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Abstract
While deep networks have contributed to major leaps in raw performance across

various applications, they are also known to be quite brittle to targeted data pertur-
bations. By adding a small amount of adversarial noise to the data, it is possible to
drastically change the output of a deep network. The existence of these so-called
adversarial examples, perturbed data points which fool the model, pose a serious
risk for safety- and security-centric applications where reliability and robustness are
critical. In this dissertation, we present and analyze a number of approaches for mit-
igating the effect of adversarial examples, also known as adversarial defenses. These
defenses can offer varying degrees and types of robustness, and in this dissertation
we study defenses which differ in the strength of the the robustness guarantee, the
efficiency and simplicity of the defense, and the type of perturbation being defended
against.

We start with the strongest type of guarantee called provable adversarial de-
fenses, showing that is possible to compute duality-based certificates that guaran-
tee no adversarial examples exist within an `p-bounded region, which are trainable
and can be minimized to learn networks which are provably robust to adversarial
attacks. The approach is agnostic to the specific architecture and is applicable to ar-
bitrary computational graphs, scaling to medium sized convolutional networks with
random projections.

We then switch gears to developing a deeper understanding of a more empirical
defense known as adversarial training. Although adversarial training does not come
with formal guarantees, it can learn networks more efficiently and with better em-
pirical performance against attacks. We study the optimization process and reveal
several intriguing properties of the robust learning problem, finding that a simple
modification to one of the earliest adversarial attacks can be sufficient to learn net-
works robust to much stronger attacks, as well as finding that adversarial training as
a general procedure is highly susceptible to overfitting. These discoveries have sig-
nificant implications on both the efficiency of adversarial training as well as the state
of the field: for example, virtually all recent algorithmic improvements in adversarial
training can be matched by simply using early stopping.

The final component of this dissertation expands the realm of adversarial exam-
ples beyond `p-norm bounded perturbations, to enable more realistic threat mod-
els for applications beyond imperceptible noise. We define a threat model called
the Wasserstein adversarial example, which captures semantically meaningful im-
age transformations like translations and rotations previously uncaptured by existing
threat models. We present an efficient algorithm for projecting onto Wasserstein
balls, enabling both generation of and adversarial training against Wasserstein ad-
versarial examples. Finally, we demonstrate how to generalize adversarial training
to defend against multiple types of threats simultaneously, improving upon naive
aggregations of adversarial attacks.
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Chapter 1

Introduction

While artificial intelligence continues to become more ubiquitous in everyday life, there are still
fundamental properties of these systems which are still not understood. Of particular concern to
systems which need robust and reliable behavior is the prevalence of adversarial examples in deep
learning, which are inputs to the model which look indistinguishable from normal examples but
can completely fool the model. These adversarial examples indicate that the deep architectures
we use for artificial intelligence are exceptionally brittle and potentially highly exploitable. This
makes it difficult for higher stakes applications such as safety and health to put deep learning
models into production due to the lack of guarantees and potential for misuse.

To tackle this problem, in this dissertation we study methods for learning networks which are
robust to this phenomenon, also known as defenses against adversarial examples. The techniques
in this work can be broadly divided into two main types of approaches for achieving robustness,
namely provable methods and adversarial training. Both of these defenses have their benefits
and downsides, with neither being strictly better than the other, and one can be selected based
on the requirements of the application. In general, both of these defenses change the standard
optimization procedure of deep learning without changing the specific architectures or adding
extra pre-processing steps, in order to learn a set of network weights which are less susceptible
to adversarial examples than networks trained with standard techniques.

1.1 Contributions

In this initial chapter, we summarize the primary contributions of this dissertation, and discuss
the significance of this work in the context of adversarial examples as well as from a broader
perspective. Chapter 2 will follow up with a more detailed presentation on the background of
adversarial examples, discussing how the field has evolved and the main research directions
being studied. The following three chapters present the work done in this dissertation towards
mitigating adversarial examples, which propose provable defenses, enhance our understanding
of adversarial training, and advance threat models to situations beyond `p perturbations (Chapters
3, 4, and 5 respectively). Finally, we will end the dissertation with a reflection on the work in
this thesis, and pose some open questions for the field of adversarial examples.
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1.1.1 Formal guarantees for deep networks

Chapter 3 proposes and studies provable defenses. These are methods which can formally guar-
antee properties of neural networks, in this case the non-existence of adversarial examples. These
methods do not rely on empirical means for evaluating robustness and thus provide the strongest
kind of guarantee, but at the cost of relatively high computational complexity over standard train-
ing methods and high degrees of regularization which can affect standard performance metrics.
In this dissertation, we present methods based on linear programming relaxations and duality to
create provable defenses which are efficient and scalable up to medium sized networks, resulting
in a fully modular framework for computing bounds for deep networks.

This work in provable defenses came at a time when adversarial defenses were having their
first crisis: a large number of proposed heuristics to mitigate adversarial examples were found to
be completely ineffective [Buckman et al., 2018, Guo et al., 2017, Papernot et al., 2016b, Song
et al., 2017], and there was an apparent arms-race between “attackers” and “defenders” with the
attackers being almost universally victorious [Athalye et al., 2018a, Carlini and Wagner, 2017b,
Uesato et al., 2018]. In this setting, the work in Chapter 3 was one of the earliest approaches to
propose a provable defense which could put an end to this arms race once and for all by relying on
principled, formal guarantees, and was the first verified defense to scale beyond fully-connected
two-layer networks. This represented a breakthrough in provable adversarial robustness, which
made it possible to finally learn a convolutional MNIST classifier which was formally guaranteed
to be robust [Wong and Kolter, 2017], and advancing the problems in provably robust deep
learning to harder, more complicated settings such as CIFAR10.

The mere ability to perform meaningful, formal verification in the deep network setting may
be quite suprising on its own, as deep networks are notoriously known for being highly complex
and inexplainable. Despite having been extensively studied previously within contexts beyond
adversarial examples, existing formal verification methods for deep networks could not scale due
to combinatorial complexity [Carlini and Wagner, 2017b, Carlini et al., 2017, Cheng et al., 2017,
Ehlers, 2017, Huang et al., 2017, Katz et al., 2017, Lomuscio and Maganti, 2017, Tjeng and
Tedrake, 2017]. On the other hand, a convex relaxation of a deep network may be faster (taking
polynomial time), but is likely to be extremely loose and provide vacuous results [Weng et al.,
2018, Zhang et al., 2018] or not scale beyond small networks [Raghunathan et al., 2018a,b]. The
provable defenses in this dissertation avoid both pitfalls: it is capable of performing verification
with linear complexity while also providing meaningful guarantees via training.

The significance of this work goes beyond the narrow setting of image classification which
is robust to imperceptible noise. As deep learning is applied in new fields and applications,
our work makes it possible to learn deep networks with meaningful specifications and proper-
ties beyond test set generalization. For example, the provable defenses in this dissertation have
been used to learn virtual sensors for fuel injection in vehicles to provide meaningful sensitiv-
ity specifications under sensor noise [Wong et al., 2020b]. By training for and certifying desired
properties of deep networks, the work in this dissertation opens up, to some degree, the black box
of deep networks to more higher-stakes applications such as health care or autonomous driving.
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1.1.2 Uncovering properties of adversarial training

Adversarial training is a faster optimization procedure which typically achieves better empirical
results and is more scalable than provable defenses, but is generally not proven to be formally
robust. However, they have thus far withstood the test of time and remain empirically robust, and
can serve as an intermediate stepping stone towards creating provable defenses. In Chapter 4, we
identify several intriguing and surprising properties of adversarial training, discovering several
overfitting properties specific to adversarial training which overturn longstanding views within
this field.

We first present the finding that training against weak adversarial attacks can actually learn
models which are robust to much stronger attacks. This overturned a long-standing belief that
single-step attacks were insufficient for learning robust models [Tramèr et al., 2017]. To find out
why previous attempts had failed, we uncover a phenomenon called “catastrophic overfitting”
which results in a complete and rapid failure of single-step adversarial training, and propose a
simple adjustment which allows single-step adversarial training to succeed.

This work has major implications on the computational requirements of adversarial training
[Madry et al., 2017], which was previously orders of magnitude more expensive than standard
training due to their reliance on using multi-step attacks. Although adversarial training can be
less expensive than provable defenses, it has typically struggled to scale to typical, large-scale
deep learning problems like ImageNet without using an enormous amount of resources [Xie
et al., 2019]. Our adjusted single-step adversarial training approach achieves robust performance
which is almost on par with multi-step adversarial training [Madry et al., 2017], while being
significantly faster. We highlight the speed of the approach by leveraging fast techniques from
standard training to accelerate robust, single-step adversarial training, demonstrating for the first
time that adversarial training can be as computationally fast as standard training and opening the
door for adversarially robust training to be applied to large-scale problems.

Even when successful, we identify another more general property of adversarial training, that
overfitting is a dominant phenomenon in adversarial training. Crucially, we find that robust test
error can be drastically harmed by training for too long, and so large gains in robust performance
can be obtained by early stopping. This has unfortunate ramifications for the state of adversarially
robust training, where due to inconsistencies in reporting and methodology in prior work, we
find that early stopping the most basic form of multi-step adversarial training [Madry et al.,
2017] outperforms all recent algorithmic improvements to adversarial training, suggesting that
no algorithmic progress has been made in learning empirically robust deep networks since then.
This re-establishes the effectiveness of the baseline adversarial training defense, and highlights
the need for future work to follow best-practices in machine learning such as using held-out
validation sets and reporting model-selection criteria.

Another key finding here is that existing methods and explanations for overfitting and gen-
eralization (both from classical and deep learning perspectives) fail to explain overfitting in the
adversarially robust training setting, and raises further questions such as why does overfitting
occur in the adversarial training setting, and how can we prevent it? In our search for an ex-
planation, the only approach which could substantially improve upon early stopping was to use
semi-supervised data augmentation, confirming to some degree the hypothesis that robust train-
ing requires more data [Schmidt et al., 2018]. However, from the work in this dissertation it is
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clear that learning in the adversarial training setting behaves significantly differently from the
standard training setting.

1.1.3 Advancing threat models beyond `p balls

Chapter 5, we take a step back from learning robust models and define new threat models for gen-
erating adversarial examples that are more general and structured. Key components for this work
are that the proposed threat models are mathematically well-defined and use prior knowledge to
leverage known structures. In particular, a well-defined threat model is critical for accurately
measuring the progress of adversarial defenses against attacks in a meaningful way.

To bring adversarial training beyond the setting of norm-bounded perturbations, we first pro-
pose the Wasserstein adversarial example for images. The Wasserstein metric has been widely
successful for images, and more naturally captures semantic image transformations such as ro-
tations, translations, and distortions, encoding structure into the threat model which `p pertur-
bations lack. We demonstrate how to generate Wasserstein adversarial examples, which result
in semantically meaningful perturbations, and use adversarial training to train baseline models
which are robust to Wasserstein attacks. The Wasserstein attack highlights a limitation of the
provable defenses in this thesis: although we can tie it into our general framework for provable
defenses, our reliance on using interval bounds for the activations of the network are fundamen-
tally incompatiable with the Wasserstein attack.

In addition to providing a new threat model, this work provides an algorithmic contribution
in the form of an efficient, approximate projection algorithm onto Wasserstein balls. Computing
Wasserstein distances typically requires solving an optimization problem and is generally com-
putationally expensive, and so in this dissertation we formulate an entropy-regularized Wasser-
stein projection inspired by the Sinkhorn iteration [Cuturi, 2013] and derive a fast, block co-
ordinate descent algorithm in the dual space for solving it. We make further improvements in
efficiency by leveraging local transport plans, which scales the approach to high dimensional
problems such as RGB images and critically makes adversarial training against Wasserstein at-
tacks computationally feasible.

Finally, we study the setting of defending against the union of multiple perturbations sets as a
more general threat model. We analyze basic approaches in this space, and present a natural algo-
rithm for improving the training procedure to improve the final robustness performance against
the union of multiple adversaries. As new threat models defining different types of perturbation
sets are defined, this can be seen as the next natural step towards a learning a more human-like
classifier which is robust to all perturbation sets simultaneously, as it is well-known at this point
that adversarially robust training does not necessarily generalize beyond the threat model for
which it was trained against [Kang et al., 2019]. This work finds that combining multiple per-
turbation sets may not be so straightforward due to imbalances in strengths between adversaries,
which our proposed algorithm improves upon.
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1.2 Itemized summary of contributions and code repositories
• Chapter 3 presents a provable defense based on linear programming and duality, and dis-

cusses the various techniques used to make them tractable and applicable to modern deep
architectures.

Section 3.1 discusses the linear programming formulation for getting bounds on ad-
versarial examples, and how to compute this efficiently with dual feasible solutions,
summarizing the work done in Wong and Kolter [2017].

Section 3.4 discusses how to scale the the approach with random Cauchy projections,
reducing computational complexity to being linear instead of quadratic in the size of
the network, while generalizing to arbitrary network architectures and honing robust-
ness further with network cascades, covering the work done in Wong et al. [2018].

All code related to the work in these two sections is available at

https://github.com/locuslab/convex_adversarial.
• Chapter 4 presents several unique and unexpected properties of training adversarially ro-

bust networks, which can greatly speed up robust learning and improve generalization.

Section 4.1 discusses how adversarial training can succeed with extremely weak ad-
versaries, in contrast to the need for strong adversaries at evaluation time. Code for
this section is available at

https://github.com/locuslab/fast_adversarial.

Section 4.3 discusses the interactions of overfitting with adversarially robust training,
drawing similarities and differences to the standard setting and exploring methods to
mitigate overfitting. Code for this section is available at

https://github.com/locuslab/robust_overfitting.
• Chapter 5 presents new threat models for adversarial robustness.

Section 5.1 discusses how to generate Wasserstein adversarial examples to generate
semantically meaningful image perturbations for use in adversarial training. Code
for this section is available at

https://github.com/locuslab/projected_sinkhorn.

Section 5.3 discusses how to generalize adversarial training to multiple threat models.
Code for this section is available at

https://github.com/locuslab/robust_union.
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Chapter 2

Background

The topic of adversarial examples for deep learning is relatively young, with their initial discov-
ery posted on arXiv in December of 2013. In this chapter, we present an overview containing
a more in-depth background of the research in this field, spanning a range of topics from threat
models and adversarial attacks to adversarial defenses. In the process, we present a retrospec-
tive on how the field has developed over the years and the main research directions which have
progressed our understanding of robust deep learning.

2.1 Adversarial examples: threats and attacks
Adversarial examples were originally introduced by Szegedy et al. [2014] as data points fed to
a machine learning algorithm which are visually indistinguishable from “normal” examples, but
which are specifically tuned so as to fool or mislead the machine learning system. These earliest
forms of adversarial examples were framed as an intriguing property of neural networks, where
even a single, small gradient step was sufficient to to harm the performance of deep learning
classifiers [Goodfellow et al., 2015]. Nowadays, methods for generating these adversarial exam-
ples are significantly more sophisticated and powerful to the point where it is now expected for
standard models to completely fail (e.g. achieve zero accuracy) when evaluated on adversarial
examples.

In its most fundamental form, the adversarial example can be framed as a solution to a con-
strained optimization problem, where an adversary is trying to maximize a loss of a model within
some constrained set around the input. Specifically, let x, y be a data point and its corresponding
label, let f be some classifier (e.g. a deep network), and let ∆(x) represent a set of allowable
perturbations from which the adversary is allowed to search over. Then, an adversarial example
x′ can be found by solving the following optimization problem

arg max
x′∈∆(x)

`(f(x′), y) (2.1)

using some loss function `. The loss incurred by the adversarial example is called the adversarial
loss. In other words, the “adversary” performing this maximization is trying to find some per-
turbed example within ∆(x) which incurs a high loss for the given classifier f in order to break
the model and force misclassification.
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2.1.1 Threat models
Perhaps the most characteristic component of an adversarial example is the set of allowable
perturbations ∆(x), comonly referred to as the threat model. This controls what the adversarial
example is allowed to manifest as, with implications on the strength and characterization of the
adversarial example. A commonly used threat model is called the `p perturbation. This is an
`p-norm bounded ball around an unperturbed input x for some radius ε > 0, more formally
described as

∆(x) = {x′ : ‖x′ − x‖p ≤ ε}. (2.2)

It is common practice at this point to take ε to be small enough such that that the `p perturbation
represents imperceptible noise. For example, this can manifest as an `∞ ball with radius 8/255 on
RGB images like CIFAR10, which is difficult to see with the human eye. More general distance
metrics beyond those induced by the `p norm can be used as well, such as the Wasserstein metric
[Wong et al., 2019], but also tend to be imperceptible. The notion that adversarial examples use
imperceptible perturbations stems from their original discovery, when it was found that visually
identical images could be classified completely differently by deep networks [Szegedy et al.,
2014], which Goodfellow et al. [2015] adapted to an `∞ threat model with a single gradient step
attack called the Fast Gradient Sign Method.

What is considered to be an adversarial example has since then expanded in scope beyond
imperceptible changes, in particular those which manifest in the real world on real machine
learning systems. A common thread amongst most adversarial attacks, including real-world at-
tacks, is that the threat model consists of changes to the data under which a reasonable human
classifier would not change. For images, this subsumes the previously mentioned imperceptible
changes, as a human which cannot see a difference would not change their mind, but includes
other image transformations such as spatial transformations like rotations, translations, or dis-
tortions [Engstrom et al., 2017, Xiao et al., 2018], which when done adversarially can vastly
degrade image classifier performance. Adversarial glasses can be used to fool facial recognition
software [Sharif et al., 2016], while physical 3D objects can be printed with adversarial textures
[Athalye et al., 2018b] to be misclassified. Adversarial patches can be printed and added to vir-
tually any scene to break a classifier [Brown et al., 2017], and stop signs can be adversarially
corrupted with seemingly innocuous graffiti or stickers to break traffic sign classifiers [Eykholt
et al., 2018]. Adversarial audio can trick speech recognition systems [Carlini and Wagner, 2018,
Du et al., 2019] while semantically and syntactically similar texts can fool language models
[Alzantot et al., 2018]. All of these examples are clearly “perceptible” by humans and yet hu-
mans are not affected by these changes, which demonstrates how the notion of an adversarial
example has matured to learning human-like invariants encoded by the threat model into our
deep learning models.

There has been some discussion in the community regarding the relevance of the `p adversar-
ial example. Although initially motivated as an “imperceptible” perturbation (e.g. to the naked
human eye), nearness according to `p norm is generally neither a sufficient nor necessary cri-
terion for visual imperceptibility [Sharif et al., 2018]. Other work has noted the inability of `p
robustness to generalize to more meaningful perturbations beyond the `p norm, and have pro-
posed looking at other measures of robustness such as natural adversarial examples [Hendrycks
et al., 2019] or sets of common corruptions [Hendrycks and Dietterich, 2019]. That being said,
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corruptions of small `∞ norm do remain imperceptible to the human eye, and the more general
case for studying `p robustness can be motivated two-fold as 1) obtaining a better understanding
of the gap between deep networks and human classifiers, which are robust to `p perturbations
and 2) a mathematically well-defined instantiation of learning deep networks with invariants, in
this case stability of classification over small regions. While there may be some debate over the
usefulness of `p robustness in real settings, it is a necessary step towards learning classifiers with
human-level performance and remains a property that we would like deep networks to have.

2.1.2 Adversarial attacks
Given a threat model ∆(x) which defines the set of perturbations, the next component of an
adversarial attack is to actually find an adversarial example, a specific perturbation which in-
curs a high loss for the classifier within the threat model, effectively solving to some degree the
optimization problem from Equation (2.1). The maximization here is critical, as deep learning
classifiers can often perform well against random perturbations. Attacks can be considered as
targeted or untargeted, which characterizes whether an attack is trying to force a classifier to
produce a particular label, or simply trying to make the classifier output any incorrect label. The
notion of targeted or untargeted can be encoded in the loss function of the adversarial attack.
For example, maximizing the standard cross-entropy loss with respect to the correct label cor-
responds to a untargeted attack, whereas minimizing the cross-entropy loss with respect to an
incorrect label corresponds to a targeted attack.

Standard deep learning classifiers are now known to be notoriously susceptible to even weak
adversarial attacks: one of the earliest methods for generating adversarial examples called the
Fast Gradient Sign Method (FGSM) used only a single gradient step to significantly harm the
performance of a classifier [Goodfellow et al., 2015], as seen in Equation (2.3) for a step size of
ε and example x:

x′ = x+ ε · sign(∇x`(f(x), y)) (2.3)

This attack performs a fairly coarse first-order approximation of the adversarial attack for the
`∞ threat model with radius ε, however similar variations can be performed for other `p threat
models. In general, this can be viewed as a more general gradient step known in the optimization
literature as the direction of steepest ascent, which finds the steepest direction which maximizes
the objective with a first-order Taylor approximation. The steepest ascent generalization of the
FGSM attack is shown in Equation (2.4)

x′ = x+ arg max
‖ν‖≤ε

∇x`(f(x), y)Tν (2.4)

where different choices in `p norm lead to different algorithms, with the `2 norm reducing to the
familiar gradient descent setting.

While this may have worked for standard classifiers, the adversarial attack has had to evolve
over time as new methods were proposed to mitigate the effect of adversarial examples. Adver-
sarial attacks can be roughly categorized into two groups, depending on whether they leverage
gradient information of the model being attacked. These roughly correspond to what is referred
to as “white box” and “black box” attacks in the security setting, which characterize the amount
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of information available to the attacker. The mainstay of adversarial attacks which leverage gra-
dient information is a straightforward generalization of the single-step attack known as the Basic
Iterative Method [Kurakin et al., 2017a], more commonly referred to as a Projected Gradient De-
scent (PGD) adversary [Madry et al., 2017]. Here, the adversary repeatedly takes smaller FGSM
steps while projecting onto the original threat model to find a better approximate solution to the
adversarial attack. For example, for the `∞ threat model, a PGD adversary repeats the following
iteration:

x′ = clip(x+ α · sign(∇x`(f(x′), y)),−ε, ε) (2.5)

where α < ε is the step size and the adversarial example x′ is either initialized to the original
example x or at a randomly perturbed initial point within the threat model. As with the FGSM
attack, the PGD attack can be generalized to other norms by using the corresponding steepest
ascent step as follows:

x′ = P∆(x)(x
′ + arg max

‖ν‖≤ε
∇x`(f(x′), y)Tν) (2.6)

where P∆(x) is the projection operator onto the threat model ∆(x).
The PGD adversary is perhaps the most widely used and studied adversary in the literature,

and has become a standard and consistent benchmark when evaluating robustness in the `∞ set-
ting. Numerous incremental improvements have been proposed for the PGD adversary, with
varying degrees of success. Traditional optimization tricks such as momentum were incorpo-
rated into the PGD adversary, and can in some cases lead to a stronger attack [Dong et al., 2018].
Multiple restarts and more iterations can improve the effectiveness of the attack [Uesato et al.,
2018]. Non-differentiable model components can be replaced with differentiable approximations
and still result in effective attacks [Athalye et al., 2018a]. Models with built-in randomness can
be attacked by averaging over the random components to compute expected gradients [Athalye
and Sutskever, 2017]. Unfortunately, choosing poor hyperparameters (e.g. step size, number of
iterations, number of restarts, initialization scheme) can result in sub-par performance and so a
non-trivial amount of effort was needed to select reasonable hyperparameters for each setting.
However, parameter-free versions of the PGD adversary have since been developed which signif-
icantly improves the power of the attack without needing to tune any hyperparameters [Croce and
Hein, 2020]. Amongst the `p norms, the `∞ PGD attack has seen the most stable and consistent
results.

There are several additional adversarial attacks beyond the PGD adversary which also utilize
gradient information from the model, which are more specific to the threat model being attacked.
A form of L-BFGS was used to construct the earliest known adversarial examples [Szegedy et al.,
2014], although the method is no longer in use as it has been eclipsed by more efficient attacks.
This was followed by the DeepFool attack, which was more efficient and uses a specialized
technique based on linear hyperplanes optimized for `2 adversarial examples in the untargeted
setting. The Jacobian-based Saliency Map Attack uses the gradient with respect to the input to
select pixels in an image to completely saturate, resulting in an `0 attack [Papernot et al., 2016a].
The Elastic-Net attack produces `1 adversarial examples with `2 adversarial examples as a special
subcase, and SPSA has also been explored as a viable adversarial attack [Uesato et al., 2018].
Of all the alternatives to the PGD adversary, the CW attack is perhaps the most frequently used
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[Carlini and Wagner, 2017b]. Although it takes multiple gradient steps to increase a loss similar
to the PGD adversary, it uses a Lagrangian penalty on the `p norm of the perturbation rather than
explicitly constraining it to a specific radius. The CW attack is better suited for the `2 setting than
the `∞ setting, and generally requires more iterations than a PGD adversary in order to gradually
decay regularization hyperparameters to obtain comparable performance.

In the event that model gradients cannot be computed, it is still possible to generate adversar-
ial examples with query access to a model, commonly referred to as a black box attack, of which
one of the earliest is known as a transfer attack. This class of attacks leverages a separate, known
surrogate model to generate adversarial examples with gradient-based attacks in the hopes that
adversarial examples generated on a surrogate model transfer to the target unknown model [Pa-
pernot et al., 2017]. If prediction or confidence score outputs are available from the model, then
the transfer attack can be further improved to use less queries with greater power [Guo et al.,
2019].

Black box attacks which do not leverage external models are often referred to as decision-
based or score-based attacks, since they only rely on the decision or score output of the model.
For example, the boundary attack uses rejection sampling for finding adversarial examples with
progressively smaller `2 difference [Brendel et al., 2017], which was later adapted to use gradient
information to be faster and more effective in more general `p settings [Croce and Hein, 2019a].
Black box `∞ and `2 attacks can be computationally inefficient and require many queries to be
effective [Li et al., 2019b], however approaches based on random search using score outputs have
made improvements in this space to be reasonably efficient [Andriushchenko et al., 2019]. For
the `0 setting, a single-pixel and small local groups of pxiels are perturbed using either greedy
heuristics [Narodytska and Kasiviswanathan, 2016] or differential evolution [Su et al., 2019], as
well as a multi-pixel attack called the pointwise attack which greedily minimizes the `0 norm
[Schott et al., 2019].

Although the black box attack has less available information and is thus theoretically weaker
than, for example, a PGD adversary, in certain situations the black box attack can sometimes
outperform gradient-based methods. This is a property identified in the literature as gradient
masking, where gradient-based attacks like the PGD adversary are led to poor local optima by the
local gradients and fail to break the model [Athalye et al., 2018a], while at the same time, black
box attacks can successfully attack the model. This can sometimes be the case in the `2 setting,
and is quite frequently the case in the `1 and `0 setting, where gradient based approaches can fail
quite easily [Maini et al., 2019]. As a result, it is often recommended in these settings to perform
black box attacks in addition to white box attacks when evaluating adversarial robustness [Carlini
et al., 2019]. Since well-tuned gradient-based attacks are not as prone to gradient masking in the
`∞ and `2 settings, black box attacks are not nearly as widely-used in these settings when gradient
information is available.

Adversarial attacks have also been shown to be effective in the real world, however tend to use
threat models which are quite different from the usual `p setting. For example, adversarial glasses
can be 3D printed to fool facial recognition software but needs to be constrained to look like
normal glasses Sharif et al. [2016]. By increasing the magnitude of the perturbation, adversarial
images can be printed and fed back into cameras while remaining adversarial [Kurakin et al.,
2017b]. Modern attacks are now capable of attacking both physical and electronic real-world
systems, for example by placing carefully crafted invisible sticker films on camera lenses [Li
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et al., 2019a] or synthesizing adversarial audio for black-box speech systems such as the Google
Speech Recognition API [Abdullah et al., 2019]. Since real world perturbations need to be visible
by cameras and other sensors, the size and scope of adversarial examples in the real world tends
to be quite different from adversarial examples studied on image datasets like CIFAR10 and
ImageNet, and this gap has yet to be addressed.

2.2 Robust optimization and adversarial defenses

In light of adversarial attacks and their ability to completely break deep classifiers, a great amount
of work has looked towards mitigating or defending models against adversarial attacks, resulting
in what is commonly referred to as adversarial defenses. This problem is fundamentally related
to the field of robust optimization Ben-Tal et al. [2009], the task of solving an optimization
problem where some of the problem data is unknown, but belong to a bounded set. Indeed,
robust optimization techniques have been used in the context of linear machine learning models
[Xu et al., 2009] to create classifiers that are robust to perturbations of the input.

To defend models from adversarial attacks, we want to learn a set of model weights which
minimizes the worst case loss against an adversarial attack. Mathematically, this can be framed
as the following robust optimization problem:

min
θ

max
x′∈∆(x)

`(fθ(x
′), y) (2.7)

where we’ve simply taken the adversarial loss from the previous optimization problem of find-
ing an adversarial example from Equation (2.1), and wrapped it within an outer minimization
over the model parameters θ for a deep network fθ. This connection from defending against ad-
versarial examples to robust optimization was addressed in an early adversarial examples paper
[Goodfellow et al., 2015], where it was noted that for linear models, robustness to adversarial
examples can be achieved via an `1 norm penalty on the weights within the loss function.1 Madry
et al. [2017] revisited this connection to robust optimization, and noted that simply solving the
(non-convex) min-max formulation of the robust optimization problem works very well in prac-
tice to find and then optimize against adversarial examples. The approach was motivated by the
classical result known as Danskin’s theorem [Danskin, 1966], which says that the gradient of a
maximization problem is equal to the gradient of the objective evaluated at the optimum, though
in this setting it may only be an approximate optimum.

Methods for solving this robust optimization problem can be categorized into one of two main
categories: provable defenses, which minimize a guaranteed upper bound of the adversarial loss,
and adversarial training, which minimizes a lower bound of the adversarial loss. After computing
a bound, both of these categories of defenses then use standard backpropagation tools for deep
learning to minimize the bound to learn networks robust to adversarial examples.

1This fact is well-known in robust optimization, and we merely mean that the original paper pointed out this
connection.
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2.2.1 Verification

The precursor to provable defenses was verification methods for deep networks, which tried to
formally verify whether deep networks satisfy certain properties. There is a great deal of work
using exact (combinatorial) solvers to verify properties of neural networks, including robust-
ness to adversarial attacks. These typically employ either Satisfiability Modulo Theories (SMT)
solvers [Carlini and Wagner, 2017b, Carlini et al., 2017, Ehlers, 2017, Huang et al., 2017, Katz
et al., 2017] or integer programming approaches [Cheng et al., 2017, Lomuscio and Maganti,
2017, Tjeng and Tedrake, 2017]. The obvious advantage of these approaches is that they are able
to reason exactly whether a property is satisfied or not. However, because they are fundamentally
combinatorial in nature, they tend to be limited in practice to small, fully-connected networks
with one or two layers, and struggle to verify even reasonably small convolutional networks,
such as those used on the MNIST dataset [LeCun, 1998].

There is one notable exception: Tjeng et al. [2018] adapt some of the ideas presented in
this dissertation to drastically prune the number of branches needed to solve a mixed integer
linear program (MILP) for verifying adversarial robustness, which is able to verify some, but not
all, small convolutional networks at a small radius. However, this scalability issue has thus far
prevented these methods from effectively scaling to large models typically used in deep learning
applications or being used within a training setting, as tying exact verification into a deep learning
training loop is simply computationally infeasible at this point in time.

In order to scale beyond small networks, other work has looked to verify network properties
using non-combinatorial methods by forgoing an exact certificate and instead certifying a looser
bound instead, typically by overapproximation. For example, there is a line of work towards
developing a suite of verification methods based upon abstract interpretations from programming
languages, which can be broadly construed as relaxations of combinations of activations that are
maintained as they pass through the network [Gehr et al., 2018]. This approach has been refined
and scaled to larger, more general network architectures [Singh et al., 2018a], combined with
MILP solvers to enhance the precision of the approximation [Singh et al., 2018b], and extended
to geometric transformations [Balunovic et al., 2019] and generative models [Mirman et al.,
2020].

Other optimization approaches can be leveraged to produce certified bounds. For example,
Dvijotham et al. [2018b] solve an optimization problem resulting from dual functions of the
activations to verify robustness to adversarial examples, which is most similar to the bounds
presented in this dissertation. Semidefinite programming (SDP) relaxations can offer some of the
tightest bounds which are solvable in polynomial time, but can only verify small fully connected
networks [Raghunathan et al., 2018b]. The semidefinite programming approach can be further
tightened by adding quadratic constraints [Fazlyab et al., 2019], trading increased complexity for
a tighter upper bound (but still polynomial time). While these verification approaches trade off
exact verification for computing a more scalable but looser bound which can be applid to larger
networks, they are still too computationally expensive to be tied into the training procedure to be
used to solve a robust optimization problem.
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2.2.2 Provable defenses

A subset of verification methods are those which compute even looser but tractable bounds on
properties of deep networks, typically to guarantee robustness of the network against an ad-
versarial attack. The primary difference between these methods and the previous verification
approaches is in the computation: these bounds can be typically computed in closed form with-
out solving an optimization problem. As a result, these bounds can also be reasonably tied into
the training procedure to learn a network which minimizes the bound to guarantee that no adver-
sarial example exists, resulting in what we call a provable defense. Although they are efficient,
the bounds are typically so loose that it is typical for the bound to be vacuous and not guarantee
adversarial robustness at reasonably small thresholds, unless the network was specifically trained
to minimize the bound.

One of the earliest defenses to guarantee robustness to adversarial examples was Parseval
networks [Cisse et al., 2017], which regularize the `2 operator norm of the weight matrices in
order to keep the Lipschitz constant of the network less than one. This guarantees that the net-
work is non-expansive in the `2 norm resulting in a bound on the norm of the output, and can
achieve some minor degree of adversarial robustness. Similar work showed how to limit the
possible layerwise `2 norm expansions in a variety of different layer types in a modular fashion
[Peck et al., 2017]. Although this work did not incorporate their bound into the training proce-
dure, in hindsight it may have been more successful if it had been trained to minimize the bound.
After all, later work which studied the `∞ analogue of this approach propagated interval bounds
layer-by-layer through a deep network [Gowal et al., 2018]. Although the loose approximation is
unsurprisingly vacuous on most networks, the interval bound can become reasonably tight when
the bound is optimized, and achieve competitive levels of certified robustness when applied to
large networks and tuned properly.

Other “layerwise” bounds have been developed which can be orders of magnitude tighter than
the previously described bound propagation methods while still being tractable enough to be tied
into training. One of the earliest works in this space provided an adversarial robustness guarantee
for `2 perturbations in two-layer networks, and trained using a surrogate of the robust bound to
get provable guarantees [Hein and Andriushchenko, 2017]. Later, the work of Raghunathan et al.
[2018a] developed a dual SDP relaxation for `∞ robustness also in the two-layer network setting,
which reduced the bound to an eigenvalue problem. Although these bounds were trainable, they
were limited in scalability to the two-layer setting and fully connected networks.

