
Gradient Descent for Non-convex Problems in
Modern Machine Learning

Simon Shaolei Du

APRIL 2019
CMU-ML-19-102

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Barnabás Póczos , Co-Chair

Aarti Singh, Co-Chair
Ruslan Salakhutdinov

Michael I. Jordan (UC Berkeley)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2019 Simon Shaolei Du

This research was sponsored by Department of Energy award DEAR0000596, Department of the Interior award
D17AP00001, Air Force Research Laboratory award FA87501720212 and a grant from the Foxconn Technology
Group.

Keywords: machine learning, nonconvex optimization, gradient descent, neural network,
saddle point, matrix factorization

To my family and my beautiful girlfriend.

iv

Abstract
Machine learning has become an important tool set for artificial intelligence and

data science across many fields. A modern machine learning method can be often
reduced to a mathematical optimization problem. Among algorithms to solve the
optimization problem, gradient descent and its variants like stochastic gradient de-
scent and momentum methods are the most popular ones. The optimization problem
induced from classical machine learning methods is often a convex and smooth one,
for which gradient descent is guaranteed to solve it efficiently. On the other hand,
modern machine learning methods, like deep neural networks, often require solving
a non-smooth and non-convex problem. Theoretically, non-convex mathematical
optimization problems cannot be solved efficiently. However, in practice, gradient
descent and its variants can find a global optimum efficiently. These competing facts
show that often there are special structures in the optimization problems that can
make gradient descent succeed in practice.

This thesis presents technical contributions to fill the gap between theory and
practice on the gradient descent algorithm. The outline of the thesis is as follows.
• In the first part, we consider applying gradient descent to minimize the em-

pirical risk of a neural network. We will show if a multi-layer neural network
with smooth activation function is sufficiently wide, then randomly initialized
gradient descent can efficiently find a global minimum of the empirical risk.
We will also show the same result for the two-layer neural network with Recti-
fied Linear Unit (ReLU) activation function. It is quite surprising that although
the objective function of neural networks is non-convex, gradient descent can
still find their global minimum. Lastly, we will study structural property of the
trajectory induced by the gradient descent algorithm.

• In the second part, we assume the label is generated from a two-layer teacher
convolutional neural network and we consider using gradient descent to recover
the teacher convolutional neural network. We will show that if the input dis-
tribution is Gaussian, then gradient descent can recovered a one-hidden-layer
convolutional neural network in which both the convolutional weights and the
output wights are unknown parameters to be recovered. We will also show that
the Gaussian input assumption can be relaxed to a general structural assump-
tion if we only need to recover a single convolutional filter.

• In the third part, we study conditions under which gradient descent fails. We
will show gradient descent can take exponential time to optimize a smooth
function with the strict saddle point property for which the noise-injected gra-
dient can optimize in polynomial time.

While our focus is theoretical, whenever possible, we also present experiments that
illustrate our theoretical findings.

vi

Acknowledgments
First and foremost, I would like to thank my two amazing PhD advisors Aarti

Singh and Barnabás Póczos. Aarti and Barnabás are brilliant researchers. They are
knowledgeable and deep in machine learning and related fields. I learned a lot from
them on how to find the problem, formulate the problem and solve the problem with
appropriate tools. Aarti and Barnabás are also brilliant mentors. At the beginning of
my PhD study, they helped me pick the right project that I could make contributions
to and later they gave me the freedom to do research in fields that I am passionate
about.

I am fortunate to have Ruslan Salakhutdinov and Michael I. Jordan as my thesis
committee members. Russ knows every aspect of deep learning and when I switched
my research focus to deep learning theory, Russ gave me tremendous help. I knew
Mike when I was a junior undergraduate at Berkeley, taking his statistical machine
learning course. To me, his instruction is both technical and philosophical. Mike
always suggests me trying to look at the problem from a more general point of view
and this really shapes my research taste.

I also want to thank my undergraduate mentors Ming Gu, Lei Li, Michael Ma-
honey and Stuart Russell for developing my interest in scientific research. Particular
thank to Ming Gu, who taught me a lot on numerical linear algebra, which I used
frequently throughout my PhD.

During my PhD, I did three wonderful internships, at Microsoft Research Red-
mond, Facebook AI Research Menlo Park and Microsoft Research NYC. At Mi-
crosoft Research, I learned a ton about reinforcement learning from my mentors:
Alekh Agarwal, Jianshu Chen, Miro Dudı́k, Nan Jiang, Akshay Krishnamurthy, John
Langford, Lihong Li, Lin Xiao and Dengyong Zhou. They taught me how to develop
methods that are both theoretically principled and practically useful. At Facebook
AI Research, my mentor Yuandong Tian stirred my interest in deep learning theory.
Two chapters (Chapter 5 and Chapter 6) of this thesis are based on our collaborated
papers.

I have been extremely fortunate to collaborate with a wonderful set of colleagues:
Alekh Agarwal, Dave G. Anderson, Sanjeev Arora, Sivaraman Balakrishnan, Nina
Balcan, Jianshu Chen, Miro Dudı́k, Surbhi Goel, Ming Gu, Quanquan Gu, Wei Hu,
Nan Jiang, Chi Jin, Michael I. Jordan, Jayanth Koushik, Akshay Krishnamurthy,
John Langford, Jason D. Lee, Haochuan Li, Lihong Li, Zhiyuan Li, Michael Ma-
honey, Barnabás , Póczos, Pradeep Ravikumar, Ruslan Salakhutdinov, Bin Shi, Paloma
Sodhi, Aarti Singh, Shashank Singh, Langxuan Su, Weijie Su, Hanqi Sun, Yuandong
Tian, Liwei Wang, Ruosong Wang, Yining Wang, Rachel Ward, David Wettergreen,
Xiaoxia Wu, Lin Xiao, Wei Yu, Xiyu Zhai, Xiao Zhang (my middle and high school
classmate!) and Dengyong Zhou. Special thank to Sivaraman Balakrishnan, Jason
D. Lee, and Yining Wang. I had many intellectual discussions with Siva on various
technical problems and I learned a ton about statistics from him. Jason and I have
very common research interests, namely non-convex optimization and deep learn-
ing theory. We can discuss anytime on various places, in person, on Facebook, on

Google Hangouts, on WeChat and on Slack. Five chapters (Chapter 3 - Chapter 7)
in this thesis are based on our collaborated papers. Yining helped me a lot in nearly
every aspect of research, e.g., proof techniques, experiments, writings, etc, at my
early stage as a PhD student. I still remember he told me that I should add a period
after formula when writing a paper (facepalm).

I am very grateful to everyone at CMU MLD for contributing to a great en-
vironment for graduate studies. I want to thank Diane Stidle and other amazing
administrative staff for making the everyday life at MLD so easy for graduate stu-
dents. Special thanks to all of my friends and peers at CMU. I can’t possibly name
all of them; instead, let me thank them for making my PhD years some of the most
memorable years of my life.

Last but most importantly, I want to thank my parents Jidong Ma and Jun Du
for giving the best education I can have and my girlfriend Yangyi Lu for giving
unconditional love and happiness during my PhD study. I could not have done this
without their encouragement, support and love. I dedicate this thesis to them.

viii

Contents

1 Introduction 1
1.1 Overview of Thesis . 3
1.2 Bibliographic Notes . 5

1.2.1 Excluded Research . 5
1.3 Notations . 5

I Gradient Descent for Empirical Risk Minimization in Deep Learning 8

2 Gradient Descent Provably Optimizes Over-paramterized Two-layer ReLU Neural
Networks 9
2.1 Introduction . 9
2.2 Continuous Time Analysis . 10

2.2.1 Proof of Theorem 2.2 . 11
2.3 Discrete Time Analysis . 14

2.3.1 Proof of Theorem 2.3 . 14
2.4 Experiments . 17
2.5 Conclusion . 17
2.6 Proofs for Section 2.2 . 18
2.7 Proofs for Section 2.3 . 20

3 Gradient Descent Provably Optimizes Over-parameterized Deep Neural Networks
with Smooth Activation 22
3.1 Introduction . 22
3.2 Preliminaries . 23

3.2.1 Activation Function . 23
3.2.2 Problem Setup . 23

3.3 Technique Overview . 25
3.4 Convergence Result of GD for Deep Fully-connected Neural Networks 27
3.5 Convergence Result of GD for ResNet . 29
3.6 Convergence Result of GD for Convolutional ResNet 30
3.7 Conclusion and Future Work . 31
3.8 Proof Sketch . 32
3.9 Proofs for Section 3.4 . 34

ix

3.9.1 Proofs of Lemmas . 36
3.10 Proofs for Section 3.5 . 43

3.10.1 Proofs of Lemmas . 44
3.11 Proofs for Section 3.6 . 50

3.11.1 Proofs of Lemmas . 51
3.12 Analysis of Random Initialization . 58

3.12.1 A General Framework for Analyzing Random Initialization in First (H−
1) Layers . 58

3.12.2 From K(H−1) to K(H) . 65
3.13 Full Rankness of K(h) . 66

3.13.1 Full Rankness of K(h) for the Fully-connected Neural Network 66
3.13.2 Full Rankness of K(h) for ResNet . 67

3.14 Useful Technical Lemmas . 69

4 Auto-balancing Property of Gradient Descent for Optimizing Deep Homogeneous
Models 74
4.1 Introduction . 74

4.1.1 Notations . 77
4.2 The Auto-Balancing Properties in Deep Neural Networks 77

4.2.1 Fully Connected Neural Networks . 77
4.2.2 Convolutional Neural Networks . 78
4.2.3 Proof of Theorem 4.1 . 79

4.3 Gradient Descent Converges to Global Minimum for Asymmetric Matrix Fac-
torization . 80
4.3.1 The General Rank-r Case . 81
4.3.2 The Rank-1 Case . 82

4.4 Empirical Verifications . 82
4.5 Conclusion and Future Work . 83
4.6 Proofs for Section 4.2 . 84
4.7 Proof for Rank-r Matrix Factorization (Theorem 4.4) 85

4.7.1 Proof of Lemma 4.1 . 86
4.7.2 Convergence to a Stationary Point . 89
4.7.3 Proof of Lemma 4.2 . 90
4.7.4 Finishing the Proof of Theorem 4.4 . 92

4.8 Proof for Rank-1 Matrix Factorization (Theorem 4.5) 92

II Parameter Estimation in Convolutional Neural Networks via Gradi-
ent Descent 99

5 Learning a Two-layer Convolutional Neural Network via Gradient Descent 100
5.1 Introduction . 100
5.2 Preliminaries . 103
5.3 Main Result . 104

x

5.3.1 Gradient Descent Can Converge to the Spurious Local Minimum 105
5.4 Proof Sketch . 106

5.4.1 Qualitative Analysis of Convergence . 106
5.4.2 Quantitative Analysis of Two Phase Phenomenon 108

5.5 Experiments . 108
5.5.1 Multi-phase Phenomenon . 108
5.5.2 Probability of Converging to the Global Minimum 109

5.6 Conclusion and Future Work . 110
5.7 Proofs of Section 5.2 . 110
5.8 Proofs of Qualitative Convergence Results . 114
5.9 Proofs of Quantitative Convergence Results . 114

5.9.1 Useful Technical Lemmas . 114
5.9.2 Convergence of Phase I . 116
5.9.3 Analysis of Phase II . 117

5.10 Proofs of Initialization Scheme . 119
5.11 Proofs of Converging to Spurious Local Minimum 119

6 Learning a Convolutional Filter via Gradient Descent 121
6.1 Introduction . 121
6.2 Warm Up: Analyzing One-Layer One-Neuron Model 122

6.2.1 Convergence Rate of One-Layer One-Neuron Model 123
6.3 Main Results for Learning a Convolutional Filter 125

6.3.1 What distribution is easy for SGD to learn a convolutional filter? 127
6.3.2 The Power of Random Initialization . 127

6.4 Experiments . 128
6.5 Conclusions and Future Work . 128
6.6 Proofs and Additional Theorems . 130

6.6.1 Proofs of the Theorem in Section 6.2 130
6.6.2 Proofs of Theorems in Section 6.3 . 132

III When Does Gradient Descent Fail? 139

7 Gradient Descent Can Take Exponential Time to Escape Saddle Points 140
7.1 Introduction . 140
7.2 Preliminaries . 141
7.3 Warmup: Examples with “Un-natural” Initialization 143
7.4 Main Result . 144

7.4.1 Proof Sketch . 145
7.5 Experiments . 148
7.6 Conclusion and Future Work . 148
7.7 Proofs for Results in Section 7.4 . 149

7.7.1 Proof for Claim 1 of Theorem 7.3 . 149
7.7.2 Proof for Claim 2 of Theorem 7.3 . 155

xi

7.7.3 Proof for Corollary 7.2 . 156
7.8 Auxiliary Theorems . 157

Bibliography 160

xii

List of Figures

2.1 Results on synthetic data. 17

4.1 Experiments on the matrix factorization problem with objective functions (4.1)
and (4.3). Red lines correspond to running GD on the objective function (4.1),
and blue lines correspond to running GD on the objective function (4.3). 76

4.2 Balancedness of a 3-layer neural network. 83

5.1 Network architecture that we consider in this chapter and convergence of gradi-
ent descent for learning the parameters of this network. 101

5.2 Convergence of different measures we considered in proving Theorem 5.3. In
the first ∼ 200 iterations, all quantities drop slowly. After that, these quantities
converge at much faster linear rates. 109

6.1 (a) Architecture of the network we are considering. Given input X , we extract
its patches {Zi} and send them to a shared weight vector w. The outputs are
then sent to ReLU and then summed to yield the final label (and its estimation).
(b)-(c) Two conditions we proposed for convergence. We want the data to be
(b) highly correlated and (c) concentrated more on the direction aligned with the
ground truth vector w∗. 122

6.2 (a) The four regions considered in our analysis. (b) Illustration of L (φ) , γ(φ)
and L−w∗(φ) defined in Definition 6.1 and Assumption 6.1. 123

6.3 Convergence rates of SGD (a) with different smoothness where larger σ is smoother;
(b) with different closeness of patches where smaller σ2 is closer; (c) for a learn-
ing a random filter with different initialization on MNIST data; (d) for a learning
a Gabor filter with different initialization on MNIST data. 129

6.4 Visualization of true and learned filters. For each pair, the left one is the under-
lying truth and the right is the filter learned by SGD. 129

7.1 If the initialization point is in red rectangle then it takes GD a long time to escape
the neighborhood of saddle point (0, 0). 143

7.2 Graphical illustrations of our counter-example with τ = e. The blue points are
saddle points and the red point is the minimum. The pink line is the trajectory of
gradient descent. 147

7.3 Performance of GD and PGD on our counter-example with d = 5. 148
7.4 Performance of GD and PGD on our counter-example with d = 10 148

xiii

7.5 Illustration of intersection surfaces used in our construction. 151

xiv

List of Tables

1.1 Notation table. 7

5.1 Probability of converging to the global minimum with different (1>a∗)2

‖a‖22
and k.

For every fixed k, when (1>a∗)2

‖a‖22
becomes larger, the probability of converging

to the global minimum becomes larger and for every fixed ratio (1>a∗)2

‖a‖22
when k

becomes lager, the probability of converging to the global minimum becomes
smaller. 109

xv

Chapter 1

Introduction

Machine learning (ML) is an interdisciplinary field that studies how a system can perform a task
through learning. For example, do prediction or make decision by looking at data and keep im-
proving the performance as it sees more data. ML methods have made remarkable impact in real
world applications. A variety of these applications, including face recognition, machine transla-
tion, self-driving cars, search engines, autonomous robots, recommendation systems, computer
games, etc., heavily rely on machine learning methods. Yet, theoretically, we do not have a good
understanding of these methods.

We start our discussion by describing the core challenge this thesis aims to solve. A machine
learning method often consists of two components. First, it has a model that does prediction. This
prediction model depends on parameters and the quality of the parameters determine the perfor-
mance of this model. Second, to find good-quality parameters, the machine learning method
chooses a loss function and improves the quality of the parameters iteratively by minimizing this
loss function with an optimization algorithm.

Among optimization algorithms, gradient descent (GD) is perhaps the simplest one and acts
as the prototype of many advanced optimization algorithms like stochastic gradient decent (SGD)
or momentum methods. These gradient-based methods provide the core optimization methodol-
ogy in machine learning problems. Given a function L(θ) where θ denotes the model parameters,
the gradient descent method can be written as:

θ(k + 1)← θ(k)− η∇L (θ(k)) , (1.1)

where η > 0 is a step size,∇L(θ) is the gradient of L at θ and θ(0) is the initial point.
For classical machine learning methods, the loss function L is often a convex one. For exam-

ple, for the linear regression, the loss function has the form

L(θ) =
1

2n

n∑
i=1

(
x>i θ − yi

)2
(1.2)

where x1, . . . ,xn ∈ Rd are input data and y1, . . . , yn ∈ R are labels that we want to predict based
on the inputs. The loss function for linear regression is smooth and convex. Therefore, through
standard analysis in convex optimization, one can show gradient descent finds an ε-suboptimal
solution in O(1/ε) iterations under certain regularity conditions.

1

However, for modern machine learning methods, models and loss functions become sig-
nificantly more complicated. For example, for deep fully-connected neural networks, the loss
function is

L(W1,W2, . . . ,WH) =
1

2n

n∑
i=1

(WHσ (WH−1σ (· · ·W2σ (W1xi)))− yi)2 (1.3)

where x1, . . . ,xn ∈ Rd0 are inputs, y1, . . . , yn ∈ RdH are labels we want to predict, Wh ∈
Rdh×dh−1 for h = 1, . . . , H with dH = 1 are weight matrices we want to optimize, i.e., the
parameters in the deep neural network model and σ (·) is a point-wise activation function, e.g.,
Rectified Linear Unit (ReLU): σ (z) = max {0, z}. Comparing with loss function (1.2), the
loss function for deep fully-connected neural network does not have the desired properties like
convexity and smoothness. Indeed, in the worst case, it is unlikely an algorithm can find an
ε-suboptimal solution in polynomial time [9].

While theoretically it is not possible to optimize loss functions like Equation (1.3) efficiently,
in practice, simple algorithms like gradient descent can optimize highly non-convex functions
that arising in machine learning problems quite successfully. For loss function (1.3), GD and
its variants with random initialization can often find a global optimal solution efficiently. From
traditional view of optimization, these gradient-based methods can easily converge to bad local
minima or saddle points but for non-convex loss functions arising from various machine learning
problems, these bad scenarios often do not happen. A fundamental theoretical question is
Why randomly initialized gradient descent algorithm can find globally optimal solution of

non-convex loss functions arising from machine learning efficiently?
In this thesis, we aim to answer this question in a rigorous manner. Roughly speaking, there are
two main approaches for studying the behavior of optimization algorithms.

The first approach is based on the geometry. If one can show that the loss function satisfies
certain geometric properties, e.g., convexity, then one can apply a generic theory to derive the
convergence rate of gradient descent. Recently, researchers have identified two such geometric
properties: 1) all local minima are global and 2) all saddle points are strict, i.e., there exists
a negative curvature. They showed if the loss function satisfies these two properties, then the
perturbed gradient descent algorithm can optimize the loss function efficiently. This is a large
function class and includes many non-convex losses that arise in machine learning problems,
including tensor decomposition [36], dictionary learning [71], phase retrieval [70], matrix sens-
ing [8, 61], matrix completion [37, 38], and matrix factorization [49]. This thesis will provide
new insight on the performance of the vanilla gradient descent algorithm for optimizing functions
in this class. While this approach is general and often gives simple analysis, the main drawback
is that there are a large number of problems, for example, deep neural networks, that do not
belong to this class and so we need other approaches.

The second approach is based on analyzing the trajectory generated by the optimization al-
gorithm. For a specific loss function like (1.3), we can write its gradient in an explicit form. This
explicit form allows us to track the trajectory generated by gradient descent in a fine-grained
manner. Comparing with the geometric approach, analyzing the dynamical system induced by
a first order method is often more complicated because at different stages of the optimization
procedure, we need to study different properties of the dynamical system, which requires more

2

insights for the specific problems. Nevertheless, this approach often gives tighter convergence
rate because it is problem-specific and more importantly, we can analyze non-convex problems
such as neural networks that do not have the benign geometric properties.

1.1 Overview of Thesis
In this section we give an overview of this thesis. This thesis consists of three parts.

Gradient Descent for Empirical Risk Minimization in Deep Learning In the first part, we
study the theoretical properties of gradient descent for minimizing the non-convex empirical
risk of neural networks, e.g., the loss function (1.3). As we have discussed, in practice, GD
and its variants can minimize the empirical loss of neural network easily. Surprisingly, this
property is not correlated with what labels are being used. In [81], authors replaced the true labels
with randomly generated labels, but still found that randomly initialized first order methods can
always achieve zero training loss when the network is large enough.

A widely believed explanation of why a neural network can fit all training labels is that the
neural network is over-parameterized. For example, Wide ResNet [80] uses 100x parameters than
the number of training data. Thus there must exist one such neural network of this architecture
that can fit all training data. However, the existence does not imply why the network found by
a randomly initialized first order method can fit all the data. The objective function is neither
smooth nor convex, which makes traditional analysis techniques from convex optimization not
useful in this setting.

In Chapter 2, we study two-layer over-parameterized neural networks with rectified linear
units (ReLU) activation. Though there are only two layers, the loss is still non-convex and non-
smooth. We show that randomly initialized gradient descent can achieve zero training loss, a.k.a
a global minimum, with a linear convergence rate. Our analysis relies on relating the trajectory
of GD for optimizing the neural network to the trajectory of GD for optimizing a convex function
for which GD enjoys a linear convergence rate. We show these two trajectories are close to each
other and this implies GD for optimizing the neural network also enjoys a linear convergence
rate. This chapter is based on the paper [35].

In Chapter 3, we extend the same proof technique in Chapter 2 to analyze over-parameterized
deep neural networks with smooth activation functions. We show that gradient descent achieves
zero training loss in polynomial time for a deep over-parameterized neural network with residual
connections [44].

We further extend our analysis to deep residual convolutional neural networks and obtain a
similar convergence result. This chapter is based on the paper [30].

In Chapter 4, we take a closer look at the dynamics of gradient descent. We prove that gra-
dient flow (i.e. gradient descent with infinitesimal step size) effectively enforces the differences
between squared norms across different layers to remain invariant without any explicit regular-
ization. This result implies that if the weights are initially small, gradient flow automatically bal-
ances the magnitudes of all layers. Using a discretization argument, we analyze gradient descent
with positive step size for the non-convex low-rank asymmetric matrix factorization problem,
i.e., two-layer neural network with linear activation, without any regularization. We prove that

3

gradient descent with decreasing step sizes automatically balances two low-rank factors and con-
verges to a bounded global optimum. Furthermore, for rank-1 asymmetric matrix factorization
we give a finer analysis showing that gradient descent with constant step size converges to the
global minimum at a globally linear rate. Experimentally, we find that for multi-layer neural net-
works, gradient descent with positive step size automatically balances weight matrices as well.
The balancedness shows that gradient descent automatically maintains a certain smoothness on
its trajectory. These findings on the invariance could serve as a fundamental building block for
understanding optimization in deep models. This chapter is based on the paper [29].

Learning Convolutional Neural Networks by Gradient Descent In the first part, we show
that for sufficiently wide neural networks with smooth activation function and sufficiently wide
two-layer neural networks with ReLU activation function, gradient descent can find a global
minimum of the empirical risk. However, minimizing the empirical risk does not necessarily
imply the learned neural network has good generalization ability. In the second part, we study
when gradient descent can learn a convolutional neural network with good generalization ability.
We assume there is a teacher convolutional neural network and the label is generated according to
this convolutional neural network. We show under general conditions, applying gradient descent
on the quadratic loss can approximately recover the planted neural network, which implies the
learned neural network achieve small generalization error.

There are two main challenges in this part. First, to recover the planted neural network, the
models considered in this part are not over-parameterized . Therefore, we need different tech-
niques to analyze the dynamics of gradient descent. Second, to prove the approximate recover
guarantee, we need to take the randomness in the dynamics of gradient descent into account.

In Chapter 5, we consider the problem of recovering a one-hidden-layer neural network with
non-overlapping convolutional layer and ReLU activation function in which both the convolu-
tional weights and the output weights are parameters to be learned. We prove that with Gaussian
input, there is a spurious local minimum that is not a global mininum. Surprisingly, in the
presence of local minimum, starting from randomly initialized weights, gradient descent with
weight normalization can still be proven to recover the true parameters with constant probability
(which can be boosted to arbitrarily high accuracy with multiple restarts). We also show that with
constant probability, the same procedure could also converge to the spurious local minimum,
showing that the local minimum plays a non-trivial role in the dynamics of gradient descent.
Furthermore, a quantitative analysis shows that the gradient descent dynamics has two phases:
it starts off slow, but converges much faster after several iterations. This chapter is based on the
paper [20].

Chapter 5 relies on Gaussian input assumption which may not be satisfied in real world
problems. In Chapter 6, we analyze the convergence of (stochastic) gradient descent algorithm
for learning a convolutional filter with ReLU activation function. Our analysis does not rely on
any specific form of the input distribution, e.g., Gaussian and our proofs only use the definition
of ReLU. We show that (stochastic) gradient descent with random initialization can learn the
convolutional filter in polynomial time and the convergence rate depends on the smoothness of
the input distribution and the closeness of patches. This chapter is based on the paper [31]

4

When Does Gradient Descent Fail? So far we have discussed the positive results on using
gradient descent but it is also important to study the limitation of this algorithm.

In Chapter 7, we show that even if the objective function is smooth and satisfies so-called
“strict saddle” property, which are satisfied in many machine learning problems, gradient de-
scent [45] can take exponential time to converge whereas the perturbed gradient descent only
requires polynomial time. This result demonstrates that gradient descent may not be the appro-
priate algorithm for certain problems and some modification, e.g. adding perturbation is needed
to ensure the polynomial convergence. This chapter is based on the paper [26].

1.2 Bibliographic Notes
The research presented in this thesis is based on joint work with several co-authors, described
below. This thesis only includes works for which this author was the, or one of the, primary
contributors.

Chapter 2 is based on joint work with Xiyu Zhai, Barnabás Póczos and Aarti Singh. Chapter 3
is based on joint work with Jason D. Lee, Haochuan Li, Liwei Wang and Xiyu Zhai. Chapter 4 is
based on joint work with Wei Hu and Jason D. Lee. Chapter 5 is based on joint work with Jason
D. Lee, Yuandong Tian, Barnabás Póczos and Aarti Singh. Chapter 6 is based on joint work with
Jason D. Lee and Yuandong Tian. Finally, Chapter 7 is based on joint work with Chi Jin, Jason
D. Lee, Michael I. Jordan, Barnabás Póczos and Aarti Singh.

1.2.1 Excluded Research
In an effort to keep this dissertation succinct and coherent, a significant portion of this authors
Ph.D. work has been excluded from this document. The excluded research includes:
• Work on other theoretical aspects of neural networks [5, 21, 23, 24, 33].
• Work on reinforcement learning [25, 34].
• Work on matrix analysis [7, 28, 83].
• Work on robust statistics [6, 32].
• Work on transfer learning [27].
• Work on convex-concave saddle point problems [22].

1.3 Notations
Here we list notations that we will use throughout the thesis. For notations that will be used
only in a specific chapter, we will introduce them therein. For a positive integer N we denote
[N] = {1, . . . , N}. For a vector v, we use ‖v‖2 to denote its Euclidean norm and ‖v‖ to denote
a general norm. For a matrix A, we use ‖A‖op to denote its operator norm and ‖A‖F to denote
its Frobenius norm. We use σi(A) to denote the i-th singular value of A and σmin(A) to denote
the smallest singular value. If A is symmetric, we use λi(A) to denote its i-th eigenvalue and
λmin(A) to denote its smallest eigenvalue. We use 〈·, ·〉 to denote the inner product between two

5

vectors or matrices. For the gradient descent algorithm considered in this thesis, we will use
η > 0 to denote the step size. For a function f we use ∇f to denote its gradient and ∇2f to
denote its Hessian. To measure the performance, we will use ε > 0 to denote the target accuracy
and δ > 0 to denote the failure probability. Many of our analyses involve probability arguments.
We use I {E} to denote the event E happens. We use N (µ,Σ) to denote a Gaussian distribution
with mean µ and covariance Σ and unif (S) to denote a uniform distribution over the set S.
Lastly, we use O,Ω,Θ to denote the usual Big-O, Big-Omega and Big-Theta notations. The
notations are summarized in Table 1.1.

6

[N] The set of first N positive integers: 1, . . . , N .

‖·‖ A general norm

‖·‖2 Euclidean norm of a vector.

‖·‖op Operator norm of a matrix.

‖·‖F Frobenius norm of a matrix.

〈·, ·〉 Inner product.

λi(·) i-th eigenvalue of a matrix.

λmin The smallest eigenvalue of a matrix.

σi(·) i-th singular value of a matrix.

σmin(·) The smallest singular value of a matrix.

η Step size of the gradient descent algorithm.

I {·} Indicator of an event.

N (µ,Σ) A Gaussian distribution with mean µ and covariance Σ.

unif (S) Uniform distribution over the set S.

∇(·) Gradient operator.

∇2(·) Hessian operator.

O Big-O notation.

Ω Big-Omega notation.

Θ Big-Theta notation.

Table 1.1: Notation table.

7

Part I

Gradient Descent for Empirical Risk
Minimization in Deep Learning

8

Chapter 2

Gradient Descent Provably Optimizes
Over-paramterized Two-layer ReLU
Neural Networks

2.1 Introduction
In this chapter we show why randomly initialized gradient descent can optimize a two-layer
neural networks with rectified linear unit (ReLU) activation. Formally, we consider a neural
network of the following form.

f(W, a,x) =
1√
m

m∑
r=1

arσ
(
w>r x

)
where x ∈ Rd is the input, wr ∈ Rd is the weight vector of the first layer, ar ∈ R is the output
weight and σ (·) is the ReLU activation function: σ (z) = z if z ≥ 0 and σ (z) = 0 if z < 0 . We
focus on the empirical risk minimization problem with a quadratic loss. Given a training data set
{(xi, yi)}ni=1, we want to minimize

L(W, a) =
n∑
i=1

1

2
(f(W, a,xi)− yi)2 . (2.1)

Our main focus of this chapter is to analyze the following procedure. We fix the second layer
and apply gradient descent (GD) to optimize the first layer

W(k + 1) = W(k)− η∂L(W(k), a)

∂W(k)
. (2.2)

where η > 0 is the step size. Here the gradient formula for each weight vector is 1

∂L(W, a)

∂wr

=
1√
m

n∑
i=1

(f(W, a,xi)− yi)arxiI
{
w>r xi ≥ 0

}
. (2.3)

1 Note ReLU is not continuously differentiable. One can view ∂L(W)
∂wr

as a convenient notation for the right hand
side of (2.3) and this is the update rule used in practice.

9

Though this is only a shallow fully connected neural network, the objective function is still
non-smooth and non-convex due to the use of ReLU activation function. Even for this sim-
ple function, why randomly initialized first order method can achieve zero training error is not
known. Many previous works have tried to answer this question or similar ones. Attempts in-
clude landscape analysis [68], partial differential equations [55], analysis of the dynamics of the
algorithm [51], optimal transport theory [12], to name a few. These results often make strong
assumptions on the labels and input distributions or do not imply why randomly initialized first
order method can achieve zero training loss.

In this chapter, we rigorously prove that as long as no two inputs are parallel and m is large
enough, with randomly initialized a and W(0), gradient descent achieves zero training loss at a
linear convergence rate. Thus, our theoretical result not only shows the global convergence but
also gives a quantitative convergence rate in terms of the desired accuracy.

Analysis Technique Overview Our proof relies on the following insights. First we directly
analyze the dynamics of each individual prediction f(W, a,xi) for i = 1, . . . , n. This is dif-
ferent from many previous work [31, 51] which tried to analyze the dynamics of the parameters
(W). Note because the objective function is non-smooth and non-convex, analysis of the pa-
rameter space dynamics is very difficult. In contrast, we find the dynamics of prediction space
is governed by the spectral property of a Gram matrix (which can vary in each iteration, c.f.
Equation (2.5)) and as long as this Gram matrix’s least eigenvalue is lower bounded, gradient
descent enjoys a linear rate. It is easy to show as long as no two inputs are parallel, in the
initialization phase, this Gram matrix has a lower bounded least eigenvalue (c.f. Theorem 2.1).
Thus the problem reduces to showing the Gram matrix at later iterations is close to that in the
initialization phase. Our second observation is this Gram matrix is only related to the activation
patterns (I

{
w>r xi ≥ 0

}
) and we can use matrix perturbation analysis to show if most of the pat-

terns do not change, then this Gram matrix is close to its initialization. Our third observation is
we find over-parameterization, random initialization, and the linear convergence jointly restrict
every weight vector wr to be close to its initialization. Then we can use this property to show
most of the patterns do not change. Notably, our proof only uses linear algebra and standard
probability bounds so we believe it can be easily generalized to analyze deep neural networks.

2.2 Continuous Time Analysis

In this section, we present our result for gradient flow, i.e., gradient descent with infinitesimal step
size. The analysis of gradient flow is a stepping stone towards understanding discrete algorithms.
In the next section, we will modify the proof and give a quantitative bound for gradient descent
with positive step size. Formally, we consider the ordinary differential equation defined by: 2

dwr(t)

dt
= −∂L(W(t), a)

∂wr(t)

2Strictly speaking, this should be differential inclusion [17]

10

for r ∈ [m]. We denote ui(t) = f(W(t), a,xi) the prediction on input xi at time t and we
let u(t) = (u1(t), . . . , un(t)) ∈ Rn be the prediction vector at time t. We first state our main
assumption.
Assumption 2.1. Define a matrix

H∞ ∈ Rn×n with H∞ij = Ew∼N (0,I)

[
x>i xjI

{
w>xi ≥ 0,w>xj ≥ 0

}]
.

We assume λ0 , λmin (H∞) > 0.
H∞ is the Gram matrix induced by the ReLU activation function and the random initial-

ization. Later we will show that during the training, though the Gram matrix may change (c.f.
Equation (2.5)), it is still close to H∞. Furthermore, as will be apparent in the proof (c.f. Equa-
tion (2.6)), H∞ is the fundamental quantity that determines the convergence rate. Interestingly,
various properties of this H∞ matrix has been studied in previous works [74, 79]. Now to justify
this assumption, the following theorem shows if no two inputs are parallel the least eigenvalue is
strictly positive.
Theorem 2.1. If for any i 6= j, xi 6‖ xj , then λ0 > 0.

Note for most real world datasets, no two inputs are parallel, so our assumption holds in
general. Now we are ready to state our main theorem in this section.
Theorem 2.2 (Convergence Rate of Gradient Flow). Suppose Assumption 2.1 holds and for all
i ∈ [n], ‖xi‖2 = 1 and |yi| ≤ C for some constant C. Then if we set the number of hidden nodes

m = Ω
(

n6

λ40δ
3

)
and we i.i.d. initialize wr ∼ N (0, I), ar ∼ unif [{−1, 1}] for r ∈ [m], with

probability at least 1− δ over the initialization, we have

‖u(t)− y‖2
2 ≤ exp(−λ0t) ‖u(0)− y‖2

2 .

This theorem establishes that ifm is large enough, the training error converges to 0 at a linear
rate. Here we assume ‖xi‖2 = 1 only for simplicity and it is not hard to relax this condition. The
bounded label condition also holds for most real world data set. The number of hidden nodes m
required is Ω

(
n6

λ40δ
3

)
, which depends on the number of samples n, λ0, and the failure probability

δ. Over-parameterization, i.e., the fact m = poly(n, 1/λ0, 1/δ), plays a crucial role in guaran-
teeing gradient descent to find the global minimum. Lastly, we note the specific convergence rate
depends on λ0 but independent of the number of hidden nodes m.

2.2.1 Proof of Theorem 2.2
Our first step is to calculate the dynamics of each prediction.

d

dt
ui(t) =

m∑
r=1

〈∂f(W(t), a,xi)

∂wr(t)
,
dwr(t)

dt
〉

=
n∑
j=1

(yj − uj)
m∑
r=1

〈∂f(W(t), a,xi)

∂wr(t)
,
∂f(W(t), a,xj)

∂wr(t)
〉

,
n∑
j=1

(yj − uj)Hij(t) (2.4)

11

where H(t) is an n× n matrix with (i, j)-th entry

Hij(t) =
1

m
x>i xj

m∑
r=1

I
{
x>i wr(t) ≥ 0,x>j wr(t) ≥ 0

}
. (2.5)

With this H(t) matrix, we can write the dynamics of predictions in a compact way:

d

dt
u(t) = H(t)(y − u(t)). (2.6)

H(t) is a time-dependent symmetric matrix. We first analyze its property when t = 0. The
following lemma shows if m is large then H(0) has a lower bounded least eigenvalue with high
probability. The proof is by the standard concentration bound so we defer it to the appendix.

Lemma 2.1. If m = Ω
(
n2

λ20
log
(
n
δ

))
, we have with probability at least 1− δ, ‖H(0)−H∞‖2 ≤

λ0
4

and λmin(H(0)) ≥ 3
4
λ0.

Our second step is to show H(t) is stable in terms of W(t). Formally, the following lemma
shows for any W close to W(0), the induced Gram matrix H is close to H(0) and has a lower
bounded least eigenvalue.
Lemma 2.2. If w1, . . . ,wm are i.i.d. generated fromN (0, I), then with probability at least 1−δ,
the following holds. For any set of weight vectors w1, . . . ,wm ∈ Rd that satisfy for any r ∈ [m],
‖wr(0)−wr‖2 ≤ cδλ0

n2 , R for some small positive constant c, then the matrix H ∈ Rn×n

defined by

Hij =
1

m
x>i xj

m∑
r=1

I
{
w>r xi ≥ 0,w>r xj ≥ 0

}
satisfies ‖H−H(0)‖2 <

λ0
4

and λmin (H) > λ0
2

.
This lemma plays a crucial role in our analysis so we give the proof below.

Proof of Lemma 2.2. We define the event

Air =
{
∃w : ‖w −wr(0)‖ ≤ R, I

{
x>i wr(0) ≥ 0

}
6= I

{
x>i w ≥ 0

}}
.

Note this event happens if and only if
∣∣wr(0)>xi

∣∣ < R. Recall wr(0) ∼ N (0, I). By anti-
concentration inequality of Gaussian, we have P (Air) = Pz∼N (0,1) (|z| < R) ≤ 2R√

2π
. Therefore,

for any set of weight vectors w1, . . . ,wm that satisfy the assumption in the lemma, we can bound
the entry-wise deviation on their induced matrix H: for any (i, j) ∈ [n]× [n]

E [|Hij(0)−Hij|]

=E

[
1

m

∣∣∣∣∣x>i xj

m∑
r=1

(
I
{
wr(0)>xi ≥ 0,wr(0)>xj ≥ 0

}
− I
{
w>r xi ≥ 0,w>r xj ≥ 0

})∣∣∣∣∣
]

≤ 1

m

m∑
r=1

E [I {Air ∪ Ajr}] ≤
4R√
2π

where the expectation is taken over the random initialization of w1(0), . . . ,wm(0). Summing
over (i, j), we have E

[∑(n,n)
(i,j)=(1,1) |Hij −Hij(0)|

]
≤ 4n2R√

2π
. Thus by Markov’s inequality, with

12

probability 1− δ, we have
∑(n,n)

(i,j)=(1,1) |Hij −Hij(0)| ≤ 4n2R√
2πδ

. Next, we use matrix perturbation
theory to bound the deviation from the initialization

‖H−H(0)‖2 ≤ ‖H−H(0)‖F ≤
(n,n)∑

(i,j)=(1,1)

|Hij −Hij(0)| ≤ 4n2R√
2πδ

.

Lastly, we lower bound the smallest eigenvalue by plugging in R

λmin(H) ≥ λmin(H(0))− 4n2R√
2πδ
≥ λ0

2
.

The next lemma shows two facts if the least eigenvalue of H(t) is lower bounded. First, the
loss converges to 0 at a linear convergence rate. Second, wr(t) is close to the initialization for
every r ∈ [m]. This lemma clearly demonstrates the power of over-parameterization.
Lemma 2.3. Suppose for 0 ≤ s ≤ t, λmin (H(s)) ≥ λ0

2
. Then we have ‖y − u(t)‖2

2 ≤
exp(−λ0t) ‖y − u(0)‖2

2 and for any r ∈ [m], ‖wr(t)−wr(0)‖2 ≤
√
n‖y−u(0)‖2√

mλ0
, R′.

Proof of Lemma 2.3. Recall we can write the dynamics of predictions as d
dt

u(t) = H(y−u(t)).
We can calculate the loss function dynamics

d

dt
‖y − u(t)‖2

2 =− 2 (y − u(t))>H(t) (y − u(t))

≤− λ0 ‖y − u(t)‖2
2 .

Thus we have d
dt

(
exp(λ0t) ‖y − u(t)‖2

2

)
≤ 0 and exp(λ0t) ‖y − u(t)‖2

2 is a decreasing function
with respect to t. Using this fact we can bound the loss

‖y − u(t)‖2
2 ≤ exp(−λ0t) ‖y − u(0)‖2

2 .

Therefore, u(t)→ y exponentially fast. Now we bound the gradient norm. Recall for 0 ≤ s ≤ t,∥∥∥∥ ddswr(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

(yi − ui)
1√
m
arxiI

{
wr(s)

>xi ≥ 0
}∥∥∥∥∥

2

≤ 1√
m

n∑
i=1

|yi − ui(s)|

≤
√
n√
m
‖y − u(s)‖2 ≤

√
n√
m

exp(−λ0s) ‖y − u(0)‖2 .

Integrating the gradient, we can bound the distance from the initialization

‖wr(t)−wr(0)‖2 ≤
∫ t

0

∥∥∥∥ ddswr(s)

∥∥∥∥
2

ds ≤
√
n ‖y − u(0)‖2√

mλ0

.

13

The next lemma shows if R′ < R, the conditions in Lemma 2.2 and 2.3 hold for all t ≥ 0.
The proof is by contradiction and we defer it to appendix.
Lemma 2.4. If R′ < R, we have for all t ≥ 0, λmin(H(t)) ≥ 1

2
λ0, for all r ∈ [m],

‖wr(t)−wr(0)‖2 ≤ R′

and
‖y − u(t)‖2

2 ≤ exp(−λ0t) ‖y − u(0)‖2
2 .

Thus it is sufficient to show R′ < R which is equivalent to m = Ω
(
n5‖y−u(0)‖22

λ40δ
2

)
.

We bound

E
[
‖y − u(0)‖2

2

]
=

n∑
i=1

(y2
i + yiE [f(W(0), a,xi)] + E

[
f(W(0), a,xi)

2
]
)

=
n∑
i=1

(y2
i + 1) = O(n).

Thus by Markov’s inequality, we have with probability at least 1 − δ, ‖y − u(0)‖2
2 = O(n

δ
).

Plugging in this bound we prove the theorem.

2.3 Discrete Time Analysis
In this section, we show randomly initialized gradient descent with a constant positive step size
converges to the global minimum at a linear rate. We first present our main theorem.
Theorem 2.3 (Convergence Rate of Gradient Descent). Under the same assumptions as in The-
orem 2.2, if we set the number of hidden nodes m = Ω

(
n6

λ40δ
3

)
, we i.i.d. initialize wr ∼ N (0, I),

ar ∼ unif [{−1, 1}] for r ∈ [m], and we set the step size η = O
(
λ0
n2

)
then with probability at

least 1− δ over the random initialization we have for k = 0, 1, 2, . . .

‖u(k)− y‖2
2 ≤

(
1− ηλ0

2

)k
‖u(0)− y‖2

2 .

Theorem 2.3 shows even though the objective function is non-smooth and non-convex, gra-
dient descent with a constant step size still enjoys a linear convergence rate. Our assumptions
on the least eigenvalue and the number of hidden nodes are exactly the same as the theorem for
gradient flow.

2.3.1 Proof of Theorem 2.3
We prove Theorem 2.3 by induction. Our induction hypothesis is just the following convergence
rate of the empirical loss.
Condition 2.1. At the k-th iteration, we have ‖y − u(k)‖2

2 ≤ (1− ηλ0
2

)k ‖y − u(0)‖2
2 .

14

A directly corollary of this condition is the following bound of deviation from the initializa-
tion. The proof is similar to that of Lemma 2.3 so we defer it to appendix.
Corollary 2.1. If Condition 2.1 holds for k′ = 0, . . . , k, then we have for every r ∈ [m]

‖wr(k + 1)−wr(0)‖2 ≤
4
√
n ‖y − u(0)‖2√

mλ0

, R′. (2.7)

Now we show Condition 2.1 holds for every k = 0, 1, For the base case k = 0, by
definition Condition 2.1 holds. Suppose for k′ = 0, . . . , k, Condition 2.1 holds and we want to
show Condition 2.1 holds for k′ = k + 1.

Our strategy is similar to the proof of Theorem 2.2. We define the event

Air =
{
∃w : ‖w −wr(0)‖ ≤ R, I

{
x>i wr(0) ≥ 0

}
6= I

{
x>i w ≥ 0

}}
.

where R = cλ0
n2 for some small positive constant c. Different from gradient flow, for gradient

descent we need a more refined analysis. We let Si = {r ∈ [m] : I{Air} = 0} and S⊥i = [m]\Si.
The following lemma bounds the sum of sizes of S⊥i . The proof is similar to the analysis used in
Lemma 2.2. See Section 2.6 for the whole proof.
Lemma 2.5. With probability at least 1− δ over the initialization, we have

∑n
i=1

∣∣S⊥i ∣∣ ≤ CmnR
δ

for some positive constant C > 0.
Next, we calculate the difference of predictions between two consecutive iterations, analogue

to dui(t)
dt

term in Section 2.2.

ui(k + 1)− ui(k) =
1√
m

m∑
r=1

ar
(
σ
(
wr(k + 1)>xi

)
− σ

(
wr(k)>xi

))
=

1√
m

m∑
r=1

ar

(
σ

((
wr(k)− η∂L(W(k))

∂wr(k)

)>
xi

)
− σ

(
wr(k)>xi

))
.

Here we divide the right hand side into two parts. I i1 accounts for terms that the pattern does not
change and I i2 accounts for terms that pattern may change.

I i1 ,
1√
m

∑
r∈Si

ar

(
σ

((
wr(k)− η∂L(W(k))

∂wr(k)

)>
xi

)
− σ

(
wr(k)>xi

))

I i2 ,
1√
m

∑
r∈S⊥i

ar

(
σ

((
wr(k)− η∂L(W(k))

∂wr(k)

)>
xi

)
− σ

(
wr(k)>xi

))

We view I i2 as a perturbation and bound its magnitude. Because ReLU is a 1-Lipschitz function
and |ar| = 1, we have

∣∣I i2∣∣ ≤ η√
m

∑
r∈S⊥i

∣∣∣∣∣
(
∂L(W(k))

∂wr(k)

)>
xi

∣∣∣∣∣ ≤ η
∣∣S⊥i ∣∣√
m

max
r∈[m]

∥∥∥∥∂L(W(k))

∂wr(k)

∥∥∥∥
2

≤ η |Si|⊥
√
n ‖u(k)− y‖2

m
.

15

To analyze I i1, by Corollary 2.1, we know ‖wr(k)−wr(0)‖ ≤ R′ and ‖wr(k)−wr(0)‖ ≤ R′

for all r ∈ [m]. Furthermore, becauseR′ < R, we know I
{
wr(k + 1)>xi ≥ 0

}
= I

{
wr(k)>xi ≥ 0

}
for r ∈ Si. Thus we can find a more convenient expression of I i1 for analysis

I i1 =− η

m

n∑
j=1

x>i xj (uj − yj)
∑
r∈Si

I
{
wr(k)>xi ≥ 0,wr(k)>xj ≥ 0

}
=− η

n∑
j=1

(uj − yj)(Hij(k)−H⊥ij(k))

where Hij(k) = 1
m

∑m
r=1 x>i xjI

{
wr(k)>xi ≥ 0,wr(k)>xj ≥ 0

}
is just the (i, j)-th entry of a

discrete version of Gram matrix defined in Section 2.2 and

H⊥ij(k) =
1

m

∑
r∈S⊥i

x>i xjI
{
wr(k)>xi ≥ 0,wr(k)>xj ≥ 0

}
is a perturbation matrix. Let H⊥(k) be the n× n matrix with (i, j)-th entry being H⊥ij(k). Using
Lemma 2.5, we obtain an upper bound of the operator norm

∥∥H⊥(k)
∥∥

2
≤

(n,n)∑
(i,j)=(1,1)

∣∣H⊥ij(k)
∣∣ ≤ n

∑n
i=1

∣∣S⊥i ∣∣
m

≤ Cn2mR

δm
≤ Cn2R

δ
.

Similar to the classical analysis of gradient descent, we also need bound the quadratic term

‖u(k + 1)− u(k)‖2
2 ≤ η2

n∑
i=1

1

m

(
m∑
r=1

∥∥∥∥∂L(W(k))

∂wr(k)

∥∥∥∥
2

)2

≤ η2n2 ‖y − u(k)‖2
2 .

With these estimates at hand, we are ready to prove the induction hypothesis.

‖y − u(k + 1)‖2
2 = ‖y − u(k)− (u(k + 1)− u(k))‖2

2

= ‖y − u(k)‖2
2 − 2 (y − u(k))> (u(k + 1)− u(k)) + ‖u(k + 1)− u(k)‖2

2

= ‖y − u(k)‖2
2 − 2η (y − u(k))>H(k) (y − u(k))

+ 2η (y − u(k))>H(k)⊥ (y − u(k))− 2 (y − u(k))> I2

+ ‖u(k + 1)− u(k)‖2
2

≤(1− ηλ0 +
2Cηn2R

δ
+

2Cηn3/2R

δ
+ η2n2) ‖y − u(k)‖2

2

≤(1− ηλ0

2
) ‖y − u(k)‖2

2 .

