Specification - Global Knowledge

Each of the correlations specifies that the percentage of electrical branches down in one grid is,
in part, related to the number of branches down in another grid. This is established by specifying
that the branches in one grid (e.g., Grid1) are the result of a normal probability distribution on
the value of the percentage of electrical branches down on another grid (e.g., Grid2). For this
particular case study, only one way relationships are defined, but a two way relationship could
be defined through the specification of another global knowledge correlation. Additionally, there
are multiple correlations defined which influence the same target (e.g., Grid1 and Grid3 both
influence Grid2).

Global Utility The SEAM specification also defines the global utility function based on the
CustomerOutageLevel in which a wide spread failure of the grid (i.e., CustomerOutageLevel =
5) has a utility score of 0 and normal operations (i.e., CustomerOutageLevel = 0) has a utility
score of 1 and is scaled for the values in between. The following is the SEAM specification of
the global utility:

1 {
2 "Global": {
3 "GlobalUtility": [
4 {
5 "Predicate":"",
6 "Formula":"(5 − #$.Grid.CurrentState.CustomerOutageLevel#) / 5"

119

7 }
8]
9 }

10 }

Listing 9.7: Electrical Grid SEAM Specification - Global Utility

Meta-Manager Analysis and Synthesis

For each time step of each run of the experimental simulation, the meta-manager generates two
sets of discrete time Markov chain (DTMC) transition matrices, a matrix in which each entry is
the probability of moving from one state of the system to another. The first set is one DTMC
transition matrix for each electrical grid under normal operating conditions. The second set
is one DTMC transition matrix for each electrical grid under emergency load shed conditions.
Each DTMC transition matrix is 42 by 42 and is generated by determining the probability of
moving from the current state of the individual electrical grid to the other potential states of the
electrical grid by reconciling the probability distributions as specified in the SEAM specification
for each of the electrical grids. Additionally, the effect on the state of each electrical grid due
to the interconnections between them, as represented in the global knowledge using probability
distributions in the SEAM specification, is also considered. This also allows for the specification
of the timedelay in the global knowledge to be considered by generating a different generation
matrix the specified number of time steps in the future.

Using Matlab 2023a [60], each DTMC transition matrix is then subjected to a Monte Carlo
analysis with 500 runs with a depth of 10 time steps, each beginning with the current state
of the electrical grid in that time step of the simulation. The Monte Carlo analysis for each
of the electrical grids varies between 44 seconds and 1 minute 39 seconds for each electrical
grid on standard desktop PC hardware. The results of each Monte Carlo analysis for each grid
are then analyzed to determine the most frequently occurring end state for each electrical grid.
The most frequently occurring end state is then evaluated to determine the utility score for that
state. Finally, if the utility score for the most frequently occurring end state for the normal
operations matrix is higher than that for the emergency load shed matrix then the meta-manager
sets normal operations for the electrical grid. Otherwise, the meta-manager sets emergency load
shed operations for the electrical grid.

The experimental simulation was run twice, each run using different load shedding strategies.
The first is referred to as ‘spot load shedding’ in which the electrical grid management system
eliminates specific low-priority electrical demand (e.g., lower priority commercial areas instead
of a hospital), in this case buses 7 and 24 which represents about 10% of total load. The second
is ‘Broad Load Shedding’ in which the electrical grid management system eliminates a specific
percentage, in this case 10% from all demand sources, of electrical demand across the grid. These
are 2 of 6 potential load shedding mitigation strategies that have been identified in the context of
electrical grid cascade failures [66].

120

9.3 Results
The results of the simulation are presented in table 9.2 which presents the baseline results for
the test bed simulation for each initial branch tripped that resulted in additional electrical lines
tripped and the same results with the meta-manager running with the electrical grids using ‘spot
load shedding’ and ‘broad load shedding’. As can be observed there are four cases in which
the meta-manager provides a net benefit, In case 13, a 7% improvement in the number of lines
tripped, in case 18, there is a 66% improvement, and in case 19 a 63-72% improvement depend-
ing on the load shedding method. In the most severe number of total branch failures from the
original test bed simulations, case 35, there is a 38 - 61% improvement. Additionally, in the other
cases the introduction of a meta-manager did not either help nor harm the ability of the electrical
grids to stop the cascade failure. It is possible that with additional mitigation techniques targeted
to the specific nature of the failures in those cases improvement can be found.

Spot Load Shedding Broad Load Shedding
Grid 1
Branch
Tripped

Total
Branch
Failures

Initial
Failure %

Total
Branch
Failures

Failure %
Total

Branch
Failures

Failure %

9 9 3.91% 9 3.91% 9 3.91%
13 13 5.65% 12 5.21% 12 5.21%
14 13 5.65% 13 5.65% 13 5.65%
18 30 13.04% 10 4.34% 10 4.34%
19 33 14.34% 9 3.91% 12 5.21%
20 28 12.17% 28 12.17% 28 12.17%
23 36 15.65% 36 15.65% 36 15.65%
27 25 10.86% 25 10.86% 25 10.86%
28 28 12.17% 28 12.17% 28 12.17%
32 28 12.17% 28 12.17% 28 12.17%
33 42 18.26% 42 18.26% 42 18.26%
34 36 15.65% 36 15.65% 36 15.65%
35 72 31.30% 45 19.56% 28 12.71%
37 20 8.69% 20 8.69% 20 8.69%
38 29 12.60% 29 12.60% 29 12.60%
39 38 16.52% 38 16.52% 38 16.52%
42 3 1.34% 3 1.34% 3 1.34%
46 18 7.82% 18 7.82% 18 7.82%

Table 9.2: Electric Grid Experimental Simulation Results

Further, figure 9.13 shows the progression of the electrical cascade failure for case 35 with
the spot load shedding strategy. At time step 1 the initial branches fail and at time step 3 the
cascade spreads through grid 1. At time step 6, the meta-manager has determined that all of the

121

(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 6 (e) t = 9 (f) t = 12

Figure 9.13: Test Bed Experiment Results, Branch 35 Tripped, Spot Load Shedding

(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 6 (e) t = 9 (f) t = 12

Figure 9.14: Test Bed Experiment Results, Branch 35 Tripped, Broad Load Shedding

electric grids should emergency shed load as can be seen by the small red dots in the network. At
time step 9 the cascade continues to spread through grid 1, and some additional failures in grid
2. However, in time step 12 the cascade failure has stopped and electrical grids 3, 4, and 5, are
largely unaffected.

Finally, figure 9.14 shows the progression of the electrical cascade failure for case 35 with
the broad load shedding strategy. At time step 1 the initial branches fail and at time step 3 the
cascade spreads through grid 1. At time step 6, the meta-manager has configured all electrical
grids into emergency load shedding and the failure processes to grid 2. However, at time step 9
and step 12 the electrical grid cascade has been mitigated and grids 3, 4, and 5 are unaffected
and both grid 1 and grid 2 have only been moderately impacted.

122

Chapter 10

Validation

This chapter will examine the claims of the thesis as presented in chapter 1 and provide an-
swers to the research questions presented in chapter 2. These claims will be validated through
argumentation based on the examination of the three case studies provided in chapters 7, 8, and
9. Therefore, this chapter is organized as follows: section 10.1 will examine and discuss the
evidence for each of the claims, and section 10.2 will provide answers to each of the research
questions.

10.1 Claims
This section will examine and provide the evidence in support of each of the claims made in sec-
tion 1.1. This section is organized as follows: section 10.1.1 will examine the practicality claim,
section 10.1.2 will examine the effectiveness claim, section 10.1.3 will examine the applicability
claim, and finally, section 10.1.4 will examine the remaining claims of the thesis statement.

10.1.1 Practicality
Ease of Use

Ease of Use. The framework will allow individuals with standard state-of-the-
practice knowledge in software engineering to use it to instantiate an automated
solution to manage an applicable collection of autonomic systems.

This claim is supported by two key features of SEAM. The first is that SEAM does not
introduce any concepts that would be unfamiliar to a standard software engineer. Specifically,
SEAM uses the same concepts in object oriented structure, data representation, boolean algebra,
and basic set theory as many other general purpose programming languages such as C++, Java,
the .NET languages, and others familiar to software engineers and is a standard part of education
in computer science and software engineering.

Additionally, SEAM also leverages basic concepts in statistics such as probability distribu-
tions and correlations that are commonly used in software engineering projects, especially those

123

dealing with data and analytics. However, the selection of the appropriate meta-analysis and
meta-strategy synthesis technique requires more advanced knowledge in statistics. The provided
taxonomy of analysis techniques in chapter 6 can guide this decision based upon key dimen-
sions and concerns relevant to the implementing software engineer facilitating the selection of
an appropriate technique.

The second key feature of SEAM is that it provides a layer of abstraction between the im-
plementing software engineer or administrator and the underlying meta-analysis and strategy
synthesis technique and toolset. This layer of abstraction allows the software engineer to fo-
cus on the primary concerns in managing collection of autonomic systems (e.g., ensuring the
performance) as opposed to having to learn additional domain-specific languages and accompa-
nying toolsets. For example, the SEAM compiler can ensure the that the variables in PRISM can
never be assigned a value outside of their defined limits, a common run-time error in the use of
PRISM and PRISM-Games. Additionally, this abstraction also allows an engineer to potentially
change which meta-analysis and meta-synthesis technique and toolset with minimal changes to
the SEAM specification.

Human Feasible Configuration

Human Feasible Configuration. The framework will provide methods that will al-
low a human administrator to specialize a meta-manager to a particular collection
of autonomic systems including the specification of adaptive behavior for each sub-
system, referred to as an adaptation policy.

This claim has two parts that must be supported. The first is that the framework is capable of
specializing a meta-manager to a particular collection of autonomic systems. The second is that
the method of specializing the meta-manager is feasible for a human administrator. Both parts of
the claim are supported through argument based upon an examination of the SEAM specification
of the three provided case studies.

AWS Shopping Cart The complete SEAM specification for the AWS Shopping Cart case
study can be found in appendix A. It includes 296 total lines of SEAM specification of which
124 lines are starting and ending brackets separated into individual lines to facilitate human
readability leaving 172 lines of functional SEAM content. Within those 172 lines of SEAM
content are four principal objects specialized to this collection of autonomic systems. The first is
the specification of the Environment, see listing 7.3, in which the behavior of the environment
on the current load of both the FrontEndUI and Database subsystems is specified through the
use of statistical distributions that define the behavior of the environment for different hours of
the day. The second object is the FrontEndUI , see listing 7.4, which specifies the adaptive
behavior of the subsystem based upon the state of the managed system, specifically the current
load, and how the subsystem adapts to ensure performance against its individual defined QoS
objectives. Similar to the FrontEndUI , the Database subsystem object, see listing 7.5, also
defines a similar, but different set of autonomic behavior based upon the state of the managed
system. While both systems will add capacity in response to increased load, the nature of the

124

capacity added is different because of the stateful nature of the Database subsystem. Finally, the
fourth object is the MetaManager which contains the GlobalUtility specification that provides
the QoS objective for the collection of autonomic systems and the definition of the meta-tactics
specific to this collection of autonomic systems.

GCP Control Plane The complete specification for the Google Control Plane case study can
be found in appendix C. It includes 142 total lines of SEAM specification of which 51 lines are
starting or ending brackets separated into individual lines to facilitate human readability leaving
91 lines of functional SEAM content. Those 91 lines contain the specification of three objects
specialized to this collection of autonomic systems. The first is the Environment, see listing 8.2,
which describes the addition of new network control plane messages onto a queue as described
in the Google incident report [52]. The second is the MIG, see listing 8.3, or managed instance
group which specifies the autonomic response of an individual cluster to the increase or decrease
in the number of messages in the queue. The third is the MetaManager, see listing 8.1, which
specifies the GlobalUtility object that provides the QoS definition and meta-tactics specific to
this collection of autonomic systems.

Electrical Grid Cascade Failure The complete specification for the Electrical Grid Cascade
Failure case study can be found in appendix G. It includes 131 total lines of code of which 48
lines are starting or ending brackets separated into individual lines to facilitate human readability
leaving 83 lines of functional SEAM content. Those 83 lines contain the specification of two
objects specialized to this collection of autonomic systems. The first is the Grid, see listings 9.4
and 9.5, in which the autonomic behavior of the electical grid is specified under two different
configurations of its autonomic manager; Normal Operations and Emergency Load Shed. The
second object is the MetaManager, which defines the GlobalUtility specific to this collec-
tion of autonomic systems, but more importantly defines the GlobalKnowledge, see listing 9.6,
which contains the relationships between the individual subsystems (i.e., electrical grids). It is
also important to note that in this case, the environment plays no role in this model of the auto-
nomic behaviors of the individual electrical grid, and therefore it is not included in the SEAM
specification.

In each of the three case studies, the meta-manager was specialized through the use of a
SEAM specification for the collection of autonomic systems it was intended to manage, support-
ing the first part of the claim. In [65], Caspers Jones evaluated numerous development method-
ologies (e.g., RUP, XP, Agile, Waterfall) and programming languages over thousands of projects
and determined that programmers write between 325 and 750 lines of code per month. The lines
of SEAM code required to specialize a meta-manager to a particular collection of autonomic
systems ranged between 83 and 172, well within what would be considered feasible for a single
human administrator to be able to accomplish, supporting the second part of the claim.

Scalability

Scalability. The framework will be capable of scaling to handle systems of practical
industrial size.

125

The scalability of the approach is dependent upon the meta-synthesis technique used to gen-
erate the meta-strategy. This is addressed by:

• The simplification of the state space that occurs when an autonomic manager is introduced
to the managed systems

• Allowing for the selection of the meta-synthesis technique used to generate the meta-
strategy

• The automated approach to meta-management presented in this thesis does not subsume
control of the autonomic control of the individual subsystems

• The approach can take advantage of optimizations available in the context

Each of the case studies supports the scalability claim by leveraging these elements on a produc-
tion grade system or research grade simulation to select and use a meta-synthesis technique that
was able to generate a meta-strategy on a time scale appropriate for the context.

AWS Shopping Cart The experimental platform is established using AWS provided code for
a shopping cart and runs on AWS cloud based systems that are, by default, ready for industrial
production operations. Additionally, increasing the scale, either horizontally or vertically, would
have little impact on the ability of the meta-manager to optimize the homeostatic operations of
the platform. Finally, the meta-analysis and meta-strategy synthesis technique, a DTMC with
simulation, took between 22 seconds and 49 seconds in each of the runs to produce a result.
Therefore, even if autonomic subsystems and/or configuration options were added to the model
to handle additional industrial concerns, it is reasonable to conclude that either the current tech-
nique would still be acceptable or the current technique could be tuned to align with the specific
needs of the collection of autonomic systems under management (e.g., reducing the number of
simulation runs).

Google Control Plane Similar to the AWS Shopping Cart, the experimental platform is es-
tablished using the likely GCP services, or similar, used by the actual GCP control plane as
supported in the GCP incident report [122] which are, by default, ready for industrial production
operations. Additionally, increasing the number of control plane clusters would have little impact
on the ability of the meta-manager to handle the instability caused by the maintenance system
in this case study. Unlike the AWS Shopping Cart, since each of the autonomic subsystems is
practically identical, it is reasonable to assert that the meta-strategy generated for one subsys-
tem would be applicable to all. This means it is reasonable to conclude that adding additional
subsystems would have little impact on the ability of the meta-manager to effectively manage
the collection of autonomic control plane clusters. Finally, the meta-analysis and meta-strategy
synthesis activities completes in 3 minutes and 36 seconds (216 seconds). In this situation, even
if the meta-manager is unable to prevent any negative effects within the 4 minutes between ini-
tial action and full impact, due to being configured for homeostatic operations, it can perform
mitigation actions to limit the damage well before human administrators which took 1 hour and
13 minutes. Further, the use of different analysis techniques (e.g., a DTMC with simulation
vs. a Stochastic Multi-Player Game) which might be more effective for handling instabilities

126

in the Google Control Plane could further optimize the ability of the meta-manager to handle
instabilities in this case study.

Electrical Grid Cascade Failure The experimental platform is established using simulation
and analysis techniques and frameworks that are commonplace in actual electrical grid oper-
ations. It is documented in [34, 54] that Independent System Operators (ISOs) and Regional
Transmission Operators frequently run simulations of electrical grid operations over models of
the managed electrical grid because it was a misconfiguration of one of those systems that con-
tributed to the 2003 Northeast Blackout. While the models of actual electrical grids are unavail-
able, due to security concerns, the IEEE 39 bus model is reasonably representative of an electrical
grid of practical industrial size. However, since the meta-analysis and meta-strategy phases of the
experimental runs varied between 44 seconds and 1 minute and 39 seconds, even if the models
were increased in both size and complexity, it would be expected that the meta-manager could
complete the necessary analysis in the time frame required to be effective given the period of
‘hours’ that often precede the ‘point of no return’ in electrical grid cascade failures [34, 54].

10.1.2 Effectiveness
Improved Performance

Improved Performance. A collection of autonomic systems managed by an auto-
nomic manager will experience improved performance against defined global qual-
ity objectives over human-based management.

Each of the three case studies supports the claim because in all three the meta-manager per-
formed actions that could have and/or should have been done by human administrators and im-
proves the global utility over the baseline results presented in each of the case studies.

AWS Shopping Cart The purpose of the AWS Shopping Cart case study was to evaluate the
effectiveness of the meta-manager to improve the homeostatic operations of a collection of au-
tonomic systems, specifically an exemplar shopping cart system. The test system was subjected
to a load profile that mimics a daily cycle of load. Specifically, the first 12 hours of the day, rep-
resenting the period between 6am and 6pm, the FrontEndUI and the Database experience a
steady increase in load up to a peak at 12pm and then a steady decrease in load to 6pm. However,
at 6pm, the Database system experiences a constant load representing the nightly processing of
database jobs for the remaining 12 hours of the 24 hour day.

This load was applied for two scenarios. The first was the baseline scenario which estab-
lished the performance of the collection of autonomic systems under the applied load without
the benefit of the meta-manager. The second was the experimental scenario in which the col-
lection of autonomic systems was under the control of a meta-manager. The meta-manager was
able to improve the configuration of the FrontEndUI system during the first 12 hour period by
using a combination of spot instances and on-demand instances to improve the cost dimension
of the FrontEndUI by 44%, from a cumulative (integral) utility score of 29.3 to 42.4. In the

127

second 12 hour period, the meta-manager was able to improve the capacity dimension of the
Database system by reallocating resources from the FrontEndUI to the Database system.
This allowed the Database system to deploy 13 instances, instead of the baseline 10, which al-
lowed it to better meet the QoS objectives of the system. Specifically, the capacity dimension of
the Database system improved 23.8%, from a cumulative (integral) utility score of 66.4 to 82.2.
These improvements contributed to a 16% improvement in the overall utility of the system from
a cumulative (integral) utility score of 49.6 to 57.7 over the baseline scenario.

Google Control Plane In the Google Control Plan case study four scenarios were run each try-
ing to minimize the the inverse utility score representing the time in queue of the oldest message
and the aggregated cost. The first baseline scenario, presented in figure 8.3, was the baseline sce-
nario under normal maintenance operations and generated a utility score of 1137 with a cost of
431. The second baseline scenario, presented in figure 8.4, runs the system with the interference
of the maintenance manager resulting in a utility score of 3024 and a cost of 334.

The first experimental scenario has a meta-manager, configured with two managed instance
groups, operating on the collection of control plane clusters which are also subject to interfer-
ence from the maintenance manager. This scenario resulted in a utility score of 1157 with an
aggregated cost of 298. This is a 61.7% improvement in utility and a 10.7% improvement in cost
over the second baseline scenario. This first experimental run also has only a 1.75% difference
between the system running normally without a maintenance manager and the meta-managed
scenario in which the maintenance manager is active.

The second experimental scenario has a meta-manager, configured with only one managed
instance group specified, operating on the collection of control plane clusters which are also
subject to interference from the maintenance manager. This scenario is investigating the validity
of the assertion that multiple practically identical systems can be modeled as one entity and the
resulting meta-strategy can be applied to all physical cluster instances and still be effective. This
scenario generated an inverse aggregate utility of 1095, a 5.4% decrease, with an aggregated cost
of 269, a 9.7% decrease from the scenario with 2 MIGs modelled. In some scenarios, the 5.4%
decrease in utility might be significant, but this thesis argues that this difference would be an
acceptable tradeoff in many contexts to provide additional scaling options for the meta-analysis
and meta-strategy synthesis techniques.

Electrical Grid Cascade Failure In the Electrical Grid Cascade Failure case study three sce-
narios were run, the details of which are presented in table 9.2. In each scenario the goal of
the meta-manager was to maximize the global utility by reducing the number of electrical grid
branches that are tripped as part of the cascade failure. The first was a baseline simulation in
which each of the branches in Grid 1 were tripped to determine if they would cause a cascade
failure. The experiment found that the failure of 18 branches caused additional branches to fail
ranging from 2 (1.34%) to 71 (31.30%) additional branches.

In the two experimental scenarios, the same simulation was run, this time with a meta-
manager evaluating the state of the electrical grids with the option of triggering an emergency
load shed to bring the electrical grids into balance and prevent further spread of the cascade fail-
ure. In the first experimental scenario, the meta-manager implemented a ‘spot load shedding’

128

strategy in which lower priority load is eliminated. This results in an improvement in four cases
with improvement ranging from a 7% to 66%. In the most severe failure case, branch 35, the
number of branches tripped from 72 to 45 resulting in a 38% improvement.