Over time, however, a number of provable defenses were developed that were scalable and
widely applicable to modern architectures. For example, the verification line of work based on
abstract interpretations was adapted to faster, layer-wise abstractions which could then be used in
training [Mirman et al., 2018]. The work in this dissertation took a different perspective, starting
with a linear programming (LP) relaxation more similar to the SDP approach [Raghunathan et al.,
2018a]. However, instead of solving the LP, we leveraged dual feasible solutions that could be
constructed by propagating dual variables layer-wise forward and backward through the network
[Wong and Kolter, 2017] to get a certified bound. By training on these dual feasible certificates as
a provable defense, we were able to learn small convolutional networks that could be verified for
the first time. The work in this dissertation also extends the dual LP to the general setting, making
it applicable to arbitrary computational graphs and leveraging random projections to make the
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bounds more tractable on medium-sized networks [Wong et al., 2018]. Later work found that
the exact same verification algorithm obtained by dual feasible solutions of the linear program
could be equivalently obtained by forward propagating bounds in a linearized version of the deep
network [Weng et al., 2018, Zhang et al., 2018], where specific choices in dual feasible solutions
for the linear program are equivalent to specific choices in linearizing the ReLU activations
of the network. However, without training on the bound as done in this dissertation [Wong
and Kolter, 2017, Wong et al., 2018], these bounds tend to produce vacuous, non-meaningful
guarantees when used only as verifiers. Later analysis showed that the dual LP bound used
in this dissertation, when trained as a provable defense, is tight when the LP is solved exactly
[Salman et al., 2019b]. The bounds based on dual linear programs or linearized networks were
later combined with interval bound propagation to slightly improve the final verified performance
after training [Zhang et al., 2019c], and this remains one of the most competitive approaches for
`∞ provable robustness.

Another distinct category of provable defenses are those which leverage randomized smooth-
ing to generate probabilistic guarantees. Initially proposed from a differential privacy perspective
[Lecuyer et al., 2019], randomized smoothing replaces the output of a classifier with its expected
output under noise, in order to compute a probabilistic bound on the output of a network. These
bounds were eventually tightened and combined with Gaussian data augmentation at high noise
levels to produce state of the art certified results for robustness against `2 bounded noise [Cohen
et al., 2019]. Later work further improved the approach by combining it with adversarial training
methods [Salman et al., 2019a], and randomized smoothing can now be prepended to standard
classifiers with no guarantees to add probabilistic guarantees to pretrained classifiers in a mod-
ular fashion [Salman et al., 2020]. While the approach has been generalized to other `p norms
[Yang et al., 2020], theoretical analysis suggests that randomized smoothing may be unable to
certify `∞ perturbations at a reasonably sized radius [Blum et al., 2020]. However, randomized
smoothing tends to outperform other LP-based bounds in the `2 setting, and remains the most
competitive approach for `2 provable robustness.

Several provable defenses do not fall into any of the previously described categories. There
has been some work in studying distributional robustness, or minimizing the worst-case loss over
the entire population [Sinha et al., 2018a]. Rather than constraining the `p norm of each example
to generate adversarial examples, distributional robustness can be seen as constaining the total
`p norm of perturbations for an entire population (or dataset) summed over each example. Sinha
et al. [2018a] are able to produce a bound on the adversarial population loss and train to minimize
the bound, which furthermore comes with generalization guarantees under proper assumptions.
Another line of work has looked into analyzing the properties of robust networks, designing
heuristics to encourage these properties, and formally verify their robustness using independent
MILP solvers. These heuristics include encouraging weight sparsity and stability of ReLU acti-
vations [Xiao et al., 2019] as well as maximizing the linear regions of the network [Croce et al.,
2018].

2.2.3 Adversarial training
While provable defenses provide strong guarantees on the performance of the network under
adversarial perturbations, these guarantees come at a cost: it is common for provably robust
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networks to achieve lower clean accuracy than their standard counterparts. At the same time,
the bound may be too conservative, certifying a lower adversarial radius than is empirically
possible. As a result, despite the advancement of provable defenses, a great deal of interest has
looked at improving a more empirical defense known as adversarial training, which typically has
better empirical performance (both clean and adversarial) but does not come with any formal
guarantees.

At its core, adversarial training performs an adversarial attack to approximate the inner max-
imization to compute an adversarial loss, and performs backpropagation on the adversarial loss.
In short, rather than minimizing an upper bound on the adversarial loss, adversarial training min-
imizes a lower bound bound in the form of an adversarial example. This was initially proposed
for the FGSM adversary in the early days of adversarial examples as FGSM adversarial training
[Goodfellow et al., 2015], but was found to be converging to a degenerate local minimum and was
combined with an initial randomization step [Tramèr et al., 2017]. However even with this addi-
tional randomization, models trained with FGSM adversarial training at the time did not produce
robustness to strong PGD attacks. The effectiveness of adversarial training was not recognized
until it was combined with a PGD adversary [Madry et al., 2017], and FGSM adversarial train-
ing was dismissed as simply being too weak and a poor approximation of the adversarial loss.
However, part of the work in this dissertation presents a surprising discovery that goes against
what was previously believed: FGSM adversarial training with a better random intialization can
in fact learn a robust network, and with proper tuning, can achieve results comparable to PGD
adversarial training [Wong et al., 2020a].

Further incremental improvements to both the PGD adversary and the adversarial training
procedure include incorporating momentum into the adversary [Dong et al., 2018], leveraging
matrix estimation [Yang et al., 2019], logit pairing [Mosbach et al., 2018], and feature denoising
[Xie et al., 2019]. However, all of these approaches rely on using adversarial training as the core
defense, and are either not as effective or completely fail when used on their own. Zhang et al.
[2019b] proposed a method called TRADES for adversarial training that performs adversarial
training but balances between standard and robust errors, and for a long while achieved state-of-
the-art robust performance on standard benchmarks in adversarial examples, improving upon the
standard PGD adversarial training approach. However, in this dissertation we find that the gains
in adversarial robustness from newer methods like TRADES are a product of early stopping and
not algorithmic improvement due to the prevalance of overfitting in adversarial training [Rice
et al., 2020]. Unfortunately, this suggests that there has been no algorithmic improvement in
adversarially robust deep learning since PGD adversarial training, which has been confirmed by
improved adversarial attacks [Croce and Hein, 2020].

On the other hand, there has been a growing body of evidence suggesting that adversarially
robust training needs more data [Schmidt et al., 2018], and that adversarial training can hurt
generalization [Raghunathan et al., 2019]. This matches empirical observations, where current
datasets have larger generalization gaps when trained robustly with adversarial training. Addi-
tional data can greatly improve adversarial robustness when used with self-supervised learning
techniques [Alayrac et al., 2019, Carmon et al., 2019, Zhai et al., 2019], which was one of
the most significant improvements in adversarial robustness that actually improved upon vanilla
PGD adversarial training.

Because PGD adversarial training is significantly more time consuming than standard train-
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ing, several works have focused on improving the efficiency of adversarial training. For example,
one can reduce the computational complexity of calculating gradients by caching gradients that
remain the same across PGD iterations [Zhang et al., 2019a]. Other work has looked at reducing
the number of attack iterations [Wang, 2018], proposing methods such as free adversarial train-
ing [Shafahi et al., 2019], and speeding up FGSM adversarial training with methods from fast
standard training [Wong et al., 2020a], the last of which is discussed in this dissertation.

Separate works have also expanded the general PGD adversarial training algorithm to dif-
ferent threat models beyond the `p ball which capture perturbations beyond unstructured noise.
These include various image transformations such as rotations and translations [Engstrom et al.,
2017] or spatial flows [Xiao et al., 2018]. The work in this dissertation proposes a different threat
model based on the Wasserstein distance for images [Wong et al., 2019] to leverage prior knowl-
edge about the pixels in an image and more accurately capture small image transformations.
Other work has looked at how PGD adversarial training can generalize to multiple threat models
[Maini et al., 2019, Tramèr and Boneh, 2019], which is also discussed in this dissertation.

2.2.4 Other defenses
The previous sections focused on provable defenses and adversarial training, as these have been
the most successful methods for mitigating adversarial examples that haven’t been broken by
stronger attacks. However, there is a long and complicated history of numerous other heuristic
defenses which were proposed to provide robustness to adversarial examples, but were proven to
be ultimately ineffective when evaluated against a stronger adversary.

For example, one of the earliest proposed methods for mitigating adversarial examples was
called defensive distillation, which uses a temperature variable to control the magnitude of the
network softmax values, and was initially though to be effective at preventing early adversarial
attacks [Papernot et al., 2016b], until stronger versions of these attacks were able to break net-
works with defensive distillation [Carlini and Wagner, 2017b]. Other work argued that, under
“realistic” settings of rotation and scaling, adversarial examples were nothing to worry about [Lu
et al., 2017] until adversarial examples were crafted to also be robust to these sorts of transfor-
mations [Athalye and Sutskever, 2017]. Rather than defending a specific network, other work
tried to instead simply detect whether an example was adversarial or not using small detector net-
works [Metzen et al., 2017], identifying adversarial artifacts with Bayesian uncertainty estimates
[Feinman et al., 2017], or leveraging interpretable attributes to identify adversarial examples [Tao
et al., 2018]. However, all of these detection methods (and many more) were ultimately shown
to be ineffective and bypassable [Carlini, 2019, Carlini and Wagner, 2017a]. Indeed, defenses
with optimistic evaluations like thermometer encoding [Buckman et al., 2018], data purifiers to
remove adversarial perturbations [Song et al., 2017], and input transformations to destroy adver-
sarial perturbations [Guo et al., 2017] were being released so rapidly that papers started to break
multiple models en masse [Athalye et al., 2018a, Uesato et al., 2018], and contests at confer-
ences like the NIPS 2017 adversarial examples challenge were organized to pit attackers against
defenders to identify the real progress made on developing empirically robust deep classifiers
[Kurakin et al., 2018].

This back-and-forth where heuristic defenses are constantly being defeated by stronger at-
tacks highlights the imbalance in difficulty between adversarial attacks and defenses. For an
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adversary to “win”, it does not have to find the optimal adversarial example which incurs the
maximum loss. Instead, it is sufficient for the adversary to just find some example within the
threat model which is incorrectly classified, whereas a defender must ensure that all points within
the threat model are correctly classified. Unfortunately, the incentives are also misaligned: ad-
versarial defenses are not motivated to perform proper evaluations with strong adversaries, as
stronger adversaries will make the defense appear less effective. This has resulted in the estab-
lishment of a set of community guidelines for properly evaluating adversarial defenses [Carlini
et al., 2019], which includes peforming an adaptive attack against proposed adversarial defenses.
While this has improved the situation to some degree, many heuristic defenses still only use in-
complete adaptive attacks, as a significant number of heuristic defenses published at top machine
learning conferences continue to be circumvented with improved adaptive attacks [Tramer et al.,
2020].
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Chapter 3

Provable defenses

One way to truly harden classifiers against adversarial attacks is to design classifiers that are
guaranteed to be robust to adversarial perturbations, even if the attacker is given full knowledge
of the classifier. This has the advantage of not relying on “security through obscurity” and will
be robust regardless of the strength of the adversary.

In this chapter, we present a method for training provably robust deep ReLU classifiers,
classifiers that are guaranteed to be robust against any norm-bounded adversarial perturbations
on the training set. The approach also provides a provable method for detecting any previously
unseen adversarial example, with zero false negatives (i.e., the system will flag any adversarial
example in the test set, though it may also mistakenly flag some non-adversarial examples). The
crux of our approach is to construct a convex outer bound on the so-called “adversarial polytope”,
the set of all final-layer activations that can be achieved by applying a norm-bounded perturbation
to the input; if we can guarantee that the class prediction of an example does not change within
this outer bound, we have a proof that the example could not be adversarial (because the nature
of an adversarial example is such that a small perturbation changed the class label). The convex
outer bound we use in this work leverages the linear ReLU relaxations employed by the PLANET
solver [Ehlers, 2017], which used a similar type of relaxation in a larger combinatorial solver.

We show how we can efficiently compute and optimize over the “worst case loss” within
this convex outer bound, even in the case of deep networks that include relatively large (for
verified networks) convolutional layers, and thus learn classifiers that are provably robust to
such perturbations. From a technical standpoint, the outer bounds we consider involve a large
linear program, but we show how to bound these optimization problems using a formulation
that computes a feasible dual solution to this linear program using just a single backward pass
through the network (and avoiding any actual linear programming solvers). On the one hand,
the method overcomes the combinatorial computational barrier for exact verification methods
for adversarial examples based on SMT [Carlini and Wagner, 2017b, Carlini et al., 2017, Ehlers,
2017, Huang et al., 2017, Katz et al., 2017] or MILP solvers [Cheng et al., 2017, Lomuscio and
Maganti, 2017, Tjeng and Tedrake, 2017], as well as the polynomial computational barrier from
SDP solvers [Raghunathan et al., 2018a], all of which cannot scale to even the medium-sized
networks that we study here, let alone be tied into the training procedure. On the other hand,
the bounds produced by the method are significantly tighter than other layer-wise bounds [Cisse
et al., 2017, Peck et al., 2017], often by many orders of magnitude.
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Figure 3.1: Conceptual illustration of the (non-convex) adversarial polytope, and an outer convex
bound.

In a later section, we make substantial progress towards scaling this approach for learning
provably robust networks to realistic sizes in three key ways. First, we extend the framework
to deal with abstract computational graphs, including residual/skip connections (a hallmark of
modern deep network architectures) and arbitrary activation functions. Second, note that the
original approach scales quadratically in the number of hidden units in the network, making it
impractical for larger networks. To scale, we use a nonlinear random projection technique to
estimate the bound in a manner that scales only linearly in the size of the hidden units (i.e., only
a constant multiple times the cost of traditional training), and which empirically can be used to
train the networks with no degradation in performance from the previous work. Third, we show
how to further improve robust performance of these methods, though at the expense of worse
non-robust error, using multi-stage cascade models. Through these extensions, we are able to
improve substantially upon the verified robust errors.

3.1 Training provably robust classifiers

This section contains the main methodological contribution towards provable defenses: a method
for training deep ReLU networks that are provably robust to norm-bounded perturbations. Our
derivation roughly follows three steps: first, we define the adversarial polytope for deep ReLU
networks, and present our convex outer bound; second, we show how we can efficiently optimize
over this bound by considering the dual problem of the associated linear program, and illustrate
how to find solutions to this dual problem using a single modified backward pass in the original
network; third, we show how to incrementally compute the necessary elementwise upper and
lower activation bounds, using this dual approach. After presenting this algorithm, we then
summarize how the method is applied to train provably robust classifiers, and how it can be used
to detect potential adversarial attacks on previously unseen examples.

3.1.1 Outer bounds on the adversarial polytope

In this section, we consider a k layer feedforward ReLU-based neural network, fθ : R|x| → R|y|
given by the equations

ẑi+1 = Wizi + bi, for i = 1, . . . , k − 1

zi = max{ẑi, 0}, for i = 2, . . . , k − 1
(3.1)
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Figure 3.2: Illustration of the convex ReLU relaxation over the bounded set [`, u].

with z1 ≡ x and fθ(x) ≡ ẑk (the logits input to the classifier). We use θ = {Wi, bi}i=1,...,k to
denote the set of all parameters of the network, where Wi represents a linear operator such as
matrix multiply or convolution.

We use the setZε(x) to denote the adversarial polytope, or the set of all final-layer activations
attainable by perturbing x by some δ with `∞ norm bounded by ε:1

Zε(x) = {fθ(x+ δ) : ‖δ‖∞ ≤ ε}. (3.2)

For multi-layer networks, Zε(x) is a non-convex set (it can be represented exactly via an integer
program as in [Lomuscio and Maganti, 2017] or via SMT constraints [Katz et al., 2017]), so
cannot easily be optimized over. Then, we can rewrite the problem of finding an adversarial
example as a maximization of some loss ` over the adversarial polytope:

maximize
z

`(z, y)

subject to z ∈ Zε(x)
(3.3)

The foundation of our approach will be to construct a convex outer bound on this adversarial
polytope, as illustrated in Figure 3.1. If no point within this outer approximation exists that will
change the class prediction of an example, then we are also guaranteed that no point within the
true adversarial polytope can change its prediction either, i.e., the point is robust to adversarial
attacks. Our eventual approach will be to train a network to optimize the worst case loss over this
convex outer bound, effectively applying robust optimization techniques despite non-linearity of
the classifier.

The starting point of our convex outer bound is a linear relaxation of the ReLU activations.
Specifically, given known lower and upper bounds `, u for the pre-ReLU activations, we can
replace the ReLU equalities z = max{0, ẑ} from (3.1) with their upper convex envelopes,

z ≥ 0, z ≥ ẑ, −uẑ + (u− `)z ≤ −u`. (3.4)

The procedure is illustrated in Figure 3.2, and we note that if ` and u are both positive or both
negative, the relaxation is exact. The same relaxation at the activation level was used in Ehlers
[2017], however as a sub-step for exact (combinatorial) verification of networks, and the method
for actually computing the crucial bounds ` and u is different. We denote this outer bound on the
adversarial polytope from replacing the ReLU constraints described in Equation (3.1) with the
three linear constraints from Equation (3.4) as Z̃ε(x).

1For the sake of concreteness, we will focus on the `∞ bound during this exposition, but the method does extend
to other norm balls, which we will highlight shortly.
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Robustness guarantees via the convex outer adversarial polytope. We can use this outer
bound to provide provable guarantees on the adversarial robustness of a classifier. Given a sample
x with known label y?, we can find the point in Z̃ε(x) that minimizes this class and maximizes
some alternative target ytarg, by solving the optimization problem

minimize
ẑk

(ẑk)y? − (ẑk)ytarg ≡ cT ẑk

subject to ẑk ∈ Z̃ε(x)
(3.5)

where c ≡ ey? − eytarg instantiates the loss for a targeted adversarial attack. Importantly, this
is a linear program (LP): the objective is linear in the decision variables, and our convex outer
approximation consists of just linear equalities and inequalities, which is more obvious after
expanding Z̃ε(x) as seen in Equation (3.6).

minimize
ẑk

cT ẑk, subject to

ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

z1 ≤ x+ ε

z1 ≥ x− ε
zi,j = 0, i = 2, . . . , k − 1, j ∈ I−i
zi,j = ẑi,j, i = 2, . . . , k − 1, j ∈ I+

i

zi,j ≥ 0,

zi,j ≥ ẑi,j,

(ui,j − `i,j)zi,j − ui,j ẑi,j ≤ −ui,j`i,j

 i = 2, . . . , k − 1, j ∈ Ii

(3.6)

Crucially, if we solve this LP for all target classes ytarg 6= y? and find that the objective value in
all cases is positive (i.e., we cannot make the true class activation lower than the target even in
the outer polytope), then we know that no norm-bounded adversarial perturbation of the input
could misclassify the example.

We can conduct similar analysis on test examples as well. If the network predicts some class
ŷ on an example x, then we can use the same procedure as above to test whether the network will
output any different class for a norm-bounded perturbation. If not, then the example cannot be
adversarial, because no input within the norm ball takes on a different class (although of course,
the network could still be predicting the wrong class). Although this procedure may incorrectly
“flag” some non-adversarial examples, it will have zero false negatives, e.g., there may be a
normal example that can still be classified differently due to a norm-bounded perturbation, but
all norm-bounded adversarial examples will be detected.

Of course, two major issues remain: 1) although the LP formulation can be solved “effi-
ciently”, actually solving an LP via traditional methods for each example, for each target class,
is not tractable; 2) we need a way of computing the crucial ` and u bounds for the linear relax-
ation. We address these in the following two sections.
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3.1.2 Efficient optimization via the dual network
Because solving an LP with a number of variables equal to the number of activations in the
deep network via standard approaches is not practically feasible, the key aspect of our approach
lies in our method for very efficiently bounding these solutions. Specifically, we consider the
dual problem of the LP above; recall that any feasible dual solution provides a guaranteed lower
bound on the solution of the primal. Crucially, we show that the feasible set of the dual problem
can itself be expressed as a deep network, and one that is very similar to the standard backprop
network. This means that providing a provable lower bound on the primal LP (and hence also a
provable bound on the adversarial error), can be done with only a single backward pass through
a slightly modified network (assuming for the time being, that we still have known upper and
lower bounds for each activation). This is expressed in the following theorem
Theorem 1. The dual of (3.5) is of the form

maximize
α

Jε(x, gθ(c, α))

subject to αi,j ∈ [0, 1], ∀i, j
(3.7)

where Jε(x, ν) is equal to

−
k−1∑
i=1

νTi+1bi − xT ν̂1 − ε‖ν̂1‖1 +
k−1∑
i=2

∑
j∈Ii

`i,j[νi,j]+ (3.8)

and gθ(c, α) is a k layer feedforward neural network given by the equations

νk = −c
ν̂i = W T

i νi+1, for i = k − 1, . . . , 1

νi,j =


0 j ∈ I−i
ν̂i,j j ∈ I+

i
ui,j

ui,j−`i,j [ν̂i,j]+ − αi,j[ν̂i,j]− j ∈ Ii,

for i = k − 1, . . . , 2

(3.9)

where ν is shorthand for (νi, ν̂i) for all i (needed because the objective J depends on all ν terms,
not just the first), and where I−i , I+

i , and Ii denote the sets of activations in layer i where the
lower and upper bounds are both negative, both positive, or span zero respectively.

Proof. In detail, we associate the following dual variables with each of the constraints

ẑi+1 = Wizi + bi ⇒ νi+1 ∈ R|ẑi+1|

z1 ≤ x+ ε⇒ ξ+ ∈ R|x|

−z1 ≤ −x+ ε⇒ ξ− ∈ R|x|

−zi,j ≤ 0⇒ µi,j ∈ R
ẑi,j − zi,j ≤ 0⇒ τi,j ∈ R

−ui,j ẑi,j + (ui,j − `i,j)zi,j ≤ −ui,j`i,j ⇒ λi,j ∈ R

(3.10)
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where we note that can easily eliminate the dual variables corresponding to the zi,j = 0 and
zi,j = ẑi,j from the optimization problem, so we don’t define explicit dual variables for these; we
also note that µi,j , τi,j , and λi,j are only defined for i, j such that j ∈ Ii, but we keep the notation
as above for simplicity. With these definitions, the dual problem becomes

maximize −(x+ ε)T ξ++(x− ε)T ξ− −
k−1∑
i=1

νTi+1bi +
k−1∑
i=2

λTi (ui`i)

subject to

νk = −c
νi,j = 0, for j ∈ I−i , i = 2, . . . , k − 1

νi,j = (W T
i νi+1)j for j ∈ I+

i , i = 2, . . . , k − 1

(ui,j − `i,j)λi,j − µi,j − τi,j = (W T
i νi+1)j for j ∈ Ii, i = 2, . . . , k − 1

νi,j = ui,jλi,j − µi for j ∈ Ii, i = 2, . . . , k − 1

W T
1 ν2 = ξ+ − ξ−

λ, τ, µ, ξ+, ξ− ≥ 0

(3.11)

The key insight we highlight here is that the dual problem can also be written in the form of a
deep network, which provides a trivial way to find feasible solutions to the dual problem, which
can then be optimized over. Specifically, consider the constraints

(ui,j − `i,j)λi,j − µi,j − τi,j = (W T
i νi+1)j

νi,j = ui,jλi,j − µi.
(3.12)

Note that the dual variable λ corresponds to the upper bounds in the convex ReLU relaxation,
while µ and τ correspond to the lower bounds z ≥ 0 and z ≥ ẑ respectively; by the complemen-
tarity property, we know that at the optimal solution, these variables will be zero if the ReLU
constraint is non-tight, or non-zero if the ReLU constraint is tight. Because we cannot have the
upper and lower bounds be simultaneously tight (this would imply that the ReLU input ẑ would
exceed its upper or lower bound otherwise), we know that either λ or µ + τ must be zero. This
means that at the optimal solution to the dual problem

(ui,j − `i,j)λi,j = [(W T
i νi+1)j]+

τi,j + µi,j = [(W T
i νi+1)j]−

(3.13)

i.e., the dual variables capture the positive and negative portions of (W T
i νi+1)j respectively.

Combining this with the constraint that

νi,j = ui,jλi,j − µi (3.14)

means that
νi,j =

ui,j
ui,j − `i,j

[(W T
i νi+1)j]+ − α[(W T

i νi+1)j]− (3.15)
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for j ∈ Ii and for some 0 ≤ α ≤ 1 (this accounts for the fact that we can either put the “weight”
of [(W T

i νi+1)j]− into µ or τ , which will or will not be passed to the next νi). This is exactly a
type of leaky ReLU operation, with a slope in the positive portion of ui,j/(ui,j − `i,j) (a term
between 0 and 1), and a negative slope anywhere between 0 and 1. Similarly, and more simply,
note that ξ+ and ξ− denote the positive and negative portions of W T

1 ν2, so we can replace these
terms with an absolute value in the objective. Finally, we note that although it is possible to have
µi,j > 0 and τi,j > 0 simultaneously, this corresponds to an activation that is identically zero
pre-ReLU (both constraints being tight), and so is expected to be relatively rare. Putting this all
together, and using ν̂ to denote “pre-activation” variables in the dual network, we can write the
dual problem in terms of the network

νk = −c
ν̂i = W T

i νi+1, i = k − 1, . . . , 1

νi,j =


0 j ∈ I−i
ν̂i,j j ∈ I+

i
ui,j

ui,j−`i,j [ν̂i,j]+ − αi,j[ν̂i,j]− j ∈ Ii,

for i = k − 1, . . . , 2

(3.16)

which we will abbreviate as ν = gθ(c, α) to emphasize the fact that −c acts as the “input” to the
network and α are per-layer inputs we can also specify (for only those activations in Ii), where
ν in this case is shorthand for all the νi and ν̂i activations.

The final objective we are seeking to optimize can also be written

Jε(x, ν) =−
k−1∑
i=1

νTi+1bi − (x+ ε)T [ν̂1]+ + (x− ε)T [ν̂1]−

+
k−1∑
i=2

∑
j∈Ii

ui,j`i,j
ui,j − `i,j

[ν̂i,j]+

=−
k−1∑
i=1

νTi+1bi − xT ν̂1 − ε‖ν̂1‖1

+
k−1∑
i=2

∑
j∈Ii

`i,j[νi,j]+

(3.17)

The “dual network” from (3.9) in fact is almost identical to the backpropagation network,
except that for nodes j in Ii there is the additional free variable αi,j that we can optimize over to
improve the objective. In practice, rather than optimizing explicitly over α, we choose the fixed,
dual feasible solution

αi,j =
ui,j

ui,j − `i,j
. (3.18)

This makes the entire backward pass a linear function, and is additionally justified by consider-
ations regarding the conjugate set of the ReLU relaxation as the largest choice of α which does
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Algorithm 1 Computing Activation Bounds

input: Network parameters {Wi, bi}k−1
i=1 , data point x, ball size ε

// initialization
ν̂1 := W T

1

γ1 := bT1
`2 := xTW T

1 + bT1 − ε‖W T
1 ‖1,:

u2 := xTW T
1 + bT1 + ε‖W T

1 ‖1,:

// ‖ · ‖1,: for a matrix here denotes `1 norm of all columns
for i = 2, . . . , k − 1 do

form I−i , I+
i , Ii; form Di as in (3.20)

// initialize new terms
νi,Ii := (Di)IiW

T
i

γi := bTi
// propagate existing terms
νj,Ij := νj,IjDiW

T
i , j = 2, . . . , i− 1

γj := γjDiW
T
i , j = 1, . . . , i− 1

ν̂1 := ν̂1DiW
T
i

// compute bounds
ψi := xT ν̂1 +

∑i
j=1 γj

`i+1 := ψi − ε‖ν̂1‖1,: +
∑i

j=2

∑
i′∈Ii `j,i′ [−νj,i′ ]+

ui+1 := ψi + ε‖ν̂1‖1,: −
∑i

j=2

∑
i′∈Ii `j,i′ [νj,i′ ]+

end for
output: bounds {`i, ui}ki=2

not increase the bound, which is discussed later in Section 3.4.4. Because any solution α is still
dual feasible, this still provides a lower bound on the primal objective, and one that is reasonably
tight in practice.2 Thus, in the remainder of this work we simply refer to the dual objective as
J(x, gθ(c)), implicitly using the above-defined α terms.

We also note that norm bounds other than the `∞ norm are also possible in this framework:
if the input perturbation is bounded within some convex `p norm, then the only difference in the
dual formulation is that the `1 norm on ‖ν̂‖1 changes to ‖ν̂‖q where q is the dual norm of p. This
becomes more clear in the later section, when we use duality to bound arbitrary computational
graphs.

3.1.3 Computing activation bounds
Thus far, we have ignored the (critical) issue of how we actually obtain the elementwise

lower and upper bounds on the pre-ReLU activations, ` and u. Intuitively, if these bounds are too
loose, then the adversary has too much “freedom” in crafting adversarial activations in the later
layers that don’t correspond to any actual input. However, because the dual function Jε(x, gθ(c))
provides a bound on any linear function cT ẑk of the final-layer coefficients, we can compute J

2The tightness of the bound is examined in Section 3.3.1.
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for c = I and c = −I to obtain lower and upper bounds on these coefficients. For c = I , the
backward pass variables (where ν̂i is now a matrix) are given by

ν̂i = −W T
i Di+1W

T
i+1 . . . DnW

T
n

νi = Diν̂i
(3.19)

where Di is a diagonal matrix with entries

(Di)jj =


0 j ∈ I−i
1 j ∈ I+

i
ui,j

ui,j−`i,j j ∈ Ii
. (3.20)

We can compute (νi, ν̂i) and the corresponding upper bound Jε(x, ν) (which is now a vector)
in a layer-by-layer fashion, first generating bounds on ẑ2, then using these to generate bounds on
ẑ3, etc.

The resulting algorithm, which uses these backward pass variables in matrix form to incre-
mentally build the bounds, is described in Algorithm 1. From here on, the computation of J
will implicitly assume that we also compute the bounds. Because the full algorithm is somewhat
involved, we highlight that there are two dominating costs to the full bound computation: 1)
computing a forward pass through the network on an “identity matrix” (i.e., a basis vector ei for
each dimension i of the input); and 2) computing a forward pass starting at an intermediate layer,
once for each activation in the set Ii (i.e., for each activation where the upper and lower bounds
span zero). Direct computation of the bounds requires computing these forward passes explicitly,
since they ultimately factor into the nonlinear terms in the J objective, and this is admittedly the
poorest-scaling aspect of our approach. In a later section, we show how to use random Cauchy
projections to estimate these terms, allowing us to scale the method to even larger models. How-
ever, even without improving scalability, the technique already can be applied to much larger
networks than typical networks which are verifiable by exact solvers.

3.1.4 Efficient robust optimization
Using the lower bounds developed in the previous sections, we can develop an efficient optimiza-
tion approach to training provably robust deep networks. Given a data set (xi, yi)i=1,...,N , instead
of minimizing the loss at these data points, we minimize (our bound on) the worst location (i.e.
with the highest loss) in an ε ball around each xi, i.e.,

minimize
θ

N∑
i=1

max
‖∆‖∞≤ε

L(fθ(xi + ∆), yi). (3.21)

This is a standard robust optimization objective, but prior to this work it was not known how to
train these classifiers when f is a deep nonlinear network.

We also require that a multi-class loss function have the following property (all of cross-
entropy, hinge loss, and zero-one loss have this property):
Property 1. A multi-class loss function L : R|y|×R|y| → R is translationally invariant if for all
a ∈ R,

L(y, y?) = L(y − a1, y?). (3.22)
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Under this assumption, we can upper bound the loss of the robust optimization problem with
the loss evaluated on our bound from the dual problem as described in Theorem 2.
Theorem 2. Let L be a monotonic loss function that satisfies Property 1. For any data point
(x, y), and ε > 0, the worst case adversarial loss from (3.21) can be upper bounded by

max
‖∆‖∞≤ε

L(fθ(x+ ∆), y) ≤ L(−Jε(x, gθ(ey1T − I)), y), (3.23)

where Jε is vector valued and as defined in (3.8) for a given ε, and gθ is as defined in (3.9) for
the given model parameters θ.

Proof. First, we rewrite the problem using the adversarial polytope Zε(x).

max
‖∆‖∞≤ε

L(fθ(x+ ∆), y) = max
ẑk∈Zε(x)

L(ẑk, y)

Since L(x, y) ≤ L(x− a1, y) for all a, we have

max
ẑk∈Zε(x)

L(ẑk, y) ≤ max
ẑk∈Zε(x)

L(ẑk − (ẑk)y1, y)

= max
ẑk∈Zε(x)

L((I − ey1
T )ẑk, y)

= max
ẑk∈Zε(x)

L(Cẑk, y)

(3.24)

where C = (I − ey1
T ). Since L is a monotone loss function, we can upper bound this further

by using the element-wise maximum over [Cẑk]i for i 6= y, and elementwise-minimum for i = y
(note, however, that for i = y, [Cẑk]i = 0). Specifically, we bound it as

max
ẑk∈Zε(x)

L(Cẑk, y) ≤ L(h(ẑk))

where, if Ci is the ith row of C, h(zk) is defined element-wise as

h(zk)i = max
ẑk∈Zε(x)

Ciẑk

This is exactly the adversarial problem from (3.2) (in its maximization form instead of a mini-
mization). Recall that J from (3.8) is a lower bound on (3.2) (using c = −Ci).

Jε(x, gθ(−Ci)) ≤ min
ẑk∈Zε(x)

−CT
i ẑk (3.25)

Multiplying both sides by −1 gives us the following upper bound

−Jε(x, gθ(−Ci)) ≥ max
ẑk∈Zε(x)

CT
i ẑk

Applying this upper bound to h(zk)i, we conclude

h(zk)i ≤ −Jε(x, gθ(−Ci))

Applying this to all elements of h gives the final upper bound on the adversarial loss.

max
‖∆‖∞≤ε

L(fθ(x+ ∆), y) ≤ L(−Jε(x, gθ(ey1T − I)), y)
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We denote the upper bound from Theorem 2 as the robust loss. Replacing the summand of
(3.21) with the robust loss results in the following minimization problem

minimize
θ

N∑
i=1

L(−Jε(xi, gθ(eyi1T − I)), yi). (3.26)

All the network terms, including the upper and lower bound computation, are differentiable, so
the whole optimization can be solved with any standard stochastic gradient variant and autodiff
toolkit, and the result is a network that (if we achieve low loss) is guaranteed to be robust to
adversarial examples.

3.1.5 Adversarial guarantees

Although we previously described, informally, the guarantees provided by our bound, we now
state them formally. The bound for the robust optimization procedure gives rise to several prov-
able metrics measuring robustness and detection of adversarial attacks, which can be computed
for any ReLU based neural network independently from how the network was trained; however,
not surprisingly, the bounds are by far the tightest and the most useful in cases where the network
was trained explicitly to minimize a robust loss.

Robust error bounds The upper bound from Theorem 2 functions as a certificate that guaran-
tees robustness around an example (if classified correctly), as described in Corollary 1.
Corollary 1. For a data point x, label y? and ε > 0, if

min
y 6=f(x)

[Jε(x, gθ(ef(x)1
T − I, α))]y ≥ 0 (3.27)

then the model is guaranteed to be robust around this data point. Specifically, there does not
exist an adversarial example x̃ such that ‖x̃− x‖∞ ≤ ε and fθ(x̃) 6= y?.

Proof. Recall that J from (3.8) is a lower bound on (3.2). Combining this fact with the certificate
in (3.27), we get that for all y 6= f(x),

min
ẑk∈Zε(x)

(ẑk)f(x) − (ẑk)y ≥ 0

Crucially, this means that for every point in the adversarial polytope and for any alternative label
y, (ẑk)f(x) ≥ (ẑk)y, so the classifier cannot change its output within the adversarial polytope and
is robust around x.

