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Abstract

We consider two special cases of the classical nonparametric regression problem of estimating
a function f : Rd → R given n noisy observations at inputs x1, · · · , xn ∈ Rd.

In the first case, the input points correspond to nodes on a d-dimensional regular lattice
(having equal side lengths n1/d). We define two new higher-order TV classes with signals
which are allowed to exhibit different amounts of smoothness at different regions in the
lattice, and derive lower bounds on their minimax estimation errors. We analyze two
naturally associated estimators and show that they are rate optimal over the appropriate
classes. Linear smoothers are shown to be minimax suboptimal over these TV classes.

In the second case, we consider additive models built with kth order trend filters resulting
in kth degree piecewise polynomial components. We derive fast error rates for additive trend
filtering and prove that these rates are minimax optimal when the underlying function is
itself additive and has component functions whose derivatives have bounded kth order TV.
We show that such rates are unattainable by additive models built from linear smoothers.

We also study an extension of the Kolmogorov-Smirnov (KS) two-sample test, which
can be more sensitive to differences in the tails. Our test statistic is an integral probability
metric (IPM) defined over a higher-order total variation ball, recovering the original KS
test as its simplest case.
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Chapter 1

Introduction

We study the classic nonparametric regression problem where the responses Y i, i = 1, . . . , n ∈
R and the inputs Xi, i = 1, . . . , n ∈ Rd are related by

Y i = f(Xi) + εi, i = 1, . . . , n (1.1)

where f is a smooth function we intend to estimate and εi are i.i.d. subgaussian with mean
zero. Compared to parametric regression methods, where the regression function f belongs
to a class of functions which can be parameterized by a fixed number of variables (such as
linear functions, polynomials up to a degree less than a fixed positive integer), nonparametric
regression methods allow for a lot of flexibility in the estimate. They are very useful tools
when we do not have much information about the structure of the regression function or
when we do not want to restrict the regression function class much. There are many popular
nonparametric regression methods such as kernel smoothing, k-nearest neighbors, local
polynomial regression, Gaussian process regression, RKHS regression, smoothing splines and
wavelet shrinkage. Thousands of papers and several dozens of books have been published
on these methods over the past century; hence we do not attempt to list all the works and
refer the reader to the books Gyorfi et al. (2002), Tsybakov (2009) and Green & Silverman
(1994). Many standard software packages provide implementations of these methods.

We are interested in estimating heterogeneously smooth functions f , which are allowed
to exhibit different amounts of smoothness at different regions in the grid. Such heterogene-
ity eludes classical measures of smoothness from nonparametric statistics, such as Holder
smoothness. Total variation (TV) smoothness classes allow for heterogeneity. Locally adap-
tive regression splines (Mammen & van de Geer 1997) automatically adapt to the local level
of smoothness of the true function in 1d. Trend filtering(Steidl et al. 2006, Kim et al. 2009,
Tibshirani 2014) can be thought of as a computationally fast version of locally adaptive
regression splines with no loss in statistical properties.

As the dimension d of the input space grows, nonparametric regression turns into a
notoriously difficult problem. We study the following two specific settings of the problem
with a focus on estimating heterogeneously smooth functions:

(a) Lattices (grids) in d-dimensions. Xi correspond to nodes in a d-dimensional grid
graph and Y i are observations at the nodes. f belongs to a class of functions whose kth
weak derivative has a bounded total variation in a sense that is described later.
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(b) Additive model. f is an additive function

f(X1, . . . , Xd) =
d∑
j=1

fj(Xj)

where the univariate component functions fj are smooth in the sense that their kth weak
derivative has a bounded total variation.

We derive minimax optimal rates for the two settings and show that our trend filtering
estimators achieve these rates upto log n factors. Importantly, no linear smoother (including
popular methods such as kernel smoothers, Gaussian process regression, Laplacian smooth-
ing, Laplacian eigenmaps on graphs) can achieve the minimax optimal rate. In fact, in
the case of grids, when the smoothness level is low, no linear smoother is even consistent!
This extends fundamental findings of Donoho & Johnstone (1998) in 1-dimensional total
variational spaces to higher dimensions.

We also study a related two-sample test with the test statistic

sup
f∈F

∣∣∣∣ 1

m

m∑
i=1

f(Xi)− 1

n

n∑
j=1

f(Y j)

∣∣∣∣
where X1, . . . , Xm ∈ R and Y 1, . . . , Y n ∈ R are samples from two distributions and F is
a certain set of functions whose kth weak derivative is bounded in total variation. This
reduces to the classic Kolmogorov-Smirnov (KS) test if k = 0. Therefore our test may be
seen as a higher-order version of the KS test.

We now review univariate trend filtering which is the foundation to many of our methods.

1.1 Trend filtering in 1d

The kth order locally adaptive regression splines (LAR splines) (Mammen & van de Geer
1997) defined by

f̂ = argmin
f

1

n

n∑
i=1

(Y i − f(Xi))2 + λTV(f (k)) (1.2)

where λ ≥ 0 is a tuning parameter, TV(f) denotes the total variation of a univariate real-
valued function and f (k) denotes the kth weak derivative of a function f . LAR splines
automatically adapt to the local level of smoothness of the true function. They achieve the
minimax optimal rate of n−(2k+2)/(2k+3) over the kth order total variation space

Fk(Cn) =
{
f : [0, 1]→ R | TV(f (k)) ≤ Cn

}
(1.3)

where Cn is a sequence of positive numbers. Popular nonparametric regression methods such
as local polynomial kernel regression, smoothing splines and Gaussian process regression
cannot achieve the minimax optimal rate over this class. A difficulty with LAR splines is
that the defining optimization problem (1.2) is computationally hard.

Proposed independently by Steidl et al. (2006) and Kim et al. (2009), trend filtering
preserves the local adaptivity property of LARS while being computationally efficient. As
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explained in Tibshirani (2014), it can be seen as a discrete-time analog of LARS. Denoting
by X = (X1, . . . , Xn) ∈ Rn the vector of univariate input points with X1 < . . . < Xn, the
trend filtering estimate of order k ≥ 0 is defined as the solution of the optimization problem

min
θ∈Rn

1

2
‖Y − θ‖22 + λ‖D(X,k+1)θ‖1, (1.4)

where λ ≥ 0 is a tuning parameter, and D(X,k+1) ∈ R(n−k−1)×n is a kth order difference
operator, constructed based on X. These difference operators can be defined recursively, as
in

D(X,1) =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1

 ∈ R(n−1)×n, (1.5)

D(X,k+1) = D(X,1) · diag

(
k

Xk −X1
, . . . ,

k

Xn −Xn−k+1

)
·D(X,k) ∈ R(n−k−1)×n, k ≥ 1.

(1.6)

(The leading matrix D(X,1) in (1.6) is the (n − k − 1) × (n − k) version of the difference
operator in (1.5).) Intuitively, the interpretation is that the problem (1.4) penalizes the
sum of absolute (k + 1)st order discrete derivatives of θ1, . . . , θn across the input points
X1, . . . , Xn. Thus, at optimality, the coordinates of the trend filtering solution θ̂1, . . . , θ̂n

obey a kth order piecewise polynomial form. See Figure 1.1.

Figure 1.1: (From Tibshirani (2014)) Piecewise kth degree polynomial structure of trend filtering
estimates for k = 0, 1, 2 from left to right.

This intuition is formalized in Tibshirani (2014) and Wang et al. (2014), where it is
shown that the components of the kth order trend filtering estimate θ̂ are precisely the
evaluations of a fitted kth order piecewise polynomial function across the inputs, and that
the trend filtering and locally adaptive regression spline estimates of the same order k are
asymptotically equivalent. When k = 0 or k = 1, in fact, there is no need for asymptotics,
and the equivalence between trend filtering and locally adaptive regression spline estimates
is exact in finite samples. It is also worth pointing out that when k = 0, the trend filtering



4

estimate reduces to the 1d fused lasso estimate (Tibshirani et al. 2005), which is known as
1d total variation denoising in signal processing (Rudin et al. 1992).

Over the kth order total variation function class defined in (1.3), Tibshirani (2014),
Wang et al. (2014) prove that kth order trend filtering achieves the minimax optimal
n−(2k+2)/(2k+3) error rate, just like kth order locally adaptive regression splines. Another
important property, as developed by Steidl et al. (2006), Kim et al. (2009), Tibshirani
(2014), Ramdas & Tibshirani (2016), is that trend filtering estimates are relatively cheap
to compute—much cheaper than locally adaptive regression spline estimates—owing to the
bandedness of the difference operators in (1.5), (1.6), which means that specially imple-
mented convex programming routines can solve (1.4) in an efficient manner.

Falling factorial basis. Tibshirani (2014), Wang et al. (2014) establish a connection
between univariate trend filtering and the falling factorial functions, and show that the
trend filtering problem can be interpreted as a sparse basis regression problem using these
functions. Given knot points t1 < . . . < tn ∈ R, the kth order falling factorial basis functions
h1, . . . , hn are defined by

hi(t) =

i−1∏
`=1

(t− t`), i = 1, . . . , k + 1,

hi+k+1(t) =
k∏
`=1

(t− ti+`) · 1{t > ti+k}, i = 1, . . . , n− k − 1.

(1.7)

Our convention is to define the empty product to be 1, so that h1(t) = 1. The functions
h1, . . . , hn are piecewise polynomial functions of order k, and appear very similar in form
to the well-known kth order truncated power basis functions defined as follows:

g1(x) = 1, g2(x) = x, . . . , gk+1(x) = xk,

gk+1+j(x) = (x− tj)k · 1(x ≥ tj), j = 1, . . . , n− k − 1.
(1.8)

See Figure 1.2. In fact, when k = 0 or k = 1, the two bases are exactly equivalent (meaning
that they have the same span). Similar to an expansion in the truncated power basis, an
expansion in the falling factorial basis,

g =

n∑
i=1

αihi

is a continuous piecewise polynomial function, having a global polynomial structure de-
termined by α1, . . . , αk+1, and exhibiting a knot—i.e., a change in its kth derivative—at
the location ti+k when αi+k+1 6= 0. But, unlike the truncated power functions, the falling
factorial functions in (1.7) are not splines, and when g (as defined above) has a knot at a
particular location, it displays a change not only in its kth derivative at this location, but
also in all lower order derivatives (i.e., all derivatives of orders 1, . . . , k − 1).

Define the kth order falling factorial basis matrix H(k) and truncated power basis matrix
G(k) by:

H
(k)
ij = hj(t

i), G
(k)
ij = gj(t

i).
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Figure 1.2: Some falling factorial basis and truncated power basis functions for k = 2.

Tibshirani (2014), Wang et al. (2014) show that (1.4) may be written in lasso form as

α̂ = argmin
α

1

2
‖Y −H(k)α‖22 + λ

n∑
i=k+2

|αi| (1.9)

where the solutions of (1.9) and (1.4) are related by θ̂ = H(k)α̂. This also suggests the
variational formulation (see Wang et al. (2014))

f̂ = argmin
f∈H

1

2

n∑
i=1

(Y i − f(Xi))2 + λ

n∑
i=k+2

TV(f (k)) (1.10)

where H =
{∑n

i=1 αihi
}

is the span of falling factorial basis functions determined by X. A
natural interpolant from trend filtering solution would be

f̂(x) =

n∑
i=1

α̂ihi(x).

1.2 Review: Minimax rates for kth order TV classes in 1d

As mentioned above, a key focus of our work is to study minimax optimal rates for certain
total variation type classes and analyzing estimators that achieve this optimal rate. We
review the results for kth order TV classes in univariate setting. We need to introduce
some notation to explain the results.

Notation. For deterministic sequences an, bn we write an = O(bn) to denote that an/bn
is upper bounded for large enough n, and an � bn to denote that both an = O(bn) and
a−1
n = O(b−1

n ). For random sequences An, Bn, we write An = OP(Bn) to denote that An/Bn
is bounded in probability. For integers n ≥ 0, let [n] denote the set of positive integers not
larger than n.
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Suppose the data is distributed as in (1.1) with d = 1, that is,

yi ∼ N(f(xi), σ
2), independently, for i = 1, . . . , n, (1.11)

where σ > 0 and xi = i/n, i ∈ [n]. Given an estimator f̂ of f in (1.11), the quantity

MSE(f̂ , f) =
1

n

n∑
i=1

(
f̂(xi)− f(xi)

)2
is called the mean squared error (MSE) of f̂ ; we will also call supf∈F E[MSE(f̂ , f)] the risk
of f̂ . The minimax risk and minimax linear risk over a class of functions F are

R(F) = inf
θ̂

sup
f∈F

E
[
MSE(f̂ , f)

]
and RL(F) = inf

f̂ linear
sup
f∈F

E
[
MSE(f̂ , f)

]
where the infimum is taken over all estimators f̂ for minimax risk and over only estimators
linear in y for minimax linear risk.

The classical nonparametric statistics literature (Donoho et al. 1990, Donoho & John-
stone 1998, Mammen & van de Geer 1997) provides a more or less complete story for
estimation under total variation constraints in 1d. See also Tibshirani (2014) for a trans-
lation of these results to a setting more consistent (notationally) to that in the current
document. For the kth order TV space in (1.3), the results in Donoho & Johnstone (1998)
imply that, for Cn that is not too small and not too large,

R(Fk(Cn)) � C
2

2k+3
n n−

2k+2
2k+3 . (1.12)

Further, Mammen & van de Geer (1997) showed that the locally adaptive regression splines
f̂ in (1.2) , with λ � C−(2k+1)/(2k+3)

n n1/(2k+3), satisfies

MSE(f̂ , f) = OP(C
2

2k+3
n n−

2k+2
2k+3 ), (1.13)

for all f ∈ Fk(Cn), and is thus minimax rate optimal over Fk(Cn). (In assessing rates
here and throughout, we do not distinguish between convergence in expectation versus
convergence in probability.) Wavelet denoising, under various choices of wavelet bases, also
achieves the minimax rate. However, many simpler estimators do not. To be more precise,
it is shown in Donoho & Johnstone (1998) that

RL(Fk(Cn)) � C
1
k+1
n n−

2k+1
2k+2 . (1.14)

Therefore, a substantial number of commonly used nonparametric estimators—such as
running mean estimators, smoothing splines, kernel smoothing, Laplacian smoothing, and
Laplacian eigenmaps, which are all linear smoothers—have a major deficiency when it comes
to estimating functions of bounded variation. Roughly speaking, they will require many
more samples to estimate f within the same degree of accuracy as an optimal method like
TV or wavelet denoising (on the order of ε−1/2 times more samples to achieve an MSE of ε
in the TV denoising case k = 0). Further theory and empirical examples (e.g., Donoho &
Johnstone (1994b, 1998), Tibshirani (2014)) offer the following perspective: linear smoothers
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cannot cope with functions in Fk(C) that have spatially inhomogeneous smoothness, i.e.,
that vary smoothly at some locations and vary wildly at others. Linear smoothers can only
produce estimates that are smooth throughout, or wiggly throughout, but not a mix of the
two. They can hence perform well over smaller, more homogeneous function classes like
Sobolev or Holder classes, but not larger ones like total variation classes (or more gener-
ally, Besov and Triebel classes), and for these, one must use more sophisticated, nonlinear
techniques. A motivating question: does such a gap persist in higher dimensions, between
optimal nonlinear and linear estimators, and if so, how big is it? How about the same
question in additive models? We attempt to answer these questions in the rest of the
document.

1.3 Preview, Summary and Outline

We extend the ideas developed in univariate trend filtering to multivariate data and hy-
pothesis testing.

1.3.1 Trend filtering on Grids

Figure 1.3: Grid graphs in one dimension and two dimensions

In our first extension, we estimate a mean parameter defined over the nodes of a d-
dimensional grid graph G = (V,E), with equal side lengths N = n1/d; see Figure 1.3. Let
us enumerate V = {1, . . . , n} and E = {e1, . . . , em}, and consider data y = (y1, . . . , yn) ∈ Rn
observed over V , distributed as

yi ∼ N(θ0,i, σ
2), independently, for i ∈ [n], (1.15)

where θ0 = (θ0,1, . . . , θ0,n) ∈ Rn is the mean parameter to be estimated, and σ2 > 0
the common noise variance. We will assume that θ0 displays some kind of regularity or
smoothness over G, and are specifically interested in notions of regularity built around
graph total variation. Image denoising problems can be directly formulated in this setup.
In Figure 1.4, the left figure shows the familiar cameraman image with added Gaussian
noise and the right figure shows the image obtained by graph TV denoising.

Although TV denoising has local adaptivity property, it exhibits “staircasing” artifacts,
as it is restricted to fitting piecewise constant functions. See Figure 1.5. Higher-order
TV regularization methods, which, loosely speaking, consider the TV of derivatives of the
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Noisy image After denoising

Figure 1.4: Noisy “cameraman” image and its denoised version.

Underlying signal and data
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TV denoising Kronecker trend filtering k=2

Figure 1.5: Left: an underlying signal θ0 and associated data y (shown as black points). Middle and
right: TV denoising (2.3), and Kronecker trend filtering (2.7) of order k = 2 fit to y, respectively
with penalty operator as described in Section 2.1.

parameter avoid such artifacts while maintaining local adaptivity. We study two such esti-
mators — Graph Trend Filtering (GTF) (Wang et al. 2016) and Kronecker Trend Filtering
(KTF) (analyzed in Sadhanala et al. (2017)) — which are of the form

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ‖∆θ‖1,

for a matrix ∆ ∈ Rr×n, referred to as the penalty operator for an appropriate integer r.
The penalty operator in the estimators captures different notions of kth order (discrete)
TV on grids. In 1-dimension, kth order KTF reduces to trend filtering of the same order in
(1.4). Under appropriate scaling of ‖∆θ0‖1 where θ0 is the true signal, we show that these
estimators achieve a minimax optimal rate of n−(2k+2)/(d+max{d,2k+2}) modulo log n factors
on d-dimensional grids. Extending classic results in 1d from Donoho & Johnstone (1998),
we show that no linear smoother can achieve this rate. Remarkably, in the low-smoothness
regime of 2k + 2 ≤ d, we see that no linear smoother is consistent!
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1.3.2 Additive model with Trend filtering

A classical way to tackle the curse of dimensionality is to consider an additive model for
the regression function. We study additive models whose components are built from uni-
variate trend filtering. In Figure 1.6, additive trend filtering displays better fitting of to
inhomogeneous functions than additive smoothing splines; the details of the simulation are
in Chapter 3.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Trend filtering, j = 1

x1

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

Trend filtering, j = 2

x2

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

Trend filtering, j = 3

x3

Total df = 42.29

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Smoothing spline, j = 1

x1

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

Smoothing spline, j = 2

x2

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

Smoothing spline, j = 3

x3

Total df = 85.20

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Smoothing spline, j = 1

x1

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

Smoothing spline, j = 2

x2

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

Smoothing spline, j = 3

x3

Total df = 42.03

Figure 1.6: Comparing estimates from additive trend filtering (3.4) (of quadratic order) and additive
smoothing splines (3.1) (of cubic order), for a simulation with n = 3000 and d = 3, as described in
Section 3.1.4. In each row, the underlying component functions are plotted in black.
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We study the properties of our additive trend filtering estimator

θ̂ ∈
argmin

θ1,...,θd∈Rn

1

2

∥∥∥∥Y − Ȳ 1− d∑
j=1

θj

∥∥∥∥2

2

+ λ

d∑
j=1

∥∥D(Xj ,k+1)Sjθj
∥∥

1

subject to 1
T θj = 0, j ∈ [d]

where Y −Ȳ 1 is the centered response vector, λ ≥ 0 is a tuning regularization parameter, Sj
is a permutation matrix such that it sorts the vector Xj in increasing order. In Chapter 3, we
derive error bounds for this estimator. Assuming that the underlying regression function is
additive, denoted by f0 =

∑d
j=1 f0j , and that TV(f

(k)
0j ) is bounded, for j ∈ [d], we prove that

the kth order additive trend filtering estimator converges to f0 at the rate dn−(2k+2)/(2k+3).
Note that this is d times the optimal univariate error rate. We prove that this rate is optimal
in a minimax sense, and also show that additive models built from linear smoothers of any
kind are suboptimal. Also, we devise a new parallel backfitting algorithm by looking at the
alternating projections scheme in the dual of the additive trend filtering problem above.

1.3.3 Higher-order KS test

It is well-known that the general purpose classical KS test is not very sensitive to tail
differences. To remedy this, we propose and study a kth-order KS test defined by the test
statistic

sup
f∈Fk

∣∣∣∣ 1

m

m∑
i=1

f(Xi)− 1

n

n∑
j=1

f(Y j)

∣∣∣∣
where X1, . . . , Xm ∈ R and Y 1, . . . , Y n ∈ R are samples from two distributions and

Fk =
{
f : TV(f (k)) ≤ 1,

f (j)(0) = 0, j ∈ {0} ∪ [k − 1],

f (k)(0+) = 0 or f (k)(0−) = 0
}
.

Here f (k)(0+) and f (k)(0−) denote one-sided limits at 0 from above and below, respectively.
The zero derivative conditions at 0 ensure that the functions in Fk do not grow faster than
x 7→ |x|k/k!. With k = 0, it is well-known that this test statistic reduces to the KS statistic.

Time complexity for computing the statistic is O((m + n) log (m+ n)) for k ≤ 5 –
same as the time complexity for sorting the joint sample. For k ≥ 6, we can approximate
the statistic to ε accuracy in an additional O((m + n) log 1

ε ) time. We derive asymptotic
null distribution of the test statistic and also concentration bounds on test statistic in the
alternative case. We empirically show that the test has superior power compared to KS and
other familiar two-sample tests in some cases with heavy tails.

1.3.4 Outline

We discuss the problem of nonparametric regression on grids in Chapter 2. We define the
total variation based estimators and show our results from Sadhanala et al. (2016) and
Sadhanala et al. (2017) and also a few new results. The additive model with trend filtering
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is discussed in Chapter 3. We state the results from Sadhanala & Tibshirani (2017) and
discuss some natural ways of extending the work. In Chapter 4, we discuss the higher-order
extension to Kolmogorov-Smirnov two sample test from Sadhanala et al. (2019). Most of
the proofs and other details are given in appendices.





Chapter 2

Trend filtering on Grids

In this chapter, we focus on estimation of a mean parameter defined over the nodes of a
d-dimensional grid graph G = (V,E), with equal side lengths N = n1/d. Let us enumerate
V = {1, . . . , n} and E = {e1, . . . , em}, and consider data y = (y1, . . . , yn) ∈ Rn observed
over V , distributed as

yi ∼ N(θ0,i, σ
2), independently, for i = 1, . . . , n, (2.1)

where θ0 = (θ0,1, . . . , θ0,n) ∈ Rn is the mean parameter to be estimated, and σ2 > 0
the common noise variance. We will assume that θ0 displays some kind of regularity or
smoothness over G, and are specifically interested in notions of regularity built around on
the total variation (TV) operator

‖Dθ‖1 =
∑

(i,j)∈E

|θi − θj |, (2.2)

defined with respect to G, where D ∈ Rm×n is the edge incidence matrix of G, which has
`th row D` = (0, . . . ,−1, . . . , 1, . . . , 0), with −1 in location i and 1 in location j, provided
that the `th edge is e` = (i, j) with i < j. There is an extensive literature on estimators
based on TV regularization, both in Euclidean spaces and over graphs. Higher-order TV
regularization, which, loosely speaking, considers the TV of derivatives of the parameter, is
much less understood, especially over graphs. We develop statistical theory for higher-order
TV smoothness classes, and we analyze associated trend filtering methods, which are seen
to achieve the minimax optimal estimation error rate over such classes.

Motivation. TV denoising over grid graphs, specifically 1d and 2d grid graphs, is a well-
studied problem in signal processing, statistics, and machine learning, some key references
being Rudin et al. (1992), Chambolle & Lions (1997), Tibshirani et al. (2005). Given data
y ∈ Rn as per the setup described above, the TV denoising or fused lasso estimator over
the grid G is defined as

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ‖Dθ‖1, (2.3)

where λ ≥ 0 is a tuning parameter. The TV denoising estimator generalizes seamlessly
to arbitrary graphs. The problem of denoising over grids, the setting we focus on, is of

13
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particular relevance to a number of important applications, e.g., in time series analysis, and
image and video processing.

A strength of the nonlinear TV denoising estimator in (2.3)—where by “nonlinear”,
we mean that θ̂ is nonlinear as a function of y—is that it can adapt to heterogeneity in
the local level of smoothness of the underlying signal θ0. Moreover, it adapts to such
heterogeneity at an extent that is beyond what linear estimators are capable of capturing.
This principle is widely evident in practice and has been championed by many authors
in the signal processing literature. It is also backed by statistical theory, i.e., Donoho &
Johnstone (1998), Mammen & van de Geer (1997), Tibshirani (2014) in the 1d setting.

Another pair of methods that we refer to are Laplacian smoothing and Laplacian eigen-
maps, which are most commonly seen in the context of clustering, dimensionality reduction,
and semi-supervised learning, but are also useful tools for estimation in a regression setting
like ours (e.g., Belkin & Niyogi (2002, 2003), Smola & Kondor (2003), Zhu et al. (2003),
Belkin & Niyogi (2004), Zhou et al. (2005), Belkin et al. (2005), Belkin & Niyogi (2005),
Ando & Zhang (2006), Sharpnack & Singh (2010)). The Laplacian smoothing estimator is
given by

θ̂LS = argmin
θ∈Rn

‖y − θ‖22 + λ‖Dθ‖22, i.e., θ̂LS = (I + λL)−1y, (2.4)

for a tuning parameter λ ≥ 0, where in the second expression we have written θ̂LS in
closed-form (this is possible since it is the minimizer of a convex quadratic). For Laplacian
eigenmaps, we must introduce the eigendecomposition of the graph Laplacian, L = V ΣV T ,
where Σ = diag(ρ1, . . . , ρn) with 0 = ρ1 < ρ2 ≤ . . . ≤ ρn, and where V = [V1, V2, . . . , Vn] ∈
Rn×n has orthonormal columns. The Laplacian eigenmaps estimator is

θ̂LE = V[k]V
T

[k]y, where V[k] = [V1, V2, . . . , Vk] ∈ Rn×k, (2.5)

where now k ∈ {1, . . . , n} acts as a tuning parameter.
Linear smoothers such as Laplacian smoothing and Laplacian eigenmaps are appealing

because they are (relatively) simple: they are just linear transformations of the data y. In-
deed, as we are considering G to be a grid, both estimators in (2.4), (2.5) can be computed
very quickly, in nearly O(n) time, since the columns of V here are discrete cosine transform
(DCT) basis vectors when d = 1, or Kronecker products thereof, when d ≥ 2 (e.g., Conte &
de Boor (1980), Godunov & Ryabenkii (1987), Kunsch (1994), Ng et al. (1999), Wang et al.
(2008)). The TV denoising estimator in (2.3), on the other hand, cannot be expressed in
closed-form, and is much more difficult to compute, especially when d ≥ 2, though several
advances have been made over the years (see the references above, and in particular Bar-
bero & Sra (2018) for an efficient operator-splitting algorithm and nice literature survey).
Importantly, these computational difficulties are often worth it: TV denoising often prac-
tically outperforms `2-regularized estimators like Laplacian smoothing (and also Laplacian
eigenmaps) in image denoising tasks, as it is able to better preserve sharp edges and object
boundaries (this is now widely accepted, early references are, e.g., Acar & Vogel (1994),
Dobson & Santosa (1996), Chambolle & Lions (1997)). See Figure 2.1 for an example, using
the often-studied “cameraman” image.

In the 1d setting, classical theory from nonparametric statistics draws a clear distinction
between the performance of TV denoising and estimators like Laplacian smoothing and
Laplacian eigenmaps. Perhaps surprisingly, this theory has not yet been fully developed



15

Noisy image Laplacian smoothing TV denoising

Figure 2.1: Comparison of Laplacian smoothing and TV denoising for the common “cameraman”
image. TV denoising provides a more visually appealing result, and also achieves about a 35%
reduction in MSE compared to Laplacian smoothing (MSE being measured to the original image).
Both methods were tuned optimally.

in dimensions d ≥ 2. Arguably, the comparison between TV denoising and Laplacian
smoothing and Laplacian eigenmaps is even more interesting in higher dimensions, because
the computational gap between the methods is even larger (the former method being much
more expensive, say in 2d and 3d, than the latter two). Shortly, we review the 1d theory,
and what is known in d-dimensions, for d ≥ 2.

Note that the TV denoising estimator θ̂ in (2.3) takes a piecewise constant structure
by design, i.e., at many adjacent pairs (i, j) ∈ E we will have θ̂i = θ̂j , and this will be
generally more common for larger λ. For some problems, this structure may not be ideal
and we might instead seek a piecewise smooth estimator, that is still able to cope with
local changes in the underlying level of smoothness, but offers a richer structure (beyond a
simple constant structure) for the base trend. In a 1d setting, this is accomplished by trend
filtering methods, which move from piecewise constant to piecewise polynomial structure,
via TV regularization of discrete derivatives of the parameter Steidl et al. (2006), Kim et al.
(2009), Tibshirani (2014). An extension of trend filtering to general graphs was developed
in Wang et al. (2016). In what follows, we study the statistical properties of this graph
trend filtering method over grids, and we propose and analyze a more specialized trend
filtering estimator for grids based on the idea that something like a Euclidean coordinate
system is available at any (interior) node. See Figure 2.2 for a motivating illustration.

Related work. The literature on TV denoising is enormous and we cannot give a com-
prehensive review, but only some brief highlights. Important methodological and computa-
tional contributions are found in Rudin et al. (1992), Chambolle & Lions (1997), Tibshirani
et al. (2005), Chambolle & Darbon (2009), Hoefling (2010), Chambolle & Pock (2011), Tib-
shirani & Taylor (2011), Kovac & Smith (2011), Condat (2012), Johnson (2013), Barbero &
Sra (2018), Tansey & Scott (2015), and notable theoretical contributions are found in Mam-
men & van de Geer (1997), Rinaldo (2009), Harchaoui & Levy-Leduc (2010), Sharpnack
et al. (2012), Hutter & Rigollet (2016), Padilla et al. (2016). The literature on higher-order
TV-based methods is more sparse and more concentrated on the 1d setting. Trend filtering
methods in 1d were pioneered in Steidl et al. (2006), Kim et al. (2009), and analyzed sta-
tistically in Tibshirani (2014), where they were also shown to be asymptotically equivalent



16
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TV denoising Graph trend filtering Kronecker trend filtering k=2

Figure 2.2: Top left: an underlying signal θ0 and associated data y (shown as black points). Top
middle and top right: Laplacian smoothing fit to y, at large and small tuning parameter values,
respectively. Bottom left, middle, and right: TV denoising (2.3), graph trend filtering (2.7), and
Kronecker trend filtering (2.7) fit to y, respectively (the latter two are of order k = 2, with penalty
operators as described in Section 2.1). In order to capture the larger of the two peaks, Lapla-
cian smoothing must significantly undersmooth throughout; with more regularization, it oversmooths
throughout. TV denoising is able to adapt to heterogeneity in the smoothness of the underlying
signal, but exhibits “staircasing” artifacts, as it is restricted to fitting piecewise constant functions.
Graph and Kronecker trend filtering overcome this, while maintaining local adaptivity.

to locally adaptive regression splines of Mammen & van de Geer (1997). A generalization
of trend filtering that operates over an arbitrary graph structure was given in Wang et al.
(2016). Trend filtering is not the only avenue for higher-order TV regularization: the sig-
nal processing community has also studied higher-order variants of TV, see, e.g., Poschl &
Scherzer (2008), Bredies et al. (2010). The construction of the discrete versions of these
higher-order TV operators is somewhat similar to that in Wang et al. (2016) as well our
Kronecker trend filtering proposal, however, the focus of the work is quite different.

Summary of contributions. An overview of our contributions is given below.

• We propose a new method for trend filtering over grid graphs that we call Kronecker
trend filtering (KTF), and compare its properties to the more general graph trend
filtering (GTF) proposal of Wang et al. (2016).
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• For d-dimensional grids, we derive estimation error rates for GTF and KTF, each of
these rates being a function of the regularizer evaluated at the mean θ0.

• Again for d-dimensional grids, we derive minimax lower bounds for estimation over
two higher-order TV classes defined using the operators from GTF and KTF. These
lower bounds match the upper bounds in rate (apart from log factors) derived for GTF
and KTF, ensuring that each method is minimax rate optimal (modulo log factors)
for its own notion of regularity. Also, the KTF class contains a Holder class of an
appropriate order, and KTF is seen to be rate optimal (modulo log factors) for this
more homogeneous class as well.

• We also derive minimax linear rates over these higher-order TV classes and show that
linear smoothers cannot achieve the minimax optimal rate when 2k + 2 < d.

Notation. Given a d-dimensional grid G = (V,E), where V = {1, . . . , n}, as before, we
will sometimes index a parameter θ ∈ Rn defined over the nodes in the following convenient
way. Letting N = n1/d and Zd = {(i1/N, . . . , id/N) : i1, . . . , id ∈ {1, . . . , N}} ⊆ [0, 1]d, we
will index the components of θ by their lattice positions, denoted θ(x), x ∈ Zd. Further, for
each j = 1, . . . , d, we will define the discrete derivative of θ in the jth coordinate direction
at a location x by

(Dxjθ)(x) =

{
θ(x+ ej/N)− θ(x) if x, x+ ej/N ∈ Zd,
0 else.

(2.6)

Naturally, we denote by Dxjθ ∈ Rn the vector with components (Dxjθ)(x), x ∈ Zd. Higher-
order discrete derivatives are simply defined by repeated application of the above definition.
We use abbreviations

(Dx2j
θ)(x) = (Dxj (Dxjθ))(x) for j ∈ [d],

(Dxj ,x`θ)(x) = (Dxj (Dx`θ))(x) for j, ` ∈ [d],

and so on.

Given an estimator θ̂ of the mean parameter θ0 in (2.1), and K ⊆ Rn, the quantity

MSE(θ̂, θ0) =
1

n
‖θ̂ − θ0‖22

is called the mean squared error (MSE) of θ; we will also call E[MSE(θ̂, θ0)] the risk of θ̂.
The minimax risk and minimax linear risk over K are

R(K) = inf
θ̂

sup
θ0∈K

E
[
MSE(θ̂, θ0)

]
and RL(K) = inf

θ̂ linear
sup
θ0∈K

E
[
MSE(θ̂, θ0)

]
where the infimum is taken over all estimators θ̂ for minimax risk and over only estimators
linear in y for minimax linear risk.
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2.1 Trend filtering methods

Graph trend filtering. To review the family of estimators developed in Wang et al.
(2016), we start by introducing a general-form estimator called the generalized lasso signal
approximator Tibshirani & Taylor (2011),

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ‖∆θ‖1, (2.7)

for a matrix ∆ ∈ Rr×n, referred to as the penalty operator. For an integer k ≥ 0, Wang
et al. (2016) defined the graph trend filtering (GTF) estimator of order k by (2.7), with the
penalty operator being

∆(k+1) =

{
DLk/2 for k even,

L(k+1)/2 for k odd.
(2.8)

Here, as before, we use D for the edge incidence matrix of G. We also use L = DTD for
the graph Laplacian matrix of G. The intuition behind the above definition is that ∆(k+1)θ
gives something roughly like the (k + 1)st order discrete derivatives of θ over the graph G.

Note that the GTF estimator reduces to TV denoising in (2.3) when k = 0. For any
signal θ ∈ Rn, we can write ‖∆(k+1)θ‖1 =

∑
x∈Zd dx, where at all points x ∈ Zd (except for

those close to the boundary),

dx =



d∑
j1=1

∣∣∣∣∣
d∑

j2,...,jq=1

(
Dxj1 ,x

2
j2
,...,x2jq

θ
)

(x)

∣∣∣∣∣ for k even, where q = k/2,∣∣∣∣∣
d∑

j1,...,jq=1

(
Dx2j1

,x2j2
,...,x2jq

θ
)

(x)

∣∣∣∣∣ for k odd, where q = (k + 1)/2.

(2.9)

Written in this form, it appears that the GTF operator ∆(k+1) aggregates derivatives in
somewhat of an unnatural way. But we must remember that for a general graph structure,
only first derivatives and divergences have obvious discrete analogs—given by application
of D and L, respectively.

Kronecker trend filtering. There is a natural alternative to the GTF penalty operator
that takes advantage of the Euclidean-like structure available at the (interior) nodes of a
grid graph. At a point x ∈ Zd (not close to the boundary), consider using

dx =
d∑
j=1

∣∣(Dxk+1
j

θ
)
(x)
∣∣ (2.10)

as a basic building block for penalizing derivatives, rather than (2.9). This gives rise to a
method we call Kronecker trend filtering (KTF), which for an integer order k ≥ 0 is defined
by (2.7), but now with the choice of penalty operator

∆̃(k+1) =


D

(k+1)
1d ⊗ I ⊗ · · · ⊗ I

I ⊗D(k+1)
1d ⊗ · · · ⊗ I

...

I ⊗ I ⊗ · · · ⊗D(k+1)
1d

 . (2.11)
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Here, D
(k+1)
1d ∈ R(N−k−1)×N is the 1d discrete derivative operator of order k+ 1, I ∈ RN×N

is the identity matrix, and A ⊗ B is the Kronecker product of matrices A,B. Each group
of rows in (2.11) features a total of d− 1 Kronecker products.

KTF and GTF can be solved using a standard quadratic programming solver on the
dual of (2.7) with appropriate penalty operators. The regularization parameter λ is chosen
by cross-validation in practice. KTF reduces to TV denoising in (2.3) when k = 0, and
thus also to GTF with k = 0. But for k ≥ 1, GTF and KTF are different estimators.
A look at the action of their penalty operators, as displayed in (2.9), (2.10) reveals some
of their differences. For example, we see that GTF considers mixed derivatives of total
order k + 1, but KTF only considers directional derivatives of order k + 1 that are parallel
to the coordinate axes. Also, GTF penalizes sums of derivatives, whereas KTF penalizes
individual ones.

More differences between GTF and KTF have to do with the structure of their estimates,
as we discuss next. Another subtle difference lies in how the GTF and KTF operators (2.8),
(2.11) relate to more classical notions of smoothness, particularly, Holder smoothness. This
is covered in Section 2.4.

2.2 Structure of estimates

It is straightforward to see that the GTF operator (2.8) has a 1-dimensional null space,
spanned by 1 = (1, . . . , 1) ∈ Rn. This means that GTF lets constant signals pass through
unpenalized, but nothing else; or, in other words, it preserves the projection of y onto the
space of constant signals, ȳ1, but nothing else. The KTF operator, meanwhile, has a much
richer null space.

Lemma 2.1. The null space of the KTF operator (2.11) has dimension (k + 1)d, and it is
spanned by a polynomial basis made up of elements

p(x) = xa11 x
a2
2 · · ·x

ad
d , x ∈ Zd,

where a1, . . . , ad ∈ {0, . . . , k}.

The lemma shows that KTF preserves the projection of y onto the space of polynomials
of max degree k, i.e., lets much more than just constant signals pass through unpenalized.
The proofs of all results in this chapter including this lemma are in Appendix A.

Beyond the differences in these base trends (represented by their null spaces), GTF
and KTF admit estimates with similar but generally different structures. KTF has the
advantage that this structure is more transparent: its estimates are piecewise polynomial
functions of max degree k, with generally fewer pieces for larger λ. This is demonstrated
by a functional representation for KTF, given next.

Lemma 2.2. Let hi : [0, 1]→ R, i = 1, . . . , N be the (univariate) falling factorial functions
(1.7) of order k, defined over knots 1/N, 2/N, . . . , 1. Let Hd be the space spanned by all
d-wise tensor products of falling factorial functions, i.e., Hd contains f : [0, 1]d → R of the
form

f(x) =
N∑

i1,...,id=1

αi1,...,idhi1(x)hi2(x2) · · ·hid(xd), x ∈ [0, 1]d,
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for coefficients α ∈ Rn (whose components we index by αi1,...,id , for i1, . . . , id = 1, . . . , N).
Then the KTF estimator defined in (2.7), (2.11) is equivalent to the optimization problem

f̂ = argmin
f∈Hd

1

2

∑
x∈Zd

(
y(x)− f(x)

)2
+ λ

d∑
j=1

∑
x−j∈Zd−1

TV

(
∂kf(·, x−j)

∂xkj

)
, (2.12)

where f(·, x−j) denotes f as function of the jth dimension with all other dimensions fixed
at x−j , ∂

k/∂xkj (·) denotes the kth partial weak derivative operator with respect to xj , for
j = 1, . . . , d. The discrete (2.7), (2.11) and functional (2.12) representations are equivalent
in that f̂ and θ̂ match at all grid locations x ∈ Zd.

Aside from shedding light on the structure of KTF solutions, the functional optimization
problem in (2.12) is of practical importance: the function f̂ is defined over all of [0, 1]d (as
opposed to θ̂, which is of course only defined on the grid Zd) and thus we may use it to
interpolate the KTF estimate to non-grid locations. It is not clear to us that a functional
representation as in (2.12) (or even a sensible interpolation strategy) is available for GTF
on d-dimensional grids.

2.3 Upper bounds on estimation error

In this section, we derive upper bounds on the estimation error of GTF and KTF for d-
dimensional grids where d ≥ 2. Upper bounds for generalized lasso estimators were studied
in Wang et al. (2016), and we will leverage one of their key results, which is based on what
these authors call incoherence of the left singular vectors of the penalty operator ∆. A
slightly refined version of this result is stated below.

Theorem 2.1 (Theorem 6 in Wang et al. (2016)). Suppose that ∆ ∈ Rr×n has rank q, and
denote by ξ1 ≤ . . . ≤ ξq its nonzero singular values. Also let u1, . . . , uq be the corresponding
left singular vectors. Assume that these vectors, except for the first i0, are incoherent,
meaning that for a constant µ ≥ 1,

‖ui‖∞ ≤ µ/
√
n, i = i0 + 1, . . . , q,

Then for λ � µ
√

(log r/n)
∑q

i=i0+1 ξ
−2
i , the generalized lasso estimator θ̂ in (2.7) satisfies

MSE(θ̂, θ0) = OP

(
nullity(∆)

n
+
i0
n

+
µ

n

√√√√ log r

n

q∑
i=i0+1

1

ξ2
i

· ‖∆θ0‖1

)
.

For GTF and KTF, we will apply this result, balancing an appropriate choice of i0 with
the partial sum of reciprocal squared singular values

∑q
i=i0+1 ξ

−2
i . The main challenge is in

establishing incoherence of the singular vectors.

2.3.1 Error bounds for graph trend filtering

The authors in Wang et al. (2016) have already used Theorem 2.1 (their Theorem 6) in
order to derive error rates for GTF on 2d grids. However, their results (specifically, their
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Corollary 8) can be refined using a tighter upper bound for the partial sum term
∑q

i=i0+1 ξ
−2
i

as we show in Sadhanala et al. (2017). We give a more general error rate that applies that
applies to all d ≥ 2 and all k ≥ 0. No real further tightening is possible, since, as we show
later, the results below match the minimax lower bound in rate, up to log factors.

Theorem 2.2. Assume that d ≥ 1. For non-negative integers k, denote Cn = ‖∆(k+1)θ0‖1
where ∆(k+1) is the GTF operator defined in (2.8). Then GTF estimator in (2.7), (2.8)
satisfies

MSE(θ̂, θ0) = OP

(
1

n
+
λ

n
Cn

)
.

with

λ �


√

log n 2k + 2 < d

log n 2k + 2 = d

(log n)
d

2k+2+d
(
n
Cn

) 2k+2−d
2k+2+d 2k + 2 > d.

The result for the TV denoising case d ≥ 2, k = 0 in Theorem 2.2 was already established
by Hutter & Rigollet (2016). In Sadhanala et al. (2017) we establish the result for the case
d = 2, k ≥ 1. The above result is general, in the sense that it is applicable for all d ≥ 1, k ≥ 0.
However, in the 1d case, the above bound is weaker than known results from Mammen &

van de Geer (1997), Tibshirani (2014) by a factor of (log n)
1

2k+3 .

Remark 2.1. It is interesting to note that the case 2k+ 2 ≤ d appears to be quite special,
in that the GTF estimator is adaptive to the underlying smoothness parameter Cn (the
prescribed choice of tuning parameter λ �

√
log n when 2k + 2 < d and λ � log n when

2k + 2 = d does not depend on Cn).

With canonical scaling of Cn, we see the following error bound.

Corollary 2.1. With canonical scaling Cn = n1− k+1
d , the GTF estimator with λ scaling as

in Theorem 2.2 satisfies

sup
θ0∈T kd (Cn)

MSE(θ̂, θ0) =


OP

(
n−

k+1
d
√

log n
)

2k + 2 < d

OP

(
n−

k+1
d log n

)
2k + 2 = d

OP

(
n−

2k+2
2k+2+d (log n)

d
2k+2+d

)
2k + 2 > d.

The technique for upper bounding
∑q

i=i0+1 ξ
−2
i in the proof of Theorem 2.2 can be

roughly explained as follows. The GTF operator ∆(k+1) on a d-dimensional grid has squared
singular values: ( d∑

j=1

4 sin2 π(ij − 1)

2N

)k+1

, i1, . . . , id ∈ [N ].

We can upper bound the sum of squared reciprocal singular values with an integral over
[0, 1]2, make use of the identity sinx ≥ x/2 for small enough x, and then switch to polar
coordinates to calculate the integral (similar to Hutter & Rigollet (2016), in analyzing TV
denoising). The arguments to verify incoherence of the left singular vectors of ∆(k+1) are
themselves somewhat delicate, but were already given in Wang et al. (2016) in the case of
2d grids. We generalize this incoherence result for d ≥ 3. For details, see Appendix A.3.1.
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2.3.2 Error bounds for Kronecker trend filtering

In comparison to the GTF case, the application of Theorem 2.1 to KTF is a much more dif-
ficult task, because (to the best of our knowledge) the KTF operator ∆̃(k+1) does not admit
closed-form expressions for its singular values and vectors. This is true in any dimension
(i.e., even for d = 1, where KTF reduces to univariate trend filtering). As it turns out, the
singular values can be handled with a relatively straightforward application of the Cauchy
interlacing theorem. It is establishing the incoherence of the singular vectors that proves to
be the real challenge. This is accomplished by leveraging specialized approximation bounds
for the eigenvectors of Toeplitz matrices from Bogoya et al. (2016).

Theorem 2.3. Assume that d ≥ 1. For non-negative integers k, denote Cn = ‖∆̃(k+1)θ0‖1.
where ∆̃(k+1) is the KTF operator defined in (2.11). Then KTF estimator in (2.7), (2.11)
satisfies

MSE(θ̂, θ0) = OP

(
1

n
+
λ

n
Cn

)
.

with

λ �


√

log n 2k + 2 < d

log n 2k + 2 = d

(log n)
d

2k+2+d
(
n
Cn

) 2k+2−d
2k+2+d 2k + 2 > d.

Again, with canonical scaling of Cn, the error bound is as follows.

Corollary 2.2. With canonical scaling Cn = n1− k+1
d , the KTF estimator with λ scaling as

in Theorem 2.3 satisfies

sup
θ0∈T nk (Cn)

MSE(θ̂, θ0) =


OP

(
n−

k+1
d
√

log n
)

2k + 2 < d

OP

(
n−

k+1
d log n

)
2k + 2 = d

OP

(
n−

2k+2
2k+2+d (log n)

d
2k+2+d

)
2k + 2 > d.

The proof of Theorem 2.3 is in Appendix A.3.2. The results in Theorems 2.2 and 2.3 match,
in terms of their dependence on n,Cn. As we will see in the next section, the smoothness
classes defined by the GTF and KTF operators are similar, though not exactly the same,
and each GTF and KTF is minimax rate optimal with respect to its own smoothness class,
up to log factors. The remarks about GTF following Theorem 2.2 are applicable to KTF
as well, so we do not repeat them here.

2.4 Lower bounds on estimation error

We present lower bounds on the minimax estimation error over smoothness classes defined
by the operators from GTF (2.8) and KTF (2.11), denoted

T kd (Cn) = {θ ∈ Rn : ‖∆(k+1)θ‖1 ≤ Cn}, (2.13)

T̃ kd (Cn) = {θ ∈ Rn : ‖∆̃(k+1)θ‖1 ≤ Cn}, (2.14)
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respectively (where the subscripts mark the dependence on the dimension d of the under-
lying grid graph). Before we derive such lower bounds, we examine embeddings of (the
discretization of) the class of Holder smooth functions into the GTF and KTF classes, both
to understand the nature of these new classes, and to define what we call a “canonical”
scaling for the radius parameter Cn.

Embedding of Holder spaces and canonical scaling. Given an integer k ≥ 0 and L >
0, recall that the Holder class H(k + 1, L; [0, 1]d) contains k times differentiable functions
f : [0, 1]d → R, such that for all integers α1, . . . , αd ≥ 0 with α1 + · · ·+ αd = k,∣∣∣∣ ∂kf(x)

∂xα1
1 · · · ∂x

αd
d

− ∂kf(z)

∂xα1
1 · · · ∂x

αd
d

∣∣∣∣ ≤ L‖x− z‖2, for all x, z ∈ [0, 1]d.

To compare Holder smoothness with the GTF and KTF classes defined in (2.13), (2.14),
we discretize the class H(k + 1, L; [0, 1]d) by considering function evaluations over the grid
Zd, defining

Hk+1
d (L) =

{
θ ∈ Rn : θ(x) = f(x), x ∈ Zd, for some f ∈ H(k + 1, L; [0, 1]d)

}
. (2.15)

Now we examine how the (discretized) Holder class in (2.15) compares to the GTF and
KTF classes in (2.13), (2.14).

Beginning with a comparison to KTF, fix θ ∈ Hk+1
d (L), corresponding to evaluations of

f ∈ H(k + 1, L; [0, 1]d), and consider a point x ∈ Zd that is away from the boundary. Then
the KTF penalty at x is∣∣(Dxk+1

j
θ
)
(x)
∣∣ =

∣∣(Dxkj
θ
)
(x+ ej/N)−

(
Dxkj

θ
)
(x)
∣∣

≤ Nk

∣∣∣∣ ∂k∂xkj f(x+ ej/N)− ∂k

∂xkj
f(x)

∣∣∣∣+Nkδ(N)

≤ LNk−1 + cLNk−1. (2.16)

In the second line above, we define δ(N) to be the sum of absolute errors in the discrete
approximations to the partial derivatives (i.e., the error in approximating ∂kf(x)/∂xkj by
(Dxkj

θ)(x)/Nk, and similarly at x+ ej/N). In the third line, we use Holder smoothness to
upper bound the first term, and we use standard numerical analysis (details in Appendix A)
for the second term to ensure that δ(N) ≤ cL/N for a constant c > 0 depending only on
k. Summing the bound in (2.16) over x ∈ Zd as appropriate gives a uniform bound on the
KTF penalty at θ, and leads to the next result.