In the second experimental scenario, the meta-manager implemented a ‘broad load shedding’
strategy in which 10% of load was reduced from all sources. This results in an improvement in
the same four cases with improvement ranging from 7% to 72% improvement. In the most severe
failure case, branch 35, the number of branches tripped drops from 72 to 28 resulting in a 72%
improvement. In none of the cases in either experimental run did the actions of the meta-manager
cause additional harm to the electrical grid.

Timeliness and Assurance

Timeliness and Assurance. Because the framework and approach do not mandate a
specific synthesis technique, an engineer implementing the framework can select a
synthesis technique that best fits the level of timeliness and assurance required for
the context.

This claim is supported through argument based upon an examination of the three case stud-
ies. Specifically, each of the case studies uses a meta-analysis and meta-strategy synthesis tech-
nique that meets both the assurance and timeliness requirements of the context.

AWS Shopping Cart The collection of autonomic subsystems that form the AWS Shopping
Cart operate in an environment with potentially large and frequent changes in load that will vary
amongst the individual subsystems. In this context, the consequences of less-than-ideal opera-
tion are economic by causing higher costs than are strictly necessary or reduction in revenue.
Therefore, a DTMC with simulation was selected as it can analyze more complicated models
relatively quickly by approximating the most likely result. This approximation is sufficient as
the speed of analysis is more important than the level of assurance the technique would provide.

Google Control Plane In the context of an infrastructure IT system, the collection of au-
tonomic subsystems does not have large or frequent changes in its load due to environmental
actions. However, the system must have a high degree of reliability so a conservative approach
to adaptation is appropriate to minimize the potential for disruption. As such, the meta-manager
in the Google Control Plane case study is configured to use a Stochastic Multi-Player Game to
determine what the best achievable global utility would be assuming the environment takes ev-
ery action to try and minimize it. This method of meta-strategy synthesis is more sensitive to
the size of the model and, consequently, the number of states it generates. As such, it generally
takes more time to determine the most appropriate strategy, but it also provides a high degree of
assurance in the result as it is an exhaustive state space approach. This trade-off is acceptable
and fits the timeliness and assurance requirements of this context.

Electrical Grid Cascade Failure In the context of an electrical grid failure, the meta-manager
is concerned with handling a system instability and the potentially extreme consequences. How-

129

ever, the size of the electrical grids and the models required to describe them would be impracti-
cal for some meta-synthesis methods (e.g., Stochastic Multi-Player Game). Therefore, a discrete
time Markov chain (DTMC) with a Monte Carlo simulation was used. This has the advantage
that the time taken to do the analysis is manageable even for large model sizes and would be pos-
sible within the ‘hours’ time frame of the initial stages of a cascade failure. However, a DTMC
with Monte Carlo simulation samples the state space to give the most likely result, which is a
lower level of assurance than other techniques (e.g., Stochastic Multi-Player Game). Given the
nature and consequences of electrical grid failures, if the likelihood of one is sufficiently high to
merit meta-adaptation, then a controlled outage, like emergency load shedding, is preferable to
the uncontrolled outage even if the grid might not have eventually experienced a cascade failure.

10.1.3 Applicability

The framework will be applicable to a significant subset of collections of autonomic
systems with the following characteristics:

• Each subsystem is non-adversarial in nature.
• Each of the subsystems provides an interface to adjust the configuration pa-

rameters of the autonomic managers.
• It is possible to elaborate the adaptive behavior that each autonomic subsys-

tem will employ for a given state of the environment under a set of configu-
ration parameters.

This claim will be supported through argumentation based upon the examination of the vari-
ation across the key properties of the case studies as presented in table 1.1.

Functional Area The three case studies represent two areas of IT-centric systems, consumer
facing and backend systems, and one industrial system in the electrical grid. It is reasonable to
assert that the functional requirements of each of these systems are shared by a significant subset
of other collections of autonomic systems in other contexts. For example, in a manufacturing
environment (e.g., automobile) the meta-manager could be managing a set of practically identi-
cal robots, similar to the GCP Control Plane example, in which it is configured to handle system
instabilities because of limited optimization potential, similar to the electrical grid case study.
Further, in bespoke manufacturing (e.g., manufacturing of drones) it is necessary to power up
multiple machines to produce potentially a single custom part and there is significant opportu-
nity to continuously improve the power consumption operations of different machines working
together in a single process, similar to the AWS Shopping Cart case study. Therefore, one can
conclude that the functional properties of the three case studies represent a significant subset of
autonomic systems.

Instability & Homeostatic The three case studies examine 3 of the potential 4 combina-
tions between the meta-manager’s ability to improve performance against instabilities or improve
homeostatic operations. Specifically, the AWS Shopping Cart case study examines homeostatic

130

operations, the Google Control Plane examines handling of an instability in the context of home-
ostatic operations, and the Power Grid Cascade Failure only examines the handling of a system
instability. In the fourth possible combination, it would not be valid to expect a meta-manager
to improve homeostatic operations while being configured for the handling of a system insta-
bility. Therefore, it is reasonable to conclude that the ability of a meta-manager to handle both
homeostatic operations and system instabilities makes the approach applicable to a large subset
of collection of autonomic systems.

Autonomic Manager Across the three case studies, the meta-manager operates over four au-
tonomic managers: specifically, the AWS ElasticBeanStalk and DAX Autoscaling in the Shop-
ping Cart case study and in the Managed Instance Groups in the GCP Control Plane case study.
In all three cases the meta-manager interacted with the actual production services available to
customers of both AWS and GCP which provide autonomic capabilities for thousands of their
customers. While the actions of the SCADA system were simulated in the Power Grid case
study, the SCADA control systems have, or should have, the ability to perform the simulated ac-
tions as mentioned in [34, 54] and that SCADA systems are popular in many industrial contexts.
Due to the diversity in the autonomic managers and the individual popularity of those managers,
one can conclude that a meta-manager is capable of operating over a sufficiently large number
of autonomic management systems to make the approach applicable to a significant subset of
collections of autonomic systems.

Synthesis Method & Toolset Each of the three case studies uses a different combination
of analysis technique and toolset. Both the AWS shopping cart and the Electrical Grid Cascade
Failure use a discrete time Markov chain (DTMC) with simulation. However, the AWS Shopping
cart uses PRISM [73] and the Electrical Grid case study uses Matlab 2023a [60]. Additionally,
the Google Control Plane case study uses a Stochastic Multi-player Game (SMG) in PRISM-
Games [22]. The variation of the synthesis techniques and the toolsets used across the three case
studies supports the assertion that the automated approach to meta-management presented in this
thesis does not mandate a specific analysis technique or tool set. Therefore, it is reasonable
to conclude that since an administrator can select the analysis method and tool set appropriate
to their context, the approach is applicable to a significant subset of collections of autonomic
systems.

10.1.4 Thesis Statement
This section provides the support for the individual claims of the thesis statement that are not
part of practicality, effectiveness, or applicability.

We can provide engineers the ability to establish an automated solution...

This statement is validated by the individual case studies presented in chapters 7, 8, and 9 be-
cause in each of them an engineer was able to establish an automated solution to provide meta-
management to a collection of autonomic systems.

131

1. An automated approach to the management of collections of autonomic systems.

The automated approach to meta-management is provided in chapter 4 and was implemented as
part of the case studies presented in chapters 7, 8, and 9.

2. A domain specific language used to abstract and represent the adaptation behavior for
each autonomic subsystem.

The domain specific language, SEAM, is provided in chapter 5 and was used as part of the case
studies presented in chapters 7, 8, and 9.

3. Guidance to determine the appropriate strategy synthesis technique for the context in
which the collection of autonomic system is operating.

The guidance to determine the appropriate strategy synthesis technique is provided as part of the
taxonomy of analysis and synthesis methods presented in chapter 6.

4. A reusable software framework that simplifies the development of a meta-manager.

In addition to the case studies presented in chapters 7, 8, and 9, the approach was also imple-
mented in conjunction with the Rainbow [24] framework, as Rainbow has been used in numerous
research efforts across multiple domains, see [15, 16, 17, 19, 83], this provides evidence for the
claim of the framework being reusable.

10.2 Research Questions

Research Question 1: How to provide assurance on the behavior of the collection
of autonomic systems?

The assurance on the behavior of the collection of autonomic systems is provided by the selection
of the meta-analysis and meta-strategy synthesis technique and the required level of assurance
will vary depending on the context in which the collection of autonomic systems is operating.
More information on the selection of the appropriate technique can be found in chapter 6.

Research Question 2: How to enable the practical analysis of adaptation policies
given the uncertainty in the future state of the managed system?

Uncertainty in the outcomes of the adaptive behaviors is handled by leveraging the specifications
of probability distributions. This thesis examines four potential candidates: Normal Distribu-
tion(N), Synchronous General Gaussian Distribution (SGGD), Asynchronous General Gaussian
Distribution (AGGD), and explicitly defined. Each of these are straightforward to specify and
provide a mechanism to inform the meta-analysis and meta-synthesis technique of the character-
ization of the uncertainty. Please see chapter 5 for more information.

132

Research Question 3: How to enable the practical specification of adaptation poli-
cies for individual autonomic subsystems?

The specification of the adaptation policies for each subsystem is facilitated by using predicate
statements to describe subsets of the state space that define the conditions under which an adap-
tation will occur and maps to another subset that specifies the state of the subsystem after the
adaptation, see chapter 5 for more information. As long as the number of subsets is reasonable,
see chapter 11, the specification of adaptation policies for each of the autonomic subsystems is
practical.

Research Question 4: How to synthesize a plan of changes to the configurations
of the autonomic subsystems that improves the performance of the collection of
autonomic systems?

A plan of changes to the configuration of the autonomic subsystems to improve the performance
of the collection is done through the selection of a meta-analysis and meta-strategy synthesis
technique that is appropriate for the context by providing timely analysis at the level of assurance
required, see chapter 6 for more information.

Research Question 5: How to synthesize a plan of changes that balances compet-
ing organizational priorities?

The configuration of the meta-manager as represented in a SEAM specification, see chapter 5,
includes the specification for a global utility function that can be guarded by predicates. This
allows for a meta-analysis and meta-strategy synthesis technique to score the potential states that
could occur as a result of changing the configuration of the autonomic subsystems. The definition
of this global utility function can weight various properties of the environment (e.g., performance
and cost) to represent the competing organizational priorities.

Research Question 6: How to synthesize a plan of changes on a time scale appro-
priate to the context?

The administrator establishing the meta-manager can choose which meta-analysis and meta-
strategy synthesis technique is most appropriate for their collection of autonomic subsystems,
see chapter 6 for more information. While there are edge cases in which no technique will satisfy
the requirements of the context, see chapter 11 for further discussion, it is expected that there is
a large number of contexts in which at least one meta-analysis and meta-strategy technique is
appropriate.

Research Question 7: How to leverage the knowledge about the structure of the
system and environments to improve the effectiveness of managing a collection of
autonomic systems?

133

The knowledge about the structure of the system and their environments is specified as Global-
Knowledge in the SEAM specification which provides the primary source of configuration to the
meta-manager, see chapter 5 for more information.

This chapter examines the claims of the thesis presented in chapter 1 and the research ques-
tions presented in chapter 2. These claims were validated through argumentation based on the
examination of the evidence provided by the three case studies. However, there are several key
assumptions that underpin the automated approach to meta-management presented in this thesis.
The next chapter will discuss each of these assumptions, the limitations of the approach, and
potential future work to address these limitations and further develop the approach.

134

Chapter 11

Discussion & Future Work

This chapter will reexamining the key assumptions in section 11.1, and elaborating on areas of
future work in section 11.2.

11.1 Assumptions
This section examines the key assumptions made throughout the thesis to address how they
impact the approach and its applicability to collections of autonomic systems.

Ability to Specify Adaptation Policy
The automated approach to meta-management presented in chapter 4 supported by the domain
specific language, SEAM, presented in chapter 5 and utilized throughout the case studies in
chapters 7, 8, and 9 provides for the human feasible specification of the adaptation policies of
the individual subsystems in a substantial set of collections of autonomic systems. However,
there are autonomic subsystems for which the human feasible specification of the adaptation
policies is not practical.

Specifically, it is possible to have a system that is so sensitive to changes in the environment or
the managed system that the effort of specifying its adaptive behavior is intractable for humans.
For example, referring back to the scenario presented in chapter 2, if the shopping cart system
had the autonomic behavior of adding additional granular virtual CPU (vCPU) capacity at each
1/10th of a second of page response time between 2 and 4 seconds, adding an additional 5% each
time, that would result in a human administrator needing to specify a minimum of 20 adaptation
policies for each relevant variation of the configuration settings. This could potentially result in
the specification of hundreds of autonomic behaviors.

However, a single subsystem that has adaptive behaviors too complex to specify or analyze
represents one end of the spectrum of the scalability of human specification of adaptation poli-
cies. The other end of the spectrum is reasonably represented in the Google Control Plane case
study in which the autonomic systems under management are practically identical. This means
the meta-manager could potentially handle a large number of subsystems because the diversity
of the autonomic behaviors amongst the collection of autonomic systems is low. In the Google

135

Control Plane case study it was possible to make the assumption that the meta-strategy synthe-
sized for one system would be effective on all. However, there are likely to be collections of
autonomic systems with a low degree of complexity in their adaptive behaviors in which that
assumption does not apply. Then the question becomes; what is the upward limit on the number
of autonomic subsystems that can be specified by a human?

Future Work This thesis focuses on the scalability of the meta-analysis and meta-strategy
synthesis techniques by examining the complexity of the models and the time necessary to gen-
erate a meta-strategy. However, this thesis does not directly examine the scalability of a human’s
ability to specify the adaptation policies for the individual autonomic subsystems. Specifically,
how the number of subsystems and the combined complexity of the adaptation actions influence
the scalability of the human effort to generate the specifications of the adaptation policies.

Expected Level of Effort: High (> 18 mo.)

Another challenge to the assumption that the autonomic behavior of the subsystem can be
specified can be found in the use of human-in-the-loop adaptation in the autonomic subsystem.
A human-in-the-loop adaptive system is one where a human plays a part in the control loop
[44, 75]. An example of such a system would be an autonomous car in which the human still
needs to drive in certain situations like complex driving situations or emergencies [44]. Due to
the inherent inconsistency in the actions of human based adaptation, it might not be practical
to specify the adaptive behaviors of the subsystem or it might not be possible to effectively
reason about the autonomic behavior of the subsystem limiting the ability of a meta-manager to
synthesize a meta-strategy.

Adherence to Specified Adaptive Behavior
An assumption of this thesis and the approach to meta-management is that each of the subsystems
adhere to the specification of their adaptive behavior. If the autonomic subsystems do not adhere
to their specified behavior then the level of assurance that can be provided by the meta-manager
on the performance on the collection of adaptive systems is, at best, uncertain. A similar problem
is adapting the meta-management approach to a collection of autonomic systems in which one
or more subsystems might be actively working against the global objectives. This could occur
in open networks of adaptive systems (e.g., corporate supply chain systems) in which members
of the collection of autonomic system can join or leave as they wish, anyone of which could
potentially be a rogue actor. Additionally, the autonomic subsystem may not have to be actively
working against the collection of autonomic systems, but due to a fault or other potential con-
ditions is no longer allowing the meta-manager to make adjustments to the configuration of the
autonomic manager to improve the collections performance against global objectives.

These systems were intentionally placed out-of-scope for this thesis as there is another sig-
nificant research effort in determining that an autonomic subsystem is not adhering to the spec-
ification of their adaptive behavior. Referring to the exemplar scenario presented in chapter 2,
the shopping cart system adapting to add a server to its capacity and having that adaptation fail
is part of the specified behavior. However, the probability of that failure might not be correctly

136

specified. Making that determination is non-trivial because a separate type of statistical analysis,
referred to as a run test [12], would be required to determine if the behavior is random or if there
is an underlying process to the results and if so what probability distribution or parameters of
a given probability distribution best represents the data. Additionally, these tests are dependent
upon having a sufficient number of samples of a potentially rare occurrence. It might also be
possible to use various machine learning techniques, like reinforcement learning, to determine
if the behavior is within a normal range or potentially anomalous. Finally, these efforts become
potentially more complicated when the system is intentionally trying to avoid detection. For ex-
ample, if an autonomic subsystem has been compromised, its autonomic behavior might change
to generate some advantage for the responsible party, but the responsible party would not want
the compromised system to be discovered.

Future Work It is possible for subsystems to become non-responsive to the meta-manager
either due to a fault or other administrative action. In the most extreme case, it is also possible that
an autonomic subsystem is actively working against the objectives of the collection of autonomic
systems because it has been compromised or is a rogue actor in the collection of autonomic
systems. A potential area of future work is to expand this approach to meta-management into
zero-trust environments in which the individual autonomic subsystems might not implicitly trust
each other or the meta-manager which would likely include the ability to identify and mitigate
adaptive subsystems that are non-cooperative, adversarial, or compromised.

Expected Level of Effort: High (> 18 mo.)

Interface to Adjust Configuration Parameters
An assumption of this thesis is that the autonomic managers for each of the subsystems provides
an interface to adjust their configuration parameters. For the purposes of this thesis, an interface
is understood to mean a set of configuration parameters that can tune the autonomic behaviors of
the subsystem to within a desired range. Referring to the exemplar system presented in chapter 2,
the shopping cart system has the MaximumCost and CapacityBuffer configuration options.
It is assumed that either the autonomic manager of the subsystem has an application program-
ming interface (API) with which to manipulate the configuration options or that one could be
built with reasonable engineering effort.

In the case studies presented in chapters 7, 8, and 9 different autonomic managers are in
use, each of which has a set of configuration options available. As discussed in 10.1.3, this is
used as evidence of the claim that the approach to meta-management presented in this thesis
is applicable to a significant subset of collections of autonomic systems. However, there are
autonomic systems in which the configuration options are not accessible. For example, managed
cloud services in use in the AWS Shopping Cart Case Study, see chapter 7.

However, the autonomic managers controlling the managed subsystems that do not have an
interface to adjust their configuration parameters represent a minority of the available autonomic
managers. For example, many of the unmanaged cloud services like EC2 at AWS [102], virtual
machines at Azure [109], and compute engine at Google Cloud [91] all have autonomic control
interfaces. Additionally, a review of the SEAMS artifact repository [96] shows that the following

137

research artifacts also have autonomic managers with configuration options: RTX [95], mRubis
[119], TRAPP [43], Self-Adaptive Video Encoder [77], UNDERSEA [42], DeltaIoT [58], and,
while not part of the SEAMS artifact repository, Rainbow [24].

Given the number and variety of autonomic managers examined and the presence of available
configuration options on the autonomic manager itself, it is reasonable to make the assumption
that a significant majority of the autonomic subsystems that are part of a collection will have an
interface available to adjust their configuration parameters.

Statistical Independence
One of the engineering decisions of the approach presented in this thesis is to make the assump-
tion that the individual properties of the managed systems are statistically independent of each
other. This is unlikely to be true in practical examination of a real-world collection of autonomic
systems. For example, referring back to the exemplar scenario presented in chapter 2 and as
depicted in listing 5.8, there is a natural dependency between the number of servers deployed,
ServerCount. and the average page response time, AvgPageRespT ime; the more servers there
are, the lower the average page response time down to a minimum.

The outcomes of adaptive actions that are intended to impact these properties would be
more accurately represented by defining a conditional probability distribution between the vari-
ables. However, the representation of a conditional probability distributions for the purposes
of specification in SEAM is a non-trivial problem as a single specification might call for elab-
orating multiple distributions depending on the relationship between the properties. Referring
back to the example, it might be necessary to specify a different probability distribution for the
AvgPageRespT ime for each value of the ServerCount. Therefore, the choice was made to
support only the specification of probability distributions on individual properties by assuming
the statistical independence of the properties.

This approach intentionally compromises the accuracy of the specification for a practical
engineering concern. However, the impact of this trade-off can be minimized by calculating
the joint probability distribution of the assumed statistically independent properties. This is
accomplished with the following calculation:

Pr(
n

⋂
i=0

Ai) =
n

∏
i=0

Pr(Ai) (11.1)

where the probability of a given state occurring can be determined by multiplying the probability
of the values of all properties occurring.

This calculation is a straightforward process that can be performed by multiple toolsets and
frameworks. Therefore, this thesis argues that the reduction in the accuracy of not being able
to specify conditional probability distributions in favor of the practical engineering concerns of
human feasible specification with the mitigation of being able to calculate the joint probability
distributions is an acceptable trade-off.

138

Production Grade Analysis and Synthesis Tools
An implicit assumption of this thesis is that the analysis and synthesis tools used are of sufficient
quality to be used in production grade operations. While PRISM [73] and PRISM-Games [22]
are capable research tools, their suitability for production grade operations is uncertain as they
are untested in such situations. Use of them in this thesis presented some operational challenges
which required lower level management of memory and other unexpected and undocumented
failure conditions that would not be practical in production grade environments. The production
grade worthiness of the tools is important as it influences the scalability of the automated meta-
management technique presented in this thesis.

However, not only can the production readiness of PRISM and PRISM-Games be readily
improved, there are other potential libraries and frameworks which could serve as the basis for
production grade analysis and synthesis. For example, [46, 47, 48] are all Python libraries that
can assist with game theory based analysis, and [45] can perform analysis of Markov Decision
Processes.

Continuous Behavior
Another assumption of this thesis is that the behavior of the autonomic subsystems is best de-
scribed by discrete time models. As demonstrated in the case studies presented in chapters 7,
8, and 9 this approach is applicable to a significant subset of collections of autonomic systems.
However, there are collections of autonomic systems which would be better described by con-
tinuous or dense time models. For example, the collection of autonomic systems that control the
operations of an autonomous vehicle, aircraft, satellite, or complex robotics systems might all
be better described using continuous time models. This limits the potential applicability of this
approach to meta-management.