The third equality we used the decomposition of u(k+1)−u(k). The first inequality we used the
Lemma 2.2, the bound on the step size, the bound on I2, the bound on

∥∥H(k)⊥
∥∥

2
and the bound

on ‖u(k + 1)− u(k)‖2
2. The last inequality we used the bound of the step size and the bound of

R. Therefore Condition 2.1 holds for k′ = k + 1. Now by induction, we prove Theorem 2.3.

16

0 20 40 60 80 100

Epochs

-6

-5

-4

-3

-2

-1

0

1

lo
g
(T

ra
in

in
g
 E

rr
o
rs

)

m=500

m=1000

m=2000

m=4000

m=8000

(a) Convergence rates.

0 20 40 60 80 100

Epochs

0

0.005

0.01

0.015

0.02

A
c
ti
v
a
ti
o
n
 P

a
tt
e
rn

 D
if
fe

re
n
c
e
 R

a
ti
o
s

m=500

m=1000

m=2000

m=4000

m=8000

(b) Percentiles of pattern
changes.

0 20 40 60 80 100

Epochs

0

0.5

1

1.5

2

2.5

3

M
a

x
im

u
m

 D
is

ta
n

c
e

s

m=500

m=1000

m=2000

m=4000

m=8000

(c) Maximum distances from
initialization.

Figure 2.1: Results on synthetic data.

2.4 Experiments

In this section, we use synthetic data to corroborate our theoretical findings. We use the initial-
ization and training procedure described in Section 2.1. For all experiments, we run 100 epochs
of gradient descent and use a fixed step size. We uniformly generate n = 1000 data points from a
d = 1000 dimensional unit sphere and generate labels from a one-dimensional standard Gaussian
distribution.

We test three metrics with different widths (m). First, we test how the amount of over-
parameterization affects the convergence rates. Second, we test the relation between the amount
of over-parameterization and the number of pattern changes. Formally, at a given iteration k,

we check
∑m
i=1

∑m
r=1 I{sign(wr(0)>xi) 6=sign(wr(k)>xi)}

mn
(there are mn patterns). This aims to verify

Lemma 2.2. Last, we test the relation between the amount of over-parameterization and the
maximum of the distances between weight vectors and their initializations. Formally, at a given
iteration k, we check maxr∈[m] ‖wr(k)−wr(0)‖2. This aims to verify Lemma 2.3 and Corol-
lary 2.1.

Figure 2.1a shows as m becomes larger, we have better convergence rate. We believe the
reason is as m becomes larger, H(t) matrix becomes more stable, and thus has larger least
eigenvalue. Figure 2.1b and Figure 2.1c show as m becomes larger, the percentiles of pattern
changes and the maximum distance from the initialization become smaller. These empirical
findings are consistent with our theoretical results.

2.5 Conclusion

In this chapter we show with over-parameterization, gradient descent provably converges to the
global minimum of the empirical loss at a linear convergence rate. The key proof idea is to show
the over-parameterization makes Gram matrix remain positive definite for all iterations, which
in turn guarantees the linear convergence. In the next chapter, we will generalize this idea to
analyze the convergence of gradient descent for deep neural networks.

17

Appendix: Omitted Proofs

2.6 Proofs for Section 2.2
Proof of Theorem 2.1. The proof of this lemma just relies on standard real and functional anal-
ysis. Let H be the Hilbert space of integrable d-dimensional vector fields on Rd: f ∈ H if
Ew∼N(0,I)

[
|f(w)|2

]
<∞. The inner product of this space is then

〈f, g〉H = Ew∼N(0,I)

[
f(w)>g(w)

]
.

ReLU activation induces an infinite-dimensional feature map φ which is defined as for any
x ∈ Rd, (φ(x))(w) = xI

{
w>x ≥ 0

}
where w can be viewed as the index. Now to prove H∞ is

strictly positive definite, it is equivalent to show φ(x1), . . . , φ(xn) ∈ H are linearly independent.
Suppose that there are α1, · · · , αn ∈ R such that

α1φ(xi) + · · ·+ αnφ(xn) = 0 inH.

This means that
α1φ(x1)(w) + · · ·+ αnφ(xn)(w) = 0 a.e.

Now we prove αi = 0 for all i.
We defineDi =

{
w ∈ Rd : w>xi = 0

}
. This is set of discontinuities of φ(xi). The following

lemma characterizes the basic property of these discontinuity sets.

Lemma 2.6. If for any i 6= j, xi 6‖ xj , then for any i ∈ [m], Di 6⊂
⋃
j 6=i

Dj .

Now for a fixed i ∈ [n], since Di 6⊂
⋃
j 6=i

Dj , we can choose z ∈ Di \
⋃
j 6=i

Dj . Note Dj, j 6= i

are closed sets. We can pick r0 > 0 small enough such that B(z, r) ∩ Dj = ∅,∀j 6= i, r ≤ r0.
Let B(z, r) = B+

r tB−r where

B+
r = B(z, r) ∩ {w ∈ Rd : w>xi > 0}.

For j 6= i, φ(xj)(w) is continuous in a neighborhood of z, then for any ε > 0 there is a small
enough r > 0 such that

∀w ∈ B(z, r), |φ(xj)(w)− φ(xj)(z)| < ε.

Let µ be the Lebesgue measure on Rd. We have∣∣∣∣ 1

µ(B+
r)

∫
B+
r

φ(xj)(w)dw − φ(xj)(z)

∣∣∣∣ ≤ 1

µ(B+
r)

∫
B+
r

|φ(xj)(w)− φ(xj)(z)| dw < ε

and similarly∣∣∣∣ 1

µ(B−r)

∫
B−r

φ(xj)(w)dw − φ(xj)(z)

∣∣∣∣ ≤ 1

µ(B−r)

∫
B−r

|φ(xj)(w)− φ(xj)(z)| dw < ε.

18

Thus, we have

lim
r→0+

1

µ(B+
r)

∫
B+
r

φ(xj)(w)dw = lim
r→0+

1

µ(B−r)

∫
B−r

φ(xj)(w)dw = φ(xj)(z).

Therefore, as r → 0+, by continuity, we have

∀j 6= i,
1

µ(B+
r)

∫
B+
r

φ(xj)(w)dw − 1

µ(B−r)

∫
B−r

φ(xj)(w)dw→ 0 (2.8)

Next recall that (φ(x))(w) = xI
{
x>w > 0

}
, so for w ∈ B+

r and xi, (φ(xi))(w) = xi. Then,
we have

lim
r→0+

1

µ(B+
r)

∫
B+
r

φ(xj)(w)dw = lim
r→0+

1

µ(B+
r)

∫
B+
r

xidw = xi. (2.9)

For w ∈ B−r and xi, we know (φ(xi))(w) = 0. Then we have

lim
r→0+

1

µ(B−r)

∫
B−r

φ(xi)(w)dw = lim
r→0+

1

µ(B−r)

∫
B−r

0dw = 0 (2.10)

Now recall
∑

i αiφ(xi) ≡ 0. Using Equation (2.8), (2.9) and (2.10), we have

0 = lim
r→0+

1

µ(B+
r)

∫
B+
r

∑
j

αjφ(xj)(w)dw − lim
r→0+

1

µ(B−r)

∫
B−r

∑
j

αjφ(xj)(w)dw

=
∑
j

αj

(
lim
r→0+

1

µ(B+
r)

∫
B+
r

φ(xj)(w)dw − lim
r→0+

1

µ(B−r)

∫
B−r

φ(xj)(w)dw

)
=
∑
j

αj (δijxi)

= αixi

Since xi 6= 0, we must have αi = 0. We complete the proof.

Proof of Lemma 2.6. Let µ be the canonical Lebesgue measure on Di. We have
∑

j 6=i µ(Di ∩
Dj) = 0 because Di ∩Dj is a hyperplane in Di. Now we bound

µ(Di ∩
⋃
j 6=i

Dj) ≤
∑
j 6=i

µ(Di ∩Dj) = 0.

This implies our desired result.

Proof of Lemma 2.1. For every fixed (i, j) pair, Hij(0) is an average of independent random
variables. Therefore, by Hoeffding inequality, we have with probability 1− δ′,

∣∣Hij(0)−H∞ij
∣∣ ≤ 2

√
log(1/δ′)√
m

.

19

Setting δ′ = n2δ and applying union bound over (i, j) pairs, we have for every (i, j) pair with
probability at least 1− δ

∣∣Hij(0)−H∞ij
∣∣ ≤ 4

√
log(n/δ)√
m

.

Thus we have

‖H(0)−H∞‖2
2 ≤ ‖H(0)−H∞‖2

F ≤
∑
i,j

∣∣Hij(0)−H∞ij
∣∣2 ≤ 16n2 log(n/δ)

m
.

Thus if m = Ω
(
n2 log(n/δ)

λ20

)
we have the desired result.

Proof of Lemma 2.4. Suppose the conclusion does not hold at time t. If there exists r ∈ [m],
‖wr(t)−wr(0)‖ ≥ R′ or ‖y − u(t)‖2

2 > exp(−λ0t) ‖y − u(0)‖2
2, then by Lemma 2.3 we

know there exists s ≤ t such that λmin(H(s)) < 1
2
λ0. By Lemma 2.2 we know there exists

t0 = inf

{
t > 0 : max

r∈[m]
‖wr(t)−wr(0)‖2

2 ≥ R

}
.

Thus at t0, there exists r ∈ [m], ‖wr(t0)−wr(0)‖2
2 = R. Now by Lemma 2.2, we know

H(t0) ≥ 1
2
λ0 for t′ ≤ t0. However, by Lemma 2.3, we know ‖wr(t0)−wr(0)‖2 < R′ < R.

Contradiction.
For the other case, at time t, λmin(H(t)) < 1

2
λ0 we know there exists

t0 = inf

{
t ≥ 0 : max

r∈[m]
‖wr(t)−wr(0)‖2

2 ≥ R

}
.

The rest of the proof is the same as the previous case.

2.7 Proofs for Section 2.3
Proof of Corollary 2.1. We use the norm of gradient to bound this distance.

‖wr(k + 1)−wr(0)‖2 ≤η
k∑

k′=0

∥∥∥∥∂L(W(k′))

∂wr(k′)

∥∥∥∥
2

≤η
k∑

k′=0

√
n ‖y − u(k′)‖2√

m

≤η
k∑

k′=0

√
n(1− ηλ

2
)k
′/2

√
m

‖y − u(k′)‖2

≤η
∞∑
k′=0

√
n(1− ηλ0

2
)k
′/2

√
m

‖y − u(k′)‖2

20

=
4
√
n ‖y − u(0)‖2√

mλ0

.

Proof of Lemma 2.5. For a fixed i ∈ [n] and r ∈ [m], by anti-concentration inequality, we know
P(Air) ≤ 2R√

2π
. Thus we can bound the size of S⊥i in expectation.

E
[∣∣S⊥i ∣∣] =

m∑
r=1

P(Air) ≤
2mR√

2π
. (2.11)

Summing over i = 1, . . . , n, we have

E

[
n∑
i=1

∣∣S⊥i ∣∣
]
≤ 2mnR√

2π
.

Thus by Markov’s inequality, we have with probability at least 1− δ
n∑
i=1

∣∣S⊥i ∣∣ ≤ CmnR

δ
. (2.12)

for some large positive constant C > 0.

21

Chapter 3

Gradient Descent Provably Optimizes
Over-parameterized Deep Neural
Networks with Smooth Activation

3.1 Introduction

In the previous chapter we showed for a two-layer over-parameterized ReLU-activated neural
network, randomly initialized gradient descent can find a global minimum. A natural question
is whether we can prove the same statement for deep neural networks. In this chapter, we give
positive answer to this question. We consider the setting where there are n data points, and the
neural network has H layers with width m. We focus on the least-squares loss and assume the
activation function is Lipschitz and smooth. This assumption holds for many activation functions
including the soft-plus and sigmoid. We summarize the results below:
• We first consider a fully-connected feedforward network. We show ifm = Ω

(
poly(n)2O(H)

)
1,

then randomly initialized gradient descent converges to zero training loss at a linear rate.
• Next, we consider the ResNet architecture [44]. We show as long as m = Ω (poly(n,H)),

then randomly initialized gradient descent converges to zero training loss at a linear rate.
Comparing with the first result, the dependence on the number of layers improves expo-
nentially for ResNet.

• Lastly, we apply the same technique to analyze convolutional ResNet. We show if m =
poly(n, p,H) where p is the number of patches, then randomly initialized gradient descent
achieves zero training loss.

Our proof follows the same high level idea of the previous chapter. However, in analyzing
deep neural networks, we need to exploit more structural properties of deep neural networks and
develop new techniques for analyzing both the initialization and gradient descent dynamics. In
Section 3.3 we give an overview of our proof technique.

1The precise polynomials and data-dependent parameters are stated in Section 3.4, 3.5, 3.6.

22

3.2 Preliminaries

3.2.1 Activation Function

In this chapter we impose some technical conditions on the activation function. The guiding
example is softplus: σ (z) = log(1 + exp(z)).
Condition 3.1 (Lipschitz and Smooth). There exists a constant c > 0 such that |σ (0)| ≤ c and
for any z, z′ ∈ R,

|σ (z)− σ (z′)| ≤ c |z − z′| and |σ′(z)− σ′(z)| ≤ c |z − z′| .

These two conditions will be used to show the stability of the training process. Note for
softplus both Lipschitz constant and smoothness constant are 1. In this chapter, we view all
activation function related parameters as constants.
Condition 3.2. σ (·) is analytic and is not a polynomial function.

This assumption is used to guarantee the positive-definiteness of certain Gram matrices which
we will define later. Softplus function satisfies this assumption by definition.

3.2.2 Problem Setup

In this chapter, we focus on the empirical risk minimization problem with the quadratic loss
function

min
θ
L(θ) =

1

2

n∑
i=1

(f(θ,xi)− yi)2 (3.1)

where {xi}ni=1 are the training inputs, {yi}ni=1 are the labels, θ is the parameter we optimize over
and f is the prediction function, which in our case is a neural network. We consider the following
architectures.
• Multilayer fully-connected neural networks: Let x ∈ Rd be the input, W(1) ∈ Rm×d

is the first weight matrix, W(h) ∈ Rm×m is the weight at the h-th layer for 2 ≤ h ≤ H ,
a ∈ Rm is the output layer and σ (·) is the activation function.2 We define the prediction
function recursively (for simplicity we let x(0) = x).

x(h) =

√
cσ
m
σ
(
W(h)x(h−1)

)
, 1 ≤ h ≤ H

f(x, θ) = a>x(H). (3.2)

where cσ =
(
Ex∼N (0,1) [σ(x)2]

)−1 is a scaling factor to normalize the input in the initial-
ization phase.

2We assume intermediate layers are square matrices for simplicity. It is not difficult to generalize our analysis to
rectangular weight matrices.

23

• ResNet3: We use the same notations as the multilayer fully connected neural networks.
We define the prediction recursively.

x(1) =

√
cσ
m
σ
(
W(1)x

)
,

x(h) = x(h−1) +
cres
H
√
m
σ
(
W(h)x(h−1)

)
2 ≤ h ≤ H,

fres(x, θ) = a>x(H) (3.3)

where 0 < cres < 1 is a small constant. Note here we use a cres
H
√
m

scaling. This scaling
plays an important role in guaranteeing the width per layer only needs to scale polyno-
mially with H . In practice, the small scaling is enforced by a small initialization of the
residual connection [41, 82], which obtains state-of-the-art performance for deep residual
networks. We choose to use an explicit scaling, instead of altering the initialization scheme
for notational convenience.

• Convolutional ResNet: Lastly, we consider the convolutional ResNet architecture. Again
we define the prediction function in a recursive way. Let x(0) ∈ Rd0×p be the input, where
d0 is the number of input channels and p is the number of pixels. For h ∈ [H], we let the
number of channels be dh = m and number of pixels be p. Given x(h−1) ∈ Rdh−1×p for
h ∈ [H], we first use an operator φh(·) to divide x(h−1) into p patches. Each patch has size
qdh−1 and this implies a map φh(x(h−1)) ∈ Rqdh−1×p. For example, when the stride is 1
and q = 3

φh(x
(h−1)) =

(
x

(h−1)
1,0:2

)>
, . . . ,

(
x

(h−1)
1,p−1:p+1

)>
. . . , . . . , . . .(

x
(h−1)
dh−1,0:2

)>
, . . . ,

(
x

(h−1)
dh−1,p−1:p+1

)>

where we let x
(h−1)
:,0 = x

(h−1)
:,p+1 = 0, i.e., zero-padding. Note this operator has the property∥∥x(h−1)

∥∥
F
≤
∥∥φh(x(h−1))

∥∥
F
≤ √q

∥∥x(h−1)
∥∥
F
.

because each element from x(h−1) at least appears once and at most appears q times. In
practice, q is often small like 3 × 3, so throughout the chapter we view q as a constant in
our theoretical analysis. To proceed, let W(h) ∈ Rdh×qdh−1 , we have

x(1) =

√
cσ
m
σ
(
W(1)φ1(x)

)
∈ Rm×p,

x(h) =x(h−1) +
cres
H
√
m
σ
(
W(h)φh(x

(h−1))
)
∈ Rm×p for 2 ≤ h ≤ H,

3We will refer to this architecture as ResNet, although this differs by the standard ResNet architecture since
the skip-connections at every layer, instead of every two layers. This architecture was previously studied in [41].
We study this architecture for the ease of presentation and analysis. It is not hard to generalize our analysis to
architectures with skip-connections are every two or more layers.

24

where 0 < cres < 1 is a small constant. Finally, for a ∈ Rm×p, the output is defined as

fcnn(x, θ) = 〈a,x(H)〉.

Note here we use the similar scaling O(1
H
√
m

) as ResNet.
To learn the deep neural network, we consider the randomly initialized gradient descent algo-

rithm to find the global minimizer of the empirical loss (3.1). Specifically, we use the following
random initialization scheme. For every level h ∈ [H], each entry is sampled from a standard
Gaussian distribution, W

(h)
ij ∼ N (0, 1) and each entry of the output layer a is also sampled from

N (0, 1). In this chapter, we train all layers by gradient descent, for k = 1, 2, . . . , and h ∈ [H]

W(h)(k) = W(h)(k − 1)− η ∂L(θ(k − 1))

∂W(h)(k − 1)
,

a(k) = a(k − 1)− η∂L(θ(k − 1))

∂a(k − 1)

where η > 0 is the step size.

3.3 Technique Overview
In this section, we describe our main idea of proving the global convergence of gradient descent.
Our proof technique follows that of the previous chapter. Here the individual prediction at the
k-th iteration is

ui(k) = f(θ(k),xi)

and we denote u(k) = (u1(k), . . . , un(k))> ∈ Rn. We consider the sequence {y − u(k)}∞k=0,
which admits the dynamics

y − u(k + 1) = (I− ηG(k)) (y − u(k))

where

Gij(k)

=

〈
∂ui(k)

∂θ(k)
,
∂uj(k)

∂θ(k)

〉
=

H∑
h=1

〈
∂ui(k)

∂W(h)(k)
,
∂uj(k)

∂W(h)(k)

〉
+

〈
∂ui(k)

∂a(k)
,
∂uj(k)

∂a(k)

〉

,
H+1∑
h=1

G
(h)
ij (k).

Here we define G(h) ∈ Rn×n with G
(h)
ij (k) =

〈
∂ui(k)

∂W(h)(k)
,

∂uj(k)

∂W(h)(k)

〉
for h = 1, . . . , H and

G
(H+1)
ij (k) =

〈
∂ui(k)
∂a(k)

,
∂uj(k)

∂a(k)

〉
. Note for all h ∈ [H + 1], each entry of G(h)(k) is an inner

25

product. Therefore, G(h)(k) is a positive semi-definite (PSD) matrix for h ∈ [H + 1]. Further-
more, if there exists one h ∈ [H] that G(h)(k) is strictly positive definite, then if one chooses the
step size η to be sufficiently small, the loss decreases at the k-th iteration according the analysis
of power method. In this chapter we focus on G(H)(k), the gram matrix induced by the weights
from H-th layer for simplicity at the cost of a minor degradation in convergence rate.4

We use the similar observation in the previous chapter that we show if the width is large
enough for all layers, for all k = 0, 1, . . ., G(H)(k) is close to a fixed matrix K(H) ∈ Rn×n

which depends on the input data, neural network architecture and the activation but does not
depend on neural network parameters θ. According to the analysis of the power method, once
we establish this, as long as K(H) is strictly positive definite, then the gradient descent enjoys a
linear convergence rate. We will show for K(H) is strictly positive definite as long as the training
data is not degenerate (c.f. Proposition 3.1 and 3.2).

While following the similar high-level analysis framework as the previous chapter, analyzing
the convergence of gradient descent for deep neural network is significantly more involved and
requires new technical tools. To show G(H)(k) is close to K(H), we have two steps. First, we
show in the initialization phase G(H)(0) is close to K(H). Second, we show during training
G(H)(k) is close to G(H)(0) for k = 1, 2, Below we give overviews of these two steps.

Analysis of Random Initialization Unlike the previous chapter in which we showed H(0) is
close to H∞ via a simple concentration inequality, showing G(H)(0) is close to K(H) requires
more subtle calculations. First, as will be clear in the following sections, K(H) is a recursively
defined matrix. Therefore, we need to analyze how the perturbation (due to randomness of ini-
tialization and finitem) from lower layers propagates to theH-th layer. Second, this perturbation
propagation involves non-linear operations due to the activation function. To quantitatively char-
acterize this perturbation propagation dynamics, we use induction and leverage techniques from
Malliavin calculus [54]. We derive a general framework that allows us to analyze the initializa-
tion behavior for the fully-connected neural network, ResNet, convolutional ResNet and other
potential neural network architectures in a unified way.

One important finding in our analysis is that ResNet architecture makes the “perturbation
propagation” more stable. The high level intuition is the following. For fully connected neural
network, suppose we have some perturbation

∥∥G(1)(0)−K(1)
∥∥

2
≤ E1 in the first layer. This

perturbation propagates to the H-th layer admits the form∥∥G(H)(0)−K(H)
∥∥

2
, EH . 2O(H)E1. (3.4)

Therefore, we need to have E1 ≤ 1
2O(H) and this makes m have exponential dependency on H .5

On the other hand, for ResNet the perturbation propagation admits the form

EH .

(
1 +O

(
1

H

))H
ε1 = O (ε1) (3.5)

4Using the contribution of all the gram matrices to the minimum eigenvalue can potentially improve the conver-
gence rate.

5We do not mean to imply that fully-connected networks necessarily depend exponentially on H , but simply to
illustrate in our analysis why the exponential dependence arises. For specific activations such as ReLU and careful
initialization schemes, this exponential dependence may be avoided [3].

26

Therefore we do not have the exponential explosion problem for ResNet. We refer readers to
Section 3.12 for details.

Analysis of Perturbation of During Training The next step is to show G(H)(k) is close to
G(H)(0) for k = 0, 1, Note G(H) depends on weight matrices from all layers, so to establish
that G(H)(k) is close to G(H)(0), we need to show W(h)(k) −W(h)(0) is small for all h ∈ [H]
and a(k)− a(0) is small.

In the two-layer neural network setting (Chapter 2), we showed every weight vector of the
first layer is close to its initialization, i.e.,

∥∥W(1)(k)−W(1)(0)
∥∥

2,∞ is small for k = 0, 1,
While establishing this condition for two-layer neural network is not hard, this condition may not
hold for multi-layer neural networks. In this chapter, we show instead, the averaged Frobenius
norm

1√
m

∥∥W(h)(k)−W(h)(0)
∥∥
F

(3.6)

is small for all k = 0, 1,
Similar to the analysis in the initialization, showing Equation (3.6) is small is highly involved

because again, we need to analyze how the perturbation propagates. We develop a unified proof
strategy for the fully-connected neural network, ResNet and convolutional ResNet. Our analysis
in this step again sheds light on the benefit of using ResNet architecture for training. The high-
level intuition is similar to Equation (3.5). See Section 3.9, 3.10, and 3.11 for details.

3.4 Convergence Result of GD for Deep Fully-connected Neu-
ral Networks

In this section, as a warm up, we show gradient descent with a constant positive step size con-
verges to the global minimum at a linear rate. As we discussed in Section 3.3, the convergence
rate depends on least eigenvalue of the Gram matrix K(H).
Definition 3.1. The Gram matrix K(H) is recursively defined as follows, for (i, j) ∈ [n] × [n],
and h = 1, . . . , H − 1

K
(0)
ij =〈xi,xj〉,

A
(h)
ij =

(
K

(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)
, (3.7)

K
(h)
ij =cσE(u,v)>∼N0,A

(h)
ij)

[σ (u)σ (v)] ,

K
(H)
ij =cσK

(H−1)
ij E

(u,v)>∼N (0,A
(H−1)
ij)

[σ′(u)σ′(v)] .

The derivation of this Gram matrix is deferred to Section 3.12. The convergence rate and
the amount of over-parameterization depends on the least eigenvalue of this Gram matrix. In
Section 3.13.1 we show as long as the input training data is not degenerate, then λmin

(
K(H)

)
is

27

strictly positive. We remark that if H = 1, then K(H) is the same the Gram matrix defined in the
previous chapter.

Now we are ready to state our main convergence result of gradient descent for deep fully-
connected neural networks.
Theorem 3.1 (Convergence Rate of Gradient Descent for Deep Fully-connected Neural Net-
works). Assume for all i ∈ [n], ‖xi‖2 = 1, |yi| = O(1) and the number of hidden nodes per
layer

m = Ω

(
2O(H) max

{
n4

λ4
min (K(H))

,
n

δ
,
n2 log(Hn

δ
)

λ2
min (K(H))

})

where K(H) is defined in Equation (3.7). If we set the step size

η = O

(
λmin

(
K(H)

)
n22O(H)

)
,

then with probability at least 1 − δ over the random initialization the loss, for k = 1, 2, . . ., the
loss at each iteration satisfies

L(θ(k)) ≤
(

1− ηλmin

(
K(H)

)
2

)k

L(θ(0)).

This theorem states that if the width m is large enough and we set step size appropriately
then gradient descent converges to the global minimum with zero loss at linear rate. The main
assumption of the theorem is that we need a large enough width of each layer. The width m
depends on n,H and 1/λmin

(
K(H)

)
. The dependency on n is only polynomial, which is the same

as the previous chapter. Furthermore,m also polynomially depends on 1/λmin

(
K(H)

)
. However,

the dependency on the number of layers H is exponential. As we discussed in Section 3.9.1, this
exponential comes from the instability of the fully-connected architecture (c.f. Equation (3.4)).
In the next section, we show with ResNet architecture, we can reduce the dependency on H from
2(H) to poly(H).

Note the requirement of m has three terms. The first term is used to show the Gram matrix is
stable during training. The second term is used to guarantee the output in each layer is approxi-
mately normalized at the initialization phase. The third term is used to show the perturbation of
Gram matrix at the initialization phase is small. See Section 3.9 for proofs.

The convergence rate depends step size η and λmin

(
K(H)

)
, similar to the previous chapter

Here we require η = O

(
λmin(K(H))
n22O(H)

)
. When H = 1, this requirement is the same as the one

used in the previous chapter. However, for deep fully-connected neural network, we require η to
be exponentially small in terms of number of layers. The reason is similar to that we require m
to be exponentially large. Again, this will be improved in the next section.

28

3.5 Convergence Result of GD for ResNet
In this section we consider the convergence of gradient descent for training a ResNet. We will
focus on how much over-parameterization is needed to ensure the global convergence of gradient
descent and compare it with fully-connected neural networks. Again we first define the key Gram
matrix whose least eigenvalue will determine the convergence rate.
Definition 3.2. The Gram matrix K(H) is recursively defined as follows, for (i, j) ∈ [n] × [n]
and h = 2, . . . , H − 1:

K
(0)
ij =〈xi,xj〉,

K
(1)
ij =E

(u,v)>∼N

0,

K
(0)
ii K

(0)
ij

K
(0)
ji K

(0)
jj

cσσ (u)σ (v) ,

b
(1)
i =
√
cσEu∼N (0,K

(0)
ii)

[σ (u)] ,

A
(h)
ij =

(
K

(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)
(3.8)

K
(h)
ij =K

(h−1)
ij + E

(u,v)>∼N (0,A
(h)
ij)

[
cresb

(h−1)
i σ (u)

H

cresb
(h−1)
j σ (v)

H
+
c2
resσ (u)σ (v)

H2

]
,

b
(h)
i =b

(h−1)
i +

cres
H

E
u∼N (0,K

(h−1)
ii)

[σ (u)] ,

K
(H)
ij =

c2
res

H2
K

(H−1)
ij E

(u,v)>∼N (0,A
(H−1)
ij)

[σ′(u)σ′(v)] .

Comparing K(H) of the ResNet and the one of the fully-connect neural network, the definition
of K(H) also depends on a series of {b(h)}H−1

h=1 . This dependency is comes from the skip con-
nection block in the ResNet architecture. See Section 3.12. In Section 3.13.2, we show as long
as the input training data is not degenerate, then λmin

(
K(H)

)
is strictly positive. Furthermore,

λmin

(
K(H)

)
does not depend inversely exponentially in H .

Now we are ready to state our main theorem for ResNet.
Theorem 3.2 (Convergence Rate of Gradient Descent for ResNet). Assume for all i ∈ [n],
‖xi‖2 = 1, |yi| = O(1) and the number of hidden nodes per layer

m =Ω

(
max

{
n4

λ4
min (K(H))H6

,
n2

λ2
min(K(H))H2

,
n

δ
,
n2 log

(
Hn
δ

)
λ2

min (K(H))

})
.

If we set the step size η = O

(
λmin(K(H))H2

n2

)
, then with probability at least 1−δ over the random

initialization we have for k = 1, 2, . . .

L(θ(k)) ≤
(

1− ηλmin

(
K(H)

)
2

)k

L(θ(0)).

29

In sharp contrast to Theorem 3.1, this theorem is fully polynomial in the sense that both
the number of neurons and the convergence rate is polynomially in n and H . Note the amount
of over-parameterization depends on λmin

(
K(H)

)
which is the smallest eigenvalue of the H-th

layer’s Gram matrix. The main reason that we do not have any exponential factor here is that the
skip connection block makes the overall architecture more stable in both the initialization phase
and the training phase.

Note the requirement on m has 4 terms. The first two terms are used to show the Gram
matrix stable during training. The third term is used to guarantee the output in each layer is
approximately normalized at the initialization phase. The fourth term is used to show bound
the size of the perturbation of the Gram matrix at the initialization phase. See Section 3.10 for
details.

3.6 Convergence Result of GD for Convolutional ResNet
In this section we generalize the convergence result of gradient descent for ResNet to convo-
lutional ResNet. Again, we focus on how much over-parameterization is needed to ensure the
global convergence of gradient descent. Similar to previous sections, we first define the K(H) for
this architecture.
Definition 3.3. The Gram matrix K(H) is recursively defined as follows, for (i, j) ∈ [n] × [n],
(l, r) ∈ [p]× [p] and h = 2, . . . , H − 1,

K
(0)
ij =φ1 (xi)

> φ1 (xj) ∈ Rp×p,

K
(1)
ij =E

(u,v)∼N (0,

K
(0)
ii K

(0)
ij

K
(0)
ji K

(0)
jj

)

cσσ (u)> σ (v) ,

b
(1)
i =
√
cσEu∼N (0,K

(0)
ii)

[σ (u)] ,

A
(h)
ij =

(
K

(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)
,

H
(h)
ij =K

(h−1)
ij + E

(u,v)∼N (0,A
(h−1)
ij)

[
cresb

(h−1)>
i σ (u)

H
+
cresb

(h−1)>
j σ (v)

H
+
c2
resσ (u)> σ (v)

H2

]
,

K
(h)
ij,lr =tr

(
H

(h)

ij,D
(h)
` D

(h)
r

)
, (3.9)

b
(h)
i =b

(h−1)
i +

cres
H

E
u∼N (0,K

(h−1)
ii)

[σ (u)]

M
(H)
ij,lr =K

(H−1)
ij,lr E

(u,v)∼N (0,A
(H−1)
ij)

[σ′(ul)σ
′(vr)]

K
(H)
ij =tr(M

(H)
ij)

where u and v are both random row vectors and D(h)
l , {s : x

(h−1)
:,s ∈ the lth patch}.

Note here K
(h)
ij has dimension p × p for h = 0, . . . , H − 1 and Kij,lr denotes the (l, r)-th

entry. Now we state our main convergence theorem for the convolutional ResNet.

30

Theorem 3.3 (Convergence Rate of Gradient Descent for Convolutional ResNet). Assume for
all i ∈ [n], ‖xi‖F = 1, |yi| = O(1) and the number of hidden nodes per layer

m =Ω

(
max

{
n4

λ4
0H

6
,
n4

λ4
0H

2
,
n

δ
,
n2 log

(
Hn
δ

)
λ2

0

}
poly(p)

)
. (3.10)

If we set the step size η = O
(

λ0H2

n2poly(p)

)
, then with probability at least 1 − δ over the random

initialization we have for k = 1, 2, . . .

L(θ(k)) ≤
(

1− ηλmin

(
K(H)

)
2

)k

L(θ(0)).

This theorem is similar to that of ResNet. The number of neurons required per layer is only
polynomial in the depth and the number of data points and step size is only polynomially small.
The only extra term is poly(p) in the requirement of m and η. The analysis is also similar to
ResNet and we refer readers to Section 3.11 for details.

3.7 Conclusion and Future Work

In this chapter, we show that gradient descent on deep overparametrized networks can obtain
zero training loss. Our proof builds on a careful analysis of the random initialization scheme
and a perturbation analysis which shows that the Gram matrix is increasingly stable under over-
parametrization. These techniques allow us to show that every step of gradient descent decreases
the loss at a geometric rate. We believe the analysis techniques developed in this chapter may be
applicable to other problems.

We list some directions for future research:
1. The current chapter focuses on the training loss, but does not address the test loss. It would

be an important problem to show that gradient descent can also find solutions of low test
loss. In particular, existing work only demonstrate that gradient descent works under the
same situations as kernel methods and random feature methods [2, 5, 16, 50].

2. The width of the layers m is polynomial in all the parameters for the ResNet architecture,
but still very large. Realistic networks have number of parameters, not width, a large
constant multiple of n. We consider improving the analysis to cover commonly utilized
networks an important open problem.

3. The current analysis is for gradient descent, instead of stochastic gradient descent. We
believe the analysis can be extended to stochastic gradient, while maintaining the linear
convergence rate.

4. The convergence rate can be potentially improved if the minimum eigenvalue takes into
account the contribution of all Gram matrices, but this would considerably complicate the
initialization and perturbation analysis.

31

Appendix: Omitted Proofs

In the proof we will use the geometric series function gα(n) =
∑n−1

i=0 α
i extensively. Some

constants we will define below may be different for different network structures, such as cx, cw,0
and cx,0. We will also use c to denote a small enough constant, which may be different in different
lemmas. For simplicity, we use λ0 to denote λmin

(
K(H)

)
in the proofs.

3.8 Proof Sketch
Note we can write the loss as

L(θ(k)) =
1

2
‖y − u(k)‖2

2 .

Our proof is by induction. Our induction hypothesis is just the following convergence rate of
empirical loss.
Condition 3.3. At the k-th iteration, we have

‖y − u(k)‖2
2 ≤ (1− ηλ0

2
)k ‖y − u(0)‖2

2 .

Note this condition implies the conclusions we want to prove. To prove Condition 3.3, we
consider one iteration on the loss function.

‖y − u(k + 1)‖2
2

= ‖y − u(k)− (u(k + 1)− u(k))‖2
2

= ‖y − u(k)‖2
2 − 2 (y − u(k))> (u(k + 1)− u(k)) + ‖u(k + 1)− u(k)‖2

2 . (3.11)

This equation shows if 2 (y − u(k))> (u(k + 1)− u(k)) > ‖u(k + 1)− u(k)‖2
2, the loss de-

creases. Note both terms involves u(k+ 1)−u(k), which we will carefully analyze. To simplify
notations, we define

u′i(θ) ,
∂ui
∂θ

, u
′(h)
i (θ) ,

∂ui
∂W(h)

, u
′(a)
i (θ) ,

∂ui
∂a

, and

L′(θ) ,
∂L(θ)

∂θ
, L′(h)(W(h)) ,

∂L(θ)

∂W(h)
, L′(a)(θ) ,

∂L

∂a
.

We look one coordinate of u(k + 1)− u(k).
Using Taylor expansion, we have

ui(k + 1)− ui(k)

=ui (θ(k)− ηL′(θ(k)))− ui (θ(k))

=−
∫ η

s=0

〈L′(θ(k)), u′i (θ(k)− sL′(θ(k)))〉ds

=−
∫ η

s=0

〈L′(θ(k)), u′i (θ(k))〉ds+

∫ η

s=0

〈L′(θ(k)), u′i (θ(k))− u′i (θ(k)− sL′(θ(k)))〉ds

32

,I i1(k) + I i2(k).

Denote I1(k) = (I1
1 (k), . . . , In1 (k))

> and I2(k) = (I1
2 (k), . . . , In2 (k))

> and so u(k+1)−u(k) =
I1(k) + I2(k). We will show the I1(k) term, which is proportional to η, drives the loss function
to decrease and the I2(k) term, which is a perturbation term but it is proportional to η2 so it is
small. We further unpack the I i1(k) term,

I i1 =− η〈L′(θ(k)), u′i (θ(k))〉

=− η
n∑
j=1

(uj − yj)〈u′j(θ(k)), u′i (θ(k))〉

,− η
n∑
j=1

(uj − yj)
H+1∑
h=1

G
(h)
ij (k)

According to Section 3.3, we will only look at G(H) matrix which has the following form

G
(H)
i,j (k) = (x

(H−1)
i (k))>x

(H−1)
j (k)·cσ

m

m∑
r=1

a2
rσ
′((θ(H)

r (k))>x
(H−1)
i (k))σ′((θ(H)

r (k))>x
(H−1)
j (k)).

Now we analyze I1(k). We can write I1 in a more compact form with G(k).

I1(k) = −ηG(k) (u(k)− y) .

Now observe that

(y − u(k))>I1(k) =η (y − u(k))>G(k)(y − u(k))

≥λmin (G(k)) ‖y − u(k)‖2
2

≥λmin

(
G(H)(k)

)
‖y − u(k)‖2

2

Now recall the progress of loss function in Equation (3.11):

‖y − u(k + 1)‖2
2

= ‖y − u(k)‖2
2 − 2 (y − u(k))> I1(k)− 2 (y − u(k))> I2(k) + ‖u(k + 1)− u(k)‖2

2

≤
(
1− ηλmin

(
G(H)(k)

))
‖y − u(k)‖2

2 − 2 (y − u(k))> I2(k) + ‖u(k + 1)− u(k)‖2
2 .

For the perturbation terms, through standard calculations, we can show both−2 (y − u(k))> I2(k)
and ‖u(k + 1)− u(k)‖2 are proportional to η2 ‖y − u(k)‖2

2 so if we set η sufficiently small, this
term is smaller than ηλmin

(
G(H)(k)

)
‖y − u(k)‖2

2 and thus the loss function decreases with a
linear rate.

Therefore, to prove the induction hypothesis, it suffices to prove λmin

(
G(H)(k)

)
≥ λ0

2
for

k′ = 0, . . . , k, where λ0 is independent of m. To analyze the least eigenvalue, we first look at the
initialization. Using assumptions of the population Gram matrix and concentration inequalities,
we can show at the beginning

∥∥G(H)(0)−K(H)(0)
∥∥

op
≤ 1

4
λ0, which implies

λmin

(
G(H)(0)

)
≥ 3

4
λ0.

33

Now for the k-th iteration, by matrix perturbation analysis, we know it is sufficient to show∥∥G(H)(k)−G(H)(0)
∥∥

op
≤ 1

4
λ0. To do this, we use a similar approach as in the previous chapter.

We show as long as m is large enough, every weight matrix is close its initialization in a relative
error sense. Ignoring all other parameters except m,

∥∥W(h)(k)−W(h)(0)
∥∥
F
. 1, and thus the

average per-neuron distance from initialization is ‖W
(h)(k)−W(h)(0)‖

F√
m

. 1√
m

which tends to zero
as m increases. See Lemma 3.5 for precise statements with all the dependencies.

This fact in turn shows
∥∥G(H)(k)−G(H)(0)

∥∥
op

is small. The main difference from the
previous chapter is that we are considering deep neural networks, and when translating the small
deviation,

∥∥W(h)(k)−W(h)(0)
∥∥
F

to
∥∥G(H)(k)−G(H)(0)

∥∥
op

, there is an amplification factor
which depends on the neural network architecture.

For deep fully connected neural networks, we show this amplification factor is exponential in
H . On the other hand, for ResNet and convolutional ResNet we show this amplification factor is
only polynomial inH . We further show the widthm required is proportional to this amplification
factor.

3.9 Proofs for Section 3.4
We first derive the formula of the gradient for the multilayer fully connected neural network

∂L(θ)

∂W(h)
=
(cσ
m

)H−h+1
2

n∑
i=1

(f(xi, θ)− yi) x
(h−1)
i a>

(
H∏

k=h+1

J
(k)
i W(k)

)
J

(h)
i

where
J(h′) , diag

(
σ′
(

(w
(h′)
1)>x(h′−1)

)
, . . . , σ′

(
(w(h′)

m)>x(h′−1)
))
∈ Rm×m

are the derivative matrices induced by the activation function and

x(h′) =

√
cσ
m
σ
(
W(h′)x(h′−1)

)
.

is the output of the h′-th layer.
Through standard calculation, we can get the expression of G

(H)
i,j of the following form

G
(H)
i,j = (x

(H−1)
i)>x

(H−1)
j · cσ

m

m∑
r=1

a2
rσ
′((w(H)

r)>x
(H−1)
i)σ′((w(H)

r)>x
(H−1)
j). (3.12)

We first present a lemma which shows with high probability the feature of each layer is
approximately normalized.

Lemma 3.1 (Lemma on Initialization Norms). If σ(·) is L−Lipschitz and m = Ω
(
nHgC(H)2

δ

)
,

where C , cσL
(

2 |σ(0)|
√

2
π

+ 2L
)

, then with probability at least 1 − δ over random initial-
ization, for every h ∈ [H] and i ∈ [n], we have

1

cx,0
≤
∥∥∥x(h)

i (0)
∥∥∥

2
≤ cx,0

where cx,0 = 2.

34

We follow the proof sketch described in Section 3.8. We first analyze the spectral property of
G(H)(0) at the initialization phase. The following lemma lower bounds its least eigenvalue. This
lemma is a direct consequence of results in Section 3.12.

Lemma 3.2 (Least Eigenvalue at the Initialization). If m = Ω
(
n2 log(Hn/δ)2O(H)

λ20

)
, we have

λmin(G(H)(0)) ≥ 3

4
λ0.

Now we proceed to analyze the training process. We prove the following lemma which
characterizes how the perturbation from weight matrices propagates to the input of each layer.
This Lemma is used to prove the subsequent lemmas.
Lemma 3.3. Suppose for every h ∈ [H],

∥∥W(h)(0)
∥∥

op
≤ cw,0

√
m,
∥∥x(h)(0)

∥∥
2
≤ cx,0 and∥∥W(h)(k)−W(h)(0)

∥∥
F
≤ √mR for some constant cw,0, cx,0 > 0 and R ≤ cw,0. If σ(·) is

L−Lipschitz, we have ∥∥x(h)(k)− x(h)(0)
∥∥

2
≤ √cσLcx,0gcx(h)R

where cx = 2
√
cσLcw,0.

Here the assumption of
∥∥W(h)(0)

∥∥
2
≤ cw,0

√
m can be shown using Lemma 3.27 and taking

union bound over h ∈ [H], where cw,0 is a universal constant. Next, we show with high prob-
ability over random initialization, perturbation in weight matrices leads to small perturbation in
the Gram matrix.
Lemma 3.4. Suppose σ(·) is L−Lipschitz and β−smooth. Suppose for h ∈ [H],

∥∥W(h)(0)
∥∥

2
≤

cw,0
√
m, ‖a(0)‖2 ≤ a2,0

√
m, ‖a(0)‖4 ≤ a4,0m

1/4 , 1
cx,0
≤
∥∥x(h)(0)

∥∥
2
≤ cx,0,

if
∥∥W(h)(k)−W(h)(0)

∥∥
F

and ‖a(k)− a(0)‖2 ≤
√
mR where R ≤ cgcx(H)−1λ0n

−1 and R ≤
cgcx(H)−1 for some small constant c and cx = 2

√
cσLcw,0, we have∥∥G(H)(k)−G(H)(0)
∥∥

op
≤ λ0

4
.

Here the assumption of ‖a(0)‖2 ≤ a2,0

√
m, ‖a(0)‖4 ≤ a4,0m

1/4 can be easily obtained using
standard concentration inequalities, where a2,0 and a4,0 are both universal constants. The follow-
ing lemma shows if the induction holds, we have every weight matrix close to its initialization.
Lemma 3.5. If Condition 3.3 holds for k′ = 1, . . . , k, we have for any s = 1, . . . , k + 1∥∥W(h)(s)−W(h)(0)

∥∥
F
, ‖a(s)− a(0)‖2 ≤ R′

√
m∥∥W(h)(s)−W(h)(s− 1)

∥∥
F
, ‖a(s)− a(s− 1)‖2 ≤ ηQ′(s− 1)

where R′ = 16cx,0a2,0(cx)H
√
n‖y−u(0)‖2

λ0
√
m

≤ cgcx(H)−1 for some small constant c with

cx = max{2√cσLcw,0, 1} and Q′(s) = 4cx,0a2,0 (cx)
H √n ‖y − u(s)‖2.

Now we proceed to analyze the perturbation terms.
Lemma 3.6. If Condition 3.3 holds for k′ = 1, . . . , k, suppose η ≤ cλ0

(
n2H2(cx)

3Hg2cx(H)
)−1

for some small constant c, we have

‖I2(k)‖2 ≤
1

8
ηλ0 ‖y − u(k)‖2 .

35

Lemma 3.7. If Condition 3.3 holds for k′ = 1, . . . , k, suppose η ≤ cλ0

(
n2H2(cx)

2Hg2cx(H)
)−1

for some small constant c, then we have ‖u(k + 1)− u(k)‖2
2 ≤ 1

8
ηλ0 ‖y − u(k)‖2

2.
We now proceed with the proof of Theorem 3.1. By induction, we assume Condition 3.3 for

all k′ < k. Using Lemma 3.5, this establishes∥∥W(h)(k)−W(h)(0)
∥∥
F
≤ R′

√
m

≤ R
√
m (using the choice of m in the theorem.)

By Lemma 3.4, this establishes λmin(G(H)(k)) ≥ λ0
2

.
With these estimates in hand, we are ready to prove the induction hypothesis of Condition 3.3.

‖y − u(k + 1)‖2
2

= ‖y − u(k)‖2
2 − 2η (y − u(k))>G(k) (y − u(k))− 2 (y − u(k))> I2 + ‖u(k + 1)− u(k)‖2

2

≤ ‖y − u(k)‖2
2 − 2η (y − u(k))>G(H)(k) (y − u(k))− 2 (y − u(k))> I2 + ‖u(k + 1)− u(k)‖2

2

≤ (1− ηλ0) ‖y − u(k)‖2
2 − 2 (y − u(k))> I2 + ‖u(k + 1)− u(k)‖2

2

≤ (1− ηλ0

2
) ‖y − u(k)‖2

2 .

The first inequality drops the positive terms (y − u(k))>
∑

h∈[H+1],h6=H G(h)(k) (y − u(k)). The
second inequality uses the argument above that establishes λmin(G(H)(k)) ≥ λ0

2
. The third

inequality uses Lemmas 3.6 and 3.7.

3.9.1 Proofs of Lemmas
Proof of Lemma 3.1. We will bound

∥∥∥x(h)
i (0)

∥∥∥
2

by induction on layers. The induction hypoth-

esis is that with probability at least 1 − (h − 1) δ
nH

over W(1)(0), . . . ,W(h−1)(0), for every

1 ≤ h′ ≤ h− 1, 1
2
≤ 1− gC(h′)

2gC(H)
≤
∥∥∥x(h′)

i (0)
∥∥∥

2
≤ 1 + gC(h′)

2gC(H)
≤ 2. Note that it is true for h = 1.

We calculate the expectation of
∥∥∥x(h)

i (0)
∥∥∥2

2
over the randomness from W(h)(0). Recall

∥∥∥x(h)
i (0)

∥∥∥2

2
=
cσ
m

m∑
r=1

σ
(
w(h)
r (0)>x

(h−1)
i (0)

)2

.

Therefore we have

E
[∥∥∥x(h)

i (0)
∥∥∥2

2

]
=cσE

[
σ
(
w(h)
r (0)>x

(h−1)
i (0)

)2
]

=cσEX∼N(0,1)σ(
∥∥∥x(h−1)

i (0)
∥∥∥

2
X)2.

Note that σ(·) is L−Lipschitz, for any 1
2
≤ α ≤ 2, we have∣∣EX∼N(0,1)σ(αX)2 − EX∼N(0,1)σ(X)2

∣∣
36

≤EX∼N(0,1)

∣∣σ(αX)2 − σ(X)2
∣∣

≤L |α− 1|EX∼N(0,1) |X (σ(αX) + σ(X))|
≤L |α− 1|EX∼N(0,1) |X| (|2σ(0)|+ L |(α + 1)X|)
≤L |α− 1|

(
2 |σ(0)|EX∼N(0,1) |X|+ L |α + 1|EX∼N(0,1)X

2
)

=L |α− 1|
(

2 |σ(0)|
√

2

π
+ L |α + 1|

)
≤C
cσ
|α− 1| ,

where C , cσL
(

2 |σ(0)|
√

2
π

+ 2L
)

, which implies

1− CgC(h− 1)

2gC(H)
≤ E

[∥∥∥x(h)
i (0)

∥∥∥2

2

]
≤ 1 +

CgC(h− 1)

2gC(H)
.