Lemma 2.3. For any integers k ≥ 0, d ≥ 1, the (discretized) Holder and KTF classes
defined in (2.15), (2.14) satisfy Hk+1

d (L) ⊆ T̃ kd (cLn1−(k+1)/d), where c > 0 is a constant
depending only on k.

This lemma has three purposes. First, it provides some supporting evidence that the
KTF class is an interesting smoothness class to study, as it shows the KTF class contains
(discretizations of) Holder smooth functions, which are a cornerstone of classical nonpara-
metric regression theory. In fact, this containment is strict and the KTF class contains
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more heterogeneous functions in it as well. Second, it leads us to define what we call the
canonical scaling Cn � n1−(k+1)/d for the radius of the KTF class (2.14). This will be help-
ful for interpreting our minimax lower bounds in what follows; at this scaling, note that
we have Hk+1

d (1) ⊆ T̃ kd (Cn). Third and finally, it gives us an easy way to establish lower
bounds on the minimax estimation error over KTF classes, by invoking well-known results
on minimax rates for Holder classes. This will be described shortly.

As for GTF, due to the lower order discrete derivatives for x on the boundary of the
grid Zd, the discretized Holder class is not contained in a similarly defined GTF class.

Lemma 2.4. For any integers k, d ≥ 1, there are elements in the (discretized) Holder class
Hk+1
d (1) in (2.15) that do not lie in the GTF class T kd (Cn) in (2.13) for arbitrarily large Cn.

The fact that GTF classes do not contain (discretized) Holder classes makes them seem
less natural (and perhaps, in a sense, less interesting) than KTF classes. In addition, it
means that we cannot use standard minimax theory for Holder classes to establish lower
bounds for the estimation error over GTF classes. However, as we will see next, we can
construct lower bounds for GTF classes via another (more purely geometric) embedding
strategy; interestingly, the resulting rates match the Holder rates, suggesting that, while
GTF classes do not contain all (discretized) Holder functions, they do contain “enough” of
these functions to admit the same lower bound rates.

We have the following lower bounds on the minimax rates over KTF and GTF classes.

Theorem 2.4. For any integers k ≥ 0, d ≥ 1, the minimax estimation error for GTF class
defined in (2.13) satisfies

R
(
T kd (Cn)

)
= Ω

(
σ2

n
+
Cn
n

+

(
Cn
n

) 2d
2k+2+d

)
.

Theorem 2.5. For any integers k ≥ 0, d ≥ 1, the minimax estimation error for KTF class
defined in (2.14) satisfies

R
(
T̃ kd (Cn)

)
= Ω

(
(k + 1)dσ2

n
+
Cn
n

+

(
Cn
n

) 2d
2k+2+d

)
.

The first terms in the two lower bounds are due to the nullity of the GTF and KTF
operators. We get the second terms by embedding `1-balls of appropriate size in the classes
T kd (Cn) and T kd (Cn), and using the lower bound results from Birge & Massart (2001) on `1-
balls. We derive the third terms in the two lower bounds in different ways. For KTF classes,
it follows from the Holder class embedding from Lemma 2.3 and classical minimax theory
for Holder classes Korostelev & Tsybakov (2003), Tsybakov (2009). For GTF classes, we
do not have this Holder class embedding; however, we can embed an ellipse, then rotate the
parameter space and embed a hypercube. The proofs of these theorems are in Appendices
A.5, A.5.2. Several remarks are in order.

Remark 2.2. For all d ≥ 2 and k ≥ 0, the lower bounds in Theorems 2.4,2.5, certify that
the upper bound rates in Theorems 2.2,2.3 are tight, modulo a log n factor.
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Remark 2.3. Plugging in the canonical scaling Cn � n1−(k+1)/d in Theorems 2.5 and taking
the dominant terms, we see that

R(T̃ kd (Cn)) =

{
Ω
(
n−

k+1
d

)
2k + 2 ≤ d

Ω
(
n−

2k+2
2k+2+d

)
2k + 2 > d.

The same lower bound holds for R(T kd (Cn)).

Remark 2.4. An immediate consequence of Theorem 2.3 and the Holder embedding in
Lemma 2.3 is that the KTF estimator achieves a rate (ignoring log factors) of n−(2k+2)/(2k+2+d)

over Hk+1
d (1). Since this matches the well-known lower bound rate for Holder class, we see

that KTF adapts automatically to Holder smooth signals, i.e., it achieves the optimal rate
(up to log factors) for the more homogeneous class Hk+1

d (1), for d ≥ 2 and all 2k + 2 ≥ d.
It is not clear that GTF shares this property.

2.5 Minimax bounds restricted to linear estimators

Next, we ask the question of whether the same minimax rate on the KTF and GTF classes
T̃d(Cn), Td(Cn) defined in (2.14), (2.13) can be achieved by linear smoothers — a simpler
class of commonly used estimators, including Laplacian eigenmaps, kernel smoothing and
so on. For illustration purposes, we first give the results in the case of TV denoising (that
is, k = 0) before stating the results for general k. Recall that for k = 0, T kd (Cn) is same as

T̃ kd (Cn) for any d, k, Cn.

Theorem 2.6. Denote dmax = 2d. Then

RL(Td(Cn)) ≥ σ2C2
n

C2
n + σ2d2

maxn
∨ σ

2

n
≥ 1

2

(
C2
n

d2
maxn

∧ σ2

)
∨ σ

2

n
. (2.17)

The proof relies on an elegant meta-theorem on minimax rates from Donoho et al.
(1990), which uses the concept of a “quadratically convex” set, whose minimax linear risk
is the same as that of its hardest rectangular subproblem.

Remark 2.5. When C2
n grows with n, but not too fast (scales as

√
n, at most), the lower

bound rate in (2.17) will be C2
n/n. Compared to the Cn/n minimax rate from Theorem 2.2

(ignoring log terms), we see a clear gap between optimal nonlinear and linear estimators.
In fact, under the canonical scaling Cn � n1−1/d, for any d ≥ 2, this gap is seemingly huge:
the lower bound for the minimax linear rate will be a constant, whereas the minimax rate
(ignoring log terms) will be n−1/d. This justifies the practical success of TV denoising over
linear smoothers such as Laplacian smoothing.

The lower bound in Theorem 2.6 is essentially tight, and remarkably, it is certified by
analyzing two trivial linear estimators: the mean estimator and the identity estimator.

Lemma 2.5. Let Mn denote the largest column norm of D† where D† denotes the pseudo-
inverse of the GTF penalty operator in d-dimensions for k = 0. For the mean estimator
θ̂mean = ȳ1,

sup
θ0∈Td(Cn)

E
[
MSE(θ̂mean, θ0)

]
≤ σ2 + C2

nM
2
n

n
.
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From Proposition 4 in Hutter & Rigollet (2016), we have Mn = O(
√

log n) when d = 2 and
Mn = O(1) when d ≥ 3.

The risk of the identity estimator θ̂id = y is clearly σ2. Combining this logic with Lemma
2.5 gives the upper bound RL(Td(Cn)) ≤ (σ2 + C2

nM
2
n)/n ∧ σ2. Comparing this with the

lower bound described in Remark 2.5, we see that the two rates basically match, modulo
the M2

n factor in the upper bound, which only provides an extra log n factor when d = 2.
The takeaway message: in the sense of max risk, the best linear smoother does not perform
much better than the trivial estimators.

Now we give the result for GTF classes of order k ≥ 0.

Theorem 2.7. Denote ∆ = ∆(k+1). Let κ = nullity(∆) = 1. The minimax linear rate of
the GTF class satisfies

RL(T kd (Cn)) ≥


min

{
σ2, κσ

2

n + cC
2
n
n

}
, if 2k + 2 ≤ d

min

{
σ2, κσ

2

n + c
(
C2
n
n

) d
2k+2

}
, if 2k + 2 > d.

(2.18)

for some constant c independent of n. If Cn = 0, then θ̂mean achieves this rate. If Cn > 0,
then the rate is attained by the linear smoother

ŷ =

(
I +

mσ2

C2
n

Lk+1

)−1

y

where m = d(n − n1−1/d) is the number of edges in the grid graph and Lk+1 = ∆T∆ is
graph Laplacian of the graph raised to k + 1. Further, in the case 2k + 2 ≤ d, the trivial
estimator θ̂mean satisfies

sup
θ0∈T kd (Cn)

E
[
MSE(θ̂mean, θ0)

]
≤
κσ2 + C2

nMn,k

n
,

where Mn,k = O(1) if 2k + 2 < d and Mn,k = O(log n) if 2k + 2 = d.

A similar result holds for kth order KTF classes. Instead of θ̂mean, the “trivial” estimator
in this case is the polynomial projection estimator

θ̂poly = P
null(∆̃(k+1))

y (2.19)

where Pnull(∆) is the matrix that projects onto the null space of ∆. If ∆ is the GTF
operator of any order k ≥ 0, note that the analogous projection estimator is simply the
mean estimator θ̂mean defined in Lemma 2.5.

Theorem 2.8. Denote ∆ = ∆̃(k+1). Let κ = nullity(∆) = (k + 1)d. The minimax linear
rate of the KTF class is

RL(T̃ kd (Cn)) �


min

{
σ2, κσ

2

n + C2
n
n

}
, if 2k + 2 ≤ d

min

{
σ2, κσ

2

n +
(
C2
n
n

) d
2k+2

}
, if 2k + 2 > d.

(2.20)
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If Cn = 0, then θ̂poly in (2.19) achieves this rate. If Cn > 0, then the rate is attained by the
linear smoother

ŷ =

(
I +

mσ2

C2
n

L(k+1)

)−1

y

where m = d(n − n1−1/d) is the number of edges in the grid graph and L(k+1) = ∆T∆.
Further, in the case 2k + 2 ≤ d, the trivial estimator θ̂poly satisfies

sup
θ0∈T̃ kd (Cn)

E
[
MSE(θ̂poly, θ0)

]
≤
κσ2 + C2

nMn,k

n
,

where Mn,k = O(1) if 2k + 2 < d and Mn,k = O(log n) if 2k + 2 = d.

Remark 2.6. Assume 2k + 2 ≤ d. Either the identity estimator, or the trivial estimator
θ̂mean ( θ̂poly for KTF) achieves the lower bound rate in (2.18) ((2.20) for KTF) up to a
factor Mn,k (which is O(1) when 2k + 2 < d and O(log n) when 2k + 2 = d).

Suboptimality of linear smoothers. Similar to the case k = 0, linear smoothers do
not perform as well as KTF on KTF classes for k ≥ 1. Consider the case 2k + 2 ≤ d.
If Cn grows with n (but grows slower than

√
n, then C2

n/n is the dominant lower bound
term for RL and we see that RL/R is larger than a factor of Cn. Plugging in the canonical
rate Cn � n1−(k+1)/d, we see that RL � σ2 because 2k + 2 ≤ d. In other words, all linear
smoothers fail to be consistent on KTF classes! The same remark is applicable for GTF
classes as well.

Now consider the other case 2k+ 2 > d. Assume that σ is a constant. To see the ranges
for Cn where the bounds in Theorems 2.8 (or equivalently 2.7) and 2.3 are non-trivial,
observe that

1

n
≤
(
C2
n

n

) d
2k+2

≤ 1⇐⇒ n
1
2
− k+1

d ≤ Cn ≤
√
n, and

1

n
≤
(
Cn
n

) 2d
2k+2+d

≤ 1⇐⇒ n
1
2
− k+1

d ≤ Cn ≤ n.

Consider the non-trivial range of Cn where it grows (strictly) faster than n1/2−(k+1)/d (oth-
erwise κσ2/n will dominate the lower bound on RL) but slower than

√
n (otherwise the σ2

term will dominate). In this range, for T̃ kd (Cn) (or T kd (Cn)),

RL
R

&

(
C2
n

n

) d
2k+2

(
Cn
n

) −2d
2k+2+d

=

(
Cnn

k+1
d
− 1

2

) d2

(k+1)(2k+2+d)

.

To simplify for illustration, suppose Cn = nα+ 1
2
− k+1

d with α ∈
(
0, k+1

d

)
so that it is in the

said non-trivial range. Then
RL
R

& n
αd2

(k+1)(2k+2+d)
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and so, the ratio grows unbounded. For canonical scaling Cn � n1− k+1
d , we can plugin

α = 1
2 in the above display, to see that

RL
R

& n
d2

(2k+2)(2k+2+d) .

These results reveal a significant gap between linear smoothers and optimal estimators,
for estimation over T kd (Cn) and T kd (Cn) in d dimensions, as long as Cn scales appropriately.
Roughly speaking, the TV classes and higher-order TV classes encompass a challenging
setting for estimation because they are very broad, containing a wide array of functions—
both globally smooth functions, said to have homogeneous smoothness, and functions with
vastly different levels of smoothness at different grid locations, said to have heterogeneous
smoothness. Linear smoothers cannot handle heterogeneous smoothness, and only nonlinear
methods can enjoy good estimation properties over the entirety of T kd (Cn) (or T̃ kd (Cn)). To
reiterate, a telling example is in 2d with k = 0 and canonical scaling Cn �

√
n, where we

see that TV denoising achieves the optimal 1/
√
n rate (up to log factors), meanwhile, the

best linear smoothers have max risk that is constant over T 0
2 (
√
n). See Figure 2.3 for an

illustration.

Trivial scaling, Cn � 1 Canonical scaling, Cn �
√
n

n
102 103 104 105

M
S

E

10-4

10-3

10-2

10-1

100

TV denoising (-tted slope -0.88)
Laplacian smoothing (-tted slope -0.99)
Mean estimator (-tted slope -1.01)
Trivial rate: n!1

n
102 103 104 105

M
S

E

10-4

10-3

10-2

10-1

100

TV denoising (-tted slope -0.84)
Laplacian smoothing (-tted slope -0.01)
Mean estimator (-tted slope 0.00)
Minimax rate: n!1=2

Figure 2.3: MSE curves for estimation over a 2d grid, under two very different scalings of Cn:
constant and

√
n. The parameter θ0 was a “one-hot” signal, with all but one component equal to 0.

For each n, the results were averaged over 5 repetitions, and Laplacian smoothing and TV denoising
were tuned for optimal average MSE.

2.6 Summary of rates

We conclude this chapter with a summary of rates over KTF and GTF smoothness classes
in Table 2.1, under canonical scaling. For T kd (Cn) (and likewise for T̃ kd (Cn)), the GTF
estimator (KTF estimator) achieves the upper bound on the minimax error as stated in
Theorem 2.2 (Theorem 2.3). The minimax lower bounds are from Theorems 2.4 and 2.5.
The minimax linear rate is supported by Theorems 2.7 and 2.8.



R Upper bound R Lower bound RL

2k + 2 < d n−
k+1
d
√

log n n−
k+1
d 1

2k + 2 = d n−
1
2 log n n−

1
2 1

2k + 2 > d n−
2k+2

2k+2+d (log n)
d

2k+2+d n−
2k+2

2k+2+d n−
2k+2−d
2k+2

Table 2.1: Error bounds over T kd (Cn) and T̃ kd (Cn) with canonical scaling Cn = n1− k+1
d

modulo log n factors.





Chapter 3

Additive models with Trend
filtering

In this chapter, we discuss results from our work Sadhanala & Tibshirani (2017) on additive
models with trend filtering components.

3.1 Introduction

A common but simple approach to tackle curse of dimensionality in nonparametric regres-
sion is to assume that the regression function is additive. We consider an additive model
for responses Y i ∈ R, i = 1, . . . , n and corresponding input points Xi = (Xi

1, . . . , X
i
d) ∈ Rd,

i = 1, . . . , n, of the form

Y i = µ+
d∑
j=1

f0j(X
i
j) + εi, i = 1, . . . , n,

where µ ∈ R is an overall mean parameter, each f0j is a univariate function with
∑n

i=1 f0j(X
i
j) = 0

for identifiability, j = 1, . . . , d, and the errors εi, i = 1, . . . , n are i.i.d. with mean zero. A
comment on notation: here and throughout, when indexing over the n samples we use su-
perscripts, and when indexing over the d dimensions we use subscripts, so that, e.g., Xi

j

denotes the jth component of the ith input point. (Exceptions will occasionally be made,
but the role of the index should be clear from the context.)

Additive models are a special case of the more general projection pursuit regression
model of Friedman & Stuetzle (1981). Additive models for the Cox regression and logistic
regression settings were studied in Tibshirani (1983) and Hastie (1983), respectively. Some
of the first asymptotic theory for additive models was developed in Stone (1985). Two algo-
rithms closely related to (backfitting for) additive models are the alternating least squares
and alternating conditional expectations methods, from van der Burg & de Leeuw (1983)
and Breiman & Friedman (1985), respectively. The work of Buja et al. (1989) advocates
for the use of additive models in combination with linear smoothers, a surprisingly simple
combination that gives rise to flexible and scalable multidimensional regression tools. The
book by Hastie & Tibshirani (1990) is the definitive practical guide for additive models for
exponential family data distributions, i.e., generalized additive models.

31
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More recent work on additive models is focused on high-dimensional nonparametric
estimation, and here the natural goal is to induce sparsity in the component functions, so
that only a few select dimensions of the input space are used in the fitted additive model.
Some nice contributions are given in Lin & Zhang (2006), Ravikumar et al. (2009), Meier
et al. (2009), all primarily focused on fitting splines for component functions and achieving
sparsity through a group lasso type penalty. In other even more recent and interesting
work sparse additive models, Lou et al. (2016) consider a semiparametric (partially linear)
additive model, and Petersen et al. (2016) study componentwise fused lasso (i.e., total
variation) penalization.

The literature on additive models (and by now, sparse additive models) is vast and the
above is far from a complete list of references. In this paper, we examine a method for
estimating additive models wherein each component is fit in a way that is locally adaptive
to the underlying smoothness along its associated dimension of the input space. The lit-
erature on this line of work, as far as we can tell, is much less extensive. First, we review
linear smoothers in additive models, motivate our general goal of local adaptivity, and then
describe our specific proposal.

3.1.1 Review: additive models and linear smoothers

The influential paper by Buja et al. (1989) studies additive minimization problems of the
form

min
θ1,...,θd∈Rn

∥∥∥∥Y − Ȳ 1− d∑
j=1

θj

∥∥∥∥2

2

+ λ
d∑
j=1

θTj Qjθj

subject to 1
T θj = 0, j = 1, . . . , d,

(3.1)

where Y = (Y 1, . . . , Y n) ∈ Rn denotes the vector of responses, and Y − Ȳ 1 is its centered
version, with Ȳ = 1

n

∑n
i=1 Y

i denoting the sample mean of Y , and 1 = (1, . . . , 1) ∈ Rn the
vector of all 1s. Each vector θj = (θ1

j , . . . , θ
n
j ) ∈ Rn represents the evaluations of the jth

component function fj in our model, i.e., tied together by the relationship

θij = fj(X
i
j), i = 1, . . . , n, j = 1, . . . , d.

In the problem (3.1), λ ≥ 0 is a regularization parameter and Qj , j = 1, . . . , d are penalty
matrices. As a typical example, we might consider Qj to be the Reinsch penalty matrix
for smoothing splines along the jth dimension of the input space, for j = 1, . . . , d. Under
this choice, a backfitting (block coordinate descent) routine for (3.1) would repeatedly cycle
through the updates

θj = (I + λQj)
−1

(
Y − Ȳ 1−

∑
`6=j

θ`

)
, j = 1, . . . , d, (3.2)

where the jth update fits a smoothing spline to the jth partial residual, over the jth
dimension of the input points, denoted by Xj = (X1

j , X
2
j , . . . X

n
j ) ∈ Rn. At convergence, we

arrive at an additive smoothing spline estimate, which solves (3.1).
Modeling the component functions as smoothing splines is arguably the most com-

mon formulation for additive models, and it is the standard in several statistical software
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packages like the R package gam. However, as Buja et al. (1989) explain, the backfitting
perspective suggests a more algorithmic approach to additive modeling: one can replace the
operator (I + λQj)

−1 in (3.2) by Sj , a particular (user-chosen) linear smoother, meaning,
a linear map that performs univariate smoothing across the jth dimension of inputs Xj .
The linear smoothers Sj , j = 1, . . . , d could correspond to smoothing splines, regression
splines (regression using a spline basis with given knots), kernel smoothing, local polyno-
mial smoothing, or a combination of these, across the input dimensions. In short, as argued
in Buja et al. (1989), the class of linear smoothers is broad enough to offer fairly flexible,
interesting mechanisms for smoothing, and simple enough to understand precisely. Most
of the work following Buja et al. (1989) remains in keeping with the idea of using linear
smoothers in combination with additive models.

3.1.2 The limitations of linear smoothers

The beauty of linear smoothers lies in their simplicity. However, with this simplicity comes
serious limitations, in terms of their ability to adapt to varying local levels of smoothness. In
the univariate setting, the seminal theoretical work by Donoho & Johnstone (1998) makes
this idea precise. With d = 1, suppose that underlying regression function f0 lies in the
univariate function class

Fk(C) = {f : TV(f (k)) ≤ C}, (3.3)

for a constant C > 0, where TV(·) is the total variation operator, and f (k) the kth weak
derivative of f . The class in (3.3) allows for greater fluctuation in the local level of smooth-
ness of f0 than, say, more typical function classes like Holder and Sobolev spaces. The
results of Donoho & Johnstone (1998) (see also Section 5.1 of Tibshirani (2014)) imply that
the minimax error rate for estimation over Fk(C) is n−(2k+2)/(2k+3), but the minimax error
rate when we consider only linear smoothers (linear transformations of Y ) is n−(2k+1)/(2k+2).
This difference is highly nontrivial, e.g., for k = 0 this is a difference of n−2/3 (optimal)
versus n−1/2 (optimal among linear smoothers) for estimating a function f0 of bounded
variation.

It is important to emphasize that this shortcoming is not just a theoretical one; it is
also clearly noticeable in basic practical examples. Just as linear smoothers will struggle in
the univariate setting, an additive estimate based on linear smoothers will not be able to
efficiently track local changes in smoothness, across any of the input dimensions. This could
lead to a loss in accuracy even if only some of the components f0j , j = 1, . . . , d possesses
heterogeneous smoothness across its domain.

Two well-studied univariate estimators that are locally adaptive, i.e., that attain the
minimax error rate over the kth order total variation class in (1.3), are wavelet smoothing
and locally adaptive regression splines, as developed by Donoho & Johnstone (1998) and
Mammen & van de Geer (1997), respectively. There is a substantial literature on these
methods in the univariate case (especially for wavelets), but fewer authors have considered
them in the additive models context. Some notable exceptions are Zhang & Wong (2003),
Sardy & Tseng (2004), Petersen et al. (2016), with the latter work especially related to our
focus in this paper.
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3.1.3 Additive trend filtering

We consider additive models that are constructed using trend filtering (instead of lin-
ear smoothers, wavelets, or locally adaptive regression splines) as their componentwise
smoother. The computational efficiency, along with its capacity for local adaptivity, makes
trend filtering a particularly desirable candidate to extend to the additive model setting.
Specifically, we consider the additive trend filtering estimate of order k ≥ 0, defined as a
solution in the problem

min
θ1,...,θd∈Rn

1

2

∥∥∥∥Y − Ȳ 1− d∑
j=1

θj

∥∥∥∥2

2

+ λ
d∑
j=1

∥∥D(Xj ,k+1)Sjθj
∥∥

1

subject to 1
T θj = 0, j = 1, . . . , d.

(3.4)

As before, Y − Ȳ 1 is the centered response vector, λ ≥ 0 is a regularization parameter, and
now Sj ∈ Rn×n in (3.4) is a permutation matrix that sorts the jth component of inputs
Xj = (X1

j , X
2
j , . . . X

n
j ) into increasing order, i.e.,

SjXj = (X
(1)
j , X

(2)
j , . . . , X

(n)
j ), j = 1, . . . , d.

Also, D(Xj ,k+1) in (3.4) is the (k + 1)st order difference operator, as in (1.5), (1.6), but
defined over the sorted jth dimension of inputs SjXj , for j = 1, . . . , d. With backfitting
(block coordinate descent), computation of a solution in (3.4) is still quite efficient, since
we can leverage the efficient routines for univariate trend filtering.

3.1.4 A motivating example

Figure 3.1 shows a simulated example that compares the additive trend filtering estimates
in (3.4) (of quadratic order, k = 2), to the additive smoothing spline estimates in (3.1)
(of cubic order). In the simulation, we used n = 3000 and d = 3. We drew input points
Xi i.i.d.∼ Unif[0, 1]3, i = 1, . . . , 3000, and drew responses Y i i.i.d.∼ N(

∑3
j=1 f0j(X

i
j), σ

2), i =
1, . . . , 3000, where σ = 1.72 was set to give a signal-to-noise ratio of about 1. The underlying
component functions were defined as

f01(t) = min(t, 1− t)0.2 sin

(
2.85π

0.3 + min(t, 1− t)

)
,

f02(t) = e3t sin(4πt), f03(t) = −(t− 1/2)2,

so that f01, f02, f03 possess different levels of smoothness (f03 being the smoothest, f02 less
smooth, and f01 the least smooth), and so that f01 itself has heteregeneous smoothness
across its domain.

The first row of Figure 3.1 shows the estimated component functions from additive
trend filtering, at a value of λ that minimizes the mean squared error (MSE), computed
over 20 repetitions. The second row shows the estimates from additive smoothing splines,
also at a value of λ that minimizes the MSE. We see that the trend filtering fits adapt well
to the varying levels of smoothness, but the smoothing spline fits are undersmoothed, for
the most part. In terms of effective degrees of freedom (df), the additive smoothing spline
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Figure 3.1: Comparing estimates from additive trend filtering (3.4) (of quadratic order) and additive
smoothing splines (3.1) (of cubic order), for a simulation with n = 3000 and d = 3, as described in
Section 3.1.4. In each row, the underlying component functions are plotted in black. The first row
shows the estimated component functions using additive trend filtering, in red, at a value of λ chosen
to minimize mean squared error (MSE), computed over 20 repetitions. The second row shows the
estimates from additive smoothing splines, in blue, again at a value of λ that minimizes MSE. The
third row shows the estimates from additive smoothing splines when λ is tuned so that the effective
degrees of freedom (df) of the fit roughly matches that of additive trend filtering in the first row.
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Figure 3.2: MSE curves for additive trend
filtering and additive smoothing splines, com-
puted over 20 repetitions from the same sim-
ulation setup as in Figure 3.1. Vertical seg-
ments denote ±1 standard deviations. The
MSE curves are parametrized by degrees of
freedom (computed via standard Monte Carlo
methods over the 20 repetitions).

estimate is much more complex, having about 85 df (computed via Monte Carlo over the 20
repetitions); the additive trend filtering has only about 42 df. The third row of the figure
shows the estimates from additive smoothing splines, when λ is chosen so that the resulting
df roughly matches that of additive trend filtering in the first row. Now we see that the
first component fit is oversmoothed, yet the third is still undersmoothed.

Figure 3.2 displays the MSE curves from additive trend filtering, as a function of df. We
see that trend filtering achieves a lower MSE, and moreover, its MSE curve is optimized at
a lower df (i.e., less complex model) than that for smoothing splines. This is analogous to
what is typically seen in the univariate setting (Tibshirani 2014).

We note that this motivating example is intended to elucidate the differences in what
additive smoothing splines and additive trend filtering can do with a single tuning parameter
each; a serious applied statistician, in just d = 3 dimensions, would likely use REML or
some related technique to fit a multiple tuning parameter smoothing spline model; see our
later discussion on this topic in Section 3.5.2.

3.1.5 Summary of contributions

A summary of our contributions, and an outline for the rest of this paper, are given below.

• In Section 3.2, we investigate basic properties of the additive trend filtering model:
an equivalent continuous-time formulation, a condition for uniqueness of component
function estimates, and a simple formula for the effective degrees of freedom of the
additive fit.

• In Section 3.3, we derive error bounds for additive trend filtering. Assuming that
the underlying regression function is additive, denoted by f0 =

∑d
j=1 f0j , and that

TV(f
(k)
0j ) is bounded, for j = 1, . . . , d, we prove that the kth order additive trend

filtering estimator converges to f0 at the rate n−(2k+2)/(2k+3) when the dimension d is
fixed (under weak assumptions), and at the rate dn−(2k+2)/(2k+3) when d is growing
(under stronger assumptions). We prove that these rates are optimal in a minimax
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sense, and also show that additive smoothing splines (generally, additive models built
from linear smoothers of any kind) are suboptimal over such a class of functions f0.

• In Section 3.4, we study the backfitting algorithm for additive trend filtering models,
and give a connection between backfitting and an alternating projections scheme in
the additive trend filtering dual problem. This inspires a new parallelized backfitting
algorithm.

• In Section 3.5, we present empirical experiments and comparisons, and we also inves-
tigate the use of multiple tuning parameter models. In Section 3.6, we give a brief
discussion.

3.2 Basic properties

In this section, we derive a number of basic properties of additive trend filtering estimates,
starting with a representation for the estimates as continuous functions over Rd (rather
than simply discrete fitted values at the input points).

3.2.1 Falling factorial representation

We may describe additive trend filtering in (3.4) as an estimation problem written in analy-
sis form. The components are modeled directly by the parameters θj , j = 1, . . . , d, and the
desired structure is established by regularizing the discrete derivatives of these parameters,
through the penalty terms ‖D(Xj ,k+1)Sjθj‖1, j = 1, . . . , d. Here, we present an alternative
representation for (3.4) in basis form, where each component is expressed as a linear combi-
nation of basis functions, and regularization is applied to the coefficients in this expansion.

Tibshirani (2014), Wang et al. (2014) establish a connection between univariate trend
filtering and the falling factorial functions in (1.7), and show that the trend filtering problem
can be interpreted as a sparse basis regression problem using these functions. As we show
next, the analogous result holds for additive trend filtering.

Lemma 3.1 (Falling factorial representation). For j = 1, . . . , d, let h
(Xj)
1 , . . . , h

(Xj)
n be

the falling factorial basis in (1.7) with knots (t1, . . . , tn) = SjXj , the jth dimension of the
input points, properly sorted. Then the additive trend filtering problem (3.4) is equivalent
to the problem

min
α1,...,αd∈Rn

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

n∑
`=1

α`jh
(Xj)
` (Xi

j)

)2

+ λk!

d∑
j=1

n∑
`=k+2

|α`j |

subject to

n∑
i=1

n∑
`=1

α`jh
(Xj)
` (Xi

j) = 0, j = 1, . . . , d,

(3.5)

in that, at any solutions in (3.4), (3.5), we have

θ̂ij =

n∑
`=1

α̂`jh
(Xj)
` (Xi

j), i = 1, . . . , n, j = 1, . . . , d.
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An alternative way of expressing problem (3.5) is

min
fj∈Hj , j=1,...,d

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

fj(X
i
j)

)2

+ λ
d∑
j=1

TV(f
(k)
j )

subject to
n∑
i=1

fj(X
i
j) = 0, j = 1, . . . , d,

(3.6)

where Hj = span{h(Xj)
1 , . . . , h

(Xj)
n } is the span of the falling factorial basis over the jth

dimension, and f
(k)
j is the kth weak derivative of fj , j = 1, . . . , d. In this form, at any

solutions in (3.4), (3.6),

θ̂ij = f̂j(X
i
j), i = 1, . . . , n, j = 1, . . . , d.

Proof. For j = 1, . . . , d, define the kth order falling factorial basis matrix H(Xj ,k) ∈ Rn×n
by

H
(Xj ,k)
i` = h

(Xj)
` (Xi

j), i = 1, . . . , n, ` = 1, . . . , n. (3.7)

Note that the columns of H(Xj ,k) follow the order of the sorted inputs SjXj , but the rows
do not; however, for SjH

(Xj ,k), both its rows and columns of follow the order of SjXj . From
Wang et al. (2014), we know that

(SjH
(Xj ,k))−1 =

 C(Xj ,k+1)

1
k!D

(Xj ,k+1)

 ,
for some matrix C(Xj ,k+1) ∈ R(k+1)×n, i.e.,

(H(Xj ,k))−1 =

 C(Xj ,k+1)

1
k!D

(Xj ,k+1)

Sj . (3.8)

Problem (3.5) is given by reparameterizing (3.4) according to θj = H(Xj ,k)αj , for j =
1, . . . , d. As for (3.6), the equivalence between this and (3.5) follows by noting that for
fj =

∑n
`=1 α

`
jh

(Xj)
` , we have

f
(k)
j (t) = k! + k!

n∑
`=k+2

α`j · 1{t > X`−1
j },

and so TV(f
(k)
j ) = k!

∑n
`=k+2 |α`j |, for each j = 1, . . . , d.

This lemma not only provides an interesting reformulation for additive trend filtering, it
is also practically useful in that it allows us to perform interpolation or extrapolation using
the additive trend filtering model. That is, from a solution θ̂ = (θ̂1, . . . , θ̂d) in (3.4), we can
extend each component fit θ̂j to the real line, by forming an appropriate linear combination
of falling factorial functions:

f̂j(xj) =
n∑
`=1

α̂`jh
(Xj)
` (xj), xj ∈ R. (3.9)
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The coefficients above are determined by the relationship α̂j = (H(Xj ,k))−1θ̂j , and are easily
computable given the highly structured form of (H(Xj ,k))−1, as revealed in (3.8). Writing
the coefficients in block form, as in α̂j = (âj , b̂j) ∈ R(k+1) × R(n−k−1), we have

âj = C(Xj ,k+1)Sj θ̂j , (3.10)

b̂j =
1

k!
D(Xj ,k+1)Sj θ̂j . (3.11)

The first k + 1 coefficients âj index the pure polynomial functions h
(Xj)
1 , . . . , h

(Xj)
k+1 . These

coefficients will be generically dense (the form of C(Xj ,k+1) is not important here, so we omit
it for simplicity, but details are given in Appendix B.1). The last n−k−1 coefficients b̂j index
the knot-producing functions h

(Xj)
k+2 , . . . , h

(Xj)
n , and when (b̂j)` = 1

k!(D
(Xj ,k+1)Sj θ̂j)` 6= 0, the

fitted function f̂j exhibits a knot at the (` + k)th sorted input point among SjXj , i.e., at
X

(`+k)
j . Figure 3.3 gives an example, where n = 1000 and d = 2. We generated input

points Xi i.i.d.∼ Unif[0, 1]2, i = 1, . . . , 1000, and responses Y i i.i.d.∼ N(
∑2

j=1 f0j(X
i
j), σ

2), i =
1, . . . , 1000, where f01(x1) =

√
x1 sin(3π/(x1 + 1/2)) and f02(x2) = x2(x2 − 1/3), and σ =

0.36.
We note that the coefficients α̂j = (âj , b̂j) in (3.10), (3.11) can be computed in O(n)

operations and O(1) memory. This makes extrapolation of the jth fitted function f̂j in (3.9)
highly efficient. Details are given in Appendix B.1.

3.2.2 Uniqueness of component fits

It is easy to see that, for the problem (3.4), the additive fit
∑d

j=1 θ̂j is always uniquely
determined: denoting

∑d
j=1 θj = Tθ for a linear operator T and θ = (θ1, . . . , θd) ∈ Rnd, the

loss term ‖y−Tθ‖22 is strictly convex in the variable Tθ, and this, along with the convexity
of the problem (3.4), implies a unique additive fit T θ̂, no matter the choice of solution
θ̂ = (θ̂1, . . . , θ̂d) ∈ Rnd.

On the other hand, when d > 1, the criterion in (3.4) is not strictly convex in θ, and hence
there need not be a unique solution θ̂, i.e., the individual components fits θ̂j , j = 1, . . . , d
need not be uniquely determined. We show next that uniqueness of the component fits
can be guaranteed under some conditions on the input matrix X = [X1 · · · Xd] ∈ Rn×d.
We will rely on the falling factorial representation for additive trend filtering, introduced
in the previous subsection, and on the notion of general position: a matrix A ∈ Rm×p is
said to have columns in general position provided that, for any ` < min{m, p}, subset of
` + 1 columns denoted Ai1 , . . . , Ai`+1

, and signs s1, . . . , s`+1 ∈ {−1, 1}, the affine span of
{s1Ai1 , . . . , s`+1Ai`+1

} does not contain any element of {±Ai : i 6= i1, . . . , i`+1}.

Lemma 3.2 (Uniqueness). For j = 1, . . . , d, let H(Xj ,k) ∈ Rn×n be the falling facto-
rial basis matrix constructed over the sorted jth dimension of inputs SjXj ∈ Rn, as in
(3.7). Decompose H(Xj ,k) into its first k + 1 columns P (Xj ,k) ∈ Rn×(k+1), and its last
n− k− 1 columns K(Xj ,k) ∈ Rn×(n−k−1). The former contains evaluations of the pure poly-
nomials h

(Xj)
1 , . . . , h

(Xj)
k+1 ; the latter contains evaluations of the knot-producing functions

h
(Xj)
k+2 , . . . , h

(Xj)
n . Also, let P̃ (Xj ,k) denote the matrix P (Xj ,k) with its first column removed,

for j = 1, . . . , d, and M = I − 11T /n. Define

P̃ = M
[
P̃ (X1,k) . . . P̃ (Xd,k)

]
∈ Rn×dk, (3.12)
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Figure 3.3: An example of extrapolating the fitted additive trend filtering model, where n = 1000
and d = 2. The top row shows three perspectives of the data. The bottom left panel shows the fitted
values from additive trend filtering (3.4) (with k = 2 and λ = 0.004), where points are colored by
their depth for visualization purposes. The bottom right panel shows the 2d surface associated with
the trend filtering estimate, f̂1(x1) + f̂2(x2) over (x1, x2) ∈ [0, 1]2, with each component function
extrapolated as in (3.9).
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the product of M and the columnwise concatenation of P̃ (Xj ,k), j = 1, . . . , d. Let UUT

denote the projection operator onto the space orthogonal to the column span of P̃ , where
U ∈ Rn×(n−kd−1) has orthonormal columns, and define

K̃ = UTM
[
K(X1,k) . . . K(Xd,k)

]
∈ R(n−kd−1)×(n−k−1)d, (3.13)

the product of UTM and the columnwise concatenation of K(Xj ,k), j = 1, . . . , d. A sufficient
condition for uniqueness of the additive trend filtering solution in (3.4) can now be given
in two parts.

1. If K̃ has columns in general position, then the knot-producing parts of all component
fits are uniquely determined, i.e., for each j = 1, . . . , d, the projection of θ̂j onto the
column space of K(Xj ,k) is unique.

2. If in addition P̃ has full column rank, then the polynomial parts of component fits are
uniquely determined, i.e., for each j = 1, . . . , d, the projection of θ̂j onto the column
space of P (Xj ,k) is unique, and thus the component fits θ̂j , j = 1, . . . , d are all unique.

The proof is deferred to Appendix B.2. To rephrase, the above lemma decomposes each
component of the additive trend filtering solution according to

θ̂j = θ̂poly
j + θ̂knot

j , j = 1, . . . , d,

where θ̂poly
j exhibits a purely polynomial trend over SjXj , and θ̂knot

j exhibits a piecewise
polynomial trend over SjXj , and hence determines the knot locations, for j = 1, . . . , d. The
lemma shows that the knot-producing parts θ̂knot

j , j = 1, . . . , d are uniquely determined
when the columns of K̃ are in general position, and the polynomial parts θ̂knot

j , j = 1, . . . , d
are unique when the columns of K̃ are in general position, and the columns of P̃ are linearly
independent.

The conditions placed on P̃ , K̃ in Lemma 3.2 are not strong. When n > kd, and the
elements of input matrix X are drawn from a density over Rnd, it is not hard to show that
P̃ has full column rank with probability 1. We conjecture that, under the same conditions,
K̃ will also have columns in general position with probability 1, but do not pursue a proof.

3.2.3 Dual problem

Let us abbreviate Dj = D(Xj ,k+1), j = 1, . . . , d for the penalty matrices in the additive
trend filtering problem (3.4). Basic arguments in convex analysis, deferred to Appendix
B.3, show that the dual of problem (3.4) can be expressed as:

min
u∈Rn

‖Y − Ȳ 1− u‖22 subject to u ∈ U = U1 ∩ · · · ∩ Ud,

where Uj = {SjDT
j vj : ‖vj‖∞ ≤ λ}, j = 1, . . . , d,

(3.14)

and that primal and dual solutions in (3.4), (3.14) are related by:

d∑
j=1

θ̂j = Y − Ȳ 1− û. (3.15)
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From the form of (3.14), it is clear that we can write the (unique) dual solution as û = ΠU (Y − Ȳ 1),
where ΠU is the (Euclidean) projection operator onto U . Moreover, using (3.15), we can
express the additive fit as

∑d
j=1 θ̂j = (Id−ΠU )(Y − Ȳ 1), where Id−ΠU is the operator that

gives the residual from projecting onto U . These relationships will be revisited in Section
3.4, where we return to the dual perspective, and argue that the backfitting algorithm for
the additive trend filtering problem (3.4) can be seen as a type of alternating projections
algorithm for its dual problem (3.14).

3.2.4 Degrees of freedom

In general, given data Y ∈ Rn with E(Y ) = η, Cov(Y ) = σ2I, and an estimator η̂ of η,
recall that we define the effective degrees of freedom of η̂ as (Efron 1986, Hastie & Tibshirani
1990):

df(η̂) =
1

σ2

n∑
i=1

Cov
(
η̂i(Y ), Y i

)
,

where η̂(Y ) = (η̂1(y), . . . , η̂n(Y )). Roughly speaking, the above definition sums the influence
of the ith component Y i on its corresponding fitted value η̂i(Y ), across i = 1, . . . , n. A
precise understanding of degrees of freedom is useful for model comparisons (recall the x-
axis in Figure 3.2), and other reasons. For linear smoothers, in which η̂(Y ) = SY for some
S ∈ Rn×n, it is clear that df(η̂) = tr(S), the trace of S. (This also covers additive models
whose components are built from univariate linear smoothers, because in total these are
still just linear smoothers: the additive fit is still just a linear function of Y .)

Of course, additive trend filtering is a not a linear smoother; however, it is a particular
type of generalized lasso estimator, and degrees of freedom for such a class of estimators
is well-understood (Tibshirani & Taylor 2011, 2012). The next result is a consequence of
existing generalized lasso theory, proved in Appendix B.4.

Lemma 3.3 (Degrees of freedom). Assume the conditions of Lemma 3.2, i.e., that the
matrix P̃ in (3.12) has full column rank, and the matrix K̃ in (3.13) is in general position.
Assume also that the response is Gaussian, Y ∼ N(η, σ2I), and treat the input points
Xi ∈ Rd, i = 1, . . . , n as fixed and arbitrary, as well as the tuning parameter value λ ≥ 0.
Then the additive trend filtering fit from (3.4) has degrees of freedom

df

( d∑
j=1

θ̂j

)
= E

( d∑
j=1

(number of knots in θ̂j)

)
+ kd.

Remark 3.1 (The effect of shrinkage). Lemma 3.3 says that for an unbiased estimate
of the degrees of freedom of the additive trend filtering fit, we count the number of knots
in each component fit θ̂j (recall that this is the number of nonzeros in D(Xj ,k+1)θ̂j , i.e., the
number of changes in the discrete (k+ 1)st derivative), add them up over j = 1, . . . , d, and
add kd. This may seem surprising, as these knot locations are chosen adaptively based on
the data Y . But, such adaptivity is counterbalanced by the shrinkage induced by the `1
penalty in (3.4) (i.e., for each component fit θ̂j , there is shrinkage in the differences between
the attained kth derivatives on either side of a selected knot). See Tibshirani (2015) for a
study of this phenomenon.



43

3.2.5 Two related additive spline estimators

From its equivalent formulation in (3.6), additive trend filtering is seen to be closely related
to two other additive spline estimators, which we introduce here. Consider, for univariate
function classes Sj , j = 1, . . . , d, the problem

min
fj∈Sj j=1,...d

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

fj(X
i
j)

)2

+ λ
d∑
j=1

TV(f
(k)
j )

subject to

n∑
i=1

fj(X
i
j) = 0, j = 1, . . . , d.

(3.16)

When each Sj , j = 1, . . . , d is the set of k times weakly differentiable functions, we call
the solution in (3.16) the additive locally adaptive regression spline of order k ≥ 0, as it
is the natural extension of the univariate estimator considered in Mammen & van de Geer
(1997). Denote by f̂j , j = 1, . . . , d this solution; the representation arguments used by these
authors apply immediately to the additive setting, and imply that each f̂j , j = 1, . . . , d is
indeed a spline of degree k (justifying the choice of name). The same arguments show that,
for k = 0 or k = 1, the knots of the spline f̂j lie among the jth dimension of the input
points X1

j , . . . , X
n
j , for j = 1, . . . , d, but for k ≥ 2, this need not be true, and in general the

components will be splines with knots at locations other than the inputs.
We can facilitate computation by taking Sj = Gj , where Gj is the set of splines of degree

k with knots lying among the jth dimension of inputs X1
j , . . . , X

n
j , for j = 1, . . . , d. We

call the resulting solution the restricted additive locally adaptive regression spline of order
k ≥ 0. More precisely, we require that the splines in Gj have knots in a set Tj , which,
writing tj = SjXj for the sorted inputs along the jth dimension, is defined by

Tj =

{{
t
k/2+2
j , . . . , t

n−k/2
j

}
if k is even,{

t
(k+1)/2+1
j , . . . , t

n−(k+1)/2
j

}
if k is odd,

(3.17)

i.e., defined by removing k + 1 input points at the boundaries, for j = 1, . . . , d. Setting
Sj = Gj , j = 1, . . . , d makes (3.16) a finite-dimensional problem, just like (3.6). When
k = 0 or k = 1, as is evident from their form in (1.7), the falling factorial functions are
simply splines, which means that Hj = Gj for j = 1, . . . , d, hence additive trend filtering
and restricted additive locally adaptive regression splines are the same estimator. When
k ≥ 2, this is no longer true, and they are not the same. Additive trend filtering will be
much easier to compute, since TV(g(k)) does not admit a nice representation in terms of
discrete derivatives for a kth order spline (and yet it does for a kth order falling factorial
function, as seen in (3.4)).

To summarize, additive locally adaptive splines, restricted additive locally adaptive
splines, and additive trend filtering all solve a problem of the form (3.16) for different
choices of function classes Sj , j = 1, . . . , d. For k = 0 or k = 1, these three estimators
are equivalent. For k ≥ 2, they will be generically different, though our intuition tells us
that their differences should not be too large: the unrestricted problem admits a solution
that is a spline in each component; the restricted problem simply forces these splines to
have knots at the input points; and the trend filtering problem swaps splines for falling
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factorial functions, which are highly similar in form. Next, we give theory that confirms
this intuition, in large samples.

3.3 Error bounds

We derive error bounds for additive trend filtering and additive locally adaptive regres-
sion splines (both the unrestricted and restricted variants), when the underlying regression
function is additive, and has components whose derivatives are of bounded variation. These
results are actually special cases of a more general result we prove in this section, on a generic
roughness-regularized additive estimator, where we assume a certain decay for the entropy
of the unit ball in the roughness operator. We treat separately the settings in which the
dimension d of the input space is fixed and growing. We also complement our error rates
with minimax lower bounds. We start by introducing helpful notation.

3.3.1 Notation

Given a distribution Q supported on a set D, and i.i.d. samples Xi, i = 1, . . . , n from Q,
denote by Qn the associated empirical distribution. We define the L2(Q) and L2(Qn) inner
products, denoted 〈·, ·〉L2(Q) and 〈·, ·〉L2(Qn), respectively, over functions m, r : D → R

〈m, r〉L2(Q) =

∫
D
m(x)r(x) dQ(x), and 〈m, r〉L2(Qn) =

1

n

n∑
i=1

m(Xi)r(Xi).

Definitions for the corresponding L2(Q) and L2(Qn) norms, denoted ‖ · ‖L2(Q) and ‖ · ‖L2(Qn),
respectively, arise naturally from these inner products, defined by

‖m‖22 = 〈m,m〉2 =

∫
D
m(x)2 dQ(x), and ‖m‖2n = 〈m,m〉n =

1

n

n∑
i=1

m(Xi)2.

Henceforth, we will abbreviate subscripts when using these norms and inner products,
writing ‖ · ‖2 and ‖ · ‖n for the L2(Q) and L2(Qn) norms, respectively, and similarly for
the inner products. This abbreviated notation omits the underlying distribution Q; thus,
unless explicitly stated otherwise, the underlying distribution should always be interpreted
as the distribution of the input points. We will often call ‖ · ‖2 the L2 norm and ‖ · ‖n the
empirical norm, and similarly for inner products.

In what follows, of particular interest will be the case when D = [0, 1]d, and m : [0, 1]d →
R is an additive function, of the form

m =
d∑
j=1

mj ,

which we write to mean m(x) =
∑d

j=1mj(xj). In a slight abuse of notation (overload of
notation), for each j = 1, . . . , d, we will abbreviate the L2(Qj) norm by ‖ · ‖2, where Qj is
the jth marginal of Q, and will also abbreviate L2(Qjn) norm by ‖ · ‖n, where Qjn is the
empirical distribution of Xi

j , i = 1, . . . , n. We will use similar abbreviations for the inner
products.
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A few more general definitions are in order. We denote the L∞ norm, also called
the sup norm, of a function f : D → R by ‖f‖∞ = ess supz∈D |f(z)|. For a functional
ν, acting on functions from D to R, we write Bν(δ) for the ν-ball of radius δ > 0, i.e.,
Bν(δ) = {f : ν(f) ≤ δ}. We abbreviate Bn(δ) for the ‖ · ‖n-ball of radius δ, B2(δ) for the
‖ · ‖2-ball of radius δ, and B∞(δ) for the ‖ · ‖∞-ball of radius δ. We will use these concepts
fluidly, without explicit reference to the domain D (or its dimensionality), as the meaning
should be clear from the context.

Lastly, for a set S and norm ‖ · ‖, we define the covering number N(δ, ‖ · ‖, S) to be the
smallest number of ‖ · ‖-balls of radius δ to cover S, and the packing number M(δ, ‖ · ‖, S)
to be the largest number of disjoint ‖ · ‖-balls of radius δ that are contained in S. We call
logN(δ, ‖ · ‖, S) the entropy number.

3.3.2 Error bounds for a fixed dimension d

We consider error bounds for the generic roughness-penalized estimator defined as a solution
of

min
fj∈Sj , j=1,...,d

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

fj(X
i
j)

)2

+ λ
d∑
j=1

J(fj)

subject to

n∑
i=1

fj(X
i
j) = 0, j = 1, . . . , d,

(3.18)

where Sj , j = 1, . . . , d are univariate function spaces, and J is a regularizer that acts on
univariate functions. We assume in this subsection that the dimension d of the input space
is fixed, i.e., it does not grow with n. Before stating our main result in this setting, we list
our other assumptions, starting with our assumptions on the data generation process.