Future Work It is possible to expand upon this automated approach to meta-management to
include autonomic subsystems that are better described by continuous time models. A potential
area of future work is to enhance the approach, see chapter 4, the SEAM specification, see chapter
5, and the taxonomy, see chapter 6, to include the necessary items to support continuous time
systems. For example, the use of continuous time models will necessitate a different set of meta-
analysis and strategy synthesis techniques and an additional set of profiles for the timeliness,
scalability, and assurance and several new objects, like the notion of a clock, will need to be
added to SEAM.

Expected Level of Effort: High (> 18 mo.)

Hierarchical Control
Through the case studies presented in chapters 7, 8, and 9, this thesis has demonstrated the ap-
plicability of the automated approach to meta-management for a significant set of collections of
autonomic systems which are subject to hierarchical control meaning the individual subsystems
do not self-coordinate adaptive actions. However, there are collections of autonomic systems,

139

often referred to as multi-agent systems, in which the individual autonomic subsystems commu-
nicate with each other to coordinate their adaptive actions. Additional information about these
systems is presented in section 3.2, but ‘platoons’ of self-driving cars [113] and fleets of drones
[78] are examples of collections of autonomic system for which this approach might not be di-
rectly applicable.

Future Work A potential area of future work might be to evaluate the various coordination
methods and protocols of multi-agent systems to determine what the role of a meta-manager
might be to positively influence the performance of the collections of autonomic systems.

Expected Level of Effort: High (> 18 mo.)

11.2 Future Work
In addition to the areas of future work identified above, this section will outline the potential
future work, both theoretical and engineering, applicable to the automation of the management
of collections of autonomic systems.

Automated Assistance
There are several areas in this approach to meta-management that could benefit from additional
tooling to provide automated assistance. Specifically, while this thesis demonstrated that writing
a SEAM specification is human-feasible and the compiler does provide various checks and im-
plementations of best practices for the individual synthesis techniques and tools, it does require
the human administrator to have to consider and cross-check multiple items (e.g., coverage of
the defined state space against the adaptation policy definitions) to ensure the consistency and
completeness of the model. Therefore, tooling that could assist a human administrator with such
tasks as ensuring the defined adaptation policies cover the complete defined state space would be
beneficial to further practical adoption.

Additionally, it might be possible to automate the discovery of the adaptation policies of
the individual autonomic subsystems by evaluating logs of their autonomic behavior and the
environmental conditions that are likely to exist in practical industrial settings. Similarly, it might
also be possible to automate the discovery of global knowledge, specifically the interrelationships
between systems, through the examination of various application and system logs through the use
of various machine learning techniques.

Expected Level of Effort: Medium (6 - 18 mo.)

Hybrid Planning & Latency Aware Adaptation
The automated approach to meta-management presented in this thesis builds upon prior work
done in the area of providing autonomic capabilities to a single managed system, see 3.1. There-
fore, there is other work in that area which might be applicable, with possible adaptations, to
meta-management. For example, latency aware adaptation, see [82], in which the time an adap-
tation tactic is expected to take is factored into the analysis and planning phases of the MAPE-K

140

loop to allow for predictive and potentially concurrent adaptation actions. This could potentially
be applied to allow a meta-manager to understand the effects of how long a particular meta-
adaptation might take to show results and use that information to improve its effectiveness.

Additionally, hybrid planning [89], in which alternative analysis and planning processed are
started. The first is intended to be fast but provides less assurance on the outcomes and the second
provides a higher degree of assurance but will take longer to reach a result. This results in sub-
optimal improvement in the short term and a higher degree of improvement in the long term.
With appropriate modifications, this approach might be applicable and allow the meta-manager
to better handle instabilities in the collections of autonomic systems by providing immediate
short term changes that might not be ideal, but would improve results while a longer planning
process attempts to determine the best course of action.

Expected Level of Effort: Medium (6 - 18 mo.)

Dynamic Adaptation Policies
This approach to meta-management allows for online dynamic generation of the meta-adaptation
plans and the offline calculation, storage, and retrieval of them as appropriate for the context of
collections of autonomic systems. However, as previously discussed, this approach does require
the subsystem adaptation policies to be static for the purposes of meta-analysis and meta-strategy
synthesis. A potential area of improvement and future work is for the adaptation policies from
each subsystem to be dynamic and periodically communicated to the meta-manager. This could
potentially enhance the applicability and effectiveness of the meta-manager by accounting for
adaptive subsystems with frequently changing adaptation policies. Additionally, work on dy-
namic adaptation policies might also include extensions to account for uncertainties in the au-
tonomic behavior itself, not just the outcomes. This would be relevant in human-in-the-loop
situations in which the selection of the adaptation policy itself is likely to be non-deterministic.

Expected Level of Effort: High (> 18 mo.)

Homeostatic and Instability Configuration
The case studies in this thesis are geared towards either maintaining homeostatic operations of
a collection of autonomic systems or handling a significant instability in the operations. How-
ever, as demonstrated in Google Control Plane Case Study presented in chapter 8, it is possible
for a system configured for maintaining homeostatic operations to, at least partially, mitigate a
significant instability. While the actions of a meta-manager in both situations are intended to
improve the global utility, some instabilities in the operations of the collection of autonomic
systems are known to the human administrators and have a preferred adaptation policy in such
situations. Therefore, the effectiveness of a meta-manager in similar situations is unknown. It
might be possible to expand upon the work presented in this thesis to include the ability of the
meta-manager to identify significant instabilities that can be anticipated by administrators and
use an alternative meta-manager configuration that has been specified to handle such situations.
This would result in the meta-manager having the ability to handle both homeostatic operations
and significant system instabilities in a deliberate manner. This would further expand the prac-
ticality and applicability of the approach to meta-management as there are systems that could

141

need meta-management for both situations and prevent the counter-intuitive need to potentially
deploy two meta-managers.

Expected Level of Effort: High (> 18 mo.)

142

Chapter 12

Conclusion

This dissertation presents an automated approach to improve the performance of a collection
of autonomic systems. This approach provides a formal basis for reasoning about changes to
the configurations of the autonomic subsystems which tune the autonomic behavior to within a
desired range to improve the collective performance of the collection of autonomic systems. The
key idea of the approach is that the fact that each of the subsystems is autonomic provides three
advantages to enable an automated approach to meta-management: (1) the simplification of the
state space, (2) a reduction in the variance of the results of adaptation, and (3) the abstraction of
the underlying managed system.

These advantages can be exploited to enable the creation of a meta-manager; a higher level
autonomic control system that is specialized to the management of collections of autonomic sys-
tems. This is facilitated by (1) the creation of a domain specific language, SEAM, specialized
to enable the specification of the adaptation policy for each subsystems, (2) the taxonomy of
analysis and synthesis techniques that elaborate on each method’s key properties to enable selec-
tion of the appropriate technique for the context in which the collection of autonomic systems is
operating, (3) the definition of a MAPE-K control loop specialized for the purposes of manag-
ing a collection of autonomic systems, and (4) the creation of a method of specifying and using
information that is unknown, or only partially known, to the individual autonomic subsystems,
referred to as global knowledge.

This approach and framework are then instantiated as part of the Rainbow framework for
self-adaptive systems and evaluated in three realistic case studies: (1) AWS Shopping Cart, (2)
Google Control Plane, and (3) Power Grid Cascade Failure. In aggregate, the approach was
demonstrated to be practical, effective, and applicable.

This thesis provides the following contributions to the theory of self-adaptive systems:
• A formal model characterizing an approach to meta-management of collection of auto-

nomic systems;
• The definition of a Meta-MAPE-K Loop, an architecture pattern specialized to the needs

of managing a collection of autonomic systems;
• A taxonomy of analysis and synthesis techniques that provides guidance on how their key

properties align to the needs of a particular context.

This thesis provides the following contributions to the practice of self-adaptive systems:

143

• SEAM: A domain specific language specialized to the needs of meta-management includ-
ing the specification of adaptation polices for each subsystem, global knowledge, and the
global utility function;

• An implementation framework that can be used to instantiate a meta-manager;
• A demonstration of the effectiveness of a meta-manager in a variety of contexts and its

ability to improve both homeostatic operations and significant system instabilities.

In addition to providing these contributions, this thesis sets the stage for future work in ar-
eas such as (1) managing subsystems that are adversarial or are in an error state, (2) controlling
subsystems that self-coordinate adaptive actions (e.g., multi-agent systems), (3) including other
features of self-adaptation including hybrid planning and latency aware adaptation, (3) handling
continuous time systems (e.g., embedded systems), and (4) using machine learning and other
artificial intelligence techniques to provide automated assistance in the creation of adaption poli-
cies and global knowledge.

144

Appendix A

SEAM Specification for AWS Shopping
Cart Case Study

1 {
2 "MetaManager": {
3 "GlobalUtility": [
4 {
5 "Predicate":"(#$.FrontEndUI.CurrentState.CurrentLoad# /

↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) > 0.66 &
↪ (#$.FrontEndUI.CurrentState.CurrentLoad# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ <= 1 & (#$.FrontEndUI.Database.CurrentLoad# /
↪ #$.FrontEndUI.Database.CurrentCapacity#) > 0.66 &
↪ (#$.FrontEndUI.Database.CurrentLoad# / #$.FrontEndUI.Database.CurrentCapacity#) <= 1",

6 "Formula":"0.25 * (1 − (#$.FrontEndUI.CurrentState.CurrentLoad# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) − 0.66) + 0.25 *
↪ ((#$.FrontEndUI.CurrentConfig.MaxCost# − #$.FrontEndUI.CurrentState.CurrentCost#)/
↪ #$.FrontEndUI.CurrentConfig.MaxCost#) + 0.25 * (1 −
↪ (#$.Database.CurrentState.CurrentLoad# / #$.Database.CurrentState.CurrentCapacity#) −
↪ 0.66) + 0.25 * ((#$.Database.CurrentConfig.MaxCost# −
↪ #$.Database.CurrentState.CurrentCost#)/ #$.Database.CurrentConfig.MaxCost#)"

7 },
8 {
9 "Predicate":"(#$.FrontEndUI.CurrentState.CurrentLoad# /

↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) <= 0.66 &
↪ (#$.FrontEndUI.CurrentState.CurrentLoad# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ >= 0 & (#$.FrontEndUI.Database.CurrentLoad# /
↪ #$.FrontEndUI.Database.CurrentCapacity#) <= 0.66 &
↪ (#$.FrontEndUI.Database.CurrentLoad# / #$.FrontEndUI.Database.CurrentCapacity#) >= 0",

10 "Formula":"0.25 * (1 − (0.66 − #$.FrontEndUI.CurrentState.CurrentLoad# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#)) + 0.25 *
↪ ((#$.FrontEndUI.CurrentConfig.MaxCost# − #$.FrontEndUI.CurrentState.CurrentCost#)/
↪ #$.FrontEndUI.CurrentConfig.MaxCost#) + 0.25 * (1 − (0.66 −
↪ (#$.Database.CurrentState.CurrentLoad# / #$.Database.CurrentState.CurrentCapacity#)) +
↪ 0.25 * ((#$.Database.CurrentConfig.MaxCost# − #$.Database.CurrentState.CurrentCost#)/
↪ #$.Database.CurrentConfig.MaxCost#)"

11 },
12 {

145

13 "Predicate":"(#$.FrontEndUI.CurrentState.CurrentLoad# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) <= 0.66 &
↪ (#$.FrontEndUI.CurrentState.CurrentLoad# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ >= 0 & (#$.FrontEndUI.Database.CurrentLoad# /
↪ #$.FrontEndUI.Database.CurrentCapacity#) > 0.66 &
↪ (#$.FrontEndUI.Database.CurrentLoad# / #$.FrontEndUI.Database.CurrentCapacity#) <= 1",

14 "Formula":"0.25 * (1 − (0.66 − (#$.FrontEndUI.CurrentState.CurrentLoad# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) − 0.66)) + 0.25 *
↪ ((#$.FrontEndUI.CurrentConfig.MaxCost# − #$.FrontEndUI.CurrentState.CurrentCost#)/
↪ #$.FrontEndUI.CurrentConfig.MaxCost#) + 0.25 * (1 −
↪ (#$.Database.CurrentState.CurrentLoad# / #$.Database.CurrentState.CurrentCapacity#) −
↪ 0.66) + 0.25 * ((#$.Database.CurrentConfig.MaxCost# −
↪ #$.Database.CurrentState.CurrentCost#)/ #$.Database.CurrentConfig.MaxCost#)"

15 },
16 {
17 "Predicate":"(#$.FrontEndUI.CurrentState.CurrentLoad# /

↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) > 0.66 &
↪ (#$.FrontEndUI.CurrentState.CurrentLoad# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ <= 1 & (#$.FrontEndUI.Database.CurrentLoad# /
↪ #$.FrontEndUI.Database.CurrentCapacity#) <= 0.66 &
↪ (#$.FrontEndUI.Database.CurrentLoad# / #$.FrontEndUI.Database.CurrentCapacity#) >= 0",

18 "Formula":"0.25 * (1 − (#$.FrontEndUI.CurrentState.CurrentLoad# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) − 0.66) + 0.25 *
↪ ((#$.FrontEndUI.CurrentConfig.MaxCost# − #$.FrontEndUI.CurrentState.CurrentCost#)/
↪ #$.FrontEndUI.CurrentConfig.MaxCost#) + 0.25 * (1 − (0.66 −
↪ (#$.Database.CurrentState.CurrentLoad# / #$.Database.CurrentState.CurrentCapacity#)) +
↪ 0.25 * ((#$.Database.CurrentConfig.MaxCost# − #$.Database.CurrentState.CurrentCost#)/
↪ #$.Database.CurrentConfig.MaxCost#)"

19 }
20],
21 "GlobalKnowledge": [
22 {
23 "Relation":
24 {
25 "Type":"Constraint",
26 "Predicate":"#$.Database.CurrentConfig.MaxCost# = 500 − #$.FrontEndUI.CurrentConfig.MaxCost#"
27 }
28 }
29],
30 "CurrentState": {
31 "HourOfDay": 10
32 },
33 "StateSpace": {
34 "Properties":
35 {
36 "NumOfHrs": {
37 "Type": "Numeric",
38 "Min": 1,
39 "Max": 24,
40 "Step": 1
41 },
42 "InitHour": {

146

43 "Type": "Numeric",
44 "Min": 1,
45 "Max": 24,
46 "Step": 1
47 },
48 "HourOfDay": {
49 "Type": "Numeric",
50 "Min": 1,
51 "Max": 24,
52 "Step": 1,
53 "Intervals":12,
54 "TimeCount":true
55 }
56 }
57 },
58 "AdaptationPolicies": [
59 {
60 "Behaviors": [
61 {
62 "StatePredicate":"",
63 "ConfigUpdate":"#$.FrontEndUI.CurrentConfig.InstanceType#"
64 },
65 {
66 "StatePredicate":"",
67 "ConfigUpdate":"#$.FrontEndUI.CurrentConfig.MaxCost#"
68 },
69 {
70 "StatePredicate":"",
71 "ConfigUpdate":"#$.Database.CurrentConfig.MaxCost#"
72 }
73]
74 }
75]
76 },
77 "Environment": {
78 "AdaptationPolicies": [
79 {
80 "ConfigPredicate":"#$.Global.CurrentState.HourOfDay# <= 6",
81 "Behaviors": [
82 {
83 "StatePredicate":"",
84 "ResultState":"#$.FrontEndUI.CurrentState.CurrentLoad# =

↪ AGGD(#$.FrontEndUI.CurrentState.CurrentLoad#, 3, 1, −0.5) &
↪ #$.Database.CurrentState.CurrentLoad# = 0.8 *
↪ AGGD(#$.FrontEndUI.CurrentState.CurrentLoad#, 3, 1, −0.5)"

85 }
86]
87 },
88 {
89 "ConfigPredicate":"#$.Global.CurrentState.HourOfDay# > 6 & #$.Global.CurrentState.HourOfDay# <= 12",
90 "Behaviors": [
91 {

147

92 "StatePredicate":"",
93 "ResultState":"#$.FrontEndUI.CurrentState.CurrentLoad# =

↪ AGGD(#$.FrontEndUI.CurrentState.CurrentLoad#, 1, 3, 0.5) &
↪ #$.Database.CurrentState.CurrentLoad# = 0.8 *
↪ AGGD(#$.FrontEndUI.CurrentState.CurrentLoad#, 1, 3, 0.5)"

94 }
95]
96 },
97 {
98 "ConfigPredicate":"#$.Global.CurrentState.HourOfDay# > 12 & #$.Global.CurrentState.HourOfDay# <=

↪ 18",
99 "Behaviors": [

100 {
101 "StatePredicate":"",
102 "ResultState":"#$.FrontEndUI.CurrentState.CurrentLoad# =

↪ N(#$.FrontEndUI.CurrentState.CurrentLoad#, 0.2) &
↪ #$.Database.CurrentState.CurrentLoad# = 150 + #$.FrontEndUI.CurrentState.CurrentLoad#"

103 }
104]
105 },
106 {
107 "ConfigPredicate":"#$.Global.CurrentState.HourOfDay# > 18 & #$.Global.CurrentState.HourOfDay# <=

↪ 24",
108 "Behaviors": [
109 {
110 "StatePredicate":"",
111 "ResultState":"#$.FrontEndUI.CurrentState.CurrentLoad# =

↪ N(#$.FrontEndUI.CurrentState.CurrentLoad#, 0.2) &
↪ #$.Database.CurrentState.CurrentLoad# = 150 + #$.FrontEndUI.CurrentState.CurrentLoad#"

112 }
113]
114 }
115]
116 },
117 "FrontEndUI": {
118 "CurrentState": {
119 "CurrentLoad": 66,
120 "CurrentCapacity": 100,
121 "CurrentCost": 100,
122 "AdaptDelay":0
123 },
124 "CurrentConfig": {
125 "MaxCost": 250,
126 "InstanceType": 0
127 },
128 "StateSpace": {
129 "Properties":
130 {
131 "CurrentLoad": {
132 "Type": "Numeric",
133 "Min": 0,
134 "Max": 500,

148

135 "Step": 10
136 },
137 "CurrentCapacity": {
138 "Type": "Numeric",
139 "Min": 0,
140 "Max": 500,
141 "Step": 10
142 },
143 "CurrentCost": {
144 "Type": "Numeric",
145 "Min": 0,
146 "Max": #$.FrontEndUI.CurrentConfig.MaxCost#,
147 "Step": 1
148 },
149 "AdaptDelay": {
150 "Type": "Numeric",
151 "Min": 0,
152 "Max": 3,
153 "Step": 1
154 }
155 },
156 "Configuration":
157 {
158 "MaxCost": {
159 "Type": "Numeric",
160 "Min": 0,
161 "Max": 500,
162 "Step": 1
163 },
164 "InstanceType": {
165 "Type": "Numeric",
166 "Min": 0,
167 "Max": 1,
168 "Step": 1
169 }
170 }
171 },
172 "AdaptationPolicies": [
173 {
174 "ConfigPredicate":"#$.FrontEndUI.Configuration.InstanceType# = 0",
175 "Behaviors": [
176 {
177 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ >= 0.75",

178 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity# + 10 &
↪ #$.FrontEndUI.CurrentState.CurrentCost# = #$.FrontEndUI.CurrentState.CurrentCost# + 10
↪ & #$.FrontEndUI.CurrentState.AdaptDelay# = 3"

179 },
180 {

149

181 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &
↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ <= 0.50",

182 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity# − 10 &
↪ #$.FrontEndUI.CurrentState.CurrentCost# = #$.FrontEndUI.CurrentState.CurrentCost# − 10
↪ & #$.FrontEndUI.CurrentState.AdaptDelay# = 3"

183 },
184 {
185 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ > 0.50 & (#$.FrontEndUI.CurrentState.CurrentCost# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) < 0.75",

186 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#"

187 },
188 {
189 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# > 0",
190 "ResultState":"#$.FrontEndUI.CurrentState.AdaptDelay# =

↪ #$.FrontEndUI.CurrentState.AdaptDelay# − 1"
191 }
192]
193 },
194 {
195 "ConfigPredicate":"#$.FrontEndUI.Configuration.InstanceType# = 1",
196 "Behaviors": [
197 {
198 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ >= 0.75",

199 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ [0.2|0,0.8|#$.FrontEndUI.CurrentState.CurrentCapacity# + 10] &
↪ #$.FrontEndUI.CurrentState.CurrentCost# = #$.FrontEndUI.CurrentState.CurrentCost# + 1
↪ & #$.FrontEndUI.CurrentState.AdaptDelay# = 3"

200 },
201 {
202 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ <= 0.50",

203 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity# − 10 &
↪ #$.FrontEndUI.CurrentState.CurrentCost# = #$.FrontEndUI.CurrentState.CurrentCost# − 1
↪ & #$.FrontEndUI.CurrentState.AdaptDelay# = 3"

204 },
205 {
206 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# = 0 &

↪ (#$.FrontEndUI.CurrentState.CurrentCost# / #$.FrontEndUI.CurrentState.CurrentCapacity#)
↪ > 0.50 & (#$.FrontEndUI.CurrentState.CurrentCost# /
↪ #$.FrontEndUI.CurrentState.CurrentCapacity#) < 0.75",

207 "ResultState":"#$.FrontEndUI.CurrentState.CurrentCapacity# =
↪ #$.FrontEndUI.CurrentState.CurrentCapacity# & #$.FrontEndUI.CurrentState.AdaptDelay#
↪ = 3"

150

208 },
209 {
210 "StatePredicate":"#$.FrontEndUI.CurrentState.AdaptDelay# > 0",
211 "ResultState":"#$.FrontEndUI.CurrentState.AdaptDelay# =