For the variance we have

Var
[∥∥∥x(h)

i (0)
∥∥∥2

2

]
=
c2
σ

m
Var
[
σ
(
w(h)
r (0)>x

(h−1)
i (0)

)2
]

≤c
2
σ

m
E
[
σ
(
w(h)
r (0)>x

(h−1)
i (0)

)4
]

≤c
2
σ

m
E
[(
|σ(0)|+ L

∣∣∣w(h)
r (0)>x

(h−1)
i (0)

∣∣∣)4
]

≤C2

m
.

where C2 , σ(0)4 + 8 |σ(0)|3 L
√

2/π + 24σ(0)2L2 + 64σ(0)L3
√

2/π + 512L4 and the last
inequality we used the formula for the first four absolute moments of Gaussian.

Applying Chebyshev’s inequality and plugging in our assumption on m, we have with prob-
ability 1− δ

nH
over W(h), ∣∣∣∣∥∥∥x(h)

i (0)
∥∥∥2

2
− E

∥∥∥x(h)
i (0)

∥∥∥2

2

∣∣∣∣ ≤ 1

2gC(H)
.

Thus with probability 1− h δ
nH

over W(1), . . . ,W(h),∣∣∣∥∥∥x(h)
i (0)

∥∥∥
2
− 1
∣∣∣ ≤ ∣∣∣∣∥∥∥x(h)

i (0)
∥∥∥2

2
− 1

∣∣∣∣ ≤ CgC(h− 1)

2gC(H)
+

1

2g(H)
=

gC(h)

2gC(H)
.

Using union bounds over [n], we prove the lemma.

Proof of Lemma 3.3. We prove this lemma by induction. Our induction hypothesis is∥∥x(h)(k)− x(h)(0)
∥∥

2
≤ √cσLRcx,0gcx(h),

37

where cx = 2
√
cσLcw,0. For h = 0, since the input data is fixed, we know the induction hy-

pothesis holds. Now suppose the induction hypothesis holds for h′ = 0, . . . , h− 1, we consider
h′ = h. ∥∥x(h)(k)− x(h)(0)

∥∥
2

=

√
cσ
m

∥∥σ (W(h)(k)x(h−1)(k)
)
− σ

(
W(h)(0)x(h−1)(0)

)∥∥
2

≤
√
cσ
m

∥∥σ (W(h)(k)x(h−1)(k)
)
− σ

(
W(h)(k)x(h−1)(0)

)∥∥
2

+

√
cσ
m

∥∥σ (W(h)(k)x(h−1)(0)
)
− σ

(
W(h)(0)x(h−1)(0)

)∥∥
2

≤
√
cσ
m
L
(∥∥W(h)(0)

∥∥
2

+
∥∥W(h)(k)−W(h)(0)

∥∥
F

)
·
∥∥x(h−1)(k)− x(h−1)(0)

∥∥
2

+

√
cσ
m
L
∥∥W(h)(k)−W(h)(0)

∥∥
F

∥∥xh−1(0)
∥∥

2

≤
√
cσ
m
L
(
cw,0
√
m+R

√
m
)√

cσLRcx,0gcx(h− 1) +

√
cσ
m
L
√
mRcx,0

≤√cσLRcx,0 (cxgcx(h− 1) + 1)

≤√cσLRcx,0gcx(h).

Proof of Lemma 3.4. Because Frobenius-norm of a matrix is bigger than the operator norm, it is
sufficient to bound

∥∥G(H)(k)−G(H)(0)
∥∥
F

. For simplicity define zi,r(k) = w
(H)
r (k)>x

(H−1)
i (k),

we have∣∣∣G(H)
i,j (k)−G

(H)
i,j (0)

∣∣∣
=
∣∣x(H−1)

i (k)>x
(H−1)
j (k)

cσ
m

m∑
r=1

ar(k)2σ′ (zi,r(k))σ′ (zj,r(k))

− x
(H−1)
i (0)>x

(H−1)
j (0)

cσ
m

m∑
r=1

ar(0)2σ′ (zi,r(0))σ′ (zj,r(0))
∣∣

≤
∣∣∣x(H−1)

i (k)>x
(H−1)
j (k)− x

(H−1)
i (0)>x

(H−1)
j (0)

∣∣∣ cσ
m

m∑
r=1

ar(0)2 |σ′ (zi,r(k))σ′ (zj,r(k))|

+
∣∣∣x(H−1)

i (0)>x
(H−1)
j (0)

∣∣∣ cσ
m

∣∣∣∣∣
m∑
r=1

ar(0)2 (σ′ (zi,r(k))σ′ (zj,r(k))− σ′ (zi,r(0))σ′ (zj,r(0)))

∣∣∣∣∣
+
∣∣∣x(H−1)

i (k)>x
(H−1)
j (k)

∣∣∣ cσ
m

∣∣∣∣∣
m∑
r=1

(
ar(k)2 − ar(0)2

)
σ′ (zi,r(k))σ′ (zj,r(k))

∣∣∣∣∣
≤L2cσa

2
2,0

∣∣∣x(H−1)
i (k)>x

(H−1)
j (k)− x

(H−1)
i (0)>x

(H−1)
j (0)

∣∣∣
38

+ c2
x,0

cσ
m

∣∣∣∣∣
m∑
r=1

ar(0)2 (σ′ (zi,r(k))σ′ (zj,r(k))− σ′ (zi,r(0))σ′ (zj,r(0)))

∣∣∣∣∣
+ 4L2c2

x,0

cσ
m

m∑
r=1

∣∣ar(k)2 − ar(0)2
∣∣

,I i,j1 + I i,j2 + I i,j3 .

For I i,j1 , using Lemma 3.3, we have

I i,j1 =L2cσa
2
2,0

∣∣∣x(H−1)
i (k)>x

(H−1)
j (k)− x

(H−1)
i (0)>x

(H−1)
j (0)

∣∣∣
≤L2cσa

2
2,0

∣∣∣(x(H−1)
i (k)− x

(H−1)
i (0))>x

(H−1)
j (k)

∣∣∣+ L2cσa
2
2,0

∣∣∣x(H−1)
i (0)>(x

(H−1)
j (k)− x

(H−1)
j (0))

∣∣∣
≤cσa2

2,0

√
cσL

3cx,0gcx(H)R · (cx,0 +
√
cσLcx,0gcx(H)R) + cσ

√
cσa

2
2,0L

3cx,0gcx(H)Rcx,0

≤3cσa
2
2,0c

2
x,0

√
cσL

3gcx(H)R.

For I i,j2 , we have

I i,j2

=c2
x,0

cσ
m

∣∣∣∣∣
m∑
r=1

ar(0)2σ′ (zi,r(k))σ′ (zj,r(k))− ar(0)2σ′ (zi,r(0))σ′ (zj,r(0))

∣∣∣∣∣
≤c2

x,0

cσ
m

m∑
r=1

ar(0)2 |(σ′ (zi,r(k))− σ′ (zi,r(0)))σ′ (zj,r(k))|

+
m∑
r=1

ar(0)2 |(σ′ (zj,r(k))− σ′ (zj,r(0)))σ′ (zi,r(0))|

≤βLcσc
2
x,0

m

(
m∑
r=1

ar(0)2 |zi,r(k)− zi,r(0)|+ ar(0)2 |zj,r(k)− zj,r(0)|
)

≤βLcσa
2
4,0c

2
x,0√

m

√√√√ m∑
r=1

|zi,r(k)− zi,r(0)|2 +

√√√√ m∑
r=1

|zj,r(k)− zj,r(0)|2
 .

Using the same proof for Lemma 3.3, it is easy to see
m∑
r=1

|zi,r(t)− zi,r(0)|2 ≤ c2
x,0gcx(H)2mR2.

Thus

I i,j2 ≤ 2βcσa
2
4,0c

3
x,0Lgcx(H)R.

For I i,j3 ,

I i,j3 = 4L2c2
x,0

cσ
m

m∑
r=1

∣∣ar(k)2 − ar(0)2
∣∣

39

≤ 4L2c2
x,0

cσ
m

m∑
r=1

|ar(k)− ar(0)| |ar(k)|+ |ar(k)− ar(0)| |ar(0)|

≤ 12L2c2
x,0cσa2,0R.

Therefore we can bound the perturbation

∥∥G(H)(t)−G(H)(0)
∥∥
F

=

√√√√ n,n∑
(i,j)

∣∣∣G(H)
i,j (t)−G

(H)
i,j (0)

∣∣∣2
≤
[(

2βcx,0a
2
4,0 + 3

√
cσL

2
)
Lcσc

2
x,0a

2
2,0gcx(H) + 12L2c2

x,0cσa2,0

]
nR.

Plugging in the bound on R, we have the desired result.

Proof of Lemma 3.5. We will prove this corollary by induction. The induction hypothesis is

∥∥W(h)(s)−W(h)(0)
∥∥
F
≤

s−1∑
s′=0

(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m ≤ R′
√
m, s ∈ [k + 1],

‖a(s)− a(0)‖2 ≤
s−1∑
s′=0

(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m ≤ R′
√
m, s ∈ [k + 1].

First it is easy to see it holds for s′ = 0. Now suppose it holds for s′ = 0, . . . , s, we consider
s′ = s+ 1. We have∥∥W(h)(s+ 1)−W(h)(s)

∥∥
F

=η

∥∥∥∥∥(cσm)H−h+1
2

n∑
i=1

(yi − ui(s))x(h−1)
i (s)

(
a(s)>

(
H∏

k=h+1

J
(k)
i (s)W(k)(s)

)
J

(h)
i (s)

)∥∥∥∥∥
F

≤η
(cσ
m

)H−h+1
2 ‖a(s)‖2

n∑
i=1

|yi − ui(s)|
∥∥∥x(h−1)

i (s)
∥∥∥

2

H∏
k=h+1

∥∥W(k)(s)
∥∥

2

H∏
k=h

∥∥J(k)(s)
∥∥

2
,

‖a(s+ 1)− a(s)‖2 = η

∥∥∥∥∥
n∑
i=1

(yi − ui(s))x(H)
i (s)

∥∥∥∥∥
2

.

To bound
∥∥∥x(h−1)

i (s)
∥∥∥

2
, we can just apply Lemma 3.3 and get∥∥∥x(h−1)

i (s)
∥∥∥

2
≤ √cσLcx,0gcx(h)R′ + cx,0 ≤ 2cx,0.

To bound
∥∥W(k)(s)

∥∥
2
, we use our assumption

H∏
k=h+1

∥∥W(k)(s)
∥∥

2
≤

H∏
k=h+1

(∥∥W(k)(0)
∥∥

2
+
∥∥W(k)(s)−W(k)(0)

∥∥
2

)
40

≤
H∏

k=h+1

(cw,0
√
m+R′

√
m)

= (cw,0 +R′)
H−h

m
H−h

2

≤ (2cw,0)H−hm
H−h

2 .

Note that
∥∥J(k)(s)

∥∥
2
≤ L. Plugging in these two bounds back, we obtain

∥∥W(h)(s+ 1)−W(h)(s)
∥∥
F
≤4ηcx,0a2,0c

H
x

n∑
i=1

|yi − u(s)|

≤4ηcx,0a2,0c
H
x

√
n ‖y − u(s)‖2

=ηQ′(s)

≤(1− ηλ0

2
)s/2

1

4
ηλ0R

′√m.

Similarly, we have

‖a(s+ 1)− a(s)‖2 ≤2ηcx,0

n∑
i=1

|yi − u(s)|

≤ηQ′(s)

≤(1− ηλ0

2
)s/2

1

4
ηλ0R

′√m.

Thus ∥∥W(h)(s+ 1)−W(h)(0)
∥∥
F

≤
∥∥W(h)(s+ 1)−W(h)(s)

∥∥
F

+
∥∥W(h)(s)−W(h)(0)

∥∥
F

≤
s∑

s′=0

η(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m.

Similarly,

‖a(s+ 1)− a(0)‖2

≤
s∑

s′=0

η(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m.

Proof of Lemma 3.6. Fix i ∈ [n], we bound

∣∣I i2(k)
∣∣ ≤η max

0≤s≤η

H∑
h=1

∥∥L′(h)(θ(k))
∥∥
F

∥∥∥u′(h)
i (θ(k))− u′(h)

i

(
θ(k)− sL′(h)(θ(k))

)∥∥∥
F
.

41

For the gradient norm, we have∥∥L′(h)(θ(k))
∥∥
F

=

∥∥∥∥∥(cσm)H−h+1
2

n∑
i=1

(yi − ui(k))x
(h−1)
i (k)

(
a(k)>

(
H∏

l=h+1

J
(l)
i (k)W(l)(k)

)
J

(h)
i (k)

)∥∥∥∥∥
F

.

Similar to the proof for Lemma 3.5, we have∥∥L′(h)(θ(k))
∥∥
F
≤ Q′(k).

Let θ(k, s) = θ(k)− sL′(θ(k)),∥∥∥u′(h)
i (θ(k))− u′(h)

i (θ(k, s))
∥∥∥
F

=
(cσ
m

)H−h+1
2

∥∥∥∥∥x(h−1)
i (k)

(
a(k)>

(
H∏

l=h+1

J
(l)
i (k)W(l)(k)

)
J

(h)
i (k)

)

−x
(h−1)
i (k, s)

(
a(k, s)>

(
H∏

l=h+1

J
(l)
i (k, s)W(l)(k, s)

)
J

(h)
i (k, s)

)∥∥∥∥∥
F

Through standard calculations, we have∥∥W(l)(k)−W(l)(k, s)
∥∥
F
≤ηQ′(k),

‖a(k)− a(k, s)‖2 ≤ηQ′(k),∥∥∥x(h−1)
i (k)− x

(h−1)
i (k, s)

∥∥∥
F
≤2η
√
cσLcx,0g2cx(H)

Q′(k)√
m
,∥∥∥J(l)

i (k)− J
(l)
i (k, s)

∥∥∥
F
≤2ηβ

√
cσLcx,0g2cx(H)Q′(k).

According to Lemma 3.26, we have∥∥∥u′(h)
i (w(k))− u′(h)

i (w(k, s))
∥∥∥
F

≤4cx,0a2,0c
H
x η

Q′(k)√
m

(
H

2
+

[
1

2cx,0
+
Hβ
√
m

L

]
2
√
cσLcx,0g2cx(H)

)
≤16H

√
cσc

2
x,0a2,0c

H
x g2cx(H)βηQ′(k).

Thus we have ∣∣I i2∣∣ ≤ 16H2√cσc2
x,0a2,0c

H
x g2cx(H)βη2Q′(k)2.

Since this holds for all i ∈ [n], plugging in η and noting that ‖y − u(0)‖2 = O(
√
n), we have

‖I2(k)‖2 ≤
1

8
ηλ0 ‖y − u(k)‖2 .

42

Proof of Lemma 3.7.

‖u(k + 1)− u(k)‖2
2

=
n∑
i=1

(
a(k + 1)>x

(H)
i (k + 1)− a(k)>x

(H)
i (k)

)2

=
n∑
i=1

(
[a(k + 1)− a(k)]> x

(H)
i (k + 1) + a(k)>

[
x

(H)
i (k + 1)− x

(H)
i (k)

])2

≤2 ‖a(k + 1)− a(k)‖2
2

n∑
i=1

∥∥∥x(H)
i (k + 1)

∥∥∥2

2
+ 2 ‖a(k)‖2

2

n∑
i=1

∥∥∥x(H)
i (k + 1)− x

(H)
i (k)

∥∥∥2

2

≤8nη2c2
x,0Q

′(k)2 + 4n
(
2η
√
cσLcx,0a

2
2,0g2cx(H)Q′(k)

)2

≤1

8
ηλ0 ‖y − u(k)‖2

2 .

3.10 Proofs for Section 3.5
The gradient for ResNet is

∂L

∂W(h)
=

cres
H
√
m

n∑
i=1

(yi − ui)x(h−1)
i ·

[
a>

H∏
l=h+1

(
I +

cres
H
√
m

J
(l)
i W(l)

)
J

(h)
i

]

For ResNets, G(H) has the following form:

G
(H)
ij =

c2
res

H2m
(x

(H−1)
i)>x

(H−1)
j

m∑
r=1

a2
rσ
′((w(H)

r)>x
(H−1)
i)σ′((w(H)

r)>x
(H−1)
j). (3.13)

Similar to Lemma 3.1, we can show with high probability the feature of each layer is approx-
imately normalized.
Lemma 3.8 (Lemma on Initialization Norms). If σ(·) is L−Lipschitz and m = Ω

(
n
δ

)
, assuming∥∥W(h)(0)

∥∥
op
≤ cw,0

√
m for h ∈ [2, H] and 1.99 ≤ cw,0 ≤ 2.01 for Gaussian initialization. We

have with probability at least 1− δ over random initialization, for every h ∈ [H] and i ∈ [n],

1

cx,0
≤
∥∥∥x(h)

i (0)
∥∥∥

2
≤ cx,0

for some universal constant cx,0 > 1 (only depends on σ).
The following lemma lower bounds G(H)(0)’s least eigenvalue. This lemma is a direct con-

sequence of results in Section 3.12.

Lemma 3.9 (Least Eigenvalue at the Initialization). If m = Ω
(
n2 log(Hn/δ)

λ20

)
, we have

λmin(G(H)(0)) ≥ 3

4
λ0.

43

Next, we characterize how the perturbation on the weight matrices affects the input of each
layer.
Lemma 3.10. Suppose σ(·) isL-Lipschitz and for h ∈ [H],

∥∥W(h)(0)
∥∥

op
≤ cw,0

√
m,
∥∥x(h)(0)

∥∥
2
≤

cx,0 and
∥∥W(h)(k)−W(h)(0)

∥∥
F
≤ √mR for some constant cw,0, cx,0 > 0 and R ≤ cw,0 . Then

we have ∥∥x(h)(k)− x(h)(0)
∥∥

2
≤
(√

cσL+
cx,0
cw,0

)
e2crescw,0LR.

Next, we characterize how the perturbation on the weight matrices affect G(H).
Lemma 3.11. Suppose σ(·) is differentiable, L−Lipschitz and β−smooth. Using the same nota-
tions in Lemma 3.4, if

∥∥W(h)(k)−W(h)(0)
∥∥
F
, ‖a(k)− a(0)‖2 ≤

√
mR whereR ≤ cλ0H

2n−1

and R ≤ c for some small constant c, we have∥∥G(H)(k)−G(H)(0)
∥∥

op
≤ λ0

2
.

We prove Theorem 3.2 by induction. Our induction hypothesis is just the following conver-
gence rate of empirical loss.

A directly corollary of this condition is the following bound of deviation from the initializa-
tion. The proof only involves standard calculations so we defer it to appendix.
Lemma 3.12. If Condition 3.3 holds for k′ = 1, . . . , k, we have for any s ∈ [k + 1]∥∥W(h)(s)−W(h)(0)

∥∥
F
, ‖a(s)− a(0)‖2 ≤ R′

√
m,∥∥W(h)(s)−W(h)(s− 1)

∥∥
F
, ‖a(s)− a(s− 1)‖2 ≤ ηQ′(s− 1),

where R′ = 16crescx,0a2,0Le
2crescw,0L

√
n‖y−u(0)‖2

Hλ0
√
m

< c for some small constant c and
Q′(s) = 4crescx,0a2,0Le

2crescw,0L
√
n ‖y − u(s)‖2 /H .

The next lemma bounds the I2 term.
Lemma 3.13. If Condition 3.3 holds for k′ = 1, . . . , k and η ≤ cλ0H

2n−2 for some small
constant c, we have

‖I2(k)‖2 ≤
1

8
ηλ0 ‖y − u(k)‖2 .

Next we bound the quadratic term.
Lemma 3.14. If Condition 3.3 holds for k′ = 1, . . . , k and η ≤ cλ0H

2n−2 for some small
constant c, we have ‖u(k + 1)− u(k)‖2

2 ≤ 1
8
ηλ0 ‖y − u(k)‖2

2.
Now using the same argument as in the proof for multilayer fully connected neural network,

we finish our proof for ResNet.

3.10.1 Proofs of Lemmas
Proof of Lemma 3.8. We will bound

∥∥∥x(h)
i (0)

∥∥∥
2

layer by layer. For the first layer, we can calcu-
late

E
[∥∥∥x(1)

i (0)
∥∥∥2

2

]
=cσE

[
σ
(
w(1)
r (0)>xi

)2
]

44

=cσEX∼N(0,1)σ(X)2

=1.

Var
[∥∥∥x(1)

i (0)
∥∥∥2

2

]
=
c2
σ

m
Var
[
σ
(
w(1)
r (0)>xi(0)

)2
]

≤c
2
σ

m
EX∼N(0,1)σ(X)4

≤c
2
σ

m
E
[(
|σ(0)|+ L

∣∣w(1)
r (0)>xi

∣∣)4
]

≤C2

m
,

where C2 , σ(0)4 + 4 |σ(0)|3 L
√

2/π + 6σ(0)2L2 + 8 |σ(0)|L3
√

2/π + 32L4. We have with
probability at least 1− δ

n
,

1

2
≤
∥∥∥x(1)

i (0)
∥∥∥

2
≤ 2.

By definition we have for 2 ≤ h ≤ H ,∥∥∥x(h−1)
i (0)

∥∥∥
2
−
∥∥∥∥ cres
H
√
m
σ
(
W(h)(0)x

(h−1)
i (0)

)∥∥∥∥
2

≤
∥∥x(h)(0)

∥∥
2

≤
∥∥∥x(h−1)

i (0)
∥∥∥

2
+

∥∥∥∥ cres
H
√
m
σ
(
W(h)(0)x(h−1)(0)

)∥∥∥∥
2

,

where ∥∥∥∥ cres
H
√
m
σ
(
W(h)(0)x

(h−1)
i (0)

)∥∥∥∥
2

≤ crescw,0L

H

∥∥∥x(h−1)
i (0)

∥∥∥
2
.

Thus ∥∥∥x(h−1)
i (0)

∥∥∥
2

(
1− crescw,0L

H

)
≤
∥∥x(h)(0)

∥∥
2
≤
∥∥∥x(h−1)

i (0)
∥∥∥

2

(
1 +

crescw,0L

H

)
,

which implies
1

2
e−crescw,0L ≤

∥∥x(h)(0)
∥∥

2
≤ 2ecrescw,0L.

Choosing cx,0 = 2ecrescw,0L and using union bounds over [n], we prove the lemma.

Proof of Lemma 3.10. We prove this lemma by induction. Our induction hypothesis is∥∥x(h)(k)− x(h)(0)
∥∥

2
≤ g(h),

where

g(h) = g(h− 1)

[
1 +

2crescw,0L

H

]
+
L

H
Rcx,0.

45

For h = 1, we have∥∥x(1)(k)− x(1)(0)
∥∥

2
≤
√
cσ
m

∥∥σ (W(1)(k)x
)
− σ

(
W(1)(0)x

)∥∥
2

≤
√
cσ
m

∥∥W(1)(k)−W(1)(0)
∥∥
F
≤ √cσLR,

which implies g(1) =
√
cσLR, for 2 ≤ h ≤ H , we have∥∥x(h)(k)− x(h)(0)
∥∥

2
≤ cres
H
√
m

∥∥σ (W(h)(k)x(h−1)(k)
)
− σ

(
W(h)(0)x(h−1)(0)

)∥∥
2

+
∥∥x(h−1)(k)− x(h−1)(0)

∥∥
2

≤ cres
H
√
m

∥∥σ (W(h)(k)x(h−1)(k)
)
− σ

(
W(h)(k)x(h−1)(0)

)∥∥
2

+
cres
H
√
m

∥∥σ (W(h)(k)x(h−1)(0)
)
− σ

(
W(h)(0)x(h−1)(0)

)∥∥
2

+
∥∥x(h−1)(k)− x(h−1)(0)

∥∥
2

≤ cresL

H
√
m

(∥∥W(h)(0)
∥∥

2
+
∥∥W(h)(k)−W(h)(0)

∥∥
F

)
·
∥∥x(h−1)(k)− x(h−1)(0)

∥∥
2

+
cresL

H
√
m

∥∥W(h)(k)−W(h)(0)
∥∥
F

∥∥xh−1(0)
∥∥

2
+
∥∥x(h−1)(k)− x(h−1)(0)

∥∥
2

≤
[
1 +

cresL

H
√
m

(
cw,0
√
m+R

√
m
)]
g(h− 1) +

cresL

H
√
m

√
mRcx,0

≤
(

1 +
2crescw,0L

H

)
g(h− 1) +

cres
H

Lcx,0R.

Lastly, simple calculations show g(h) ≤
(√

cσL+ cx,0
cw,0

)
e2crescw,0LR.

Proof of Lemma 3.11. Similar to the proof of Lemma 3.4, we can obtain∣∣∣G(H)
i,j (k)−G

(H)
i,j (0)

∣∣∣ ≤ c2
res

H2

(
I i,j1 + I i,j2 + I i,j3

)
.

For I i,j1 , using Lemma 3.10, we have

I i,j1 =L2a2
2,0

∣∣∣x(H−1)
i (k)>x

(H−1)
j (k)− x

(H−1)
i (0)>x

(H−1)
j (0)

∣∣∣
≤L2a2

2,0

∣∣∣(x(H−1)
i (k)− x

(H−1)
i (0))>x

(H−1)
j (k)

∣∣∣+ L2a2
2,0

∣∣∣x(H−1)
i (0)>(x

(H−1)
i (k)− x

(H−1)
i (0))

∣∣∣
≤cxL2a2

2,0R · (cx,0 + cxR) + cx,0cxL
2a2

2,0R

≤3cx,0cxL
2a2

2,0R,

where cx ,
(√

cσL+ cx,0
cw,0

)
e2crescw,0L. To bound I i,j2 , we have

I i,j2 =c2
x,0

1

m

∣∣∣∣∣
m∑
r=1

ar(0)2σ′ (zi,r(k))σ′ (zj,r(k))− ar(0)2σ′ (zi,r(0))σ′ (zj,r(0))

∣∣∣∣∣
46

≤c2
x,0

1

m

m∑
r=1

ar(0)2 |(σ′ (zi,r(k))− σ′ (zi,r(0)))σ′ (zj,r(k))|

+
m∑
r=1

ar(0)2 |(σ′ (zj,r(k))− σ′ (zj,r(0)))σ′ (zi,r(0))|

≤βLc
2
x,0

m

(
m∑
r=1

ar(0)2 |zi,r(k)− zi,r(0)|+ ar(0)2 |zj,r(k)− zj,r(0)|
)

≤βLa
2
4,0c

2
x,0√

m

√√√√ m∑
r=1

|zi,r(k)− zi,r(0)|2 +

√√√√ m∑
r=1

|zj,r(k)− zj,r(0)|2
 .

Using the same proof for Lemma 3.10, it is easy to see

m∑
r=1

|zi,r(k)− zi,r(0)|2 ≤ (2cxcw,0 + cx,0)2 L2mR2.

Thus

I i,j2 ≤ 2βc2
x,0 (2cxcw,0 + cx,0)L2R.

The bound of I i,j3 is similar to that in Lemma 3.4,

I i,j3 ≤ 12L2c2
x,0a2,0R.

Therefore we can bound the perturbation

∥∥G(H)(k)−G(H)(0)
∥∥
F

=

√√√√ n,n∑
(i,j)

∣∣∣G(H)
i,j (k)−G

(H)
i,j (0)

∣∣∣2
≤c

2
resL

2nR

H2

[
3cx,0cxa

2
2,0 + 2βc2

x,0 (2cxcw,0 + cx,0) a2
4,0 + 12c2

x,0a2,0

]
.

Plugging in the bound on R, we have the desired result.

Proof of Lemma 3.12. We will prove this corollary by induction. The induction hypothesis is

∥∥W(h)(s)−W(h)(0)
∥∥
F
≤

s−1∑
s′=0

(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m ≤ R′
√
m, s ∈ [k + 1],

‖a(s)− a(0)‖2 ≤
s−1∑
s′=0

(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m ≤ R′
√
m, s ∈ [k + 1].

47

First it is easy to see it holds for s′ = 0. Now suppose it holds for s′ = 0, . . . , s, we consider
s′ = s+ 1. Similar to Lemma 3.5, we have∥∥W(h)(s+ 1)−W(h)(s)

∥∥
F

≤η Lcres
H
√
m
‖a‖2

n∑
i=1

|yi − ui(s)|
∥∥∥x(h−1)

i (s)
∥∥∥

2

H∏
k=h+1

∥∥∥∥I +
cresλ

3/2

H
√
m

J
(k)
i (s)W(k)(s)

∥∥∥∥
2

≤2ηcrescx,0La2,0e
2crescw,0L

√
n ‖y − u(s)‖2 /H

=ηQ′(s)

≤(1− ηλ0

2
)s/2

1

4
ηλ0R

′√m,

Similarly, we have

‖a(s+ 1)− a(s)‖2 ≤2ηcx,0

n∑
i=1

|yi − u(s)|

≤ηQ′(s)

≤(1− ηλ0

2
)s/2

1

4
ηλ0R

′√m.

Thus ∥∥W(h)(s+ 1)−W(h)(0)
∥∥
F

≤
∥∥W(h)(s+ 1)−W(h)(s)

∥∥
F

+
∥∥W(h)(s)−W(h)(0)

∥∥
F

≤
s∑

s′=0

η(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m.

Similarly,

‖a(s+ 1)− a(0)‖2

≤
s∑

s′=0

η(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m.

Proof of Lemma 3.13. Similar to Lemma 3.6, we first bound the gradient norm.∥∥L′(h)(w(k))
∥∥
F

=
∥∥ cres
H
√
m

n∑
i=1

(yi − ui(k))x
(h−1)
i (k) ·

[
a(k)>

H∏
l=h+1

(
I +

cres
H
√
m

J
(l)
i (k)W(l)(k)

)
J

(h)
i (k)

]∥∥
F

48

≤ cresL

H
√
m
‖a(k)‖2

n∑
i=1

|yi − ui(k)|
∥∥x(h−1)(k)

∥∥
2

H∏
k=h+1

∥∥∥∥I +
cres
H
√
m

J
(k)
i (k)W(k)(k)

∥∥∥∥
2

.

We have bounded the RHS in the proof for Lemma 3.12, thus∥∥L′(h)(θ(k))
∥∥
F
≤ λ0Q

′(k).

Let θ(k, s) = θ(k)− sL′(θ(k)), we have∥∥∥u′(h)
i (θ(k))− u′(h)

i (θ(k, s))
∥∥∥
F

=

cres
H
√
m

∥∥∥∥∥x(h−1)
i (k)a(k)>

H∏
l=h+1

(
I +

cres
H
√
m

J
(l)
i (k)W(l)(k)

)
J

(h)
i (k)

−x
(h−1)
i (k, s)a(k, s)>

H∏
l=h+1

(
I +

cres
H
√
m

J
(l)
i (k, s)W(l)(k, s)

)
J

(h)
i (k, s)

∥∥∥∥∥
F

.

Through standard calculations, we have∥∥W(l)(k)−W(l)(k, s)
∥∥
F
≤ηQ′(k),

‖a(k)− a(k, s)‖F ≤ηQ′(k),∥∥∥x(h−1)
i (k)− x

(h−1)
i (k, s)

∥∥∥
F
≤ηcx

Q′(k)√
m
,∥∥J(l)(k)− J(l)(k, s)

∥∥
F
≤2 (cx,0 + cw,0cx) ηβQ

′(k),

where cx ,
(√

cσL+ cx,0
cw,0

)
e3crescw,0L. According to Lemma 3.26, we have∥∥∥u′(h)

i (θ(k))− u′(h)
i (θ(k, s))

∥∥∥
F

≤ 4

H
crescx,0La2,0e

2Lcw,0η
Q′(k)√
m

(
cx
cx,0

+
2

L
(cx,0 + cw,0cx) β

√
m+ 4cw,0 (cx,0 + cw,0cx) β + L+ 1

)
≤32

H
crescx,0a2,0e

2Lcw,0 (cx,0 + cw,0cx) βηQ
′(k).

Thus we have∣∣I i2∣∣ ≤ 32crescx,0a2,0e
2Lcw,0 (cx,0 + cw,0cx) βη

2Q′(k)2 ≤ 1

8
ηλ0 ‖y − u(k)‖2 ,

where we used the bound of η and that ‖y − u(0)‖2 = O(
√
n),.

Proof of Lemma 3.14.

‖u(k + 1)− u(k)‖2
2 =

n∑
i=1

(
a(k + 1)>x

(H)
i (k + 1)− a(k)>x

(H)
i (k)

)2

49

=
n∑
i=1

(
[a(k + 1)− a(k)]> x

(H)
i (k + 1) + a(k)>

[
x

(H)
i (k + 1)− x

(H)
i (k)

])2

≤2 ‖a(k + 1)− a(k)‖2
2

n∑
i=1

∥∥∥x(H)
i (k + 1)

∥∥∥2

2

+ 2 ‖a(k)‖2
2

n∑
i=1

∥∥∥x(H)
i (k + 1)− x

(H)
i (k)

∥∥∥2

2

≤8nη2c2
x,0Q

′(k)2 + 4n (ηa2,0cxQ
′(k))

2

≤1

8
ηλ0 ‖y − u(k)‖2

2 .

3.11 Proofs for Section 3.6
For CNN, denote xi,l = φ (xi,l):,l, G(H) has the following form:

G
(H)
ij =

c2
res

H2m

m∑
r=1

[
p∑
l=1

al,rx
(H−1)
i,l σ′

((
w(H)
r

)>
x

(H−1)
i,l

)]> [p∑
k=1

ak,rx
(H−1)
j,k σ′

((
w(H)
r

)>
x

(H−1)
j,k

)]
.

(3.14)

We define a constant cσ,c0 =
(
minc0≤α≤1 EX∼N(0,1)σ(αX)2

)−1
> 0, where 0 < c0 ≤ 1. In

particular, it is easy to see for smooth ReLU, cσ, 1√
p

= poly(p).
Similar to Lemma 3.1, we can show with high probability the feature of each layer is approx-

imately normalized.

Lemma 3.15 (Lemma on Initialization Norms). If σ(·) is L−Lipschitz and m = Ω

(
p2n

c2
σ, 1√

p

δ

)
,

assuming
∥∥W(h)(0)

∥∥
op
≤ cw,0

√
m for h ∈ [H], we have with probability at least 1 − δ over

random initialization, for every h ∈ [H] and i ∈ [n],

1

cx,0
≤
∥∥∥x(h)

i (0)
∥∥∥
F
≤ cx,0

for some constant cx,0 = poly(p) > 1.
The following lemma lower bounds G(H)(0)’s least eigenvalue. This lemma is a direct con-

sequence of results in Section 3.12.

Lemma 3.16 (Least Eigenvalue at the Initialization). If m = Ω
(
n2p2 log(Hn/δ)

λ20

)
, we have

λmin(G(H)(0)) ≥ 3

4
λ0.

Next, we prove the following lemma which characterizes how the perturbation from weight
matrices propagates to the input of each layer.

50

Lemma 3.17. Suppose σ(·) is L−Lipschitz and for h ∈ [H],
∥∥W(h)(0)

∥∥
op
≤ cw,0

√
m,∥∥x(h)(0)

∥∥
F
≤ cx,0 and

∥∥W(h)(k)−W(h)(0)
∥∥
F
≤ √mR for some constant cw,0, cx,0 > 1 and

R ≤ cw,0 . Then we have∥∥x(h)(k)− x(h)(0)
∥∥
F
≤
(√

cσL
√
q +

cx,0
cw,0

)
e2cw,0L

√
qcresR.

Next, we show with high probability over random initialization, perturbation in weight ma-
trices leads to small perturbation in the Gram matrix.
Lemma 3.18. Suppose σ(·) is differentaible, L−Lipschitz and β−smooth. Using the same nota-
tions in Lemma 3.4, if ‖a:,i‖2 ≤ a2,0

√
m and ‖a:,i‖4 ≤ a4,0m

1/4 for any i ∈ [p],∥∥W(h)(k)−W(h)(0)
∥∥
F

and ‖a(k)− a(0)‖F ≤
√
mR where R ≤ cλ0H

2 (n)−1 poly(p)−1 for
some small constant c, we have ∥∥G(H)(k)−G(H)(0)

∥∥
op
≤ λ0

2
.

Lemma 3.19. If Condition 3.3 holds for k′ = 1, . . . , k, we have for any s ∈ [k + 1]∥∥W(h)(s)−W(h)(0)
∥∥
F
, ‖a(s)− a(0)‖F ≤ R′

√
m,∥∥W(h)(s)−W(h)(s− 1)

∥∥
F
, ‖a(s)− a(s− 1)‖F ≤ ηQ′(s− 1),

where R′ = 16crescx,0L
√
pqe2crescw,0La2,0

√
q√n‖y−u(0)‖2

Hλ0
√
m

< c for some small constant c and

Q′(s) = 4crescx,0La2,0
√
pqe2crescw,0L

√
q
√
n ‖y − u(s)‖2 /H.

The follow lemma bounds the norm of I2.
Lemma 3.20. If Condition 3.3 holds for k′ = 1, . . . , k and η ≤ cλ0H

2n−2poly(1/p) for some
small constant c, we have

‖I2(k)‖2 ≤
1

8
ηλ0 ‖y − u(k)‖2 .

Next we also bound the quadratic term.
Lemma 3.21. If Condition 3.3 holds for k′ = 1, . . . , k and η ≤ cλ0H

2n−2poly(1/p) for some
small constant c, we have ‖u(k + 1)− u(k)‖2

2 ≤ 1
8
ηλ0 ‖y − u(k)‖2

2.
Now using the same argument as in the proof for multilayer fully connected neural network,

we finish our proof for CNN.

3.11.1 Proofs of Lemmas
Proof of Lemma 3.15. We will bound

∥∥∥x(h)
i (0)

∥∥∥
F

layer by layer. For the first layer, we can
calculate

E
[∥∥∥x(1)

i (0)
∥∥∥2

F

]
=cσ

p1∑
l=1

E
[
σ
(
w(1)
r (0)>xi,l

)2
]

51

≥ cσ
cσ, 1√

p

,

where the inequality we use the definition of cσ, 1√
p

and the fact that there must exist l′ ∈ [p] such

that ‖xi,l′‖2
2 ≥ 1

p1
≥ 1

p
. For the variance,

Var
[∥∥∥x(1)

i (0)
∥∥∥2

F

]
=
c2
σ

m
Var

[
p1∑
l=1

σ
(
w(1)
r (0)>xi,l

)2

]

≤c
2
σ

m
E

(p1∑
l=1

(
|σ(0)|+ L

∣∣w(1)
r (0)>xi,l

∣∣)2

)2

≤p
2C2

m
,

where C2 , σ(0)4 + 4 |σ(0)|3 L
√

2/π + 6σ(0)2L2 + 8 |σ(0)|L3
√

2/π + 32L4. We have with
probability at least 1− δ

n
, ∥∥∥x(1)

i (0)
∥∥∥2

F
≥ cσ

2cσ, 1√
p

.

It is easy to get its upper bound∥∥∥x(1)
i (0)

∥∥∥2

F
=
cσ
m

∥∥σ (W(1)φ(xi)
)∥∥2

F
≤ qL2cσc

2
w,0.

By definition we have for 2 ≤ h ≤ H∥∥∥x(h−1)
i (0)

∥∥∥
F
−
∥∥∥∥ cres
H
√
m
σ
(
W(h)(0)φ

(
x

(h−1)
i (0)

))∥∥∥∥
F

≤
∥∥∥x(h)

i (0)
∥∥∥
F

≤
∥∥∥x(h−1)

i (0)
∥∥∥
F

+

∥∥∥∥ cres
H
√
m
σ
(
W(h)(0)φ

(
x

(h−1)
i (0)

))∥∥∥∥
F

,

where ∥∥∥∥ cres
H
√
m
σ
(
W(h)(0)φ

(
x

(h−1)
i (0)

))∥∥∥∥
F

≤
√
qcrescw,0L

H

∥∥∥x(h−1)
i (0)

∥∥∥
F
.

Thus∥∥∥x(h−1)
i (0)

∥∥∥
F

(
1−
√
qcrescw,0L

H

)
≤
∥∥x(h)(0)

∥∥
F
≤
∥∥∥x(h−1)

i (0)
∥∥∥
F

(
1 +

√
qcrescw,0L

H

)
,

which implies √
cσ

2cσ, 1√
p

e−
√
qcrescw,0L ≤

∥∥x(h)(0)
∥∥
F
≤
√
qL2cσc2

w,0e
√
qcrescw,0L.

Choosing cx,0 = max{
√
qL2cσc2

w,0,

√
2c
σ, 1√

p

cσ
}e
√
qcrescw,0L and using union bounds over [n], we

prove the lemma.

52

Proof of Lemma 3.17. We prove this lemma by induction. Our induction hypothesis is∥∥x(h)(k)− x(h)(0)
∥∥
F
≤ g(h),

where

g(h) = g(h− 1)

[
1 +

2crescw,0L
√
q

H

]
+
cresL

√
q

H
Rcx,0.

For h = 1, we have

∥∥x(1)(k)− x(1)(0)
∥∥
F
≤
√
cσ
m

∥∥σ (W(1)(k)φ1(x)
)
− σ

(
W(1)(0)φ1(x)

)∥∥
F

≤
√
cσ
m
L
√
q
∥∥W(1)(k)−W(1)(0)

∥∥
F
≤ √cσL

√
qR,

which implies g(1) =
√
cσL
√
qR, for 2 ≤ h ≤ H , we have∥∥x(h)(k)− x(h)(0)

∥∥
F

≤ cres
H
√
m

∥∥σ (W(h)(k)φh
(
x(h−1)(k)

))
− σ

(
W(h)(0)φh

(
x(h−1)(0)

))∥∥
F

+
∥∥x(h−1)(k)− x(h−1)(0)

∥∥
F

≤ cres
H
√
m

∥∥σ (W(h)(k)φh
(
x(h−1)(k)

))
− σ

(
W(h)(k)φh

(
x(h−1)(0)

))∥∥
F

+
cres
H
√
m

∥∥σ (W(h)(k)φh
(
x(h−1)(0)

))
− σ

(
W(h)(0)φh

(
x(h−1)(0)

))∥∥
F

+
∥∥x(h−1)(k)− x(h−1)(0)

∥∥
F

≤L
√
qcres

H
√
m

(∥∥W(h)(0)
∥∥

2
+
∥∥W(h)(k)−W(h)(0)

∥∥
F

)
·
∥∥x(h−1)(k)− x(h−1)(0)

∥∥
F

+
L
√
qcres

H
√
m

∥∥W(h)(k)−W(h)(0)
∥∥
F

∥∥xh−1(0)
∥∥
F

+
∥∥x(h−1)(k)− x(h−1)(0)

∥∥
F

≤
[
1 +

L
√
qcres

H
√
m

(
cw,0
√
m+R

√
m
)]
g(h− 1) +

L
√
qcres

H
√
m

√
mRcx,0

≤
(

1 +
2cw,0L

√
qcres

H

)
g(h− 1) +

1

H
L
√
qcrescx,0R.

Lastly, simple calculations show g(h) ≤
(√

cσL
√
q + cx,0

cw,0

)
e2cw,0L

√
qcresR.

Proof of Lemma 3.18. Similar to Lemma 3.11, define zi,l,r =
(
w

(H)
r

)>
x

(H−1)
i,l , we have∣∣∣G(H)

i,j (k)−G
(H)
i,j (0)

∣∣∣
=
c2
res

H2

∣∣ p∑
l=1

p∑
k=1

x
(H−1)
i,l (k)>x

(H−1)
j,k (k)

1

m

m∑
r=1

ar,l(k)ar,k(k)σ′ (zi,l,r(k))σ′ (zj,k,r(k))

53

−
p∑
l=1

p∑
k=1

x
(H−1)
i,l (0)>x

(H−1)
j,k (0)

1

m

m∑
r=1

ar,l(0)ar,k(0)σ′ (zi,l,r(0))σ′ (zj,k,r(0))
∣∣

≤c
2
resL

2a2
2,0

H2

∣∣∣∣∣
p∑
l=1

p∑
k=1

x
(H−1)
i,l (k)>x

(H−1)
j,k (k)− x

(H−1)
i,l (0)>x

(H−1)
j,k (0)

∣∣∣∣∣
+
c2
res

H2

p∑
l=1

p∑
k=1

∣∣∣x(H−1)
i,l (0)>x

(H−1)
j,k (0)

∣∣∣
·
(

1

m

m∑
r=1

|ar,l(0)ar,k(0)| |σ′ (zi,l,r(k))σ′ (zj,k,r(k))− σ′ (zi,l,r(0))σ′ (zj,k,r(0))|
)

+
c2
res

H2
L2

p∑
l=1

p∑
k=1

∣∣∣x(H−1)
i,l (k)>x

(H−1)
j,k (k)

∣∣∣ 1

m

m∑
r=1

|ar,l(k)ar,k(k)− ar,l(0)ar,k(0)|

,
c2
res

H2

(
I i,j1 + I i,j2 + I i,j3

)
.

For I i,j1 , using Lemma 3.17, we have

I i,j1 =L2a2
2,0

∣∣∣∣∣
p∑
l=1

p∑
k=1

x
(H−1)
i,l (k)>x

(H−1)
j,k (k)− x

(H−1)
i,l (0)>x

(H−1)
j,k (0)

∣∣∣∣∣
≤L2a2

2,0

p∑
l=1

p∑
k=1

∣∣∣(x(H−1)
i,l (k)− x

(H−1)
i,l (0))>x

(H−1)
j,k (k)

∣∣∣
+ L2a2

2,0

p∑
l=1

p∑
k=1

∣∣∣x(H−1)
i,l (0)>(x

(H−1)
j,k (k)− x

(H−1)
j,k (0))

∣∣∣
≤L2a2

2,0

√√√√ p∑
l=1

p∑
k=1

∥∥∥x(H−1)
i,l (k)− x

(H−1)
i,l (0)

∥∥∥2

2

√√√√ p∑
l=1

p∑
k=1

∥∥∥x(H−1)
j,k (k)

∥∥∥2

2

+ L2a2
2,0

√√√√ p∑
l=1

p∑
k=1

∥∥∥x(H−1)
i,l (0)

∥∥∥2

2

√√√√ p∑
l=1

p∑
k=1

∥∥∥x(H−1)
j,k (k)− x

(H−1)
j,k (0)

∥∥∥2

2

≤L2a2
2,0p

∥∥∥x(H−1)
i (k)− x

(H−1)
i (0)

∥∥∥
F

∥∥∥x(H−1)
j (k)

∥∥∥
F

+ L2a2
2,0p

∥∥∥x(H−1)
i (0)

∥∥∥
F

∥∥∥x(H−1)
j (k)− x

(H−1)
j (0)

∥∥∥
F

≤3cx,0cxL
2a2

2,0pR,

where cx ,
(√

cσL
√
q + cx,0

cw,0

)
e2crescw,0L

√
q. To bound I i,j2 , we have

I i,j2

=

p∑
l=1

p∑
k=1

∣∣∣x(H−1)
i,l (0)>x

(H−1)
j,k (0)

∣∣∣
54

·
(

1

m

m∑
r=1

|ar,l(0)ar,k(0)| |σ′ (zi,l,r(k))σ′ (zj,k,r(k))− σ′ (zi,l,r(0))σ′ (zj,k,r(0))|
)

≤
p∑
l=1

p∑
k=1

∣∣∣x(H−1)
i,l (0)>x

(H−1)
j,k (0)

∣∣∣
·
(
βL

m

(
m∑
r=1

|ar,l(0)ar,k(0)| (|zi,l,r(k)− zi,l,r(0)|+ |zj,k,r(k)− zj,k,r(0)|)
))

≤βL
m

√√√√ p∑
l=1

p∑
k=1

∥∥∥x(H−1)
i,l (0)

∥∥∥2

2

∥∥∥x(H−1)
j,k (0)

∥∥∥2

2
√√√√ p∑

l=1

p∑
k=1

(
m∑
r=1

|ar,l(0)ar,k(0)| |zi,l,r(k)− zi,l,r(0)|
)2

+

√√√√ p∑
l=1

p∑
k=1

(
m∑
r=1

|ar,l(0)ar,k(0)| |zj,k,r(k)− zj,k,r(0)|
)2

≤βLc
2
x,0a

2
4,0

m

√√√√m

p∑
l=1

p∑
k=1

m∑
r=1

|zi,l,r(k)− zi,l,r(0)|2 +

√√√√m

p∑
l=1

p∑
k=1

m∑
r=1

|zj,k,r(k)− zj,k,r(0)|2

≤βLa
2
4,0

√
pc2
x,0√

m

(
‖zi‖F + ‖zj‖F

)
.

Using the same proof for Lemma 3.17, it is easy to see

‖zi‖F ≤ (2cxcw,0
√
q + cx,0)R

√
m.

Thus

I i,j2 ≤ 2βLa2
4,0

√
pc2
x,0 (2cxcw,0

√
q + cx,0)R.

Similarly for I i,j3 , we have

I i,j3 =
c2
res

H2
L2

p∑
l=1

p∑
k=1

∣∣∣x(H−1)
i,l (k)>x

(H−1)
j,k (k)

∣∣∣ 1

m

m∑
r=1

|ar,l(k)ar,k(k)− ar,l(0)ar,k(0)|

≤c
2
res

H2
L2

p∑
l=1

p∑
k=1

∣∣∣x(H−1)
i,l (k)>x

(H−1)
j,k (k)

∣∣∣
·
(

1

m

m∑
r=1

(|ar,l(k)− ar,l(0)| |ar,k(k)|+ |ar,k(k)− ar,k(0)| |ar,l(0)|)
)

≤c
2
res

H2
L2

p∑
l=1

p∑
k=1

∣∣∣x(H−1)
i,l (k)>x

(H−1)
j,k (k)

∣∣∣
55

·
(

1

m

(
‖a:,l(k)− a:,l(0)‖2 ‖a:,k(k)‖2 + ‖a:,k(k)− a:,k(0)‖2 ‖a:,l(0)‖2

))

≤ c2
res

H2m
L2

√√√√ p∑
l=1

p∑
k=1

∥∥∥x(H−1)
i,l (k)

∥∥∥2

2

∥∥∥x(H−1)
j,k (k)

∥∥∥2

2√√√√ p∑
l=1

p∑
k=1

‖a:,l(k)− a:,l(0)‖2
2 ‖a:,k(k)‖2

2 +

√√√√ p∑
l=1

p∑
k=1

‖a:,k(k)− a:,k(0)‖2
2 ‖a:,l(0)‖2

2

≤ c2

res

H2m
L2
∥∥∥x(H−1)

i (k)
∥∥∥
F

∥∥∥x(H−1)
j (k)

∥∥∥
F

(‖a(k)− a(0)‖F ‖a(k)‖F + (‖a(k)− a(0)‖F ‖a(0)‖F)

≤12a2,0c
2
resc

2
x,0L

2√pR
H2

.