We denote the fraction of examples that do not have this certificate as the robust error. Since
adversaries can only hope to attack examples without this certificate, the robust error is a provable
upper bound on the achievable error by any adversarial attack.
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Detecting adversarial examples at test time The certificate from Theorem 1 can also be mod-
ified trivially to detect adversarial examples at test time. Specifically, we replace the bound based
upon the true class y? to a bound based upon just the predicted class ŷ = maxy fθ(x)y. In this
case we have the following simple corollary.
Corollary 2. For a data point x, model prediction ŷ = maxy fθ(x)y and ε > 0, if

Jε(x, gθ(eŷ1
T − I)) ≥ 0 (3.28)

then x cannot be an adversarial example. Specifically, x cannot be a perturbation of a “true”
example x? with ‖x− x?‖∞ ≤ ε, such that the model would correctly classify x?, but incorrectly
classify x.

This corollary follows immediately from the fact that the robust bound guarantees no example
with `∞ norm within ε of x is classified differently from x. This approach may classify non-
adversarial inputs as potentially adversarial, but it has zero false negatives, in that it will never
fail to flag an adversarial example. Given the challenge in even defining adversarial examples in
general, this seems to be as strong a guarantee as is currently possible.

ε-distances to decision boundary Finally, for each example x on a fixed network, we can
compute the largest value of ε for which a certificate of robustness exists, i.e., such that the
output fθ(x) provably cannot be flipped within the ε ball. Such an epsilon gives a lower bound
on the `∞ distance from the example to the decision boundary (note that the classifier may or
may not actually be correct). Specifically, if we find ε to solve the optimization problem

maximize
ε

ε

subject to Jε(x, gθ(efθ(x)1
T − I))y ≥ 0,

(3.29)

then we know that x must be at least ε away from the decision boundary in `∞ distance, and that
this is the largest ε for which we have a certificate of robustness. The certificate is monotone in
ε, and the problem can be solved using Newton’s method.

3.2 Experiments in 2D space
We consider training a robust binary classifier on a 2D input space with randomly generated
spread out data points. Note that there is no notion of generalization here; we are just visualizing
and evaluating the ability of the learning approach to fit a classification function robustly, in this
case a 2-100-100-100-100-2 fully connected network trained with the Adam optimizer [Kingma
and Ba, 2015] (over the entire batch of samples) with a learning rate of 0.001. We also plot the
true adversarial polytope and our bound of the polytope for both randomly initialized networks
and robustly trained networks to visualize the tightness of the bound before and after training.

3.2.1 Visualization of robust classification
We incrementally randomly sample 12 points within the [0, 1] xy-plane, at each point waiting
until we find a sample that is at least 0.16 away from other points via `∞ distance, and assign
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Figure 3.3: Illustration of classification boundaries resulting from standard training (left) and
robust training (right) with `∞ balls of size ε = 0.08 (shown in figure).

each point a random label. We then train a robust classifier that will correctly classify all points
with an `∞ ball of ε = 0.08 by minimizing our bound on the adversarial polytope, as well as a
standard classifier for comparison.

Figure 3.3 shows the resulting classifiers produced by standard training (left) and robust
training via our method (right). As expected, the standard training approach results in points
that are classified differently somewhere within their `∞ ball of radius ε = 0.08 (this is exactly
an adversarial example for the training set). In contrast, the robust training method is able to
attain zero robust error and provides a classifier that is guaranteed to classify all points within
the balls correctly. Note that we did not need to check the visualization to know this: the robust
training procedure had zero robust loss on the datapoints, and so the certificates from our bound
guaranteed robustness around each point.

3.2.2 Visualization of the convex outer adversarial polytope

We consider some simple cases of visualizing the outer approximation to the adversarial polytope
for random networks in Figure 3.4. Because the output space is two-dimensional we can easily
visualize the polytopes in the output layer, and because the input space is two dimensional,
we can easily cover the entire input space densely to enumerate the true adversarial polytope.
In this experiment, we initialized the weights of the all layers to be normal N (0, 1/

√
nin) and

biases normal N (0, 1) (due to scaling, the actual absolute value of weights is not particularly
important except as it relates to ε). Although obviously not too much should be read into these
experiments with random networks, the main takeaways are that 1) for “small” ε, the outer bound
is an extremely good approximation to the adversarial polytope; 2) as ε increases, the bound gets
substantially weaker. This is to be expected: for small ε, the number of elements in I will also be
relatively small, and thus additional terms that make the bound lose are expected to be relatively
small (in the extreme, when no activation can change, the bound will be exact, and the adversarial
polytope will be a convex set). However, as ε gets larger, more activations enter the set I, and
the available freedom in the convex relaxation of each ReLU increases substantially, making the
bound looser. Naturally, the question of interest is how tight this bound is for networks that are
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Figure 3.4: Illustrations of the true adversarial polytope (gray) and our convex outer approxima-
tion (green) for a random 2-100-100-100-100-2 network with N (0, 1/

√
n) weight initialization.

Polytopes are shown for ε = 0.05 (top row), ε = 0.1 (middle row), and ε = 0.25 (bottom row).

actually trained to minimize the robust loss, which we will look at shortly.

Outer Bound after Training It is of some interest to see what the true adversarial polytope
for the examples in this data set looks like versus the convex approximation, evaluated at the
solution of the robust optimization problem. Figure 3.5 shows one of these figures, highlighting
the fact that for the final network weights and choice of epsilon, the outer bound is empirically
quite tight in this case.

3.2.3 Comparison to naive layerwise bounds
One additional point is worth making in regards to the bounds we propose. It would also be pos-
sible to achieve a naive “layerwise” bound by iteratively determining absolute allowable ranges
for each activation in a network (via a simple norm bound), then for future layers, assuming
each activation can vary arbitrarily within this range. This provides a simple iterative formula for
computing layer-by-layer absolute bounds on the coefficients, and similar techniques have been
used e.g. in Parseval Networks [Cisse et al., 2017] to produce more robust classifiers (albeit there
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Figure 3.5: Illustration of the actual adversarial polytope and the convex outer approximation for
one of the training points after the robust optimization procedure.

considering `2 perturbations instead of `∞ perturbations, which likely are better suited for such
an approach). Unfortunately, these naive bounds are extremely loose for multi-layer networks (in
the first hidden layer, they naturally match our bounds exactly). For instance, for the adversarial
polytope shown in Figure 3.4 (top left), the actual adversarial polytope is contained within the
range

ẑk,1 ∈ [1.81, 1.85], ẑk,2 ∈ [−1.33,−1.29] (3.30)

with the convex outer approximation mirroring it rather closely. In contrast, the layerwise bounds
produce the bound:

ẑk,1 ∈ [−11.68, 13.47], ẑk,2 ∈ [−16.36, 11.48]. (3.31)

Such bounds are essentially vacuous in our case, which makes sense intuitively. The naive bound
has no way to exploit the “tightness” of activations that lie entirely in the positive space, and ef-
fectively replaces the convex ReLU approximation with a (larger) box covering the entire space.

3.3 Experiments on real datasets
Here we demonstrate the approach on small and medium-scale problems. Although the bound in
its exact form does not scale to ImageNet-sized classifiers, we do demonstrate the approach on
a simple convolutional network applied to several image classification problems, illustrating that
the method can apply to approaches beyond very small fully-connected networks. Code for these
experiments is available at http://github.com/locuslab/convex_adversarial.

A summary of all the experiments is in Table 3.1. For all experiments, we report the clean
test error, the error achieved by the fast gradient sign method [Goodfellow et al., 2015], the error
achieved by the projected gradient descent approach [Madry et al., 2017], and the robust error
bound. In all cases, the robust error bound for the robust model is significantly lower than the
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Table 3.1: Test error rates for various problems and attacks, and our robust bound for baseline
and robust models.

PROBLEM ROBUST ε CLEAN FGSM PGD ROBUST BOUND

MNIST × 0.1 1.07% 50.01% 81.68% 100%
MNIST

√
0.1 1.80% 3.93% 4.11% 5.82%

FASHION-MNIST × 0.1 9.36% 77.98% 81.85% 100%
FASHION-MNIST

√
0.1 21.73% 31.25% 31.63% 34.53%

HAR × 0.05 4.95% 60.57% 63.82% 81.56%
HAR

√
0.05 7.80% 21.49% 21.52% 21.90%

SVHN × 0.01 16.01% 62.21% 83.43% 100%
SVHN

√
0.01 20.38% 33.28% 33.74% 40.67%
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Figure 3.6: Loss (left) and error rate (right) when training a robust convolutional network on the
MNIST dataset.

achievable error rates by PGD under standard training. All experiments in this section were run
on a single Titan X GPU.

3.3.1 Training a provably robust MNIST classifier
We present results on a provably robust classifier on the MNIST data set. Specifically, we con-
sider a ConvNet architecture that includes two convolutional layers, with 16 and 32 channels
(each with a stride of two, to decrease the resolution by half without requiring max pooling lay-
ers), and two fully connected layers stepping down to 100 and then 10 (the output dimension)
hidden units, with ReLUs following each layer except the last. We use the Adam optimizer
[Kingma and Ba, 2015] with a learning rate of 0.001 (the default option) with no additional
hyperparameter selection. We use minibatches of size 50 and train for 100 epochs.

ε scheduling Depending on the random weight initialization of the network, the optimization
process for training a robust MNIST classifier may get stuck and not converge. To improve
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Figure 3.7: Maximum ε distances to the decision boundary of each data point in increasing ε
order for standard and robust models (trained with ε = 0.1). The color encodes the fraction of
points which were correctly classified.

Table 3.2: Error rates for our LP approach in comparison to the SDP approach considered by
[Raghunathan et al., 2018a] for a single hidden layer neural network with 500 units on MNIST
at ε = 0.1.

PROBLEM PGD ERROR LP BOUND SDP BOUND

LP-NN 22% 26% 93%
SDP-NN 15% 99% 35%

convergence, it is helpful to start with a smaller value of ε and slowly increment it over epochs.
For MNIST, all random seeds that we observed to not converge for ε = 0.1 were able to converge
when started with ε = 0.05 and taking uniform steps to ε = 0.1 in the first half of all epochs
(so in this case, 50 epochs). Figure 3.6 shows the training progress using our procedure with
a robust softmax loss function and ε = 0.1. As described in Section 3.1.4, any norm-bounded
adversarial technique will be unable to achieve loss or error higher than the robust bound. The
final classifier after 100 epochs reaches a test error of 1.80% with a robust test error of 5.82%.
For a traditionally-trained classifier (with 1.07% test error) the FGSM approach results in 50.01%
error, while PGD results in 81.68% error. On the classifier trained with our method, however,
FGSM and PGD only achieve errors of 3.93% and 4.11% respectively (both, naturally, below
our bound of 5.82%). These results are summarized in Table 3.1.

Maximum ε-distances Using Newton’s method with backtracking line search, for each exam-
ple, we can compute in 5-6 Newton steps the maximum ε that is robust as described in (3.29)
for both a standard classifier and the robust classifier. Figure 3.7 shows the maximum ε values
calculated for each testing data point under standard training and robust training. Under standard
training, the correctly classified examples have a lower bound of around 0.007 away from the
decision boundary. However, with robust training this value is pushed to 0.1, which is expected
since that is the robustness level used to train the model. We also observe that the incorrectly
classified examples all tend to be relatively closer to the decision boundary.
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Figure 3.8: Plots of the exact solution of the primal linear program and the corresponding lower
bound from the dual problem for a (left) robustly trained model, (middle) randomly intialized
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Figure 3.9: Learned convolutional filters for MNIST of the first layer of a trained robust convo-
lutional network, which are quite sparse due to the `1 term in (3.8).

Tightness of bound We empirically evaluate the tightness of the bound by exactly computing
the primal LP and comparing it to the lower bound computed from the dual problem via our
method. We find that the bounds, when computed on the robustly trained classifier, are extremely
tight, especially when compared to bounds computed for random networks and networks that
have been trained under standard training, as can be seen in Figure 3.8.

Comparison to SDP-based provable defenses We compare our defense to the work proposed
by [Raghunathan et al., 2018a], which has provable bounds and a certificate of robustness for
neural networks with one hidden layer, but uses an SDP relaxation instead of an LP. In order to
fairly compare with the SDP approach (which we refer to as SDP-NN), we trained a new robust
MNIST classifier using our LP-based approach (which we refer to as LP-NN) with the same
architecture used by the SDP approach (single hidden layer with 500 units), and compared their
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Figure 3.10: Learned convolutional filters for MNIST of the second layer of a trained robust
convolutional network, which are quite sparse due to the `1 term in (3.8).

robust bounds and susceptibility to PGD attacks in Table 3.2.
First, we observe that the SDP approach is unable to provide a reasonable bound to LP-NN,

and the LP bound is unable to provide a reasonable bound for SDP-NN. Second, while LP-NN
achieves a lower robust bound, it is less effective at defending against PGD. These numbers
suggest that the two approaches are fundamentally different in how they achieve robustness.

3.3.2 Analysis of robust convolutional filters and activation patterns for
MNIST

Random filters from the two convolutional layers of the MNIST classifier after robust training
are plotted in Figure 3.10. We see a similar story in both layers: they are highly sparse, and some
filters have all zero weights, indicating the network has been highly regularized.
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Figure 3.11: Histograms of the portion of each type of index set (as defined in 3.20 when passing
training examples through the network.

We additionally plot histograms to visualize the distributions of pre-activation bounds over
examples in Figure 3.11. We see that in the first layer, examples have on average more than half
of all their activations in the I−1 set, with a relatively small number of activations in the I1 set.
The second layer has significantly more values in the I+

2 set than in the I−2 set, with a comparably
small number of activations in the I2 set. The third layer has extremely few activations in the I3

set, with 90% all of the activations in the I−3 set. Crucially, we see that in all three layers, the
number of activations in the Ii set is small, which benefits the method in two ways: a) it makes
the bound tighter (since the bound is tight for activations through the I+

i and I−i sets) and b) it
makes the bound more computationally efficient to compute (since the last term of (3.8) is only
summed over activations in the Ii set).
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Figure 3.12: Loss (top) and error rate (bot-
tom) when training a robust convolutional
network on the Fashion-MNIST dataset.
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Figure 3.13: Loss (top) and error rate (bot-
tom) when training a robust fully connected
network on the HAR dataset with one hid-
den layer of 500 units.

3.3.3 Experiments on Fashion-MNIST, HAR, and SVHN
Fashion-MNIST We present the results of our robust classifier on the Fashion-MNIST dataset
[Xiao et al., 2017], a harder dataset with the same size (in dimension and number of examples)
as MNIST (for which input binarization is a reasonable defense). We use exactly the same
parameters as for MNIST: Adam optimizer with the default learning rate 0.001, minibatches of
size 50, and trained for 100 epochs. Using the same architecture as in MNIST, for ε = 0.1, we
achieve a robust error of 34.53%, which is fairly close to the PGD error rate of 31.63% (Table
3.1). Figure 3.12 plots the error and loss curves (and their robust variants) of the model over
epochs. We observe no overfitting, and suspect that the performance on this problem is limited
by model capacity.

HAR We present results on a human activity recognition dataset [Anguita et al., 2013]. Specif-
ically, we consider a fully connected network with one layer of 500 hidden units and ε = 0.05.
We use the Adam optimizer with a learning rate 0.0001, minibatches of size 50, and trained for
100 epochs, achieving 21.90% robust error.
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Table 3.3: Tightness of the bound on a single layer neural network with 500 hidden units after
training on the HAR dataset with various values of ε. We observe that regardless of how large
ε is, after training, the bound matches the error achievable by FGSM, implying that in this case
the robust bound is tight.

ε TEST ERROR FGSM ERROR ROBUST BOUND

0.05 9.20% 22.20% 22.80%
0.1 15.74% 36.62% 37.09%

0.25 47.66% 64.24% 64.47%
0.5 47.08% 67.32% 67.86%
1 81.80% 81.80% 81.80%

Figure 3.13 plots the error and loss curves (and their robust variants) of the model over
epochs. The bottleneck here is likely due to the simplicity of the problem and the difficulty level
implied by the value of ε, as we observed that scaling to more more layers in this setting did not
help.

Tightness of bound with increasing ε Earlier, we observed that on random networks, the
bound gets progressively looser with increasing ε in Figure 3.4. In contrast, we find that even if
we vary the value of ε, after robust training on the HAR dataset with a single hidden layer, the
bound still stays quite tight, as seen in Table 3.3. As expected, training a robust model with larger
ε results in a less accurate model since the adversarial problem is more difficult (and potentially
impossible to solve for some data points), however the key point is that the robust bounds are
extremely close to the achievable error rate by FGSM, implying that in this case, the bound is
tight.

SVHN Finally, we present results on SVHN. The goal here is not to achieve state of the art
performance on SVHN, but to create a deep convolutional classifier for real world images with
provable guarantees. We use the same architecture as in MNIST,the Adam optimizer with the
default learning rate 0.001, minibatches of size 20, and trained for 100 epochs. We used an ε
schedule which took uniform steps from ε = 0.001 to ε = 0.01 over the first 50 epochs. For
ε = 0.01 we achieve a robust error bound of 42.09%, with PGD achieving 34.52% error.

Note that the robust testing curve is the only curve calculated with ε = 0.01 throughout all
100 epochs. The robust training curve was computed with the scheduled value of ε at each epoch.
We see that all metrics calculated with the scheduled ε value steadily increase after the first few
epochs until the desired ε is reached. On the other hand, the robust testing metrics for ε = 0.01
steadily decrease until the desired ε is reached. Since the error rate here increases with ε, it
suggests that for the given model capacity, the robust training cannot achieve better performance
on SVHN, and a larger model is needed.
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Figure 3.14: Loss (top) and error rate (bottom) when training a robust convolutional network on
the SVHN dataset. The robust test curve is the only curve calculated with ε = 0.01 throughout;
the other curves are calculated with the scheduled ε value.

3.4 Scaling provable defenses

In this section, we extend the proposed methodology to training general network architectures
in a scalable, modular manner, and makes substantial progress towards scaling these methods to
realistic settings. While we cannot yet reach e.g. ImageNet scales, even in this current work,
we show that it is possible to overcome the main hurdles to scalability of past approaches. The
resulting method: 1) extends to general networks with skip connections, residual layers, and
activations besides the ReLU; we do so by using a general formulation based on the Fenchel
conjugate function of activations; 2) scales linearly in the dimensionality of the input and number
of hidden units in the network, using techniques from nonlinear random projections, all while
suffering minimal degradation in accuracy; and 3) further improves the quality of the bound with
model cascades.

3.4.1 Robust bounds for general networks via modular dual functions

This section presents an architecture for constructing provably robust bounds for general deep
network architectures, using Fenchel duality. Importantly, we derive the dual of each network
operation in a fully modular fashion, simplifying the problem of deriving robust bounds of a
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network to bounding the dual of individual functions. By building up a toolkit of dual operations,
we can automatically construct the dual of any network architecture by iterating through the
layers of the original network, without needing to go through the linear programming relaxation.

The adversarial problem for general networks We consider a generalized k “layer” neural
network fθ : R|x| → R|y| given by the equations

zi =
i−1∑
j=1

fij(zj), for i = 2, . . . , k (3.32)

where z1 = x, fθ(x) ≡ zk (i.e., the output of the network) and fij : R|zj | → R|zi| is some
function from layer j to layer i. Importantly, this differs from prior work in two key ways. First,
unlike the conjugate forms found in Dvijotham et al. [2018b], Wong and Kolter [2017], we no
longer assume that the network consists of linear operations followed by activation functions,
and instead opt to work with an arbitrary sequence of k functions. This simplifies the analysis
of sequential non-linear activations commonly found in modern architectures, e.g. max pooling
or a normalization strategy followed by a ReLU,3 by analyzing each activation independently,
whereas previous work would need to analyze the entire sequence as a single, joint activation.
Second, we allow layers to depend not just on the previous layer, but also on all layers before it.
This generalization applies to networks with any kind of skip connections, e.g. residual networks
and dense networks, and greatly expands the set of possible architectures.

Let B(x) ⊂ R|x|, represent some input constraint for the adversary. For this section we
will focus on an arbitrary norm ball B(x) = {x + ∆ : ‖∆‖ ≤ ε}. This is the constraint
set considered for norm-bounded adversarial perturbations, however other constraint sets can
certainly be considered. Then, given an input example x, a known label y∗, and a target label
ytarg, the problem of finding the most adversarial example within B (i.e., a so-called targeted
adversarial attack) can be written as

minimize
zk

cT zk, subject to zi =
i−1∑
j=1

fij(zj), for i = 2, . . . , k, z1 ∈ B(x) (3.33)

where c = ey? − eytarg .

Dual networks via compositions of modular dual functions To bound the adversarial prob-
lem, we look to its dual optimization problem using the machinery of Fenchel conjugate func-
tions [Fenchel, 1949], described in Definition 1.
Definition 1. The conjugate of a function f is another function f ∗ defined by

f ∗(y) = max
x

xTy − f(x) (3.34)

3Batch normalization [Ioffe and Szegedy, 2015], since it depends on entire minibatches, is formally not covered
by the approach, but it can be approximated by considering the scaling and shifting to be generic parameters, as is
done at test time.
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Specifically, we can lift the constraint zi+1 =
∑i

j=1 fij(zj) from Equation 3.33 into the
objective with an indicator function, and use conjugate functions to obtain a lower bound. For
brevity, we will use the subscript notation (·)1:i = ((·)1, . . . , (·)i), e.g. z1:i = (z1, . . . , zi). Due to
the skip connections, the indicator functions are not independent, so we cannot directly conjugate
each individual indicator function. We can, however, still form its dual using the conjugate of a
different indicator function corresponding to the backwards direction, as shown in Lemma 1.
Lemma 1. Let the indicator function for the ith constraint be

χi(z1:i) =

{
0 if zi =

∑i−1
j=1 fij(zj)

∞ otherwise,
(3.35)

for i = 2, . . . , k, and consider the joint indicator function
∑k

i=2 χi(z1:i). Then, the joint indicator
is lower bounded by maxν1:k ν

T
k zk − νT1 z1 −

∑k−1
i=1 χ

∗
i (−νi, νi+1:k), where

χ∗i (νi:k) = max
zi

νTi zi +
k∑

j=i+1

νTj fji(zi) (3.36)

for i = 1, . . . , k − 1. Note that χ∗i (νi:k) is the exact conjugate of the indicator for the set
{xi:k : xj = fji(xi) ∀j > i}, which is different from the set indicated by χi. However, when
there are no skip connections (i.e. zi only depends on zi−1), χ∗i is exactly the conjugate of χi.

Proof. It is mathematically convenient to introduce additional variables ẑ1:k such that ẑi = zi for
all i = 1, . . . , k, and rephrase it as the equivalent constrained optimization problem.

min
z1:k−1,ẑ2:k

0

subject to ẑi =
i−1∑
j=1

fij(zj) for i = 2, . . . , k

zi = ẑi for i = 1, . . . , k

(3.37)

We introduce Lagrangian variables ν1:k, ν̂2:k to get the following Lagrangian:

L(z1:k, ẑ1:k, ν1:k, ν̂2:k) =
k∑
i=2

ν̂Ti

(
ẑi −

i−1∑
j=1

fij(zj)

)
+

k∑
i=1

νTi (zi − ẑi) (3.38)

Grouping up terms by zi, ẑi and rearranging the double sum results in the following expression:

L(z1:k, ẑ1:k, ν1:k, ν̂2:k) = −νT1 ẑ1 +
k∑
i=2

(ν̂i − νi)T ẑi +
k∑
i=1

(
νTi zi −

k∑
j=i+1

ν̂Tj fji(zi)

)
(3.39)

From the KKT stationarity conditions for the derivative with respect to ẑi, we know that ν̂i = νi.
Also note that in the summand, the last term for i = k has no double summand, so we move it
out for clarity.

L(z1:k, ν1:k) = −νT1 ẑ1 + νTk zk +
k−1∑
i=1

(
νTi zi −

k∑
j=i+1

νTj fji(zi)

)
(3.40)
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Finally, we minimize over zi for i = 2, . . . , k − 1 to get the conjugate form for the lower bound
via weak duality.

L(z1:k, ν1:k) ≥ −νT1 ẑ1 + νTk zk +
k−1∑
i=1

min
zi

(
νTi zi −

k∑
j=i+1

νTj fji(zi)

)

= −νT1 ẑ1 + νTk zk −
k−1∑
i=1

max
zi

(
−νTi zi +

k∑
j=i+1

νTj fji(zi)

)

= −νT1 z1 + νTk zk −
k−1∑
i=1

χ∗i (−νi, νi+1:k)

(3.41)

With structured upper bounds on these conjugate functions, we can bound the original ad-
versarial problem using the dual network described in Theorem 3. We can then optimize the
bound using any standard deep learning toolkit using the same robust optimization procedure as
in Section 3.1.4 but using the generalized dual bound instead.
Theorem 3. Let gij and hi be any functions such that

χ∗i (−νi, νi+1:k) ≤ hi(νi:k) subject to νi =
k∑

j=i+1

gij(νj) (3.42)

for i = 1, . . . , k − 1. Then, the adversarial problem from Equation 3.33 is lower bounded by

J(x, ν1:k) = −νT1 x− ε‖ν1‖∗ −
k−1∑
i=1

hi(νi:k) (3.43)

where ‖ · ‖∗ is the dual norm, and ν1:k = g(c) is the output of a k layer neural network g on input
c, given by the equations

νk = −c, νi =
k−1∑
j=i

gij(νj+1), for i = 1, . . . , k − 1. (3.44)

Proof. First, we rewrite the primal problem by bringing the function and input constraints into
the objective with indicator functions I . We can then apply Lemma 1 to get the following lower
bound on the adversarial problem:

maximize
ν1:k

minimize
z1,zk

(cT + νk)
T zk + IB(x)(z1)− νT1 z1 −

k−1∑
i=1

χ∗i (−νi, νi+1:k) (3.45)

Minimizing over z1 and zk, note that

min
ẑk

(c+ νk)
T ẑk = −I(νk = −c)

min
ẑ1

IB(x)(z1)− νT1 z1 = −I∗B(x)(ν1)
(3.46)
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Figure 3.15: An example of the layers forming a typical residual block (left) and its dual (right),
using the dual layers described in Corollaries 3 and 5. Note that the bias terms of the residual
network go into the dual objective and are not part of the structure of the dual network, and the
skip connections remain in the dual network but go in the opposite direction.

Note that if B(x) = {x + ∆ : ‖∆‖ ≤ ε} for some norm, then I∗B(x)(ν1) = νT1 x + ε‖ν1‖∗
where ‖ · ‖ is the dual norm, but any sort of input constraint can be used so long as its conjugate
can be bounded. Finally, the last term can be bounded with the dual layer:

min
zi

νTi zi −
k∑

j=i+1

νTj fji(zi) = −χ∗i (−νi, νi+1:k) ≥ −hi(νi:k) subject to νi =
k∑

j=i+1

gij(νj)

(3.47)

Combining these all together, we get that the adversarial problem from Equation 3.33 is lower
bounded by

maximize
ν

− νT1 x− ε‖ν1‖∗ −
k−1∑
i=1

hi(νi:k)

subject to νk = −c

νi =
k∑

j=i+1

gij(νj)

(3.48)

We denote the upper bound on the conjugate function from Equation 3.42 a dual layer.

3.4.2 Dual layers for common deep learning operators
To give concrete examples, we present dual layers for various operators in the following corol-
laries, and we also depict an example dual residual block in Figure 3.15. In general, dual layers
tend to reflect the backward direction of the original layer. For example, the dual of a linear
operator is given by Corollary 3 and involves applying the transpose weights in the backwards
direction:
Corollary 3. The dual layer for a linear operator ẑi+1 = Wizi + bi is

χ∗i (νi:k) = νTi+1bi subject to νi = W T
i νi+1. (3.49)
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Proof. Suppose fi(zi) = Wizi + bi for some linear operator Wi and bias terms bi. Then,

χ∗i (−νi, νi+1) = max
zi
−zTi νi + (Wizi + bi)

Tνi+1

= max
zi

zTi (W T
i νi+1 − νi) + bTi νi+1

= max
zi

I(νi = W T
i νi+1) + bTi νi+1

= bTi νi+1 subject to νi = W T
i νi+1

(3.50)

Residual connections have an intuitive dual layer as well, which has the same residual con-
nection but in the opposite direction as seen in Corollary 4:
Corollary 4. The dual layer for a residual linear connection operator ẑi+1 = f(zi) + zj and
zj+1 = Wjzj + bj for some j < i− 1 is

χ∗j(νj:k) = bTj νj subject to νj = W T
j νj+1 + νi (3.51)

Proof. Writing down the definition of the conjugate function,

χ∗i (−νj, νj+1) = max
zj
−zTj νj + zTj νi + (Wjzj + bj)

Tνj+1

= bTj νj subject to νj = W T
j νj+1 + νi

(3.52)

Finally, we construct dual layers for two activation functions, ReLU and Hardtanh in Corol-
laries 5 and 6:
Corollary 5. Suppose we have lower and upper bounds `ij, uij on the pre-activations. The dual
layer for a ReLU activation ẑi+1 = max(zi, 0) is

χ∗i (νi:k) ≤ −
∑
j∈Ii

`i,j[νij]+ subject to νi = Diνi+1. (3.53)

where I−i , I+
i , I denote the index sets where the bounds are negative, positive or spanning the

origin respectively, and where Di is a diagonal matrix with entries

(Di)jj =


0 j ∈ I−i
1 j ∈ I+

i
ui,j

ui,j−`i,j j ∈ Ii
. (3.54)

Proof. The conjugate function for the ReLU activation is the following:

χ∗(−νi, νi+1) = max
zi
−zTi νi + max(zi, 0)νi+1 (3.55)

Suppose we have lower and upper bounds `i, ui on the input zi. If ui ≤ 0, then max(zi, 0) = 0,
and so

χ∗(−νi, νi+1) = max
zi
−zTi νi = 0 subject to νi = 0 (3.56)
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Otherwise, if `i ≥ 0, then max(zi, 0) = zi and we have

χ∗(−νi, νi+1) = max
zi
−zTi νi + zTi νi+1 = 0 subject to νi = νi+1 (3.57)

Lastly, suppose `i < 0 < ui. Then, we can upper bound the conjugate by taking the maximum
over a convex outer bound of the ReLU, namely Si = {(zi, zi+1) : zi+1 ≥ 0, zi+1 ≥ zi,−ui �
zi + (ui − `i)� zi+1 ≤ −ui � `i}, where � denotes element-wise multiplication:

χ∗(−νi, νi+1) ≤ max
Si
−zTi νi + zTi+1νi+1 (3.58)

The maximum must occur either at the origin (0, 0) or along the line−uijzij +(uij−`ij)zi+1,j =
−uij`ij , so we can upper bound it again with

χ∗(−νij, νi+1,j) ≤ max
zij

[
−zijνij +

(
uij

uij − `ij
zij −

uij`ij
uij − `ij

)
νi+1,j

]
+

= max
zij

[(
uij

uij − `ij
νi+1,j − νij

)
zij −

uij`ij
uij − `ij

νi+1,j

]
+

=

[
− uij`ij
uij − `ij

νi+1,j

]
+

subject to νij =
uij

uij − `ij
νi+1,j

= −`ij [νij]+ subject to νij =
uij

uij − `ij
νi+1,j

(3.59)

Let I−i , I+
i , I and Di be as defined in the corollary. Combining these three cases together, we

get the final upper bound:

χ∗i (−νi, νi+1:k) ≤ −
∑
j∈Ii

`i,j[νi,j]+ subject to νi = Diνi+1 (3.60)

Corollary 6. Suppose we have lower and upper bounds `ij, uij on the pre-activations. The dual
layer for the hardtanh activation ẑi+1 = hardtanh(zi) is

χ∗i (νi:k) ≤ di(νi, νi+1) subject to νi = Diνi+1. (3.61)

where Di is a diagonal matrix with entries defined element-wise by

diag(Di) =



∣∣∣(1− 2
1+max(u,`)

)∣∣∣ u > 1 ∧ ` < −1

0 u ≤ −1
0 ` ≥ 1
1 ` ≥ −1, u ≤ 1
1+u
u−` ` ≤ −1,−1 ≤ u ≤ 1
1−`
u−` −1 ≤ ` ≤ 1, 1 ≤ u

. (3.62)
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Figure 3.16: Convex relaxation of hardtanh given lower and upper bounds ` and u.

and di(νi, νi+1) is a vector defined element-wise by

di(νi, νi+1) =



2
1+max(u,`)

νi+1 u > 1 ∧ ` < −1

−νi+1 u ≤ −1
νi+1 ` ≥ 1
0 ` ≥ −1, u ≤ 1
max

(
−
(

1+u
u−` `+ 1

)
νi+1, νi − νi+1

)
` ≤ −1,−1 ≤ u ≤ 1

max
(
−
(

1−`
u−``− `

)
νi+1,−νi + νi+1

)
−1 ≤ ` ≤ 1, 1 ≤ u

. (3.63)

Proof. The hard tanh activation function is given by

hardtanh(x) =


−1 for x < −1

x for −1 ≤ x ≤ 1

1 for x > 1

(3.64)

Since this is an activation function (and has no skip connections), we only need to bound the
following:

χ∗(−νi, νi+1) = max
zi
−zTi νi + hardtanh(zi)

Tνi+1 (3.65)

Given lower and upper bounds ` and u, we can use a similar convex relaxation as that used for
ReLU and decompose this problem element-wise (we will now assume all terms are scalars for
notational simplicity), so we have

χ∗(νi, νi+1) ≤ max
zi,zi+1∈S

−ziνi + zi+1νi+1 (3.66)

where S is the convex relaxation. The exact form of the relaxation depends on the values of ` and
u, and we proceed to derive the dual layer for each case. We depict the relaxation where u > 1
and ` < −1 in Figure 3.16, and note that the remaining cases are either triangular relaxations
similar to the ReLU case or exact linear regions.
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Case 1: u > 1∧` < −1 We can use the relaxation given in Figure 3.16. The upper bound goes
through the points (`,−1) and (1, 1) while the lower bound goes through the points (−1,−1)
and (u, 1). The slope of the first one is 2

1−` and the slope of the second one is 2
u+1

, so we have
either

zi+1 =
2

1− `
(zi − 1) + 1, zi+1 =

2

u+ 1
(zi + 1)− 1 (3.67)

Taking the maximum over these two cases, we have our upper bound of the conjugate is

χ∗(νi, νi+1) ≤ max

(
−ziνi +

(
2

1− `
(zi − 1) + 1

)
νi+1,−ziνi +

(
2

u+ 1
(zi + 1)− 1

)
νi+1

)
(3.68)

Simplifying we get

χ∗(νi, νi+1) ≤ max

(
zi

(
−νi +

2

1− `
νi+1

)
+

(
1− 2

1− `

)
νi+1,

zi

(
−νi +

2

u+ 1
νi+1

)
+

(
2

u+ 1
− 1

)
νi+1

) (3.69)

So each case becomes

χ∗(νi, νi+1) ≤ max

((
1− 2

1− `

)
νi+1 subject to νi =

2

1− `
νi+1 ,(

2

u+ 1
− 1

)
νi+1 subject to νi =

2

u+ 1
νi+1

) (3.70)

As a special case, note that when u = −`, we have

χ∗(νi, νi+1) ≤
∣∣∣∣(1− 2

1 + u

)
νi+1

∣∣∣∣ subject to νi =
2

1 + u
νi+1 (3.71)

This dual layer is linear, and so we can continue to use random projections for efficient bound
estimation.