↪ #$.FrontEndUI.CurrentState.AdaptDelay# − 1"
212 }
213]
214 }
215]
216 },
217 "Database": {
218 "CurrentState": {
219 "CurrentLoad": 100,
220 "CurrentCapacity": 100,
221 "CurrentCost": 100
222 },
223 "CurrentConfig": {
224 "MaxCost":250
225 },
226 "StateSpace": {
227 "Properties":
228 {
229 "CurrentLoad": {
230 "Type": "Numeric",
231 "Min": 0,
232 "Max": 500,
233 "Step": 10
234 },
235 "CurrentCapacity": {
236 "Type": "Numeric",
237 "Min": 0,
238 "Max": 500,
239 "Step": 10
240 },
241 "CurrentCost": {
242 "Type": "Numeric",
243 "Min": 0,
244 "Max": #$.Database.CurrentConfig.MaxCost#,
245 "Step": 10
246 }
247 },
248 "Configuration":
249 {
250 "MaxCost": {
251 "Type": "Numeric",
252 "Min": 0,
253 "Max": 500,
254 "Step": 1
255 }
256 }
257 },
258 "AdaptationPolicies": [

151

259 {
260 "ConfigPredicate":"#$.MetaManager.CurrentState.HourOfDay# != 12 &

↪ #$.MetaManager.CurrentState.HourOfDay# != 1",
261 "Behaviors": [
262 {
263 "StatePredicate":"(#$.Database.CurrentState.CurrentCost# /

↪ #$.Database.CurrentState.CurrentCapacity#) >= 0.75 &
↪ (#$.Database.CurrentState.CurrentCost# < #$.Database.Configuration.MaxCost#) + 10",

264 "ResultState":"#$.Database.CurrentState.CurrentCost# = #$.Database.CurrentState.CurrentCost# +
↪ 10 & #$.Database.CurrentState.CurrentCapacity# =
↪ #$.Database.CurrentState.CurrentCapacity# + 10"

265 },
266 {
267 "StatePredicate":"(#$.Database.CurrentState.CurrentCost# /

↪ #$.Database.CurrentState.CurrentCapacity#) <= 0.50 &
↪ (#$.Database.CurrentState.CurrentCost# < #$.Database.Configuration.MaxCost#) + 10",

268 "ResultState":"#$.Database.CurrentState.CurrentCapacity# =
↪ #$.Database.CurrentState.CurrentCapacity# − 10 & #$.Database.CurrentState.CurrentCost#
↪ = #$.Database.CurrentState.CurrentCost# − 10"

269 },
270 {
271 "StatePredicate":"(#$.Database.CurrentState.CurrentCost# /

↪ #$.Database.CurrentState.CurrentCapacity#) > 0.50 &
↪ (#$.Database.CurrentState.CurrentCost# / #$.Database.CurrentState.CurrentCapacity#) <
↪ 0.75",

272 "ResultState":"#$.Database.CurrentState.CurrentCapacity# =
↪ #$.Database.CurrentState.CurrentCapacity#"

273 }
274]
275 },
276 {
277 "ConfigPredicate":"#$.MetaManager.CurrentState.HourOfDay# = 12",
278 "Behaviors": [
279 {
280 "StatePredicate":"",
281 "ResultState":"#$.Database.CurrentState.CurrentCapacity# = 200 &

↪ #$.Database.CurrentState.CurrentCost# = 200"
282 }
283]
284 },
285 {
286 "ConfigPredicate":"#$.MetaManager.CurrentState.HourOfDay# = 1",
287 "Behaviors": [
288 {
289 "StatePredicate":"",
290 "ResultState":"#$.Database.CurrentState.CurrentCapacity# =

↪ #$.FrontEndUI.CurrentState.CurrentCapacity# & #$.Database.CurrentState.CurrentCost# =
↪ #$.FrontEndUI.CurrentState.CurrentCost#"

291 }
292]
293 }
294]

152

295 }
296 }

Listing A.1: Shopping Cart SEAM Specification

153

Appendix B

PRISM Specification for AWS Shopping
Cart Case Study

1
2 dtmc
3
4 // −−−−− Rewards −−−−−
5
6 rewards "GlobalUtility"
7 ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) > 0.66) & ((FrontEndUI_CurrentLoad /

↪ FrontEndUI_CurrentCapacity) <= 1) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) > 0.66) & ((Database_CurrentLoad / Database_CurrentCapacity)
↪ <= 1): (0.25 * (1 − ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) −0.66))) +
↪ (0.25 * ((MetaManager_FrontEndUI_Config_MaxCost − FrontEndUI_CurrentCost) /
↪ MetaManager_FrontEndUI_Config_MaxCost)) + (0.25 * (1 − ((Database_CurrentLoad /
↪ Database_CurrentCapacity) −0.66))) + (0.25 ((MetaManager_Database_Config_MaxCost −
↪ Database_CurrentCost) / MetaManager_Database_Config_MaxCost));

8
9 ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) <= 0.66) & ((FrontEndUI_CurrentLoad /

↪ FrontEndUI_CurrentCapacity) >= 0) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) <= 0.66) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) >= 0): (0.25 * (1 − (0.66 − (FrontEndUI_CurrentLoad /
↪ FrontEndUI_CurrentCapacity)))) + (0.25 * ((MetaManager_FrontEndUI_Config_MaxCost −
↪ FrontEndUI_CurrentCost) / MetaManager_FrontEndUI_Config_MaxCost)) + (0.25 * (1 −
↪ (0.66 − (Database_CurrentLoad / Database_CurrentCapacity)))) + (0.25 *
↪ ((MetaManager_Database_Config_MaxCost − Database_CurrentCost) /
↪ MetaManager_Database_Config_MaxCost));

10
11 ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) <= 0.66) & ((FrontEndUI_CurrentLoad /

↪ FrontEndUI_CurrentCapacity) >= 0) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) > 0.66) & ((Database_CurrentLoad / Database_CurrentCapacity)
↪ <= 1): (0.25 * (1 − (0.66 − (FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity)))) +
↪ (0.25 * ((MetaManager_FrontEndUI_Config_MaxCost − FrontEndUI_CurrentCost) /
↪ MetaManager_FrontEndUI_Config_MaxCost)) + (0.25 * (1 − ((Database_CurrentLoad /
↪ Database_CurrentCapacity) −0.66))) + (0.25 * ((MetaManager_Database_Config_MaxCost −
↪ Database_CurrentCost) / MetaManager_Database_Config_MaxCost));

12

154

13 ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) > 0.66) & ((FrontEndUI_CurrentLoad /
↪ FrontEndUI_CurrentCapacity) <= 1) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) <= 0.66) & ((Database_CurrentLoad /
↪ Database_CurrentCapacity) >= 0): (0.25 * (1 − ((FrontEndUI_CurrentLoad /
↪ FrontEndUI_CurrentCapacity) −0.66))) + (0.25 *
↪ ((MetaManager_FrontEndUI_Config_MaxCost − FrontEndUI_CurrentCost) /
↪ MetaManager_FrontEndUI_Config_MaxCost)) + (0.25 * (1 − (0.66 −
↪ (Database_CurrentLoad / Database_CurrentCapacity)))) + (0.25 *
↪ ((MetaManager_Database_Config_MaxCost − Database_CurrentCost) /
↪ MetaManager_Database_Config_MaxCost));

14 endrewards
15
16 // −−−−− Model Control −−−−
17
18 global MODEL_Turn : [0..3] init 0;
19 global MODEL_Sink : bool init false;
20 global MODEL_TurnCount : [0..100] init 0;
21 const int MODEL_MaxTurns = MetaManager_NumOfHrs * MetaManager_NumOfIntervals;
22
23
24 // −−−−− Env. Module −−−−
25
26 formula ENVMNT_Formula_CurrentLoad_Lower_2 = (FrontEndUI_CurrentLoad − 2 < 10) ? (10) :

↪ FrontEndUI_CurrentLoad − 2;
27 formula ENVMNT_Formula_CurrentLoad_Upper_2 = (FrontEndUI_CurrentLoad + 2 > 200) ? (200) :

↪ FrontEndUI_CurrentLoad + 2;
28 formula ENVMNT_Formula_CurrentLoad_Lower_5 = (FrontEndUI_CurrentLoad − 5 < 10) ? (10) :

↪ FrontEndUI_CurrentLoad − 5;
29 formula ENVMNT_Formula_CurrentLoad_Upper_5 = (FrontEndUI_CurrentLoad + 5 > 200) ? (200) :

↪ FrontEndUI_CurrentLoad + 5;
30
31 const int ENVMNT_Turn = 0;
32
33 module ENVMNT
34
35
36 [] (MODEL_TurnCount < MODEL_MaxTurns) & (MODEL_Turn = ENVMNT_Turn) &

↪ (MetaManager_HourOfDay <= 6) −>
37 0.10 : (FrontEndUI_CurrentLoad’ = FrontEndUI_CurrentLoad) & (Database_CurrentLoad’ =

↪ Database_CurrentLoad) & (MODEL_Turn’ = FrontEndUI_Turn) & (MODEL_TurnCount’ =
↪ MODEL_TurnCount + 1)

38 + 0.55 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_2) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_2) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

39 + 0.08 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_2) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_2) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

40 + 0.25 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_5) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_5) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

41 + 0.02 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_5) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_5) & (MODEL_Turn’

155

↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1);
42
43
44 [] (MODEL_TurnCount < MODEL_MaxTurns) & (MODEL_Turn = ENVMNT_Turn) &

↪ (MetaManager_HourOfDay > 6) & (MetaManager_HourOfDay <= 12) −>
45 0.10 : (FrontEndUI_CurrentLoad’ = FrontEndUI_CurrentLoad) & (Database_CurrentLoad’ =

↪ Database_CurrentLoad) & (MODEL_Turn’ = FrontEndUI_Turn) & (MODEL_TurnCount’ =
↪ MODEL_TurnCount + 1)

46 + 0.08 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_2) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_2) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

47 + 0.55 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_2) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_2) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

48 + 0.02 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_5) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_5) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

49 + 0.25 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_5) &
↪ (Database_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_5) & (MODEL_Turn’
↪ = FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1);

50
51
52 [] (MODEL_TurnCount < MODEL_MaxTurns) & (MODEL_Turn = ENVMNT_Turn) &

↪ (MetaManager_HourOfDay > 12) & (MetaManager_HourOfDay <= 18) −>
53 0.70 : (FrontEndUI_CurrentLoad’ = FrontEndUI_CurrentLoad) & (Database_CurrentLoad’ = 150 +

↪ FrontEndUI_CurrentLoad) & (MODEL_Turn’ = FrontEndUI_Turn) &
↪ (MODEL_TurnCount’ = MODEL_TurnCount + 1)

54 + 0.10 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_2) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

55 + 0.10 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_2) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

56 + 0.05 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_5) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

57 + 0.05 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_5) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1);

58
59
60 [] (MODEL_TurnCount < MODEL_MaxTurns) & (MODEL_Turn = ENVMNT_Turn) &

↪ (MetaManager_HourOfDay > 18) & (MetaManager_HourOfDay <= 24) −>
61 0.70 : (FrontEndUI_CurrentLoad’ = FrontEndUI_CurrentLoad) & (Database_CurrentLoad’ = 150 +

↪ FrontEndUI_CurrentLoad) & (MODEL_Turn’ = FrontEndUI_Turn) &
↪ (MODEL_TurnCount’ = MODEL_TurnCount + 1)

62 + 0.10 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_2) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

63 + 0.10 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_2) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

156

64 + 0.05 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Upper_5) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1)

65 + 0.05 : (FrontEndUI_CurrentLoad’ = ENVMNT_Formula_CurrentLoad_Lower_5) &
↪ (Database_CurrentLoad’ = 150 + FrontEndUI_CurrentLoad) & (MODEL_Turn’ =
↪ FrontEndUI_Turn) & (MODEL_TurnCount’ = MODEL_TurnCount + 1);

66
67 endmodule
68
69 //−−−−− FrontEndUI −−−−−
70
71 global FrontEndUI_CurrentLoad : [0..500] init 66;
72 global FrontEndUI_CurrentCapacity : [0..500] init 100;
73 global FrontEndUI_CurrentCost : [0..MetaManager_FrontEndUI_Config_MaxCost] init 100;
74 global FrontEndUI_Config_InstanceType : [0..1] init MetaManager_FrontEndUI_Config_InstanceType;
75 global FrontEndUI_AdaptDelay : [0..3] init 0;
76
77 formula FrontEndUI_Formula_CurrentCapacity_Lower_10 = (FrontEndUI_CurrentCapacity − 10 < 0) ? (0) :

↪ FrontEndUI_CurrentCapacity − 10;
78 formula FrontEndUI_Formula_CurrentCapacity_Upper_10 = (FrontEndUI_CurrentCapacity + 10 > 200) ? (200) :

↪ FrontEndUI_CurrentCapacity + 10;
79
80 formula FrontEndUI_Formula_CurrentCost_Lower_10 = (FrontEndUI_CurrentCost − 10 < 0) ? (0) :

↪ FrontEndUI_CurrentCost − 10;
81 formula FrontEndUI_Formula_CurrentCost_Upper_10 = (FrontEndUI_CurrentCost + 10 >

↪ MetaManager_FrontEndUI_Config_MaxCost) ?
↪ (MetaManager_FrontEndUI_Config_MaxCost) : FrontEndUI_CurrentCost + 10;

82
83 formula FrontEndUI_Formula_CurrentCost_Lower_1 = (FrontEndUI_CurrentCost − 1 < 0) ? (0) :

↪ FrontEndUI_CurrentCost − 1;
84 formula FrontEndUI_Formula_CurrentCost_Upper_1 = (FrontEndUI_CurrentCost + 1 >

↪ MetaManager_FrontEndUI_Config_MaxCost) ?
↪ (MetaManager_FrontEndUI_Config_MaxCost) : FrontEndUI_CurrentCost + 1;

85
86 const int FrontEndUI_Turn = 1;
87
88 module FrontEndUI
89
90 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &

↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) >= 0.75) &
↪ (FrontEndUI_Config_InstanceType = 0) −>

91 1: (FrontEndUI_CurrentCapacity’ = FrontEndUI_Formula_CurrentCapacity_Upper_10) &
↪ (FrontEndUI_CurrentCost’ = FrontEndUI_Formula_CurrentCost_Upper_10) &
↪ (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = 3);

92
93 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &

↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) <= 0.50) &
↪ (FrontEndUI_Config_InstanceType = 0) −>

94 1: (FrontEndUI_CurrentCapacity’ = FrontEndUI_Formula_CurrentCapacity_Lower_10) &
↪ (FrontEndUI_CurrentCost’ = FrontEndUI_Formula_CurrentCost_Lower_10) &
↪ (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = 3);

95

157

96 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &
↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) > 0.50) &
↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) < 0.75) &
↪ (FrontEndUI_Config_InstanceType = 0) −>

97 1: (FrontEndUI_CurrentCapacity’ = FrontEndUI_CurrentCapacity) & (MODEL_Turn’ = Database_Turn);
98
99 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay > 0) &

↪ (FrontEndUI_Config_InstanceType = 0) −>
100 1: (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = FrontEndUI_AdaptDelay − 1);
101
102
103 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &

↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) >= 0.75) &
↪ (FrontEndUI_Config_InstanceType = 1) −>

104 0.80: (FrontEndUI_CurrentCapacity’ = FrontEndUI_Formula_CurrentCapacity_Upper_10) &
↪ (FrontEndUI_CurrentCost’ = FrontEndUI_Formula_CurrentCost_Upper_1) &
↪ (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = 3)

105 + 0.20: (FrontEndUI_CurrentCapacity’ = FrontEndUI_CurrentCapacity) & (FrontEndUI_CurrentCost’ =
↪ FrontEndUI_CurrentCost) & (MODEL_Turn’ = Database_Turn) &
↪ (FrontEndUI_AdaptDelay’ = 3);

106
107 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &

↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) <= 0.50) &
↪ (FrontEndUI_Config_InstanceType = 1) −>

108 1: (FrontEndUI_CurrentCapacity’ = FrontEndUI_Formula_CurrentCapacity_Lower_10) &
↪ (FrontEndUI_CurrentCost’ = FrontEndUI_Formula_CurrentCost_Lower_1) &
↪ (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = 3);

109
110 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay = 0) &

↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) > 0.50) &
↪ ((FrontEndUI_CurrentLoad / FrontEndUI_CurrentCapacity) < 0.75) &
↪ (FrontEndUI_Config_InstanceType = 1) −>

111 1: (FrontEndUI_CurrentCapacity’ = FrontEndUI_CurrentCapacity) & (MODEL_Turn’ = Database_Turn);
112
113 [] (!MODEL_Sink) & (MODEL_Turn = FrontEndUI_Turn) & (FrontEndUI_AdaptDelay > 0) &

↪ (FrontEndUI_Config_InstanceType = 1) −>
114 1: (MODEL_Turn’ = Database_Turn) & (FrontEndUI_AdaptDelay’ = FrontEndUI_AdaptDelay − 1);
115
116 endmodule
117
118 //−−−−− Database −−−−−
119
120 global Database_CurrentLoad : [0..500] init 66;
121 global Database_CurrentCapacity : [0..500] init 100;
122 global Database_CurrentCost : [0..MetaManager_Database_Config_MaxCost] init 100;
123
124 formula Database_Formula_CurrentCapacity_Lower_10 = (Database_CurrentCapacity − 10 < 0) ? (0) :

↪ Database_CurrentCapacity − 10;
125 formula Database_Formula_CurrentCapacity_Upper_10 = (Database_CurrentCapacity + 10 > 500) ? (500) :

↪ Database_CurrentCapacity + 10;
126

158

127 formula Database_Formula_CurrentCost_Lower_10 = (Database_CurrentCost − 10 < 0) ? (0) :
↪ Database_CurrentCost − 10;

128 formula Database_Formula_CurrentCost_Upper_10 = (Database_CurrentCost + 10 >
↪ MetaManager_Database_Config_MaxCost) ? (MetaManager_Database_Config_MaxCost) :
↪ Database_CurrentCost + 10;

129
130 const int Database_Turn = 2;
131
132 module Database
133 [] (!MODEL_Sink) & (MODEL_Turn = Database_Turn) & (MetaManager_HourOfDay != 12) &

↪ (MetaManager_HourOfDay != 1) & ((Database_CurrentLoad / Database_CurrentCapacity)
↪ >= 0.75) & (Database_CurrentCost < Database_Formula_CurrentCost_Upper_10)−>

134 1: (Database_CurrentCapacity’ = Database_Formula_CurrentCapacity_Upper_10) & (Database_CurrentCost’
↪ = Database_Formula_CurrentCost_Upper_10) & (MODEL_Turn’ = MetaManager_Turn);

135
136
137 [] (!MODEL_Sink) & (MODEL_Turn = Database_Turn) & (MetaManager_HourOfDay != 12) &

↪ (MetaManager_HourOfDay != 1) & ((Database_CurrentLoad / Database_CurrentCapacity)
↪ <= 0.50) & (Database_CurrentCost < Database_Formula_CurrentCost_Upper_10) −>

138 1: (Database_CurrentCapacity’ = Database_Formula_CurrentCapacity_Lower_10) & (Database_CurrentCost’
↪ = Database_Formula_CurrentCost_Lower_10) & (MODEL_Turn’ = MetaManager_Turn);

139
140 [] (!MODEL_Sink) & (MODEL_Turn = Database_Turn) & (MetaManager_HourOfDay != 12) &

↪ (MetaManager_HourOfDay != 1) & ((Database_CurrentLoad / Database_CurrentCapacity) >
↪ 0.50) & ((Database_CurrentLoad / Database_CurrentCapacity) < 0.75) −>

141 1: (MODEL_Turn’ = MetaManager_Turn);
142
143 [] (!MODEL_Sink) & (MODEL_Turn = Database_Turn) & (MetaManager_HourOfDay = 12) −>

↪ (Database_CurrentCapacity’ = 200) & (Database_CurrentCost’ = 200) & (MODEL_Turn’ =
↪ MetaManager_Turn);

144 [] (!MODEL_Sink) & (MODEL_Turn = Database_Turn) & (MetaManager_HourOfDay = 1) −>
↪ (Database_CurrentCapacity’ = FrontEndUI_CurrentCapacity) & (Database_CurrentCost’ =
↪ FrontEndUI_CurrentCost) & (MODEL_Turn’ = MetaManager_Turn);

145
146 endmodule
147
148 // −−−−− MetaManager Module −−−−
149
150 global MetaManager_HourOfDay: [1..24] init MetaManager_InitHour;
151
152 const int MetaManager_NumOfHrs;
153 const int MetaManager_NumOfIntervals;
154 const int MetaManager_InitHour;
155 const int MetaManager_FrontEndUI_Config_InstanceType;
156 const int MetaManager_FrontEndUI_Config_MaxCost;
157 const int MetaManager_Database_Config_MaxCost = 500 − MetaManager_FrontEndUI_Config_MaxCost;
158
159 formula MetaManager_Formula_HourOfDay_Upper_1 = (MetaManager_HourOfDay + 1 > 24) ? (1) :

↪ MetaManager_HourOfDay + 1;
160
161 const int MetaManager_Turn = 3;
162

159

163 module MetaManager
164
165 [] (!MODEL_Sink) & (MODEL_Turn = MetaManager_Turn) & (MODEL_TurnCount < MODEL_MaxTurns)

↪ & (mod(MODEL_TurnCount, MetaManager_NumOfIntervals) = 0) −>
↪ (MetaManager_HourOfDay’ = MetaManager_Formula_HourOfDay_Upper_1) &
↪ (MODEL_Turn’ = ENVMNT_Turn);