Therefore we can bound the perturbation∥∥G(H)(k)−G(H)(0)
∥∥

2

≤
∥∥G(H)(k)−G(H)(0)

∥∥
F

=

√√√√ n,n∑
(i,j)

∣∣∣G(H)
i,j (k)−G

(H)
i,j (0)

∣∣∣2
≤c

2
res

H2

[
3cx,0cxLa

2
2,0p+ 2βc2

x,0a
2
4,0

√
p (2cxcw,0

√
q + cx,0) + 12c2

x,0La2,0
√
p
]
LnR.

Plugging in the bound on R, we have the desired result.

Proof of Lemma 3.19. We will prove this corollary by induction. The induction hypothesis is

∥∥W(h)(s)−W(h)(0)
∥∥
F
≤

s−1∑
s′=0

(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m ≤ R′
√
m, s ∈ [k + 1],

‖a(s)− a(0)‖F ≤
s−1∑
s′=0

(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m ≤ R′
√
m, s ∈ [k + 1].

First it is easy to see it holds for s′ = 0. Now suppose it holds for s′ = 0, . . . , s, we consider
s′ = s+ 1. Similar to Lemma 3.5, we have∥∥W(h)(s+ 1)−W(h)(s)

∥∥
F

≤η cresL
H
√
m
‖a‖F

n∑
i=1

|yi − u(s)|
∥∥φh (x(h−1)(s)

)∥∥
F

H∏
k=h+1

∥∥∥∥I +
cres
H
√
m

W(k)(s)φk

∥∥∥∥
op

≤2ηcrescx,0La2,0
√
pqe2crescw,0L

√
q
√
n ‖y − u(s)‖2 /H

=ηQ′(s)

≤(1− ηλ0

2
)s/2

1

4
ηλ0R

′√m,

56

where ‖·‖op denotes the operator norm. Similarly, we have

‖a(s+ 1)− a(s)‖2 ≤2ηcx,0

n∑
i=1

|yi − u(s)|

≤ηQ′(s)

≤(1− ηλ0

2
)s/2

1

4
ηλ0R

′√m.

Thus ∥∥W(h)(s+ 1)−W(h)(0)
∥∥
F

≤
∥∥W(h)(s+ 1)−W(h)(s)

∥∥
F

+
∥∥W(h)(s)−W(h)(0)

∥∥
F

≤
s∑

s′=0

η(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m.

Similarly,

‖a(s+ 1)− a(0)‖2

≤
s∑

s′=0

η(1− ηλ0

2
)s
′/2 1

4
ηλ0R

′√m.

Proof of Lemma 3.20.

∣∣I i2∣∣ ≤η max
0≤s≤η

H∑
h=1

∥∥L′(h)(θ(k))
∥∥
F

∥∥∥u′(h)
i (θ(k))− u′(h)

i

(
θ(k)− sL′(h)(θ(k))

)∥∥∥
F
.

For the gradient norm, we have∥∥L′(h)(θ(k))
∥∥
F

≤ Lcres
H
√
m
‖a(k)‖F

n∑
i=1

|yi − ui(k)|
∥∥∥φh (x

(h−1)
i (k)

)∥∥∥
F

H∏
k=h+1

∥∥∥∥I +
cres
H
√
m

J
(k)
i (k)W(k)(k)φk

∥∥∥∥
op

,

which we have bounded in Lemma 3.19, thus∥∥L′(h)(θ(k))
∥∥
F
≤ Q′(k).

Let θ(k, s) = θ(k)− sL′(θ(k)). Similar to the proof of Lemma 3.6, we have∥∥∥u′(h)
i (θ(k))− u′(h)

i (θ(k, s))
∥∥∥
F

57

≤ 2

H
crescx,0La2,0

√
qe2cresLcw,0

√
qη
Q′(k)√
m

·
(
cx
cx,0

+
2

L
(cx,0 + cw,0cx) β

√
m+ 4

√
qcw,0 (cx,0 + cw,0cx) β

√
m+ (L+ 1)

√
q

)
≤24

H
crescx,0La2,0

√
qcw,0e

2cresLcw,0
√
q (cx,0 + cw,0cx) βηQ

′(k).

Thus∣∣I i2∣∣ ≤ 24crescx,0La2,0
√
qcw,0e

2cresLcw,0 (cx,0 + cw,0cx) βη
2λ0

√
mQ′(k)R′ ≤ 1

8
ηλ0 ‖y − u(k)‖2 .

where we used the bound of η and that ‖y − u(0)‖2 = O(
√
n).

Proof of Lemma 3.21.

‖u(k + 1)− u(k)‖2
2 =

n∑
i=1

(
〈a(k + 1),x

(H)
i (k + 1)〉 − 〈a(k),x

(H)
i (k + 1)〉

)2

≤
n∑
i=1

(
〈a(k + 1)− a(k),x

(H)
i (k + 1)〉+ 〈a(k),x

(H)
i (k + 1)− x

(H)
i (k)〉

)2

≤2 ‖a(k + 1)− a(k)‖2
F

n∑
i=1

∥∥∥x(H)
i (k + 1)

∥∥∥2

F

+ 2 ‖a(k)‖2
F

n∑
i=1

∥∥∥x(H)
i (k + 1)− x

(H)
i (k)

∥∥∥2

F

≤8nη2c2
x,0Q

′(k)2 + 4np (ηa2,0cxQ
′(k))

2

≤1

8
ηλ0 ‖y − u(k)‖2

2 .

3.12 Analysis of Random Initialization

3.12.1 A General Framework for Analyzing Random Initialization in First
(H − 1) Layers

In this section we provide a self-contained framework to analyze the Gram matrix at the initial-
ization phase. There are two main objectives. First, we provide the expression of the Gram matrix
as m → ∞, i.e., the population Gram matrix. Second, we quantitatively study how much over-
parameterization is needed to ensure the Gram matrix generated by the random initialization.
The bound will depend on number of samples n and properties of the activation function. This
analysis framework is fully general that it can explain fully connected neural network, ResNet,
convolutional neural considered in this chapter and other neural network architectures that satisfy
the general setup defined below.

58

We begin with some notations. Suppose that we have a sequence of real vector spaces

Rp(0) → Rp(1) → · · · → Rp(H)

.

Remark 3.1. For fully-connected neural network and ResNet, p(0) = p(1) = . . . = p(H) = 1. For
convolutional neural network, p(h) is the number of patches of the h-th layer.

For each pair (Rp(h−1)
,Rp(h)), letW ⊂ L(Rp(h−1)

,Rp(h)) = Rp(h)×p(h−1) be a linear subspace.
Remark 3.2. For convolutional neural network, the dimension ofW is the filter size.

In this section, by Gaussian distribution G over a q-dimensional subspaceW , we mean that
for a basis {e1, . . . , eq} of W and (v1, . . . , vq) ∼ N0, I) such that

∑q
i=1 viei ∼ G. In this

section, we equip one Gaussian distribution G(h) with each linear subspaceW(h). By an abuse of
notation, we also useW to denote a transformation. For K ∈ Rp(h−1)×p(h−1) , we let

W(h) (K) = EW∼G(h)
[
WKW>] .

We also consider a deterministic linear mapping D(h) : Rn(h−1) → Rn(h) . For this section, we
denote D(1) = 0, i.e., the zero mapping.
Remark 3.3. For full-connected neural networks, we take D(h) to be zero. For ResNet and
convolutional ResNet, we take D(h) to be the identity mapping.

Let ρ(1), · · · , ρ(H) be a sequence of activation functions over R. Note here we use ρ instead
of σ to denote the activation function because we will incorporate the scaling in ρ for the ease of
presentation and the full generality.

Now we recursively define the output of each layer in this setup. In the following, we use
h ∈ [H] to index layers, i ∈ [n] to index data points, α, β, γ ∈ [m] or [d] to index channels (for
CNN) or weight vectors (for fully connected neural networks or ResNet).
Remark 3.4. d = 1 for fully connected neural network and ResNet and d ≥ 1 for convolutional
neural network because d represents the number of input channels.

We denote X
(h),[α]
i an p(h)-dimensional vector which is the output at (h − 1)-th layer. We

have the following recursive formula

X
(1),(α)
i =ρ(h)

(∑
β

W
(h),(α)
(β) X

(h−1),(β)
i

)

X
(h),(α)
i =D(h)(X

(h−1),(α)
i) + ρ(h)

(∑
β W

(h),(α)
(β) X

(h−1),(β)
i√

m

)

where W
(h),(α)
(β) is p(h) × p(h−1) matrix generated according to the following rule

• for h = 1, W
(h),(α)
[β] is defined for 1 ≤ α ≤ m and 1 ≤ β ≤ d; for h > 1, W

(h),(α)
(β) is

defined for 1 ≤ α ≤ m and 1 ≤ β ≤ m;
• the set of random variables {W(h),(α)

(β) }h,α,β are independently generated;

• for fixed h, α, β, W
(h),(α)
(β) ∼ G(h).

59

Remark 3.5. Choosing ρ(h)(z) to be σ (z) andD(h) to be the zero mapping, we recover the fully-
connected architecture. Choosing ρ(h)(z) to be cres

H
σ (z) and D(h) to be the identity mapping, we

recover ResNet architecture.
Remark 3.6. Note here X

(h)
i = x

(h)
i

√
m for h ≥ 1 and X

(h)
i = x

(h)
i for h = 0 in the main text.

We change the scaling here to simplify the calculation of expectation and the covariance in this
section.

With these notations, we first define the population Gram matrices recursively.
Definition 3.4. We fix (i, j) ∈ [n] × [n], for h = 1, . . . , H . The population Gram matrices are
defined according to the following formula

K
(0)
ij =

∑
γ

(X
(0),[γ]
i)>X

(0),[γ]
j ,

b
(0)
i =0,

K
(h)
ij =D(h)K

(h−1)
ij D(h)> + E(U,V)

(
ρ(U)D(h)(b

(h−1)
j)> + (D(h)(b

(h−1)
i))ρ(V)> + ρ(U)ρ(V)>)

)
,

b
(h)
i =D(h)(b

(h−1)
i) + EUρ

(h)(U), (3.15)

where

(U,V) ∼ N

0,

 W (K
(h−1)
ii

)
W
(
K

(h−1)
ij

)
W
(
K

(h−1)
ji

)
W
(
K

(h−1)
jj

) . (3.16)

Notice that the Gram matrix of the next layer K(h) not only depends on the previous layer’s
Gram matrix K(h−1) but also depends on a “bias” term b(h−1).

Given the population Gram matrices defined in Equation (3.15) and (3.16), we derive the
following quantitative bounds which characterizes how much over-parameterization, i.e., how
large m is needed to ensure the randomly generated Gram matrices is close to the population
Gram matrices.
Theorem 3.4. With probability 1 − δ over the

{
W

(h),(α)
(β)

}
h,α,β

, for any 1 ≤ h ≤ H − 1, 1 ≤
i, j ≤ n, ∥∥∥∥∥ 1

m

m∑
α=1

(X
(h),(α)
i)>X

(h),(α)
j −K

(h)
ij

∥∥∥∥∥
∞

≤ E
√

log(Hnmaxh p(h)/δ)

m
(3.17)

and any h ∈ [H − 1],∀1 ≤ i ≤ n,∥∥∥∥∥ 1

m

m∑
α=1

X
(h),(α)
i − b

(h)
i

∥∥∥∥∥
∞

≤ E
√

log(Hnmaxh p(h)/δ)

m
(3.18)

The error constant E satisfies there exists an absolute constant C > 0 such that

E ≤C
(
H−1∏
h=2

(
A(h) + Λ(h)W + C(h)A(h)BW + C(h)A(h)

√
W(h)M

))
·max{W

√
(1 + C2

(1))M
2,
√
C2

(1)M}

where M,B,Λ(h), C(h), A(h),W(h) are defined by:

60

• M = 1 + 100 maxi,j,p,q,h |W(h)(K
(h−1)
ij)pq|,

• A(h) = 1 + max
{
‖D(h)‖L∞→L∞ , ‖D(h)(·)D(h)>‖L∞→L∞

}
,

• B = 1 + 100 maxi,p,h |b(h)
ip |,

• C(h) = |ρ(0)|+ supx∈R |ρ′(x)|,
• Λ(h) is a constant that only depends on ρ(h),
• W(h) = 1 + ‖W(h)‖L∞→L∞ .

Remark 3.7. For fully-connected neural networks, we haveM = O(1), A(h) = 0, B = O(1), C(h) =

O(1),Λ(h) = O(1),W(h) = O(1), so we need m = Ω
(
n2 log(Hn/δ)2O(H)

λ20

)
.. For ResNet, we have

M = O(1), A(h) = 1, B = O(1), C(h) = O(1
H

),Λ(h) = O(1
H

),W(h) = O(1), so we need

m = Ω
(
n2 log(Hn/δ)

λ20

)
. The convolutional ResNet has the same parameters as ResNet but be-

cause the Gram matrix is np× np, so we need m = Ω
(
n2p2 log(Hnp/δ)

λ20

)
.

Proof of Theorem 3.4. The proof is by induction. For the base case, h = 1, recall

X
(1),[α]
i = ρ(1)(

∑
β

W
(1),(α)
(β) X

(0),(β)
i).

We define
U

(1),(α)
i =

∑
β

W
(1),(α)
(β) X

(0),(β)
i .

By our generating process of
{

W
(h),(α)
(β)

}
h,α,β

, the collection {U(1),(β)
i }1≤i≤n,1≤β≤m is a mean-

zero Gaussian variable with covariance matrix:

EU
(1),(α)
i

(
U

(1),(β)
j

)>
=E

∑
γ,γ′

W
(1),(α)
(γ) X

(0),(γ)
i

(
X

(0),(γ′)>
i

)> (
W

(1),(β)
(γ′)

)>
=δαβW(1)

(∑
γ

(
X

(0),(γ)
i X

(0),(γ)
j

)>)
=δαβW(1)(K

(0)
ij)

Therefore, we have

E

[
1

m

m∑
i=1

X
(1),(α)
i X

(1),(α)>
j

]
=K

(1)
ij

E

[
1

m

m∑
i=1

X
(1),(α)
i

]
=b

(1)
i .

Now we have calculated the expectation. Note since inside the expectation is an average, we
can apply standard standard Bernstein bounds and Hoeffding bound and obtain the following

61

concentration inequalities. With probability at least 1− δ
H

, we have

max
i,j

∥∥∥∥∥ 1

m

m∑
i=1

X
(1),(α)
i X

(1),(α)>
j −K

(1)
ij

∥∥∥∥∥
∞

≤

√
16(1 + 2C2

(1)/
√
π)M2 log(4Hn2(p(1))2/δ)

m
,

max
i,p

∣∣∣∣∣ 1

m

m∑
α=1

X
(1),(α)
ip − b

(1)
ip

∣∣∣∣∣ ≤
√

2C2
(1)M log(2np(1)H/δ)

m

Now we prove the induction step. Define for 1 ≤ h ≤ H

K̂
(h)
ij =

1

m

∑
γ

X
(h),(γ)
i

(
X

(h),(γ)
j

)>
b̂

(h)
i =

1

m

∑
γ

X
(1),(γ)
i

In the following, by E(h) we mean taking expectation conditioned on first (h− 1) layers.
Now suppose that Equation (3.17) and (3.18) hold for 1 ≤ l ≤ h with probability at least

1 − h
H
δ, now we want to show the equations holds for h + 1 with probability at least 1 − δ/H

conditioned on previous layers satisfying Equation (3.17) and (3.18). Let l = h+ 1. recall

X
(l),(α)
i = D(l)(X(l−1)) + ρ(l)

(∑
β W

(l),(α)
(β) X

(l−1),(β)
i√

m

)
.

Similar to the base case, denote

U
(l),(α)
i =

∑
β W

(l),(α)
(β) X

(l−1),(β)
i√

m
.

Again note that {U(l),(β)
i }1≤i≤n,1≤β≤m is a collection of mean-zero Gaussian variables with co-

variance matrix:

E
[
U

(1),(α)
i

(
U

(1),(β)
j

)>]
= δαβW(l)(K̂

(l−1)
ij)

Now we get the following formula for the expectation:

E(l)[K̂
(l)
ij] =D(l)K̂

(l−1)
ij

(
D(l)

)>
+ E(U,V)

(
ρ(l)(U)>D(l)(b̂

(l−1)
j) + (D(l)(b̂

(l−1)
i))>ρ(l)(V) + ρ(l)(U)>ρ(l)(V))

)
E(l)b̂

(l)
i =D(l)(b̂

(l−1)
i) + EUρ

(l)(U)

with

(U,V) ∼ N

(
0,

(
W(l)(K̂

(l−1)
ii) W(l)(K̂

(l−1)
ij)

W(l)(K̂
(l−1)
ji) W(l)(K̂

(l−1)
jj)

))

62

Same as the base case, applying concentration inequalities, we have with probability at least
1− δ/H ,

max
ij
‖E(l)K̂

(l)
ij − K̂

(l)
ij ‖∞ ≤

√
16(1 + 2C2

(l)/
√
π)M2 log(4Hn2(p(l))2/δ)

m
,

max
i
‖E(l)b̂

(l)
i − b̂

(l)
i ‖∞ ≤

√
2C2

(l)M log(2np(1)H/δ)

m

Now it remains to bound the differences

max
ij

∥∥∥E(l)K̂
(l)
ij −K

(l)
ij

∥∥∥
∞

and max
i

∥∥∥E(l)b̂
(l)
ij − b

(l)
ij

∥∥∥
∞

which determine how the error propagates through layers.
We analyze the error directly.∥∥∥E(l)K̂

(l)
ij −K

(l)
ij

∥∥∥
∞

≤
∥∥∥D(l)K̂

(l−1)
ij D(l)> −D(l)K

(l−1)
ij D(l)>

∥∥∥
∞

+
∥∥∥E(U,V)∼Âρ

(l)(U)>D(l)(b̂
(l−1)
j)− E(U,V)∼Aρ

(l)(U)>D(l)(b
(l−1)
j)

∥∥∥
∞

+
∥∥∥E(U,V)∼Â(D(l)(b̂

(l−1)
i))>ρ(l)(V)− E(U,V)∼A(D(l)(b

(l−1)
i))>ρ(l)(V)

∥∥∥
∞

+
∥∥∥E(U,V)∼Âρ

(l)(U)>ρ(l)(V))− E(U,V)∼Aρ
(l)(U)>ρ(l)(V))

∥∥∥
∞

≤
∥∥∥D(l)K̂

(l−1)
ij D(l)> −D(l)K

(l−1)
ij D(l)>

∥∥∥
∞

+
∥∥∥E(U,V)∼Âρ

(l)(U)>D(l)(b̂
(l−1)
j)− E(U,V)∼Âρ

(l)(U)>D(l)(b
(l−1)
j)

∥∥∥
∞

+
∥∥∥E(U,V)∼Âρ

(l)(U)>D(l)(b
(l−1)
j)− E(U,V)∼Aρ

(l)(U)>D(l)(b
(l−1)
j)

∥∥∥
∞

+
∥∥∥E(U,V)∼Â(a(l)(b̂

(l−1)
i))>ρ(l)(V)− E(U,V)∼Â(D(l)(b

(l−1)
i))>ρ(l)(V)

∥∥∥
∞

+
∥∥∥E(U,V)∼Â(D(l)(b

(l−1)
i))>ρ(l)(V)− E(U,V)∼A(D(l)(b

(l−1)
i))>ρ(l)(V)

∥∥∥
∞

+
∥∥∥E(U,V)∼Âρ

(l)(U)>ρ(l)(V))− E(U,V)∼Aρ
(l)(U)>ρ(l)(V))

∥∥∥
∞

where we define

Â =

(
W(l)(K̂

(l−1)
ii) W(l)(K̂

(l−1)
ij)

W(l)(K̂
(l−1)
ji) W(l)(K̂

(l−1)
jj)

)
and A =

(
W(l)(K

(l−1)
ii) W(l)(K

(l−1)
ij)

W(l)(K
(l−1)
ji) W(l)(K

(l−1)
jj)

)

By definition, we have

‖A− Â‖∞ ≤Wmax
ij
‖K̂(l−1)

ij −K
(l−1)
ij ‖∞ and

63

∥∥∥D(l)K̂
(l−1)
ij D(l)> −D(l)K

(l−1)
ij D(l)>

∥∥∥
∞
≤A(l) max

ij
‖K̂(l−1)

ij −K
(l−1)
ij ‖∞.

We can also estimate other terms∥∥∥E(U,V)∼Âρ
(l)(U)>D(l)(b̂

(l−1)
j)− E(U,V)∼Âρ

(l)(U)>D(l)(b
(l−1)
j)

∥∥∥
∞

≤
∥∥∥E(U,V)∼Âρ

(l)(U)>D(l)
(
b̂

(l−1)
j − b

(l−1)
j

)∥∥∥
∞

≤C(l)A(l)

√
Wmax

ij
‖K̂(l)

ij ‖∞max
i

∥∥∥b̂(l−1)
ij − b

(l−1)
ij

∥∥∥
∞

≤C(l)A(l)

√
W(l)M max

i

∥∥∥b̂(l−1)
ij − b

(l−1)
ij

∥∥∥
∞
,

∥∥∥E(U,V)∼Âρ
(l)(U)>D(l)(b

(l−1)
j)− E(U,V)∼Aρ

(l)(U)>D(l)(b
(l−1)
j)

∥∥∥
∞

≤A(l)BC(l)‖A− Â‖∞
≤A(l)BC(l)Wmax

ij
‖K̂(l−1)

ij −K
(l−1)
ij ‖∞,

and ∥∥∥E(U,V)∼Âρ
(l)(U)>ρ(l)(V)− E(U,V)∼Aρ

(l)(U)>ρ(l)(V)
∥∥∥
∞

≤Λ(l)‖A− Â‖∞
≤Λ(l)Wmax

ij
‖K̂(l−1)

ij −K
(l−1)
ij ‖∞.

where we have used Lemma 3.30.
Putting these estimates together, we have

max
ij
‖E(l)K̂

(l)
ij −K

(l)
ij ‖∞

≤
(
A(l) + Λ(l)W + 2C(l)A(l)BW

)
max
ij
‖K̂(l−1)

ij −K
(l−1)
ij ‖∞

+ 2C(l)A(l)

√
W(l)M max

i
‖b̂(l−1)

ij − b
(l−1)
ij ‖∞

≤
(
A(l) + Λ(l)W + 2C(l)A(l)BW + 2C(l)A(l)

√
W(l)M

)
·
(

max
ij
‖K̂(l−1)

ij −K
(l−1)
ij ‖∞ ∨max

i
‖b̂(l−1)

ij − b
(l−1)
ij ‖∞

)
and

max
i

∥∥∥E(l)b̂
(l)
ij − b

(l)
ij

∥∥∥
∞

≤ Λ(l)Wmax
ij

∥∥∥K̂(l−1)
ij −K

(l−1)
ij

∥∥∥
∞

+ A(l) max
i

∥∥∥b̂(l−1)
ij − b

(l−1)
ij

∥∥∥
∞

≤ (A(l) + Λ(l)W)

(
max
ij
‖K̂(l−1)

ij −K
(l−1)
ij ‖∞ ∨max

i
‖b̂(l−1)

ij − b
(l−1)
ij ‖∞

)
.

These two bounds imply the theorem.

64

3.12.2 From K(H−1) to K(H)

Recall K(H) defined in Equation (3.7), (3.8) and (3.9). Note the definition of K(H) is qualitatively
different from that of K(h) for h = 1, . . . , H−1 because K(H) depends on K(H) and σ′(·) instead
of σ(·). Therefore, we take special care of K(H). Further note K(H) for our three architectures
have the same form and only differ in scaling and dimension, so we will only prove the bound
for the fully-connected architecture. The generalization to ResNet and convolutional ResNet is
straightforward.
Lemma 3.22. For (i, j) ∈ [n]× [n], define

K̂
(H−1)
ij = K̂

(H−1)
ij Ew∼N0,I)

[
σ′(w>x

(H−1)
i (0))σ′(w>x

(H−1)
j (0))

]
.

and suppose
∣∣∣K̂(H−1)

ij −K
(H−1)
ij

∣∣∣ ≤ cλ0
n2 for some small constant c > 0. Then ifm = Ω

(
n2 log(n/δ)

λ20

)
,

we have with probability at least 1−δ over {w(H)
r (0)}mr=1 and {ar(0)}mr=1,

∥∥G(H)(0)−K(H)
∥∥

op
≤

λ0
4

.

Proof of Lemma 3.22. We decompose

G(H)(0)−K(H) =
(
G(H)(0)− K̂(H)

)
+
(
K̂(H) −K(H)

)
.

Recall G(H) defined in Equation (3.12). Based on its expression, it is straightforward to use
concentration inequality to show if m = Ω

(
n2 log(n/δ)

λ20

)
, we have

∥∥∥G(H)(0)− K̂(H)
∥∥∥

op
≤ λ0

8
.

For the other term. Recall A
(H)
ij =

(
K

(H−1)
ii K

(H−1)
ij

K
(H−1)
ji K

(H−1)
jj

)
and let Â

(H)
ij =

(
K̂

(H−1)
ii K̂

(H−1)
ij

K̂
(H−1)
ji K̂

(H−1)
jj

)
.

According to Lemma 3.29 (viewing σ′(·) as the σ(·) in Lemma 3.29), we know∣∣∣E(U)∼Âij
[σ′(u)σ′(v)]− E(u,v)∼Aij

[σ′(u)σ′(v)]
∣∣∣ ≤ C

∣∣∣Âij −Aij

∣∣∣
for some constant C > 0. Since c is small enough, we directly have∥∥∥K̂(H) −K(H)

∥∥∥
op
≤ λ0

8

Remark 3.8. Combing Theorem 3.4, Lemma 3.22 and standard matrix perturbation bound di-
rectly have Lemma 3.2. Similarly we can prove Lemma 3.9 and Lemma 3.16.

65

3.13 Full Rankness of K(h)

3.13.1 Full Rankness of K(h) for the Fully-connected Neural Network
In this section we show as long as no two input vectors are parallel, then K(H) defined in Equa-
tion (3.8) is strictly positive definite.
Proposition 3.1. Assume σ(·) satisfies Condition 3.2 and for any i, j ∈ [n], i 6= j, xi 6‖ xj . Then
we have λmin

(
K(H)

)
> 0 where λmin

(
K(H)

)
is defined in Equation (3.7).

Proof of Proposition 3.1. By our assumption on the data point and using Lemma 3.23 we know
K(1) is strictly positive definite.

By letting Z = D1/2U> , where UDU> = Kh. We then use Lemma 3.23 inductively for
(H − 2) times to conclude K(H−1) is strictly positive definite. Lastly we use Lemma 3.24 to
finish the proof.

Lemma 3.23. Assume σ(·) is analytic and not a polynomial function. Consider data Z =
{zi}i∈[n] of n non-parallel points (meaning zi /∈ span(zj) for all i 6= j). Define

G(Z)ij = Ew∼N(0,I)[σ(w>zi)σ(w>zj)].

Then λmin(G(Z)) > 0.

Proof of Lemma 3.23. The feature map induced by the kernel G is given by φz(w) = σ(w>z)z.
To show that G(Z) is strictly positive definite, we need to show φz1(w), . . . , φzn(w) are linearly
independent functions. Assume that there are ai such that

0 =
∑
i

aiφzi =
∑
i

aiσ(w>zi)zi.

We wish to show that ai = 0. Differentiating the above equation (n − 2) times with respect to
w, we have

0 =
∑
i

(
aiσ

(n−1)(w>zi)
)
z
⊗(n−1)
i .

Using Lemma 3.31, we know
{

z
⊗(n−1)
i

}n
i=1

are linearly independent. Therefore, we must have

aiσ
(n−1)(w>zi) = 0 for all i. Now choosing a w such that σ(n−1)

(
w>zi

)
6= 0 for all i ∈ [n]

(such w exists because of our assumption on σ), we have ai = 0 for all i ∈ [n].

Lemma 3.24. Assume σ(·) is analytic and not a polynomial function. Consider data Z =
{zi}i∈[n] of n non-parallel points (meaning zi /∈ span(zj) for all i 6= j). Define

G(Z)ij = Ew∼N(0,I)[σ
′(w>zi)σ

′(w>zj)(z
>
i zj)].

Then λmin(G(Z)) > 0.

66

Proof of Lemma 3.24. The feature map induced by the kernel G is given by φz(w) = σ′(w>z)z.
To show that G(Z) is strictly positive definite, we need to show φz1(w), . . . , φzn(w) are linearly
independent functions. Assume that there are ai such that

0 =
∑
i

aiφzi =
∑
i

aiσ
′(w>zi)zi.

We wish to show that ai = 0. Differentiating the above equation (n − 2) times with respect to
w, we have

0 =
∑
i

(
aiσ

(n)(w>zi)
)

z
⊗(n−1)
i .

Using Lemma 3.31, we know
{

z
⊗(n−1)
i

}n
i=1

are linearly independent. Therefore, we must have

aiσ
n(w>zi) = 0 for all i. Now choosing a w such that σ(n)

(
w>zi

)
6= 0 for all i ∈ [n] (such w

exists because of our assumption on σ), we have ai = 0 for all i ∈ [n].

3.13.2 Full Rankness of K(h) for ResNet
In this section we show as long as no two input vectors are parallel, then K(H) defined in Equa-
tion (3.8) is strictly positive definite. Furthermore, λmin

(
K(H)

)
does not depend inverse expo-

nentially in H .
Proposition 3.2. Assume σ(·) satisfies Condition 3.2 and for any i, j ∈ [n], i 6= j, xi 6‖ xj .
Recall that in Equation (3.8), we define

K
(H)
ij = cHK

(H−1)
ij · E

(u,v)>∼N

0,

K
(H−1)
ii K

(H−1)
ij

K
(H−1)
ji K

(H−1)
jj

[σ′(u)σ′(v)] ,

where cH ∼ 1
H2 . Then we have λmin(K(H)) ≥ cHκ, where κ is a constant that only depends on

the activation σ and the input data. In particular, κ does not depend on the depth.

Proof of Proposition 3.2. First note K
(H−1)
ii ∈ [1/c2

x,0, c
2
x,0] for all H , so it is in a bounded range

that does not depend on the depth (c.f. Lemma 3.8). Define a function

G : Rn×n → Rn×n

such that G(K)ij = KijE
(u,v)>∼N

0,

Kii Kij

Kji Kjj

[σ′(u)σ′(v)]. Now define a scalar function

g(λ) = min
K:K�0, 1

c2x,0
≤Kii≤cx,0,λ(K)≥λ

λmin(G(K))

with

λ(K) = min
ij

(
Kii Kij

Kji Kjj

)
.

67

By Lemma 3.25, we know λ(K(H−1)) ≥ cHλ
(
K(0)

)
.

Next, let UDU> = K(H−1) be the eigen-decomposition of K, and Z = D1/2U> be the

feature embedding into Rn. Since
(

z>i zi z>i zj
z>j zi z>j zj

)
is full rank, then zi /∈ span(zj). Then us-

ing Lemma 3.24 , we know g(λ
(
K(0)

)
) > 0. Thus we have established that λmin(K(H)) ≥

cHg(λ
(
K(0)

)
) , where g(λ

(
K(0)

)
) only depends on the input data and activation σ. In particu-

lar, it is independent of the depth.

Lemma 3.25. If D(h) is the identity mapping defined in Section 3.12, then

λ
(
K(H)

)
≥ min

(i,j)∈[n]×[n]
λmin

(
K

(0)
ii K

(0)
ij

K
(0)
ji K

(0)
jj

)
.

Proof of Lemma 3.25. First recall

(U,V) ∼ N

(
0,

(
W(h)(K

(h−1)
ii) W(h)(K

(h−1)
ij)

W(h)(K
(h−1)
ji) W(h)(K

(h−1)
jj)

))
Then we compute

K
(h)
ij − b

(h)
i b

(h)>
j

= D(h)K
(h−1)
ij D(h)> + E(U,V)

(
ρ(U)D(h)(b

(h−1)
j)> + (D(h)(b

(h−1)
i))ρ(V)> + ρ(U)ρ(V)>)

)
−
(
D(h)(b

(h−1)
i) + EUρ

(h)(U)
)(
D(h)(b

(h−1)
j) + EVρ

(h)(V))
)>

= D(h)
(
K

(h−1)
ij − b

(h−1)
i b

(h−1)>
j

)
D(h)> + E(U,V)

(
ρ(U)ρ(V)>)

)
−
(
EUρ

(h)(U)
) (

EVρ
(h)(V))

)>
For ResNet, D(h) is the identity mapping so we have

K
(h)
ij − b

(h)
i b

(h)>
j

= K
(h−1)
ij − b

(h−1)
i b

(h−1)>
j + E(U,V)

(
ρ(U)ρ(V)>)

)
−
(
EUρ

(h)(U)
) (

EVρ
(h)(V))

)>
.

To proceed, we calculate

(
K

(h)
ii K

(h)
ij

K
(h)
ji K

(h)
jj

)
−
(

b
(h)
i

b
(h)
j

)(
b

(h)>
i ,b

(h)>
j

)
=

(
K

(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)
−
(

b
(h−1)
i

b
(h−1)
j

)(
b

(h−1)>
i ,b

(h−1)>
j

)
+

(
EU,V

(
ρ(h)(U)ρ(h)(U)> ρ(h)(U)ρ(h)(V)>

ρ(h)(V)ρ(h)(U)> ρ(h)(V)ρ(h)(V)>

)
− EU,V

(
ρ(U)
ρ(V)

)
EU,V

(
ρ(U)>, ρ(V)>

))
≥
(

K
(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)
−
(

b
(h−1)
i

b
(h−1)
j

)(
b

(h−1)>
i ,b

(h−1)>
j

)
68

As a result, we have

λmin

(
K

(h)
ii K

(h)
ij

K
(h)
ji K

(h)
jj

)

≥λmin

(
K

(h)
ii K

(h)
ij

K
(h)
ji K

(h)
jj

)
−
(

b
(h)
i

b
(h)
j

)(
b

(h)>
i ,b

(h)>
j

)
≥minλmin

(
K

(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)
−
(

b
(h−1)
i

b
(h−1)
j

)(
b

(h−1)>
i ,b

(h−1)>
j

)
≥ · · ·

≥λmin

(
K

(0)
ii K

(0)
ij

K
(0)
ji K

(0)
jj

)
−
(

b
(0)
i

b
(0)
j

)(
b

(0)>
i ,b

(0)>
j

)
=λmin

(
K

(0)
ii K

(0)
ij

K
(0)
ji K

(0)
jj

)
.

(3.19)

We now prove the theorem.

3.14 Useful Technical Lemmas
Lemma 3.26. Given a set of matrices {Ai,Bi : i ∈ [n]}, if ‖Ai‖2 ≤ Mi, ‖Bi‖2 ≤ Mi and
‖Ai −Bi‖F ≤ αiMi, we have∥∥∥∥∥

n∏
i=1

Ai −
n∏
i=1

Bi

∥∥∥∥∥
F

≤
(

n∑
i=1

αi

)
n∏
i=1

Mi.

Proof of Lemma 3.26. ∥∥∥∥∥
n∏
i=1

Ai −
n∏
i=1

Bi

∥∥∥∥∥
F

=

∥∥∥∥∥
n∑
i=1

(
i−1∏
j=1

Aj

)
(Ai −Bi)

(
n∏

k=i+1

Bk

)∥∥∥∥∥
F

≤
n∑
i=1

∥∥∥∥∥
(
i−1∏
j=1

Aj

)
(Ai −Bi)

(
n∏

k=i+1

Bk

)∥∥∥∥∥
F

≤
(

n∑
i=1

αi

)
n∏
i=1

Mi.

69

Lemma 3.27. Given a matrix W ∈ Rm×cm with Wi,j ∼ N(0, 1), where c is a constant. We

have with probability at least 1− exp

(
−(cw,0−

√
c−1)

2
m

2

)
‖W‖2 ≤ cw,0

√
m,

where cw,0 >
√
c+ 1 is a constant.

Proof of Lemma 3.27. The lemma is a consequence of well-known deviations bounds concern-
ing the singular values of Gaussian random matrices [76]

P
(
λmax (W) >

√
m+

√
cm+ t

)
≤ et

2/2.

Choosing t = (cw,0 −
√
c− 1)

√
m, we prove the lemma.

Lemma 3.28. Assume σ (·) satisfies Condition 3.1. For a, b ∈ R with 1
c
< min(a, b), max(a, b) <

c for some constant c > 0, we have∣∣Ez∼N(0,a)[σ(z)]− Ez∼N(0,b)[σ(z)]
∣∣ ≤ C |a− b| .

for some constant C > 0 that depends only on c and the constants in Condition 3.1.

Proof of Lemma 3.28. We compute for any min(a, b) ≤ α ≤ max(a, b)∣∣∣∣dEz∼N(0,α)[σ (z)]

dα

∣∣∣∣ =

∣∣∣∣dEz∼N(0,1)[σ (αz)]

dα

∣∣∣∣ =
∣∣Ez∼N(0,1)[zσ

′(αz)]
∣∣ ≤ C.

Applying Taylor’s Theorem we finish the proof.

Lemma 3.29. Assume σ (·) satisfies Condition 3.1. Suppose that there exists some constant c > 0

such that A =

[
a2

1 ρa1b1

ρ1a1b1 b2
1

]
, 1
c
≤ min(a1, b1), max(a1, b1) ≤ c, B =

[
a2

2 ρ2a2b2

ρa2b2 b2
2

]
,

1
c
≤ min(a2, b2), max(a2, b2) ≤ c

and A,B � 0. Define F (A) = E(u,v)∼N(0,A)σ(u)σ(v). Then, we have

|F (A)− F (B)| ≤ C‖A−B‖F ≤ 2C‖A−B‖∞.

for some constant C > 0 that depends only on c and the constants in Condition 3.1.

Proof. Let A′ =

[
a2 ρab
ρab b2

]
� 0 with min(a1, a2) ≤ a ≤ max(a1, a2), min(b1, b2) ≤ b ≤

max(b1, b2) and min(ρ1, ρ2) ≤ ρ ≤ max(ρ1, ρ2). We can express

F (A′) = E(z1,z2)∼N (0,C)σ(az1)σ(bz2) with C =

(
1 ρ
ρ 1

)
.

Recall L2 = {f :
∫
f(z)e−z

2/2dz <∞} is the Gaussian function space. We compute

dF

da
= E[σ′(az1)σ(bz2)z1]

70

∣∣∣dF
da

∣∣∣ ≤ ‖σ′(az1)z1‖L2‖σ(bz2)‖L2 (‖f‖L2 := (Ef(z)2)1/2, Cauchy)

<∞ (by Condition 3.1)

By the same argument, we have ∣∣∣dF
db

∣∣∣ <∞
Next, let σa(z) := σ(az) with Hermite expansion σa(z) =

∑∞
i=0 αihi(z) and similarly σb(z) =∑

i βihi(z). Using the orthonormality that E[hi(z)hj(z)] = 1i=j ,

F (A) =
∞∑
i=0

αiβiρ
i.

Differentiating, we have∣∣∣dF
dρ

∣∣∣ =
∣∣∣ ∞∑
i=1

αiβiiρ
i−1
∣∣∣

<
(∞∑
i=1

α2
i i
)1/2(∞∑

i=1

β2
i i
)1/2 (ρ = 1 and Cauchy)

<∞ (Condition 3.1)

Note by Condition 3.1 we know there exists Bρ, Ba and Bb such that
∣∣dF
dρ

∣∣ ≤ Bρ,
∣∣dF
da

∣∣ ≤
Ba, and

∣∣dF
db

∣∣ ≤ Bb.
Next, we bound∇A′F (A′). We see that∣∣∣ dF

dA′11

∣∣∣ ≤ ∣∣∣dF
da

∣∣∣∣∣∣ da
dA′11

∣∣∣
≤ Ba

1

2
√
A′11

(since a =
√
A′11)

≤ 1

2
Ba/c∣∣∣ dF

dA′11

∣∣∣ ≤ 1

2
Bb/c (analogous argument asa bove.)

Using the change of variables, let

g(A′11, A
′
22, A

′
12) = [

√
A′11,

√
A′22, A

′
12/
√
A′11A

′
22] = [a, b, ρ].

By chain rule, we know

∂F

∂A′12

=
∂F

∂a

∂a

∂A′12

+
∂F

∂b

∂b

∂A′12

+
∂F

∂ρ

∂ρ

∂A′12

=
∂F

∂ρ

∂ρ

∂A′12

.

71

We can easily verify that | ∂ρ
∂A′12
| ≤ 1/c2, and so we have

∣∣ ∂F
∂A′12

∣∣ ≤ Bρ

c2
.

Similarly, we have ∣∣∣ ∂F
∂A′11

∣∣∣ ≤ Ba

c2∣∣∣ ∂F
∂A′22

∣∣∣ ≤ Bb

c2

Define Bσ = max(Ba, Bb, Bρ). This establishes ‖∇F (A′)‖F ≤ 2Bσ/c
2 ≤ C for some constant

C > 0. Thus by Taylor’s Theorem, we have

|F (A)− F (B)| ≤ C‖A−B‖F ≤ 2C‖A−B‖∞.

With Lemma 3.28 and 3.29, we can prove the following useful lemma.
Lemma 3.30. Suppose σ (·) satisfies Condition 3.1 For a positive definite matrix A ∈ R2p×2p,
define

F(A) = EU∼N(0,A)

[
σ (U)σ (U)>

]
,

G(A) = EU∼N(0,A) [σ (U)] .

Then for any two positive definite matrices A,B with 1
c
≤ Aii,Bii ≤ c for some constant c > 0,

we have

‖G(A)−G(B)‖∞ ∨ ‖F(A)− F(B)‖∞ ≤ C ‖A−B‖∞
for some constant C > 0.

Proof of Lemma 3.30. The result follows by applying Lemma 3.28 to all coordiniates and apply-
ing Lemma 3.29 to all 2× 2 submatrices.

Lemma 3.31. If v1, . . . ,vn ∈ Rd satisfy that ‖vi‖2 = 1 and non-parallel (meaning vi /∈
span(vj) for i 6= j), then the matrix

[
vec
(
v⊗n1

)
, . . . , vec (v⊗nn)

]
∈ Rdn×n has rank-n.

Proof of Lemma 3.31. We prove by induction. For n = 2, v1v
>
1 , v2v

>
2 are linearly independent

under the non-parallel assumption. By induction suppose {vec
(
v⊗n−1

1

)
, . . . , vec

(
v⊗n−1
n−1

)
} are

linearly independent. Suppose the conclusion does not hold, then there exists α1, . . . , αn ∈ R
not identically 0, such that

n∑
i=1

αivec
(
v⊗ni

)
= 0,

72

which implies for p = 1, . . . , d

n∑
i=1

(αivi,p)vec
(
v
⊗(n−1)
i

)
= 0.

Note by induction hypothesis any size (n− 1) subset of{
vec
(
v
⊗(n−1)
1

)
, . . . , vec

(
v
⊗(n−1)
n

)}
is linearly independent. This implies if αivi,p = 0 for

some i ∈ [n] and p ∈ [d], then we must have αjvj,p = 0 for all j ∈ [n]. Combining this
observation with the assumption that every vi is non-zero, there must exist p ∈ [d] such that
vi,p 6= 0 for all i ∈ [n]. Without loss of generality, we assume vi,1 6= 0 for all i ∈ [n].

Next, note if there exists αi = 0, then we have αj = 0 for all j ∈ [n] because vj,p 6= 0 for
all j ∈ [n] and the linear independence induction hypothesis. Therefore from now on we assume
αi 6= 0 for all i ∈ [n].

For any p ∈ [d] , we have

n∑
i=1

(αivi,p)vec
(
v
⊗(n−1)
i

)
= 0 and

n∑
i=1

(αivi,1)vec
(
v
⊗(n−1)
i

)
= 0.

By multiplying the second equation by v1,p

v1,1
and subtracting,

n∑
i=2

(αivi,p − αi
v1,p

v1,1

vi,1)vec
(
v
⊗(n−1)
i

)
= 0.

Using the linear independence induction hypothesis, we know for i = 2, . . . , n:

vi,p
v1,1

=
v1,p

v1,1

.

Therefore we know

v1,p

v1,1

= · · · = vn,p
vn,1

.

Thus there exists c2, . . . , cd ∈ Rd such that

vi,p = cpvi,1 for all i ∈ [n].

Note this implies all vi, i ∈ [n] are on the same line. This contradicts with the non-parallel
assumption.

73

Chapter 4

Auto-balancing Property of Gradient
Descent for Optimizing Deep
Homogeneous Models

4.1 Introduction

In this chapter we study the structural properties of gradient descent for optimizing deep ho-
mogeneous models, which are ubiquitous in modern machine learning. The aim of this chap-
ter is not about global convergence but about what quantities can the optimization algorithm
preserves. Comparing to previous chapters, the analysis in this chapter does not require over-
parameterization. We motive the problem by considering a feed-forward deep neural network
that defines a prediction function

x 7→ f(x; W(1), . . . ,W(H)) = W(H)σ
(
W(H−1) · · ·W(2)σ

(
W(1)x

)
· · ·
)
,

where W(1), . . . ,W(H) are weight matrices in N layers, and σ (·) is a point-wise homogeneous
activation functions such as ReLU, Leaky-ReLU and linear activation functions. A simple obser-
vation is that this model is homogeneous: if we multiply a layer by a positive scalar c and divide
another layer by c, the prediction function remains the same, e.g. f(x; cW(1), . . . , 1

c
W(H)) =

f(x; W(1), . . . ,W(N)).
A direct consequence of homogeneity is that a solution can produce small function value

while being unbounded, because one can always multiply one layer by a huge number and di-
vide another layer by that number. Theoretically, this possible unbalancedness poses significant
difficulty in analyzing first order optimization methods like gradient descent/stochastic gradient
descent (GD/SGD), because when parameters are not a priori constrained to a compact set via
either coerciveness1 of the loss or an explicit constraint, GD and SGD are not even guaranteed to
converge [48, Proposition 4.11]. In the context of deep learning, [65] determined that the primary
barrier to providing algorithmic results is in that the sequence of parameter iterates is possibly
unbounded.

1A function f is coercive if ‖x‖ → ∞ implies f(x)→∞.

74

Now we take a closer look at asymmetric matrix factorization, which is a simple two-layer
homogeneous model. Consider the following formulation for factorizing a low-rank matrix:

min
U∈Rd1×r,V∈Rd2×r

L (U,V) =
1

2

∥∥UV> −M∗∥∥2

F
, (4.1)

where M∗ ∈ Rd1×d2 is a matrix we want to factorize. We observe that due to the homogeneity
of f , it is not smooth2 even in the neighborhood of a globally optimum point. To see this, we
compute the gradient of L:

∂L (U,V)

∂U
=
(
UV> −M∗)V,

∂L (U,V)

∂V
=
(
UV> −M∗)>U. (4.2)

Notice that the gradient of L is not homogeneous anymore. Further, consider a globally optimal
solution (U,V) such that ‖U‖F is of order ε and ‖V‖F is of order 1/ε (ε being very small). A
small perturbation on U can lead to dramatic change to the gradient of U. This phenomenon can
happen for all homogeneous functions when the layers are unbalanced. The lack of nice geomet-
ric properties of homogeneous functions due to unbalancedness makes first-order optimization
methods difficult to analyze.

A common theoretical workaround is to artificially modify the natural objective function as
in (4.1) in order to prove convergence. In [38, 75], a regularization term for balancing the two
layers is added to (4.1):

min
U∈Rd1×r,V∈Rd2×r

1

2

∥∥UV> −M
∥∥2

F
+

1

8

∥∥U>U−V>V
∥∥2

F
. (4.3)

For problem (4.3), the regularizer removes the homogeneity issue and the optimal solution be-
comes unique (up to rotation). Ge et al. [38] showed that the modified objective (4.3) satisfies (i)
every local minimum is a global minimum, (ii) all saddle points are strict3, and (iii) the objective
is smooth. These imply that (noisy) GD finds a global minimum [36, 48, 60].

On the other hand, empirically, removing the homogeneity is not necessary. We use GD
with random initialization to solve the optimization problem (4.1). Figure 4.1a shows that even
without regularization term like in the modified objective (4.3) GD with random initialization
converges to a global minimum and the convergence rate is also competitive. A more interesting
phenomenon is shown in Figure 4.1b in which we track the Frobenius norms of U and V in all
iterations. The plot shows that the ratio between norms remains a constant in all iterations. Thus
the unbalancedness does not occur at all! In many practical applications, many models also admit
the homogeneous property (like deep neural networks) and first order methods often converge to
a balanced solution. A natural question arises:
Why does GD balance multiple layers and converge in learning homogeneous functions?

In this chapter, we take an important step towards answering this question. Our key finding
is that the gradient descent algorithm provides an implicit regularization on the target homoge-
neous function. First, we show that on the gradient flow (gradient descent with infinitesimal

2A function is said to be smooth if its gradient is β-Lipschitz continuous for some finite β > 0.
3A saddle point of a function f is strict if the Hessian at that point has a negative eigenvalue.

75

0 2000 4000 6000 8000 10000

Epochs

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

L
o

g
a

ri
th

m
 o

f
O

b
j

Without Regularization

With Regularization

(a) Comparison of convergence rates of GD for
objective functions (4.1) and (4.3).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a

ti
o

 b
e

tw
e

e
n

 F
-N

o
rm

s
 o

f
T

w
o

 L
a

y
e

rs

Without Regularization

With Regularization

(b) Comparison of quantity ‖U‖2F / ‖V‖2F
when running GD for objective functions (4.1)
and (4.3).