Assumption A1. The input points Xi, i = 1, . . . , n are i.i.d. from a continuous distribution
Q supported on [0, 1]d.

Assumption B1. The responses Y i, i = 1, . . . , n follow the model

Y i = µ+ f0(Xi) + εi, i = 1, . . . , n,

with overall mean µ ∈ R, where
∑n

i=1 f0(Xi) = 0 for identifiability. The errors εi, i =
1, . . . , n are uniformly sub-Gaussian and have mean zero, i.e.,

E(ε) = 0, and E[exp(vT ε)] ≤ exp(σ2‖v‖22/2), for all v ∈ Rn,

for a constant σ > 0. The errors and input points are independent.

Next, we present our assumptions on the regularizer J . We write ‖ · ‖Zn for the
empirical norm defined over a set of univariate points Zn = {z1, . . . , zn} ⊆ [0, 1], i.e.,
‖g‖2Zn = 1

n

∑n
i=1 g

2(zi).

Assumption C1. The regularizer J is a seminorm, and its domain is contained in the
space of k times weakly differentiable functions, for an integer k ≥ 0. Furthermore, its null
space contains all kth order polynomials.
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Assumption C2. There is a constant L > 0 such that

ess sup
t∈[0,1]

g(k)(t)− ess inf
t∈[0,1]

g(k)(t) ≤ L, for g ∈ BJ(1),

where g(k) is the kth weak derivative of g.

Assumption C3. There are constants 0 < w < 2 and K > 0 such that

sup
Zn={z1,...,zn}⊆[0,1]

logN
(
δ, ‖ · ‖Zn , BJ(1) ∩B∞(1)

)
≤ Kδ−w.

We now state our main result in the fixed d case, which is proved in Appendix B.5, B.6.

Theorem 3.1. Assume A1, B1 on the data distribution, and assume C1, C2, C3 on
the seminorm J . Also, assume that the dimension d of the input space is fixed. Let
Cn ≥ 1 be an arbitrary sequence. There exist constants c1, c2, c3, n0 > 0, that depend
only on d, σ, k, L,K,w, such that for all c ≥ c1, n ≥ n0, and tuning parameter values
λ ≥ cnw/(2+w)C

−(2−w)/(2+w)
n , any solution in (3.18) satisfies∥∥∥∥ d∑
j=1

f̂j − f0

∥∥∥∥2

n

≤
∥∥∥∥ d∑
j=1

f̃j − f0

∥∥∥∥2

n

+
6λ

n
max

{
Cn,

d∑
j=1

J(f̃j)

}
, (3.19)

with probability at least 1− exp(−c2c)− exp(−c3
√
n), simultaneously over all f̃ =

∑d
j=1 f̃j ,

feasible for the problem (3.18), such that ‖f̃ − f0‖n ≤ max{Cn,
∑d

j=1 J(f̃j)}.

Remark 3.2 (Error bound for additive, J-smooth f0). Assume f0 =
∑d

j=1 f0j , where
f0j ∈ Sj , j = 1, . . . , d, and

∑d
j=1 J(f0j) ≤ Cn. Letting f̃ = f0, the approximation error term

in (3.19) (the first term on the right-hand side) is zero, and for λ = cnw/(2+w)C
−(2−w)/(2+w)
n ,

the result in the theorem reads∥∥∥∥ d∑
j=1

f̂j −
d∑
j=1

f0j

∥∥∥∥2

n

≤ 6cn−2/(2+w)C2w/(2+w)
n , (3.20)

with probability at least 1− exp(−c2c)− exp(−c3
√
n). As we will see in the minimax lower

bound in Theorem 3.3 (plugging in cn = Cn/d, and taking d to be a constant), the rate
n−2/(2+w)C

2w/(2+w)
n is optimal for such a class of functions.

Remark 3.3 (Distance to best additive, J-smooth approximation of f0). The
arguments used to establish the oracle-type inequality (3.19) also imply a result on the
empirical norm error between f̂ and the best additive approximation of f0. To be precise,
let (fbest

1 , . . . , fbest
d ) denote a solution in the population-level problem

min
fj∈Sj , j=1,...,d

1

2

n∑
i=1

(
f0(Xi)−

d∑
j=1

fj(X
i
j)

)2

+
λ

2

d∑
j=1

J(fj)

subject to

n∑
i=1

fj(X
i
j) = 0, j = 1, . . . , d.

(3.21)
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We note that (3.21) has “half” of the regularization of problem (3.18), as it uses a penalty
parameter of λ/2 versus λ. We can think of fbest =

∑d
j=1 f

best
j as the best additive, J-

smooth approximation of f0, where λ as usual controls the level of smoothness. The
following is a consequence of the proof of Theorem 3.1, verified in Appendix B.7: as-
sume that ‖fbest − f0‖n ≤ max{Cn,

∑d
j=1 J(fbest

j )} almost surely (with respect to Q), for
sufficiently large λ; then any solution in (3.18) satisfies for all c ≥ c1, n ≥ n0, and
λ ≥ cnw/(2+w)C

−(2−w)/(2+w)
n ,

∥∥∥∥ d∑
j=1

f̂j −
d∑
j=1

fbest
j

∥∥∥∥2

n

≤ 6λ

n
max

{
Cn,

d∑
j=1

J(fbest
j )

}
, (3.22)

with probability at least 1− exp(−c2c)− exp(−c3
√
n), where as before c1, c2, c3, n0 > 0 are

constants that depend only on d, σ, k, L,K,w. Notably, the right-hand side in the bound
(3.22) does not depend on the approximation error; in particular, we do not even require
‖fbest − f0‖n to converge to zero. This is analogous to classical results from Stone (1985).

We examine a special case of the generic problem (3.18) when the regularizer is J(g) = TV(g(k)),
and derive implications of the above Theorem 3.1 for additive locally regression adaptive
splines and additive trend filtering, corresponding to different choices of the function classes
Sj , j = 1, . . . , d in (3.18). We must introduce an additional (weak) assumption on the in-
put distribution, for the results on restricted locally adaptive regression splines and trend
filtering.

Assumption A2. The density of the input distribution Q is bounded below by a constant
b0 > 0.

Here is our result for additive locally adaptive splines and additive trend filtering. The
proof is given in Appendix B.8, B.9.

Corollary 3.1. Assume A1, B1 on the data distribution. Also, assume that the dimen-
sion d of the input space is fixed, and that the underlying regression function is additive,
f0 =

∑d
j=1 f0j , where the components f0j , j = 1, . . . , d are k times weakly differentiable,

such that
∑d

j=1 TV(f
(k)
0j ) ≤ Cn for a sequence Cn ≥ 1. For J(g) = TV(g(k)), Assumptions

C1, C2, C3 hold with L = 1 and w = 1/(k + 1). Furthermore, the following is true of the
estimator defined by problem (3.18).

(a) Let Sj be the set of all k times weakly differentiable functions, for each j = 1, . . . , d.
There are constants c1, c2, c3, n0 > 0, depending only on d, σ, k, such that for all c ≥ c1

and n ≥ n0, any solution in the additive locally adaptive regression spline problem
(3.18), with tuning parameter value λ = cn1/(2k+3)C

−(2k+1)/(2k+3)
n , satisfies

∥∥∥∥ d∑
j=1

f̂j −
d∑
j=1

f0j

∥∥∥∥2

n

≤ cn−(2k+2)/(2k+3)C2/(2k+3)
n , (3.23)

with probability at least 1− exp(−c2c)− exp(−c3
√
n).
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(b) Let Sj = Gj , the set of kth degree splines with knots in the set Tj in (3.17), for j =
1, . . . , d, and assume A2 on the input density. Then there are constants c1, c2, c3, n0 >
0, that depend only on d, b0, σ, k, such that for all c ≥ c1 and n(log n)−(1+1/k) ≥ n0C

(2k+2)/(2k2+2k−1)
n ,

any solution in the restricted additive locally adaptive spline problem (3.18), with
λ = cn1/(2k+3)C

−(2k+1)/(2k+3)
n , satisfies the same result in (3.23), with probability at

least 1− exp(−c2c)− c3/n.

(c) Let Sj = Hj , the set of kth degree falling factorial functions defined over Xj (the
jth dimension of inputs), for j = 1, . . . , d, and assume A2. Then there exist con-
stants c1, c2, c3, n0 > 0, that depend only on d, b0, σ, k, such that for all c ≥ c1

and n(log n)−(2k+3) ≥ n0C
4k+4
n , any solution in the additive trend filtering problem

(3.18), with λ = cn1/(2k+3)C
−(2k+1)/(2k+3)
n , satisfies (3.23), with probability at least

1− exp(−c2c)− c3/n.

Remark 3.4 (Spline and falling factorial approximants). For part (a) of the corollary,
the approximation error (the first term on the right-hand side) in (3.20) is zero by definition,
and we need only verify Assumptions C1, C2, C3 for the regularizer J(g) = TV(g(k)). Parts
(b) and (c) require control over the approximation error, because the underlying regression
function f0 =

∑d
j=1 f0j need not have components that lie in the chosen function spaces

Sj , j = 1, . . . , d. To be clear: for k = 0 or k = 1, as discussed in Section 3.2.5, all three
problems considered in parts (a), (b), (c) are equivalent; hence parts (b) and (c) really only
concern the case k ≥ 2. For both of these parts, we control the approximation error by
controlling the univariate approximation error and then applying the triangle inequality.
For part (b), we use a special spline quasi-interpolant from Proposition 7 in Mammen &
van de Geer (1997) (who in turn construct this using results from de Boor (1978)); for part
(c), we develop a new falling factorial approximant that may be of independent interest.

3.3.3 Error bounds for a growing dimension d

In this subsection, we allow the input dimension d to grow with the sample size n. To keep
our analysis as clean as possible, we consider a constrained version of the problem (3.18),
namely

min
fj∈Sj , j=1,...,d

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

fj(X
i
j)

)2

subject to
n∑
i=1

fj(X
i
j) = 0, J(fj) ≤ δ, j = 1, . . . , d,

(3.24)

for a tuning parameter δ > 0. (The penalized problem (3.18) can also be analyzed in the
setting of growing d, but we find that the analysis is messier and requires more assumptions
in order to obtain the same results.) Instead of A1, we now use the following assumption
in the input distribution.

Assumption A3. The input points Xi, i = 1, . . . , n are i.i.d. from a continuous distribution
Q supported on [0, 1]d, that decomposes as Q = Q1 × · · · × Qd, where the density of each
Qj is lower and upper bounded by constants b1, b2 > 0, for j = 1, . . . , d.
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Assumption A3 is fairly restrictive, since it requires the input distribution Q to be
independent across dimensions of the input space. The reason we use this assumption:
when Q = Q1× · · · ×Qd, additive functions enjoy a key decomposability property in terms
of the (squared) L2 norm defined with respect to Q. In particular, if m =

∑d
j=1mj has

components with L2 mean zero, denoted by m̄j =
∫ 1

0 mj(xj) dQj(xj) = 0, j = 1, . . . , d, then
we have ∥∥∥∥ d∑

j=1

mj

∥∥∥∥2

2

=
d∑
j=1

‖mj‖22. (3.25)

This is explained by the fact that each pair of components mj , m` with j 6= ` are orthogonal
with respect to the L2 inner product, since

〈mj ,m`〉2 =

∫
[0,1]2

mj(xj)m`(x`) dQj(xj) dQ`(x`) = m̄jm̄` = 0.

The above orthogonality, and thus the decomposability property in (3.25), is only true
because of the product form Q = Q1 × · · · × Qd. Such decomposability is not generally
possible with the empirical norm. In the proof of Theorem 3.2, we move from considering
the empirical norm of the error vector to the L2 norm, in order to leverage the property in
(3.25), which eventually leads to an error rate that has a linear dependence on the dimension
d. In the absence of L2 decomposability, the same error rate can be achieved with a weaker
incoherence bound, as in (3.30); see Remark 3.7 after the theorem.

We now state our main result in the growing d case, whose proof is in Appendix B.10,
B.11.

Theorem 3.2. Assume A3, B1 on the data distribution, and assume C1, C2, C3 on the
seminorm J . Let δ ≥ 1 be arbitrary. There are constants c1, c2, c3, n0 > 0, that depend
only on b1, b2, σ, k, L,K,w, such that for all c ≥ c1 and n ≥ n0(dδ)1+w/2, any solution in
(3.24) satisfies both ∥∥∥∥ d∑

j=1

f̂j − f0

∥∥∥∥2

n

≤
∥∥∥∥ d∑
j=1

f̃j − f0

∥∥∥∥2

n

+ cdn−2/(2+w)δ, (3.26)

∥∥∥∥ d∑
j=1

f̂j − f0

∥∥∥∥2

2

≤ 2

∥∥∥∥ d∑
j=1

f̃j − f0

∥∥∥∥2

2

+ 24

∥∥∥∥ d∑
j=1

f̃j − f0

∥∥∥∥2

n

+ cdn−2/(2+w)δ2, (3.27)

with probability at least 1− exp(−c2c)− c3/n, simultaneously over all functions f̃ =
∑d

j=1 f̃j ,
feasible for the problem (3.24).

Remark 3.5 (Error bound for additive, J-smooth f0). Assume f0 =
∑d

j=1 f0j , where
f0j ∈ Sj and J(f0j) ≤ cn, j = 1, . . . , d, for a sequence cn ≥ 1. Letting f̃ = f0, and δ = cn,
the results in (3.26), (3.27) translate to∥∥∥∥ d∑

j=1

f̂j −
d∑
j=1

f0j

∥∥∥∥2

n

≤ cdn−2/(2+w)cn, and

∥∥∥∥ d∑
j=1

f̂j −
d∑
j=1

f0j

∥∥∥∥2

2

≤ cdn−2/(2+w)c2
n, (3.28)

with probability at least 1− exp(−c2c)− c3/n, provided that n ≥ n0(dcn)1+w/2. From the
minimax lower bound in Theorem 3.3, we can see that the optimal rate for such a class of
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functions is in fact dn−2/(2+w)c
2w/(2+w)
n , which reveals that the rates in (3.28) are tight when

cn is a constant, but not when cn grows with n. It is worth noting that the dependence of
the bounds on cn in Theorem 3.2 (and hence in (3.28)) can be improved to have the optimal
scaling of c

2w/(2+w)
n by assuming that f0 is sup norm bounded, and additionally placing a

sup norm bound on the components in (3.24). This feels like an unnecessary restriction, so
we prefer to present results without it, as in Theorem 3.2 (and (3.28)).

Remark 3.6 (Distance to best additive, J-smooth approximation of f0). A con-
sequence of the proof of (3.26) is a bound on the empirical norm error between f̂ and
the best additive approximation of f0. To be precise, let fbest =

∑d
j=1 f

best
j minimize

‖
∑d

j=1 f̃j − f0‖2n over all additive functions f̃ =
∑d

j=1 f̃j feasible for problem (3.24). Then
following directly from (B.36) in the proof of Theorem 3.2, we have for all c ≥ c1 and
n ≥ n0(dδ)1+w/2, ∥∥∥∥ d∑

j=1

f̂j −
d∑
j=1

fbest
j

∥∥∥∥2

n

≤ cdn−2/(2+w)δ, (3.29)

with probability at least 1− exp(−c2c)− c3/n, where again c1, c2, c3, n0 > 0 are constants
that depend on b1, b2, σ, k, L,K,w. Just as we saw in fixed d case, the right-hand side in
(3.29) does not depend on the approximation error ‖fbest − f0‖n, which is analogous to
classical results from Stone (1985).

Remark 3.7 (L2 decomposability and incoherence). The decomposability property
in (3.25) is critical in obtaining the sharp (linear) dependence on d in the error rates (3.26),
(3.27). However, it is worth noting that all that is needed in the proof is in fact a lower
bound of the form ∥∥∥∥ d∑

j=1

mj

∥∥∥∥2

2

≥ φ0

d∑
j=1

‖mj‖22, (3.30)

for a constant φ0 > 0, rather than an equality, as in (3.25). The above is an incoherence
condition that can hold for nonproduct distributions Q, over an appropriate class of func-
tions (additive functions with smooth components), provided that the correlations between
components of Q are not too large. See Meier et al. (2009), van de Geer (2014) for similar
incoherence conditions.

Next we present our results for additive locally adaptive regression splines (both un-
resricted and restricted variants) and additive trend filtering. The proof is in Appendix
B.12.

Corollary 3.2. Assume A3, B1 on the data distribution. Also, assume that the underlying
regression function is additive, f0 =

∑d
j=1 f0j , where the components f0j , j = 1, . . . , d are

k times weakly differentiable, such that TV(f
(k)
0j ) ≤ cn, j = 1, . . . , d, for a sequence cn ≥ 1.

Then for J(g) = TV(g(k)), the following is true of the estimator defined by problem (3.24).

(a) Let Sj be the space of all k times weakly differentiable functions, for each j = 1, . . . , d.
There exist constants c1, c2, c3, n0 > 0, that depend only on b1, b2, σ, k, such that for
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all c ≥ c1 and n ≥ n0(dcn)(2k+3)/(2k+2), any solution in the constrained-form additive
locally adaptive spline problem (3.24), with tuning parameter δ = cn, satisfies∥∥∥∥ d∑

j=1

f̂j −
d∑
j=1

f0j

∥∥∥∥2

n

≤ cdn−
2k+2
2k+3 cn, and

∥∥∥∥ d∑
j=1

f̂j −
d∑
j=1

f0j

∥∥∥∥2

2

≤ cdn−
2k+2
2k+3 c2

n, (3.31)

with probability at least 1− exp(−c2c)− c3/n.

(b) Let Sj = Gj , the set of kth degree splines with knots in the set Tj in (3.17), for
j = 1, . . . , d. There exist constants c1, c2, c3, n0 > 0, that depend only on b1, b2, σ, k,
such that for c ≥ c1 and n ≥ (dcn)(2k+3)/(2k+2), any solution in the constrained-
form restricted additive locally adaptive spline problem (3.24), with tuning parameter
δ = akcn, where ak ≥ 1 is a constant that depends only on k, satisfies (3.31), with
probability at least 1− exp(−c2c)− c3d/n.

(c) Let Sj = Hj , the set of kth degree falling factorial functions defined over Xj (the jth
dimension of input points), for j = 1, . . . , d. Then there are constants c1, c2, c3, n0 > 0,
depending only on b1, b2, σ, k, such that for all c ≥ c1 and n ≥ n0(dcn)(2k+3)/(2k+2), any
solution in the constrained-form additive trend filtering problem (3.24), with tuning
parameter δ = akcn, where ak ≥ 1 is a constant depending only on k, satisfies (3.31),
with probability at least 1− exp(−c2c)− c3d/n.

3.3.4 Minimax lower bounds

We consider minimax lower bounds for estimation over the class of additive functions whose
components are smooth with respect to the seminorm J . We allow the dimension d to grow
with n. As for the data distribution, we will use the following assumptions in place of A1,
A2, A3, B1.

Assumption A4. The inputs Xi, i = 1, . . . , n are i.i.d. from the uniform distribution on
[0, 1]d.

Assumption B2. The responses Y i, i = 1, . . . , n follow

Y i = µ+
d∑
j=1

f0j(X
i
j) + εi, i = 1, . . . , n,

with mean µ ∈ R, where
∫

[0,1]d f0(x) dx = 0 for identifiability. The errors εi, i = 1, . . . , n
are i.i.d. N(0, σ2), for some constant σ > 0. The errors and input points are independent.

For the regularizer J , assumed to satisfy Assumptions C1, C2, we will replace Assump-
tion C3 by the following assumption, on the log packing and log covering (entropy) numbers.

Assumption C4. There exist constants 0 < w < 2 and K1,K2 > 0 such that

logM
(
δ, ‖ · ‖2, BJ(1) ∩B∞(1)

)
≥ K1δ

−w,

logN
(
δ, ‖ · ‖2, BJ(1) ∩B∞(1)

)
≤ K2δ

−w.

(To be clear, here ‖ · ‖2 is the L2 norm defined with respect to the uniform distribution on
[0, 1].)
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Let us introduce the notation

Bd
J(δ) =

{ d∑
j=1

fj : J(fj) ≤ δ, j = 1, . . . , d

}
,

Now we state our main minimax lower bound. The proof is given in Appendix B.13, B.14.

Theorem 3.3. Assume A4, B2 on the data distribution, and C1, C2, C4 on the seminorm
J . Then there exist constants c0, n0 > 0, that depend only on σ, k, L,K1,K2, w, such that
for all cn ≥ 1 and n ≥ n0d

1+w/2cwn , we have

inf
f̂

sup
f0∈BdJ (cn)

E‖f̂ − f0‖22 ≥ c0dn
−2/(2+w)c2w/(2+w)

n . (3.32)

When we choose J(g) = TV(g(k)) as our regularizer, the additive function class Bd
J(δ)

becomes

Fdk (δ) =

{ d∑
j=1

fj : TV(f
(k)
j ) ≤ δ, j = 1, . . . , d

}
,

and Theorem 3.3 implies the following result, whose proof is in Appendix B.15.

Corollary 3.3. Assume A4, B2 on the data distribution. Assume further that f0j , j =
1, . . . , d are k times weakly differentiable. Then there are constants c0, n0 > 0, that depend
only on σ, k, such that for all cn ≥ 1 and and n ≥ n0d

(2k+3)/(2k+2)c
1/(k+1)
n ,

inf
f̂

sup
f0∈Fdk (cn)

E‖f̂ − f0‖22 ≥ c0dn
−(2k+2)/(2k+3)c2/(2k+3)

n . (3.33)

Remark 3.8 (Optimality for a fixed dimension d). For a fixed d, the estimator de-
fined by (3.18) is minimax rate optimal over the class of additive functions f0 such that∑d

j=1 J(f0j) ≤ Cn. To see this, note that such a class of functions contains Bd
J(Cn/d),

therefore plugging cn = Cn/d into the right-hand side in (3.32) yields a lower bound rate
of n−2/(2+w)C

2w/(2+w)
n , which matches the upper bound rate in (3.20).

Furthermore, when J(g) = TV(g(k)), the lower bound rate given by plugging cn = Cn/d
into the right-hand side in (3.33) is n−(2k+2)/(2k+3)C

2/(2k+3)
n , matching the upper bound

rate in (3.23). Hence additive locally adaptive regression splines, restricted additive locally
adaptive regression splines, and additive trend filtering all achieve the minimax rate over
the space of additive functions f0 such that

∑d
j=1 TV(f

(k)
0j ) ≤ Cn.

Remark 3.9 (Optimality for a growing dimension d). For growing d, the estimator
defined by (3.24) is minimax rate optimal over the class of additive functions f0 such that
J(f0j) ≤ c, j = 1, . . . , d, where c > 0 is a constant. This is verified by noting that the lower
bound rate of dn−2/(2+w) in (3.32) matches the upper bound rates in (3.26), (3.27).

When J(g) = TV(g(k)), and again, cn = c (a constant), the lower bound rate of dn−(2k+2)/(2k+3)

in (3.33) matches the upper bound rates in (3.31). Thus additive locally adaptive regression
splines, restricted additive locally adaptive regression splines, and additive trend filtering
all attain the minimax rate over the space of additive functions f0 with TV(f

(k)
0j ) ≤ c,

j = 1, . . . , d.
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For growing cn, we note that the upper bounds in (3.28) and (3.31) have an inflated
dependence on cn, compared to (3.32) and (3.33). It turns out that the latter (lower bounds)
are tight, and the former (upper bounds) are loose. The upper bounds can be tightened
under further boundedness assumptions (see Remark 3.5).

Remark 3.10 (Suboptimality of additive linear smoothers). Seminal theory from
Donoho & Johnstone (1998) on minimax linear rates over Besov spaces shows that, under
Assumption B2, and with the inputs Xi, i = 1, . . . , n being now nonrandom and occurring
over the regular d-dimensional lattice {1/N, 2/N, . . . , 1}d ⊆ [0, 1]d with N = n1/d, we have

inf
f̂ additive linear

sup
f0∈Fdk (cn)

E‖f̂ − f0‖22 ≥ c0dn
−(2k+1)/(2k+2)c2/(2k+2)

n , (3.34)

for all n ≥ n0, where c0, n0 > 0 are constants, depending only on σ, k. On the left-hand side
in (3.34) the infimum is taken over all additive linear smoothers, i.e., estimators f̂ =

∑d
j=1 f̂j

such that each component f̂j is a linear smoother, for j = 1, . . . , d. The additive linear
smoother lower bound (3.34) is verified in Appendix B.16.

For a fixed d, we can see that all additive linear smoothers—e.g., additive smoothing
splines, additive kernel smoothing estimators, additive RKHS estimators, etc.—are sub-
optimal over the class of additive functions f0 with

∑d
j=1 TV(f

(k)
0j ) ≤ Cn, as the optimal

linear rate in (3.34) (set cn = Cn/d) is n−(2k+1)/(2k+2)C
2/(2k+2)
n , slower than the optimal

rate n−(2k+2)/(2k+3)C
2/(2k+2)
n of additive locally adaptive splines and additive trend filtering

in (3.23).

For growing d, and cn = c (a constant), we also see that additive linear smoothers are
suboptimal over the class of additive functions f0 such that TV(f

(k)
0j ) ≤ c, j = 1, . . . , d, as the

optimal linear rate in (3.34) is dn−(2k+1)/(2k+2), slower than the optimal rate dn−(2k+2)/(2k+3)

of additive locally adaptive regression splines and additive trend filtering in (3.31).

3.4 Backfitting and the dual

We now examine computational approaches for the additive trend filtering problem (3.4).
This is a convex optimization problem, and many standard approaches can be applied. For
its simplicity and its ubiquity in additive modeling, we focus on the backfitting algorithm
in particular.

3.4.1 Backfitting

The backfitting approach for problem (3.4) is described in Algorithm 1. We write TFλ(r,Xj)
for the univariate trend filtering fit, with a tuning parameter λ > 0, to a response vector
r = (r1, . . . , rn) ∈ Rn over an input vector Xj = (X1

j , . . . , X
n
j ) ∈ Rn. In words, the

algorithm cycles over j = 1, . . . , d, and at each step updates the estimate for component j
by applying univariate trend filtering to the jth partial residual (i.e., the current residual
excluding component j). Centering in Step 2b part (ii) is optional, because the fit TFλ(r,Xj)
will have mean zero whenever r has mean zero, but centering can still be performed for
numerical stability. In general, the efficiency of backfitting hinges on the efficiency of the
univariate smoother employed; to implement Algorithm 1 in practice we can use fast interior



54

Algorithm 1 Backfitting for additive trend filtering

Given responses Y i ∈ R and input points Xi ∈ Rd, i = 1, . . . , n.

1. Set t = 0 and initialize θ
(0)
j = 0, j = 1, . . . , d.

2. For t = 1, 2, 3, . . . (until convergence):

a. For j = 1, . . . , d:

(i) θ
(t)
j = TFλ

(
Y − Ȳ 1−

∑
`<j

θ
(t)
j −

∑
`>j

θ
(t−1)
j , Xj

)
(ii) (Optional) θ

(t)
j = θ

(t)
j −

1
n1

T θ
(t)
j

3. Return θ̂j , j = 1, . . . , d (parameters θ
(t)
j , j = 1, . . . , d at convergence).

point methods (Kim et al. 2009) or fast operator splitting methods (Ramdas & Tibshirani
2016) for univariate trend filtering, both of which result in efficient empirical performance.

Algorithm 1 is equivalent to block coordinate descent (BCD), also called exact blockwise
minimization, applied to problem (3.4) over the coordinate blocks θj , j = 1, . . . , d. A general
treatment of BCD is given in Tseng (2001), who shows that for a convex criterion that
decomposes into smooth plus separable terms, as does that in (3.4), all limit points of the
sequence of iterates produced by BCD are optimal solutions. We are primarily interested
in developing a connection between BCD for problem (3.4) and alternating projections in
its dual problem (3.14), which is the topic of the next subsection.

3.4.2 Dual alternating projections

Using the additive trend filtering problem (3.4) and its dual (3.14), related by the transfor-
mation (3.15), we see that for any dimension j = 1, . . . , d, the univariate trend filtering fit
with response vector r = (r1, . . . , rn) and input vector Xj = (X1

j , . . . , X
n
j ) becomes

TFλ(r,Xj) = (Id−ΠUj )(r), (3.35)

where Uj = {SjDT
j vj : ‖u‖∞ ≤ λ}, and recall, we abbreviateDj = D(Xj ,k+1). Reparametriz-

ing in terms of the primal-dual relationship u = Y − Ȳ 1−
∑d

j=1 θj (and ignoring the op-
tional centering step), the backfitting approach in Algorithm 1 can thus be viewed as per-
forming the updates, for t = 1, 2, 3, . . .,

u
(t)
0 = Y − Ȳ 1−

d∑
j=1

θ
(t−1)
j ,

u
(t)
j = ΠUj

(
u

(t)
j−1 + θ

(t−1)
j

)
, j = 1, . . . , d,

θ
(t)
j = θ

(t−1)
j + u

(t)
j−1 − u

(t)
j , j = 1, . . . , d.

(3.36)

Thus the backfitting algorithm for (3.4), as expressed above in (3.36), is seen to be a par-
ticular type of alternating projections method applied to the dual problem (3.14), cycling
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through projections onto Uj , j = 1, . . . , d. Interestingly, as opposed to the classical alter-
nating projections approach, which would repeatedly project the current iterate u

(t)
j−1 onto

Uj , j = 1, . . . , d, the steps in (3.36) repeatedly project an “offset” version u
(t)
j−1 + θ

(t−1)
j of

the current iterate, for j = 1, . . . , d.

3.4.3 Parallelized backfitting

We have seen that backfitting is a special type of alternating projections algorithm, applied
to the dual problem (3.14). For set intersection problems (where we seek a point in the
intersection of given closed, convex sets), the optimization literature offers a variety of par-
allel projections methods (in contrast to alternating projections methods) that are provably
convergent. One such method can be derived using ADMM (e.g., see Section 5.1 of Boyd
et al. (2011)), and a similar construction can be used for the dual problem (3.14). We first
rewrite this problem as

min
u0,u1,...,ud∈Rn

1

2
‖Y − Ȳ 1− u0‖22 +

d∑
j=1

IUj (uj)

subject to u0 = u1, u0 = u2, . . . u0 = ud,

(3.37)

where we write IS for the indicator function of a set S (equal to 0 on S, and ∞ otherwise).
Then we define the augmented Lagrangian, for an arbitrary ρ > 0, as

Lρ(u0, u1, . . . , ud, γ1, . . . , γd) =

1

2
‖Y − Ȳ 1− u0‖22 +

d∑
j=1

(
IUj (uj) +

ρ

2
‖u0 − uj + γj‖22 −

ρ

2
‖γj‖22

)
.

The ADMM steps for (3.37) are now given by repeating, for t = 1, 2, 3, . . .,

u
(t)
0 =

1

ρd+ 1

(
Y − Ȳ 1 + ρ

d∑
j=1

(u
(t−1)
j − γ(t−1)

j )

)
u

(t)
j = ΠUj

(
u

(t)
0 + γ

(t−1)
j

)
, j = 1, . . . , d

γ
(t)
j = γ

(t−1)
j + u

(t)
0 − u

(t)
j , j = 1, . . . , d.

(3.38)

Now compare (3.38) to (3.36)—the key difference is that in (3.38), the updates to uj ,
j = 1, . . . , d, i.e., the projections onto Uj , j = 1, . . . , d, completely decouple and can hence be
performed in parallel. Run properly, this could provide a large speedup over the sequential
projections in (3.36).

Of course, for our current study, the dual problem (3.37) is really only interesting insofar
as it is connected to the additive trend filtering problem (3.4). In Algorithm 2, we tran-
scribe the iterations in (3.38) into an equivalent primal form, and we provide a convergence
guarantee in the next theorem. For details, see Appendix B.17.

Theorem 3.4. Initialized arbitrarily, the ADMM steps (3.38) produce parameters γ̂j , j =
1, . . . , d (i.e., the iterates γ

(t)
j , j = 1, . . . , d at convergence) such that the scaled parameters

ργ̂j , j = 1, . . . , d solve additive trend filtering (3.4). Further, the outputs θ̂j , j = 1, . . . , d of
Algorithm 2 solve additive trend filtering (3.4).
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Algorithm 2 Parallel backfitting for additive trend filtering

Given responses Y i ∈ R, input points Xi ∈ Rd, i = 1, . . . , n, and ρ > 0.

1. Initialize u
(0)
0 = 0, θ

(0)
j = 0 and θ

(−1)
j = 0 for j = 1, . . . , d.

2. For t = 1, 2, 3, . . . (until convergence):

a. u
(t)
0 =

1

ρd+ 1

(
Y − Ȳ 1−

d∑
j=1

θ
(t−1)
j

)
+

ρd

ρd+ 1

(
u

(t−1)
0 +

1

ρd

d∑
j=1

(
θ

(t−2)
j − θ(t−1)

j

))

b. For j = 1, . . . , d (in parallel):

(i) θ
(t)
j = ρ · TFλ

(
u

(t)
0 + θ

(t−1)
j /ρ,Xj

)
(ii) (Optional) θ

(t)
j = θ

(t)
j −

1
n1

T θ
(t)
j

3. Return θ̂j , j = 1, . . . , d (parameters θ
(t)
j , j = 1, . . . , d at convergence).

Written in primal form, we see that the parallel backfitting approach in Algorithm
2 differs from what may be considered the “naive” approach to parallelizing the usual
backfitting iterations in Algorithm 1. Consider ρ = 1. If we were to replace Step 2a in
Algorithm 2 with u

(t)
0 = r(t−1), the full residual

r(t−1) = Y − Ȳ 1−
d∑
j=1

θ
(t−1)
j ,

then the update steps for θ
(t)
j , j = 1, . . . , d that follow would be just given by applying

univariate trend filtering to each partial residual (without sequentially updating the partial
residuals between trend filtering runs). This naive parallel method has no convergence
guarantees, and can fail even in simple practical examples to produce optimal solutions.
Importantly, Algorithm 2 does not take u

(t)
0 to be the full residual, but as Step 2a shows,

uses a less greedy choice: it basically takes u
(t)
0 to be a convex combination of the residual

r(t−1) and its previous value u
(t−1)
0 , with higher weight on the latter. The subsequent parallel

updates for θ
(t)
j , j = 1, . . . , d are still given by univariate trend filtering fits, and though these

steps do not exactly use partial residuals (since u
(t)
0 is not exactly the full residual), they are

guaranteed to produce additive trend filtering solutions upon convergence (as per Theorem
3.4). An example of cyclic versus parallelized backfitting is given in Appendix B.18.

3.5 Experiments

Through empirical experiments, we examine the performance of additive trend filtering
relative to additive smoothing splines. We also examine the efficacy of cross-validation for
choosing the tuning parameter λ, as well as the use of multiple tuning parameters. All
experiments were performed in R. For the univariate trend filtering solver, we used the
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trendfilter function in the glmgen package; for the univariate smoothing spline solver,
we used the smooth.spline function in base R.

3.5.1 Simulated heterogeneously-smooth data

We sampled n = 2500 input points in d = 10 dimensions, by assigning the inputs along each
dimension Xj = (X1

j , . . . , X
n
j ) to be a different permutation of the equally spaced points

(1/n, 2/n, . . . , 1), for j = 1, . . . , 10. For the componentwise trends, we examined sinusoids
with Doppler-like spatially-varying frequencies:

g0j(xj) = sin

(
2π

(xj + 0.1)j/10

)
, j = 1, . . . , 10.

We then defined the component functions as f0j = ajg0j − bj , j = 1, . . . , d, where aj , bj were
chosen so that f0j had empirical mean zero and empirical norm ‖f0j‖n = 1, for j = 1, . . . , d.
The responses were generated according to Y i i.i.d.∼ N(

∑d
j=1 f0j(X

i
j), σ

2), i = 1, . . . , 2500. By
construction, in this setup, there is considerable heterogeneity in the levels of smoothness
both within and between the component functions.

The left panel of Figure 3.4 shows a comparison of the MSE curves from additive trend
filtering in (3.4) (of quadratic order, k = 2) and additive smoothing splines in (3.1) (of
cubic order). We set σ2 in the generation of the responses so that the signal-to-noise ratio
(SNR) was ‖f0‖2n/σ2 = 4, where f0 =

∑d
j=1 f0j . The two methods (additive trend filtering

and additive smoothing splines) were each allowed their own sequence of tuning parameter
values, and results were averaged over 10 repetitions from the simulation setup described
above. As we can see, additive trend filtering achieves a better minimum MSE along its
regularization path, and does so at a less complex model (lower df).

The right panel of Figure 3.4 shows the best-case MSEs for additive trend filtering and
additive smoothing splines (i.e., the minimum MSE over their regularization paths) as the
noise level σ2 is varied so that the SNR ranges from 0.7 to 1.6, in equally spaced values
on the log scale. The results were again averaged over 10 repetitions of data drawn from a
simulation setup essentially the same as the one described above, except that we considered
a smaller problem size, with n = 1000 and d = 6. The plot reveals that additive trend
filtering performs increasingly well (in comparison to additive smoothing splines) as the
SNR grows—not surprising, as here it is able to better capture the heterogeneity in the
component functions.

Lastly, in Appendix B.19, we present results from an experimental setup mimicking
that in this subsection, except with the component functions f0j , j = 1, . . . , d having
homogeneous smoothness throughout. Here additive trend filtering and additive smoothing
splines perform very similarly.

3.5.2 Cross-validation and multiple tuning parameters

Sticking to the simulation setup from the last subsection, but at the smaller problem size,
n = 1000 and d = 6 (used to produce the right panel of Figure 3.4), we study in the left
panel of Figure 3.5 the use of 5-fold cross-validation (CV) to select the tuning parameter
λ for additive trend filtering and additive smoothing splines. Displayed are the resulting
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Figure 3.4: The left panel shows the MSE curves for additive trend filtering (3.4) (of quadratic
order) and additive smoothing splines (3.1) (of cubic order), computed over 10 repetitions from the
heterogeneous smoothness simulation with n = 2500 and d = 10, described in Section 3.5.1, where
the SNR is set to 4. Vertical segments denote ±1 standard deviations. The right panel displays the
best-case MSE for each method (the minimum MSE over its regularization path), in a problem setup
with n = 1000 and d = 6, as the signal-to-noise ratio (SNR) varies from 0.7 to 16, in equally spaced
values on the log scale.

MSE curves as the SNR varies from 0.7 to 16. Also shown on the same plot are the oracle
MSE curves (which are the same as those the right panel of Figure 3.4), in which λ has
been chosen to minimize the MSE for each method. We can see that the performance of
each method degrades using CV, but not by much.

In the right panel of the figure, we examine the use of multiple tuning parameters for
additive smoothing splines and additive trend filtering, i.e., replacing the penalties in (3.1)
and (3.4) by

d∑
j=1

λjθ
T
j Qjθj and

d∑
j=1

λj
∥∥D(Xj ,k+1)Sjθj

∥∥
1
,

respectively, which means we would now have d tuning parameters λj , j = 1, . . . , d. When
the function we are estimating has different amounts of smoothness along different dimen-
sions, we have argued (and seen through examples) that additive trend filtering—using only
a single tuning parameter λ—can accomodate these differences, at least somewhat, thanks
to its locally adaptive nature. But, when these differences in smoothness are drastic enough,
it may be worthwhile to use multiple tuning parameters.

When d is moderate (even just for d = 6), cross-validation over a d-dimensional grid of
values for λj , j = 1, . . . , d can be prohibitive. However, as pointed out by a referee of this
article, there has been a considerable amount of work dedicated to this problem by authors
studying additive models built from splines (or other linear smoothers), e.g., Gu & Wahba
(1991), Wood (2000), Fahrmeir & Lang (2001), Ruppert et al. (2003), Wood (2004), Kim &
Gu (2004), Rue et al. (2009), Wood (2011), Wood et al. (2015, 2016). Many of these papers
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Figure 3.5: Both panels display results from the same simulation setup as that in the right panel of
Figure 3.4. The left panel shows MSE curves when the estimators are tuned by 5-fold cross-validation
(CV), and also by the oracle (reflecting the minimum possible MSE). The right panel displays MSE
curves when we allow each estimator to have d tuning parameters, tuned by a hybrid backfit-CV
method explained in the text, versus the oracle MSE curves for a single tuning parameter.

use an efficient computational approach based on restricted maximum likelihood (REML)
for selecting λj , j = 1, . . . , d; see also Wood (2017) for a nice introduction and description
of this approach. Unfortunately, as far as we see it, REML does not easily apply to additive
trend filtering.

We thus use the following simple approach for multiple tuning parameter selection:
within each backfitting loop, for each component j = 1, . . . , d, we use (univariate) CV to
choose λj . While this does not solve a particular convex optimization problem, and is not
guaranteed to converge in general, we have found it to work quite well in practice. The
right panel of Figure 3.5 compares the performance of this so-called backfit-CV tuning to
the oracle, that chooses just a single tuning parameter. Both additive trend filtering and
additive smoothing splines are seen to improve with d tuning parameters, tuned by backfit-
CV, in comparison to the oracle choice of tuning parameter. Interestingly, we also see that
additive smoothing splines with d tuning parameters performs on par with additive trend
filtering with the oracle choice of tuning parameter. (In this example, REML tuning for
additive smoothing splines—as implemented by the mgcv R package—performed worse than
backfit-CV tuning, and so we only show results from the latter.)

3.6 Discussion

We have studied additive models built around the univariate trend filtering estimator, i.e.,
defined by penalizing according to the sum of `1 norms of discrete derivatives of the com-
ponent functions. We examined basic properties of these additive models, such as extrap-
olation of the fitted values to a d-dimensional surface, and uniqueness of the component
fits. When the underlying regression function is additive, with components whose kth
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derivatives are of bounded variation, we derived error rates for kth order additive trend
filtering: n−(2k+2)/(2k+3) for a fixed input dimension d (under weak assumptions), and
dn−(2k+2)/(2k+3) for a growing dimension d (under stronger assumptions). We showed these
rates are sharp by establishing matching minimax lower bounds. On the computational side,
we devised a provably convergent parallel backfitting algorithm for additive trend filtering.
It is worth noting that our parallel backfitting method is not specific to additive trend
filtering, but it can be embedded in a more general parallel coordinate descent framework
(Tibshirani 2017).

A natural extension of our work is to consider the high-dimensional case, where d is
comparable or possibly even much larger than n, and we fit a sparse additive model by
employing an additional sparsity penalty in problem (3.4). Another natural extension is to
consider responses Y i|Xi, i = 1, . . . , n from an exponential family distribution, and we fit a
generalized additive model by changing the loss in (3.4). After we completed an initial version
of this paper, both extensions have been pursued: Tan & Zhang (2017) develop a suite of
error bounds for sparse additive models, with various form of penalties (which include total
variation on derivatives of components); and Haris et al. (2018) give comprehensive theory
for sparse generalized additive models, with various types of penalties (which again include
total variation on derivatives of components).

3.7 Extensions to exponential family losses

As is well-known (see Hastie & Tibshirani (1990)), additive models can be extended to
exponential family distributions by simple link functions. Additive trend filtering can be
extended to fit exponential family distributions as follows. Consider the following problem
where g : R→ [0,∞) is a link function:

min
θ1,...,θd∈Rn

− (Y − Ȳ 1)T
d∑
j=1

θj +

n∑
i=1

g
( d∑
j=1

θij
)

+ λ

d∑
j=1

∥∥D(Xj ,k+1)Sjθj
∥∥

1

subject to 1
T θj = 0, j = 1, . . . , d.

(3.39)

Setting g(x) = x2/2, g(x) = log (1 + ex) and g(x) = ex in the above problem gives penalized
maximum likelihood estimators for Gaussian, logistic and Poisson loss models respectively.
Note that the Gaussian loss problem is equivalent to the original formulation (3.4).

Backfitting may again be used to solve (3.39) with a proximal Newton method to solve
the inner component-wise problems. We are interested in deriving the minimax optimal
rates over the additive function space Bd

J(cn), cn ≥ 1 where J is the semi-norm in Theo-
rem 3.3 and show that the estimator in (3.39) attains the rate up to logarithmic factors.



Chapter 4

A Higher Order
Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test (Kolmogorov 1933, Smirnov 1948) is a classical and cel-
ebrated tool for nonparametric hypothesis testing. Let x1, . . . , xm ∼ P and y1, . . . , yn ∼ Q
be independent samples. Let X(m) and Y(n) denote the two sets of samples, and also let
Z(N) = X(m) ∪ Y(n) = {z1, . . . , zN}, where N = m+ n. The two-sample KS test statistic is
defined as

max
z∈Z(m+n)

∣∣∣∣ 1

m

m∑
i=1

1{xi ≤ z} −
1

n

n∑
i=1

1{yi ≤ z}
∣∣∣∣. (4.1)

In words, this measures the maximum absolute difference between the empirical cumulative
distribution functions (CDFs) of X(m) and Y(n), across all points in the joint sample Z(m+n).
Naturally, the two-sample KS test rejects the null hypothesis of P = Q for large values of
the statistic. The statistic (4.1) can also be written in the following variational form:

sup
f : TV(f)≤1

|Pmf −Qnf |, (4.2)

where TV(·) denotes total variation, and we define the empirical expectation operators
Pm,Qn via

Pmf =
1

m

m∑
i=1

f(xi) and Qnf =
1

n

n∑
i=1

f(yi).

Later, we will give a general representation result that implies the equivalence of (4.1) and
(4.2) as a special case.

The KS test is a fast, general-purpose two-sample nonparametric test. But being a
general-purpose test also means that it is systematically less sensitive to some types of
differences, such as tail differences (Bryson 1974). Intuitively, this is because the empirical
CDFs of X(m) and Y(n) must both tend to 0 as z → −∞ and to 1 as z →∞, so the gap in
the tails will not be large.

The insensitivity of the KS test to tail differences is well-known. Several authors have
proposed modifications to the KS test to improve its tail sensitivity, based on variance-
reweighting (Anderson & Darling 1952), or Renyi-type statistics (Mason & Schuenemeyer

61
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1983, Calitz 1987), to name a few ideas. In a different vein, Wang et al. (2014) recently
proposed a higher-order extension of the KS two-sample test, which replaces the total
variation constraint on f in (4.2) with a total variation constraint on a derivative of f .
These authors show empirically that, in some cases, this modification can lead to better
tail sensitivity. In the current work, we refine the proposal of Wang et al. (2014), and give
theoretical backing for this new test.

4.1 A higher-order KS test

Our test statistic has the form of an integral probability metric (IPM). For a function class
F , the IPM between distributions P and Q, with respect to F , is defined as (Muller 1997)

ρ(P,Q;F) = sup
f∈F

|Pf −Qf | (4.3)

where we define the expectation operators P,Q by

Pf = EX∼P [f(X)] and Qf = EY∼Q[f(Y )].

For a given function class F , the IPM ρ(·, · ;F) is a pseudometric on the space of distri-
butions. Note that the KS test in (4.2) is precisely ρ(Pm, Qn;F0), where Pm, Qn are the
empirical distributions of X(m), Y(n), respectively, and F0 = {f : TV(f) ≤ 1}.

Consider an IPM given by replacing F0 with Fk = {f : TV(f (k)) ≤ 1}, for an integer
k ≥ 1 (where we write f (k) for the kth weak derivative of f). Some motivation is as follows.
In the case k = 0, we know that the witness functions in the KS test (4.2), i.e., the functions
in F0 that achieve the supremum, are piecewise constant step functions (cf. the equivalent
representation (4.1)). These functions can only have so much action in the tails. By moving
to Fk, which is essentially comprised of the kth order antiderivative of functions in F0, we
should expect that the witness functions over Fk are kth order antiderivatives of piecewise
constant functions, i.e., kth degree piecewise polynomial functions, which can have much
more sensitivity in the tails.

But simply replacing F0 by Fk and proposing to compute ρ(Pm, Qn;Fk) leads to an
ill-defined test. This is due to the fact that Fk contains all polynomials of degree k. Hence,
if the ith moments of Pm, Qn differ, for any i ∈ [k] (where we abbreviate [a] = {1, . . . , a}
for an integer a ≥ 1), then ρ(Pm, Qn;Fk) =∞.

As such, we must modify Fk to control the growth of its elements. While there are
different ways to do this, not all result in computable IPMs. The approach we take yields
an exact representer theorem (generalizing the equivalence between (4.1) and (4.2)). Define

Fk =
{
f : TV(f (k)) ≤ 1,

f (j)(0) = 0, j ∈ {0} ∪ [k − 1], (4.4)

f (k)(0+) = 0 or f (k)(0−) = 0
}
.

Here f (k)(0+) and f (k)(0−) denote one-sided limits at 0 from above and below, respectively.
Informally, the functions in Fk are pinned down at 0, with all lower-order derivatives (and
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the limiting kth derivative from the right or left) equal to 0, which limits their growth. Now
we define the kth-order KS test statistic as

ρ(Pm, Qn;Fk) = sup
f∈Fk

|Pmf −Qnf |. (4.5)

An important remark is that for k = 0, this recovers the original KS test statistic (4.2),
because F0 contains all step functions of the form gt(x) = 1{x ≤ t}, t ≥ 0.

Another important remark is that for any k ≥ 0, the function class Fk in (4.4) is “rich
enough” to make the IPM in (4.5) a metric. We state this formally next; its proof, as with
all other proofs in this chapter, is in Appendix C.

Proposition 4.1. For any k ≥ 0, and any P,Q with k moments, ρ(P,Q;Fk) = 0 if and
only if P = Q.

Motivating Example. Figure 4.1 shows the results of a simple simulation comparing
the proposed higher-order tests (4.5), of orders k = 1 through 5, against the usual KS
test (corresponding to k = 0). For the simulation setup, we used P = N(0, 1) and Q =
N(0, 1.44). For 500 “alternative” repetitions, we drew m = 250 samples from P , drew
n = 250 samples from Q, and computed test statistics; for another 500 “null” repetitions,
we permuted the m + n = 500 samples from the corresponding alternative repetition, and
again computed test statistics. For each test, we varied the rejection threshold for each
test, we calculated its true positive rate using the alternative repetitions, and calculated
its false positive rate using the null repetitions. The oracle ROC curve corresponds to the
likelihood ratio test (which knows the exact distributions P,Q). Interestingly, we can see
that power of the higher-order KS test improves as we increase the order from k = 0 up to
k = 2, then stops improving by k = 3, 4, 5.
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Figure 4.1: ROC curves from an experiment comparing the proposed higher-order KS tests in (4.5)
(for various k) to the usual KS test, when P = N(0, 1) and Q = N(0, 1.44).

