
Anytime Prediction and Learning for
the Balance between Computation and Accuracy

Hanzhang Hu

April, 2019
CMU-ML-19-106

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
J. Andrew Bagnell (Co-chair)

Martial Hebert (Co-chair)
Ruslan Salakhutdinov

Rich Caruana

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2019 Hanzhang Hu

This research was sponsored by the Office of Naval Research award numbers N000140911052 and N000141512365,
the US Army Research Laboratory award number W911NF1020016, and a gift from Verizon Media.

Abstract

When choosing machine learning algorithms, one often has to balance between two opposing
factors, the computational speed and the accuracy of predictors. The trade-off during testing is
often difficult to balance, because the test-time computational budget may be agnostic at training,
and the budget may vary during testing. Analogously, given a novel data-set, one often lacks prior
knowledge in the appropriate predictor complexity and training computation, and furthermore,
may want to interrupt or prolong the training based on training results.

In this work, we address these trade-offs between computation and accuracy via anytime
prediction and learning, which are algorithms that can be interrupted at any time and still produce
valid solutions. Furthermore, the quality of the results improves with the consumed computation
before interruption. With the versatility to adjust to any budget, anytime algorithms automatically
utilize any agnostic computational budget to the maximum extent.

To address the test-time trade-off, we study anytime predictors, whose prediction computation
can be interrupted during testing. We start with developing provably near-optimal anytime linear
predictors, and derive a theoretical performance limitation for anytime predictors that are based
on ensemble methods. Then we develop practical anytime predictions within individual neural
networks via multi-objective optimization. Furthermore, leveraging these anytime predictors as
weak learners, we circumvent the performance limitation on ensemble-based anytime predictors.

For the train-time trade-off, we consider the neural architecture search problem, where one
seeks the optimal neural network structure for a data-set. We draw a parallel between this bi-level
combinatorial optimization problem and the feature selection problem for linear prediction, and
develop an iterative network growth algorithm that is inspired by a forward selection algorithm.
We also consider the problem of training on large data-sets, and develop no-regret gradient
boosting algorithms for stochastic data streams.

3

4

Acknowledgements

I would like to thank J. Andrew Bagnell, Martial Hebert, Ruslan Salakhutdinov, and Rich Caruana,
for serving on my thesis committee. I appreciate them for setting aside time for me, and giving
me invaluable discussions and suggestions.

I am happy to have been working with Drew and Martial for the past years. They have given
me countless help, despite of their busy schedules. They gave me incredible freedom in exploring
topics of my choice, and were patient with me to allow me gradually formalize and mature the
research ideas. This experience of research and development has given me many invaluable
lessons, and I am grateful to have Drew and Martial to guide me through them, like lighthouses in
a dark ocean.

I have been fortunate to have many collaborators over the years, in roughly chronological order,
Daniel Munoz, Alexander Grubb, Allie Del Giorno, Wen Sun, Arun Venkatraman, Debadeepta
Dey, and John Langford. They have taught me many things both in research and in life. Without
their help, this work would not have come to be. I especially want to thank Dey for setting up my
experiments on his computational resources, and he has run thousands of my scripts over the two
years.
• Chapter 3 is based on the Ph.D. thesis of Alexander Grubb, who made an excellent intro-

duction to gradient boosting and its application to anytime prediction for me. In fact the
main contributions of this chapter are improvements of unpublished results of his thesis.

• Chapter 4 involves a large number of experiments. Debadeepta Dey kindly offered his
computational resources in the middle of this project, and without his help on running
thousands of scripts, this work will never come to fruition.

• Chapter 5 came out of a paper reading session of the lab. The careful analysis of Wen Sun
and the amazing intuition of Drew led to our initial exploration of this topic. We later also
extended previous work of Alexander Grubb on gradient boosting with non-smooth losses
to enable streaming gradient boosting to do so as well.

• Chapter 6 started as an internship project at Microsoft Research under the supervision of
Debadeepta Dey. Initially this project came out as a bag of engineer hacks that works
somehow. Thanks to the inputs from John Langford and Rich Caruana, we were able to
steer the project into a more motivated direction that happens to fit into this thesis nicely.

5

6

Contents

1 Introduction 1
1.1 Motivations and Problem Settings . 1
1.2 Approach . 2
1.3 Overview of Chapters and Their Contributions 4

2 Preliminaries and Background 7
2.1 Anytime Prediction . 7
2.2 Related Works to the Trade-off Between Computation and Accuracy 8

2.2.1 Anytime Prediction . 8
2.2.2 Model Compression . 9
2.2.3 Budgeted Prediction . 9

3 Anytime Linear Prediction via Feature Group Sequencing 11
3.1 Introduction . 11
3.2 Computation-Aware Greedy Methods . 13

3.2.1 Preliminaries . 13
3.2.2 Anytime Prediction at Test-time . 14
3.2.3 Computation-Aware Group Orthogonal Matching Pursuit(CS-G-OMP) . 14
3.2.4 Computation-Aware Group Forward Regression (CS-G-FR) 16

3.3 Near-Optimality at Features Selection . 16
3.4 Bi-criteria Analysis at Any Budget . 18
3.5 Experiments . 22

3.5.1 Data-sets and Set-ups . 22
3.5.2 Evaluation Metric and Approximated Oracle 23
3.5.3 Importance of Feature Cost . 24
3.5.4 Group Whitening . 25
3.5.5 Other Selection Criteria Variants . 25

3.6 Additional Proof Details . 27
3.6.1 Functional Boosting View of Feature Selection 27
3.6.2 Proof of Lemma 3.3.3 and Lemma 3.3.4 28
3.6.3 Proof of Main Theorem . 30

3.7 Extension to Generalized Linear Models . 31
3.7.1 EXAMPLE EXPERIMENTS ON GLM 31

7

4 Anytime Neural Network via Adaptive Loss Balancing 35
4.1 Introduction . 35
4.2 Related Works . 37
4.3 Optimizing Anytime Predictors in Networks . 38
4.4 Ensemble of Exponentially Deepening Networks 40
4.5 Experiments . 41

4.5.1 Data-sets and Training Details . 41
4.5.2 Weight Scheme Comparisons . 42
4.5.3 EANN: Closing Early Performance Gaps by Delaying Final Predictions. . 45
4.5.4 Data-set Difficulty versus Adaptive Weights 46

4.6 Conclusion and Discussion . 47
4.7 Proof of Propostion 4.4.1 . 47
4.8 Implementation Details of ANNs . 49
4.9 Ablation Study for AdaLoss Parameters . 50

4.9.1 Weight Regularization . 50
4.9.2 Ablation Study of AdaLoss parameters on CIFAR 50

5 Training Gradient Boosting on Stochastic Data Streams 53
5.1 Introduction . 53
5.2 Related Works . 54
5.3 Preliminaries . 55

5.3.1 Online Boosting Setup . 55
5.4 Weak Online Learning . 56

5.4.1 Why Weak Learner Edge is Reasonable? 57
5.5 Algorithm . 58

5.5.1 Smooth Loss Functions . 58
5.5.2 Non-smooth Loss Functions . 60

5.6 Experiments . 62
5.6.1 Experimental Analysis of Regret Bounds 62
5.6.2 Batch Boosting vs. Streaming Boosting 64

5.7 Conclusion . 65
5.8 Supplementary Details for Gradient Boosting on Stochastic Data Streams 66

5.8.1 Proof of Proposition 5.4.3 . 66
5.8.2 Proof of Theorem 5.5.1 . 68
5.8.3 Proof of Theorem 5.5.2 . 71
5.8.4 Counter Example for Alg. 6 . 74
5.8.5 Details of Implementation . 75
5.8.6 Binary Classification . 75
5.8.7 Proof of Proposition 5.4.3 . 76
5.8.8 Proof of Proposition 5.4.3 . 78

8

6 Anytime Learning via Forward Architecture Search 81
6.1 Introduction . 81
6.2 Background and References . 83
6.3 Neural Architecture Search as Optimization . 84

6.3.1 Connection to Feature Selection . 84
6.4 A NAS Approach from Gradient Boosting . 85

6.4.1 Gradient Boosting . 85
6.4.2 Gradient-Boosting-Inspired NAS . 85
6.4.3 Search Space . 86
6.4.4 Joint Weak Learning . 88
6.4.5 Weak Learner Finalization . 90
6.4.6 Utilizing Parallel Workers . 91

6.5 Selected Empirical Highlights . 92
6.5.1 Search Results on CIFAR10 . 92
6.5.2 Transfer to ImageNet . 92
6.5.3 Search Space: Direct versus Proxy . 94
6.5.4 Weak Learner Space: Weighted Sum versus Concatenation-Projection . . 95
6.5.5 Weak Learner Space: Number of Merged Operations 95
6.5.6 Weaker Learner Training: Joint versus Isolated training with Parent Model 96

6.6 Discussion . 97
6.7 Conclusion . 97

7 Discussion and Conclusion 99
7.1 Discussion and Future Works . 99

7.1.1 Dynamic Models with Data-Dependent Computational Graphs 99
7.1.2 Game Theoretical Approach to Training Anytime Predictors 99
7.1.3 Determine When to Grow Models in Anytime Learning 100

7.2 Conclusion . 100

9

10

List of Figures

3.1 Doubling Algorithm (b) has better anytime behaviors than greedy algorithm with
no cost constraints (a). 20

3.2 The training time vs. the number of feature groups selected with two algorithms:
CS-G-FR and CS-G-OMP. CS-G-OMP achieves a 8x and 20x overall training
time speed-up on AGRICULTURAL and YAHOO! LTR. 23

3.3 (a) Explained Variance vs. Cost curve of CS-G-OMP in YAHOO! LTR. Vertical
lines mark different α-stopping costs. (b) Explained Variance vs. Cost curve
of CS-G-OMP and G-OMP on YAHOO! LTR set 1 with individual group size
s = 10, stopped at 0.97-stop cost. 23

3.4 Explained Variance vs. Feature Cost curves on AGRICULTURAL (a) and YA-
HOO! LTR (b) comparing group whitening with no group whitening. The curves
stop at 0.97-stopping cost. 25

3.5 (a),(b): Explained Variance vs. Feature Cost curves on AGRICULTURAL and
YAHOO! LTR(group-size=10), using CS-G-OMP, CS-G-FR and their Single
variants. Curves stop at 0.97 and 0.98 stopping costs. (c),(d): Same curve with
the natural objectives of the data-sets: accuracy and NDCG@5. 26

3.6 CS-G-OMP test-time performance on MNIST. We note that CS-G-FR cannot be
computed easily in this case and is omitted. 33

4.1 (a) The common ANN training strategy increases final errors from the optimal
(green vs. blue), which decreases exponentially slowly. By learning to focus more
on the final auxiliary losses, the proposed adaptive loss weights make a small
ANN (orange) to outperform a large one (green) that has non-adaptive weights.
(b) Anytime neural networks contain auxiliary predictions and losses, ŷi and `i,
for intermediate feature unit fi. 36

4.2 (a) Relative Percentage Increase in Training Loss vs. depths (lower is better).
CONST scheme is increasingly worse than the optimal at deep layers. AdaLoss
performs about equally well on all layers in comparison to the OPT. (b)Ensemble
of exponentially deepening anytime neural network (EANN) computes its ANNs
in order of their depths. An anytime result is used if it is better than all previous
ones on a validation set (layers in light blue). 39

4.3 Comparing small networks with AdaLoss versus big ones using CONST on
CIFAR10 and CIFAR100. 43

4.4 Comparing small networks with AdaLoss versus big ones using CONST on SVHN. 43

11

4.5 Comparing small networks with AdaLoss versus big ones using CONST on
ILSVRC with ResANNs and MSDNet. 44

4.6 ANNs performance are mostly decided by underlying models, but AdaLoss is
beneficial regardless models. 45

4.7 (a) EANN performs better if the ANNs use AdaLoss instead of CONST. (b)
EANN outperforms linear ensembles of DNNs on ILSVRC. (c) The learned
adaptive weights of the same model on three data-sets. 46

5.1 Average regret of SGB with regression trees with various depths on SLICE and
A9A datasets. 63

5.2 Log-log plots of test-time loss vs. computation complexity on various data-
sets. The x-axis represents computation complexity measured by number of
weak leaner predictions; the y-axis measures square loss for regression tasks
(ABALONE, SLICE and YEAR), and classification error for A9A and MNIST. . 64

6.1 (a) Cell-search applies found cells to a predefined outer structure. (b) Macro-
search allows any connection. 86

6.2 An example weak learner xc from the search spaceHk. 87
6.3 Training of a weak learner xc, so that it can (a) and cannot (b) affect the current

model. 89
6.4 Weighted sum is replaced with concat-projection, when the top operations are

chosen. Any sf or sg are also removed. 91
6.5 The performance convex hull of the found models by Petridish on ILSVRC.

Petridish models are of parameter N = 6 and F = 44. 95

12

List of Tables

3.1 Test time 0.97-Timeliness measurement of different methods on AGRICULTURAL.
We break the methods into OMP, FR and Oracle family: e.g., “Single” in the
G-CS-OMP family means G-CS-OMP-Single, and “FR” in the Oracle family
means the oracle curve derived from G-FR. 22

3.2 Test time 0.99-Timeliness measurement of different methods on YAHOO! LTR. . 22

4.1 Average relative percentage increase in error from the OPT on CIFAR and SVHN
at 1/4, 1/2, 3/4 and 1 of the total cost. E.g., the bottom right entry means that if
OPT has a 10% final error rate, then AdaLoss has about 10.27%. 42

4.2 Test error rates at different fraction of the total costs on ResANN50, DenseANN169,
and MSDNet38 on ILSVRC. The post-fix +C and +A stand for CONST and
AdaLoss respectively. Published results of MSDNet38 Huang et al. (2018b) uses
CONST. 42

4.3 Relative percentage increase in error rate by switching from γ = 0. (lower is
better.) A small amount of γ = 0.5 drastically improves early predictions without
increasing late error rate much. 50

4.4 Relative percentage increase in error rate by switching from m = 0.9. (lower is
better.) The two options essentially result in the same error rates. 50

4.5 Relative percentage increase in error rate by switching from e = 0. (lower is
better.) The options are essentially the same on CIFAR10 and CIFAR100. 50

5.1 Average test-time loss: square error for regression, and error rate for classification. 66

6.1 Comparison against state-of-the-art recognition results on CIFAR-10. Results
marked with † are not trained with cutout. The first block represents approaches
for macro-search. The second block represents approaches for cell-search. . . . 93

6.2 ILSVRC2012 transfer results. Petridish uses Isolated and the concat-projection
(CP) modification by default. 94

6.3 Search space comparison between the direct space of N = 6 and F = 32 and the
proxy space of N = 3 and F = 16 by evaluating their best mobile setting models
on ILSVRC. 95

6.4 ILSVRC2012 transfer results. Ablation study on the choice of weighted-sum
(WS), concat-projection at the end (CP-end), or the Petridish default merge
operation in finalized weak learners. The searches were done with parameter
initial channel F = 32 and s number of regular cells per resolution of N = 6. . . 96

13

6.5 Test error rates on CIFAR-10 by models found with different weak learner com-
plexities. 96

6.6 ILSVRC2012 transfer results. Ablation study on the choice of Joint and Isolated
for training the weak learners. The search were with parameter initial channel
F = 32 and number of regular cell per resolution N = 6. 97

14

Chapter 11

Introduction2

When evaluating a predictor for an application, one often needs to consider two critical aspects3

of algorithms: the accuracy of the prediction, and the computational cost of the predictor. These4

two factors are often opposed to each other: practitioners typically have to choose between5

predictors that are accurate but slow and ones that are fast but inaccurate. This trade-off between6

computational cost and accuracy is inherently difficult to manage, and is the focus of this work.7

1.1 Motivations and Problem Settings8

Machine learning algorithms typically have computational budget limits during test-time. For9

applications on mobile devices and Internet of Things (IoTs), it is critical for the predictors to fit in10

these devices with low computational power and consume little computation during test-time. For11

robotic applications such as autonomous vehicle or drones, it is paramount to have low latency in12

visual detection for planning maneuvers. Web services such as Email spam filters also require low13

latency to maintain user satisfaction. For such applications, one often cannot deploy predictors14

that achieve the state-of-the-art accuracy, because those predictors often are associated with high15

computational costs. Instead, these applications often seek the most accurate models that are16

within their computational budgets.17

Furthermore, the computational budget limits of many applications can also vary during18

test-time, or can be agnostic during training. For instance, robotic applications have varying19

test-time budget limits based on the speed of the robot and the complexity of the environments.20

Web servers may handle heavier query traffic during the day than during the night, but they are21

expected to maintain the same low latency. Mobile and low-computation devices may want a22

low-power mode in case of low battery. Hence, it is beneficial to consider the setting where23

we seek the most accurate models at each possible budget limit of the applications. We draw24

special attention to the fact that under this setting, we delay the decision of the budget limits to25

the test-time, allowing greater flexibility in the algorithms. Furthermore, when the budget limit26

becomes known, one can extract from the spectrum of cost-efficient models. Alternatively, if27

one wants to minimize the average test-time computational costs of the prediction given a target28

accuracy level, such as in budgeted prediction (Bolukbasi et al., 2017; Guan et al., 2017), one can29

combine the spectrum of models with early-stopping policies in order to reduce computation on30

1

clear decisions and prolong computation on ambiguous ones.31

While the above examples and problem settings focus on the balance between model ac-32

curacy and test-time computation, practitioners may often be concerned with their train-time33

computational costs. One reason for this concern is that the data-sets are becoming larger and are34

continuously updated due to improved data storage and collection. Specifically, fields such as35

finance, information retrieval, computer vision, text and vocal language processing have accumu-36

lated data from decades of practice. Training state-of-the-art models against the decades worth of37

data becomes increasingly challenging. Hence, it is crucial for modern machine learning models38

to be able to handle large data-sets that may not be present on the same machine or at even the39

same time. Furthermore, the models ideally should be able to be improved as more data becomes40

available or more train-time computational resource is allocated.41

Another key reason for the rising train-time computation is the increased model complexity.42

As neural networks become the dominant methods for computer vision tasks and natural language43

processing, practitioners often rely on experts to find optimal network architectures via trial-44

and-error. However, such experimental process can be vastly expensive, taking thousands of45

GPU-days (Zoph and Le, 2017). Facing such complex and combinatorial hyper-parameter space46

of model architectures, we need guidance to search in a cost-efficient manner. In particular,47

practitioners may be interested in increasing the model complexity gradually: one starts with48

small architectures that can be trained and deployed easily; then as more train-time computation49

is allowed, the model complexity is gradually increased in a guided manner. Furthermore, ideally50

one would like the models to reusable and stable, so that new models can utilize previous found51

models and do not deviate from previous models too much to affect user experience.52

In summary, the targeted problem settings of this work can be partitioned into two parts.53

The first focuses on the problem of finding accurate predictions at each possible test-time com-54

putational budgets, and the second focuses on enabling the previous solutions to handle the55

computational cost in training due to increased data-set sizes and increased complexity in model56

hyper-parameters.57

1.2 Approach58

For each of test-time and train-time trade-off between computation and accuracy, we develop both59

algorithms with theoretical performance guarantees and algorithms that work well on real-world60

data-sets. We summarize the main approaches that we take as follows.61

One approach to have accurate predictions at each possible test-time computational budget62

limit is to first produce crude predictions early, and then continuously improve them. Such63

algorithms are called anytime algorithms, and they automatically adjust to the varying or agnostic64

test-time budget limits because the algorithm utilize the computational resources until the budget65

limit. One common approach to achieve anytime prediction is through ensembles of weak66

predictors (Brubaker et al., 2008; Cai et al., 2015; Grubb and Bagnell, 2012b; Lefakis and67

Fleuret, 2010; Reyzin, 2011; Sochman and Matas, 2005; Xu et al., 2014), so that at test-time, one68

computes the predictors iteratively and then reports the partial ensemble result as the intermediate69

or anytime results. Indeed, the first anytime predictor of this work follows this idea of combining70

weak predictors in a generalized linear prediction setting, and utilizes submodular optimization71

2

results (Das and Kempe, 2011) to bound the performance of the predictions. Furthermore, we72

prove a limitation of any anytime algorithm that stems from an ensemble of weak predictors,73

proving that in general such an ensemble of cost B can only achieve comparable rewards of the74

optimal ensemble of cost B/4.75

Such limitations lead us to consider an alternative approach to anytime prediction, where76

we train a single model to produce multiple intermediate results for anytime predictions, and77

we optimize all the anytime results jointly. Viewing anytime prediction as a multi-objective78

optimization, we develop an adaptive method to balance the weights of the objectives, and79

improve anytime prediction quality on multiple neural networks and data-sets. By exploiting80

anytime neural networks as weak learners, we can form ensembles of anytime predictors for81

anytime prediction, and interestingly, by making weak learners to be anytime predictors, we can82

circumvent the previous theoretical limitation on ensemble-based anytime predictors.83

For the train-time trade-off between computation and accuracy, we specifically target problems84

that are often accompanied by our anytime predictors. Since anytime models often stem from85

ensembles of weaker models that are trained sequentially, they can be difficult to scale to large86

data-sets, especially on data-sets that may be expensive to loop through. To address this weakness,87

we develop gradient boosting algorithms for stochastic data streams so that we can train all weak88

learners jointly. Gradient boosting can be considered as approximated gradient descent in the89

functional space, and can be analyzed via gradient descent (Grubb and Bagnell, 2011; Hazan90

et al., 2007). Combining gradient boosting with analysis from online learning (Beygelzimer et al.,91

2015b; Cesa-Bianchi et al., 2004), we analyze the proposed algorithms under stochastic data92

streams. We bound the regrets of the proposed algorithm, showing that it achieves no regret in93

prediction losses against any competitor under strongly convex losses and under the assumption94

that each weak online learner can predict better than random by a margin.95

We also address the increased complexity of hyper parameters in the specific setting of neural96

architecture search (Elsken et al., 2018b; Zoph and Le, 2017), where one seeks the optimal97

architecture given a data-set and an optimization objective. We first formulate the problem as a98

bi-level optimization and show its connections to the earlier anytime linear prediction problem.99

Inspired by forward selection approach in the linear prediction setting, we propose to expand100

existing neural networks models iteratively guided by gradient boosting. Each step of the model101

expansion is determined by fitting potential short-cut connections against the gradient of the loss102

with respect to intermediate layers.103

In summary, the thesis statement of this work is as follows.104

Thesis Statement: Modern machine learning applications often have to address105

the trade-off between computational cost and predictive power. This work addresses106

the trade-off between computational speed and prediction accuracy at both test-time107

and training-time, providing theoretical performance guarantees and practical experi-108

mental results. Specifically, for dynamically trading speed and accuracy at test-time,109

we leverage cost-greedy methods to achieve near-optimal anytime linear predictions,110

and we also derive an anytime performance upper bound on such ensemble-based111

methods in general. However, utilizing multi-objective optimization, we show that112

this upper bound can be avoided via ensemble of anytime weak learners. To address113

the rising problem of training computation, we propose to adapt ensemble meth-114

3

ods to stochastic data-streams. Furthermore, we draw connection between anytime115

prediction and neural architecture search, and develop practical algorithms to ex-116

pand network architectures iteratively in order to explore the vast space of networks117

efficiently during training.118

1.3 Overview of Chapters and Their Contributions119

Chapter 3 covers the anytime linear prediction under the setting where features are computed in120

groups and feature groups have costs. Under this setting, we learn an ordering of the features,121

in which the features should be computed at the test-time. Whenever a new feature becomes122

available at test-time, we update the latest linear prediction. In Section 3.2, we extend feature123

selection methods Forward Regression (FR) and Orthogonal Matching Pursuit (OMP) to handle124

feature groups that have costs. We then provide a theoretical analysis of these two cost-greedy125

algorithms in Section 3.3, utilizing spectral analysis and sub-modular optimization. We first prove126

that both algorithms achieve near-optimal linear predictions in terms of explained variance, at127

test-time budgets where the algorithms just finish computing new feature groups. Then we show128

that these bounds are inadequate for bounding performance for all test-time budgets. Instead129

we propose a simple modification, called doubling, to the previous cost-greedy procedure in130

Section 3.4, and provide theoretically analysis that the modified algorithms is near-optimal at any131

test-time budget B in comparison to the optimal at budget B/4 in Theorem 3.4.3. We further132

show that the constant B/4 is tight in Theorem 3.4.1, which shows that it is impossible in general133

for anytime algorithms via ensembles to compare against the optimal of a budget that is more than134

B/4. The contribution of this chapter is summarized as follows.135

1. We cast the problem of anytime linear prediction as a feature group sequencing problem and136

propose extensions to Forward Regression (FR) and Orthogonal Matching Pursuit (OMP)137

under the setting where features are in groups that have costs.138

2. We theoretically analyze our extensions to FR and OMP and show that they both achieve139

(1 − e−λ∗) near-optimal explained variance with linear predictions at budgets when they140

choose feature groups, where λ∗ is a constant related to how correlated the features groups141

are to each other.142

3. We develop the first anytime algorithm with provable performance guarantees at any budget143

limit B, by relating the prediction performance to that of the optimal of cost B/4.144

4. We further show that the fraction 1/4 is tight, as in that it is impossible to achieve multi-145

plicative bounds of the prediction performance at B against any optimal of cost greater than146

B/4.147

5. The previous pair of theoretical results present a tight bound on anytime predictions based148

on ensemble of weak predictors.149

As Chapter 3 seals the fate of anytime predictors via ensembles of weak learners, we move150

on in Chapter 4 to develop anytime predictors within neural networks. We pose the training of151

anytime predictors within a single network as a multi-objective optimization, and propose to152

balance the weights of the anytime objectives adaptively in a weighted sum in Section 4.3. The153

4

adaptive weight balancing intuitively normalizes the losses so that they have the same scale. This154

simple modification can be derived from three theoretical considerations, including maximum155

likelihood models, optimization with log-barriers, and optimization of geometric mean of the156

expected anytime losses. We also show experimentally in Section 4.5 that the proposed weight157

balancing leads to better anytime predictions within the networks across multiple architectures158

and data-sets. The anytime neural networks also allow us to revisit the limitation of anytime159

predictors via ensembles. In fact, we show in Section 4.4 that an ensemble of anytime neural160

networks can circumvent the previous hard example, so that the performance at a test-time budget161

B is comparable to the optimal at budget B/C, where the constant C can be smaller than 4. This162

suggests that future anytime predictors should combine weak learners that are anytime predictors163

on their own, instead of regular weak predictors. The contribution of this chapter is summarized164

as follows.165

6. For training anytime predictions within neural networks, we derive an adaptive weight166

scheme for anytime losses from multiple theoretical considerations, and show that experi-167

mentally this scheme achieves near-optimal final accuracy and competitive anytime ones168

on multiple data-sets and models.169

7. We assemble anytime neural networks of exponentially increasing depths to achieve near-170

optimal anytime predictions at every budget at the cost of a constant fraction of additional171

consumed budget, under the assumption that each anytime neural network is near-optimal172

in its later fraction of depths. We verify that this assumption holds practically in current173

state-of-the-art networks.174

8. The near-optimal guarantee of ensemble of anytime neural networks breaks the earlier175

hardness result of anytime predictors from ensemble of regular predictors by increasing the176

constant 1/4 to 1/2.91.177

Starting from Chapter 5, we switch the topic from test-time balance of computation and178

accuracy to the training-time cost-effectiveness. Chapter 5 covers how to train an ensemble for179

gradient boosting given a stochastic stream of data samples. Gradient boosting is a common180

way to form ensemble of weak learners, and each weak learner is trained to match the functional181

gradient of the loss with respect to the current predictor. We set up these preliminary details182

in Section 5.3. Such boosting can suffer on large data-sets, because it trains the weak learners183

sequentially and loop the data many passes. To address this weakness of gradient boosting, we184

propose a modification to handle stochastic data streams in Section 5.5, so that all weak learners185

are online learners and are trained and optimized jointly. Combining theoretical analysis of convex186

optimization for gradient boosting and that of online learning for handling stochastic streams, we187

prove in Theorem 5.5.1 and Theorem 5.5.2 that the proposed algorithms can achieve no regret188

against any competitor under convex losses and under the assumptions that the weak online189

learners are better than random by a margin. The contribution of this chapter is summarized as190

follows.191

9. Assuming a non-trivial edge can be achieved by each deployed weak online learner, we192

develop gradient boosting algorithms to handle smooth or non-smooth loss functions on193

stochastic data streams.194

10. The theoretical analysis show that under the smooth losses, the proposed algorithms achieves195

5

exponential decay on the average regret with respect to the number of weak learners.196

11. Under non-smooth but strongly convex losses, we show that the proposed streaming gradient197

boosting can instead achieve O(lnN/N) average regret with respect to the number of weak198

learners N .199

Chapter 6 considers on the search through the hyper-parameter space, and focuses on the200

problem of neural architecture search. Traditionally, practitioners tune their architecture via trial201

and error, and it can take massive computational resources. Recent works have automated this202

procedure via reinforcement learning and evolutionary algorithms, but the training computational203

cost is still demanding. In Section 6.3, we draw a connection from the architecture search to204

learning anytime predictions with ensemble methods, showing that they both solve a bi-level205

optimization problem where the outer level searches for the discrete choice of architecture or206

weak learners, and the inner level optimizes the parameters of architecture or the weak learners.207

In Section 6.4, we develop a greedy search procedure that adds shortcut connections to existing208

network architectures iteratively. The added connections are chosen by matching candidate209

connections to the gradient of the loss with respect to intermediate layers, similar to gradient210

boosting of weak learners. To estimate the gradients efficiently, we initialize a large number of211

potential shortcut connections and train them jointly, and we utilize feature selection to keep only212

the most important ones. We show experimentally in Section 6.5 that such greedy procedure can213

find cost-efficient models that are at the state-of-the-art level. The contribution of this chapter is214

summarized as follows.215

12. We propose an approach to increase complexity of neural networks iteratively during216

training. We alternate between two phases. The first expands the model with potential217

shortcut connections and train them jointly. The second phase trims the previous potential218

connections using feature selection and continue training the model.219

13. The proposed approach can be applied to both improve a small repeatable pattern, called220

cell, and improve the macro network architecture directly, unlike most popular approaches221

that only focus on cells. This opens up neural architecture search to fields where no domain222

knowledge of the macro structure exists.223

14. On cell-search, the proposed method finds a model that achieves 2.61% error rate on224

CIFAR10 using 2.9M parameters within 5 GPU-days.225

15. On macro-search, the proposed method finds a model that achieves 2.83% error rate on226

CIFAR10 using 2.2M parameters within 5 GPU-days.227

16. The proposed approach can warm start from existing networks, leveraging previous training228

results. Furthermore, it directly expands models on the lower convex hull of error rate vs.229

test-time computation, and is hence able to naturally produce a gallery of cost-effective230

models for applications to choose.231

6

Chapter 2232

Preliminaries and Background233

2.1 Anytime Prediction234

We formally introduce anytime prediction in this section, since most of this work is based on this235

idea. Anytime predictors output valid results if they are interrupted at any point during testing.236

Furthermore, the results improve with more resources spent. Such idea of partial computation is237

exploited by many algorithms, not just for prediction. For instance, bisection method for finding238

square root of a real number is an example where the longer the computation, the more precise239

the approximation becomes.240

Formally, we consider anytime prediction as a multi-objective optimization problem. An
anytime predictor ŷ takes an input x, and produces a sequence of partial results until an agnostic
interruption happens. Let the parameters of the predictor be θ We denote ŷt(x; θ) to be the the
latest prediction at computational budget limit t ∈ R. Let y be the target prediction, and the loss
function be `. Then the predictor at time t suffers the expected loss `t(θ) := Ex,y∼D`(ŷt(x; θ), y),
where D is the stochastic distribution of the data. Then an ideal anytime predictor simultaneously
optimizes the expectation `t for all t ∈ R, i.e., finding the optimal θ∗ that is simultaneously optimal
for all budgets t,

θ∗ ∈ ∩t∈R{θ′ : θ′ = arg min
θ
`t(θ)}. (2.1)

The multi-objective optimization in Eq. 2.1 often cannot be solved, because not only there
are infinitely many objectives `t, but also these objectives are in general in conflict with each
other. Hence, varies approximation have to be made for optimizing for Eq. 2.1. One common
approximation is to only consider `t if a new prediction becomes available at t, i.e.,

θ∗ ∈ ∩t∈A{θ′ : θ′ = arg min
θ
`t(θ)}, (2.2)

where A is the set of time where ŷ makes new predictions. This is often used in practice, because241

we often know roughly which t to focus on and design the predictor to output at those locations242

specifically. However, by only focusing on the budgets where new predictions are made, this243

approximation can overestimate its performance at other time budgets. An extreme example is244

to focus only on the final prediction and produce no early results, i.e., a non-anytime predictor.245

7

In fact, in both Chapter 3 and Chapter 4 we apply this approximation first, and then convert the246

solutions for the general budgets t ∈ R.247

The multi-objective minimization in Eq. 2.2 is also more special than general multi-objective248

problems, since the predictions happen in the order of computation. Hence, beside typical multi-249

objective approaches such as weighted sum and game-theoretical min-max optimization, one250

can instead add complexity to the anytime predictor iteratively, and each addition triggers a new251

prediction. This approach is appealing and is often used in anytime prediction literature, because it252

replaces the difficult multi-objective problem with an iterative optimization problem. Furthermore,253

the theoretical analysis on the iterations can often be translated to performance at all budgets at254

which the predictions are made.255

2.2 Related Works to the Trade-off Between Computation and256

Accuracy257

There are a wide array of works that address the trade-off between computation and accuracy.258

Here we provide a brief summary of these approaches to establish a background for this work.259

2.2.1 Anytime Prediction260

There are many ways to generate anytime predictions within predictors. Some predictors innately261

have structures or procedures that can provide anytime predictions. For instance, a decision tree262

can naturally provide exit the prediction at any depth. In stacked recurrent models or iterative263

inference procedures, one can stop early without finishing all iterations. In feed-forward neural264

networks, auxiliary predictors that leverage early feature layers can be trained to produce early265

predictions. In fact, as deep neural networks (DNNs) have become the backbone of many modern266

machine learning applications, many works have studied DNNs with auxiliary predictors. Larsson267

et al. (2017a); Lee et al. (2015); Szegedy et al. (2017); Zhao et al. (2017) use auxiliary prediction to268

regularize the networks for faster and better convergence. Bengio et al. (2009); Zamir et al. (2017)269

set the auxiliary predictions from easy to hard for curriculum learning. Chen and Koltun (2017);270

Xie and Tu (2015) make pixel level predictions in images, and find learning early predictions in271

coarse scales also improve the fine resolution predictions. Huang et al. (2018b) shows the crucial272

importance of maintaining multi-scale features for high quality early classifications.273