Figure 4.1: Experiments on the matrix factorization problem with objective functions (4.1)
and (4.3). Red lines correspond to running GD on the objective function (4.1), and blue lines
correspond to running GD on the objective function (4.3).

step size) trajectory induced by any differentiable loss function, for a large class of homoge-
neous models, including fully connected and convolutional neural networks with linear, ReLU
and Leaky ReLU activations, the differences between squared norms across layers remain in-
variant. Thus, as long as at the beginning the differences are small, they remain small at all
time. Note that small differences arise in commonly used initialization schemes such as Gaus-
sian initialization or Xavier/Kaiming initialization schemes [40, 44]. Our result thus explains
why using ReLU activation is a better choice than sigmoid from the optimization point view.
For linear activation, we prove an even stronger invariance for gradient flow: we show that
W(h)(W(h))>−(W(h+1))>W(h+1) stays invariant over time, where W(h) and W(h+1) are weight
matrices in consecutive layers with linear activation in between.

Next, we go beyond gradient flow and consider gradient descent with positive step size. We
focus on the asymmetric matrix factorization problem (4.1). Our invariance result for linear
activation indicates that U>U−V>V stays unchanged for gradient flow. For gradient descent,
U>U −V>V can change over iterations. Nevertheless we show that if the step size decreases
like ηt = O

(
t−(1

2
+δ)
)

(0 < δ ≤ 1
2
), U>U − V>V will remain small in all iterations. In the

set where U>U−V>V is small, the loss is coercive, and gradient descent thus ensures that all
the iterates are bounded. Using these properties, we then show that gradient descent converges
to a globally optimal solution. Furthermore, for rank-1 asymmetric matrix factorization, we
give a finer analysis and show that randomly initialized gradient descent with constant step size
converges to the global minimum at a globally linear rate.

76

4.1.1 Notations
In this chapter, for a matrix A, we use A[i, j] to denote its (i, j)-th entry, and use A[i, :] and
A[:, j] to denote its i-th row and j-th column, respectively (both as column vectors).

4.2 The Auto-Balancing Properties in Deep Neural Networks
In this section we study the implicit regularization imposed by gradient descent with infinitesi-
mal step size (gradient flow) in training deep neural networks. In Section 4.2.1 we consider fully
connected neural networks, and our main result (Theorem 4.1) shows that gradient flow automat-
ically balances the incoming and outgoing weights at every neuron. This directly implies that the
weights between different layers are balanced (Corollary 4.1). For linear activation, we derive a
stronger auto-balancing property (Theorem 4.2). In Section 4.2.2 we generalize our result from
fully connected neural networks to convolutional neural networks. In Section 4.2.3 we present
the proof of Theorem 4.1. The proofs of other theorems in this section follow similar ideas and
are deferred to Appendix 4.6.

4.2.1 Fully Connected Neural Networks
To formally state our results, we define a fully connected neural network with H layers in the
following way. Let W(h) ∈ Rnh×nh−1 be the weight matrix in the h-th layer, and define θ =
(W(h))Nh=1 as a shorthand of the collection of all the weights. Then the function fθ : Rd → Rp

(d = n0, p = nN) computed by this network can be defined recursively: f (1)
θ (x) = W(1)x,

f
(h)
w (x) = W(h)σ

(
f

(h−1)
w (x)

)
(h = 2, . . . , H), and fw(x) = f

(N)
w (x), where each σ (·) is an

activation function that acts coordinate-wise on vectors. We assume that σ (·) is homogeneous,
namely, σ (x) = σ′ (x)x for all x and all elements of the sub-differential σ′ (·) when σ (·) is
non-differentiable at x.

Let ` : Rp×Rp → R≥0 be a differentiable loss function. Given a training dataset {(xi,yi)}mi=1 ⊂
Rd × Rp, the training loss as a function of the network parameters w is defined as

L(θ) =
1

m

m∑
i=1

` (fθ(xi),yi) . (4.4)

We consider gradient descent with infinitesimal step size (also known as gradient flow) ap-
plied on L(θ), which is captured by the differential inclusion:

dW(h)

dt
∈ −∂L(w)

∂W(h)
, h = 1, . . . , N, (4.5)

where t is a continuous time index, and ∂L(w)

∂W(h) is the Clarke sub-differential [15]. If curves
W(h) = W(h)(t) (h ∈ [H]) evolve with time according to (4.5) they are said to be a solution of
the gradient flow differential inclusion.

Our main result in this section is the following invariance imposed by gradient flow.

77

Theorem 4.1 (Balanced incoming and outgoing weights at every neuron). For any h ∈ [H − 1]
and i ∈ [nh], we have

d

dt

(
‖W(h)[i, :]‖2 − ‖W(h+1)[:, i]‖2

)
= 0. (4.6)

Note that W(h)[i, :] is a vector consisting of network weights coming into the i-th neuron in
the h-th hidden layer, and W(h+1)[:, i] is the vector of weights going out from the same neuron.
Therefore, Theorem 4.1 shows that gradient flow exactly preserves the difference between the
squared `2-norms of incoming weights and outgoing weights at any neuron.

Taking sum of (4.6) over i ∈ [nh], we obtain the following corollary which says gradient flow
preserves the difference between the squares of Frobenius norms of weight matrices.
Corollary 4.1 (Balanced weights across layers). For any h ∈ [N − 1], we have

d

dt

(
‖W(h)‖2

F − ‖W(h+1)‖2
F

)
= 0.

Corollary 4.1 explains why in practice, trained multi-layer models usually have similar mag-
nitudes on all the layers: if we use a small initialization, ‖W(h)‖2

F −‖W(h+1)‖2
F is very small at

the beginning, and Corollary 4.1 implies this difference remains small at all time. This finding
also partially explains why gradient descent converges. Although the objective function like (4.4)
may not be smooth over the entire parameter space, given that ‖W(h)‖2

F − ‖W(h+1)‖2
F is small

for all h, the objective function may have smoothness. Under this condition, standard theory
shows that gradient descent converges. We believe this finding serves as a key building block for
understanding first order methods for training deep neural networks.

For linear activation, we have the following stronger invariance than Theorem 4.1:
Theorem 4.2 (Stronger balancedness property for linear activation). If for some h ∈ [N − 1] we
have σ (x) = x, then

d

dt

(
W(h)(W(h))> − (W(h+1))>W(h+1)

)
= 0.

While Theorem 4.1 shows the invariance in a node-wise manner, Theorem 4.2 shows for
linear activation, we can derive a layer-wise invariance. Inspired by this strong invariance, in
Section 4.3 we prove gradient descent with positive step sizes preserves this invariance approxi-
mately for matrix factorization.

4.2.2 Convolutional Neural Networks
Now we show that the conservation property in Corollary 4.1 can be generalized to convolutional
neural networks. In fact, we can allow arbitrary sparsity pattern and weight sharing structure
within a layer; convolutional layers are a special case.

Neural networks with sparse connections and shared weights. We use the same notation
as in Section 4.2.1, with the difference that some weights in a layer can be missing or shared.
Formally, the weight matrix W(h) ∈ Rnh×nh−1 in layer h (h ∈ [H]) can be described by a vector
v(h) ∈ Rdh and a function gh : [nh]× [nh−1] → [dh] ∪ {0}. Here v(h) consists of the actual free

78

parameters in this layer and dh is the number of free parameters (e.g. if there are k convolutional
filters in layer h each with size r, we have dh = r · k). The map gh represents the sparsity and
weight sharing pattern:

W(h)[i, j] =

{
0, gh(i, j) = 0,

v(h)[k], gh(i, j) = k > 0.

Denote by v =
(
v(h)

)N
h=1

the collection of all the parameters in this network, and we consider
gradient flow to learn the parameters:

dv(h)

dt
∈ −∂L(v)

∂v(h)
, h = 1, . . . , N.

The following theorem generalizes Corollary 4.1 to neural networks with sparse connections
and shared weights:
Theorem 4.3. For any h ∈ [N − 1], we have

d

dt

(
‖v(h)‖2 − ‖v(h+1)‖2

)
= 0.

Therefore, for a neural network with arbitrary sparsity pattern and weight sharing structure,
gradient flow still balances the magnitudes of all layers.

4.2.3 Proof of Theorem 4.1
The proofs of all theorems in this section are similar. They are based on the use of the chain
rule (i.e. back-propagation) and the property of homogeneous activations. Below we provide the
proof of Theorem 4.1 and defer the proofs of other theorems to Appendix 4.6.

Proof of Theorem 4.1. First we note that we can without loss of generality assume L is the loss
associated with one data sample (x,y) ∈ Rd × Rp, i.e., L(w) = `(fw(x),y). In fact, for
L(w) = 1

m

∑m
k=1 Lk(w) where Lk(w) = ` (fw(xk),yk), for any single weight W(h)[i, j] in the

network we can compute d
dt

(W(h)[i, j])2 = 2W(h)[i, j] · dW(h)[i,j]
dt

= −2W(h)[i, j] · ∂L(w)

∂W(h)[i,j]
=

−2W(h)[i, j] · 1
m

∑m
k=1

∂Lk(w)

∂W(h)[i,j]
, using the sharp chain rule of differential inclusions for tame

functions [17, 19]. Thus, if we can prove the theorem for every individual loss Lk, we can prove
the theorem for L by taking average over k ∈ [m].

Therefore in the rest of proof we assume L(w) = `(fw(x),y). For convenience, we denote
x(h) = f

(h)
w (x) (h ∈ [N]), which is the input to the h-th hidden layer of neurons for h ∈ [N − 1]

and is the output of the network for h = N . We also denote x(0) = x.
Now we prove (4.6). Since W(h+1)[k, i] (k ∈ [nh+1]) can only affect L(w) through x(h+1)[k]

, we have for k ∈ [nh+1],

∂L(w)

∂W(h+1)[k, i]
=

∂L(w)

∂x(h+1)[k]
· ∂x(h+1)[k]

∂W(h+1)[k, i]
=

∂L(w)

∂x(h+1)[k]
· σ
(
x(h)[i]

)
,

79

which can be rewritten as
∂L(w)

∂W(h+1)[:, i]
= σ

(
x(h)[i]

)
· ∂L(w)

∂x(h+1)
.

It follows that
d

dt
‖W(h+1)[:, i]‖2 = 2

〈
W(h+1)[:, i],

d

dt
W(h+1)[:, i]

〉
= −2

〈
W(h+1)[:, i],

∂L(w)

∂W(h+1)[:, i]

〉
=− 2σ

(
x(h)[i]

)
·
〈

W(h+1)[:, i],
∂L(w)

∂x(h+1)

〉
.

(4.7)
On the other hand, W(h)[i, :] only affects L(w) through x(h)[i]. Using the chain rule, we get

∂L(w)

∂W(h)[i, :]
=
∂L(w)

∂x(h)[i]
· σ
(
x(h−1)

)
=

〈
∂L(w)

∂x(h+1)
,W(h+1)[:, i]

〉
· σ′
(
x(h)[i]

)
· σ
(
x(h−1)

)
,

where σ′ (·) is interpreted as a set-valued mapping whenever it is applied at a non-differentiable
point.4 It follows that5

d

dt
‖W(h)[i, :]‖2

2

=2

〈
W(h)[i, :],

d

dt
W(h)[i, :]

〉
=− 2

〈
W(h)[i, :],

∂L(w)

∂W(h)[i, :]

〉
= − 2

〈
∂L(w)

∂x(h+1)
,W(h+1)[:, i]

〉
· σ′
(
x(h)[i]

)
·
〈
W(h)[i, :], σ

(
x(h−1)

)〉
= − 2

〈
∂L(w)

∂x(h+1)
,W(h+1)[:, i]

〉
· σ′
(
x(h)[i]

)
· x(h)[i]

=− 2

〈
∂L(w)

∂x(h+1)
,W(h+1)[:, i]

〉
· σ′
(
x(h)[i]

)
.

Comparing the above expression to (4.7), we finish the proof.

4.3 Gradient Descent Converges to Global Minimum for Asym-
metric Matrix Factorization

In this section we constrain ourselves to the asymmetric matrix factorization problem and analyze
the gradient descent algorithm with random initialization. Our analysis is inspired by the auto-
balancing properties presented in Section 4.2. We extend these properties from gradient flow to
gradient descent with positive step size.

4More precisely, the equalities should be an inclusion whenever there is a sub-differential, but as we see in the
next display the ambiguity in the choice of sub-differential does not affect later calculations.

5This holds for any choice of element of the sub-differential, since σ′ (x)x = σ (x) holds at x = 0 for any
choice of sub-differential.

80

Formally, we study the following non-convex optimization problem:

min
U∈Rd1×r,V∈Rd2×r

f(U,V) =
1

2

∥∥UV> −M∗∥∥2

F
, (4.8)

where M∗ ∈ Rd1×d2 has rank r. Note that we do not have any explicit regularization in (4.8).
The gradient descent dynamics for (4.8) have the following form:

Ut+1 = Ut − ηt(UtV
>
t −M∗)Vt, Vt+1 = Vt − ηt(UtV

>
t −M∗)>Ut. (4.9)

4.3.1 The General Rank-r Case
First we consider the general case of r ≥ 1. Our main theorem below says that if we use a random
small initialization (U0,V0), and set step sizes ηt to be appropriately small, then gradient descent
(4.9) will converge to a solution close to the global minimum of (4.8). To our knowledge, this
is the first result showing that gradient descent with random initialization directly solves the
un-regularized asymmetric matrix factorization problem (4.8).
Theorem 4.4. Let 0 < ε < ‖M∗‖F . Suppose we initialize the entries in U0 and V0 i.i.d.

from N (0, ε
poly(d)

) (d = max{d1, d2}), and run (4.9) with step sizes ηt =

√
ε/r

100(t+1)‖M∗‖3/2F

(t =

0, 1, . . .).6 Then with high probability over the initialization, limt→∞(Ut,Vt) = (Ū, V̄) exists
and satisfies

∥∥ŪV̄> −M∗
∥∥
F
≤ ε.

Proof sketch of Theorem 4.4. First let us imagine that we are using infinitesimal step size
in GD. Then according to Theorem 4.2 (viewing problem (4.8) as learning a two-layer linear
network where the inputs are all the standard unit vectors in Rd2), we know that U>U −V>V
will stay invariant throughout the algorithm. Hence when U and V are initialized to be small,
U>U − V>V will stay small forever. Combined with the fact that the objective L(U,V) is
decreasing over time (which means UV> cannot be too far from M∗), we can show that U and
V will always stay bounded.

Now we are using positive step sizes ηt, so we no longer have the invariance of U>U−V>V.
Nevertheless, by a careful analysis of the updates, we can still prove that U>t Ut−V>t Vt is small,
the objective f(Ut,Vt) decreases, and Ut and Vt stay bounded. Formally, we have the following
lemma:
Lemma 4.1. With high probability over the initialization (U0,V0), for all t we have:

(i) Balancedness:
∥∥U>t Ut −V>t Vt

∥∥
F
≤ ε;

(ii) Decreasing objective: f(Ut,Vt) ≤ f(Ut−1,Vt−1) ≤ · · · ≤ f(U0,V0) ≤ 2 ‖M∗‖2
F ;

(iii) Boundedness: ‖Ut‖2
F ≤ 5

√
r ‖M∗‖F , ‖Vt‖2

F ≤ 5
√
r ‖M∗‖F .

Now that we know the GD algorithm automatically constrains (Ut,Vt) in a bounded region,
we can use the smoothness of f in this region and a standard analysis of GD to show that (Ut,Vt)
converges to a stationary point (Ū, V̄) of f (Lemma 4.4). Furthermore, using the results of
[48, 60] we know that (Ū, V̄) is almost surely not a strict saddle point. Then the following lemma

6The dependency of ηt on t can be ηt = Θ
(
t−(1/2+δ)

)
for any constant δ ∈ (0, 1/2].

81

implies that (Ū, V̄) has to be close to a global optimum since we know
∥∥Ū>Ū− V̄>V̄

∥∥
F
≤ ε

from Lemma 4.1 (i). This would complete the proof of Theorem 4.4.
Lemma 4.2. Suppose (U,V) is a stationary point of f such that

∥∥U>U−V>V
∥∥
F
≤ ε. Then

either
∥∥UV> −M∗

∥∥
F
≤ ε, or (U,V) is a strict saddle point of f .

The full proof of Theorem 4.4 and the proofs of Lemmas 4.1 and 4.2 are given in Ap-
pendix 4.7.

4.3.2 The Rank-1 Case
We have shown in Theorem 4.4 that GD with small and diminishing step sizes converges to a
global minimum for matrix factorization. Empirically, it is observed that a constant step size
ηt ≡ η is enough for GD to converge quickly to global minimum. Therefore, some natural
questions are how to prove convergence of GD with a constant step size, how fast it converges,
and how the discretization affects the invariance we derived in Section 4.2.

While these questions remain challenging for the general rank-r matrix factorization, we
resolve them for the case of r = 1. Our main finding is that with constant step size, the norms
of two layers are always within a constant factor of each other (although we may no longer have
the stronger balancedness property as in Lemma 4.1), and we utilize this property to prove the
linear convergence of GD to a global minimum.

When r = 1, the asymmetric matrix factorization problem and its GD dynamics become

min
u∈Rd1 ,v∈Rd2

1

2

∥∥uv> −M∗∥∥2

F

and

ut+1 = ut − η(utv
>
t −M∗)vt, vt+1 = vt − η

(
vtu

>
t −M∗>)ut.

Here we assume M∗ has rank 1, i.e., it can be factorized as M∗ = σ1u
∗v∗> where u∗ and v∗ are

unit vectors and σ1 > 0. Our main theoretical result is the following.
Theorem 4.5 (Approximate balancedness and linear convergence of GD for rank-1 matrix factor-
ization). Suppose u0 ∼ N (0, δI), v0 ∼ N (0, δI) with δ = cinit

√
σ1
d

(d = max{d1, d2}) for some
sufficiently small constant cinit > 0, and η = cstep

σ1
for some sufficiently small constant cstep > 0.

Then with constant probability over the initialization, for all t we have c0 ≤ |
u>t u∗|
|v>t v∗| ≤ C0 for

some universal constants c0, C0 > 0. Furthermore, for any 0 < ε < 1, after t = O
(
log d

ε

)
iterations, we have

∥∥utv>t −M∗
∥∥
F
≤ εσ1.

Theorem 4.5 shows for ut and vt, their strengths in the signal space,
∣∣u>t u∗

∣∣ and
∣∣v>t v∗

∣∣, are
of the same order. This approximate balancedness helps us prove the linear convergence of GD.
We refer readers to Appendix 4.8 for the proof of Theorem 4.5.

4.4 Empirical Verifications
We perform experiments to verify the auto-balancing properties of gradient descent in neural
networks with ReLU activation. Our results below show that for GD with small step size and

82

0 2000 4000 6000 8000 10000

Epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

D
if
fe

re
n
c
e
 o

f
th

e
 S

q
u
a
re

d
 F

ro
b
e
n
iu

s
 N

o
rm

Between 1st and 2nd Layer

Between 2nd and 3rd Layer

(a) Balanced initializa-
tion, squared norm dif-
ferences.

0 2000 4000 6000 8000 10000

Epochs

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

S
q
u
a
re

d
 F

ro
b
e
n
iu

s
 N

o
rm

 R
a
ti
o
s

Between 1st and 2nd Layer

Between 2nd and 3rd Layer

(b) Balanced initializa-
tion, squared norm ra-
tios.

0 2000 4000 6000 8000 10000

Epochs

0

2

4

6

8

10

D
if
fe

re
n

c
e

 o
f

th
e

 S
q

u
a

re
d

 F
ro

b
e

n
iu

s
 N

o
rm

Between 1st and 2nd Layer

Between 2nd and 3rd Layer

(c) Unbalanced Initial-
ization, squared norm
differences.

0 2000 4000 6000 8000 10000

Epochs

0

2

4

6

8

10

12

S
q

u
a

re
d

 F
ro

b
e

n
iu

s
 N

o
rm

 R
a

ti
o

s Between 1st and 2nd Layer

Between 2nd and 3rd Layer

(d) Unbalanced initial-
ization, squared norm
ratios.

Figure 4.2: Balancedness of a 3-layer neural network.

small initialization: (1) the difference between the squared Frobenius norms of any two layers
remains small in all iterations, and (2) the ratio between the squared Frobenius norms of any two
layers becomes close to 1. Notice that our theorems in Section 4.2 hold for gradient flow (step
size→ 0) but in practice we can only choose a (small) positive step size, so we cannot hope the
difference between the squared Frobenius norms to remain exactly the same but can only hope
to observe that the differences remain small.

We consider a 3-layer fully connected network of the form f(x) = W3φ(W2φ(W1x))
where x ∈ R1,000 is the input, W1 ∈ R100×1,000, W2 ∈ R100×100, W3 ∈ R10×100, and σ (·) is
ReLU activation. We use 1,000 data points and the quadratic loss function, and run GD. We
first test a balanced initialization: W1[i, j] ∼ N(0, 10−4

100
), W2[i, j] ∼ N(0, 10−4

10
) and W3[i, j] ∼

N(0, 10−4), which ensures ‖W1‖2
F ≈ ‖W2‖2

F ≈ ‖W3‖2
F . After 10,000 iterations we have

‖W1‖2
F = 42.90, ‖W2‖2

F = 43.76 and ‖W3‖2
F = 43.68. Figure 4.2a shows that in all iterations

|‖W1‖2
F − ‖W2‖2

F | and |‖W2‖2
F − ‖W3‖2

F | are bounded by 0.14 which is much smaller than
the magnitude of each ‖Wh‖2

F . Figures 4.2b shows that the ratios between norms approach 1.
We then test an unbalanced initialization: W1[i, j] ∼ N(0, 10−4), W2[i, j] ∼ N(0, 10−4) and
W3[i, j] ∼ N(0, 10−4). After 10,000 iterations we have ‖W1‖2

F = 55.50, ‖W2‖2
F = 45.65

and ‖W3‖2
F = 45.46. Figure 4.2c shows that |‖W1‖2

F − ‖W2‖2
F | and |‖W2‖2

F − ‖W3‖2
F | are

bounded by 9 (and indeed change very little throughout the process), and Figures 4.2d shows
that the ratios become close to 1 after about 1,000 iterations.

4.5 Conclusion and Future Work

In this chapter we take a step towards characterizing the invariance imposed by first order algo-
rithms. We show that gradient flow automatically balances the magnitudes of all layers in a deep
neural network with homogeneous activations. For the concrete model of asymmetric matrix
factorization, we further use the balancedness property to show that gradient descent converges
to global minimum. We believe our findings on the invariance in deep models could serve as a
fundamental building block for understanding optimization in deep learning. Below we list some
future directions.

83

Other first-order methods. In this chapter, we focus on the invariance induced by gradient
descent. In practice, different acceleration and adaptive methods are also used. A natural future
direction is how to characterize the invariance properties of these algorithms.

From gradient flow to gradient descent: a generic analysis? As discussed in Section 4.3,
while strong invariance properties hold for gradient flow, in practice one uses gradient descent
with positive step sizes and the invariance may only hold approximately because positive step
sizes discretize the dynamics. We use specialized techniques for analyzing asymmetric matrix
factorization. It would be very interesting to develop a generic approach to analyze the dis-
cretization. Recent findings on the connection between optimization and ordinary differential
equations [66, 69] might be useful for this purpose.

Appendix: Omitted Proofs

4.6 Proofs for Section 4.2
Proof of Theorem 4.2. Same as the proof of Theorem 4.1, we assume without loss of generality
that L(w) = `(fw(x),y) for some (x,y) ∈ Rd×Rp. We also denote x(h) = f

(h)
w (x) (∀h ∈ [H])

and x(0) = x.
Now we suppose σ (x) = x. Denote u = σ

(
x(h−1)

)
. Then we have x(h+1) = W(h+1)x(h) =

W(h+1)W(h)u. Using the chain rule, we can directly compute

∂L(w)

∂W(h)
=
∂L(w)

∂x(h)
u> = (W(h+1))>

∂L(w)

∂x(h+1)
u>,

∂L(w)

∂W(h+1)
=
∂L(w)

∂x(h+1)
(x(h))> =

∂L(w)

∂x(h+1)
(W(h)u)>.

Then we have

d

dt

(
W(h)(W(h))>

)
= W(h)

(
d

dt
W(h)

)>
+

(
d

dt
W(h)

)
(W(h))>

= W(h)u

(
∂L(w)

∂x(h+1)

)>
W(h+1) + (W(h+1))>

∂L(w)

∂x(h+1)
u>(W(h))>,

d

dt

(
(W(h+1))>W(h+1)

)
= (W(h+1))>

(
d

dt
W(h+1)

)
+

(
d

dt
W(h+1)

)>
W(h+1)

= (W(h+1))>
∂L(w)

∂x(h+1)
u>(W(h))> + W(h)u

(
∂L(w)

∂x(h+1)

)>
W(h+1).

Comparing the above two equations we know d
dt

(
W(h)(W(h))> − (W(h+1))>W(h+1)

)
= 0.

Proof of Theorem 4.3. Same as the proof of Theorem 4.1, we assume without loss of generality
that L(v) = L(w) = `(fw(x),y) for (x,y) ∈ Rd × Rp, and denote x(h) = f

(h)
w (x) (∀h ∈ [H])

and x(0) = x.

84

Using the chain rule, we have

∂L(v)

∂v(h+1)[l]
=

∑
(k,i):gh+1(k,i)=l

∂L(v)

∂x(h+1)[k]
· σ
(
x(h)[i]

)
, l ∈ [dh+1].

Then we have using the sharp chain rule,

d

dt
‖v(h+1)‖2

2 = 2

〈
v(h+1),

d

dt
v(h+1)

〉
= −2

〈
v(h+1),

∂L(v)

∂v(h+1)

〉
= −2

∑
l

∑
(k,i):gh+1(k,i)=l

∂L(v)

∂x(h+1)[k]
· v(h+1)[l] · σ

(
x(h)[i]

)
= −2

∑
(k,i)

∂L(v)

∂x(h+1)[k]
·W(h+1)[k, i] · σ

(
x(h)[i]

)
= −2

∑
k

∂L(v)

∂x(h+1)[k]
· x(h+1)[k]

= −2

〈
∂L(v)

∂x(h+1)
,x(h+1)

〉
.

(4.10)

Substituting h with h− 1 in (4.10) gives d
dt
‖v(h)‖2

2 = −2
〈
∂L(v)

∂x(h) ,x
(h)
〉

, which further implies

d

dt
‖v(h)‖2

2 = −2

〈
∂L(v)

∂x(h)
,x(h)

〉
= −2

∑
i

∂L(v)

∂x(h)[i]
· x(h)[i]

= −2
∑
i

∑
k

∂L(v)

∂x(h+1)[k]
·W(h+1)[k, i] · σ′

(
x(h)[i]

)
· x(h)[i]

= −2
∑
k

∂L(v)

∂x(h+1)[k]

∑
i

W(h+1)[k, i] · σ
(
x(h)[i]

)
= −2

∑
k

∂L(v)

∂x(h+1)[k]
· x(h+1)[k]

= −2

〈
∂L(v)

∂x(h+1)
,x(h+1)

〉
.

(4.11)

The proof is finished by combining (4.10) and (4.11).

4.7 Proof for Rank-r Matrix Factorization (Theorem 4.4)
In this section we give the full proof of Theorem 4.4.

First we recall the gradient of our objective function f(U,V) = 1
2

∥∥UV> −M∗
∥∥2

F
:

∂f(U,V)

∂U
= (UV> −M∗)V,

∂f(U,V)

∂V
= (UV> −M∗)>U.

85

We also need to calculate the Hessian ∇2f(U,V). The Hessian can be viewed as a matrix

that operates on vectorized matrices of dimension (d1 + d2)× r (i.e., the same shape as
(

U
V

)
).

Then, for any W ∈ R(d1+d2)×r, the Hessian∇2f(W) defines a quadratic form

[∇2f(W)](A,B) =
∑
i,j,k,l

∂2f(W)

∂W[i, j]∂W[k, l]
A[i, j]B[k, l], ∀A,B ∈ R(d1+d2)×r.

With this notation, we can express the Hessian∇2f(U,V) as follows:

[∇2f(U,V)](∆,∆) = 2
〈
UV> −M∗,∆U∆>V

〉
+
∥∥U∆>V + ∆UV>

∥∥2

F
,

∀∆ =

(
∆U

∆V

)
,∆U ∈ Rd1×r, ∆V ∈ Rd2×r.

(4.12)
Now we use the expression of the Hessian to prove that f(U,V) is locally smooth when both

arguments U and V are bounded.
Lemma 4.3 (Smoothness over a bounded set). For any c > 0, constrained on the set S =
{(U,V) : U ∈ Rd1×r,V ∈ Rd2×r, ‖U‖2

F ≤ c ‖M∗‖F , ‖V‖
2
F ≤ c ‖M∗‖F}, the function f is

((6c+ 2) ‖M∗‖F)-smooth.

Proof. We prove smoothness by giving an upper bound on λmax(∇2f(U,V)) for any (U,V) ∈
S.

For any (U,V) ∈ S and any ∆ =

(
∆U

∆V

)
(∆U ∈ Rd1×r,∆V ∈ Rd2×r), from (4.12) we

have

[∇2f(U,V)](∆,∆)

≤ 2
∥∥UV> −M∗∥∥

F

∥∥∆U∆>V
∥∥
F

+
∥∥U∆>V + ∆UV>

∥∥2

F

≤ 2
(
‖U‖F

∥∥V>∥∥
F

+ ‖M∗‖F
)
‖∆U‖F

∥∥∆>V∥∥F +
(
‖U‖F

∥∥∆>V∥∥F + ‖∆U‖F
∥∥V>∥∥

F

)2

≤ 2 (c ‖M∗‖F + ‖M∗‖F) ‖∆‖2
F +

(
2
√
c ‖M∗‖F · ‖∆‖F

)2

= (6c+ 2) ‖M∗‖F ‖∆‖
2
F .

This implies λmax(∇2f(U,V)) ≤ (6c+ 2) ‖M∗‖F .

4.7.1 Proof of Lemma 4.1
Recall the following three properties we want to prove in Lemma 4.1, which we call A(t), B(t)
and C(t), respectively:

A(t) :
∥∥U>t Ut −V>t Vt

∥∥
F
≤ ε,

B(t) : f(Ut,Vt) ≤ f(Ut−1,Vt−1) ≤ · · · ≤ f(U0,V0) ≤ 2 ‖M∗‖2
F ,

C(t) : ‖Ut‖2
F ≤ 5

√
r ‖M∗‖F , ‖Vt‖2

F ≤ 5
√
r ‖M∗‖F .

86

We use induction to prove these statements. For t = 0, we can make the Gaussian variance
in the initialization sufficiently small such that with high probability we have

‖U0‖2
F ≤ ε, ‖V0‖2

F ≤ ε,
∥∥U>0 U0 −V>0 V0

∥∥
F
≤ ε

2
.

From now on we assume they are all satisfied. Then A(0) is already satisfied, C(0) is satis-
fied because ε < ‖M∗‖F , and B(0) can be verified by f(U0,V0) = 1

2

∥∥U0V
>
0 −M∗

∥∥2

F
≤∥∥U0V

>
0

∥∥2

F
+ ‖M∗‖2

F ≤ ‖U0‖2
F

∥∥V>0 ∥∥2

F
+ ‖M∗‖2

F ≤ ε2 + ‖M∗‖2
F ≤ 2 ‖M∗‖2

F .
To prove A(t), B(t) and C(t) for all t, we prove the following three claims. Since we have

A(0), B(0) and C(0), if the following claims are all true, the proof will be completed by induc-
tion.

(i) B(0), . . . ,B(t), C(0), . . . , C(t) =⇒ A(t+ 1);

(ii) B(0), . . . ,B(t), C(t) =⇒ B(t+ 1);

(iii) A(t),B(t) =⇒ C(t).
Claim 4.1. B(0), . . . ,B(t), C(0), . . . , C(t) =⇒ A(t+ 1).

Proof. Using the update rule (4.9) we can calculate

U>t+1Ut+1 −V>t+1Vt+1

=
(
Ut − ηt(UtV

>
t −M∗)Vt

)> (
Ut − ηt(UtV

>
t −M∗)Vt

)
−
(
Vt − ηt(UtV

>
t −M∗)>Ut

)> (
Vt − ηt(UtV

>
t −M∗)>Ut

)
= U>t Ut −V>t Vt + η2

t

(
V>t R>t RtVt −U>t R>t RtUt

)
,

where Rt = UtV
>
t −M∗. Then we have∥∥U>t+1Ut+1 −V>t+1Vt+1

∥∥
F

≤
∥∥U>t Ut −V>t Vt

∥∥
F

+ η2
t

(∥∥V>t R>t RtVt

∥∥
F

+
∥∥U>t R>t RtUt

∥∥
F

)
≤
∥∥U>t Ut −V>t Vt

∥∥
F

+ η2
t

(
‖Vt‖2

F ‖Rt‖2
F + ‖Ut‖2

F ‖Rt‖2
F

)
=
∥∥U>t Ut −V>t Vt

∥∥
F

+ 2η2
t

(
‖Vt‖2

F + ‖Ut‖2
F

)
f(Ut,Vt)

≤
∥∥U>t Ut −V>t Vt

∥∥
F

+ 2η2
t · 10

√
r ‖M∗‖F · 2 ‖M∗‖2

F ,

(4.13)

where the last line is due to B(t) and C(t).
Since we have B(t′) and C(t′) for all t′ ≤ t, (4.13) is still true when substituting t with any

t′ ≤ t. Summing all of them and noting
∥∥U>0 U0 −V>0 V0

∥∥
F
≤ ε

2
, we get∥∥U>t+1Ut+1 −V>t+1Vt+1

∥∥
F

≤
∥∥U>0 U0 −V>0 V0

∥∥
F

+ 40
√
r ‖M∗‖3

F

t∑
i=0

η2
i

≤ ε

2
+ 40
√
r ‖M∗‖3

F

t∑
i=0

1

(i+ 1)2
· ε/r

1002 ‖M∗‖3
F

87

≤ ε.

Therefore we have proved A(t+ 1).

Claim 4.2. B(0), . . . ,B(t), C(t) =⇒ B(t+ 1).

Proof. Note that we only need to show f(Ut+1,Vt+1) ≤ f(Ut,Vt). We prove this using the
standard analysis of gradient descent, for which we need the smoothness of the objective function
f (Lemma 4.3). We first need to bound ‖Ut‖F , ‖Vt‖F , ‖Ut+1‖F and ‖Vt+1‖F . We know from
C(t) that ‖Ut‖2

F ≤ 5
√
r ‖M∗‖F and ‖Vt‖2

F ≤ 5
√
r ‖M∗‖F . We can also bound ‖Ut+1‖2

F and
‖Vt+1‖2

F easily from the GD update rule:

‖Ut+1‖2
F

=
∥∥Ut − ηt(UtV

>
t −M∗)Vt

∥∥2

F

≤ 2 ‖Ut‖2
F + 2η2

t

∥∥UtV
>
t −M∗∥∥2

F
‖Vt‖2

F

≤ 2 · 5√r ‖M∗‖F + 2η2
t · 2f(Ut,Vt) · 5

√
r ‖M∗‖F

≤ 10
√
r ‖M∗‖F + 2 · ε/r

1002(t+ 1)2 ‖M∗‖3
F

· 4 ‖M∗‖2
F · 5
√
r ‖M∗‖F (using B(t))

≤ 10
√
r ‖M∗‖F +

ε

100
≤ 11
√
r ‖M∗‖F . (using ε < ‖M∗‖F)

Let β = (66
√
r + 2) ‖M∗‖F . From Lemma 4.3, f is β-smooth over S = {(U,V) : ‖U‖2

F ≤
11
√
r ‖M∗‖F , ‖V‖

2
F ≤ 11

√
r ‖M∗‖F}. Also note that ηt < 1

β
by our choice. Then using

smoothness we have

f(Ut+1,Vt+1)

≤ f(Ut,Vt) +

〈
∇f(Ut,Vt),

(
Ut+1

Vt+1

)
−
(

Ut

Vt

)〉
+
β

2

∥∥∥∥(Ut+1

Vt+1

)
−
(

Ut

Vt

)∥∥∥∥2

F

= f(Ut,Vt)− ηt ‖∇f(Ut,Vt)‖2
F +

β

2
η2
t ‖∇f(Ut,Vt)‖2

F

≤ f(Ut,Vt)−
ηt
2
‖∇f(Ut,Vt)‖2

F .

(4.14)

Therefore we have shown B(t+ 1).

Claim 4.3. A(t),B(t) =⇒ C(t).

Proof. FromB(t) we know 1
2

∥∥UtV
>
t −M∗

∥∥2

F
≤ 2 ‖M∗‖2

F which implies
∥∥UtV

>
t

∥∥
F
≤ 3 ‖M∗‖F .

Therefore it suffices to prove∥∥UV>
∥∥
F
≤ 3 ‖M∗‖F ,

∥∥U>U−V>V
∥∥
F
≤ ε =⇒ ‖U‖2

F ≤ 5
√
r ‖M∗‖F , ‖V‖

2
F ≤ 5

√
r ‖M∗‖F .

(4.15)

88

Now we prove (4.15). Consider the SVD U = ΦΣΨ>, where Φ ∈ Rd1×d1 and Ψ ∈ Rr×r

are orthogonal matrices, and Σ ∈ Rd1×r is a diagonal matrix. Let σi = Σ[i, i] (i ∈ [r]) which are
all the singular values of U. Define Ṽ = VΨ. Then we have

3 ‖M∗‖F ≥
∥∥UV>

∥∥
F

=
∥∥∥ΦΣΨ>ΨṼ>

∥∥∥
F

=
∥∥∥ΣṼ>

∥∥∥
F

=

√√√√ r∑
i=1

σ2
i

∥∥∥Ṽ[:, i]
∥∥∥2

and

ε ≥
∥∥U>U−V>V

∥∥
F

=
∥∥∥ΨΣ>Φ>ΦΣΨ> −ΨṼ>ṼΨ>

∥∥∥
F

=
∥∥∥Σ>Σ− Ṽ>Ṽ

∥∥∥
F

≥

√√√√ r∑
i=1

(
σ2
i −

∥∥∥Ṽ[:, i]
∥∥∥2
)2

.

Using the above two inequalities we get

r∑
i=1

σ4
i ≤

r∑
i=1

(
σ4
i +

∥∥∥Ṽ[:, i]
∥∥∥4
)

=
r∑
i=1

(
σ2
i −

∥∥∥Ṽ[:, i]
∥∥∥2
)2

+ 2
r∑
i=1

σ2
i

∥∥∥Ṽ[:, i]
∥∥∥2

≤ ε2 + 2 (3 ‖M∗‖F)2 ≤ 19 ‖M∗‖2
F .

Then by the Cauchy-Schwarz inequality we have

‖U‖2
F =

r∑
i=1

σ2
i ≤

√√√√r
r∑
i=1

σ4
i ≤

√
r · 19 ‖M∗‖2

F ≤ 5
√
r ‖M∗‖F .

Similarly, we also have ‖V‖2
F ≤ 5

√
r ‖M∗‖F . Therefore we have proved (4.15).

4.7.2 Convergence to a Stationary Point
With the balancedness and boundedness properties in Lemma 4.1, it is then standard to show that
(Ut,Vt) converges to a stationary point of f .
Lemma 4.4. Under the setting of Theorem 4.4, with high probability limt→∞(Ut,Vt) = (Ū, V̄)
exists, and (Ū, V̄) is a stationary point of f . Furthermore, (Ū, V̄) satisfies

∥∥Ū>Ū− V̄>V̄
∥∥ ≤

ε.

Proof. We assume the three properties in Lemma 4.1 hold, which happens with high probability.
Then from (4.14) we have

f(Ut+1,Vt+1) ≤ f(Ut,Vt)−
ηt
2
‖∇f(Ut,Vt)‖2

F

= f(Ut,Vt)−
1

2
‖∇f(Ut,Vt)‖F

∥∥∥∥(Ut+1

Vt+1

)
−
(

Ut

Vt

)∥∥∥∥
F

.
(4.16)

89

Under the above descent condition, the result of [1] says that the iterates either diverge to infinity
or converge to a fixed point. According to Lemma 4.1, {(Ut,Vt)}∞t=1 are all bounded, so they
have to converge to a fixed point (Ū, V̄) as t→∞.

Next, from (4.16) we know that
∑∞

t=1
ηt
2
‖∇f(Ut,Vt)‖2

F ≤ f(U0,V0) is bounded. Notice
that ηt scales like 1/t. So we must have lim inft→∞ ‖∇f(Ut,Vt)‖F = 0. Then according to the
smoothness of f in a bounded region (Lemma 4.3) we conclude ∇f(Ū, V̄) = 0, i.e., (Ū, V̄) is
a stationary point.

The second part of the lemma is evident according to Lemma 4.1 (i).

4.7.3 Proof of Lemma 4.2
The main idea in the proof is similar to [38]. We want to find a direction ∆ such that either
[∇2f(U,V)](∆,∆) is negative or (U,V) is close to a global minimum. We show that this is
possible when

∥∥U>U−V>V
∥∥
F
≤ ε.

First we define some notation. Take the SVD M∗ = Φ∗Σ∗Ψ∗>, where Φ∗ ∈ Rd1×r and
Ψ∗ ∈ Rd2×r have orthonormal columns and Σ∗ ∈ Rr×r is diagonal. Denote U∗ = Φ∗(Σ∗)1/2

and V∗ = Ψ∗(Σ∗)1/2. Then we have U∗V∗> = M∗ (i.e., (U∗,V∗) is a global minimum) and
U∗>U∗ = V∗>V∗.

Let M = UV>, W =

(
U
V

)
and W∗ =

(
U∗

V∗

)
. Define

R = argminR′∈Rr×r , orthogonal ‖W −W∗R′‖F
and

∆ = W −W∗R.

We will show that ∆ is the desired direction. Recall (4.12):

[∇2f(U,V)](∆,∆) = 2
〈
M−M∗,∆U∆>V

〉
+
∥∥U∆>V + ∆UV>

∥∥2

F
, (4.17)

where ∆ =

(
∆U

∆V

)
,∆U ∈ Rd1×r,∆V ∈ Rd2×r. We consider the two terms in (4.17) separately.

For the first term in (4.17), we have:
Claim 4.4.

〈
M−M∗,∆U∆>V

〉
= −‖M−M∗‖2

F .

Proof. Since (U,V) is a stationary point of f , we have the first-order optimality condition:

∂f(U,V)

∂U
= (M−M∗)V = 0,

∂f(U,V)

∂V
= (M−M∗)>U = 0. (4.18)

Note that ∆U = U−U∗R and ∆V = V −V∗R. We have〈
M−M∗,∆U∆>V

〉
=
〈
M−M∗, (U−U∗R)(V −V∗R)>

〉
=
〈
M−M∗,M−U∗RV> −UR>V∗> + M∗〉

= 〈M−M∗,M∗〉

90

= 〈M−M∗,M∗ −M〉
= − ‖M−M∗‖2

F ,

where we have used the following consequences of (4.18):

〈M−M∗,M〉 =
〈
M−M∗,UV>

〉
= 0,〈

M−M∗,U∗RV>
〉

= 0,〈
M−M∗,UR>V∗>

〉
= 0.

The second term in (4.17) has the following upper bound:
Claim 4.5. ‖U∆V + ∆UV‖2

F ≤ ‖M−M∗‖2
F + 1

2
ε2.

Proof. We make use of the following identities, all of which can be directly verified by plugging
in definitions:

U∆>V + ∆UV> = ∆U∆>V + M−M∗, (4.19)∥∥∆∆>
∥∥2

F
= 4

∥∥∆U∆>V
∥∥2

F
+
∥∥∆>U∆U −∆>V∆V

∥∥2

F
, (4.20)∥∥WW> −W∗W∗>∥∥2

F
= 4 ‖M−M∗‖2

F − 2
∥∥U>U∗ −V>V∗

∥∥2

F

+
∥∥U>U−V>V

∥∥2

F
+
∥∥U∗>U∗ −V∗>V∗

∥∥2

F
.

(4.21)

We also need the following inequality, which is [38, Lemma 6]:∥∥∆∆>
∥∥2

F
≤ 2

∥∥WW> −W∗W∗>∥∥2

F
. (4.22)

Now we can prove the desired bound as follows:

‖U∆V + ∆UV‖2
F

=
∥∥∆U∆>V + M−M∗∥∥2

F
((4.19))

=
∥∥∆U∆>V

∥∥2

F
+ 2

〈
M−M∗,∆U∆>V

〉
+ ‖M−M∗‖2

F

=
∥∥∆U∆>V

∥∥2

F
− ‖M−M∗‖2

F (Claim 4.4)

≤ 1

4

∥∥∆∆>
∥∥2

F
− ‖M−M∗‖2

F ((4.20))

≤ 1

2

∥∥WW> −W∗W∗>∥∥2

F
− ‖M−M∗‖2

F ((4.22))

= 2 ‖M−M∗‖2
F −

∥∥U>U∗ −V>V∗
∥∥2

F
+

1

2

∥∥U>U−V>V
∥∥2

F

+
1

2

∥∥U∗>U∗ −V∗>V∗
∥∥2

F
− ‖M−M∗‖2

F ((4.21))

≤ ‖M−M∗‖2
F +

1

2
ε2,

where in the last line we have used U∗>U∗ = V∗>V∗ and
∥∥U>U−V>V

∥∥ ≤ ε.

91

Using Claims 4.4 and 4.5, we obtain an upper bound on (4.17):

[∇2f(U,V)](∆,∆) ≤ −‖M−M∗‖2
F +

1

2
ε2.

Therefore, we have either
∥∥UV> −M∗

∥∥
F

= ‖M−M∗‖F ≤ ε or [∇2f(U,V)](∆,∆) ≤
−1

2
ε2 < 0. In the latter case, (U,V) is a strict saddle point of f . This completes the proof of

Lemma 4.2.

4.7.4 Finishing the Proof of Theorem 4.4
Theorem 4.4 is a direct corollary of Lemma 4.4, Lemma 4.2, and the fact that gradient descent
does not converge to a strict saddle point almost surely [48, 60].

4.8 Proof for Rank-1 Matrix Factorization (Theorem 4.5)
In this section we prove Theorem 4.5.

Proof of Theorem 4.5. We define the following four key quantities:

αt = u>t u∗, αt,⊥ = ‖U∗⊥ut‖2 , βt = v>t v∗, βt,⊥ = ‖V∗⊥vt‖2 ,

where U∗⊥ = I − u∗u∗> and V∗⊥ = I − v∗v∗> are the projection matrices onto the orthogonal
complement spaces of u∗ and v∗, respectively. Notice that ‖ut‖2

2 = α2
t + α2

t,⊥ and ‖vt‖2
2 =

β2
t + β2

t,⊥. It turns out that we can write down the explicit formulas for the dynamics of these
quantities:

αt+1 =
(
1− η

(
β2
t + β2

t,⊥
))
αt + ησ1βt, βt+1 =

(
1− η

(
α2
t + α2

t,⊥
))
βt + η1σ1αt,

αt+1,⊥ =
(
1− η

(
β2
t + β2

t,⊥
))
αt,⊥, βt+1,⊥ =

(
1− η

(
α2
t + α2

t,⊥
))
βt,⊥.

(4.23)

To facilitate the analysis, we also define:

ht =αtβt − σ1,

ξt =α2
t,⊥ + β2

t,⊥.

Then our goal is to show ξt → 0 and ht → 0 as t→∞. We calculate the dynamics of ht and ξt:

ht+1 =
(
1− η

(
α2
t + β2

t

)
+ η2

(
αtβtht + α2

tβ
2
t,⊥ + β2

t α
2
t,⊥ + α2

t,⊥β
2
t,⊥
))
ht − ηαtβtξt + η2σ1α

2
t,⊥β

2
t,⊥,

ξt+1 =
(
1− η

(
β2
t + β2

t,⊥
))2

α2
t,⊥ +

(
1− η

(
α2
t + α2

t,⊥
))2

β2
t,⊥.

(4.24)
According to our initialization scheme, with high probability we have

|α0|, |β0| ∈
[
0.1cinit

√
σ1

d
, 10cinit

√
σ1

d

]
and |α0,⊥|, |β0,⊥| ≤ 10cinit

√
σ1.

92

We assume that these conditions are satisfied. We also assume that the signal at the beginning
is positive: α0β0 > 0, which holds with probability 1/2. Without loss of generality we assume
α0, β0 > 0.7

We divide the dynamics into two stages.

Lemma 4.5 (Stage 1: escaping from saddle point (0,0)). Let T1 = min
{
t ∈ N : α2

t + β2
t ≥ 1

2
σ1

}
.

Then for t = 0, 1, . . . , T1 − 1, the followings hold:

(i) Positive signal strengths: αt, βt > 0;
(ii) Small magnitudes in complement space: ξt ≤ ξ0 ≤ 100c2

initσ1;
(iii) Growth of magnitude in signal space:

(
1 + cstep

3

)
(αt+βt) ≤ αt+1 + βt+1 ≤ (1 + cstep) (αt+

βt);
(iv) Bounded ratio between two layers: |αt − βt| ≤ 99

101
(αt + βt).

Furthermore, we have T1 = O(log d).

In this stage, the strengths in the complement spaces remain small (ξt ≤ ξ0) and the strength
in the signal space is growing exponentially (αt+1 + βt+1 ≥

(
1 + cstep

3

)
(αt + βt)). Furthermore,

|αt − βt| ≤ 99
101

(αt + βt) implies αt
βt
∈ [1

100
, 100], which means the signal strengths in the two

layers are of the same order.
Then we enter stage 2, which is essentially a local convergence phase. The following lemma

characterizes the behaviors of the strengths in the signal and noise spaces in this stage.

Lemma 4.6 (Stage 2: convergence to global minimum). Let T1 be as defined in Lemma 4.5.
Then there exists a universal constant c1 > 0 such that the followings hold for all t ≥ T1:

(a) Non-vanishing signal strengths in both layers: αt, βt ≥
√
c1σ1;

(b) Bounded signal strengths: αtβt ≤ σ1, i.e., ht ≤ 0;
(c) Shrinking magnitudes in complement spaces: ξt ≤ (1 − c1cstep)

t−T1ξ0 ≤ (1 − c1cstep)
t−T1 ·

100c2
initσ1;

(d) Convergence in signal space: |ht+1| ≤ (1− c1cstep)|ht|+ cstepξt.