166 [] (!MODEL_Sink) & (MODEL_Turn = MetaManager_Turn) & (MODEL_TurnCount < MODEL_MaxTurns)
↪ & (mod(MODEL_TurnCount, MetaManager_NumOfIntervals) > 0) −> (MODEL_Turn’ =
↪ ENVMNT_Turn);

167 [] (!MODEL_Sink) & (MODEL_Turn = MetaManager_Turn) & (MODEL_TurnCount >= MODEL_MaxTurns)
↪ −> 1:(MODEL_Sink’ = true);

168
169 endmodule

Listing B.1: Shopping Cart PRISM DTMC Specification

160

Appendix C

SEAM Specification for Google Control
Plane Case Study

1 { //Root Node
2 "MetaManager": {
3 "GlobalUtility": [
4 {
5 "Predicate":"#$.MIG.CurrentState.OldestTimeMsg# <= 2500",
6 "Formula":"(2500 − #$.MIG.CurrentState.OldestTimeMsg#) / 2500",
7 "Objective":"Min"
8 },
9 {

10 "Predicate":"#$.MIG.CurrentState.OldestTimeMsg# > 2500",
11 "Formula":"0"
12 }
13],
14 "AdaptationPolicies": [
15 {
16 "Behaviors": [
17 {
18 "StatePredicate":"",
19 "ConfigUpdate":"#$.MIG.CurrentConfig.CoolDownDuration#"
20 },
21 {
22 "StatePredicate":"",
23 "ConfigUpdate":"#$.MIG.CurrentConfig.CanMaintenance#"
24 }
25]
26 }
27]
28 },
29 "Environment":
30 {
31 "CurrentState": {
32 "QueueLoad": 250
33 },
34 "StateSpace": {

161

35 "Properties":
36 [
37 "QueueLoad": {
38 "Type":"Numeric",
39 "Min":0,
40 "Max":500,
41 "Step":50
42 }
43]
44 },
45 "AdaptationPolicies": [
46 {
47 "ConfigPredicate":"",
48 "isDefault":"True",
49 "Behaviors": [
50 {
51 "StatePredicate":"",
52 "ResultState":"#$.Environment.CurrentState.QueueLoad# =

↪ #$.Environment.CurrentState.QueueLoad# + 250"
53 }
54]
55 }
56]
57 },
58 "MIG": {
59 "InstanceCount":2,
60 "CurrentState": {
61 "ServerCount":2,
62 "OldestTimeMsg":100,
63 "MaxOldestTimeMsg":150,
64 "CoolDownTime":0
65 },
66 "CurrentConfig": {
67 "CanMaintenance":"False",
68 "CoolDownDuration": 1
69 },
70 "StateSpace": {
71 "Properties":
72 [
73 "ServerCount": {
74 "Type":"Numeric",
75 "Min":1,
76 "Max":20,
77 "Step":1
78 },
79 "OldestTimeMsg": {
80 "Type":"Numeric",
81 "Min":0,
82 "Max":3000,
83 "Step":100
84 },
85 "MaxOldestTimeMsg": {

162

86 "Type":"Numeric",
87 "Min":0,
88 "Max":3000,
89 "Step":100
90 },
91 "CoolDownTime": {
92 "Type":"Numeric",
93 "Min":0,
94 "Max":2,
95 "Step":1
96 }
97],
98 "Configuration":
99 [

100 "CanMaintenance": {
101 "Type":"Numeric",
102 "Min":0,
103 "Max":1,
104 "Step":1
105 },
106 "CoolDownDuration": {
107 "Type":"Numeric",
108 "Min":0,
109 "Max":2,
110 "Step":1
111 }
112]
113 },
114 "AdaptationPolicies": [
115 {
116 "ConfigPredicate":"",
117 "isDefault":"True",
118 "Behaviors": [
119 { //Maintenance
120 "StatePredicate":"#$.MIG.CurrentConfig.CanMaintenance# = 1",
121 "ResultState":"#$.MIG.CurrentConfig.CanMaintenance# = 0 &

↪ #$.MIG.CurrentState.ServerCount# = 1"
122 },
123 { //AddCapacity
124 "StatePredicate":"#$.MIG.CurrentState.OldestTimeMsg# >

↪ #$.MIG.CurrentState.MaxOldestTimeMsg# & #$.MIG.CurrentState.CoolDownTime# = 0",
125 "ResultState":"#$.MIG.CurrentState.ServerCount# = #$.MIG.CurrentState.ServerCount# + 1 &

↪ #$.MIG.CurrentState.CoolDownTime# = #$.MIG.CurrentConfig.CoolDownDuration#"
126 },
127 { //RemoveCapacity
128 "StatePredicate":"#$.MIG.CurrentState.OldestTimeMsg# <=

↪ #$.MIG.CurrentState.MaxOldestTimeMsg# & #$.MIG.CurrentState.CoolDownTime# = 0",
129 "ResultState":"#$.MIG.CurrentState.ServerCount# = #$.MIG.CurrentState.ServerCount# − 1 &

↪ #$.MIG.CurrentState.CoolDownTime# = #$.MIG.CurrentConfig.CoolDownDuration#"
130 },
131 { //CoolDown
132 "StatePredicate":"#$.MIG.CurrentState.CoolDownTime# > 0",

163

133 "ResultState":"#$.MIG.CurrentState.CoolDownTime# = #$.MIG.CurrentState.CoolDownTime# −
↪ 1"

134 },
135 { //Process Jobs
136 "StatePredicate":"",
137 "ResultState":"#$.MIG.Environment.QueueLoad# = #$.MIG.Environment.QueueLoad# − (150 *

↪ #$.MIG.CurrentState.ServerCount#)"
138 }
139]
140 }
141]
142 }
143 }

Listing C.1: GCP Control Plane - SEAM Specification

164

Appendix D

PRISM Games Model for Google Control
Plane Case Study

1
2 smg
3
4 // −−−−− Players −−−−−
5
6 player ENV [EnvAction1], ENVMNT endplayer
7 player MIG1 [MIG1Action1], [MIG1Action2], [MIG1Action3], [MIG1Action4],[MIG1Action5] endplayer
8 player MIG2 [MIG2Action1], [MIG2Action2], [MIG2Action3], [MIG2Action4],[MIG2Action5] endplayer
9 player MM [MM] endplayer

10
11 // −−−−− Rewards −−−−−
12
13 rewards "GlobalUtility"
14 [EnvAction1] MIG_OldestTimeMsg <= 2500: (2500 − MIG_OldestTimeMsg) / 2500;
15 [EnvAction1] MIG_OldestTimeMsg > 2500: 0;
16 endrewards
17
18 // −−−−− Global Variables −−−−−
19
20 global Model_Sink : bool init false;
21 const int Model_Max_Turns = 150;
22
23
24 // −−−−− Control Module −−−−−
25
26 module ControlModule
27
28 Model_Turn : [0..2] init 0;
29 Model_TurnCount : [0..1000] init 0;
30
31 [EnvAction1] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
32 [MIG1Action1] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);

165

33 [MIG1Action2] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =
↪ Model_TurnCount + 1);

34 [MIG1Action3] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =
↪ Model_TurnCount + 1);

35 [MIG1Action4] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =
↪ Model_TurnCount + 1);

36 [MIG1Action5] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =
↪ Model_TurnCount + 1);

37 [MIG2Action1] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =
↪ Model_TurnCount + 1);

38 [MIG2Action2] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =
↪ Model_TurnCount + 1);

39 [MIG2Action3] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =
↪ Model_TurnCount + 1);

40 [MIG2Action4] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =
↪ Model_TurnCount + 1);

41 [MIG2Action5] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =
↪ Model_TurnCount + 1);

42 [MM] (!Model_Sink) −> (Model_Turn’ = 0) & (Model_TurnCount’ = Model_TurnCount + 1);
43
44 endmodule
45
46 // −−−−− Env. Module −−−−−
47
48 global ENV_QueueLoad : [0..500] init 250;
49
50 module ENVMNT
51
52 [EnvAction1] (Model_Turn = 0) & (Model_TurnCount < Model_Max_Turns) −> (ENV_QueueLoad’ =

↪ ENV_QueueLoad + 250);
53 [](Model_Turn = 0) & (Model_TurnCount >= Model_Max_Turns) & (!Model_Sink) −> (Model_Sink’ = true);
54
55 endmodule
56
57 // −−−−− MIG1−−−−−
58
59 const int MIG1_Model_Turn = 1;
60
61 global MIG1_ServerCount : [1..20] init 2;
62 global MIG1_OldestTimeMsg : [0..3000] init 100;
63 global MIG1_MaxOldestTimeMsg : [0..3000] init 150;
64 global MIG1_CoolDownTime : [0..2] init 0;
65 global MIG1_CanMaintenance : [0..1] init 0;
66 global MIG1_CoolDownDuration : [0..2] init 1;
67
68 formula MIG1_Formula_QueueLoad1 = (ENV_QueueLoad − (MIG1_ServerCount * 150) < 0) ? (0) :

↪ ((ENV_QueueLoad − (MIG1_ServerCount * 150) > 500) ? (500) : (ENV_QueueLoad −
↪ (MIG1_ServerCount * 150)));

69 formula MIG1_Formula_ServerCount1 = (1 < 0) ? (0) : ((1 > 20) ? (20) : (1));
70 formula MIG1_Formula_ServerCount2 = (MIG1_Server_Count + 1 < 0) ? (0) : ((MIG1_Server_Count + 1) ? (20)

↪ : (MIG1_Server_Count + 1));

166

71 formula MIG1_Formula_ServerCount3 = (MIG1_Server_Count − 1 < 0) ? (0) : ((MIG1_Server_Count − 1) ? (20)
↪ : (MIG1_Server_Count − 1));

72 formula MIG1_Formula_CoolDown1 = (MIG1_CoolDownDuration < 0) ? (0) : ((MIG1_CoolDownDuration > 2)
↪ ? (2) : (MIG1_CoolDownDuration));

73 formula MIG1_Formula_CoolDown2 = (MIG1_CoolDownDuration < 0) ? (0) : ((MIG1_CoolDownDuration > 2)
↪ ? (2) : (MIG1_CoolDownDuration));

74 formula MIG1_Formula_CoolDown3 = (MIG1_CoolDownTime − 1 < 0) ? (0) : ((MIG1_CoolDownTime − 1) ?
↪ (2) : (MIG1_CoolDownTime − 1));

75
76 module MIG
77
78 [MIG1Action1] (Model_Turn = MIG1_Model_Turn) −> (ENV_QueueLoad’ = MIG1_Formula_QueueLoad1);
79
80 [MIG1Action2] (Model_Turn = MIG1_Model_Turn) & (MIG1_CanMaintenance = 1) −>

↪ (MIG1_Server_Count’ = MIG1_Formula_ServerCount1) & (MIG1_CanMaintenance’ = 0);
81
82 [MIG1Action3] (Model_Turn = MIG1_Model_Turn) & (MIG1_OldestTimeMsg >

↪ MIG1_MaxOldestTimeMsg) & (MIG1_Cool_Down_Count = 0) −> (MIG1_Server_Count’ =
↪ MIG1_Formula_ServerCount2) & (MIG1_CoolDownTime’ = MIG1_Formula_CoolDown1);

83
84 [MIG1Action4] (Model_Turn = MIG1_Model_Turn) & (MIG1_OldestTimeMsg <=

↪ MIG1_MaxOldestTimeMsg) & (MIG1_Cool_Down_Count = 0) −> (MIG1_Server_Count’ =
↪ MIG1_Formula_ServerCount3) & (MIG1_CoolDownTime’ = MIG1_Formula_CoolDown2);

85
86 [MIG1Action5] (Model_Turn = MIG1_Model_Turn) & (MIG1_CoolDownTime > 0) −>

↪ (MIG1_CoolDownTime’ = MIG1_Formula_CoolDown3);
87
88 endmodule
89
90 // −−−−− MIG2−−−−−
91
92 const int MIG2_Model_Turn = 2;
93
94 global MIG2_ServerCount : [1..20] init 2;
95 global MIG2_OldestTimeMsg : [0..3000] init 100;
96 global MIG2_MaxOldestTimeMsg : [0..3000] init 150;
97 global MIG2_CoolDownTime : [0..2] init 0;
98 global MIG2_CanMaintenance : [0..1] init 0;
99 global MIG2_CoolDownDuration : [0..2] init 1;

100
101 formula MIG2_Formula_QueueLoad1 = (ENV_QueueLoad − (MIG2_ServerCount * 150) < 0) ? (0) :

↪ ((ENV_QueueLoad − (MIG2_ServerCount * 150) > 500) ? (500) : (ENV_QueueLoad −
↪ (MIG2_ServerCount * 150)));

102 formula MIG2_Formula_ServerCount1 = (1 < 0) ? (0) : ((1 > 20) ? (20) : (1));
103 formula MIG2_Formula_ServerCount2 = (MIG2_Server_Count + 1 < 0) ? (0) : ((MIG2_Server_Count + 1) ? (20)

↪ : (MIG2_Server_Count + 1));
104 formula MIG2_Formula_ServerCount3 = (MIG2_Server_Count − 1 < 0) ? (0) : ((MIG2_Server_Count − 1) ? (20)

↪ : (MIG2_Server_Count − 1));
105 formula MIG2_Formula_CoolDown1 = (MIG2_CoolDownDuration < 0) ? (0) : ((MIG2_CoolDownDuration > 2)

↪ ? (2) : (MIG2_CoolDownDuration));
106 formula MIG2_Formula_CoolDown2 = (MIG2_CoolDownDuration < 0) ? (0) : ((MIG2_CoolDownDuration > 2)

↪ ? (2) : (MIG2_CoolDownDuration));

167

107 formula MIG2_Formula_CoolDown3 = (MIG2_CoolDownTime − 1 < 0) ? (0) : ((MIG2_CoolDownTime − 1) ?
↪ (2) : (MIG2_CoolDownTime − 1));

108
109 module MIG
110
111 [MIG2Action1] (Model_Turn = MIG2_Model_Turn) −> (ENV_QueueLoad’ = MIG2_Formula_QueueLoad1);
112
113 [MIG2Action2] (Model_Turn = MIG2_Model_Turn) & (MIG2_CanMaintenance = 1) −>

↪ (MIG2_Server_Count’ = MIG2_Formula_ServerCount1) & (MIG2_CanMaintenance’ = 0);
114
115 [MIG2Action3] (Model_Turn = MIG2_Model_Turn) & (MIG2_OldestTimeMsg >

↪ MIG2_MaxOldestTimeMsg) & (MIG2_Cool_Down_Count = 0) −> (MIG2_Server_Count’ =
↪ MIG2_Formula_ServerCount2) & (MIG2_CoolDownTime’ = MIG2_Formula_CoolDown1);

116
117 [MIG2Action4] (Model_Turn = MIG2_Model_Turn) & (MIG2_OldestTimeMsg <=

↪ MIG2_MaxOldestTimeMsg) & (MIG2_Cool_Down_Count = 0) −> (MIG2_Server_Count’ =
↪ MIG2_Formula_ServerCount3) & (MIG2_CoolDownTime’ = MIG2_Formula_CoolDown2);

118
119 [MIG2Action5] (Model_Turn = MIG2_Model_Turn) & (MIG2_CoolDownTime > 0) −>

↪ (MIG2_CoolDownTime’ = MIG2_Formula_CoolDown3);
120
121 endmodule
122
123
124 // −−−−− Meta−Manager −−−−−
125
126 const int MM_Model_Turn = 3;
127
128 module MetaManager
129
130 [MM](Model_Turn = MM_Model_Turn) −> (Model_Sink’ = Model_Sink);
131 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CoolDownDuration’ = 0);
132 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CoolDownDuration’ = 1);
133 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CoolDownDuration’ = 2);
134 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CanMaintenance’ = false);
135 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CanMaintenance’ = true);
136 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CoolDownDuration’ = 0);
137 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CoolDownDuration’ = 1);
138 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CoolDownDuration’ = 2);
139 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CanMaintenance’ = false);
140 [MM](Model_Turn = MM_Model_Turn) −> (MIG2_CanMaintenance’ = true);
141
142 endmodule

Listing D.1: GCP Control Plane - PRISM Specification - 2 Managed Instance Groups

1
2 smg
3
4 // −−−−− Players −−−−−
5
6 player ENV [EnvAction1], ENVMNT endplayer
7 player MIG1 [MIG1Action1], [MIG1Action2], [MIG1Action3], [MIG1Action4],[MIG1Action5] endplayer

168

8 player MM [MM] endplayer
9

10 // −−−−− Rewards −−−−−
11
12 rewards "GlobalUtility"
13 [EnvAction1] MIG_OldestTimeMsg <= 2500: (2500 − MIG_OldestTimeMsg) / 2500;
14 [EnvAction1] MIG_OldestTimeMsg > 2500: 0;
15 endrewards
16
17 // −−−−− Global Variables −−−−−
18
19 global Model_Sink : bool init false;
20 const int Model_Max_Turns = 150;
21
22
23 // −−−−− Control Module −−−−−
24
25 module ControlModule
26
27 Model_Turn : [0..2] init 0;
28 Model_TurnCount : [0..1000] init 0;
29
30 [EnvAction1] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
31 [MIG1Action1] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
32 [MIG1Action2] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
33 [MIG1Action3] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
34 [MIG1Action4] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
35 [MIG1Action5] (!Model_Sink) −> (Model_Turn’ = Model_Turn + 1) & (Model_TurnCount’ =

↪ Model_TurnCount + 1);
36 [MM] (!Model_Sink) −> (Model_Turn’ = 0) & (Model_TurnCount’ = Model_TurnCount + 1);
37
38 endmodule
39
40 // −−−−− Env. Module −−−−−
41
42 global ENV_QueueLoad : [0..500] init 250;
43
44 module ENVMNT
45
46 [EnvAction1] (Model_Turn = 0) & (Model_TurnCount < Model_Max_Turns) −> (ENV_QueueLoad’ =

↪ ENV_QueueLoad + 250);
47 [](Model_Turn = 0) & (Model_TurnCount >= Model_Max_Turns) & (!Model_Sink) −> (Model_Sink’ = true);
48
49 endmodule
50
51 // −−−−− MIG1−−−−−
52

169

53 const int MIG1_Model_Turn = 1;
54
55 global MIG1_ServerCount : [1..20] init 2;
56 global MIG1_OldestTimeMsg : [0..3000] init 100;
57 global MIG1_MaxOldestTimeMsg : [0..3000] init 150;
58 global MIG1_CoolDownTime : [0..2] init 0;
59 global MIG1_CanMaintenance : [0..1] init 0;
60 global MIG1_CoolDownDuration : [0..2] init 1;
61
62 formula MIG1_Formula_QueueLoad1 = (ENV_QueueLoad − (MIG1_ServerCount * 150) < 0) ? (0) :

↪ ((ENV_QueueLoad − (MIG1_ServerCount * 150) > 500) ? (500) : (ENV_QueueLoad −
↪ (MIG1_ServerCount * 150)));

63 formula MIG1_Formula_ServerCount1 = (1 < 0) ? (0) : ((1 > 20) ? (20) : (1));
64 formula MIG1_Formula_ServerCount2 = (MIG1_Server_Count + 1 < 0) ? (0) : ((MIG1_Server_Count + 1) ? (20)

↪ : (MIG1_Server_Count + 1));
65 formula MIG1_Formula_ServerCount3 = (MIG1_Server_Count − 1 < 0) ? (0) : ((MIG1_Server_Count − 1) ? (20)

↪ : (MIG1_Server_Count − 1));
66 formula MIG1_Formula_CoolDown1 = (MIG1_CoolDownDuration < 0) ? (0) : ((MIG1_CoolDownDuration > 2)

↪ ? (2) : (MIG1_CoolDownDuration));
67 formula MIG1_Formula_CoolDown2 = (MIG1_CoolDownDuration < 0) ? (0) : ((MIG1_CoolDownDuration > 2)

↪ ? (2) : (MIG1_CoolDownDuration));
68 formula MIG1_Formula_CoolDown3 = (MIG1_CoolDownTime − 1 < 0) ? (0) : ((MIG1_CoolDownTime − 1) ?