Anytime predictors can also be built iteratively from weak predictors. In (Weinberger et al.,274

2009; Xu et al., 2012; 2013a), feature manipulations such as polynomials on the existing features275

are iteratively tried and selected to add to the overall linear predictor. (Reyzin, 2011) train276

a boosted ensemble of weak learners, and then at test-time, sample the weak learners to run277

according to their weights in the ensemble. (Grubb and Bagnell, 2012b) adjust gradient boosting278

to account for computational costs of weak learners during weak learner selection, and compute279

the weak learners sequentially during test-time to update the outputs.280

8

2.2.2 Model Compression281

A wide range of works improve the trade-off between computation and accuracy by compressing282

the model.283

The most rudimentary form of model compression is perhaps the feature selection in linear284

prediction, where one seeks the most important features of the model. There are two typical285

approaches to feature selection, sparse optimization and iterative selection (or elimination). In286

sparse optimization, one optimizes the completely model while having some constraints or287

regularization to induce sparsity in the selected features. L1-regularization, or Lasso (Tibshirani,288

1994) is typically used for selecting individual feature dimensions. When there are feature groups,289

where grouped features are computed together, Group Lasso regularization (Yuan and Lin, 2006)290

is often used. The most common approaches to iterative approach is through greedy algorithms,291

which are classified by their greedy criteria. In particular, forward regression enumerates all292

possible selections and compute the marginal change in the objectives. Alternatively, Orthogonal293

Matching Pursuit (Pati et al., 1993) and Least-angle Regression(LARS) (Efron et al., 2004) can294

be considered as approximation to forward regression via gradient boosting: a feature is selected,295

if it is to best to represent the gradient of the loss with respect to the prediction.296

Neural network compression has become a common problem due to the growing network297

sizes and the limited GPU memory. Huang et al. (2017a); Li et al. (2017); Liu et al. (2017b)298

prune network weights and connections based on their magnitudes. Hubara et al. (2016); Iandola299

et al. (2016); Rastegari et al. (2016) quantize weights within networks to reduce computation300

and memory footprint. A closely related topic is knowledge distillation Ba and Caruana (2014);301

Hinton et al. (2014), where the training target of the target network is replaced with the predicted302

logits of the source network.303

2.2.3 Budgeted Prediction304

We note that anytime prediction is related to but different from budgeted prediction, which305

aims to minimize average test-time computational cost without sacrificing average accuracy.306

Specifically, in anytime prediction, the budget t determines the computational cost for all samples307

x, whereas in budgeted prediction, the predictor has the freedom to choose when to exit for each308

sample x, provided the expected prediction accuracy meets some threshold, and the expected309

computational cost becomes a minimization objective. As a result, a budgeted predictor may not310

have early predictions for a particular data sample, and the predictor can also exit early on the311

sample, so that the result on the sample is not improved if more computational budget is given. At312

the same time, an anytime predictor tries to optimize the result on the sample at multiple budget313

limits, and this may leads to worse accuracy at a specific budget limit. Hence, we consider the314

two problems orthogonal.315

A typical approach to budgeted prediction is through cascaded predictors (Brubaker et al.,316

2008; Cai et al., 2015; Lefakis and Fleuret, 2010; Sochman and Matas, 2005; Viola and Jones,317

2001b; Xu et al., 2014), where a sequence of predictions are trained along side with a policy that318

determines the exit point of each sample on the sequence. As a result, data samples with easy319

decisions take early-exits, while the difficult decisions can take longer computation. Overall, this320

often results in a reduction in computation at a small increase of error rates. Cascaded prediction321

9

can be also considered as a combination between anytime predictors and the early-exit policy.322

Cascaded predictors and budgeted prediction has also been applied to neural networks. Boluk-323

basi et al. (2017); Veit and Belongie (2017); Wang et al. (2017) dynamically skip network324

computation based on samples, and the early-exit policies are trained through reinforcement325

learning or iterative optimization.326

10

Chapter 3327

Anytime Linear Prediction via Feature328

Group Sequencing329

3.1 Introduction330

In this work, we consider anytime predictions under the common machine learning setting,331

where features are computed in groups with associated costs. We further assume that the cost332

of prediction is dominated by feature computation. Hence, we can achieve anytime predictions333

by computing feature groups in a specific order and outputting linear predictions using only334

computed features at interruption.335

Formally, we are given n samples (xi, yi) from a feature matrix X ∈ Rn×D and a response
vector Y ∈ Rn. We also have a partition of the D feature dimensions into J feature groups,
G1,G2, ...,GJ , and an associated cost of each group c(Gj). Our anytime prediction approach learns
a sequencing of the feature groups, G = g1, g2, ..., gJ . For each budget limit B, the computed
groups at cost B is a prefix of the sequencing, G〈B〉 = g1, g2, .., gJ〈B〉 , where J〈B〉 = max{j ≤
J |
∑

i≤j c(gi) ≤ B} indexes the last group within the budget B. An ideal anytime algorithm
seeks a sequencing G to minimize risk at all budgets B:

R(G〈B〉) := min
w

1

2n
‖Y −XG〈B〉w‖

2
2 +

λ

2
‖w‖2

2, (3.1)

where XG〈B〉 contains features in G〈B〉, w is the associated linear predictor coefficient, and λ is a
regularizing constant. Equivalently, if we assume that the yi’s have unit variance and zero mean
by normalization, we can maximize the explained variance,

F (G〈B〉) :=
1

2n
Y TY −R(G〈B〉) (3.2)

=
1

2n
Y TY −min

w

(1

2n
‖Y −XG〈B〉w‖

2
2 +

λ

2
‖w‖2

2

)
(3.3)

The above optimization problem is closest to the problem of subset selection for regression336

(Das and Kempe, 2011), which selects at most k features to optimize a linear regression. The337

problem is also similar to that of sparse model recovery (Tibshirani, 1994), which recovers338

11

coefficients of a true linear model. One common approach to these two problems is to select the339

features greedily via Forward Regression (FR) (Miller, 1984) or Orthogonal Matching Pursuit340

(OMP) (Pati et al., 1993). Forward Regression greedily selects features that maximize the341

marginal increase in explained variance at each step. Orthogonal Matching Pursuit selects features342

as follows. The linear model coefficients of the unselected features are set to zero. At each step,343

the feature whose model coefficient has the largest gradient of the risk is selected. In this work,344

we extend FR and OMP to the setting where features are in groups that have costs. The extension345

to FR is intuitive: we only need to select feature groups using their marginal gain in objective per346

unit cost instead of using just the marginal gain. However, we have two notes about the extension347

to OMP. First, to incorporate feature costs, we need to evaluate a feature based on the squared348

norm of the associated weight vector gradient per unit cost instead of just the gradient norm.349

Second, when we compute the gradient norm for a feature group,∇g, we have to use the norm350

∇T
g (XT

g Xg)
−1∇g, which is ‖∇g‖2

2 if and only if each feature group g is whitened, which is an351

assumption in group OMP analysis by Lozano et al. (2009; 2011). Our analysis sheds light on352

why this assumption is important in a group setting. Like previous analyses of greedy algorithms353

by Streeter and Golovin (2008), our analysis guarantees that our methods produce near-optimal354

linear predictions, measured by explained variance, at budgets where feature groups are selected.355

Thus, they exhibit the desired anytime behavior at those budgets. Finally, we extend our algorithm356

to account for all budgets and show a novel anytime result: for any budget B, if OPT is the357

optimal explained variance of cost B, then our proposed sequencing can approximate within a358

factor of OPT with cost at most 4B. Furthermore, with a cost less than 4B, a fixed sequence of359

predictors cannot approximate OPT in general. To our knowledge, these are the first anytime360

performance bounds at all budgets.361

In previous works, both FR and OMP are theoretically analyzed for both the problem of subset362

selection and model recovery. Das and Kempe (2011) cast the subset selection problem as a363

submodular maximization that selects a set S with |S| ≤ k to maximize the explained variance364

and prove that FR and OMP achieve (1− e−λ∗) and (1− e−λ∗2) near-optimal explained variance,365

where λ∗ is the minimum eigenvalue of the sample covariance, 1
n
XTX . We can adopt these366

previous analyses to our extensions to FR and OMP under the group setting with costs and produce367

the same near-optimal results. We also present a novel analysis of OMP that leads to the same368

near-optimal factor (1− e−λ∗) as that of FR. Works on model recovery have also analyzed FR and369

OMP. Zhang (2009) proves that OMP discovers the true linear model coefficients, if they exist.370

This result was then extended by (Lozano et al., 2009; 2011) to the setting of feature groups using371

generalized linear models. However, we note that these theoretical analyses of model recovery372

assume that a true model exists. They focus on recovering model coefficients rather than directly373

analyzing prediction performance.374

Besides greedy selection, another family of approaches to find the optimal subset S that375

minimizes R(S) is to relax the NP-hard selection problem as a convex optimization. Lasso376

(Tibshirani, 1994), a well-known method, uses L1 regularization to force sparsity in the linear377

model. To get an ordering of the features, compute the Lasso solution path by varying the378

L1 regularization constant. Group Lasso (Yuan and Lin, 2006) extends Lasso to the group379

setting, replacing the L1 norm with the sum of L2 norms of feature groups. Group Lasso380

can also incorporate feature costs by scaling the L2 norms of feature groups. Lasso-based381

methods are generally analyzed for model recovery, not prediction performance. We demonstrate382

12

experimentally that our greedy methods achieve better prediction performance than cost-weighted383

Group Lasso.384

Various works have addressed anytime prediction previously. The most well-known family385

of approaches use cascades (Viola and Jones, 2001b), which achieve anytime prediction by386

filtering out samples with a sequence of classifiers of increasing complexity and feature costs.387

At each stage, cascade methods (Brubaker et al., 2008; Cai et al., 2015; Lefakis and Fleuret,388

2010; Sochman and Matas, 2005; Xu et al., 2014) typically achieve a target accuracy and assign a389

portion of samples with their final predictions. While this design frees up computation for the390

more difficult samples, it prevents recovery from early mistakes. Most cascade methods select391

features of each stage before being trained. Although the more recent works start to learn feature392

sequencing, the learned sequences are the same as those of cost-weighted Group Lasso (Chen393

et al., 2012a) and greedy methods (Cai et al., 2015) when they are restricted to linear prediction.394

Hence our study of anytime linear prediction can help cascade methods choose features and learn395

cascades. Another branch of anytime prediction methods uses boosting. It outputs as results396

partial sums of the ensemble (Grubb and Bagnell, 2012b) or averages of randomly sampled weak397

learners (Reyzin, 2011). Our greedy methods can be viewed as a gradient boosting scheme by398

treating each feature as a weak learner. Some works approach anytime prediction with feature399

transformations (Xu et al., 2012; 2013a) and learn computation-aware, non-linear transformation400

of features for linear classification. Similarly, Weinberger et al. (2009) hashes high dimensional401

features to low dimensional subspaces. These approaches operate on readily-computed features,402

which is orthogonal to our problem setting. Karayev et al. (2012) models the anytime prediction as403

a Markov Decision Process and learns a policy of applying intermediate learners and computing404

features through reinforcement learning.405

Contributions406

• We cast the problem of anytime linear prediction as a feature group sequencing problem and407

propose extensions to FR and OMP under the setting where features are in groups that have408

costs.409

• We theoretically analyze our extensions to FR and OMP and show that they both achieve410

(1− e−λ∗) near-optimal explained variance with linear predictions at budgets when they choose411

feature groups.412

• We develop the first anytime algorithm that provably approximates the optimal performance413

of all budgets B with cost of 4B; we also prove it impossible to achieve a constant-factor414

approximation with cost less than 4B.415

3.2 Computation-Aware Greedy Methods416

3.2.1 Preliminaries417

Before introducing our greedy methods for forming cost-efficient anytime predictors, we first418

formally state our assumptions and define some terminology.419

13

We assume that all feature dimensions and responses are normalized to have zero mean and420

unit variance, i.e., we assume each column of X has zero mean and unit variance. We also assume421

the feature group costs c(g) dominates the costs of computing linear predictions using the features.422

We define the regularized feature covariance matrix as C := 1
n
XTX + λID. Let Cst be the

sub-matrix that selects rows from s and columns from t. Let CS be short for CSS . Given a
non-empty union of selected feature groups S, the maximum explained variance F (S) is achieved
with the regularized optimal coefficient

w(S) =
1

n
(
1

n
XT
SXS + λI)−1(XT

S Y) (3.4)

=
1

n
C−1
S XT

S Y. (3.5)

When we take gradient of F (S) with respect to the coefficient of a feature group g, if g ⊆ S then
the gradient is

∇gF (S) =
1

n
XT
g (Y −XSw(S))− λw(S)g. (3.6)

If g ∩ S = ∅ then we can extend w(S) to dimensions of g, setting w(S)g = 0, and then take the
gradient to have∇gF (S) = 1

n
XT
g (Y −XSw(S)). In both cases, we have

∇gF (S) =
1

n
XT
g Y − CgSw(S). (3.7)

We further shorten the notations by defining bSg = ∇gF (S). If S is empty, we assume that423

coefficient w(∅) has zero for all features so that F (∅) = 0. When S = [s1, s2, ...,] is a sequence424

of feature groups, we define Sj to be the prefix sequence [s1, s2, ..., sj]. We overload notations of425

a sequence S so that S also represents the set of features contained in the union of s1, s2, ..., in426

notations such as F (S), w(S), CS and bSS , where we need the selected features in S for evaluation427

and the ordering does not affect the computation.428

3.2.2 Anytime Prediction at Test-time429

Algorithm 1 describes anytime linear prediction at test-time. Given a learned ordering S for430

computation the features, the predictor compute them in order and update the linear prediction431

Ŷ whenever a new feature becomes available. We can update predictions frequently, because432

we assume that the linear prediction computation is dominated by its feature computation. At433

interruption or termination of the feature computation, we report the latest linear prediction.434

Hence, to produce anytime linear predictions, we need to learn a sequencing of the features435

groups.436

3.2.3 Computation-Aware Group Orthogonal Matching Pursuit(CS-G-OMP)437

In Algorithm 2, we present Computation-Aware Group Orthogonal Matching Pursuit (CS-G-438

OMP), which learns a near-optimal sequencing of the feature groups for anytime linear predictions.439

14

Algorithm 1 Anytime Linear Prediction at Test-time

1: Input: An ordering of features S = s1, s2, The linear prediction weight w(Sj) for each
j = 1, 2, ...,. Input feature matrix X .

2: Output: Linear prediction on X .
3: Initialize Ŷ0 = ~0.
4: Initialize Ŷ = Ŷ0.
5: for j = 1, 2, ... do
6: Compute feature group sj .
7: Compute predictions Ŷj = Xw(Sj).
8: Update Ŷ = Ŷj
9: end for

10: Return Ŷ .

The feature groups are selected greedily. At the jth selection step (∗), we have chosen j−1 groups,440

Gj−1 = g1, g2, ..., gj−1, and have computed the best model using Gj−1, w(Gj−1). To evaluate a441

feature group g, we first compute the gradient bg = ∇gF (Gj−1) of the explained variance F with442

respect to the coefficients of g. Then, we evaluate it with the whitened gradient L2-norm square443

per unit cost, b
T
g (XT

g Xg)−1bg

c(g)
. We select the group g that maximizes this value as gj , and continue444

until all groups are depleted.445

Before providing performance guarantees with formal theoretical analysis of Algorithm 2 in446

Section 3.3, we first provide some intuition on why we introduce a group-whitening at line 8 in447

Algorithm 2. If there are no feature groups, OMP greedily selects features whose coefficients448

have the largest gradients of the objective function. In linear regression, the gradient for a feature449

g is the inner-product of Xg and the prediction residual Y − Ŷ . Hence OMP selects features that450

best reconstruct the residual. From this perspective, OMP under group setting should seek the451

feature group whose span contains the largest projection of the residual. Let the projection to452

feature group g be Pg = Xg(X
T
g Xg)

−1XT
g and recall projection matrices are idempotent. We453

observe that the criterion for CS-G-OMP selection step is ‖Pg(Y−Ŷ)‖22
c(g)

, i.e, a cost-weighted norm454

square of the projection of the residual onto a feature group. The name group whitening is chosen455

because the criterion is ‖bg‖
2
2

c(g)
if and only if feature groups are whitened. We assume feature456

groups are whitened in our formal analysis, and we will reflect on the theoretical effects of not457

group-whitening during the analysis.458

Besides group-whitening, one may suggest other approaches to evaluate gradient vectors bg459

for group g. For example, L2 norm and L∞ norm can be used to achieve greedy criteria ‖bg‖
2
2

c(g)
and460

‖bg‖2∞
c(g)

, respectively. The former criterion forgoes group whitening, so we call it no-whiten. Thus,461

it overestimates a feature group that has correlated but effective features, an extreme example of462

which is a feature group of identical but effective features. The latter criterion evaluates only the463

best feature of each feature group, so we call it single. Thus, it underestimates a feature group464

that has a descriptive feature span but no top-performing individual feature dimensions. We will465

show in experiments that no-whiten and single are indeed inferior to our CS-G-OMP choice.466

15

Algorithm 2 Cost Sensitive Group Orthogonal Matching Pursuit (CS-G-OMP)

1: Input: The normalized feature matrix X ∈ Rn×D. The normalized response vector Y ∈ Rn,
which has a zero mean and unit variance. Feature groups G1, ...GJ that partition {1, .., D},
and group costs c(Gj). Regularization constant λ.

2: Output: A sequence G = g1, g2, ..., gJ of feature groups. For each j ≤ J , a coefficient
w(Gj) for the features Gj = g1, ..., gj .

3: Set G0 = ∅ to be an empty sequence.
4: Set w(G0) = ~0 to be a zero vector of zero length.
5: Compute C = XTX .
6: for j = 1, 2, ..., J do
7: for g /∈ Gj−1 do
8: Compute bg = ∇gF (Gj−1) = 1

n
XT
g (Y −XGj−1

w(Gj−1)).
9: end for

10: gj = arg max
g=G1,...,GJ ,g /∈Gj−1

bTg (XT
g Xg)−1bg

c(g)
.

11: Append gj to the sequence: Gj = Gj−1 ⊕ gj .
12: Compute w(Gj) = 1

n
C−1
Gj
XT
Gj
Y .

13: end for

3.2.4 Computation-Aware Group Forward Regression (CS-G-FR)467

The learning procedure extending from Forward Regression is similar to Algorithm 2, as stated in468

Algorithm 3: we compute the linear models w(Gj−1 ⊕ g) at line 4 instead of the gradients bg and469

replace the selection criterion bTg (XT
g Xg)−1bg

c(g)
at line 8 with the marginal gain in explained variance470

per unit cost, F (Gj−1⊕g)−F (Gj−1)

c(g)
. We call this cost-sensitive FR extension as CS-G-FR.471

3.3 Near-Optimality at Features Selection472

This section proves that CS-G-FR and CS-G-OMP produce near-optimal explained variance F at473

budgets where features are selected. The main challenge of our analysis is to prove Lemma 3.3.1,474

which is a common stepping stone in submodular maximization analysis, e.g., Equation 8 in475

(Krause and Golovin, 2012). The main Theorem 3.3.2 follows from the lemma by standard476

techniques, which we defer to the Section 3.6.477

Lemma 3.3.1 (main). Let Gj be the first j feature groups selected by our greedy algorithm.478

There exists a constant γ = λ∗+λ
1+λ

> 0 such that for any sequence S, total cost K, and indices479

j = 1, 2, ..., J , F (S〈K〉)− F (Gj−1) ≤ K
γ

[
F (Gj)−F (Gj−1)

c(gj)
].480

Theorem 3.3.2. Let B =
∑L

i=1 c(gi) for some L. There exists a constant γ = λ∗+λ
1+λ

, such that for481

any sequence S and total cost K, F (G〈B〉) > (1− e−γ BK)F (S〈K〉).482

Before delving into the proof of Lemma 3.3.1, we first discuss some implications of The-483

orem 3.3.2, which argues that the explained variance of greedily selected features of cost B484

is within (1 − eγ
B
K)-factor of that of any competing feature sequence of cost K. If we apply485

16

Algorithm 3 Cost Sensitive Group Forward Regression (CS-G-OMP)

1: Input: The normalized feature matrix X ∈ Rn×D. The normalized response vector Y ∈ Rn,
which has a zero mean and unit variance. Feature groups G1, ...GJ that partition {1, .., D},
and group costs c(Gj). Regularization constant λ.

2: Output: A sequence G = g1, g2, ..., gJ of feature groups. For each j ≤ J , a coefficient
w(Gj) for the features Gj = g1, ..., gj .

3: Set G0 = ∅ to be an empty sequence.
4: Set w(G0) = ~0 to be a zero vector of zero length.
5: Compute C = XTX .
6: for j = 1, 2, ..., J do
7: for g /∈ Gj−1 do
8: Compute w = w(Gj−1 ⊕ g) = 1

n
C−1
Gj−1⊕gX

T
Gj−1⊕gY .

9: Compute F (Gj−1 ⊕ g) = 1
2n

(‖Y ‖2 − ‖Y −XGj−1⊕gw‖2)− λ
2
‖w‖2.

10: end for
11: gj = arg max

g=G1,...,GJ ,g /∈Gj−1

F (Gj−1⊕g)−F (Gj−1)

c(g)
.

12: Append gj to the sequence: Gj = Gj−1 ⊕ gj .
13: Record w(Gj) = 1

n
C−1
Gj
XT
Gj
Y .

14: end for

minimum regularization (λ→ 0), then the constant γ approaches λ∗. The resulting bound factor486

(1− e−λ∗ BK) is the bound for FR by Das and Kempe (2011). However, we achieve the same bound487

for OMP, improving theoretical guarantees of OMP. We also note that less-correlated features488

lead to a higher λ∗ and a stronger bound.489

Lemma 3.3.1 for CS-G-FR is standard if we follow proofs in (Streeter and Golovin, 2008) and490

(Das and Kempe, 2011) because the objective F is γ-approximately submodular. However, we491

present a proof of Lemma 3.3.1 for CS-G-OMP without approximate submodularity to achieve492

the same constant γ. This proof in turn uses Lemma 3.3.3 and Lemma 3.3.4, whose proofs are493

based on the Taylor expansions of the regularized riskR[fS] = R(S), a M -strongly smooth and494

m-strongly convex loss functional of predictors f(x) = wTx. We defer these two proofs to the495

additional details in Section 3.6 and note that M = m with our choice of R.496

Lemma 3.3.3 (Using Smoothness). Let S andG be some fixed sequences. Then F (S)− F (G) ≤ 1
2m
〈bGG⊕S, C−1

G⊕Sb
G
G⊕S〉.497

498

Lemma 3.3.4 (Using Convexity). For j = 1, 2, ..., J , F (Gj)− F (Gj−1) ≥ 1
2M
〈bGj−1
gj , C−1

gj
b
Gj−1
gj 〉.499

500

Note that in Lemma 3.3.4, since we assume feature groups are whitened, then Cgj = (1 + λ)I .501

The bound of the lemma becomes F (Gj)− F (Gj−1) ≥ 1
2M(1+λ)

〈bGj−1
gj , b

Gj−1
gj 〉. If feature groups502

are not whitened, the constant (1+λ) can be scaled up to (|Gj|+λ), which detriments the strength503

of Theorem 3.3.2 especially when feature groups are large.504

Proof. (of Lemma 3.3.1, using Lemma 3.3.3 and Lemma 3.3.4)
Using Lemma 3.3.3, on S〈K〉 and Gj−1, we have:

F (S〈K〉)− F (Gj−1)

17

≤ 1

2m
〈bGj−1

Gj−1⊕S〈K〉 , C
G
Gj−1⊕S〈K〉b

Gj−1

Gj−1⊕S〈K〉〉 (3.8)

Note that the gradient bGj−1

Gj−1
equals 0, because F (Gj−1) is achieved by the linear model w(Gj−1).

Then, using block matrix inverse formula, we have:

F (S〈K〉)− F (Gj−1) ≤ 1

2m
〈bGj−1

S〈K〉
, CG

S〈K〉
b
Gj−1

S〈K〉
〉 (3.9)

where CG
S〈K〉

= CS〈K〉 −CS〈K〉GC
−1
S〈K〉

CGS〈K〉 . Using spectral techniques in Lemmas 2.5 and 2.6 in
(Das and Kempe, 2011) and noting that the minimum eigenvalue of C, λmin(C), is λ∗ + λ, we
have

1

2m
〈bGj−1

S〈K〉
, CG

S〈K〉
b
Gj−1

S〈K〉
〉 ≤ 1

2m(λ∗ + λ)
〈bGj−1

S〈K〉
, b
Gj−1

S〈K〉
〉. (3.10)

Expanding S〈K〉 into individual groups si, we continue:

=
1

2m(λ∗ + λ)

∑
si∈S〈K〉

〈bGj−1
si

, bGj−1
si
〉 (3.11)

≤ 1

2m(λ∗ + λ)

∑
si∈S〈K〉

c(si) max
g

〈bGj−1
g , b

Gj−1
g 〉

c(g)
(3.12)

=
1

2m(λ∗ + λ)

∑
si∈S〈K〉

c(si)
〈bGj−1
gj , b

Gj−1
gj 〉

c(gj)
(3.13)

≤ M(1 + λ)

m(λ∗ + λ)

∑
si∈S〈K〉

c(si)
F (Gj)− F (Gj−1)

c(gj)
. (3.14)

The last equality follows from the greedy selection step of Algorithm 2 when feature groups505

are whitened. The last inequality is given by Lemma 3.3.4. The theorem then follows from506

γ = (m
M

)λ
∗+λ

1+λ
= λ∗+λ

1+λ
.507

3.4 Bi-criteria Analysis at Any Budget508

Our analysis so far only bounds algorithm performance at budgets when new items are selected.509

However, an ideal analysis should apply to all budgets. As illustrated in Figure 3.1a, previous510

methods may choose expensive features early; until they are computed, we have no bounds.511

Figure 3.1b illustrates our proposed fix: each new item gj+1 cannot be more costly than the current512

sequence Gj .513

This section proves two theorems of anytime prediction at any budget. Theorem 3.4.1 shows514

that to approximate the optimal explained variance of cost B within a constant factor, an anytime515

algorithm must cost at least 4B. We then motivate and formalize our fix in Algorithm 4, which516

is shown in Theorem 3.4.3 to achieve this bi-criteria approximation bound for both budget and517

18

objective with the form: F (G〈B〉) > (1− e−
γ2

1+γ)F (S〈B
4
〉), where γ is the approximate submodular518

ratio, i.e., the maximum constant γ ≤ 1 such that for all sets A′ ⊆ A and all element x,519

γ(F (A ∪ {x})− F (A)) ≤ F (A′ ∪ {x})− F (A′). (3.15)

We first illustrate the inherent difficulty in generating single sequences that are competitive at
arbitrary budgets B by using the following budgeted maximization problem:

X = {1, 2, . . .}, c(x) = x, F (S) =
∑
x∈S

ex. (3.16)

The above problem originates from fitting the linear model Y =
∑D

i=1 e
iXi, where Xi’s are i.i.d.520

and Xi costs i.521

Theorem 3.4.1. Let A be any algorithm for selecting sequences A = (a1, . . .). The best bi-522

criteria approximation that A can satisfy must be at least a 4-approximation in cost for the523

sequence described in Equation (3.16). That is, there does not exist a C < 4, and a c1 ∈ [0, 1),524

such that for any budget B and any sequence S,525

F (A〈B〉) > (1− c1)F (S〈B
C
〉).

Proof. For any budget B, it is clear that the optimal selection contains a single item, B, whose526

value is eB. For any budget B, let m(B) denote the item of the maximum cost that is selected527

by the algorithm. If the bi-criteria bound holds, then
∑m(B)

k=1 ek ≥ F (A〈B〉) > (1− c1)F (S〈B
C
〉).528

Taking the log of both sides and rearranging terms, we havem(B) ≥ bB
C
c+ln(1−c1)+ln(e−1)−2.529

Since 3− ln(1− c1)− ln(e− 1) > 0, we have for B large enough: C ≥ B
m(B)

. Hence, we need to530

minimize B
m(B)

for all B to minimize C. We can assume aj to be increasing because otherwise we531

could remove the violating aj from the sequence and decrease the ratio B
m(B)

for all subsequent j.532

Let bj := c(Aj) and αj :=
c(aj)

bj−1
. Then immediately before aj is available, B

m(B)
→ c(Aj)

c(aj−1)
≥

(1+αj)bj−1

bj−1
= 1 + αj . If we can bound B

m(B)
≤ C for all B, then there exists αmax such that

αj < αmax for all j large enough. Immediately after a new aj is selected, B
m(B)

=
c(Aj)

c(aj)
=

1+αj
αj

.
For B

m(B)
to be bounded, there must exist some αmin > 0 such that αj > αmin for large enough j.

Now we consider the ratio B
m(B)

right before aj+1 is selected:

c(Aj+1)

c(aj)
=
bj(1 + αj+1)

bj
αj

1+αj

= 1 +
αj+1

αj
+ αj+1 +

1

αj
. (3.17)

Assume for seek of contradiction that c(Aj+1)

c(aj)
is bounded above by z for some z ∈ (1, 4). Let533

y :=
αj+1

αj
. Then we have: z ≥ 1 + y + yαj + 1

αj
≥ 1 + y + 2

√
y = (

√
y + 1)2. Hence534

y ≤ (
√
z − 1)2 < 1. So aj+1 ≤ (

√
z − 1)2aj , which implies that aj converges to 0 and we have a535

contradiction. So C ≥ B
m(B)

→ c(Aj+1)

c(aj)
≥ 4 for large j.536

19

(a) Before F is computed, we have no output or bounds.

(b) Our constraint c(gj+1) ≤ c(Gj) induces a smoother cost increase.

(c) Illustration of Doubling Algorithm Cost Constraint

Figure 3.1: Doubling Algorithm (b) has better anytime behaviors than greedy algorithm with no
cost constraints (a).

The above proof lower bounds the cost approximation ratio C by Eq. 3.17, which is shown to537

be at least 4 for C <∞. We note that Eq. 3.17 equals 4 if ∀j, αj = 1, which means the sequence538

total cost is doubled at each selection step. This observation leads to Doubling Algorithm (Alg. 4):539

we perform greedy selection in the same way as CS-G-FR, except that the total cost can be at540

most doubled at each step (illustrated in Figure 3.1c). The advantage of Doubling Algorithm541

over CS-G-FR is that the former prevents early computation of expensive features and induces a542

smoother increase of total cost; in most real-world data-sets, the two are identical after few steps543

because feature costs are often in a narrow range. We will analyze Doubling Algorithm with the544

following assumption, called doubling capable.545

Definition 3.4.2. Let G = (g1, . . .) be the sequence selected by the doubling algorithm. The set546

X and function F are doubling capable if, at every iteration j, the following set is non-empty:547

{x | x ∈ X \Gj−1, c(x) ≤ c(Gj−1)}548

Theorem 3.4.3. Let G = (g1, . . .) be the sequence selected by the doubling algorithm (Algo-549

rithm 4). Fix some B > cmin. Let F be γ-approximately submodular as in Definition 3.15. For550

any sequence S,551

F (G〈B〉) >

(
1− e−

γ2

1+γ

)
F (S〈B

4
〉).

Proof. Doubling capable easily leads to the observation that for all budgetsB, there exists an index552

j such that B
2
≤ c(Gj) < B. Choose K and k to be the largest integers such that B

2
≤ c(GK) < B553

20

Algorithm 4 Forward Regression with Doubling Modification
1: Input: Objective function F , elements X , minimum cost cmin.
2: Output: A sequence G = g1, g2, ..., gJ of elements. For each j ≤ J , a parameter w(Gj) for

the elements Gj = g1, ..., gj for maximizing F .
3: Set g1 = arg max

x∈X, c(x)≤cmin

F ({x})
c(x)

.

4: Set G1 = [g1] as a one-element sequence.
5: Set w(G1) be the parameter associated with g1 to optimize F .
6: for j = 2, ..., J do
7: for g /∈ Gj−1, c(g) ≤ c(Gj−1) do
8: Compute F (Gj−1 ⊕ g) and the associated parameter w(Gj−1 ⊕ g).
9: end for

10: gj = arg max
g=G1,...,GJ ,g /∈Gj−1,c(g)≤c(Gj−1)

F (Gj−1⊕g)−F (Gj−1)

c(g)
.

11: Append gj to the sequence: Gj = Gj−1 ⊕ gj .
12: Record w(Gj) = w(Gj−1 ⊕ g).
13: end for

and B
8
≤ c(Gk) <

B
4

. Since at each step we at most double the total cost and 4c(Gk) < B, we554

observe K ≥ k+ 2. For each j, define sj =
F (Gj+1)−F (Gj)

c(gj+1)
as the best rate of improvement among555

the items Doubling Algorithm is allowed to consider after choosing Gj . Consider the item x in556

sequence S〈B
4
〉 of the maximum cost.557

(Case 1) If c(x) ≤ c(Gk), then every item in S〈B
4
〉 was a candidate for gj for all j = k+1, ..., K.

So by approximate submodularity from Equation 3.15, we have

F (S〈B
4
〉) ≤ F (S〈B

4
〉 ∪Gj) ≤ F (Gj) +

Bsj
4γ

. (3.18)

Then using the standard submodular maximization proof technique, we define ∆j = F (S〈B
4
〉)− F (Gj).558

Applying sj =
∆j−∆j+1

c(gj+1)
in the above inequality, we have ∆k+j ≤ ∆k

∏k+j
j=k+1(1− γ 4c(gj)

B
). Maxi-559

mizing the inequality by setting c(gj) = B
K−k ≤

c(GK)−c(Gk)
4(K−k)

, and using (1− z/l)l < e−z, we have560

F (GK) > (1− e−γ)F (S〈B
4
〉).561

From now on, we assume that c(x) > c(Gk) and consider two cases by comparing c(gk+2)562

and c(Gk).563

(Case 2.1) If c(gk+2) ≥ c(Gk), then c(GK)− c(Gk+1) ≥ c(gk+2) ≥ c(Gk). Since c(Gk+1) ≤564

2c(Gk) and c(x) > c(Gk), we have c(GK)− c(Gk+1) ≥ B
2
− 2c(Gk).565

So c(GK)− c(Gk+1) ≥ max(c(Gk),
B
2
− 2c(Gk)) ≥ B

6
. Thus, using the same proof techniques566

as in case 1, we can analyze the ratio between ∆k+1 and ∆K , and have: F (GK) > (1− e− 2
3
γ)F (S〈B

4
〉).567

(Case 2.2) Finally, if c(gk+2) < c(Gk) < c(x) < c(Gk+1), gk+2 was a candidate for gk+1, and568

x was a candidate for gk+2. For an item y, let r(yj) =
F (Gj∪{y})−F (Gj)

c(y)
be the improvement rate569

of item y at Gj . Then we have r(gkk+1) > r(gkk+2) and r(gk+1
k+2) > r(xk+1). Since the objective570

function is increasing, we have571

r(xk)c(x) ≤ r(xk+1)c(x) + r(gkk+1)c(gk+1), so that r(xk) ≤ r(xk+1) + r(gkk+1) c(gk+1)

c(x)
. Then by572

21

Table 3.1: Test time 0.97-Timeliness measurement of different methods on AGRICULTURAL. We
break the methods into OMP, FR and Oracle family: e.g., “Single” in the G-CS-OMP family
means G-CS-OMP-Single, and “FR” in the Oracle family means the oracle curve derived from
G-FR.