Case 2: u ≤ −1 Then, S = {zi+1 = −1} and so

χ∗(νi, νi+1) = max
zi
−ziνi − νi+1 = −νi+1 subject to νi = 0 (3.72)

Case 3: ` ≥ 1 Then, S = {zi+1 = 1} and so

χ∗(νi, νi+1) = max
zi
−ziνi + νi+1 = νi+1 subject to νi = 0 (3.73)

Case 4: ` ≥ −1, u ≤ 1 Then, S = {zi+1 = zi} and so

χ∗(νi, νi+1) = max
zi
−ziνi + ziνi+1 = 0 subject to νi = νi+1 (3.74)
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Case 5: ` ≤ −1,−1 ≤ u ≤ 1 Here, our relaxation consists of the triangle above the hardtanh
function. Then, the maximum occurs either on the line zi+1 = 1+u

u−` (zi − `) − 1 or at (−1,−1).
This line is equivalent to zi+1 = 1+u

u−`zi−
(

1+u
u−` `+ 1

)
, and the point (−1,−1) has objective value

νi − νi+1, so we get

χ∗(νi, νi+1) ≤ max
zi
−ziνi +

1 + u

u− `
ziνi+1 −

(
1 + u

u− `
`+ 1

)
νi+1 (3.75)

Pulling out the maximization over zi, we get

χ∗(νi, νi+1) ≤ max

(
−
(

1 + u

u− `
`+ 1

)
νi+1, νi − νi+1

)
subject to νi =

1 + u

u− `
νi+1 (3.76)

Case 6: −1 ≤ ` ≤ 1, 1 ≤ u Here, our relaxation consists of the triangle below the hardtanh
function. Then, the maximum occurs either on the line zi+1 = 1−`

u−`(zi − `) + ` or at (1, 1).
This line is equivalent to zi+1 = 1−`

u−`zi −
(

1−`
u−``− `

)
, and at the point (1, 1) has objective value

−νi + νi+1, so we get

χ∗(νi, νi+1) ≤ max
zi
−ziνi +

1− `
u− `

ziνi+1 −
(

1− `
u− `

`− `
)
νi+1 (3.77)

Pulling out the maximization over zi, we get

χ∗(νi, νi+1) ≤ max

(
−
(

1− `
u− `

`− `
)
νi+1,−νi + νi+1

)
subject to νi =

1− `
u− `

νi+1 (3.78)

Finally, Corollary 7 handles batch normalization at test time with fixed mean and variance.
During training, we can use the batch statistics as a training heuristic. Note however, that batch
normalization has the effect of shifting the activations to be centered more around the origin,
which is exactly the case in which the robust bound becomes looser. In practice, we find that
while including batch normalization may improve convergence, it reduces the quality of the
bound.
Corollary 7. Let µi, σi be the fixed mean and variance statistics, so batch normalization has the
following form:

BN(zi) = γ
xi − µi√
σ2
i + ε

+ β (3.79)

where γ, β are the batch normalization parameters. Then, the conjugate of the batch normaliza-
tion layer is

χ∗i (−νi, νi+1:k) = dTi νi+1 subject to νi = Diνi+1 (3.80)

where Di+1 = diag
(

γ√
σ2+ε

)
and di+1 = β − µ√

σ2+ε
.
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Proof. Rewrite the batch normalization operator as

zi = γ
ẑi − µ√
σ2 + ε

+ β = Dizi + di (3.81)

This is now just a sub-case of the linear case, and plugging this into Corollary 3 finishes the
proof.

We briefly note that these dual layers recover the original dual network described in Section
3.1.2. Furthermore, the dual linear operation is an exact conjugate and introduces no looseness
to the bound, while the dual ReLU uses the same relaxation used in Ehlers [2017] and in Section
3.1.1. More generally, the strength of the bound from Theorem 3 relies entirely on the tightness
of the individual dual layers to their respective conjugate functions in Equation 3.42. While any
gij , hi can be chosen to upper bound the conjugate function, a tighter bound on the conjugate
results in a tighter bound on the adversarial problem.

If the dual layers for all operations are linear, the bounds for all layers can be computed with
a single forward pass through the dual network using a direct generalization of the form used in
Section 3.1.3, which will be discussed in Section 3.4.3. By trading off tightness of the bound
with computational efficiency by using linear dual layers, we can efficiently compute all bounds
and construct the dual network one layer at a time. The end result is that we can automatically
construct dual networks from dual layers in a fully modular fashion, completely independent of
the overall network architecture (similar to how auto-differentiation tools proceed one function
at a time to compute all parameter gradients using only the local gradient of each function).
With a sufficiently comprehensive toolkit of dual layers, we can compute provable bounds on the
adversarial problem for any network architecture.

For analytical forms of conjugate functions of other activation functions such as tanh, sig-
moid, and max pooling, we refer the reader to Dvijotham et al. [2018b].

3.4.3 AutoDual
In this section, we describe our generalization of Algorithm 1, the bounds computation algorithm
from Section 3.1.3, to general networks using dual layers, which we call AutoDual.

Efficient construction of the dual network via linear dual operators The conjugate form,
and consequently the dual layer, for certain activations requires knowing lower and upper bounds
for the pre-activations, as was done for ReLU activations in Algorithm 1 of Wong and Kolter
[2017]. While the bound in Equation 3.43 can be immediately used to compute all the bounds on
intermediate nodes of the network one layer at a time, this requires performing a backwards pass
through the dual network whenever we need to compute the bounds. However, if the operators
gij of the dual layers are all affine operators gij(νi+1) = ATijνi+1 for some affine operator Aij , we
can apply a generalization of the lower and upper bound computation found in Wong and Kolter
[2017] to compute all lower and upper bounds, and consequently the dual layers, of the entire
network with a single forward pass in a layer-by-layer fashion. With the lower and upper bounds,
we can also use the same algorithm to automatically construct the dual network. The resulting
algorithm, which we call AutoDual, is described in Algorithm 2.
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Algorithm 2 Autodual: computing the bounds and dual of a general network
input: Network operations fij , data point x, ball size ε
// initialization
ν

(1)
1 := I
`2 := x− ε
u2 := x+ ε
for i = 2, . . . , k − 1 do

// initialize new dual layer
Create dual layer operators Aji and hi from fji, `j and uj for all j ≤ i

ν
(i)
i := I .

// update all dual variables
for j = 1, . . . , i− 1 do
ν

(i)
j :=

∑j−1
k=1Akiν

(k)
j

end for
// compute new bounds
`i+1 := xTν

(i)
1 − ε‖ν

(i)
1 ‖: +

∑i
j=1 hj(ν

(i)
j , . . . , ν

(i)
i )

ui+1 := xTν
(i)
1 + ε‖ν(i)

1 ‖: −
∑i

j=1 hj(−ν
(i)
j , . . . ,−ν

(i)
i )

// ‖ · ‖: for a matrix here denotes the norm of all rows
end for
output: bounds {`i, ui}ki=2, dual layer operators Ajk, hi

In practice, we can perform several layer-specific enhancements on top of this algorithm.
First, many of the Aji operators will not exist simply because most architectures (with a few
exceptions) don’t have a large number of skip connections, so these become no ops and can be
ignored. Second, we can lazily skip the computation of layer-wise bounds until necessary, e.g.
for constructing the dual layer of ReLU activations. Third, since many of the functions hj in
the dual layers are functions of BTνi for some matrix B and some i ≥ j, we can initialize ν(i)

i

with B instead of the identity matrix, typically passing a much smaller matrix through the dual
network (in many cases, B is a single vector).

3.4.4 Connection from the linear program to the dual conjugate bound

Recall from section 3.1.2 that the dual feasible solution for the linear program selected a specific
feasible solution for the dual variable α = u

u−` . Here, we provide some additional motivation for
this choice from the conjugate function perspective. Recall the conjugate of the ReLU from the
third case of Corollary 5, which used a looser than necessary conjugate from maximizing over
all possible preactivations z ∈ R. We can instead look at a tighter conjugate function for the
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ReLU operator by only maximizing over z ∈ [`, u], which results in:

χ∗(−νi, νi+1) =

[
max

0<ẑ<u
νi+1 ·

u

u− `
(ẑ − `) +−νi · ẑ

]
+

=

[
max

0<ẑ<u

(
u

u− `
y − νi

)
ẑ − u`

u− `
νi+1

]
+

=

[
max

0<ẑ<u
νi+1 ·

u

u− `
(ẑ − `)− νi · ẑ = g(−νi, νi+1)

]
+

=


[
− u`

u− `
νi+1

]
+

if
u

u− `
νi+1 − νi ≤ 0[(

u

u− `
νi+1 − νi

)
u− u`

u− `
νi+1

]
+

if
u

u− `
νi+1 − νi > 0

(3.82)

Observe that the second case is always larger than first, so we get a tighter upper bound when
u
u−`νi+1 − νi ≤ 0. If we plug in ŷ = −ν and y = ν̂, this condition is equivalent to the following:

u

u− `
νi+1 ≤ νi (3.83)

Also recall that in the LP form, the forward pass of the dual network in this case was defined as
the following:

νi =
u

u− `
[νi+1]+ + α[νi+1]− (3.84)

Then, α = u
u−l can be interpreted as the largest choice of α which does not increase the

bound (because if α was any larger, we would enter the second case and add an additional(
u
u−`νi+1 − νi

)
u term to the bound). We can further verify that the forward pass of the dual

network obtained from choosing α = u
u−` results in the same conjugate of the ReLU derived

in Corollary 5 by simply plugging this forward pass into Equation (3.82) and checking that the
objective and constraints match exactly for this choice in α.

3.4.5 Efficient bound estimation for `∞ perturbations via random projec-
tions

While being extended to general architectures, the proposed algorithm is still limited by its com-
putational complexity: for instance, to compute the bounds exactly for `∞ norm bounded pertur-
bations in ReLU networks, it is computationally expensive to calculate ‖ν1‖1 and

∑
j∈Ii `ij[νij]+.

In contrast to other terms like νTi+1bi which require only sending a single bias vector through the
dual network, the matrices ν1 and νi,Ii must be explicitly formed by sending an example through
the dual network for each input dimension and for each j ∈ Ii, which renders the entire compu-
tation quadratic in the number of hidden units. To scale the method for larger, ReLU networks
with `∞ perturbations, we look to random Cauchy projections. Note that for an `2 norm bounded
adversarial perturbation, the dual norm is also an `2 norm, so we can use traditional random
projections [Vempala, 2005]. Experiments for the `2 norm are explored further in Section 3.5.4.
However, for the remainder of this section we focus on the `1 case arising from `∞ perturbations.
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Estimating with Cauchy random projections From the work of Li et al. [2007], we can
use the sample median estimator with Cauchy random projections to directly estimate ‖ν1‖1 for
linear dual networks, and use a variation to estimate

∑
j∈I `ij[νij]+, as shown in Theorem 4.

Theorem 4. . Let ν1:k be the dual network from Equation 3 with linear dual layers and let r > 0
be the projection dimension. Then, we can estimate

‖ν1‖1 ≈ median(|νT1 R|) (3.85)

where R is a |z1| × r standard Cauchy random matrix and the median is taken over the second
axis. Furthermore, we can estimate

∑
j∈I

`ij[νij]+ ≈
1

2

(
−median(|νTi diag(di)R|) + νTi di

)
, di,j =

{ ui,j
ui,j−`i,j j 6∈ Ii
0 j ∈ Ii

(3.86)

where R is a |zi| × r standard Cauchy random matrix, and the median is taken over the second
axis.

Proof. We begin by estimating ‖ν̂1‖1,:. Recall the form of ν̂1,

ν̂1 = IW T
1 D2W

T
2 . . . DnW

T
n = g(I)

where we include the identity term to make explicit the fact that we compute this by passing an
identity matrix through the network g. Estimating this term is straightforward: we simply pass
in a Cauchy random matrix R, and take the median absolute value:

‖ν̂1‖1,: ≈ median(|RW T
1 D2W

T
2 . . . DnW

T
n |) = median(|g(R)|)

where the median is taken over the minibatch axis.
Next, we show how to estimate

∑
i[νi,:]+. Recall the form of ν = νj for some layer j,

νj = IDjW
T
j . . . DnW

T
n = gj(I)

Note that for a vector x, ∑
i

[x]+ =
‖x‖1 + 1Tx

2

So we can reuse the `1 approximation from before to get

∑
i

[νi,:]+ =
‖ν‖1,: + 1Tν

2
≈ |median(gj(R)) + gj(1

T )|
2

which involves using the same median estimator and also passing in a single example of ones
through the network.

Finally we extend this to estimating
∑

i∈I `i[νi,:]+. The previous equation, while simple, is
not exactly the term in the objective; there is an addition `1 factor for each row, and we only add
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rows in the I set. However, we can deal with this by simply passing in a modified input to the
network, as we will see shortly:∑

i∈I

`i[νi,:]+ =
∑
i∈I

`i
|νi,:|+ νi,:

2

=
1

2

(∑
i∈I

`i|νi,:|+
∑
i∈I

`iνi,:

)

=
1

2

(∑
i∈I

`i|gj(I)i|+
∑
i∈I

`igj(I)i

) (3.87)

Note that since gj is just a linear function that does a forward pass through the network, for any
matrix A,B,

Agj(B) = ABDjW
T
j . . . DnW

T
n = gj(AB).

So we can take the multiplication by scaling terms ` to be an operation on the input to the network
(note that we assume `i < 0, which is true for all i ∈ I)

∑
i∈I

`i[νi,:]+ =
1

2

(
−
∑
i∈I

|gj(diag(`))i|+
∑
i∈I

gj(diag(`))i

)
(3.88)

Similarly, we can view the summation over the index set I as a summation after multiplying by
an indicator matrix 1I which zeros out the ignored rows. Since this is also linear, we can move it
to be an operation on the input to the network.

∑
i∈I

`i[νi,:]+ =
1

2

(
−
∑
i

|gj(1I diag(`))i|+
∑
i

gj(1I diag(`))i

)
(3.89)

Let the linear, preprocessing operation be h(X) = X1I diag(`) so

h(I) = 1I diag(`).

Then, we can observe that the two terms are simply an `1,: operation and a summation of the
network output after applying gj to h(I) (where in the latter case, since everything is linear we
can take the summation inside both g and h to make it gj(h(1T ))):∑

i∈I

`i[νi,:]+ =
1

2

(
−‖gj(h(I))‖1,: + gj(h(1T ))

)
(3.90)

The latter term is cheap to compute, since we only pass a single vector. We can approximate the
first term using the median estimator on the compound operations g ◦ h for a Cauchy random
matrix R: ∑

i∈I

`i[νi,:]+ ≈
1

2

(
−median(|gj(h(R))|) + gj(h(1T ))

)
(3.91)

and rewriting h(R) = diag(di)R completes the proof.

55



Algorithm 3 Estimating ‖ν1‖1 and
∑

j∈I `ij[νij]+

input: Linear dual network operations gij , projection dimension r, lower bounds `ij , dij from
Equation 3.86, layer-wise sizes |zi|
R

(1)
1 := Cauchy(r, |z1|) // initialize random matrix for `1 term

for i = 2, . . . , k do
// pass each term forward through the network
for j = 1, . . . , i− 1 do
R

(i)
j , S

(i)
j :=

∑i−1
k=1 g

T
ki(R

(k)
i ),

∑i−1
k=1 g

T
ki(S

(k)
i )

end for
R

(i)
i , S

(i)
i := diag(di)Cauchy(|zi|, r), di // initialize terms for layer i

end for
output: median(|R(k)

1 |), 0.5
(
−median(|R(k)

2 |) + S
(k)
2

)
, . . . , 0.5

(
−median(|R(k)

k |) + S
(k)
k

)

The end result is that this term can be estimated by generating a Cauchy random matrix,
scaling its terms by ` and zeroing out columns in I, then passing it through the network and
taking the median. This estimate has two main advantages: first, it is simple to compute, as
evaluating νT1 R involves passing the random matrix forward through the dual network (similarly,
the other term requires passing a modified random matrix through the dual network; the exact
algorithm is detailed in 3). Second, it is memory efficient in the backward pass, as the gradient
need only propagate through the median entries.

These random projections reduce the computational complexity of computing these terms
to piping r random Cauchy vectors (and an additional vector) through the network. Crucially,
the complexity is no longer a quadratic function of the network size: if we fix the projection
dimension to some constant r, then the computational complexity is now linear with the input
dimension and Ii. At test time, the bound can be computed exactly, as the gradients no longer
need to be stored. However, if desired, it is possible to use a different estimator (specifically,
the geometric estimator) for the `∞ norm to calculate high probability bounds on the adversarial
problem.

3.4.6 Efficient high probability estimates of the bound

In this section, we derive high probability certificates for robustness against adversarial examples.
In contrast to the previous estimate of the bound using the median Cauchy estimator which may
have some non-negligible variance, the bounds in this section hold with high probability. Recall
that the original certificate is of the form

J(g(c, α)) < 0,

so if this holds we are guaranteed that the example cannot be adversarial. What we will show is
an equivalent high probability statement: for δ > 0, with probability at least (1− δ),

J(g(c, α)) ≤ J̃(g(c, α))
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where J̃ is equivalent to the original J but using a high probability `1 upper bound. Then, if
J̃(g(c, α)) < 0 then with high probability we have a certificate.

While the median estimator is a good heuristic for training, it is still only an estimate of the
bound. At test time, it is possible to create a provable bound that holds with high probability,
which may be desired if computing the exact bound is computationally impossible.

In this section, we derive high probability certificates for robustness against adversarial ex-
amples. Recall that the original certificate is of the form

J(g(c, α)) < 0,

so if this holds we are guaranteed that the example cannot be adversarial. What we will show is
an equivalent high probability statement: for δ > 0, with probability at least (1− δ),

J(g(c, α)) ≤ J̃(g(c, α))

where J̃ is equivalent to the original J but using a high probability upper bound on the `1 norm.
Then, if J̃(g(c, α)) < 0 then with high probability we have a certificate.

Tail bounds for the geometric estimator From Li et al. [2007], the authors also provide a ge-
ometric mean estimator which comes with high probability tail bounds. The geometric estimator
is

‖ν̂1‖1,j ≈
k∏
i=1

|g(R)i,j|1/k

and the relevant lower tail bound on the `1 norm is

P

(
1

1− ε

k∏
i=1

|g(R)i,j|1/k ≤ ‖ν̂1‖1,j

)
≤ exp

(
−k ε2

GL,gm

)
(3.92)

where

GL,gm =
ε2(

−1
2

log
(

1 +
(

2
π

log(1− ε)
)2
)

+ 2
π

tan−1
(

2
π

log(1− ε)
)

log(1− ε)
)

Thus, if exp
(
−k ε2

GL,gm

)
≤ δ, then with probability 1− δ we have that

‖ν̂1‖1,j ≤
1

1− ε

k∏
i=1

|g(R)i,j|1/k = geo(R)

which is a high probability upper bound on the `1 norm.
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Upper bound on J(g(c, α)) In order to upper bound J(g(c, α)), we must apply the `1 upper
bound for every `1 term. Let n1, . . . , nk denote the number of units in each layer of a k layer
neural network, then we enumerate all estimations as follows:

1. The `1 norm computed at each intermediary layer when computing iterative bounds. This
results in n2 + · · ·+ nk−1 estimations.

2. The
∑

j∈Ii `i,j[νi,j]+ term for each i = 2, . . . , k − 1, computed at each intermediary layer
when computing the bounds. This results in n3 + 2n4 + · · ·+ (k − 3)nk−1.

In total, this is n2 + 2n3 + · · · + (k − 2)nk−1 = N total estimations. In order to say that all of
these estimates hold with probability 1 − δ, we can do the following: we bound each estimate
in Equation 3.92 with probability δ/N , and use the union bound over all N estimates. We can
then conclude that with probability at most δ, any estimate is not an upper bound, and so with
probability 1− δ we have a proper upper bound.

Achieving δ/N tail probability There is a problem here: if δ/N is small, then ε becomes
large, and the bound gets worse. In fact, since ε < 1, when k is fixed, there’s actually a lower
limit to how small δ/N can be.

To overcome this problem, we take multiple samples to reduce the probability. Specifically,
instead of directly using the geometric estimator, we use the maximum over multiple geometric
estimators

maxgeo(R1, . . . , Rm) = max(geo(R1), . . . , geo(Rm)),

where Ri are independent Cauchy random matrices. If each one has a tail probability of δ, then
the maximum has a tail probability of δm, which allows us to get arbitrarily small tail probabilities
at a rate exponential in m.

High probability tail bounds for network certificates Putting this altogether, let δ > 0, let
N > 0 be the number of estimates needed to calculate a certificate, and let m be the number of
geometric estimators to take a maximum over. Then with probability (1 − δ), if we bound the
tail probability for each geometric estimate with δ̂ =

(
δ
N

)1/m, then we have an upper bound on
the certificate.

As an example, suppose we use the MNIST network in this dissertation. Then, let δ = 0.01,
m = 10, and note that N = 6572. Then, δ̂ = 0.26, which we can achieve by using k = 200 and
ε = 0.22.

3.4.7 Bias reduction with cascading ensembles

A final major challenge of training models to minimize a robust bound on the adversarial loss, is
that the robustness penalty acts as a regularization. For example, in a two-layer ReLU network,
the robust loss penalizes ε‖ν1‖1 = ε‖W1D1W2‖1, which effectively acts as a regularizer on the
network with weight ε. Because of this, the resulting networks (even those with large repre-
sentational capacity), are typically overregularized to the point that many filters/weights become
identically zero (i.e., the network capacity is not used).
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Algorithm 4 Training robust cascade of k networks and making predictions
input: Initialized networks f1, . . . , fk, training examples X, y, robust training procedure de-
noted RobustTrain, test example x?

for i = 1, . . . , k do
fi := RobustTrain(fi, X, y) // Train network
// remove certified examples from dataset
X, y := {xi, yi : J(x, g(ef(xi) − eytarg)) > 0, ∀ytarg 6= f(xi)}

end for
for i = 1, . . . , k do

if fi(x?) 6= f1(x?) then
output: no certificate

end if
if J(x, g(efi(x?) − eytarg)) < 0 ∀ytarg 6= fi(x

?) then
output: fi(x?) // return label if certified

end if
end for
output: no certificate

Figure 3.17: An example of a two stage cascade. The first model on the left can only robustly
classify three of the datapoints. After removing the certified examples, the remaining examples
can now easily be robustly classified by a second stage classifier.

To address this point, we advocate for using a robust cascade of networks: that is, we train
a sequence of robust classifiers, where later elements of the cascade are trained (and evaluated)
only on those examples that the previous elements of the cascade cannot certify (i.e., those ex-
amples that lie within ε of the decision boundary).

The full algorithm for constructing cascades is shown in Algorithm 4. To illustrate the use
of the cascade, Figure 3.17 shows a two stage cascade on a few data points in two dimensional
space. The boxes denote the adversarial ball around each example, and if the decision boundary
is outside of the box, the example is certified.
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Table 3.4: Number of hidden units, parameters, and time per epoch for various architectures.

Model Dataset # hidden units # parameters Time (s) / epoch
Small MNIST 4804 166406 74

CIFAR 6244 214918 48
Large MNIST 28064 1974762 667

CIFAR 62464 2466858 466
Resnet MNIST 82536 3254562 2174

CIFAR 107496 4214850 1685

3.5 Experiments for scaling provable defenses
We evaluate the techniques in this section on two main datasets: MNIST digit classification
[LeCun et al., 1998] and CIFAR10 image classification [Krizhevsky, 2009].4 We test on a va-
riety of deep and wide convolutional architectures, with and without residual connections. All
code for these experiments is available at https://github.com/locuslab/convex_
adversarial/. The small network is the same as that used in [Wong and Kolter, 2017], with
two convolutional layers of 16 and 32 filters and a fully connected layer of 100 units. The large
network is a scaled up version of it, with four convolutional layers with 32, 32, 64, and 64 filters,
and two fully connected layers of 512 units. The residual networks use the same structure used
by [Zagoruyko and Komodakis, 2016] with 4 residual blocks with 16, 16, 32, and 64 filters. Sim-
ilar to prior work, in all of our models we use strided convolutional layers with 4 by 4 kernels
to downsample. When downsampling is not needed, we use 3 by 3 kernels without striding. We
highlight a subset of the results in Table 3.5, and briefly describe a few key observations below.
All results except where otherwise noted use random projection of 50 dimensions.

For all MNIST experiments, we use the Adam optimizer with a learning rate of 0.001 with a
batch size of 50. We schedule ε starting from 0.01 to the desired value over the first 20 epochs,
after which we decay the learning rate by a factor of 0.5 every 10 epochs for a total of 60 epochs.

For all CIFAR10 experiments, we use the SGD optimizer with a learning rate of 0.05 with a
batch size of 50. We schedule ε starting from 0.001 to the desired value over the first 20 epochs,
after which we decay the learning rate by a factor of 0.5 every 10 epochs for a total of 60 epochs.

3.5.1 Scaled and cascaded models for MNIST and CIFAR10 for `∞ prov-
able robustness

For the different data sets and models, the final robust and nominal test errors are given in Table
3.5. We emphasize that in all cases we report the robust test error, that is, our upper bound
on the possible test set error that the classifier can suffer under any norm-bounded attack (thus,
considering different empirical attacks is orthogonal to our main presentation and not something

4We fully realize the irony of a section with “scaling” in the title that currently maxes out on CIFAR10 exper-
iments. But we emphasize that when it comes to certifiably robust networks, the networks we consider here, as
we illustrate below in Table 3.4, are more than an order of magnitude larger than those that have been considered
previously in the literature. Thus, our emphasis is really on the potential scaling properties of these approaches
rather than large-scale experiments on e.g. ImageNet sized data sets.
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Table 3.5: Results on MNIST, and CIFAR10 with small networks, large networks, residual net-
works, and cascaded variants.

Single model error Cascade error
Dataset Model Epsilon Robust Standard Robust Standard
MNIST Small, Exact 0.1 4.48% 1.26% - -
MNIST Small 0.1 4.99% 1.37% 3.13% 3.13%
MNIST Large 0.1 3.67% 1.08% 3.42% 3.18%
MNIST Small 0.3 43.10% 14.87% 33.64% 33.64%
MNIST Large 0.3 45.66% 12.61% 41.62% 35.24%
CIFAR10 Small 2/255 52.75% 38.91% 39.35% 39.35%
CIFAR10 Large 2/255 46.59% 31.28% 38.84% 36.08%
CIFAR10 Resnet 2/255 46.11% 31.72% 36.41% 35.93%
CIFAR10 Small 8/255 79.25% 72.24% 71.71% 71.71%
CIFAR10 Large 8/255 83.43% 80.56 79.24% 79.14%
CIFAR10 Resnet 8/255 78.22% 71.33% 70.95% 70.77%
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Figure 3.18: Robust error curves as we add models to the cascade for the CIFAR10 dataset on a
small model. The ε value for training is scheduled to reach 2/255 after 20 epochs. The training
curves are for each individual model, and the testing curves are for the whole cascade up to the
stage.

that we include, as we are focused on verified performance). As we are focusing on the particular
random projections discussed above, all experiments consider attacks with bounded `∞ norm,
plus the ReLU networks highlighted above. On MNIST, the (non-cascaded) large model reaches
a final robust error of 3.7% for ε = 0.1, and the best cascade reaches 3.1% error. This contrasts
with the best previous bound of 5.8% robust error for this epsilon, from [Wong and Kolter,
2017]. On CIFAR10, the ResNet model achieves 46.1% robust error for ε = 2/255, and the
cascade lowers this to 36.4% error. In contrast, the previous best verified robust error for this ε,
from [Dvijotham et al., 2018b], was 80%. While the robust error is naturally substantially higher
for ε = 8/255 (the amount typically considered in empirical works), we are still able to achieve
71% provable robust error; for comparison, the best empirical robust performance against current
attacks is 53% error at ε = 8/255 [Madry et al., 2017], and most heuristic defenses have been
broken to beyond this error [Athalye et al., 2018a].

Effect of cascaded networks In all cases, cascading the models is able to improve the robust
error performance, sometimes substantially, for instance decreasing the robust error on CIFAR10
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Figure 3.19: Histograms of the relative error of the median estimator for 10 (top), 50 (middle),
and 100 (bottom) projections, for a (left) random and (right) robustly trained convolutional layer.

from 46.1% to 36.4% for ε = 2/255. However, this comes at a cost as well: the nominal error
increases throughout the cascade (this is to be expected, since the cascade essentially tries to
force the robust and nominal errors to match). Thus, there is substantial value to both improving
the single-model networks and integrating cascades into the prediction.

3.5.2 Exploring the effects of random projections in robust training

In this section, we discuss the empirical quality and speedup of the median estimator for `1

estimation (for a more theoretical understanding, we direct the reader to Li et al. [2007]).
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Figure 3.20: Timing (top) and memory in MB (bottom) plots for a single 3 by 3 convolutional
layer to evaluate 10 MNIST sized examples with minibatch size 1, averaged over 10 runs. The
number of hidden units is varied by increasing the number of filters. On a single Titan X, the
exact method runs out of memory at 52,800 hidden units, whereas the random projections scales
linearly at a slope of 2.26 × 10−7 seconds per hidden unit, up to 0.96 seconds for 4,202,240
hidden units.
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Figure 3.21: Training and testing robust error curves over epochs on the MNIST dataset using
k projection dimensions. The ε value for training is scheduled from 0.01 to 0.1 over the first
20 epochs. The projections force the model to generalize over higher variance, reducing the
generalization gap.

Estimation quality In Figure 3.19, we plot the relative error of the median estimator for vary-
ing dimensions on both an untrained and a trained convolutional layer, and see that regardless
of whether the model is trained or not, the distribution of the estimate is normally distributed
with decreasing variance for larger projections, and without degenerate cases. This matches the
theoretical results derived in Li et al. [2007].

Improvements in time and memory usage In Figure 3.20, we benchmark the time and mem-
ory usage on a convolutional MNIST example to demonstrate the performance improvements.
While the exact bound takes time and memory that is quadratic in the number of hidden units,
the median estimator is instead linear, allowing it to scale up to millions of hidden units whereas
the exact bound runs out of memory out at 50,280 hidden units.

Varying the number of projections In the MNIST dataset (the only data set where it is trivial
to run exact training without projection), we have evaluated our approach using different pro-
jection dimensions as well as exact training (i.e., without random projections). We note that
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Table 3.6: Results on different widths and depths for MNIST

Dataset Model Epsilon Robust error Error
MNIST Wide(1) 0.1 6.51% 2.27%
MNIST Wide(2) 0.1 5.46% 1.55%
MNIST Wide(4) 0.1 4.94% 1.33%
MNIST Wide(8) 0.1 4.79% 1.32%
MNIST Wide(16) 0.1 5.27% 1.36%
MNIST Deep(1) 0.1 5.28% 1.78%
MNIST Deep(2) 0.1 4.37% 1.28%
MNIST Deep(3) 0.1 4.20% 1.15%

using substantially lower projection dimension does not have a significant impact on the test
error. This fact is highlighted in Figure 3.21. Using the same convolutional architecture used
by Wong and Kolter [2017], which previously required gigabytes of memory and took hours to
train, it is sufficient to use only 10 random projections to achieve comparable test error perfor-
mance to training with the exact bound. Each training epoch with 10 random projections takes
less than a minute on a single GeForce GTX 1080 Ti graphics card, while using less than 700MB
of memory, achieving significant speedup and memory reduction over Wong and Kolter [2017].

3.5.3 The effect of increased width and depth

We use a parameter k to control the width and depth of the architectures used to measure the
effect of increasing width and depth. The Wide(k) networks have two convolutional layers of
4× k and 8× k filters followed by a 128× k fully connected layer. The Deep(k) networks have
k convolutional filters with 8 filters followed by k convolutional filters with 16 filters.

We find that increasing the capacity of the model by simply making the network deeper and
wider on MNIST is able boost performance. However, when the model becomes overly wide,
the test robust error performance begins to degrade due to overfitting. These results are shown in
Table 3.6.

3.5.4 Large and cascaded models for MNIST and CIFAR10 for `2 provable
robustness

We run similar experiments for `2 perturbations on the input instead of `∞ perturbations, which
amounts to replacing the `1 norm in the objective with the `2 norm. This can be equivalently
scaled using random normal projections [Vempala, 2005] instead of random Cauchy projections.
We use the same network architectures as before, and pick ε2 such that the volume of an `2 ball
with radius ε2 is approximately the same as the volume of an `∞ ball with radius ε∞. A simple
conversion (an overapproximation within a constant factor) is:

ε2 =

√
d

π
ε∞.
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Table 3.7: Results on MNIST, and CIFAR10 with small networks, large networks, residual net-
works, and cascaded variants for `2 perturbations.

Single model error Cascade error
Dataset Model Epsilon Robust Standard Robust Standard
MNIST Small, Exact 1.58 56.48% 11.86% 24.42% 19.57%
MNIST Small 1.58 56.32% 13.11% 25.34% 20.93%
MNIST Large 1.58 55.47% 11.88% 26.16% 24.97%
CIFAR10 Small 36/255 53.73% 44.72% 50.13% 48.64%
CIFAR10 Large 36/255 49.40% 40.24% 41.36% 41.16%
CIFAR10 Resnet 36/255 48.04% 38.80% 41.44% 41.28%

For MNIST, we take an equivalent volume to ε∞ = 0.1. This ends up being ε2 = 1.58, and note
that within the dataset, the minimum `2 distance between any two digits is at least 3.24, so ε2 is
roughly half of the minimum distance between any two digits. For CIFAR we take an equivalent
volume to ε∞ = 2/255, which ends up being ε2 = 36/255.

The results for the complete suite of experiments are in Table 3.7, and we get similar trends
in robustness for larger and cascaded models to that of `∞ perturbations.

3.6 Discussion
In this chapter, we started from using convex outer bounds utilizing linear programming, and
ended with a general methodology for deriving dual networks from compositions of dual layers
based on the methodology of conjugate functions to train classifiers that are provably robust to
adversarial attacks. Importantly, the methodology is linearly scalable for ReLU based networks
against `∞ norm bounded attacks, making it possible to train large scale, provably robust net-
works that were previously out of reach, and the obtained bounds can be improved further with
model cascades.
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Chapter 4

Adversarially robust learning

In this chapter, we switch gears from provable defenses and study more generally the optimiza-
tion properties of the robust learning problem, or the process of training a robust classifier. While
the convergence and generalization properties of training neural networks in the standard setting
has received much attention both empirically and theoretically, the process of training adversar-
ially robust models can behave quite differently from standard training and sometimes exhibit
properties which go against common intuition. By understanding and leveraging these proper-
ties of robust learning, we can drastically accelerate and improve the robust training process to
converge more quickly to more robust models. In this chapter, we focus our study on the inner
maximization problem of adversarial training (the strength of the adversary), as well as general
properties regarding overfitting in adversarial training.

The robust learning problem is often seen as fairly difficult, in part due to the number of
defenses which have been broken over the years and also due to its computational cost. Even
successful defenses such as adversarial training and provable defenses are often much more
computationally expensive than standard training, limiting their ability to be applied to much
larger networks and motivating the need for cheaper adversarial defenses which are still effective.
In the first half of this section, we argue that adversarial training may not be as hard as has
been suggested by this past line of work. In particular, we revisit one of the the first proposed
methods for adversarial training, using the Fast Gradient Sign Method (FGSM) to add adversarial
examples to the training process [Goodfellow et al., 2015]. Although this approach has long
been dismissed as ineffective [Tramèr et al., 2017], we show that by simply introducing random
initialization points, FGSM-based training can be as effective as projected gradient descent based
training while being an order of magnitude more efficient.