↪ (2) : (MIG1_CoolDownTime − 1));
69
70 module MIG
71
72 [MIG1Action1] (Model_Turn = MIG1_Model_Turn) −> (ENV_QueueLoad’ = MIG1_Formula_QueueLoad1);
73
74 [MIG1Action2] (Model_Turn = MIG1_Model_Turn) & (MIG1_CanMaintenance = 1) −>

↪ (MIG1_Server_Count’ = MIG1_Formula_ServerCount1) & (MIG1_CanMaintenance’ = 0);
75
76 [MIG1Action3] (Model_Turn = MIG1_Model_Turn) & (MIG1_OldestTimeMsg >

↪ MIG1_MaxOldestTimeMsg) & (MIG1_Cool_Down_Count = 0) −> (MIG1_Server_Count’ =
↪ MIG1_Formula_ServerCount2) & (MIG1_CoolDownTime’ = MIG1_Formula_CoolDown1);

77
78 [MIG1Action4] (Model_Turn = MIG1_Model_Turn) & (MIG1_OldestTimeMsg <=

↪ MIG1_MaxOldestTimeMsg) & (MIG1_Cool_Down_Count = 0) −> (MIG1_Server_Count’ =
↪ MIG1_Formula_ServerCount3) & (MIG1_CoolDownTime’ = MIG1_Formula_CoolDown2);

79
80 [MIG1Action5] (Model_Turn = MIG1_Model_Turn) & (MIG1_CoolDownTime > 0) −>

↪ (MIG1_CoolDownTime’ = MIG1_Formula_CoolDown3);
81
82 endmodule
83
84
85 // −−−−− Meta−Manager −−−−−
86
87 const int MM_Model_Turn = 2;
88
89 module MetaManager
90
91 [MM](Model_Turn = MM_Model_Turn) −> (Model_Sink’ = Model_Sink);

170

92 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CoolDownDuration’ = 0);
93 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CoolDownDuration’ = 1);
94 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CoolDownDuration’ = 2);
95 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CanMaintenance’ = false);
96 [MM](Model_Turn = MM_Model_Turn) −> (MIG1_CanMaintenance’ = true);
97
98 endmodule

Listing D.2: GCP Control Plane - PRISM Specification - 1 Managed Instance Group

171

Appendix E

IEEE 39 Bus System Technical Information

UnitNo. RatedPower H Ra x’d x’q xd xq T’do T’qo xl
1 10000 5.000 0.000 0.600 0.800 2.000 1.900 7.000 0.700 0.300
2 1000 3.030 0.000 0.697 1.700 2.950 2.820 6.560 1.500 0.350
3 1000 3.580 0.000 0.531 0.876 2.495 2.370 5.700 1.500 0.304
4 1000 2.860 0.000 0.436 1.660 2.620 2.580 5.690 1.500 0.295
5 600 4.333 0.000 0.792 0.996 4.020 3.720 5.400 0.440 0.324
6 1000 3.480 0.000 0.500 0.814 2.540 2.410 7.300 0.400 0.224
7 1000 2.640 0.000 0.490 1.860 2.950 2.920 5.660 1.500 0.322
8 1000 2.430 0.000 0.570 0.911 2.900 2.800 6.700 0.410 0.280
9 1000 3.450 0.000 0.570 0.587 2.106 2.050 4.790 1.960 0.298
10 1000 4.200 0.000 0.310 0.080 1.000 0.690 10.200 0.000 0.125

Table E.1: Generator Parameter Values

Bus No. Rs Xls Xd Xq Rfd Rkd Rkq Xlfd Xlkd Xlkq
39 0.0002 0.3 2 1.9 0.00078 0.08842 0.07805 0.36429 0.30000 0.16552
31 0.0002 0.35 2.95 2.82 0.00121 0.08680 0.11626 0.40044 0.26421 0.15970
32 0.0002 0.304 2.495 2.37 0.00114 0.08339 0.09828 0.25324 0.40916 0.15710
33 0.0002 0.295 2.62 2.58 0.00115 0.22949 0.10351 0.15010 0.09017 0.05636
34 0.0002 0.324 4.02 3.72 0.00208 0.03440 0.17167 0.53585 1.07442 0.48710
35 0.0002 0.224 2.54 2.41 0.00096 0.06964 0.10510 0.31334 0.48576 0.19141
36 0.0002 0.322 2.95 2.92 0.00132 0.16917 0.11841 0.17947 0.14560 0.08041
37 0.0002 0.28 2.9 2.8 0.00117 0.07570 0.11947 0.32609 0.41083 0.18230
38 0.0002 0.298 2.106 2.05 0.00118 0.08605 0.08481 0.32017 0.34453 0.16644
30 0.0002 0.125 1 0.69 0.00029 0.09301 0.03207 0.23460 0.38542 0.16051

Table E.2: Generator Bus Values

172

R1(pu) X1(pu) B1(pu) km R1(ohm/km) X1(ohm/km) B1(uS/km) R0(ohm/km) X0(ohm/km) B0(uS/km)
1 2 0.0035 0.0411 0.6987 275.5 0.032 0.373 1.015 0.318 1.119 0.609
1 39 0.001 0.025 0.75 167.6 0.015 0.373 1.790 0.149 1.119 1.074
2 3 0.0013 0.0151 0.2572 101.2 0.032 0.373 1.017 0.321 1.119 0.610
2 25 0.007 0.0086 0.146 57.6 0.304 0.373 1.013 3.036 1.119 0.608
3 4 0.0013 0.0213 0.2214 142.8 0.023 0.373 0.620 0.228 1.119 0.372
3 18 0.0011 0.0133 0.2138 89.1 0.031 0.373 0.959 0.308 1.119 0.576
4 5 0.0008 0.0128 0.1342 85.8 0.023 0.373 0.626 0.233 1.119 0.375
4 14 0.0008 0.0129 0.1382 86.5 0.023 0.373 0.639 0.231 1.119 0.384
5 6 0.0002 0.0026 0.0434 17.4 0.029 0.373 0.996 0.287 1.119 0.598
5 8 0.0008 0.0112 0.1476 75.1 0.027 0.373 0.786 0.266 1.119 0.472
6 7 0.0006 0.0092 0.113 61.7 0.024 0.373 0.733 0.243 1.119 0.440
6 11 0.0007 0.0082 0.1389 55.0 0.032 0.373 1.011 0.318 1.119 0.607
7 8 0.0004 0.0046 0.078 30.8 0.032 0.373 1.012 0.324 1.119 0.607
8 9 0.0023 0.0363 0.3804 243.3 0.024 0.373 0.625 0.236 1.119 0.375
9 39 0.001 0.025 1.2 167.6 0.015 0.373 2.865 0.149 1.119 1.719

10 11 0.0004 0.0043 0.0729 28.8 0.035 0.373 1.012 0.347 1.119 0.607
10 13 0.0004 0.0043 0.0729 28.8 0.035 0.373 1.012 0.347 1.119 0.607
13 14 0.0009 0.0101 0.1723 67.7 0.033 0.373 1.018 0.332 1.119 0.611
14 15 0.0018 0.0217 0.366 145.4 0.031 0.373 1.007 0.309 1.119 0.604
15 16 0.0009 0.0094 0.171 63.0 0.036 0.373 1.086 0.357 1.119 0.651
16 17 0.0007 0.0089 0.1342 59.7 0.029 0.373 0.9 0.293 1.119 0.54
16 19 0.0016 0.0195 0.304 130.7 0.031 0.373 0.93 0.306 1.119 0.558
16 21 0.0008 0.0135 0.2548 90.5 0.022 0.373 1.126 0.221 1.119 0.676
16 24 0.0003 0.0059 0.068 39.5 0.019 0.373 0.688 0.19 1.119 0.413
17 18 0.0007 0.0082 0.1319 55 0.032 0.373 0.96 0.318 1.119 0.576
17 27 0.0013 0.0173 0.3216 116 0.028 0.373 1.109 0.28 1.119 0.666
21 22 0.0008 0.014 0.2565 93.8 0.021 0.373 1.093 0.213 1.119 0.656
22 23 0.0006 0.0096 0.1846 64.3 0.023 0.373 1.148 0.233 1.119 0.689
23 24 0.0022 0.035 0.361 234.6 0.023 0.373 0.616 0.234 1.119 0.369
25 26 0.0032 0.0323 0.513 216.5 0.037 0.373 0.948 0.37 1.119 0.569
26 27 0.0014 0.0147 0.2396 98.5 0.036 0.373 0.973 0.355 1.119 0.584
26 28 0.0043 0.0474 0.7802 317.7 0.034 0.373 0.982 0.338 1.119 0.589
26 29 0.0057 0.0625 1.029 418.9 0.034 0.373 0.983 0.34 1.119 0.59
28 29 0.0014 0.0151 0.249 101.2 0.035 0.373 0.984 0.346 1.119 0.59

Table E.3: Transmission Line Data

Rated power (MVA) Primary voltagekV Secondary voltagekV R X
11 12 100 500 25 0.0016 0.0435
13 12 100 500 25 0.0016 0.0435
6 31 100 500 20 0 0.025

10 32 100 500 20 0 0.02
19 33 100 500 20 0.0007 0.0142
20 34 100 500 20 0.0009 0.018
22 35 100 500 20 0 0.0143
23 36 100 500 20 0.0005 0.0272
25 37 100 500 20 0.0006 0.0232
2 30 100 500 20 0 0.0181

29 38 100 500 20 0.0008 0.0156
19 20 100 500 500 0.0007 0.0138

Table E.4: Transformer Data

173

Bus No. P (MW) Q (MVar)
1 97.6 44.2
3 322 2.4
4 500 184
7 233.8 84
8 522 176

12 8.5 88
15 320 153
16 329 32.3
18 158 30
20 680 103
21 274 115
23 247.5 84.6
24 308.6 -92.2
25 224 47.2
26 139 17
27 281 75.5
28 206 27.6
29 283.5 26.9
31 9.2 4.6
39 1104 250

Table E.5: Load Data

174

Appendix F

Matlab Power Grid Simulation Model

1
2 function [time, gridA, gridB, gridC, gridD, gridE, iCon] = ConnectedGridModel(ic, baseDir, useMetaMgr,

↪ spotShed)
3
4 interConnect = [6, 5];
5
6 %1 to 2
7 interConnect(1,1) = 1;
8 interConnect(1,2) = 34;
9 interConnect(1,3) = 2;

10 interConnect(1,4) = 34;
11 interConnect(1,5) = 1;
12
13 %1 to 3
14 interConnect(2,1) = 1;
15 interConnect(2,2) = 33;
16 interConnect(2,3) = 3;
17 interConnect(2,4) = 33;
18 interConnect(2,5) = 1;
19
20 %1 to 5
21 interConnect(3,1) = 1;
22 interConnect(3,2) = 36;
23 interConnect(3,3) = 5;
24 interConnect(3,4) = 36;
25 interConnect(3,5) = 1;
26
27 %2 to 3
28 interConnect(4,1) = 2;
29 interConnect(4,2) = 32;
30 interConnect(4,3) = 3;
31 interConnect(4,4) = 32;
32 interConnect(4,5) = 1;
33
34 %2 to 4
35 interConnect(5,1) = 2;

175

36 interConnect(5,2) = 36;
37 interConnect(5,3) = 4;
38 interConnect(5,4) = 36;
39 interConnect(5,5) = 1;
40
41 %4 to 5
42 interConnect(6,1) = 4;
43 interConnect(6,2) = 32;
44 interConnect(6,3) = 5;
45 interConnect(6,4) = 32;
46 interConnect(6,5) = 1;
47
48
49 % Setting Initial Values
50 tic;
51
52 emergencyLoadShed = false;
53
54 grid1 = case39;
55 enableGrid1 = true;
56 collapsedGrid1 = false;
57
58 grid2 = case39;
59 enableGrid2 = false;
60 collapsedGrid2 = false;
61
62 grid3 = case39;
63 enableGrid3 = false;
64 collapsedGrid3 = false;
65
66 grid4 = case39;
67 enableGrid4 = false;
68 collapsedGrid4 = false;
69
70 grid5 = case39;
71 enableGrid5 = false;
72 collapsedGrid5 = false;
73
74 maxLoops = 25;
75 settings = get_default_settings();
76 settings.verbose = 0;
77 settings.max_recursion_depth = 1;
78
79 initial_contingency1 = ic;
80
81 while maxLoops > 0
82
83 %Meta−Manager
84 if useMetaMgr
85 if emergencyLoadShed
86 if spotShed
87 grid1.bus(24, 11) = 0;

176

88 grid2.bus(24, 11) = 0;
89 grid3.bus(24, 11) = 0;
90 grid4.bus(24, 11) = 0;
91 grid5.bus(24, 11) = 0;
92
93 grid1.bus(7, 3) = 0;
94 grid2.bus(7, 3) = 0;
95 grid3.bus(7, 3) = 0;
96 grid4.bus(7, 3) = 0;
97 grid5.bus(7, 3) = 0;
98 else
99 grid1 = ShedLoad(grid1, 0.10);

100 grid2 = ShedLoad(grid2, 0.10);
101 grid3 = ShedLoad(grid3, 0.10);
102 grid4 = ShedLoad(grid4, 0.10);
103 grid5 = ShedLoad(grid5, 0.10);
104 end
105 end
106 end
107
108 if enableGrid1 && ~collapsedGrid1
109
110 grid1 = accfm(grid1, struct(’branches’, initial_contingency1), settings);
111
112 % 1 to 2 Branch 34, Gen 34
113 if grid1.branch_tripped(34) == 1 || grid1.gen(5,8) == 0
114 enableGrid2 = true;
115 initial_contingency2 = 34;
116 interConnect(1,5) = 0;
117 end
118
119 %1 to 3 − Branch 33, Gen 33
120 if grid1.branch_tripped(33) == 1 || grid1.gen(4,8) == 0
121 enableGrid3 = true;
122 initial_contingency3 = 33;
123 interConnect(2,5) = 0;
124 end
125
126 %1 to 5 − Branch 39, Gen 36
127 if grid1.branch_tripped(39) == 1 || grid1.gen(7,8) == 0
128 enableGrid5 = true;
129 initial_contingency5 = 39;
130 interConnect(3,5) = 0;
131 end
132
133 collapsedGrid1 = nnz(ismember(grid1.G.Nodes.Type, [’success’]) == 1);
134 gridA = grid1;
135 end
136
137 if enableGrid2 && ~collapsedGrid2
138
139 grid2 = accfm(grid2, struct(’branches’, initial_contingency2), settings);

177

140
141 % 2 to 1 Branch 34, Gen 34
142 if grid2.branch_tripped(34) == 1 || grid2.gen(5,8) == 0
143 enableGrid1 = true;
144 initial_contingency1 = 34;
145 interConnect(1,5) = 0;
146 end
147
148 %2 to 3 − Branch 20, Gen 32
149 if grid2.branch_tripped(20) == 1 || grid2.gen(3,8) == 0
150 enableGrid3 = true;
151 initial_contingency3 = 20;
152 interConnect(4,5) = 0;
153 end
154
155 %2 to 4 − Branch 39, Gen 36
156 if grid2.branch_tripped(39) == 1 || grid2.gen(7,8) == 0
157 enableGrid4 = true;
158 initial_contingency4 = 39;
159 interConnect(5,5) = 0;
160 end
161
162 collapsedGrid2 = nnz(ismember(grid2.G.Nodes.Type, [’success’]) == 1);
163 gridB = grid2;
164 end
165
166 if enableGrid3 && ~collapsedGrid3
167
168 grid3 = accfm(grid3, struct(’branches’, initial_contingency3), settings);
169
170 % 3 to 1 Branch 33, Gen 33
171 if grid3.branch_tripped(33) == 1 || grid3.gen(4,8) == 0
172 enableGrid1 = true;
173 initial_contingency1 = 33;
174 interConnect(2,5) = 0;
175 end
176
177 %3 to 2 − Branch 20, Gen 32
178 if grid3.branch_tripped(20) == 1 || grid3.gen(3,8) == 0
179 enableGrid2 = true;
180 initial_contingency2 = 20;
181 interConnect(4,5) = 0;
182 end
183
184 collapsedGrid3 = nnz(ismember(grid3.G.Nodes.Type, [’success’]) == 1);
185 gridC = grid3;
186 end
187
188 if enableGrid4 && ~collapsedGrid4
189
190 grid4 = accfm(grid4, struct(’branches’, initial_contingency4), settings);
191

178

192 % 4 to 2 Branch 39, Gen 36
193 if grid4.branch_tripped(39) == 1 || grid4.gen(7,8) == 0
194 enableGrid2 = true;
195 initial_contingency2 = 39;
196 interConnect(5,5) = 0;
197 end
198
199 %4 to 5 − Branch 20, Gen 32
200 if grid4.branch_tripped(20) == 1 || grid4.gen(3,8) == 0
201 enableGrid5 = true;
202 initial_contingency5 = 20;
203 interConnect(6,5) = 0;
204 end
205
206 collapsedGrid4 = nnz(ismember(grid4.G.Nodes.Type, [’success’]) == 1);
207 gridD = grid4;
208 end
209
210 if enableGrid5 && ~collapsedGrid5
211
212 grid5 = accfm(grid5, struct(’branches’, initial_contingency5), settings);
213
214 % 5 to 4 Branch 20, Gen 32
215 if grid5.branch_tripped(20) == 1 || grid5.gen(3,8) == 0
216 enableGrid4 = true;
217 initial_contingency4 = 20;
218 interConnect(6,5) = 0;
219 end
220
221 %5 to 1 − Branch 39, Gen 36
222 if grid5.branch_tripped(39) == 1 || grid5.gen(7,8) == 0
223 enableGrid1 = true;
224 initial_contingency1 = 39;
225 interConnect(3,5) = 0;
226 end
227
228 collapsedGrid5 = nnz(ismember(grid5.G.Nodes.Type, [’success’]) == 1);
229 gridE = grid5;
230 end
231
232 if useMetaMgr
233 emergencyLoadShed = MetaManager(grid1, grid2, grid3, grid4, grid5);
234 end
235
236 maxLoops = maxLoops − 1;
237
238 if ~enableGrid1 && ~enableGrid2 && ~enableGrid3 && ~enableGrid4 && ~enableGrid5
239 maxLoops = 0;
240 end
241
242 if collapsedGrid1 && collapsedGrid2 && collapsedGrid3 && collapsedGrid4 && collapsedGrid5
243 maxLoops = 0;

179

244 end
245
246 fprintf(’\n *** Max Loop: %i% \n’, maxLoops);
247 end
248
249 time = toc;
250 gridA = grid1;
251 gridB = grid2;
252 gridC = grid3;
253 gridD = grid4;
254 gridE = grid5;
255 iCon = interConnect;
256 end
257
258 function [gridA] = ShedLoad(grid, per)
259 busSize = size(grid.bus);
260
261 for i=1:busSize(1)
262 if grid.bus(i, 3) > 0
263 grid.bus(i, 3) = grid.bus(i, 3) * (1 − per);
264 end
265
266 if grid.bus(i, 4) > 0
267 grid.bus(i, 4) = grid.bus(i, 4) * (1 − per);
268 end
269 end
270
271 gridA = grid;
272 end
273
274 function [perTripped] = BranchesTripped(grid1)
275
276 branchSize = size(grid1.branch);
277
278 if(branchSize(2) > 13)
279 branchLoad = round(mean([sqrt(grid1.branch(:, 14).^2 + grid1.branch(:, 15).^2) sqrt(grid1.branch(:, 16).^2 +

↪ grid1.branch(:, 17).^2)], 2), 5);
280 branchCap = grid1.branch(:, 6);
281 branchCapRatio = branchLoad ./ branchCap;
282 branchesTripped = find(branchCapRatio >= 0.75);
283 perTripped = numel(branchCapRatio(branchesTripped));
284 else
285 perTripped = 0;
286 end
287 end
288
289 function [eLoadShed] = MetaManager(grid1, grid2, grid3, grid4, grid5)
290 eLoadShed = false;
291
292 g1Tripped = BranchesTripped(grid1);
293 if g1Tripped > 15
294 eLoadShed = true;

180

295 end
296
297 g2Tripped = BranchesTripped(grid2);
298 if g2Tripped > 15
299 eLoadShed = true;
300 end
301
302 g3Tripped = BranchesTripped(grid3);
303 if g3Tripped > 15
304 eLoadShed = true;
305 end
306
307 g4Tripped = BranchesTripped(grid4);
308 if g4Tripped > 15
309 eLoadShed = true;
310 end
311
312 g5Tripped = BranchesTripped(grid5);
313 if g5Tripped > 15
314 eLoadShed = true;
315 end
316 end

Listing F.1: Electrical Grid SEAM Specification

181

Appendix G

SEAM Specification for Electrical Grid
Cascade

1 {
2 "MetaManager": {
3 "GlobalUtility": [
4 {
5 "Predicate":"",
6 "Formula":"(5 − #$.Grid.CurrentState.CustomerOutageLevel#) / 5"
7 }
8],
9 "GlobalKnowledge": [

10 "Relation": {
11 "Type":"Correlation",
12 "Target":#$.Grid2.CurrentState.PerBranchesDown#,
13 "Formula":"N(#$.Grid1.CurrentState.PerBranchesDown#, 0.5)",
14 "Timedelay": 2
15 },
16 "Relation": {
17 "Type":"Correlation",
18 "Target":#$.Grid3.CurrentState.PerBranchesDown#,
19 "Formula":"N(#$.Grid1.CurrentState.PerBranchesDown#, 0.5)",
20 "Timedelay": 2
21 },
22 "Relation": {
23 "Type":"Correlation",
24 "Target":#$.Grid2.CurrentState.PerBranchesDown#,
25 "Formula":"N(#$.Grid3.CurrentState.PerBranchesDown#, 0.5)",
26 "Timedelay": 2
27 },
28 "Relation": {
29 "Type":"Correlation",
30 "Target":#$.Grid4.CurrentState.PerBranchesDown#,
31 "Formula":"N(#$.Grid2.CurrentState.PerBranchesDown#, 0.5)",
32 "Timedelay": 2
33 },
34 "Relation": {

182

35 "Type":"Correlation",
36 "Target":#$.Grid5.CurrentState.PerBranchesDown#,
37 "Formula":"N(#$.Grid4.CurrentState.PerBranchesDown#, 0.5)",
38 "Timedelay": 2
39 },
40 "Relation": {
41 "Type":"Correlation",
42 "Target":#$.Grid1.CurrentState.PerBranchesDown#,
43 "Formula":"N(#$.Grid5.CurrentState.PerBranchesDown#, 0.5)",
44 "Timedelay": 2
45 }
46],
47 "AdaptationPolicies": [
48 {
49 "Behaviors": [
50 {
51 "StatePredicate":"",
52 "ConfigUpdate":"#$.Grid.CurrentConfig.EmergencyLoadShed#"
53 }
54]
55 }
56]
57 },
58 "Grid": {
59 "InstanceCount":5,
60 "CurrentState": {
61 "PerBranchesDown": 10,
62 "CustomerOutageLevel": 0
63 },
64 "CurrentConfig": {
65 "EmergencyLoadShed": "0"
66 },
67 "StateSpace": {
68 "Properties":
69 {
70 "PerBranchesDown": {
71 "Type": "Numeric",
72 "Min": 0,
73 "Max": 30,
74 "Step": 5
75 },
76 "CustomerOutageLevel": {
77 "Type": "Numeric",
78 "Min": 0,
79 "Max": 5,
80 "Step": 1
81 }
82 },
83 "Configuration":
84 {
85 "EmergencyLoadShed": {
86 "Type": "Numeric",