CS-G-OMP-Variants CS-G-FR Oracles Sparse
CS-G-OMP Single No-Whiten G-OMP FR Oracle OMP Oracle

0.4406 0.4086 0.4340 0.4073 0.4525 0.4551 0.4508 0.3997

Table 3.2: Test time 0.99-Timeliness measurement of different methods on YAHOO! LTR.

Group CS-G-OMP-Variants CS-G-FR Oracles Sparse
Size CS-G-OMP Single No-Whiten G-OMP FR OMP

5 0.3188 0.3039 0.3111 0.2985 0.3222 0.3225 0.3211 0.2934
10 0.3142 0.3117 0.3079 0.2909 0.3205 0.3207 0.3164 0.2858
15 0.3165 0.3159 0.3116 0.2892 0.3213 0.3213 0.3177 0.2952
20 0.3161 0.3124 0.3065 0.2875 0.3180 0.3180 0.3163 0.2895

the definition of γ in Equation 3.15, we have γr(gk+1
k+2) ≤ r(gkk+2). Hence we have γr(xk+1) ≤573

r(gkk+1), which leads to r(xk) ≤ r(gkk+1)(1
γ

+ c(gk+1)

c(x)
) ≤ r(gkk+1)(1 + 1

γ
). Then inequality (3.18)574

holds with a coefficient adjustment and becomes F (S〈B
4
〉) ≤ F (Gk) + Bsk(1+γ)

4γ2
. Noting that the575

above inequality holds for all j = k + 1, ..., K, we can replace the constant γ in the proof of case576

1 with γ2

1+γ
and have the following bound: F (GK) > (1− e−

γ2

1+γ)F (S〈B
4
〉).577

578

3.5 Experiments579

3.5.1 Data-sets and Set-ups580

We experiment our methods for anytime linear prediction on two real-world data-sets, each of581

which has a significant number of feature groups with associated costs.582

• Yahoo! Learning to Rank Challenge (Chapelle and Chang, 2011) contains 883k web docu-583

ments, each of which has a relevance score in {0, 1, 2, 3, 4}. Each of the 501 document features584

has an associated computational cost in {1, 5, 20, 50, 100, 150, 200}; the total feature cost is585

around 17K. The original data-set has no feature group structures, so we generated random586

group structures by grouping features of the same cost into groups of a given size s.1587

• Agriculture is a proprietary data-set that contains 510k data samples, 328 features, and 57588

feature groups. Each sample has a binary label in {1, 2}. Each feature group has an associated589

1We experiment on group sizes s ∈ {5, 10, 15, 20}. We choose regularizer λ = 10−5 based on validation. We use
s = 10 for qualitative results such as plots and illustrations, but we report quantitative results for all group size s. For
our quantitative results, we report the average test performance. The initial risk is R(∅) = 0.85.

22

(a) Training Time OMP vs. FR (AGRICULTURAL) (b) Training Time OMP vs. FR (YAHOO! LTR)

Figure 3.2: The training time vs. the number of feature groups selected with two algorithms:
CS-G-FR and CS-G-OMP. CS-G-OMP achieves a 8x and 20x overall training time speed-up on
AGRICULTURAL and YAHOO! LTR.

cost measured in its average computation time.2590

3.5.2 Evaluation Metric and Approximated Oracle591

(a) Plateau Effect and α-Stopping Costs (b) Importance of Costs (CS-G-OMP vs. G-OMP)

Figure 3.3: (a) Explained Variance vs. Cost curve of CS-G-OMP in YAHOO! LTR. Vertical
lines mark different α-stopping costs. (b) Explained Variance vs. Cost curve of CS-G-OMP and
G-OMP on YAHOO! LTR set 1 with individual group size s = 10, stopped at 0.97-stop cost.

Following the practice of Karayev et al. (2012), we use the area under the maximization592

objective F (explained variance) vs. cost curve normalized by the total area as the timeliness593

2 There are 6 groups of size 32; the other groups have sizes between 1 and 6. The cost of each group is its
expected computation time in seconds, ranging between 0.0005 and 0.0088; the total feature cost is 0.111. We choose
regularizer λ = 10−7. The data-set is split into five 100k sets, and the remaining 10k are used for validation. We
report the cross validation results on the five 100K sets as the test results. The initial risk is R(∅) = 0.091.

23

measurement of the anytime performance of an algorithm. In our data-sets, the performance594

of linear predictors plateaus much before all features are used, e.g., Figure 3.3a demonstrates595

this effect in YAHOO! LTR, where the last one percent of total improvement is bought by596

half of the total feature cost. Hence the majority of the timeliness measurement is from the597

plateau performance of linear predictors. The difference between timeliness of different anytime598

algorithms diminishes due to the plateau effect. Furthermore, the difference vanishes as we599

include additional redundant high cost features. To account for this effect, we stop the curve when600

it reaches the plateau. We define an α-stopping cost for parameter α in [0, 1] as the cost at which601

our CS-G-OMP achieves α of the final objective value in training and ignore the objective vs.602

cost curve after the α-stopping cost. We call the timeliness measure on the shortened curve as603

α-timeliness; 1-timeliness equals the normalized area under the full curve and 0-timeliness is zero.604

If a curve does not pick a group at α-stopping cost, we linearly interpolate the objective value at605

the stopping cost to computr timeliness. We say an objective vs. cost curve has reached its final606

plateau if at least 95% of the total objective has been achieved and the next 1% requires more than607

20% feature costs. (If the plateau does not exist, we use α = 1.) Following this rule, we choose608

α = 0.97 for AGRICULTURAL and α = 0.99 for YAHOO! LTR.609

Since an exhaustive search for the best feature sequencing is intractable, we approximate610

with the Oracle anytime performance following the approach of Karayev et al. (2012). Given an611

objective vs. cost curve of a sequencing, we reorder the feature groups in descending order of their612

marginal benefit per unit cost, assuming that the marginal benefits stay the same after reordering.613

We specify which sequencing is used for creating Oracle in Section 3.5.5. For baseline perfor-614

mance, we use cost-weighted Group Lasso (Yuan and Lin, 2006), which scales the regularization615

constant of each group with the cost of the group. We note that the cascade design by Chen et al.616

(2012a) can be reduced to this baseline if we enforce linear prediction. More specifically, the base-617

line solves the following minimization problem: minw∈RD ‖Y −Xw‖2
2 + λ

∑J
j=1 c(Gj)‖wGj‖2,618

and we vary value of regularization constant λ to obtain lasso paths. We call this baseline algorithm619

Sparse3.620

3.5.3 Importance of Feature Cost621

Our proposed CS-G-OMP differs from Group Orthogonal Matching Pursuit (G-OMP) (Lozano622

et al., 2009) in that G-OMP does not consider feature costs when evaluating features. We show623

that this difference is crucial for anytime linear prediction. In Figure 3.3b, we compare the624

objective vs. costs curves of CS-G-OMP and G-OMP that are stopped at 0.97-stopping cost on625

YAHOO! LTR. As expected, CS-G-OMP achieves a better overall prediction at every budget,626

qualitatively demonstrating the importance of incorporating feature costs. Table 3.1 and Table 3.2627

quantify this effect, showing that CS-G-OMP achieves a better timeliness measure than regular628

G-OMP.629

2Karayev et al. (2012) define timeliness as the area under the average precision vs. time curve
3We use an off-the-shelf software, SPAMS (SPArse Modeling Software (Jenatton et al., 2010)), to solve the

optimization.

24

3.5.4 Group Whitening630

We provide experimental evidence that Group whitening, i.e., XT
g Xg = IDg for each group g, is a631

key assumption of both this work and previous feature group selection literature by Lozano et al.632

(2009; 2011). In Figure 3.4, we compare anytime prediction performances using group whitened633

data against those using the common normalization scheme where each feature dimension is634

individually normalized to have zero mean and unit variance. The objective vs. cost curve635

qualitatively shows that group whitening consistently results in the better predictions. This636

behavior is expected from data-sets whose feature groups contain correlated features, e.g., group637

whitening effectively prevents selection step (∗) from overestimating the predictive power of638

feature groups of repeated good features. Table 3.1 and Table 3.2 demonstrate quantitatively the639

consistent better timeliness performance of CS-G-OMP over that of CS-G-OMP-no-whiten.640

(a) Group Whiten vs. No-Whiten (AGRICULTURAL) (b) Group Whiten vs. No-Whiten (YAHOO! LTR)

Figure 3.4: Explained Variance vs. Feature Cost curves on AGRICULTURAL (a) and YAHOO! LTR
(b) comparing group whitening with no group whitening. The curves stop at 0.97-stopping cost.

3.5.5 Other Selection Criteria Variants641

This section compares CS-G-OMP and CS-G-FR, along with variants of these two methods642

and the baseline, Sparse. We formulated the variant of CS-G-OMP, single, in Section 3.2 and643

it intuitively chooses feature groups of the best single feature dimension per group cost. Our644

experiments show that this modification degrades prediction performance of CS-G-OMP. Since645

FR directly optimizes the objective at each step, we expect CS-G-FR to perform the best and use646

its curve to compute the Oracle curve as an approximate to the best achievable performance.647

In Figure 3.5, we evaluate CS-G-FR, CS-G-OMP and CS-G-OMP-single based on the objective648

in Theorem 3.3.2, i.e., explained variance vs. feature cost curves. CS-G-FR, as expected,649

outperforms all other methods. CS-G-OMP outperforms the baseline method, Sparse, and the650

CS-G-OMP-Single variant. The performance advantage of CS-G-OMP over CS-G-OMP-Single is651

much clearer in the AGRICULTURAL data-set than in the YAHOO! LTR data-set. AGRICULTURAL652

has a natural group structure which may contain correlated features in each group. YAHOO! LTR653

has a randomly generated group structure whose features were filtered by feature selection before654

25

the data-set was published (Chapelle and Chang, 2011). CS-G-FR and CS-G-OMP outperform655

the baseline algorithm, Sparse. We speculate that linearly scaling group regularization constants656

by group costs did not enforce Group-Lasso to choose the most cost-efficient features early. The657

test-time timeliness measures of each of the methods are recorded in Table 3.1 and Table 3.2,658

and quantitatively confirm the analysis above. Since AGRICULTURAL and YAHOO! LTR are659

originally a classification and a ranking data-set, respectively, we also report in Figure 3.5660

the performance using classification accuracy and NDCG@5. This demonstrates the same661

qualitatively results as using explained variants.662

(a) FR vs. OMP vs. Sparse (AGRICULTURAL) (b) FR vs. OMP vs. Sparse (YAHOO! LTR)

(c) FR vs. OMP vs. Sparse (AGRICULTURAL) (d) FR vs. OMP vs. Sparse (YAHOO! LTR)

Figure 3.5: (a),(b): Explained Variance vs. Feature Cost curves on AGRICULTURAL and YA-
HOO! LTR(group-size=10), using CS-G-OMP, CS-G-FR and their Single variants. Curves stop
at 0.97 and 0.98 stopping costs. (c),(d): Same curve with the natural objectives of the data-sets:
accuracy and NDCG@5.

As expected, when compared against CS-G-OMP, CS-G-FR consistently chooses more cost-663

efficient features at the cost of a longer training time. In the context of linear regression, let664

us assume that the group sizes are bounded by a constant when we are to select the number K665

feature group. We can then compute a new model of K groups in O(K2N) using Woodbury’s666

matrix inversion lemma, evaluate it in O(KN), and compute the gradients with respect to the667

26

weights of unselected groups inO(N(J−K)). Thus, CS-G-OMP requiresO(K2N+JN) at step668

K = 1, 2, 3, ..., J and CS-G-FR requires O((J −K)K2N), so the total training complexities for669

CS-G-OMP and CS-G-FR are O(J3N) and O(J4N), using
∑J

K=1 K
2 = 1

6
J(J + 1)(2J + 1) and670 ∑J

K=1K
3 = 1

4
J2(J + 1)2. We also show this training complexity gap empirically in Figure 3.2,671

which plots the curves of training time vs. number of feature groups selected. When all feature672

groups are selected, CS-G-OMP achieves a 8x speed-up in AGRICULTURAL over CS-G-FR. In673

YAHOO! LTR, CS-G-OMP achieves a speed-up factor between 10 and 20; the smaller the sizes of674

the groups, the larger speed-up due to the increase in the number of groups. Both greedy methods675

are much faster than the Lasso path computation using SPAMS, however.676

3.6 Additional Proof Details677

This section describes a functional boosting view of selecting features for generalized linear678

models of one-dimensional response. We then prove Lemma 3.3.3 and Lemma 3.3.4 for this more679

general setting. These more general results in turn extend Theorem 3.3.2 to generalized linear680

models.681

3.6.1 Functional Boosting View of Feature Selection682

We view each feature f as a function hf that maps sample x to xf . We define fS : RD → R
to be the best linear predictor using features in S, i.e., fS(x) , w(S)TxS . For each feature
dimension d ∈ D, the coefficient of d is in w(S) is w(S)d = fS(ed), where ed is the dth

dimensional unit vector. So ‖w(S)‖2
2 =

∑D
d=1 ‖fS(ed)‖2

2. Given a generalized linear model with
link function ∇Φ, the predictor is E[y|x] = ∇Φ(wTx) for some w and the calibrated loss is
r(w) =

∑n
i=1(Φ(wTxi)− yiwTxi). Replacing fS(xi) = w(S)Txi, we have

r(w(S)) =
n∑
i=1

(Φ(fS(xi))− yifS(xi)). (3.19)

Note that the risk function in Equation 3.1 can be rewritten as the following to resemble Equa-
tion 3.19:

R(S) = R[fS] =
1

n

n∑
i=1

(Φ(fS(xi))− yTi fS(xi))

+
λ

2

D∑
d=1

‖fS(ed)‖2
2 + A, (3.20)

where φ(x) = 1
2
x2 for linear predictions and constant A = 1

2n

∑n
i=1 y

2
i . Next we define the inner

product between two functions f, h : RD → R over the training set to be:

〈f, h〉 , 1

n

n∑
i=1

f(xi)h(xi) +
λ

2

D∑
d=1

f(ed)h(ed). (3.21)

27

With this definition of inner product, we can compute the derivative ofR:

∇R[f] =
n∑
i=1

(∇Φ(f(xi))− yi)δxi +
D∑
d=1

f(ed)δed , (3.22)

where ∇φ(x) = x for linear predictions, and δx is an indicator function for x. Then the gradient
of objective F (S) w.r.t coefficient wf of a feature dimension d can be written as:

bSd = − 1

n

n∑
i=1

(∇Φp(w(S)Txi)− yi)xid − λw(S)d (3.23)

= −〈∇R[fS], hd〉. (3.24)

In addition, the regularized covariance matrix of features C satisfies,683

Cij =
1

n
XT
i Xj + λI(i = j) = 〈hi, hj〉, (3.25)

for all i, j = 1, 2, ..., D. So in this functional boosting view, Algorithm 2 greedily chooses group684

g that maximizes, with a slight abuse of notation of 〈 , 〉, ‖〈hg,∇R[fS]〉‖2
2/c(g), i.e., the ratio685

between similarity of a feature group and the functional gradient, measured in sum of square of686

inner products, and the cost of the group687

3.6.2 Proof of Lemma 3.3.3 and Lemma 3.3.4688

The more general version of Lemma 3.3.3 and Lemma 3.3.4 assumes that the objective functional689

R is m-strongly smooth and M -strongly convex using our proposed inner product rule. M -strong690

convexity is a reasonable assumption, because the regularization term ‖w‖2
2 =

∑D
d=1 ‖fS(ed)‖2

2691

ensures that all loss functionalR with a convex Φ strongly convex. In the linear prediction case,692

both m and M equals 1.693

The following two lemmas are the more general versions of Lemma 3.3.3 and Lemma 3.3.4.694

Lemma 3.6.1. LetR be an m-strongly smooth functional with respect to our definition of inner
products. Let S and G be some fixed sequences. Then

F (S)− F (G) ≤ 1

2m
〈bGG⊕S, C−1

G⊕Sb
G
G⊕S〉

695

Proof. First we optimize over the weights in S.

F (S)− F (G)

= R[fG]−R[fS] = R[fG]−R[
∑
s∈S

αTs hs]

≤ R[fG]− min
w:wTi ∈Rdsi ,si∈S

R[
∑
si∈S

wTsihsi]

28

Adding dimensions in G will not increase the risk, we have:

≤ R[fG]− min
w:wi∈Rdsi ,si∈G⊕S

R[
∑

si∈G⊕S

wsihsi]

Since fG =
∑

gi∈G αihgi , we have:

≤ R[fG]−min
w
R[fG +

∑
si∈G⊕S

wTi hsi]

Expanding using strong smoothness around fG, we have:

≤ R[fG]−min
w

(R[fG] + 〈∇R[fG],
∑

si∈G⊕S

wTi hsi〉

+
m

2
‖
∑

si∈G⊕S

wTi hsi‖2
2)

= max
w
−〈∇R[fG],

∑
si∈G⊕S

wTi hsi〉 −
m

2
‖
∑

si∈G⊕S

wTi hsi‖2
2

= max
w
〈bGG⊕S, w〉 −

m

2
〈w,CG⊕Sw〉

Solving w directly we have:

F (S)− F (G) ≤ 1

2m
〈bGG⊕S, C−1

G⊕Sb
G
G⊕S〉

696

Lemma 3.6.2. Let R be a M-strongly convex functional with respect to our definition of inner
products. Then

F (Gj)− F (Gj−1) ≥ 1

2M(1 + λ)
〈bGj−1
gj

, bGj−1
gj
〉 (3.26)

697

Proof. After the greedy algorithm chooses some group gj at step j, we form fGj =
∑

αi
αTi hgi ,698

such that699

R[fG] = min
αi∈Rdgi

R[
∑
gi∈Gj

αTi hgi] ≤ min
β∈R

dgj

R[fGj−1
+ βhgj]

Setting β = arg min
β∈R

dgj R[fGj−1
+ βhgj], using the strongly convex condition at fGj−1

, we
have:

F (Gj)− F (Gj−1)

= R[fGj−1
]−R[fGj] ≥ R[fGj−1

]−R[fGj−1
+ βhgj]

≥ R[fGj−1
]− (R[fGj−1

] + 〈∇R[fGj−1
], βhgj〉

29

+
M

2
‖βhgj‖2

2)

= −〈∇R[fGj−1
], βhgj〉 −

M

2
‖βhgj‖2

2

= 〈bGj−1
gj

, β〉 − M

2
〈β, Cgjβ〉

≥ 1

2M
〈bGj−1
gj

, C−1
gj
bGj−1
gj
〉

=
1

2M(1 + λ)
〈bGj−1
gj

, bGj−1
gj
〉

The last equality holds because each group is whitened, so that Cgj = (1 + λ)I .700

Note that the (1 + λ) constant is a result of group whitening, without which the constant can701

be as large as (Dgj + λ) for the worst case where all the Dgj number of features are the same.702

703

The proofs above for Lemma 3.6.1 and 3.6.2 are for one-dimensional output responses. They704

can be easily generalized to multi-dimensional responses by replacing 2-norms with Frobenius705

norms and vector inner-products with “Frobenius products”, i.e., the sum of the products of all706

elements.707

708

3.6.3 Proof of Main Theorem709

Given Lemma 3.6.1 and Lemma 3.6.2, the proof of Lemma 3.3.1 holds with the same analysis710

with a more general constant γ = mλmin(C)
M(1+λ)

. The following prove our main theorem 3.3.2.711

Proof. (of Theorem 3.3.2, given Lemma 3.3.1) Define ∆j = F (S〈K〉)− F (Gj−1). Then we have
∆j −∆j+1 = F (Gj)− F (Gj−1). By Lemma 3.3.1, we have:

∆j = F (S〈K〉)− F (Gj−1)

≤ K

γ
[
F (Gj)− F (Gj−1)

c(gj)
] =

K

γ
[
∆j −∆j+1

c(gj)
]

Rearranging we get ∆j+1 ≤ ∆j(1− γc(gj)

K
). Unroll we get:

∆L+1 ≤ ∆1

L∏
j=1

(1− γc(gj)

K
) ≤ ∆1(

1

L

L∑
j=1

(1− γc(gj)

K
))L

= ∆1(1− Bγ

LK
)L < ∆1e

−γ B
K

By definition of ∆1 and ∆L+1, we have:

F (S〈K〉)− F (G〈B〉) < F (S〈K〉)e
−γ B

K

The theorem follows and linear prediction is the special case that m = M .712

30

3.7 Extension to Generalized Linear Models713

While we only formulated the feature group sequencing problem in linear prediction setting
previously, we can extend our algorithm for generalized linear modelsMcCullagh and Nelder
(1989) and multi-dimensional responses. In general, we assume that we have P dimensional
responses, and predictions are of the form E[y|x] = ∇φ(Wx), for some known convex function
φ : RP → R, and an unknown coefficient P × D matrix, W . Thus, the generalized linear
prediction problem is to minimize over coefficient matrix W : P ×D:

r(W) =
1

n

n∑
i=1

(φ(Wxi)− yiTWxi) +
λ

2
‖W‖2

F , (3.27)

where λ is the regularization constant for Frobenius norm of the coefficient matrix. In particular,
we have φ(x) = 1

2
x2 for linear prediction. The risk of a collection of features, S, is then

R(S) = min
W :∀g/∈SWg=0

r(W). To extend CS-G-OMP to feature sequencing in this general setting,

we again, at each step, take gradient of the objective r w.r.t. W , and choose the feature group that
has the largest ratio of group gradient Frobenius norm square to group cost. More specifically,
after choosing groups in G, we have a best coefficient matrix restricted to G, W (G). Then we
compute the gradient w.r.t. W at W (G) (we keep the convention that unselected groups have zero
coefficients) as:

∇r(W) =
1

n

n∑
i=1

(∇φ(Wxi)− yi)xiT + λW ; (3.28)

we then evaluate ‖r(W)g‖2
F/c(g) for each feature group g, and add the maximizer to the selected714

groups to create new models. Algorithm 5 demonstrates the procedure.715

Our theoretical result Theorem 3.3.2 can also be proven in this general setting. Proofs of716

Lemma 3.3.3 and 3.3.4) in appendix are readily for generalized linear models4. Given these two717

lemmas, our proofs of Lemma 3.3.1 and Theorem 3.3.2 hold as they are.718

3.7.1 EXAMPLE EXPERIMENTS ON GLM719

We present here experimental results of CS-G-OMP with generalized linear models on a MNIST720

database of handwritten digit classification (LeCun et al., 2001). We generate features from raw721

digit pixels following the recent development of Karampatziakis and Mineiro (2014). It generates722

about 11,000 dimensional features via generalized eigenvectors of pairs of second moments of the723

raw pixel values of different classes, and achieves one-percent error rate with logistic regressions.724

We partition the generated features into 54 equal-sized random feature groups, and apply CS-725

G-OMP with multi-class-logistic regression, targeting the one-hot encodings of sample labels.726

Mathematically, we choose our mean function of generalized linear model, ∇φ : RP → RP , as727

∇φ(x) = exp(x)∑P
p exp(x)p

for Algorithm 5, where exp(x) is an element-wise exponential function.728

4Inner products, 〈•, •〉, in Lemma 3.3.3 and 3.3.4 now represent Frobenius products, which are sums of element-
wise products of matrices.

31

Algorithm 5 Cost Sensitive Group Orthogonal Matching Pursuit For Generalized Linear Model

1: Input: The data matrix X = [f1, ..., fD] ∈ Rn×D, with group structures, such that for each
group g, XT

g Xg = IDg . The cost c(g) of each group g. The response matrix Y ∈ {0, 1}n×P .
The link function∇φ. Regularization constant λ.

2: Output: A sequence ((Gj,Wj))j , where Gj = (g1, g2, ..., gj) is the sequence of first j
selected feature groups, g1, g2, ..., gj , and Wj : P × D restricted to features in Gj is the
associated coefficient matrix.

3: Set G0 = ∅ to be an empty sequence.
4: Set w(G0) = ~0 to be a zero matrix of zero input size and P output size.
5: Compute C = XTX .
6: for j = 1, 2, ..., J do
7: Set W = W (Gj−1).
8: for g /∈ Gj−1 do
9: Compute with Eq. 3.28: r′ = ∇r(W) = 1

n

∑n
i=1(∇φ(Wxi)− yi)xiT + λW .

10: end for
11: gj = arg max

g=G1,...,GJ ,g /∈Gj−1

‖r′g‖2F
c(g)

.

12: Append gj to the sequence: Gj = Gj−1 ⊕ gj .
13: Compute W (Gj) = arg min

W :∀g/∈GjWg=0
R(W).

14: end for

As shown in Figure 5.2e, the test-time accuracy improves greatly at start, quickly reducing the729

number of mistakes below 150 (i.e., 98.5% accuracy with the 10K test samples of MNIST) with730

2200 out of the 11k total features, and plateaus between 105 and 100 mistakes with 6k features731

and beyond. The peak performance is 99 mistakes, and the final result has 101 mistakes. Since732

logistic regression with 11K features and 60K training samples takes non-trivial time to train, the733

runtime gap between CS-G-OMP and CS-G-FR further widens: CS-G-OMP is able to finish the734

sequencing in 12 hours, while CS-G-FR takes days to progress. This is because the model training735

time is orders of magnitudes longer than that of computing gradient w.r.t. the coefficient matrix.736

In fact, one selection of CS-G-FR takes longer than the full run of CS-G-OMP. As a result, we do737

not report CS-G-FR result on this data-set.738

32

Figure 3.6: CS-G-OMP test-time performance on MNIST. We note that CS-G-FR cannot be
computed easily in this case and is omitted.

33

34

Chapter 4739

Anytime Neural Network via Adaptive740

Loss Balancing741

4.1 Introduction742

Recent years have seen advancement in visual recognition tasks by increasingly accurate con-743

volutional neural networks, from AlexNet Krizhevsky et al. (2012) and VGG Simonyan and744

Zisserman (2015), to ResNet He et al. (2016), ResNeXt Xie et al. (2017), and DenseNet Huang745

et al. (2017b). As models become more accurate and computationally expensive, it becomes more746

difficult for applications to choose between slow predictors with high accuracy and fast predictors747

with low accuracy. Some applications also desire multiple trade-offs between computation and748

accuracy, because they have computational budgets that may vary at test time. E.g., web servers749

for facial recognition or spam filtering may have higher load during the afternoon than at midnight.750

Autonomous vehicles need faster object detection when moving rapidly than when it is stationary.751

Furthermore, real-time and latency sensitive applications may desire fast predictions on easy752

samples and slow but accurate predictions on difficult ones.753

An anytime predictor Boddy and Dean (1989); Grass and Zilberstein (1996); Grubb and754

Bagnell (2012b); Horvitz (1987); Huang et al. (2018b) can automatically trade off between755

computation and accuracy. For each test sample, an anytime predictor produces a fast and crude756

initial prediction and continues to refine it as budget allows, so that at any test-time budget, the757

anytime predictor has a valid result for the sample, and the more budget is spent, the better the758

prediction. Anytime predictors are different from cascaded predictors Bolukbasi et al. (2017);759

Cai et al. (2015); Guan et al. (2017); Viola and Jones (2001b); Xu et al. (2014) for budgeted760

prediction, which aim to minimize average test-time computational cost without sacrificing761

average accuracy: a different task (with relation to anytime prediction). Cascades achieve this762

by early exiting on easy samples to save computation for difficult ones, but cascades cannot763

incrementally improve individual samples after an exit. Furthermore, early exit policy of cascades764

can be combined with existing anytime predictors Bolukbasi et al. (2017); Guan et al. (2017).765

Hence, we consider cascades to be orthogonal to anytime predictions.766

This work studies how to convert well-known DNN architectures to produce competitive767

anytime predictions. We form anytime neural networks (ANNs) by appending auxiliary predictions768

35

(a) (b)

Figure 4.1: (a) The common ANN training strategy increases final errors from the optimal (green
vs. blue), which decreases exponentially slowly. By learning to focus more on the final auxiliary
losses, the proposed adaptive loss weights make a small ANN (orange) to outperform a large one
(green) that has non-adaptive weights. (b) Anytime neural networks contain auxiliary predictions
and losses, ŷi and `i, for intermediate feature unit fi.

and losses to DNNs, as we will detail in Sec. 4.3 and Fig. 4.1b. Inference-time prediction then769

can be stopped at the latest prediction layer that is within the budget. Note that this work deals770

with the case where it is not known apriori where the interrupt during inference time will occur.771

We define the optimal at each auxiliary loss as the result from training the ANN only for that loss772

to convergence. Then our objective is to have near-optimal final predictions and competitive early773

ones. Near-optimal final accuracy is imperative for anytime predictors, because, as demonstrated774

in Fig. 4.1a, accuracy gains are often exponentially more expensive as model sizes grow, so775

that reducing 1% error rate could take 50% extra computation. Unfortunately, existing anytime776

predictors often optimize the anytime losses in static weighted sums Huang et al. (2018b); Lee777

et al. (2015); Zamir et al. (2017) that poorly optimize final predictions, as we will show in Sec. 4.3778

and Sec. 4.5.779

Instead, we optimize the losses in an adaptive weighted sum, where the weight of a loss780

is inversely proportional to the empirical mean of the loss on the training set. Intuitively, this781

normalizes losses to have the same scale, so that the optimization leads each loss to be about782

the same relative to its optimal. We provide multiple theoretical considerations to motivate such783

weights. First of all, when the losses are mean square errors, our approach is maximizing the784

likelihood of a model where the prediction targets have Gaussian noises. Secondly, inspired by the785

maximum likelihood estimation, we optimize the model parameters and the loss weights jointly,786

with log-barriers on the weights to avoid the trivial solution of zero weights. Finally, we find the787

joint optimization equivalent to optimizing the geometric mean of the expected training losses,788

an objective that treats the relative improvement of each loss equally. Empirically, we show on789

multiple models and visual recognition data-sets that the proposed adaptive weights outperform790

natural, non-adaptive weighting schemes as follows. We compare small ANNs using our adaptive791

weights against ANNs that are 50 ∼ 100% larger but use non-adaptive weights. The small ANNs792

36

can reach the same final accuracy as the larger ones, and reach each accuracy level faster.793

Early and late accuracy in an ANN are often anti-correlated (e.g., Fig. 7 in Huang et al. (2018b)794

shows ANNs with better final predictions have worse early ones). To mitigate this fundamental795

issue we propose to assemble ANNs of exponentially increasing depths. If ANNs are near-796

optimal in a late fraction of their layers, the exponential ensemble only pays a constant fraction797

of additional computation to be near-optimal at every test-time budget. In addition, exponential798

ensembles outperform linear ensembles of networks, which are commonly used baselines for799

existing works Huang et al. (2018b); Zamir et al. (2017). In summary our contributions are:800

• We derive an adaptive weight scheme for training losses in ANNs from multiple theoretical801

considerations, and show that experimentally this scheme achieves near-optimal final802

accuracy and competitive anytime ones on multiple data-sets and models.803

• We assemble ANNs of exponentially increasing depths to achieve near-optimal anytime804

predictions at every budget at the cost of a constant fraction of additional consumed budget.805

4.2 Related Works806

Meta-algorithms for anytime and budgeted prediction. Anytime and budgeted prediction807

has a rich history in learning literature. Weinberger et al. (2009); Xu et al. (2012; 2013a)808

sequentially generate features to empower the final predictor. Grubb and Bagnell (2012b); Hu809

et al. (2016); Reyzin (2011) apply boosting and greedy methods to order feature and predictor810

computation. Karayev et al. (2012); Odena et al. (2017) form Markov Decision Processes for811

computation of weak predictors and features, and learn policies to order them. However, these812

meta-algorithms are not easily compatible with complex and accurate predictors like DNNs,813

because the anytime predictions without DNNs are inaccurate, and there are no intermediate814

results during the computation of the DNNs. Cascade designs for budgeted prediction Bolukbasi815

et al. (2017); Cai et al. (2015); Chen et al. (2012a); Guan et al. (2017); Lefakis and Fleuret816

(2010); Nan and Saligrama (2017); Viola and Jones (2001b); Xu et al. (2014) reduce the average817

test-time computation by early exiting on easy samples and saving computation for difficult ones.818

As cascades build upon existing anytime predictors, or combine multiple predictors, they are819

orthogonal to learning ANNs end-to-end.820

Neural networks with early auxiliary predictions. Multiple works have addressed training821

DNNs with early auxiliary predictions for various purposes. Larsson et al. (2017a); Lee et al.822

(2015); Szegedy et al. (2017); Zhao et al. (2017) use them to regularize the networks for faster823

and better convergence. Bengio et al. (2009); Zamir et al. (2017) set the auxiliary predictions824

from easy to hard for curriculum learning. Chen and Koltun (2017); Xie and Tu (2015) make825

pixel level predictions in images, and find learning early predictions in coarse scales also improve826

the fine resolution predictions. Huang et al. (2018b) shows the crucial importance of maintaining827

multi-scale features for high quality early classifications. The above works use manually-tuned828

static weights to combine the auxiliary losses, or change the weights only once Chen and Koltun829

(2017). This work proposes adaptive weights to balance the losses to the same scales online, and830

provides multiple theoretical motivations. We empirically show adaptive losses induce better831

ANNs on multiple models, including the state-of-the-art anytime predictor for image recognition,832

MSDNet Huang et al. (2018b).833

37

Model compression. Many works have studied how to compress neural networks. Li et al.834

(2017); Liu et al. (2017b) prune network weights and connections. Hubara et al. (2016); Iandola835

et al. (2016); Rastegari et al. (2016) quantize weights within networks to reduce computation836

and memory footprint. Veit and Belongie (2017); Wang et al. (2017) dynamically skip network837

computation based on samples. Ba and Caruana (2014); Hinton et al. (2014) transfer knowledge838

of deep networks into shallow ones by changing the training target of shallow networks. These839

works are orthogonal to ours, because they train a separate model for each trade-off between840

computation and accuracy, but we train a single model to handle all possible trade-offs.841