Moreover, FGSM adversarial training (and to a lesser extent, other adversarial training meth-
ods) can be drastically accelerated using standard techniques for efficient training of deep net-
works, including e.g. cyclic learning rates [Smith and Topin, 2018], mixed-precision training
[Micikevicius et al., 2017], and other similar techniques. These are common techniques from
top submissions to the DAWNBench competition [Coleman et al., 2017] that are used to train
CIFAR10 and ImageNet classifiers in mere minutes and hours using only a modest amount of
computational resources. The resulting method has extremely few free parameters to tune, and
can be easily adapted to most training procedures. We further identify a failure mode that we call
“catastrophic overfitting”, which may have caused previous attempts at FGSM adversarial train-
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ing to fail against PGD-based attacks. The end result is that, with these approaches, we are able
to train (empirically) robust classifiers with the robustness of PGD-based training at the speed of
standard training. Despite the conventional wisdom, this suggests that adversarially robust train-
ing is not actually more challenging than standard training of deep networks, since rather coarse
approximations to the inner maximization can be sufficient for successful robust optimization.

In the latter half of this chapter, we take a closer look at how the concept of overfitting mani-
fests in adversarially robust training more generally beyond the catastrophic overfitting observed
in the FGSM setting. Both regularization [Friedman et al., 2001] and early stopping [Strand,
1974] have been well-studied in classical statistical settings to reduce overfitting and improve
generalization, and connections between the two have been established in various settings such
as in kernel boosting algorithms [Wei et al., 2017], least squares regression [Ali et al., 2018],
and strongly convex problems [Suggala et al., 2018]. Although `2 regularization (also known
as weight decay) is commonly used for training deep networks [Krogh and Hertz, 1992], early
stopping is less commonly used despite being studied as an implicit regularizer for controlling
model complexity for neural networks at least 30 years ago [Morgan and Bourlard, 1990].1

Indeed, one of the surprising characteristics of deep learning is the relative lack of over-
fitting seen in practice [Zhang et al., 2016], where deep learning models can often be trained to
zero training error without incurring the standard bias-variance trade-off from classical statistical
learning theory. Despite effectively memorizing the training set, in many typical deep learning
settings there are not any detrimental effects on the generalization performance [Neyshabur et al.,
2017]. Consequently, it is now standard practice in many modern deep learning tasks to train for
as long as possible and use large overparameterized models, since test set performance typically
continues to improve past the point of dataset interpolation in what is known as “double descent”
generalization [Belkin et al., 2019, Nakkiran et al., 2019], and remains such a hallmark of deep
learning practice that it is often taken for granted.

Our key finding is that, unlike in traditional deep learning, overfitting is a dominant phe-
nomenon in adversarially robust training of deep networks. That is, adversarially robust training
has the property that, after a certain point, further training will continue to substantially decrease
the robust training loss of the classifier, while increasing the robust test loss. This is shown,
for instance, in Figure 4.1 for adversarial training on CIFAR10, where the robust test error dips
immediately after the first learning rate decay, and only increases beyond this point. This phe-
nomenon, which we refer to as “robust overfitting”, can be observed on multiple datasets, differ-
ent adversarial training algorithms, and various threat models.

Motivated by this initial finding, we further study and diagnose this problem. We begin
by emphasizing that virtually all the recent gains in adversarial performance from newer algo-
rithms beyond simple projected gradient descent (PGD) based adversarial training [Mosbach
et al., 2018, Xie et al., 2019, Yang et al., 2019, Zhang et al., 2019b] can be attained by a much
simpler approach: using early stopping. Specifically, by just using an earlier checkpoint, the
robust performance of adversarially trained deep networks can be drastically improved, to the
point where the original PGD-based adversarial training method can actually achieve the same

1It is common practice in deep learning to save the best checkpoint which can be seen as early stopping. However,
in the standard setting, the test loss tends to gradually improve over training, and so the best checkpoint tends to just
select the best performance at the end of training, rather than stopping before training loss has converged.
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Figure 4.1: The learning curves for a robustly trained model replicating the experiment done by
Madry et al. [2017] on CIFAR10. The curves demonstrate “robust overfitting”; shortly after the
first learning rate decay the model momentarily attains 43.2% robust error, and is actually more
robust than the model at the end of training, which only attains 51.4% robust test error against a
10-step PGD adversary for `∞ radius of ε = 8/255. The learning rate is decayed at 100 and 150
epochs.

robust performance as state-of-the-art methods.

Finally, we study various empirical properties of overfitting for adversarially robust training
and how they relate to standard training, such as how various learning rate schedules affect the
prevalence of robust overfitting and the resulting impacts on model performance, and how known
connections between hypothesis class size and generalization in deep networks translate to the
robust setting. We wrap up this chapter by investigating several techniques, from both classical
statistics and modern deep learning, for preventing robust overfitting. For example, Dropout is
a commonly used stochastic regularization technique that randomly drops units and their con-
nections from the network during training [Srivastava et al., 2014] with the intent of preventing
complex co-adaptations on the training data. Data augmentation is another technique frequently
used when training deep networks that has been empirically shown to reduce overfitting. Cutout
[DeVries and Taylor, 2017] is a form of data augmentation that randomly masks out a section
of the input during training, which can be considered as augmenting the dataset with occlu-
sions. Another technique known as mixup [Zhang et al., 2017] trains on convex combinations of
pairs of data points and their corresponding labels to encourage linear behavior in between data
points. Semi-supervised learning methods augment the dataset with unlabeled data, and have
been shown to improve generalization when used in the adversarially robust setting [Alayrac
et al., 2019, Carmon et al., 2019, Zhai et al., 2019]. Ultimately, while these methods can mit-
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Algorithm 5 PGD adversarial training for T epochs, given some radius ε, adversarial step size α
and N PGD steps and a dataset of size M for a network fθ

for t = 1 . . . T do
for i = 1 . . .M do

// Perform PGD adversarial attack
δ = 0 // or randomly initialized
for j = 1 . . . N do
δ = δ + α · sign(∇δ`(fθ(xi + δ), yi))
δ = max(min(δ, ε),−ε)

end for
θ = θ −∇θ`(fθ(xi + δ), yi) // Update model weights with some optimizer, e.g. SGD

end for
end for

igate robust overfitting to varying degrees, when trained to convergence, we find that no other
approach to combating robust overfitting performs better than simple early stopping.

4.1 Fast adversarial training
As discussed in Chapter 2, adversarial training is a method for learning networks which are robust
to adversarial attacks, typically with a PGD adversary (for example as shown in Algorithm 5 for
the `∞ threat model). Note that the number of gradient computations for a PGD adversary is
proportional to O(MN) in a single epoch, where M is the size of the dataset and N is the
number of steps taken by the PGD adversary. This is N times greater than standard training
(which has O(M) gradient computations per epoch), and so adversarial training is typically N
times slower than standard training.

“Free” adversarial training To get around this slowdown of a factor of N , Shafahi et al.
[2019] instead propose “free” adversarial training. This method takes FGSM steps with full
step sizes α = ε followed by updating the model weights for N iterations on the same minibatch
(also referred to as “minibatch replays”). The algorithm is summarized in Algorithm 6. Note that
perturbations are not reset between minibatches. To account for the additional computational cost
of minibatch replay, the total number of epochs is reduced by a factor of N to make the total cost
equivalent to T epochs of standard training. Although “free” adversarial training is faster than
the standard PGD adversarial training, it is not as fast as we’d like: Shafahi et al. [2019] need to
run over 200 epochs in over 10 hours to learn a robust CIFAR10 classifier and two days to learn a
robust ImageNet classifier, whereas standard training can be accomplished in minutes and hours
for the same respective tasks.

To speed up adversarial training and move towards the state of the art in fast standard training
methods, we first highlight the main empirical contribution of the paper: that FGSM adversarial
training combined with random initialization is just as effective a defense as PGD-based train-
ing. Following this, we discuss several techniques from the DAWNBench competition [Coleman
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Algorithm 6 “Free” adversarial training for T epochs, given some radius ε,N minibatch replays,
and a dataset of size M for a network fθ
δ = 0
// Iterate T/N times to account for minibatch replays and run for T total epochs
for t = 1 . . . T/N do

for i = 1 . . .M do
// Perform simultaneous FGSM adversarial attack and model weight updates T times
for j = 1 . . . N do

// Compute gradients for perturbation and model weights simultaneously
∇δ,∇θ = ∇`(fθ(xi + δ), yi)
δ = δ + ε · sign(∇δ)
δ = max(min(δ, ε),−ε)
θ = θ −∇θ // Update model weights with some optimizer, e.g. SGD

end for
end for

end for

Algorithm 7 FGSM adversarial training for T epochs, given some radius ε, N PGD steps, step
size α, and a dataset of size M for a network fθ

for t = 1 . . . T do
for i = 1 . . .M do

// Perform FGSM adversarial attack
δ = Uniform(−ε, ε)
δ = δ + α · sign(∇δ`(fθ(xi + δ), yi))
δ = max(min(δ, ε),−ε)
θ = θ −∇θ`(fθ(xi + δ), yi) // Update model weights with some optimizer, e.g. SGD

end for
end for

et al., 2017] that are applicable to all adversarial training methods, which reduce the total number
of epochs needed for convergence with cyclic learning rates and further speed up computations
with mixed-precision arithmetic.

4.1.1 Revisiting FGSM adversarial training

Despite being quite similar to FGSM adversarial training, free adversarial training is empirically
robust against PGD attacks whereas FGSM adversarial training is not believed to be robust. To
analyze why, we identify a key difference between the methods: a property of free adversarial
training is that the perturbation from the previous iteration is used as the initial starting point
for the next iteration. However, there is little reason to believe that an adversarial perturbation
for a previous minibatch is a reasonable starting point for the next minibatch. As a result, we
hypothesize that the main benefit comes from simply starting from a non-zero initial perturbation.
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Table 4.1: Standard and robust performance of various adversarial training methods on CIFAR10
for ε = 8/255 and their corresponding training times

Method Standard accuracy PGD (ε = 8/255) Time (min)

FGSM + DAWNBench
+ zero init 85.18% 0.00% 12.37

+ early stopping 71.14% 38.86% 7.89
+ previous init 86.02% 42.37% 12.21
+ random init 85.32% 44.01% 12.33

+ α = 10/255 step size 83.81% 46.06% 12.17
+ α = 16/255 step size 86.05% 0.00% 12.06

+ early stopping 70.93% 40.38% 8.81

“Free” (m = 8) [Shafahi et al., 2019]2 85.96% 46.33% 785
+ DAWNBench 78.38% 46.18% 20.91

PGD-7 [Madry et al., 2017]3 87.30% 45.80% 4965.71
+ DAWNBench 82.46% 50.69% 68.8

In light of this difference, our approach is to use FGSM adversarial training with random
initialization for the perturbation, as shown in Algorithm 7. We find that, in contrast to what
was previously believed, this simple adjustment to FGSM adversarial training can be used as
an effective defense on par with PGD adversarial training. Crucially, we find that starting from
a non-zero initial perturbation is the primary driver for success, regardless of the actual initial-
ization. In fact, both starting with the previous minibatch’s perturbation or initializing from a
uniformly random perturbation allow FGSM adversarial training to succeed at being robust to
full-strength PGD adversarial attacks. Note that randomized initialization for FGSM is not a new
idea and was previously studied by Tramèr et al. [2017]. Crucially, Tramèr et al. [2017] use a
different, more restricted random initialization and step size, which does not result in models
robust to full-strength PGD adversaries. A more detailed comparison of their approach with ours
is done later in Section 4.1.4.

To test the effect of initialization in FGSM adversarial training, we train several models to
be robust at a radius ε = 8/255 on CIFAR10, starting with the most “pure” form of FGSM,
which takes steps of size α = ε from a zero-initialized perturbation. The results, given in Table
4.1, are consistent with the literature, and show that the model trained with zero-initialization is
not robust against a PGD adversary. However, surprisingly, simply using a random or previous-
minibatch initialization instead of a zero initialization actually results in reasonable robustness
levels (with random initialization performing slightly better) that are comparable to both free and
PGD adversarial training methods. The adversarial accuracies in Table 4.1 are calculated using
a PGD adversary with 50 iterations, step size α = 2/255, and 10 random restarts.

2As reported by Shafahi et al. [2019] using a different network architecture and an adversary with 20 steps and
10 restarts, which is strictly weaker than the adversary used in this paper.

3As reported by Madry et al. [2017] using a different network architecture and an adversary and an adversary
with 20 steps and no restarts, which is strictly weaker than the adversary used in this paper
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Table 4.2: Training parameters used for the DAWNBench experiments of Table 4.1

Parameter FGSM PGD Free

Epochs 30 40 96
Max learning rate 0.2 0.2 0.04
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Figure 4.2: Learning curves for FGSM adversarial training plotting the training loss and error
rates incurred by an FGSM and PGD adversary when trained with zero-initialization FGSM at
ε = 8/255, depicting the catastrophic overfitting where PGD performance suddenly degrades
while the model overfits to the FGSM performance.

Experimental setup For all methods, we use a batch size of 128, and SGD optimizer with
momentum 0.9 and weight decay 5 ∗ 10−4. We report the average results over 3 random seeds.
The remaining parameters for learning rate schedules and number of epochs for the DAWNBench
experiments are in Table 4.2. For runs using early-stopping, we use a 5-step PGD adversary with
1 restart on 1 training minibatch to detect overfitting to the FGSM adversaries, as described in
more detail in Section 4.1.2.

Computational complexity A second key difference between FGSM and free adversarial
training is that the latter uses a single backwards pass to compute gradients for both the per-
turbation and the model weights while repeating the same minibatch m times in a row, called
“minibatch replay”. In comparison, the FGSM adversarial training does not need to repeat mini-
batches, but needs two backwards passes to compute gradients separately for the perturbation and
the model weights. As a result, the computational complexity for an epoch of FGSM adversarial
training is not truly free and is equivalent to two epochs of standard training.

4.1.2 Catastrophic overfitting

While FGSM adversarial training works in the context of this section, many other researchers
have tried and failed to have FGSM adversarial training work. In addition to using a zero ini-
tialization or too large of a step size as seen in Table 4.1, other design decisions (like specific
learning rate schedules or numbers of epochs) for the training procedure can also make it more
likely for FGSM adversarial training to fail. However, all of these failure modes result in what
we call “catastrophic overfitting”, where the robust accuracy with respect to a PGD adversarial
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Figure 4.3: Histogram of the resulting perturbations from a PGD adversary for each feature for
a successfully trained robust CIFAR10 model and a catastrophically overfitted CIFAR10 model.

suddenly and drastically drops to 0% (on the training data). What was previously a reasonably
robust model will quickly transform into a non-robust model over the span of a couple epochs.
This phenomenon can be seen in Figure 4.2 which plots the learning curves for standard, vanilla
FGSM adversarial training from zero-initialization.

Indeed, one of the reasons for this failure may lie in the lack of diversity in adversarial exam-
ples generated by these FGSM adversaries. For example, using a zero initialization or using the
random initialization scheme from Tramèr et al. [2017] will result in adversarial examples whose
features have been perturbed by {−ε, 0, ε}, and so the network learns a decision boundary which
is robust only at these perturbation values. This can be verified by running a PGD adversarial
attack on models which have catastrophically overfitted, where the perturbations tend to be more
in between the origin and the boundary of the threat model (relative to a non-overfitted model,
which tends to have perturbations near the boundary), as seen in Figure 4.3.

Early stopping Catastrophic overfitting can be easily detected by evaluating the PGD perfor-
mance on a small subset of the training data, as the catastrophic failure will result in 0% robust
accuracy for a PGD adversary on the training set. Consequently, these alternative versions of
FGSM adversarial training can be salvaged to some degree by checking an early stopping crite-
ria (PGD accuracy) on the training set. In practice, we find that this can be a simple as a single
minibatch with a 5-step PGD adversary, which can be quickly checked at the end of the epoch,
and the recovered results for some of these failure modes are shown in Table 4.1. If robust accu-
racy with respect to this adversary suddenly drops, then we have catastrophic overfitting. Using
a PGD adversary on a training minibatch to detect catastrophic overfitting, we can early stop to
avoid catastrophic overfitting and achieve a reasonable amount of robust performance.

4.1.3 Effect of step size for FGSM adversarial training
Note that an FGSM step with size α = ε from a non-zero initialization is not guaranteed to lie
on the boundary of the `∞ ball, and so this defense could potentially be seen as too weak. In
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Figure 4.4: Robust test performance of FGSM adversarial training over different step sizes for
ε = 8/255.
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Figure 4.5: Robust test performance of FGSM adversarial training over different step sizes for
ε = 8/255 with early stopping to avoid catastrophic overfitting.

this section we test the effect of step size on the performance of FGSM adversarial training. We
plot the mean and standard error of the robust accuracy for models trained for 30 epochs over 3
random seeds in Figure 4.4, and vary the step size from α = 1/255 to α = 16/255.

We find that we get increasing robust performance as we increase the step size up to α =
10/255, which is on par with the best reported result from free adversarial training. Beyond
this, we see no further benefit, or find that the model is prone to overfitting to the adversarial
examples, since the large step size forces the model to overfit to the boundary of the perturbation
region. For example, forcing the resulting perturbation to lie on the boundary with a step size of
α = 2ε results in catastrophic failure: it does not produce a model robust to adversarial attacks.

Although step sizes larger than 11/255 result in 0% robust accuracy, we can salvage these
runs to some degree with early stopping as described in Section 4.1.2. By validating robustness
with a simple PGD adversary on the training set, we can catch the model at its peak performance
before overfitting, showing that FGSM adversarial training with larger step sizes can actually
achieve some degree of robust accuracy, as seen in Figure 4.5.
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Table 4.3: Ablation study showing the performance of R+FGSM from Tramèr et al. [2017] and
the various changes for the version of FGSM adversarial training done in this paper, over 10
random seeds.

Method Step size Initialization Robust accuracy

R+FGSM [Tramèr et al., 2017] 0.15 Hypercube(0.15) 34.58± 36.06%
R+FGSM (+full step size) 0.30 Hypercube(0.15) 26.53± 32.48%
R+FGSM (+uniform init.) 0.15 Uniform(0.3) 72.92± 10.40%
Uniform + full (ours) 0.30 Uniform(0.3) 86.21± 00.75%

4.1.4 A direct comparison to R+FGSM from Tramèr et al. [2017]
While a randomized version of FGSM adversarial training was proposed by Tramèr et al. [2017],
it was not shown to be as effective as adversarial training against a PGD adversary. Here, we
note the two main differences between our approach and that of Tramèr et al. [2017].

1. The random initialization used is different. For a data point x, we initialize with the uni-
form distribution in the entire perturbation region with

x′ = x+ Uniform(−ε, ε).

In comparison, Tramèr et al. [2017] instead initialize on the surface of a hypercube with
radius ε/2 with

x′ = x+
ε

2
sign(Normal(0, 1)).

2. The step sizes used for the FGSM step are different. We use a full step size of α = ε,
whereas Tramèr et al. [2017] use a step size of α = ε/2.

To study the effect of these two differences, we run all combinations of either initialization with
either step size on MNIST. The results are summarized in Table 4.3.

We find that using a uniform initialization adds the greatest marginal improvement to the
original R+FGSM attack, while using a full step size doesn’t seem to help on its own. Imple-
menting both of these improvements results in the form of FGSM adversarial training presented
in this paper. Additionally, note that R+FGSM as done by Tramèr et al. [2017] has high variance
in robust performance when done over multiple random seeds, whereas our version of FGSM
adversarial training is significantly more consistent and has a very low standard deviation over
random seeds.

4.1.5 DAWNBench improvements
Although free adversarial training is of comparable cost per iteration to traditional standard train-
ing methods, it is not quite comparable in total cost to more recent advancements in fast methods
for standard training. Notably, top submissions to the DAWNBench competition have shown
that CIFAR10 and ImageNet classifiers can be trained at significantly quicker times and at much
lower cost than traditional training methods. Although some of the submissions can be quite
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Figure 4.6: Cyclic learning rates used for FGSM adversarial training on CIFAR10 and ImageNet
over epochs. The ImageNet cyclic schedule is decayed further by a factor of 10 in the second
and third phases.

unique in their approaches, we identify two generally applicable techniques which have a signif-
icant impact on the convergence rate and computational speed of standard training.

Cyclic learning rate Introduced by Smith [2017] for improving convergence and reducing
the amount of tuning required when training networks, a cyclic schedule for a learning rate
can drastically reduce the number of epochs required for training deep networks [Smith and
Topin, 2018]. A simple cyclic learning rate schedules the learning rate linearly from zero, to a
maximum learning rate, and back down to zero (examples can be found in Figure 4.6). Using a
cyclic learning rate allows CIFAR10 architectures to converge to benchmark accuracies in tens
of epochs instead of hundreds, and is a crucial component of some of the top DAWNBench
submissions.

Mixed-precision arithmetic With newer GPU architectures coming with tensor cores specifi-
cally built for rapid half-precision calculations, using mixed-precision arithmetic when training
deep networks can also provide significant speedups for standard training [Micikevicius et al.,
2017]. This can drastically reduce the memory utilization, and when tensor cores are available,
also reduce runtime. In some DAWNBench submissions, switching to mixed-precision compu-
tations was key to achieving fast training while keeping costs low.

We adopt these two techniques for use in adversarial training, which allows us to drastically
reduce the number of training epochs as well as the runtime on GPU infrastructure with tensor
cores, while using modest amounts of computational resources. Notably, both of these improve-
ments can be easily applied to existing implementations of adversarial training by adding a few
lines of code with very little additional engineering effort, and so are easily accessible by the
general research community.

4.2 Experiments for fast adversarial training
To demonstrate the effectiveness of FGSM adversarial training with fast training methods, we
run a number of experiments on MNIST, CIFAR10, and ImageNet benchmarks. All CIFAR10
experiments in this paper are run on a single GeForce RTX 2080ti using the PreAct ResNet18
architecture, and all ImageNet experiments are run on a single machine with four GeForce RTX
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Table 4.4: Robustness of FGSM and PGD adversarial training on MNIST

Method Standard accuracy PGD (ε = 0.1) PGD (ε = 0.3) Verified (ε = 0.1)

PGD 99.20% 97.66% 89.90% 96.7%
FGSM 99.20% 97.53% 88.77% 96.8%

Table 4.5: Training parameters used for Figure 4.7

Parameter FGSM PGD Free

Max learning rate 0.2 0.2 0.04

2080tis using the ResNet50 architecture [He et al., 2016a]. Repositories for reproducing all
experiments and the corresponding trained model weights are available at https://github.
com/locuslab/fast_adversarial.

All experiments using FGSM adversarial training in this section are carried out with random
initial starting points and step size α = 1.25ε as described in Section 4.1.1. All PGD adversaries
used at evaluation are run with 10 random restarts for 50 iterations (with the same hyperpa-
rameters as those used by Shafahi et al. [2019] but further strengthened with random restarts).
Speedup with mixed-precision was incorporated with the Apex amp package at the O1 optimiza-
tion level for ImageNet experiments and O2 without loss scaling for CIFAR10 experiments.4

4.2.1 Verified performance on MNIST

Since the FGSM attack is known to be significantly weaker than the PGD attack, it is under-
standable if the reader is still skeptical of the true robustness of the models trained using this
method. To demonstrate that FGSM adversarial training confers real robustness to the model, in
addition to evaluating against a PGD adversary, we leverage mixed-integer linear programming
(MILP) methods from formal verification to calculate the exact robustness of small, but verifiable
models [Tjeng et al., 2018]. We train two convolutional networks with 16 and 32 convolutional
filters followed by a fully connected layer of 100 units, the same architecture used by Tjeng et al.
[2018]. We use both PGD and FGSM adversarial training at ε = 0.3, where the PGD adversary
for training has 40 iterations with step size 0.01 as done by Madry et al. [2017]. The exact ver-
ification results can be seen in Table 4.4, where we find that FGSM adversarial training confers
empirical and verified robustness which is nearly indistinguishable to that of PGD adversarial
training on MNIST.5

4Since CIFAR10 did not suffer from loss scaling problems, we found using the O2 optimization level without
loss scaling for mixed-precision arithmetic to be slightly faster.

5Exact verification results at ε = 0.3 for both the FGSM and PGD trained models are not possible since the size
of the resulting MILP is too large to be solved in a reasonable amount of time. The same issue also prevents us
from verifying networks trained on datasets larger than MNIST, which have to rely on empirical tests for evaluating
robustness.
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Figure 4.7: Performance of models trained on CIFAR10 at ε = 8/255 with cyclic learning
rates and half precision, given varying numbers of epochs across different adversarial training
methods. Each point denotes the average model performance over 3 independent runs, where
the x axis denotes the number of epochs N the model was trained for, and the y axis denotes
the resulting accuracy. The orange dots measure accuracy on natural images and the blue dots
plot the empirical robust accuracy on adversarial images. The vertical dotted line indicates the
minimum number of epochs needed to train a model to 45% robust accuracy.

Table 4.6: Time to train a robust CIFAR10 classifier to 45% robust accuracy using various ad-
versarial training methods with the DAWNBench techniques of cyclic learning rates and mixed-
precision arithmetic, showing significant speedups for all forms of adversarial training.

Method Epochs Seconds/epoch Total time (minutes)

DAWNBench + PGD-7 10 104.94 17.49
DAWNBench + Free (m = 8) 80 13.08 17.44
DAWNBench + FGSM 15 25.36 6.34

PGD-7 [Madry et al., 2017]6 205 1456.22 4965.71
Free (m = 8) [Shafahi et al., 2019]7 205 197.77 674.39

4.2.2 Fast CIFAR10

We begin our CIFAR10 experiments by combining the DAWNBench improvements from Section
4.1.5 with various forms of adversarial training. For N epochs, we use a cyclic learning rate
that increases linearly from 0 to λ over the first N/2 epochs, then decreases linearly from λ
to 0 for the remaining epochs, where λ is the maximum learning rate. For each method, we
individually tune λ to be as large as possible without causing the training loss to diverge, which
is the recommended learning rate test from Smith and Topin [2018].

To identify the minimum number of epochs needed for each adversarial training method,
we repeatedly run each method over a range of maximum epochs N , and then plot the final
robustness of each trained model in Figure 4.7. For all methods, we use a batch size of 128, and
SGD optimizer with momentum 0.9 and weight decay 5 ∗ 10−4. We report the average results
over 3 random seeds. Maximum learning rates used for the cyclic learning rate schedule are
shown in Table 4.5. While all the adversarial training methods benefit greatly from the cyclic
learning rate schedule, we find that both FGSM and PGD adversarial training require much fewer
epochs than free adversarial training, and consequently reap the greatest speedups.
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Table 4.7: Imagenet classifiers trained with adversarial training methods at ε = 2/255 and ε =
4/255.

Method ε Standard acc. PGD+1 restart PGD+10 restarts Total time (hrs)

FGSM 2/255 60.90% 43.46% 43.43% 12.14
Free (m = 4) 2/255 64.37% 43.31% 43.28% 52.20

FGSM 4/255 55.45% 30.28% 30.18% 12.14
Free (m = 4) 4/255 60.42% 31.22% 31.08% 52.20

Using the minimum number of epochs needed for each training method to reach a baseline of
45% robust accuracy, we report the total training time in Table 4.6. We find that while all adver-
sarial training methods benefit from the DAWNBench improvements, FGSM adversarial training
is the fastest, capable of learning a robust CIFAR10 classifier in 6 minutes using only 15 epochs.
Interestingly, we also find that PGD and free adversarial training take comparable amounts of
time, largely because free adversarial training does not benefit from the cyclic learning rate as
much as PGD or FGSM adversarial training.

4.2.3 Fast ImageNet
Finally, we apply all of the same techniques (FGSM adversarial training, mixed-precision, and
cyclic learning rate) on the ImageNet benchmark. In addition, the top submissions from the
DAWNBench competition for ImageNet utilize two more improvements on top of this, the first
of which is the removal of weight decay regularization from batch normalization layers. The
second addition is to progressively resize images during training, starting with larger batches
of smaller images in the beginning and moving on to smaller batches of larger images later.
Specifically, training is divided into three phases, where phases 1 and 2 use images resized to
160 and 352 pixels respectively, and phase 3 uses the entire image. We train models to be robust
at ε = 2/255 and ε = 4/255 and compare to free adversarial training in Table 4.7, showing
similar levels of robustness. In addition to using ten restarts, we also report the PGD accuracy
with one restart to reproduce the evaluation done by Shafahi et al. [2019].

With these techniques, we can train an ImageNet classifier using 15 epochs in 12 hours using
FGSM adversarial training, taking a fraction of the cost of free adversarial training as shown in
Table 4.8.8 We compare to the best performing variation of free adversarial training which which
uses m = 4 minibatch replays over 92 epochs of training (scaled down accordingly to 23 passes
over the data). Note that free adversarial training can also be enhanced with mixed-precision
arithmetic, which reduces the runtime by 25%, but is still slower than FGSM-based training.

6Runtimes calculated on our hardware using the publicly available training code at https://github.com/
MadryLab/cifar10_challenge.

7Runtimes calculated on our hardware using the publicly available training code at https://github.com/
ashafahi/free_adv_train.

8We use the implementation of free adversarial training for ImageNet publicly available at https://github.
com/mahyarnajibi/FreeAdversarialTraining and reran it on the our machines to account for any
timing discrepancies due to differences in hardware
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Table 4.8: Time to train a robust ImageNet classifier using various fast adversarial training meth-
ods

Method Precision Epochs Min/epoch Total time (hrs)

FGSM (phase 1) single 6 22.65 2.27
FGSM (phase 2) single 6 65.97 6.60
FGSM (phase 3) single 3 114.45 5.72

FGSM single 15 - 14.59

Free (m = 4) single 92 34.04 52.20

FGSM (phase 1) mixed 6 20.07 2.01
FGSM (phase 2) mixed 6 53.39 5.34
FGSM (phase 3) mixed 3 95.93 4.80

FGSM mixed 15 - 12.14

Free (m = 4) mixed 92 25.28 38.76

4.2.4 Combining free adversarial training with DAWNBench improvements
on ImageNet

While adding mixed-precision is a direct speedup to free adversarial training without hurting
performance, using other optimization tricks such as the cyclic learning rate schedule, progres-
sive resizing, and batch-norm regularization may affect the final performance of free adversarial
training. Since ImageNet is too large to run a comprehensive search over the various parame-
ters as was done for CIFAR10 in Table 4.6, we instead test the performance of free adversarial
training when used as a drop-in replacement for FGSM adversarial training with all the same
optimizations used for FGSM adversarial training. We use free adversarial training with m = 3
minibatch-replay, with 2 epochs for phase one, 2 epochs for phase two, and 1 epoch for phase
three to be equivalent to 15 epochs of standard training. PGD+N denotes the accuracy under a
PGD adversary with N restarts.

A word of caution: this is not to claim that free adversarial training is completely incompati-
ble with the DAWNBench optimizations on ImageNet. By giving free adversarial training more
epochs, it may be possible recover the same or better performance. However, tuning the DAWN-
Bench techniques to be optimal for free adversarial training is not the objective of this section,
and so this is merely to show what happens if we naively apply the same DAWNBench tricks
used for FGSM adversarial training to free adversarial training. Since free adversarial training
requires more epochs even when tuned with DAWNBench improvements for CIFAR10, we sus-
pect that the same behavior occurs here for ImageNet, and so 15 epochs is likely not enough
to obtain top performance for free adversarial training. Since one epoch of FGSM adversarial
training is equivalent to two epochs of free training, a fairer comparison is to give free adversarial
training 30 epochs instead of 15. Even with double the epochs (and thus the same compute time
as FGSM adversarial training), we find that it gets closer but doesn’t quite recover the original
performance of free adversarial training.
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Table 4.9: ImageNet classifiers trained with free adversarial training methods atm = 3 minibatch
replay when augmented with DAWNBench optimizations, against `∞ perturbations of radius
ε = 4/255, where 30 epochs of free training is equivalent to 15 epochs of FGSM training

Method Step size Epochs Standard acc. PGD+1 PGD+10

Free+DAWNBench 4/255 15 49.87% 22.78% 22.18%
Free+DAWNBench 5/255 15 50.48% 22.88% 22.25%
Free+DAWNBench 4/255 30 49.87% 28.17% 27.08%
Free+DAWNBench 5/255 30 50.48% 28.73% 27.81%

Free (m = 4) 4/255 92 60.42% 31.22% 31.08%
FGSM 5/255 15 55.45% 30.28% 30.18%

4.2.5 Takeaways from FGSM adversarial training
While it may be surprising that FGSM adversarial training can result in robustness to full PGD
adversarial attacks, this work highlights some empirical hypotheses and takeaways which we
describe below.

1. Adversarial examples need to span the entire threat model. One of the reasons why FGSM
and R+FGSM as done by Tramèr et al. [2017] may have failed is due to the restricted nature
of the generated examples: the restricted (or lack of) initialization results in perturbations
which perturb each dimension by either 0 or ±ε, and so adversarial examples with feature
perturbations in between are never seen.

2. Defenders don’t need strong adversaries during training. This work suggests that rough
approximations to the inner optimization problem are sufficient for adversarial training.
This is in contrast to the usage of strong adversaries at evaluation time, where it is standard
practice to use multiple restarts and a large number of PGD steps.

4.3 Adversarial training and robust overfitting
In order to learn networks that are robust to adversarial examples, a commonly used method is
adversarial training, which solves the following robust optimization problem

min
θ

∑
i

max
δ∈∆

`(fθ(xi + δ), yi), (4.1)

where fθ is a network with parameters θ, (xi, yi) is a training example, ` is the loss function, and
∆ is the perturbation set. Typically the perturbation set ∆ is chosen to be an `p-norm ball (e.g.
`2 and `∞ perturbations, which we consider in this paper), such that ∆ = {δ : ||δ||p ≤ ε} for
ε > 0. Adversarial training approximately solves the inner optimization problem, also known as
the robust loss, using some adversarial attack method, typically with projected gradient descent
(PGD), and then updates the model parameters θ using gradient descent [Madry et al., 2017].
For example, an `∞ PGD adversary would start at some random initial perturbation δ(0) and
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Table 4.10: Robust performance showing the occurrence of robust overfitting across datasets and
perturbation threat models. The “best” robust test error is the lowest test error observed during
training. The final robust test error is averaged over the last five epochs. The difference between
final and best robust test error indicates the degradation in robust performance during training.

ROBUST TEST ERROR (%)
DATASET NORM RADIUS FINAL BEST DIFF

SVHN
`∞ 8/255 45.6± 0.40 39.0 6.6
`2 128/255 26.4± 0.27 25.2 1.2

CIFAR10
`∞ 8/255 51.4± 0.41 43.2 8.2
`2 128/255 31.1± 0.46 28.4 2.7

CIFAR100
`∞ 8/255 78.6± 0.39 71.9 6.7
`2 128/255 62.5± 0.09 56.8 5.7

IMAGENET
`∞ 4/255 85.5± 8.87 62.7 22.8
`2 76/255 94.8± 1.16 63.0 31.8

iteratively adjust the perturbation with the following `∞ gradient steps while projecting back
onto the `∞ ball with radius ε:

δ̃ = δ(t) + α · sign∇x`(f(x), y))

δ(t+1) = max(min(δ̃, ε),−ε)
(4.2)

We denote error rates when attacked by a PGD adversary as the “robust error”, and error rates on
the clean, unperturbed data as “standard error”.

4.3.1 Robust overfitting: a general phenomenon for adversarially robust
deep learning

In the standard, non-robust deep learning setting, it is common practice to train for as long as
possible to minimize the training loss, as modern convergence curves for deep learning generally
observe that the testing loss continues to decrease with the training loss. On the contrary, for the
setting of adversarially robust training we make the following discovery:

Unlike the standard setting of deep networks, overfitting for adversarially robust training can
result in worse test set performance.