183

87 "Min": 0,
88 "Max": 1,
89 "Step": 1
90 }
91 }
92 },
93 "AdaptationPolicies": [
94 {
95 "ConfigPredicate":"#$.Grid.CurrentConfig.EmergencyLoadShed# = 0",
96 "isDefault":"True",
97 "Behaviors": [
98 {
99 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# <= 10",

100 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =
↪ N(#$.Grid.CurrentState.PerBranchesDown#, 0.5) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 0"

101 },
102 {
103 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# <= 20 &

↪ #$.Grid.CurrentState.PerBranchesDown# > 10",
104 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =

↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, 0.5) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 3"

105 },
106 {
107 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# > 20",
108 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =

↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, −1) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 5"

109 }
110]
111 },
112 {
113 "ConfigPredicate":"#$.Grid.CurrentConfig.EmergencyLoadShed# = 1",
114 "isDefault":"False",
115 "Behaviors": [
116 {
117 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# <= 10",
118 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =

↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, 1) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 1"

119 },
120 {
121 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# <= 20 &

↪ #$.Grid.CurrentState.PerBranchesDown# > 10",
122 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =

↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, 1) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 2"

123 },
124 {
125 "StatePredicate":"#$.Grid.CurrentState.PerBranchesDown# > 20",

184

126 "ResultState":"#$.Grid.CurrentState.PerBranchesDown# =
↪ AGGD(#$.Grid.CurrentState.PerBranchesDown#, 2, 2, 1) &
↪ #$.Grid.CurrentState.CustomerOutageLevel# = 3"

127 }
128]
129 }
130]
131 }

Listing G.1: Electrical Grid SEAM Specification

185

Bibliography

[1] Ohm’s Law. https://en.wikipedia.org/wiki/OhmAccessed: 2023-08-28. 9.1

[2] James S. Albus. A Reference Model Architecture for Intelligent Systems Design. http:
//ws680.nist.gov/publication/get_pdf.cfm?pub_id=820486. Ac-
cessed: 2019-10-18. 3.4

[3] Hanieh Alipour and Yan Liu. Model Driven Deployment of Auto-Scaling Services on
Multiple Clouds. In 2018 IEEE International Conference on Software Architecture Com-
panion (ICSA-C), pages 93–96, 2018. doi: 10.1109/ICSA-C.2018.00033. 3.2

[4] Paolo Arcaini, Raffaela Mirandola, Elvinia Riccobene, and Patrizia Scandurra. A dsl for
mape patterns representation in self-adapting systems. In Carlos E. Cuesta, David Garlan,
and Jennifer Pérez, editors, Software Architecture, pages 3–19, Cham, 2018. Springer
International Publishing. ISBN 978-3-030-00761-4. 3.2

[5] T. Athay, R. Podmore, and S. Virmani. A Practical Method for the Direct Analysis of
Transient Stability. IEEE Transactions on Power Apparatus and Systems, PAS-98(2):
573–584, 1979. doi: 10.1109/TPAS.1979.319407. 1.2, 9.2

[6] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Verifying continuous
time Markov chains. In Rajeev Alur and Thomas A. Henzinger, editors, Computer Aided
Verification, pages 269–276, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN
978-3-540-68599-9. 7.2

[7] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate Symbolic Model
Checking of Continuous-Time Markov Chains. In Proceedings of the 10th International
Conference on Concurrency Theory, CONCUR ’99, page 146–161, Berlin, Heidelberg,
1999. Springer-Verlag. ISBN 3540664254. 7.2

[8] Paolo Ballarini, Michael Fisher, and Michael Wooldridge. Uncertain Agent Verification
through Probabilistic Model-Checking, 2006. 3.3

[9] Salvador Barberà, Peter Hammond, and Christian Seidl. Handbook of Utility Theory.
Volume 1 Principles. 01 1998. ISBN 9780792381747. 4.1, 5, 6.1, 7.2

[10] Salvador Barberà, Peter Hammond, and Christian Seidl. Handbook of Utility Theory.
Volume 2 Extensions. 01 2004. ISBN 9781441954176. 6.1

[11] Michael Bowling and Manuela Veloso. An Analysis of Stochastic Game Theory for Mul-
tiagent Reinforcement Learning. Technical Report CMU-CS-00-165, Carnegie Mellon
University School of Computer Science, October 2000. URL https://www.cs.cmu.

186

http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=820486
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=820486
https://www.cs.cmu.edu/~mmv/papers/00TR-mike.pdf
https://www.cs.cmu.edu/~mmv/papers/00TR-mike.pdf
https://www.cs.cmu.edu/~mmv/papers/00TR-mike.pdf

edu/~mmv/papers/00TR-mike.pdf. 4

[12] J.V. Bradley. Distribution-free Statistical Tests. Prentice-Hall, 1968. ISBN
9780132162593. URL https://books.google.com/books?id=
QKFqAAAAMAAJ. 11.1

[13] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259,
December 2017. URL https://www.rfc-editor.org/info/rfc8259. 5

[14] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,
Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering Self-Adaptive
Systems through Feedback Loops, pages 48–70. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2009. ISBN 978-3-642-02161-9. doi: 10.1007/978-3-642-02161-9_3. URL
https://doi.org/10.1007/978-3-642-02161-9_3. 3.1

[15] Javier Cámara, David Garlan, Bradley Schmerl, and Ashutosh Pandey. Optimal Planning
for Architecture-Based Self-Adaptation via Model Checking of Stochastic Games. In
Proceedings of the 10th DADS Track of the 30th ACM Symposium on Applied Computing,
Salamanca, Spain, 13-17 April 2015. 6.1, 6.4, 10.1.4

[16] Javier Cámara, Gabriel A. Moreno, David Garlan, and Bradley Schmerl. Analyzing
Latency-Aware Self-Adaptation Using Stochastic Games and Simulations. ACM Trans.
Auton. Adapt. Syst., 10(4), jan 2016. ISSN 1556-4665. doi: 10.1145/2774222. URL
https://doi.org/10.1145/2774222. 6.1, 6.4, 10.1.4

[17] Javier Cámara, David Garlan, Gabriel A. Moreno, and Bradley Schmerl. Analyzing Self-
Adaptation via Model Checking of Stochastic Games. Number 9640. Springer, 2017. 6.4,
10.1.4

[18] Javier Camara, Wenxin Peng, David Garlan, and Bradley Schmerl. Reasoning about Sens-
ing Uncertainty in Decision-Making for Self-Adaptation. In Proceedings of the 15th Inter-
national Workshop on Foundations of Coordination Languages and Self-Adaptive Systems
(FOCLASA 2017), 2017. 3.3, 6.4

[19] Javier Cámara, Wenxin Peng, David Garlan, and Bradley Schmerl. Reasoning about Sens-
ing Uncertainty and its Reduction in Decision-Making for Self-Adaptation. Science of
Computer Programming, 167:51–69, 1 December 2018. 10.1.4

[20] T. Chen, M. Kwiatkowska, D. Parker, and A. Simaitis. Verifying Team Formation Proto-
cols with Probabilistic Model Checking. In Proc. 12th International Workshop on Com-
putational Logic in Multi-Agent Systems (CLIMA XII 2011), volume 6814 of LNCS, pages
190–297. Springer, 2011. 3.3

[21] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Automatic Verification of
Competitive Stochastic Systems. Formal Methods in System Design, 43(1):61–92, 2013.
6.4

[22] Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, David Parker, and Aistis Simaitis.
PRISM-games: A Model Checker for Stochastic Multi-Player Games. In Nir Piterman
and Scott A. Smolka, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 185–191, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN

187

https://www.cs.cmu.edu/~mmv/papers/00TR-mike.pdf
https://www.cs.cmu.edu/~mmv/papers/00TR-mike.pdf
https://www.cs.cmu.edu/~mmv/papers/00TR-mike.pdf
https://www.cs.cmu.edu/~mmv/papers/00TR-mike.pdf
https://books.google.com/books?id=QKFqAAAAMAAJ
https://books.google.com/books?id=QKFqAAAAMAAJ
https://www.rfc-editor.org/info/rfc8259
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1145/2774222

978-3-642-36742-7. 8.2, 10.1.3, 11.1

[23] Betty H. C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi A.
Müller, Patrizio Pelliccione, Anna Perini, Nauman A. Qureshi, Bernhard Rumpe, Daniel
Schneider, Frank Trollmann, and Norha M. Villegas. Using Models at Runtime to Ad-
dress Assurance for Self-Adaptive Systems, pages 101–136. Springer International Pub-
lishing, Cham, 2014. ISBN 978-3-319-08915-7. doi: 10.1007/978-3-319-08915-7_4.
URL https://doi.org/10.1007/978-3-319-08915-7_4. 3.3

[24] Shang-Wen Cheng. Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation. PhD thesis, Institute for Software Research, School of Computer Sci-
ence,Carnegie Mellon University, May 2008. URL http://reports-archive.
adm.cs.cmu.edu/anon/isr2008/abstracts/08-113.html. Technical Re-
port CMU-ISR-08-113. 3.1, 4, 5.6, 5.6, 10.1.4, 11.1

[25] Javier Cámara, Pedro Correia, Rogério de Lemos, David Garlan, Pedro Gomes, Bradley
Schmerl, and Rafael Ventura. Incorporating architecture-based self-adaptation into an
adaptive industrial software system. Journal of Systems and Software, 122:507–523, 2016.
ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2015.09.021. URL https://www.
sciencedirect.com/science/article/pii/S0164121215002113. 1

[26] Samir El-Masri Darren Foster, Carolyn McGregor. A Survey of Agent-Based Intel-
ligent Decision Support Systems to Support Clinical Management and Research. In
M. Bernardo and J. Hillston, editors, First International Workshop on Multi-Agent Sys-
tems for Medicine, Computational Biology, and Bioinformatics, pages 16–34, 2005. 3.2

[27] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,
Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store. In ACM Symposium on Operating System Princi-
ples, 2007. URL https://www.amazon.science/publications/
dynamo-amazons-highly-available-key-value-store. 7.1, 7.2

[28] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-Based Multirobot Coordination:
A Survey and Analysis. Proceedings of the IEEE, 94(7):1257–1270, July 2006. ISSN
0018-9219. doi: 10.1109/JPROC.2006.876939. 3.2

[29] Roberto Rodrigues Filho, Elvin Alberts, Ilias Gerostathopoulos, Barry Porter, and
Fábio M. Costa. Emergent web server: An exemplar to explore online learning in com-
positional self-adaptive systems. In 2022 International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS), pages 36–42, 2022. doi:
10.1145/3524844.3528079. 3.2

[30] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás D’Ippolito, Ilias
Gerostathopoulos, Andreas Berndt Hempel, Henry Hoffmann, Pooyan Jamshidi, Evan-
gelia Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Misailovic, Alessandro Vittorio
Papadopoulos, Suprio Ray, Amir M. Sharifloo, Stepan Shevtsov, Mateusz Ujma, and
Thomas Vogel. Software Engineering Meets Control Theory. In Proceedings of the
10th International Symposium on Software Engineering for Adaptive and Self-Managing

188

https://doi.org/10.1007/978-3-319-08915-7_4
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/abstracts/08-113.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/abstracts/08-113.html
https://www.sciencedirect.com/science/article/pii/S0164121215002113
https://www.sciencedirect.com/science/article/pii/S0164121215002113
https://www.amazon.science/publications/dynamo-amazons-highly-available-key-value-store
https://www.amazon.science/publications/dynamo-amazons-highly-available-key-value-store

Systems, SEAMS ’15, pages 71–82, Piscataway, NJ, USA, 2015. IEEE Press. URL
http://dl.acm.org/citation.cfm?id=2821357.2821370. 3.4

[31] W. Findeisen, F.N. Bailey, M. Brdys, K. Malinowski, P. Tatjewski, and A. Wozniak.
Control and Coordination in Hierarchical Systems. International Series on Applied Sys-
tems Analysis. John Wiley & Sons, 1980. URL http://pure.iiasa.ac.at/id/
eprint/1227/. 3.4

[32] Luca Florio. Decentralized Self-Adaptation in Large-Scale Distributed Systems. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, page 1022–1025, New York, NY, USA, 2015. Association for Com-
puting Machinery. ISBN 9781450336758. doi: 10.1145/2786805.2803192. URL
https://doi.org/10.1145/2786805.2803192. 3.2

[33] Illinois Center for a Smarter Electric Grid. IEEE 39 Bus System. https://icseg.
iti.illinois.edu/ieee-39-bus-system/. Accessed: 2023-9-18. 1.2, 9.2

[34] U.S.-Canada Power System Outage Task Force. Final Report on the August
14, 2003 Blackout in the United States and Canada: Causes and Recommen-
dations. https://www.energy.gov/oe/articles/blackout-2003-final-report-august-14-2003-
blackout-united-states-and-canada-causes-and, 2004. 9.1, 9.1, 9.1, 10.1.1, 10.1.3

[35] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker. Automated Veri-
fication Techniques for Probabilistic Systems, pages 53–113. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. ISBN 978-3-642-21455-4. doi: 10.1007/978-3-642-21455-4_3.
URL https://doi.org/10.1007/978-3-642-21455-4_3. 6.2

[36] Wikipedia Foundation. List of probability distributions. https://en.wikipedia.
org/wiki/List_of_probability_distributions. Accessed: 2023-06-25.
5.1

[37] Martin Fowler, David Rice, Matthew Foemmel, Edward Hieatt, Robert Mee, and Randy
Stafford. Patterns of Enterprise Application Architecture. Addison-Wesley Professional,
2002. 2

[38] Nicola Franco, Hoai My Van, Marc Dreiser, and Gereon Weiss. Towards a self-adaptive
architecture for federated learning of industrial automation systems. In 2021 International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
pages 210–216, 2021. doi: 10.1109/SEAMS51251.2021.00035. 3.2

[39] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. Software Architecture-Based
Self-Adaptation, pages 31–55. 04 2009. ISBN 978-0-387-89827-8. doi: 10.1007/
978-0-387-89828-5_2. 1

[40] David Garlan, Nicolas D’Ippolito, and Kenji Tei. The 2nd Controlled Adaptation of Self-
Adaptive Systems Workshop (CASaS2017). Technical Report NII-2017-10, National In-
stitute of Informatics, 24-28 July 2017. 3.4

[41] P. Klazoglou K.Niwtaki Georgios Andreadis, K.-D. Bouzakis. Review of Agent-Based
Systems in the Manufacturing Section, 03 2014. 3.2

[42] Simos Gerasimou, Radu Calinescu, Stepan Shevtsov, and Danny Weyns. UNDERSEA:

189

http://dl.acm.org/citation.cfm?id=2821357.2821370
http://pure.iiasa.ac.at/id/eprint/1227/
http://pure.iiasa.ac.at/id/eprint/1227/
https://doi.org/10.1145/2786805.2803192
https://icseg.iti.illinois.edu/ieee-39-bus-system/
https://icseg.iti.illinois.edu/ieee-39-bus-system/
https://doi.org/10.1007/978-3-642-21455-4_3
https://en.wikipedia.org/wiki/List_of_probability_distributions
https://en.wikipedia.org/wiki/List_of_probability_distributions

An Exemplar for Engineering Self-Adaptive Unmanned Underwater Vehicles (Artifact).
Dagstuhl Artifacts Series, 3(1):3:1–3:2, 2017. ISSN 2509-8195. doi: 10.4230/DARTS.3.
1.3. URL http://drops.dagstuhl.de/opus/volltexte/2017/7141. 11.1

[43] Ilias Gerostathopoulos and Evangelos Pournaras. TRAPPed in Traffic? A Self-Adaptive
Framework for Decentralized Traffic Optimization. In 2019 IEEE/ACM 14th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
pages 32–38, 2019. doi: 10.1109/SEAMS.2019.00014. 11.1

[44] Miriam Gil, Vicente Pelechano, Joan Fons, and Manoli Albert. Designing the Human
in the Loop of Self-Adaptive Systems. In Carmelo R. García, Pino Caballero-Gil, Mike
Burmester, and Alexis Quesada-Arencibia, editors, Ubiquitous Computing and Ambient
Intelligence, pages 437–449, Cham, 2016. Springer International Publishing. ISBN 978-
3-319-48746-5. 11.1

[45] Github. MDP Toolbox for Python. https://pymdptoolbox.readthedocs.io/
en/latest/, . Accessed: 2023-10-13. 11.1

[46] Github. NashPy. https://nashpy.readthedocs.io/en/stable/
discussion/other-python-game-theory-libraries.html, . Accessed:
2023-10-13. 11.1

[47] Github. PyNFG. https://pypi.org/project/PyNFG/0.1.2/, . Accessed:
2023-10-13. 11.1

[48] Github. Sagemath. https://doc.sagemath.org/html/en/reference/
game_theory/index.html, . Accessed: 2023-10-13. 11.1

[49] S. Givant and P. Halmos. Introduction to Boolean Algebras. Undergraduate Texts
in Mathematics. Springer New York, 2008. ISBN 9780387402932. URL https:
//books.google.com/books?id=ORILyf8sF2sC. 5.1

[50] Thomas J. Glazier, Bradley Schmerl, Javier Cámara, and David Garlan. Utility Theory
for Self-Adaptive Systems. Technical Report CMU-ISR-17-119, Carnegie Mellon Uni-
versity Institute for Software Research, December 2017. URL http://acme.able.
cs.cmu.edu/pubs/uploads/pdf/CMU-ISR-17-119.pdf. 4.1

[51] Google. Google Compute Engine. https://cloud.google.com/compute/, .
Accessed: 2019-10-18. 8.1

[52] Google. Google Cloud Networking Incident #19009. https://status.cloud.
google.com/incident/cloud-networking/19009, . Accessed: 2019-10-12.
1.2, 8.1, 8.1, 8.1, 10.1.1

[53] Google. Google Pub/Sub Documentation. https://cloud.google.com/
pubsub/docs, . Accessed: 2019-10-18. 8.2

[54] NERC Steering Group. Technical Analysis of the August 14,
2003, Blackout: What Happened, Why, and What Did We Learn?
http://www.nerc.com/docs/docs/blackout/NERC_Final_Blackout_Report_07_13_04.pdf,
2003. 1, 9.1, 9.1, 9.1, 10.1.1, 10.1.3

[55] S. Gössner and C. Bormann. JSONPath – XPath for JSON,

190

http://drops.dagstuhl.de/opus/volltexte/2017/7141
https://pymdptoolbox.readthedocs.io/en/latest/
https://pymdptoolbox.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/stable/discussion/other-python-game-theory-libraries.html
https://nashpy.readthedocs.io/en/stable/discussion/other-python-game-theory-libraries.html
https://pypi.org/project/PyNFG/0.1.2/
https://doc.sagemath.org/html/en/reference/game_theory/index.html
https://doc.sagemath.org/html/en/reference/game_theory/index.html
https://books.google.com/books?id=ORILyf8sF2sC
https://books.google.com/books?id=ORILyf8sF2sC
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/CMU-ISR-17-119.pdf
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/CMU-ISR-17-119.pdf
https://cloud.google.com/compute/
https://status.cloud.google.com/incident/cloud-networking/19009
https://status.cloud.google.com/incident/cloud-networking/19009
https://cloud.google.com/pubsub/docs
https://cloud.google.com/pubsub/docs

July 2020. URL https://www.ietf.org/archive/id/
draft-goessner-dispatch-jsonpath-00.html. 5

[56] Hans Hansson and Bengt Jonsson. A Logic for Reasoning about Time and Reliability.
Formal Aspects of Computing, 6, 02 1995. doi: 10.1007/BF01211866. 6.1, 6.2, 6.3

[57] IBM. An Architectural Blueprint for Autonomic Computing. https://www-03.ibm.
com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf.
Accessed: 2019-10-18. (document), 1, 3.1, 4.5, 4.1, 4.1, 4.1

[58] M. Usman Iftikhar, Gowri Sankar Ramachandran, Pablo Bollansee, Danny Weyns, and
Danny Hughes. DeltaIoT: A Real World Exemplar for Self-Adaptive Internet of Things
(Artifact). Dagstuhl Artifacts Series, 3(1):4:1–4:2, 2017. ISSN 2509-8195. doi: 10.4230/
DARTS.3.1.4. URL http://drops.dagstuhl.de/opus/volltexte/2017/
7142. 11.1

[59] Anne Immonen and Eila Niemelä. Survey of reliability and availability prediction
methods from the viewpoint of software architectures. 7(65), Feburary 2008. ISSN
1619-1374. doi: 10.1007/s10270-006-0040-x. URL https://doi.org/10.1007/
s10270-006-0040-x. 3.1

[60] The MathWorks Inc. MATLAB version: 9.14.0 (R2023a), 2023. URL https://www.
mathworks.com. 1.2, 9.2, 9.2, 10.1.3

[61] David Garlan Javier Cámara, Wenxin Peng and Bradley Schmerl. "Reasoning about Sens-
ing Uncertainty in Decision-Making for Self-Adaptation". In Proceedings of the 15th
International Workshop on Foundations of Coordination Languages and Self-Adaptive
Systems (FOCLASA 2017), 2017. 3.3