Figure 4.2 displays the witness function (which achieves the supremum in (4.5)) for a
large-sample version of the higher-order KS test, across orders k = 0 through 5. We used
the same distributions as in Figure 4.1, but now n = m = 104. We will prove in Section 4.2
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that, for the kth order test, the witness function is always a kth degree piecewise polynomial
(in fact, a rather simple one, of the form gt(x) = (x− t)k+ or gt(x) = (t− x)k+ for a knot
t). Recall the underlying distributions P,Q here have different variances, and we can see
from their witness functions that all higher-order KS tests choose to put weight on tail
differences. Of course, the power of any test of is determined by the size of the statistic
under the alternative, relative to typical fluctuations under the null. As we place more
weight on tails, in this particular setting, we see diminishing returns at k = 3, meaning the
null fluctuations must be too great.
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Figure 4.2: Witness functions (normalized for plotting purposes) for the higher-order KS tests,
when P = N(0, 1) and Q = N(0, 1.44). They are always of piecewise polynomial form; and here
they all place weight on tail differences.

Summary of Contributions. Our contributions in this work are as follows.

• We develop an exact representer theorem for the higher-order KS test statistic (4.5).
This enables us to compute the test statistic in linear-time, for all k ≤ 5. For k ≥ 6,
we develop a nearly linear-time approximation to the test statistic.

• We derive the asymptotic null distribution of the our higher-order KS test statistic,
based on empirical process theory. For k ≥ 6, our approximation to the test statistic
has the same asymptotic null.

• We provide concentration tail bounds for the test statistic. Combined with the metric
property from Proposition 4.1, this shows that our higher-order KS test is asymptot-
ically powerful against any pair of fixed, distinct distributions P,Q.

• We perform extensive numerical studies to compare the newly proposed tests with
several others.

Other Related Work. Recently, IPMs have been gaining in popularity due in large
part to energy distance tests (Szekely & Rizzo 2004, Baringhaus & Franz 2004) and kernel
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maximum mean discrepancy (MMD) tests (Gretton et al. 2012), and in fact, there is an
equivalence between the two classes (Sejdinovic et al. 2013). An IPM with a judicious choice
of F gives rise to a number of common distances between distributions, such as Wasserstein
distance or total variation (TV) distance. While IPMs look at differences dP − dQ, tests
based on φ-divergences (such as Kullback-Leibler, or Hellinger) look at ratios dP/dQ, but
can be hard to efficiently estimate in practice (Sriperumbudur et al. 2009). The TV distance
is the only IPM that is also a φ-divergence, but it is impossible to estimate.

There is also a rich class of nonparametric tests based on graphs. Using minimum span-
ning trees, Friedman & Rafsky (1979) generalized both the Wald-Wolfowitz runs test and
the KS test. Other tests are based on k-nearest neighbors graphs (Schilling 1986, Henze
1988) or matchings (Rosenbaum 2005). The Mann-Whitney-Wilcoxon test has a multi-
variate generalization using the concept of data depth (Liu & Singh 1993). Bhattacharya
(2016) established that many computationally efficient graph-based tests have suboptimal
statistical power, but some inefficient ones have optimal scalings.

Different computational-statistical tradeoffs were also discovered for IPMs (Ramdas,
Reddi, Poczos, Singh & Wasserman 2015). Further, as noted by Janssen (2000) (in the
context of one-sample testing), every nonparametric test is essentially powerless in an infin-
ity of directions, and has nontrivial power only against a finite subspace of alternatives. In
particular, this implies that no single nonparametric test can uniformly dominate all others;
improved power in some directions generally implies weaker power in others. This problem
only gets worse in high-dimensional settings (Ramdas, Reddi, Pczos, Singh & Wasserman
2015, Arias-Castro et al. 2018). Therefore, the question of which test to use for a given
problem must be guided by a combination of simulations, computational considerations, a
theoretical understanding of the pros/cons of each test, and a practical understanding of
the data at hand.

Outline. In Section 4.2, we give computational details for the higher-order KS test statis-
tic (4.5). We derive its asymptotic null in Section 4.3, and give concentration bounds (for the
statistic around the population-level IPM) in Section 4.4. We give numerical experiments
in Section 4.5, and conclude in Section 4.6 with a discussion.

4.2 Computation

Write T = ρ(Pm, Qn;Fk) for the test statistic in (4.5). In this section, we derive a repre-
senter theorem for T , develop a linear-time algorithm for k ≤ 5, and a nearly linear-time
approximation for k ≥ 6.

4.2.1 Representer theorem

The higher-order KS test statistic in (4.5) is defined by an infinite-dimensional maximization
over Fk in (4.4). Fortunately, we can restrict our attention to a simpler function class, as
we show next.
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Theorem 4.1. Fix k ≥ 0. Let g+
t (x) = (x− t)k+/k! and g−t (x) = (t− x)k+/k! for t ∈ R,

where we write (a)+ = max{a, 0}. For the statistic T defined by (4.5),

T = max
{

sup
t≥0
|(Pm −Qn)g+

t |, sup
t≤0
|(Pm −Qn)g−t |

}
. (4.6)

The proof of this theorem uses a key result from Mammen (1991), where it is shown
that we can construct a spline interpolant to a given function at given points, such that its
higher-order total variation is no larger than that of the original function.

Remark 4.1. When k = 0, note that for t ≥ 0,

|(Pm −Qn)g+
t | =

∣∣∣∣ 1

m

m∑
i=1

1{xi > t} − 1

n

n∑
i=1

1{yi > t}
∣∣∣∣

=

∣∣∣∣ 1

m

m∑
i=1

1{xi ≤ t} −
1

n

n∑
i=1

1{yi ≤ t}
∣∣∣∣

and similarly for t ≤ 0, |(Pm − Qn)g−t | reduces to the same expression in the second line
above. As we vary t from −∞ to∞, this only changes at values t ∈ Z(N), which shows (4.6)
and (4.1) are the same, i.e., Theorem 4.1 recovers the equivalence between (4.2) and (4.1).

Remark 4.2. For general k ≥ 0, we can interpret (4.6) as a comparison between truncated
kth order moments, between the empirical distributions Pm and Qn. The test statistic T
the maximum over all possible truncation locations t. The critical aspect here is trunca-
tion, which makes the higher-order KS test statistic a metric (recall Proposition 4.1). A
comparison of moments, alone, would not be enough to ensure such a property.

Theorem 4.1 itself does not immediately lead to an algorithm for computing T , as the
range of t considered in the suprema is infinite. However, through a bit more work, detailed
in the next two subsections, we can obtain an exact linear-time algorithm for all k ≤ 5, and
a linear-time approximation for k ≥ 6.

4.2.2 Linear-time algorithm for k ≤ 5

The key fact that we will exploit is that the criterion in (4.6), as a function of t, is a
piecewise polynomial of order k with knots in Z(N). Assume without a loss of generality
that z1 < · · · < zN . Also assume without a loss of generality that z1 ≥ 0 (this simplifies
notation, and the general case follows by the repeating the same arguments separately for
the points in Z(N) on either side of 0). Define ci = 1{zi ∈ X(m)}/m − 1{zi ∈ Y(n)}/n,
i ∈ [N ], and

φi(t) =
1

k!

N∑
j=i

cj(zj − t)k, i ∈ [N ]. (4.7)

Then the statistic in (4.6) can be succinctly written as

T = max
i∈[N ]

sup
t∈[zi−1,zi]

φi(t), (4.8)

where we let z0 = 0 for convenience. Note each φi(t), i ∈ [N ] is a kth degree polynomial.
We can compute a representation for these polynomials efficiently.
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Lemma 4.1. Fix k ≥ 0. The polynomials in (4.7) satisfy the recurrence relations

φi(t) =
1

k!
ci(zi − t)k + φi+1(t), i ∈ [N ]

(where φN+1 = 0). Given the monomial expansion

φi+1(t) =
k∑
`=0

ai+1,`t
`,

we can compute an expansion for φi, with coefficients ai`, ` ∈ {0} ∪ [k], in O(1) time. So
we can compute all coefficients ai,`, i ∈ [N ], ` ∈ {0} ∪ [k] in O(N) time.

To compute T in (4.8), we must maximize each polynomial φi over its domain [zi−1, zi],
for i ∈ [N ], and then compare maxima. Once we have computed a representation for these
polynomials, as Lemma 4.1 ensures we can do in O(N) time, we can use this to analytically
maximize each polynomial over its domain, provided the order k is small enough. Of
course, maximizing a polynomial over an interval can be reduced to computing the roots
of its derivative, which is an analytic computation for any k ≤ 5 (since the roots of any
quartic have a closed-form, see, e.g., Rosen 1995). The next result summarizes.

Proposition 4.2. For any 0 ≤ k ≤ 5, the test statistic in (4.8) can be computed in O(N)
time.

Maximizing a polynomial of degree k ≥ 6 is not generally possible in closed-form. How-
ever, developments in semidefinite optimization allow us to approximate its maximum effi-
ciently, investigated next.

4.2.3 Linear-time approximation for k ≥ 6

Seminal work of Shor (1998), Nesterov (2000) shows that the problem of maximizing a
polynomial over an interval can be cast as a semidefinite program (SDP). The number of
variables in this SDP depends only on the polynomial order k, and all constraint functions
are self-concordant. Using say an interior point method to solve this SDP, therefore, leads
to the following result.

Proposition 4.3. Fix k ≥ 6 and ε > 0. For each polynomial in (4.7), we can compute
an ε-approximation to its maximum in ck log(1/ε) time, for a constant ck > 0 depending
only on k. As we can compute a representation for all these polynomials in O(N) time
(Lemma 4.1), this means we can compute an ε-approximation to the statistic in (4.6) in
O(N log(1/ε)) time.

Remark 4.3. Let Tε denote the ε-approximation from Proposition 4.3. Under the null
P = Q, we would need to have ε = o(1/

√
N) in order for the approximation Tε to share the

asymptotic null distribution of T , as we will see in Section 4.3.3. Taking say, ε = 1/N , the
statistic T1/N requires O(N logN) computational time, and this is why in various places we
make reference to a nearly linear-time approximation when k ≥ 6.
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4.2.4 Simple linear-time approximation

We conclude this section by noting a simple approximation to (4.6) given by

T ∗ = max
{

max
t∈Z0

(N)
, t≥0

|(Pm −Qn)g+
t |, max

t∈Z0
(N)

, t≤0
|(Pm −Qn)g−t |

}
, (4.9)

where Z0
(N) = {0} ∪ Z(N). Clearly, for k = 0 or 1, the maximizing t in (4.6) must be one of

the sample points Z(N), so T ∗ = T and there is no approximation error in (4.9). For k ≥ 2,
we can control the error as follows.

Lemma 4.2. For k ≥ 2, the statistics in (4.6), (4.9) satisfy

T − T ∗ =
δN

(k − 1)!

(
1

m

m∑
i=1

|xi|k−1 +
1

n

n∑
i=1

|yi|k−1

)
,

where δN is the maximum gap between sorted points in Z0
(N).

Remark 4.4. We would need to have δN = oP (1/
√
N) in order for T ∗ to share the asymp-

totic null of T , see again Section 4.3.3 (this is assuming that P has k − 1 moments, so
the sample moments concentrate for large enough N). This will not be true of δN , the
maximum gap, in general. But it does hold when P is continuous, having compact support,
and a density bounded from below on its support; here, in fact, δN = oP (logN/N) (see,
e.g., Wang et al. 2014).

Although it does not have the strong guarantees of the approximation from Proposition
4.3, the statistic in (4.9) is simple and efficient—we must emphasize that it can be computed
in O(N) linear time, as a consequence of Lemma 4.1 (the evaluations of φi(t) at the sample
points t ∈ Z(N) are the constant terms ai0, i ∈ [N ] in their monomial expansions)—and is
likely a good choice for most practical purposes.

4.3 Asymptotic null

To study the asymptotic null distribution of the proposed higher-order KS test, we will ap-
peal to uniform central limit theorems (CLTs) from the empirical process theory literature,
reviewed here for completeness. For functions f, g in a class F , let GP,F denote a Gaussian
process indexed by F with mean and covariance

E(GP,Ff) = 0, f ∈ F ,
Cov(GP,Ff, GP,Fg) = CovX∼P (f(X), g(X)), f, g ∈ F .

For functions l, u, let [l, u] denote the set of functions {f : l(x) ≤ f(x) ≤ u(x), for all x}.
Call [l, u] a bracket of size ‖u− l‖2, where ‖ · ‖2 denotes the L2(P ) norm, defined as

‖f‖22 =

∫
f(x)2 dP (x).
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Finally, let N[](ε, ‖ · ‖2,F) be the smallest number of ε-sized brackets that are required to
cover F . Define the bracketing integral of F as

J[](‖ · ‖2,F) =

∫ 1

0

√
logN[](ε, ‖ · ‖2,F) dε.

Note that this is finite when logN[](ε, ‖ · ‖2,F) grows slower than 1/ε2. We now state an
important uniform CLT from empirical process theory.

Theorem 4.2 (Theorem 11.1.1 in Dudley 1999). If F is a class of functions with finite
bracketing integral, then when P = Q and m,n→∞, the process√

mn

m+ n
{Pmf −Qnf}f∈F

converges weakly to the Gaussian process GP,F . Hence,√
mn

m+ n
sup
f∈F

|Pmf −Qnf |
d→ sup
f∈F

|GP,Ff |.

4.3.1 Bracketing integral calculation

To derive the asymptotic null of the higher-order KS test, based on its formulation in (4.5),
and Theorem 4.2, we would need to bound the bracketing integral of Fk. While there are
well-known entropy (log covering) number bounds for related function classes (e.g., Birman
& Solomyak 1967, Babenko 1979), and the conversion from covering to bracketing numbers
is standard, these results unfortunately require the function class to be uniformly bounded
in the sup norm, which is certainly not true of Fk.

Note that the representer result in (4.6) can be written as T = ρ(Pm, Qn;Gk), where

Gk = {g+
t : t ≥ 0} ∪ {g−t : t ≤ 0}. (4.10)

We can hence instead apply Theorem 4.2 to Gk, whose bracketing number can be bounded
by direct calculation, assuming enough moments on P .

Lemma 4.3. Fix k ≥ 0. Assume EX∼P |X|2k+δ ≤ M < ∞, for some δ > 0. For the class
Gk in (4.10), there is a constant C > 0 depending only on k, δ such that

logN[](ε, ‖ · ‖2,Gk) ≤ C log
M1+

δ(k−1)
2k+δ

ε2+δ
.

4.3.2 Asymptotic null for higher-order KS

Applying Theorem 4.2 and Lemma 4.3 to the higher-order KS test statistic (4.6) leads to
the following result.

Theorem 4.3. Fix k ≥ 0. Assume EX∼P |X|2k+δ <∞, for some δ > 0. When P = Q, the
test statistic in (4.6) satisfies, as m,n→∞,√

mn

m+ n
T

d→ sup
g∈Gk

|GP,kg|,
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where GP,k is an abbreviation for the Gaussian process indexed by the function class Gk in
(4.10).

Remark 4.5. When k = 0, note that for t ≥ s ≥ 0, the covariance function is

CovX∼P (1{X > s}, 1{X > t}) = FP (s)(1− FP (t)),

where FP denotes the CDF of P . For s ≤ t ≤ 0, the covariance function is again equal to
FP (s)(1− FP (t)). The supremum of this Gaussian process over t ∈ R is that of a Brownian
bridge, so Theorem 4.3 recovers the well-known asymptotic null distribution of the KS test,
which (remarkably) does not depend on P .

Remark 4.6. When k ≥ 1, it is not clear how strongly the supremum of the Gaussian
process from Theorem 4.3 depends on P ; it appears it must depend on the first k moments
of P , but is not clear whether it only depends on these moments. Section 3.5 investigates
empirically. Currently, we do not have a precise understanding of whether the asymptotic
null is useable in practice, and we suggest using a permutation null instead.

4.3.3 Asymptotic null under approximation

The approximation from Proposition 4.3 shares the same asymptotic null, provided ε > 0
is small enough.

Corollary 4.1. Fix k ≥ 0. Assume EX∼P |X|2k+δ < ∞, for some δ > 0. When P = Q,
as m,n → ∞ such that m/n converges to a positive constant, the test statistic Tε from
Proposition 4.3 converges at a

√
N -rate to the supremum of the same Gaussian process in

Theorem 4.3, provided ε = o(1/
√
N).

The approximation in (4.9) shares the same asymptotic null, provided P is continuous
with compact support.

Corollary 4.2. Fix k ≥ 0. Assume that P is continuous, compactly supported, with
density bounded from below on its support. When P = Q, as m,n → ∞ such that m/n
converges to a positive constant, the test statistic T ∗ in (4.9) converges at a

√
N -rate to

the supremum of the same Gaussian process in Theorem 4.3.

4.4 Tail concentration

We examine the convergence of our test statistics to their population analogs. In general,
if the population-level IPM ρ(P,Q;Fk) is large, then the concentration bounds below will
imply that the empirical statistic ρ(Pm, Qn;Fk) will be large for m,n sufficiently large, and
the test will have power.

We first review the necessary machinery, again from empirical process theory. For
p ≥ 1, and a function f of a random variable X ∼ P , recall the Lp(P ) norm is defined as
‖f‖p = [E(f(X)p)]1/p. For p > 0, recall the exponential Orlicz norm of order p is defined as

‖f‖Ψp = inf
{
t > 0 : E[exp(|X|p/tp)]− 1 ≤ 1

}
.
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(These norms depend on the measure P , since they are defined in terms of expectations
with respect to X ∼ P , though this is not explicit in our notation.)

We now state an important concentration result.

Theorem 4.4 (Theorems 2.14.2 and 2.14.5 in van der Vaart & Wellner 1996). Let F be a
class functions with an envelope function F , i.e., f ≤ F for all f ∈ F . Define

W =
√
n sup
f∈F

|Pnf − Pf |,

and abbreviate J = J[](‖ · ‖,F). For p ≥ 2, if ‖F‖p <∞, then for a constant c1 > 0,

[E(W p)]1/p ≤ c1

(
‖F‖2J + n−1/2+1/p‖F‖p

)
,

and for 0 < p ≤ 1, if ‖F‖Ψp <∞, then for a constant c2 > 0,

‖W‖Ψp ≤ c2

(
‖F‖2J + n−1/2(1 + log n)1/p‖F‖Ψp

)
.

The two-sample test statistic T = ρ(Pm, Qn;Gk) satisfies (following by a simple argument
using convexity)

|T − ρ(P,Q;Fk)| ≤ ρ(P, Pm;Fk) + ρ(Q,Qn;Fk).

The terms on the right hand side can each be bounded by Theorem 4.4, where we can use
the envelope function F (x) = |x|k/k! for Gk. Using Markov’s inequality, we can then get a
tail bound on the statistic.

Theorem 4.5. Fix k ≥ 0. Assume that P,Q both have p moments, where p ≥ 2 and
p > 2k. For the statistic in (4.6), for any α > 0, with probability 1− α,

|T − ρ(P,Q;Gk)| ≤ c(α)

(
1√
m

+
1√
n

)
,

where c(α) = c0α
−1/p, and c0 > 0 is a constant. If P,Q both have finite exponential Orlicz

norms of order 0 < p ≤ 1, then the above holds for c(α) = c0(log(1/α))1/p.

When we assume k moments, the population IPM for Fk also has a representer in Gk;
by Proposition 4.1, this implies ρ(·, · ;Gk) is also a metric.

Corollary 4.3. Fix k ≥ 0. Assuming P,Q both have k moments, ρ(P,Q;Fk) = ρ(P,Q;Gk).
Therefore, by Proposition 4.1, ρ(·, · ;Gk) is a metric (over the space of distributions P,Q
with k moments).

Putting this metric property together with Theorem 4.5 gives the following.

Corollary 4.4. Fix k ≥ 0. For αN = o(1) and 1/αN = o(Np/2), reject when the higher-
order KS test statistic (4.6) satisfies T > c(αN )(1/

√
m+ 1/

√
n), where c(·) is as in Theorem

4.5. For any P,Q that meet the moment conditions of Theorem 4.5, as m,n→∞ in such a
way that m/n approaches a positive constant, we have type I error tending to 0, and power
tending to 1, i.e., the higher-order KS test is asymptotically powerful.
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4.5 Numerical experiments

We present numerical experiments that examine the convergence of our test statistic to its
asymptotic null, its power relative to other general purpose nonparametric tests, and its
power when P,Q have densities with local differences. Experiments comparing to the MMD
test with a polynomial kernel are deferred to Appendix C.

Convergence to Asymptotic Null. In Figure 4.3, we plot histograms of finite-sample
higher-order KS test statistics and their asymptotic null distributions, when k = 1, 2. We
considered both P = N(0, 1) and P = Unif(−

√
3,
√

3) (the uniform distribution standard-
ized to have mean 0 and variance 1). For a total of 1000 repetitions, we drew two sets of
samples from P , each of size m = n = 2000, then computed the test statistics. For a total of
1000 times, we also approximated the supremum of the Gaussian process from Theorem 4.3
via discretization. We see that the finite-sample statistics adhere closely to their asymptotic
distributions. Interestingly, we also see that the distributions look roughly similar across
all four cases considered. Future work will examine more thoroughly.
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Figure 4.3: Histograms comparing finite-sample test statistics to their asymptotic null distribution.
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Comparison to General-Purpose Tests. In Figures 4.4 and 4.5, we compare the
higher-order KS tests to the KS test, and other widely-used nonparametric tests from the
literature: the kernel maximum mean discrepancy (MMD) test (Gretton et al. 2012) with a
Gaussian kernel, the energy distance test (Szekely & Rizzo 2004), and the Anderson-Darling
test (Anderson & Darling 1954). The simulation setup is the same as that in the introduc-
tion, where we considered P,Q with different variances, except here we study different
means: P = N(0, 1), Q = N(0.2, 1), and different third moments: P = N(0, 1), Q = t(3),
where t(3) denotes Student’s t-distribution with 3 degrees of freedom. The higher-order
KS tests generally perform favorably, and in each setting there is a choice of k that yields
better power than KS. In the mean difference setting, this is k = 1, and the power degrades
for k = 3, 5, likely because these tests are “smoothing out” the mean difference too much;
see Proposition 4.4.
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Figure 4.4: ROC curves for P = N(0, 1), Q = N(0.2, 1).
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Figure 4.5: ROC curves for P = N(0, 1), Q = t(3).

Local Density Differences. In Figures 4.6 and 4.7, we examine the higher-order KS
tests and the KS test, in cases where P,Q have densities p, q such that p − q has sharp
local changes. Figure 4.6 shows a case where p − q is piecewise constant with a few short
departures from 0 (see Appendix C for a plot) and m = n = 500. The KS test is very
powerful, and the higher-order KS tests all perform poorly; in fact, the KS test here has
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better power than all commonly-used nonparametric tests we tried (results not shown).
Figure 4.7 displays a case where p− q changes sharply in the right tail (see Appendix C for
a plot) and m = n = 2000. The power of the higher-order KS test appears to increase with
k, likely because the witness functions are able to better concentrate on sharp departures
for large k.
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Figure 4.6: ROC curves for piecewise constant p− q.
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Figure 4.7: ROC curves for tail departure in p− q.

4.6 Discussion

This paper began by noting the variational characterization of the classical KS test as an
IPM with respect to functions of bounded total variation, and then proposed a generalization
to higher-order total variation classes. This generalization was nontrivial, with subtleties
arising in defining the right class of functions so that the statistic was finite and amenable
for simplification via a representer result, challenges in computing the statistic efficiently,
and challenges in studying asymptotic convergence and concentration due to the fact that
the function class is not uniformly sup norm bounded. The resulting class of linear-time
higher-order KS tests was shown empirically to be more sensitive to tail differences than
the usual KS test, and to have competitive power relative to several other popular tests.
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In future work, we intend to more formally study the power properties of our new higher-
order tests relative to the KS test. The following is a lead in that direction. For k ≥ 1,
define Ik to be the kth order integral operator, acting on a function f , via

(Ikf)(x) =

∫ x

0

∫ tk

0
· · ·
∫ t2

0
f(t1) dt1 · · · dtk.

Denote by FP , FQ the CDFs of the distributions P,Q. Notice that the population-level KS
test statistic can be written as ρ(P,Q;F0) = ‖FP − FQ‖∞, where ‖ · ‖∞ is the sup norm.
Interestingly, a similar representation holds for the higher-order KS tests.

Proposition 4.4. Assuming P,Q have k moments,

ρ(P,Q;Fk) = ‖(Ik)∗(FP − FQ)‖∞,

where (Ik)∗ is the adjoint of the bounded linear operator Ik, with respect to the usual L2

inner product. Further, if P,Q are supported on [0,∞), or their first k moments match,
then we have the more explicit representation

ρ(P,Q;Fk) = sup
x∈R

∣∣∣∣ ∫ ∞
x

∫ ∞
tk

· · ·
∫ ∞
t2

(FP − FQ)(t1) dt1 · · · dtk
∣∣∣∣.

The representation in Proposition 4.4 could provide one avenue for power analysis.
When P,Q are supported on [0,∞), or have k matching moments, the representation is
particularly simple in form. This form confirms the intuition that detecting higher-order
moment differences is hard: as k increases, the k-times integrated CDF difference FP − FQ
becomes smoother, and hence the differences are less accentuated.

In future work, we also intend to further examine the asymptotic null of the higher-order
KS test (the Gaussian process from Theorem 4.3), and determine to what extent it depends
on the underlying distribution P (beyond say, its first k moments). Lastly, some ideas in
this paper seem extendable to the multivariate and graph settings, another direction for
future work.





Chapter 5

Discussion and Conclusion

We studied extensions of trend filtering in regular lattice designs and additive models. We
showed that our trend filtering estimators in these restricted multivariate settings achieve
optimal rates in a minimax sense. We further showed that linear smoothers—this class in-
cludes many interesting and popular methods—cannot achieve these optimal rates on these
higher order TV classes, thus extending classical results for 1d from Donoho & Johnstone
(1998). The proof techniques used in additive trend filtering and lattices are different in
nature. For upper bounds in additive models, we used results from empirical process theory
and generalization bounds based on Rademacher complexity of the class of regression func-
tions. In lattice design, we relied heavily on the spectrum of the Laplacian of the lattice.
For lower bounds in additive models, we used Yang and Barron’s method which in turn
uses covering and packing numbers of the true function class and Fano’s inequality. On the
other hand, for lattice design the minimax rate lower bound was obtained by embedding
`1 balls and Holder balls of appropriate sizes and using the known lower bounds on these
inscribed balls.

The higher-order KS test statistic is an integral probability metric that can be computed
quickly and is sensitive to some tail differences. We gave its asymptotic null distribution and
showed that it concentrates to its population version. Coupled with the metric property,
the test is asymptotically powerful.

Before concluding, we discuss a few interesting aspects of the problems that we worked
on so far.

Weak sparsity and strong sparsity. Our estimation error bounds in lattice design and
additive models are over a class of weakly sparse signals in the form

W1(Cn) = {θ : ‖∆θ‖1 ≤ Cn}

where ∆ is a penalty operator. It is interesting to study error bounds over strongly sparse
signals of the form

W0(Cn) = {θ : ‖∆θ‖0 ≤ Cn}

where ‖x‖0 is the number of nonzeros in a Euclidean vector x. Hutter & Rigollet (2016)
give such bounds in lattice design setting and Tan & Zhang (2017) give such bounds for
additive models with kth order total variation components. Chatterjee & Goswami (2019)
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study a different notion of sparsity—they consider adaptivity of total variation denoising
to signals with a few axis-parallel piecewise constant regions.

Difficulty with TV regularization in high dimensions. In univariate setting, locally
adaptive regression splines Mammen & van de Geer (1997) defined by

f̂ = argmin
f

1

n

n∑
i=1

(yi − f(xi))
2 + λTV(f (k)) (5.1)

achieves minimax optimal rate over kth order TV classes in (1.3) for an appropriate choice
of λ. However, it is non-trivial to extend this formulation to more than one dimensions. For
continuous settings in two (or more) dimensions and k = 0, the optimizer in (5.1) satisfies
f̂(xi) = yi for all i ∈ [n] and TV(f̂) = 0. In other words, the estimator interpolates in
a trivial way and its MSE will be σ2. Discrete formulations such as our Kronecker trend
filtering, graph trend filtering from Wang et al. (2016) and the Hardy-Krause variation
based (discrete) formulation from Fang et al. (2019) do not suffer from this problem.

Difficulty of fitting splines in multivariate setting. It is nontrivial to fit splines
in multiple dimensions with automatically selected knots (recall, this is the aim of KTF
and GTF). In fact, fitting multivariate splines (say using multivariate adaptive regression
splines (MARS) (Friedman 1991) ) is similar in difficulty level to fitting neural networks
with rectified linear units (ReLUs). Note that both the methods aim to find piecewise linear
functions that minimize the prediction error. See Zhang & Goh (2016) where MARS and a
three-layer feedforward neural network are compared in a civil engineering application. See
also Balestriero & Baraniuk (2018) for a connection between neural networks and splines.

Non-lattice designs. Consider an arbitrary design where the d-dimensional input points
do not lie on a lattice. One way of denoising in this setting is to build a k-Nearest Neighbor
(kNN) graph or an ε-neighborhood graph of the input points based on some metric (say Eu-
clidean distance between input points). Padilla et al. (2018) studies the denoising problem
in this setting and shows that the graph TV denoising estimator (GTF with k = 0) achieves
the minimax optimal rate on a class of true functions which are piecewise Lipschitz. One
may apply a kth order GTF estimator on the kNN or ε-neighborhood graph and hope to
recover smoother functions with better error bounds; but it is an open problem as of now.
Note that there are nonparametric methods such as MARS, CART and neural networks
which are applicable to non-lattice designs without modifications.

Isotropic and anisotropic TV denoising. The TV denoising method that we stud-
ied in Chapter 2 uses anisotropic TV penalty (TVaniso), as opposed to the isotropic TV
penalty (TViso) proposed by Rudin et al. (1992). Notice that TViso(θ) ≤ TVaniso(θ) and
TVaniso(θ) ≤

√
dTVaniso(θ) for all θ ∈ Rn on a d-dimensional grid. Therefore, the minimax

optimal rates (and minimax linear rates) are same for the isotropic and anisotropic TV balls
of same radius, up to factors of d.
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Other notions of variation. KTF penalizes variation of only axis-parallel derivatives;
it does not penalize variation of cross-derivatives. Hardy-Krause variation as defined in the
recent work by Fang et al. (2019) considers cross-derivatives. However, we believe that a
discrete roughness penalty that mimics∑

α≥0,‖α‖1=k+1

∫ ∣∣∣∣ ∂αf

∂xα1
1 . . . ∂xαdd

∣∣∣∣ dx
will result in an estimate with a desirable piecewise kth degree polynomial structure.

Conclusion

Linear smoothers are typically cheap to compute but they do not have good worst-case per-
formance on TV and higher-order TV classes. Nonlinear smoothers such as trend filtering
methods (KTF, GTF, additive trend filtering) are somewhat more expensive computation-
ally but they have optimal worst-case performance on these signals. Further, the piecewise
polynomial structure of estimates is interpretable and often desirable. KTF and GTF can
be extended to exponential family losses and can be used for density estimation or classifica-
tion. Also, the higher-order KS test seems to be sensitive to tail differences. In summary, we
believe our theoretically sound methods with nice properties will be useful to practitioners.
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Appendix A

Appendix for Trend Filtering on
Grids

A.1 Certain properties of GTF/KTF operators

A.1.1 Proof of Lemma 2.1

The nullity of ∆̃(k+1) is the number of nonzero singular values of ∆̃(k+1), or equivalently, the
number of nonzero eigenvalues of (∆̃(k+1))T ∆̃(k+1). Following from (2.11), and abbreviating
D = D

(k+1)
1d ,

(∆̃(k+1))T ∆̃(k+1) = DTD ⊗ I ⊗ · · · ⊗ I + I ⊗DTD ⊗ · · · ⊗ I + . . .

+ I ⊗ I ⊗ · · · ⊗DTD,

the Kronecker sum of DTD with itself, a total of d times. Using a standard fact about
Kronecker sums, if ρi, i = 1, . . . , N denote the eigenvalues of DTD then

ρi1 + ρi2 + · · ·+ ρid , i1, . . . , id ∈ {1, . . . , N}

are the eigenvalues of (∆̃(k+1))T ∆̃(k+1). By counting the multiplicity of the zero eigenvalue,
we arrive at a nullity for ∆̃(k+1) of (k + 1)d. It is straightforward to check that the vectors
specified in the lemma, given by evaluations of polynomials, are in the null space, and that
these are linearly independent, which completes the proof.

A.1.2 Proof of Lemma 2.2

Let us define

D̃ =

 C
(k+1)
1d

D
(k+1)
1d

 ∈ RN×N ,

where the first k+ 1 rows are given by a matrix C(k+1) ∈ R(k+1)×N that completes the row
space, as in Lemma 2 of Wang et al. (2014). And now, again by Lemma 2 of Wang et al.
(2014), (

H
(k)
1d

)−1
=

1

k!
D̃, (A.1)
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where H
(k)
1d ∈ RN×N is the falling factorial basis matrix of order k, which has elements(

H
(k)
1d

)
ij

= hj(i/N), i, j = 1, . . . , N,

with hi, i = 1, . . . , N denoting the falling factorial basis functions in (1.7).
Let us write the KTF problem in (2.7), (2.11) explicitly as

min
θ∈Rn

1

2
‖y − θ‖22 + λ

∥∥∥∥∥∥∥∥∥∥∥∥


D

(k+1)
1d ⊗ I ⊗ · · · ⊗ I

I ⊗D(k+1)
1d ⊗ · · · ⊗ I

...

I ⊗ I ⊗ · · · ⊗D(k+1)
1d

 θ
∥∥∥∥∥∥∥∥∥∥∥∥

1

. (A.2)

We now transform variables in this problem by defining θ = (H
(k)
1d ⊗ · · · ⊗H

(k)
1d )α and using

(A.1), which turns (A.2) into an equivalent basis form,

min
α∈Rn

1

2

∥∥∥y − (H(k)
1d ⊗ · · · ⊗H

(k)
1d

)
α
∥∥∥2

2
+ λk!

∥∥∥∥∥∥∥∥∥∥∥∥


I0 ⊗H(k)

1d ⊗ · · · ⊗H
(k)
1d

H
(k)
1d ⊗ I

0 ⊗ · · · ⊗H(k)
1d

...

H
(k)
1d ⊗H

(k)
1d ⊗ · · · ⊗ I

0

α
∥∥∥∥∥∥∥∥∥∥∥∥
, (A.3)

where I0 = [ 0(N−k−1)×(k+1) I(N−k−1) ].
Interestingly, the penalty in (A.3) is not a pure sparsity penalty on the coefficients α

(as it is in basis form in 1d) but a sparsity penalty on aggregated (sums of) coefficients.
This makes the penalty a little hard to interpret, but to glean intuition, we can rewrite the
problem once more via the transformation

f =
N∑

i1,...,id=1

αi1,...,id(hi1 ⊗ hi2 ⊗ · · · ⊗ hid), (A.4)

where recall we are indexing the components of α by αi1,...,id , for i1, . . . , id = 1, . . . , N (and
the summands above use tensor products of univariate functions). To be concrete, note
that the function f defined in (A.4) evaluates to

f(x) =
N∑

i1,...,id=1

αi1,...,idhi1(x)hi2(x2) · · ·hid(xd), x ∈ [0, 1]d.

Thus we can equivalently write the basis form in (A.3) in functional form

min
f∈Hd

1

2

∑
x∈Zd

(
y(x)− f(x)

)2
+ λ

d∑
j=1

∑
x−j∈Zd−1

TV

(
∂kf(·, x−j)

∂xkj

)
, (A.5)

where recall f(·, x−j) denotes f as function of the jth dimension with all other dimensions
fixed at x−j , ∂

k/∂xkj (·) denotes the kth partial weak derivative operator with respect to
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xj , for j = 1, . . . , d, and TV(·) denotes the total variation operator. To see the equivalence
between the penalty terms in (A.3) and (A.5), it can be directly checked that

k!
(
I0 ⊗H(k)

1d ⊗ · · · ⊗H
(k)
1d

)
α

contains the differences of the function ∂kf/∂xk1 over all pairs of grid positions that are
adjacent in the x1 direction, where f is as in (A.4). This, combined with the fact that
∂kf/∂xk1 is constant in between lattice positions, means that

k!
∥∥∥(I0 ⊗H(k)

1d ⊗ · · · ⊗H
(k)
1d

)
α
∥∥∥

1
=

∑
x−1∈Zd−1

TV

(
∂kf(·, x−1)

∂xk1

)
,

the total variation of ∂kf/∂xk1 added up over all slices of the lattice Zd in the x1 direction.
Similar arguments apply to the penalty terms corresponding to dimensions j = 2, . . . , d,
and this completes the proof.

A.2 Canonical scaling

A.2.1 Proof of Lemma A.5

Suppose that θ ∈ Hd(1) that is a discretization of a 1-Lipschitz function f , i.e., θi = f(i1/N . . . , id/N),
i = 1, . . . , n. We first we compute and bound its squared Sobolev norm

‖Dθ‖22 =
∑

(i,j)∈E

(θi − θj)2 =
∑

(i,j)∈E

(
f(i1/N, . . . , id/N)− f(j1/N, . . . , jd/N)

)2
≤

∑
(i,j)∈E

∥∥(i1/N, . . . , id/N)− (j1/N, . . . , jd/N)
∥∥2

∞

= m/N2,

where, recall, we denote by m = |E| the number of edges in the grid. In the second
line we used the 1-Lipschitz property of f , and in the third we used that multi-indices
corresponding to adjacent locations on the grid are exactly 1 apart, in `∞ distance. Thus
we see that setting C ′n =

√
m/N gives the desired containment Sd(C ′n) ⊇ Hd(1). It is always

true that m � n for a d-dimensional grid (though the constant may depend on d), so that√
m/N � n1/2−1/d. This completes the proof for the Sobolev class scaling.

A.3 Proofs of upper bounds for GTF/KTF

A.3.1 Proof of Theorem 2.2

For d = 2, it is shown in the proof of Corollary 8 in Wang et al. (2016) that the GTF operator
∆(k+1) satisfies the incoherence property, as defined in Theorem 2.1, for any choice of cutoff
i0 ≥ 1, and with a constant µ = 4 when k is even and µ = 2 when k is odd. Here we
establish the incoherence property for d ≥ 2. We treat the cases where k is odd and even
separately.
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If k is odd we can extend the argument from Corollary 8 in Wang et al. (2016) in a
straightforward manner. The GTF operator is ∆(k+1) = L(k+1)/2 where L is the Laplacian
of the d-dimensional grid graph. Denoting the Laplacian of the chain graph of length N by
L1d, L is given by

L = L1d ⊗ I ⊗ I + I ⊗ L1d ⊗ I + I ⊗ I ⊗ L1d

for d = 3 and

L = L1d ⊗ I · · · ⊗ I + I ⊗ L1d · · · ⊗ I + · · ·+ I ⊗ . . . I ⊗ L1d

for general d where each term in the summation is a Kronecker product of d matrices. Let
λi, ui, i ∈ [N ] are the eigenvalues and eigenvectors of L1d. As shown in Wang et al. (2016),
in 1d, we have the incoherence property ‖ui‖∞ ≤

√
2/N for all i ∈ [N ]. The eigenvalues of

L are
∑d

j=1 λij and the corresponding eigenvectors are ui1 ⊗ · · · ⊗ uid for i1, . . . , id ∈ [N ].

Clearly, incoherence holds for the eigenvectors of L with constant µ = 2d/2.
If k is even, then the left the singular vectors of ∆(k+1) are the same as those of ∆(1). We

know that both the left and right singular vectors of D
(1)
1d satisfy the incoherence property

with constant µ =
√

2 (see Corollary 7 in Wang et al. (2016)). Setting D = D
(1)
1d in

Lemma A.1, we see that the left singular vectors of ∆(1) and hence those of ∆(k+1) satisfy
incoherence property with constant 2d/2. Therefore, for all integers k ≥ 0, the left singular
vectors of ∆(k+1) are incoherent with constant 2d/2.

From the incoherence property and Theorem 2.1, the GTF estimator θ̂ in (2.7), (2.8)
satisfies

MSE(θ̂, θ0) = OP

(
1

n
+
i0
n

+
µ

n

√√√√ log r

n

q∑
i0+1

1

ξ2
i

· ‖∆θ0‖1

)
, (A.6)

where ξi, i ∈ [n − 1] are the nonzero singular values of ∆(k+1), q = n − 1 and µ = 2d/2. It
suffices to upper bound the partial sum term

∑n−1
i=i0+1 ξ

−2
i .

Set β = i
1/d
0 and consider

∑
‖i‖≥β

1
ξ2i

. The number of i ∈ [N ]d satisfying ‖i‖ ≤ β is

Θ(βd) = Θ(i0). Lemma A.10 gives the key calculation where it is shown that for large
enough n and each i0 ≥ 1,

∑
‖i‖≥β

1

ξ2
i

=
∑
‖i‖≥β

1

ρk+1
i

≤ c


n 2(k + 1) < d

n log(n/i0) 2(k + 1) = d

n(n/i0)(2k+2−d)/d 2(k + 1) > d

where ρi, i ∈ [n− 1] are nonzero eigenvalues of the Laplacian L and c > 0 is a constant that
depends only on k . For k < d/2 − 1, to minimize to the upper bound given in (A.6), we
want to balance

i0
n

with
µCn
n

√
log n.

This leads us to choose i0 � Cn
√

log n, and plugging this in gives the result for k < d/2−1.
If k = d/2− 1 is an integer, then we want to balance

i0
n

with
µCn
n

√
log n log(n/i0).
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This leads us to choose i0 � Cn log n, and plugging this in gives the result for k = d/2− 1.
For k > d/2− 1, we want to balance

i0
n

with
µCn
n
√
n

√
n(n/i0)(2k+2−d)/d log n

This leads us to take
i0 � (Cn

√
log r)

2d
2k+2+dn

2k+2−d
2k+2+d

and plugging this in completes the proof for k > d/2− 1.

A.3.2 Proof of Theorem 2.3

The KTF operator (2.11), is the ∆ in (A.7) with D = D
(k+1)
1d . Abbreviate N ′ = N − k− 1.

Let βi, ui, vi be a triplet of nonzero singular value, left singular vector, and right singular
vector of D

(k+1)
1d , for i ∈ [N ′] and let pj , j ∈ [k + 1] form an orthogonal basis for the null

space of D
(k+1)
1d . From Lemma A.1 it suffices to show incoherence of ui, vi, i ∈ [N ′], and pi,

i ∈ [k + 1]. Incoherence of ui, i ∈ [N ′] is established in Lemma A.12 and of vi, i ∈ [N ′] in
Lemma A.13, using specialized approximations for eigenvectors of Toeplitz matrices from
Bogoya et al. (2016). Incoherence of pi, i ∈ [k + 1] may be seen by choosing, e.g., these
vectors to be the discrete Legendre orthogonal polynomials as in Neuman & Schonbach
(1974). We have thus shown that ∆̃(k+1) satisfies the incoherence property, as defined in
Theorem 2.1, for any choice of i0 ≥ 1.

Now we address the partial sum term
∑n−1

i=i0+1 ξ
−2
i . Lemma A.11 shows that for large

enough n and a constant c > 0 depending only on k,

n−(k+1)d∑
i=i0+1

1

ξ2
i

≤ c


n 2(k + 1) < d

n log(n/i0) 2(k + 1) = d

n(n/i0)(2k+2−d)/d 2(k + 1) > d

just as was the case for GTF. (In fact, this result is proved by tying the singular values of
the KTF operator to those of the GTF operator.) Repeating the same arguments as in the
proof of Theorem 2.2 gives the desired result.

A.4 Incoherence of GTF/KTF penalty operators for d-dimensional
grids

Let

∆ =


D ⊗ I ⊗ · · · ⊗ I

I ⊗D ⊗ · · · ⊗ I
...

I ⊗ I ⊗ · · · ⊗D

 (A.7)

where each Kronecker product has d terms. With D = D
(k+1)
1d where D

(k+1)
1d ∈ RN−k−1×N ,

we get the KTF penalty operator ∆ = ∆̃(k+1). With D = D
(1)
1d where D

(1)
1d ∈ RN−1×N , we

get the GTF penalty operator ∆ = ∆(1), of order k = 0.
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Lemma A.1. Let ∆ be as defined in (A.7) for a matrix D ∈ RN ′×N with N ′ ≤ N . Let
γi, ui, vi, i ∈ [N ] denote the singular values of DT , its right and left singular vectors. Note
that γi = 0, ui = 0, vi ∈ null(D) for i ∈ [p] where p = nullity(D). If these singular vectors
are incoherent, that is ‖vi‖∞ ≤ µ/

√
N, ‖ui‖∞ ≤ µ/

√
N ′ for a constant µ ≥ 1, then the left

singular vectors ν of ∆ are incoherent with a constant µd, that is, ‖ν‖∞ ≤ µd/
√
Nd−1N ′.

Note that p = 1 when ∆ is the GTF penalty operator with D = D
(1)
1d and p = k + 1

when ∆ is the KTF penalty operator with D = D
(k+1)
1d .

Proof of Lemma A.1. Abbreviate λi = γ2
i for i ∈ [N ]. We are looking for a total of Nd− pd

eigenvectors for ∆∆T . Assume for exposition that d = 3. For any (i, j, k) ∈ [N ]d \ [p]d

(where \ is the set difference operator), the vectors

zi,j,k :=
1√

λi + λj + λk


γi · ui ⊗ vj ⊗ vk
γj · vi ⊗ uj ⊗ vk
γk · vi ⊗ vj ⊗ uk

 (A.8)

are eigenvectors of ∆∆T as verified below.

∆∆T


γi · ui ⊗ vj ⊗ vk
γj · vi ⊗ uj ⊗ vk
γk · vi ⊗ vj ⊗ uk

 = ∆
(
γ2
i + γ2

j + γ2
k

)
vi ⊗ vj ⊗ vk (A.9)

= (λi + λj + λk)


γi · ui ⊗ vj ⊗ vk
γj · vi ⊗ uj ⊗ vk
γk · vi ⊗ vj ⊗ uk


We see all Nd− pd eigenvectors of ∆∆T here. Notice that ‖zi,j,k‖2 = 1 and the incoherence
is readily available provided the left and right singular vectors of D are incoherent.

For general d, these Nd − pd eigenvectors are given by

zi1,i2,.,id =
1√∑d
j=1 λij


γi1 · ui1 ⊗ vi2 ⊗ . . . vid
γi2 · vi1 ⊗ ui2 ⊗ . . . vid

...

γid · vi1 ⊗ vi2 ⊗ . . . uid

 (A.10)

with eigenvalues
∑d

j=1 λij and are easily seen to be incoherent.

A.5 Proofs of lower bounds for GTF and KTF classes

Here and henceforth, we use the notation Bp(r) = {x : ‖x‖p ≤ r} for the `p ball of radius
r, where p, r > 0 (and the ambient dimension will be determined based on the context).
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We begin with a very simple lemma, that will help us embed `1 balls inside the GTF
and KTF classes.

Lemma A.2. Let T (r) = {θ ∈ Rn : ‖∆θ‖1 ≤ r} for a matrix ∆ and r > 0. Recall that
‖∆‖1,∞ = maxi∈[n] ‖∆i‖1 where ∆i is the ith column of ∆. Then for any r > 0, it holds
that B1(r/‖∆‖1,∞) ⊆ T (r).

Proof. The proof follows from the observation that, for any θ,

‖∆θ‖1 =

∥∥∥∥ n∑
i=1

∆iθi

∥∥∥∥
1

≤
n∑
i=1

‖∆i‖1|θi| ≤
(

max
i=1,...,n

‖∆i‖1
)
‖θ‖1 = dmax‖θ‖1.

Corollary A.1. For any r > 0, and integers d ≥ 1, k ≥ 0,

B1(r/(2k+1d)) ⊆ T kd (r), B1(r/(2k+1d)) ⊆ T̃ kd (r).

Proof. These containments follow from Lemma A.2 and the facts ‖∆(k+1)‖1,∞ = 2k+1d,

‖∆̃(k+1)‖1,∞ = 2k+1d.

To prove Theorems 2.4,2.5 we will rely on a result from Birge & Massart (2001), which
gives a lower bound for the risk in a normal means problem, over `p balls. Another related,
earlier result is that of Donoho & Johnstone (1994a); however, the Birge and Massart
result places no restrictions on the radius of the ball in question, whereas the Donoho and
Johnstone result does. Translated into our notation, the Birge and Massart result is as
follows.

Lemma A.3 (Proposition 5 of Birge & Massart (2001)). Assume i.i.d. observations yi ∼ N(θ0,i, σ
2),

i = 1, . . . , n, and n ≥ 2. Then the minimax risk over the `p ball Bp(rn), where 0 < p < 2,
satisfies

n ·R(Bp(rn)) ≥ c ·


σ2−prpn

[
1 + log

(
σpn

rpn

)]1−p/2
if σ
√

log n ≤ rn ≤ σn1/p/
√
ρp

r2
n if rn < σ

√
log n

σ2n/ρp if rn > σn1/p/
√
ρ

.

Here c > 0 is a universal constant, and ρp > 1.76 is the unique solution of ρp log ρp = 2/p.

A.5.1 Proof of Theorem 2.5

It sufficies to show that the minimax optimal risk R
(
T̃ kd (Cn)

)
is lower bounded by the three

terms present in the statement’s lower bound separately:

R
(
T̃ kd (Cn)

)
= Ω

(
κσ2

n

)
,

R
(
T̃ kd (Cn)

)
= Ω

((
Cn
n

) 2d
2k+2+d

)
, (A.11)

R
(
T̃ kd (Cn)

)
= Ω

(
Cn
n

)
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where κ = nullity
(
∆̃(k+1)

)
= (k + 1)d. First, as the null space of ∆̃(k+1) has dimension κ,

we get the first lower bound:

inf
θ̂

sup
θ0∈T̃ kd (Cn)

1

n
E‖θ̂ − θ0‖22 ≥ inf

θ̂
sup

θ0∈null
(

∆̃(k+1)
) 1

n
E‖θ̂ − θ0‖22 ≥

κσ2

n
.