Note that properties (a) and (b) in Lemma 4.6 imply c0 ≤ αt
βt
≤ C0 for all t ≥ T1, where

c0, C0 > 0 are universal constants. Property (c) implies that for all t ≥ T1 + T2 where T2 =
Θ(log 1

ε
), we have ξt = O(εσ1). Then property (d) tells us that after another T3 = Θ(log 1

ε
)

iterations, we can ensure |ht| = O(εσ1) for all t ≥ T1 +T2 +T3. These imply
∥∥utv>t −M∗

∥∥
F

=

O(εσ1) after t = T1 + T2 + T3 = O(log d
ε
) iterations, completing the proof of Theorem 4.5.

Now we prove Lemmas 4.5 and 4.6.

Proof of Lemma 4.5. We use induction to prove the following statements for t = 0, 1, . . . , T1−1:

D(t) : αt, βt > 0,

E(t) : ξt ≤ ξ0 ≤ 100c2
initσ1,

F(t) :
(

1 +
cstep

3

)
(αt + βt) ≤ αt+1 + βt+1 ≤ (1 + cstep) (αt + βt),

7If α0, β0 < 0, we can simply flip the signs of u∗ and v∗.

93

G(t) : |αt − βt| ≤
99

101
(αt + βt),

H(t) : ‖ut‖2 + ‖vt‖2 ≤ σ1.

• Base cases.
We know that D(0), E(0) and G(0) hold from our assumptions on the initialization.

• D(t), E(t) =⇒ F(t) (∀t ≤ T1 − 1).
From (4.23) we have

αt+1 + βt+1 = (1 + ησ1) (αt + βt)− η
(
α2
t + α2

t,⊥
)
βt − η

(
β2
t + β2

t,⊥
)
αt

≥
(
1 + ησ1 − η

(
α2
t + β2

t + ξt
))

(αt + βt)

≥
(

1 + ησ1 − η
(σ1

2
+ 100c2

initσ1

))
(αt + βt)

≥
(

1 +
ησ1

3

)
(αt + βt)

=
(

1 +
cstep

3

)
(αt + βt),

where in the second inequality we have used the definition of T1, and the last inequality is
true when cinit is sufficiently small.
On the other hand we have

αt+1 + βt+1 = (1 + ησ1) (αt + βt)− η
(
α2
t + α2

t,⊥
)
βt − η

(
β2
t + β2

t,⊥
)
αt

≤ (1 + ησ1) (αt + βt)

= (1 + cstep) (αt + βt) .

• E(t) =⇒ H(t) (∀t ≤ T1 − 1).
We have

‖ut‖2 + ‖vt‖2 = α2
t + β2

t + ξt ≤
1

2
σ1 + 100c2

initσ1 ≤ σ1.

• D(t),H(t) =⇒ D(t+ 1) (∀t ≤ T1 − 1).
From (4.23) we have

αt+1 =
(
1− η ‖vt‖2)αt + ησ1βt ≥ (1− ησ1)αt = (1− cstep)αt > 0.

Similarly we have βt+1 > 0. Note that cstep is chosen to be sufficiently small.
• H(t) =⇒ E(t+ 1) (∀t ≤ T1 − 1).

Recall from (4.24):

ξt+1 =
(
1− η ‖vt‖2)2

α2
t,⊥ +

(
1− η ‖ut‖2)2

β2
t,⊥.

Since η ‖vt‖2 ≤ η(‖ut‖2 + ‖vt‖2) ≤ ησ1 = cstep ≤ 1 and η ‖ut‖2 ≤ 1, we have

ξt+1 ≤ α2
t,⊥ + β2

t,⊥ = ξt.

94

• D(t), E(t),F(t),G(t) =⇒ G(t+ 1) (∀t ≤ T1 − 1).
From (4.23) we have

αt+1 − βt+1 = (1− ησ1)(αt − βt)− η(β2
t + β2

t,⊥)αt + η(α2
t + α2

t,⊥)βt

= (1− ησ1 + ηαtβt)(αt − βt)− ηβ2
t,⊥αt + ηα2

t,⊥βt.

From α2
t + β2

t <
1
2
σ1 we know αtβt <

1
4
σ1. Thus

|αt+1 − βt+1| ≤ (1− ησ1 + ηαtβt) |αt − βt|+ ηβ2
t,⊥αt + ηα2

t,⊥βt

≤
(

1− 3

4
ησ1

)
|αt − βt|+ ηξt(αt + βt)

≤
(

1− 3

4
ησ1

)
· 99

101
(αt + βt) + η · 100c2

initσ1(αt + βt)

≤
(

1− ησ1

(
3

4
− 100c2

init ·
101

99

))
· 99

101
(αt + βt)

≤ 99

101
(αt + βt)

≤ 99

101
(αt+1 + βt+1).

Lastly we upper bound T1. Note that for all t < T1 we have αt + βt ≤
√

2(α2
t + β2

t) <√
2 · 1

2
σ1 =

√
σ1. From F(t) we know that αt + βt is increasing exponentially. Therefore, we

must have T1 = O
(

log
√
σ1

α0+β0

)
= O

(
log

√
σ1√
σ1/d

)
= O(log d).

Proof of Lemma 4.6. By the definition of T1 we know α2
T1

+ β2
T1
≥ 1

2
σ1. In the proof of

Lemma 4.5, we have shown αT1 , βT1 > 0 and |αT1 − βT1| ≤ 99
101

(αT1 + βT1). These imply
min {αT1 , βT1} ≥ 2

√
c1σ1 for some small universal constant c1 > 0.

We use induction to prove the following statements for all t ≥ T1:

I(t) : αt ≥ αT1 ·
t−1∏
i=T1

(
1− ηξ0 (1− c1cstep)

i−T1
)
,

βt ≥ βT1 ·
t−1∏
i=T1

(
1− ηξ0 (1− c1cstep)

i−T1
)
,

J (t) : αt, βt ≥
√
c1σ1,

K(t) : αtβt ≤ σ1, i.e., ht ≤ 0,

L(t) : ξt ≤ (1− c1cstep)
t−T1ξ0 ≤ (1− c1cstep)

t−T1 · 100c2
initσ1,

M(t) : |ht+1| ≤ (1− c1cstep)|ht|+ cstepξt.

• Base cases.

95

I(T1) is obvious. We know that J (T1) is true by the definition of c1. K(T1) can be shown
as follows:

αT1βT1 ≤
1

4
(αT1 + βT1)

2

≤ 1

4
(1 + cstep)

2 (αT1−1 + βT1−1)2 (by Lemma 4.5 (iii))

≤ 1

4
(1 + cstep)

2 · 2
(
α2
T1−1 + β2

T1−1

)
≤ 1

4
(1 + cstep)

2 · 2 · 1

2
σ1 (by the definition of T1)

≤ σ1. (choosing cstep to be small)

L(T1) reduces to ξT1 ≤ ξ0, which was shown in the proof of Lemma 4.5.
• I(t) =⇒ J (t) (∀t ≥ T1).

Notice that we have ηξ0 ≤ cstep
σ1
· 100c2

initσ1 = 100cstepc
2
init <

1
2

since cstep and cinit are
sufficiently small. Then we have

αt ≥ αT1 ·
t−1∏
i=T1

(
1− ηξ0 (1− c1cstep)

i−T1
)

≥ αT1 ·
∞∏
i=0

(
1− ηξ0 (1− c1cstep)

i
)

≥ αT1 ·
∞∏
i=0

exp
(
−2ηξ0 (1− c1cstep)

i
)

(1− x ≥ e−2x, ∀0 ≤ x ≤ 1/2)

= αT1 · exp

(
− 2ηξ0

c1cstep

)
≥ αT1 · exp

(
−200cstepc

2
init

c1cstep

)
≥ 2
√
c1σ1 · exp

(
−200c2

init

c1

)
≥ √c1σ1. (choosing cinit to be small)

Similarly we have βt ≥
√
c1σ1.

• I(t),J (t),K(t),L(t) =⇒ I(t+ 1) (∀t ≥ T1).
From (4.23) we have

αt+1 =
(
1− η

(
β2
t + β2

t,⊥
))
αt + ησ1βt

=
(
1− ηβ2

t,⊥
)
αt − ηhtβt

≥
(
1− ηβ2

t,⊥
)
αt (ht ≤ 0, βt > 0)

≥ (1− ηξt)αt
≥
(
1− ηξ0(1− c1cstep)

t−T1
)
αt (L(t))

96

≥ αT1 ·
t∏

i=T1

(
1− ηξ0 (1− c1cstep)

i−T1
)
. (I(t))

Similarly we have βt+1 ≥ βT1 ·
∏t

i=T1

(
1− ηξ0 (1− c1cstep)

i−T1
)

.
• J (t),K(t),L(t) =⇒ K(t+ 1) (∀t ≥ T1).

From (4.24) we have

ht+1 =
(
1− η

(
α2
t + β2

t

)
+ η2

(
αtβtht + α2

tβ
2
t,⊥ + β2

t α
2
t,⊥ + α2

t,⊥β
2
t,⊥
))
ht − ηαtβtξt

+ η2σ1α
2
t,⊥β

2
t,⊥

≤
(
1− η

(
α2
t + β2

t

))
ht + η2αtβth

2
t − ηαtβtξt + η2σ1α

2
t,⊥β

2
t,⊥,

(4.25)
where we have used ht ≤ 0. Since αt, βt ≥

√
c1σ1 and αtβt ≤ σ1, we have αt, βt =

Θ(
√
σ1). Furthermore, we can choose cstep and cinit small enough such that ηξ0 ≤ 4c1

which implies

η2σ1α
2
t,⊥β

2
t,⊥ ≤ η2σ1 ·

1

4
ξ2
t ≤

1

4
ηξt · ησ1ξ0 ≤ ηξt · c1σ1 ≤ ηξt · αtβt.

Therefore (4.25) implies

ht+1 ≤ (1− η ·O(σ1))ht + η2αtβth
2
t

=
(
1− η ·O(σ1) + η2αtβtht

)
ht

≤
(
1− η ·O(σ1)− η2σ2

1

)
ht (0 < αtβt ≤ σ1)

=
(
1−O(cstep)− c2

step

)
ht

≤ 0,

where the last step is true when cstep is sufficiently small.
• J (t),K(t),L(t) =⇒ L(t+ 1) (∀t ≥ T1).

From αt, βt ≥
√
c1σ1 and αtβt ≤ σ1 we have αt, βt = Θ(

√
σ1). Also we have ξt ≤ ξ0.

Thus we can make sure η(α2
t +α2

t,⊥) < 1 and η(β2
t +β2

t,⊥) < 1. Then from (4.24) we have

ξt+1 =
(
1− η

(
β2
t + β2

t,⊥
))2

α2
t,⊥ +

(
1− η

(
α2
t + α2

t,⊥
))2

β2
t,⊥

≤
(
1− ηβ2

t

)2
α2
t,⊥ +

(
1− ηα2

t

)
β2
t,⊥

≤ (1− ηc1σ1) ξt

= (1− c1cstep) ξt.

• We have shown I(t),J (t),K(t) and L(t) for all t ≥ T1. Now we use them to proveM(t)
for all t ≥ T1:

|ht+1| =
(
1− η

(
α2
t + β2

t

)
+ η2

(
αtβtht + α2

tβ
2
t,⊥ + β2

t α
2
t,⊥ + α2

t,⊥β
2
t,⊥
))
|ht|+ ηαtβtξt

− η2σ1α
2
t,⊥β

2
t,⊥

97

≤
(

1− 1

2
η
(
α2
t + β2

t

))
|ht|+ ηαtβtξt

≤
(

1− 1

2
η · 2c1σ1

)
|ht|+ ησ1ξt

= (1− c1cstep) |ht|+ cstepξt.

Here we have used η ≤ α2
t+β

2
t

2|αtβtht+α2
tβ

2
t,⊥+β2

t α
2
t,⊥+α2

t,⊥β
2
t,⊥| , which is clearly true when cstep is

small enough.

Therefore, we have finished the proof of Lemma 4.6.

98

Part II

Parameter Estimation in Convolutional
Neural Networks via Gradient Descent

99

Chapter 5

Learning a Two-layer Convolutional
Neural Network via Gradient Descent

5.1 Introduction
In the previous part, we only consider the optimization aspect of gradient descent for neural
networks. It is not clear whether the neural network learned by gradient descent can have good
generalization ability. Note in general generalization is not possible unless one puts some as-
sumptions. In this part, we assume there exists an underlying convolutional neural network with
good generalization ability and our goal is to recover it. A line of research [10, 51, 64, 67, 73]
assumed the input distribution is Gaussian and showed that gradient descent with random or 0
initialization is able to train a recover a neural network of the form f(x, {wj}) =

∑
j ajσ(wT

j x)
with ReLU activation σ(z) = max(z, 0) where x is the input, wj is the weight vector and aj
is the output weight. However, these results all assume there is only one unknown layer {wj},
while a is a fixed vector. A natural question thus arises:
Does randomly initialized gradient descent recover neural networks with multiple layers?

In this chapter, we take an important step by showing that randomly initialized gradient de-
scent learns a non-linear convolutional neural network with two unknown layers w and a. For-
mally, we consider the convolutional case in which a filter w is shared among different hidden
nodes. Let x ∈ Rd be an input sample, e.g., an image. We generate k patches from x, each with
size q: Z ∈ Rq×k where the i-th column is the i-th patch generated by selecting some coordi-
nates of x: Zi = Zi(x). We further assume there is no overlap between patches. Thus, the neural
network function has the following form:

f(Z,w, a) =
k∑
i=1

aiσ
(
w>Zi

)
.

We focus on the realizable case, i.e., the label is generated according to y = f (Z,w∗, a∗) for
some true parameters w∗ and a∗ and use `2 loss to learn the parameters:

min
w,a

`(Z,w, a) :=
1

2
(f (Z,w, a)− f (Z,w∗, a∗))2 .

100

(a) Convolutional neural network with an un-
known non-overlapping filter and an unknown
output layer. In the first (hidden) layer, a fil-
ter w is applied to nonoverlapping parts of the
input x, which then passes through a ReLU ac-
tivation function. The final output is the inner
product between an output weight vector a and
the hidden layer outputs.

0 50 100 150 200 250 300 350 400 450 500

Epochs

-25

-20

-15

-10

-5

0

5

L
o
g
a
ri
th

m
 o

f
P

re
d
ic

ti
o
n
 E

rr
o
rs

Sucess Case

Failure Case

(b) The convergence of gradient descent for
learning a CNN described in Figure 5.1a with
Gaussian input using different initializations.
The success case and the failure case corre-
spond to convergence to the global minimum
and the spurious local minimum, respectively.
In the first ∼ 50 iterations the convergence is
slow. After that gradient descent converges at a
fast linear rate.

Figure 5.1: Network architecture that we consider in this chapter and convergence of gradient
descent for learning the parameters of this network.

We assume x is sampled from a Gaussian distribution and there is no overlap between patches.
This assumption is equivalent to that each entry of Z is sampled from a Gaussian distribution [10,
85]. Following [10, 51, 64, 73, 84, 85], in this chapter, we mainly focus on the population loss:

` (w, a) :=
1

2
EZ

[
(f (Z,w, a)− f (Z,w∗, a∗))2] .

We study whether the global convergence w→ w∗ and a→ a∗ can be achieved when optimizing
`(w, a) using randomly initialized gradient descent.

An important difference between our two-layer network and previous one-layer models is
there is a positive-homogeneity issue. That is, for any c > 0, f

(
Z, cw, a

c

)
= f (Z,w, a). This

interesting property allows the network to be rescaled without changing the function computed
by the network. As reported by [59], it is desirable to have scaling-invariant learning algorithm
to stabilize the training process.

One commonly used technique to achieve stability is weight-normalization introduced by Sal-
imans and Kingma [63]. As reported in [63], this re-parametrization improves the conditioning
of the gradient because it couples the magnitude of the weight vector from the direction of the
weight vector and empirically accelerates stochastic gradient descent optimization.

101

Algorithm 1 Gradient Descent for Learning One-Hidden-Layer CNN with Weight Normaliza-
tion

1: Input: Initialization v0 ∈ Rp, a0 ∈ Rk, learning rate η.
2: for t = 1, 2, . . . do
3: vt+1 ← vt − η ∂`(v

t,at)
∂vt

,

4: at+1 ← at − η ∂`(v
t,at)

∂at
.

5: end for

In our setting, we re-parametrize the first layer as w = v
‖v‖2

and the prediction function
becomes

f (Z,v, a) =
k∑
i=1

ai
σ
(
Z>i v

)
‖v‖2

. (5.1)

The loss function is

` (v, a) =
1

2
EZ

[
(f (Z,v, a)− f (Z,v∗, a∗))2] . (5.2)

In this chapter we focus on using randomly initialized gradient descent for learning this convo-
lutional neural network. The pseudo-code is listed in Algorithm 1.1

Main Contributions. This chapter have three contributions to the literature. First, we show
if (v, a) is initialized by a specific random initialization, then with high probability, gradient
descent from (v, a) converges to teacher’s parameters (v∗, a∗). We can further boost the success
rate with more trials.

Second, perhaps surprisingly, we prove that the objective function (Equation (5.2)) does have
a spurious local minimum: using the same random initialization scheme, there exists a pair
(ṽ0, ã0) ∈ S±(v, a) so that gradient descent from (ṽ0, ã0) converges to this bad local minimum.
In contrast to previous works on guarantees for non-convex objective functions whose landscape
satisfies “no spurious local minima” property [8, 37, 38, 39, 46, 49], our result provides a concrete
counter-example and highlights a conceptually surprising phenomenon:
Randomly initialized local search can find a global minimum in the presence of spurious

local minima.
Finally, we conduct a quantitative study of the dynamics of gradient descent. We show that

the dynamics of Algorithm 1 has two phases. At the beginning (around first 50 iterations in
Figure 5.1b), because the magnitude of initial signal (angle between v and w∗) is small, the
prediction error drops slowly. After that, when the signal becomes stronger, gradient descent
converges at a much faster rate and the prediction error drops quickly.

Technical Insights. The main difficulty of analyzing the convergence is the presence of local
minima. Note that local minimum and the global minimum are disjoint (c.f. Figure 5.1b). The

1With some simple calculations, we can see the optimal solution for a is unique, which we denote as a∗ whereas
the optimal for v is not because for every optimal solution v∗, cv∗ for c > 0 is also an optimal solution. In this
chapter, with a little abuse of the notation, we use v∗ to denote the equivalent class of optimal solutions.

102

key technique we adopt is to characterize the attraction basin for each minimum. We consider
the sequence {(vt, at)}∞t=0 generated by Algorithm 1 with step size η using initialization point
(v0, a0). The attraction basin for a minimum (v∗, a∗) is defined as the

B (v∗, a∗) =
{(

v0, a0
)
, lim
t→∞

(
vt, at

)
→ (v∗, a∗)

}
The goal is to find a distribution G for weight initialization so that the probability that the initial
weights are in B (v∗, a∗) of the global minimum is bounded below:

P(v0,a0)∼G [B (v∗, a∗)] ≥ c

for some absolute constant c > 0.
While it is hard to characterize B (v∗, a∗), we find that the set B̃(v∗, a∗) ≡ {(v0, a0) :

(v0)
>

v∗ ≥ 0, (a0)
>

a∗ ≥ 0,
∣∣1>a0

∣∣ ≤ ∣∣1>a∗
∣∣} is a subset of B(v∗, a∗) (c.f. Lemma 5.2-

Lemma 5.4). Furthermore, when the learning rate η is sufficiently small, we can design a specific
distribution G so that:

P(v0,a0)∼G [B(v∗, a∗)] ≥ P(v0,a0)∼G

[
B̃(v∗, a∗)

]
≥ c

This analysis emphasizes that for non-convex optimization problems, we need to carefully
characterize both the trajectory of the algorithm and the initialization. We believe that this idea
is applicable to other non-convex problems.

To obtain the convergence rate, we propose a potential function (also called Lyapunov func-
tion in the literature). For this problem we consider the quantity sin2 φt where φt = θ (vt,v∗)
and we show it shrinks at a geometric rate (c.f. Lemma 5.5).

5.2 Preliminaries
We let wt and at be the parameters at the t-th iteration and w∗ and a∗ be the optimal weights.
For two vector w1 and w2, we use θ (w1,w2) to denote the angle between them. We denote Sp−1

the (p− 1)-dimensional unit sphere and B (0, r) the ball centered at 0 with radius r.
In this chapter, we assume every patch Zi is vector of i.i.d Gaussian random variables. The

following theorem gives an explicit formula for the population loss. The proof uses basic rota-
tional invariant property and polar decomposition of Gaussian random variables. See Section 5.7
for details.
Theorem 5.1. If every entry of Zis i.i.d. sampled from a Gaussian distribution with mean 0 and
variance 1, then population loss is

` (v, a) =
1

2

[
(π − 1) ‖w∗‖2

2

2π
‖a∗‖2

2 +
(π − 1)

2π
‖a‖2

2

− 2 (g (φ)− 1) ‖w∗‖2

2π
a>a∗ +

‖w∗‖2
2

2π

(
1>a∗

)2
+

1

2π

(
1>a

)2 − 2 ‖w∗‖2 1>a · 1>a∗

]
(5.3)

where φ = θ (v,w∗) and g(φ) = (π − φ) cosφ+ sinφ.

103

Using similar techniques, we can show the gradient also has an analytical form.
Theorem 5.2. Suppose every entry of Z is i.i.d. sampled from a Gaussian distribution with mean
0 and variance 1. Denote φ = θ (w,w∗). Then the expected gradient of w and a can be written
as

EZ

[
∂` (Z,v, a)

∂v

]
= − 1

2π ‖v‖2

(
I− vv>

‖v‖2
2

)
a>a∗ (π − φ) w∗

EZ

[
∂` (Z,v, a)

∂a

]
=

1

2π

(
11> + (π − 1) I

)
a− 1

2π

(
11> + (g(φ)− 1) I

)
‖w∗‖2 a∗.

As a remark, if the second layer is fixed, upon proper scaling, the formulas for the population
loss and gradient of v are equivalent to the corresponding formulas derived in [10, 13]. However,
when the second layer is not fixed, the gradient of v depends on a>a∗, which plays an important
role in deciding whether converging to the global or the local minimum.

5.3 Main Result
We begin with our main theorem about the convergence of gradient descent.
Theorem 5.3. Suppose the initialization satisfies (a0)

>
a∗ > 0,

∣∣1>a0
∣∣ ≤ ∣∣1>a∗

∣∣, φ0 < π/2 and
step size satisfies

η = O

min

 (a0)
>

a∗ cosφ0(
‖a∗‖2

2 + (1>a∗)2
)
‖w∗‖2

2

,
(g(φ0)− 1) ‖a∗‖2

2 cosφ0(
‖a∗‖2

2 + (1>a∗)2
)
‖w∗‖2

2

,

cosφ0(
‖a∗‖2

2 + (1>a∗)2
)
‖w∗‖2

2

,
1

k

 .

Then the convergence of gradient descent has two phases.
(Phase I: Slow Initial Rate) There exists T1 = O

(
1

η cosφ0β0 + 1
η

)
such that we have φT1 = Θ (1)

and
(
aT1
)>

a∗ ‖w∗‖2 = Θ
(
‖a∗‖2

2 ‖w∗‖
2
2

)
where

β0 = min
{(

a0
)>

a∗ ‖w∗‖2 , (g(φ0)− 1) ‖a∗‖2
2 ‖a∗‖

2
2

}
.

(Phase II: Fast Rate) Suppose at the T1-th iteration, φT1 = Θ (1) and
(
aT1
)>

a∗ ‖w∗‖2 =

Θ
(
‖a∗‖2

2 ‖w∗‖
2
2

)
, then there exists T2 = Õ(

(
1

η‖w∗‖22‖a∗‖
2
2

+ 1
η

)
log
(

1
ε

)
)2 such that

`
(
vT1+T2 , aT1+T2

)
≤ ε ‖w∗‖2

2 ‖a∗‖
2
2 .

2Õ (·) hides logarithmic factors on
∣∣1>a∗∣∣ ‖w∗‖2 and ‖a∗‖2 ‖w∗‖2

104

Theorem 5.3 shows under certain conditions of the initialization, gradient descent converges
to the global minimum. The convergence has two phases, at the beginning because the initial
signal (cosφ0β0) is small, the convergence is quite slow. After T1 iterations, the signal becomes
stronger and we enter a regime with a faster convergence rate. See Lemma 5.5 for technical
details.

Initialization plays an important role in the convergence. First, Theorem 5.3 needs the ini-
tialization satisfy (a0)

>
a∗ > 0,

∣∣1>a0
∣∣ ≤ ∣∣1>a∗

∣∣ and φ0 < π/2. Second, the step size η and the
convergence rate in the first phase also depends on the initialization. If the initial signal is very
small, for example, φ0 ≈ π/2 which makes cosφ0 close to 0, we can only choose a very small
step size and because T1 depends on the inverse of cosφ0, we need a large number of iterations
to enter phase II. We provide the following initialization scheme which ensures the conditions
required by Theorem 5.3 and a large enough initial signal.

Theorem 5.4. Let v ∼ unif (Sp−1) and a ∼ unif

(
B
(

0,
|1>a∗|‖w∗‖2√

k

))
, then exists

(
v0, a0

)
∈ {(v, a) , (v,−a) , (−v, a) , (−v,−a)}

that (a0)
>

a∗ > 0,
∣∣1>a0

∣∣ ≤ ∣∣1>a∗
∣∣ and φ0 < π/2. Further, with high probability, the initializa-

tion satisfies (a0)
>

a∗ ‖w∗‖2 = Θ

(
|1>a∗|‖a∗‖2‖w∗‖22

k

)
, and φ0 = Θ

(
1√
p

)
.

Theorem 5.4 shows after generating a pair of random vectors (v, a), trying out all 4 sign com-
binations of (v, a), we can find the global minimum by gradient descent. Further, because the
initial signal is not too small, we only need to set the step size to be O(1/poly(k, ‖w∗‖2 ‖a‖2))
and the number of iterations in phase I is at most O(poly(k, p, ‖w∗‖2 ‖a‖2)). Therefore, The-
orem 5.3 and Theorem 5.4 together show that randomly initialized gradient descent learns an
one-hidden-layer convolutional neural network in polynomial time. The proof of the first part
of Theorem 5.4 uses the symmetry of unit sphere and ball and the second part is a standard
application of random vector in high-dimensional spaces. See Lemma 2.5 of [42] for example.

Remark 5.1. For the second layer we use O
(

1√
k

)
type initialization, verifying common initial-

ization techniques [40, 43, 47].
Remark 5.2. The Gaussian input assumption is not necessarily true in practice, although this
is a common assumption appeared in the previous papers [10, 51, 64, 73, 79, 84, 85] and also
considered plausible in [14]. Our result can be easily generalized to rotation invariant distribu-
tions. However, extending to more general distributional assumption, e.g., structural conditions
used in [31] remains a challenging open problem.
Remark 5.3. Since we only require initialization to be smaller than some quantities of a∗ and
w∗. In practice, if the optimization fails, i.e., the initialization is too large, one can halve the
initialization size, and eventually these conditions will be met.

5.3.1 Gradient Descent Can Converge to the Spurious Local Minimum
Theorem 5.4 shows that among {(v, a) , (v,−a) , (−v, a) , (−v,−a)}, there is a pair that en-
ables gradient descent to converge to the global minimum. Perhaps surprisingly, the next the-

105

orem shows that under some conditions of the underlying truth, there is also a pair that makes
gradient descent converge to the spurious local minimum.
Theorem 5.5. Without loss of generality, we let ‖w∗‖2 = 1. Suppose

(
1>a∗

)2
< 1

poly(q)
‖a∗‖2

2

and η is sufficiently small. Let v ∼ unif (Sp−1) and a ∼ unif

(
B
(

0,
|1>a∗|√

k

))
, then with

high probability, there exists (v0, a0) ∈ {(v, a) , (v,−a) , (−v, a) , (−v,−a)} that (a0)
>

a∗ <

0,
∣∣1>a0

∣∣ ≤ ∣∣1>a∗
∣∣, g (φ0) ≤ −2(1>a∗)

2

‖a∗‖22
+ 1. If (v0, a0) is used as the initialization, when

Algorithm 1 converges, we have

θ (v,w∗) = π, a =
(
11> + (π − 1) I

)−1 (
11> − I

)
a∗

and ` (v, a) = Ω
(
‖a∗‖2

2

)
.

Unlike Theorem 5.3 which requires no assumption on the underlying truth a∗, Theorem 5.5
assumes

(
1>a∗

)2
< 1

poly(q)
‖a∗‖2

2. This technical condition comes from the proof which requires

invariance g(φt) ≤ −2(1>a∗)
2

‖a∗‖22
for all iterations. To ensure there exists (v0, a0) which makes

g(φ0) ≤ −2(1>a∗)
2

‖a∗‖22
, we need (1>a∗)

2

‖a∗‖22
relatively small. See Section 5.11 for more technical in-

sights.

A natural question is whether the ratio (1>a∗)
2

‖a∗‖22
becomes larger, the probability randomly

gradient descent converging to the global minimum, becomes larger as well. We verify this
phenomenon empirically in Section 5.5.

5.4 Proof Sketch

In Section 5.4.1, we give qualitative high level intuition on why the initial conditions are suffi-
cient for gradient descent to converge to the global minimum. In Section 5.4.2, we explain why
the gradient descent has two phases.

5.4.1 Qualitative Analysis of Convergence

The convergence to global optimum relies on a geometric characterization of saddle points and a
series of invariants throughout the gradient descent dynamics. The next lemma gives the analysis
of stationary points. The main step is to check the first order condition of stationary points using
Theorem 5.2.
Lemma 5.1 (Stationary Point Analysis). When the gradient descent converges, a>a∗ 6= 0 and
‖v‖2 <∞, we have either

θ (v,w∗) = 0, a = ‖w∗‖2 a∗ or θ (v,w∗) = π,

a =
(
11> + (π − 1) I

)−1 (
11> − I

)
‖w∗‖2 a∗.

106

This lemma shows that when the algorithm converges, and a and a∗ are not orthogonal, then
we arrive at either a global optimal point or a local minimum. Now recall the gradient formula
of v: ∂`(v,a)

∂v
= − 1

2π‖v‖2

(
I− vv>

‖v‖22

)
a>a∗ (π − φ) w∗. Notice that φ ≤ π and

(
I− vv>

‖v‖22

)
is just

the projection matrix onto the complement of v. Therefore, the sign of inner product between
a and a∗ plays an important role in the dynamics of Algorithm 1 because if the inner product is
positive, the gradient update will decrease the angle between v and w∗ and if it is negative, the
angle will increase. This observation is formalized in the lemma below.
Lemma 5.2 (Invariance I: The Angle between v and w∗ always decreases.). If (at)

>
a∗ > 0,

then φt+1 ≤ φt.
This lemma shows that when (at)

>
a∗ > 0 for all t, gradient descent converges to the global

minimum. Thus, we need to study the dynamics of (at)
>

a∗. For the ease of presentation, without
loss of generality, we assume ‖w∗‖2 = 1. By the gradient formula of a, we have(

at+1
)>

a∗

=

(
1− η(π − 1)

2π

)(
at
)>

a∗ +
η(g(φt)− 1)

2π

∥∥at∥∥2

2
+

η

2π

((
1>a∗

)2 −
(
1>at

) (
1>a∗

))
.

(5.4)

We can use induction to prove the invariance. If (at)
>

a∗ > 0 and φt < π
2

the first term of
Equation (5.4) is non-negative. For the second term, notice that if φt < π

2
, we have g(φt) > 1,

so the second term is non-negative. Therefore, as long as
((

1>a∗
)2 −

(
1>at

) (
1>a∗

))
is also

non-negative, we have the desired invariance. The next lemma summarizes the above analysis.
Lemma 5.3 (Invariance II: Positive Signal from the Second Layer.). If (at)

>
a∗ > 0, 0 ≤ 1>a∗ ·

1>at ≤
(
1>a∗

)2, 0 < φt < π/2 and η < 2, then (at+1)
>

a∗ > 0.

It remains to prove
((

1>a∗
)2 −

(
1>at

) (
1>a∗

))
> 0. Again, we study the dynamics of this

quantity. Using the gradient formula and some algebra, we have

1>at+1 · 1>a∗ ≤
(

1− η (k − π − 1)

2π

)
1>at · 1>a∗ +

η (k + g(φt)− 1)

2

(
1>a∗

)2

≤
(

1− η (k − π − 1)

2π

)
1>at · 1>a∗ +

η (k + π − 1)

2

(
1>a∗

)2

where have used the fact that g(φ) ≤ π for all 0 ≤ φ ≤ π
2
. Therefore we have(

1>a∗ − 1>at+1
)
· 1>a∗ ≥

(
1− η(k + π − 1)

2π

)(
1>a∗ − 1>at

)
1>a∗.

These imply the third invariance.
Lemma 5.4 (Invariance III: Summation of Second Layer Always Small.). If 1>a∗ · 1>at ≤(
1>a∗

)2 and η < 2π
k+π−1

then 1>a∗ · 1>at+1 ≤
(
1>a∗

)2.

To sum up, if the initialization satisfies (1) φ0 < π
2
, (2) (a0)

>
a∗ > 0 and (3) 1>a∗ · 1>a0 ≤(

1>a∗
)2, with Lemma 5.2, 5.3, 5.4, by induction we can show the convergence to the global

minimum. Further, Theorem 5.4 shows these three conditions are true with constant probability
using random initialization.

107

5.4.2 Quantitative Analysis of Two Phase Phenomenon
In this section we demonstrate why there is a two-phase phenomenon. Throughout this section,
we assume the conditions in Section 5.4.1 hold. We first consider the convergence of the first
layer. Because we are using weight-normalization, only the angle between v and w∗ will affect
the prediction. Therefore, in this chapter, we study the dynamics sin2 φt. The following lemma
quantitatively characterize the shrinkage of this quantity of one iteration.
Lemma 5.5 (Convergence of Angle between v and w∗). Under the same assumptions as in
Theorem 5.3. Let β0 = min

{
(a0)

>
a∗, (g(φ0)− 1) ‖a∗‖2

2

}
‖w∗‖2

2. If the step size satisfies

η = O

(
min

{
β0 cosφ0(

‖a∗‖22+(1>a∗)
2
)
‖w∗‖22

, cosφ0(
‖a∗‖22+(1>a∗)

2
)
‖w∗‖22

, 1
k

})
, we have

sin2 φt+1 ≤
(
1− η cosφtλt

)
sin2 φt

where λt =
‖w∗‖2(π−φt)(at)

>
a∗

2π‖vt‖22
.

This lemma shows the convergence rate depends on two crucial quantities, cosφt and λt. At
the beginning, both cosφt and λt are small. Nevertheless, Lemma 5.9 shows λt is universally
lower bounded by Ω (β0). Therefore, after O(1

η cosφ0β0) we have cosφt = Ω (1). Once cosφt =

Ω (1), Lemma 5.2 shows, after O
(

1
η

)
iterations, (at) a∗ ‖w∗‖ = Ω

(
‖w∗‖2

2 ‖a∗‖
2
2

)
. Combining

the facts ‖vt‖2 ≤ 2 (Lemma 5.9) and φt < π/2, we have cosφtλt = Ω
(
‖w∗‖2

2 ‖a∗‖
2
2

)
. Now we

enter phase II.
In phase II, Lemma 5.5 shows

sin2 φt+1 ≤
(
1− ηC ‖w∗‖2

2 ‖a∗‖
2
2

)
sin2 φt

for some positive absolute constant C. Therefore, we have much faster convergence rate than
that in the Phase I. After only Õ

(
1

η‖w∗‖22‖a‖
2
2

log
(

1
ε

))
iterations, we obtain φ ≤ ε.

Once we have this, we can use Lemma 5.10 to show
∣∣1>a∗ − 1>a

∣∣ ≤ O (ε ‖a∗‖2) after

Õ(1
ηk

log
(

1
ε

)
) iterations. Next, using Lemma 5.11, we can show after Õ

(
1
η

log 1
ε

)
iterations,

‖a− a∗‖2 = O (ε ‖a∗‖2). Lastly, Lemma 5.12 shows if ‖a− a∗‖2 = O (ε ‖a∗‖2) and φ = O (ε)
we have we have ` (v, a) = O

(
ε ‖a∗‖2

2

)
.

5.5 Experiments
In this section, we illustrate our theoretical results with numerical experiments. Again without
loss of generality, we set ‖w∗‖2 = 1 in this section.

5.5.1 Multi-phase Phenomenon
In Figure 5.2, we set k = 20, p = 25 and we consider 4 key quantities in proving Theorem 5.3,
namely, angle between v and w∗ (c.f. Lemma 5.5), ‖a− a∗‖ (c.f. Lemma 5.11),

∣∣1>a− 1>a∗
∣∣

(c.f. Lemma 5.10) and prediction error (c.f. Lemma 5.12).

108

When we achieve the global minimum, all these quantities are 0. At the beginning (first
∼ 10 iterations),

∣∣1>a− 1>a∗
∣∣ and the prediction error drop quickly. This is because for the

gradient of a, 11>a∗ is the dominating term which will make 11>a closer to 11>a∗ quickly.
After that, for the next ∼ 200 iterations, all quantities decrease at a slow rate. This phe-

nomenon is explained to the Phase I stage in Theorem 5.3. The rate is slow because the initial
signal is small.

After ∼ 200 iterations, all quantities drop at a much faster rate. This is because the signal is
very strong and since the convergence rate is proportional to this signal, we have a much faster
convergence rate (c.f. Phase II of Theorem 5.3).

Figure 5.2: Convergence of different mea-
sures we considered in proving Theo-
rem 5.3. In the first ∼ 200 iterations, all
quantities drop slowly. After that, these
quantities converge at much faster linear
rates.

HHH
HHHHk

(1>a∗)2

‖a∗‖22 0 1 4 9 16 25

25 0.50 0.55 0.73 1 1 1

36 0.50 0.53 0.66 0.89 1 1

49 0.50 0.53 0.61 0.78 1 1

64 0.50 0.51 0.59 0.71 0.89 1

81 0.50 0.53 0.57 0.66 0.81 0.97

100 0.50 0.50 0.57 0.63 0.75 0.90

Table 5.1: Probability of converging to the
global minimum with different (1>a∗)2

‖a‖22
and

k. For every fixed k, when (1>a∗)2

‖a‖22
becomes

larger, the probability of converging to the
global minimum becomes larger and for
every fixed ratio (1>a∗)2

‖a‖22
when k becomes

lager, the probability of converging to the
global minimum becomes smaller.

5.5.2 Probability of Converging to the Global Minimum
In this section we test the probability of converging to the global minimum using the random
initialization scheme described in Theorem 5.4. We set p = 6 and vary k and (1>a∗)2

‖a‖22
. We run

5000 random initializations for each (k, (1>a∗)2

‖a‖22
) and compute the probability of converging to

the global minimum.
In Theorem 5.5, we showed if (1>a∗)2

‖a‖22
is sufficiently small, randomly initialized gradient

descent converges to the spurious local minimum with constant probability. Table 5.1 empirically
verifies the importance of this assumption. For every fixed k if (1>a∗)2

‖a‖22
becomes larger, the

probability of converging to the global minimum becomes larger.
An interesting phenomenon is for every fixed ratio (1>a∗)2

‖a‖22
when k becomes lager, the proba-

bility of converging to the global minimum becomes smaller. How to quantitatively characterize
the relationship between the success probability and the dimension of the second layer is an open

109

problem.

5.6 Conclusion and Future Work
In this chapter we proved the polynomial convergence guarantee of randomly initialized gradi-
ent descent algorithm for learning a one-hidden-layer convolutional neural network. Our result
reveals an interesting phenomenon that randomly initialized local search algorithm can converge
to a global minimum or a spurious local minimum. We give a quantitative characterization of
gradient descent dynamics to explain the two-phase convergence phenomenon. Experimental
results also verify our theoretical findings. Here we list some future directions.

One interesting direction is to generalize our result to deeper architectures. Specifically, an
open problem is under what conditions randomly initialized gradient descent algorithms can
learn one-hidden-layer fully connected neural network or a convolutional neural network with
multiple kernels. Existing results often require sufficiently good initialization [84, 85]. We
believe the insights from this chapter, especially the invariance principles in Section 5.4.1 are
helpful to understand the behaviors of gradient-based algorithms in these settings.

Appendix: Omitted Proofs

5.7 Proofs of Section 5.2
Proof of Theorem 5.1. We first expand the loss function directly.

` (v, a)

=E
[

1

2

(
y − a>σ (Z) w

)2
]

= (a∗)> E
[
σ (Zw∗)σ (Zw∗)>

]
a∗ + a>E

[
σ (Zw)σ (Zw)>

]
a− 2a>E

[
σ (Zw)σ (Zw∗)>

]
a∗

= (a∗)>A (w∗) a∗ + a>A (w) a− 2a>B (w,w∗) w∗.

where for simplicity, we denote

A(w) =E
[
σ (Zw)σ (Zw)>

]
(5.5)

B (w,w∗) =E
[
σ (Zw)σ (Zw∗)>

]
. (5.6)

For i 6= j, using the second identity of Lemma 5.6, we can compute

A(w)ij = E
[
σ
(
Z>i w

)]
E
[
σ
(
Z>j w

)]
=

1

2π
‖w‖2

2

For i = j, using the second moment formula of half-Gaussian distribution we can compute

A (w)ii =
1

2
‖w‖2

2 .

110

Therefore
A(w) =

1

2π
‖w‖2

2

(
11> + (π − 1) I

)
.

Now let us compute B (w,w∗). For i 6= j, similar to A(w)ij , using the independence property
of Gaussian, we have

B (w,w∗)ij =
1

2π
‖w‖2 ‖w∗‖2 .

Next, using the fourth identity of Lemma 5.6, we have

B (w,w∗)ii =
1

2π
(cosφ (π − φ) + sinφ) ‖w‖2 ‖w∗‖2 .

Therefore, we can also write B (w,w∗) in a compact form

B (w,w∗) =
1

2π
‖w‖2 ‖w∗‖2

(
11> + (cosφ (π − φ) + sinφ− 1) I

)
.

Plugging in the formulas of A(w) and B (w,w∗) and w = v
‖v‖2

, we obtain the desired result.

Proof of Theorem 5.2. We first compute the expect gradient for v. From[63], we know

∂` (v, a)

∂v
=

1

‖v‖2

(
I− vv>

‖v‖2
2

)
∂` (w, a)

∂w
.

Recall the gradient formula,

∂` (Z,w, a)

∂w

=

(
k∑
i=1

a∗iσ (Ziw)−
k∑
i=1

a∗iσ (Zw∗)

)(
k∑
i=1

aiZiI
{
Z>i w

})

=

(
k∑
i=1

a2
iZiZ

>
i I
{
Z>i w ≥ 0

}
+
∑
i 6=j

aiajZiZ
>
j I
{
Z>i w ≥ 0,Z>j w ≥ 0

})
w (5.7)

−
(

k∑
i=1

aia
∗
iZiZ

>
i I
{
Z>i w ≥ 0,Z>i w∗ ≥ 0

}
+
∑
i 6=j

aia
∗
jZiZ

∗
jI
{
Z>i w ≥ 0,Z>j w∗ ≥ 0

})
w∗.

(5.8)

Now we calculate expectation of Equation (5.7) and (5.8) separately. For (5.7), by first two
formulas of Lemma 5.6, we have(

k∑
i=1

a2
iZiZ

>
i I
{
Z>i w ≥ 0

}
+
∑
i 6=j

aiajZiZ
>
j I
{
Z>i w ≥ 0,Z>j w ≥ 0

})
w

=
k∑
i=1

a2
i ·

w

2
+
∑
i 6=j

aiaj
w

2π
.

111

For (5.8), we use the second and third formula in Lemma 5.6 to obtain(
k∑
i=1

aia
∗
iZiZ

>
i I
{
Z>i w ≥ 0,Z>i w∗ ≥ 0

}
+
∑
i 6=j

aia
∗
jZiZ

∗
jI
{
Z>i w ≥ 0,Z>j w∗ ≥ 0

})
w∗

=a>a∗
(

1

π
(π − φ) w∗ +

1

π
sinφ

‖w∗‖2

‖w‖2

w

)
+
∑
i 6=j

aia
∗
j

1

2π

‖w∗‖2

‖w‖2

w.

In summary, aggregating them together we have

EZ

[
∂` (Z,w, a)

∂w

]
=

1

2π
a>a∗ (π − φ) w∗ +

(
‖a‖2

2

2
+

∑
i 6=j aiaj

2π
+

a>a∗ sinφ

2π

‖w∗‖2

‖w‖2

+

∑
i 6=j aja

∗
j

2π

‖w∗‖2

‖w‖2

)
w.

As a sanity check, this formula matches Equation (16) of [10] when a = a∗ = 1.
Next, we calculate the expected gradient of a. Recall the gradient formula of a

∂`(Z,w, a)

a
=
(
a>σ (Zw)− (a∗)>σ (Zw∗)

)
σ (Zw)

=σ (Zw)σ (Zw)> a− σ (Zw)σ (Zw∗)> a∗

Taking expectation we have

∂` (w, a)

∂a
= A (w) a−B (w,w∗) a∗

where A (w) and B (w,w∗) are defined in Equation (5.5) and (5.6). Plugging in the formulas
for A (w) and B (w,w∗) derived in the proof of Theorem 5.1 we obtained the desired result.

Lemma 5.6 (Useful Identities). Given w, w∗ with angle φ and Z is a Gaussian random vector,
then

E
[
zz>I

{
z>w ≥ 0

}]
w =

1

2
w

E
[
zI
{
z>w ≥ 0

}]
=

1√
2π

w

‖w‖2

E
[
zz>I

{
z>w ≥ 0, z>w∗ ≥ 0

}]
w∗ =

1

2π
(π − φ) w∗ +

1

2π
sinφ

‖w∗‖2

‖w‖2

w

E
[
σ
(
z>w

)
σ
(
z>w∗

)]
=

1

2π
(cosφ (π − φ) + sinφ) ‖w‖2 ‖w∗‖2

Proof. Consider an orthonormal basis of Rd×d:
{
eie
>
j

}
with e1 ‖ w. Then for i 6= j, we know

〈eiej,E
[
zz>I

{
z>w ≥ 0

}]
〉 = 0

112

by the independence properties of Gaussian random vector. For i = j = 1,

〈eie>j ,E
[
zz>I

{
z>w ≥ 0

}]
〉 = E

[(
z>w

)2 I
{
z>w ≥ 0

}]
=

1

2

where the last step is by the property of half-Gaussian. For i = j 6= j, 〈eie>j ,E
[
zz>I

{
z>w ≥ 0

}]
〉 =

1 by standard Gaussian second moment formula. Therefore, E
[
zz>I

{
z>w ≥ 0

}]
w = 1

2
w.

E
[
zI
{
z>w ≥ 0

}]
= 1√

2π
w can be proved by mean formula of half-normal distribution. To

prove the third identity, consider an orthonormal basis of Rd×d:
{
eie
>
j

}
with e1 ‖ w∗ and w

lies in the plane spanned by e1 and e2. Using the polar representation of 2D Gaussian random
variables (r is the radius and θ is the angle with dPr = r exp(−r2/2) and dPθ = 1

2π
):

〈e1e
>
1 ,E

[
zz>I

{
z>w ≥ 0, z>w∗ ≥ 0

}]
〉 =

1

2π

∫ ∞
0

r3 exp
(
−r2/2

)
dr ·

∫ π/2

−π/2+φ

cos2 θdθ

=
1

2π
(π − φ+ sinφ cosφ) ,

〈e1e
>
2 ,E

[
zz>I

{
z>w ≥ 0, z>w∗ ≥ 0

}]
〉 =

1

2π

∫ ∞
0

r3 exp
(
−r2/2

)
dr ·

∫ π/2

−π/2+φ

sin θ cos θdθ

=
1

2π

(
sin2 φ

)
,

〈e2e
>
2 ,E

[
zz>I

{
z>w ≥ 0, z>w∗ ≥ 0

}]
〉 =

1

2π

∫ ∞
0

r3 exp
(
−r2/2

)
dr ·

∫ π/2

−π/2+φ

sin2 θdθ

=
1

2π
(π − φ− sinφ cosφ) .

Also note that e2 = w̄−cosφe1
sinφ

. Therefore

E
[
zz>I

{
z>w ≥ 0, z>w∗ ≥ 0

}]
w∗ =

1

2π
(π − φ+ sinφ cosφ) w∗ +

1

2π
sin2 φ · w̄ − cosφe1

sinφ
‖w∗‖2

=
1

2π
(π − φ) w∗ +

1

2π
sinφ

‖w∗‖2

‖w‖2

w.

For the fourth identity, focusing on the plane spanned by w and w∗, using the polar decomposi-
tion, we have

E
[
σ
(
z>w

)
σ
(
z>w∗

)]
=

1

2π

∫ ∞
0

r3 exp
(
−r2/2

)
dr ·

∫ π/2

−π/2+φ

(cos θ cosφ+ sin θ sinφ) cos θdθ ‖w‖2 ‖w∗‖2

=
1

2π

(
cosφ (π − φ+ sinφ cosφ) + sin3 φ

)
‖w‖2 ‖w∗‖2 .

113

5.8 Proofs of Qualitative Convergence Results
Proof of Lemma 5.1. When Algorithm 1 converges, since a>a∗ 6= 0 and ‖v‖2 < ∞, using the

gradient formula in Theorem 5.2, we know that either π − φ = 0 or
(
I− vv>

‖v‖22

)
w∗ = 0. For the

second case, since I− vv>

‖v‖22
is a projection matrix on the complement space of v,

(
I− vv>

‖v‖22

)
w∗ =

0 is equivalent to θ (v,w∗) = 0. Once the angle between v and w∗ is fixed, using the gradient
formula for a we have the desired formulas for saddle points.