This phenomenon, which we refer to as “robust overfitting”, results in convergence curves
as shown earlier in Figure 4.1. Although training appears normal in the earlier stages, after the
learning rate decays, the robust test error briefly decreases but begins to increase as training
progresses. This behavior indicates that the optimal performance is not obtained at the end of
training, unlike in standard training for deep networks.

We find that robust overfitting occurs across a variety of datasets, algorithmic approaches,
and perturbation threat models, indicating that it is a general property of the adversarial training
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Figure 4.8: Robust test error over training epochs for various learning rate schedules on CI-
FAR10. None of the alternative smoother learning rate schedules can achieve a peak performance
competitive with the standard piecewise decay learning rate, indicating that the peak performance
is obtained by having a single discrete jump. Note that the multiple decay schedule is actually
run for 500 epochs, but compressed into this plot for a clear comparison.

formulation and not specific to a particular problem, as can be seen in Table 4.10 for `∞ and `2

perturbations on SVHN, CIFAR10, CIFAR100, and ImageNet. A more detailed and expanded
version of this table summarizing the full extent of robust overfitting as well as the corresponding
learning curves for each setting can be found in Section 4.3.4. We consistently find that there
is a significant gap between the best robust test performance during training and the final robust
test performance at the end of training, observing an increase of 8.2% robust error for CIFAR10
and 22.8% robust error for ImageNet against an `∞ adversary, to highlight a few. Robust overfit-
ting is also not specific to PGD-based adversarial training, and affects faster adversarial training
methods such as FGSM adversarial training9 [Wong et al., 2020a] as well as top performing
algorithms for adversarially robust training such as TRADES [Zhang et al., 2019b].

4.3.2 Learning rate schedules and robust overfitting
Since the change in performance appears to be closely linked with the first drop in the scheduled
learning rate decay, we explore how different learning rate schedules affect robust overfitting
on CIFAR10, as shown in Figure 4.8 with a pre-activation ResNet18. Our search begins with a
sweep over a range of different potential schedules which are commonly used in deep learning.
Following this, we tune the best learning rate schedule to investigate its effect on the prevalence
of robust overfitting.

We consider the following types of learning rates for our setting.
1. Piecewise decay: This is a fairly common learning rate used in deep learning, which

decays the learning rate by a constant factor at fixed epochs. We begin with a learning rate
of 0.1 and decay it by a factor of 10 at the 100th and 150th epochs, for 200 total epochs.

2. Multiple decay: This is a more gradual version of the piecewise decay schedule, with

9Wong et al. [2020a] also observe a different form of overfitting specifically for FGSM adversarial training
which they refer to as “catastrophic overfitting”. This is separate behavior from the robust overfitting described in
this paper, and the specifics of this distinction are discussed further in Section 4.3.7.
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a piecewise constant schedule which reduces the learning rate at a linear rate in order to
make the drop in learning rate less drastic. Specifically, the learning rate begins at 0.1 and
is reduced by 0.01 every 50 epochs over 500 total epochs, eventually reaching a learning
rate of 0.01 in the last 50 epochs.

3. Linear decay: This schedule does a linear interpolation of the drop from 0.1 to 0.01,
resulting in a piecewise linear schedule. The learning rate is trained at 0.1 for the first 100
epochs, then linearly reduced down to 0.01 over the next 50 epochs, and further trained at
0.01 for the last 50 epochs for a total of 200 epochs.

4. Cyclic: This schedule grows linearly from 0 to to some maximum learning rate λ, and
then is reduced linearly back to 0 over training as proposed by Smith [2017]. We adopt the
version from Wong et al. [2020a] which already computed the maximum learning rate for
the CIFAR10 setting on the same architecture which peaks 2/5 of the way through training
at a learning rate of 0.2 over 200 epochs.

5. Cosine: This schedule reduces the learning rate using the cosine function to interpolate
from 0.1 to 0 over 200 epochs. This type of schedule was used by Carmon et al. [2019]
when leveraging semi-supervised data augmentation to improve adversarial robustness.

Note that the piecewise decay schedule is the primary learning rate schedule used in this paper.
All of these approaches beyond the standard piecewise decay schedule dampen the initial drop in
robust test error experienced by the piecewise decay schedule. As a result, the best checkpoints
of these alternatives end up with worse performance than the best checkpoint of the piecewise
decay schedule, since all of the learning rates eventually start increasing in robust test error due
to robust overfitting after the initial drop. Robust overfitting appears to be ubiquitous across
different schedules, as most approaches achieve their best checkpoint well before training has
converged.

The cyclic learning rate is the exception here, which has two phases corresponding to when
the learning rate is growing and shrinking, with the best checkpoint occurring near the end of the
second phase. In both phases, the robust performance begins to improve, but then robust overfit-
ting eventually occurs and keeps the model from improving any further. We found that stretching
the cyclic learning rate over a longer number of epochs (e.g. 300) results in a similar learning
curve but with worse robust test error for both the best checkpoint and the final converged model.

In summary, we find that smoother learning rate schedules (which take smaller decay steps
or interpolate the change in learning rate over epochs) simply result in smoother curves that
still exhibit robust overfitting. Furthermore, with each smoother learning rate schedule, the best
robust test performance during training is strictly worse than the best robust test performance
during training with the discrete piecewise decay schedule.

4.3.3 Tuning the piecewise decay learning rates for robust overfitting
Since the piecewise decay schedule appeared to be the most effective method for finding a model
with the best robust performance, we investigate whether this schedule can be potentially tuned
to improve the robust performance of the best checkpoint even further. The discrete piecewise
decay schedule has three possible parameters: the starting learning rate, the ending learning rate,
and the epoch at which the decay takes effect. We omit the last 50 epochs of the final decay, since
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Table 4.11: Tuning experiments using stochastic gradient descent to optimize the best robust test
error obtained from the piecewise decay schedule for a pre-activation ResNet18 on CIFAR-10.

DECAY EPOCH START LR END LR BEST ROB ERR

100 0.1 0.01 46.7%

60

0.1 0.01

47.4%
70 47.3%
80 46.9%
90 47.3%

100

0.06

0.01

47.4%
0.08 46.7%
0.3 48.7%
0.5 51.0%

100 0.1

0.006 46.0%
0.008 46.1%
0.03 47.8%
0.05 49.3%

the bulk of the impact from robust overfitting occurs shortly after the first decay in this setting.
While tuning the starting learning rate and the decay epoch largely results in either similar

or worse performance, we find that adjusting the learning rate used after the decay epoch can
actually slightly improve the robust performance of the best checkpoint by 0.5%, as seen in
Table 4.11. Note that robust overfitting still occurs in these tuned learning rate schedules as seen
in Figures 4.9, 4.10, and 4.11, which show the learning curves for each one of the models shown
in Table 4.11.
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Figure 4.9: Learning curves for a piecewise decay schedule with a modified starting learning
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Figure 4.10: Learning curves for a piecewise decay schedule with a modified ending learning
rate.
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Figure 4.11: Learning curves for a piecewise decay schedule with a modified epoch at which the
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Figure 4.12: Learning curves for training
an SVHN classifier which is adversarially
robust to `∞ perturbations of radius 8/255.
Note that robust overfitting occurs before
the learning rate has decayed, likely due to
the lower initial learning rate.
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Figure 4.13: Learning curves for train-
ing an SVHN classifier which is adversar-
ially robust to `2 perturbations of radius
128/255. Robust overfitting occurs early
here as well, with robust test error increas-
ing after the 9th epoch.

4.3.4 Detailed experimental results for robust overfitting

In this section, we extend Table 4.10 to additionally include standard error and results from
different adversarial training schemes (FGSM and TRADES), as shown in Table 4.12. The final
error is an average over the final 5 epochs of when the model has converged, along with the
standard deviation. The best error is the lowest test error of all model checkpoints during training.
For convenience we also show the difference in the final model’s error and the best model’s error,
which indicates the amount of degradation incurred by robust overfitting.

The remainder of this section contains the experimental details for reproducing these experi-
ments, as well as the learning curves for each experiment as visual evidence of robust overfitting.
We default to using pre-activation ResNet18s for our experiments, with the exception of Wide
ResNets with width factor 10 for `∞ adversaries on CIFAR10 (for a proper comparison to what
is reported for TRADES), and ResNet50s for ImageNet. For CIFAR10 and CIFAR100, we train
with the SGD optimizer using a batch size of 128, a step-wise learning rate decay set initially
at 0.1 and divided by 10 at epochs 100 and 150, and weight decay 5 · 10−4. For SVHN, we
use the same parameters except with a starting learning rate of 0.01 instead. For ImageNet, we
use the same learning configuration used to train the pretrained models and simply run them
for longer epochs and lower learning rates using the publicly released repository available at
https://github.com/madrylab/robustness.

`∞ adversary We consider the `∞ threat model with radius 8/255, with the PGD adversary
taking 10 steps of size 2/255 on all datasets except for ImageNet. For ImageNet, we fine-tune
the pretrained model from https://github.com/madrylab/robustness [Engstrom
et al., 2019] and continue training with the exact same parameters with a learning rate of 0.001,
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Figure 4.14: Learning curves showing ro-
bust overfitting on CIFAR100 for the `∞
perturbation model.
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Figure 4.15: Learning curves showing ro-
bust overfitting on CIFAR100 for the `2 per-
turbation model.

which uses an adversary with 5 steps of size 0.9/255 within a ball of radius 4/255.

`2 adversary We consider the `2 threat model with radius 128/255, with the PGD adversary
taking 10 steps of size 15/255 on all datasets except for ImageNet. For Imagenet, we fine-tune
the pretrained model from https://github.com/madrylab/robustness [Engstrom
et al., 2019] and continue training with the exact same parameters with a learning rate of 0.001,
which uses an adversary with 7 steps of size 0.5 within a ball of radius 3.

4.3.5 Robust overfitting for SVHN and CIFAR100
Figures 4.12 and 4.13 contain the convergence plots for the PGD-based adversarial training ex-
periments on SVHN for `∞ and `2 perturbations respectively. We find that robust overfitting
occurs even earlier on this dataset, before the initial learning rate decay, indicating that the learn-
ing rate threshold at which robust overfitting begins to occur has already been passed. The best
checkpoint for `∞ achieves 39.0% robust error, which is a 6.6% improvement over the 45.6%
robust error achieved at the end of training.

Figures 4.14 and 4.15 contain the convergence plots for the PGD-based adversarial training
experiments on CIFAR100 for `∞ and `2 perturbations respectively. We find that robust over-
fitting on this dataset reflects the CIFAR10 case, occurring after the initial learning rate decay.
Note that in this case, both the robust test accuracy and the standard test accuracy are degraded
from robust overfitting. The best checkpoint for `∞ achieves 71.9% robust error, which is a 6.7%
improvement over the 78.6% robust error achieved at the end of training.

4.3.6 Robust overfitting in ImageNet
Figure 4.16 contains the convergence plots for our continuation of PGD-based adversarial train-
ing experiments on ImageNet for `∞ and `2 perturbations respectively. Thanks to logs provided
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Figure 4.16: Continuation of training released pre-trained ImageNet models for `∞ (top) and `2

(bottom). The number of epochs indicate the number of additional epochs the pre-trained models
were trained for.

by the authors [Engstrom et al., 2019], we know the pretrained `2 robust ImageNet model had
already been trained for 100 epochs at learning rate 0.1 followed by at least 10 epochs at learning
rate 0.01, and so we continue training from there and further decay the learning rate at the 150th
epoch to 0.001. Logs could not be found for the pretrained `∞ model, and so it is unclear how
long it was trained and under what schedule, however the pretrained model checkpoint indicated
that the model had been trained for at least one epochs at learning rate 0.001, so we continue
training from this point on.

The `∞ pre-trained model appeared to have not yet converged for the checkpointed learning
rate, and so further training without any form of learning rate decay was able to gradually deteri-
orate the performance of the model. The `2 pre-trained model seemed to have already converged
at the checkpointed learning rate, and so we do not see any significant changes in performance
until after decaying the learning rate down to 0.001.

Note that the learning curves here are smoothed by taking an average over a consecutive 10
epoch window, as the actual curves are quite noisy in comparison to other datasets. This noise is
reflected in Table 4.12, where ImageNet has the greatest variation in final error rates (both robust
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Figure 4.17: Learning curves showing
robust overfitting from training with an
FGSM adversary on CIFAR10 for the `∞
perturbation model.
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Figure 4.18: Learning curves showing
robust overfitting from training with an
FGSM adversary on CIFAR10 for the `2

perturbation model.

and standard). Training the models further can in fact improve the performance of the pretrained
model slightly at specific checkpoints (e.g. from 66.4% initial robust test error down to 62.7%
robust test error at the best checkpoint for `∞), however eventually the ImageNet models suffer
greatly from robust overfitting, with an average increase of 22.8% robust error for the `∞ model
and 31.8% robust error for the `2 model.

4.3.7 Robust overfitting for FGSM adversarial training

For CIFAR10, in addition to the standard PGD training algorithm, we also consider the FGSM
adversarial training algorithm [Wong et al., 2020a] and TRADES [Zhang et al., 2019c]. The
convergence curves showing that robust overfitting still occurs for these two algorithms in both
the `∞ and `2 setting are shown in Figures 4.17 and 4.18 for FGSM and Figures 4.19 and 4.20
for TRADES.

FGSM adversarial training For FGSM adversarial training, we use the random initialization
described by Wong et al. [2020a]. However, we find that when training until convergence using
the piecewise decay learning rate schedule, the recommended step size of α = 10/255 for `∞
training eventually results in catastrophic overfitting. We resort to reducing the step size of the
`∞ FGSM adversary to 7/255 to avoid catastrophic overfitting, but still see robust overfitting.

We also note that Wong et al. [2020a] use a cyclic learning rate schedule to further boost
the speed of convergence, which differs from the piecewise decay schedule we discuss in this
paper. If we run FGSM adversarial training in a more similar fashion to Wong et al. [2020a]
with the cyclic learning rate and fewer epochs, we find that this can sidestep the robust overfit-
ting phenomenon and converge directly to the best checkpoint at the end of training. However,
this requires a careful selection of the number of epochs: too few epochs and the final model
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Figure 4.19: Learning curves when running TRADES for robustness to `∞ perturbations of
radius 8/255 on combinations of learning rates and architectures for CIFAR10.

underperforms, whereas too many epochs and we observe robust overfitting. In our setting, we
find that training against an FGSM adversary for 50 epochs using a cyclic learning rate with a
maximum learning rate of 0.2 allows us to recover a final robust test error of 53.22%, similar to
the best checkpoint of FGSM adversarial training with piecewise decay and 200 epochs which
achieved 53.7% robust test error in Table 4.12.

Relation of robust overfitting to catastrophic overfitting Previous work studying the effec-
tiveness of an FGSM adversary for robust training noted that it is necessary to prevent “catas-
trophic overfitting” in order for FGSM training to be successful, which can be avoided by evalu-
ating a PGD adversary on a training minibatch [Wong et al., 2020a]. Here we note that this is a
distinct and separate behavior from robust overfitting: while catastrophic overfitting is a product
of a model overfitting to a weaker adversary and can be detected by a stronger adversary on the
training set, robust overfitting is a degradation of robust test set performance under the same
adversary used during training which cannot be detected on the training set. Indeed, even suc-
cessful FGSM adversarial training can suffer from robust overfitting when given enough epochs
without catastrophically overfitting, as shown in Figure 4.17, suggesting that this is related to the
generalization properties of adversarially robust training rather than the strength of the adversary.
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Figure 4.20: Learning curves when running TRADES for robustness to `2 perturbations of radius
128/255 for CIFAR10.

4.3.8 Robust overfitting for TRADES

For TRADES we use the publicly released implementation of both the defense and attack avail-
able at https://github.com/yaodongyu/TRADES to remove the potential for any con-
founding factors resulting from differences in implementation. We consider two possible options
for learning rate schedules: the default schedule used by TRADES which decays at 75 and 90
epochs and runs for 100 epochs total (denoted TRADES learning rate),10 and the standard learn-
ing rate schedule used by Madry et al. [2017] for PGD adversarial training, which decays at 100
epochs and 150 epochs. We additionally explore both the pre-activation ResNet18 architecture
that we use extensively in this paper, as well as the Wide ResNet architecture which TRADES
uses. The corresponding learning curves for each combination of learning rate and model can be
found in Figure 4.19 for `∞.

We note that in three of the four cases, we see a clear instance of robust overfitting. Only the
default learning rate schedule used by TRADES on the smaller, pre-activation ResNet18 model
doesn’t indicate any degradation in robust test set performance. This is likely due the shortened
learning rate schedule which implicitly early stops combined with the regularization induced by
a smaller architecture having less representational power. The results here are consistent with our
earlier findings on the impact of architecture size, where the Wide ResNet architecture achieves
better performance than the ResNet18. The shortened TRADES learning rate schedule does not
show the full extent of robust overfitting, as the models have not yet converged, whereas the
Madry learning rate does (and also achieves a slightly better best checkpoint).

Figure 4.20 shows a corresponding curve for `2 robustness using TRADES for the pre-
activation ResNet18 model with the Madry learning rate, which was the optimal combination
from `∞ training. Note that the TRADES repository does not provide default training param-

10This is the learning rate schedule described in the paper by Zhang et al. [2019b]. Note that this differs slightly
from the implementation in the TRADES repository, which uses the same schedule but only trains for 76 epochs,
which is one more epoch after decaying. In our reproduction of the TRADES experiment, the checkpoint after the
initial learning rate decay ends up with the best test performance over all 100 epochs.
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Figure 4.21: Learning curves for a CIFAR10 pre-activation ResNet18 model trained with a hold-
out validation set of 1,000 examples. We find that the hold-out validation set is enough to reflect
the test set performance, and stopping based on the validation set is able to prevent overfitting
and recover 46.9% robust test error, in comparison to 46.7% achieved by the best-performing
model checkpoint.

eters or a PGD adversary for `2 training on CIFAR-10 nor could we find any such description
in the corresponding paper, and so we used our attack parameters which were successful for
PGD-based adversarial training (10 steps of size 15/255).

4.3.9 Mitigating robust overfitting with early stopping

Proper early stopping, an old form of implicit regularization, calculates a metric on a hold-
out validation set to determine when to stop training in order to prevent overfitting. Since the
test performance does not monotonically improve during adversarially robust training due to
robust overfitting, it is advantageous for robust networks to use early stopping to achieve the best
possible robust performance.

We find that, for example, the TRADES approach relies heavily on using the best robust
performance on the test set from an earlier checkpoint in order to achieve their top reported result
of 43.4% robust error against an `∞ PGD adversary with radius 8/255 on CIFAR10, a number
which is typically viewed as a substantial algorithmic improvement in adversarial robustness over
standard PGD-based adversarial training. In our own reproduction of the TRADES experiment,
we confirm that allowing the TRADES algorithm to train until convergence results in significant
degradation of robust performance as seen in Figure 4.19. Specifically, the robust test error of
the model at the checkpoint with the best performance on the test set is 44.1% whereas the robust
test error of the model at the end of training has increased to 50.6%.11

Surprisingly, when we early stop vanilla PGD-based adversarial training, selecting the model
checkpoint with the best performance on the test set, we find that PGD-based adversarial training
performs just as well as more recent algorithmic approaches such as TRADES. Specifically,
when using the same architecture (a Wide ResNet with depth 28 and width factor 10) and the
same 20-step PGD adversary for evaluation used by Zhang et al. [2019b] for TRADES, the model

11We used the public implementation of TRADES available at https://github.com/yaodongyu/
TRADES and simply ran it to completion using the same learning rate decay schedule used by Madry et al. [2017].
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checkpoint with the best performance on the test set from vanilla PGD-based adversarial training
achieves 42.3% robust test error, which is actually slightly better than the best reported result for
TRADES from Zhang et al. [2019b].12

Similarly, we find early stopping to be a factor in the robust test performance for publicly
released pre-trained ImageNet models [Engstrom et al., 2019]. Continuing to train these models
degrades the robust test performance from 62.7% to 85.5% robust test error for `∞ robustness at
ε = 4/255 and 63.0% to 94.8% robust test error for `2 robustness at ε = 128/255, as seen in
Section 4.3.6. This shows that these models are also susceptible to robust overfitting and benefit
greatly from early stopping.13

Validation-based early stopping Early stopping based on the test set performance, however,
leaks test set information and goes against the traditional machine learning paradigm. Instead,
we find that it is still possible to recover the best test performance achieved during training with
a true hold-out validation set. By holding out 1,000 examples from the CIFAR10 training set
for validation purposes, we use validation-based early stopping to achieve 46.9% robust error on
the test set without looking at the test set, in comparison to the 46.7% robust error achieved by
the best-performing model checkpoint for a pre-activation ResNet18. The resulting validation
curve during training closely matches the testing curve as seen in Figure 4.21, and suggests that
although robust overfitting degrades the robust test set performance, selecting the best checkpoint
in adversarially robust training for deep networks still does not appear to significantly overfit to
the test set (which has been previously observed in the standard, non-robust setting [Recht et al.,
2018]).

4.3.10 Reconciling double descent curves
Modern generalization curves for deep learning typically show improved test set performance
for increased model complexity beyond data point interpolation in what is known as double
descent [Belkin et al., 2019]. This suggests that overfitting by increasing model complexity using
overparameterized neural networks is beneficial and improves test set performance. However,
this appears to be at odds with the main findings of this paper; since training for longer can also
be viewed as increasing model complexity, the fact that training for longer results in worst test
set performance seems to contradict double descent.

We find that, while increasing either training time or architecture size can be viewed as in-
creasing model complexity, these two approaches actually have separate effects; training for
longer degrades the robust test set performance regardless of architecture size, while increasing
the model architecture size still improves the robust test set performance despite robust overfit-
ting. This was briefly noted by Nakkiran et al. [2019] for the `2 robust setting, and so in this
section we show that this generally holds also in the `∞ robust setting.

For architecture size experiments, we use a Wide ResNet architecture [Zagoruyko and Ko-
modakis, 2016] with depth 28 and varying widths to control the size of the network. For each

12We found that our implementation of the PGD adversary to be slightly more effective, increasing the robust test
error of the TRADES model and the PGD trained model to 45.0% and 43.2% respectively.

13We use the publicly available framework from https://github.com/madrylab/robustness and
continue training checkpoints obtained from the authors using the same learning parameters.
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Figure 4.22: Standard and robust performance on the train and test set across Wide ResNets with
varying width factors.

width tested, we plot the standard and robust performance from the best checkpoint and final
model in Figure 4.22. Learning curves for each width can be found in Figure 4.23. All models
were trained with the same training parameters described in Section 4.4. Mean and standard
deviation of the final model was taken over the last 5 epochs.

From both the generalization curves and the individual convergence plots, we see that no
matter how large the architecture is, the checkpoint which achieves the lowest robust test error
always has higher training robust error than the final model at convergence. We also find that both
the final model at the end of convergence as well as the best checkpoint found during training
all benefit from the increase in architecture size. Consequently, we find that robust overfitting
and double descent can occur at the same time, despite having seemingly opposite effects on the
notion of overfitting.

In contrast to the standard setting, we observe that the double descent occurs well before
robust interpolation of the training data at a width factor of 5, after which the robust test set
performance of the final model continues to improve with even larger architecture sizes. The
network with width factor 20, the largest that we could run on our hardware, achieves 48.8%
robust test error at the end of training and 41.8% robust test error at the best checkpoint. This
marks a further improvement over the more typical choice of width factor 10 which achieves
51.4% robust test error at the end of training and 43.2% robust test error at the best checkpoint.
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Figure 4.23: Learning curves for training Wide ResNets with different width factors.

4.4 Alternative methods to prevent robust overfitting

In this section, we explore whether common methods for combating overfitting in standard train-
ing are successful at mitigating robust overfitting in adversarial training. We run a series of ab-
lation studies on CIFAR10 using classical and modern regularization techniques, yet ultimately
find that no technique performs as well in isolation as early stopping, as shown in Table 4.13.
Unless otherwise stated, we begin each experiment with the standard setup for `∞ PGD-based ad-
versarial training with a 10-step adversary with step size 2/255 using a pre-activation ResNet18
[He et al., 2016b]. All experiments in this section were run with one GeForce RTX 2080ti unless
a Wide ResNet was trained, in which case two GPUs were used.

The final robust and standard errors are an average of over the final 5 epochs of training when
the model has converged, from which the standard deviation is also computed. The one exception
is validation-based early stopping, where the final error is taken from the checkpoint chosen by
the validation set, and consequently does not have a standard deviation. The best robust error
is the lowest test robust error of all checkpoints through training, and the best standard error is
the corresponding standard error which comes from this same checkpoint. For convenience we
also show the difference in the final model’s error and the best model’s error, which indicates the
amount of degradation incurred by robust overfitting.
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Table 4.13: Performance of adversarially robust training over a variety of regularization tech-
niques for PGD-based adversarial training on CIFAR-10 for `∞ with radius 8/255.

ROBUST TEST ERROR (%) STANDARD TEST ERROR (%)
REGULARIZATION METHOD FINAL BEST DIFF FINAL BEST DIFF

EARLY STOPPING W/ VAL 46.9 46.7 0.2 18.2 18.2 0.0
`1 REGULARIZATION 53.0± 0.39 48.6 4.4 15.9± 0.13 15.4 0.5
`2 REGULARIZAITON 51.4± 0.73 46.4 8.8 15.7± 0.21 14.9 0.8
CUTOUT 48.8± 0.79 46.7 2.1 16.8± 0.21 16.4 0.4
MIXUP 49.1± 1.32 46.3 2.8 23.3± 3.04 19.0 4.3
SEMI-SUPERVISED 47.1 40.2 6.9 23.0± 3.82 17.2 5.8

Training procedure and adversary parameters For the experiments in preventing overfit-
ting, we use a PGD adversary with random initialization and 10 steps of step size 2/255. This is
a slightly stronger adversary than considered in Madry et al. [2017] by using 3 additional steps,
and we found the attack to be more effective than the adversary implemented by TRADES,
achieving approximately 1% more PGD error than the TRADES adversary. However, our goal
here is to explore the prevention of robust overfitting, and so it is not necessary to have strongest
possible adversarial attack, and so for our purposes this adversary is good enough (and is known
to be reasonably strong in the `∞ setting). For training, we use the same parameters as used for
the CIFAR-10 experiments in Section 4.3.4 (batch size, learning rate, weight decay, number of
epochs). We primarily use the pre-activation ResNet18 since it is already sufficient for exhibiting
the robust overfitting behavior.

4.4.1 Explicit `1 and `2 regularization
A classical method for preventing overfitting is to add an explicit regularization term to the loss,
penalizing the complexity of the model parameters. Specifically, the term is typically of the form
λΩ(θ), where θ contains the model parameters, Ω(θ) is some regularization penalty, and λ is a
hyperparameter to control the regularization effect. A typical choice for Ω is `p regularization
for p ∈ {1, 2}, where `2 regularization is canonically known as weight decay and commonly
used in standard training of deep networks, and `1 regularization is known to induce sparsity
properties.14

`1 regularization Figure 4.24 shows the training and testing performance of models using
various degrees of `1 regularization. We performed a search over regularization parameters
λ = {5 · 10−6, 5 · 10−5, 5 · 10−4, 5 · 10−3}, and found that both the final checkpoint and the
best checkpoint have an optimal regularization parameter of 5 · 10−5. Note that we only see
robust overfitting at smaller amounts of regularization, since the larger amounts of regularization
actually regularize the model to the point where the performance is being severely hurt. Figure

14Proper parameter regularization only applies the penalty to the weights w of the affine transformations at each
layer, excluding the bias terms and batch normalization parameters.

99



Train

0.2

0.4

0.6

R
ob

us
t e

rr
or

Test

0.50

0.55

0.60

0.65

0.70

10-6 10-5 10-4

0.0

0.2

0.4

0.6

St
an

da
rd

 e
rr

or

10-6 10-5 10-4

0.2

0.3

0.4

0.5

0.6

`1 regularization

Best checkpoint Final model

Figure 4.24: Standard and robust performance on the train and test set using varying degrees of
`1 regularization.
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Figure 4.25: Learning curves for adversarial training using `1 regularization.

4.25 shows the corresponding learning curves for these four models. We see clear robust overfit-
ting for the smaller two options in λ, and find no overfitting but highly regularized models for the
larger two options, to the extent that there is no generalization gap and the training and testing
curves actually appear to match.

`2 regularization Figure 4.26 shows the training and testing performance of models using
various degrees of `2 regularization. We performed a search over regularization parameters λ =
{5 · 10k} for k ∈ {−4,−3,−2,−1, 0} as well as λ = 0.01. Note that 5 · 10−4 is a fairly widely
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Figure 4.26: Standard and robust performance on the train and test set using varying degrees of
`2 regularization.
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Figure 4.27: Learning curves for adversarial training using `2 regularization.

101



used value for weight decay in deep learning. We find that only the smallest choices for λ result
in robust overfitting (e.g. λ ≤ 0.1, with the best `2 regularizer achieving 55.2% robust test
error with parameter λ = 5 · 10−2. However, inspecting the corresponding learning curves in
Figure 4.27 reveals that the larger choices for λ have a similar behavior to the larger forms of
`1 regularization, and end up with highly regularized models whose test performance perfectly
matches the training performance at the cost of converging to a worse final robust test error.

In general, although explicit regularization does improve the performance to some degree,
on its own, it is still not as effective as early stopping. Neither of these regularization tech-
niques can completely remove the detrimental effects of robust overfitting without drastically
over-regularizing the model
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Figure 4.28: Standard and robust performance on the train and test set for varying cutout patch
lengths.

4.4.2 Data augmentation for deep learning with Cutout and Mixup
Data augmentation has been empirically shown to reduce overfitting in modern deep learning
tasks that involve very high-dimensional data by enhancing the quantity and diversity of the
training data. Such techniques range from simple augmentations like random cropping and hor-
izontal flipping, with more recent techniques such as cutout [DeVries and Taylor, 2017] and
mixup [Zhang et al., 2017], all of which are known to reduce overfitting and improve generaliza-
tion in the standard training setting. We scan a range of hyperparameters for these approaches
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Figure 4.29: Learning curves for adversarial training using cutout data augmentation with differ-
ent cutout patch lengths.

when applicable, and find a similar story to that of explicit `p regularization; either the regular-
ization effect of cutout and mixup is too low to prevent robust overfitting, or too high and the
model is over-regularized. When trained to convergence, neither cutout nor mixup is as effective
as early stopping, achieving at best 48.8% robust test error for cutout with a patch length of 14
and 49.1% robust test error for mixup with α = 1.4.15

Cutout To analyze the effect of cutout on generalization, we range the cutout hyperparameter
of patch length from 2 to 20. Figure 4.28 shows the training and testing performance of models
using varying choices of patch lengths. Additionally, for each hyperparameter choice, we plot
the resulting learning curves in Figure 4.29.

We find the optimal length of cutout patches to be 14, which on it’s own is not quite as good as
vanilla early stopping, but when combined with early stopping merely matches the performance
of vanilla early stopping. In all cases, we observe robust overfitting to steadily degrade the robust
test performance throughout training, with less of an effect as we increase the cutout patch length.

15We used the public implementations of cutout and mixup available at https://github.com/
davidcpage/cifar10-fast and https://github.com/facebookresearch/mixup-cifar10
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Figure 4.30: Standard and robust performance on the train and test set for varying degrees of
mixup.

Mixup When training using mixup, we vary the hyperparameter α from 0.2 to 2.0. The training
and testing performance of models using varying degrees of mixup can be found in Figure 4.30.
The resulting learning curves for each choice of α can be found in Figure 4.31.

For mixup, we find an optimal parameter value of α = 1.4. Similar to cutout, when combined
with early stopping, it can only attain similar performance to vanilla early stopping, and other-
wise converges to a worse model. However, although the learning curves for mixup training are
significantly noisier than other methods, we do observe the robust test error to steadily decrease
over training, indicating that mixup does stop robust overfitting to some degree (but does not
obtain significantly better performance).

4.4.3 Robust overfitting and semi-supervised learning

Some work has argued that robust deep learning requires more data then standard deep learn-
ing [Schmidt et al., 2018], and recent work has leveraged unlabeled data with semi-supervised
learning techniques to make substantial improvements on adversarial robustness benchmarks.
We consider a self-supervised data augmentation technique [Alayrac et al., 2019, Carmon et al.,
2019, Zhai et al., 2019] which uses a standard classifier to label unlabeled data for use in robust
training.

For semi-supervised training, we use a batch size of 128 with equal parts labeled CIFAR-10
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Figure 4.31: Learning curves for adversarial training using mixup with different choices of hy-
perparameter α.

data and pseudo-labeled TinyImages data, as recommended by Carmon et al. [2019]. Each epoch
of training is now equivalent in computation to two epochs of standard adversarial training. Note
that the pre-activation ResNet18 is a smaller architecture than used by Carmon et al. [2019], and
so in our reproduction, the best checkpoint which achieves 40.2% error is about 2% higher than
38.5%, which is what Carmon et al. [2019] can achieve with a Wide ResNet. Note that in the
typical adversarially robust setting without additional semi-supervised data, a Wide ResNet can
achieve about 3.5% lower error than a pre-activation ResNet18.

Although there is a large gap between best and final robust performance shown in Table 4.13,
we find that this is primarily driven by high variance in the robust test error during training rather
than from robust overfitting, even when the model has converged as seen in Figure 4.32. In fact,
we observe that the semi-supervised approach does not exhibit severe robust overfitting, as the
smoothed learning curves don’t show significant increases in robust test error.

However, relative to the base setting of using only the original dataset, the robust test perfor-
mance is extremely variable, with a range spanning almost 10% robust error even when training
error is relatively flat and has converged. Due to this variance, the final model’s average robust
performance of 47.1% robust test error is similar to the performance obtained by early stop-
ping. By combining early stopping with semi-supervised data augmentation, this variance can
be avoided. In fact, we find that the combination of early stopping and semi-supervised data aug-
mentation is the only method that results in significant improvement over early stopping alone,
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Figure 4.32: Learning curves for robust training with semi-supervised data augmentation, where
we do not see a severe case of robust overfitting. When robust training error has converged,
there is a significant amount of variance in the robust test error, so the average final model
performance is on par with pure early stopping. Combining early stopping with semi-supervised
data augmentation to avoid this variance is the only method we find that significantly improves
on pure early stopping, reaching 40.2% robust test error.

resulting in 40.2% robust test error.16

4.5 Discussion

In this chapter, we presented two unexpected properties of robust learning. First, that FGSM
adversarial training, when used with random initialization, can in fact be just as effective as the
more costly PGD adversarial training. While a single iteration of FGSM adversarial training is
double the cost of free adversarial training, it converges significantly faster, especially with a
cyclic learning rate schedule. As a result, we are able to learn adversarially robust classifiers
for CIFAR10 in minutes and for ImageNet in hours, even faster than free adversarial training
but with comparable levels of robustness. By demonstrating that extremely weak adversarial
training is capable of learning robust models, this work also exposes a new potential direction
in more rigorously explaining when approximate solutions to the inner optimization problem are
sufficient for robust optimization, and when they fail.

Second, unlike in standard training, overfitting in robust adversarial training decays test set
performance during training in a wide variety of settings. While overfitting with larger architec-
ture sizes results in better test set generalization, it does not reduce the effect of robust overfitting.
Our extensive suite of experiments testing the effect of implicit and explicit regularization meth-
ods on preventing overfitting found that most of these techniques tend to over-regularize the
model or do not prevent robust overfitting, and all of them in isolation do not improve upon early

16We used the data from https://github.com/yaircarmon/semisup-adv containing 500K pseudo-
labeled TinyImages
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stopping.
These findings have both practical and theoretical takeaways for the robust learning problem.