We get the second lower bound in (A.11) by using the `1-ball embedding

B1 (Cn/dmax) ⊂ T̃ kd (Cn)

from Corollary A.1 and then using A.3.
Finally, we will show that

R
(
Hk+1
d (Ln)

)
= Ω(n−

2k+2
2k+2+dL

2d
2k+2+d
n ). (A.12)

Taking Ln = Cn/n
1−(k+1)/d and applying Lemma 2.3 would then give the third lower bound

in (A.11). This result is “nearly” a textbook result on Holder classes in nonparametric
regression. A standard result (e.g., see Chapter 2.8 of Korostelev & Tsybakov (2003)) is
that, in a model

yi = f0(xi) + εi, εi
i.i.d.∼ N(0, σ2), i = 1, . . . , n

where the design points xi ∈ [0, 1]d, i = 1, . . . , n are fixed and arbitrary, we have

inf
f̂

sup
f0∈H(k+1,Ln;[0,1]d)

E‖f̂ − f0‖22 = Ω(n−
2k+2

2k+2+dL
2d

2k+2+d
n ), (A.13)

where ‖ · ‖2 denotes the L2 norm on functions, defined as

‖f‖22 =

∫
[0,1]d

f(x)2 dx.

Note that we can rewrite the desired result (A.12) as

inf
f̂

sup
f0∈H(k+1,Ln;[0,1]d)

E‖f̂ − f0‖2n = Ω(n−
2k+2

2k+2+dL
2d

2k+2+d
n ), (A.14)

where the design points are {x1, . . . , xn} = Zd, the regular lattice on [0, 1]d, and where ‖ ·‖n
denotes the empirical norm on functions, defined as

‖f‖2n =
1

n

n∑
i=1

f(xi)
2.

The proof of (A.13) reduces the estimation problem to a multiple hypothesis testing prob-
lem, and then constructs a sufficiently hard set of hypothesis by taking linear combinations
of kernel “bump” functions and applying the Varshamov–Gilbert lemma (e.g., see Sections
2.7, 2.8 of Korostelev & Tsybakov (2003), or Section 2.6 of Tsybakov (2009)). But in the
standard construction, the bump functions are not only orthogonal with respect to the L2

inner product, but also with respect to the empirical inner product, since their supports
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are nonoverlapping. Thus the exact same sequence of arguments leads to (A.14), i.e., leads
to (A.12), provided the empirical norm a bump function is at least of the same order as its
L2 norm, as verified below.

Consider a partition of [0, 1]d into m � nd/(2k+2+d) hypercubes, each hypercube having
side length h = 1/m1/d � n−1/(2k+2+d). Denote by zi, i = 1, . . . ,m the hypercube centers
and consider bump functions ϕi(x) = ϕ(x− zi), i = 1, . . . , n, where

ϕ(x) = hk+1K

(
2‖x‖2
h

)
, where K(u) = exp

(
−1

1− u2

)
1{|u| < 1}.

In the L2 norm, it holds that ‖ϕi‖22 � h2k+2+d, i = 1, . . . , n. We want to show the empirical
norms are lower bounded at the same rate. By symmetry, it suffices to study one bump func-
tion, say, ϕ1. Denote by U1 the set of grid points lying in a sphere of radius h/(2

√
2) around

z1. As K(u) ≥ 1/e2 for |u| ≤ 1/
√

2, we have ϕ1(x) ≥ hk+1/e2 for x ∈ U1. But the number
of elements in U1 is on the order of nhd, and therefore ‖ϕ1‖2n = Ω(hdh2k+2) = Ω(h2k+2+d),
as desired.

A.5.2 Proof of Theorem 2.4

As in the proof of Theorem 2.5, it is sufficient to show three similar lower bounds. We
get the first two lower bounds just as in the proof of Theorem 2.5 by using the fact that
nullity

(
∆(k+1)

)
= 1 and the `1-ball embedding

B1(Cn/(2
k+1d)) ⊂ T kd (Cn)

from Corollary A.1. The third lower bound is obtained in a different route as follows. Define
a class

Sk+1
d = {θ ∈ Rn : ‖∆(k+1)θ‖2 ≤ Bn} = {θ ∈ Rn : θTLk+1θ ≤ B2

n}.

Notice that Sk+1
d (Bn) ⊆ T k+1

d (Cn) provided Bn = Cn/
√
r, where r � n is the number of

rows of of ∆(k+1), owing to the simple inequality ‖x‖1 ≤
√
r‖x‖2 for x ∈ Rn. We will show

that

R
(
Sk+1
d (Bn)

)
= Ω(n−

d
2k+2+dB

2d
2k+2+d
n ). (A.15)

Taking Bn � Cn/
√
n would then give the result.

Letting L = UΛUT be an eigendecomposition, and note that for any estimator θ̂ of θ0,

‖θ̂ − θ0‖2 = ‖UT θ̂ − UT θ0‖2,

which means that we may rotate the parameter space and equivalently consider the minimax
error over the rotated class

S̃k+1
d =

{
γ ∈ Rn :

n∑
i=1

λk+1
i γ2

i ≤ B2
n

}
,

where we have denoted the eigenvalues (diagonal elements of Λ) as λi, i ∈ [n]. We will now
seek to embed a hyperrectangle in the above class and make use of results of Donoho et al.
(1990).
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Write γ = (α, β) ∈ R×Rn−1, and order λ1 ≤ λ2 ≤ . . . ≤ λn, so the above class becomes

S̃k+1
d =

{
(α, β) ∈ R× Rn−1 :

n∑
i=2

λk+1
i β2

i ≤ B2
n

}
:= R× E(Bn),

where we have used the fact that λ1 = 0. (Here and henceforth, although unconventional,
we will index β according to components i = 2, . . . , n, rather than i = 1, . . . , n− 1, because
it simplifies notation later.) The minimax risk (writing γ0 = UT θ0, and γ0 = (α0, β0))
satisfies

inf
γ̂

sup
γ0∈S̃k+1

d

1

n
E‖γ̂ − γ0‖22 =

σ2

n
+ inf

β̂
sup

β0∈E(Bn)

1

n
E‖β̂ − β0‖22.

We focus on the second term. The ellipsoid E(Bn) is compact, convex, orthosymmetric
and quadratically convex, the latter property as defined in Donoho et al. (1990). We can
therefore use Lemma 6 and Theorem 7 in their work to conclude that the minimax risk over
E(Bn) is at least four-fifths of the minimax linear risk of its hardest hyperrectangle,

inf
β̂

sup
β0∈E(Bn)

1

n
E‖β̂ − β0‖22 ≥

4

5
sup

H⊆E(Bn)
inf

β̂ linear
sup
β0∈H

1

n
E‖β̂ − β0‖22, (A.16)

where the outer sup on the right-hand side is over hyperrectangles H contained in E(Bn).
Consider hyperrectangles parametrized by a threshold τ ,

H(τ) = {β ∈ Rn−1 : |βi| ≤ ti(τ), i = 2, . . . , n},

where for all i = 2, . . . , n, using multi-index notation i = (i1, . . . , id), we let

ti+1(τ) =

{
Bn/(

∑
i1,...,id≤τ λ

k+1
i )1/2 if i1, . . . , id ≤ τ

0 else.

It is not hard to check that H(τ) ⊆ E(Bn). The minimax linear risk over H(τ) decomposes,
and can be evaluated exactly, as in Donoho et al. (1990),

inf
β̂ linear

sup
β0∈H(τ)

1

n
E‖β̂ − β0‖22 =

1

n

n∑
i=2

ti(τ)2σ2

ti(τ)2 + σ2
=

1

n

(τd − 1)σ2B2
n

B2
n +

∑
i1,...,id≤τ λ

k+1
i

.

Lemma A.7 provides an upper bound on the sum in the denominator above, and plugging
this in, we get

inf
β̂ linear

sup
β0∈H(τ)

1

n
E‖β̂ − β0‖22 ≥

1

n

(τd − 1)σ2B2
n

B2
n + c τ

2k+2+d

N2k+2

,

for a constant c > 0. This lower bound is maximized at τ � (B2
nN

2k+2)
1

2k+2+d , in which
case, we see

inf
β̂ linear

sup
β0∈H(τ)

1

n
E‖β̂ − β0‖22 = Ω(n−

d
2k+2+dB

2d
2k+2+d
n ).

Recalling (A.16), we have hence shown (A.15), and this completes the proof.
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A.6 Proof of minimax linear rate for GTF and KTF classes

A.6.1 Proof of Theorem 2.6 (minimax linear rates over TV classes)

First we recall a few definitions, from Donoho et al. (1990). Given a set A ⊆ Rk, its
quadratically convex hull qconv(A) is defined as

qconv(A) =
{

(x1, . . . , xk) : (x2
1, . . . , x

2
k) ∈ conv(A2

+)
}
, where

A2
+ =

{
(a2

1, . . . , a
2
k) : a ∈ A, ai ≥ 0, i = 1, . . . , k

}
.

(Here conv(B) denotes the convex hull of a set B.) Furthermore, the set A is called quadrat-
ically convex provided that qconv(A) = A. Also, A is called orthosymmetric provided that
(a1, . . . , ak) ∈ A implies (σ1a1, . . . , σkak) ∈ A, for any choice of signs σ1, . . . , σk ∈ {−1, 1}.

Now we proceed with the proof. Following from equation (7.2) of Donoho et al. (1990),

qconv
(
B1(Cn/dmax)

)
= B2(Cn/dmax).

Theorem 11 of Donoho et al. (1990) states that, for orthosymmetric, compact sets, such as
B1(Cn/dmax), the minimax linear risk equals that of its quadratically convex hull. More-
over, Theorem 7 of Donoho et al. (1990) tells us that for sets that are orthosymmetric,
compact, convex, and quadratically convex, such as B2(Cn/dmax), the minimax linear risk
is the same as the minimax linear risk over the worst rectangular subproblem. We consider
B∞(Cn/(dmax

√
n)), and abbreviate rn = Cn/(dmax

√
n). It is fruitful to study rectangles

because the problem separates across dimensions, as in

inf
θ̂ linear

sup
θ0∈B∞(rn)

E
[

1

n

n∑
i=1

(θ̂i − θ0,i)
2

]
=

1

n

n∑
i=1

[
inf

θ̂i linear
sup
|θ0,i|≤rn

E(θ̂i − θ0,i)
2

]
= inf

θ̂1 linear
sup

|θ0,1|≤rn
E(θ̂1 − θ0,1)2.

Thus it suffices to compute the minimax linear risk over the 1d class {θ0,1 : |θ0,1| ≤ rn}. It
is easily shown (e.g., see Section 2 of Donoho et al. (1990)) that this is r2

nσ
2/(r2

n + σ2
2), and

so this is precisely the minimax linear risk for B2(Cn/dmax), and for B1(Cn/dmax).
To get the first lower bound as stated in the theorem, we simply take a maximum of

r2
nσ

2/(r2
n + σ2

2) and σ2/n, as the latter is the minimax risk for estimating a 1-dimensional
mean parameter given n observations in a normal model with variance σ2. To get the
second, we use the fact that 2ab/(a+ b) ≥ min{a, b}. This completes the proof.

A.6.2 Alternative proof of Theorem 2.6

Here, we reprove Theorem 2.6 using elementary arguments. We write y = θ0 + ε, for
ε ∼ N(0, σ2I). Given an arbitary linear estimator, θ̂ = Sy for a matrix S ∈ Rn×n, observe
that

E
[
MSE(θ̂, θ0)

]
=

1

n
E‖θ̂ − θ0‖22 =

1

n
E‖S(θ0 + ε)− θ0‖22

=
1

n
E‖Sε‖22 +

1

n
‖(S − I)θ0‖22

=
σ2

n
‖S‖2F +

1

n
‖(S − I)θ0‖22, (A.17)
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which we may view as the variance and (squared) bias terms, respectively. Now denote by
ei the ith standard basis vector, and consider

σ2

n
‖S‖2F +

(
sup

θ0:‖Dθ0‖1≤Cn

1

n
‖(S − I)θ0‖22

)
≥ σ2

n
‖S‖2F +

C2
n

d2
maxn

(
max
i=1,...,n

‖(I − S)ei‖22

)

≥ σ2

n
‖S‖2F +

C2
n

d2
maxn

2

n∑
i=1

‖(I − S)ei‖22

=
σ2

n
‖S‖2F +

C2
n

d2
maxn

2
‖(I − S)‖2F

≥ σ2

n

n∑
i=1

S2
ii +

C2
n

d2
maxn

2

n∑
i=1

(1− Sii)2

=
1

n

n∑
i=1

(
σ2S2

ii +
C2
n

d2
maxn

(1− Sii)2

)
.

Here Sii, i = 1, . . . , n denote the diagonal entries of S. To bound each term in the sum, we
apply the simple inequality ax2 + b(1− x)2 ≥ ab/(a+ b) for all x (since a short calculation
shows that the quadratic in x here is minimized at x = b/(a + b)). We may continue on
lower bounding the last displayed expression, giving

σ2

n
‖S‖2F +

(
sup

θ0:‖Dθ0‖1≤Cn

1

n
‖(S − I)θ0‖22

)
≥ σ2C2

n

C2
n + σ2d2

maxn
.

Lastly, we may take the maximum of this with σ2/n in order to derive a final lower bound,
as argued in the proof of Theorem 2.6.

A.6.3 Proof of Lemma 2.5 (mean estimator over TV classes)

For this estimator, the smoother matrix is S = 11
T /n and so ‖S‖2F = 1. From (A.17), we

have

E
[
MSE(θ̂mean, θ0)

]
=
σ2

n
+

1

n
‖θ0 − θ̄01‖22,

where θ̄0 = (1/n)
∑n

i=1 θ0,i. Now

sup
θ0:‖Dθ0‖1≤Cn

1

n
‖θ0 − θ̄01‖22 = sup

x∈row(D):‖Dx‖1≤Cn

1

n
‖x‖22

= sup
z∈col(D):‖z‖1≤Cn

1

n
‖D†z‖22

≤ sup
z:‖z‖1≤Cn

1

n
‖D†z‖22

=
C2
n

n
max
i=1,...,n

‖D†i ‖
2
2

≤ C2
nM

2
n

n
,

which establishes the desired bound.
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A.6.4 General proof

Proof of Theorem 2.7. The proofs of Theorems 2.7 and 2.8 follow the same line of reasoning.
We give the proof only for Theorem 2.8 because it is slightly more involved to control the
summation of inverse of eigenvalues of ∆T∆ where ∆ = ∆̃(k+1).

Proof of Theorem 2.8. For brevity, denote ∆ = ∆̃(k+1) in the context of this proof. The
minimax linear risk for the class T̃ kd (Cn) is

RL(T̃ kd (Cn)) = inf
S∈Rn×n

sup
θ0∈T̃ kd (Cn)

1

n
E‖Sy − θ0‖22

= inf
S

sup
θ0∈T̃ kd (Cn)

1

n
E‖S(θ0 + ε)− θ0‖22

=
1

n
inf
S

sup
θ0∈T̃ kd (Cn)

σ2‖S‖2F + ‖(S − I)θ0‖22

where in the last line we used the assumption that εi, i ∈ [n] are i.i.d. with mean zero
and variance σ2 and used the notation ‖A‖F for the Frobenius norm of a matrix A. The
infimum can be restricted to the set of linear smoothers

S = {S : null(S − I) ⊇ null(∆)}

because if for a linear smoother S, if there exists η ∈ null(∆) suc that (S − I)η 6= 0, then
the inner supremum above will be ∞, that is, its risk will be ∞. If the outer infimum is
over S, then the supremum can be restricted to {θ0 ∈ row(∆) : θ ∈ T̃ kd (Cn)}. We continue
to lower bound minimax linear risk as follows:

RL(T̃ kd (Cn)) =
1

n
inf
S∈S

σ2‖S‖2F + sup
θ0∈row(∆):‖∆θ0‖1≤Cn

‖(S − I)θ0‖22

=
1

n
inf
S∈S

σ2‖S‖2F + sup
z:‖z‖1≤Cn

‖(S − I)∆+z‖22

=
1

n
inf
S∈S

σ2‖S‖2F + C2
n max
i∈[m]

∥∥((S − I)∆+
)
i

∥∥2

2
(A.18)

≥ 1

n
inf
S∈S

σ2‖S‖2F +
C2
n

m

m∑
i=1

∥∥((S − I)∆+
)
i

∥∥2

2

≥ inf
S∈S

σ2

n
‖S‖2F +

C2
n

mn

∥∥(S − I)∆+
∥∥2

F︸ ︷︷ ︸
=:r(S)

(A.19)

In the third line, (A)i denotes the ith column of matrix A and m denotes the number of
rows in ∆. In the fourth line, we used the fact that the maximum of a set is at least as
much as their average. In the last line, we use the fact that m ≥ dn and also – within the
context of this proof – define the quantity r(S) which is a lower bound on the risk of the
linear smoother S ∈ S.
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Notice that r(·) is a quadratic in the entries of S and the constraint S ∈ S translates
to linear constraints on the entries of S. Writing the KKT conditions, after some work, we
see that r(·) is minimized at

S0 = an

(
σ2L(k+1) + anI

)−1
(A.20)

where we denote an = C2
n
m and L(k+1) = ∆T∆. Further, S0 ∈ S. Therefore,

RL(T̃ kd (Cn)) ≥ r(S0). (A.21)

We simplify the expression for r(S0) now. Let λi, i ∈ [n] be the eigenvalues of L(k+1). Then
the eigenvalues of S0 are

an
σ2λi + an

, i ∈ [n]

and the non-zero squared singular values of (S − I)∆+ are given by

σ4λi
(σ2λi + an)2

, κ < i ≤ n.

Using the fact that the squared Frobenius norm of a matrix is the sum of squares of its
singular values, substituting the above eigenvalues and singular values in (A.19), we have

r(S0) =
σ2

n

n∑
i=1

(
an

σ2λi + an

)2

+
an
n

n∑
i=1

σ4λi
(σ2λi + an)2

=
1

n

n∑
i=1

σ2an
σ2λi + an

. (A.22)

Now we upper bound the risk R(S0) of the linear smoother defined by S0. From (A.18),
we can write

R(S0) =
σ2

n
‖S0‖2F +

C2
n

n
max
i∈[m]

∥∥((S0 − I)∆+
)
i

∥∥2

2
.

Let ∆ = UΣV T be the singular value decomposition of ∆. Also let the eigen-decomposition
of S0 − I = V ΛV T . Then using incoherence of columns of U , that is, the fact that there
exists a constant c > 1 that depends only on k, d such that U2

ij ≤ c
m for all i ∈ [m], j ∈ [n],

we can write

max
i∈[m]

∥∥((S0 − I)∆+
)
i

∥∥2

2
= max

i∈[m]

∥∥V ΛV TV Σ+(UT )i
∥∥2

2

= max
i∈[m]

(UT )Ti (ΛΣ+)2(UT )i

≤ c

m
tr
(
(ΛΣ+)2

)
=

c

m

n∑
i=1

σ4λi
(σ2λi + an)2

.
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Plugging this back in the previous display and also using the fact that the squared Frobenius
norm of a matrix is equal to the sum of the squares of its eigenvalues,

R(S0) =
σ2

n

n∑
i=1

(
an

σ2λi + an

)2

+
c · an
n

n∑
i=1

σ4λi
(σ2λi + an)2

≤ c · r(S0)

Combining this with the lower bound in (A.21), we have

r(S0) ≤ RL(T̃ kd (Cn)) ≤ min
{
σ2, R(S0)

}
≤ min

{
σ2, c · r(S0)

}
. (A.23)

In other words, the minimax linear rate is essentially r(S0) up to a constant factor. Further,
one of the estimators ŷ = S0y, ŷ = y achieves the minimax linear rate up to a constant
factor.

Now we bound r(S0). Let κ = (k + 1)d denote the nullity of ∆. Recall from (A.22)

r(S0) =
1

n

n∑
i=1

σ2an
σ2λi + an

=
κσ2

n
+

1

n

n∑
i=κ+1

σ2an
σ2λi + an

. (A.24)

Lower bounding r(S0). First, we give two lower bounds on r(S0). By using the fact that
arithmetic mean of positive numbers is at least as large as their harmonic mean, we have

r(S0) =
1

n

n∑
i=1

σ2an
σ2λi + an

≥ nσ2an∑n
i=1(σ2λi + an)

=
nσ2an

nan + σ2‖∆‖2F

=
nσ2an

nan + σ2dn1−1/d‖D(k+1)
1d ‖2F

=
σ2an

an + σ2dn−1/d(n1/d − k − 1)
(

2k+2
k+1

)
≥ σ2an
an + σ2d4k+1

(A.25)

Now we bound in a different way. Let n1 be the cardinality of {i ∈ [n] : σ2λi ≤ an}. Then

r(S0) =
1

n

n∑
i=1

σ2an
σ2λi + an

≥ 1

n

n1∑
i=1

σ2an
an + an

=
n1σ

2

2n
.

Note that n1 = bnF (an/σ
2)c where F is the spectral distribution of (∆̃(k+1))T ∆̃(k+1) defined
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in Lemma A.4. Applying Lemma A.4, we get

r(S0) ≥ σ2

2

(
F
(an
σ2

)
− 1

n

)
≥ c1

σ2

2

(an
σ2

) d
2k+2

= cσ2− d
k+1a

d
2k+2
n (A.26)

From (A.24),(A.25) and (A.26) we have the lower bound

r(S0) ≥ max

{
κσ2

n
,

σ2an
an + σ2d22k+2

, cσ2− d
k+1a

d
2k+2
n

}
. (A.27)

Upper bounding r(S0). If 2k + 2 < d, then

r(S0) =
1

n

n∑
i=1

σ2an
σ2λi + an

≤ κσ2

n
+

1

n

n∑
i=κ+1

σ2an
σ2λi

=
κσ2

n
+
an
n

κ+1∑
i=1

1

λi

≤ κσ2

n
+
an
n

(c3n)

=
κσ2

n
+ c3an (A.28)

We used Lemma A.10 to control the second term in the third line. By the same reasoning,
if 2k + 2 = d, r(S0) ≤ κσ2

n + c3an log n. For the case 2k + 2 > d, we can write

r(S0) =
1

n

n∑
i=1

σ2an
σ2λi + an

≤ 1

n

n1∑
i=1

σ2an
an

+
1

n

n∑
i=n1+1

σ2an
2σ2λi

=
n1σ

2

n
+
an
2n

n∑
i=n1+1

1

λi

≤ κσ2

n
+ c2σ

2
(an
σ2

) d
2k+2

+
an
2n
n

2k+2
d

(
n(an/σ

2)
d

2k+2

)1−(2k+2)/d

≤ κσ2

n
+ cσ2− d

k+1a
d

2k+2
n (A.29)

In the fourth line, we used Lemma A.4 to bound n1 and Lemma A.10 to bound the summa-
tion. From the upper bounds in (A.28),(A.29) we conclude that the lower bound in (A.27)
is tight up to a constant factor (or a log n factor in the case 2k + 2 = d).



107

Risk of θ̂poly. For brevity, denote Π = Pnull(∆). Note that (I−Π)∆+ = ∆+. From (A.38),

sup
θ0∈T̃ kd (Cn)

E
[
MSE(θ̂poly, θ0)

]
=
σ2

n
‖Π‖2F + max

i∈[m]
‖
(
(Π− I)∆+

)
i
‖22

=
κσ2

n
+ max
i∈[m]

‖∆+
i ‖

2
2

Then using incoherence of columns of U , that is, the fact that there exists a constant c > 1
that depends only on k, d such that U2

ij ≤ c
m for all i ∈ [m], j ∈ [n], we can write

max
i∈[m]

‖∆+
i ‖

2
2 = max

i∈[m]

∥∥V Σ+(UT )i
∥∥2

2

= max
i∈[m]

(UT )Ti (Σ+)2(UT )i

≤ c

m
tr
(
(Σ+)2

)
=

c

m

n∑
i=κ+1

1

λi

Plugging this back in the above display and using the bound on
∑n

i=κ+1
1
λi

from Lemma A.11,
we get the desired result.

Remark A.1. In the case 2k+2 ≤ d, the desired lower bound may also be obtained by em-
bedding the `1-ball B1(Cn/(2

k+1d)) in T kd (Cn) in Theorem 2.7 (or T̃ kd (Cn) in Theorem 2.8).
We apply results from Donoho et al. (1990) just as in the proof of Theorem 2.6 to get the
lower bound.

Lemma A.4. Let ∆̃(k+1) be the (k+ 1)th order KTF operator on a d-dimensional regular
grid with n vertices. Let λi, i ∈ [n] be the eigenvalues of (∆̃(k+1))T ∆̃(k+1) with the ordering
λ1 ≤ λ2 ≤ · · · ≤ λn. Define

F (t) =
1

n

n∑
i=1

1{λi ≤ t}, for t ∈ [0, λn].

Then there exists a constants c1, c2 > 0 independent of n such that

c1t
d

2k+2 ≤ F (t)− F (0) ≤ c2t
d

2k+2

for all t ∈ [0, λn].

Proof of Lemma A.4. Let N = n1/d, N ′ = N − k − 1. Let D = D
(k+1)
1d ∈ RN ′×N and let G

be the (k+ 1)th order GTF operator on a chain of length N . As in Lemma A.2 Sadhanala
et al. (2017), we tie together the eigenvalues of DDT and GGT using Cauchy interlacing
theorem.

Let N ′′ = N − 1{k is even} for brevity. Let αi, i ∈ [N ′′] be the eigenvalues of GGT and
βi, i ∈ [N ′] the eigenvalues of DDT . Cauchy interlacing theorem (as applied in Lemma A.2
Sadhanala et al. (2017)) tells us that

αi ≤ βi ≤ αi+N ′′−N ′ , for i ∈ [N ′].
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From the Kronecker product structure of (∆̃(k+1))T ∆̃(k+1), we can index its eigenvalues
λi, i ∈ [n] alternatively using the grid positions, as in

λi1,...,id = ρi1 + · · ·+ ρid , for (i1, . . . , id) ∈ [N ]d

where ρ1 = · · · = ρk+1 = 0 and ρi+k+1 = βi, i ∈ [N ′]. From the interlacing result displayed

above, and the fact that the eigenvalues of the Laplacian are given by 4 sin2 π(i−1)
2N for

i ∈ [N ], we have(
4 sin2 π(i− k − 1)+

2N

)k+1

≤ ρi ≤
(

4 sin2 π(i− 1)

2N

)k+1

, for i ∈ [N ] (A.30)

where (x)+ = max{x, 0} for x ∈ R. The lower bound can be derived as follows. Certainly,
F (t) ≥ F (0) = κ/n for t ≥ 0. We can write

nF (t) =
∑
i∈[N ]d

1{λi1,...,id ≤ t}

=
∑
i∈[N ]d

1{
d∑
j=1

ρij ≤ t}

=
∑
i∈[N ]d

1{
d∑
j=1

4k+1 sin2k+2 π(ij − 1)

2N
≤ t}

≥
∑
i∈[N ]d

1{
d∑
j=1

π2k+2(ij − 1)2k+2 ≤ tN2k+2}

≥ c1nt
d

2k+2

In the third line, we used (A.30) and in the fourth line, we used the fact that sinx ≤ x for
x ≥ 0. In the last line, we used the fact that the the number of (integer) lattice points in
the `2k+2 body

x2k+2
1 + · · ·+ x2k+2

d ≤ r2k+2

is close to its volume, which is given by c′1r
d for a constant c′1 that depends only on d, k.

The upper bound can be argued in a similar manner.

nF (t) =
∑
i∈[N ]d

1{λi1,...,id ≤ t}

=
∑
i∈[N ]d

1{
d∑
j=1

ρij ≤ t}

≤
∑
i∈[N ]d

1{
d∑
j=1

4k+1 sin2k+2 π(ij − k − 1)+

2N
≤ t}

≤
∑
i∈[N ]d

1{
d∑
j=1

(π
2

)2k+2
(ij − k − 1)2k+2

+ ≤ tN2k+2}

≤ κ+ c2nt
d

2k+2
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In the third line, we again use (A.30) and in the fourth line, we use the fact that sinx ≥ x/2
for x ∈ [0, π/2]. In the last line, we argue about the the number of lattice points in the
`2k+2 body just as in the lower bound result in the preceding display.

A.7 Analysis over Sobolev classes

Define the Sobolev ball Sd(C ′n), of radius C ′n is defined as

Sd(C ′n) =
{
θ : ‖∆(1)θ‖2 ≤ C ′n

}
. (A.31)

The following lemma shows that the Sobolev class contains a Holder ball of certain radius.

Lemma A.5. For any integers k ≥ 0, d ≥ 1, the (discretized) Holder and Sobolev classes
defined in (2.15), (A.31) satisfy H1

d(L) ⊆ Sd(cLn1/2−1/d), where c > 0 is a constant depend-
ing only on k.

Our first result here is a lower bound on the minimax risk of the Sobolev class Sd(C ′n)
in (A.31).

Theorem A.1. For a universal constant c > 0,

R(Sd(C ′n)) ≥ c

n

(
(nσ2)

2
d+2 (C ′n)

2d
d+2 ∧ nσ2 ∧ n2/d(C ′n)2

)
+
σ2

n
.

Elegant tools for minimax analysis from Donoho et al. (1990), which leverage the fact
that the ellipsoid Sd(C ′n) is orthosymmetric and quadratically convex (after a rotation), are
used to prove the result.

The next theorem gives upper bounds, certifying that the above lower bound is tight,
and showing that Laplacian eigenmaps and Laplacian smoothing, both linear smoothers,
are optimal over Sd(C ′n) for all d and for d = 1, 2, or 3 respectively.

Theorem A.2. For Laplacian eigenmaps, θ̂LE in (2.5), with k � ((n(C ′n)d)2/(d+2) ∨ 1) ∧ n,
we have

sup
θ0∈Sd(C′n)

E
[
MSE(θ̂LE, θ0)

]
≤ c

n

(
(nσ2)

2
d+2 (C ′n)

2d
d+2 ∧ nσ2 ∧ n2/d(C ′n)2

)
+
cσ2

n
,

for a universal constant c > 0, and n large enough. When d = 1, 2, or 3, the same bound
holds for Laplacian smoothing θ̂LS in (2.5), with λ � (n/(C ′n)2)2/(d+2) (and a possibly dif-
ferent constant c).

Remark A.2. As shown in the proof, Laplacian smoothing is nearly minimax rate optimal
over Sd(C ′n) when d = 4, just incurring an extra log factor. It is unclear to us whether this
method is still (nearly) optimal when d ≥ 5; based on insights from our proof technique,
we conjecture that it is not.
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Linear signal in 2d Linear signal in 3d
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Sobolev-ball minimax rate: n!2=5

Figure A.1: MSE curves for estimating a “linear” signal, a very smooth signal, over 2d and 3d grids.
For each n, the results were averaged over 5 repetitions, and Laplacian smoothing and TV denoising
were tuned for best average MSE performance. The signal was set to satisfy ‖Dθ0‖2 � n1/2−1/d,
matching the canonical scaling.

A.8 A phase transition, and adaptivity

The TV class T 0
d (Cn) in (2.13) (with k = 0) and the Sobolev class in (A.31), display a

curious relationship. We reflect on the minimax optimal rates from Theorems 2.4 and A.1,
using, for concreteness, the canonical scalings Cn � n1−1/d and C ′n � n1/2−1/d, that, recall,
guarantee Sd(C ′n) ⊆ Td(Cn). (Similar statements could also be made outside of this case,
subject to an appropriate relationship with Cn/C

′
n �
√
n.) When d = 1, both the TV and

Sobolev classes have a minimax rate of n−2/3 (this TV result is actually due to Donoho
& Johnstone (1998), as stated in (1.12), not Theorem 2.4). When d = 2, both the TV
and Sobolev classes again have the same minimax rate of n−1/2, the caveat being that the
rate for TV class has an extra

√
log n factor. But for all d ≥ 3, the rates for the canonical

TV and Sobolev classes differ, and the smaller Sobolev spaces have faster rates than their
inscribing TV spaces. This may be viewed as a phase transition at d = 3; see Table A.1.

Function class Dimension 1 Dimension 2 Dimension d ≥ 3

TV ball Td(n1−1/d) n−2/3 n−1/2
√

log n n−1/d
√

log n

Sobolev ball Sd(n1/2−1/d) n−2/3 n−1/2 n−
2

2+d

Table A.1: Summary of rates for canonically-scaled TV and Sobolev spaces.

We may paraphrase to say that 2d is just like 1d, in that expanding the Sobolev ball
into a larger TV ball does not hurt the minimax rate, and methods like TV denoising are
automatically adaptive, i.e., optimal over both the bigger and smaller classes. However, as
soon as we enter the 3d world, it is no longer clear whether TV denoising can adapt to the
smaller, inscribed Sobolev ball, whose minimax rate is faster, n−2/5 versus n−1/3 (ignoring
log factors). Theoretically, this is an interesting open problem that we do not approach
here and leave to future work.
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We do, however, investigate the matter empirically: see Figure A.1, where we run
Laplacian smoothing and TV denoising on a highly smooth “linear” signal θ0. This is
constructed so that each component θi is proportional to i1 + i2 + . . . + id (using the
multi-index notation (i1, . . . , id) of (2.15) for grid location i), and the Sobolev norm is
‖Dθ0‖2 � n1/2−1/d. Arguably, these are among the “hardest” types of functions for TV
denoising to handle. The left panel, in 2d, is a case in which we know that TV denoising
attains the minimax rate; the right panel, in 3d, is a case in which we do not, though
empirically, TV denoising surely seems to be doing better than the slower minimax rate of
n−1/3 (ignoring log terms) that is associated with the larger TV ball.

Even if TV denoising is shown to be minimax optimal over the inscribed Sobolev balls
when d ≥ 3, note that this does not necessarily mean that we should scrap Laplacian
smoothing in favor of TV denoising, in all problems. Laplacian smoothing is the unique
Bayes estimator in a normal means model under a certain Markov random field prior (e.g.,
Sharpnack & Singh (2010)); statistical decision theory therefore tells that it is admissible,
i.e., no other estimator—TV denoising included—can uniformly dominate it.

A.9 Proof of minimax rates over Sobolev classes

A.9.1 Proof of Theorem A.1 (minimax rates over Sobolev classes)

Recall that we denote by L = V ΣV T the eigendecomposition of the graph Laplacian L =
DTD, where Σ = diag(ρ1, . . . , ρn) with 0 = ρ1 < ρ2 ≤ . . . ≤ ρn, and where V ∈ Rn×n has
orthonormal columns. Also denote by D = UΣ1/2V T the singular value decomposition of
the edge incidence matrix D, where U ∈ Rm×n has orthonormal columns.1 First notice that

‖Dθ0‖2 = ‖UΣ1/2V T θ0‖2 = ‖Σ1/2V T θ0‖2.

This suggests that a rotation by V T will further simplify the minimax risk over Sd(C ′n), i.e.,

inf
θ̂

sup
θ0:‖Σ1/2V T θ0‖2≤C′n

1

n
E‖θ̂ − θ0‖22 = inf

θ̂
sup

θ0:‖Σ1/2V T θ0‖2≤C′n

1

n
E‖V T θ̂ − V T θ0‖22

= inf
γ̂

sup
γ0:‖Σ1/2γ0‖2≤C′n

1

n
E‖γ̂ − γ0‖22, (A.32)

where we have rotated and now consider the new parameter γ0 = V T θ0, constrained to lie
in

Ed(C ′n) =

{
γ :

n∑
i=2

ρiγ
2
i ≤ (C ′n)2

}
.

To be clear, in the rotated setting (A.32) we observe a vector y′ = V T y ∼ N(γ0, σ
2I), and

the goal is to estimate the mean parameter γ0. Since there are no constraints along the
first dimension, we can separate out the MSE in (A.32) into that incurred on the first

1When d = 1, we have m = n− 1 edges, and so it is not be possible for U to have orthonormal columns;
however, we can just take its first column to be all 0s, and take the rest as the eigenbasis for Rn−1, and all
the arguments given here will go through.
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component, and all other components. Decomposing γ0 = (α0, β0) ∈ R1×(n−1), with similar
notation for an estimator γ̂,

inf
γ̂

sup
γ0∈Ed(C′n)

1

n
E‖γ̂ − γ0‖22 = inf

α̂
sup
α0

1

n
E(α̂− α0)2 + inf

β̂
sup

β0∈P−1(Ed(C′n))

1

n
E‖β̂ − β0‖22

=
σ2

n
+ inf

β̂
sup

β0∈P−1(Ed(C′n))

1

n
E‖β̂ − β0‖22, (A.33)

where P−1 projects onto all coordinate axes but the 1st, i.e., P−1(x) = (0, x2, . . . , xn), and in
the second line we have used the fact that the minimax risk for estimating a 1-dimensional
parameter α0 given an observation z ∼ N(α0, σ

2) is simply σ2.
Let us lower bound the second term in (A.33), i.e., R(P−1(Ed(C ′n))). The ellipsoid

P−1(Ed(C ′n)) is orthosymmetric, compact, convex, and quadratically convex, hence Theorem
7 in Donoho et al. (1990) tells us that its minimax linear risk is the minimax linear risk of
its hardest rectangular subproblem. Further, Lemma 6 in Donoho et al. (1990) then tells
us the minimax linear risk of its hardest rectangular subproblem is, up to a constant factor,
the same as the minimax (nonlinear) risk of the full problem. More precisely, Lemma 6 and
Theorem 7 from Donoho et al. (1990) imply

5

4
R(P−1(Ed(C ′n))) ≥ RL(P−1(Ed(C ′n))) = sup

H⊆P−1(Ed(C′n))
RL(H), (A.34)

where the supremum above is taken over all rectangular subproblems, i.e., all rectangles H
contained in P−1(Ed(C ′n)).

To study rectangular subproblems, it helps to reintroduce the multi-index notation for
a location i on the d-dimensional grid, writing this as (i1, . . . , id) ∈ {1, . . . , N}d, where
N = n1/d. For a parameter 2 ≤ τ ≤ N , we consider rectangular subsets of the form2

H(τ) =
{
β ∈ Rn−1 : |βi| ≤ ti(τ), i = 2, . . . , n

}
, where

ti(τ) =

{
C ′n/(

∑
j1,...,jd≤τ ρj1,...,jd)

1/2 if i1, . . . , id ≤ τ
0 otherwise

, for i = 2, . . . , n.

It is not hard to check that H(τ) ⊆ {β ∈ Rn−1 :
∑n

i=2 ρiβ
2
i ≤ (C ′n)2} = P−1(Ed(C ′n)). Then,

from (A.34),

5

4
R(P−1(Ed(C ′n))) ≥ sup

τ
RL(H(τ)) = sup

τ

1

n

n∑
i=1

ti(τ)2σ2

ti(τ)2 + σ2

= sup
τ

1

n

(τd − 1)σ2(C ′n)2

(C ′n)2 +
∑

j1,...,jd≤τ ρj1,...,jd
.

The first equality is due to the fact that the minimax risk for rectangles decouples across
dimensions, and the 1d minimax linear risk is straightforward to compute for an interval, as

2Here, albeit unconventional, it helps to index β ∈ H(τ) ⊆ Rn−1 according to components i = 2, . . . , n,
rather than i = 1, . . . , n− 1. This is so that we may keep the index variable i to be in correspondence with
positions on the grid.
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argued in the proof Theorem 2.6; the second equality simply comes from a short calculation
following the definition of ti(τ), i = 2, . . . , n. Applying Lemma A.8, on the eigenvalues of
the graph Laplacian matrix L for a d-dimensional grid, we have that for a constant c > 0,

(τd − 1)σ2(C ′n)2

(C ′n)2 +
∑

j1,...,jd≤τ ρj1,...,jd
≥ (τd − 1)σ2(C ′n)2

(C ′n)2 + cσ2τd+2/N2
≥ 1

2

σ2(C ′n)2

(C ′n)2τ−d + cσ2τ2/N2
.

We can choose τ to maximize the expression on the right above, given by

τ∗ =

(
N2(C ′n)2

cσ2

) 1
d+2

.

When 2 ≤ τ∗ ≤ N , this provides us with the lower bound on the minimax risk

5

4
R(P−1(Ed(C ′n))) ≥ RL(H(τ∗)) ≥ 1

2n

τdσ2(C ′n)2

2(cσ2)
d
d+2 (C ′n)

4
d+2N−

2d
d+2

=
c1

n
(nσ2)

2
d+2 (C ′n)

2d
d+2 ,

(A.35)
for a constant c1 > 0. When τ∗ < 2, we can use τ = 2 as lower bound on the minimax risk,

5

4
R(P−1(Ed(C ′n))) ≥ RL(H(2)) ≥ 1

2n

σ2N2(C ′n)2

N2(C ′n)22−d + cσ222
≥ c2

n
N2(C ′n)2, (A.36)

for a constant c2 > 0, where in the last inequality, we used the fact that N2(C ′n)2 ≤ cσ22d+2

(just a constant) since we are in the case τ∗ < 2. Finally, when τ∗ > N , we can use τ = N
as a lower bound on the minimax risk,

5

4
R(P−1(Ed(C ′n))) ≥ RL(H(N)) ≥ 1

2n

σ2(C ′n)2

N−d(C ′n)2 + cσ2
≥ c3σ

2, (A.37)

for a constant c3 > 0, where in the last inequality, we used that cσ2 ≤ N−d(C ′n)2 as we are
in the case τ∗ > N . Taking a minimum of the lower bounds in (A.35), (A.36), (A.37), as a
way to navigate the cases, gives us a final lower bound on R(P−1(Ed(C ′n))), and completes
the proof.

A.9.2 Proof of Theorem A.2 (Laplacian eigenmaps and Laplacian smooth-
ing over Sobolev classes)

We will prove the results for Laplacian eigenmaps and Laplacian separately.

Given an arbitary linear estimator, θ̂ = Sy for a matrix S ∈ Rn×n, observe that

E
[
MSE(θ̂, θ0)

]
=

1

n
E‖θ̂ − θ0‖22 =

1

n
E‖S(θ0 + ε)− θ0‖22

=
1

n
E‖Sε‖22 +

1

n
‖(S − I)θ0‖22

=
σ2

n
‖S‖2F +

1

n
‖(S − I)θ0‖22, (A.38)

which we may view as the variance and (squared) bias terms, respectively.
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Laplacian eigenmaps. The smoother matrix for this estimator is Sk = V[k]V
T

[k], for a
tuning parameter k = 1, . . . , n. From (A.38),

E
[
MSE(θ̂LE, θ0)

]
=
σ2

n
k +

1

n
‖(I − Sk)θ0‖22.

Now we write k = τd, and analyze the max risk of the second term,

sup
θ0:‖Dθ0‖2≤C′n

1

n
‖(I − Sk)θ0‖22 = sup

z:‖z‖2≤C′n

1

n
‖(I − Sk)D†z‖22

=
(C ′n)2

n
σ2

max

(
(I − Sk)D†

)
≤ (C ′n)2

n

1

4 sin2(πτ/(2N))

≤ (C ′n)2

n

4N2

π2τ2
.

Here we denote by σmax(A) the maximum singular value of a matrix A. The last inequality
above used the simple lower bound sin(x) ≥ x/2 for x ∈ [0, π/2]. The earlier inequality
used that

(I − Sk)D† = (I − V[k]V
T

[k])V
T (Σ†)1/2UT =

[
0, . . . , 0, Vk+1, . . . , Vn

]
(Σ†)1/2UT ,

where we have kept the same notation for the singular value decomposition of D as in
the proof of Theorem A.1. Therefore σ2

max((I − Sk)D†) is the reciprocal of the (k + 1)st
smallest eigenvalue ρk+1 of the graph Laplacian L. For any subset A of the set of eigenvalues
λ(L) = {ρ1, . . . , ρn} of the Laplacian, with |A| = k, note that ρk+1 ≥ min λ(L) \ A. This
means that, for our d-dimensional grid,

ρk+1 ≥ min λ(L) \ {ρi1,...,id : i1, . . . , id ≤ τ}
= 4 sin2(πτ/(2N)),

where recall N = n1/d, as explained by (A.39), in the proof of Lemma A.8.
Hence, we have established

sup
θ0:‖Dθ0‖2≤C′n

E
[
MSE(θ̂LE, θ0)

]
≤ σ2

n
+
σ2

n
τd +

(C ′n)2

n

4N2

π2τ2
.

Choosing τ to balance the two terms on the right-hand side above results in τ∗ = (2NC ′n/(πσ))
2
d+2 .

Plugging in this choice of τ , while utilizing the bounds 1 ≤ τ ≤ N , very similar to the
arguments given at the end of the proof of Theorem A.1, gives the result for Laplacian
eigenmaps.

Laplacian smoothing. The smoother matrix for this estimator is Sλ = (I + λL)−1, for
a tuning parameter λ ≥ 0. From (A.38),

E
[
MSE(θ̂LS, θ0)

]
=
σ2

n

n∑
i=1

1

(1 + λρi)2
+

1

n
‖(I − Sλ)θ0‖22.
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When d = 1, 2, or 3, the first term upper is bounded by c1σ
2/n+ c2σ

2/λd/2, for some
constants c1, c2 > 0, by Lemma A.9. As for the second term,

sup
θ0:‖Dθ0‖2≤C′n

1

n
‖(I − Sλ)θ0‖22 = sup

z:‖z‖2≤C′n
‖(I − Sλ)D†z‖22

=
(C ′n)2

n
σ2

max

(
(I − Sλ)D†

)
=

(C ′n)2

n
max
i=2,...,n

(
1− 1

1 + λρi

)2 1

ρi

=
(C ′n)2

n
λ max
i=2,...,n

λρi
(1 + λρi)2

≤ (C ′n)2λ

4n
.

In the third equality we have used the fact the eigenvectors of I − Sλ are the left sin-
gular vectors of D†, and in the last inequailty we have used the simple upper bound
f(x) = x/(1 + x)2 ≤ 1/4 for x ≥ 0 (this function being maximized at x = 1).

Therefore, from what we have shown,

sup
θ0:‖Dθ0‖2≤C′n

E
[
MSE(θ̂LS, θ0)

]
≤ c1σ

2

n
+
c2σ

2

λd/2
+

(C ′n)2λ

4n
.

Choosing λ to balance the two terms on the right-hand side above gives λ∗ = c(n/(C ′n)2)2/(d+2),
for a constant c > 0. Plugging in this choice, and using upper bounds from the trivial cases
λ = 0 and λ = ∞ when C ′n is very small or very large, respectively, gives the result for
Laplacian smoothing.

Remark A.3. When d = 4, Lemma A.9 gives a slightly worse upper bound on
∑n

i=1 1/(1 + λρi)
2,

with an “extra” term (nc2/λ
d/2)) log(1 + c3λ), for constants c2, c3 > 0. It is not hard to

show, by tracing through the same arguments as given above that we can use this to estab-
lish an upper bound on the max risk of

sup
θ0∈Sd(C′n)

E
[
MSE(θ̂LE, θ0)

]
≤ c

n

(
(nσ2)

2
d+2 (C ′n)

2d
d+2 log(n/(C ′n)2) ∧ nσ2 ∧ n2/d(C ′n)2

)
+
cσ2

n
,

only slightly worse than the minimax optimal rate, by a log factor.
When d ≥ 5, our analysis provides a much worse bound for the max risk of Laplacian

smoothing, as the integral denoted I(d) in the proof of Lemma A.9 grows very large when
d ≥ 5. We conjecture that this not due to slack in our proof technique, but rather, to the
Laplacian smoothing estimator itself, since all inequalities the proof are fairly tight.

A.10 Utility lemmas

This section contains some calculations on the partial sums of eigenvalues of the Laplacian
matrix L, for d-dimensions grids.
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A.10.1 Lemma A.6

The next lemma is the key driver for the sharp rate established in Theorem 2.2. Here and
henceforth, denote [i] = {1, . . . , i} for an integer i ≥ 1.

Lemma A.6. Let ξ1 ≤ . . . ≤ ξn−1 be the nonzero singular values of the GTF operator
∆(k+1) of order k + 1. If k = 0, then for any i0 ∈ [n− 1],

n−1∑
i=i0+1

1

ξ2
i

≤ cn log(n/i0).

for large enough n, where c > 0 is an absolute constant. If k > 1, then for any i0 ∈ [n− 1],

n−1∑
i=i0+1

1

ξ2
i

≤ cnk+1/ik0,

for large enough n, where now c > 0 is a constant depending only on k.

Proof. In the following, we denote by c > 0 a constant whose value may change from line
to line, as needed.

Let us denote by λ1 ≤ . . . ≤ λn−1 the nonzero eigenvalues of the Laplacian of the 2d grid
graph of size N×N . As shown in Wang et al. (2016), the GTF operator ∆(k+1) has squared
singular values ξ2

i = λk+1
i , i ∈ [n− 1]. We can index the eigenvalues of the Laplacian by 2d

grid positions, and we note (as, e.g., in the proof of Corollary 8 in Wang et al. (2016)) that
they may be written as

λi1,i2 = 4 sin2
(π(i1 − 1)

2N

)
+ 4 sin2

(π(i2 − 1)

2N

)
, i1, i2 ∈ [N ].

For the first claim in the lemma, take j0 = b
√
i0c. Observe, using sin(x) ≥ x/2 for

x ∈ [0, π/2],

n−1∑
i=i0+1

1

λi
≤

∑
min{i1,i2}≥j0+1

1

λi1,i2

≤ cn
∑

min{i1,i2}≥j0+1

1

(i1 − 1)2 + (i2 − 1)2

≤ cn
N−1∑
i1=j0

N−1∑
i2=1

1

i21 + i22

≤ cn
N−1∑
i1=j0

∫ N−1

0

1

i21 + x2
dx

= cn

N−1∑
i1=j0

1

i1
tan−1

(
N − 1

i1

)

≤ cn
N−1∑
i1=j0

1

i1

π

2
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≤ cn log(N/j0),

for sufficiently large n.
As for the second claim in the lemma, observe, again using sin(x) ≥ x/2 for x ∈ [0, π/2],

n−1∑
i=i0+1

1

λk+1
i

≤
n∑

(i1−1)2+(i2−1)2≥i0

1

λk+1
i1,i2

≤ cnk+1
∑

(i1−1)2+(i2−1)2≥i0

1

((i1 − 1)2 + (i2 − 1)2)k+1

≤ cnk+1

∫
i0≤x2+y2≤2(n−1), x,y≥0

1

(x2 + y2)k+1
dx dy +

∑
(i1−1)2+(i2−1)2=i0

1

ik+1
0


≤ cnk+1

(∫ π/2

0

∫ √2(n−1)

√
i0

1

r2(k+1)
r dr dθ +

1

i
k+1/2
0

)

≤ cnk+1

(
π

2

∫ 2(n−1)

i0

1

uk+1
du+

1

i
k+1/2
0

)

= cnk+1

(
π

2

(
1

ik0
− 1

(2(n− 1))k

)
+

1

i
k+1/2
0

)
≤ cnk+1/ik0.

A.10.2 Lemma A.7

This result slightly generalizes Lemma A.3 of Sadhanala et al. (2016).