4.3 Optimizing Anytime Predictors in Networks842

As illustrated in Fig. 4.1b, a feed-forward network consists of a sequence of transformations843

f1, ..., fL of feature maps. Starting with the input feature map x0, each subsequent feature map is844

generated by xi = fi(xi−1). Typical DNNs use the final feature map xL to produce predictions,845

and hence require the completion of the whole network for results. Anytime neural networks846

(ANNs) instead introduce auxiliary predictions and losses using the intermediate feature maps847

x1, ..., xL−1, and thus, have early predictions that are improving with computation.848

Weighted sum objective. Let the intermediate predictions be ŷi = gi(xi) for some function849

gi, and let the corresponding expected loss be `i = E(x0,y)∼D[`(y, ŷi)], where D is the distribution850

of the data, and ` is some loss such as cross-entropy. Let θ be the parameter of the ANN, and define851

the optimal loss at prediction ŷi to be `i∗ = minθ `i(θ). Then the goal of anytime prediction is to852

seek a universal θ∗ ∈ ∩Li=1{θ′ : θ′ = arg minθ `i(θ)}. Such an ideal θ∗ does not exist in general as853

this is a multi-objective optimization, which only has Pareto front, a set containing all solutions854

such that improving one `i necessitates degrading others. Finding all solutions in the Pareto front855

for ANNs is not practical or useful, since this requires training multiple models, but each ANN856

only runs one. Hence, following previous works on anytime models Huang et al. (2018b); Lee857

et al. (2015); Zamir et al. (2017), we optimize the losses in a weighted sum minθ
∑L

i=1 Bi`i(θ),858

where Bi is the weight of the loss `i. We call the choices of Bi weight schemes.859

Static weight schemes. Previous works often use static weight schemes as part of their860

formulation. Huang et al. (2018b); Lee et al. (2015); Xie and Tu (2015) use CONST scheme861

that sets Bi = 1 for all i. Zamir et al. (2017) use LINEAR scheme that sets B1 to BL to linearly862

increase from 0.25 to 1. However, as we will show in Sec. 4.5.2, these static schemes not only863

cannot adjust weights in a data and model-dependent manner, but also may significantly degrade864

predictions at later layers.865

Qualitative weight scheme comparison. Before we formally introduce our proposed adap-866

tive weights, we first shed light on how existing static weights suffer. We experiment with a867

ResNet of 15 basic residual blocks on CIFAR100 Krizhevsky et al. (2009) data-set (See Sec. 4.5868

for data-set details). An anytime predictor is attached to each residual block, and we estimate the869

optimal performance (OPT) in training cross entropy of predictor i by training a network that has870

weight only on `i to convergence. Then for each weight scheme we train an ANN to measure the871

relative increase in training loss at each depth i from the OPT. In Fig. 4.2a, we observe that the872

intuitive CONST scheme has high relative losses in late layers. This indicates that there is not873

enough weights in the late layers, though losses have the same Bi. We also note that balancing874

38

(a) (b)

Figure 4.2: (a) Relative Percentage Increase in Training Loss vs. depths (lower is better). CONST
scheme is increasingly worse than the optimal at deep layers. AdaLoss performs about equally
well on all layers in comparison to the OPT. (b)Ensemble of exponentially deepening anytime
neural network (EANN) computes its ANNs in order of their depths. An anytime result is used if
it is better than all previous ones on a validation set (layers in light blue).

the weights is non-trivial. For instance, if we put half of the total weights in the final layer and875

distribute the other half evenly, we get the “Half-End” scheme. As expected, the final loss is876

improved, but this is at the cost of significant increases of early training losses. In contrast, the877

adaptive weight scheme that we propose next (AdaLoss), achieves roughly even relative increases878

in training losses automatically, and is much better than the CONST scheme in the late layers.879

Adaptive Loss Balancing (AdaLoss). Given all losses are of the same form (cross-entropy),880

it may be surprising that better performance is achieved with differing weights. Because early881

features typically have less predictive power than later ones, early losses are naturally on a882

larger scale and possess larger gradients. Hence, if we weigh losses equally, early losses and883

gradients often dominate later ones, and the optimization becomes focused on the early losses. To884

automatically balance the weights among the losses of different scales, we propose an adaptive885

loss balancing scheme (AdaLoss). Specifically, we keep an exponential average of each loss ˆ̀
i886

during training, and set Bi ∝ 1
ˆ̀
i
. This is inspired by Chen and Koltun (2017), which scales the887

losses to the same scale only once during training, and provides a brief intuitive argument: the888

adaptive weights set the losses to be on the same scale. We next present multiple theoretical889

justifications for AdaLoss.890

Before considering general cases, we first consider a simple example, where the loss function
`(y, ŷ) = ‖y− ŷ‖2

2 is the square loss. For this example, we model each y|x to be sampled from the
multiplication of L independent Gaussian distributions,N (ŷi, σ

2
i I) for i = 1, ..., L, where ŷi(x; θ)

is the ith prediction, and σ2
i ∈ R+, i.e., Pr(y|x; θ, σ2

1, ..., σ
2
L) ∝

∏L
i=1

1√
σ2
i

exp(−‖y−ŷi‖
2
2

2σ2
i

). Then

39

we compute the empirical expected log-likelihood for a maximum likelihood estimator (MLE):

Ê
[

ln(Pr(y|x))
]
∝ Ê

[L∑
i=1

(−‖y − ŷi‖
2
2

σ2
i

− lnσ2
i)
]

(4.1)

=
L∑
i=1

(−
˜̀
i

σ2
i

− lnσ2
i), (4.2)

where Ê is averaging over samples, and ˜̀
i is the empirical estimate of `i. If we fix θ and891

optimize over σ2
i , we get σ2

i = ˜̀
i. As computing the empirical means is expensive over large892

data-sets, AdaLoss replaces ˜̀
i with ˆ̀

i, the exponential moving average of the losses, and sets893

Bi ∝ ˆ̀−1
i ≈ σ−2

i so as to solve the MLE online by jointly updating θ and Bi. We note that the894

naturally appeared lnσ2
i terms in Eq. 4.2 are log-barriers preventing Bi = 0.895

Inspired by this observation, we form the following joint optimization over θ and Bi for
general losses without probability models:

min
θ,B1,...,BL

L∑
i=1

(Bi`i(θ)− λ lnBi), (4.3)

where λ > 0 is a hyper parameter to balance between the log-barriers and weighted losses. Under
the optimal condition, Bi = λ

`i
. AdaLoss estimates this with Bi ∝ ˆ̀

i(θ)
−1. We can also eliminate

Bi from Eq. 4.3 under the optimal condition, and we transform Eq. 4.3 to the following problem:

min
θ

L∑
i=1

ln `i(θ). (4.4)

This is equivalent to minimizing the geometric mean of the expected training losses, and it896

differs from minimizing the expected geometric mean of losses, as ln and expectation are not897

commutable. Eq. 4.4 discards any constant scaling of losses automatically discarded as constant898

offsets, so that the scale difference between the early and late losses are automatically reconciled.899

Geometric mean is also known as the canonical mean for multiple positive quantities of various900

scales. AdaLoss optimizes Eq. 4.4, since the objective gradient is
∑L

i=1
∇`i(θ)
`i(θ)

. AdaLoss wants to901

weigh each `i(θ) by exactly 1
`i(θ)

, and estimates the weight by 1
ˆ̀
i(θ)

. This concludes our theoretical902

considerations for AdaLoss.903

4.4 Ensemble of Exponentially Deepening Networks904

In practice, we often observe ANNs using AdaLoss to be much more competitive in their later905

half than the early half on validation sets, such as in Table. 4.1 of Sec. 4.5.2. Fortunately, we can906

leverage this effect to form competitive anytime predictors at every budget, with a constant fraction907

of additional computation. Specifically, we assemble ANNs whose depths grow exponentially.908

Each ANN only starts computing if the smaller ones are finished, and its predictions are used909

if they are better than the best existing ones in validation. We call this ensemble an EANN, as910

40

illustrated in Fig. 4.2b. An EANN only delays the computation of any large ANN by at most a911

constant fraction of computation, because the earlier networks are exponentially smaller. Hence,912

if each ANN is near-optimal in later predictions, then we can achieve near-optimal accuracy913

at any test-time interruption, with the extra computation. Formally, the following proposition914

characterizes the exponential base and the increased computational cost.915

Proposition 4.4.1. Let b > 1. Assume for any L, any ANN of depth L has competitive anytime916

prediction at depth i > L
b

against the optimal of depth i. Then after B layers of computation,917

EANN produces anytime predictions that are competitive against the optimal of depth B
C

for some918

C > 1, such that supB C = 2+ 1
b−1

, and C has expectation EB∼uniform(1,L)[C] ≤ 1− 1
2b

+ 1+ln(b)
b−1

.919

920

This proposition says that an EANN is competitive at any budget B against the optimal of the921

cost B
C

. Furthermore, the stronger each anytime model is, i.e., the larger b becomes, the smaller922

the computation inflation, C, is: as b approaches∞, supB C, shrinks to 2, and E[C], shrinks to923

1. Moreover, if we have M number of parallel workers instead of one, we can speed up EANNs924

by computing ANNs in parallel in a first-in-first-out schedule, so that we effectively increase the925

constant b to bM for computingC. It is also worth noting that if we form the sequence using regular926

networks instead of ANNs, then we will lose the ability to output frequently, since at budget B, we927

only produce Θ(log(B)) intermediate predictions instead of the Θ(B) predictions in an EANN.928

We will further have a larger cost inflation, C, such that supB C ≥ 4 andE[C] ≥ 1.5+
√

2 ≈ 2.91,929

so that the average cost inflation is at least about 2.91. We defer the proofs to the appendix.930

4.5 Experiments931

We list the key questions that our experiments aim to answer.932

• How do anytime predictions trained with adaptive weights compare against those trained933

with static constant weights (over different architectures)? (Sec. 4.5.2)934

• How do underlying DNN architectures affect ANNs? (Sec. 4.5.2)935

• How can sub-par early predictions in ANNs be mitigated by ANN ensembles? (Sec. 4.5.3)936

• How does data-set difficulty affect the adaptive weights scheme? (Sec. 4.5.4)937

4.5.1 Data-sets and Training Details938

Data-sets. We experiment on CIFAR10, CIFAR100 Krizhevsky et al. (2009), SVHN Netzer et al.939

(2011)1 and ILSVRC Russakovsky et al. (2015)2.940

1Both CIFAR data-sets consist of 32x32 colored images. CIFAR10 and CIFAR100 have 10 and 100 classes, and
each have 50000 training and 10000 testing images. We held out the last 5000 training samples in CIFAR10 and
CIFAR100 for validation; the same parameters are then used in other models. We adopt the standard augmentation
from He et al. (2016); Lee et al. (2015). SVHN contains around 600000 training and around 26032 testing 32x32
images of numeric digits from the Google Street Views. We adopt the same pad-and-crop augmentations of CIFAR
for SVHN, and also add Gaussian blur.

2 ILSVRC2012 Russakovsky et al. (2015) is a visual recognition data-set containing around 1.2 million natural
and 50000 validation images for 1000 classes. We report the top-1 error rates on the validation set using a single-crop
of size 224x224, after scaling the smaller side of the image to 256, following He et al. (2016).

41

1/4 1/2 3/4 1
OPT 0.00 0.00 0.00 0.00

CONST 15.07 16.40 18.76 18.90
LINEAR 25.67 13.02 12.97 12.65

ADALOSS 32.99 9.97 3.96 2.73

Table 4.1: Average relative percentage increase in error from the OPT on CIFAR and SVHN at
1/4, 1/2, 3/4 and 1 of the total cost. E.g., the bottom right entry means that if OPT has a 10% final
error rate, then AdaLoss has about 10.27%.

1/4 1/2 3/4 1
ResANN50+C 54.34 35.61 27.23 25.14
ResANN50+A 54.98 34.92 26.59 24.42

DenseANN169+C 48.15 45.00 29.09 25.60
DenseANN169+A 47.17 44.64 28.22 24.07

MSDNet38 33.9 28.0 25.7 24.3
MSDNet38+A 35.75 28.04 25.82 23.99

Table 4.2: Test error rates at different fraction of the total costs on ResANN50, DenseANN169,
and MSDNet38 on ILSVRC. The post-fix +C and +A stand for CONST and AdaLoss respectively.
Published results of MSDNet38 Huang et al. (2018b) uses CONST.

Training details. We optimize the models using stochastic gradient descent, with initial941

learning rate of 0.1, momentum of 0.9 and a weight decay of 1e-4. On CIFAR and SVHN, we942

divide the learning rate by 10 at 1/2 and 3/4 of the total epochs. We train for 300 epochs on CIFAR943

and 60 epochs on SVHN. On ILSVRC, we train for 90 epochs, and divide the learning rate by 10944

at epoch 30 and 60. We evaluate test error using single-crop.945

Base models. We compare our proposed AdaLoss weights against the intuitive CONST946

weights. On CIFAR and SVHN, we also compare AdaLoss against LINEAR and OPT, defined947

in Sec. 4.3. We evaluate the weights on multiple models including ResNet He et al. (2016) and948

DenseNet Huang et al. (2017b), and MSDNet Huang et al. (2018b). For ResNet and DenseNet,949

we augment them with auxiliary predictors and losses, and call the resulting models ResANN and950

DenseANN, and defer the details of these models to the appendix Sec. 4.8.951

4.5.2 Weight Scheme Comparisons952

AdaLoss vs. CONST on the same models. Table 4.1 presents the average relative test error rate953

increase from OPT on 12 ResANNs on CIFAR10, CIFAR100 and SVHN3. As training an OPT for954

each depth is too expensive, we instead report the average relative comparison at 1/4, 1/2, 3/4, and955

1 of the total ANN costs. We observe that the CONST scheme makes 15 ∼ 18% more errors than956

the OPT, and the relative gap widens at later layers. The LINEAR scheme also has about 13%957

3The 12 models are named by (n, c) drawn from {7, 9, 13, 17, 25} × {16, 32} and {(9, 64), (9, 128)}, where n
represents the number of residual units in each of the three blocks of the network, and c is the filter size of the first
convolution.

42

(a) ResANNs on CIFAR10 (b) ResANNs on CIFAR100

Figure 4.3: Comparing small networks with AdaLoss versus big ones using CONST on CIFAR10
and CIFAR100.

(a) ResANNs on SVHN

Figure 4.4: Comparing small networks with AdaLoss versus big ones using CONST on SVHN.

relative gap in later layers. In contrast, AdaLoss enjoys small performance gaps in the later half958

of layers. On ILSVRC, we compare AdaLoss against CONST on ResANN50, DenseANN169,959

and MSDNet38, which have similar final errors and total computational costs (See Fig. 4.6a).960

In Table 4.2, we observe the trade-offs between early and late accuracy on ResANN50 and961

MSDNet38. Furthermore, DenseANN169 performs uniformly better with AdaLoss than with962

CONST. Since comparing the weight schemes requires evaluating ANNs at multiple budget limits,963

and AdaLoss and CONST outperform each other at a significant fraction of depths on most of our964

experiments, we consider the two schemes incomparable on the same model.965

Small networks with AdaLoss vs. large ones with CONST. Our previous comparison966

between AdaLoss and CONST on the same models is not fully conclusive, since each scheme can967

outperform the other at a significant portion of the total cost. To address this, we set the final error968

rate, model architecture type, and the filter size c as constants, and vary the model depths so that969

43

(a) ResANNs on ILSVRC (b) MSDNet on ILSVRC

Figure 4.5: Comparing small networks with AdaLoss versus big ones using CONST on ILSVRC
with ResANNs and MSDNet.

AdaLoss and CONST reach the target final error rate. Then we compare the early predictions and970

the costs of models. On each of CIFAR10, 100 and SVHN, we compare six pairs of ResANNs,971

where the CONST uses twice the computation as AdaLoss4. Fig. 4.3a, 4.3b, and 4.4a show the972

averaged relative comparisons5, and they show that the small ANNs with AdaLoss are better973

anytime predictors than the large ones with CONST, because both models have the same final974

accuracy (on CIFAR10, the small ones are even better), and the small models reach the same975

error rates faster than the large ones. We have similar observations on ILSVRC using ResANNs976

and MSDNets in Fig. 4.5a and Fig. 4.5b. For instance, MSDNet Huang et al. (2018b) is the977

state-of-the-art anytime predictor. The published MSDNet38 uses CONST, and has 24.3% error978

rate using 6.6e9 total FLOPS in convolutions. By switching to AdaLoss, we improve a much979

smaller MSDNet33 (details in the appendix), which costs 4.5e9 FLOPS, to reach 24.5% final980

error. The two models also have similar early errors.981

AdaLoss can reach the same accuracies with similar or smaller costs than CONST, because982

in practice, a linear decrease in final error rate may often require an exponential increase in983

total computation, and CONST degrades the final performances significantly (Table 4.1). Since984

AdaLoss requires much smaller models than CONST to reach the same final errors, and with a985

fixed final error rate, AdaLoss reaches each early error rate with less or similar cost, we conclude986

that AdaLoss is the better scheme for anytime predictions.987

Various base networks on ILSVRC. We compare ResANNs, DenseANNs and MSDNets988

that have final error rate of near 24% in Fig. 4.6a, and observe that the anytime performance989

is mostly decided by the specific underlying model. MSDNets are more cost-effective than990

DenseANNs, which in turn are better than ResANNs. However, AdaLoss is helpful regardless991

of underlying model. Both ResANN50 and DenseANN169 see improvements switching from992

CONST to AdaLoss, which is also shown in Table 4.2. Thanks to AdaLoss, DenseANN169993

4AdaLoss takes (n, c) from {7, 9, 13} × {16, 32}, and CONST takes (n, c) from {13, 17, 25} × {16, 32}.
5The relative plots pivot at the final predictor from AdaLoss, e.g., the location (0.5, 200) means having half the

computation and 200% extra relative errors than the final predictor from AdaLoss

44

(a) ANNs comparison on ILSVRC

Figure 4.6: ANNs performance are mostly decided by underlying models, but AdaLoss is
beneficial regardless models.

achieves the same final error using similar FLOPS as the original published results of MSD-994

Net38 Huang et al. (2018b). This suggests that Huang et al. (2018b) improve over DenseANNs995

by having better early predictions without sacrificing the final cost efficiency via impressive996

architecture insight. AdaLoss brings a complementary improvement to MSDNets, as it enables997

smaller MSDNets to reach the final error rates of bigger MSDNets, while having similar or better998

early predictions.999

4.5.3 EANN: Closing Early Performance Gaps by Delaying Final Predic-1000

tions.1001

EANNs on CIFAR100. In Fig. 4.7a, we assemble ResANNs to form EANNs6 on CIFAR100 and1002

make three observations. First, EANNs are better than the ANN in early computation, because1003

the ensembles dedicate early predictions to small networks. Even though CONST has the best1004

early predictions as in Table 4.1, it is still better to deploy small networks. Second, because the1005

final prediction of each network is kept for a long period, AdaLoss leads to significantly better1006

EANNs than CONST does, thanks to the superior final predictions from AdaLoss. Finally, though1007

EANNs delay computation of large networks, it actually appears closer to the OPT, because of1008

accuracy saturation. Hence, EANNs should be considered when performance saturation is severe.1009

EANN on ILSVRC. Huang et al. (2018b) and Zamir et al. (2017) use ensembles of networks1010

of linearly growing sizes as baseline anytime predictors. However, in Fig. 4.7b, an EANN using1011

ResANNs of depths 26, 50 and 101 outperforms the linear ensembles of ResNets and DenseNets1012

6The ResANNs have c = 32 and n = 7, 13, 25, so that they form an EANN with an exponential base b ≈ 2. By
proposition 4.4.1, the average cost inflation is E[C] ≈ 2.44 for b = 2, so that the EANN should compete against the
OPT of n = 20, using 2.44 times of original costs.

45

(a) EANNs on CIFAR100 (b) EANN on ILSVRC

(c) AdaLoss Weights on three data-sets

Figure 4.7: (a) EANN performs better if the ANNs use AdaLoss instead of CONST. (b) EANN
outperforms linear ensembles of DNNs on ILSVRC. (c) The learned adaptive weights of the same
model on three data-sets.

significantly on ILSVRC. In particular, this drastically reduces the gap between ensembles and1013

the state-of-the-art anytime predictor MSDNet Huang et al. (2018b). Comparing ResANN 50 and1014

the EANN, we note that the EANN achieves better early accuracy but delays final predictions. As1015

the accuracy is not saturated by ResANN 26, the delay appears significant. Hence, EANNs may1016

not be the best when the performance is not saturated or when the constant fraction of extra cost1017

is critical.1018

4.5.4 Data-set Difficulty versus Adaptive Weights1019

In Fig. 4.7c, we plot the final AdaLoss weights of the same ResANN model (25,32) on CIFAR10,1020

CIFAR100, and SVHN to study the effects of the data-sets on the weights. We observe that from1021

the easiest data-set, SVHN, to the hardest, CIFAR100, the weights are more concentrated on the1022

final layers. This suggests that AdaLoss can automatically decide that harder data-sets need more1023

concentrated final weights to have near-optimal final performance, whereas on easy data-sets,1024

46

more efforts are directed to early predictions. Hence, AdaLoss weights may provide information1025

for practitioners to design and choose models based on data-sets.1026

4.6 Conclusion and Discussion1027

This work devises simple adaptive weights, AdaLoss, for training anytime predictions in DNNs.1028

We provide multiple theoretical motivations for such weights, and show experimentally that1029

adaptive weights enable small ANNs to outperform large ANNs with the commonly used non-1030

adaptive constant weights. Future works on adaptive weights includes examining AdaLoss1031

for multi-task problems and investigating its “first-order” variants that normalize the losses by1032

individual gradient norms to address unknown offsets of losses as well as the unknown scales.1033

We also note that this work can be combined with orthogonal works in early-exit budgeted1034

predictions Bolukbasi et al. (2017); Guan et al. (2017) for saving average test computation.1035

4.7 Proof of Propostion 4.4.11036

Proof. For each budget consumed x, we compute the cost x′ of the optimal that EANN is
competitive against. The goal is then to analyze the ratio C = x

x′
. The first ANN in EANN has

depth 1. The optimal and the result of EANN are the same. Now assume EANN is on depth z of
ANN number n+ 1 for n ≥ 0, which has depth bn.
(Case 1) For z ≤ bn−1, EANN reuse the result from the end of ANN number n. The cost spent is
x = z +

∑n−1
i=0 b

i = z + bn−1
b−1

. The optimal we compete has cost of the last ANN, which is bn−1

The ratio satisfies:

C = x/x′ =
z

bn−1
+ 1 +

1

b− 1
− 1

bn−1(b− 1)

≤ 2 +
1

b− 1
− 1

bn−1(b− 1)
< 2 +

1

b− 1
.

Furthermore, since C increases with z,

Ez∼Uniform(0,bn−1)[C]

≤ b1−n
∫ bn−1

0

zb1−n + 1 +
1

b− 1
dz

= 1.5 +
1

b− 1
.

(Case 2) For bn−1 < z ≤ bn, EANN outputs anytime results from ANN number n+ 1 at depth z.
The cost is still x = z + bn−1

b−1
. The optimal competitor has cost x′ = z. Hence the ratio is

C = x/x′ = 1 +
bn − 1

z(b− 1)

47

≤ 2 +
1

b− 1
− 1

bn−1(b− 1)
< 2 +

1

b− 1
.

Furthermore, since C decreases with z,

Ez∼Uniform(bn−1,bn)[C]

≤ 1 +
1

bn − bn−1

∫ bn

bn−1

bn − 1

z(b− 1)
dz

= 1 +
(b− b1−n) ln b

(b− 1)2

< 1 +
b ln b

(b− 1)2

Finally, since case 1 and case 2 happen with probability 1
b

and (1− 1
b
), we have

sup
B
C = 2 +

1

b− 1
(4.5)

and

EB∼Uniform(0,L)[C] ≤ 1− 1

2b
+

1

b− 1
+

ln b

b− 1
. (4.6)

We also note that with large b, supB C → 2 and E[C]→ 1 from above.1037

If we form a sequence of regular networks that grow exponentially in depth instead of ANN,1038

then the worst case happen right before a new prediction is produced. Hence the ratio between the1039

consumed budget and the cost of the optimal that the current anytime prediction can compete, C,1040

right before the number n+ 1 network is completed, is1041 ∑n
i=1 b

i

bn−1

n→∞−−−→ b2

b− 1
= 2 + (b− 1) +

1

b− 1
≥ 4.

Note that (b − 1) + 1
b−1
≥ 2 and the inequality is tight at b = 2. Hence we know supB C is at

least 4. Furthermore, the expected value of C, assume B is uniformly sampled such that the
interruption happens on the (n+ 1)th network, is:

E[C] =
1

bn

∫ bn

0

x+ bn−1
b−1

bn−1
dx

n→∞−−−→ 1.5 +
b− 1

2
+

1

b− 1
≥ 1.5 +

√
2 ≈ 2.91.

The inequality is tight at b = 1 +
√

2. With large n, since almost all budgets are consumed by the1042

last few networks, we know the overall expectationEB∼Uniform(0,L)[C] approaches 1.5+ b−1
2

+ 1
b−1

,1043

which is at least 1.5 +
√

2.1044

48

4.8 Implementation Details of ANNs1045

CIFAR and SVHN ResANNs. For CIFAR10, CIFAR100 Krizhevsky et al. (2009), and SVHN Net-1046

zer et al. (2011), ResANN follow He et al. (2016) to have three blocks, each of which has n1047

residual units. Each of such basic residual units consists of two 3x3 convolutions, which are1048

interleaved by BN-ReLU. A pre-activation (BN-ReLU) is applied to the input of the residual units.1049

The result of the second 3x3 conv and the initial input are added together as the output of the1050

unit. The auxiliary predictors each applies a BN-ReLU and a global average pooling on its input1051

feature map, and applies a linear prediction. The auxiliary loss is the cross-entropy loss, treating1052

the linear prediction results as logits. For each (n, c) pair such that n < 25, we set the anytime1053

prediction period s to be 1, i.e., every residual block leads to an auxiliary prediction. We set the1054

prediction period s = 3 for n = 25.1055

ResANNs on ILSVRC. Residual blocks for ILSVRC are bottleneck blocks, which consists1056

of a chain of 1x1 conv, 3x3 conv and 1x1 conv. These convolutions are interleaved by BN-ReLU,1057

and pre-activation BN-ReLU is also applied. Again, the output of the unit is the sum of the1058

input feature map and the result of the final conv. ResANN50 and 101 are augmented from1059

ResNet50 and 101 He et al. (2016), where we add BN-ReLU, global pooling and linear prediction1060

to every two bottleneck residual units for ResNet50, and every three for ResNet101. We create1061

ResANN26 for creating EANN on ILSVRC, and ResANN26 has four blocks, each of which has1062

two bottleneck residual units. The prediction period is every two units, using the same linear1063

predictors.1064

DenseANNs on ILSVRC. We augment DenseNet169 Huang et al. (2017b) to create DenseANN1065

169. DenseNet169 has 82 dense layers, each of which has a 1x1 conv that project concatenation1066

of previous features to 4k channels, where k is the growth rate Huang et al. (2017b), followed by1067

a 3x3 conv to generate k channels of features for the dense layer. The two convs are interleaved1068

by BN-ReLU, and a pre-activation BN-ReLU is used for each layer. The 82 layers are organized1069

into four blocks of size 6, 12, 32 and 32. Between each neighboring blocks, a 1x1 conv followed1070

by BN-ReLU-2x2-average-pooling is applied to shrink the existing feature maps by half in the1071

hight, width, and channel dimensions. We add linear anytime predictions every 14 dense layers,1072

starting from layer 12 (1-based indexing). The original DenseNet paper Huang et al. (2017b)1073

mentioned that they use drop-out with keep rate 0.9 after each conv in CIFAR and SVHN, but we1074

found drop-out to be detrimental to performance on ILSVRC.1075

MSDNet on ILSVRC. MSDNet38 is described in the appendix of Huang et al. (2018b).1076

We set the four blocks to have 10, 9, 10 and 9 layers, and drop the feature maps of the finest1077

resolution after each block as suggest in the original paper. We successfully reproduced the1078

published results to 24.3% error rate on ILSVRC using our Tensorflow implementation. We used1079

the original published results for MSDNet38+CONST in the main text. We use MSDNet33, which1080

has four blocks of 8, 8, 8 and 9 layers, for the small network that uses AdaLoss. We predict using1081

MSDNet33 every seven layers, starting at the fifth layer (1-based indexing).1082

49

γ 1/4 1/2 3/4 1 sum
0.0 0.00 0.00 0.00 0.00 0.00

0.05 -20.08 -2.15 2.22 2.43 -17.59
0.15 -23.88 -0.20 5.18 5.17 -13.72

Table 4.3: Relative percentage increase in error rate by switching from γ = 0. (lower is better.) A
small amount of γ = 0.5 drastically improves early predictions without increasing late error rate
much.

EMA m 1/4 1/2 3/4 1
0.9 0.00 0.00 0.00 0.00

0.99 -0.29 0.25 0.05 0.15

Table 4.4: Relative percentage increase in error rate by switching from m = 0.9. (lower is better.)
The two options essentially result in the same error rates.

4.9 Ablation Study for AdaLoss Parameters1083

4.9.1 Weight Regularization1084

In practice, some expected loss `i could be much larger than the other losses, so that AdaLoss
may assign such `i too small a weight for it to receive enough optimization to recover. To prevent
this, we mix the uniform constant weight with AdaLoss as a form of regularization as follows in
Eq. 4.7. Such mixture prevents the weight of `i from being too close to zero.

min
θ

L∑
i=1

(
α(1− γ) ln `i(θ) + γ`i(θ)

)
, (4.7)

where α > 0 and γ > 0 are hyper parameters. In practice, since DNNs often have elaborate1085

learning rate schedules that assume BL = 1, we choose α = mini ˆ̀
i(θ) at each iteration to scale1086

the max weight to 1. We choose γ = 0.05 from validation sets on CIFAR10 and CIFAR100 from1087

the set {0, 0.05, 0.15}.1088

4.9.2 Ablation Study of AdaLoss parameters on CIFAR1089

Update period e 1/4 1/2 3/4 1
1 0.00 0.00 0.00 0.00

100 0.71 0.23 0.24 0.45

Table 4.5: Relative percentage increase in error rate by switching from e = 0. (lower is better.)
The options are essentially the same on CIFAR10 and CIFAR100.

