CMU-CS-QTR-116 Computer Science Qatar School of Computer Science, Carnegie Mellon University
Visual Pipe Mapping with a Fisheye Camera Peter Hansen, Hatem Alismail, Peter Rander, Brett Browning February 2013
Also appears as Robotics Institute
We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing, fisheye camera mounted on a prototype robot collects imagery as it is tele-operated through a pipe network. The images are processed offline to estimate camera pose and sparse scene structure where the results can be used to generate 3D renderings of the pipe surface. The method extends state of the art visual odometry and mapping for fisheye systems to incorporate geometric constraints based on prior knowledge of the pipe components into a Sparse Bundle Adjustment framework. These constraints significantly reduce inaccuracies resulting from the limited spatial resolution of the fisheye imagery, limited image texture, and visual aliasing. Preliminary results are presented for a dataset collected in fiberglass pipe network which demonstrate the validity of the approach.
17 pages
| |
Return to:
SCS Technical Report Collection This page maintained by reports@cs.cmu.edu |