Lemma A.7. Let L ∈ Rn×n denote the Laplacian matrix of the d-dimensional grid graph
with equal side lengths N = n1/d, and let

λi1,...,id = 4
d∑
j=1

sin2
(π(ij − 1)

2N

)
, i1, . . . , id ∈ [N ]

denote its eigenvalues. Then for any integer k ≥ 0 and τ ∈ [N ],∑
i1,...,id≤τ

λk+1
i1,...,id

≤ cτ
2k+2+d

N2k+2
,

for a constant c > 0 depending only on k and d.

Proof. The proof follows the same chain of arguments as that for Lemma A.3 in Sadhanala
et al. (2016). Using the fact that sin(x) ≤ x for all x ≥ 0,∑

i1,...,id≤τ
λk+1
i1,...,id

≤ π2k+2

4kN2k+2

∑
i1,...,id≤τ

(
(i1 − 1)2 + . . .+ (id − 1)2

)k+1
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≤ π2k+2

4kN2k+2
τd−1

τ∑
i=1

(i− 1)2k+2

≤ cτ
2k+2+d

N2k+2
.

Lemma A.8. Let L ∈ Rn×n denote the graph Laplacian matrix of a d-dimensional grid
graph, and ρi1,...,id , (i1, . . . , id) ∈ {1, . . . , N}d be its eigenvalues, where N = n1/d. Then
there exists a constant c > 0 (dependent on d) such that, for any 1 ≤ τ ≤ N ,∑

(i1,...,id)∈{1,...,τ}d
ρi1,··· ,id ≤ c

τd+2

N2
.

Proof. The eigenvalues of L can be written explicitly as

ρi = 4 sin2
(π(i1 − 1)

2N

)
+ . . .+ 4 sin2

(π(id − 1)

2N

)
, (i1, . . . , id) ∈ {1, . . . , N}d. (A.39)

This follows from known facts about the eigenvalues for the Laplacian matrix of a 1d grid,
and the fact that the Laplacian matrix for higher-dimensional grids can be expressed in
terms of a Kronecker sum of the Laplacian matrix of an appropriate 1d grid (e.g., Conte
& de Boor (1980), Kunsch (1994), Ng et al. (1999), Wang et al. (2008, 2016), Hutter &
Rigollet (2016)). We now use the fact that sin(x) ≤ x for all x ≥ 0, which gives us the
upper bound ∑

(i1,...,id)∈{1,...,τ}d
ρi1,··· ,id ≤

π2

N2

∑
(i1,...,id)∈{1,...,τ}d

(
(i1 − 1)2 + . . .+ (id − 1)2

)

≤ π2d

N2
τd−1

τ∑
i=1

(i− 1)2

≤ π2d

N2
τd−1τ3

=
π2d

N2
τd+2,

as desired.

Lemma A.9. Let L ∈ Rn×n denote the graph Laplacian matrix of a d-dimensional grid
graph, and ρi, i = 1, . . . , n be its eigenvalues. Let λ ≥ 0 be arbitrary. For d = 1, 2, or 3,
there are constants c1, c2 > 0 such that

n∑
i=1

1

(1 + λρi)2
≤ c1 + c2

n

λd/2
.

For d = 4, there are constants c1, c2, c3 > 0 such that

n∑
i=1

1

(1 + λρi)2
≤ c1 + c2

n

λd/2

(
1 + log(1 + c3λ)

)
.
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Proof. We will use the explicit form of the eigenvalues as given in the proof of Lemma A.8.
In the expressions below, we use c > 0 to denote a constant whose value may change from
line to line. Using the inequality sinx ≥ x/2 for x ∈ [0, π/2],

n∑
i=1

1

(1 + λρi)2
≤

∑
(i1,...,id)∈{1,...,N}d

1(
1 + λ π2

4N2

∑d
j=1(ij − 1)2

)2
≤ 1 +

∫
[0,N ]d

1(
1 + λπ

2

4

∑d
j=1 x

2
j/N

2
)2 dx

= 1 + c

∫ N
√
d

0

1(
1 + λπ

2

4 r
2/N2

)2 rd−1 dr

= 1 + c
n

λd/2

∫ π
2

√
λd

0

ud−1

(1 + u2)2
du︸ ︷︷ ︸

I(d)

.

In the second inequality, we used the fact that the right-endpoint Riemann sum is always
an underestimate for the integral of a function that is monotone nonincreasing in each
coordinate. In the third, we made a change to spherical coordinates, and suppressed all of
the angular variables, as they contribute at most a constant factor. It remains to compute
I(d), which can be done by symbolic integration:

I(1) =
π
√
d

4
(
1 + π2

4 λd
) +

1

2
tan−1

(π
2

√
λd
)
≤ 1

4
+
π

4
,

I(2) =
1

2
− 1

2
(
1 + π2

4 λd
) ≤ 1

2
,

I(3) =
1

2
tan−1

(π
2

√
λd
)
≤ π

4
, and

I(4) =
1

2
log
(

1 +
π2

4
λd
)

+
1

2
(
1 + π2

4 λd
) − 1

2
≤ 1

2
log
(

1 +
π2

4
λd
)

+
1

2
.

This completes the proof.

Lemma A.10. Consider the eigenvalues {ρi : i = (i1, · · · , id) ∈ [N ]d} of the d-dimensional
grid graph Laplacian with n = Nd nodes. Let k be a non-negative integer and β ∈ (2,

√
dN).

Then,

∑
i∈[N ]d:‖i−1‖22≥β2

1

ρki
≤ c


n 2k < d

n log(N/β) 2k = d

N2kβd−2k 2k > d

Proof of Lemma A.10. Let I denote the summation on the left. Then

I =
∑

i∈[N ]d:‖i−1‖22≥β2

1

ρki
=

∑
‖i−1‖22≥β2

1(∑d
j=1 4 sin2 π(ij−1)

2N

)k



120

≤
∑

‖i−1‖22≥β2

1(∑d
j=1

π2(ij−1)2

4N2

)k
= cN2k

∑
‖i−1‖22≥β2

1(∑d
j=1(ij − 1)2

)k
≤ cN2k

∫
β/2≤‖x‖2≤

√
dN

1(∑d
j=1 x

2
i

)k dx
= cN2k

∫
β/2≤r≤

√
dN

1

r2k
rd−1 dr

In the second line, we used the fact that sinx ≥ x/2 for x ∈ [0, π/2].

If d = 2k, then

I = cN2k log(N/β) = cn log(2N/β).

If 2k < d, then

I = cN2k 1

d− 2k

(
(N
√
d)d−2k − (β/2)d−2k

)
. ≤ cNd.

If 2k > d, then

I = cN2k 1

2k − d

(
(β/2)d−2k − (N

√
d)d−2k

)
.

Treating d, k as constants, we write

I ≤ cN2kβd−2k.

A.10.3 Lemma A.11

This lemma provides a result analogous to Lemma A.10, by tying together the singular
values of the KTF and GTF operators.

Lemma A.11. Let ξ1 ≤ . . . ≤ ξn−(k+1)2 be the nonzero singular values of the d-dimensional

KTF operator ∆̃(k+1) of order k + 1. For any i0 ∈ [n− (k + 1)d − 1],

n−(k+1)d∑
i=i0+1

1

ξ2
i

≤ c


n 2(k + 1) < d

n log(n/i0) 2(k + 1) = d

n(n/i0)(2k+2−d)/d 2(k + 1) > d

for large enough n, where c > 0 is a constant depending only on k.

Proof. Abbreviate D = D
(k+1)
1d , and write G for the GTF operator of order k + 1 defined

over a 1d chain of length N . Also let N ′ = N − k − 1, and k′ = b(k + 1)/2c. Then D is
given by removing the first k1 rows and last k2 rows of G, i.e.,

D = PG, where P =
[

0N ′×k′ IN ′ 0N ′×k′
]
.
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This means

DDT = PGGTP T .

Let βi, i ∈ [N ′] be the eigenvalues of DDT , and let αi, i ∈ [N ] be the eigenvalues of GGT .
The Cauchy interlacing theorem now tells us that

βi ≥ αk+1
i , i ∈ [N ′]. (A.40)

This key property will allow us to relate the nonzero singular values of the KTF operator
to those of the GTF operator, more specifically, to the eigenvalues of the Laplacian of the
2d grid graph.

The squared nonzero singular values of ∆̃(k+1) are the nonzero eigenvalues of (∆̃(k+1))T ∆̃(k+1).
We can index the eigenvalues of (∆̃(k+1))T ∆̃(k+1) by 2d grid positions, as in

ψi1,...,id =

d∑
j=1

ρij , i1, . . . , id ∈ [N ],

where ρi, i ∈ [N ] denote the eigenvalues of DTD, i.e., ρ1 = · · · = ρk+1 = 0 and ρi+k+1 = βi,
i ∈ [N ′], where D, βi, i ∈ [N ′] are as above. Also, as in the proof of Lemma A.10, we can
write the eigenvalues of the Laplacian matrix of the d-dimensional grid graph as

λi1,...,id =

d∑
j=1

αij , i1, . . . , id ∈ [N ]

where αi, i ∈ [N ] is as above. For arbitrary i ∈ [N ]d [k + 1]d, note that

1

ψi1,...,id
=

1∑d
j=1 βij−k−1

≤ 1∑d
j=1 α

k+1
ij−k−1

≤ dk+1

λk+1
i1−k−1,...,id−k−1

,

where we use the convention β−i = 0 and α−i = 0 for i ≤ 0, the first inequality was due to the
key property (A.40), and the second was due to the simple fact (

∑d
j=1 ai)

k ≤ dk
∑d

j=1 a
k
i for

k ≥ 1. The last display shows that to bound the sum of squared reciprocal nonzero singular
values of the KTF operator, it suffices to bound the reciprocal kth power of Laplacian
eigenvalues, as was the case for the GTF operator. Proceeding as in the proof of Lemma
A.10 gives the result.

A.11 Incoherence lemmas for 1d difference operators

In this section, the first two lemmas establish incoherence of the left and right singular
vectors of D

(k+1)
1d . They rely heavily on approximation results for eigenvectors of symmetric

banded Toeplitz matrices in Bogoya et al. (2016). The third lemma relates the eigenvectors
of (D

(k+1)
1d )(D

(k+1)
1d )T to those of its elementwise absolute value matrix. This is critical for

the proof of the first lemma, since, curiously, (D
(k+1)
1d )(D

(k+1)
1d )T falls outside of the scope

of matrices considered in Bogoya et al. (2016) (as well as related papers on eigenvector
approximations for Toeplitz matrices), but the elementwise absolute value matrix does not.
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Lemma A.12. The left singular vectors ui, i ∈ [N − k − 1] of D
(k+1)
1d ∈ RN×(N−k−1) are

incoherent, i.e., there exists a constant µ > 0 depending only on k such that

‖ui‖∞ ≤
µ√
N
, i ∈ [N − k − 1],

for a constant µ > 0 depending only on k.

Proof. For k = 0, the result has already been proved in Wang et al. (2016). Assume k ≥ 1
henceforth. As in Lemma A.14 and its proof, abbreviate D = D

(k+1)
1d , and N ′ = N − k− 1.

The left singular vectors of D are the eigenvectors of DDT , which is a symmetric banded
Toeplitz matrix with entries

(DDT )ij = c|i−j|, i, j ∈ [N ′],

where c` = (−1)`
(

2k + 2

k + 1 + `

)
, ` = 0, . . . , k + 1.

Let β1 ≤ . . . ≤ βN ′ be the eigenvalues of DDT . Observe that βN ′ ≤ 4k+1 by the Gershgorin
circle theorem.

Unfortunately, the approximation results on eigenvectors of Toeplitz matrices from Bo-
goya et al. (2016) are not applicable toDDT , becauseDDT does not satisfy their simple-loop
assumption. However, the Toeplitz matrix

T = 4k+1I − abs(DDT ),

where abs(A) denotes the elementwise absolute value of a matrix A, does satisfy the simple-
loop assumption, and its eigenvectors are the same as those of DDT up to elementwise sign
flips, as we show in Lemma A.14. Thus, it suffices to verify the incoherence property for T ,
which we pursue in the following.

To be concrete, T is a symmetric banded Toeplitz matrix with entries

Tij = a|i−j|, i, j ∈ [N ′],

where a` = 4k+1 · 1{` = 0} −
(

2k + 2

k + 1 + `

)
, ` = 0, . . . , k + 1.

We introduce some notation. Let C denote the complex plane and T the unit circle in C.
The symbol of T is the function a : T→ C is defined by

a(t) =

k+1∑
`=−(k+1)

a`t
` = 4k+1 −

(
2 + t+

1

t

)k+1

.

We define the function g : [0, 2π)→ R by g(σ) = a(eισ) = 4k+1− (2 + 2 cosσ)k+1. (Here we
use ι =

√
−1 for the imaginary unit, to differentiate it from the the index variable i.)

It is straightforward to check that a, g as defined above satisfy what Bogoya et al. (2016)
refer to as the “simple-loop” conditions: a is real-valued, the range of g is contained in the
bounded set [0, 4k+1], g satisfies g(0) = g(2π) = 0, g′′(0) = g′′(2π) > 0, and g reaches its
maximum of 4k+1 at π ∈ [0, 2π). Hence, in the notation of Bogoya et al. (2016), we have
a ∈ SLα for any α ≥ 4.
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For an eigenvalue τ , the characteristic polynomial of T is given by

pτ (t) = a(t)− τ,

whose 2k + 2 are denoted by z0(τ), z1(τ), z2(τ), . . . , zk(τ) and their inverses. Following
Bogoya et al. (2016), we use a labeling convention such that |z0(τ)| = 1, and |zκ(τ)| > 1 for
κ ∈ [k]. We also define the function b : T× [0, π]→ (0,∞) by

b(t, s) =
a(t)− g(s)

2 cos s− (1 + 1/t)
=

(2 + t+ 1/t)k+1 − (2 + 2 cosσ)k+1

(2 + 2 cos s)− (2 + t+ 1/t)
.

(Here we are using the simplified form of b in Corollary 2.2 of Bogoya et al. (2016), due to
symmetry of g.) As b is a rational function (ratio of two polynomials) in (t, s), denoted

b(t, s) =
P (t, s)

Q(t, s)

it has a Wiener-Hopf factorization b(t, s) = b−(t, s)b+(t, s), where

b+(t, s) = b0(s)

∏p
i=1(1− t/νi(s))∏q
i=1(1− t/ζi(s))

for a constant b0(s), where νi(s), i ∈ [p] and ζi(s), i ∈ [q] denote the roots of P (·, s) and
Q(·, s), respectively, with complex moduli larger at least 1. (The term b−(t, s) has a similar
representation, but the specific details are unimportant for our purposes.)

Because a(t)− g(s) is the characteristic polynomial pτ (t) with τ = g(s), the roots νi(s),
i ∈ [p] of P (·, s) are simply z0(g(s)), zκ(g(s)), κ ∈ [k]; moreover, according to Chapter 1 in
Bottcher & Grudsky (2005), the positive Wiener-Hopf factor b+(t, s) in the last display can
be simplified to

b+(t, s) =

k∏
κ=1

(
t− zκ(g(s))

)
. (A.41)

We are now ready to state the eigenvector approximation result. Write τi, ũi for a pair
of eigenvalue and (unit norm) eigenvector of T , for i ∈ [N ′]. Combining Theorem 2.5,
Theorem 4.1, and Lemma 4.2 in Bogoya et al. (2016), for each i ∈ [N ′], we can represent
ũi = ei/‖ei‖2, where

ei = Mi + Li +Ri + δi, (A.42)

and for each j ∈ [N ′],

Mij =
z
N′−1

2
−j+1

0i

|b+i(z0i)|
+ (−1)N

′−i z
N′−1

2
−j+1

0i

|b+i(z0i)|
, (A.43)

Lij =
z
N′+1

2
0i (z0i − z0i)b+i(z0i)

|b+i(z0i)|

k∑
κ=1

zκ(τi)
−j

∂b+i
∂t (zκ(τi))(zκ(τi)− z0i)(zκ(τi)− z0i)

(A.44)

Rij = L̄i,N ′+1−j . (A.45)
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Here, δij = o(1/N ′), uniformly over i, j, and we use the abbreviations b+i(t) = b+(t, si),
where si is such that g(si) = τi, and z0i = z0(τi), i ∈ [N ′].

The details of the approximation in (A.42)–(A.45) are important for the next lemma,
Lemma A.13, but are not needed presently. By the triangle inequality, for each i, j ∈ [N ′],

|eij |
‖ei‖2

≤ |Mij |
‖ei‖2

+
|eij −Mij |
‖ei‖2

≤ 1/|b+i(z0i)|+ 1/|b+i(z0i)|
‖ei‖2

+
|eij −Mij |
‖ei‖2

, (A.46)

the second inequality following as |z0i| = 1. Furthermore, by Theorem 2.6 and Lemma 4.2
in Bogoya et al. (2016), we know that for each i ∈ [N ′],

‖ei‖2 =
√
N ′
(
b+i(z0i)

−2 + b+i(z0i)
−2
)1/2

+O(1), and (A.47)

‖ei −Mi‖2
‖ei‖2

= O

(
1√
N ′

)
, (A.48)

where the O(1), O(1/
√
N ′) terms in the above are uniform over i. Their Theorem 2.6 also

shows that (b+i(z0i)
−2 + b+i(z0i)

−2)1/2 � 1, uniformly over i. Noting the equivalence of
`1 and `2 norms in R2, we also have that |b+i(z0i)|+ |b+i(z0i)| � 1, uniformly over i, and
therefore, combining this with (A.46)–(A.48), we conclude

|ũij | =
|eij |
‖ei‖2

≤ O
(

1√
N ′

)
,

uniformly over i, j ∈ [N ′], which completes the proof.

Lemma A.13. The right singular vectors vi, i ∈ [N − k − 1] of D
(k+1)
1d ∈ RN×(N−k−1) are

incoherent, i.e., there exists a constant µ > 0 depending only on k such that

‖vi‖∞ ≤
µ√
N
, i ∈ [N − k − 1],

for a constant µ > 0 depending only on k.

Proof. As before, abbreviate D = D
(k+1)
1d , and N ′ = N −k−1. Denote by βi, ui, vi a triplet

of nonzero singular value, left singular vector, and right singular vector of D, for i ∈ [N ′].
Also denote by ũi, i ∈ [N ′] the eigenvectors of T = 4k+1I − abs(DDT ).

Note that by Lemma A.14 we have the relationship

ui = Sũi, i ∈ [N ′], (A.49)

between the left singular vectors of D and eigenvectors of T , where S is the alternating sign
diagonal matrix (as defined in the proof of the lemma). Note also the relationship√

βivi = DTui, i ∈ [N ′], (A.50)

between the right and left singular vectors of D. We will bound the absolute entries of vi,
i ∈ [N ′] over the interior and boundary coordinates separately.

Bounding the interior elements. Using (A.49), (A.50), we can translate the expan-
sion in (A.42) for ũi = ei/‖ei‖2, i ∈ [N ′] into one for vi, i ∈ [N ′]. Write wi = D1i, i ∈ [k+2]
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for the (k+ 1)st order forward difference coefficients. Fix an arbitrary i ∈ [N ′] and interior
coordinate j ∈ {k + 2, . . . , N ′}. We have, abbreviating j′ = j − k − 2,

√
βivij = (−1)k+1

k+2∑
`=1

w`ui,j′+`

=
(−1)k+1

‖ei‖2

k+2∑
`=1

(−1)j
′+`+1w`ei,j′+`

=
(−1)j

′+1

‖ei‖2

k+2∑
`=1

|w`|
(
Mi,j′+` + Li,j′+` +Ri,j′+` + δi,j′+`

)
. (A.51)

We first work on the terms in the above sum involving Mi,j′+`, ` ∈ [k + 2]. Note that for
t ∈ C,

k+2∑
`=1

|w`|t`−1 = (1 + t)k+1 = t(k+1)/2q(t), where q(t) = (2 + t+ 1/t)(k+1)/2. (A.52)

Therefore, recalling (A.43), we have

k+2∑
`=1

|w`|Mi,j′+` =
z
N′−1

2
−j′

0i

|b+i(z0i)|

k+2∑
`=1

|w`|z
−(`−1)
0i + (−1)N

′−i z
N′−1

2
−j′

0i

|b+i(z0i)|

k+2∑
`=1

|w`|z
−(`−1)
0i

=
z
N′−1

2
−j′

0i

|b+i(z0i)|
z
−(k+1)/2
0i q(z0i) + (−1)N

′−i z
N′−1

2
−j′

0i

|b+i(z0i)|
z
−(k+1)/2
0i q(z0i), (A.53)

where in the last line we have used the fact that q(t) = q(1/t). Recall also that z0i = z0(τi),
where τi denotes the ith eigenvalue of T , i.e., τi = 4k+1 − βi. By definition, z0i is a unit-
modulus root of the characteristic polynomial

pτi(t) = 4k+1 − (2 + t+ 1/t)k+1 − τi = βi − (2 + t+ 1/t)k+1, (A.54)

and therefore it holds that q(z0i) = q(z0i) =
√
βi. Continuing on from (A.53), we have

k+2∑
`=1

|w`|Mi,j′+` =
√
βi
(
z
−(k+1)/2
0i + z

−(k+1)/2
0i

)
Mi,j′−1. (A.55)

Similar logic holds for the terms in (A.51) involving Li,j′+`, Ri,j′+`, ` ∈ [k + 2]. First,
we reexpress the definition in (A.44) as

Lij =
k∑

κ=1

Liκzκ(τi)
−j .

Then, again applying (A.52), we have

k+2∑
`=1

|w`|Li,j′+` =

k∑
κ=1

Liκzκ(τi)
−1q(zκ(τi)).
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For each κ ∈ [k], recall that zκ(τi) is a root of the characteristic polynomial in (A.54) with
modulus larger than 1, and hence q(zκ(τi)) = ±

√
βi. From the last display, this means we

can write
k+2∑
`=1

|w`|Li,j′+` =
√
βi

k∑
κ=1

σiκLiκzκ(τi)
−j′−1, (A.56)

for signs σiκ ∈ {−1, 1}, κ ∈ [k]. Based on its definition in (A.45), we also have

k+2∑
`=1

|w`|Ri,j′+` =
√
βi

(
k∑

κ=1

σiκLiκzκ(τi)−(N ′−j′)

)
. (A.57)

Putting together (A.51), (A.55), (A.56), (A.57), and canceling out the common factor of√
βi, we have

vij =
(−1)j

′+1

‖ei‖2

[(
z
−(k+1)/2
0i + z

−(k+1)/2
0i

)
Mi,j′−1 +

k∑
κ=1

σiκLiκzκ(τi)
−j′−1 +

(
k∑

κ=1

σiκLiκzκ(τi)−(N ′−j′)

)
+

δij√
βi

]
.

Thus, using the fact that |z0i| = 1 and |zκ(τi)| > 1, κ ∈ [k],

|vij | ≤
2

‖ei‖2

(
|Mi,j′−1|+

k∑
κ=1

|Liκ|+
|δij |√
βi

)
.

It can be shown from the form of the positive Wiener-Hopf factor b+(t, s) in (A.41) that
Liκ = O(1), κ ∈ [k], uniformly in i. Furthermore, as already shown in the proof of Lemma
A.12, we know that |Mij |/‖ei‖2 = O(1/

√
N ′) uniformly over i, j, and also ‖ei‖2 = Ω(

√
N ′),

uniformly over i. Lastly, |δij |/
√
βi ≤ (2/π)2k+2|δij |N2k+2, where we have lower bounded the

smallest singular value of D using (A.40) and the inequality sin(x) ≥ x/2 for small enough
x. This does not pose any problems, because the remainder term δij is actually smaller
than any polynomial in N , uniformly over i, j, according to Theorem 2.5 of Bogoya et al.
(2016). Therefore, combining all of this with the last display, we have |vij | = O(1/

√
N ′),

uniformly over i and interior coordinates j.

Bounding the boundary elements. Consider the “inverse” relationship to (A.50),

Dvi =
√
βiui, i ∈ [N ′]. (A.58)

Since βi ≤ 4k+1, i ∈ [N ′], and the vectors ui, i ∈ [N ′] are incoherent from Lemma A.12, we
have

‖Dvi‖∞ ≤
µ√
N ′
, i ∈ [N ′],

for a constant µ > 0 depending only on k, or more explicitly,∣∣∣∣ k+2∑
`=1

w`vi,j+`−1

∣∣∣∣ ≤ µ√
N ′
, i, j ∈ [N ′].
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Fix an arbitrary i ∈ [N ′], and consider j = k + 1. By the above display, the triangle
inequality, and the observation that |w1| = 1,

|vi,k+1| ≤
µ√
N ′

+
k+2∑
`=2

|w`||vi,k+`| ≤
c√
N ′
,

for a constant c > 0 depending only on k, where in the second inequality we used the
incoherence of the right singular vectors over the interior elements, as shown previously.
Continuing on in the same manner verifies the incoherence property at all positions j =
k, . . . , 1, and similarly, at all positions j = N ′ + 1, . . . , N . This completes the proof.

Lemma A.14. Abbreviate D = D
(k+1)
1d ∈ R(N−k−1)×N , and use the notation abs(A) to

denote the elementwise absolute value of a matrix A. Consider eigendecompositions

DDT = UΛUT , abs(DDT ) = UT+ΛUT .

Then:

(a) Λ = Λ+;

(b) abs(U) = abs(U+).

Proof. Denote N ′ = N − k − 1. Let S ∈ RN ′×N ′ be the alternating sign diagonal matrix
with diagonal elements 1,−1, 1,−1, . . .. Note that S−1 = ST = S. From the relationship

DDT = S−1abs(DDT )S

we conclude that DDT and abs(DDT ) are similar, i.e., Λ = Λ+. From their eigendecompo-
sitions,

UΛUT = SU+ΛUT+S
T

we also see that U = SU+ which implies abs(U) = abs(U+).

A.11.1 Proof of Lemma 2.3

Denote

Z̃d =
{
x = (x1, . . . , xd) ∈ Zd : xj ≤ 1− (k + 1)/N, j = 1, . . . , d

}
.

Pick an arbitrary θ ∈ Hk+1
d (L), corresponding to discretizations of f ∈ H(k + 1, L; [0, 1]d).

The bound (2.16) holds at any x ∈ Z̃d, and the fact that δ(N) ≤ cL/N is verified by Lemma
A.15. The KTF penalty is then

‖∆̃(k+1)θ‖1 =
∑
x∈Z̃d

∣∣(Dxk+1
j

θ
)
(x)
∣∣ ≤ cnLN−k−1 = cLn1−(k+1)/d,

recalling N = n1/d.
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A.11.2 Lemma A.15

The following lemma follows standard calculations in numerical analysis, e.g., as in Strikw-
erda (2004).

Lemma A.15. Let f ∈ H(k + 1, L; [0, 1]d). The kth order forward discrete difference along
a unit direction v ∈ Rd, with step size h > 0, obeys at any point x ∈ [0, 1]d,∣∣∣∣ 1

hk
(Dvkθ)(x)− ∂k

∂vk
f(x)

∣∣∣∣ ≤ cLh,
where c > 0 is a constant depending only on k, provided that x+ khv ∈ [0, 1]d (so that the
discrete approximation is well-defined).

Proof. By Taylor expanding f around x at x, x+ hv, x+ 2hv, . . . , x+ khv, we have

f(x) = f(x),

f(x+ hv) = f(x) +
∂

∂v
f(x)h+

1

2

∂2

∂v2
f(x)h2 + . . .+

1

k!

∂k

∂vk
f(x)hk + r(h),

f(x+ 2hv) = f(x) +
∂

∂v
f(x)(2h) +

1

2

∂2

∂v2
f(x)(2h)2 + . . .+

1

k!

∂k

∂vk
f(x)(2h)k + r(2h),

...

f(x+ khv) = f(x) +
∂

∂v
f(x)(kh) +

1

2

∂2

∂v2
f(x)(kh)2 + . . .+

1

k!

∂k

∂vk
f(x)(kh)k + r(kh),

where r(ih) is integral form of the remainder in the expansion for x+ ihv, satisfying

|r(ih)| =
∣∣∣∣ 1

k!

∫ ih

0

∂k+1

∂vk+1
f(x+ tv)tk dt

∣∣∣∣ ≤ kk+1

(k + 1)!
Lhk+1, i = 1, . . . , k.

(Note that such integrals are well-defined since Lipschitz continuity of ∂kf/∂vk implies that
the (k+1)st derivative ∂k+1f/∂vk+1 exists almost everywhere and is Lebesgue integrable, by
Rademacher’s theorem.) In the inequality above, we invoked the Holder property, recalling
f ∈ H(k + 1, L; [0, 1]d).

Now denote the kth order forward difference coefficients by

wi = (−1)k+i−1

(
k

i− 1

)
, i = 1, . . . , k + 1.

Inverting the above (k+1)×(k+1) system of equations (from the k+1 Taylor expansions),
and inspecting the last equality in the inverted system, gives

∂k

∂vk
f(x)hk =

k+1∑
i=1

wi

(
f(x+ (i− 1)hv)− r((i− 1)h)

)
= (Dvkθ)(x)−

k+1∑
i=1

wir((i− 1)h).

Using our previous bound on the magnitude of remainders, we see∣∣∣∣(Dvkθ)(x)− ∂k

∂vk
f(x)hk

∣∣∣∣ ≤ kk+1

(k + 1)!

k+1∑
i=1

|wi|Lhk+1,

and dividing through by hk gives the claimed result.
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A.11.3 Proof of Lemma 2.4

We need only to construct a single counterexample for each k, d ≥ 1. We give such a
construction for d = 2 and k = 1; all other cases follows similarly. Consider a function
f : [0, 1]d → R defined by f(x) = Mx1 + x2, and let θ ∈ Rn contain the evaluations of f
over the grid Z2. As f is linear, it is clearly an element of H(2, 1; [0, 1]2). But, for any x on
the left boundary of Z2,

‖∆(2)θ‖1 ≥
∣∣∣∣f(x+

e1

N

)
+f

(
x− e2

N

)
+f

(
x+

e2

N

)
−3f(x)

∣∣∣∣ =

∣∣∣∣f(x+
e1

N

)
−f(x)

∣∣∣∣ = Mn1/2,

Since M can be arbitrary, this proves the result.

A.12 Additional experiments comparing TV denoising and
Laplacian smoothing for piecewise constant functions

Piecewise constant signal in 2d Piecewise constant signal in 3d

n
102 103 104 105

M
S

E

10-3

10-2

10-1

100

TV denoising (-tted slope -0.68)
Laplacian smoothing (-tted slope -0.36)
Minimax rate: n!1=2

Minimax linear rate: constant

n
102 103 104 105

M
S

E

10-3

10-2

10-1

100

TV denoising (-tted slope -0.57)
Laplacian smoothing (-tted slope -0.27)
Minimax rate: n!1=3

Minimax linear rate: constant

Figure A.2: MSE curves for estimating a “piecewise constant” signal, having a single elevated
region, over 2d and 3d grids. For each n, the results were averaged over 5 repetitions, and the
Laplacian smoothing and TV denoising estimators were tuned for best average MSE performance.
We set θ0 to satisfy ‖Dθ0‖1 � n1−1/d, matching the canonical scaling. Note that all estimators
achieve better performance than that dictated by their minimax rates.





Appendix B

Appendix for Additive models
with Trend Filtering

B.1 Fast extrapolation

We discuss extrapolation using the fitted functions f̂j , j = 1, . . . , d from additive trend
filtering (3.6), as in (3.9). We must compute the coefficients α̂j = (âj , b̂j) whose block form
is given in (3.10), (3.11). Clearly, the computation of b̂j in (3.11) requires O(n) operations
(owing to the bandedness of D(Xj ,k+1), and treating k as a constant). As for âj in (3.10),
it can be seen from the structure of C(Xj ,k+1) as described in Wang et al. (2014) that

(âj)1 = (Sj θ̂j)1,

(âj)` =
1

(`− 1)!

[
diag

(
1

X`
j −X1

j

, . . . ,
1

Xn
j −X

n−`+1
j

)
D(Xj ,`−1)Sj θ̂j

]
1

, ` = 2, . . . , k + 1,

which takes only O(1) operations (again treating k as constant, and now using the band-
edness of each D

(Xj ,`−1)
j , ` = 2, . . . , k + 1). In total then, computing the coefficients

α̂j = (âj , b̂j) requires O(n) operations, and computing α̂ = (α̂1, . . . , αd) requires O(nd) op-
erations.

After having computed α̂ = (α̂1, . . . , αd), which only needs to be done once, a prediction
at a new point x = (x1, . . . , xd) ∈ Rd with the additive trend filtering fit f̂ is given by

f̂(x) = Ȳ +
d∑
j=1

n∑
`=1

α̂`jh
(Xj)
` (xj),

This requires O(d+
∑d

j=1

∑n
`=k+2 1{α̂`j 6= 0}) operations, utilizing the sparsity of the com-

ponents in α̂ not associated with the polynomial basis functions.
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B.2 Proof of Lemma 3.2

We begin by eliminating the constraint in the additive trend filtering problem (3.4), rewrit-
ing it as

min
θ1,...,θd∈Rn

1

2

∥∥∥∥MY −
d∑
j=1

Mθj

∥∥∥∥2

2

+ λ
d∑
j=1

∥∥D(Xj ,k+1)SjMθj
∥∥

1
,

where M = I − 11
T /n. Noting that D(Xj ,k+1)

1 = 0 for j = 1, . . . , d, we can replace the
penalty term above by

∑d
j=1 ‖D(Xj ,k+1)Sjθj‖1. Reparametrizing using the falling factorial

basis, as in Lemma 3.1, yields the problem

min
a∈R(k+1)d, b∈R(n−k−1)d

1

2

∥∥∥∥MY −M
d∑
j=1

Pjaj −M
d∑
j=1

Kjbj

∥∥∥∥2

2

+ λk!

d∑
j=1

‖bj‖1,

where we have used the abbreviation Pj = P (Xj ,k) and Kj = K(Xj ,k), as well as the block
representation αj = (aj , bj) ∈ R(k+1) × R(n−k−1), for j = 1, . . . , d. Since each Pj , j = 1, . . . d
has 1 for its first column, the above problem is equivalent to

min
a∈Rkd, b∈R(n−k−1)d

1

2

∥∥∥∥MY −M
d∑
j=1

P̃jaj −M
d∑
j=1

Kjbj

∥∥∥∥2

2

+ λk!

d∑
j=1

‖bj‖1,

where P̃j denotes Pj with the first column removed, for j = 1, . . . , d. To be clear, solutions
in the above problem and the original trend filtering formulation (3.4) are related by

θ̂j = P̃j âj +Kj b̂j , j = 1, . . . , d.

Furthermore, we can see that â = (â1, . . . âd) solves

min
a∈Rkd

1

2

∥∥∥∥(MY −M
d∑
j=1

Kj b̂j

)
− P̃ a

∥∥∥∥2

2

, (B.1)

where P̃ is as defined in (3.12), and b̂ = (b̂1, . . . , b̂d) solves

min
b∈R(n−k−1)d

1

2

∥∥∥∥UUTMY − UUTM
d∑
j=1

Kjbj

∥∥∥∥2

2

+ λk!‖b‖1,

where UUT is the projection orthogonal to the column space of P̃ , i.e., it solves

min
b∈R(n−k−1)d

1

2

∥∥UTMY − K̃b
∥∥2

2
+ λk!‖b‖1, (B.2)

where K̃ is as in (3.13). Since problem (B.2) is a standard lasso problem, existing results
on the lasso (e.g., Tibshirani (2013)) imply that the solution b̂ is unique whenever K̃ has
columns in general position. This proves the first part of the lemma. For the second part
of the lemma, note that the solution â in the least squares problem (B.1) is just given by
the regression of MY −M

∑d
j=1Kj b̂j onto P̃ , which is unique whenever P̃ has full column

rank. This completes the proof.
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B.3 Derivation of additive trend filtering dual

As in the proof of Lemma 3.2, we begin by rewriting the problem (3.4) as

min
θ1,...,θd∈Rn

1

2

∥∥∥∥MY −
d∑
j=1

Mθj

∥∥∥∥2

2

+ λ
d∑
j=1

‖DjSjMθj‖1,

where M = I − 11T /n. Then, we reparametrize the above problem,

min
θ1,...,θd∈Rn
w∈Rn, z∈Rmd

1

2
‖MY − w‖22 + λ

d∑
j=1

‖zj‖1

subject to w =

d∑
j=1

Mθj , zj = DjSjMθj , j = 1, . . . , d,

and form the Lagrangian

L(θ, w, z, u, v) =
1

2
‖MY −w‖22 + λ

d∑
j=1

‖zj‖1 + uT
(
w−

d∑
j=1

Mθj

)
+

d∑
j=1

vTj (DjSjMθj − zj).

Minimizing the Lagrangian L over all θ, z yields the dual problem

max
u∈Rn

v1,...,vd∈Rm

1

2
‖MY ‖22 −

1

2
‖MY − u‖22

subject to u = SjD
T
j vj , ‖vj‖∞ ≤ λ, j = 1, . . . , d.

The claimed dual problem (3.14) is just the above, rewritten in an equivalent form.

B.4 Proof of Lemma 3.3

We first eliminate the equality constraint in (3.4), rewriting this problem, as was done in
the proof of Lemma 3.2, as

min
θ1,...,θd∈Rd

1

2

∥∥∥∥MY −
d∑
j=1

Mθj

∥∥∥∥2

2

+ λ

d∑
j=1

‖DjSjθj‖1,

where M = I − 11
T /n, and Dj = D(Xj ,k+1), j = 1, . . . , d. This is a generalized lasso

problem with a design matrix T ∈ Rn×nd that has d copies of M stacked along its columns,
and a penalty matrix D ∈ Rnd×nd that is block diagonal in the blocks Dj , j = 1, . . . , d.
Applying Theorem 3 of Tibshirani & Taylor (2012), we see that

df(T θ̂) = E
[
dim

(
Tnull(D−A)

)]
,
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where A = supp(Dθ̂), and where D−A denotes the matrix D with rows removed that cor-
respond to the set A. The conditions for uniqueness in the lemma now precisely imply
that

dim
(
Tnull(D−A)

)
=

( d∑
j=1

|Aj |
)

+ kd,

where Aj denotes the subset of A corresponding to the block of rows occupied by Dj , and
|Aj | its cardinality, for j = 1, . . . , d. This can be verified by transforming to the basis
perspective as utilized in the proofs of Lemmas 3.1 and 3.2. The desired result is obtained
by noting that, for j = 1, . . . , d, the component θ̂j exhibits a knot for each element in Aj .

B.5 Preliminaries for the proof of Theorem 3.1

Before the proof of Theorem 3.1, we collect important preliminary results. We start with
a result on orthonormal polynomials. We thank Dejan Slepcev for his help with the next
lemma.

Lemma B.1. Given an integer κ ≥ 0, and a continuous measure Λ on [0, 1], whose Radon-
Nikodym derivative λ is bounded below and above by constants b1, b2 > 0, respectively.
Denote by φ0, . . . , φκ an orthonormal basis for the space of polynomials of degree κ on
[0, 1], given by running the Gram-Schmidt procedure on the polynomials 1, t, . . . , tκ, with
respect to the L2(Λ) inner product. Hence, for ` = 0, . . . , κ, φ` is an `th degree polynomial,
orthogonal (in L2(Λ)) to all polynomials of degree less than `, and we denote its leading
coefficient by a` > 0. Now define, for t ∈ [0, 1]:

Φκ,0(t) = φκ(t)λ(t),

Φκ,`+1(t) =

∫ t

0
Φκ,`(u) du, ` = 0, . . . , κ.

Then the following two relations hold:

Φκ,`(1) =

{
0 for ` = 1, . . . , κ,
(−1)κ

aκκ! for ` = κ+ 1,
(B.3)

and

aκκ!|Φκ,κ(t)| ≤
(

2κ

κ

)√
b2
b1
, t ∈ [0, 1]. (B.4)

Proof. First, we use induction to show that for t ∈ [0, 1],

Φκ,`(t) =

∫ t

0
φκ(u)

(t− u)`−1

(`− 1)!
λ(u) du, ` = 1, . . . , κ+ 1. (B.5)

This statement holds for ` = 1 by definition of Φκ,0,Φκ,1. Assume it holds at some ` > 1.
Then

Φκ,`+1(t) =

∫ t

0

∫ u

0
φκ(v)

(u− v)`−1

(`− 1)!
λ(v) dv du
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=

∫ t

0
φκ(v)

(∫ t

v

(u− v)`−1

(`− 1)!
du

)
λ(v) dv

=

∫ t

0
φκ(v)

(t− v)`

`!
λ(v) dv,

where we used inductive hypothesis in the first line and Fubini’s theorem in the second line,
which completes the inductive proof.

Now, the relation in (B.5) shows that Φκ,`(1) is the L2(Λ) inner product of φκ and an
(` − 1)st degree polynomial, for ` = 1, . . . , κ. As φκ is orthogonal to all polynomials of
degree less than κ, we have Φκ,`(1) = 0, ` = 1, . . . , κ. For ` = κ + 1, note that this same
orthogonality along with (B.5) also shows

Φκ,κ+1(1) =

〈
φκ,

(−1)κ

aκκ!
φκ

〉
2

=
(−1)κ

aκκ!
.

where 〈·, ·〉2 is the L2(Λ) inner product. This establishes the statement in (B.3).
As for (B.4), note that if κ = 0 then the statement holds, because the left-hand side is

1 and the right-hand side is always larger than 1. Hence consider κ ≥ 1. From (B.5), we
have, for any t ∈ [0, 1],

|Φκ,κ(t)| ≤
∫ t

0
|φκ(u)|(t− u)κ−1

(κ− 1)!
λ(u) du

≤
(∫ t

0
φ2
κ(u)λ(u) du

)1/2(∫ t

0

(t− u)2κ−2

(κ− 1)!2
λ(u) du

)1/2

≤
√
b2

(κ− 1)!
√

2κ− 1
, (B.6)

where in the second line we used Cauchy-Schwartz, and in the third line we used the fact
that φκ has unit norm, and the upper bound b2 on λ. Next we bound aκ. Let p be
the projection of xκ onto the space of polynomials of degree κ − 1, with respect to the
L2(Λ) inner product. Then we have φκ = (xκ − p)/‖xκ − p‖2, thus its leading coefficient is
aκ = 1/‖xκ − p‖2, where ‖ · ‖2 is the L2(Λ) norm. Consider

‖xκ − p‖2 ≥
√
b1

(∫ 1

0
(xκ − p)2(t) dt

)1/2

≥
√
b1

(∫ 1

0
P 2
κ (t) dt

)1/2

=

√
b1√

2κ+ 1
(

2κ
κ

) . (B.7)

In the first line we used the lower bound b1 on λ. In the second we used the fact the
Legendre polynomial Pκ of degree κ, shifted to [0, 1] but unnormalized, is the result from
projecting out 1, t, . . . , tκ−1 from tκ, with respect to the uniform measure. In the last step
we used the fact that Pκ has norm 1/(

√
2κ+ 1

(
2κ
κ

)
). Combining (B.6) and (B.7) gives the

result (B.4).

Remark B.1 (Special case: uniform measure and Rodrigues’ formula). In the case
of Λ = U , the uniform measure on [0, 1], we can just take φ0, . . . , φκ to be the Legendre
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polynomials, shifted to [0, 1] and normalized appropriately. Invoking Rodrigues’ formula to
express these functions,

φ`(t) =

√
2`+ 1

`!

d`

dt`
(t2 − t)`, ` = 0, . . . κ,

the results in Lemma B.1 can be directly verified.

We use Lemma B.1 to construct a sup norm bound on functions in BJ(1) that are
orthogonal (in L2(Λ)) to all polynomials of degree k. We again Dejan Slepcev for his help
with the next lemma.

Lemma B.2. Given an integer k ≥ 0, and a continuous measure Λ on [0, 1], whose Radon-
Nikodym derivative λ is bounded below and above by constants b1, b2 > 0, respectively.
Let J be a functional satisfying Assumptions C1 and C2, for a constant L > 0. There is a
constant R0 > 0, that depends only on k, b1, b2, L, such that

‖g‖∞ ≤ R0, for all g ∈ BJ(1), such that 〈g, p〉2 = 0 for all polynomials p of degree k,

where 〈·, ·〉2 denotes the L2(Λ) inner product.

Proof. Fix an arbitrary function g ∈ BJ(1), orthogonal (in L2(Λ)) to all polynomials of
degree k. Using integration by parts, and repeated application of Lemma B.1, we have

0 = a``! · 〈g, φ`〉2 =

∫ 1

0
g(`)(t)w`(t) dt, ` = 0, . . . , k, (B.8)

where w`(t) = (−1)`a``!Φ`,`(t), ` = 0, . . . , k, and by properties (B.3), (B.4) of Lemma B.1,∫ 1

0
w`(t) dt = 1,

∫ 1

0
|w`(t)| dt ≤

(
2`

`

)√
b2
b1
, ` = 0, . . . , k. (B.9)

Now, we will prove the following by induction:

‖g(`)‖∞ ≤ L
(
b2
b1

)(k−`+1)/2 k∏
i=`

(
2i

i

)
, ` = 0, . . . , k. (B.10)

Starting at ` = k, the statement holds because, using (B.8), for almost every t ∈ [0, 1],

|g(k)(t)| =
∣∣∣∣g(k)(t)−

∫ 1

0
g(k)(u)wk(u) du

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

(
g(k)(t)− g(k)(u)

)
wk(u) du

∣∣∣∣
≤ L

(
2k

k

)√
b2
b1
,

where in the second line we used the fact that the weight function integrates to 1 from
(B.9), and in the third we used Assumption C2 and the upper bound on the integrated



137

absolute weights from (B.9). Assume the statement holds at some ` < k. Then again by
(B.8), (B.9), for almost every t ∈ [0, 1],

|g(`−1)(t)| =
∣∣∣∣ ∫ 1

0

(
g(`−1)(t)− g(`−1)(u)

)
w`−1(u) du

∣∣∣∣
≤
(

ess sup
0≤u<v≤1

|g(`−1)(v)− g(`−1)(u)|
)(

2`− 2

`− 1

)√
b2
b1

=

(
ess sup
0≤u<v≤1

∣∣∣∣ ∫ v

u
g(`)(s) ds

∣∣∣∣)(2`− 2

`− 1

)√
b2
b1

≤ L
(
b2
b1

)(k−`+2)/2 k∏
i=`−1

(
2i

i

)
,

the last line using ess sup0≤u<v≤1 |
∫ v
u g

(`)(s) ds| ≤ ‖g(`)‖∞ and the inductive hypothesis.
This verifies (B.10). Taking ` = 0 in (B.10) and defining R0 = L(b2/b1)(k+1)/2

∏k
i=0

(
2i
i

)
proves the lemma.

We study the minimum eigenvalue of the (uncentered) empirical covariance matrix of a
certain basis for additive kth degree polynomials in Rkd. We thank Mathias Drton for his
help with part (a) of the next lemma.

Lemma B.3. Let Xi, i = 1, . . . , n denote an i.i.d. sample from a continuous distribution
Q on [0, 1]d. For an integer k ≥ 0, let V ∈ Rn×kd be a matrix whose ith row is given by

V i =
(
Xi

1, (X
i
1)2, . . . , (Xi

1)k, . . . , Xi
d, (X

i
d)

2, . . . , (Xi
d)
k
)
∈ Rkd, (B.11)

for i = 1, . . . , n. Let

ν2
n = λmin

( 1

n
V TV

)
, and ν2

0 = λmin

( 1

n
E[V TV ]

)
,

where λmin(·) denotes the minimum eigenvalue of its argument. Assuming that n ≥ kd, the
following properties hold:

(a) νn > 0, almost surely with respect to Q;

(b) ν0 > 0;

(c) for any 0 ≤ t ≤ 1, P(ν2
n > tν2

0) with probability at least 1− d exp
(
− (1− t)2ν0n

2(kd)2

)
.

Proof. For part (a), if the claim holds for n = kd, then it holds for all n > kd, so we may
assume without a loss of generality that n = kd. Note that the determinant of V ∈ Rn×kd
is a polynomial function, call it q(X), of the elements Xi

j , i = 1, . . . , n, j = 1, . . . , d. By
Lemma 1 of Okamoto (1973), the roots of any polynomial—that is not identically zero—
form a set of Lebesgue measure zero. To check that the polynomial q in question is not
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identically zero, it suffices to show that it is nonzero at a single realization of X. To this
end, consider an input matrix defined by

X =

 α1I
...

αkI

 ∈ Rn×kd,

the rowwise concatenation of α`I ∈ Rd×d, ` = 1, . . . , k. By the blockwise Vandermonde
structure of the corresponding basis matrix V , we have that q(X) 6= 0 provided the coeffi-
cients α`, ` = 1, . . . , k are all distinct. Therefore q is not identically zero, and with respect
to the continuous distribution Q, the determinant of V is nonzero, i.e., νn > 0, almost
surely.

For part (b), given any a ∈ Rkd with a 6= 0, we know that V a 6= 0 almost surely, since
νn > 0 almost surely, by part (a). Thus

aTE[V TV ]a = E‖V a‖22 > 0,

which proves that ν0 > 0.
Part (c) is an application of a matrix Chernoff bound from Tropp (2012). In order to

apply this result, we must obtain an almost sure upper bound R on λmax(V i(V i)T ), with
V i as in (B.11) and λmax(·) denoting the maximum eigenvalue of its argument. This follows
as

λmax

(
V i(V i)T

)
≤

kd∑
j=1

kd∑
`=1

(V i
j V

i
` )2 ≤ (kd)2,

as each component of V i has absolute magnitude at most 1 (recalling that Q is supported
on [0, 1]d). Taking R = (kd)2 and applying Corollary 5.2 of Tropp (2012) (to be specific,
applying the form of the Chernoff bound given in Remark 5.3 of this paper) gives the
result.

The next lemma pertains to the additive function space

Mn(δ) =

{ d∑
i=1

mj :

d∑
j=1

J(mj) ≤ δ, and 〈mj , 1〉n = 0, j = 1, . . . , d

}
. (B.12)

We give a sup norm bound on the components of functions in Mn(1) ∩ Bn(ρ). The proof
combines Lemmas B.2 and B.3, and uses a general strategy that follows the arguments
given in Example 2.1(ii) of van de Geer (1990).

Lemma B.4. Let Xi, i = 1, . . . , n denote an i.i.d. sample from a continuous distribution Q
on [0, 1]d, and let J be a seminorm satisfying Assumptions C1 and C2. There are constants
R1, R2, c0, n0 > 0, depending only on d, k, L, such that for all ρ > 0 and n ≥ n0,

‖mj‖∞ ≤ R1ρ+R2, for all j = 1, . . . , d and

d∑
j=1

mj ∈Mn(1) ∩Bn(ρ),

with probabilty at least 1− exp(−c0n), where Mn(1) is the function space in (B.12).
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Proof. Fix an arbitrary m =
∑d

j=1mj ∈Mn(1) ∩Bn(ρ). For each j = 1, . . . , d, decompose

mj = 〈mj , 1〉n + pj + gj ,

where pj is a polynomial of degree k such that 〈pj , 1〉n = 0, and gj is orthogonal to all
polynomials of degree k, with respect to the L2(U) inner product, with U the uniform
distribution on [0, 1]; in fact, by definition of Mn(1), we know that 〈mj , 1〉n = 0 so

mj = pj + gj .