By leveraging cheaper adversaries and early stopping, robust training time can be significantly re-
duced, accelerating research in learning models which are resistant to adversarial attacks and ex-
panding the applicability of robust learning to larger domains. Indeed, this chapter re-establishes
the competitiveness of the simplest adversarial training baseline, performing as well as state-of-
the-art while being computationally fast. However, due to the prevalence of robust overfitting in
adversarial training, validation sets should be used when performing model selection with early
stopping. This overfitting behavior is a stark difference in generalization properties between
standard and robust training, which is not fully explained by either classic statistics or modern
deep learning.
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Chapter 5

Threat models for adversarial robustness

While both provable defense and adversarial training can provide guaranteed and empirical ro-
bustness, both approaches depend crucially on having a well defined threat model. Afterall, a
mathematically defined threat model is necessary in order to calculate bounds on the output of a
network for provable defenses, and is also necessary to define the projection set of a PGD adver-
sary in adversarial training. This also highlights the importance of having a well-defined threat
model when researching adversarial examples: a well-defined threat model allows for meaning-
ful measurements of robustness (e.g. by varying the strength of the adversary) while allowing
for adversarial defenses to measure progress, both of which have been taken for granted in the `p
setting that has been studied so far.

However, defining a meaningful threat model is not so trivial a task. The threat model needs
to be large enough to contain meaningful variations in the input, and yet not be too large so as to
contain irrelevant perturbations. This may be why formally defined alternative threat models for
adversarial examples beyond the `p norm has been limited to fairly simple threat models such as
image rotations and translations [Engstrom et al., 2017]. For example, although Xiao et al. [2018]
study adversarial distortions of a images, the threat model does not have a natural parameter to
control the complexity of the distortion, making it difficult to measure robustness at various
thresholds or constrain the power of the adversary to reasonable levels. Similarly, adversarial
examples in natural language need to first determine what a natural language perturbation is, as
small `p norms do not apply as obviously in the discrete setting. Although provable defenses can
leverage well-defined threat models from word substitutions [Jia et al., 2019], these are relatively
simple threat models for language and it is unclear how to define a proper threat model which
captures complex similarities in semantics and syntax [Alzantot et al., 2018].

Adversarial examples in the real world are often the least well-defined and furthest away from
a small `p ball. Often they have to invent their own threat models and qualitatively evaluate them
in a non-rigorous way, as the `p setting often doesn’t apply under real conditions. For example,
there is no obvious way to mathematically characterize the threat model induced by adversarial
graffiti on traffic signs [Eykholt et al., 2018], or to define a restricted set of adversarial textures on
3D objects [Athalye et al., 2018b]. Sharif et al. [2016] generated their adversarial eyeglasses with
restricted `p norm, and further restricted their adversarial glasses to those that looked “realistic”,
where Amazon Turk workers chose what glasses looked realistic. It is near impossible to even
think about building a reasonable provable defense or adversarial training procedure on top of
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a type of threat model defined by Amazon Turk workers. To extend the field of adversarial
examples beyond the well-studied `p norm-bounded ball and make adversarial robustness more
applicable and meaningful, in this chapter we propose two types of alternative adversarial threat
models. One threat model differs fundamentally from the `p ball by incorporating structure into
the perturbation, while the other defines a new threat model based on the union of existing threat
models to generalize beyond a single perturbation.

First, we propose an attack model where the perturbed examples are bounded in Wasserstein
distance from the original example. This distance can be intuitively understood for images as the
cost of moving around pixel mass to move from one image to another, and has seen applications
throughout machine learning including image classification [Snow et al., 2016] as well as image
synthesis and restoration problems [Tartavel et al., 2016]. The traditional notion of Wasserstein
distance has the drawback of being computationally expensive: computing a single distance
involves solving an optimal transport problem (a linear program) with a number of variables
quadratic in the dimension of the inputs. However, it was shown that by subtracting an entropy
regularization term, one can compute approximate Wasserstein distances extremely quickly using
the Sinkhorn iteration [Cuturi, 2013], which was later proven to converge in near-linear time
[Altschuler et al., 2017].

Note that the Wasserstein ball and the `p ball can be quite different in their allowable per-
turbations: examples that are close in Wasserstein distance can be quite far in `p distance, and
vice versa (a pedagogical example demonstrating this is in Figure 5.1). Crucially, this distance
captures more “natural”, semantically meaningful image perturbations such as translations, rota-
tions, and distortions, and defining this threat model can be seen as a step towards building better
adversarial defenses.

In order to generate Wasserstein adversarial examples, we use a PGD adversary which in-
volves computing a projection operator onto the Wasserstein ball. To solve this projection prob-
lem, we leverage a similar entropy regularization term as done by the original Sinkhorn iteration
[Cuturi, 2013] and derive a dual block coordinate ascent algorithm, which converges quickly
and efficiently. To make the approach efficient and practical for high dimensional images, we
leverage convolutional-style transport plans, resulting in a rapid Wasserstein adversarial attack
which produces semantically meaningful adversarial perturbations that move mass around the
boundaries of the objects in the image.

Relevant but orthogonal to this work, is that of Sinha et al. [2018b] on achieving distributional
robustness using the Wasserstein distance. While we both use the Wasserstein distance in the
context of learning robust networks, the setting and approach is quite different: Sinha et al.
[2018b] use the Wasserstein distance to perturb the underlying data distribution, whereas we use
the Wasserstein distance as an attack model for perturbing each example.

In the second half of this chapter, we study the problem of learning an classifier which is
robust against the union of multiple threat models. This can be seen as the next natural step to-
wards learning human-level classifiers, which are robust to many different types of perturbations.
To solve this problem, Schott et al. [2019] used multiple variational autoencoders to construct a
complex architecture for the MNIST dataset that is not as easily attacked by `∞, `2, and `0 ad-
versaries. However the comparison to the PGD adversary baseline is not quite fair, as they only
compare to a model trained against an `∞-bounded PGD adversary as described by Madry et al.
[2017]. While not studied as a defense, Kang et al. [2019] study the transferability of adversarial
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Figure 5.1: A minimal example exemplifying the difference between Wasserstein perturbations
and `∞ perturbations on an image with six pixels. The top example utilizes a perturbation ∆W

to shift the image one pixel to the right, which is small with respect to Wasserstein distance
since each pixel moved a minimal amount, but large with respect to `∞ distance since each pixel
changed a maximal amount. In contrast, the bottom example utilizes a perturbation ∆∞ which
changes all pixels to be grayer. This is small with respect to `∞ distance, since each pixel changes
by a small amount, but large with respect to Wasserstein distance, since the mass on each pixel
on the left had to move halfway across the image to the right.

robustness between models trained against different threat models, finding that robustness against
one perturbation type may even hurt another perturbation type. It is possible to have a provable
defense against all `p norms for p ≥ 1 simultaneously using a regularization term, however it
suffers from looseness in the bound [Croce and Hein, 2019b]. Finally, Tramèr and Boneh [2019]
concurrently studied the theoretical and empirical trade-offs of adversarial robustness in various
settings when defending against two adversaries at a time for CIFAR10, and is most similar to
our work but in a more limited setting against weaker adversaries.

We find that it is indeed possible to learn a model which is simultaneously robust to a union
of threat models with adversarial training. Although we find that simple generalizations of adver-
sarial training to multiple threat models can already achieve some degree of robustness against
the union, the training procedure may not find the optimal balance between different threat mod-
els and converge to a poor local optima. We find that a slightly modified PGD-based algorithm
called multi steepest descent (MSD) can help improve adversarial training in this regime. The
approach more naturally incorporates the different perturbation sets within the PGD iterates, al-
lowing us to further improve the empirical performance of adversarial training against the union
over the simple baselines, and the robustness results have been externally validated by other work
[Stutz et al., 2019].

5.1 Wasserstein adversarial examples
The crux of the work in this section relies on offering a fundamentally different type of adversar-
ial example from typical, `p perturbations: the Wasserstein adversarial example.

5.1.1 Wasserstein distance
The Wasserstein distance (also referred to as the Earth mover’s distance) is an optimal transport
problem that can be intuitively understood in the context of distributions as the minimum cost of
moving probability mass to change one distribution into another. When applied to images, this
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Figure 5.2: A comparison of a Wasserstein (top) vs an `∞ (bottom) adversarial example for an
MNIST classifier (for ε = 0.4 and 0.3 respectively), showing the original image (left), the added
perturbation (middle), and the final perturbed image (right). We find that the Wasserstein pertur-
bation has a structure reflecting the actual content of the image, whereas the `∞ perturbation also
attacks the background pixels.

can be interpreted as the cost of moving pixel mass from one pixel to another another, where the
cost increases with distance.

More specifically, let x, y ∈ Rn
+ be two non-negative data points such that

∑
i xi =

∑
j yj =

1, so images and other inputs need to be normalized, and let C ∈ Rn×n
+ be some non-negative

cost matrix where Cij encodes the cost of moving mass from xi to yj . Then, the Wasserstein
distance dW between x and y is defined to be

dW(x, y) = min
Π∈Rn×n+

〈Π, C〉

subject to Π1 = x, ΠT1 = y
(5.1)

where the minimization over transport plans Π, whose entries Πij encode how the mass moves
from xi to yj . Then, we can define the Wasserstein ball with radius ε as

BW(x, ε) = {x+ ∆ : dW(x, x+ ∆) ≤ ε} (5.2)

5.1.2 Projection onto the Wasserstein ball with entropy regularization

In order to generate Wasserstein adversarial examples, we can run the projected gradient descent
attack from Chapter 2, dropping in the Wasserstein ball BW from Equation (5.2) in place of B.
However, while projections onto regions such as `∞ and `2 balls are straightforward and have
closed form computations, simply computing the Wasserstein distance itself requires solving an
optimization problem. Thus, the first natural requirement to generating Wasserstein adversarial
examples is to derive an efficient way to project examples onto a Wasserstein ball of radius ε.
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Specifically, projecting w onto the Wasserstein ball around x with radius ε and transport cost
matrix C can be written as solving the following optimization problem:

minimize
z∈Rn+,Π∈R

n×n
+

1

2
‖w − z‖2

2

subject to Π1 = x, ΠT1 = z

〈Π, C〉 ≤ ε

(5.3)

While we could directly solve this optimization problem (using an off-the-shelf quadratic pro-
gramming solver), this is prohibitively expensive to do for every iteration of projected gradi-
ent descent, especially since there is a quadratic number of variables. However, Cuturi [2013]
showed that the standard Wasserstein distance problem from Equation (5.1) can be approximately
solved efficiently by subtracting an entropy regularization term on the transport plan W , and us-
ing the Sinkhorn-Knopp matrix scaling algorithm. Motivated by these results, instead of solving
the projection problem in Equation (5.3) exactly, the key contribution that allows us to do the
projection efficiently is to instead solve the following entropy-regularized projection problem:

minimize
z∈Rn+,Π∈R

n×n
+

1

2
‖w − z‖2

2 +
1

λ

∑
ij

Πij log(Πij)

subject to Π1 = x, ΠT1 = z

〈Π, C〉 ≤ ε.

(5.4)

Although this is an approximate projection onto the Wasserstein ball, importantly, the looseness
in the approximation is only in finding the projection z which is closest (in `2 norm) to the
original example x. All feasible points, including the optimal solution, are still within the actual
ε-Wasserstein ball, so examples generated using the approximate projection are still within the
Wasserstein threat model.

5.1.3 The dual of entropy regularized projections onto Wasserstein balls

Using the method of Lagrange multipliers, we can introduce dual variables (α, β, ψ) and derive
an equivalent dual problem in Lemma 2.
Lemma 2. The dual of the entropy-regularized Wasserstein projection problem in Equation (5.4)
is

maximize
α,β∈Rn,ψ∈R+

g(α, β, ψ) (5.5)

where

g(α, β, ψ) =− 1

2λ
‖β‖2

2 − ψε+ αTx+ βTw

−
∑
ij

exp(αi) exp(−ψCij − 1) exp(βj)
(5.6)
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Proof. For convenience, we multiply the objective by λ and solve this problem instead:

minimize
z∈Rn+,Π∈R

n×n
+

λ

2
‖w − z‖2

2 +
∑
ij

Πij log(Πij)

subject to Π1 = x

ΠT1 = z

〈Π, C〉 ≤ ε.

(5.7)

Introducing dual variables (α, β, ψ) where ψ ≥ 0, the Lagrangian is

L(z,Π, α, β, ψ)

=
λ

2
‖w − z‖2

2 +
∑
ij

Πij log(Πij) + ψ(〈Π, C〉 − ε)

+ αT (x− Π1) + βT (z − ΠT1).

(5.8)

The KKT optimality conditions are now
∂L

∂Πij

= ψCij + (1 + log(Πij))− αi − βj = 0

∂L

∂zj
= λ(zj − wj) + βj = 0

(5.9)

so at optimality, we must have

Πij = exp(αi) exp(−ψCij − 1) exp(βj)

z = −β
λ

+ w
(5.10)

Plugging in the optimality conditions, we get

L(z∗,Π∗, α, β, ψ)

=− 1

2λ
‖β‖2

2 − ψε+ αTx+ βTw

−
∑
ij

exp(αi) exp(−ψCij − 1) exp(βj)

=g(α, β, ψ)

(5.11)

so the dual problem is to maximize g over α, β, ψ ≥ 0.

Once we have solved the dual problem, we can recover the primal solution (to get the actual
projection), which is described in Lemma 3.
Lemma 3. Suppose α∗, β∗, ψ∗ maximize the dual problem g in Equation (5.6). Then,

z∗i = wi − βi/λ
Π∗ij = exp(α∗i ) exp(−ψ∗Cij − 1) exp(β∗j )

(5.12)

are the corresponding solutions that minimize the primal problem in Equation (5.4).

Proof. These equations follow directly from the KKT optimality conditions from Equation (5.10).
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5.1.4 Projected Sinkhorn iteration to solve the dual
Note that the dual problem here differs from the traditional dual problem for Sinkhorn iterates
by having an additional quadratic term on β and an additional dual variable ψ. Nonetheless, we
can still derive a Sinkhorn-like algorithm by performing block coordinate ascent over the dual
variables. Note that since this is a strictly convex problem, to get the α and β iterates we can set
the gradient to 0 and solve for α and β. Specifically, the derivative with respect to α is

∂g

∂αi
= xi − exp(αi)

∑
j

exp(−ψCij − 1) exp(βj) (5.13)

and so setting this to 0 and solving for αi gives the following α iterate.

arg max
αi

g(α, β, ψ) = log (xi)− log

(∑
j

exp(−ψCij − 1) exp(βj)

)
, (5.14)

which is identical (up to a log transformation of variables) to the original Sinkhorn iterate pro-
posed in Cuturi [2013]. Similarly, the derivative with respect to β is

∂g

∂βj
= −1

λ
β + w − exp(βj)

∑
i

exp(αi) exp(−ψCij − 1) (5.15)

and setting this to 0 and solving for βj gives the β iterate (this step can be done analytically using
a symbolic solver, we used Mathematica):

arg max
βj

g(α, β, ψ) = λwj −W

(
λ exp(λwj)

∑
i

exp(αi) exp(−ψCij − 1)

)
(5.16)

where W is the Lambert W function, which is defined as the inverse of f(x) = xex. Finally,
since ψ cannot be solved for analytically, we can perform the following Newton step

ψ′ = ψ − t · ∂g/∂ψ
∂2g/∂ψ2

(5.17)

where

∂g/∂ψ = −ε+
∑
ij

exp(αi)Cij exp(−ψCij) exp(βj)

∂2g/∂ψ2 = −
∑
ij

exp(αi)C
2
ij exp(−ψCij) exp(βj)

(5.18)

and where t is small enough such that ψ′ ≥ 0.
The whole algorithm can then be vectorized and implemented as Algorithm 8, which we

call projected Sinkhorn iterates. The algorithm uses a simple line search to ensure that the con-
straint ψ ≥ 0 is not violated. Each iteration has 8 O(n2) operations (matrix-vector product or
matrix-matrix element-wise product), in comparison to the original Sinkhorn iteration which has
2 matrix-vector products.
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Algorithm 8 Projected Sinkhorn iteration to project x onto the ε Wasserstein ball around y. We
use · to denote element-wise multiplication. The log and exp operators also apply element-wise.

input: x,w ∈ Rn, C ∈ Cn×n, λ ∈ R
Initialize αi, βi := log(1/n) for i = 1, . . . , n and ψ := 1
u, v := exp(α), exp(β)
while α, β, ψ not converged do

// update K
Kψ := exp(−ψC − 1)

// block coordinate descent iterates
α := log(x)− log(Kψv)
u := exp(α)
β := λw −W

(
uTKψ · λ exp(λw)

)
v := exp(β)

// Newton step
g := −ε+ uT (C ·Kψ)v
h := −uT (C · C ·Kψ)v

// ensure ψ ≥ 0
α := 1
while ψ − αg/h < 0 do
α := α/2

end while
ψ := ψ − αg/h

end while
return: w − β/λ

Matrix scaling interpretation The original Sinkhorn iteration has a natural interpretation as
a matrix scaling algorithm, iteratively rescaling the rows and columns of a matrix to achieve the
target distributions. To see how the Projected Sinkhorn iteration is also a (modified) matrix scal-
ing algorithm, we can interpret certain quantities before optimality as primal iterates. Namely, at
each iteration t, let

z
(t)
i = wi − β(t)

i /λ

Π
(t)
ij = exp(α(t)) exp(−ψ(t)Cij − 1) exp(β(t))

(5.19)

Then, since the α and β steps are equivalent to setting Equations (5.13) and (5.15) to 0, we know
that after an update for α(t), we have that

xi =
∑
j

Π
(t)
ij (5.20)
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so the α step rescales the transport matrix to sum to x. Similarly, after an update for β(t), we
have that

z
(t)
i =

∑
i

Π
(t)
ij (5.21)

which is a rescaling of the transport matrix to sum to the projected value. Lastly, the numerator
of the ψ(t) step can be rewritten as

ψ(t+1) = ψ(t) + t · 〈Π
(t), C〉 − ε

〈Π(t), C · C〉
(5.22)

as a simple adjustment based on whether the current transport plan Π(t) is above or below the
maximum threshold ε.

5.1.5 Local transport plans
The quadratic runtime dependence on input dimension can grow quickly, and this is especially
true for images. Rather than allowing transport plans to move mass to and from any pair of pixels,
we instead restrict the transport plan to move mass only within a k × k region of the originating
pixel, similar in spirit to a convolutional filter. As a result, the cost matrix C only needs to define
the cost within a k×k region, and we can utilize tools used for convolutional filters to efficiently
apply the cost to each k× k region. This reduces the computational complexity of each iteration
to O(nk2). For images with more than one channel, we can use the same transport plan for each
channel and only allow transport within a channel, so the cost matrix remains k × k. For 5 × 5
local transport plans on CIFAR10, the projected Sinkhorn iterates typically converge in around
30-40 iterations, taking about 0.02 seconds per iteration on a Titan X for minibatches of size 100.
Note that if we use a cost matrix C that reflects the 1-Wasserstein distance, then this problem
could be solved even more efficiently using Kantrovich duality, however we use this formulation
to enable more general p-Wasserstein distances, or even non-standard cost matrices.

Projected gradient descent on the Wasserstein ball With local transport plans, the method
is fast enough to be used within a projected gradient descent routine to generate adversarial
examples on images, and further used for adversarial training as in Algorithm 5 from Chapter 4
(using steepest descent with respect to `∞ norm), except that we do an approximate projection
onto the Wasserstein ball using Algorithm 8.

5.1.6 Provable defense with conjugate Sinkhorn iteration
Lastly, we present some analysis on how this attack fits into the context of provable defenses,
along with a negative result demonstrating a fundamental gap that needs to be solved. The
Wasserstein attack can be naturally incorporated into duality based defenses: the work from
Chapter 3 of this dissertation shows that to generate certificates which can defend against inputs
other than `p norm, one only needs to solve the following optimization problem:

max
x∈B(x,ε)

−xTy (5.23)
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for some constant y and for some perturbation region B(x, ε) (a similar approach can be taken to
adapt the dual verification from Dvijotham et al. [2018a]). For the Wasserstein ball, this is highly
similar to the problem of projecting onto the Wasserstein ball from Equation (5.4), with a linear
objective instead of a quadratic objective and fewer variables. In fact, a Sinkhorn-like algorithm
can be derived to solve this problem, which ends up being a simplified version of Algorithm 8.

Conjugate Sinkhorn iteration By subtracting the same entropy term to the conjugate objec-
tive from Equation (5.23), we can get a problem similar to that of projecting onto the Wasserstein
ball.

minimize
z∈Rn+,Π∈R

n×n
+

− λzTy +
∑
ij

Πij log(Πij)

subject to Π1 = x

ΠT1 = z

〈Π, C〉 ≤ ε.

(5.24)

where again we’ve multiplied the objective by λ for convenience. Following the same framework
as before, we introduce dual variables (α, β, ψ) where ψ ≥ 0, to construct the Lagrangian as

L(z,Π, α, β, ψ)

=− λzTy +
∑
ij

Πij log(Πij) + ψ(〈Π, C〉 − ε)

+ αT (x− Π1) + βT (z − ΠT1).

(5.25)

Note that since all the terms with Πij are the same, the corresponding KKT optimality condition
for Πij also remains the same. The only part that changes is the optimality condition for z, which
becomes

β = λy (5.26)

Plugging the optimality conditions into the Lagrangian, we get the following dual problem:

L(z∗,Π∗, α, β, ψ)

=− ψε+ αTx

−
∑
ij

exp(αi) exp(−ψCij − 1) exp(βj)

=g(α, ψ)

(5.27)

Finally, if we minimize this with respect to α and ψ we get exactly the same update steps as the
Projected Sinkhorn iteration. Consequently, the Conjugate Sinkhorn iteration is identical to the
Projected Sinkhorn iteration except that we replace the β step with the fixed value β = λy.

Fundamental limitations However, there is a fundamental obstacle towards generating prov-
able certificates against Wasserstein attacks: these defenses (and many other, non-duality based
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Table 5.1: Classification accuracies for models used in the experiments.

DATA SET MODEL NOMINAL ACCURACY

MNIST STANDARD 98.90%
BINARIZE 98.73%
ROBUST 98.20%
ADV. TRAINING 96.95%

CIFAR10 STANDARD 94.70%
ROBUST 66.33%
ADV. TRAINING 80.69%

approaches) depend heavily on propagating interval bounds from the input space through the
network, in order to efficiently bound the output of ReLU units. This concept is inherently at
odds with the notion of Wasserstein distance: a “small” Wasserstein ball can use a low-cost
transport plan to move all the mass at a single pixel to its neighbors, or vice versa. As a result,
when converting a Wasserstein ball to interval constraints, the interval bounds immediately be-
come vacuous: each individual pixel can attain their minimum or maximum value under some
ε cost transport plan. In order to guarantee robustness against Wasserstein adversarial attacks,
significant progress must be made to overcome this limitation.

5.2 Experiments for Wasserstein adversarial examples
In this section, we run the Wasserstein examples through a range of typical experiments in the
literature of adversarial examples. Table 5.1 summarizes the nominal error rates obtained by all
considered models. All experiments can be run on a single GPU, and all code for the experiments
is available at https://github.com/locuslab/projected_sinkhorn.

Architectures For MNIST we used the convolutional ReLU architecture used in Wong and
Kolter [2017], with two convolutional layers with 16 and 32 4×4 filters each, followed by a fully
connected layer with 100 units, which achieves a nominal accuracy of 98.89%. For CIFAR10
we focused on the standard ResNet18 architecture [He et al., 2016a], which achieves a nominal
accuracy of 94.76%.

Hyperparameters For all experiments in this section, we focused on using 5×5 local transport
plans for the Wasserstein ball, and used an entropy regularization constant of 1000 for MNIST
and 3000 for CIFAR10. The cost matrix used for transporting between pixels is taken to be
the 2-norm of the distance in pixel space (e.g. the cost of going from pixel (i, j) to (k, l) is√
|i− j|2 + |k − l|2), which makes the optimal transport cost a metric more formally known as

the 1-Wasserstein distance.

Evaluation at test time We use the follow evaluation procedure to attack models with pro-
jected gradient descent on the Wasserstein ball. For each MNIST example, we start with ε = 0.3
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and increase it by a factor of 1.1 every 10 iterations until either an adversarial example is found
or until 200 iterations have passed, allowing for a maximum perturbation radius of ε = 2. For
CIFAR10, we start with ε = 0.001 and increase it by a factor of 1.17 until either and adversarial
example is found or until 400 iterations have passed, allowing for a maximum perturbation radius
of ε = 0.53.

5.2.1 Wasserstein robustness on MNIST
For MNIST, we consider a standard model, a model with binarization, a model provably robust
to `∞ perturbations of at most ε = 0.1, and an adversarially trained model. We provide a visual
comparison of the Wasserstein adversarial examples generated on each of the four models in
Figure 5.3. The susceptibility of all four models to the Wasserstein attack is plotted in Figure
5.4.

Adaptive ε During adversarial training for MNIST, we adopt an adaptive ε scheme to avoid
selecting a specific ε. Specifically, to find an adversarial example, we first let ε = 0.1 on the first
iteration of projected gradient descent, and increase it by a factor of 1.4 every 5 iterations. We
terminate the projected gradient descent algorithm when either an adversarial example is found,
or when 50 iterations have passed, allowing ε to take on values in the range [0.1, 2.1]

Optimizer hyperparameters To update the model weights during adversarial training, we use
the SGD optimizer with 0.9 momentum and 0.0005 weight decay, and batch sizes of 128. We
begin with a learning rate of 0.1, reduce it to 0.01 after 10 epochs.

Standard model and binarization For MNIST, despite restricting the transport plan to local
5×5 regions, a standard model is easily attacked by Wasserstein adversarial examples. In Figure
5.4, we see that Wasserstein attacks with ε = 0.5 can successfully attack a typical MNIST clas-
sifier 50% of the time, which goes up to 94% for ε = 1. A Wasserstein radius of ε = 0.5 can be
intuitively understood as moving 50% of the pixel mass over by 1 pixel, or alternatively moving
less than 50% of the pixel mass more than 1 pixel. Furthermore, while preprocessing images with
binarization is often seen as a way to trivialize adversarial examples on MNIST, we find that it
performs only marginally better than the standard model against Wasserstein perturbations.

`∞ robust model We also run the attack on the model trained by Wong et al. [2018], which is
guaranteed to be provably robust against `∞ perturbations with ε ≤ 0.1. While not specifically
trained against Wasserstein perturbations, in Figure 5.4 we find that it is substantially more robust
than either the standard or the binarized model, requiring a significantly larger ε to have the same
attack success rate.

Adversarial training Finally, we apply this attack as an inner procedure within an adversarial
training framework for MNIST. To save on computation, during training we adopt a weaker
adversary and use only 50 iterations of projected gradient descent. We also let ε grow within a
range and train on the first adversarial example found (essentially a budget version of the attack
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standard, ε = 0.53

binary, ε = 0.44

`∞ robust, ε = 0.78

adv. training, ε = 0.86

Figure 5.3: Wasserstein adversarial examples on the MNIST dataset for the four different models.
Note that the `∞ robust and the adversarially trained models require a much larger ε radius
for the Wasserstein ball in order to generate an adversarial example. Each model classifies the
corresponding perturbed example as an 8 instead of a 5, except for the first one which classifies
the perturbed example as a 6.

used at test time). We find that the adversarially trained model is empirically the most well
defended against this attack of all four models, and cannot be attacked down to 0% accuracy
(Figure 5.4).

5.2.2 Wasserstein robustness on CIFAR10
For CIFAR10, we consider a standard model, a model provably robust to `∞ perturbations of at
most ε = 2/255, and an adversarially trained model. We plot the susceptibility of each model to
the Wasserstein attack in Figure 5.5.

Adaptive ε We also use an adaptive ε scheme for adversarial training in CIFAR10. Specifically,
we let ε = 0.01 on the first iteration of projected gradient descent, and increase it by a factor of
1.5 every 5 iterations. Similar to MNIST, we terminate the projected gradient descent algorithm
when either an adversarial example is found, or 50 iterations have passed, allowing ε to take on
values in the range [0.01, 0.38].

Optimizer hyperparameters Similar to MNIST, to update the model weights, we use the SGD
optimizer with 0.9 momentum and 0.0005 weight decay, and batch sizes of 128. The learning
rate is also the same as in MNIST, starting at 0.1, and reducing to 0.01 after 10 epochs.

Standard model We find that for a standard ResNet18 CIFAR10 classifier, a perturbation ra-
dius of as little as 0.01 is enough to misclassify 25% of the examples, while a radius of 0.1 is
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Figure 5.4: Adversarial accuracy of various models on MNIST when attacked by a Wasserstein
adversary over varying sizes of ε-Wasserstein balls. We find that all models not trained with
adversarial training against this attack eventually achieve 0% accuracy, however we do observe
that models trained to be provably robust against `∞ perturbations are still somewhat more robust
than standard models, or models utilizing binarization as a defense.
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Figure 5.5: Adversarial accuracy of various models on the CIFAR10 dataset when attacked by
a Wasserstein adversary. We find that the model trained to be robust against `∞ perturbations is
actually more robust than adversarial training.

enough to fool the classifier 97% of the time (Figure 5.5). Despite being such a small ε, we see
in Figure 5.6 that the structure of the perturbations still reflect the actual content of the images,
though certain classes require larger magnitudes of change than others.

`∞ robust model We further empirically evaluate the attack on a model that was trained to be
provably robust against `∞ perturbations. We use the models weights from Wong et al. [2018],
which are trained to be provably robust against `∞ perturbations of at most ε = 2/255. Further
note that this CIFAR10 model actually is a smaller ResNet than the ResNet18 architecture con-
sidered in this paper, and consists of 4 residual blocks with 16, 16, 32, and 64 filters. Nonetheless,
we find that while the model suffers from poor nominal accuracy (achieving only 66% accuracy
on unperturbed examples as noted in Table 5.1), the robustness against `∞ attacks remarkably
seems to transfer quite well to robustness against Wasserstein attacks in the CIFAR10 setting,
achieving 61% adversarial accuracy for ε = 0.1 in comparison to 3% for the standard model.
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Figure 5.6: Wasserstein adversarial examples for CIFAR10 on a typical ResNet18 for all 10
classes. The perturbations here represents the total change across all three channels, where total
change is plotted within the range±0.165 (the maximum total change observed in a single pixel)
for images scaled to [0,1].

Adversarial training We find that adversarial training here is also able to defend against this
attack, and at the same threshold of ε = 0.1, we find that the adversarial accuracy has been
improved from 3% to 76%.

5.2.3 Using adaptive perturbation budgets during adversarial training

A commonly asked question of models trained to be robust against adversarial examples is “what
if the adversary has a perturbation budget of ε+δ instead of ε?” This is referring to a “robustness
cliff,” where a model trained against an ε strong adversary has a sharp drop in robustness when
attacked by an adversary with a slightly larger budget. To address this, we advocate for the
slightly modified version of typical adversarial training used in this work: rather than picking
a fixed ε and running projected gradient descent, we instead allow for an adversarial to have a
range of ε ∈ [εmin, εmax]. To do this, we begin with ε = εmin, and then gradually increase it by a
multiplicative factor γ until either an adversarial example is found or until εmax is reached. While
similar ideas have been used before for evaluating model robustness, we specifically advocate for
using this schema during adversarial training. This has the advantage of extending robustness
of the classifier beyond a single ε threshold, allowing a model to achieve a potentially higher
robustness threshold while not being significantly harmed by “impossible” adversarial examples.
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Figure 5.7: A plot of the adversarial examples generated with different p-Wasserstein metrics
used for the cost matrix C and different regularization parameters λ. Note that when regulariza-
tion is low, the image becomes blurred, and it is harder to find adversarial examples. In contrast,
changing p does not seem to make any significant changes.

5.2.4 Effect of λ and C

We study the effect of entropy hyperparameter λ and the cost matrix C. First, note that λ could
be any positive value. Furthermore, note that to construct C we used the 2-norm which reflects
the 1-Wasserstein metric, but in theory we could use any p-Wasserstein metric, where the the cost
of moving from pixel (i, j) to (k, l) is (|i− j|2 + |k − l|2)

p/2. Figure 5.7 shows the effects of λ
and p on both the adversarial example and the radius at which it was found for varying values of
λ = [1, 10, 100, 500, 1000] and p = [1, 2, 3, 4, 5].

We find that it is important to ensure that λ is large enough, otherwise the projection of the
image is excessively blurred. In addition to qualitative changes, smaller λ seems to make it
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Figure 5.8: Adversarial accuracy of a standard model and a model trained to be provably robust
against `∞ attacks for different sizes of transport plans. In most cases the size of the transport
plan doesn’t seem to matter, except for the 3× 3 local transport plan. In this case, the adversary
isn’t quite able to reach 0% accuracy for the standard model, reaching 2.8% for for ε = 1.83. The
adversary is also unable to attack the robust MNIST model, bottoming out at 41% adversarial
accuracy at ε = 1.83.

harder to find Wasserstein adversarial examples, making the ε radius go up as λ gets smaller.
In fact, for λ = (1, 10) and almost all of λ = 100, the blurring is so severe that no adversarial
example can be found.

In contrast, we find that increasing p for the Wasserstein distance used in the cost matrix C
seems to make the images more “blocky”. Specifically, as p gets higher tested, more pixels seem
to be moved in larger amounts. This seems to counteract the blurring observed for low λ to some
degree. Naturally, the ε radius also grows since the overall cost of the transport plan has gone up.

5.2.5 Size of local transport plan

In this section we explore the effects of different sized transport plans. Although we primarily
used a 5× 5 local transport plan, this could easily be something else, e.g. 3× 3 or 7× 7. We can
see a comparison on the robustness of a standard and the `∞ robust model against these different
sized transport plans in Figure 5.8, using λ = 1000. We observe that while 3 × 3 transport
plans have difficulty attacking the robust MNIST model, all other plan sizes seem to have similar
performance. This is primarily due to the cost matrix C: since the cost of moving pixel mass
scales with the distance in pixel space, transport plans are already biased to be local anyways.
As a result, as long as the local region is large enough to contain the optimal transport plan,
restricting the transport plan to be local does not significantly restrict the Wasserstein adversarial
example.
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5.3 Defending against multiple threat models simultaneously
In this section, we describe adversarial training procedures for obtaining robustness against mul-
tiple threat models. More formally, let S represent a set of threat models, such that p ∈ S
corresponds to the `p perturbation model ∆p,ε, and let ∆S =

⋃
p∈S ∆p,ε be the union of all per-

turbation models in S. Note that the ε chosen for each ball is not typically the same, but we still
use the same notation ε for simplicity, since the context will always make clear which `p-ball we
are talking about. Then, the generalization of the robust optimization problem in Equation (2.7)
to multiple perturbation models is

min
θ

∑
i

max
δ∈∆S

`(xi + δ; θ). (5.28)

The key difference is in the inner maximization, where the worst case adversarial loss is now
taken over multiple `p perturbation models. In order to perform adversarial training, using the
same motivational idea from Danskin’s theorem, we can backpropagate through the inner maxi-
mization by first finding (empirically) the optimal perturbation,

δ∗ = arg max
δ∈∆S

`(x+ δ; θ). (5.29)

To find the optimal perturbation over the union of threat models, we begin by considering
straightforward generalizations of standard adversarial training, which will use PGD to approxi-
mately solve the inner maximization over multiple adversaries.