Proof of Lemma 5.2. By the gradient formula of w, if a>a∗ > 0, the gradient is of the form
c
(
I− vv>

‖v‖22

)
w∗ where c > 0. Thus because I− vv>

‖v‖22
is the projection matrix onto the complement

space of v, the gradient update always makes the angle smaller.

5.9 Proofs of Quantitative Convergence Results

5.9.1 Useful Technical Lemmas
We first prove the lemma about the convergence of φt.

Proof of Lemma 5.5. We consider the dynamics of sin2 φt.

sin2 φt+1

=1−

(
(vt+1)

>
w∗
)2

‖vt+1‖2
2 ‖w∗‖

2
2

=1−

((
vt − η ∂`

∂vt

)>
w∗
)2(

‖vt‖2
2 + η2

(
∂`
∂vt

)2
)
‖w∗‖2

2

=1−

(
(vt)

>
v + η

(at)
>
a∗(π−φt)

2π‖v‖2
· sin2 φt ‖w‖2

2

)2

‖vt‖2
2 ‖w∗‖

2
2 + η2

(
(at)>a∗(π−φt)

2π

)2
sin2 φt‖w∗‖42
‖vt‖22

≤1− ‖v
t‖2

2 ‖w∗‖
2
2 cos2 φt + 2η ‖w∗‖3

2 ·
(at)

>
a(π−φ)

2π
· sin2 φt cosφt

‖vt‖2
2 ‖w∗‖

2
2 + η2

(
(at)>a∗(π−φt)

2π

)2
sin2 φt‖w∗‖42
‖vt‖22

=

sin2 φt − 2η
‖w∗‖2
‖vt‖22

· (at)
>
a(π−φ)

2π
· sin2 φt cosφt + η2

(
(at)

>
a∗(π−φ)

2π

)2

sin2 φt
(
‖w∗‖2
‖v‖22

)2

1 + η2
(

(at)>a∗(π−φ)
2π

)2

sin2 φt
(
‖w∗‖2
‖vt‖22

)2

≤ sin2 φt − 2η
‖w∗‖2

‖vt‖2
2

· (at)
>

a (π − φ)

2π
· sin2 φt cosφt + η2

(
(at)

>
a∗ (π − φ)

2π

)2

sin2 φt

(
‖w∗‖2

‖vt‖2
2

)2

114

where in the first inequality we dropped term proportional to O(η4) because it is negative, in the
last equality, we divided numerator and denominator by ‖vt‖2

2 ‖w∗‖
2
2 and the last inequality we

dropped the denominator because it is bigger than 1. Therefore, recall λt =
‖w∗‖2

(
(at)

>
a∗
)
(π−φt)

2π‖vt‖22
and we have

sin2 φt+1 ≤
(

1− 2η cosφtλt + η2
(
λt
)2
)

sin2 φt. (5.9)

To this end, we need to make sure η ≤ cosφt

λt
. Note that since ‖vt‖2

2 is monotonically increasing,
it is lower bounded by 1. Next notice φt ≤ π/2. Finally, from Lemma 5.8, we know (at)

>
a∗ ≤(

‖a∗‖2
2 +

(
1>a∗

)2
)
‖w‖2

2. Combining these, we have an upper bound

λt ≤

(
‖a∗‖2

2 +
(
1>a∗

)2
)
‖w∗‖2

2

4
.

Plugging this back to Equation (5.9) and use our assumption on η, we have

sin2 φt+1 ≤
(
1− η cosφtλt

)
sin2 φt.

Lemma 5.7. (at+1)
>

a∗ ≥ min
{

(at)
>

a∗ + η
(
g(φt)−1
π−1

‖a∗‖2
2 − (at)

>
a∗
)
, g(φ

t)−1
π−1

‖a∗‖2
2

}
Proof. Recall the dynamics of (at)

>
a∗.

(
at+1

)>
a∗ =

(
1− η (π − 1)

2π

)(
at
)>

a∗ +
η (g(φt)− 1)

2π
‖a∗‖2

2 +
η

2π

((
1>a∗

)2 −
(
1>a∗

) (
1>at

))
≥
(

1− η (π − 1)

2π

)(
at
)>

a∗ +
η (g(φt)− 1)

2π
‖a∗‖2

2

where the inequality is due to Lemma 5.4. If (at)
>

a∗ ≥ g(φt)−1
π−1

‖a∗‖2
2,

(
at+1

)>
a∗ ≥

(
1− η (π − 1)

2π

)
g(πt)− 1

π − 1
‖a∗‖2

2 +
η (g(φt))

π − 1
‖a∗‖2

2

=
g(φt)− 1

π − 1
‖a∗‖2

2 .

If (at)
>

a∗ ≤ g(φt)−1
π−1

‖a∗‖2
2, simple algebra shows (at+1)

>
a∗ increases by at least

η

(
g(φt)− 1

π − 1
‖a∗‖2

2 −
(
at
)>

a∗
)
.

A simple corollary is a>a∗ is uniformly lower bounded.

115

Corollary 5.1. For all t = 1, 2, . . ., (at)
>

a∗ ≥ min
{

(a0)
>

a∗, g(φ
0)−1
π−1

‖a∗‖2
2

}
.

This lemma also gives an upper bound of number of iterations to make a>a∗ = Θ
(
‖a∗‖2

2

)
.

Corollary 5.2. If g(φ)− 1 = Ω (1), then after 1
η

iterations, a>a∗ = Θ
(
‖a∗‖2

2

)
.

Proof. Note if g(φ) − 1 = Ω (1) and a>a∗ ≤ 1
2
· g(φ)
π−1
‖a∗‖2

2, each iteration a>a∗ increases by
η g(φ)
π−1
‖a∗‖2

2.

We also need an upper bound of (at)
>

a∗.

Lemma 5.8. For t = 0, 1, . . ., (at)
>

a∗ ≤
(
‖a∗‖2

2 +
(
1>a∗

)2
)
‖w∗‖2

2.

Proof. Without loss of generality, assume ‖w∗‖2 = 1. Again, recall the dynamics of (at)
>

a∗.(
at+1

)>
a∗ =

(
1− η (π − 1)

2π

)(
at
)>

a∗ +
η (g(φt)− 1)

2π
‖a∗‖2

2 +
η

2π

((
1>a∗

)2 −
(
1>a∗

) (
1>at

))
≤
(

1− η (π − 1)

2π

)(
at
)>

a∗ +
η (π − 1)

2π
‖a∗‖2

2 +
η (π − 1)

2π

(
1>a∗

)2
.

Now we prove by induction, suppose the conclusion holds at iteration t, (at)
>

a∗ ≤ ‖a∗‖2
2 +(

1>a∗
)2. Plugging in we have the desired result.

5.9.2 Convergence of Phase I
In this section we prove the convergence of Phase I.

Proof of Convergence of Phase I. Lemma 5.9 implies afterO
(

1
cosφ0β0

)
iterations, cosφt = Ω (1),

which implies g(φt)−1
π−1

= Ω (1). Using Corollary 5.2, we know after O
(

1
η

)
iterations we have

(at)
>

a∗ ‖w∗‖ = Ω
(
‖w∗‖2

2 ‖a∗‖
2
2

)
.

The main ingredient of the proof of phase I is the follow lemma where we use a joint induction
argument to show the convergence of φt and a uniform upper bound of ‖vt‖2.

Lemma 5.9. Let β0 = min
{

(a0)
>

a∗, (g(φ0)− 1) ‖a∗‖2
2

}
‖w∗‖2

2. If the step size satisfies η ≤

min

{
β∗ cosφ0

8
(
‖a∗‖22+(1>a∗)

2
)
‖w∗‖22

, cosφ0(
‖a∗‖22+(1>a∗)

2
)
‖w∗‖22

, 2π
k+π−1

}
, we have for t = 0, 1, . . .

sin2 φt ≤
(

1− η · cosφ0β0

8

)t
and

∥∥vt∥∥
2
≤ 2.

Proof. We prove by induction. The initialization ensure when t = 0, the conclusion is correct.
Now we consider the dynamics of ‖vt‖2

2. Note because the gradient of v is orthogonal to v [63],
we have a simple dynamic of ‖vt‖2

2.

∥∥vt∥∥2

2
=
∥∥vt−1

∥∥2

2
+ η2

∥∥∥∥∂` (v, a)

∂v

∥∥∥∥2

2

116

=
∥∥vt−1

∥∥2

2
+ η2

(
(at)

>
a∗ (π − φt−1)

2π

)2
sin2 φt ‖w∗‖2

2

‖vt‖2
2

≤
∥∥vt−1

∥∥2

2
+ η2

(
‖a∗‖2

2 +
(
1>a∗

)2
)
‖w∗‖2

2 sin2 φt−1

=1 + η2
(
‖a∗‖2

2 +
(
1>a∗

)2
)
‖w∗‖2

2

t−1∑
i=1

sin2 φi

≤1 + η2
(
‖a∗‖2

2 +
(
1>a∗

)2
)
‖w∗‖2

2

8

η cosφ0β0

≤2

where the first inequality is by Lemma 5.8 and the second inequality we use our induction hy-

pothesis. Recall λt =
‖w∗‖2

(
(at)

>
a∗
)
(π−φt)

2π‖vt‖22
. The uniform upper bound of ‖v‖2 and the fact that

φt ≤ π/2 imply a lower bound λt ≥ β0

8
. Plugging in Lemma 5.5, we have

sin2 φt+1 ≤
(

1− η cosφ0β0

8

)
sin2 φt ≤

(
1− η cosφ0β0

8

)t+1

.

We finish our joint induction proof.

5.9.3 Analysis of Phase II

In this section we prove the convergence of phase II and necessary auxiliary lemmas.

Proof of Convergence of Phase II. At the beginning of Phase II,
(
aT1
)>

a∗ ‖w∗‖ = Ω
(
‖w∗‖2

2 ‖a∗‖
2
2

)
and g(φT1)−1 = Ω (1). Therefore, Lemma 5.7 implies for all t = T1, T1+1, . . ., (at)

>
a∗ ‖w∗‖ =

Ω
(
‖w∗‖2

2 ‖a∗‖
2
2

)
. Combining with the fact that ‖v‖2 ≤ 2 (c.f. Lemma 5.9), we obtain a lower

bound λt ≥ Ω
(
‖w∗‖2

2 ‖a∗‖
2
2

)
We also know that cosφT1 = Ω (1) and cosφt is monotinically

increasing (c.f. Lemma 5.2), so for all t = T1, T1 + 1, . . ., cosφt = Ω (1). Plugging in these two
lower bounds into Theorem 5.5, we have

sin2 φt+1 ≤
(
1− ηC ‖w∗‖2

2 ‖a∗‖
2
2

)
sin2 φt.

for some absolute constant C. Thus, after O
(

1
η‖w∗‖22‖a∗‖

2
2

log
(

1
ε

))
iterations, we have sin2 φt ≤

min

{
ε10,

(
ε
‖a∗‖2
|1>a∗|

)10
}

, which implies π − g(φt) ≤ min

{
ε, ε

‖a∗‖2
|1>a∗|

}
.

Now using Lemma 5.10,Lemma 5.11 and Lemma 5.12, we have after Õ
(

1
ηk

log
(

1
ε

))
itera-

tions ` (v, a) ≤ C1ε ‖a∗‖2
2 ‖w∗‖

2
2 for some absolute constant C1. Rescaling ε properly we obtain

the desired result.

117

Technical Lemmas for Analyzing Phase II

In this section we provide some technical lemmas for analyzing Phase II. Because of the positive
homogeneity property, without loss of generality, we assume ‖w∗‖2 = 1.

Lemma 5.10. If π − g(φ0) ≤ ε
‖a∗‖2
|1>a∗| , after T = O

(
1
ηk

log

(
|1>a∗−1>a0|

ε‖a∗‖2

))
iterations,

∣∣1>a∗ − 1>aT
∣∣ ≤ 2ε ‖a∗‖2 .

Proof. Recall the dynamics of 1>at.

1>at+1 =

(
1− η (k + π − 1)

2π

)
1>at +

η (k + g(φt)− 1)

2π
1>a∗

=

(
1− η (k + π − 1)

2π

)
1>at +

η (k + g(φt)− 1)

2π
1>a∗.

Assume 1>a∗ > 0 (the other case is similar). By Lemma 5.4 we know 1>at < 1>a∗ for all t.
Consider

1>a∗ − 1>at+1 =

(
1− η (k + π − 1)

2π

)(
1>a∗ − 1>a∗

)
+
η (π − g(φt))

2π
1>a∗.

Therefore we have

1>a∗ − 1>at+1 − (π − g (φt)) 1>a∗

k + π − 1

=

(
1− η (k + π − 1)

2π

)(
1>a∗ − 1>a∗ − (π − g (φt)) 1>a∗

k + π − 1

)
.

After T = O

(
1
ηk

log

(
|1>a∗−1>a0|

ε‖a∗‖2

))
iterations, we have 1>a∗ − 1>at − (π−g(φt))1>a∗

k+π−1
≤

ε ‖a∗‖2, which implies1>a∗ − 1>at ≤ 2ε ‖a∗‖2 .

Lemma 5.11. If π − g(φ0) ≤ ε
‖a∗‖2
|1>a∗| and

∣∣1>a∗ − 1>a0
∣∣ ≤ ε

k
‖a∗‖2, then after

T = O

(
1

η
log

(‖a∗ − a0‖2

ε ‖a∗‖2

))
iterations, ‖a∗ − a0‖2 ≤ Cε ‖a∗‖2 for some absolute constant C.

Proof. We first consider the inner product〈
∂` (vt, at)

at
, at − a∗

〉
=
π − 1

2π

∥∥at − a∗
∥∥2

2
− g(φt)− π

2π
(a∗)>

(
at − a∗

)
+
(
at − a∗

)
11>

(
a> − a∗

)
118

≥ π − 1

2π

∥∥at − a∗
∥∥2

2
− g(φt)− π

2π
‖a∗‖2

∥∥at − a∗
∥∥

2
.

Next we consider the squared norm of gradient∥∥∥∥∂` (v, a)

∂a

∥∥∥∥2

2

=
1

4π2

∥∥(π − 1)
(
at − a∗

)
+
(
π − g(φt)

)
a∗ + 11>

(
at − a∗

)∥∥2

2

≤ 3

4π2

(
(π − 1)2

∥∥at − a∗
∥∥2

2
+
(
π − g(φt)

)2 ‖a∗‖2
2 + k2

(
1>at − 1>a∗

)2
)
.

Suppose ‖at − a∗‖2 ≤ ε ‖a∗‖2, then

〈∂` (vt, at)

at
, at − a∗〉 ≥ π − 1

2π

∥∥at − a∗
∥∥2

2
− ε2

2π
‖a∗‖2

2∥∥∥∥∂` (v, a)

∂a

∥∥∥∥2

2

≤ 3ε2 ‖a∗‖2
2 .

Therefore we have∥∥at+1 − a∗
∥∥2

2
≤
(

1− η (π − 1)

2π

)∥∥at − a∗
∥∥2

2
+ 4ηε2 ‖a‖2

⇒
∥∥at+1 − a∗

∥∥2

2
− 8 (π − 1) ε2 ‖a∗‖2

2

π − 1
≤
(

1− η (π − 1)

2π

)(∥∥at − a∗
∥∥2

2
− 8 (π − 1) ε2 ‖a∗‖2

2

π − 1

)
.

Thus afterO
(

1
η

(
1
ε

))
iterations, we must have ‖at+1 − a∗‖2

2 ≤ Cε ‖a∗‖2 for some large absolute
constant C. Rescaling ε, we obtain the desired result.

Lemma 5.12. If π − g(φ) ≤ ε and ‖a− a∗ ‖w∗‖2‖ ≤ ε ‖a∗‖2 ‖w∗‖2, then the population loss
satisfies ` (v, a) ≤ Cε ‖a∗‖2

2 ‖w∗‖
2
2 for some constant C > 0.

Proof. The result follows by plugging in the assumptions in Theorem 5.1.

5.10 Proofs of Initialization Scheme
Proof of Theorem 5.4. The proof of the first part of Theorem 5.4 just uses the symmetry of unit
sphere and ball and the second part is a direct application of Lemma 2.5 of [42]. Lastly, since

a0 ∼ B
(

0
|1>a∗|√

k

)
, we have 1>a0 ≤ ‖a0‖1 ≤

√
k ‖a0‖2 ≤

∣∣1>a∗
∣∣ ‖w∗‖2 where the second

inequality is due to Hölder’s inequality.

5.11 Proofs of Converging to Spurious Local Minimum
Proof of Theorem 5.5. The main idea is similar to Theorem 5.3 but here we show w → −w∗

(without loss of generality, we assume ‖w∗‖2 = 1). Different from Theorem 5.3, here we need to

119

prove the invariance a>a∗ < 0, which implies our desired result. We prove by induction, suppose

(at)
>

a∗ > 0,
∣∣1>at

∣∣ ≤ ∣∣1>a∗
∣∣, g (φ0) ≤ −2(1>a)

2

‖a∗‖22
+1 and η < k+π−1

2π
. Note

∣∣1>at
∣∣ ≤ ∣∣1>a∗

∣∣ are

satisfied by Lemma 5.4 and g (φ0) ≤ −2(1>a)
2

‖a∗‖22
+ 1 by our initialization condition and induction

hypothesis that implies φt is increasing. Recall the dynamics of (at)
>

a∗.

(
at+1

)>
a∗ =

(
1− η (π − 1)

2π

)(
at
)>

a∗ +
η (g (φt)− 1)

2π
‖a∗‖2

2 +
η

2π

((
1>a∗

)2 −
(
1>at

) (
1>a∗

))
≤
η
(

(g(φt)− 1) ‖a∗‖2 + 2
(
1>a∗

)2
)

2π
< 0

where the first inequality we used our induction hypothesis on inner product between at and a∗

and
∣∣1>at

∣∣ ≤ ∣∣1>a∗
∣∣ and the second inequality is by induction hypothesis on φt. Thus when

gradient descent algorithm converges, according Lemma 5.1,

θ (v,w∗) = π, a =
(
11> + (π − 1) I

)−1 (
11> − I

)
‖w∗‖2 a∗.

Plugging these into Theorem 5.1, with some routine algebra, we show ` (v, a) = Ω
(
‖w∗‖2

2 ‖a∗‖
2
2

)
.

120

Chapter 6

Learning a Convolutional Filter via
Gradient Descent

6.1 Introduction
The results in the previous chapter requires that the input distribution is Gaussian and there is
no overlap between patches. These assumptions may not hold in many real world data. In this
chapter, we consider the convolutional filter recovery problem. We show under fairly general
conditions on the input distribution, we can recover a planted convolutional filter. In this chapter
we also go beyond the gradient descent and study a more general setting where one only gets
access to a noisy version of the gradient.

The setup is similar to the previous chapter. Formally, we consider a simple architecture:
a convolution layer, followed by a ReLU activation function, and then average pooling. We
let x ∈ Rd be an input sample, e.g., an image. We generate k patches from x, each with size k:
Z ∈ Rq×k where the i-th column is the i-th patch generated by some known function Zi = Zi(x).
For a filter with size 2 and stride 1, Zi(x) is the i-th and (i+ 1)-th pixels. Since for convolutional
filters, we only need to focus on the patches instead of the input, in the following definitions and
theorems, we will refer Z as input and let Z as the distribution of Z: (σ(x) = max(x, 0) is the
ReLU activation function)

f(w,Z) =
1

k

k∑
i=1

σ
(
w>Zi

)
. (6.1)

See Figure 6.1 (a) for a graphical illustration. Such architectures have been used as the first
layer of many works in computer vision [52, 56]. We address the realizable case, where training
data are generated from (6.1) with some unknown teacher parameter w∗ under input distribution
Z . Consider the `2 loss ` (w,Z) = 1

2
(f(w,Z)− f(w∗,Z))2. We learn by (stochastic) gradient

descent, i.e.,

wt+1 = wt − ηtg(wt) (6.2)

where ηt is the step size which may change over time and g(wt) is a random function where
its expectation equals to the population gradient E [g(w)] = EZ∼Z [∇` (w,Z)] . We assume the

121

+

Input

ReLU

Label
(Estimate)

(a)
(b) (c)

Figure 6.1: (a) Architecture of the network we are considering. Given input X , we extract its
patches {Zi} and send them to a shared weight vector w. The outputs are then sent to ReLU and
then summed to yield the final label (and its estimation). (b)-(c) Two conditions we proposed
for convergence. We want the data to be (b) highly correlated and (c) concentrated more on the
direction aligned with the ground truth vector w∗.

gradient function is uniformly bounded, i.e., There exists B > 0 such that ‖g(w)‖2 ≤ B. This
condition is satisfied as long as patches, w and noise are all bounded. The goal of our analysis
is to understand the conditions where w → w∗, if w is optimized under (stochastic) gradient
descent.

In this setup, our main contributions are as follows:
• Learnability of Filters: We show if the input patches are highly correlated (Section 6.3),

i.e., θ (Zi,Zj) ≤ ρ for some small ρ > 0, then gradient descent and stochastic gradient
descent with random initialization recovers the filter in polynomial time.1 Furthermore,
strong correlations imply faster convergence.

• Distribution-Aware Convergence Rate. We formally establish the connection between
the smoothness of the input distribution and the convergence rate for filter weights recovery
where the smoothness in our chapter is defined as the ratio between the largest and the
least eigenvalues of the second moment of the activation region (Section 6.2). We show
that a smoother input distribution leads to faster convergence, and Gaussian distribution
is a special case that leads to the tightest bound. This theoretical finding also justifies the
two-stage learning rate strategy proposed by [44, 72] if the step size is allowed to change
over time.

6.2 Warm Up: Analyzing One-Layer One-Neuron Model

Before diving into the convolutional filter, we first analyze the special case for k = 1, which is
equivalent to the one-layer one-neuron architecture. The analysis in this simple case will give us
insights for the fully general case. For the ease of presentation, we define following two events

1Note since in this chapter we focus on continuous distribution over Z, our results do not conflict with previous
negative results[9, 10] whose constructions rely on discrete distributions.

122

(b)(a) L(�)

�(�)

S(�w,w⇤)

S(�w,�w⇤)

S(w,�w⇤)

S(w,w⇤)

L�w⇤(�)

Figure 6.2: (a) The four regions considered in our analysis. (b) Illustration of L (φ) , γ(φ) and
L−w∗(φ) defined in Definition 6.1 and Assumption 6.1.

and corresponding second moments

S(w,w∗) =
{
Z : w>Z ≥ 0,w>∗ Z ≥ 0

}
, S(w,−w∗) =

{
Z : w>Z ≥ 0,w>∗ Z ≤ 0

}
, (6.3)

Aw,w∗ = E
[
ZZ>I {S(w,w∗)}

]
, Aw,−w∗ = E

[
ZZ>I {S(w,−w∗)}

]
.

where I {·} is the indicator function. Intuitively, S(w,w∗) is the joint activation region of w
and w∗ and S(w,−w∗) is the joint activation region of w and −w∗. See Figure 6.2 (a) for the
graphical illustration. With some simple algebra we can derive the population gradient.

E [∇` (w,Z)] = Aw,w∗ (w −w∗) + Aw,−w∗w.

One key observation is we can write the inner product 〈∇w` (w) ,w − w∗〉 as the sum of
two non-negative terms (c.f. Lemma 6.1). This observation directly leads to the following Theo-
rem 6.1.
Theorem 6.1. Suppose for any w1,w2 with θ (w1,w2) < π, E

[
ZZ>I {S(w,w∗)}

]
� 0 and the

initialization w0 satisfies ` (w0) < ` (0) then gradient descent algorithm recovers w∗.
The first assumption is about the non-degeneracy of input distribution. For θ (w1,w2) < π,

one case that the assumption fails is that the input distribution is supported on a low-dimensional
space, or degenerated. The second assumption on the initialization is to ensure that gradient
descent does not converge to w = 0, at which the gradient is undefined. This is a general
convergence theorem that holds for a wide class of input distribution and initialization points. In
particular, it includes Theorem 6 of [73] as a special case. If the input distribution is degenerate,
i.e., there are holes in the input space, the gradient descent may stuck around saddle points and
we believe more data are needed to facilitate the optimization procedure This is also consistent
with empirical evidence in which more data are helpful for optimization.

6.2.1 Convergence Rate of One-Layer One-Neuron Model
In the previous section we showed if the distribution is regular and the weights are initialized
appropriately, gradient descent recovers the true weights when it converges. In practice we also

123

want to know how many iterations are needed. To characterize the convergence rate, we need
some quantitative assumptions. We note that different set of assumptions will lead to a different
rate and ours is only one possible choice. In this chapter, we use the following quantities.
Definition 6.1 (The Largest/Smallest eigenvalue Values of the Second Moment on Intersection
of two Half Spaces). For φ ∈ [0, π], define

γ(φ) = min
w:∠w,w∗=φ

λmin (Aw,w∗) , L(φ) = max
w:∠w,w∗=φ

λmax (Aw,w∗) ,

These two conditions quantitatively characterize the angular smoothness of the input distri-
bution. For a given angle φ, if the difference between γ(φ) and L(φ) is large then there is one
direction has large probability mass and one direction has small probability mass, meaning the in-
put distribution is not smooth. On the other hand, if γ(φ) and L(φ) are close, then all directions
have similar probability mass, which means the input distribution is smooth. The smoothest
input distributions are rotationally invariant distributions (e.g. standard Gaussian) which have
γ(φ) = L(φ). For analogy, we can think of L(φ) as Lipschitz constant of the gradient and
γ(φ) as the strong convexity parameter in the optimization literature but here we also allow they
change with the angle. Also observe that when φ = π, γ(φ) = L(φ) = 0 because the intersection
has measure 0 and both γ(φ) and L(φ) are monotonically decreasing.

Our next assumption is on the growth of Aw,−w∗ . Note that when θ (w,w∗) = 0, then
Aw,−w∗ = 0 because the intersection between w and −w∗ has 0 measure. Also, Aw,−w∗ grows
as the angle between w and w∗ becomes larger.

In the following, we assume the operator norm of Aw,−w∗ increases smoothly with respect
to the angle. The intuition is that as long as input distribution bounded probability density with
respect to the angle, the operator norm of Aw,−w∗ is bounded. We show in Theorem 6.7 that
β = 1 for rotational invariant distribution and in Theorem 6.8 that β = p for standard Gaussian
distribution.
Assumption 6.1. We assume there exists β > 0 that for 0 ≤ φ ≤ π/2,

L−w∗(φ) , max
w,θ(w,w∗)≤φ

λmax (Aw,−w∗) ≤ βφ.

Now we are ready to state the convergence rate.
Theorem 6.2. Suppose the initialization w0 satisfies ‖w0 −w∗‖2 < ‖w∗‖2. Denote φt =

arcsin
(
‖wt−w∗‖2
‖w∗‖2

)
then if step size is set as 0 ≤ ηt ≤ min0≤φ≤φt

γ(φ)

2(L(φ)+4β)2
, we have for

t = 1, 2, . . .

‖wt+1 −w∗‖2
2 ≤

(
1− ηtγ (φt)

2

)
‖wt −w∗‖2

2 .

Note both γ(φ) and L(φ) increases as φ decreases so we can choose a constant step size
ηt = Θ

(
γ(φ0)

(L(0)+β)2

)
. This theorem implies that we can find the ε-close solution of w∗ in

O
(

(L(0)+β)2

γ2(φ0)
log
(

1
ε

))
iterations. It also suggests a direct relation between the smoothness of

the distribution and the convergence rate. For smooth distribution where γ(φ) and L(φ) are close
and β is small then (L(0)+β)2

γ2(φ0)
is relatively small and we need fewer iterations. On the other hand,

124

if L(φ) or β is much larger than γ(φ), we will need more iterations. We verify this intuition in
Section 6.4.

If we are able to choose the step sizes adaptively ηt = Θ
(

γ(φt)

(L(φt)+β)2

)
, like using methods

proposed by Lin and Xiao [53], we may improve the computational complexity to

O

(
max
φ≤φ0

(L(φ) + β)2

γ2 (φ)
log

(
1

ε

))
.

This justifies the use of two-stage learning rate strategy proposed by He et al. [44], Szegedy et al.
[72] where at the beginning we need to choose learning to be small because γ(φ0)

2(L(φ0)+2β)2
is small

and later we can choose a large learning rate because as the angle between wt and w∗ becomes
smaller, γ(φt)

2(L(φt)+2β)2
becomes bigger.

The theorem requires the initialization satisfying ‖w0 −w∗‖2 < ‖w∗‖2, which can be achieved
by random initialization with constant success probability. See Section 6.3.2 for a detailed dis-
cussion.

6.3 Main Results for Learning a Convolutional Filter
In this section we generalize ideas from the previous section to analyze the convolutional filter.
First, for given w and w∗ we define four events that divide the input space of each patch Zi. Each
event corresponds to a different activation region induced by w and w∗, similar to (6.3).

S(w,w∗)i =
{
Zi : w>Zi ≥ 0,w>∗ Zi ≥ 0

}
, S(w,−w∗)i =

{
Zi : w>Zi ≥ 0,w>∗ Zi ≤ 0

}
,

S(−w,−w∗)i =
{
Zi : w>Zi ≤ 0,w>∗ Zi ≤ 0

}
, S(−w,w∗)i =

{
Zi : w>Zi ≤ 0,w>∗ Zi ≥ 0

}
.

Please check Figure 6.2 (a) again for illustration. For the ease of presentation we also define the
average over all patches in each region

ZS(w,w∗) =
1

k

k∑
i=1

ZiI {S(w,w∗)i} ,ZS(w,−w∗) =
1

k

k∑
i=1

ZiI {S(w,−w∗)i} ,

ZS(−w,w∗) =
1

k

k∑
i=1

ZiI {S(−w,w∗)i} .

Next, we generalize the smoothness conditions analogue to Definition 6.1 and Assumption 6.1.
Here the smoothness is defined over the average of patches.
Assumption 6.2. For φ ∈ [0, π], define

γ(φ) = min
w:θ(w,w∗)=φ

λmin

(
E
[
ZS(w,w∗)Z

>
S(w,w∗)

])
,

L(φ) = max
w:θ(w,w∗)=φ

λmax

(
E
[
ZS(w,w∗)Z

>
S(w,w∗)

])
. (6.4)

We assume for all 0 ≤ φ ≤ π/2, maxw:θ(w,w∗)=φ λmax

(
E
[
ZS(w,−w∗)Z

>
S(w,−w∗)

])
≤ βφ for

some β > 0.

125

The main difference between the simple one-layer one-neuron network and the convolution
filter is two patches may appear in different regions. For a given sample, there may exists patch Zi

and Zj such that Zi ∈ S(w,w∗)i and Zj ∈ S(w,−w∗)j and their interaction plays an important
role in the convergence of (stochastic) gradient descent. Here we assume the second moment of
this interaction, i.e., cross-covariance, also grows smoothly with respect to the angle.
Assumption 6.3. We assume there exists Lcross > 0 such that

max
w:θ(w,w∗)≤φ

λmax

(
E
[
ZS(w,w∗)Z

>
S(w,−w∗)

])
+λmax

(
E
[
ZS(w,w∗)Z

>
S(−w,w∗)

])
+λmax

(
E
[
ZS(w,−w∗)Z

>
S(−w,w∗)

])
≤ Lcrossφ.

First note if φ = 0, then ZS(w,−w∗) and ZS(−w,w∗) has measure 0 and this assumption models
the growth of cross-covariance. Next note this Lcross represents the closeness of patches. If
Zi and Zj are very similar, then the joint probability density of Zi ∈ S(w,w∗)i and Zj ∈
S(w,−w∗)j is small which implies Lcross is small. In the extreme setting, Z1 = . . . = Zk,
we have Lcross = 0 because in this case the events {Zi ∈ S(w,w∗)i} ∩ {Zj ∈ S(w,−w∗)j},
{Zi ∈ S(w,w∗)i} ∩ {Zj ∈ S(−w,w∗)j} and {Zi ∈ S(w,−w∗)i} ∩ {Zj ∈ S(−w,w∗)j} all
have measure 0.

Now we are ready to present our result on learning a convolutional filter by gradient descent.

Theorem 6.3. If the initialization satisfies ‖w0 −w∗‖2 < ‖w∗‖2 and denote φt = arcsin
(
‖wt−w∗‖2
‖w∗‖2

)
which satisfies γ(φ0) > 6Lcross. Then if we choose ηt ≤ min0≤φ≤φt

γ(φ)−6Lcross

2(L(φ)+10Lcross+4β)2
, we have

for t = 1, 2, . . . and φt , arcsin
(
‖wt−w∗‖2
‖w∗‖2

)
‖wt+1 −w∗‖2

2 ≤
(

1− η(γ(φt)− 6Lcross)

2

)
‖wt −w∗‖2

2

Our theorem suggests if the initialization satisfies γ(φ0) > 6Lcross, we obtain linear con-
vergence rate. In Section 6.3.1, we give a concrete example showing closeness of patches im-
plies large γ(φ) and small Lcross. Similar to Theorem 6.2, if the step size is chosen so that

ηt = Θ

(
γ(φ0)−6Lcross

(LS(w,w∗)(0)+10Lcross+4β)
2

)
, in O

((
γ(φ0)−6Lcross

LS(w,w∗)(0)+10Lcross+4β

)2

log
(

1
ε

))
iterations, we can

find the ε-close solution of w∗ and the proof is also similar to that of Theorem 6.3.
In practice,we never get a true population gradient but only stochastic gradient g(w) (c.f.

Equation 6.2). The following theorem shows SGD also recovers the underlying filter.

Theorem 6.4. Let φ∗ = argmaxφγ(φ) ≥ 6Lcross. Denote r0 = ‖w0 −w∗‖2, φ0 = arcsin
(

r0
‖w∗‖2

)
and φ1 = φ∗+φ0

2
. For ε sufficiently small, if ηt = Θ

(
ε2(γ(φ1)−6Lcross)

2‖w∗‖22
B2

)
, then we have in

T = O
(

B2

ε2(γ(φ1)−6Lcross)
2‖w∗‖22

log
(
‖w0−w∗‖
εδ‖w∗‖2

))
iterations, with probability at least 1− δ we have

‖wT −w∗‖ ≤ ε ‖w∗‖2 .

Unlike the vanilla gradient descent case, here the convergence rate depends on φ1 instead of
φ0. This is because of the randomness in SGD and we need a more robust initialization. We
choose φ1 to be the average of φ0 and φ∗ for the ease of presentation. As will be apparent in the
proof we only require φ0 not very close to φ∗. The proof relies on constructing a martingale and
use Azuma-Hoeffding inequality and this idea has been previously used by Ge et al. [36].

126

6.3.1 What distribution is easy for SGD to learn a convolutional filter?
Different from One-Layer One-Neuron model, here we also requires the Lipschitz constant for
closeness Lcross to be relatively small and γ(φ0) to be relatively large. A natural question is:
What input distributions satisfy this condition?

Here we give an example. We show if (1) patches are close to each other (2) the input
distribution has small probability mass around the decision boundary then the assumption in
Theorem 6.3 is satisfied. See Figure 6.1 (b)-(c) for the graphical illustrations.
Theorem 6.5. Denote Zavg = 1

k

∑k
i=1 Zi. Suppose all patches have unit norm 2 and for all for

all i, θ (Zi,Zavg) ≤ ρ. Further assume there exists L ≥ 0 such that for any φ ≤ ρ and for all Zi

P
[
θ (Zi,w∗) ∈

[π
2
− φ, π

2
+ φ
]]
≤ µφ, P

[
θ (Zi,w∗) ∈ −

[π
2
− φ,−π

2
+ φ
]]
≤ µφ,

then we have

γ (φ0) ≥ γavg (φ0)− 4 (1− cos ρ) and Lcross ≤ 3µ.

where γavg(φ0) = σmin

(
E
[
ZZ>I

{
w>0 Z ≥ 0,w>∗ Z ≥ 0

}])
, analogue to Definition 6.1.

Several comments are in sequel. We view ρ as a quantitative measure of the closeness be-
tween different patches, i.e., ρ small means they are similar.

This lower bound is monotonically decreasing as a function of ρ and note when ρ = 0,
σmin

(
E
[
ZS(w,w∗)Z

>
S(w,w∗)

])
= γavg(φ0) which recovers Definition 6.1.

For the upper bond on Lcross, µ represents the upper bound of the probability density around
the decision boundary. For example if P

[
θ (Zi,w∗) ∈

[
π
2
− φ, π

2
+ φ
]]
∝ φ2, then for φ in a

small neighborhood around π/2, say radius ε, we have P
[
θ (Zi,w∗) ∈

[
π
2
− φ, π

2
+ φ
]]

. εφ.
This assumption is usually satisfied in real world examples like images because the image patches
are not usually close to the decision boundary. For example, in computer vision, the local image
patches often form clusters and is not evenly distributed over the appearance space. Therefore,
if we use linear classifier to separate their cluster centers from the rest of the clusters, near the
decision boundary the probability mass should be very low.

6.3.2 The Power of Random Initialization
For one-layer one-neuron model, we need initialization ‖w0 −w∗‖2 < ‖w∗‖2 and for the con-
volution filter, we need a stronger initialization ‖w0 −w∗‖2 < ‖w∗‖2 cos (φ∗). The following
theorem shows with uniformly random initialization we have constant probability to obtain a
good initialization. Note with this theorem at hand, we can boost the success probability to
arbitrary close to 1 by random restarts. The proof is similar to [73].
Theorem 6.6. If we uniformly sample w0 from a p-dimensional ball with radius α‖w∗‖ so that

α ≤
√

1
2πp

, then with probability at least 1
2
−
√

πp
2
α, we have ‖w0 −w∗‖2 ≤

√
1− α2‖w∗‖.

To apply this general initialization theorem to our convolution filter case, we can choose
α = cosφ∗. Therefore, with some simple algebra we have the following corollary.

2This is condition can be relaxed to the norm and the angle of each patch are independent and the norm of each
pair is independent of others.

127

Corollary 6.1. Suppose cos (φ∗) <
1√
8πp

, then if w0 is uniformly sampled from a ball with center
0 and radius ‖w∗‖ cos (φ∗), we have with probability at least 1

2
− cos (φ∗)

√
πp
2
> 1

4
.

The assumption of this corollary is satisfied if the patches are close to each other as discussed
in the previous section.

6.4 Experiments
In this section we use simulations to verify our theoretical findings. We first test how the smooth-
ness affect the convergence rate in one-layer one-neuron model described in Section 6.2 To con-
struct input distribution with different L(φ), γ(φ) and β (c.f. Definition 6.1 and Assumption 6.1),
we fix the patch to have unit norm and use a mixture of truncated Gaussian distribution to model
on the angle around w∗ and around the −w∗ Specifically, the probability density of ∠Z,w∗
is sampled from 1

2
N(0, σ)I[−π/2,π/2] + 1

2
N(−π, σ)I[−π/2,π/2]. Note by definitions of L(φ) and

γ(φ) if σ → 0 the probability mass is centered around w∗, so the distribution is very spiky and
L(φ)/γ(φ) and β will be large. On the other hand, if σ → ∞, then input distribution is close
to the rotation invariant distribution and L(φ)/γ(φ) and β will be small. Figure 6.3a verifies our
prediction where we fix the initialization and step size.

Next we test how the closeness of patches affect the convergence rate in the convolution
setting. We first generate a single patch Z̃ using the above model with σ = 1, then generate each
unit norm Zi whose angle with Z̃, ∠Zi, Z̃ is sampled from ∠Zi, Z̃ ∼ N(0, σ2)I[−π,π). Figure 6.3b
shows as variance between patches becomes smaller, we obtain faster convergence rate, which
coincides with Theorem 6.3.

We also test whether SGD can learn a filter on real world data. Here we choose MNIST
data and generate labels using two filters. One is random filter where each entry is sampled
from a standard Gaussian distribution (Figure 6.4a) and the other is a Gabor filter (Figure 6.4b).
Figure 6.3a and Figure 6.3c show convergence rates of SGD with different initializations. Here,
better initializations give faster rates, which coincides our theory. Note that here we report the
relative loss, logarithm of squared error divided by the square of mean of data points instead of
the difference between learned filter and true filter because we found SGD often cannot converge
to the exact filter but rather a filter with near zero loss. We believe this is because the data are
approximately lying in a low dimensional manifold in which the learned filter and the true filter
are equivalent. Lastly, we visualize the true filters and the learned filters in Figure 6.4 and we
can see that the they have similar patterns.

6.5 Conclusions and Future Work
In this chapter we provide the recovery guarantee of (stochastic) gradient descent algorithm with
random initialization for learning a convolution filter when the input distribution is not Gaussian.
Our analyses only used the definition of ReLU and some mild structural assumptions on the input
distribution. Here we list some future directions.

A possible direction is to consider the agnostic setting, where the label is not equal to the
output of a neural network. This will lead to different dynamics of (stochastic) gradient descent

128

0 2000 4000 6000 8000 10000

Epochs

-6

-5

-4

-3

-2

-1

0
lo

g
(|

|w
-w

*|| 2
)

=10

=5

=1

=0.5

0 200 400 600 800 1000

Epochs

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g

(|
|w

-w
*|| 2

)

2
=10

2
=2

2
=1

2
=0.1

Figure 6.3: Convergence rates of SGD (a) with different smoothness where larger σ is smoother;
(b) with different closeness of patches where smaller σ2 is closer; (c) for a learning a random
filter with different initialization on MNIST data; (d) for a learning a Gabor filter with different
initialization on MNIST data.

(a) Random generated target filters. (b) Gabor filters.

Figure 6.4: Visualization of true and learned filters. For each pair, the left one is the underlying
truth and the right is the filter learned by SGD.

129

and we may need to analyze the robustness of the optimization procedures. This problem is also
related to the expressiveness of the neural network [62] where if the underlying function is not
equal bot is close to a neural network. We believe our analysis can be extend to this setting.

Appendix: Omitted Proofs

6.6 Proofs and Additional Theorems

6.6.1 Proofs of the Theorem in Section 6.2
Lemma 6.1.

〈∇w` (w) ,w −w∗〉 = (w −w∗)
>Aw,w∗ (w −w∗) + (w −w∗)

>Aw,−w∗w. (6.5)

and both terms are non-negative.

Proof. Since Aw,w∗ � 0 and Aw,−w∗ � 0 (positive-semidefinite), both the first term and one
part of the second term w>Aw,−w∗w are non-negative. The other part of the second term is

−w>∗Aw,−w∗w = −E
[(

w>∗ Z
) (

w>Z
)
I
{
w>Z ≥ 0,w>∗ Z ≤ 0

}]
≥ 0.

Proof of Theorem 6.1. The assumption on the input distribution ensures when θ (w,w∗) 6= π,
Aw,w∗ � 0 and when θ (w,w∗) 6= 0, Aw,−w∗ � 0. Now when gradient descent converges we
have ∇w` (w) = 0. We have the following theorem. By assumption, since ` (w) < ` (0) and
gradient descent only decreases function value, we will not converge to w = 0. Note that at any
critical points, 〈∇w` (w) ,w −w∗〉 = 0, from Lemma 6.1, we have:

(w −w∗)
>Aw,w∗ (w −w∗) = 0 (6.6)

(w −w∗)
>Aw,−w∗w = 0. (6.7)

Suppose we are converging to a critical point w 6= w∗. There are two cases:

• If θ (w,w∗) 6= π, then we have(w −w∗)
>Aw,w∗ (w −w∗) > 0, which contradicts with

Eqn. 6.6.
• If θ (w,w∗) = π, without loss of generality, let w = −αw∗ for some α > 0. By the as-

sumption we know Aw,−w∗ � 0. Now the second equation becomes (w −w∗)
>Aw,−w∗w =

(1 + γ)w∗Aw,−w∗w∗ > 0, which contradicts with Eqn. 6.7.

Therefore we have w = w∗.

Proof of Theorem 6.2. Our proof relies on the following simple but crucial observation: if ‖w −w∗‖2 <
‖w∗‖2, then

θ (w,w∗) ≤ arcsin

(‖w −w∗‖2

‖w∗‖2

)
.

130

We denote θ (wt,w∗) = θt and by the observation we have θt ≤ φt. Recall the gradient descent
dynamics,

wt+1 = wt − η∇wt`(wt)

= wt − η
(
E
[
ZZ>I

{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)− E

[
w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

)
.

Consider the squared distance to the optimal weight

‖wt+1 −w∗‖2
2

= ‖wt −w∗‖2
2

− η (wt −w∗)
> (E [ZZ>I

{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)− E

[
w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

)
+ η2

∥∥E [ZZ>I
{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)− E

[
w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

∥∥2

2
.

By our analysis in the previous section, the second term is smaller than

−η (wt −w∗)
> E

[
ZZ>I

{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗) ≤ −ηγ(θt) ‖wt −w∗‖2

2

where we have used our assumption on the angle. For the third term, we expand it as∥∥E [ZZ>I
{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)− E

[
w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

∥∥2

2

=
∥∥E [ZZ>I

{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)

∥∥2

2

− 2
(
E
[
ZZ>I

{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)

)> E [w>Z ≥ 0,w>∗ Z ≤ 0
]
wt

+
∥∥E [w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

∥∥2

2

≤L2(θt) ‖wt −w∗‖2
2 + 2L(θt) ‖wt −w∗‖2 · 2β

‖wt −w∗‖
‖w∗‖2

+

(
2β
‖wt −w∗‖2

‖w∗‖2

)2

‖wt‖2
2

≤L2(θt) ‖wt −w∗‖2
2 + 2L(θt) ‖wt −w∗‖ · 2β

‖wt −w∗‖
‖w∗‖2

· 2 ‖w∗‖2 +

(
2β
‖wt −w∗‖2

‖w∗‖2

)2

· 4 ‖w∗‖2
2

≤
(
L2(θt) + 8L(θt)β + 16β2

)
‖w −w∗‖2

2 .

Therefore, in summary,

‖wt+1 −w∗‖2
2 ≤

(
1− ηγ(θt) + η2 (L(θt) + 4β)2) ‖wt −w∗‖2

2

≤
(

1− ηγ(θt)

2

)
‖wt −w∗‖2

2

≤
(

1− ηγ(φt)

2

)
‖wt −w∗‖2

2

where the first inequality is by our assumption of the step size and second is because θt ≤ φt and
γ(·) is monotonically decreasing.

Theorem 6.7 (Rotational Invariant Distribution). For any unit norm rotational invariant input
distribution, we have β = 1.

131

Proof of Theorem 6.7. Without loss of generality, we only need to focus on the plane spanned
by w and w∗ and suppose w∗ = (1, 0)>. Then

E
[
ZZ>I {S(w,−w∗)}

]
=

∫ −π/2+φ

−π/2

(
cos θ
sin θ

)
(cos θ, sin θ)dθ =

1

2

(
φ− sinφ cosφ − sin2 φ
− sin2 φ φ+ sinφ cosφ

)
.

It has two eigenvalues

λ1(φ) =
φ+ sinφ

2
and λ2(φ) =

φ− sinφ

2
.

Therefore, maxw,θ(w,w∗)≤φ λmax (Aw,−w∗) = φ+sinφ
2
≤ φ for 0 ≤ φ ≤ π.

Theorem 6.8. If Z ∼ N(0, I), then β ≤ p

Proof. Note in previous theorem we can integrate angle and radius separately then multiply them
together. For Gaussian distribution, we have E

[
‖Z‖2

2

]
≤ p. The result follows.

6.6.2 Proofs of Theorems in Section 6.3
Proof of Theorem 6.3. The proof is very similar to Theorem 6.2. Notation-wise, for two events
S1, S2 we use S1S2 as a shorthand for S1 ∩ S2 and S1 + S2 as a shorthand for S1 ∪ S2. Denote
θt = θ (wt,w∗) . First note with some routine algebra, we can write the gradient as

∇wt
` (wt)

=E

 (d,d)∑
(i,j)=(1,1)

ZiZ
>
j I
{
S(w,w∗)iS(w,w∗)j

} (w −w∗)

+ E

 (d,d)∑
(i,j)=(1,1)

ZiZ
>
j I
{
S(w,w∗)iS(w,−w∗)j + S(w,−w∗)iS(w,w∗)j

}w

+ E

 (d,d)∑
(i,j)=(1,1)

ZiZ
>
j I
{
S(w,−w∗)iS(w,−w∗)j

}w

− E

 (d,d)∑
(i,j)=(1,1)

ZiZ
>
j I
{
S(w,w∗)iS(−w,w∗)j + S(w,−w∗)iS(w,w∗)j + S(w,−w∗)iS(−w,w∗)j

}w∗

We first examine the inner product between the gradient and w −w∗.

〈∇wt`(w),w −w∗〉

= (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(w,w∗)j

} (w −w∗)

+ (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(w,−w∗)j + S(w,−w∗)iS(w,w∗)j + S(w,−w∗)iS(w,−w∗)j

}w

− (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(−w,w∗)j + S(w,−w∗)iS(w,w∗)j + S(w,−w∗)iS(−w,w∗)j

}w∗

132

≥ (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(w,w∗)j

} (w −w∗)

+ (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(w,−w∗)j

}w

− (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(−w,w∗)j + S(w,−w∗)iS(w,w∗)j + S(w,−w∗)iS(−w,w∗)j

}w∗

≥ γ(θt) ‖w −w∗‖22

− ‖w −w∗‖2 ‖w‖2

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(w,−w∗)j

}∥∥∥∥∥∥
op

− ‖w −w∗‖2 ‖w∗‖2

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(−w,w∗)j

}∥∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,−w∗)iS(w,w∗)j

}∥∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,−w∗)iS(−w,w∗)j

}∥∥∥∥∥∥
op

≥ γ(θt) ‖w −w∗‖22

− 2 ‖w −w∗‖2 ‖w∗‖2

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(w,−w∗)j

}∥∥∥∥∥∥
op

− ‖w −w∗‖2 ‖w∗‖2

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,w∗)iS(−w,w∗)j

}∥∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,−w∗)iS(w,w∗)j

}∥∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
S(w,−w∗)iS(−w,w∗)j

}∥∥∥∥∥∥
op

≥ γ (θt) ‖wt −w∗‖22 − 3Lcrossφt ‖w∗‖2 ‖wt −w∗‖2
≥ γ (θt) ‖wt −w∗‖22 − 6Lcross

‖wt −w∗‖2
‖w∗‖2

· ‖w∗‖2 ‖wt −w∗‖2

≥ (γ (θt)− 6Lcross) ‖wt −w∗‖22

where the first inequality we used the definitions of the regions; the second inequality we used
the definition of operator norm; the third inequality we used the fact ‖wt −w∗‖2 ≤ ‖w∗‖2; the
fourth inequality we used the definition of Lcross and the fifth inequality we used φ ≤ 2 sinφ for
any 0 ≤ φ ≤ π/2. Next we can upper bound the norm of the gradient using similar argument

‖∇wt`(wt)‖2 ≤L (θt) ‖wt −w∗‖2 + 10Lcross ‖wt −w∗‖+ 2β ‖wt −w∗‖2

=(L(θt) + 10Lcross + 4β) ‖wt −w∗‖2 .