By the triangle inequality and Lemma B.2 applied to the measure Λ = U (whose density is
of course lower and upper bounded with b1 = b2 = 1), we have, for each j = 1, . . . , d,∥∥∥∥ d∑

j=1

gj

∥∥∥∥
∞
≤

d∑
j=1

‖gj‖∞ ≤ R0

d∑
j=1

J(gj) ≤ R0, (B.13)

where R0 > 0 is the constant from Lemma B.2, and we have used J(mj) = J(gj), for
j = 1, . . . , d, as the null space of J contains kth degree polynomials.

The triangle inequality and (B.13) now imply

‖p‖n ≤ ‖m‖n + ‖g‖n ≤ ρ+R0. (B.14)

Write

p(x) =
d∑
j=1

k∑
`=1

αj`x
`
j , for x ∈ [0, 1]d,

for some coefficients αj`, j = 1, . . ., ` = 1, . . . , k. For V ∈ Rn×kd the basis matrix as in
Lemma B.3, and α = (α11, . . . , α1k, . . . , αd1, . . . , αdk) ∈ Rkd, we have

‖p‖n =
1√
n
‖V α‖2.

Furthermore, noting

‖p‖n ≥
√
λmin

( 1

n
V TV

)
‖α‖2,

we have

‖α‖2 ≤
ρ+R0

νn
,

where ν2
n = λmin(V TV/n), as in Lemma B.3, and we have used the upper bound in (B.14).

Using part (c) of Lemma B.3, with t = 1/2, we have

‖α‖2 ≤
2(ρ+R0)

ν0
,

with probability at least 1− d exp(−ν0n/(8(kd)2)), where ν2
0 = λmin(E[V TV ]/n), as in

Lemma B.3. Therefore, using the triangle inequality and the fact that Q is supported on
[0, 1]d, we have for each j = 1, . . . , d, and any xj ∈ [0, 1],

|pj(xj)| ≤
k∑
`=1

|αj`| ≤ ‖α‖1 ≤
2
√
kd(ρ+R0)

ν0
,
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with probability at least 1− d exp(−ν0n/(8(kd)2)). Finally, for each j = 1, . . . , d, using the
triangle inequality, and the sup norm bound from Lemma B.2 once again,

‖mj‖∞ ≤ ‖pj‖∞ + ‖gj‖∞ ≤
2
√
kd(ρ+R0)

ν0
+R0,

with probability 1− d exp(−ν0n/(8(kd)2)), completing the proof.

We give a simple bound on the entropy of an arbitrary sum of sets in terms of the
entropies of the original sets.

Lemma B.5. Given sets S1, . . . , Sd and a norm ‖ · ‖, it holds that

logN(δ, ‖ · ‖, S1 + · · ·+ Sd) ≤
d∑
j=1

logN(δ/d, ‖ · ‖, Sj).

Proof. For j = 1, . . . , d, suppose that Sj can be covered in Nj balls of radius δ/d, with
centers at s1

j , . . . , s
Nj
j . Take an arbitrary s ∈ S1 + · · · + Sd, and write s =

∑d
j=1 sj , with

sj ∈ Sj , j = 1, . . . , d. For each j = 1, . . . , d, there is some s
`j
j such that ‖sj − s`j‖ ≤ δ/d,

and so by the triangle inequality ∥∥∥∥ d∑
j=1

sj −
d∑
j=1

s
`j
j

∥∥∥∥ ≤ δ.
That is, we have shown that

∏d
j=1Nj balls of radius δ with centers at

d∑
j=1

s
`j
j , for (`1, . . . , `d) ∈ {1, . . . , N1} × · · · × {1, . . . , Nd},

cover S. This completes the proof.

The next result represents our main tool from empirical process theory that will be used
in the proof of Theorem 3.1. It is essentially an application of Lemma 3.5 in van de Geer
(1990) (see also van de Geer (2000)).

Lemma B.6. Let Xi, i = 1, . . . , n denote an i.i.d. sample from a continuous distribution
Q on [0, 1]d. Let εi, i = 1, . . . , n be uniformly sub-Gaussian random variates that have
variance proxy σ2 > 0 and are independent of Xi, i = 1, . . . , n. Let J be a seminorm
satisfying Assumptions C1, C2, C3, and let ρ > 0 be arbitrary. Then there are constants
c1, c2, c3, n0 > 0, depending only on d, σ, k, L,K,w, ρ, such that for all c ≥ c1 and n ≥ n0,

sup
m∈Mn(1)∩Bn(ρ)

1
n

∑n
i=1 ε

im(Xi)

‖m‖1−w/2n

≤ c√
n
,

with probabilty at least 1− exp(−c2c
2)− exp(−c3n).
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Proof. Let Ω1 denote the event on which the conclusion in Lemma B.4 holds, which has
probability at least 1 − exp(−c3n) for n ≥ n1, for constants c3, n1 > 0. Also let R0 =
R1ρ+R2, where R1, R2 > 0 are the constants from the lemma. Denote

Bd
∞(δ) =

{ d∑
j=1

fj : ‖fj‖∞ ≤ δ, j = 1, . . . , d

}
.

On Ω1, consider

logN
(
δ, ‖ · ‖n,Mn(1) ∩Bn(ρ)

)
≤ logN

(
δ, ‖ · ‖n,Mn(1) ∩Bd

∞(R0)
)

(B.15)

≤
d∑
j=1

logN
(
δ/d, ‖ · ‖n, BJ(1) ∩B∞(R0)

)
(B.16)

≤
d∑
j=1

logN
(
δ/(R0d), ‖ · ‖n, BJ(1) ∩B∞(1)

)
(B.17)

≤ Kd1+w(R0)wδ−w. (B.18)

The first inequality (B.15) uses the sup norm bound from Lemma B.4; the second inequality
(B.16) uses

Mn(1) ∩Bd
∞(R0) ⊆

{ d∑
j=1

mj : mj ∈ BJ(1) ∩B∞(R0), j = 1, . . . , d

}
,

and applies Lemma B.5 to the space on the right-hand side above. The third inequality
(B.17) just uses the fact we may assume R0 ≥ 1, without a loss of generality; and the last
inequality (B.18) uses Assumption C3. The entropy bound established in (B.18) allows us
to apply Lemma 3.5 van de Geer (1990) (see also Lemma 8.4 in van de Geer (2000)), which
gives constants c1, c2, n2 > 0, depending only on d, σ, k,R0,K,w, such that for all c ≥ c1

and n ≥ n1,

sup
m∈Mn(1)∩Bn(ρ)

1√
n

∑n
i=1 ε

im(Xi)

‖m‖1−w/2n

≤ c

on an event Ω2 with probability at least 1 − exp(−c2c
2). The desired result in the lemma

therefore holds for all c ≥ c1 and n ≥ n0 = max{n1, n2}, on Ω1 ∩ Ω2.

We finish with two simple results, on shifting around exponents in sums and products.

Lemma B.7. For any a, b ≥ 0, and any 0 < q < 1,

(a+ b)q ≤ aq + bq.

Proof. The function f(t) = (1 + t)q − (1 + tq) has derivative f ′(t) = q(1 + t)q−1− qtq−1 < 0
for all t > 0, and so f(t) < f(0) = 0 for all t > 0. Plugging in t = a/b and rearranging gives
the claim.

Lemma B.8. For any a, b ≥ 0, and any w,

ab1−w/2 ≤ a1/(1+w/2)b+ a2/(1+w/2).

Proof. Note that either ab1−w/2 ≤ a1/(1+w/2)b or ab1−w/2 ≥ a1/(1+w/2)b, and in the latter
case we get b ≤ a1/(1+w/2), so ab1−w/2 ≤ a2/(1+w/2).
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B.6 Proof of Theorem 3.1

This proof roughly follows the ideas in the proof of Theorem 9 in Mammen & van de Geer
(1997), though it differs in a few key ways. We use c > 0 to denote a constant that will
multiply our final estimation error bound; it will also control the probability with which our
final result holds. Some steps will only hold for sufficiently large n, but we do not always
make this explicit. Lastly, we will occasionally abuse our notation for the empirical norms
and empirical inner products by using them with vector arguments, to be interpreted in the
appropriate sense (e.g., 〈m, v〉n = 1

n

∑n
i=1 v

im(Xi) for a function m and vector v ∈ Rn).

We break down the presentation of our proof into mini sections for readability.

Deriving a basic inequality. Denote by f̂ =
∑d

j=1 f̂j the total additive fit in (3.18). Let
S denote feasible set in (3.18). For any f ∈ S, note that by orthogonality,

‖Y − Ȳ 1− f‖2n = ‖(f0 + ε− ε̄1)− f‖2n + (ε̄)2

where ε̄ = 1
n

∑n
i=1 ε

i. Therefore f̂ must also be optimal for the problem

min
f∈S

1

2
‖W − f‖2n + λnJd(f),

where W i = f0(Xi) + εi − ε̄, i = 1, . . . , n, and we denote λn = λ/n and Jd(f) =
∑d

j=1 J(fj).
Standard arguments (from first-order optimality) show that any solution f̂ in the above
satisfies

〈W − f̂ , f̃ − f̂〉n ≤ λn
(
Jd(f̃)− λnJd(f̂)

)
,

for any feasible f̃ =
∑d

j=1 f̃j ∈ S. Expanding the definition of W and rearranging gives

〈f̂ − f0, f̂ − f̃〉n ≤ 〈ε− ε̄1, f̂ − f̃〉n + λn
(
Jd(f̃)− λnJd(f̂)

)
.

Using the polarization identity 〈a, b〉 = 1
2(‖a‖2 + ‖b‖2 − ‖a− b‖22) for an inner product 〈·, ·〉

and its corresponding norm ‖ · ‖,

‖f̂ − f0‖2n + ‖f̂ − f̃‖2n ≤ 2〈ε− ε̄1, f̂ − f̃〉n + 2λn
(
Jd(f̃)− λnJd(f̂)

)
+ ‖f̃ − f0‖2n.

Abbreviating ∆̂ = f̂ − f̃ , Ĵ = Jd(f̂), and J̃ = Jd(f̃), and using 〈ε̄1, ∆̂〉 = 0, this becomes

‖f̂ − f0‖2n + ‖∆̂‖2n ≤ 2〈ε, ∆̂〉n + 2λn(J̃ − Ĵ) + ‖f̃ − f0‖2n, (B.19)

which is our basic inequality. In what follows, we will restrict our attention to feasible f̃
such that ‖f̃ − f0‖n ≤ max{Cn, J̃}.

Localizing the error vector. We prove that ∆̂ is appropriately bounded in the empirical
norm. By the tail bound for quadratic forms of sub-Gaussian random variates in Theorem
2.1 of Hsu et al. (2012), for all t > 0,

P

(
‖ε‖2n > σ2

(
1 +

2
√
t√
n

+
2t

n

))
≤ e−t,
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and hence taking t =
√
n,

‖ε‖2n ≤ 5σ2,

on an event Ω1 with probability at least 1− exp(−
√
n). Thus returning to the basic in-

equality (B.19), using the Cauchy-Schwartz inequality, and the above bound, we have

‖∆̂‖2n ≤ 2
√

5σ‖∆̂‖n + 2λnJ̃ + ‖f̃ − f0‖2n,

on Ω1. This is a quadratic inequality of the form x2 ≤ bx+ c in x = ‖∆̂‖n, so we can upper
bound x by the larger of the two roots, x ≤ (b+

√
b2 + 4c)/2 ≤ b+

√
c, i.e.,

‖∆̂‖n ≤ 2
√

5σ +

√
2λnJ̃ + ‖f̃ − f0‖2n,

on Ω1. Abbreviating J∗ = max{Cn, J̃}, and using J∗ ≥ 1 (as Cn ≥ 1 by assumption),

‖∆̂‖n ≤ J∗
(

2
√

5σ +

√
2λn + ‖f̃ − f0‖2n/(J∗)2

)
,

on Ω1. Recalling ‖f̃ − f0‖n ≤ J∗, and using the fact that λn = o(1) for our eventual choice
of λn, we have that for sufficiently large n,

‖∆̂‖n ≤ J∗(2
√

5σ +
√

2), (B.20)

on Ω1.

Bounding the sub-Gaussian complexity term. We focus on the first term on the
right-hand side in (B.19), i.e., the sub-Gaussian complexity term. Let m = ∆̂/(Ĵ + J∗).
By construction, we have J(m) ≤ 1, and from (B.20), we have ‖m‖n ≤ 2

√
5σ +

√
2 on Ω1.

Then, applying Lemma B.6, with the choice ρ = 2
√

5σ +
√

2, we see that there are constants
c1, c2, c3 > 0 such that for all c ≥ c1,

2〈ε,m〉n
‖m‖1−w/2n

≤ c√
n
,

on Ω1 ∩ Ω2, where Ω2 is an event with probability at least 1 − exp(−c2c
2) − exp(−c3n).

Plugging this into (B.19) gives

‖f̂ − f0‖2n + ‖∆̂‖2n ≤
c√
n

(Ĵ + J∗)w/2‖∆̂‖1−w/2n + 2λn(J̃ − Ĵ) + ‖f̃ − f0‖2n,

on Ω1 ∩ Ω2. By the inequality in Lemma B.8, applied to the first term on the right-hand
side above, with a = n−1/2(Ĵ + J∗)w/2 and b = ‖∆̂‖n,

‖f̂−f0‖2n+‖∆̂‖2n ≤ crn(Ĵ+J∗)w/(2+w)‖∆̂‖n+cr2
n(Ĵ+J∗)2w/(2+w) +2λn(J̃− Ĵ)+‖f̃−f0‖2n,

on Ω1 ∩ Ω2, where we abbreviate rn = n−1/(2+w). Applying the simple inequality 2ab ≤
a2 + b2 to the first term on the right-hand side, with a = crn(Ĵ + J∗)w/(2+w) and b = ‖∆̂‖n,
and subtracting ‖∆̂‖2n/2 from both sides,

‖f̂ − f0‖2n +
1

2
‖∆̂‖2n ≤

3

2
c2r2

n(Ĵ + J∗)2w/(2+w) + 2λn(J̃ − Ĵ) + ‖f̃ − f0‖2n, (B.21)
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on Ω1 ∩ Ω2 (where we have assumed without a loss of generality that c ≥ 1).

Controlling the effect of the penalty terms. Now we handle the appearances of the
achieved penalty term Ĵ . First, set λn ≥ (3/4)c2r2

n/C
(2−w)/(2+w)
n , and denote

a =
3

2
c2r2

n(Ĵ + J∗)2w/(2+w) + 2λn(J̃ − Ĵ).

Consider the case Ĵ ≥ Cn. Then −1/C
(2−w)/(2+w)
n ≥ −1/Ĵ (2−w)/(2+w), and

2λn(J̃ − Ĵ) ≤ 2λnJ̃ − (3/2)c2r2
nĴ

2w/(2+w),

thus, using the simple inequality in Lemma B.7, we have a ≤ 4λnJ
∗. In the case Ĵ < Cn,

we have by Lemma B.7 again,

a ≤ 3

2
c2r2

n

(
C2w/(2+w)
n + (J∗)2w/(2+w)

)
+ 2λnJ̃ ≤ 6λnJ

∗.

Therefore, altogether, we conclude that a ≤ 6λnJ
∗, and plugging this into (B.21) gives

‖f̂ − f0‖2n +
1

2
‖∆̂‖2n ≤ 6λnJ

∗ + ‖f̃ − f0‖2n,

on Ω1 ∩Ω2. The statement (3.19) as made in the theorem follows by dropping the nonneg-
ative term ‖∆̂‖2n/2 from the left-hand side, and adjusting the constants c, c1, c2, c3 > 0 as
needed.

B.7 Proof of the best additive approximation bound in (3.22)

We follow the exact same arguments as in the proof of Theorem 3.1, up until the last
part, in which we control the achieved penalty terms Ĵ . Now we deviate from the previous
arguments, slightly. Set λn ≥ (3/2)c2r2

n/C
(2−w)/(2+w)
n , and denote

a =
3

2
c2r2

n(Ĵ + J∗)2w/(2+w) + λn(J̃ − Ĵ).

By the same logic as in the proof of Theorem 3.1, we have a ≤ 3λnJ
∗. Plugging this into

(B.21) gives

‖f̂ − f0‖2n +
1

2
‖∆̂‖2n ≤ 3λnJ

∗ + λn(J̃ − Ĵ) + ‖f̃ − f0‖2n,

on Ω1 ∩ Ω2. Rearranging,

1

2
‖∆̂‖2n ≤ 3λnJ

∗ +
(
‖f̃ − f0‖2n + λnJ̃ − ‖f̂ − f0‖2n − λnĴ

)
,

on Ω1 ∩Ω2. But, setting f̃ = fbest, the bracketed term on the right-hand side above is non-
positive (by definition of fbest in (3.21)). This leads to (3.22), after adjusting c, c1, c2, c3 > 0
as needed.
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B.8 Preliminaries for the proof of Corollary 3.1

The following two lemmas will be helpful for the proof of Corollary 3.1.

Lemma B.9. Given f =
∑d

j=1 fj , whose component functions are each k times weakly
differentiable, there exists an additive spline approximant f̌ =

∑d
j=1 f̌j , where f̌j ∈ Gj , the

set of kth order splines with knots in the set Tj defined in (3.17), for j = 1, . . . , d, such that

(i) TV(f̌
(k)
j ) ≤ akTV(f

(k)
j ), for j = 1, . . . , d; and

(ii) ‖f̌j − fj‖∞ ≤ akW k
maxTV(f

(k)
j ), for j = 1, . . . , d.

Above, ak ≥ 1 is a constant depending only on k, and we define Wmax = maxj=1,...,dWj ,
where

Wj = max
i=1,...,n−1

|X(i)
j −X

(i+1)
j |, j = 1, . . . , d.

When the input points are drawn from a distribution Q that satisfies Assumptions A1, A2,
there are universal constants c0, n0 > 0 such that for n ≥ n0, we haveWmax ≤ (c0/b0) log n/n
with probability at least 1− 2b0d/n, and so the bounds in (ii) become

‖f̌j − fj‖∞ ≤
ck0ak

bk0

(
log n

n

)k
TV(f

(k)
j ), for j = 1, . . . , d, (B.22)

with probability at least 1− 2b0d/n.

Proof. Parts (i) and (ii) are simply a componentwise application of Proposition 7 in Mam-
men & van de Geer (1997). In particular, from their result, we know that for j =
1, . . . , d, there is a kth degree spline function f̌j whose knots lie in Tj in (3.17), with
TV(f̌

(k)
j ) ≤ akTV(f

(k)
j ) and

‖f̌j − fj‖∞ ≤ akW k
j TV(f

(k)
j ),

where ak ≥ 1 depends only on k. (This result follows from strong quasi-interpolating
properties of spline functions, from de Boor (1978).) This proves parts (i) and (ii).

When we consider random inputs drawn from a distribution Q satisfying Assumptions
A1, A2, the densities of the marginals Qj , j = 1, . . . , d will be bounded below by b0 > 0,
and thus there are universal constants c0, n0 > 0 such that for n ≥ n0, we have Wj ≤
(c0/b0) log n/n with probability at least 1 − 2b0/n (see, e.g., Lemma 5 in Wang et al.
(2014)), for j = 1, . . . , d, and hence applying a union bound gives the result for Wmax.

Lemma B.10. Given f =
∑d

j=1 fj , whose component functions are each k times weakly
differentiable, there is an additive falling factorial approximant f̌ =

∑d
j=1 f̌j , where f̌j ∈ Hj ,

the set of kth order falling factorial functions defined over X1
j , . . . , X

n
j , for each j = 1, . . . , d,

such that

(i) TV(f̌
(k)
j ) ≤ akTV(f

(k)
j ), for j = 1, . . . , d; and

(ii) ‖f̌j − fj‖∞ ≤ ak(W k
max + 2k2Wmax)TV(f

(k)
j ), for j = 1, . . . , d.
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Again, ak ≥ 1 is a constant depending only on k, and Wmax is as defined in Lemma B.9.
When the inputs are drawn from a distribution Q satisfying Assumptions A1, A2, the bound
in (ii) become

‖f̌j − fj‖∞ ≤ ak

(
ck0
bk0

(
log n

n

)k
+ 2k2 c0

b0

log n

n

)
TV(f

(k)
j ), for j = 1, . . . , d, (B.23)

with probability at least 1− 2b0d/n.

Proof. First we apply Lemma B.9 to produce an additive spline approximant, call it f∗ =
∑d

j=1 f
∗
j ,

to the given f =
∑d

j=1 fj . Next, we parametrize the spline component functions in a helpful
way:

f∗j =

n∑
`=1

α`jgj`, j = 1, . . . , d.

where α1
j , . . . , α

n
j ∈ R are coefficients and gj1 . . . , gjn are the truncated power basis functions

over the knot set Tj defined in (3.17), and we write gj`(t) = t`−1, ` = 1, . . . , k without a
loss of generality, for j = 1, . . . , d. It is not hard to check that TV((f∗j )(k)) =

∑n
`=k+2 |α`j |,

for j = 1, . . . , d.
We now define f̌ =

∑d
j=1 f̌j , our falling factorial approximant, to have component func-

tions

f̌j =
k+1∑
`=1

α`jgj` +
n∑

`=k+2

α`jhj`, j = 1, . . . , d.

where hj1, . . . , hjn are the falling factorial basis functions defined over X1
j , . . . , X

n
j , for

j = 1, . . . , d. (Note that f̌j preserves the polynomial part of f∗j exactly, for j = 1, . . . , d.)
Again, it is straightforward to check that TV(f̌

(k)
j ) =

∑n
`=k+2 |α`j |, for j = 1, . . . , d, i.e.,

TV(f̌
(k)
j ) = TV

(
(f∗j )(k)

)
≤ akTV(f

(k)
j ), for j = 1, . . . , d,

the inequality coming from part (i) of of Lemma B.9. This verifies part (i) of the current
lemma. As for part (ii), we note that Lemma 4 of Wang et al. (2014) shows that

|hj`(Xi
j)− gj`(Xi

j)| ≤ k2Wj , for ` = k + 2, . . . , n, i = 1, . . . , n, j = 1, . . . , d,

where recall Wj is the maximum gap between sorted input points along the jth dimension,
j = 1, . . . , d, as defined in Lemma B.9. In fact, a straightforward modification of their proof
can be used to strengthen this result to

‖hj` − gj`‖∞ ≤ 2k2Wj , for ` = k + 2, . . . , n, j = 1, . . . , d,

which means that by Holder’s inequality,

‖f̌j − f∗j ‖∞ ≤ 2k2Wj

n∑
`=k+2

|α`j | ≤ 2k2akWjTV(f
(k)
j ) for j = 1, . . . , d.

Then, by the triangle inequality,

‖f̌j−fj‖∞ ≤ ‖f̌j−f∗j ‖∞+‖f∗j −fj‖∞ ≤ ak
(
W k

max +2k2Wmax

)
TV(f

(k)
j ), for j = 1, . . . , d,

where we have used part (ii) of Lemma B.9. This verifies part (ii) of the current lemma.
Lastly, for random inputs drawn from a distribution Q satisfying Assumptions A1, A2,

the proof of (B.23) follows the same arguments as the proof of (B.22).
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B.9 Proof of Corollary 3.1

We consider first the statement in part (a). We must check that Assumptions C1, C2,
C3 hold for our choice of regularizer J(g) = TV(g(k)), and then we can apply Theorem
3.1. Assumptions C1, C2 are immediate. As for Assumption C3, consider the univariate
function class

Wk+1 =

{
f :

∫ 1

0
|f (k+1)(t)| dt ≤ 1, ‖f‖∞ ≤ 1

}
.

The results in Birman & Solomyak (1967) imply that for any set Zn = {z1, . . . , zn} ⊆ [0, 1],

logN(δ, ‖ · ‖Zn ,Wk+1) ≤ Kδ−1/(k+1),

for a universal constant K > 0. As explained in Mammen (1991), Mammen & van de
Geer (1997), this confirms that Assumption C3 holds for our choice of regularizer, with
w = 1/(k + 1). Applying Theorem 3.1, with f̃ = f0, gives the result in (3.23).

For the statement in part (b), note first that we can consider k ≥ 2 without a loss of gen-
erality, as pointed out in Remark 3.4 following the corollary. Using Lemma B.9, can choose
an additive spline approximant f̌ to f0, with components f̌j ∈ Gj , j = 1, . . . , d. Define f̃j to
be the centered version of f̌j , with zero empirical mean, j = 1, . . . , d. By the fact that center-
ing does not change the penalty, and part (i) of the lemma,

∑d
j=1 TV(f̃

(k)
j ) ≤ ak

∑d
j=1 TV(f

(k)
0j ).

Also, using the fact that centering cannot increase the empirical norm, the triangle inequal-
ity, and (B.22), we get that with probability least 1− 2b0d/n,∥∥∥∥ d∑

j=1

f̃j −
d∑
j=1

f0j

∥∥∥∥
n

≤
∥∥∥∥ d∑
j=1

f̃j −
d∑
j=1

f0j

∥∥∥∥
n

≤
d∑
j=1

‖f̃j −
d∑
j=1

f0j‖∞

≤ ck0ak

bk0

(
log n

n

)k d∑
j=1

TV(f
(k)
0j ),

When
∑d

j=1 TV(f
(k)
0j ) ≤ Cn, we see that ‖f̃ − f0‖n is bounded by Cn for large enough n.

This meets required condition for Theorem 3.1, by the above display, the approximation
error in (3.19) satisfies∥∥∥∥ d∑

j=1

f̃j −
d∑
j=1

f0j

∥∥∥∥2

n

≤
(
ck0ak

bk0

)2( log n

n

)2k

C2
n.

But when n/(log n)1+1/k ≥ n0C
(2k+2)/(2k2+2k−1)
n , the right-hand side above is upper bounded

by a0n
−(2k+2)/(2k+3)C

2/(2k+3)
n , for a constant a0 > 0. This establishes the result in (3.23)

for restricted additive locally adaptive splines.
For the statement in part (c), we can again consider k ≥ 2 without a loss of generality.

Then the same arguments as given for part (b) apply here, but now we use Lemma B.10 for
the additive falling factorial approximant f̌ to f0, and we require n/(log n)2k+3 ≥ n0C

4k+4
n

for the approximation error to be bounded by the estimation error.
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B.10 Preliminaries for the proof of Theorem 3.2

Our first lemma is similar to Lemma B.6, but concerns univariate functions. As in Lemma
B.6, this result relies on Lemma 3.5 in van de Geer (1990) (see also van de Geer (2000)).

Lemma B.11. Let εi, i = 1, . . . , n be uniformly sub-Gaussian random variables having
variance proxy σ2 > 0. Let J be a seminorm satisfying Assumption C3, and let ρ > 0 be
arbitrary. Then there exist constants c1, c2, n0 > 0, depending only on σ,K,w, ρ, such that
for all c ≥ c1 and n ≥ n0,

sup
Zn={z1,...,zn}⊆[0,1]

sup
g∈BJ (1)∩B∞(ρ)

1
n

∑n
i=1 ε

ig(zi)

‖g‖1−w/2Zn

≤ c√
n
,

with probabilty at least 1−exp(−c2c
2), where we write ‖ · ‖Zn for the empirical norm defined

over a set of univariate points Zn = {z1, . . . , zn} ⊆ [0, 1].

Proof. Assume without a loss of generality that ρ ≥ 1. Note that for any Zn = {z1, . . . , zn} ⊆
[0, 1],

logN
(
δ, ‖ · ‖Zn , BJ(1) ∩B∞(ρ)

)
≤ Kρwδ−w,

by Assumption C3. As the right-hand side in the above entropy bound does not depend on
Zn, we can apply Lemma 3.5 in van de Geer (1990) to get the desired uniform control over
all subsets.

We give a coupling between the empirical and L2 norms over BJ(1) ∩ B∞(ρ), using
Theorem 14.1 in Wainwright (2019) (see also van de Geer (2000), Bartlett et al. (2005),
Raskutti et al. (2012)).

Lemma B.12. Let zi, i = 1, . . . , n denote an i.i.d. sample from a distribution Λ on [0, 1].
Write ‖ · ‖2 for the L2(Λ) norm, and ‖ · ‖n for the L2(Λn) norm. Let J satisfy Assumption
C3, and let ρ > 0 be arbitrary. Then there are constants c1, c2, c3, n0 > 0, that depend only
on K,w, ρ, such that for any t ≥ c1n

−1/(2+w) and n ≥ n0,

∣∣‖g‖2n − ‖g‖22∣∣ ≤ 1

2
‖g‖22 +

t2

2
, for all g ∈ BJ(1) ∩B∞(ρ),

with probability at least 1− c2 exp(−c3nt
2).

Proof. Abbreviate F = BJ(1) ∩B∞(ρ). We will analyze the local Rademacher complexity

R
(
F ∩B2(t)

)
= Ez,σ

[
sup

g∈F∩B2(t)

1

n

∣∣∣∣∣
n∑
i=1

σig(zi)

∣∣∣∣∣
]
,

the expectation being taken over i.i.d. draws zi, i = 1, . . . , n from Λ and i.i.d. Rademacher
variables σi, i = 1, . . . , n, as usual. Define the critical radius τn > 0 to the smallest solution
of the equation

R
(
F ∩B2(t)

)
t

=
t

ρ
.
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We will prove τn ≤ c1n
−1/(2+w) for a constant c1 > 0. Applying Theorem 14.1 in Wainwright

(2019) would then give the result.
In what follows, we will use c > 0 to denote a constant whole value may change from line

to line (but does not depend on zi, i = 1, . . . , n). Consider the empirical local Rademacher
complexity

Rn
(
F ∩B2(t)

)
= Eσ

[
sup

g∈F∩B2(t)

1

n

∣∣∣∣∣
n∑
i=1

σig(zi)

∣∣∣∣∣
]
.

As we are considering t ≥ τn, Corollary 2.2 of Bartlett et al. (2005) gives

F ∩B2(t) ⊆ F ∩Bn(
√

2t),

with probability at least 1− 1/n. Denote by E the event that this occurs. Then on E ,

Rn
(
F ∩B2(t)

)
≤ Eσ

[
sup

g∈F∩Bn(
√

2t)

1

n

∣∣∣∣∣
n∑
i=1

σig(zi)

∣∣∣∣∣
]

≤ c√
n

∫ √2t

0

√
logN(δ, ‖ · ‖n,F) dδ

≤ c
√
Kρw/2√
n

∫ √2t

0
δ−w/2 dδ =

c√
n
t1−w/2,

where in second line we used Dudley’s entropy integral (Dudley 1967), and in the third line
we used Assumption C3. On Ec, note that we have the trivial bound Rn(F ∩B2(t)) ≤ ρ.
Therefore we can upper bound the local Rademacher complexity, splitting the expectation
over E and Ec,

R
(
F ∩B2(t)

)
= EzRn

(
F ∩B2(t)

)
≤ ct1−w/2√

n
+
ρ

n
≤ ct1−w/2√

n
,

where the second inequality holds when n is large enough, as we may assume t ≥ n−1/2

without a loss of generality. An upper bound on the critical radius τn is thus given by the
solution of

ct−w/2√
n

=
t

ρ
,

which is t = cn−1/(2+w). This completes the proof.

We extend Lemma B.2 to give a uniform sup norm bound on the functions in BJ(1) ∩
B2(ρ).

Lemma B.13. Assume the conditions of Lemma B.2. Then there are constants R1, R2 > 0
that depend only on k, b1, b2, L, such that

‖m‖∞ ≤ R1ρ+R2, for all m ∈ BJ(1) ∩B2(ρ).

Proof. For m ∈ BJ(1) ∩B2(ρ), decompose m = p+ g where p is a polynomial of degree k,
and g is orthogonal to all polynomials of degree k with respect to the L2(Λ) inner product.
By Lemma B.2, we have ‖g‖∞ ≤ R0 for a constant R0 > 0, and by the triangle inequality,

‖p‖2 ≤ ‖m‖2 + ‖g‖2 ≤ ρ+R0.
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Now write

p(x) =
k+1∑
`=1

α`φ`(x), for x ∈ [0, 1]d,

where φ`, ` = 1, . . . , k + 1 are orthonormal polynomials on [0, 1] with respect to the
L2(Λ) inner product. Then ‖α‖2 = ‖p‖2 ≤ ρ + R0, from the second to last display, and
‖α‖2 ≤

√
k + 1(ρ+R0), so for any x ∈ [0, 1],

|p(x)| ≤ ‖α‖1 max
`=1,...,k+1

|φ`(x)| ≤ ck
√
k + 1(ρ+R0),

where ck = max`=1,...,k+1 ‖φ`‖∞ is a constant that depends only on k, b1 from Aptekarev
et al. (2016). Therefore

‖m‖∞ ≤ ‖p‖∞ + ‖g‖∞ ≤ ck
√
k + 1(ρ+R0) +R0,

and defining R1, R2 > 0 appropriately, this is of the desired form, and completes the proof.

Our last two lemmas pertain to the function space

M2(δ) =

{ d∑
i=1

mj : J(mj) ≤ δ, and 〈mj , 1〉2 = 0, j = 1, . . . , d

}
. (B.24)

We derive a one-sided bound on the L2 norm in terms of the empirical norm, over M2(1).
Our proof uses Theorem 14.2 in Wainwright (2019), which is a somewhat unique theorem,
because it does not require a global sup norm bound on the function class in consideration
(unlike many standard results of this type).

Lemma B.14. Let Xi, i = 1, . . . , n denote an i.i.d. sample from a distribution Q on [0, 1]d

satisfying Assumption A3, and let J satisfy Assumption C3. Then there are constants
c1, c2, c3, n0 > 0, that depend only on b1, b2, k, L,K,w, such that for any c1

√
dn−1/(2+w) ≤ t ≤ 1

and n ≥ n0,

‖m‖22 ≤ 2‖m‖2n + t2, for all m ∈M2(1),

with probability at least 1− c2 exp(−c3nt
2), where M2(1) is the space in (B.24).

Proof. Let m ∈ M2(1) with ‖m‖2 ≤ 1. Then as ‖m‖22 =
∑d

j=1 ‖mj‖22, it follows that
‖mj‖2 ≤ 1, j = 1, . . . , d, and by Lemma B.13, we have ‖mj‖∞ ≤ R1 + R2, j = 1, . . . , d.
From the calculation in Example 14.6 of Wainwright (2019), we have the property

‖m2‖22 ≤ C2‖m‖42, for all m ∈M2(1) ∩B2(1),

where C2 = (R1 +R2)2 + 6. Abbreviating F =M2(1), we will study the local Rademacher
complexity

R
(
F ∩B2(t)

)
= Ez,σ

[
sup

m∈F∩B2(t)

1

n

∣∣∣∣∣
n∑
i=1

σim(zi)

∣∣∣∣∣
]
,
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and the associated critical radius τn > 0, defined as usual to be the smallest solution of

R
(
F ∩B2(t)

)
t

=
t

C
.

We will establish τn ≤ c1

√
dn−1/(2+w) for a constant c1 > 0. Applying Theorem 14.2 in

Wainwright (2019) would then give the result.
For the rest of the proof, we will use c > 0 for a constant whose value may change from

line to line; also, many statements will hold for large enough n, but this will not always be
made explicit. Fix some 0 < t ≤ 1. By L2 orthogonality of the components of functions in
F ,

sup
m∈F∩B2(t)

1

n

∣∣∣∣∣
n∑
i=1

σim(Xi)

∣∣∣∣∣ ≤ sup
‖β‖2≤t

sup
mj∈BJ (1)∩B2(|βj |),

j=1,...,d

∣∣∣∣∣
n∑
i=1

σi
d∑
j=1

mj(X
i
j)

∣∣∣∣∣
≤ sup
‖β‖2≤t

d∑
j=1

sup
mj∈BJ (1)∩B2(|βj |)

1

n

∣∣∣∣∣
n∑
i=1

σimj(X
i
j)

∣∣∣∣∣.
We now bound the inner supremum above, for an arbitrary j = 1, . . . , d. Denote by τnj
the critical radius of BJ(1) ∩ B2(|βj |), denote rn = n−1/(2+w), and define the abbreviation
a ∨ b = max{a, b}. Observe

sup
mj∈BJ (1)∩B2(|βj |)

1

n

∣∣∣∣∣
n∑
i=1

σimj(X
i
j)

∣∣∣∣∣
≤ c

(
Rn
(
BJ(1) ∩B2(|βj |)

)
+

√
log n

n

(
sup

mj∈BJ (1)∩B2(|βj |)
‖mj‖n

))

≤ c
(
R
(
BJ(1) ∩B2(|βj |)

)
+

log n

n
+

√
log n

n

(
sup

mj∈BJ (1)∩B2(|βj |)
‖mj‖n

))

≤ c
(
R
(
BJ(1) ∩B2(|βj |)

)
+

log n

n
+

√
log n

n

√
2(|βj | ∨ τnj)

)
≤ c
(
|βj |1−w/2√

n
+

log n

n
+ (|βj | ∨ τnj)

√
log n

n

)
≤ c
(
|βj |1−w/2√

n
+ (|βj | ∨ rn)

√
log n

n

)
.

The first three inequalities above hold with probability at least 1 − 1/3n2 each. The first
inequality is by Theorem 3.6 in Wainwright (2019) (see also Example 3.9 in Wainwright
(2019)); the second and third are by Lemma A.4 and Lemma 3.6 in Bartlett et al. (2005),
respectively. The fourth upper bounds the local Rademacher complexity of BJ(1)∩B2(|βj |),
and the fifth upper bounds the critical radius τnj of this class, both following the proof of
Lemma B.12 (recall, the functions in BJ(1) ∩ B2(|βj |) have a uniform sup norm bound
of ρ = R1 + R2, by Lemma B.13). The last step also uses log n/n ≤ rn

√
log n/n for n

sufficiently large. The final result of the above display holds with probability at least
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1− 1/n2; by a union bound, it holds with probability at least 1− d/n2 simultaneously over
j = 1, . . . , d. Call this event E . Then on E ,

sup
m∈F∩B2(t)

1

n

∣∣∣∣∣
n∑
i=1

σim(Xi)

∣∣∣∣∣ ≤ c
d∑
j=1

(
|βj |1−w/2√

n
+ (|βj | ∨ rn)

√
log n

n

)

≤ c
(
d(2+w)/4t1−w/2√

n
+

√
d log n

n
t+ dr2

n

)
. (B.25)

In the second line, we use Holder’s inequality aT b ≤ ‖a‖p‖b‖q for the first term, with p =
4/(2 + w) and q = 4/(2 − w); we use a ∨ b ≤ a + b for the second term, along the bound
‖β‖1 ≤

√
dt, and the fact that rn

√
log n/n ≤ r2

n for large enough n.

Meanwhile, on Ec, we can apply the simple bound ‖m‖∞ ≤
∑d

j=1 ‖mj‖∞ ≤ ρd for func-
tions in F ∩B2(t), where ρ = R1 +R2 (owing to Lemma B.13), and thus

sup
m∈F∩B2(t)

1

n

∣∣∣∣∣
n∑
i=1

σim(Xi)

∣∣∣∣∣ ≤ ρd. (B.26)

Splitting the expectation defining the local Rademacher complexity over E , Ec, and using
(B.25), (B.26),

R
(
F ∩B2(t)

)
= EX,σ

[
sup

m∈F∩B2(t)

1

n

∣∣∣∣∣
n∑
i=1

σim(Xi)

∣∣∣∣∣
]

≤ c
(
d(2+w)/4t1−w/2√

n
+

√
d log n

n
t+ dr2

n

)
+
ρd2

n2
. (B.27)

It can be easily verified that for t = c
√
dr2
n, the upper bound in (B.27) is at most t2/C.

Therefore this is an upper bound on the critical radius of F , which completes the proof.

Lastly, we bound the gap in the empirical and L2 means of functions inM2(1) ∩B2(t),
for small enough t. The proof uses Theorem 2.1 in Bartlett et al. (2005).

Lemma B.15. Let Xi, i = 1, . . . , n denote an i.i.d. sample from a distribution Q on [0, 1]d

satisfying Assumption A3, and let J satisfy Assumption C3. There are constants c0, n0 > 0,
that depend only on b1, b2, k, L,K,w, such that for any 0 < t ≤ 1 and n ≥ n0,

∣∣〈m, 1〉n−〈m, 1〉2∣∣ ≤ c0

(
d(2+w)/4t1−w/2√

n
+

√
d log n

n
t+dn−2/(2+w)

)
, for all m ∈M2(1) ∩B2(t),

with probability at least 1− 1/n, where M2(1) is the space in (B.24).

Proof. This follows by combining the local Rademacher bound in (B.27) from the proof of
Lemma B.14 with Theorem 2.1 in Bartlett et al. (2005), and simplifying by keeping the
dominant terms for large enough n.
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B.11 Proof of Theorem 3.2

At a high-level, the difference between this proof and that of Theorem 3.1 is that here we do
not try to directly control the sub-Gaussian complexity term (as this would lead to a poor
dependence on the dimension d). Instead, we reduce the problem to controlling univariate
sub-Gaussian complexities, and then assemble the result using ties between the empirical
and L2 norms, and the decomposition property (3.25). We will use the same general notation
as in the proof of Theorem 3.1: c > 0 denotes a constant that will multiply our final bound,
and will control the probability with which the final result holds; we will use the empirical
norms and inner products with vector arguments, to be interpreted appropriately; we use
the abbreviations rn, ∆̂, and so on. Finally, in many lines that follow, we will redefine c by
absorbing constant factors into it, without explicit notice.

The same arguments that led us to (B.19) yield the basic inequality

‖f̂ − f0‖2n + ‖∆̂‖2n ≤ 2〈ε, ∆̂〉n + ‖f̃ − f0‖2n = 2

d∑
j=1

〈ε, ∆̂j〉n + ‖f̃ − f0‖2n, (B.28)

where we write ∆̂ =
∑d

j=1 ∆̂j .

Bounding the sub-Gaussian complexity terms. We now bound the univariate sub-
Gaussian complexity terms, appearing in the sum on the right-hand side in (B.28). For
j = 1, . . . , d, define gj = ∆̂j/(2δ + ‖∆̂j‖n), and note that by construction J(gj) ≤ 1 and
‖gj‖n ≤ 1. By Lemma B.4, there are constants c0, R > 0 such that ‖gj‖∞ ≤ R on an event
whose probability is at least 1 − exp(−c0n). Thus by Lemma B.11, there are constants
c1, c2 > 0 such that for all c ≥ c1,

2〈ε, gj〉n
‖gj‖1−w/2n

≤ c√
n
, for all j = 1, . . . , d,

on an event Ω1 with probability at least 1 − exp(c0n) − exp(−c2c
2). Plugging this into

(B.28) gives

‖f̂ − f0‖2n + ‖∆̂‖2n ≤
c√
n

d∑
j=1

(2δ + ‖∆̂j‖n)w/2‖∆̂j‖1−w/2n + ‖f̃ − f0‖2n,

≤ cδw/2√
n

d∑
j=1

‖∆̂j‖1−w/2n +
c√
n

d∑
j=1

‖∆̂j‖n + ‖f̃ − f0‖2n, (B.29)

on Ω1, where we used Lemma B.7 in the second inequality.

Converting empirical norms into L2 norms. For each j = 1, . . . , d, let ∆̄j = 〈∆̂j , 1〉2
be the L2 mean of ∆̂j , and ∆̃j = ∆̂j − ∆̄j the L2 centered version of ∆̂j . Note that, for
each j = 1, . . . , d, we have by empirical orthogonality ‖∆̃j‖2n = ‖∆̂j‖2n + |∆̄j |2, which implies
‖∆̂j‖n ≤ ‖∆̃j‖n. Applying this to upper bound the right-hand side in (B.29) gives

‖f̂ − f0‖2n + ‖∆̂‖2n ≤
cδw/2√
n

d∑
j=1

‖∆̃j‖1−w/2n +
c√
n

d∑
j=1

‖∆̃j‖n + ‖f̃ − f0‖2n, (B.30)
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on Ω1. We bound each empirical norm in the sum on the right-hand side in (B.30) by
its L2 norm counterpart. Now, for each j = 1, . . . , d, define gj = ∆̃j/(2δ + ‖∆̃j‖2). Since
J(gj) ≤ 1 and ‖gj‖2 ≤ 1, by Lemma B.13, there is a constant R > 0 such that ‖gj‖∞ ≤ R.
We can hence apply Lemma B.12 to the measure Λ = Qj , which gives constants c3, c4, c5 > 0
such that

‖gj‖n ≤
√

3

2
‖gj‖2 + c3rn, for all j = 1, . . . , d,

on an event Ω2 with probability at least 1− c4d exp(−c5nr
2
n), where recall rn = n−1/(2+w),

i.e.,

‖∆̃j‖n ≤ 2

√
3

2
‖∆̃j‖2 + 2c3rnδ, for all j = 1, . . . , d,

on Ω2, where we assume n is large enough so that c3rn ≤
√

3/2. Returning to (B.30), and
using the simple inequality in Lemma B.7, we have

‖f̂ − f0‖2n + ‖∆̂‖2n ≤
cδw/2√
n

d∑
j=1

‖∆̃j‖1−w/22 +
c√
n

d∑
j=1

‖∆̃j‖2 + cdr2
nδ + ‖f̃ − f0‖2n, (B.31)

on Ω1 ∩ Ω2.

Invoking L2 decomposability. We recall the key L2 decomposition property (3.25), of
additive functions with L2 mean zero components. Using Holder’s inequality aT b ≤ ‖a‖p‖b‖q
to bound the first sum on the right-hand side in (B.31), with p = 4/(2+w) and q = 4/(2−w),
and Cauchy-Schwartz to bound the second sum in (B.31), we get

‖f̂ − f0‖2n + ‖∆̂‖2n ≤
cd(2+w)/4δw/2√

n
‖∆̃‖1−w/22 + c

√
d

n
‖∆̃‖2 + cdr2

nδ + ‖f̃ − f0‖2n, (B.32)

on Ω1 ∩ Ω2, where we denote ∆̃ =
∑d

j=1 ∆̃j .

Converting back to empirical norm. We bound the L2 norm of the centered error
vector on the right-hand side in (B.32) with its empirical norm counterpart. By Lemma
B.14 applied to m = ∆̃/(2δ), provided n is large enough so that c6

√
drn ≤ 1, there are

constants c6, c7, c8 > 0 such that

‖∆̃‖2 ≤
√

2‖∆̃‖n + 2c6

√
drnδ, (B.33)

on an event Ω3 with probability at least 1− c7 exp(−c8dnr
2
n). Plugging this into the right-

hand side in (B.32), and using Lemma B.7, we have

‖f̂ − f0‖2n + ‖∆̂‖2n ≤
cd(2+w)/4δw/2√

n
‖∆̃‖1−w/2n + c

√
d

n
‖∆̃‖n + cdr2

nδ + ‖f̃ − f0‖2n,

on Ω1 ∩Ω2 ∩Ω3. Using Lemma B.8 on the first term above, with a = d(2+w)/4δw/2/
√
n and

b = ‖∆̃‖n, and simplifying, gives

‖f̂ − f0‖2n + ‖∆̂‖2n ≤ c
√
drn
√
δ‖∆̃‖n + cdr2

nδ + ‖f̃ − f0‖2n, (B.34)
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on Ω1 ∩ Ω2 ∩ Ω3.

Deriving an empirical norm error bound. Note that in (B.34), we have ‖∆̂‖n on the
left-hand side and ‖∆̃‖n on the right-hand side, where ∆̃ = ∆̂− ∆̄ is the centered error
vector, and we are abbreviating ∆̄ =

∑d
j=1 ∆̄j . We seek to bound |∆̄|. Define t = c6

√
drn,

where c6 is the constant in (B.33), and define

m =
t∆̃/(2δ)√

2‖∆̃‖n/(2δ) + t
.

Note that J(mj) ≤ J(∆̃j)/(2δ) ≤ 1, for j = 1, . . . , d, by construction, and also

‖m‖2 =
t‖∆̃‖2/(2δ)√

2‖∆̃‖n/(2δ) + t
≤ t,

on Ω1 ∩ Ω2 ∩ Ω3, recalling (B.33). By Lemma B.15 applied to m, provided n is large
enough such that t = c6

√
drn ≤ 1, there is a constant c9 > 0 such that |〈m, 1〉n| ≤ c9t

2 on
Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4, where Ω4 is an event with probability at least 1− 1/n, i.e.,

|〈1, ∆̃〉n|/(2δ) ≤ c9t
(√

2‖∆̃‖n/(2δ) + t
)
,

on Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4, i.e.,
|∆̄| ≤

√
2c9t‖∆̃‖n + 2c9t

2δ,

on Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4. Thus, by empirical orthogonality,

‖∆̃‖2n = ‖∆̂‖2n + |∆̄|2 ≤ ‖∆̂‖2n + 2(
√

2c9t)
2‖∆̃‖2n + 2(2c9t

2δ)2,

on Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4, and assuming n is large enough so that 2(
√

2c9t)
2 ≤ 1/2 and

2(2c9)2t2δ ≤ 1, this becomes
1

2
‖∆̃‖2n ≤ ‖∆̂‖2n + t2δ, (B.35)

on Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4. Using this on the right-hand side in (B.34) gives

‖f̂ − f0‖2n + ‖∆̂‖2n ≤ c
√
drn
√
δ‖∆̂‖n + cdr2

nδ + ‖f̃ − f0‖2n,

on Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4. Using the simple inequality 2ab ≤ a2 + b2 on the first term on the
right-hand side above, with a = c

√
drn
√
δ and b = ‖∆̂‖n, gives

‖f̂ − f0‖2n +
1

2
‖∆̂‖2n ≤ ‖f̃ − f0‖2n + c2dr2

nδ, (B.36)

on Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4. The empirical norm result in (3.26) in the theorem follows by
dropping the nonnegative term ‖∆̂‖2n/2 from the left-hand side, and adjusting the constants
c, c1, c2, c3 > 0 as needed.