5.3.1 Simple combinations of multiple perturbations
First, we propose two simple approaches to generalizing adversarial training to multiple threat
models which were concurrently analyzed by Tramèr and Boneh [2019]. These methods already
perform quite well in practice and are competitive with existing, state-of-the-art approaches with-
out relying on complicated architectures, showing that adversarial training can in fact generalize
to multiple threat models.

Worst-case perturbation One way to generalize adversarial training to multiple threat models
is to use each threat model independently, and train on the adversarial perturbation that achieved
the maximum loss. Specifically, for each adversary p ∈ S, we solve the innermost maximization
with an `p PGD adversary to get an approximate worst-case perturbation δp,

δp = arg max
δ∈∆p,ε

`(x+ δ; θ), (5.30)

and then approximate the maximum over all adversaries as

δ∗ ≈ arg max
δp

`(x+ δp; θ). (5.31)

When |S| = 1, then this reduces to standard adversarial training. Note that if each PGD
adversary solved their subproblem from Equation (5.30) exactly, then this is exactly the optimal
perturbation δ?.
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Algorithm 9 Multi steepest descent for learning classifiers that are simultaneously robust to `p
attacks for p ∈ S

Input: classifier fθ, data x, labels y
Parameters: εp, αp for p ∈ S, maximum iterations T , loss function `
δ(0) = 0
for t = 0 . . . T − 1 do

for p ∈ S do
δ

(t+1)
p = P∆p,ε(δ

(t) + vp(δ
(t)))

end for
δ(t+1) = arg max

δ
(t+1)
p

`(fθ(x+ δ
(t+1)
p ), y)

end for
return δ(T )

PGD augmentation with all perturbations Another way to generalize adversarial training is
to train on all the adversarial perturbations for all p ∈ S to form a larger adversarial dataset.
Specifically, instead of solving the robust problem for multiple adversaries in Equation (5.28),
we instead solve

min
θ

∑
i

∑
p∈S

max
δ∈∆p,ε

`(xi + δ; θ) (5.32)

by using individual `p PGD adversaries to approximate the inner maximization for each threat
model. Again, this reduces to standard adversarial training when |S| = 1.

While these methods work quite well in practice (which is shown later in Section 5.4), both
approaches solve the inner maximization problem independently for each adversary, so each
individual PGD adversary is not taking advantage of the fact that the perturbation region is en-
larged by other threat models. To take advantage of the full perturbation region, we propose a
modification to standard adversarial training, which combines information from all considered
threat models into a single PGD adversary that is potentially stronger than the combination of
independent adversaries.

5.3.2 Multi steepest descent
To create a PGD adversary with full knowledge of the perturbation region, we propose an algo-
rithm that incorporates the different threat models within each step of projected steepest descent.
Rather than generating adversarial examples for each threat model with separate PGD adver-
saries, the core idea is to create a single adversarial perturbation by simultaneously maximizing
the worst case loss over all threat models at each projected steepest descent step. We call our
method multi steepest descent (MSD), which can be summarized as the following iteration:

δ(t+1)
p = P∆p,ε(δ

(t) + vp(δ
(t))) for p ∈ S

δ(t+1) = arg max
δ
(t+1)
p

`(x+ δ(t+1)
p ) (5.33)

The key difference here is that at each iteration of MSD, we choose a projected steepest descent
direction that maximizes the loss over all attack models p ∈ S, whereas standard adversarial
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training and the simpler approaches use comparatively myopic PGD subroutines that only use
one threat model at a time. The full algorithm is in Algorithm 9, and can be used as a drop in
replacement for standard PGD adversaries to learn robust classifiers with adversarial training.

5.3.3 Steepest descent and projections for `∞, `2, and `1 adversaries
In this section, we show what the steepest descent and projection steps are for `p adversaries
for p ∈ {∞, 2, 1}; these are standard results, but included for a complete description of the
algorithms. Note that this differs slightly from the adversaries considered in Schott et al. [2019]:
while they used an `0 adversary, we opted to use an `1 adversary with the same radius. The `0

ball with radius ε is contained within an `1 ball with the same radius, so achieving robustness
against an `1 adversary is strictly more difficult.

`∞ space The direction of steepest descent with respect to the `∞ norm is

v∞(δ) = α · sign(∇l(x+ δ; θ)) (5.34)

and the projection operator onto ∆∞,ε is

P∆∞,ε(δ) = clip[−ε,ε](δ) (5.35)

`2 space The direction of steepest descent with respect to the `2 norm is

v2(δ) = α · ∇`(x+ δ; θ)

‖∇`(x+ δ; θ)‖2

(5.36)

and the projection operator onto the `2 ball around x is

P∆2,ε(δ) = ε · δ

max{ε, ‖δ‖2}
(5.37)

`1 space The direction of steepest descent with respect to the `1 norm is

v1(δ) = α · sign

(
∂`(x+ δ; θ)

∂δi?

)
· ei? (5.38)

where
i? = arg max

i
|∇l(x+ δ; θ)i| (5.39)

and ei∗ is a unit vector with a one in position i∗. Finally, the projection operator onto the `1 ball,

P∆1,ε(δ) = arg min
δ′:‖δ′‖1≤ε

‖δ − δ′‖2
2, (5.40)

can be solved with Algorithm 10, and we refer the reader to Duchi et al. [2008] for its derivation.
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Algorithm 10 Projection of some perturbation δ ∈ Rn onto the `1 ball with radius ε. We use | · |
to denote element-wise absolute value.

Input: perturbation δ, radius ε
Sort |δ| into γ : γ1 ≥ γ2 ≥ · · · ≥ γn

ρ := max
{
j ∈ [n] : γj − 1

j

(∑j
r=1 γr − ε

)
> 0
}

η := 1
ρ

(
∑ρ

i=1 γi − ε)
zi := sign(δi) max {γi − η, 0} for i = 1 . . . n
return z

5.3.4 Special considerations for `1 steepest descent
Since the `0 and `1 attacks are not as universally consistent as `2 and `∞, we take the following
two additional considerations to improve the attack. These improvements enhance the diversity
of the attack and keep the attack from getting stuck at the boundary of pixel space.

Enhanced `1 steepest descent step Note that the steepest descent step for `1 only updates a
single coordinate per step. This can be quite inefficient, as pointed out by Tramèr and Boneh
[2019]. To tackle this issue, and also empirically improve the attack success rate, Tramèr and
Boneh [2019] instead select the top k coordinates according to Equation 5.39 to update. In this
work, we adopt a similar but slightly modified scheme: we randomly sample k to be some integer
within some range [k1, k2], and update each coordinate with step size α′ = α/k. We find that the
randomness induced by varying the number of coordinates aids in avoiding the gradient masking
problem observed by Tramèr and Boneh [2019].

Restricting the steepest descent coordinate The steepest descent direction for both the `0

and `1 norm end up selecting a single coordinate direction to move the perturbation. However,
if the perturbation is already at the boundary of pixel space (for MNIST, this is the range [0,1]
for each pixel), then it’s possible for the PGD adversary to get stuck in a loop trying to use the
same descent direction to escape pixel space. To avoid this, we only allow the steepest descent
directions for these two attacks to choose coordinates that keep the image in the range of real
pixels.

5.4 Experiments for defending against multiple threat models
In this section, we present experimental results on using generalizations of adversarial training
to achieve simultaneous robustness to `∞, `2, and `1 perturbations on the MNIST and CIFAR10
datasets. Our primary goal is to show that adversarial training can in fact be adapted to a union
of perturbation models using standard architectures to achieve competitive results, without the
pitfalls described by Schott et al. [2019]. Our results improve upon the state-of-the-art in three
key ways. First, we can use simpler, standard architectures for image classifiers, without relying
on complex architectures or input binarization. Second, our method is able to learn a single
MNIST model which is simultaneously robust to all three threat models, whereas previous work
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was only robust against two at a time. Finally, our method is easily scalable to datasets beyond
MNIST, providing the first CIFAR10 model trained to be simultaneously robust against `∞, `2,
and `1 adversaries.

We trained models using both the simple generalizations of adversarial training to multi-
ple adversaries and also using MSD. Since the analysis by synthesis model is not scalable to
CIFAR10, we additionally trained CIFAR10 models against individual PGD adversaries to mea-
sure the changes and tradeoffs in universal robustness. We evaluated these models with a broad
suite of both gradient and non-gradient based attacks using Foolbox1 (the same attacks used by
Schott et al. [2019]), and also incorporated all the PGD-based adversaries discussed in this paper.
All aggregate statistics that combine multiple attacks compute the worst case error rate over all
attacks for each example.

Summaries of these results at specific thresholds can be found in Tables 5.2 and 5.3, where B-
ABS and ABS refer to binarized and non-binarized versions of the analysis by synthesis models
from Schott et al. [2019], Pp refers to a model trained against a PGD adversary with respect
to the p-norm, Worst-PGD and PGD-Aug refer to models trained using the worst-case and data
augmentation generalizations of adversarial training, and MSD refers to models trained using
multi steepest descent.

5.4.1 Experimental setup
Architectures and hyperparameters For MNIST, we use a four layer convolutional network
with two convolutional layers consisting of 32 and 64 5×5 filters and 2 units of padding, followed
by a fully connected layer with 1024 hidden units, where both convolutional layers are followed
by 2× 2 Max Pooling layers and ReLU activations (this is the same architecture used by Madry
et al. [2017]). This is in contrast to past work on MNIST, which relied on per-class variational
autoencoders to achieve robustness against multiple threat models [Schott et al., 2019], which
was also not easily scalable to larger datasets. Since our methods have the same complexity as
standard adversarial training, they also easily apply to standard CIFAR10 architectures, and in
this paper we use the well known pre-activation version of the ResNet18 architecture consisting
of nine residual units with two convolutional layers each [He et al., 2016b]. For all the models,
we used the SGD optimizer with momentum 0.9 and weight decay 5 · 10−4.

MNIST adversary and training parameters We train the models to a maximum of 20 epochs.
We used a variation of the learning rate schedule from Smith [2018], which is piecewise linear
from 0 to 0.1 over the first 7 epochs, down to 0.001 over the next 8 epochs, and finally back down
to 0.0001 in the last 5 epochs. At test time, we increase the number of iterations for the PGD
adversaries to (100, 200, 100) for (`∞, `2, `1).
• The `∞ adversary used a step size α = 0.01 within a radius of ε = 0.3 for 50 iterations.
• The `2 adversary used a step size α = 0.1 within a radius of ε = 1.5 for 100 iterations.
• The `1 adversary used a step size of α = 0.05 within a radius of ε = 12 for 50 iterations.

By default the attack is run with two restarts, once starting with δ = 0 and once by randomly

1https://github.com/bethgelab/foolbox [Rauber et al., 2017]
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initializing δ in the allowable perturbation ball. k1 = 5, k2 = 20 as described in 5.3.4.
• The MSD adversary used step sizes of α = (0.01, 0.2, 0.05) for the (`∞, `2, `1) directions

within a radius of ε = (0.3, 1.5, 12) for 100 iterations.

CIFAR10 adversary and training parameters We used a variation of the learning rate sched-
ule from Smith [2018] to achieve superconvergence in 50 epochs, which is piecewise linear from
0 to 0.1 over the first 20 epochs, down to 0.005 over the next 20 epochs, and finally back down
to 0 in the last 10 epochs.

• The `∞ adversary used a step size α = 0.003 within a radius of ε = 0.03 for 40 iterations.
• The `2 adversary used a step size α = 0.05 within a radius of ε = 0.5 for 50 iterations.
• The `1 adversary used a step size α = 0.1 within a radius of ε = 12 for 50 iterations. k1 =

5, k2 = 20 as described in 5.3.4.
• The MSD adversary used step sizes of α = (0.003, 0.05, 0.05) for the (`∞, `2, `1) direc-

tions within a radius of ε = (0.03, 0.3, 12) for 50 iterations. Note that the MSD model
trained for `2 radius of 0.3 is in fact robust to a higher radius of 0.5.

Attacks used for evaluation To evaluate the model, we incorporate the attacks from Schott
et al. [2019] as well as our PGD based adversaries using projected steepest descent, however
we provide a short description here. Note that we exclude attacks based on gradient estimation,
since the gradient for the standard architectures used here are readily available.

• For `∞ attacks, although we find the `∞ PGD adversary to be quite effective, for com-
pleteness, we additionally use the Foolbox implementations of Fast Gradient Sign Method
[Goodfellow et al., 2015], PGD adversary [Madry et al., 2017], and the Momentum Itera-
tive Method [Dong et al., 2018].

• For `2 attacks, in addition to the `2 PGD adversary, we use the Foolbox implementations
of the same PGD adversary, the Gaussian noise attack [Rauber et al., 2017], the boundary
attack [Brendel et al., 2017], DeepFool [Moosavi-Dezfooli et al., 2016], the pointwise
attack [Schott et al., 2019], DDN based attack [Rony et al., 2018], and C&W attack [Carlini
and Wagner, 2017b].

• For `1 attacks, we use both the `1 PGD adversary as well as additional Foolbox imple-
mentations of `0 attacks at the same radius, namely the salt & pepper attack [Rauber et al.,
2017] and the pointwise attack [Schott et al., 2019]. Note that an `1 adversary with radius ε
is strictly stronger than an `0 adversary with the same radius, and so we choose to explicitly
defend against `1 perturbations instead of the `0 perturbations considered by Schott et al.
[2019].

We make 10 random restarts for each of the evaluation results mentioned hereon for both
MNIST and CIFAR10 2. We encourage future work in this area to incorporate the same, since
the success of all attacks, specially decision based or gradient free ones, is observed to increase
significantly over restarts.

2 All attacks were run on a subset of the first 1000 test examples with 10 random restarts, with the exception of
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Table 5.2: Summary of adversarial accuracy results for MNIST

Worst PGD
P∞ P2 P1 B-ABS3 ABS3 PGD Aug MSD

Clean Accuracy 99.1% 99.4% 98.9% 99% 99% 98.9% 99.1% 98.2%
PGD-`∞ 90.3% 0.4% 0.0% - - 68.4% 83.7% 63.7%
FGSM 94.9% 68.6% 6.4% 85% 34% 82.4% 90.9% 81.8%
PGD-Foolbox 92.1% 8.5% 0.1% 86% 13% 72.1% 85.7% 67.9%
MIM 92.3% 14.5% 0.1% 85% 17% 73.9% 87.3% 71.0%
`∞ attacks (ε = 0.3) 90.3% 0.4% 0.0% 77% 8% 68.4% 83.7% 63.7%
PGD-`2 83.8% 87.0% 70.8% - - 85.3% 87.9% 84.2%
PGD-Foolbox 93.4% 89.7% 74.4% 63% 87% 86.9% 91.5% 86.9%
Gaussian Noise 98.9% 99.6% 98.0% 89% 98% 97.4% 99.0% 97.8%
Boundary Attack 52.6% 92.1% 83.0% 91% 83% 86.9% 79.1% 88.6%
DeepFool 95.1% 92.2% 76.5% 41% 83% 87.9% 93.5% 87.9%
Pointwise Attack 74.3% 97.4% 96.6% 87% 94% 92.7% 89.0% 95.1%
DDN 82.7% 87.0% 70.8% - - 85.1% 85.2% 84.3%
CWL2 88.2% 88.1% 75.5% - - 85.2% 87.5% 85.1%
`2 attacks (ε = 1.5) 45.3% 87.0% 70.3% 39% 80% 82.1% 75.0% 82.6%
PGD-`1 51.8% 49.9% 71.8% - - 66.5% 57.4% 64.8%
Salt & Pepper 55.5% 96.3% 95.6% 96% 95% 86.4% 71.9% 92.2%
Pointwise Attack 2.4% 66.4% 85.2% 82% 78% 60.1% 17.1% 72.8%
`1 attacks (ε = 12) 1.4% 43.4% 71.8% 82% 78% 54.6% 15.6% 62.3%
All attacks 1.4% 0.4% 0.0% 39% 8% 53.7% 15.6% 58.7%
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Figure 5.9: Robustness curves showing the adversarial accuracy for the MNIST model trained
with MSD against `∞ (left), `2 (middle), and `1 (right) threat models over a range of epsilon.
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Figure 5.10: Robustness curves showing the adversarial accuracy for the MNIST model trained
with the worst case generalization for adversarial training (Worst-PGD) against `∞ (left), `2

(middle), and `1 (right) threat models over a range of epsilon.

5.4.2 Robustness to `∞, `2, and `1 on MNIST

We first present results on the MNIST dataset, which are summarized in Table 5.2. All attacks
were run on a subset of the first 1000 test examples with 10 random restarts, with the exception of
Boundary Attack, which by default makes 25 trials per iteration, and DDN attack, which does not
benefit from restarts owing to a deterministic starting point. Note that the results for B-ABS and
ABS models are from Schott et al. [2019], which uses gradient estimation techniques whenever a
gradient is needed, and the robustness against all attacks for B-ABS and ABS is an upper bound
based on the reported results. Further, these models are not evaluated with restarts, pushing the
reported results even higher than actual.

While considered an “easy” dataset, we note that the previous state-of-the-art result for mul-
tiple threat models on MNIST (and our primary comparison) is only able to defend against two
out of three threat models at a time [Schott et al., 2019] using comparatively complex variational

Boundary Attack, which by default makes 25 trials per iteration and DDN based Attack which does not benefit from
the same owing to a deterministic initialization of δ.

3Results are from Schott et al. [2019], which used an `0 threat model of the same radius and evaluated against `0
attacks. So the reported number here is an upper bound on the `1 adversarial accuracy. Further, they evaluate their
model without restarts and the adversarial accuracy against all attacks is an upper bound based on the reported accu-
racies for the individual threat models. Finally, all ABS results were computed using numerical gradient estimation,
since gradients are not readily available.
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Figure 5.11: Robustness curves showing the adversarial accuracy for the MNIST model trained
with the data augmentation generalization for adversarial training (PGD-Aug) against `∞ (left),
`2 (middle), and `1 (right) threat models over a range of epsilon.
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Figure 5.12: Robustness curves showing the adversarial accuracy for the CIFAR10 model trained
with MSD against `∞ (left), `2 (middle), and `1 (right) threat models over a range of epsilon.

autoencoder architectures. In contrast, we see that both simple generalizations of adversarial
training are able to achieve competitive results on standard models, notably being able to defend
against all three threat models simultaneously, while the model trained with MSD performs even
better, achieving error rates of 63.7%, 82.6%, and 62.3% for `∞, `2, and `1 perturbations with
radius ε = 0.3, 1.5, and 12. A complete robustness curve over a range of epsilons for the MSD
model over each threat model can be found in Figure 5.9, and robustness curves for the worst
case and the data augmentation method are in Figures 5.10 and 5.11.

5.4.3 Robustness to `∞, `2, and `1 on CIFAR10

Next, we present results on the CIFAR10 dataset, which are summarized in Table 5.3. All attacks
were run on a subset of the first 1000 test examples with 10 random restarts, with the exception
of Boundary Attack, which by default makes 25 trials per iteration, and DDN attack, which does
not benefit from restarts owing to a deterministic starting point. Further note that salt & pepper
and pointwise attacks in the `1 section are technically `0 attacks, but produce perturbations in the
`1 ball.

Our MSD model achieves (47.6%, 64.3%, 53.4%) adversarial accuracy for (`∞, `2, `1) pertur-
bations of size ε = (0.03, 0.5, 12), reaching an overall adversarial adversarial accuracy of 46.1%
over all threat models. Interestingly, note that the P1 model trained against an `1 PGD adversary
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Table 5.3: Summary of adversarial accuracy results for CIFAR10

P∞ P2 P1 Worst-PGD PGD-Aug MSD
Clean accuracy 83.3% 90.2% 73.3% 81.0% 84.6% 81.7%
PGD-`∞ 50.3% 48.4% 29.8% 44.9% 42.8% 49.8%
FGSM 57.4% 43.4% 12.7% 54.9% 51.9% 55.0%
PGD-Foolbox 52.3% 28.5% 0.6% 48.9% 44.6% 49.8%
MIM 52.7% 30.4% 0.7% 49.9% 46.1% 50.6%
`∞ attacks (ε = 0.03) 50.7% 28.3% 0.2% 44.9% 42.5% 47.6%
PGD-`2 59.0% 62.1% 28.9% 64.1% 66.9% 66.0%
PGD-Foolbox 61.6% 64.1% 4.9% 65.0% 68.0% 66.4%
Gaussian Noise 82.2% 89.8% 62.3% 81.3% 84.3% 81.8%
Boundary Attack 65.5% 67.9% 2.3% 64.4% 69.2% 67.9%
DeepFool 62.2% 67.3% 0.9% 64.4% 67.4% 65.7%
Pointwise Attack 80.4% 88.6% 46.2% 78.9% 83.8% 81.4%
DDN 60.0% 63.5% 0.1% 64.5% 67.7% 66.2%
CWL2 62.0% 71.6% 0.1% 66.9% 71.5% 68.7%
`2 attacks (ε = 0.05) 57.3% 61.6% 0.0% 61.7% 65.0% 64.3%
PGD-`1 16.5% 49.2% 69.1% 39.5% 54.0% 53.4%
Salt & Pepper 63.4% 74.2% 35.5% 75.2% 80.7% 75.6%
Pointwise Attack 49.6% 62.4% 8.4% 63.3% 77.0% 72.8%
`1 attacks (ε = 12) 16.0% 46.6% 7.9% 39.4% 54.0% 53.4%
All attacks 15.6% 27.5% 0.0% 34.9% 40.6% 46.1%
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Figure 5.13: Robustness curves showing the adversarial accuracy for the CIFAR10 model trained
with the worst case generalization for adversarial training (Worst-PGD) against `∞ (left), `2

(middle), and `1 (right) threat models over a range of epsilon.
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Figure 5.14: Robustness curves showing the adversarial accuracy for the CIFAR10 model trained
with the data augmentation generalization for adversarial training (PGD-Aug) against `∞ (left),
`2 (middle), and `1 (right) threat models over a range of epsilon.

Table 5.4: Comparison with contemporary work on MNIST (higher is better). Results for all
models except MSD are taken as is from Tramèr and Boneh [2019]

Vanilla Adv∞ Adv1 Adv2 Advavg Advmax MSD
Clean accuracy 99.4% 99.1% 98.9% 98.5% 97.3% 97.2% 98.2%
`∞ attacks (ε = 0.3) 0.0% 91.1% 0.0% 0.4% 76.7% 71.7% 63.7%
`2 attacks (ε = 2.0) 12.4% 12.1% 50.6% 71.8% 58.3% 56.0% 67.4%
`1 attacks (ε = 10) 8.5% 11.3% 78.5% 68.0% 53.9% 62.6% 70.0%
All attacks 0.0% 6.8% 0.0% 0.4% 49.9% 52.4% 60.9%

is not very robust when evaluated against other attacks, even though it can defend reasonably
well against the `1 PGD attack in isolation. A complete robustness curve over a range of epsilons
for the MSD model over each threat model can be found in Figure 5.12, and robustness curves
for the worst case and the data augmentation method are in Figures 5.13 and 5.14.

5.4.4 Comparison with Tramèr and Boneh [2019]
In this section we compare the results of our trained MSD model with that of Tramèr and Boneh
[2019], who study the theoretical and empirical trade-offs of adversarial robustness in various
settings when defending against multiple adversaries. Training methods presented by them in
their comparisons, namely Advavg and Advmax closely resemble the naive approaches discussed
in this paper: PGD-Aug and Worst-PGD respectively. We use the results as is from their work,
and additionally compare the position of our MSD models at the revised thresholds used by
Tramèr and Boneh [2019] without specially retraining them.

The results of Tables 5.4 and 5.5 show that the relative advantage of MSD over naive tech-
niques does hold up. While we do make a comparison to the most relevant concurrent work
for completeness, the following differences can bias the robust accuracies reported for the MSD
models to relatively lower than expected (and correspondingly, the robust accuracies reported for
the other models are relatively higher than expected):

1. Use of random restarts: We observe in our experiments that using up to 10 restarts for
all our attacks leads to a decrease in model accuracy from 5 to 10% across all models.
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Table 5.5: Comparison with contemporary work on CIFAR10 (higher is better). Results for all
models except MSD are taken as is from Tramèr and Boneh [2019]

Vanilla Adv∞ Adv1 Advavg Advmax MSD
Clean accuracy 95.7% 92.0% 90.8% 91.1% 91.2% 82.1%
`∞ attacks (ε = 4

255
) 0.0% 71.0% 53.4% 64.1% 65.7% 65.6%

`1 attacks (ε = 2000
255

) 0.0% 16.4% 66.2% 60.8% 62.5% 62.0%
All attacks 0.0% 16.4% 53.1% 59.4% 61.1% 61.7%

Tramèr and Boneh do not mention restarting their attacks for these models and so the
results for models apart from MSD in Tables 5.4, 5.5 could potentially be lowered with
random restarts.

2. Different training and testing thresholds: The MSD model for the MNIST dataset was
trained at ε = (0.3, 1.5, 12) for the `∞, `2, `1 perturbation balls respectively, while Tramèr
and Boneh [2019] tested at ε = (0.3, 2.0, 10). This may lower the robust accuracy at
these thresholds for the MSD model, since it was not trained for that particular threshold.
Likewise, the MSD model for CIFAR10 was also trained at ε = (0.03, 0.05, 12) for the `∞,
`2, `1 perturbation balls respectively, while Tramèr and Boneh [2019] tested at ε = ( 4

255
, 0,

2000
255

).

3. Different perturbation models: For the CIFAR10 results in Table 5.5, Advavg & Advmax
models are trained and tested only for `1 and `∞ adversarial perturbations, whereas the
MSD model is robust to the union of `1, `2 and `∞, achieving a much harder task.

4. Larger Suite of Attacks Used: The attacks used by Tramèr and Boneh are PGD, EAD
[Chen et al., 2017] and Pointwise Attack [Schott et al., 2019] for `1; PGD, C&W [Carlini
and Wagner, 2017b] and Boundary Attack [Brendel et al., 2017] for `2; and PGD for `∞
adversaries. We use a more expansive suite of attacks as seen in Table 5.3. Some of the
attacks like DDN, which proved to be strong adversaries in most cases, were not considered
by Tramèr and Boneh [2019] and thus were only used to attack the MSD models in Tables
5.4 and 5.5.

5.5 Discussion
In this chapter, we have expanded the possible threat models for adversarial examples in two
main directions. First, we proposed a general threat model for adversarial examples based on the
Wasserstein distance, a metric that captures a kind of perturbation that is fundamentally different
from traditional `p perturbations. To generate these examples, we derived an algorithm for fast,
approximate projection onto the Wasserstein ball that can use local transport plans for even more
speedup on images. We successfully attacked standard networks, showing that these adversarial
examples are structurally perturbed according to the content of the image, and demonstrated the
empirical effectiveness of adversarial training. Finally, we observed that networks trained to be
provably robust against `∞ attacks are more robust than standard networks against Wasserstein
attacks, however we show that the current state of provable defenses is insufficient to directly
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apply to the Wasserstein ball due to their reliance on interval bounds. This is a key roadblock to
the development of provable defenses against not just Wasserstein attacks, but also to improve
the robustness of classifiers to other attacks that do not naturally convert to interval bounds (e.g.
`0 or `1 attacks).

Second, we showed how to generalize adversarial training to a union of multiple perturbation
models, and demonstrated that it can perform quite effectively. While simple generalizations of
adversarial training can work to some degree, we improve upon this with multi steepest descent,
which incorporates the different perturbation models directly into the direction of steepest de-
scent. MSD based adversarial training procedure is able to outperform past approaches, demon-
strating that adversarial training can in fact learn networks that are robust to multiple perturbation
models (as long as they are included in the threat model) while being scalable beyond MNIST
and using standard architectures. While having meaningful, individual threat models is certainly
important, this work makes progress towards the ultimate goal: a classifier which is truly robust
to all kinds of adversarial attacks.
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Chapter 6

Conclusion

In this dissertation, we studied the defenses against adversarial examples using the perspective
of robust optimization, tackling a diverse set of problems. In the process, we presented a number
of new algorithms while revisiting old algorithms, developing efficient methods and discovering
new insights with major implications for the field of adversarial robustness.

In Chapter 3 we presented a framework for developing duality based certificates which can be
optimized to guarantee the robustness of a deep network to adversarial examples. The approach
was motivated by dual feasible solutions of linear programming relaxations, which enable com-
putationally fast bounds that brought provable defenses first to convolutional networks, then to
modern deep learning architectures with convolutions and residual connections. Efficiency of the
approach was maintained by leveraging Cauchy random projections to estimate computationally
expensive quantities. By virtue of being a provable defense, the approach is unbreakable and not
prone to overestimated measures of robustness unlike countless past approaches, and is ready for
application to small to medium scale problems where robustness is critical, capable of trading
off certified robustness and clean accuracy with model cascades.

Despite being so widely used, the more empirical defense of adversarial training is still not
fully understood. In Chapter 4 we overturn the longstanding presumption that single step FGSM
adversarial training cannot learn a robust classifier, correcting for previous approaches and iden-
tifying a catastrophic overfitting behavior which explains why past approaches failed. We also
identify a more general robust overfitting phenomenon which occurs throughout all adversarial
training approaches across different settings, where unlike in the standard setting, overfitting can
drastically impair the generalization performance of an adversarially robust network. The im-
plications of this finding are quite dire for the field, as all algorithmic improvements over PGD
adversarial training can simply be matched by early stopping vanilla PGD adversarial training,
and so no algorithmic progress has been made since PGD adversarial training. Both of these
properties of robust training have further implications on the difficulty and runtime of robust
training: by using weaker adversaries with less steps and early stopping the training process, one
can learn adversarially robust deep networks orders of magnitude faster than before, and on par
with training times for the standard setting.

Since measuring progress in adversarial examples for both empirical and provable defenses
rely so heavily on having well-defined threat models, in Chapter 5 we further proposed two
additional threat models to expand the scope of adversarial robustness to more settings. We
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established the Wasserstein threat model to capture inherent structure within images as an alter-
native to completely unstructured `p noise, and developed efficient methods for projecting onto
the Wasserstein ball, generating Wasserstein adversarial examples, and ultimately applying an
adversarial training defense on the Wasserstein threat model. We additionally explored methods
for learning models which are adversarially robust to the union of multiple threat models as a step
towards developing models which are robust in more human-like ways, improving benchmarks
in robustness to unions of `p threat models.

Although we focus on adversarial defenses in this dissertation, the problems encountered and
the methods used spanned a wide range of topics such as robust optimization, convex relaxations,
linear programming, duality, optimal transport, generalization, and overfitting in deep learning.
Through this wide variety of problems, the work in this dissertation has advanced the state of
both provable and empirical defenses for robust deep learning.

6.1 Open problems
We conclude this thesis by posing a number of open questions for the field of adversarial robust-
ness. Answering these questions will progress our understanding of deep learning, allowing us
to more concretely characterize what has historically been a complex black box. Solving some
of these problems is a necessary prerequisite before deep learning can be safely or even legally
deployed in higher-stakes scenarios that require robust performance.

6.1.1 Adversarial training, provable defenses, and generalization
Although work has looked at studying and explaining the generalization gap of robust training
[Raghunathan et al., 2019, Schmidt et al., 2018], there is a significant gap between the empirical
robustness of adversarial training and certified robustness. Is this is a theoretical limitation of the
provable defenses based on the relaxations being used, or can this gap can be closed further?

Furthermore, provable defenses produce vacuous results on models that weren’t trained to
minimize their specific bound (including adversarially trained networks). Is it possible to produce
a non-vacuous bound for adversarially trained networks? This is currently only possible for
small, fully connected networks with SDP verifiers [Raghunathan et al., 2018b]. Does a provable
defense which can certify other models exist?

Although adversarial training can achieve 0% robust error on the training set, current ap-
proaches in provable defenses are unable to do so. How can we improve the effective hypothesis
complexity of provable defenses to better (robustly) fit the training set, while still maintaining
reasonable bounds? Recent results in universal approximation of even the extremely loose in-
terval bound propagation approach suggests that this is theoretically possible, albeit potentially
extremely costly [Baader et al., 2019].

The generalization gap for robust metrics (e.g. adversarial accuracy) is significantly worse
than the generalization gap for standard networks. This goes contrary to what one would expect:
training a network to ignore inhuman, imperceptible perturbations should only push the network
towards more human-recognizable features, which ought to be more generalizable here. What
is the limitation here? Is the dataset simply insufficient and doesn’t contain features which are
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robust and generalize well? Or do the more human-recognizable features exist in the dataset but
simply don’t generalize?

6.1.2 Real world attacks, threat models, and specifications
Most real attacks on machine learning systems in the wild generally don’t follow a clean math-
ematical formulation present in the imperceptible, `p setting. How can we bridge this gap and
create meaningful threat models which reflect perturbations that show up in the wild that we want
our systems to be robust to?

As machine learning models get used in more applications, what kind of specifications can we
give with a model to convince a customer that the model does what they want? Will consumers
care about imperceptible `p-norm robustness, given how effective adversarial attacks can be in
the real world while not being captured by small `p perturbations? What sorts of properties and
guarantees do we want our systems to have beyond robustness to imperceptible noise, and how
can we measure them confidently?

6.1.3 Adversarial robustness as a way to encode priors into deep networks
Although adversarial examples were originally motivated as imperceptible noise which break
deep networks, the min-max formulation and training approaches can more generally be seen
as a way to encode and certify invariants into our models. Although for the adversarial exam-
ples setting this invariance is output stability over `p regions around each example, the notion of
encoding invariants into our models could be leveraged to tackle problems that go far beyond ad-
versarial robustness (e.g. controller properties, Lyapunov stability, or changes under distribution
shift).
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Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric
Granger. Decoupling direction and norm for efficient gradient-based L2 adversarial attacks and
defenses. CoRR, abs/1811.09600, 2018. URL http://arxiv.org/abs/1811.09600.
5.4.1

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck,
and Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers.
In Advances in Neural Information Processing Systems, pages 11289–11300, 2019a. 2.2.2

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex re-
laxation barrier to tight robustness verification of neural networks. In Advances in Neural
Information Processing Systems, pages 9832–9842, 2019b. 2.2.2

Hadi Salman, Mingjie Sun, Greg Yang, Ashish Kapoor, and J Zico Kolter. Black-box smoothing:
A provable defense for pretrained classifiers. arXiv preprint arXiv:2003.01908, 2020. 2.2.2

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry.
Adversarially robust generalization requires more data. In Advances in Neural Information
Processing Systems, pages 5014–5026, 2018. 1.1.2, 2.2.3, 4.4.3, 6.1.1

Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first adver-
sarially robust neural network model on MNIST. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=S1EHOsC9tX.
2.1.2, 5, 5.3.3, 5.4, 5.4.1, 5.4.1, 5.4.2, 3, 4

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! arXiv preprint
arXiv:1904.12843, 2019. 2.2.3, 4.1, 4.1, 2, 4.2, 4.6, 4.2.3

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 1528–1540. ACM,
2016. 2.1.1, 2.1.2, 5

Mahmood Sharif, Lujo Bauer, and Michael K Reiter. On the suitability of lp-norms for creating
and preventing adversarial examples. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 1605–1613, 2018. 2.1.1

150

http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples.pdf
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples.pdf
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples.pdf
http://arxiv.org/abs/1811.09600
https://openreview.net/forum?id=S1EHOsC9tX


Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast
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