We conduct ablation studies for the parameters of AdaLoss: (1) γ in Eq. 4.7, which is the1090

mixture weight of the uniform static weighting, (2) the exponential moving average (EMA)1091

50

momentum, m, for updating the expected loss ˆ̀
i at each stochastic gradient descent (SGD) step,1092

and (3) the number of SGD steps e to wait between updating AdaLoss weights Bi using the1093

learned ˆ̀
i. We choose γ ∈ {0, 0.05, 0.15}, m ∈ {0.9, 0.99}, and e ∈ {1, 100}, and evaluate1094

them on CIFAR10 and CIFAR100 ResANNs whose n ∈ {9, 17, 25} and c = 32. Over the 721095

experiments, we found the effects of m, and e are almost negligible, as they generate < 0.5% of1096

relative difference in error rates on average, which translates to 0.1% absolute error difference on1097

CIFAR100. These comparisons are in Table 4.4 and Table 4.5. In the experiment sections, we1098

choose m = 0.9 and e = 1.1099

However, γ does affect the performance significantly, as show in Table 4.3. γ = 0 means pure1100

AdaLoss and γ = 1 means CONST. We observe that with γ = 0.05, the small amount of uniform1101

static weight reduces the error rate at 1/4 of the total cost by 20% relatively, but at the cost of1102

minor 2.5% relative increase in late predictions. Increasing γ further to 0.15 has only marginal1103

benefits to early predictions, but has the same negative impact to late accuracy. This suggests that1104

while a small γ helps, we should only use a small amount. Throughout the experiment sections in1105

the main text, we choose γ = 0.05.1106

51

52

Chapter 51107

Training Gradient Boosting on Stochastic1108

Data Streams1109

5.1 Introduction1110

Boosting (Freund and Schapire, 1995) is a popular method that leverages simple learning models1111

(e.g., decision stumps) to generate powerful learners. Boosting has been used to great effect1112

and trump other learning algorithms in a variety of applications. In computer vision, boosting1113

was made popular by the seminal Viola-Jones Cascade (Viola and Jones, 2001a) and is still1114

used to generate state-of-the-art results in pedestrian detection (Nam et al., 2014; Yang et al.,1115

2015; Zhu and Peng, 2016). Boosting has also found success in domains ranging from document1116

relevance ranking (Chapelle et al., 2011) and transportation (Zhang and Haghani, 2015) to medical1117

inference (Atkinson et al., 2012). Finally, boosting yields an anytime property at test time,1118

which allows it to work with varying computation budgets (Grubb and Bagnell, 2012a) for use in1119

real-time applications such as controls and robotics.1120

The advent of large-scale data-sets has driven the need for adapting boosting from the tradi-1121

tional batch setting, where the optimization is done over the whole dataset, to the online setting1122

where the weak learners (models) can be updated with streaming data. In fact, online boosting1123

has received tremendous attention so far. For classification, (Beygelzimer et al., 2015b; Chen1124

et al., 2012b; Oza and Russell, 2001) proposed online boosting algorithms along with theoret-1125

ical justifications. Recent work by Beygelzimer et al. (2015a), addressed the regression task1126

through the introduction of Online Gradient Boosting (OGB). We build upon on the developments1127

in (Beygelzimer et al., 2015a) to devise a new set of algorithms presented below.1128

In this work, we develop streaming boosting algorithms for regression with strong theoretical1129

guarantees under stochastic setting, where at each round the data are i.i.d sampled from some1130

unknown fixed distribution. In particular, our algorithms are streaming extension to the classic1131

gradient boosting (Friedman, 2001), where weak predictors are trained in a stage-wise fashion to1132

approximate the functional gradient of the loss with respect to the previous ensemble prediction, a1133

procedure that is shown by Mason et al. (2000) to be functional gradient descent of the loss in the1134

space of predictors. Since the weak learners cannot match the gradients of the loss exactly, we1135

measure the error of approximation by redefining of edge of online weak learners (Beygelzimer1136

53

et al., 2015b) for online regression setting.1137

Assuming a non-trivial edge can be achieved by each deployed weak online learner, we1138

develop algorithms to handle smooth or non-smooth loss functions, and theoretically analyze1139

the convergence rates of our streaming boosting algorithms. Our first algorithm targets strongly1140

convex and smooth loss functions and achieves exponential decay on the average regret with1141

respect to the number of weak learners. We show the ratio of the decay depends on the edge1142

and also the condition number of the loss function. The second algorithm, designed for strongly1143

convex but non-smooth loss functions, extends from the batch residual gradient boosting algorithm1144

from (Grubb and Bagnell, 2011). We show that the algorithm achieves O(lnN/N) convergence1145

rate with respect to the number of weak learners N , which matches the online gradient descent1146

(OGD)’s no-regret rate for strongly convex loss (Hazan et al., 2007). Both of our algorithms1147

promise that as T (the number of samples) and N go to infinity, the average regret converges to1148

zero. Our analysis leverages Online-to-Batch reduction (Cesa-Bianchi et al., 2004; Hazan and1149

Kale, 2014), hence our results naturally extends to adversarial online learning setting as long as1150

the weak online learning edge holds in adversarial setting, a harsher setting than stochastic setting.1151

We conclude with some proof-of-concept experiments to support our analysis. We demonstrate1152

that our algorithm significantly boosts the performance of weak learners and converges to the1153

performance of classic gradient boosting with less computation.1154

5.2 Related Works1155

Online boosting algorithms have been evolving since their batch counterparts are introduced.1156

Oza and Russell (2001) developed some of the first online boosting algorithm, and their work1157

are applied to online feature selection (Grabner and Bischof, 2006) and online semi-supervised1158

learning (Grabner et al., 2008). Leistner et al. (2009) introduced online gradient boosting for the1159

classification setting albeit without a theoretical analysis. Chen et al. (2012b) developed the first1160

convergence guarantees of online boosting for classification. Then Beygelzimer et al. (2015b)1161

presented two online classification boosting algorithms that are proved to be respectively optimal1162

and adaptive.1163

Our work is most related to (Beygelzimer et al., 2015a), which extends gradient boosting1164

for regression to the online setting under a smooth loss: each weak online learner is trained by1165

minimizing a linear loss, and weak learners are combined using Frank-Wolfe (Frank and Wolfe,1166

1956) fashioned updates. Their analysis generalizes those of batch boosting for regression (Zhang1167

and Yu, 2005). In particular, these proofs forgo edge assumptions of the weak learners. Though1168

Frank-Wolfe is a nice projection-free algorithm, it has relatively slow convergence and usually1169

is restricted to smooth loss functions. In our work, each weak learner instead minimizes the1170

squared loss between its prediction and the gradient, which allows us to treat weak learners as1171

approximations of the gradients thanks to the weak learner edge assumption. Hence we can mimic1172

classic gradient boosting and use a gradient descent approach to combine the weak learners’1173

predictions. These differences enable our algorithms to handle non-smooth convex losses, such1174

as hinge and L1-losses, and result in convergence bounds that is more analogous to the bounds1175

of classic batch boosting algorithms. This work also differs from (Beygelzimer et al., 2015a)1176

in that we assume an online weak learner edge exists, a common assumption in the classic1177

54

boosting literature (Freund and Schapire, 1995; 1999) that is extended to the online boosting1178

for classification by (Beygelzimer et al., 2015b; Chen et al., 2012b). With this assumption, we1179

analyze online gradient boosting using techniques from gradient descent for convex losses (Hazan1180

et al., 2007).1181

5.3 Preliminaries1182

In the classic online learning setting, at every time step t, the learner A first makes a prediction
(i.e., picks a predictor ft ∈ F , where F is a pre-defined class of predictors) on the input xt ∈ Rd,
then receives a loss `t(ft(xt)). The learner then updates ft to ft+1. The samples (`t, xt) could be
generated by an adversary, but this work mainly focuses on the setting where (`t, xt) ∼ D are
i.i.d sampled from a distribution D. The regret RA(T) of the learner is defined as the difference
between the total loss from the learner and the total loss from the best hypothesis in hindsight
under the sequence of samples {(`t, xt)}t:

RA(T) =
T∑
t=1

`t(ft(xt))− min
f∗∈F

T∑
t=1

`t(f
∗(xt)). (5.1)

We say the online learner is no-regret if and only if RA(T) is o(T). That is, time averaged, the1183

online learner predictor ft is doing as well as the best hypothesis f ∗ in hindsight. We define risk of1184

a hypothesis f as E(`,x)∼D[`(f(x))]. Our analysis of the risk leverages the classic Online-to-Batch1185

reduction (Cesa-Bianchi et al., 2004; Hazan and Kale, 2014). The online-to-batch reduction first1186

analyzes regret without the stochastic assumption on the sequence of loss `, and it then relates1187

regret to risk using concentration of measure.1188

Throughout the paper we will use the concepts of strong convexity and smoothness. A function
`(x) is said to be λ-strongly convex and β-smooth with respect to norm ‖ · ‖ if and only if for any
pair x1 and x2:

λ

2
‖x1 − x2‖2 ≤ `(x1)− `(x2)−∇`(x2)(x1 − x2)

≤ β

2
‖x1 − x2‖2, (5.2)

where∇`(x) denotes the gradient of function ` with respect to x.1189

5.3.1 Online Boosting Setup1190

Our online boosting setup is similar to (Beygelzimer et al., 2015b) and (Beygelzimer et al., 2015a).1191

At each time step t = 1, .., T , the environment picks loss `t : Rm → R. The online boosting1192

learner makes a prediction yt ∈ Rm without knowing `t. Then the learner suffers loss `t(yt).1193

Throughout the paper we assume the loss is bounded as |`t(y)| ≤ B,B ∈ R+,∀t, y. We also1194

assume that the gradient of the loss ∇`t(y) is also bounded as ‖∇`t(y)‖ ≤ G,G ∈ R+,∀t, y.11195

1Throughout the paper, the notation ‖x‖ for any finite dimension vector x stands for the classic L2 norm.

55

The online boosting learner maintains a sequence of weak online learning algorithms A1, ...,AN .1196

Each weak learner Ai can only use hypothesis from a restricted hypothesis classH to produce its1197

prediction ŷit = hit(xt) (h : Rd → Rm,∀h ∈ H), where hit ∈ H. To make a prediction yt at each1198

iteration, each Ai will first make a prediction ŷit ∈ Rm where ŷit = hit(xt). The online boosting1199

learner combines all the weak learners’ predictions to produce the final prediction yt for sample1200

xt. The online learner then suffers loss `t(yt) after the loss `t is revealed. As we will show later,1201

with the loss `t, the online learner will pass a square loss to each weak learner. Each weak learner1202

will then use its internal no-regret online update procedure to update its own weak hypothesis1203

from hit to hit+1. In stochastic setting where `t and xt are i.i.d samples from a fixed distribution,1204

the online boosting learner will output a combination of the hypothesises that were generated by1205

weak learners as the final boosted hypothesis for future testing.1206

By leveraging linear combination of weak learners, the goal of the online boosting learner is to1207

boost the performance of a single online learner Ai. Additionally, we ideally want the prediction1208

error to decrease exponentially fast in the number N of weak learners, as is the result from classic1209

batch gradient boosting (Grubb and Bagnell, 2011).1210

5.4 Weak Online Learning1211

We specifically consider the setting where each weak learner minimizes a square loss ‖y − h(x)‖2,1212

where y is the regression target, and h is in the weak-learner hypothesis class H. At each step1213

t, a weak online learner A chooses a predictor ht ∈ H to predict ht(xt), receives the target yt21214

and then suffers loss ‖yt − ht(xt)‖2. With this, we now introduce the definition of Weak Online1215

Learning Edge.1216

Definition 5.4.1. (Weak Online Learning Edge) Given a restricted hypothesis class H and a
sequence of square losses {‖yt − h(xt)‖2}t, the weak online learner predicts a sequence {ht}
that has edge γ ∈ (0, 1], such that with high probability 1− δ:

T∑
t=1

‖yt − ht(xt)‖2 ≤ (1− γ)
T∑
t=1

‖yt‖2 +R(T), (5.3)

where R(T) ∈ o(T) is usually known as the excess loss.1217

The high probability 1− δ comes from the possible randomness of the weak online learner
and the sequence of examples. Usually the dependence of the high probability bound on δ is
poly-logarithmic in 1/δ that is included in the term R(T). We will give a concrete example on
this edge definition in next section where we will show what R(T) consists of. Intuitively, a larger
edge implies that the hypothesis is able to better explain the variance of the learning targets y. Our
online weak learning definition is closely related to the one from (Beygelzimer et al., 2015b) in
that our definition is an result of the following two assumptions: (1) the online learning problem
is agnostic-learnable (i.e., the weak learner has o(T)

T
→ 0 time-averaged regret against the best

2Abuse of notation: in Sec 5.4, yt ∈ Rm simply stands for a regression target for the weak learner at step t, not
the final prediction of the boosted learner defined in Sec. 5.3.1.

56

hypothesis h ∈ H) with high probability:

T∑
t=1

‖yt − ht(xt)‖2 ≤ min
h∈H

T∑
t=1

‖yt − h(xt)‖2 + o(T), (5.4)

and (2) the restricted hypothesis class H is rich enough such that for any sequence of {yt, xt}
with high probability:

min
h∈H

T∑
t=1

‖yt − h(xt)‖2 ≤ (1− γ)
T∑
t=1

‖yt‖2 + o(T). (5.5)

Our definition of online weak learning directly generalizes the batch weak learning definition1218

in (Grubb and Bagnell, 2011) to the online setting by the additional agnostic learnability assump-1219

tion as shown in Eqn. 5.4.1220

Note that we pick square losses (Eqn. 5.5) in our weak online learning definition. As we will1221

show later, the goal is to enforce that the weak learners to accurately predict gradients, as was1222

also originally used in the batch gradient boosting algorithm (Friedman, 2001). Least-squares1223

losses are also shown to be important in streaming tasks by (Gao et al., 2016) for their superior1224

computational and theoretical properties.1225

The above online weak learning edge definition immediately implies the following result,1226

which is used in later proofs:1227

Lemma 5.4.2. Given the sequence of losses ‖yt − h(xt)‖2, 1 ≤ t ≤ T , the online weak learner
generates a sequence of predictors {ht}t, such that:

T∑
t=1

2yTt ht(xt) ≥ γ
T∑
t=1

‖yt‖2 −R(T), γ ∈ (0, 1]. (5.6)

The above lemma can be proved by expanding the square on the LHS of Eqn. 5.3, cancelling1228

common terms and rearranging terms.1229

5.4.1 Why Weak Learner Edge is Reasonable?1230

We demonstrate here that the weak online learning edge assumption is reasonable. Let us consider1231

the case that the hypothesis class H is closed under scaling (meaning if h ∈ H, then for all1232

α ∈ R, αh ∈ H) and let us assume x ∼ D, and y = f ∗(x) for some unknown function1233

f ∗. We define the inner product 〈h1, h2〉 of any two functions h1, h2 as Ex∼D[h1(x)Th2(x)]1234

and the squared norm ‖h‖2 of any function h as 〈h, h〉. We assume f ∗ is bounded in a sense1235

‖f ∗(x)‖ ≤ F ∈ R+. The following proposition shows that as long as f ∗ is not perpendicular to1236

the span ofH (f ∗ 6⊥ span(H)), i.e., ∃h ∈ span(H) such that 〈h, f ∗〉 6= 0, then we can achieve a1237

non-zero edge:1238

Proposition 5.4.3. Consider any sequence of pairs {xt, yt}Tt=1, where xt is i.i.d sampled from D,
yt = f ∗(xt) and f ∗ 6⊥ span(H). Run any no-regret online algorithm A on sequence of losses

57

Algorithm 6 Streaming Gradient Boosting (SGB)

1: Input: A restricted classH. N online weak learners {Ai}Ni=1. Learning rate η.
2: Each weak learner initlizes a hypothesis h1

i ∈ H,∀1 ≤ i ≤ N .
3: for t = 1 to T do
4: Receive xt and initialize y0

t = y0 (e.g., y0 = 0).
5: for i = 1 to N do
6: Set the partial sum yit = yi−1

t − ηhti(xt).
7: end for
8: Predict yt = yNt .
9: `t is revealed and learner suffers loss `t(yt).

10: for i = 1 to N do
11: Compute gradient w.r.t partial sum: ∇t

i = ∇`t(yi−1
t).

12: Feed loss ‖∇t
i − hti(xt)‖2 to Ai.

13: Weak learner Ai computes ht+1
i using its no-regret update procedure.

14: end for
15: end for
16: Set h̄i = 1

T

∑T
t=1 h

t
i, ∀1 ≤ i ≤ N .

17: Return:
{
h̄1, ..., h̄N

}
.

{‖yt−h(xt)‖2}t and output a sequence of predictions {ht}t. With probability at least 1− δ, there
exists a weak online learning edge γ ∈ (0, 1], such that:

T∑
t=1

‖ht(xt)− yt‖2 ≤ (1− γ)
T∑
t=1

‖yt‖2

+RA(T) + (2− γ)O
(√

T ln(1/δ)
)
,

where RA(T) is the regret of online algorithm A.1239

The proof of the above proposition can be found in Appendix. Matching to Eq. 5.3, we1240

have R(T) = RA(T) + (2− γ)O
(√

T ln(1/δ)
)
∈ o(T). In addition, the contrapositive of the1241

proposition implies that without a positive edge, span(H) is orthogonal to f ∗ so that no linear1242

boosted ensemble can approximate f ∗. Hence having a positive online weak learner edge is1243

necessary for online boosted algorithms.1244

5.5 Algorithm1245

5.5.1 Smooth Loss Functions1246

We first present Streaming Gradient Boosting (SGB), an algorithm (Alg. 6) that is designed for1247

loss functions {`t(y)} that are λ-strongly convex and β-smooth. Alg. 6 is the online version of1248

the classic batch gradient boosting algorithms (Friedman, 2001; Grubb and Bagnell, 2011). Alg. 61249

maintains N weak learners. At each time step t, given example xt, the algorithm predicts yt by1250

58

linearly combining the weak learners’ predictions (Line 5). Then after receiving loss `t, for each1251

weak learner, the algorithm computes the gradient of `t with respect to y evaluated at the partial1252

sum yi−1
t (Line 11) and feeds the square loss lt(h) with the computed gradient as the regression1253

target to weak learner Ai (Line 12). The weak learner Ai then performs its own no-regret online1254

update to compute ht+1
i (Line 13).1255

Line 16 and 17 are needed for stochastic setting. We compute the average h̄i for every weak
learner Ai in Line 16. In testing time, given x ∼ D, we predict y as:

y = y0 − η
N∑
i=1

h̄i(x). (5.7)

Since we penalize the weak learners by the squared deviation of its own prediction and the1256

gradient from the previous partial sum, we essentially force weak learners to produce predictions1257

that are close to the gradients (in a no-regret perspective). With this perspective, SGB can1258

be understood as using the weak learners’ predictions as N gradient descent steps where the1259

gradient of each step i is approximated by a weak learner’s prediction (Line 5). Let us define1260

∆0 =
∑T

t=1(`t(y
0
t)− `t(f ∗(xt))), for any f ∗ ∈ F . Namely ∆0 measures the performance of the1261

initialization {y0
t }t. Under our assumption that the loss is bounded, |`t(x)| ≤ B, ∀t, x, we can1262

simply upper bound ∆0 as ∆0 ≤ 2BT . Alg. 6 has the following performance guarantee:1263

Theorem 5.5.1. Assume weak learner Ai,∀i has weak online learning edge γ ∈ (0, 1]. Let
f ∗ = arg minf∈F

∑
t `t(f(xt)). There exists a η = γ

β(8−4γ)
, for λ-strongly convex and β-smooth

loss functions, `t, such that when T →∞, Alg. 6 generates a sequence of predictions {yt}t where:

1

T
[
T∑
t=1

`t(yt)−
T∑
t=1

`t(f
∗(xt))] ≤ 2B(1− γ2λ

16β
)N . (5.8)

For stochastic setting where (xt, `t) ∼ D independently, we have when T →∞:

E
[
`
(
y0 − η

N∑
i=1

h̄i(x)
)
− `(f ∗(x))

]
≤ 2B(1− γ2λ

16β
)N . (5.9)

The expectation in Eqn. 5.9 of the above theorem is taken over the randomness of the sequence1264

of pairs of loss and samples {`t, xt}Tt=1 (note that h̄i is dependent on `1, x1, ..., `T , xT) and `, x.1265

Theorem 5.5.1 shows that with infinite amount samples the average regret decreases exponentially1266

as we increase the number of weak learners. This performance guarantee is very similar to classic1267

batch boosting algorithms (Grubb and Bagnell, 2011; Schapire and Freund, 2012), where the1268

empirical risk decreases exponentially with the number of algorithm iterations, i.e., the number of1269

weak learners. Theorem 5.5.1 mirrors that of Theorem 1 in (Beygelzimer et al., 2015a), which1270

bounds the regret of the Frank-Wolfe-based Online Gradient Boosting algorithm. Our results1271

utilize the additional assumptions that the losses `t are strongly convex and that the weak learners1272

have edge, allowing us to shrink the average regret exponentially with respect to N, while the1273

average regret in (Beygelzimer et al., 2015a) shrinks in the order of 1/N (though this dependency1274

on N is optimal under their setting).1275

59

Proof of Theorem 5.5.1, detailed in Appendix 5.8.2, weaves our additional assumptions into1276

the proof framework of gradient descent on smooth losses. In particular, using weak learner edge1277

assumption, we derive Lemma 5.4.2 and the Lemma 5.8.1 to relate parts of the strong smoothness1278

expansion of the losses to the norm-squared of the gradients ‖∇`t(yit)‖2, which is an upper bound1279

of 2λ(`t(y
i
t)− `t(f ∗(xt))) due to strong convexity. Using this observation, we can relate the total1280

regret of the ensemble of the first i learners, ∆i =
∑T

t=1(`t(y
i
t)− `t(f ∗(xt))), with the regret1281

from using i+ 1 learners, ∆i+1, and show that ∆i+1 shrinks ∆i by a constant fraction while only1282

adding a small term O(R(T)) ∈ o(T). Solving the recursion on the sequence of ∆i, we arrive at1283

the final exponentially decaying regret bound in the number of learners.1284

5.5.1.0.1 Remark Due to the weak online learning edge assumption, the regret bound shown1285

in Eqn. 5.8 and the risk bound shown in Eqn. 5.9 are stronger than typical bounds in classic1286

online learning, in a sense that we are competing against f ∗ that could potentially be much1287

more powerful than any hypothesis fromH. For instance when the loss function is square loss1288

`(f(x)) = ‖f(x)− z‖2, Theorem 5.5.1 essentially shows that the risk of the boosted hypothesis1289

E[‖y0−η
∑N

i=1 h̄i(x)−z‖2] approaches to zero as N approaches to infinity, under the assumption1290

that Ai,∀i have no-zero weak learning edge (e.g.,f ∗ ∈ span(H)). Note that this is analogous to1291

the results of classification based batch boosting (Freund and Schapire, 1995; Grubb and Bagnell,1292

2011) and online boosting (Beygelzimer et al., 2015b): as number of weak learners increase, the1293

average number of prediction mistakes approaches to zero. In other words, with the corresponding1294

edge assumptions, these batch/online boosting classification algorithms can compete against any1295

arbitrarily powerful classifier that always makes zero mistakes on any given training data.1296

5.5.2 Non-smooth Loss Functions1297

The regret bound shown in Theorem 5.5.1 only applies for strongly convex and smooth loss1298

functions. In fact, one can show that Alg. 6 will fail for general non-smooth loss functions. We1299

can construct a sequence of non-smooth loss functions and a special weak hypothesis class H,1300

which together show that the regret of Alg. 6 grows linearly in the number of samples, regardless1301

of the number of weak learners. We refer readers to Appendix 5.8.4 for more details.1302

Our next algorithm, Alg. 7, extends SGB (Alg. 6) to handle strongly convex but non-smooth1303

losses. Instead of training each weak learner to fit the subgradients of non-smooth loss with respect1304

to current prediction, we instead keep track of a residual ∆i
3 that accumulates the difference1305

between the subgradients, ∇k, and the fitted prediction hk(xt), from k = 1 up to i− 1. Instead1306

of fitting the predictor hi+1 to match the subgradient ∇i+1, we fit it to match the sum of the1307

subgradient and the residuals, ∇i+1 + ∆i. More specifically, in Line 13 of Alg. 7, for each weak1308

learner Ai, we feed a square loss with the sum of residual and the gradient as the regression target.1309

Then Line 14 sets the new the residual ∆t
i as the difference between the target (∆t

i−1 +∇t
i) and1310

the weak learner Ai’s prediction hti(xt).1311

The last line of Alg. 7 is needed for stochastic setting where (`t, xt) ∼ D i.i.d. In test, given1312

sample x ∼ D, we predict y using hit,∀i, t in procedure shown in Alg. 8. For notation simplicity,1313

3Note the abusive notation. For the non-smooth loss setting (Alg. 7), ∆i does not refer to the regret of the
ensemble’s regret with the i-th as used in the analysis of Alg. 6

60

Algorithm 7 Streaming Gradient Boosting (SGB) for non-smooth loss (Residual Projection)

1: Input: A restricted classH. N online weak learners {Ai}Ni=1. Learning rate schedule {ηi}Ni=1.

2: ∀i,Ai initializes a hypothesis h1
i ∈ H.

3: for t = 1 to T do
4: Receive xt and initialize y0

t = y0 (e.g., y0 = 0).
5: for i = 1 to N do
6: Set the projected partial sum yit = ΠY(yi−1

t − ηihti(xt)).
7: end for
8: Predict yt = 1

N

∑N
i=0 y

i
t

9: The loss `t is revealed and compute loss `t(yt).
10: Set initial residual ∆t

0 = 0.
11: for i = 1 to N do
12: Compute subgradient w.r.t. partial sum: ∇t

i = ∇`t(yi−1
t).

13: Feed loss
∥∥(∆t

i−1 +∇t
i)− h(x)

∥∥2 to Ai.
14: Update residual: ∆t

i = ∆t
i−1 +∇t

i − hti(xt).
15: Weak learner Ai computes ht+1

i using its no-regret update procedure.
16: end for
17: end for
18: Return: hit, 1 ≤ i ≤ N, 1 ≤ t ≤ T .

we denote the testing procedure shown in Alg. 8 as T (x), which T explicitly depends on the1314

returns hit, 1 ≤ i ≤ N, 1 ≤ t ≤ T from SGB (Residual Projection). Since it’s impractical to store1315

and apply all TN models, we follow a common stochastic learning technique which uses the final1316

predictor at time T for testing (e.g., Johnson and Zhang (2013)) in the experiment section (i.e.,1317

simply set t = T in Line 3 in Alg. 8). In practice, if the learners converge and T is large, the1318

average and final predictions are close.1319

Intuitively, this approach prevents the weak learners from consistently failing to match a1320

certain direction of the subgradient as the net error in the direction is stored in residual. By the1321

assumption of weak learner edge, the directions will be approximated. We also note that if we1322

assume the subgradients are bounded, then the residual magnitudes increase at most linearly1323

Algorithm 8 SGB (Residual Projection) for testing

1: Input: Test sample x and hit, 1 ≤ i ≤ N, 1 ≤ t ≤ T from the output of Alg. 7.
2: for t = 1 to T do
3: for i = 1 to N do
4: yit = ΠY(yi−1

t − ηihti(x)).
5: end for
6: yt = 1

N

∑N
i=0 y

i
t.

7: end for
8: Predict: y = T (x) = 1

T

∑T
t=1 yt.

61

in the number of weak learners. Simultaneously, each weak learner shrinks the residual by at1324

least a constant factor due to the assumption of edge. Hence, we expect the residual to shrink1325

exponentially in the number of learners. Utilizing this observation, we arrive at the following1326

performance guarantee:1327

Theorem 5.5.2. Assume the loss `t is λ-strongly convex for all t with bounded gradients,
‖∇`t(y)‖ ≤ G for all y, and each weak learner Ai has edge γ ∈ (0, 1]. Let F be a func-
tion space, and H ⊂ F be a restriction of F Let f ∗ = arg minf∈F

1
T

∑T
t=1 `t(f(xt)) be the

optimal predictor in F in hindsight. Let c = 2
γ
− 1. Let step size be ηi = 1

λi
. When T →∞, we

have:

1

T

T∑
t=1

(`t(yt)− `t(f ∗(xt))) ≤
4c2G2

λN
(1 + lnN +

1

8N
). (5.10)

For stochastic setting where (xt, `t) ∼ D independently, when T →∞ we have:

E
[
`(T (x))− `(f ∗(x))

]
≤ 4c2G2

λN
(1 + lnN +

1

8N
).

The above theorem shows that the average regret of Alg. 7 is O(lnN/N) with respect to the1328

number N of weak learners, which matches the regret bounds of Online Gradient Descent for1329

strongly convex loss. The key idea for proving Theorem 5.5.2 is to combine our online weak1330

learning edge definition with the proof framework of Online Gradient Descent for strongly convex1331

loss functions from (Hazan et al., 2007). The detailed proof can be found in Appendix 5.8.3.1332

5.6 Experiments1333

We demonstrate the performance of our Streaming Gradient Boosting using the following UCI1334

datasets (Lichman, 2013): YEAR, ABALONE, SLICE, and A9A (Kohavi and Becker, 1996) as1335

well as the MNIST (LeCun et al., 2001) dataset. If available, we use the given train-test split of1336

each data-set. Otherwise, we create a random 90%-10% train-test split.1337

5.6.1 Experimental Analysis of Regret Bounds1338

We first demonstrate the relationships between the regret bounds shown in Eqn. 5.8 and the1339

parameters including the number of weak learners, the number of samples and edge γ. We1340

compute the regret of SGB with respect to a deep regression tree (depth≥ 15), which plays the f ∗1341

in Eqn. 5.8. We use regression trees as the weak learners. We assume that deeper trees have higher1342

edges γ because they empirically fit training data better. We show how the regret relates to the1343

trees’ depth, the number of weak learners N (Fig. 5.1b) and the number of samples T (Fig. 5.1d).1344

For the experimental results shown in Fig. 5.1, we used smooth loss functions with L21345

regularization (see Appendix 5.8.5 for more details). We use logistic loss and square loss for1346

binary classification (A9A) and regression task (SLICE), respectively. For each regression tree1347

weak learner, Follow The Regularized Leader (FTRL) (Shalev-Shwartz, 2011) was used as the1348

no-regret online update algorithm with regularization posed as the depth of the tree. Fig. 5.1b1349

62

0 5 10 15
Number of Weak Learners

10-3

10-2

10-1

100
Av

er
ag

e
Re

gr
et

SLICE Regret vs. Weak Learners

Depth 2
Depth 4
Depth 6

(a) a

0 5 10 15
Number of Weak Learners

10-1

100

Av
er

ag
e

Re
gr

et

A9A Regret vs. Weak Learners

Depth 3
Depth 5
Depth 7

(b) b

0 1000 2000 3000 4000 5000 6000 7000
Number of Samples

10-2

10-1

100

Av
er

ag
e

Re
gr

et

SLICE Regret Convergence

Depth 2
Depth 4
Depth 6

(c) c

0 1000 2000 3000 4000 5000 6000 7000
Number of Samples

10-1

100

Av
er

ag
e

Re
gr

et
A9A Regret Convergence

Depth 3
Depth 5
Depth 7

(d) d

Figure 5.1: Average regret of SGB with regression trees with various depths on SLICE and A9A
datasets.

shows the relationship between the number of weak learners and the average regret given a fixed1350

total number of samples. The average regret decreases as we increase the number of weak learners.1351

We note that the curves are close to linear at the beginning, matching our theoretical analysis that1352

the average regret decays exponentially (note the y-axis is log scale) with respect to the number1353

63

of weak learners. This shows that SGB can significantly boost the performance of a single weak1354

learner.1355

To investigate the effect of the edge parameter γ, we additionally compute the average regret1356

in Fig. 5.1 as the depth of the regression tree is increased. The tree depth increases the model1357

complexity of the base learner and should relate to a larger γ edge parameter. From this experiment,1358

we see that the average regret shrinks as the depth of the trees increases.1359

Finally, Fig. 5.1d shows the convergence of the average regret with respect to the number1360

of samples. We see that more powerful weak learners (deeper regression trees) results in faster1361

convergence of our algorithm. We ran Alg. 7 on A9A with hinge loss and SLICE with L1 (least1362

absolute deviation) loss and observed very similar results as shown in Fig. 5.1.1363

5.6.2 Batch Boosting vs. Streaming Boosting1364

105 106 107100

101

102

Batch
Streaming

(a) a
107 108 109 1010101

102

103

104

105

106

(b) b
106 107 108 10910-4

10-3

10-2

10-1

100

101

(c) c

105 106 107 10810-1

100

(d) d
106 107 108 10910-2

10-1

(e) e
105 106 107 108100

101

102

Batch
N=8
N=12
N=16
N=20
N=3

(f) f

Figure 5.2: Log-log plots of test-time loss vs. computation complexity on various data-sets. The
x-axis represents computation complexity measured by number of weak leaner predictions; the y-
axis measures square loss for regression tasks (ABALONE, SLICE and YEAR), and classification
error for A9A and MNIST.

We next compare batch boosting to SGB using two-layer neural networks as weak learners4
1365

and see that SGB reaches similar final performance as the batch boosting algorithm albeit with1366

less training computation. As stated in Sec 5.5.2, we report hiT instead of h̄i for SGB, since at1367

convergence the average prediction is close to the final prediction, and the latter is impractical to1368

compute. We implement our baseline, the classic batch gradient boosting (GB) (Friedman, 2001),1369

by optimizing each weak learner until convergence in order. In both GB and SGB, we train weak1370

learners using ADAM (Kingma and Ba, 2015) optimization and use the default random parameter1371

initialization for NN.1372

4The number of hidden units by data-set: ABALONE, A9A: 1; YEAR, SLICE: 10; MNIST: 5x5 convolution with
stride of 2 and 5 output channels. Sigmoid is used as the activation for all except SLICE, which uses leaky ReLU.

64

We analyze the complexity of training SGB and GB. We define the prediction complexity1373

of one weak learner as the unit cost, since the training run-time complexity almost equates the1374

total complexity of weak learner predictions and updates. Our choice of weak learner and update1375

method (two-layer networks and ADAM) determines that updating a weak learner is about two1376

units cost. In training using SGB, each of the T data samples triggers predictions and updates with1377

allN of the weak learners. This results in a training computational complexity of 3TN = O(TN).1378

For GB, let TB be the samples needed for each weak learner to converge. Then the complexity of1379

training GB is TB
∑N

i=1 i+ 2TBN ' 1
2
TBN

2 = O(TBN
2), because when training weak learner1380

i, all previous i− 1 weak learners must also predict for each data point5. Hence, SGB and GB1381

will have the same training complexity if TB ' 6T
N

= Θ(T
N

). In our experiments we observe weak1382

learners typically converge less than T
N

samples, but our following experiment shows that SGB1383

still can converge faster overall.1384

Fig. 5.2 plots the test-time loss versus training computation, measured by the unit cost. Blue1385

dots highlights when the weak learners are added in GB. We first note that SGB successfully1386

converges to the results of GB in all cases, supporting that SGB is a truly a streaming conversion1387

of GB. As it takes many weak learners to achieve good performance on ABALONE and YEAR,1388

we observe that SGB converges with less computation than GB. On A9A, however, GB is more1389

computationally efficient than SGB, because the first weak learner in GB already performs well1390

and learning a single weak learner for GB is faster than simultaneously optimizing all N = 81391

weak learners with SGB. This suggests that if we initially set N too big, SGB could be less1392

computationally efficient. In fact Fig. 5.2f shows that very larger N causes slower convergence to1393

the same final error plateau. On the other hand, small N (N = 3) results in worse performance.1394

We specify the chosen N for SGB in Fig. 5.2, and they are around the number of weak learners1395

that GB requires to converge and achieve good performance. We also note that SGB has slower1396

initial progress compared to GB on SLICE in Fig. 5.2c and MNIST in Fig. 5.2e. This is an1397

understandable result as SGB has a much larger pool of parameters to optimize. Despite this1398

initial disadvantage, SGB surpasses GB and converges faster overall, suggesting the advantage of1399

updating all the weak learners together. In practice, if we do not have a good guess of N , we can1400

still use SGB to add multiple weak learners at a time in GB to speed up convergence. Table 5.11401

records the test error (square error for regression and error ratio for classification) of the neural1402

network base learner, GB, and SGB. We observe that SGB achieves test errors that are competitive1403

with GB in all cases.1404

5.7 Conclusion1405

In this paper, we present SGB for online convex programming. By introducing an online weak1406

learning edge definition that naturally extends the edge definition from batch boosting to the1407

online setting and by using square loss, we are able to boost the predictions from weak learners1408

in a gradient descent fashion. Our SGB algorithm guarantees exponential regret shrinkage in1409

the number N of weak learners for strongly convex and smooth loss functions. We additionally1410

extend SGB for optimizing non-smooth loss function, which achieves O(lnN/N) no-regret rate.1411

5Saving previous predictions is disallowed, because data may not be revisited in an actual streaming setting.

65

Base GB SGB

ABALONE (regression) 8.2848 2.1411 2.1532
YEAR (regression) 4.99× 105 42.8976 43.0573
SLICE (regression) 0.036045 0.000755 0.000713
A9A (classification) 0.1547 0.1579 0.1523
MNIST (classification) 0.163280 0.019320 0.016320

Table 5.1: Average test-time loss: square error for regression, and error rate for classification.