Deriving an L2 norm error bound. Note that (B.36) also implies

1

2
‖∆̂‖2n ≤ ‖f̃ − f0‖2n + c2dr2

nδ,
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on Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4. Recalling (B.35), this gives

‖∆̃‖2n ≤ 4‖f̃ − f0‖2n + c2dr2
nδ, (B.37)

on Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4. By L2 orthogonality,

‖∆̂‖22 = ‖∆̃‖22 + |∆̄|2

≤ 3‖∆̃‖2n + t2δ2

≤ 12‖f̃ − f0‖2n + c2dr2
nδ

2,

on Ω1 ∩Ω2 ∩Ω3 ∩Ω4, where in the second line we used (B.33) and |∆̄| ≤ ‖∆̃‖n, and in the
third line we used (B.37). Finally,

‖f̂ − f0‖22 ≤ 2‖f̂ − f̃‖22 + 2‖f̃ − f0‖22 ≤ 24‖f̃ − f0‖2n + 2‖f̃ − f0‖22 + c2dr2
nδ

2,

on Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4. The L2 norm result in (3.27) in the theorem follows by simply
adjusting the constants c, c1, c2, c3 > 0 as needed.

B.12 Proof of Corollary 3.2

The proof of the statement in part (a) is exactly as in the proof of part (a) in Corollary 3.1.

For part (b), we can consider k ≥ 2 without a loss of generality, and start with an
additive spline approximant f̌ to f0 from Lemma B.9. Let f̃ denote the result of centering
each component of f̌ to have zero empirical mean. Then TV(f̃

(k)
j ) ≤ akcn = δ, j = 1, . . . , d,

and just as in the proof of part (b) in Corollary 3.1, letting ‖ · ‖ denote either the empirical
or L2 norm, we have ∥∥∥∥ d∑

j=1

f̃j −
d∑
j=1

f0j

∥∥∥∥2

≤
(
ck0ak

bk0

)2( log n

n

)2k

d2c2
n.

But when n ≥ n0(dcn)(2k+3)/(2k+2), the right-hand side above is bounded by a0dn
−(2k+2)/(2k+3)cn

for a constant a0 > 0, which shows the approximation error terms in (3.26), (3.27) are of
the desired order. This proves the desired result for restricted locally adaptive splines.

For part (c), we follow the same arguments, the only difference being that we construct
a falling factorial approximant f̌ to f0 from Lemma B.10.

B.13 Preliminaries for the proof of Theorem 3.3

The next two results in this subsection are helper lemmas for the last lemma.

Lemma B.16. Let J be a functional that satisfies Assumptions C1, C2, C4. Then there
are constants K̃1, δ̃1 > 0, that depend only on k, L,K1, w, such that for all 0 < δ ≤ δ̃1,

logM
(
δ, ‖ · ‖2,Π⊥k

(
BJ(1)

))
≥ K̃1δ

−w,
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where ‖ · ‖2 is the L2(U) norm, with U the uniform distribution on [0, 1], and Π⊥k is defined
by

Π⊥k (g) = g −Πk(g), where Πk(g) = argmin
p∈Pk

‖g − p‖2,

with Pk denoting the space of polynomials of degree k. In other words, Π⊥k is the projection
operator onto the space orthogonal (in L2(U)) to the polynomials of degree k.

Proof. Let R0 > 0 be the constant from Lemma B.2, when we take Λ = U . Note that

BJ(1) ∩B∞(R0) = Π⊥k
(
BJ(1)

)
+
(
Pk ∩B∞(R0)

)
. (B.38)

In general, for S = S1 +S2 and a norm ‖ · ‖, observe that, from basic relationships between
covering and packing numbers,

M(4δ, ‖ · ‖, S) ≤ N(2δ, ‖ · ‖, S) ≤ N(δ, ‖ · ‖, S1)N(δ, ‖ · ‖, S2) ≤M(δ, ‖ · ‖, S1)N(δ, ‖ · ‖, S2),

so that

logM(δ, ‖ · ‖, S1) ≥ log
M(4δ, ‖ · ‖, S)

N(δ, ‖ · ‖, S2)
.

Applying this to our decomposition in (B.38),

logM
(
δ, ‖ · ‖2,Π⊥k

(
BJ(1)

))
≥ log

M
(
4δ, ‖ · ‖2, BJ(1) ∩B∞(R0)

)
N
(
δ, ‖ · ‖2,Pk ∩B∞(R0)

)
≥ K1R

w
0 4−wδ−w −A(k + 1) log(1/δ),

where in the second inequality we used Assumption C4 (assuming without a loss of generality
that R0 ≥ 1), and a well-known entropy bound for a finite-dimensional ball (e.g., Mammen
(1991)), with A > 0 being a constant that depends only on R0. For small enough δ, the
right-hand side above is of the desired order, and this completes the proof.

Lemma B.17. Let d,M > 0 be integers, and I = {1, . . . ,M}. Denote byH(u, v) =
∑d

j=1 1{uj 6= vj}
the Hamming distance between u, v ∈ Id. Then there is a subset S ⊆ Id with |S| ≥ (M/4)d/2

such that H(u, v) ≥ d/2 for any u, v ∈ S.

Proof. Let Ω0 = Id, u0 = (1, . . . , 1) ∈ Ω0. For j = 0, 1, . . ., recursively define

Ωj+1 = {u ∈ Ωj : H(u, uj) > a = dd/2e},

where uj+1 is arbitrarily chosen from Ωj+1. The procedure is stopped when Ωj+1 is empty;
denote the last set defined in this procedure by ΩE , and denote S = {u0, . . . , uE}. For
0 ≤ i, j ≤ E, by construction, H(ui, uj) > a. For j = 0, . . . , E,

nj = |Ωj − Ωj+1| = |{u ∈ Ωj : H(u, uj) ≤ a}|
≤ |{u ∈ Id : H(u, uj) ≤ a}|

=

(
d

d− a

)
Ma
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The last step is true because we can choose d − a positions in which u matches uj in(
d

d−a
)

ways, and the rest of the a positions can be filled arbitrarily in M ways. Also note
Md = n0 + · · ·+ nE . Therefore

Md ≤ (E + 1)

(
d

d− a

)
Ma,

which implies

E + 1 ≥ Md−a(
d

d−a
) ≥ Md−a

2d
≥ (M/4)d/2.

The lemma below gives a key technical result used in the proof of Theorem 3.3.

Lemma B.18. Let J be a functional that satisfies Assumptions C1, C2, C4. Then there
are constants K̄1, δ̄1 > 0, that depend only on w, K̃1, δ̃1, where K̃1, δ̃1 > 0 are the constants
from Lemma B.16, such that for all 0 < δ ≤ δ̄1,

logM
(
δ, ‖ · ‖2,Π⊥k,d

(
Bd
J(1)

))
≥ K̄1d

1+w/2δ−w,

where ‖·‖2 is the L2(U) norm, with U the uniform distribution on [0, 1]d, and Π⊥k,d is defined
by

Π⊥k,d(g) = g −Πk,d(g), where Πk,d(g) = argmin
p∈Pk,d

‖g − p‖2,

and Pk,d contains all functions of the form p(x) =
∑d

j=1 pj(xj), for polynomials pj , j =
1, . . . , d of degree k. In other words, Π⊥k,d is the projection operator onto the space orthogonal
(in L2(U)) to the space Pk,d of additive polynomials of degree k.

Proof. It is easy to check that the decomposability property of the L2(U) norm, in (3.25),
implies a certain decomposability of the L2(U) projection operators Πk,d,Π

⊥
k,d over additive

functions:

Πk,d

( d∑
j=1

mj

)
=

d∑
j=1

Πk(mj), Π⊥k,d

( d∑
j=1

mj

)
=

d∑
j=1

Π⊥k (mj),

where Πk,Π
⊥
k are projection operators onto Pk and its orthocomplement, respectively, as

defined in Lemma B.16. The decomposability result for Π⊥k,d in particular implies that

Π⊥k,d
(
Bd
J(1)

)
=

{ d∑
j=1

fj : fj ∈ Π⊥k
(
BJ(1)

)
, j = 1, . . . , d

}
. (B.39)

Abbreviate M = M(δ/
√
d/2, ‖ · ‖2,Π⊥k (BJ(1))). By Lemma B.16, we have for small enough

δ,
logM ≥ K̃12−w/2dw/2δ−w.

Now let g1, . . . , gM denote a (δ/
√
d/2)-packing of Π⊥k (BJ(1)). Let I = {1, . . . ,M}, and for

u ∈ Id, define fu ∈ Π⊥k (Bd
J(1)) by

fu =

d∑
j=1

guj ,
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i.e., fu is an additive function with components guj , j = 1, . . . , d. If the Hamming distance
between indices u, v satisfies H(u, v) ≥ d/2, then

‖fu − fv‖22 =
d∑
j=1

‖guj − gvj‖22 ≥ H(u, v)
δ2

d/2
≥ δ2,

where we have again used the L2(U) decomposability property in (3.25). Thus, it is sufficient
to find a subset S of Id such that u, v ∈ S ⇒ H(u, v) ≥ d/2. By Lemma B.17, we can
choose such an S with |S| ≥ (M/4)d/2. For small enough δ, such that M ≥ 16, this gives
the desired result because

log |S| ≥ d

2
log

M

4
≥ d

4
logM ≥ K̃12−w/2−2d1+w/2δ−w.

B.14 Proof of Theorem 3.3

Clearly, by orthogonality, for any functions f̂ , f0,

‖f̂ − f0‖22 = ‖Πk,d(f̂)−Πk,d(f0)‖22 + ‖Π⊥k,d(f̂)−Π⊥k,d(f0)‖22 ≥ ‖Π⊥k,d(f̂)−Π⊥k,d(f0)‖22,

where Πk,d,Π
⊥
k,d are projection operators onto Pk,d and its orthocomplement, respectively,

defined in Lemma B.16. Thus it suffices to consider the minimax error over Π⊥k,d(B
d
J(cn)).

First, we lower bound the packing number and upper bound the covering number of the
class Π⊥k,d(B

d
J(cn)). The upper bound is more straightforward:

logN
(
ε, ‖ · ‖2,Π⊥k,d

(
Bd
J(cn)

))
= logN

(
ε/cn, ‖ · ‖2,Π⊥k,d

(
Bd
J(1)

))
≤

d∑
j=1

logN
(
ε/(cn

√
d), ‖ · ‖2,Π⊥k

(
BJ(1)

))
≤ K2c

w
nd

1+w/2ε−w. (B.40)

The second inequality follows from property (B.39) in the proof of Lemma B.18 and similar
arguments to those in the proof of Lemma B.5—except that we leverage the decomposability
of the L2 norm, as in (3.25), instead of using the triangle inequality. The third inequality
follows from Assumption C4.

The lower bound is less straightforward, and is given by Lemma B.18:

logM
(
δ, ‖ · ‖2,Π⊥k,d

(
Bd
J(cn)

))
= logM

(
δ/cn, ‖ · ‖2,Π⊥k,d

(
Bd
J(1)

))
≥ K̄1c

w
nd

1+w/2δ−w. (B.41)

We note that (B.41) holds for 0 < δ ≤ δ̄1, where δ̄1 > 0 is the constant from Lemma B.18.

Now, following the strategy in Yang & Barron (1999), we use these bounds on the
packing and covering numbers, along with Fano’s inequality, to establish the desired result.
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Let f1, f2, . . . , fM be a δn-packing of Π⊥k,d(BJ(cn)), for δn > 0 to be specified later. Fix an
arbitrary estimator f̂ , and let

Ẑ = argmin
j∈{1,...,M}

‖f̂ − fj‖2.

We will use PX,f and EX,f to denote the probability and expectation operators, respectively,
over i.i.d. draws Xi ∼ U , i = 1, . . . , n (where U is the uniform distribution on [0, 1]d), and
i.i.d. draws Y i|Xi ∼ N(f(Xi), σ2), i = 1, . . . , n. Then

sup
f0∈Π⊥k,d(BdJ (cn))

EX,f0‖f̂ − f0‖22 ≥ sup
f0∈{f1,...,fM}

EX,f0‖f̂ − f0‖22

≥ 1

M
EX

M∑
j=1

Efj‖f̂ − fj‖
2
2

=
1

M
EX

M∑
j=1

(
Pfj (Ẑ 6= j)Efj

(
‖f̂ − fj‖22

∣∣ Ẑ 6= j
)

+ Pfj (Ẑ = j)Efj
(
‖f̂ − fj‖22

∣∣ Ẑ = j
))

≥ 1

M
EX

M∑
j=1

Pfj (Ẑ 6= j)Efj
(
‖f̂ − fj‖22

∣∣ Ẑ 6= j
)

≥ 1

M
EX

M∑
j=1

Pfj (Ẑ 6= j)
δ2
n

4
, (B.42)

where in the last inequality we have used the fact that if Ẑ 6= j, then f̂ must be at least
δn/2 away from fj , for each j = 1, . . . ,M .

Abbreviate qj for the distribution Pfj , j = 1, . . . ,M , and define the mixture q̄ = 1
M

∑M
j=1 qj .

By Fano’s inequality,

1

M
EX

M∑
j=1

Pfj (Ẑ 6= j) ≥ 1−
1
M

∑M
j=1 EXKL(qj ‖ q̄) + log 2

logM
, (B.43)

where KL(P1 ‖P2) denotes the Kullback-Leibler (KL) divergence between distributions
P1, P2. Let g1, g2, . . . , gN be an εn-covering of Π⊥k,d(B

d
J(cn)), for εn > 0 to be deter-

mined shortly. Abbreviate s` for the distribution Pg` , ` = 1, . . . , N , and s̄ = 1
N

∑N
`=1 s`.

Also, write p(N(f(X), σ2I)) for the density of a N(f(X), σ2I) random variable, where
f(X) = (f(X1), . . . , f(Xn)) ∈ Rn. Then

1

M

M∑
j=1

EXKL(qj ‖ q̄) ≤
1

M

M∑
j=1

EXKL(qj ‖ s̄)

=
1

M

M∑
j=1

EX,fj log
p
(
N(fj(X), σ2I)

)
1
N

∑N
`=1 p

(
N(g`(X), σ2I)

)
≤ 1

M

M∑
j=1

(
logN + EX min

`=1,...,N
KL(qj ‖ s`)

)
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≤ 1

M

M∑
j=1

(
logN +

nε2n
2σ2

)

≤ K2c
w
nd

1+w/2ε−wn +
nε2n
2σ2

. (B.44)

In the first line above, we used the fact that
∑M

j=1 KL(qj ‖ q̄) ≤
∑M

j=1 KL(qj ‖ s) for any
other distribution s; in the second and third, we explicitly expressed and manipulated the
definition of KL divergence; in the fourth, we used KL(qj ‖ s`) = ‖fj(X)− g`(X)‖22/(2σ2),
and for each j, there is at least one ` such that EX‖fj(X)− g`(X)‖22 = ‖fj − g`‖22 ≤ ε2n; in
the fifth line, we used the entropy bound from (B.40). Minimizing (B.44) over εn > 0 gives

1

M

M∑
j=1

EXKL(qj ‖ q̄) ≤ K̄2dn
w/(2+w)c2w/(2+w)

n ,

for a constant K̄2 > 0. Returning to Fano’s inequality (B.42), (B.43), we see that a lower
bound on the minimax error is

δ2
n

4

(
1− K̄2dn

w/(2+w)c
2w/(2+w)
n + log 2

logM

)
,

Therefore, a lower bound on the minimax error is δ2
n/8, for any δn > 0 such that

logM ≥ 2K̄2dn
w/(2+w)c2w/(2+w)

n + 2 log 2,

and for large enough n, the first term on the right-hand side above will be larger than
2 log 2, so it suffices to have

logM ≥ 4K̄2dn
w/(2+w)c2w/(2+w)

n . (B.45)

Set δn = (K̄1/4K̄2)1/w
√
dn−1/(2+w)c

w/(2+w)
n . Provided that δn ≤ δ̄1, our log packing bound

(B.41) is applicable, and ensures that (B.45) will be satisfied. This completes the proof.

B.15 Proof of Corollary 3.3

We only need to check Assumption C4 for J(g) = TV(g(k)), w = 1/(k + 1), and then we
can apply Theorem 3.3. As before, the entropy bound upper bound is implied by results in
Birman & Solomyak (1967) (see Mammen (1991) for an explanation and discussion). The
packing number lower bound is verified as follows. For f a (k+1) times weakly differentiable
function on [0, 1],

TV(f (k)) =

∫ 1

0
|f (k+1)(t)| dt ≤

(∫ 1

0
|f (k+1)(t)|2 dt

)1/2

.

Hence {
f : TV(f (k)) ≤ 1, ‖f‖∞ ≤ 1

}
⊇
{
f :

∫ 1

0
|f (k+1)(t)|2 dt ≤ 1, ‖f‖∞ ≤ 1

}
.

Results in Kolmogorov & Tikhomirov (1959) imply that the space on the right-hand side
satisfies the desired log packing number lower bound. This proves the result.
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B.16 Proof of the linear smoother lower bound in (3.34)

We may assume without a loss of generality that each f0j , j = 1, . . . , d has L2 mean zero
(since f0 does). By the decomposability property of the L2 norm over additive functions
with L2 mean zero components, as in (3.25), we have for any additive linear smoother
f̂ =

∑d
j=1 f̂j ,

‖f̂ − f0‖22 =

( d∑
j=1

f̄j

)2

+
d∑
j=1

‖(f̂j − f̄j)− f0j‖22

where f̄j denotes the L2 mean of f̂j , j = 1, . . . , d. Note that the estimator f̂j − f̄j is
itself a linear smoother, for each j = 1, . . . , d, since if we write f̂j(xj) = wj(xj)

TY for
a weight function wj over xj ∈ [0, 1], then f̂j(xj)− f̄j = w̃j(xj)

TY for a weight function
w̃j(xj) = wj(xj)−

∫ 1
0 wj(t) dt. This, and the last display, imply that

inf
f̂ additive linear

sup
f0∈Fdk (cn)

E‖f̂ − f0‖22 =
d∑
j=1

inf
f̂j linear

sup
f0∈Fdk (cn)

E‖f̂j(Y )− f0j‖22. (B.46)

Now fix an arbitrary j = 1, . . . , d, and consider the jth term in the sum on the right-hand
side above. Here we are looking at a linear smoother f̂j fit to data

Y i = µ+ f0j(X
i
j) +

∑
`6=j

f0`(X
i
`) + εi, i = 1, . . . , n. (B.47)

which depends on the components f0`, for ` 6= j. This is why the supremum in the jth
term of the sum on the right-hand side in (B.46) must be taken over f0 ∈ Fdk (cn), rather
than f0j ∈ Fk(cn). Our notation f̂j(Y ) is used as a reminder to emphasize the dependence
on the full data vector in (B.47).

A simple reformulation, by appropriate averaging over the lattice, helps untangle this
supremum. Write f̂j(xj) = wj(xj)

TY for a weight function wj over xj ∈ [0, 1], and for each
v = 1, . . . , N , let Ivj be the set of indices i such that Xi

j = v/N . Also let

Ȳ v
j =

1

Nd−1

∑
i∈Ivj

Y i, v = 1, . . . , N,

and Ȳj = (Ȳ 1
j , . . . , Ȳ

N
j ) ∈ RN . Then note that we can also write f̂j(xj) = w̄j(xj)

T Ȳj for a
suitably defined weight function w̄j , i.e., note that we can think of f̃j as a linear smoother
fit to data Ȳj , whose components follow the distribution

Ȳ v
j = µj + f0j(v/N) + ε̄vj , v = 1, . . . , N, (B.48)

where we let µj = µ+ 1
N

∑
6̀=j
∑n

u=1 f0`(u/N), and ε̄vj , v = 1, . . . , n are i.i.d.N(0, σ2/Nd−1).
Recalling that f0j ∈ Fk(cn), we are in a position to invoke univariate minimax results from
Donoho & Johnstone (1998). As shown in Section 5.1 of Tibshirani (2014), the space Fk(cn)
contains the Besov space Bk+1

1,1 (c′n), for a radius c′n that differs from cn only by a constant
factor. Therefore, by Theorem 1 of Donoho & Johnstone (1998) on the minimax risk of
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linear smoothers fit to data from the model (B.48), we see that for large enough N and a
constant c0 > 0,

inf
f̂j linear

sup
f0j∈Fk(cn)

E‖f̂j(Ȳj)− f0j‖22 ≥ c0(cnN
(d−1)/2)2/(2k+2)N

−(2k+1)/(2k+2)

Nd−1

= c0N
−d(2k+1)/(2k+2)c2/(2k+2)

n

= c0n
−(2k+1)/(2k+2)c2/(2k+2)

n . (B.49)

As we have reduced the lower bound to the minimax risk of linear smoothers over a Besov
ball, we can see that the same result (B.49) indeed holds simultaneously over all j = 1, . . . , d.
Combining this with (B.46) gives the desired result (3.34).

B.17 Proof of Theorem 3.4 and derivation details for Algo-
rithm 2

We show that the dual of (3.37) is equivalent to the additive trend filtering problem (3.4),
and further, the Lagrange multipliers corresponding to the constraints u0 = uj , for j =
1, . . . , d, are equivalent to the primal variables θj , j = 1, . . . , d. Let M = I − 11

T /n, and
rewrite problem (3.37) as

min
u0,u1,...,ud∈Rn

1

2
‖MY −Mu0‖22 +

d∑
j=1

IUj (uj)

subject to Mu0 = Mu1, Mu0 = Mu2, . . . , Mu0 = Mud,

We can write the Lagrangian of this problem as

L(u0, u1, . . . , ud, θ1, . . . , θd) =
1

2
‖MY −Mu0‖22 +

d∑
j=1

IUj (uj) +
d∑
j=1

θTj M(u0 − uj).

and we want to minimize this over u0, . . . , ud to form the dual of (3.37). This gives

max
θ1,...,θd∈Rn

1

2
‖MY ‖22 −

1

2

∥∥∥∥MY −
d∑
j=1

Mθj

∥∥∥∥2

2

−
d∑
j=1

(
max
uj∈Uj

uTj Mθj

)
. (B.50)

We use the fact that the support function of Uj is just `1 penalty composed with SjDj

(invoking the duality between `∞ and `1 norms),

max
uj∈Uj

uTj Mθj = max
‖vj‖≤λ

vTj DjSjMθj = λ‖DjSjMθj‖1,

where recall we abbreviate Dj = D(Xj ,k+1), for j = 1, . . . , d, and this allows us to rewrite
the above problem (B.50) as

min
θ1,...,θd∈Rn

1

2

∥∥∥∥MY −
d∑
j=1

Mθj

∥∥∥∥2

2

+ λ

d∑
j=1

‖DjSjMθj‖1,
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which is precisely the same as the original additive trend filtering problem (3.4).
This realization has important consequences. In the ADMM iterations (3.38), the scaled

parameters ργj , j = 1, . . . , d correspond to dual variables θj , j = 1, . . . , d in problem
(3.37), which from the above calculation, are precisely primal variables in (3.4). Under
weak conditions, ADMM is known to produce convergent dual iterates, e.g., Section 3.2
of Boyd et al. (2011) shows that if (i) the criterion is a sum of closed, convex functions
and (ii) strong duality holds, then the dual iterates from ADMM converge to optimal dual
solutions. (Convergence of primal iterates requires stronger assumptions.) Our problem
(3.37) satisfies these two conditions, and so for the ADMM algorithm outlined in (3.38),
the scaled iterates ργ

(t)
j , j = 1, . . . , d converge to optimal solutions in the dual of (3.37),

i.e., optimal solutions in the additive trend filtering problem (3.4). This proves the first
part of the theorem.

As for the second part of the theorem, it remains to show that Algorithm 2 is equivalent
to the ADMM iterations (3.36). This follows by notationally swapping γj , j = 1, . . . , d for
θj/ρ, j = 1, . . . , d, rewriting the updates

θ
(t)
j /ρ = u

(t)
0 + θ

(t−1)
j /ρ− u(t)

j , j = 1, . . . , d,

as
θ

(t)
j = ρ · TFλ

(
u

(t)
0 + θ

(t−1)
j /ρ,Xj

)
, j = 1, . . . , d,

using (3.35), and lastly, eliminating uj , j = 1, . . . , d from the u0 update by solving for these
variables in terms of terms of θj , j = 1, . . . , d, i.e., by using

u
(t−1)
j = u

(t−1)
0 + θ

(t−2)
j /ρ− θ(t−1)

j /ρ, j = 1, . . . , d.

B.18 Cyclic versus parallel backfitting

We compare the performances of the usual cyclic backfitting method in Algorithm 1 to
the parallel version in Algorithm 2, on a simulated data set generated as in Section 3.5.1,
except with n = 2000 and d = 24. We computed the additive trend filtering estimate
(3.4) (of quadratic order), at a fixed value of λ lying somewhere near the middle of the
regularization path, by running the cyclic and parallel backfitting algorithms until each
obtained a suboptimality of 10−8 in terms of the achieved criterion value (the optimal
criterion value here was determined by running Algorithm 1 for a very large number of
iterations). We used simply ρ = 1 in Algorithm 2.

Figure B.1 shows the progress of the two algorithms, plotting the suboptimality of the
criterion value across the iterations. The two panels, left and right, differ in how iterations
are counted for the parallel method. On the left, one full cycle of d component updates is
counted as one iteration for the parallel method—this corresponds to running the parallel
algorithm in “naive” serial mode, where each component update is actually performed in
sequence. On the right, d full cycles of d component updates is counted as one iteration
for the parallel method—this corresponds to running the parallel algorithm in an “ideal”
parallel mode with d parallel processors. In both panels, one full cycle of d component
updates is counted as one iteration for the cyclic method. We see that, if parallelization
is fully utilized, the parallel method cuts down the iteration cost by about a factor of 2,
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Figure B.1: Suboptimality in criterion value versus iteration number for the cyclic (Algorithm 1)
and parallel (Algorithm 2) backfitting methods, on a synthetic data set with n = 2000 and d = 24.
On the left, iterations for the parallel method are counted as if “ideal” parallelization is used, where
the d component updates are performed by d processors, at the total cost of one update, and on the
right, iterations for the parallel method are counted as if “naive” serialization is used, where the
component updates are performed in sequence. To avoid zeros on the y-axis (log scale), we added a
small value to all the suboptimalities (dotted line).

compared to the cyclic method. We should expect these computational gains to be even
larger as the number of components d grows.

B.19 Simulated homogeneously-smooth data

Figure B.2 shows the results of a homogeneous simulation, as in Section 3.5.1 and Figure
3.4, except that for the base component trends we used sinusoids of equal (and spatially-
constant) frequency:

g0j(xj) = sin(10πxi), j = 1, . . . , 10,

and we defined the component functions as f0j = ajg0j − bj , j = 1, . . . , d, where aj , bj
were chosen to standardize f0j (give it zero empirical mean and unit empirical norm), for
j = 1, . . . , d.
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Figure B.2: Results from a simulation setup identical to that described in Section 3.5.1, i.e., identical
to that used to produce Figure 3.4, except with homogeneous smoothness in the underlying component
functions.



Appendix C

Appendix for Higher-Order
Kolmogorov-Smirnov Test

C.0.1 Comparing the Test in Wang et al. (2014)

The test statistic in Wang et al. (2014) can be expressed as

T ∗∗ = max
t∈Z(N)

|(Pm −Qn)g+
t | = max

t∈Z(N)

∣∣∣∣ 1

m

m∑
i=1

(xi − t)k+ −
1

n

n∑
i=1

(yi − t)k+
∣∣∣∣. (C.1)

This is very close to our approximate statistic T ∗ in (4.9). The only difference is that we
replace g+

t (x) = (x− t)k+ by g−t (x) = (t− x)k+ for t ≤ 0.

Our exact (not approximate) statistic is in (4.6). This has the advantage having an
equivalent variational form (4.5), and the latter form is important because it shows the
statistic to be a metric.

C.1 Proof of Proposition 4.1

We first claim that F (x) = |x|k/k! is an envelope function for Fk, meaning f ≤ F for all
f ∈ Fk. To see this, note each f ∈ Fk has kth weak derivative with left or right limit
of 0 at 0, so |f (k)(x)| ≤ TV(f (k)) ≤ 1; repeatedly integrating and applying the derivative
constraints yields the claim. Now due to the envelope function, if P,Q have k moments,
then the IPM is well-defined: |Pf | < ∞, |Qf | < ∞ for all f ∈ Fk. Thus if P = Q, then
clearly ρ(P,Q;Fk) = 0.

For the other direction, suppose that ρ(P,Q;Fk) = 0. By simple rescaling, for any f , if
TV(f (k)) = R > 0, then TV((f/R)(k)) ≤ 1. Therefore ρ(P,Q;Fk) = 0 implies ρ(P,Q; F̃k) = 0,
where

F̃k =
{
f : TV(f (k)) <∞, f (j)(0) = 0, j ∈ {0}∪ [k−1], and f (k)(0+) = 0 or f (k)(0−) = 0

}
.

This also implies ρ(P,Q; F̃+
k ) = 0, where

F̃+
k = {f : TV(f (k)) <∞, f(x) = 0 for x ≤ 0}.
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As the class F̃+
k contains C∞c (R+), where R+ = {x : x > 0} (and C∞c (R+) is the class

of infinitely differentiable, compactly supported functions on R+), we have by Lemma C.1
that P (A ∩ R+) = Q(A ∩ R+) for all open sets A. By similar arguments, we also get that
P (A ∩ R−) = Q(A ∩ R−), for all open sets A, where R− = {x : x < 0}. This implies that
P ({0}) = Q({0}) (as 1− P (R+)− P (R−), and the same for Q), and finally, P (A) = Q(A)
for all open sets A, which means that P = Q.

C.2 Statement and Proof of Lemma C.1

Lemma C.1. For any two distributions P,Q supported on an open set Ω, if EX∼P [f(X)] = EY∼Q[f(Y )]
for all f ∈ C∞c (Ω), then P = Q.

Proof. It suffices to show that P (A) = Q(A) for every open set A ⊆ Ω. As P,Q are
probability measures and hence Radon measures, there exists a sequence of compact sets
Kn ⊆ A, n = 1, 2, 3, . . . such that limn→∞ P (Kn) = P (A) and limn→∞Q(Kn) = Q(A).
Let fn, n = 1, 2, 3, . . . be smooth compactly supported functions with values in [0, 1] such
that fn = 1 on Kn and fn = 0 outside of A. (Such functions can be obtained by applying
Urysohn’s Lemma on appropriate sets containing Kn and A and convolving the resulting
continuous function with a bump function.) Then P (Kn) ≤ EP (fn) = EQ(fn) ≤ Q(A)
(where the equality by the main assumption in the lemma). Taking n → ∞ gives P (A) ≤
Q(A). By reversing the roles of P,Q, we also get Q(A) ≤ P (A). Thus P (A) = Q(A).

C.3 Proof of Theorem 4.1

Let Gk be as in (4.10). Noting that Gk ⊆ Fk, it is sufficient to show

sup
f∈Fk

|Pmf −Qnf | ≤ sup
g∈Gk

|Pmg −Qng|.

Fix any f ∈ Fk. Denote Z0
(N) = {0} ∪ Z(N). From the statement and proof of Theorem 1

in Mammen (1991), there exists a spline f̃ of degree k, with finite number of knots such
that for all z ∈ Z0

(N)

f(z) = f̃(z),

f (j)(z) = f̃ (j)(z), j ∈ [k − 1],

f (k)(z+) = f̃ (k)(z+),

f (k)(z−) = f̃ (k)(z−).

and importantly, TV(f̃ (k)) ≤ TV(f (k)). As 0 ∈ Z0
(N), we hence know that the boundary

constraints (derivative conditions at 0) are met, and f̃ ∈ Fk.
Because f̃ is a spline with a given finite number of knot points, we know that it has

an expansion in terms of truncated power functions. Write t0, t1, . . . , tL for the knots of f̃ ,
where t0 = 0. Also denote gt = g+

t when t > 0, and gt = g−t when t < 0. Then for some
α` ∈ R, ` ∈ {0} ∪ [L], and a polynomial p of degree k, we have

f̃ = p+ α0g
+
0 +

L∑
`=1

α`gt` ,
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The boundary conditions on f̃ , g+
0 , gt` , ` ∈ [L] imply

p(0) = p(1)(0) = . . . = p(k−1)(0) = 0,

(α0g0+ + p)(k)(0+) = 0 or (α0g0+ + p)(k)(0−) = 0.

The second line above implies that

α0 + p(k) = 0 or p(k) = 0.

In the second case, we have p = 0. In the first case, we have p(x) = −α0x
k/k!, so

α0g0 + p = −(−1)k+1α0g
−
0 . Therefore, in all cases we can write

f̃ =

L∑
`=0

α`gt` ,

with the new understanding that g0 is either g+
0 or g−0 . This means that f̃ lies in the span

of functions in Gk. Furthermore, our last expression for f̃ implies

‖α‖1 =

L∑
`=0

|α`| = TV(f̃ (k)) ≤ TV(f (k)) ≤ 1.

Finally, using the fact that f and f̃ agree on Z0
(N),

|Pmf −Qnf | = |Pmf̃ −Qnf̃ |

=

∣∣∣∣ L∑
`=0

α`(Pmgt` −Qngt`)

∣∣∣∣
≤

L∑
`=0

|α`| · sup
g∈Gk
|Pmg −Qng|

≤ sup
g∈Gk

|Pmg −Qng|,

the last two lines following from Holder’s inequality, and ‖α‖1 ≤ 1. This completes the
proof.

C.4 Proof of Proposition 4.3

From Shor (1998), Nesterov (2000), a polynomial of degree 2d is nonnegative on R if and only
if it can be written as a sum of squares (SOS) of polynomials, each of degree d. Crucially,
one can show that p(x) =

∑2d
i=0 aix

i is SOS if and only if there is a positive semidefinite
matrix Q ∈ R(d+1)×(d+1) such that

ai−1 =
∑
j+k=i

Qjk, i ∈ [2d].

Finding such a matrix Q can be cast as a semidefinite program (SDP) (a feasibility program,
to be precise), and therefore checking nonnegativity can be done by solving an SDP.
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Furthermore, calculating the maximum of a polynomial p is equivalent to calculating
the smallest γ such that γ − p is nonnegative. This is therefore also an SDP.

Finally, a polynomial of degree k is nonnegative an interval [a, b] if and only if it can be
written as

p(x) =

{
s(x) + (x− a)(b− x)t(x) k even

(x− a)s(x) + (b− x)t(x) k odd
, (C.2)

where s, t are polynomials that are both SOS. Thus maximizing a polynomial over an
interval is again equivalent to an SDP. For details, including a statement that such an SDP
can be solved to ε-suboptimality in ck log(1/ε) iterations, where ck > 0 is a constant that
depends on k, see Nesterov (2000).

C.5 Proof of Lemma 4.2

Suppose t∗ maximizes the criterion in (4.6). If t∗ = 0, then T ∗ = T and the result trivially
holds. Assume without a loss of generality that t∗ > 0, as the result for t∗ < 0 will follow
similarly.

If t∗ is one of the sample points Z(N), then T ∗ = T and the result trivially holds; if t∗ is
larger than all points in Z(N), then T ∗ = T = 0 and again the result trivially holds. Hence
we can assume without a loss of generality that t∗ ∈ (a, b), where a, b ∈ Z0

(N). Define

φ(t) =
1

k!

N∑
i=1

ci(zi − t)k+, t ∈ [a, b],

where ci = (1m/m− 1n/n)i, i ∈ [N ], as before. Note that T = φ(t∗), and

|φ′(t)| ≤ 1

(k − 1)!

N∑
i=1

|ci||zk−1
i | = 1

(k − 1)!

(
1

m

m∑
i=1

|xi|k−1 +
1

n

n∑
i=1

|yi|k−1

)
:= L.

Therefore
T − T ∗ ≤ |f(t∗)| − |f(a)| ≤ |f(t∗)− f(a)| ≤ |t∗ − a|L ≤ δNL,

as desired.

C.6 Proof of Lemma 4.3

Decompose Gk = G+
k ∪ G

−
k , where G+

k = {g+
t : t ≥ 0}, G−k = {g−t : t ≤ 0}. We will bound the

bracketing number of G+
k , and the result for G−k , and hence Gk, follows similarly.

Our brackets for G+
k will be of the form [gti , gti+1 ], i ∈ {0} ∪ [R], where 0 = t1 < t2 <

· · · < tR+1 =∞ are to be specified, with the convention that g∞ = 0. It is clear that such
a set of brackets covers G+

k . Given ε > 0, we need to choose the brackets such that

‖gti − gti+1‖2 ≤ ε, i ∈ {0} ∪ [R], (C.3)

and then show that the number of brackets R is small enough to satisfy the bound in the
statement of the lemma.
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For any 0 ≤ s < t,

k!2‖gs − gt‖22 =

∫ t

s
(x− s)2k

+ dP (x) +

∫ ∞
t

(
(x− s)k − (x− t)k

)2
dP (x)

≤
∫ ∞
s

(
k(x− s)k−1(t− s)

)2
dP (x)

= k2(t− s)2

∫ ∞
s

(x− s)2k−2 dP (x),

where the second line follows from elementary algebra. Now in view of the moment bound
assumption, we can bound the integral above using Holder’s inequality with p = (2k +
δ)/(2k − 2) and q = (2k + δ)/(2 + δ) to get

k!2‖gs − gt‖22 ≤ k2(t− s)2

(∫ ∞
s

(x− s)2k+δ dP (x)

)1/p(∫ ∞
s

1q (x)dP

)1/q

≤ M1/p

(k − 1)!2
(t− s)2, (C.4)

where recall the notation M = E[|X|2k+δ] <∞.
Also, for any t > 0, using Holder’s inequality again, we have

k!2‖gt − 0‖22 =

∫ ∞
t

(x− t)2k dP (x)

≤
(∫ ∞

t
(x− t)2k+δ dP (x)

)2k/(2k+δ)(
P (X ≥ t)

)δ/(2k+δ)

≤M2k/(2k+δ)

(
E|X|2k+δ)

t2k+δ

)δ/(2k+δ)

=
M

tδ
, (C.5)

where in the third line we used Markov’s inequality.
Fix an ε > 0. For parameters β,R > 0 to be determined, set ti = (i − 1)β for i ∈ [R]

and t0 = 0, tR+1 =∞. Looking at (C.4), to meet (C.3), we see we can choose β such that

M1/p

(k − 1)!2
β2 ≤ ε2.

Then for such a β, looking at (C.5), we see we can choose R such that

M

k!2((R− 1)β)δ
≤ ε2.

In other words, we can choose choose

β =
(k − 1)!

M1/2p
, R = 1 +

⌈
M1/2p+1/δ

(k − 1)!k!2/δε2/δ+1

⌉
,

and (C.4), (C.5) imply that we have met (C.3). Therefore,

logN[](ε, ‖ · ‖,G+
k ) ≤ logR ≤ C log

M1+
δ(k−1)
2k+δ

ε2+δ
,

where C > 0 depends only on k, δ.
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C.7 Proof of Theorem 4.3

Once we have a finite bracketing integral for Gk, we can simply apply Theorem 4.2 to get
the result. Lemma 4.3 shows the log bracketing number of Gk to grow at the rate log(1/ε),
slow enough to imply a finite bracketing integral (the bracketing integral will be finite as
long as the log bracketing number does not grow faster than 1/ε2).

C.8 Proof of Corollaries 4.1 and 4.2

For the approximation from Proposition 4.3, observe
√
NTε =

√
NT +

√
N(T − Tε),

and 0 ≤
√
N(T − Tε) ≤

√
Nε, so for ε = o(1/

√
N), we will have

√
NTε converging weakly

to the same Gaussian process as
√
NT .

For the approximation in (4.9), the argument is similar, and we are simply invoking
Lemma 5 in Wang et al. (2014) to bound the maximum gap δN in probability, under the
density conditions.

C.9 Proof of Theorem 4.5

Let W =
√
mρ(Pm, P ;Gk). The bracketing integral of Gk is finite due to the slow growth of

the log bracketing number from Lemma 4.3, at the rate log(1/ε). Also, we can clearly take
F (x) = |x|k/k! as an envelope function for Gk. Thus, we can apply Theorem 4.5 to yield(

E[ρ(Pm, P ;Gk)p]
)1/p ≤ C√

m

for a constant C > 0 depending only on k, p, and E|X|p. Combining this with Markov’s
inequality, for any a,

P
(
ρ(Pm, P ;Gk) > a

)
≤
(

C√
ma

)p
,

thus for a = C/(
√
mα1/p), we have ρ(Pm, P ;Gk) ≤ a with probability at least 1 − α. The

same argument applies to W =
√
nρ(Qn, P ;Gk), and putting these together yields the result.

The result when we additionally assume finite Orlicz norms is also similar.

C.10 Proof of Corollary 4.3

Let f maximize |(P − Q)f |. Due to the moment conditions (see the proof of Proposition
4.1), we have |Pf | < ∞, |Qf | < ∞. Assume without loss of generality that (P − Q)f > 0.
By the strong law of large numbers, we have (Pm − Qn)f → (P − Q)f as m,n → ∞,
almost surely. Also by the strong law, Pm|x|k−1 → P|x|k−1 as m → ∞, almost surely, and
Qn|y|k−1 → Q|y|k−1 as n→∞, almost surely. For what follows, fix any samples X(m), Y(n)

(i.e., take them to be nonrandom) such that the aforementioned convergences hold.
For each m,n, we know by the representer result in Theorem 4.1 that there exists

gmn ∈ Gk such that (Pm − Qn)f = |(Pm − Qn)gmn|. (This is possible since the proof of
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Theorem 4.1 does not rely on any randomness that is inherent to X(m), Y(n), and indeed
it holds for any fixed sets of samples.) Assume again without a loss of generality that
(Pm−Qn)gmn > 0. Denote by tmn the knot of gmn (i.e., gmn = g+

tmn if t ≥ 0, and gmn = g−tmn
if t ≤ 0). We now consider two cases.

If |tmn| is a bounded sequence, then by the Bolzano-Weierstrass theorem, it has a conver-
gent subsequence, which converges say to t ≥ 0. Passing to this subsequence (but keeping
the notation unchanged, to avoid unnecessary clutter) we claim that (Pm − Qn)gmn →
(P − Q)g as m,n → ∞, where g = g+

t . To see this, assume tmn ≥ t without a loss of
generality (the arguments for tmn ≤ t are similar), and note

g(x)− gmn(x) =


0 x < t

(x− t)k t ≤ x < tmn

(tmn − t)
∑k−1

i=0 (x− t)i(x− tmn)k−1−i x ≥ tmn
,

where we have used the identity ak − bk = (a− b)
∑k−1

i=0 a
ibk−1−i. Therefore, as m,n→∞,

|Pm(gmn − g)| ≤ k|tmn − t|Pm|x|k−1 → 0,

because tmn → t by definition, and Pm|x|k−1 → P|x|k. Similarly, as m,n → ∞, we have
|Qn(gmn−g)| → 0, and therefore |(Pm−Qn)(gmn−g)| ≤ |Pm(gmn−g)|+|Qm(gmn−g)| → 0,
which proves the claim. But since (Pm − Qn)gmn = (Pm − Qn)f for each m,n, we must
have (P−Q)g = (P−Q)f , i.e., there is a representer in Gk, as desired.

If |tmn| is unbounded, then pass to a subsequence in which tmn converges say to ∞
(the case for convergence to −∞ is similar). In this case, we have (Pm − Qn)gmn → 0 as
m,n → ∞, and since (Pm − Qn)gmn = (Pm − Qn)f for each m,n, we have (P − Q)f = 0.
But we can achieve this with (P−Q)g+

t , by taking →∞, so again we have a representer in
Gk, as desired.

C.11 Proof of Corollary 4.4

When we reject as specified in the corollary, note that for P = Q, we have type I error at
most αN by Theorem 4.4, and as αN = o(1), we have type I error converging to 0.

For P 6= Q, such that the moment conditions are met, we know by Corollary 4.3 that
ρ(P,Q;Gk) 6= 0. Recalling 1/αN = o(Np/2), we have as N →∞,

c(αN )

(
1√
m

+
1√
n

)
= α−1/p

(
1√
m

+
1√
n

)
→ 0.

The concentration result from Theorem 4.5 shows that T will concentrate around ρ(P,Q;Gk) 6=
0 with probability tending to 1, and thus we reject with probability tending to 1.

C.12 Additional Experiments

C.13 Local Density Differences Continued

Figure C.1 plots the densities used for the local density difference experiments, with the
left panel corresponding to Figure 4.6, and the right panel to Figure 4.7.
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Figure C.1: Densities for the local density difference experiments.

C.14 Comparison to MMD with Polynomial Kernel

Now we compare the higher-order KS test to the MMD test with a polynomial kernel, as
suggested by a referee of this paper. The MMD test with a polynomial kernel looks at
moment differences up to some prespecified order d ≥ 1, and its test statistic can be written
as

d∑
i=0

(
d

i

)
(Pnxi − Pmyi)2.

This looks at a weighted sum of all moments up to order d, whereas our higher-order KS
test looks at truncated moments of a single order k. Therefore, to put the methods on more
equal footing, we aggregated the higher-order KS test statistics up to order k, i.e., writing
Ti to denote the ith order KS test statistic, i ∈ [k], we considered

k∑
i=0

(
k

i

)
T 2
i ,

borrowing the choice of weights from the MMD polynomial kernel test statistic.
Figure C.2 shows ROC curves from two experiments comparing the higher-order KS test

and MMD polynomial kernel tests. We used distributions P = N(0, 1), Q = N(0.2, 1) in
the left panel (as in Figure 4.4), and P = N(0, 1), Q = t(3) in the right panel (as in Figure
4.5). We can see that the (aggregated) higher-order KS tests and MMD polynomial kernel
tests perform roughly similarly.

There is one important point to make clear: the population MMD test with a polynomial
kernel is not a metric, i.e., there are distributions P 6= Q for which the population-level test
statistic is exactly 0. This is because it only considers moment differences up to order d,
thus any pair of distributions P,Q that match in the first d moments but differ in (say) the
(d + 1)st will lead to a population-level statistic that 0. In this sense, the MMD test with
a polynomial kernel is not truly nonparametric, whereas the KS test, the higher-order KS
tests the MMD test with a Gaussian kernel, the energy distance test, the Anderson-Darling
test, etc., all are.
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Figure C.2: ROC curves for P = N(0, 1), Q = N(0.2, 1) (left), and P = N(0, 1), Q = t(3) (right).

C.15 Proof of Proposition 4.4

For k ≥ 1, recall our definition of Ik the kth order integral operator,

(Ikf)(x) =

∫ x

0

∫ tk

0
· · ·
∫ t2

0
f(t1) dt1 · · · dtk,

Further, for k ≥ 1, denote by Dk the kth order derivative operator,

(Dkf)(x) = f (k)(x),

Is it not hard to check that over all functions f with k weak derivatives, and that obey
the boundary conditions f(0) = f ′(0) = · · · = f (k−1)(0) = 0, these two operators act as
inverses, in that

DkIkf = f, and IkDkf = f.

For a measure µ, denote 〈f, dµ〉 =
∫
f(x) dµ(x). (This is somewhat of an abuse of the

notation for the usual L2 inner product on square integrable functions, but it is convenient
for what follows.) With this notation, we can write the kth order KS test statistic, at the
population-level, as

sup
f∈Fk

|Pf −Qf | = sup
f∈Fk

|〈f, dP − dQ〉|

= sup
f∈Fk

|〈IkDkf, dP − dQ〉|

= sup
h:TV(h)≤1,

h(0+)=0 orh(0−)=0

|〈Ikh, dP − dQ〉|

= sup
h:TV(h)≤1,

h(0+)=0 orh(0−)=0

|〈h, (Ik)∗(dP − dQ)〉|

= ‖(I1)∗(Ik)∗(dP − dQ)‖∞. (C.6)
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In the second line, we used the fact that Ik and Dk act as inverses over f ∈ Fk because
these functions all satisfy the appropriate boundary conditions. In the third line, we simply
reparametrized via h = f (k). In the fourth line, we introduced the adjoint operator (Ik)∗ of
Ik (which will be described in detail shortly). In the fifth line, we leveraged the variational
result for the KS test (k = 0 case), where (I1)∗ denotes the adjoint of the integral operator
I1 (details below), and we note that the limit condition at 0 does do not affect the result
here.

We will now study the adjoints corresponding to the integral operators. By definition
(I1)∗g must satisfy for all functions f

〈I1f, g〉 = 〈f, (I1)∗g〉.

We can rewrite this as ∫ ∫ x

0
f(t)g(x) dt dx =

∫
f(t)((I1)∗g)(t) dt,

and we can recognize by Fubini’s theorem that therefore

((I1)∗g)(t) =


∫ ∞
t

g(x) dx t ≥ 0

−
∫ t

−∞
g(x) dx t < 0.

For functions g that integrate to 0, this simplifies to

((I1)∗g)(t) =

∫ ∞
t

g(x)dx, t ∈ R. (C.7)

Returning to (C.6), because we can decompose Ik = I1I1 · · · I1 (k times composition),
it follows that (Ik)∗ = (I1)∗(I1)∗ · · · (I1)∗ (k times composition), so

‖(I1)∗(Ik)∗(dP − dQ)‖∞ = ‖(Ik)∗(I1)∗(dP − dQ)‖∞ = ‖(Ik)∗(FP − FQ)‖∞,

where in the last step we used (C.7), as dP −dQ integrates to 0. This proves the first result
in the proposition.

To prove the second result, we will show that

(Ik)∗(FP − FQ)(x) =

∫ ∞
x

∫ ∞
tk

· · ·
∫ ∞
t2

(FP − FQ)(t1) dt1 · · · dtk,

when P,Q has nonnegative supports, or have k matching moments. In the first case, the
above representation is clear from the definition of the adjoint. In the second case, we
proceed by induction on k. For k = 1, note that FP − FQ integrates to 0, which is true
because

〈1, FP − FQ〉 = 〈1, (I1)∗(dP − dQ)〉 = 〈x, dP − dQ〉 = 0,

the last step using the fact that P,Q have matching first moment. Thus, as FP − FQ
integrates to 0, we can use (C.7) to see that

(I1)∗(FP − FQ)(x) =

∫ ∞
x

(FP − FQ)(t) dt.
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Assume the result holds for k − 1. We claim that (Ik−1)∗(FP − FQ) integrates to 0, which
is true as

〈1, (Ik−1)∗(FP − FQ)〉 = 〈1, (Ik)∗(dP − dQ)〉 = 〈xk/k!, dP − dQ〉 = 0,

the last step using the fact that P,Q have matching kth moment. Hence, as (Ik−1)∗(FP−FQ)
integrates to 0, we can use (C.7) and conclude that

(Ik)∗(FP − FQ)(x) = (I1)∗(Ik−1)∗(FP − FQ)(x)

=

∫ ∞
x

(Ik−1)∗(FP − FQ)(t) dt

=

∫ ∞
x

∫ ∞
tk

· · ·
∫ ∞
t2

(FP − FQ)(t1) dt1 · · · dtk,

where in the last step we used the inductive hypothesis. This completes the proof.
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