[62] E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press,
Cambridge, 2003. 5.1

[63] Nicholas R. Jennings. On Agent-based Software Engineering. Artif. Intell., 117(2):277–
296, March 2000. ISSN 0004-3702. doi: 10.1016/S0004-3702(99)00107-1. URL http:
//dx.doi.org/10.1016/S0004-3702(99)00107-1. 3.2

[64] Nicholas R. Jennings. An Agent-Based Approach for Building Complex Software Sys-
tems. Communiations of the ACM Vol. 44, No. 4, 2001. 3.2

[65] Capers Jones and Olivier Bonsignour. The Economics of Software Quality. Addison-
Wesley Professional, 1st edition, 2011. ISBN 0132582201. 10.1.1

[66] Wenyun Ju. Modeling, Simulation, and Analysis of Cascading Outages in
Power Systems. PhD thesis, University of Tennessee, Knoxville, 2018. URL
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=
6862&context=utk_graddiss. 1.2, 9.2

[67] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, vol 36,
issue 1, 2003. 3.1

[68] Jeffrey Kephart and D.M. Chess. The Vision Of Autonomic Computing. Computer, 36:
41 – 50, 02 2003. doi: 10.1109/MC.2003.1160055. 4.1

[69] Heiko Koziolek. Performance evaluation of component-based software systems: A sur-

191

https://www.ietf.org/archive/id/draft-goessner-dispatch-jsonpath-00.html
https://www.ietf.org/archive/id/draft-goessner-dispatch-jsonpath-00.html
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7142
http://drops.dagstuhl.de/opus/volltexte/2017/7142
https://doi.org/10.1007/s10270-006-0040-x
https://doi.org/10.1007/s10270-006-0040-x
https://www.mathworks.com
https://www.mathworks.com
http://dx.doi.org/10.1016/S0004-3702(99)00107-1
http://dx.doi.org/10.1016/S0004-3702(99)00107-1
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=6862&context=utk_graddiss
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=6862&context=utk_graddiss

vey. Performance Evaluation, 67(8):634–658, 2010. ISSN 0166-5316. doi: https:
//doi.org/10.1016/j.peva.2009.07.007. URL https://www.sciencedirect.com/
science/article/pii/S016653160900100X. Special Issue on Software and
Performance. 3.1

[70] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge. In
Future of Software Engineering (FOSE ’07), pages 259–268, 2007. doi: 10.1109/FOSE.
2007.19. 3.1

[71] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele, and
Christian Becker. A survey on engineering approaches for self-adaptive systems. Perva-
sive and Mobile Computing, 17:184–206, 2015. ISSN 1574-1192. doi: https://doi.org/10.
1016/j.pmcj.2014.09.009. URL https://www.sciencedirect.com/science/
article/pii/S157411921400162X. 10 years of Pervasive Computing’ In Honor
of Chatschik Bisdikian. 3.1, 4.1

[72] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic Model Checking. In M. Bernardo
and J. Hillston, editors, Formal Methods for the Design of Computer, Communication and
Software Systems: Performance Evaluation (SFM’07), volume 4486 of LNCS (Tutorial
Volume), pages 220–270. Springer, 2007. 6.1

[73] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic
Real-time Systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–
591. Springer, 2011. 7.2, 10.1.3, 11.1

[74] Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos. Automatic Verifi-
cation of Concurrent Stochastic Systems. Formal Methods in System Design, 58:188–250,
2021. 6.4

[75] Eric Lloyd, Shihong Huang, and Emmanuelle Tognoli. Improving Human-in-the-Loop
Adaptive Systems Using Brain-Computer Interaction. In 2017 IEEE/ACM 12th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 163–174, 2017. doi: 10.1109/SEAMS.2017.1. 11.1

[76] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of proba-
bilistic planning and related stochastic optimization problems. Artificial Intelligence,
147(1):5–34, 2003. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(02)
00378-8. URL https://www.sciencedirect.com/science/article/
pii/S0004370202003788. Planning with Uncertainty and Incomplete Information.
6.3

[77] Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry Hoff-
mann. Self-Adaptive Video Encoder: Comparison of Multiple Adaptation Strategies Made
Simple (Artifact). Dagstuhl Artifacts Series, 3(1):2:1–2:3, 2017. ISSN 2509-8195. doi:
10.4230/DARTS.3.1.2. URL http://drops.dagstuhl.de/opus/volltexte/
2017/7140. 11.1

[78] Paulo Henrique Maia, Lucas Vieira, Matheus Chagas, Yijun Yu, Andrea Zisman, and
Bashar Nuseibeh. Dragonfly: a Tool for Simulating Self-Adaptive Drone Behaviours.

192

https://www.sciencedirect.com/science/article/pii/S016653160900100X
https://www.sciencedirect.com/science/article/pii/S016653160900100X
https://www.sciencedirect.com/science/article/pii/S157411921400162X
https://www.sciencedirect.com/science/article/pii/S157411921400162X
https://www.sciencedirect.com/science/article/pii/S0004370202003788
https://www.sciencedirect.com/science/article/pii/S0004370202003788
http://drops.dagstuhl.de/opus/volltexte/2017/7140
http://drops.dagstuhl.de/opus/volltexte/2017/7140

In 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), pages 107–113, 2019. doi: 10.1109/SEAMS.2019.
00022. 11.1

[79] Mohammad Hossein Manshaei, Quanyan Zhu, Tansu Alpcan, Tamer Bacşar, and Jean-
Pierre Hubaux. Game Theory Meets Network Security and Privacy. ACM Comput. Surv.,
45(3), jul 2013. ISSN 0360-0300. doi: 10.1145/2480741.2480742. URL https://
doi.org/10.1145/2480741.2480742. 4

[80] Gonçalo S. Martins, Hend Al Tair, Luís Santos, and Jorge Dias. POMDP: POMDP-
based user-adaptive decision-making for social robots. Pattern Recognition Letters,
118:94–103, 2019. ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.2018.03.
011. URL https://www.sciencedirect.com/science/article/pii/
S0167865518300825. Cooperative and Social Robots: Understanding Human Ac-
tivities and Intentions. 6.3

[81] matpower.org. MatPower.org. https://matpower.org/. Accessed: 2023-9-18.
1.2, 9.2

[82] Gabriel A. Moreno. Adaptation Timing in Self-Adaptive Systems. PhD thesis, Institute
for Software Research, School of Computer Science,Carnegie Mellon University, April
2017. URL http://reports-archive.adm.cs.cmu.edu/anon/isr2017/
abstracts/17-103.html. Technical Report CMU-ISR-17-103. 4, 4.1, 7.1, 11.2

[83] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Flexible and
Efficient Decision-Making for Proactive Latency-Aware Self-Adaptation. ACM Transac-
tions on Autonomous and Adaptive Systems, 13(1), May 2018. URL https://doi.
org/10.1145/3149180. 6.1, 10.1.4

[84] Saralees Nadarajah. A Generalized Normal Distribution. Journal of Applied Statistics,
32(7):685–694, 2005. doi: 10.1080/02664760500079464. URL https://doi.org/
10.1080/02664760500079464. 5.1

[85] Asoke K. Nandi and Detlef Mämpel. An Extension of the Generalized Gaus-
sian Distribution to include Asymmetry. Journal of the Franklin Institute, 332
(1):67–75, 1995. ISSN 0016-0032. doi: https://doi.org/10.1016/0016-0032(95)
00029-W. URL https://www.sciencedirect.com/science/article/
pii/001600329500029W. 5.1

[86] Matthias Noebels, Robin Preece, and Mathaios Panteli. AC Cascading Failure Model for
Resilience Analysis in Power Networks. IEEE Systems Journal, 16(1):374–385, 2022.
doi: 10.1109/JSYST.2020.3037400. 1.2, 9.2

[87] Preece R. Panteli M. Noebels, M. AC-CFM GitHub. https://github.com/
mnoebels/AC-CFM. Accessed: 2023-9-18. 1.2, 9.2

[88] G. Norman, D. Parker, and X. Zou. Verification and Control of Partially Observable
Probabilistic Systems. Real-Time Systems, 53(3):354–402, 2017. 6.3

[89] Ashutosh Pandey. Hybrid Planning in Self-adaptive Systems. PhD thesis, Institute for
Software Research, School of Computer Science,Carnegie Mellon University, Feburary

193

https://doi.org/10.1145/2480741.2480742
https://doi.org/10.1145/2480741.2480742
https://www.sciencedirect.com/science/article/pii/S0167865518300825
https://www.sciencedirect.com/science/article/pii/S0167865518300825
https://matpower.org/
http://reports-archive.adm.cs.cmu.edu/anon/isr2017/abstracts/17-103.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2017/abstracts/17-103.html
https://doi.org/10.1145/3149180
https://doi.org/10.1145/3149180
https://doi.org/10.1080/02664760500079464
https://doi.org/10.1080/02664760500079464
https://www.sciencedirect.com/science/article/pii/001600329500029W
https://www.sciencedirect.com/science/article/pii/001600329500029W
https://github.com/mnoebels/AC-CFM
https://github.com/mnoebels/AC-CFM

2020. URL http://reports-archive.adm.cs.cmu.edu/anon/isr2020/
abstracts/20-100.html. Technical Report CMU-ISR-20-100. 11.2

[90] Klaus Pohls Paul-Andrei Dragan, Andreas Metzger. Towards the Decentralized Coordi-
nation of Multiple Self-Adaptive Systems. Dagstuhl Artifacts Series, 2023. 3.2

[91] Google Cloud Platform. GoogleComputeEngine. https://cloud.google.com/
compute. Accessed: 2023-10-19. 11.1

[92] Maxim Raya, Mohammad Hossein Manshaei, Mark Felegyhazi, and Jean-Pierre Hubaux.
Revocation Games in Ephemeral Networks. 10 2008. doi: 10.1145/1455770.1455797. 4

[93] Orna Raz and Mary Shaw. An Approach to Preserving Sufficient Correctness in Open
Resource Coalitions. In Proceedings of the 10th International Workshop on Software
Specification and Design, IWSSD ’00, page 159, USA, 2000. IEEE Computer Society.
ISBN 0769508847. 1.2

[94] Mazeiar Salehie and Ladan Tahvildari. Self-Adaptive Software: Landscape and Re-
search Challenges. ACM Trans. Auton. Adapt. Syst., 4(2), may 2009. ISSN 1556-4665.
doi: 10.1145/1516533.1516538. URL https://doi.org/10.1145/1516533.
1516538. 3.1, 4.1

[95] Sanny Schmid, Ilias Gerostathopoulos, Christian Prehofer, and Tomas Bures. Model Prob-
lem (CrowdNav) and Framework (RTX) for Self-Adaptation Based on Big Data Ana-
lytics (Artifact). Dagstuhl Artifacts Series, 3(1):5:1–5:3, 2017. ISSN 2509-8195. doi:
10.4230/DARTS.3.1.5. URL http://drops.dagstuhl.de/opus/volltexte/
2017/7143. 11.1

[96] SEAMS. Artifact Repository. https://www.hpi.uni-potsdam.de/giese/
public/selfadapt/exemplars/. Accessed: 2023-10-19. 11.1

[97] AWS Web Services. Amazon API Gateway. https://aws.amazon.com/
api-gateway/, . Accessed: 2023-9-18. 7.2

[98] AWS Web Services. AWS CloudWatch. https://aws.amazon.com/
cloudwatch/, . Accessed: 2023-9-18. 7.2

[99] AWS Web Services. Amazon Cognito. https://aws.amazon.com/cognito/, .
Accessed: 2023-9-18. 7.2

[100] AWS Web Services. DynamoDB Accelerator (DAX). https://aws.amazon.com/
dynamodb/dax/, . Accessed: 2023-9-18. 1.2, 7.1, 7.2

[101] AWS Web Services. Amazon Dynamo. https://aws.amazon.com/dynamodb/,
. Accessed: 2023-9-18. 7.2

[102] AWS Web Services. Amazon Elastic Compute Cloud (EC2). https://aws.amazon.
com/ec2/, . Accessed: 2023-9-18. 7.2, 11.1

[103] AWS Web Services. Amazon Elastic BeanStalk. https://aws.amazon.com/
elasticbeanstalk/details/, . Accessed: 2023-9-18. 1.2, 7.1, 7.2

[104] AWS Web Services. EC2 Instance Types. https://aws.amazon.com/ec2/
instance-types/, . Accessed: 2023-9-18. 7.2

194

http://reports-archive.adm.cs.cmu.edu/anon/isr2020/abstracts/20-100.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2020/abstracts/20-100.html
https://cloud.google.com/compute
https://cloud.google.com/compute
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
http://drops.dagstuhl.de/opus/volltexte/2017/7143
http://drops.dagstuhl.de/opus/volltexte/2017/7143
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cognito/
https://aws.amazon.com/dynamodb/dax/
https://aws.amazon.com/dynamodb/dax/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticbeanstalk/details/
https://aws.amazon.com/elasticbeanstalk/details/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

[105] AWS Web Services. Amazon Lambda. https://aws.amazon.com/lambda/, .
Accessed: 2023-9-18. 7.2

[106] AWS Web Services. Amazon SQS Queue. https://aws.amazon.com/sqs/, .
Accessed: 2023-9-18. 7.2

[107] AWS Web Services. AWS Samples. https://github.com/aws-samples, . Ac-
cessed: 2023-9-18. 7.2

[108] AWS Web Services. AWS Samples Shopping Cart. https://github.com/
aws-samples/aws-serverless-shopping-cart, . Accessed: 2023-9-18. 1.2,
7.2

[109] Azure Cloud Services. Azure Virtual Machines. https://azure.microsoft.
com/en-us/products/virtual-machines, . Accessed: 2023-10-19. 11.1

[110] Lloyd S. Shapley. Stochastic Games. Proceedings of the National Academy of Sci-
ences, 39:1095 – 1100, 1953. URL https://api.semanticscholar.org/
CorpusID:1989943. 4.1

[111] Mary Shaw. 22nd International Conference on Software Engineering (ICSE 2000). In
Proceedings of the 4th International Software Architecture Workshop (ISAW-4), pages 46–
50, 2000. 1.2

[112] Jonathan Shieber. Google cloud is down, affecting numerous appli-
cations and services. https://techcrunch.com/2019/06/02/
google-cloud-is-down-affecting-numerous-applications-and-services/.
Accessed: 2019-10-17. 8.1, 8.1

[113] Yong-Jun Shin, Lingjun Liu, Sangwon Hyun, and Doo-Hwan Bae. Platooning LEGOs:
An Open Physical Exemplar for Engineering Self-Adaptive Cyber-Physical Systems-of-
Systems. In 2021 International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), pages 231–237, 2021. doi: 10.1109/SEAMS51251.
2021.00038. 11.1

[114] Vitaly Shmatikov. Probabilistic Analysis of an Anonymity System. J. Comput. Se-
cur., 12(3,4):355–377, May 2004. ISSN 0926-227X. URL http://dl.acm.org/
citation.cfm?id=1297352.1297359. 3.3

[115] A. Simaitis. Automatic Verification of Competitive Stochastic Systems. PhD thesis, De-
partment of Computer Science, University of Oxford, 2014. 6.4

[116] Christian Stier, Anne Koziolek, Henning Groenda, and Ralf Reussner. Model-Based En-
ergy Efficiency Analysis of Software Architectures. In Danny Weyns, Raffaela Mirandola,
and Ivica Crnkovic, editors, Software Architecture, pages 221–238, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-23727-5. 3.1

[117] Manfred Stoll. Introduction to Real Analysis. 11 2001. ISBN 978-0321046253. 5.1

[118] Technopedia. Private Cloud. https://www.techopedia.com/definition/
13677/private-cloud. Accessed: 2019-10-18. 8.1

[119] Thomas Vogel. MRUBiS: An Exemplar for Model-Based Architectural Self-Healing and
Self-Optimization. In Proceedings of the 13th International Conference on Software En-

195

https://aws.amazon.com/lambda/
https://aws.amazon.com/sqs/
https://github.com/aws-samples
https://github.com/aws-samples/aws-serverless-shopping-cart
https://github.com/aws-samples/aws-serverless-shopping-cart
https://azure.microsoft.com/en-us/products/virtual-machines
https://azure.microsoft.com/en-us/products/virtual-machines
https://api.semanticscholar.org/CorpusID:1989943
https://api.semanticscholar.org/CorpusID:1989943
https://techcrunch.com/2019/06/02/google-cloud-is-down-affecting-numerous-applications-and-services/
https://techcrunch.com/2019/06/02/google-cloud-is-down-affecting-numerous-applications-and-services/
http://dl.acm.org/citation.cfm?id=1297352.1297359
http://dl.acm.org/citation.cfm?id=1297352.1297359
https://www.techopedia.com/definition/13677/private-cloud
https://www.techopedia.com/definition/13677/private-cloud

gineering for Adaptive and Self-Managing Systems, SEAMS ’18, page 101–107, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450357159.
doi: 10.1145/3194133.3194161. URL https://doi.org/10.1145/3194133.
3194161. 11.1

[120] Danny Weyns and Tanvir Ahmad. Claims and Evidence for Architecture-Based Self-
adaptation: A Systematic Literature Review. In Khalil Drira, editor, Software Architecture,
pages 249–265, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-
39031-9. 1

[121] Danny Weyns, Nelly Bencomo, Radu Calinescu, Javier Cámara, Carlo Ghezzi, Vincenzo
Grassi, Larse Grunske, Paola Inverardi, Jean-Marc Jezequel, Sam Malek, Raffaela Mi-
randola, Marco Mori, and Giordano Tambrrellii. Perpetual Assurances for Self-Adaptive
Systems. Number 9640. Springer, 2017. 3.3

[122] Wikipedia. Control Plane. https://en.wikipedia.org/wiki/Control_
plane, . Accessed: 2019-10-18. 10.1.1

[123] Wikipedia. Regular Expression. https://en.wikipedia.org/wiki/Regular_
expression, . Accessed: 2023-9-18. 5.4

[124] Tong Wu, Qignshan Li, and Lu Wang. A Validation Method of Self-Adaptive Strategy
Based on POMDP. In 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 373–375, 2019. doi: 10.1109/ICSME.2019.00061. 6.3

[125] IEEE Xplore. Citations: A Practical Method for the Direct Analysis of Transient Sta-
bility. https://ieeexplore.ieee.org/document/4113518/citations?
tabFilter=papers#citations, . Accessed: 2023-9-18. 1.2

[126] IEEE Xplore. Citations: MATPOWER: Steady-State Operations, Planning, and Analysis
Tools for Power Systems Research and Education. https://ieeexplore.ieee.
org/document/5491276/citations?tabFilter=papers#citations, .
Accessed: 2023-9-18. 1.2

[127] Lofti A. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965. URL http:
//www-bisc.cs.berkeley.edu/Zadeh-1965.pdf. 5.1

[128] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John Thomas.
MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems
Research and Education. IEEE Transactions on Power Systems, 26(1):12–19, 2011. doi:
10.1109/TPWRS.2010.2051168. 1.2, 9.2

196

https://doi.org/10.1145/3194133.3194161
https://doi.org/10.1145/3194133.3194161
https://en.wikipedia.org/wiki/Control_plane
https://en.wikipedia.org/wiki/Control_plane
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://ieeexplore.ieee.org/document/4113518/citations?tabFilter=papers##citations
https://ieeexplore.ieee.org/document/4113518/citations?tabFilter=papers##citations
https://ieeexplore.ieee.org/document/5491276/citations?tabFilter=papers##citations
https://ieeexplore.ieee.org/document/5491276/citations?tabFilter=papers##citations
http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf
http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf

	1 Introduction
	1.1 Thesis
	1.2 Case Studies
	1.3 Contributions
	1.4 Thesis Layout

	2 Exemplar Scenario and Research Challenges
	3 Related Work
	3.1 Autonomic Systems
	3.2 Collections of Autonomic Systems
	3.3 Strategy Synthesis and Assurance in Autonomic Systems
	3.4 Control Theory for Autonomic Systems

	4 An Automated Approach to Meta-Management
	4.1 Meta-MAPE-K Loop

	5 The SEAM Language
	5.1 Adaptation Policy
	5.2 Global Utility Function
	5.3 Global Knowledge
	5.4 Subsystem
	5.5 MetaManager
	5.6 Runtime Implementation

	6 Taxonomy of Synthesis Techniques
	6.1 Discrete and Continuous Time Markov Chains
	6.2 Markov Decision Processes
	6.3 Partially Observable Markov Decision Processes
	6.4 Concurrent & Turn-based Stochastic Multi-Player Game

	7 Case Study: Amazon Web Services Shopping Cart
	7.1 Background & Context
	7.2 Experiment
	7.3 Results

	8 Case Study: Google Control Plane
	8.1 Background & Context
	8.2 Experiment
	8.3 Results

	9 Case Study: Electrical Grid Cascade Failure
	9.1 Background & Context
	9.2 Experiment
	9.3 Results

	10 Validation
	10.1 Claims
	10.1.1 Practicality
	10.1.2 Effectiveness
	10.1.3 Applicability
	10.1.4 Thesis Statement

	10.2 Research Questions

	11 Discussion & Future Work
	11.1 Assumptions
	11.2 Future Work

	12 Conclusion
	A SEAM Specification for AWS Shopping Cart Case Study
	B PRISM Specification for AWS Shopping Cart Case Study
	C SEAM Specification for Google Control Plane Case Study
	D PRISM Games Model for Google Control Plane Case Study
	E IEEE 39 Bus System Technical Information
	F Matlab Power Grid Simulation Model
	G SEAM Specification for Electrical Grid Cascade
	Bibliography