Finally, experimental results support the theoretical analysis.1412

Though our SGB algorithm currently utilizes the procedure of gradient descent to combine1413

the weak learners predictions, our online weak learning definition and the design of square loss1414

for weak learners leave open the possibility to leverage other gradient-based update procedures1415

such as accelerated gradient descent, mirror descent, and adaptive gradient descent for combining1416

the weak learners’ predictions.1417

5.8 Supplementary Details for Gradient Boosting on Stochas-1418

tic Data Streams1419

5.8.1 Proof of Proposition 5.4.31420

Proof. Given that a no-regret online learning algorithm A running on sequence of loss ‖h(xt)−
yt‖2, we have can easily see that Eqn. 5.4 holds as:

T∑
t=1

‖ht(xt)− yt‖2 ≤ min
h∈H

T∑
t=1

‖h(xt)− yt‖2 +RA(T), (5.11)

where RA(T) is the regret of A and is o(T). To prove Proposition 5.4.3, we only need to1421

show that Eqn. 5.5 holds for some γ ∈ (0, 1]. This is equivalent to showing that there exist a1422

hypothesis h̃ ∈ H (‖h̃‖ = 1), such that 〈h̃, f ∗〉 > 0. To see this equivalence, let us assume that1423

〈h̃, f ∗/‖f ∗‖〉 = ε > 0. Let us set h∗ = ε‖f ∗‖h̃. Using Pythagorean theorem, we can see that1424

‖h∗ − f ∗‖2 = (1− ε2)‖f ∗‖2. Hence we get γ is at least ε2, which is in (0, 1].1425

Now since we assume that f ∗ 6⊥ span(H), then there must exist h′ ∈ H, such that 〈f ∗, h′〉 6= 0,
otherwise f ∗ ⊥ H. Consider the hypothesis h′/‖h′‖ and −h′/‖h′‖ (we assumeH is closed under
scale), we have that either 〈h′, f ∗〉 > 0 or 〈−h′, f ∗〉 > 0. Namely, we find at least one hypothesis
h such that 〈h, f ∗〉 > 0 and ‖h‖ = 1. Hence if we pick h̃ = arg maxh∈H,‖h‖=1〈h, f ∗/‖f ∗‖〉, we
must have 〈h̃, f ∗/‖f ∗‖〉 = ε > 0. Namely we can find a hypothesis h∗ ∈ H, which is ε‖f ∗‖h̃,
such that there is non-zero γ ∈ (0, 1]:

‖h∗ − f ∗‖2 ≤ (1− γ)‖f ∗‖2. (5.12)

66

To show that we can extend this γ to the finite sample case, we are going to use Hoeffding1426

inequality to relate the norm ‖ · ‖ to its finite sample approximation.1427

Applying Hoeffding inequality, we get with probability at least 1− δ/2,

| 1
T

T∑
t=1

‖yt‖2 − 〈f ∗, f ∗〉| ≤ O
(√F 2

T
ln(4/δ)

)
, (5.13)

where based on assumption that f ∗(·) is bounded as ‖f ∗(·)‖ ≤ F . Similarly, we have with
probability at least 1− δ/2:

| 1
T

T∑
t=1

‖h∗(xt)− f ∗(xt)‖2 − ‖h∗ − f ∗‖2| ≤ O
(√F 2

T
ln(4/δ)

)
, (5.14)

Apply union bound for the above two high probability statements, we get with probability at least
1− δ,

| 1
T

T∑
t=1

y2
t − 〈f ∗, f ∗〉| ≤ O

(√F 2

T
ln(4/δ)

)
, and,

| 1
T

T∑
t=1

(h∗(xt)− f ∗(xt))2 − ‖h∗ − f ∗‖| ≤ O
(√F 2

T
ln(4/δ)

)
. (5.15)

Now to prove the theorem, we proceed as follows:

1

T

T∑
t=1

‖h∗(xt)− f ∗(xt)‖2

≤ ‖h∗ − f ∗‖+O
(√F 2

T
ln(4/δ)

)
≤ (1− γ)‖f ∗‖2 +O

(√F 2

T
ln(4/δ)

)
≤ (1− γ)

1

T

T∑
t=1

y2
t + (1− γ)O

(√F 2

T
ln(4/δ)

)
+O

(√F 2

T
ln(4/δ)

)
. (5.16)

Hence we get with probability at least 1− δ:

T∑
t=1

‖h∗(xt)− f ∗(xt)‖2 ≤
T∑
t=1

‖yt‖2 + (2− γ)O
(√

T ln(1/δ)
)
. (5.17)

Set R(T) = RA(T) + (2− γ)O
(√

T ln(1/δ)
)

, we prove the proposition.1428

67

5.8.2 Proof of Theorem 5.5.11429

An important property of λ-strong convexity that we will use later in the proof is that for any x
and x∗ = arg minx l(x), we have:

‖∇l(x)‖2 ≥ 2λ(l(x)− l(x∗)). (5.18)

We prove Eqn. 5.18 below.1430

From the λ-strong convexity of l(x), we have:

l(y) ≥ l(x) +∇l(x)(y − x) +
λ

2
‖y − x‖2. (5.19)

Replace y by x∗ in the above equation, we have:

l(x∗) ≥ l(x) +∇l(x)(x∗ − x) +
λ

2
‖x∗ − x‖2

⇒2λl(x∗) ≥ 2λl(x) + 2λ∇l(x)(x∗ − x) + λ2‖x∗ − x‖2

⇒− 2λ∇l(x)(x∗ − x)− λ2‖x∗ − x‖2 ≥ 2λ(l(x)− l(x∗))
⇒‖∇l(x)‖2 − ‖∇l(x)‖2 − 2λ∇l(x)(x∗ − x)− λ2‖x∗ − x‖2 ≥ 2λ(l(x)− l(x∗))
⇒‖∇l(x)‖2 − ‖∇l(x) + λ(x∗ − x)‖2 ≥ 2λ(l(x)− l(x∗))
⇒‖∇l(x)‖2 ≥ 2λ(l(x)− l(x∗)). (5.20)

5.8.2.1 Proofs for Lemma 5.4.21431

Proof. Complete the square on the left hand side (LHS) of Eqn. 5.3, we have:∑
‖yt‖2 − 2yTt ht(xt) + ‖ht(xt)‖2 ≤ (1− γ)

∑
t

‖yt‖2 +R(T). (5.21)

Now let us cancel the
∑
y2
t from both side of the above inequality, we have:∑

−2yTt ht(xt) ≤
∑
−2yTt ht(xt) + ‖ht(xt)‖2 ≤ −γ

∑
‖yt‖2 +R(T). (5.22)

Rearrange, we have: ∑
2yTt ht(xt) ≥ γ

∑
‖yt‖2 −R(T). (5.23)

1432

5.8.2.2 Proof of Theorem 5.5.11433

We need another lemma for proving theorem 5.5.1:1434

Lemma 5.8.1. For each weak learner Ai, we have:∑
t

‖hit(xt)‖2 ≤ (4− 2γ)
∑
t

‖∇`t(yi−1
t)‖2 + 2R(T). (5.24)

68

Proof of Lemma 5.8.1. For
∑

t(h
i
t(xt))

2, we have:∑
t

‖hit(xt)‖2 =
∑
t

‖hit(xt)−∇`t(yi−1
t) +∇`t(yi−1

t)‖2

≤
∑
t

‖hit(xt)−∇`t(yi−1
t)‖2 +

∑
t

‖∇`tyi−1
t ‖2 +

∑
t

2(hit(xt)−∇`t(yt)i−1)T∇`t(yi−1
t)

≤
∑
t

2‖hit(xt)−∇`t(yi−1
t)‖2 +

∑
t

2‖∇`t(yi−1
t ‖2

≤ 2(1− γ)
∑
t

‖∇`t(yi−1
t ‖2 + 2R(T) + 2

∑
t

‖∇`t(yi−1
t ‖2

(By Weak Onling Learning Definition)

≤ (4− 2γ)
∑
t

‖∇`t(yi−1
t ‖2 + 2R(T). (5.25)

1435

Proof of Theorem 5.5.1. For 1 ≤ i ≤ N , let us define ∆i =
∑T

t=1(`t(y
i
t)−`t(f ∗(xt))). Following

similar proof strategy as shown in (Beygelzimer et al., 2015a), we will link ∆i to ∆i−1. For ∆i,
we have:

∆i =
T∑
t=1

(`t(y
i
t)− `t(f ∗(xt))) =

∑
t

`t(y
i−1
t − ηhit(xt))−

∑
t

`t(f
∗(xt))

≤
∑
t

[
`t(y

i−1
t)− η∇`t(yi−1

t)Thit(xt) +
βη2

2
‖hit(xt)‖2

]
−
∑
t

`t(f
∗(xt))

(By β-smoothness of `t)

≤
∑
t

[
`t(y

i−1
t)− ηγ

2
‖∇`t(yi−1

t)‖2 +
ηR(T)

2
+
βη2

2
‖hit(xt)‖2

]
−
∑
t

`t(f
∗(xt))

(By Lemma 5.4.2)

≤
∑
t

[
`t(y

i−1
t)− ηγ

2
‖∇`t(yi−1

t)‖2 +
ηR(T)

2
+ βη2(2− γ)‖∇`t(yi−1

t)‖2 + βη2R(T)− `t(f ∗(xt))
]

(By Lemma 5.8.1)

= ∆i−1 − (
ηγ

2
− βη2(2− γ))

∑
t

‖∇`t(yi−1
t)‖2 + (

η

2
+ βη2)R(T)

≤ ∆i−1 − (ηγλ− βη2λ(4− 2γ))
∑
t

(
`t(y

i−1
t)− `t(f ∗(xt))

)
+ (

η

2
+ βη2)R(T)

(By Eqn. 5.18)

= ∆i−1

[
1− (ηγλ− βη2λ(4− 2γ))

]
+ (

η

2
+ βη2)R(T) (5.26)

Due to the setting of η, we know that 0 < (1 − (ηγλ − βη2λ(4 − 2γ))) < 1. For notation
simplicity, let us first define C = 1− (ηγλ− βη2λ(4− 2γ)). Starting from ∆0, keep applying

69

the relationship between ∆i and ∆i−1 N times, we have:

∆N = CN∆0 + (
η

2
+ βη2)R(T)

N∑
i=1

Ci−1

= CN∆0 + (
η

2
+ βη2)R(T)

1− CN

1− C

≤ CN∆0 + (
η

2
+ βη2)R(T)

1

1− C
.

Now divide both sides by T , and take T to infinity, we have:

1

T
∆N = CN 1

T
∆0 ≤ CN2B, (5.27)

where we simply assume that `t(y) ∈ [−B,B], B ∈ R+ for any t and y. Now let us go back to
C, to minimize C, we can take the derivative of C with respect to η, set it to zero and solve for η,
we will have:

η =
γ

β(8− 4γ)
. (5.28)

Substitute this η back to C, we have:

C = 1− γ2λ

β(16− 8γ)
≥ 1− λ

8β
≥ 1− 1

8
=

7

8
. (5.29)

Hence, we can see that there exist a η = γ
β(8−4γ)

, such that:

1

T
∆N ≤ 2B(1− γ2λ

β(16− 8γ)
)N ≤ 2B(1− γ2λ

16β
)N . (5.30)

Hence we prove the first part of the theorem regarding the regret. For the second part of the1436

theorem where `t and xt are i.i.d sampled from a fixed distribution, we proceed as follows.1437

Let us take expectation on both sides of the inequality 5.30. The left hand side of inequal-
ity 5.30 becomes:

1

T
E∆N = E

1

T

[T∑
t=1

(`t(y
N
t)− `t(f ∗(xt)))

]
(5.31)

=
1

T
E
[T∑
t=1

`t(−µ
N∑
i=1

hit(xt))
]
− 1

T
E(`t,xt)∼D[`t(f

∗(xt))]

=
1

T

T∑
i=1

Et
[
`t(−µ

N∑
i=1

hit(xt))
]
− E(`,x)∼D`(f

∗(x)), (5.32)

where the expectation is taken over the randomness of xt and `t. Note that hit only depends on
x1, `1, ..., xt−1, `t−1. We also define Et as the expectation over the randomness of xt and `t at step

70

t conditioned on x1, `1, ..., xt−1, `t−1. Since `t, xt are sampled i.i.d from D, we can simply write
Et[`t(−µ

∑N
i=1 h

i
t(xt))] as Et[`(−µ

∑N
i=1 h

i
t(x))]. Now the above inequality can be simplied as:

1

T
E∆N =

1

T

T∑
t=1

Et[`(−µ
N∑
i=1

hit(x))]− E(`,x)∼D`(f
∗(x))

≥ E
[
`(−µ

N∑
i=1

1

T

T∑
t=1

hit(x))
]
− E(`,x)∼D`(f

∗(x))

= E
[
`(−µ

N∑
i=1

h̄i(x))
]
− E(`,x)∼D`(f

∗(x)) (5.33)

Now use the fact that 1/TE∆N ≤ 2B(1− γ2λ
16β

)N , we prove the theorem.1438

5.8.3 Proof of Theorem 5.5.21439

Lemma 5.8.2. In Alg. 7, if we assume the 2-norm of gradients of the loss w.r.t. partial sums by G
(i.e., ‖∇i

t‖ = ‖∇`t(yi−1
t)‖ ≤ G), and assume that each weak learner Ai has regret R(T) = o(T),

then we there exists a constant c =
1−γ+

√
1−γ(1−R(T)

TG2)

γ
< 2

γ
− 1 such that

T∑
t=1

‖∆t
i‖2 ≤ c2G2T and

T∑
t=1

‖hti(xt)‖2 ≤ (4− 2γ)(1 + c)2G2T + 2R(T) ≤ 4c2G2T.

(5.34)

Proof. We prove the first inequality by induction on the weak learner index i. When i = 0, the
claim is clearly true since ∆t

0 = 0 for all t. Now we assume the claim is true for some i ≥ 0, and

prove it for i+ 1. We first note that by the inequality 1
T

∑T
t=1 at ≤

√∑
t a

2
t

T
for all sequence {at}t,

we have

1

T
(
∑
t

‖∆t
i‖)2 ≤

∑
t

‖∆t
i‖2 ≤ c2G2T (5.35)

⇒(
∑
t

‖∆t
i‖)2 ≤ c2G2T 2 (5.36)

⇒
∑
t

‖∆t
i‖ ≤ cGT (5.37)

Then by the assumption that weak learner Ai has an edge γ with regret R(T), we have from step
14 of Alg. 7:∑

t

‖∆t
i+1‖2 =

∑
t

‖∆t
i +∇t

i+1 − hti+1(xt)‖2 ≤ (1− γ)
∑
t

‖∆t
i +∇t

i+1‖2 +R(T) (5.38)

≤ (1− γ)
∑
t

(
‖∆t

i‖+G
)2

+R(T) (5.39)

71

≤ (1− γ)

(∑
t

‖∆t
i‖2 + 2G

∑
t

‖∆t
i‖+G2T

)
+R(T) (5.40)

≤ (1− γ)(1 + c)2G2T +R(T) (5.41)
= c2G2T (5.42)

We have the last equality because c is chosen as the positive root of the quadratic equation:1440

γc2 +(2γ−2)c+(γ−1− R(T)
TG2) = 0, which is equivalent to c2G2T = (1−γ)(c+1)2G2T +R(T).1441

The second inequality of the lemma can be derived from a similar argument of Lemma 5.8.11442

by expanding ‖
(
∆t
i−1 +∇t

i − hti(xt)
)
−
(
∆t
i−1 +∇t

i

)
‖2 and then applying edge assumption.1443

We now use the above lemma to prove the performance guarantee of Alg. 7 as follows.1444

Proof of Theorem 5.5.2. We first define the intermediate predictors as: f t0(x) := h0(x), f̂ ti (x) := f t−1(x)− ηihti(x),1445

and f ti (x) := P (f̂ ti (x)). Then for all i = 1, ..., N we have:1446

‖f ti (xt)− f ∗(xt)‖2 ≤ ‖f̂ ti (xt)− f ∗(xt)‖2 = ‖f ti−1(xt)− ηihti(xt)− f ∗(xt)‖2 (5.43)

= ‖f ti−1(xt)− f ∗(xt)‖2 + η2
i ‖hti(xt)‖2 − 2ηi

〈
f ti−1(xt)− f ∗(xt), hti(xt)−∆t

i−1 −∇t
i

〉
− 2ηi

〈
f ti−1(xt)− f ∗(xt),∆t

i−1 +∇t
i

〉
(5.44)

Rearanging terms we have:〈
f ∗(xt)− f ti−1(xt),∇t

i

〉
(5.45)

≥ 1

2ηi
‖f ti (xt)− f ∗(xt)‖2 − 1

2ηi
‖f ti−1(xt)− f ∗(xt)‖2 − ηi

2
‖hti(xt)‖2

−
〈
f ∗(xt)− f ti−1(xt), h

t
i(xt)−∆t

i−1 −∇t
i

〉
−
〈
f ∗(xt)− f ti−1(xt),∆

t
i−1

〉
(5.46)

Using λ-strongly convex of `t and applying the above equality and ∆t
i = ∆t

i−1 +∇t
i − hti(xt), we

have:

`t(f
∗(xt)) ≥ `t(f

t
i−1(xt)) +

〈
f ∗(xt)− f ti−1(xt),∇t

i

〉
+
λ

2
‖f ∗(xt)− f ti−1(xt)‖2 (5.47)

≥`t(f ti−1(xt)) +
1

2ηi
‖f ti (xt)− f ∗(xt)‖2 − 1

2ηi
‖f ti−1(xt)− f ∗(xt)‖2 − ηi

2
‖hti(xt)‖2

+
〈
f ∗(xt)− f ti−1(xt),∆

t
i

〉
−
〈
f ∗(xt)− f ti−1(xt),∆

t
i−1

〉
+
λ

2
‖f ∗(xt)− f ti−1(xt)‖2 (5.48)

Summing over t = 1, ..., T and i = 1, ..., N we have:

N
T∑
t=1

`t(f
∗(xt))

≥
N∑
i=1

T∑
t=1

[
`t(f

t
i−1(xt)) +

〈
f ∗(xt)− f ti−1(xt),∇t

i

〉
+
λ

2
‖f ∗(xt)− f ti−1(xt)‖2

]
(5.49)

72

=
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2

+
N∑
i=1

T∑
t=1

1

2ηi
‖f ti (xt)− f ∗(xt)‖2 −

N∑
i=1

T∑
t=1

(
1

2ηi
− λ

2
)‖f ti−1(xt)− f ∗(xt)‖2

+
N∑
i=1

T∑
t=1

〈
f ∗(xt)− f ti−1(xt),∆

t
i

〉
−

N∑
i=1

T∑
t=1

〈
f ∗(xt)− f ti−1(xt),∆

t
i−1

〉
(5.50)

=
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2

+
N∑
i=1

T∑
t=1

1

2ηi
‖f ti (xt)− f ∗(xt)‖2 −

N−1∑
i=0

T∑
t=1

(
1

2ηi+1

− λ

2
)‖f ti (xt)− f ∗(xt)‖2

+
N∑
i=1

T∑
t=1

〈
f ∗(xt)− f ti−1(xt),∆

t
i

〉
−

N−1∑
i=1

T∑
t=1

〈
f ∗(xt)− (f ti−1(xt)− ηihti(xt)),∆t

i

〉
−

T∑
t=1

〈
f ∗(xt)− f t0(xt),∆

t
0

〉
(We switched index and apply ∆t

0 = 0 next.) (5.51)

=
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2 −

N−1∑
i=1

T∑
t=1

〈
ηih

t
i(xt),∆

t
i

〉
+

N−1∑
i=1

T∑
t=1

1

2
‖f ti (xt)− f ∗(xt)‖2(

1

ηi
− 1

ηi+1

+ λ)−
T∑
t=1

(
1

2η1

− λ

2
)‖f t0(xt)− f ∗(xt)‖2

+
T∑
t=1

[〈
f ∗(xt)− f tN−1(xt),∆

t
N

〉
+

1

2ηN
‖f tN−1(xt)− ηNhtN(xt)− f ∗(xt)‖2

]
(5.52)

(We next apply ηi =
1

λi
and complete the squares for the last sum.)

=
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2 −

N−1∑
i=1

T∑
t=1

〈
ηih

t
i(xt),∆

t
i

〉
+

1

2ηN

T∑
t=1

‖
(
f tN−1(xt)− f ∗(xt)

)
+ ηN(∆t

N − htN(xt))‖2

− ηN
2

T∑
t=1

(
‖∆t

N − htN(xt)‖2 − ‖htN(xt)‖2
)

(5.53)

(We next drop the completed square, and apply Cauchy-Schwarz)

≥
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2 −

N∑
i=1

ηi

T∑
t=1

‖hti(xt)‖‖∆t
i‖ −

ηN
2

T∑
t=1

‖∆t
N‖2

(5.54)

73

(We next apply Cauchy-Schwarz again.)

≥
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

ηi
2

T∑
t=1

‖hti(xt)‖2 − ηN
2

T∑
t=1

‖∆t
N‖2

−
N∑
i=1

ηi

√√√√ T∑
t=1

‖hti(xt)‖2

T∑
t=1

‖∆t
i‖2 (5.55)

Now we apply Lemma 5.8.2 and replace the remaining ηi = 1
λi

. Using
∑N

i=1
1
i
≤ 1 + lnN , we

have:

N
T∑
t=1

`t(f
∗(xt))

≥
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

1

2iλ
4c2G2T − 1

2Nλ
c2G2T −

N∑
i=1

1

iλ
2c2G2T (5.56)

≥
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

4c2G2T

λ
(1 + lnN)− c2G2T

2Nλ
(5.57)

Dividing both sides by NT and rearrange terms, we get:

1

TN

N∑
i=1

T∑
t=1

[
`t(y

i
t)− `t(f ∗(xt))

]
≤ 4c2G2

Nλ
(1 + lnN) +

c2G2

2N2λ
.

Using Jensen’s inequality for the LHS of the above inequality, we get:

1

T

T∑
t=1

`t(
1

N

N∑
i=1

yit)− `t(f ∗(xt)) ≤
4c2G2

Nλ
(1 + lnN) +

c2G2

2N2λ
,

which proves the first part of the theorem.1447

For stochastic setting, we can prove it by using similar proof techniques (e.g., take expectation1448

on both sides of Eqn. 5.58 and use Jensen inequality) that we used for proving theorem 5.5.1.1449

5.8.4 Counter Example for Alg. 61450

In this section, we provide an counter example where we show that Alg. 6 cannot guarantee to1451

work for non-smooth loss. We set y ∈ R2, and design a loss function `t(y) = 2|y[1]|+ |y[2]|, where1452

y[i] stands for the i’th entry of the vector y, for all time step t. The subgradient of this non-smooth1453

loss is [2, 1]T , or [2,−1]T , or [−2, 1]T , or [−2,−1]T , depending on the position of y. We restricted1454

the weak hypothesis classH to consist of only two types of hypothesis: hypothesis h(x) = [α, 0]T ,1455

or hypothesis h(x) = [0, α]T , where α ∈ [−2, 2]. We can show that given a sequence of training1456

examples {(xτ , gτ)}tτ=1, where gt is the one of the gradient from the total four possible subgradient1457

of `t, the hypothesis that minimizes the accumulated square loss
∑t

τ=1(h(xτ)− gτ)2 is going to1458

be the type of h(x) = [α, 0]T .1459

74

Now we consider using Follow the Leader (FTL) as a no-regret online learning algorithm1460

for each weak learner. Based on the above analysis, we know that no matter what the sequence1461

of training examples each weak learner has received as far, the weak leaners always choose the1462

hypothesis with type h(x) = [α, 0]T fromH. So, for every time step t, if we initialize y0
t = [a, b]T ,1463

where a > 0 and b > 0, then the output yNt (computed from Line 8 in Alg.1) always have the form1464

of yNt = [η, b], where η ∈ R. Namely, all weak learners’ prediction only moves yt horizontally1465

and it will never be moved vertically. But note that the optimal solution is located at [0, 0]T . Since1466

for all t, yNt[2] is also b constant away from 0, the total regret accumulates linearly as bT , regardless1467

of how many weak learners we have.1468

5.8.5 Details of Implementation1469

5.8.6 Binary Classification1470

For binary classification, following (Friedman, 2001), let us define feature x ∈ Rn, label u ∈
{−1, 1}. With xt and ut, the loss function `t is defined as:

`t(y) = ln(1 + exp(−uty)) + λy2. (5.58)

where y ∈ R. In this setting, we haveH : Rn → R. The regularization is to avoid overfitting: we1471

can set y =∞∗ sign(ut) to make the loss close to zero.1472

The loss function `t(y) is twice differentiable with respect to y, and the second derivative is:

∇2`t(y) =
exp(uty)

(1 + exp(uty))2
(5.59)

Note that we have:

∇2`t(y) ≤ 1

1/ exp(uty) + 2 + exp(uty)
≤ 1

4
. (5.60)

Hence, `t(y) is 1/4-smooth.1473

Under the assumption that the output from hypothesis fromH is bounded as |y| ≤ Y ∈ R+,
we also have:

∇2`t(y) ≥ 1

2 + 2 exp(Y)
(5.61)

Hence, with boundness assumption, we can see that `t(y) is 1/(2 + 2 exp(Y))-strongly convex1474

and (1/4)-smooth.1475

The another loss we tried is the hinge loss:

`t(y) = max(0, 1− uty) + λy2. (5.62)

With the regularization, the loss `t(y) is still strongly convex, but no longer smooth.1476

75

5.8.6.1 Multi-class Classification1477

Follow the settings in (Friedman, 2001), for multi-class classification problem, let us define feature
x ∈ Rn, and label information u ∈ Rk, as a one-hot representation, where u[i] = 1 (u[i] is the
i-th element of u), if the example is labelled by i, and u[i] = 0 otherwise. The loss function `t is
defined as:

`t(y) = −
k∑
i=1

ut[i] ln
exp(y[i])∑k
j=1 exp(y[j])

, (5.63)

where y ∈ Rk. In this setting, we let weak learner i pick hypothesis h fromH that takes feature1478

xt as input, and output ŷi ∈ Rk. The online boosting algorithm then linearly combines the weak1479

learners’ prediction to predict y.1480

5.8.7 Proof of Proposition 5.4.31481

Proof. Given that a no-regret online learning algorithm A running on sequence of loss (h(xt)−
yt)

2, we have can easily see that Eqn. 5.4 holds as:

T∑
t=1

(ht(xt)− yt)2 ≤ min
h∈H

(h(xt)− yt)2 +RA(T), (5.64)

where RA(T) is the regret of A and is o(T). To prove Proposition 5.4.3, we only need to show1482

that Eqn. 5.5 holds for some γ ∈ (0, 1].1483

Consider
∑T

t=1 y
2
t , we have:

1

T

T∑
t=1

y2
t =

1

T

T∑
t=1

(f ∗(xt))
2 =

1

T

T∑
t=1

(
N∑
i=1

αiĥi(xt))
2. (5.65)

Clearly 1
T

∑T
t=1(
∑M

i=1 αiĥt(xt)) is an unbiased estimate of Ex∼D(
∑M

i=1 αiĥt(x))2, which based
on our definition of inner product, can be written as 〈

∑M
i=1 αiĥi,

∑M
i=1 αiĥi〉. Applying Hoeffding

inequality here, we get with probability at least 1− δ,

| 1
T

t∑
t=1

y2
t − 〈

M∑
i=1

αiĥi,

M∑
i=1

αiĥi〉| ≤
√

2D2

T
ln(2/δ), (5.66)

where we assume that f ∗(·) is bounded as |f ∗(·)| ≤ D. Also, since ĥi are basis ofH, we have:

〈
M∑
i=1

αiĥi,
M∑
i=1

αiĥi〉 =
M∑
i=1

α2
i . (5.67)

Without loss of generality, we assume that α1 = arg maxαi(αi)
2 and α1 > 0. Since ĥ1 is one of the1484

basis of the span ofH, there must exist a hypothesis h (we assume ‖h‖ = 1 under the assumption1485

76

thatH is closed under scalar), such that 〈h, ĥ1〉 = ν, ν ∈ (0, 1]. Let us define h̃ = (α1ν)h. Using1486

Pythagorean theorem, it is straightforward to verify that ‖h̃− α1ĥ1‖2 = (1− ν2)α2
1.1487

Using the above results, we can show that for ‖h̃−
∑M

i=1 αiĥi‖2, we have:

‖h̃−
M∑
i=1

αiĥi‖2 = ‖h̃− α1ĥ1 + α1ĥ1 −
M∑
i=1

αiĥi‖2

≤ ‖h̃− α1ĥ1‖2 + ‖
M∑
i=2

αiĥi‖2 (Triangular inequality)

= (1− ν2)α2
1 +

M∑
i=2

α2
i = (1− ν2α2

1∑M
i=1 α

2
i

)
M∑
i=1

α2
i

= (1− γ)〈
M∑
i=1

αiĥi,
M∑
i=1

αiĥi〉, (5.68)

where we define the edge γ = ν2α2
1/(α

2
1 + ...+ α2

M) ∈ (0, 1].1488

For ‖h̃−
∑M

i=1 αiĥi‖, apply Hoeffding inequality again, we get:

∣∣ 1

T

T∑
t=1

(h̃(xt)−
M∑
i=1

αiĥi(xt))
2 − ‖h̃−

M∑
i=1

αiĥi‖2
∣∣ ≤√2D2

T
ln(2/δ), (5.69)

with probability at least 1 − δ. Apply union bound on two Eqn. 5.77 and 5.69, we get with
probability at least 1− δ,

| 1
T

t∑
t=1

y2
t − 〈

M∑
i=1

αiĥi,
M∑
i=1

αiĥi〉| ≤
√

2D2

T
ln(4/δ), and

∣∣ 1

T

T∑
t=1

(h̃(xt)−
M∑
i=1

αiĥi(xt))
2 − ‖h̃−

M∑
i=1

αiĥi‖2
∣∣ ≤√2D2

T
ln(4/δ). (5.70)

Combine the above two inequalities together with the inequality shown in (5.68), we have with
probability at least 1− δ:

T∑
t=1

(h̃(xt)−
M∑
i=1

αiĥi(xt))
2 ≤ T‖h̃−

M∑
i=1

αiĥi‖2 +
√

2D2T ln(4/δ)

≤ (1− γ)T 〈
M∑
i=1

αiĥi,
M∑
i=1

αiĥi〉+
√

2D2T ln(4/δ)

≤ (1− γ)
(T∑
t=1

y2
t +

√
2D2T ln(4/δ)

)
+
√

2D2T ln(4/δ)

= (1− γ)
T∑
t=1

y2
t + (2− γ)

√
2D2T ln(4/δ). (5.71)

77

Since we have minh∈H
∑T

t=1(h(x)− yt)2 ≤
∑T

t=1(h̃(xt)−
∑M

i=1 αiĥi(xt))
2, combine the above

inequality with Eqn. 5.64, we have with probability at least 1− δ:

t∑
t=1

(ht(xt)− yt)2 ≤ (1− γ)
T∑
t=1

y2
t +RA(T) + (2− γ)

√
2D2T ln(4/δ)

= (1− γ)
T∑
t=1

y2
t +R(T), (5.72)

where we define R(T) = RA + (2 − γ)
√

2D2T ln(4/δ), which is o(T). Hence based on the1489

construction of h̃, we can see there must exist an edge which is at least no smaller than the γ we1490

defined here, which is v2α1/(α
2
1 + ...+ α2

M).1491

5.8.8 Proof of Proposition 5.4.31492

Proof. Given that a no-regret online learning algorithm A running on sequence of loss (h(xt)−
yt)

2, we have can easily see that Eqn. 5.4 holds as:

T∑
t=1

(ht(xt)− yt)2 ≤ min
h∈H

(h(xt)− yt)2 +RA(T), (5.73)

where RA(T) is the regret of A and is o(T). To prove Proposition 5.4.3, we only need to1493

show that Eqn. 5.5 holds for some γ ∈ (0, 1]. This is equivalent to showing that there exist a1494

hypothesis h̃ ∈ H (‖h̃‖ = 1), such that 〈h̃, f ∗〉 > 0. To see this equivalence, let us assume1495

that 〈h̃, f ∗〉 = ε > 0. Let us set h∗ = εh̃. Using Pythagorean theorem, we can see that1496

‖h∗ − f ∗‖2 = (1− ε2)‖f ∗‖2. Hence we get γ is at least ε2, which is in (0, 1].1497

Now since we assume that f ∗ 6⊥ span(H), then there must exist h′ ∈ H, such that 〈f ∗, h′〉 6= 0,
otherwise f ∗ ⊥ H. Consider the hypothesis h′/‖h′‖ and −h′/‖h′‖ (we assumeH is closed under
scale), we have that either 〈h′, f ∗〉 > 0 or 〈−h′, f ∗〉 > 0. Namely, we find at least one hypothesis
h such that 〈h, f ∗〉 > 0 and ‖h‖ = 1. Hence if we pick h̃ = arg maxh∈H,‖h‖=1〈h, f ∗〉, we must
have 〈h̃, f ∗〉 = ε > 0. In summary we can find a hypothesis h∗ ∈ H, which is εh̃, such that there
is non-zero γ ∈ (0, 1]:

‖h∗ − f ∗‖2 ≤ (1− γ)‖f ∗‖2. (5.74)

Another fact is that if ‖f ∗‖ = 0, we can set γ = 1. Since we assume that H contains the1498

hypothesis h0 that always predicts zero, we must have ‖h0 − f ∗‖ = ‖f ∗‖ = 0 = (1 − 1)‖f ∗‖.1499

Hence we prove that λ could be set to 1.1500

Now we consider the case where ‖f ∗‖ 6= 0. To show that there exist such h̃, we use proof
of by contradiction: assume for any h ∈ H, we have 〈h, f ∗〉 = 0. Let us define the matrix
H = [ĥ1, ĥ2, ..., ĥM] and matrix G as G = HTH , as Gi,j = 〈hi, hj〉. Since we assume that for
any h ∈ H (including ĥ1, ..., ĥM), we have 〈h, f ∗〉 = 0, this implies the following equation:

(HTH)α = 0, (5.75)

78

where α = [α1, ..., αM]T . Multiply αT on the left hand side, we then have αTHTHα = ‖Hα‖2 =1501

0, which implies that ‖Hα‖ = 0. Note that based on the definition of f ∗, we have f ∗ = Hα,1502

hence ‖f ∗‖ = 0. This contradicts the case that ‖f ∗‖ 6= 0. Hence, if ‖f ∗‖ 6= 0, there must exist a1503

hypothesis h̃ ∈ {ĥ1, ..., ĥM}, such that 〈h̃, f ∗〉 = ε ≥ 0. As we showed above, in this case, λ will1504

be equal to ε2, which is in (0, 1].1505

In summary, we can find a hypothesis h∗ ∈ H such that there is a non-zero γ:

‖h∗ − f ∗‖2 ≤ (1− γ)‖f ∗‖2. (5.76)

To show that we can extend this γ to the finite sample case, we are going to use Hoeffding1506

inequality to relate the norm ‖ · ‖ to its finite sample approximation.1507

Applying Hoeffding inequality, we get with probability at least 1− δ/2,

| 1
T

T∑
t=1

y2
t − 〈f ∗, f ∗〉| ≤

√
2D2

T
ln(4/δ), (5.77)

where we assume that f ∗(·) is bounded as |f ∗(·)| ≤ D. Similarly, we have with probability at
least 1− δ/2:

| 1
T

T∑
t=1

(h∗(xt)− f ∗(xt))− ‖h∗ − f ∗‖| ≤
√

2D2

T
ln(4/δ). (5.78)

Apply union bound for the above two high probability statements, we get with probability at least
1− δ,

| 1
T

T∑
t=1

y2
t − 〈f ∗, f ∗〉| ≤

√
2D2

T
ln(4/δ), and,

| 1
T

T∑
t=1

(h∗(xt)− f ∗(xt))2 − ‖h∗ − f ∗‖| ≤
√

2D2

T
ln(4/δ). (5.79)

Now to prove the theorem, we proceed as follows:

1

T

T∑
t=1

(h∗(xt)− f ∗(xt))2

≤ ‖h∗ − f ∗‖+

√
2D2

T
ln(4/δ)

≤ (1− γ)‖f ∗‖2 +

√
2D2

T
ln(4/δ)

≤ (1− γ)
1

T

T∑
t=1

y2
t + (1− γ)

√
2D2

T
ln(4/δ) +

√
2D2

T
ln(4/δ). (5.80)

Hence we get with probability at least 1− δ:
T∑
t=1

(h∗(xt)− f ∗(xt))2 ≤
T∑
t=1

y2
t + (2− γ)

√
2D2T ln(4δ). (5.81)

79

Set R(T) = RA(T) + (2− γ)
√

2D2T ln(4/δ), we prove the proposition.1508

80

Chapter 61509

Anytime Learning via Forward1510

Architecture Search1511

6.1 Introduction1512

Deep neural networks have achieved state-of-the-art performance on many large scale supervised1513

learning tasks across many domains like computer vision, natural language processing and audio1514

and speech-related tasks using architectures manually designed by skilled practitioners using1515

domain knowledge with experimental trial and error. Can we make this work for less skilled1516

practitioners? Is it possible to search amongst plausible architectures in an automated fashion to1517

create a more automatic learning algorithm? Neural architecture search (NAS) (Zoph and Le,1518

2017) algorithms attempt to automatically find good architectures given data-sets.1519

We view NAS as a bi-level combinatorial optimization problem (as per (Liu et al., 2019))1520

where we seek both the optimal architecture and its associated optimal parameters. Interestingly,1521

this formulation generalizes the well-studied feature selection problem for linear prediction. This1522

observation permits us to draw parallels between NAS algorithms and feature selection algorithms.1523

In particular, a plethora of NAS works have leveraged sampling methods including rein-1524

forcement learning (Liu et al., 2018; Zoph and Le, 2017; Zoph et al., 2018), evolutionary algo-1525

rithms (Elsken et al., 2018a; Real et al., 2017; 2018), and Bayesian optimization (Kandasamy1526

et al., 2018) to enumerate all possible architectures in a guided manner. However, interestingly,1527

we do not often see successes of these sampling methods for feature selection. Indeed, these1528

sample-based NAS often take hundreds to thousands of GPU-days to find good architectures, and1529

can be barely better than random search (Elsken et al., 2018b).1530

Another popular NAS approach is analogous to sparse optimization or backward elimination1531

for feature selection, e.g., (Han Cai, 2019; Liu et al., 2019; Pham et al., 2018). The approach1532

starts with a super-graph that is the union of all possible architectures, and learns to down-weight1533

the unnecessary edges gradually via gradient descent or reinforcement learning. Such approaches1534

drastically cut down the search time of NAS. However, these methods require some domain1535

knowledge on the optimal network size and the super-graph must fit into the GPU for efficient1536

training.1537

In this work, we instead take an approach that is analogous to a forward feature selection1538

81

algorithm in order to iteratively grow existing networks. Although forward methods such as1539

orthogonal matching pursuit and least-angle regression are popular in feature selection and can1540

often result in performance guarantees, there are only few works in NAS (Liu et al., 2017a) that1541

take analogous approaches. We are interested in forward NAS approaches for multiple reasons.1542

From a deployment point of view, practitioners may want to expand their existing models when1543

extra model complexity and training computation become viable. Forward methods can utilize1544

such extra computational resource without rebooting the training as in backward methods and1545

sparse optimization. Furthermore, the iterative growth naturally results in a spectrum of models of1546

various complexity and accuracy for practitioners to choose from. Unlike backwards approaches,1547

forward methods need not specify a finite search space up front making them more general and1548

easily used.1549

Specifically, inspired by forward feature selection algorithms and early neural network growth1550

work (Fahlman and Lebiere, 1990), we propose a method (Petridish) of growing networks from1551

small to large, where we opportunistically add shortcut connections in a fashion that is analogous1552

to applying gradient boosting to the intermediate feature layers. To select from the possible1553

shortcut connections, we also exploit sparsity-inducing regularizaiton while we train the eligible1554

shortcuts alongside the existing networks. We experiment with it for both the popular cell-1555

search (Zoph et al., 2018), where we seek a shortcut connection pattern and repeat it using a1556

manually designed skeleton network to form an architecture, and the less popular but more general1557

macro-search, where shortcut connections can be freely formed. Experimental results show1558

Petridish macro-search to be better than previous macro-search NAS works on vision tasks, and1559

brings macro-search performance up to par with cell-search counter to popular belief from early1560

NAS works (Pham et al., 2018; Zoph and Le, 2017) that macro-search is inferior than cell-search.1561

Petridish cell-search also finds models that are more cost-efficient than those from (Liu et al.,1562

2019), while using similar training computation. This indicates that forward selection methods,1563

though currently rarely used by the NAS community, can be exploited by future NAS algorithms.1564

A key tool throughout our algorithm design is amortization, where we trade off computational1565

costs of different operations so they are similar up to a constant factor so as to guarantee that our1566

approach never wastes more than a constant factor of computation. As an example, training the1567

network has a cost, as does training extensions to the network. By doing both simultaneously with1568

each amortizing the other’s computational complexity we avoid significant waste computation.1569

We summarize our contribution as follows.1570

• We propose an approach to increase the complexity of neural networks iteratively during1571

training. We alternate between two phases. The first expands the model with potential1572

shortcut connections and trains them jointly. The second phase trims the previous potential1573

connections using feature selection and continues training the model.1574

• The proposed approach can be applied to improve a small repeatable pattern (cell), and1575

improve the macro network architecture directly, unlike most popular approaches that1576

only focus on cells. This opens up neural architecture search to fields where no domain1577

knowledge of the macro structure exists.1578

• On cell-search, the proposed method finds a model that achieves 2.61% error rate on1579

CIFAR10 using 2.9M parameters within 5 GPU-days.1580

• On macro-search, the proposed method finds a model that achieves 2.83% error rate on1581

82

CIFAR10 using 2.2M parameters within 5 GPU-days.1582

• The proposed approach can warm start from existing networks, leveraging previous training1583

results. Furthermore, it directly expands models on the lower convex hull of error rate vs.1584

test-time computation, and is hence able to naturally produce a gallery of cost-effective1585

models for applications to choose.1586

6.2 Background and References1587

One of the earliest neural architecture growth was by Fahlman and Lebiere (1990) termed the1588

“Cascade-Correlation Learning Architecture” (C2) which has inspired Petridish. In C2, neurons1589

of a neural network are trained iteratively. Once existing neurons are converged, C2 considers1590

adding a candidate hidden neuron. The candidate hidden neuron before insertion to the network1591

is connected to the input neurons and all currently existing hidden neurons. The weights of the1592

incoming connections to this shadow neuron are optimized such that the correlation between the1593

activations of this shadow neuron and the error at the output neurons is maximized. Then the1594

shadow neuron is inserted into the network and its incoming weights are frozen. Its outgoing1595

weights are then trained in the usual way. This idea of gradually expanding existing networks1596

was also studied in a recent context (Cortes et al., 2017; Huang et al., 2018a) through the view of1597

boosting networks.1598

The work of (Zoph and Le, 2017; Zoph et al., 2018) renewed interest in NAS in recent1599

times. Their method uses a recursive neural network (RNN) as a controller network which is1600

used to sample architectures. Each of these architectures are trained on separate machines and1601

their resulting accuracies are used to update the parameters of the controller network via policy1602

gradients (Williams, 1992). The majority of the time is spent in training each of the sampled1603

architectures in parallel on independent machines. The resulting search times are generally on the1604

order of thousands of GPU hours (See Table 6.1).1605

Pham et al. (2018) introduced a much more efficient version of this algorithm termed as1606

Efficient Neural Architecture Search (ENAS) where the controller samples network architectures1607

from a large super-graph of all possible architectures but trains them all jointly where the weights1608

of edges which are common amongst the sampled architectures are shared across all of them at1609

training time. This leads to orders of magnitude improvement in search times but still has the1610

restriction that a super-graph to sample from must be constructed apriori.1611

Liu et al. (2017a) proposed a method which instead of using policy gradients as in Zoph1612

et al. (2018), trains predictors on the results of training a batch of architectures to predict top-K1613

architectures which are likely to do well in subsequent rounds in a progressive manner and hence1614

termed as Progressive Neural Architecture Search (PNAS).1615

Liu et al. (2019) proposed a novel method based on bilevel optimization (Colson et al., 2007)1616

termed as Differentiable Architecture Search (DARTS) which relaxes the originally discrete1617

optimization problem to a continuous one and maintains two sets of continuous parameters:1618

1. The (architecture) parameters over the layer types and 2. The regular parameters of the1619

network itself for each layer type. This is optimized in an alternating fashion where first the1620

architecture parameters are trained alternated by the parameters of the layers of each type. Discrete1621

architectures are then backed out by just selecting the architecture parameters which have the1622

83

maximum value and discarding others. DARTS achieves impressive results on cell-search space1623

with short search times.1624

Cai et al. (2018); Elsken et al. (2018a) both speed up architecture searches by incrementally1625

modifying models from existing cost-effective models using evolutionary algorithms. This1626

work differs from them in how the network is grown. In particular, we guide the growth with1627

gradient boosting on intermediate layers, instead of using evolutionary samples for significant1628

computational savings.1629

6.3 Neural Architecture Search as Optimization1630

Given a data sample x with label y, a neural network architecture α with parameters w produces a
prediction ŷ(x;α,w) and suffers a prediction loss `(ŷ(x;α,w), y). The expected loss is then

L(α,w) = Ex,y∼D[`(ŷ(x;α,w), y)] ≈ 1

|Dtrain|
∑

(x,y)∈Dtrain

`(ŷ(x;α,w), y), (6.1)

where D is the true distribution of data samples, and in practice, the loss L is estimated on the
empirical training data Dtrain. The problem of neural architectures search can be formulated as
a bi-level optimization (Colson et al., 2007) of both the network architecture α and the model
parameters w under the expected training loss L as follows.

min
α
L(α,w(α)), s.t. w(α) = arg min

w
L(α,w) and c(α) ≤ K, (6.2)

where c(α) represents the test-time computational cost of the architecture, and K is some constant.1631

We formalize α as a set of discrete decisions on which operations to include in an architecture.1632

Let x1, x2, ..., be intermediate layers, and x0 = x be the input. Each layer xi is a function of the1633

previous layers, i.e., xi = fi(x0, x1, ..., xi−1) for some function fi, though it is not necessary for1634

xi to directly use each of the previous layers. Each shortcut connection is defined by a triplet1635

(xj, xi, op), where xj and xi (j < i) represent the input and output layers, and op is a unary1636

operation such as conv 3x3 and max pooling 3x3. Such a shortcut results in a tensor op(xj)1637

that can be used directly by xi. Shortcuts to xi are combined by a merge operation at xi, such1638

as averaging, summation, or concatenation in order to form xi. In this work, we set the merge1639

operations as summation, unless we specify otherwise using ablation studies. Instead, we focus on1640

the choice of the shortcut connections implying each α is an unordered collection of (xj, xi, op).1641

6.3.1 Connection to Feature Selection1642

Before delving into a proposed approach, we first draw an interesting connection of Eq. 6.2 to a
well studied problem, feature selection for linear predictions:

min
α

1

2n
‖Y −Xαw(α)‖2 +

λ

2
‖w‖2 (6.3)

s.t. w(α) = (
1

n
XT
αXα + λI)−1 1

n
XαY and c(α) ≤ K, (6.4)

84

where X ∈ Rn×d is the feature matrix of the n samples of d-dimensional features, Y ∈ Rn is the1643

regression targets, and Xα selects the features included in α. We note that Eq. 6.2 generalizes1644

Eq. 6.4, since w(α) solves for the optimal coefficient given the selected features.1645

This observation permits us to translate existing NAS algorithms to feature selection algo-1646

rithms as discussed in the introduction and related work. In contrast to most other work, ours1647

is based on forward selection, where feature are iteratively selected, or their coefficients are1648

gradually increased. Unfortunately, common algorithms such as Forward Regression (FR) and its1649

approximation Orthogonal Matching Pursuit (OMP), cannot directly be applied to the NAS prob-1650

lem, because both methods require computing w(α) at each architecture, with such computations1651

taking a GPU-day on its own. Instead, we have to consider methods that approximate w(α) and1652

α at the same time. Fortunately, one such forward algorithm for feature selection is Least-angle1653

regression (LARS) (Efron et al., 2004).1654

In LARS, we compute the correlation between the residual of linear prediction and each
feature, and find the feature with the largest absolute correlation. Then we update the coefficient
of this feature until its absolute correlation is no longer the largest. One practical approximation
of LARS is to iteratively update the coefficients of the most correlated feature with small steps,
so that we avoid computing the line search analytically. Under this modification, LARS can be
viewed as gradient boosting with small step sizes. In Eq. 6.2, the gradient of the empirical loss
with respect to the prediction is

∇ŷL(α,w) = Ex,y∼D[∇ŷ`(ŷ(x;α,w), y)]. (6.5)

Under linear prediction, this gradient becomes the residual up to a constant, ∇ŷL(α,w) =1655

1
n
(Xαw(α)− Y). Under linear predictions, features can be viewed as weak learners. Hence, the1656

correlations between the features and the residual are the correlations between the weak learners1657

and the functional gradient with respect to predictions. The selected weak learner is then the one1658

that can match the gradient the most. In other words, LARS follows gradient boosting to select1659

weak learners.1660

6.4 A NAS Approach from Gradient Boosting1661

6.4.1 Gradient Boosting1662

Let H be a space of weak learners. Gradient boosting matches weak learners h ∈ H to the
functional gradient of the loss L with respect to the prediction ŷ, i.e.,∇ŷL in Eq. 6.5. The weak
learner that matches the negative gradient the best, h∗, is added to the ensemble of learners, i.e.,

h∗ = arg min
h∈H

〈∇ŷL, h〉. (6.6)

Then the predictor is updated to become ŷ ← ŷ + ηh∗, where η is the learning rate.1663

6.4.2 Gradient-Boosting-Inspired NAS1664

Following gradient boosting strictly would limit the model growth to be only at the prediction
of the network, ŷ. Instead, this work seeks to expand the expressiveness of the network at

85

(a) (b)

Figure 6.1: (a) Cell-search applies found cells to a predefined outer structure. (b) Macro-search
allows any connection.

intermediate layers, x1, x2, ..., jointly. Inspired by gradient boosting, we consider adding a weak
learner hk ∈ Hk at each xk, whereHk (specified next) is the space of weak learners for layer xk.
hk helps reduce the gradient of the loss Lwith respect to xk,∇xkL = Ex,y∼D[∇xk`(ŷ(x;α,w), y)].
In other words, we choose hk with

hk = arg min
h∈Hk

〈h,∇xkL(α,w)〉 = arg min
h∈Hk

〈h,Ex,y∼D[∇xk`(ŷ(x;α,w), y)]〉. (6.7)

Then we expand the model by adding a small step η in the direction of hk to xk. In other words,1665

we replace each xk with xk + ηhk in the original network. The next sections details the choice of1666

the weak learner space, and how we learn hk.1667

6.4.3 Search Space1668

Cell-search vs. Macro-search. The early architecture searches (Real et al., 2017; Zoph and Le,1669

2017) typically allow any layer to connect to any other layer. This is often referred to as macro-1670

search. However, as a number of works (Pham et al., 2018; Real et al., 2018; Zoph et al., 2018)1671

showcase that a more restricted search, cell-search, leads to better models, the community has1672

almost abandoned macro-search. As illustrated in Fig. 6.1, in a cell-search, the search algorithm1673

search for a local connection pattern called cell, such as the residual unit in a ResNet (He et al.,1674

2016). The cells instruct how neighboring layers are connected, and we apply these patterns in a1675

human defined outer structure to form the final network. For example, the outer structure may be1676

a straight-forward feed-forward network that contains information of the total number of cells and1677

where down-sampling happens. In contrast, in a macro-search, the search algorithm is allowed to1678

connect any layer to another, so that there is no predefined outer structure, and there may not be1679

repeatable patterns that can be considered as cells.1680

In this work, we revisit macro-search. For a fair comparison between macro-search and1681

cell-search, we set the only difference between the two to be whether the connection pattern is1682

repeated. Specifically, both start with the same initial seed model, which is a network built with1683

86

Figure 6.2: An example weak learner xc from the search spaceHk.

simple cells. Both searches add weak learners at the same locations and at the same rate: one1684

weak learner is always added to the end output of each cell per growth iteration. Cell-search adds1685

the same connection pattern to each cell while macro-search allows different patterns. The space1686

of the weak learners, which we detail next, is the same for both.1687

Weak Learner Space H. Given an intermediate layer xk to expand at, its associated weak
learner space Hk is defined by four terms: the possible inputs, the possible unary operations
on the inputs, a merge operation to combine the results, and the maximum number of inputs.
Following (Liu et al., 2019; Real et al., 2018; Zoph et al., 2018), we limit weak learners to only
take input from layers within the same cell or from the output layers of the previous two cells. The
eligible unary operations are dependent on data-set. Following (Liu et al., 2019), seven operations
are eligible for vision tasks: separable conv 3x3 and 5x5, dilated conv 3x3 and 5x5, max and
average pooling 3x3, and identity. Following (Real et al., 2018; Zoph et al., 2018), the separable
conv is repeated twice. The outputs of the unary operations are of the same shape as the output
location xk. Let the collection of eligible unary operations be Op. We determine through an
ablation study in Sec. 6.5.4 how to merge the unary operations into a weak learner. For vision
tasks, we found concatenation of the operations followed by a projection to reduce the filter size
works the best. The maximum number of inputs is also data-set dependent, and for vision tasks,
we set it to be Imax = 3, which we choose from ablation studies in experiments. Then the weak
learner spaceHk for a layer xk is formally

Hk = {cat proj(op1(z1), ..., opImax(zImax)) : z1, ..., zt ∈ In(xk), op1, ..., opImax ∈ Op},
(6.8)

where In(xk) is the collection of eligible input layers. Fig. 6.2 shows an example of a weak1688

learner in the above space.1689

Additional Search Space Details. For the vision tasks, the initial model for both macro and1690

cell-search is a modified ResNet (He et al., 2016), where we replace each 3x3 convolution with a1691

3x3 separable convolution. This is one of the simplest seeds within the search space of existing1692

literature (Liu et al., 2019; Pham et al., 2018; Zoph et al., 2018). Following (Zoph et al., 2018),1693

87

Algorithm 9 Petridish.initialize candidates
1: Input: (1) Lx, the list of layers in the current model (macro-search) or current cell (cell-

search) in topological order; (2) is out(x), whether we can expand at x; (3) λ, hyper
parameter for selection shortcut connections.

2: Output: (1) L′x, the modified Lx with weak learners xc; (2) Lc, the list of xc created; (3)
`extra, the additional training loss.

3: L′x ← Lx
4: Lc ← empty list
5: `extra ← 0
6: for xk in enumerate(Lx) do
7: if not is out(xk) then
8: continue
9: end if

10: Compute the eligible inputs In(xk), and index them as z1, ..., zI .
11: xc ←

∑I
i=1

∑J
j=1 α

k
i,jopj(sg(zi)).

12: Insert the layer xc right before xk in L′x.
13: `extra ← `extra + λ

∑I
i=1

∑J
j=1 |αki,j|.

14: Append xc to Lc.
15: Modify xk in L′x so that xk ← xk + sf(xc).
16: end for

we have six regular cells for each of the three scales of feature maps during training of the final1694

found architectures, but have three regular cells per scale during search. Similarly, we have an1695

initial channel size of F = 32 during final training and F = 16 during search. A transition cell is1696

in between each neighboring resolutions, and it also starts as a modified residual unit. When we1697

transfer the model to larger data-sets that require more than three resolutions, we use transition1698

cells to first down-sample the image height and width to be no greater than 32 and then apply the1699

found model. In macro-search, where no transition cells are specifically learned, we again use the1700

the modified ResNet cells for initial transition in the transferred model.1701

6.4.4 Joint Weak Learning1702

Given an intermediate layer xk to expand at, we have I = |In(xk)| possible input layers and1703

J = |Op| possible operations. Hence, there are
(
IJ
Imax

)
possible weak learners in the spaceHk, and1704

it is computationally expensive to train each weak learner individually. Inspired by the parameter1705

sharing works in NAS (Liu et al., 2019; Pham et al., 2018) and model compression in neural1706

networks (Huang et al., 2017a), we propose to jointly train the weak learners in the union of them,1707

and at the same time learn to select the shortcut connections. This process effectively amortizes1708

the search through all weak learners against other weak learners so the computational cost is only1709

a constant factor worse than for the chosen weak learner.1710

Algorithm 9 describes the proposed approach to train the weak learners. For now, let us1711

assume the boolean variable This means that weak learning does not affect the parameters of the1712

current model. Fig. 6.3b illustrates the weak learning modification to the current network.1713

88

Algorithm 10 Petridish.finalize candidates
1: Inputs: (1) L′x, the list of layers of the model in topological order; (2) Lc, list of selection

modules in L′x; (3) αki,j , the learned weights of the each xc.
2: Output: A modified L′x with selected operations.
3: for xc in Lc do
4: Let A = {αki,j : i = 1, ..., I, j = 1, ..., J} be the weights of operations in xc.
5: Sort {|a| : a ∈ A}, and let the operations associated with the largest Imax value be

op1, ..., opImax .
6: Replace xc with proj(concat(op1, ..., opImax)) in L′x.
7: end for
8: Replace all sf(·) and sg(·) with identity in L′x.

(a) (b)

Figure 6.3: Training of a weak learner xc, so that it can (a) and cannot (b) affect the current model.

Combining Weak Learners. During joint weak learning, we combine all shortcut connec-
tions to xk in a weighted sum as follows.

xc =
I∑
i=1

J∑
j=1

αi,jopj(zi), (6.9)

where opj ∈ Op and zi ∈ In(xk) enumerate all possible operations and inputs, and αi,j ∈ R is1714

the weight of the shortcut opj(zi). The next paragraphs explain how we simultaneously train and1715

select the shortcuts to form a weak learner for xk.1716

L1-regularization. Each opj(zi) is normalized with batch-normalization to have zero mean
and unit variance in expectation, so αi,j reflects the importance of the operation. To learn the most
important operations, we apply L1-regularization (Tibshirani, 1994) on the weight vector ~α to

89

encourage sparsity, i.e., we add the following loss during the fitting of xc,

λ‖~α‖1 = λ

I∑
i=1

J∑
j=1

|αi,j|, (6.10)

where λ is a hyperparameter. L1-regularization, known as Lasso, induces sparsity in the parameter1717

and is widely used for feature selection. It has also been successfully applied to model compression1718

of neural networks such as in (Huang et al., 2017a).1719

Weak learning. The goal of weak learning is to match xc with the negative gradient of the
loss with respect to the layer xk, i.e., we minimize

〈∇xkL, xc〉 = 〈∇xkL,
I∑
i=1

J∑
j=1

αi,jopj(sg(zi))〉, (6.11)

where sg is short for stop-gradient, an operation which treats each zi as a constant, so that the1720

optimization of weak learners does not affect the current network. Mathematically, sg(x) = x1721

during forward, and has zero gradient with respect to x during backward.1722

We add the loss 6.11 implicitly to the overall objective on line 15. A naive implementation
adds the loss in Eq. 6.11 to the additional `extra, and backpropagates the network while only
updating parameters in the weak learners xc. However, this requires recording the intermediate
gradients ∇xkL during training. Interestingly, this can be avoided as described in Algorithm 9.
Specifically, on line 15, we replace the layer xk with xk + sf(xc), where sf(xc) = xc − sg(xc), so
that sf(xc) = 0 during forward, and has gradient of identity with respect to xc. As a result, for any
parameter θ in weak learner xc for intermediate layer xk, its gradient during the backpropagation
is

∇θL = ∇xk+sf(xc)L∇xcsf(xc)∇θxc = ∇xkL∇θxc = ∇θ〈∇xkL, xc〉. (6.12)

This is the same as the gradient of the loss in Eq. 6.11 with respect to θ. Hence, exploiting sf1723

and sg operations on line 15 and line 11, we can optimize both the current network and the weak1724

learners at the same time without the weak learners affecting the network achieving amortization1725

between network learning and weak learner learning. Furthermore, we do not force the training1726

procedure to record∇xkL explicitly.1727

Warm-start. After appending the weak learners to an existing trained model, we warm-start1728

the training with the parameters of the existing model, and initialize the weak-learner parameters1729

randomly. Leveraging these existing model parameters, we can potentially spend fewer epochs1730

per model, because we only need to fit the weak learners, which are shallow networks.1731

6.4.5 Weak Learner Finalization1732

In Algorithm 10, we finalize the weak learners. Since the weights αi,j convey the importance of1733

the associated shortcuts, we select for each xc of Eq. 6.9 the top Imax shortcuts according to the1734

absolute value of αi,j , and merge them to form the selected weak learner. The other operations are1735

removed. We train the finalized model for a few epochs, warm-starting with the parameters from1736

90

Figure 6.4: Weighted sum is replaced with concat-projection, when the top operations are chosen.
Any sf or sg are also removed.

the weak learning phase. Although we train and select the shortcuts in a weighted sum, we found1737

through ablation study in Sec. 6.5.4 that for vision tasks, the found models are more cost-effective1738

if we merge the Imax selected shortcuts with concatenation-projection, as illustrated in Fig. 6.4.1739

Existing NAS works (Liu et al., 2019; Pham et al., 2018; Real et al., 2018; Zoph et al., 2018) have1740

a similar set-up, where intermediate layers within cells are concatenated, and the concatenation is1741

immediately projected when it is an input to other cells.1742

6.4.6 Utilizing Parallel Workers1743

The proposed iterative architecture growth may be noisy due to the randomness during training of1744

weak learners and the expanded models. By leveraging parallel workers, we can explore multiple1745

growths to find more cost-effective models. The parallel workers can share knowledge and expand1746

from any searched models, with this section describing their sampling procedure.1747

We maintain the lower convex hull of the performance of the searched models on the validation1748

error versus test-time computation graph. The models on the hull are the most cost-efficient,1749

because no mixture of other searched models is both more accurate and less expensive than any of1750

them. To choose one model on the hull, we enter a while-loop iterating from the most accurate1751

model that is within the computational budget K to the least accurate on the hull, and exit the1752

loop with a model m with probability 1/(n(m) + 1), where n(m) is the number of times that1753

model m has already been selected. This is because the next child model expanded from m is1754

the best among the children with probability 1/(n(m) + 1), assuming the children are uniformly1755

drawn. We also favor the more accurate models as it is often more difficult to improve an already1756

accurate model. In practice, we explore few models in total (< 50), so that the effect of different1757

sampling on the hull is not clear given the limited search samples.1758

91

6.5 Selected Empirical Highlights1759

Following (Zoph et al., 2018), we first report the search results on CIFAR-10 (Krizhevsky et al.,1760

2009) and the model transfer result to ImageNet (Russakovsky et al., 2015). Then we report1761

ablation studies on hyper parameters of Petridish.1762

6.5.1 Search Results on CIFAR101763

Set-up. We first apply the proposed algorithm to search for architectures on CIFAR-10 (Krizhevsky1764

et al., 2009). During search, we use a fixed set of 45000 training images for training, and 5000 for1765

validation. Both weak learner initialization and finalization are trained for 80 epochs, with a batch1766

size 32 and a learning rate that decays from 0.025 to 0 in cosine decay (Loshchilov and Hutter,1767

2017). We apply drop-out (Larsson et al., 2017b) and cut-out (DeVries and Taylor, 2017) during1768

search. The final found model is trained from scratch using the same parameters, except that it1769

trains on all 50000 training images, and spends 600 epochs. Following (Liu et al., 2019; Zoph1770

et al., 2018), we search on a shallower and slimmer version of the network, which has N = 31771

normal cells per feature map resolution and F = 16 initial filter size. The final training is instead1772

on a network with N = 6 and F = 32. Since Petridish macro-search is simply cell-search binding1773

the cells to be the same, we transform macro-search results on N = 3 to models with N = 61774

by repeating each normal cell twice. The initial seed model is trained for 200 epochs, and all1775

subsequent children models with or without weak learners are trained for 80 epochs each, warm1776

starting from their parent models’ parameters.1777

Search Results. Table 6.1 depicts the test-errors, model parameters, and search computation1778

of the proposed methods along with many state-of-the-art methods. Petridish cell search finds a1779

model with 2.61% error rate with 2.5M parameters, in 5 GPU-days, which is at state-of-the-art1780

level. Petridish macro search finds a model that achieves 2.83% error rate using 2.2M parameters1781

in the same search computation. This is significantly better than any previous macro search results,1782

and showcases that macro search can find cost-effective architectures that are previously only1783

found through cell search.1784

Importance of initial models. Table 6.1 also showcase the impact of initial models to the1785

final results of architecture search. This is an important topic, because existing literature has been1786

moving away from macro architecture search, as early works (Pham et al., 2018; Real et al., 2018;1787

Zoph et al., 2018) have shown that cell search results tend to be superior to those from macro1788

search. However, this result may be explained by the superior initial models of cell search: the1789

initial model of Petridish is one of the simplest models that any of the listed cell search methods1790

would propose and evaluate, and it already achieves 4.6% error rate using only 0.4M parameters,1791

a result is on-par or better than any other macro search results.1792

6.5.2 Transfer to ImageNet1793

We focus on the mobile setting for the model transfer results on ILSVRC (Russakovsky et al.,1794

2015). Following (Zoph et al., 2018), we use 224x224 cropped input images, and apply to them1795

a 3x3 conv with F/4 filters and stride of 2. Then we apply two transition cells to convert the1796

feature map to 28x28 and F filters. For macro-search results, we apply the transition cell in the1797

92

Table 6.1: Comparison against state-of-the-art recognition results on CIFAR-10. Results marked
with † are not trained with cutout. The first block represents approaches for macro-search. The
second block represents approaches for cell-search.

Method # params Search Test Error
(mil.) (GPU-Days) (%)

Zoph and Le (2017)† 7.1 1680+ 4.47
Zoph and Le (2017) + more filters† 37.4 1680+ 3.65
Real et al. (2017)† 5.4 2500 5.4
ENAS macro (Pham et al., 2018)† 21.3 0.32 4.23
ENAS macro + more filters† 38 0.32 3.87
Lemonade I (Elsken et al., 2018a) 8.9 56 3.37
Petridish initial model (N = 6, F = 32) 0.4 – 4.6
Petridish macro 2.2 5 2.83
NasNet-A (Zoph et al., 2018) 3.3 1800 2.65
AmoebaNet-A (Real et al., 2018) 3.2 3150 3.3
AmoebaNet-B (Real et al., 2018) 2.8 3150 2.55
PNAS (Liu et al., 2017a)† 3.2 225 3.41
Heirarchical NAS (Liu et al., 2018)† 15.7 300 3.75
ENAS cell (Pham et al., 2018) 4.6 0.45 2.89
ENAS cell (Pham et al., 2018)† 4.6 0.45 3.54
Lemonade II (Elsken et al., 2018a) 3.98 56 3.50
Darts (Liu et al., 2019) 3.4 4 2.83
Darts random (Liu et al., 2019) 3.1 – 3.49
Cai et al. (2018) 5.7 8 2.49
Luo et al. (2018)† 3.3 0.4 3.53
PARSEC (Casale et al., 2019) 3.7 1 2.81
Petridish cell 2.5 5 2.61

seed model, i.e., residual units from (He et al., 2016) where conv is replaced with separated conv.1798

We then treat the resulting tensor as the input image for the found architectures. We follow (Liu1799

et al., 2019) to choose the training hyper parameters: we train for 250 epochs with batch size1800

128, weight decay 3 ∗ 10−5, and initital SGD learning rate of 0.1 (decayed by a factor of 0.97 per1801

epoch).1802

The top-1 error rate, the number of model parameters and the test-time computational cost1803

in terms of mult-adds are shown in Table 6.2. The Petridish cell-search model achieves 26.0%1804

error rate using 4.8M parameters and 598M multiply-adds, which is on par with state-of-the-art1805

results listed in the second block of Table 6.2. By utilizing feature selection techniques to evaluate1806

multiple model expansions at the same time, Petridish is able to find models faster by one or two1807

orders of magnitude than early methods that train models independently, such as NASNet (Zoph1808

et al., 2018), AmoebaNet (Real et al., 2018), and PNAS (Liu et al., 2017a). In comparison to1809

super-graph methods such as DARTS (Liu et al., 2019), Petridish cell-search sacrifices about a1810

factor of four search speed for the flexibility to grow from existing models.1811

93

Table 6.2: ILSVRC2012 transfer results. Petridish uses Isolated and the concat-projection (CP)
modification by default.

Method # params # multi-add Search top-1 Test Error
(mil.) (mil.) (GPU-Days) (%)

Inception-v1 (Szegedy et al., 2015) 6.6 1448 – 30.2
MobileNetV2 (Sandler et al., 2018) 6.9 585 – 28.0
NASNet-A (Zoph et al., 2017) 5.3 564 1800 26.0
NASNet-B (Zoph et al., 2017) 5.3 488 1800 27.2
AmoebaNet-A (Real et al., 2018) 5.1 555 3150 25.5
Path-level (Cai et al., 2018) – 588 8.3 25.5
PNAS (Liu et al., 2017a) 5.1 588 225 25.8
DARTS (Liu et al., 2019) 4.9 595 4 26.9
SNAS (Xie et al., 2019) 4.3 522 1.6 27.3
Proxyless (Han Cai, 2019) 7.1 465 8.3 24.9
PARSEC (Casale et al., 2019) 5.6 – 1 26.0
Petridish macro (F=44) 4.3 511 5 28.5
Petridish cell (F=40) 3.2 500 5 27.0
Petridish cell (F=44) 4.8 598 5 26.0

The Petridish macro-search model achieves 28.5% error rate using 4.3M parameters and 511M1812

multiply-adds, a comparable result to the human-designed models in the first block of Table 6.2.1813

To the best of our knowledge, this is one of the first successful result to transfer macro-search1814

results on CIFAR to ImageNet, showing that macro-search results can be transferred. However,1815

we do observe a gap in error rates between Petridish macro and cell search both during search and1816

the model transfer. This suggests that the larger macro search space is more difficult.1817

As Petridish gradually expand existing models, we naturally receive a gallery of models of1818

various computational costs and accuracy. Figure 6.5 showcases the found models by Petridish1819

with F = 44. We removed the seed model and points that are no longer on the lower convex hull.1820

6.5.3 Search Space: Direct versus Proxy1821

This section provides an ablation study on a common theme of recent neural architecture search1822

works, where the search is conducted on a proxy space of small and shallow models, with results1823

transferred to larger models later. In particular, since Petridish uses iterative growth, it need not1824

consider the complexity of a super graph containing all possible models. Thus, Petridish can be1825

applied directly to the final model setting on CIFAR-10, where N = 6 and F = 32. However, this1826

implies each model takes about eight times the computation, and may introduce extra difficulty in1827

convergence. Table 6.3 shows the transfer results of the two approaches to ILSVRC. We see that1828

using a proxy not only results in a model with about 1% less errors, but also takes about one third1829

of the search time, confirming that on image tasks the proxy approach is effective.1830

94

Figure 6.5: The performance convex hull of the found models by Petridish on ILSVRC. Petridish
models are of parameter N = 6 and F = 44.

Method # params # multi-add Search top-1 Test Error
(mil.) (mil.) (GPU-Days) (%)

Petridish cell proxy (F=44) 4.8 598 5 26.0
Petridish cell direct (F=40) 4.4 583 15.3 26.9

Table 6.3: Search space comparison between the direct space of N = 6 and F = 32 and the proxy
space of N = 3 and F = 16 by evaluating their best mobile setting models on ILSVRC.

6.5.4 Weak Learner Space: Weighted Sum versus Concatenation-Projection1831

After selecting the shortcuts in Sec. 6.4.5, we concatenate them and project the result with 1x11832

conv so that the result can be added to the output layer xout. Here we empirically justify this1833

design choice through consideration of two alternatives. We first consider applying the switch1834

only to the final reported model. In other words, instead of using concat-project as the merge1835

operation during search we switch all weak learner weighted-sums to concat-projections in the1836

final model, which are trained from scratch to report results. We call this variant CP-end. Another1837

variant where we never switch to concat-projection is called WS. Since concat-projection incurs1838

additional computation to the model, we increase the channel size of WS variants so that the1839

two variants have similar test-time multiply-adds for fair comparisons. The default Petridish1840

option is switching the weak learner weighted-sums to concat-projections each time weak learners1841

are finalized. We compare WS, CP-end and Petridish on the transfer results on ImageNet in1842

Table 6.4, and observe that Petridish achieves similar or better prediction error using less test-time1843

computation and training-time search.1844

6.5.5 Weak Learner Space: Number of Merged Operations1845

As we initialize all possible shortcuts during weak learning, we need decide I , the number of1846

them to select for forming the weak learner. On one hand, adding complex weak learners can1847

95

Table 6.4: ILSVRC2012 transfer results. Ablation study on the choice of weighted-sum (WS),
concat-projection at the end (CP-end), or the Petridish default merge operation in finalized weak
learners. The searches were done with parameter initial channel F = 32 and s number of regular
cells per resolution of N = 6.

Method # params # multi-add Search top-1 Test Error
(mil.) (mil.) (GPU-Days) (%)

WS macro(F=48) 5.9 756 29.5 32.5
CP-end macro (F=36) 5.4 680 29.5 29.1
Petridish macro (F=32) 4.9 593 27.2 29.4
WS cell (F=48) 3.3 477 22.8 32.7
CP-end cell (F=44) 4.7 630 22.8 27.2
Petridish cell (F=40) 4.4 583 15.3 26.9

Table 6.5: Test error rates on CIFAR-10 by models found with different weak learner complexities.

Number of Shortcuts Average Lowest Error Rate
I = 2 3.08
I = 3 2.68
I = 4 2.93

boost performance rapidly. On the other, this may add sub-optimal weak learners that hinder1848

future growth. We test the choice of I = 2, 3, 4 during search. We run with each choice five times,1849

and take the average of their most accurate models that take under 60 million multi-adds on the1850

CIFAR model with N = 3 and F = 16. Models in this range are chosen, because their transferred1851

models to ILSVRC can have 600 million multi-adds with standard setups of (Zoph et al., 2018),1852

and hence, they are natural candidate models for ILSVRC mobile setting. Table 6.5 reports the1853

test error rates on CIFAR10, and we see that I = 3 yields the best results.1854

6.5.6 Weaker Learner Training: Joint versus Isolated training with Parent1855

Model1856

An interesting consideration is whether to stop the influence of the weak learners to the models1857

during the weak learning. On one hand, we eventually want to add the weak learners into the1858

model and allow them to be backpropagated together to improve the model accuracy. On the other1859

hand, the introduction of untrained weak learners to trained models may negatively affect the1860

training. Furthermore, the models may develop dependency on weak-learner shortcuts that are1861

not selected, which can also negatively affect the future models. To study the effects through an1862

ablation study, we replace the occurrence of sf and sg with identity in Algorithm 9, so that the1863

weak learners are directly added to the models, as illustrated in Fig. 6.3a. We call this variant1864

Joint, and compare it against the default Petridish. Table 6.6 showcases the transfer results of1865

Isolated and Joint to ImageNet. We compare Petridish cell (F=40) with Joint cell (F=32), two1866

models that have similar computational cost but very different accuracy, and we observe that1867

Isolated leads to much better model than Joint for cell-search.1868

96

Table 6.6: ILSVRC2012 transfer results. Ablation study on the choice of Joint and Isolated for
training the weak learners. The search were with parameter initial channel F = 32 and number of
regular cell per resolution N = 6.

Method # params # multi-add Search top-1 Test Error
(mil.) (mil.) (GPU-Days) (%)

Petridish Joint cell (F=32) 4.0 546 20.6 32.8
Petridish cell (F=40) 4.4 583 15.3 26.9

6.6 Discussion1869

Since the NAS problem is a combinatorial optimization, we have to approach it with either better1870

approximation algorithms, or utilize the special conditions of the search space itself. In particular,1871

a search space on CIFAR10 is studied by (Ying et al., 2019), which shows that architectures that1872

are similar also have similar statistical performances. This suggests that a local search where1873

models are changed iteratively and gradually can be very efficient if the starting model is already1874

near the optimal model. Luckily this can often be the case. The benchmark results concludes1875

that the best human designed models such as Resnets, DenseNet, and Inception, are all close to1876

the pareto frontier of the computation versus error plot, so that these models are naturally good1877

starting points, as evidenced by this work.1878

6.7 Conclusion1879

In this work, we formulate the neural architecture search problem (NAS) as a bi-level optimization1880

problem, which also generalizes the anytime linear prediction problem. Insetad of exhaustive1881

search, backward elimination, or sparse optimization approaches, we create an efficient forward1882

search procedure inspired by gradient boosting and least-angle regression for feature selection. We1883

also speed up the training of the weak learners by jointly training the union of all possible weak1884

learners, and at the same time learn to select the most influential subset to form the final weak1885

learner. We demonstrate the search on CIFAR10 and transfer the result to ILSVRC2012, with this1886

iterative approach demonstrating state-of-the-art models with a small number of GPU-days for1887

training.1888

97

98

Chapter 71889

Discussion and Conclusion1890

7.1 Discussion and Future Works1891

7.1.1 Dynamic Models with Data-Dependent Computational Graphs1892

In this work, we only consider anytime predictors to have a sequential computational graph,1893

where a fixed sequence of computation is used for generating anytime results for all data samples.1894

However, it is also possible to form anytime predictions via computational graphs that depend on1895

the input data samples, so that intermediate computation not only provides valid early predictions,1896

but also determines the computational graph of the subsequent procedure. For instance, decision1897

trees are natural anytime predictors with branching structures: we can stop the tree early, and the1898

predict using the deepest tree node visited.1899

A number of existing works already considered dynamic models for balancing test-time1900

computation and accuracy. (Karayev et al., 2012) approach the feature sequencing problem in1901

anytime linear prediction by formulating it as a Markov decision process, and the partial results1902

using computed features also determine which next features are computed. (Xu et al., 2013b)1903

train a tree of classifiers to determine the order to compute features. (Wang et al., 2017) train1904

neural networks to dynamically skip a number of layers based on early features. (Shazeer et al.,1905

2017) train a large number of networks and use a controller network to determine for each data1906

sample which networks are activated.1907

However, most of these existing works apply the dynamic models to the budgeted prediction1908

problem, i.e., they minimize the average test computation, subject to not degrading prediction1909

quality much. As a result, each data sample has a fixed early-exit, after which no improvement1910

to the prediction on this sample is made. Particularly, it remains to be considered how to design1911

dynamic neural networks for anytime predictions, i.e., each sample is predicted with an anytime1912

neural network that is dynamically selected based on the sample itself.1913

7.1.2 Game Theoretical Approach to Training Anytime Predictors1914

In Chapter 4, we formulated training anytime neural networks as a multi-objective problem, and1915

we approach it by optimizing the anytime losses in an adaptively weighted sum. An interesting1916

alternative approach is to consider the problem as a game, where an adversary chooses the1917

99

computational budget where the interruption occurs, and the learner is to ensure that at all budgets1918

it is nearly at the best it can do. For instance, we may measure the performance at each budget1919

with the relative increase in error rate in comparison to a model that specifically trained for that1920

budget. Then the adversary maximizes over the budgets to increase this relative error rate, and the1921

learner is to minimize the maximum relative increment.1922

One challenge to this approach, however, is to determine the objective function. The relative,1923

instead of absolute, performance against an expert at each budget is necessary, because if otherwise,1924

the problem may be overwhelmed by the different scales of the objectives at different budgets.1925

However, computing this relative performance gap may require one to train many experts at1926

various budgets. It will be interesting to consider how many experts we really need to compute, or1927

whether there are formulations to avoid them.1928

7.1.3 Determine When to Grow Models in Anytime Learning1929

When a prediction model seems to not perform well, it can be the result of ill-optimized parameters,1930

or it can be because the model architecture is not suitable for the problem. To address the former1931

issue, one needs to optimize the model further, whereas against the latter issue, one needs to1932

modify the architecture itself. It will be interesting to have a principled way to determine which1933

action is the right one.1934

In Chapter 6, we studied anytime learning via neural architecture search, where we addressed1935

the above problem in an ad-hoc manner. We trained each model with a small number of fixed1936

epochs and then attempt to grow its architecture. In the visual recognition problem that we1937

considered, these small number of epochs are often enough to tell apart performances of the1938

different models. However, in general problem, we do not have a principled way to determine1939

whether we have enough optimization on the existing models.1940

7.2 Conclusion1941

In this thesis we consider the trade-off between computation and accuracy for predictors at both1942

testing and training time. We approach the balance between these two opposing factors with1943

anytime algorithms, which always prepare valid partial results in case of budget depletion and1944

produce better results if extra computation is given. Such a approach is taken because it can1945

automatically adjust to and utilize any agnostic budget limit.1946

We start off with anytime linear predictors, for which we show that cost-aware greedy methods1947

can achieve near-optimal predictions uniformly. However, we also discovered that by combining1948

multiple weak predictors, such as features in linear prediction, ensemble-based anytime predictors1949

have a a limitation in how well they can do in comparison to the optimal. Specifically, we establish1950

a bi-criteria lower and upper bound for anytime predictors, showing that they can and only can1951

compete against the optimal combination that has a lower cost than them.1952

This discovery dictates that anytime predictors need to look beyond ensemble methods, and1953

thus, we develop anytime neural networks, where anytime predictions are trained jointly as a1954

multi-objective problem within a single predictor. We also show that by combining anytime1955

predictors instead of regular predictors, one can improve the bi-criteria bound. This indicates that1956

100

the future of anytime prediction may rely on a combination of the traditional ensemble approaches1957

and creative anytime models designs.1958

We also address the concern with training efficiency in multiple ways. For large stochastic data1959

streams, we developed streaming gradient boosting, so that this traditionally iteratively trained1960

model can be trained on a data stream. For the large search space of neural architecture design,1961

we draw a connection between feature selection and neural architecture search, and develop an1962

iterative growth algorithm that is inspired by gradient boosting, which we previously leveraged1963

for anytime prediction. This suggests that anytime prediction and anytime learning are inherently1964

connected, and they may be studied together in the future.1965

101

102

Bibliography1966

Elizabeth J Atkinson, Terry M Therneau, L Joseph Melton, Jon J Camp, Sara J Achenbach,1967

Shreyasee Amin, and Sundeep Khosla. Assessing fracture risk using gradient boosting machine1968

(gbm) models. Journal of Bone and Mineral Research, 2012. 5.11969

L. J. Ba and R. Caruana. Do deep nets really need to be deep? In Proceedings of NIPS, 2014.1970

2.2.2, 4.21971

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009. 2.2.1,1972

4.21973

Alina Beygelzimer, Elad Hazan, Satyen Kale, and Haipeng Luo. Online gradient boosting. In1974

NIPS, pages 2449–2457, 2015a. 5.1, 5.2, 5.3.1, 5.5.1, 5.8.2.21975

Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online1976

boosting. In ICML, pages 2323–2331, 2015b. 1.2, 5.1, 5.2, 5.3.1, 5.4, 5.5.1.0.11977

Mark Boddy and Thomas Dean. Solving time-dependent planning problems. In IJCAI, 1989. 4.11978

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks1979

for fast test-time prediction. In ICML, 2017. 1.1, 2.2.3, 4.1, 4.2, 4.61980

S. Brubaker, J. Wu, J. Sun, M. Mullin, and J. Rehg. On the Design of Cascades of Boosted1981

Ensembles for Face Detection. International Journal of Computer Vision, pages 65–86, 2008.1982

1.2, 2.2.3, 3.11983

Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network transforma-1984

tion for efficient architecture search. In ICML, 2018. 6.2, 6.11985

Zhaowei Cai, Mohammad J. Saberian, and Nuno Vasconcelos. Learning Complexity-Aware1986

Cascades for Deep Pedestrian Detection. In International Conference on Computer Vision,1987

ICCV, 2015. 1.2, 2.2.3, 3.1, 4.1, 4.21988

Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi. Probabilistic neural architecture1989

search. In arxiv.org/abs/1902.05116, 2019. 6.1, 6.21990

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line1991

learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004. 1.2,1992

5.1, 5.31993

Olivier Chapelle and Yi Chang. Yahoo! Learning to Rank Challenge Overview. JMLR Workshop1994

and Conference Proceedings, 2011. 3.5.1, 3.5.51995

Olivier Chapelle, Yi Chang, and Tie-Yan Liu, editors. Proceedings of the Yahoo! Learning to1996

Rank Challenge, held at ICML 2010, volume 14 of JMLR Proceedings, 2011. 5.11997

103

Minmin Chen, Kilian Q. Weinberger, Olivier Chapelle, Dor Kedem, and Zhixiang Xu. Classifier1998

Cascade for Minimizing Feature Evaluation Cost. In Proceedings of the 15th International1999

Conference on Artificial Intelligence and Statistics (AISTATS), 2012a. 3.1, 3.5.2, 4.22000

Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement2001

networks. In ICCV, 2017. 2.2.1, 4.2, 4.32002

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with theoretical2003

justifications. In ICML, 2012b. 5.1, 5.22004

Benot Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. In2005

Annals of operations research, 2007. 6.2, 6.32006

Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Adanet:2007

Adaptive structural learning of artificial neural networks. In ICML, 2017. 6.22008

Abhimanyu Das and David Kempe. Submodular meets Spectral: Greedy Algorithms for Subset2009

Selection, Sparse Approximation and Dictionary Selection . In Proceedings of the 28th2010

International Conference on Machine Learning (ICML), 2011. 1.2, 3.1, 3.3, 3.32011

Terrance DeVries and Graham Taylor. Improved regularization of convolutional neural networks2012

with cutout. CoRR, abs/1708.04552, 2017. 6.5.12013

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.2014

Annals of Statistics, 32:407–499, 2004. 2.2.2, 6.3.12015

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architec-2016

ture search via lamarckian evolution. 2018a. 6.1, 6.2, 6.12017

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.2018

CoRR, abs/1808.05377, 2018b. 1.2, 6.12019

Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In NIPS,2020

1990. 6.1, 6.22021

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research2022

logistics quarterly, 3(1-2):95–110, 1956. 5.22023

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and2024

an application to boosting. In European conference on computational learning theory, pages2025

23–37. Springer, 1995. 5.1, 5.2, 5.5.1.0.12026

Yoav Freund and Robert E Schapire. A short introduction to boosting. In Journal of Japanese2027

Society for Artificial Intelligence, 1999. 5.22028

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of2029

statistics, pages 1189–1232, 2001. 5.1, 5.4, 5.5.1, 5.6.2, 5.8.6, 5.8.6.12030

Wei Gao, Lu Wang, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou. One-pass auc optimization. In2031

Artificial Intelligence Journal, volume 236, pages 1–29, 2016. 5.42032

H. Grabner and H. Bischof. On-line boosting and vision. In CVPR, volume 1, pages 260–267,2033

2006. 5.22034

H. Grabner, C. Leistner, and H Bischof. Semisupervised on-line boosting for robust tracking. In2035

ECCV, page 234 247, 2008. 5.22036

104

Joshua Grass and Shlomo Zilberstein. Anytime Algorithm Development Tools. SIGART Bulletin,2037

1996. 4.12038

Alexander Grubb and Drew Bagnell. Generalized boosting algorithms for convex optimization.2039

In ICML, 2011. 1.2, 5.1, 5.3.1, 5.4, 5.5.1, 5.5.1, 5.5.1.0.12040

Alexander Grubb and Drew Bagnell. Speedboost: Anytime prediction with uniform near-2041

optimality. In AISTATS, pages 458–466, 2012a. 5.12042

Alexander Grubb and J. Andrew Bagnell. SpeedBoost: Anytime Prediction with Uniform Near-2043

Optimality. In the 15th International Conference on Artificial Intelligence and Statistics2044

(AISTATS), 2012b. 1.2, 2.2.1, 3.1, 4.1, 4.22045

Jiaqi Guan, Yang Liu, Qiang Liu, and Jian Peng. Energy-efficient amortized inference with2046

cascaded deep classifiers. In arxiv preprint, arxiv.org/abs/1710.03368, 2017. 1.1, 4.1, 4.2, 4.62047

Song Han Han Cai, Ligeng Zhu. Proxylessnas: Direct neural architecture search on target task2048

and hardware. In ICLR, 2019. 6.1, 6.22049

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: Optimal algorithms for2050

stochastic strongly-convex optimization. Journal of Machine Learning Research, 15:2489–2512,2051

2014. 5.1, 5.32052

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex2053

optimization. Machine Learning, 69(2-3):169–192, 2007. 1.2, 5.1, 5.2, 5.5.22054

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,2055

2016. 4.1, 1, 2, 4.5.1, 4.8, 6.4.3, 6.4.3, 6.5.22056

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In2057

Deep Learning and Representation Learning Workshop, NIPS, 2014. 2.2.2, 4.22058

Eric J. Horvitz. Reasoning about beliefs and actions under computational resource constraints. In2059

UAI, 1987. 4.12060

Hanzhang Hu, Alexander Grubb, Martial Hebert, and J. Andrew Bagnell. Efficient feature group2061

sequencing for anytime linear prediction. In UAI, 2016. 4.22062

Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning deep resnet blocks2063

sequentially using boosting theory. In ICML, 2018a. 6.22064

G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinberger. Multi-scale dense2065

convolutional networks for efficient prediction. In ICLR, 2018b. (document), 2.2.1, 4.1, 4.2,2066

4.3, 4.2, 4.5.1, 4.5.2, 4.5.3, 4.82067

Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q Weinberger. Condensenet: An2068

efficient densenet using learned group convolutions. arXiv preprint arXiv:1711.09224, 2017a.2069

2.2.2, 6.4.4, 6.4.42070

Gao Huang, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten. Densely connected2071

convolutional networks. In CVPR, 2017b. 4.1, 4.5.1, 4.82072

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In2073

NIPS, 2016. 2.2.2, 4.22074

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt2075

105

Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model2076

size. In arxiv preprint: 1602.07360, 2016. 2.2.2, 4.22077

Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, and Francis R. Bach. Proximal Meth-2078

ods for Sparse Hierarchical Dictionary Learning. In Proceedings of the 27th International2079

Conference on Machine Learning (ICML), 2010. 32080

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance2081

reduction. In Advances in Neural Information Processing Systems 26, 2013. 5.5.22082

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing.2083

Neural architecture search with bayesian optimisation and optimal transport. In NIPS, 2018.2084

6.12085

Nikos Karampatziakis and Paul Mineiro. Discriminative Features via Generalized Eigenvectors.2086

In the 31th International Conference on Machine Learning, (ICML), 2014. 3.7.12087

Sergey Karayev, Tobias Baumgartner, Mario Fritz, and Trevor Darrell. Timely Object Recognition.2088

In Conference and Workshop on Neural Information Processing Systems (NIPS), 2012. 3.1,2089

3.5.2, 2, 4.2, 7.1.12090

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR,2091

arXiv:1412.6980, 2015. 5.6.22092

Ronny Kohavi and Barry Becker. Adult data set. UCI Machine Learning Repository, 1996. 5.62093

Andreas Krause and Daniel Golovin. Submodular Function Maximization. In Tractability:2094

Practical Approaches to Hard Problems, 2012. 3.32095

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from2096

tiny images. Technical report, University of Toronto, 2009. 4.3, 4.5.1, 4.8, 6.5, 6.5.12097

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep2098

convolutional neural networks. In Advances in Neural Information Processing Systems 25,2099

pages 1097–1105, 2012. 4.12100

G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: Ultra-deep neural networks without2101

residuals. In ICLR, 2017a. 2.2.1, 4.22102

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural2103

networks without residuals. In ICLR, 2017b. 6.5.12104

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document2105

Recognition. In Intelligent Signal Processing, 2001. 3.7.1, 5.62106

Chen-Yu Lee, Saining Xie, Patrick W. Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-2107

supervised nets. In AISTATS, 2015. 2.2.1, 4.1, 4.2, 4.3, 12108

Leonidas Lefakis and Francois Fleuret. Joint Cascade Optimization Using a Product of Boosted2109

Classifiers. In Advances in Neural Information Processing Systems (NIPS). 2010. 1.2, 2.2.3,2110

3.1, 4.22111

C. Leistner, A. Saffari, P. M. Roth, and H Bischof. On robustness of on-line boosting - a2112

competitive study. In ICCV Workshop on On-line Learning for Computer Vision, 2009. 5.22113

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets. In2114

106

ICLR, 2017. 2.2.2, 4.22115

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.2116

edu/ml. 5.62117

Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L. Yuille, Jonathan2118

Huang, and Kevin Murphy. Progressive neural architecture search. CoRR, abs/1712.00559,2119

2017a. 6.1, 6.2, 6.1, 6.5.22120

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu.2121

Hierarchical representations for efficient architecture search. In ICLR, 2018. 6.1, 6.12122

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. 2019.2123

6.1, 6.2, 6.4.3, 6.4.3, 6.4.4, 6.4.5, 6.5.1, 6.1, 6.5.22124

Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning efficient convolutional networks2125

through network slimming. In arxiv preprint:1708.06519, 2017b. 2.2.2, 4.22126

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR,2127

2017. 6.5.12128

Aurelie C. Lozano, Grzegorz Swirszcz, and Naoki Abe. Grouped Orthogonal Matching Pursuit2129

for Variable Selection and Prediction. In Neural Information Processing Systems (NIPS), 2009.2130

3.1, 3.5.3, 3.5.42131

Aurelie C. Lozano, Grzegorz Swirszcz, and Naoki Abe. Group Orthogonal Matching Pursuit2132

for Logistic Regression. In Proceedings of the 14th International Conference on Artificial2133

Intelligence and Statistics (AISTATS), volume 15, 2011. 3.1, 3.5.42134

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.2135

In NIPS, 2018. 6.12136

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms as gradient2137

descent. In NIPS, 2000. 5.12138

P. McCullagh and J. A. Nelder. Generalized Linear Models (Second edition). London: Chapman2139

& Hall, 1989. 3.72140

Alan J. Miller. Subset Selection in Regression. In Journal of the Royal Statistical Society. Series2141

A (General), Vol. 147, No. 3, pp. 389-425, 1984. 3.12142

Woonhyun Nam, Piotr Dollár, and Joon Hee Han. Local decorrelation for improved pedestrian2143

detection. In NIPS, pages 424–432, 2014. 5.12144

Feng Nan and Venkatesh Saligrama. Dynamic model selection for prediction under a budget. In2145

NIPS, 2017. 4.22146

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.2147

Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on2148

Deep Learning and Unsupervised Feature Learning 2011, 2011. 4.5.1, 4.82149

A. Odena, D. Lawson, and C. Olah. Changing model behavior at test-time using reinforcement.2150

In Arxive preprint: 1702.07780, 2017. 4.22151

Nikunj C. Oza and Stuart Russell. Online bagging and boosting. In AISTATS, pages 105–112,2152

2001. 5.1, 5.22153

107

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal Matching Pursuit : recursive function2154

approximation with application to wavelet decomposition. In Asilomar Conference on Signals,2155

Systems and Computers, 1993. 2.2.2, 3.12156

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture2157

search via parameter sharing. In ICML, 2018. 6.1, 6.2, 6.4.3, 6.4.3, 6.4.4, 6.4.5, 6.5.1, 6.12158

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using2159

binary convolutional neural networks. In ECCV, 2016. 2.2.2, 4.22160

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,2161

Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. CoRR, abs/1703.01041,2162

2017. 6.1, 6.4.3, 6.12163

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image2164

classifier architecture search. CoRR, abs/1802.01548, 2018. 6.1, 6.4.3, 6.4.3, 6.4.5, 6.5.1, 6.1,2165

6.5.22166

Lev Reyzin. Boosting on a budget: Sampling for feature-efficient prediction. In the 28th2167

International Conference on Machine Learning (ICML), 2011. 1.2, 2.2.1, 3.1, 4.22168

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng2169

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.2170

ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015. 4.5.1, 2, 6.5, 6.5.22171

Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. MIT press, 2012.2172

5.5.12173

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends2174

in Machine Learning, 4(2):107–194, 2011. 5.6.12175

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,2176

and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts2177

layer. In ICLR, 2017. 7.1.12178

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image2179

recognition. In ICLR, 2015. 4.12180

J. Sochman and J. Matas. WaldBoost: Learning for Time Constrained Sequential Detection. In2181

the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition2182

(CVPR), 2005. 1.2, 2.2.3, 3.12183

M. Streeter and D. Golovin. An Online Algorithm for Maximizing Submodular Functions. In2184

Proceedings of the 22nd Annual Conference on Neural Information Processing Systems (NIPS),2185

2008. 3.1, 3.32186

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4, inception-2187

resnet and the impact of residual connections on learning. In AAAI, 2017. 2.2.1, 4.22188

Robert Tibshirani. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal2189

Statistical Society, Series B, 58:267–288, 1994. 2.2.2, 3.1, 6.4.42190

Andreas Veit and Serge Belongie. Convolutional networks with adaptive computation graphs.2191

arXiv preprint arXiv:1711.11503, 2017. 2.2.3, 4.22192

108

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features.2193

In CVPR, volume 1. IEEE, 2001a. 5.12194

Paul A. Viola and Michael J. Jones. Rapid Object Detection using a Boosted Cascade of Simple2195

Features. In 2001 IEEE Computer Society Conference on Computer Vision and Pattern2196

Recognition (CVPR), 2001b. 2.2.3, 3.1, 4.1, 4.22197

Xin Wang, Fisher Yu, Zi-Yi Dou, and Joseph E Gonzalez. Skipnet: Learning dynamic routing in2198

convolutional networks. arXiv preprint arXiv:1711.09485, 2017. 2.2.3, 4.2, 7.1.12199

K.Q. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature Hashing for2200

Large Scale Multitask Learning. In Proceedings of the 26th Annual International Conference2201

on Machine Learning (ICML), 2009. 2.2.1, 3.1, 4.22202

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-2203

ment learning. In Machine Learning, 1992. 6.22204

Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In ICCV, 2015. 2.2.1, 4.2, 4.32205

Saining Xie, Ross Girshick, Piotr Dollr, Zhuowen Tu, and Kaiming He. Aggregated residual2206

transformations for deep neural networks. In CVPR, 2017. 4.12207

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: Stochastic neural architecture search.2208

In ICLR, 2019. 6.22209

Z. Xu, K. Weinberger, and O. Chapelle. The Greedy Miser: Learning under Test-time Budgets. In2210

Proceedings of the 28th International Conference on Machine Learning (ICML), 2012. 2.2.1,2211

3.1, 4.22212

Z. Xu, M. Kusner, G. Huang, and K. Q. Weinberger. Anytime Representation Learning. In2213

Proceedings of the 30th International Conference on Machine Learning (ICML), 2013a. 2.2.1,2214

3.1, 4.22215

Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. Classifier cascades and2216

trees for minimizing feature evaluation cost. Journal of Machine Learning Research, 15(1):2217

2113–2144, 2014. 1.2, 2.2.3, 3.1, 4.1, 4.22218

Zhixiang Xu, Matt Kusner, Kilian Q. Weinberger, and Minmin Chen. Cost-sensitive tree of2219

classifiers. In Proceedings of the 30th International Conference on Machine Learning (ICML-2220

13), volume 28, pages 131–141, 2013b. 7.1.12221

Bin Yang, Junjie Yan, Zhen Lei, and Stan Z Li. Convolutional channel features. In ICCV, pages2222

82–90, 2015. 5.12223

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter.2224

Nas-bench-101: Towards reproducible neural architecture search. In arxiv.org/abs/1902.09635,2225

2019. 6.62226

Ming Yuan and Yi Lin. Model Selection and Estimation in Regression with Grouped Variables.2227

Journal of the Royal Statistical Society, 2006. 2.2.2, 3.1, 3.5.22228

Amir R. Zamir, Te-Lin Wu, Lin Sun, William Shen, Jitendra Malik, and Silvio Savarese. Feedback2229

networks. In CVPR, 2017. 2.2.1, 4.1, 4.2, 4.3, 4.5.32230

Tong Zhang. On the Consistency of Feature Selection using Greedy Least Squares Regression.2231

109

Journal of Machine Learning Research, 10:555–568, 2009. 3.12232

Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and consistency. 33:2233

15381579, 2005. 5.22234

Yanru Zhang and Ali Haghani. A gradient boosting method to improve travel time prediction.2235

Transportation Research Part C: Emerging Technologies, 58:308–324, 2015. 5.12236

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene2237

parsing network. In CVPR, 2017. 2.2.1, 4.22238

Chao Zhu and Yuxin Peng. Group cost-sensitive boosting for multi-resolution pedestrian detection.2239

In AAAI, 2016. 5.12240

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,2241

2017. 1.1, 1.2, 6.1, 6.2, 6.4.3, 6.12242

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architec-2243

tures for scalable image recognition. In CVPR, 2018. 6.1, 6.2, 6.4.3, 6.4.3, 6.4.3, 6.4.5, 6.5,2244

6.5.1, 6.5.2, 6.1, 6.5.52245

110

	1 Introduction
	1.1 Motivations and Problem Settings
	1.2 Approach
	1.3 Overview of Chapters and Their Contributions

	2 Preliminaries and Background
	2.1 Anytime Prediction
	2.2 Related Works to the Trade-off Between Computation and Accuracy
	2.2.1 Anytime Prediction
	2.2.2 Model Compression
	2.2.3 Budgeted Prediction

	3 Anytime Linear Prediction via Feature Group Sequencing
	3.1 Introduction
	3.2 Computation-Aware Greedy Methods
	3.2.1 Preliminaries
	3.2.2 Anytime Prediction at Test-time
	3.2.3 Computation-Aware Group Orthogonal Matching Pursuit(CS-G-OMP)
	3.2.4 Computation-Aware Group Forward Regression (CS-G-FR)

	3.3 Near-Optimality at Features Selection
	3.4 Bi-criteria Analysis at Any Budget
	3.5 Experiments
	3.5.1 Data-sets and Set-ups
	3.5.2 Evaluation Metric and Approximated Oracle
	3.5.3 Importance of Feature Cost
	3.5.4 Group Whitening
	3.5.5 Other Selection Criteria Variants

	3.6 Additional Proof Details
	3.6.1 Functional Boosting View of Feature Selection
	3.6.2 Proof of Lemma 3.3.3 and Lemma 3.3.4
	3.6.3 Proof of Main Theorem

	3.7 Extension to Generalized Linear Models
	3.7.1 EXAMPLE EXPERIMENTS ON GLM

	4 Anytime Neural Network via Adaptive Loss Balancing
	4.1 Introduction
	4.2 Related Works
	4.3 Optimizing Anytime Predictors in Networks
	4.4 Ensemble of Exponentially Deepening Networks
	4.5 Experiments
	4.5.1 Data-sets and Training Details
	4.5.2 Weight Scheme Comparisons
	4.5.3 EANN: Closing Early Performance Gaps by Delaying Final Predictions.
	4.5.4 Data-set Difficulty versus Adaptive Weights

	4.6 Conclusion and Discussion
	4.7 Proof of Propostion 4.4.1
	4.8 Implementation Details of ANNs
	4.9 Ablation Study for AdaLoss Parameters
	4.9.1 Weight Regularization
	4.9.2 Ablation Study of AdaLoss parameters on CIFAR

	5 Training Gradient Boosting on Stochastic Data Streams
	5.1 Introduction
	5.2 Related Works
	5.3 Preliminaries
	5.3.1 Online Boosting Setup

	5.4 Weak Online Learning
	5.4.1 Why Weak Learner Edge is Reasonable?

	5.5 Algorithm
	5.5.1 Smooth Loss Functions
	5.5.2 Non-smooth Loss Functions

	5.6 Experiments
	5.6.1 Experimental Analysis of Regret Bounds
	5.6.2 Batch Boosting vs. Streaming Boosting

	5.7 Conclusion
	5.8 Supplementary Details for Gradient Boosting on Stochastic Data Streams
	5.8.1 Proof of Proposition 5.4.3
	5.8.2 Proof of Theorem 5.5.1
	5.8.3 Proof of Theorem 5.5.2
	5.8.4 Counter Example for Alg. 6
	5.8.5 Details of Implementation
	5.8.6 Binary Classification
	5.8.7 Proof of Proposition 5.4.3
	5.8.8 Proof of Proposition 5.4.3

	6 Anytime Learning via Forward Architecture Search
	6.1 Introduction
	6.2 Background and References
	6.3 Neural Architecture Search as Optimization
	6.3.1 Connection to Feature Selection

	6.4 A NAS Approach from Gradient Boosting
	6.4.1 Gradient Boosting
	6.4.2 Gradient-Boosting-Inspired NAS
	6.4.3 Search Space
	6.4.4 Joint Weak Learning
	6.4.5 Weak Learner Finalization
	6.4.6 Utilizing Parallel Workers

	6.5 Selected Empirical Highlights
	6.5.1 Search Results on CIFAR10
	6.5.2 Transfer to ImageNet
	6.5.3 Search Space: Direct versus Proxy
	6.5.4 Weak Learner Space: Weighted Sum versus Concatenation-Projection
	6.5.5 Weak Learner Space: Number of Merged Operations
	6.5.6 Weaker Learner Training: Joint versus Isolated training with Parent Model

	6.6 Discussion
	6.7 Conclusion

	7 Discussion and Conclusion
	7.1 Discussion and Future Works
	7.1.1 Dynamic Models with Data-Dependent Computational Graphs
	7.1.2 Game Theoretical Approach to Training Anytime Predictors
	7.1.3 Determine When to Grow Models in Anytime Learning

	7.2 Conclusion