Therefore, using the dynamics of gradient descent, putting the above two bounds together,
we have

‖wt+1 −w∗‖2
2 ≤

(
1− η (γ(θt)− 6Lcross) + η2(L(θt) + 10Lcross + 4β)2

)
‖wt −w∗‖2

2

133

≤
(

1− η(γ(θt)− 6Lcross)

2

)
‖wt −w∗‖2

2

≤
(

1− η(γ(φt)− 6Lcross)

2

)
‖wt −w∗‖2

2

where the last step we have used our choice of ηt and θt ≤ φt.

The proof of Theorem 6.4 consists of two parts. First we show if η is chosen properly and T
is not to big, then for all 1 ≤ t ≤ T , with high probability the iterates stat in a neighborhood of
w∗. Next, conditioning on this, we derive the rate.
Lemma 6.2. Denote r0 = ‖w0 −w∗‖2 < ‖w∗‖2 sinφ∗. Given 0 < r1 < ‖w∗‖2 sinφ∗, number

of iterations T ∈ Z++ and failure probability δ, denote φ1 = arcsin
(

r1
‖w∗‖2

)
then if the step size

satisfies

0 < 1− ηγ(φ1) + η2(L(0) + 10Lcross + 4β)2 < 1

(r2
1 − r2

0)
2

T (1 + 2ηαT) (2ηB (L(0) + 10Lcross + 4β) r1 + η2B2)2 ≥ log

(
T

δ

)
with α = γ (φ1) − η (L(0) + 10Lcross + 4β). Then with probability at least 1 − δ, for all t =
1, . . . , T , we have

‖wt −w∗‖ ≤ r1.

Proof of Lemma 6.2. Let g(wt) = E [∇wt` (wt)] + ξt. We denote Ft = σ {ξ1, . . . , ξt}, the
sigma-algebra generated by ξ1, . . . , ξt and define the event

Ct = {∀τ ≤ t, ‖wτ −w∗‖ ≤ r1} .

Consider

E
[
‖wt+1 −w∗‖2

2 ICt|Ft
]

=E
[
‖wt − η∇wt`(wt)−w∗ − ηξt‖2

2 ICt|Ft
]

≤
((

1− ηγ(φ1) + η2 (L(0) + 10Lcross + 4β)2) ‖wt −w∗‖2
2 + η2B2

)
ICt

where the inequality follows by our analysis of gradient descent together with definition of Ct
and E [ξt|Ft] = 0. Define

Gt = (1− ηα)−t
(
‖wt −w∗‖2

2 −
ηB2

α

)
.

By our analysis above, we have

E [Gt+1ICt |Ft] ≤ GtICt ≤ GtICt−1

134

where the last inequality is because Ct is a subset of Ct−1. Therefore,GtICt−1 is a super-martingale
and we may apply Azuma-Hoeffding inequality. Before that, we need to bound the difference
between GtICt and its expectation. Note∣∣GtICt−1 − E

[
GtICt−1

]
|Ft−1

∣∣ = (1− ηα)−t
∣∣‖wt −w∗‖2

2 − E
[
‖wt −w∗‖2

2

]
|Ft−1

∣∣ ICt−1

= (1− ηα)−t
∣∣2η〈ξt,wt − η∇wt`(wt)−w∗ − η2E

[
‖ξt‖2

2 |Ft−1

]∣∣ ICt−1

≤ (1− ηα)−t
(
2ηB (L(0) + 10Lcross + 4β) ‖wt −w∗‖2 + η2B2

)
ICt−1

≤ (1− ηα)−t
(
2ηB (L(0) + 10Lcross + 4β) r1 + η2B2

)
,dt.

Therefore for all t ≤ T

c2
t ,

t∑
τ=1

d2
τ

=
t∑

τ=1

(1− ηα)−2t (2ηB (L(0) + 10Lcross + 4β) r1 + η2B2
)2

≤t (1− ηα)−2t (2ηB (L(0) + 10Lcross + 4β) r1 + η2B2
)2

≤T (1 + 2ηαT)
(
2ηB (L(0) + 10Lcross + 4β) r1 + η2B2

)2

where the first inequality we used 1− ηα < 1, the second we used t ≤ T and the third we used
our assumption on η. Let us bound at (t+ 1)-th step, the iterate goes out of the region,

P [Ct ∩ {‖wt+1 −w∗‖2 > r1}] =P
[
Ct ∩

{
‖wt+1 −w∗‖2

2 > r2
1

}]
=P

[
Ct ∩

{
‖wt+1 −w∗‖2

2 > r2
0 + (r2

1 − r2
0)
}]

=P

[
Ct ∩

{
Gt+1 (1− ηα)t +

ηB2

α
≥ G0 +

ηB2

α
+ r2

1 − r2
0

}]
≤P

[
Ct ∩

{
Gt+1 −G0 ≥ r2

1 − r2
0

}]
≤ exp

{
−(r2

1 − r2
0)

2

2c2
t

}
≤ δ
T

where the second inequality we used Azuma-Hoeffding inequality, the last one we used our
assumption of η. Therefore for all 0 ≤ t ≤ T , we have with probability at least 1 − δ, Ct
happens.

Now we can derive the rate.
Lemma 6.3. Denote r0 = ‖w0 −w∗‖2 < ‖w∗‖2 sinφ∗. Given 0 < r1 < ‖w∗‖2 sinφ∗, number

of iterations T ∈ Z++ and failure probability δ, denote φ1 = arcsin
(

r1
‖w∗‖2

)
then if the step size

satisfies

0 < 1− ηγ(φ1) + η2(L(0) + 10Lcross + 4β)2 < 1

135

(r2
1 − r2

0)
2

T (1 + 2ηαT) (2ηB (L(0) + 10Lcross + 4β) r1 + η2B2)2 ≥ log

(
T

δ

)
ηT
(
γ(φ1)− η (L(0) + 10Lcross + 4β)2) ≥ log

(
r2

0

ε2 ‖w∗‖2
2 δ

)
ε2
(
γ(φ1)− η (L(0) + 10Lcross + 4β)2) ‖w∗‖2

2 ≥ ηB2

with α = γ (φ1)− η (L(0) + 10Lcross + 4β), then we have with probability 1− 2δ,

‖wt −w∗‖2 ≤ 2ε ‖w∗‖2 .

Proof of Lemma 6.3. We use the same notations in the proof of Lemma 6.2. By the analysis of
Lemma 6.2, we know

E
[
‖wt+1 −w∗‖2

2 ICt |Ft
]
≤
(
(1− ηα) ‖wt −w∗‖2

2 + η2B2
)
ICt .

Therefore we have

E
[
‖wt −w∗‖2

2 ICt −
ηB2

α

]
≤ (1− ηα)t

(
‖w0 −w∗‖2

2 −
ηB

α

)
.

Now we can bound the failure probability

P [‖wT −w∗‖2 ≥ 2ε ‖w∗‖2] ≤P

[
‖wT −w∗‖2

2 −
ηB2

α
≥ ε2 ‖w∗‖2

2

]
≤P

[{
‖wT −w∗‖2

2 ICt −
ηB2

α
≥ ε2 ‖w‖2

2

}
∪ Cct

]
≤P

[{
‖wT −w∗‖2

2 ICt −
ηB2

α
≥ ε2 ‖w‖2

2

}]
+ δ

≤
E
[
‖wT −w∗‖2

2 ICt − ηB2

α

]
ε2 ‖w∗‖2

2

+ δ

≤(1− ηα)t
(
‖w0 −w∗‖2

2 − ηB
α

)
ε2 ‖w∗‖2

2

+ δ

≤2δ.

The first inequality we used the last assumption. The second inequality we used the probability
of an event is upper bound by any superset of this event. The third one we used Lemma 6.2 and
the union bound. The fourth one we used Markov’s inequality.

Now we can specify the T and η and derive the convergence rate of SGD for learning a
convolution filter.

Proof of Theorem 6.4. With the choice of η and T , it is straightforward to check they satisfies
conditions in Lemma 6.3.

136

Proof of Theorem 6.5. We first prove the lower bound of γ (φ0).

E

(k∑
i=1

ZiI {S(w,w∗)i}
)(

k∑
i=1

ZiI {S(w,w∗)i}
)>

=E

kZ +

k∑
i=1

(ZiI {S(w,w∗)i} − Z)

(
kZ +

k∑
i=1

(ZiI {S(w,w∗)i} − Z)

)>
=k2E

[
ZZ>

]
+ kE

Z(k∑
i=1

(ZiI {S(w,w∗)i} − Z)

)>
+ kE

[(
k∑
i=1

(ZiI {S(w,w∗)i} − Z)

)
Z>
]

+ E

(k∑
i=1

(ZiI {S(w,w∗)i} − Z1I {S(w,w∗)1})
)(

k∑
i=1

(ZiI {S(w,w∗)i} − Z1I {S(w,w∗)1})
)>

<k2E
[
ZZ>

]
+ kE

Z(k∑
i=1

(ZiI {S(w,w∗)i} − Z)

)>
+ kE

[(
k∑
i=1

(ZiI {S(w,w∗)i} − Z)

)
Z>
]

Note because Zis have unit norm and by law of cosines ‖Z (ZiI {S(w,w∗)i} − Z)‖op ≤ 2(1−
cos ρ). Therefore,

σmin

E

(d∑
i=1

ZiI {S(w,w∗)i}
)(

d∑
i=1

ZiI {S(w,w∗)i}
)> ≥ k2(γ1(φ0)− 4(1− cos ρ)).

Now we prove the upper bound of Lcross. Notice that∥∥∥E [ZiZ
>
j I
{
S(w,w∗)iS(w,−w∗)j

}]∥∥∥
2
≤E

[
‖Zi‖2 ‖Zj‖2 I

{
S(w,w∗)iS(w,−w∗)j

}]
=

∫
S(w,−w∗)j

(∫
S(w,w∗)i

dP (Zi|Zj)

)
dP (θj) .

If φ ≤ ψ, then by our assumption, we have∫
S(w,−w∗)j

(∫
S(w,w∗)i

dP (Zi|Zj)

)
dP (θj) ≤

∫
S(w,−w∗)j

dP (Zj) ≤ Lφ.

On the other hand, if φ ≥ γ, let θj be the angle between w∗ and Zj , we have∫
S(w,−w∗)j

(∫
S(w,w∗)i

dP (Zi|Zj)

)
dP (θj) ≤

∫ π
2

+γ

π
2

(∫
S(w,w∗)i

dP (Zi|Zj)

)
dP (θj)

137

≤Lγ
≤Lφ.

Therefore, σmax

(
E
[
ZS(w,w∗)Z

>
S(w,−w∗)

])
≤ Lφ. Using similar arguments we can show

σmax

(
E
[
ZS(w,w∗)ZS(−w,w∗)

])
≤ Lφ and σmax

(
E
[
ZS(w,−w∗)ZS(−w,w∗)

])
≤ Lφ.

Proof of Theorem 6.6. We use the same argument by Tian [73]. Let rinit be the initialization
radius. The failure probability is lower bounded

1

2
(rinit)−

(
r2init

2‖w∗‖2
+
‖w∗‖2 cos(φ∗)

2

)
δVk−1 (rinit)

Vk (rinit)
.

Therefore, rinit = cos (φ∗) ‖w∗‖2 maximizes this lower bound. Plugging this optimizer in and
using formula for the volume of the Euclidean ball, the failure probability is lower bounded by

1

2
− cos (φ∗)

πΓ (p/2 + 1)

Γ (p/2 + 1/2)
≥ 1

2
− cos (φ∗)

√
πp

2

where we used Gautschi’s inequality for the last step.

138

Part III

When Does Gradient Descent Fail?

139

Chapter 7

Gradient Descent Can Take Exponential
Time to Escape Saddle Points

7.1 Introduction
In the previous chapters we showed gradient descent is a power optimization technique for ma-
chine learning problems. However it is also important to understand its limitations and modify
gradient descent to make more generally applicable. Recall, for general smooth non-convex
problems, gradient descent is only known to find a stationary point (i.e., a point where the gradi-
ent equals zero) in polynomial time [57].

A stationary point can be a local minimizer, saddle point, or local maximizer. In recent
years, there has been an increasing focus on conditions under which it is possible to escape
saddle points (more specifically, strict saddle points as in Definition 7.4) and converge to a local
minimizer. Moreover, stronger statements can be made when the following two key properties
hold: 1) all local minima are global minima, and 2) all saddle points are strict. These properties
hold for a variety of machine learning problems, including tensor decomposition [36], dictionary
learning [71], phase retrieval [70], matrix sensing [8, 61], matrix completion [37, 38], and matrix
factorization [49]. For these problems, any algorithm that is capable of escaping strict saddle
points will converge to a global minimizer from an arbitrary initialization point.

Recent work has analyzed variations of GD that include stochastic perturbations. It has been
shown that when perturbations are incorporated into GD at each step the resulting algorithm
can escape strict saddle points in polynomial time [36]. It has also been shown that episodic
perturbations suffice; in particular, Jin et al. [45] analyzed an algorithm that occasionally adds
a perturbation to GD (see Algorithm 2), and proved that not only does the algorithm escape
saddle points in polynomial time, but additionally the number of iterations to escape saddle
points is nearly dimension-independent1. These papers in essence provide sufficient conditions
under which a variant of GD has favorable convergence properties for non-convex functions.
This leaves open the question as to whether such perturbations are in fact necessary. If not, we
might prefer to avoid the perturbations if possible, as they involve additional hyper-parameters.
The current understanding of gradient descent is silent on this issue. The major existing result

1Assuming that the smoothness parameters (see Definition 7.1- 7.3) are all independent of dimension.

140

is provided by Lee et al. [48], who show that gradient descent, with any reasonable random
initialization, will always escape strict saddle points eventually—but without any guarantee on
the number of steps required. This motivates the following question:

Does randomly initialized gradient descent escape saddle points in polynomial time?
In this chapter, perhaps surprisingly, we give a strong negative answer to this question. We

show that even under a fairly natural initialization scheme (e.g., uniform initialization over a
unit cube, or Gaussian initialization) and for non-pathological functions satisfying smoothness
properties considered in previous work, GD can take exponentially long time to escape saddle
points and reach local minima, while perturbed GD (Algorithm 2) only needs polynomial time.
This result shows that GD is fundamentally slower in escaping saddle points than its perturbed
variant, and justifies the necessity of adding perturbations for efficient non-convex optimization.

The counter-example that supports this conclusion is a smooth function defined on Rd, where
GD with random initialization will visit the vicinity of d saddle points before reaching a local
minimum. While perturbed GD takes a constant amount of time to escape each saddle point,
GD will get closer and closer to the saddle points it encounters later, and thus take an increasing
amount of time to escape. Eventually, GD requires time that is exponential in the number of
saddle points it needs to escape, thus eΩ(d) steps.

7.2 Preliminaries
Let Bx (r) denote the d-dimensional `2 ball centered at x with radius r, [−1, 1]d denote the d-
dimensional cube centered at 0 with side-length 2, and B∞(x,R) = x + [−R,R]d denote the
d-dimensional cube centered at x with side-length 2R.

Throughout the chapter we consider functions that satisfy the following smoothness assump-
tions.
Definition 7.1. A function f(·) is B-bounded if for any x ∈ Rd:

|f (x) | ≤ B.

Definition 7.2. A differentiable function f(·) is `-gradient Lipschitz if for any x,y ∈ Rd:

‖∇f (x)−∇f (y)‖2 ≤ ` ‖x− y‖2 .

Definition 7.3. A twice-differentiable function f(·) is ρ-Hessian Lipschitz if for any x,y ∈ Rd:∥∥∇2f (x)−∇2f (y)
∥∥

op
≤ ρ ‖x− y‖2 .

Intuitively, definition 7.1 says function value is both upper and lower bounded; definition 7.2
and 7.3 state the gradients and Hessians of function can not change dramatically if two points are
close by. Definition 7.2 is a standard asssumption in the optimization literature, and definition
7.3 is also commonly assumed when studying saddle points and local minima.

Our goal is to escape saddle points. The saddle points discussed in this chapter are assumed
to be “strict” [36]:
Definition 7.4. A saddle point x∗ is called an α-strict saddle point if there exists some α > 0
such that ‖Of (x∗)‖2 = 0 and λmin (O2f (x∗)) ≤ −α.

141

Algorithm 2 Perturbed Gradient Descent [45]

1: Input: x(0), step size η, perturbation radius r, time interval tthres, gradient threshold gthres.
2: tnoise ← −tthres − 1.
3: for t = 1, 2, · · · do
4: if ‖∇f (xt)‖2 ≤ gthres and t− tnoise > tthres then
5: x(t) ← x(t) + ξt, ξt ∼ unif (B0 (r)), tnoise ← t,
6: end if
7: x(t+1) ← x(t) − η∇f

(
x(t)
)
.

8: end for

That is, a strict saddle point must have an escaping direction so that the eigenvalue of the
Hessian along that direction is strictly negative. It turns out that for many non-convex problems
studied in machine learning, all saddle points are strict (see Section 7.1 for more details).

To escape strict saddle points and converge to local minima, we can equivalently study the
approximation of second-order stationary points. For ρ-Hessian Lipschitz functions, such points
are defined as follows by [58]:
Definition 7.5. A point x is a called a second-order stationary point if ‖∇f (x)‖2 = 0 and
λmin (O2f (x)) ≥ 0. We also define its ε-version, that is, an ε-second-order stationary point for
some ε > 0, if point x satisfies ‖∇f (x)‖2 ≤ ε and λmin (∇2f (x)) ≥ −√ρε.

Second-order stationary points must have a positive semi-definite Hessian in additional to a
vanishing gradient. Note if all saddle points x∗ are strict, then second-order stationary points are
exactly equivalent to local minima.

In this chapter, we compare gradient descent:

x(t+1) ← x(t) − η∇f
(
x(t)
)
, (7.1)

and one of its variants—the perturbed gradient descent algorithm (Algorithm 2) proposed by Jin
et al. [45]. We focus on the case where the step size satisfies η < 1/`, which is commonly
required for finding a minimum even in the convex setting [57].

The following theorem shows that if GD with random initialization converges, then it will
converge to a second-order stationary point almost surely.
Theorem 7.1 ([48]). Suppose that f is `-gradient Lipschitz, has continuous Hessian, and step
size η < 1

`
. Furthermore, assume that gradient descent converges, meaning limt→∞ x(t) exists,

and the initialization distribution ν is absolutely continuous with respect to Lebesgue measure.
Then limt→∞ x(t) = x∗ with probability one, where x∗ is a second-order stationary point.

The assumption that gradient descent converges holds for many non-convex functions (in-
cluding all the examples considered in this chapter). This assumption is used to avoid the case
when

∥∥x(t)
∥∥

2
goes to infinity, so limt→∞ x(t) is undefined.

Note the Theorem 7.1 only provides limiting behavior without specifying the convergence
rate. On the other hand, if we are willing to add perturbations, the following theorem not only
establishes convergence but also provides a sharp convergence rate:
Theorem 7.2 ([45]). Suppose f is B-bounded, `-gradient Lipschitz, ρ-Hessian Lipschitz. For
any δ > 0, ε ≤ `2

ρ
, there exists a proper choice of η, r, tthres, gthres (depending on B, `, ρ, δ, ε)

142

(a) Negative Gradient Field of
f(x) = x2

1 − x2
2.

(b) Negative Gradient Field for function defined in Equa-
tion (7.2).

Figure 7.1: If the initialization point is in red rectangle then it takes GD a long time to escape the
neighborhood of saddle point (0, 0).

such that Algorithm 2 will find an ε-second-order stationary point, with at least probability 1−δ,
in the following number of iterations:

O

(
`B

ε2
log4

(
d`B

ε2δ

))
.

This theorem states that with proper choice of hyperparameters, perturbed gradient descent
can consistently escape strict saddle points and converge to second-order stationary point in a
polynomial number of iterations.

7.3 Warmup: Examples with “Un-natural” Initialization
The convergence result of Theorem 7.1 raises the following question: can gradient descent find
a second-order stationary point in a polynomial number of iterations? In this section, we dis-
cuss two very simple and intuitive counter-examples for which gradient descent with random
initialization requires an exponential number of steps to escape strict saddle points. We will also
explain that, however, these examples are unnatural and pathological in certain ways, thus un-
likely to arise in practice. A more sophisticated counter-example with natural initialization and
non-pathological behavior will be given in Section 7.4.

Initialize uniformly within an extremely thin band. Consider a two-dimensional function f
with a strict saddle point at (0, 0). Suppose that inside the neighborhood U = [−1, 1]2 of the
saddle point, function is locally quadratic f(x1, x2) = x2

1 − x2
2, For GD with η = 1

4
, the update

equation can be written as

x
(t+1)
1 =

x
(t)
1

2
and x

(t+1)
2 =

3x
(t)
2

2
.

143

If we initialize uniformly within [−1, 1] × [−(3
2
)− exp(1

ε
), (3

2
)− exp(1

ε
)] then GD requires at least

exp(1
ε
) steps to get out of neighborhood U , and thereby escape the saddle point. See Figure 7.1a

for illustration. Note that in this case the initialization region is exponentially thin (only of width
2 · (3

2
)− exp(1

ε
)). We would seldom use such an initialization scheme in practice.

Initialize far away. Consider again a two-dimensional function with a strict saddle point at
(0, 0). This time, instead of initializing in a extremely thin band, we construct a very long slope
so that a relatively large initialization region necessarily converges to this extremely thin band.
Specifically, consider a function in the domain [−∞, 1]× [−1, 1] that is defined as follows:

f(x1, x2) =

x2

1 − x2
2 if − 1 < x1 < 1

−4x1 + x2
2 if x1 < −2

h(x1, x2) otherwise,
(7.2)

where h(x1, x2) is a smooth function connecting region [−∞,−2]× [−1, 1] and [−1, 1]× [−1, 1]
while making f have continuous second derivatives and ensuring x2 does not suddenly increase
when x1 ∈ [−2,−1].2 For GD with η = 1

4
, when −1 < x1 < 1, the dynamics are

x
(t+1)
1 =

x
(t)
1

2
and x

(t+1)
2 =

3x
(t)
2

2
,

and when x1 < −2 the dynamics are

x
(t+1)
1 = x

(t)
1 + 1 and x

(t+1)
2 =

x
(t)
2

2
.

Suppose we initialize uniformly within [−R−1,−R+1]× [−1, 1] , for R large. See Figure 7.1b
for an illustration. Letting t denote the first time that x(t)

1 ≥ −1, then approximately we have
t ≈ R and so x(t)

2 ≈ x
(0)
2 · (1

2
)R. From the previous example, we know that if (1

2
)R ≈ (3

2
)− exp 1

ε ,
that is R ≈ exp 1

ε
, then GD will need exponential time to escape from the neighborhood U =

[−1, 1]× [−1, 1] of the saddle point (0, 0). In this case, we require an initialization region leading
to a saddle point at distance R which is exponentially large. In practice, it is unlikely that we
would initialize exponentially far away from the saddle points or optima.

7.4 Main Result
In the previous section we have shown that gradient descent takes exponential time to escape
saddle points under “un-natural” initialization schemes. Is it possible for the same statement to
hold even under “natural” initialization schemes and non-pathological functions? The following
theorem confirms this:
Theorem 7.3 (Uniform initialization over a unit cube). Suppose the initialization point is uni-
formly sampled from [−1, 1]d. There exists a function f defined on Rd that is B-bounded, `-
gradient Lipschitz and ρ-Hessian Lipschitz with parameters B, `, ρ at most poly(d) such that:

2We can construct such a function using splines. See Appendix 7.7.

144

1. with probability one, gradient descent with step size η ≤ 1/` will be Ω(1) distance away
from any local minima for any T ≤ eΩ(d).

2. for any ε > 0, with probability 1− e−d, perturbed gradient descent (Algorithm 2) will find
a point x such that ‖x− x∗‖2 ≤ ε for some local minimum x∗ in poly(d, 1

ε
) iterations.

Remark: As will be apparent in the next section, in the example we constructed, there are 2d

symmetric local minima at locations (±c . . . ,±c), where c is some constant. The saddle points
are of the form (±c, . . . ,±c, 0, . . . , 0). Both algorithms will travel across d neighborhoods of
saddle points before reaching a local minimum. For GD, the number of iterations to escape the
i-th saddle point increases as κi (κ is a multiplicative factor larger than 1), and thus GD requires
exponential time to escape d saddle points. On the other hand, PGD takes about the same number
of iterations to escape each saddle point, and so escapes the d saddle points in polynomial time.
Notice that B, `, ρ = O(poly(d)), so this does not contradict Theorem 7.2.

We also note that in our construction, the local minimizers are outside the initialization re-
gion. We note this is common especially for unconstrained optimization problems, where the
initialization is usually uniform on a rectangle or isotropic Gaussian. Due to isoperimetry, the
initialization concentrates in a thin shell, but frequently the final point obtained by the optimiza-
tion algorithm is not in this shell.

It turns out in our construction, the only second-order stationary points in the path are the
final local minima. Therefore, we can also strengthen Theorem 7.3 to provide a negative result
for approximating ε-second-order stationary points as well.
Corollary 7.1. Under the same initialization as in Theorem 7.3, there exists a function f satis-
fying the requirements of Theorem 7.3 such that for some ε = 1/poly(d), with probability one,
gradient descent with step size η ≤ 1/` will not visit any ε-second-order stationary point in
T ≤ eΩ(d).

The corresponding positive result that PGD to find ε-second-order stationary point in poly-
nomial time immediately follows from Theorem 7.2.

The next result shows that gradient descent does not fail due to the special choice of initial-
izing uniformly in [−1, 1]d. For a large class of initialization distributions ν, we can generalize
Theorem 7.3 to show that gradient descent with random initialization ν requires exponential
time, and perturbed gradient only requires polynomial time.
Corollary 7.2. LetB∞(z, R) = {z}+[−R,R]d be the `∞ ball of radiusR centered at z. Then for
any initialization distribution ν that satisfies ν(B∞(z, R)) ≥ 1− δ for any δ > 0, the conclusion
of Theorem 7.3 holds with probability at least 1− δ.

That is, as long as most of the mass of the initialization distribution ν lies in some `∞ ball,
a similar conclusion to that of Theorem 7.3 holds with high probability. This result applies
to random Gaussian initialization, ν = N (0, σ2I), with mean 0 and covariance σ2I, where
ν(B∞(0, σ log d)) ≥ 1− 1/poly(d).

7.4.1 Proof Sketch
In this section we present a sketch of the proof of Theorem 7.3. The full proof is presented in the
Appendix. Since the polynomial-time guarantee for PGD is straightforward to derive from Jin

145

et al. [45], we focus on showing that GD needs an exponential number of steps. We rely on the
following key observation.

Key observation: escaping two saddle points sequentially. Consider, for L > γ > 0,

f (x1, x2) =

−γx2

1 + Lx2
2 if x1 ∈ [0, 1] , x2 ∈ [0, 1]

L(x1 − 2)2 − γx2
2 if x1 ∈ [1, 3] , x2 ∈ [0, 1]

L(x1 − 2)2 + L(x2 − 2)2 if x1 ∈ [1, 3] , x2 ∈ [1, 3]

. (7.3)

Note that this function is not continuous. In the next paragraph we will modify it to make it
smooth and satisfy the assumptions of the Theorem but useful intuition is obtained using this
discontinuous function. The function has an optimum at (2, 2) and saddle points at (0, 0) and
(2, 0). We call [0, 1] × [0, 1] the neighborhood of (0, 0) and [1, 3] × [0, 1] the neighborhood of
(2, 0). Suppose the initialization

(
x(0), y(0)

)
lies in [0, 1]× [0, 1]. Define t1 = min

x
(t)
1 ≥1

t to be the
time of first departure from the neighborhood of (0, 0) (thereby escaping the first saddle point).
By the dynamics of gradient descent, we have

x
(t1)
1 = (1 + 2ηγ)t1x

(0)
1 , x

(t1)
2 = (1− 2ηL)t1x

(0)
2 .

Next we calculate the number of iterations such that x2 ≥ 1 and the algorithm thus leaves
the neighborhood of the saddle point (2, 0) (thus escaping the second saddle point). Letting
t2 = min

x
(t)
2 ≥1

t, we have:

x
(t1)
2 (1 + 2ηγ)t2−t1 = (1 + 2ηγ)t2−t1(1− 2ηL)t1x

(0)
2 ≥ 1.

We can lower bound t2 by

t2 ≥
2η(L+ γ)t1 + log(1

x02
)

2ηγ
≥ L+ γ

γ
t1.

The key observation is that the number of steps to escape the second saddle point is L+γ
γ

times
the number of steps to escape the first one.

Spline: connecting quadratic regions. To make our function smooth, we create buffer regions
and use splines to interpolate the discontinuous parts of Equation (7.3). Formally, we consider
the following function, for some fixed constant τ > 1:

f (x1, x2) =

−γx2
1 + Lx2

2 if x1 ∈ [0, τ] , x2 ∈ [0, τ]

g(x1, x2) if x1 ∈ [τ, 2τ] , x2 ∈ [0, τ]

L(x1 − 4τ)2 − γx2
2 − ν if x1 ∈ [2τ, 6τ] , x2 ∈ [0, τ]

L(x1 − 4τ)2 + g1(x2)− ν if x1 ∈ [2τ, 6τ] , x2 ∈ [τ, 2τ]

L(x1 − 4τ)2 + L(x2 − 4τ)2 − 2ν if x1 ∈ [2τ, 6τ] , x2 ∈ [2τ, 6τ] ,

(7.4)

146

0 5 10 15

x
1

0

5

10

15

x
2

-5

0
5

-1
2
0

-110

-110

-1
10

-100

-1
0
0

-100

-1
00

-90

-9
0

-9
0

-9
0

-80

-80

-70

-70

-60

-6
0

-5
0

-5
0

(a) Contour plot of the objec-
tive function and tube defined
in 2D.

(b) Trajectory of gradient de-
scent in the tube for d = 3.

(c) Octopus defined in 2D.

Figure 7.2: Graphical illustrations of our counter-example with τ = e. The blue points are saddle
points and the red point is the minimum. The pink line is the trajectory of gradient descent.

where g, g1 are spline polynomials and ν > 0 is a constant defined in Lemma 7.4. In this
case, there are saddle points at (0, 0), and (4τ, 0) and the optimum is at (4τ, 4τ). Intuitively,
[τ, 2τ]×[0, τ] and [2τ, 6τ]×[τ, 2τ] are buffer regions where we use splines (g and g1) to transition
between regimes and make f a smooth function. Also in this region there is no stationary point
and the smoothness assumptions are still satisfied in the theorem. Figure. 7.2a shows the surface
and stationary points of this function. We call the union of the regions defined in Equation (7.4)
a tube.

From two saddle points to d saddle points. We can readily adapt our construction of the tube
to d dimensions, such that the function is smooth, the location of saddle points are (0, . . . , 0),
(4τ, 0, . . . , 0), . . ., (4τ, . . . , 4τ, 0), and optimum is at (4τ, . . . , 4τ). Let ti be the number of step
to escape the neighborhood of the i-th saddle point. We generalize our key observation to this
case and obtain ti+1 ≥ L+γ

γ
· ti for all i. This gives td ≥ (L+γ

γ
)d which is exponential time.

Figure 7.2b shows the tube and trajectory of GD.

Mirroring trick: from tube to octopus. In the construction thus far, the saddle points are all
on the boundary of tube. To avoid the difficulties of constrained non-convex optimization, we
would like to make all saddle points be interior points of the domain. We use a simple mirroring
trick; i.e., for every coordinate xi we reflect f along its axis. See Figure 7.2c for an illustration
in the case d = 2.

Extension: from octopus to Rd. Up to now we have constructed a function defined on a closed
subset of Rd. The last step is to extend this function to the entire Euclidean space. Here we apply
the classical Whitney Extension Theorem (Theorem 7.5) to finish our construction. We remark
that the Whitney extension may lead to more stationary points. However, we will demonstrate in
the proof that GD and PGD stay within the interior of “octopus” defined above, and hence cannot
converge to any other stationary point.

147

0 500 1000

Epochs

-400

-300

-200

-100

0

100

O
b

je
c
ti
v
e
 F

u
n

c
ti
o
n

GD

PGD

(a) L = 1, γ = 1

0 500 1000

Epochs

-600

-400

-200

0

200

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

GD

PGD

(b) L = 1.5, γ = 1

0 500 1000

Epochs

-600

-400

-200

0

200

O
b

je
c
ti
v
e
 F

u
n

c
ti
o
n

GD

PGD

(c) L = 2, γ = 1

0 500 1000

Epochs

-800

-600

-400

-200

0

200

O
b
je

c
ti
v
e

 F
u

n
c
ti
o
n

GD

PGD

(d) L = 3, γ = 1

Figure 7.3: Performance of GD and PGD on our counter-example with d = 5.

0 1000 2000

Epochs

-800

-600

-400

-200

0

200

O
b

je
c
ti
v
e

 F
u
n

c
ti
o
n

GD

PGD

(a) L = 1, γ = 1

0 1000 2000

Epochs

-1000

-500

0

500
O

b
je

c
ti
v
e

 F
u
n

c
ti
o
n

GD

PGD

(b) L = 1.5, γ = 1

0 1000 2000

Epochs

-1500

-1000

-500

0

500

O
b

je
c
ti
v
e

 F
u
n

c
ti
o
n

GD

PGD

(c) L = 2, γ = 1

0 1000 2000

Epochs

-1500

-1000

-500

0

500

O
b

je
c
ti
v
e

 F
u
n

c
ti
o
n

GD

PGD

(d) L = 3, γ = 1

Figure 7.4: Performance of GD and PGD on our counter-example with d = 10

7.5 Experiments
In this section we use simulations to verify our theoretical findings. The objective function is
defined in (7.14) and (7.15) in the Appendix. In Figures 7.3 and Figure 7.4, GD stands for
gradient descent and PGD stands for Algorithm 2. For both GD and PGD we let the stepsize
η = 1

4L
. For PGD, we choose tthres = 1, gthres = γe

100
and r = e

100
. In Figure 7.3 we fix dimension

d = 5 and vary L as considered in Section 7.4.1; similarly in Figure 7.4 we choose d = 10
and vary L. First notice that in all experiments, PGD converges faster than GD as suggested
by our theorems. Second, observe the “horizontal” segment in each plot represents the number
of iterations to escape a saddle point. For GD the length of the segment grows at a fixed rate,
which coincides with the result mentioned at the beginning for Section 7.4.1 (that the number of
iterations to escape a saddle point increase at each time with a multiplicative factor L+γ

γ
). This

phenomenon is also verified in the figures by the fact that as the ratio L+γ
γ

becomes larger, the
rate of growth of the number of iterations to escape increases. On the other hand, the number of
iterations for PGD to escape is approximately constant (∼ 1

ηγ
).

7.6 Conclusion and Future Work
In this chapter we established the failure of gradient descent to efficiently escape saddle points
for general non-convex smooth functions. We showed that even under a very natural initialization
scheme, gradient descent can require exponential time to converge to a local minimum whereas
perturbed gradient descent converges in polynomial time. Our results demonstrate the necessity
of adding perturbations for efficient non-convex optimization.

We expect that our results and constructions will naturally extend to a stochastic setting. In

148

particular, we expect that with random initialization, general stochastic gradient descent will need
exponential time to escape saddle points in the worst case. However, if we add perturbations per
iteration or the inherent randomness is non-degenerate in every direction (so the covariance of
noise is lower bounded), then polynomial time is known to suffice [36].

One open problem is whether GD is inherently slow if the local optimum is inside the initial-
ization region in contrast to the assumptions of initialization we used in Theorem 7.3 and Corol-
lary 7.2. We believe that a similar construction in which GD goes through the neighborhoods of
d saddle points will likely still apply, but more work is needed. Another interesting direction is
to use our counter-example as a building block to prove a computational lower bound under an
oracle model [57, 78].

Appendix: Omitted Proofs

7.7 Proofs for Results in Section 7.4

In this section, we provide proofs for Theorem 7.3 and Corollary 7.2. The proof for Corollary 7.1
easily follows from the same construction as in Theorem 7.3, so we omit it here. For Theorem
7.3, we will prove each claim individually.

7.7.1 Proof for Claim 1 of Theorem 7.3

Outline of the proof. Our construction of the function is based on the intuition in Section 7.4.1.
Note the function f defined in (7.3) is 1) not continuous whereas we need a C2 continuous func-
tion and 2) only defined on a subset of Euclidean space whereas we need a function defined on
Rd. To connect these quadratic functions, we use high-order polynomials based on spline theory.
We connect d such quadratic functions and show that GD needs exponential time to converge if
x(0) ∈ [0, 1]d. Next, to make all saddle points as interior point, we exploit symmetry and use
a mirroring trick to create 2d copies of the spline. This ensures that as long as the initialization
is in [−1, 1]d, gradient descent requires exponential steps. Lastly, we use the classical Whitney
extension theorem [77] to extend our function from a closed subset to Rd.

Step 1: The tube. We fix four constants L = e, γ = 1, τ = e and ν = −g1(2τ) + 4Lτ 2 where
g1 is defined in Lemma 7.4. We first construct a function f and a closed subset D0 ⊂ Rd such
that if x(0) is initialized in [0, 1]d then the gradient descent dynamics will get stuck around some
saddle point for exponential time. Define the domain as:

D0 =
d+1⋃
i=1

{x ∈ Rd : 6τ ≥ x1, . . . xi−1 ≥ 2τ, 2τ ≥ xi ≥ 0, τ ≥ xi+1 . . . , xd ≥ 0}, (7.5)

which i = 1 means 0 ≤ x1 ≤ 2τ and other coordinates are smaller than τ , and i = d + 1 means
that all coordinates are larger than 2τ . See Figure 7.5a for an illustration. Next we define the

149

objective function as follows. For a given i = 1, . . . , d− 1, if 6τ ≥ x1, . . . xi−1 ≥ 2τ, τ ≥ xi ≥
0, τ ≥ xi+1 . . . , xd ≥ 0, we have

f (x) =
i−1∑
j=1

L (xj − 4τ)2 − γx2
i +

d∑
j=i+1

Lx2
j − (i− 1)ν , fi,1 (x) , (7.6)

and if 6τ ≥ x1, . . . xi−1 ≥ 2τ, 2τ ≥ xi ≥ τ, τ ≥ xi+1 . . . , xd ≥ 0, we have

f (x) =
i−1∑
j=1

L (xj − 4τ)2 + g (xi, xi+1) +
d∑

j=i+2

Lx2
j − (i− 1)ν , fi,2 (x) , (7.7)

where the constant ν and the bivariate function g are specified in Lemma 7.4 to ensure f is a
C2 function and satisfies the smoothness assumptions in Theorem 7.3. For i = d, we define the
objective function as

f (x) =
d−1∑
j=1

L (xj − 4τ)2 − γx2
d − (d− 1)ν , fd,1 (x) , (7.8)

if 6τ ≥ x1, . . . xd−1 ≥ 2τ and τ ≥ xd ≥ 0 and

f (x) =
d−1∑
j=1

L (xj − 4τ)2 + g1 (xd)− (d− 1)ν , fd,2 (x) (7.9)

if 6τ ≥ x1, . . . xd−1 ≥ 2τ and 2τ ≥ xd ≥ τ where g1 is defined in Lemma 7.4. Lastly, if
6τ ≥ x1, . . . xd ≥ 2τ , we define

f (x) =
d∑
j=1

L (xj − 4τ)2 − dν , fd+1,1(x). (7.10)

Figure. 7.5a shows an intersection surface (a slice along the xi-xi+1 plane) of this construction.
Remark 7.1. As will be apparent in Theorem 7.4, g and g1 are polynomials with degrees bounded
by five, which implies that for τ ≤ xi ≤ 2τ and 0 ≤ xi+1 ≤ τ the function values and derivatives
of g(xi, xi+1) and g(xi) are bounded by poly(L); in particular, ρ = poly(L).
Remark 7.2. In Theorem 7.4 we show that the norms of the gradients of g and g1 gradients
are strictly larger than zero by a constant (≥ γτ), which implies that for ε < γτ , there is no
ε-second-order stationary point in the connection region. Further note that in the domain of the
function defined in Eq. (7.6) and (7.8), the smallest eigenvalue of Hessian is −2γ. Therefore
we know that if x ∈ D0 and xd ≤ 2τ , then x cannot be an ε-second-order stationary point for
ε ≤ 4γ2

ρ

Now let us study the stationary points of this function. Technically, the differential is only
defined on the interior of D0. However in Steps 2 and 3, we provide a C2 extension of f to
all of Rd, so the lemma below should be interpreted as characterizing the critical points of this
extended function f in D0. Using the analytic form of Eq. (7.6)- (7.10) and Remark 7.2, we can
easily identify the stationary points of f .

150

0 2 6

x
i

0

2

6
x

i+
1

f
i,1

f
i,2

f
i+1,1

f
i+1,2

f
i+2,1

(a) The intersection surface of the Tube de-
fined in Equation (7.5) (7.6)and (7.7) for 2τ ≤
x1, . . . , xi−1 ≤ 6τ, 0 ≤ xi+2 ≤ τ .

-6 -2 - 0 2 6

x
1

-6

-2

-

0

2

6

x
2

D
0

D
1

D
2

D
3

(b) The “octopus”-like domain we defined in
Equation (7.12) and (7.13) for d = 2.

Figure 7.5: Illustration of intersection surfaces used in our construction.

Lemma 7.1. For f : D0 → R defined in Eq. (7.6) to Eq. (7.10), there is only one local optimum:

x∗ = (4τ, . . . , 4τ)> ,

and d saddle points:

(0, . . . , 0)> , (4τ, 0, . . . , 0)> , . . . , (4τ, . . . , 4τ, 0)> .

Next we analyze the convergence rate of gradient descent. The following lemma shows that
it takes exponential time for GD to achieve xd ≥ 2τ .

Lemma 7.2. Let τ ≥ e and x(0) ∈ [−1, 1]d ∩ D0. GD with η ≤ 1
2L

and any T ≤
(
L+γ
γ

)d−1

satisfies x(T)
d ≤ 2τ .

Proof. Define T0 = 0 and for k = 1, . . . , d, let Tk = min{t|x(t)
k ≥ 2τ} be the first time the

iterate escapes the neighborhood of the k-th saddle point. We also define T τk as the number of
iterations inside the region

{x1, . . . , xk−1 ≥ 2τ, τ ≤ xk ≤ 2τ, 0 ≤ xk+`, . . . , xd ≤ τ} .

First we bound T τk . Lemma 7.4 shows ∂g(xk,xk+1)

∂xk
≤ −2γτ so after every gradient descent step,

xk is increased by at least 2ηγτ . Therefore we can upper bound T τk by

T τk ≤
2τ − τ
2ηγτ

=
1

2ηγ
.

151

Note this bound holds for all k.
Next, we lower bound T1. By definition, T1 is the smallest number such that x(T1)

1 ≥ 2τ

and using the definition of T τ1 we know x
(T1−T τ1)
1 ≥ τ . By the gradient update equation, for

t = 1 . . . , T1 − T τ1 , we have xt1 = (1 + 2ηγ)tx0
1. Thus we have:

x
(0)
1 (1 + 2ηγ)T1−T

τ
1 ≥ τ

⇒ T1 − T τ1 ≥
1

2ηγ
log

(
τ

x
(0)
1

)
.

Since x1
0 ≤ 1 and τ ≥ e, we know log(τ

x01
) ≥ 1. Therefore T1 − T τ1 ≥ 1

ηγ
≥ T τ1 .

Next we show iterates generated by GD stay in D0. If x(t) satisfies 6τ ≥ x1, . . . xk−1 ≥
2τ, τ ≥ xk ≥ 0, τ ≥ xk+1 . . . , xd ≥ 0, then for 1 ≤ j ≤ k,

x
(t+1)
j = (1− ηL)x

(t)
j − 4ηLτ ∈ [2τ, 6τ] ,

for j = k,
x

(t+1)
j = (1 + 2ηγ)x

(t)
j ∈ [0, 2τ] ,

and for j ≥ k + 1
x

(t+1)
j = (1− 2ηL)x

(t)
j ∈ [0, τ] .

Similarly, if x(t) satisfies 6τ ≥ x1, . . . xk−1 ≥ 2τ, 2τ ≥ xk ≥ τ, τ ≥ xk+1 . . . , xd ≥ 0, the above
arguments still hold for j ≤ k − 1 and j ≥ k + 2. For j = k, note that

x
(t+1)
j = x

(t)
j − η

∂g (xj, xj+1)

∂xj

≤ x
(t)
j + 2ηγτ ≤ 6τ,

where in the first inequality we have used Lemma 7.4. For j = k+1, by the dynamics of gradient
descent, at (Tk − T τk)-th iteration, x(Tk−T τk)

k+1 = x
(0)
k+1 (1− 2ηL)Tk−T

τ
k . Note Lemma 7.4 shows in

the region
{x1, . . . , xk−1 ≥ 2τ, τ ≤ xk ≤ 2τ, 0 ≤ xk+1, . . . , xd ≤ τ} ,

we have
∂f(x)

∂xk+1

≥ −2γxk+1.

Putting this together we have the following upper bounds for t = Tk − T τk + 1, . . . , Tk:

x
(t)
k+1 ≤ x0

k+1 (1− 2ηL)(Tk−T τk) · (1 + 2ηγ)t−(Tk−T τk) ≤ τ, (7.11)

which implies x(t) is in D0.
Next, let us calculate the relation between Tk and Tk+1. By our definition of Tk and T τk , we

have:
x

(Tk)
k+1 ≤ x

(0)
k+1 (1− 2ηL)Tk−T

τ
k · (1 + 2ηγ)T

τ
k .

152

For Tk+1, with the same logic we used for lower bounding T1, we have

x
(Tk+1−T τk+1)

k+1 ≥ τ

⇒ x
(Tk)
k+1 (1 + 2ηγ)Tk+1−T τk+1−Tk ≥ τ

⇒ x
(0)
k+1 (1− 2ηL)Tk−T

τ
k · (1 + 2ηγ)T

τ
k · (1 + 2ηγ)Tk+1−T τk+1−Tk ≥ τ.

Taking logarithms on both sides and then using log(1− θ) ≤ −θ, log(1 + θ) ≤ θ for 0 ≤ θ ≤ 1,
and η ≤ 1

2L
, we have

2ηγ
(
Tk+1 − T τk+1 − (Tk − T τk)

)
≥ log

(
τ

x0
k+1

)
+ 2ηL (Tk − T τk)

⇒ Tk+1 − T τk+1 ≥
L+ γ

γ
(Tk − T τk)

In last step, we used the initialization condition whereby log
(

τ
x0k+1

)
≥ 1 ≥ 0. Since T1 − T τ1 ≥

1
2ηγ

, to enter the region x1, . . . , xd ≥ 2τ we need Td iterations, which is lower bounded by

Td ≥
1

2ηγ
·
(
L+ γ

γ

)d−1

≥
(
L+ γ

γ

)d−1

.

Step 2: From the tube to the octopus. We have shown that if x0 ∈ [−1, 1]d∩D0, then gradient
descent needs exponential time to approximate a second order stationary point. To deal with
initialization points in [−1, 1]d − D0, we use a simple mirroring trick; i.e., for each coordinate
xi, we create a mirror domain of D0 and a mirror function according to i-th axis and then take
union of all resulting reflections. Therefore, we end up with an “octopus” which has 2d copies of
D0 and [−1, 1]d is a subset of this “octopus.” Figure 7.5b shows the construction for d = 2.

The mirroring trick is used mainly to make saddle points be interior points of the region
(octopus) and ensure that the positive result of PGD (claim 2) will hold.

We now formalize this mirroring trick. For a = 0, . . . , 2d − 1, let a2 denote its binary
representation. Denote a2 (0) as the indices of a2 with digit 0 and a2 (1) as those that are 1. Now
we define the domain

Da =
d⋃
i=1

{
x ∈ Rd : xi ≥ 0 if i ∈ a2(0), xi ≤ 0 otherwise ,

6τ ≥ |x1| . . . , |xi−1| ≥ 2τ, |xi| ≤ 2τ, |xi+1| . . . , |xd| ≤ τ} , (7.12)

D =
2d−1⋃
a=0

Da. (7.13)

153

Note this is a closed subset of Rd and [−1, 1]d ⊂ D. Next we define the objective function. For
i = 1, . . . , d− 1, if 6τ ≥ |x1| , . . . , |xi−1| ≥ 2τ, |xi| ≤ τ, |xi+1| . . . , |xd| ≤ τ :

f (x) =
∑

j≤i−1,j∈a2(0)

L (xj − 4τ)2 +
∑

j≤i−1,j∈a2(1)

L (xj + 4τ)2 − γx2
i

+
d∑

j=i+1

Lx2
j − (i− 1)ν, (7.14)

and if 6τ ≥ |x1| , . . . , |xi−1| ≥ 2τ, τ ≤ |xi| ≤ 2τ, |xi+1| , . . . , |xd| ≤ τ :

f (x) =
∑

j≤i−1,j∈a2(0)

L (xj − 4τ)2 +
∑

j≤i−1,j∈a2(1)

L (xj + 4τ)2 +G (xi, xi+1)

+
d∑

j=i+2

Lx2
j − (i− 1)ν, (7.15)

where

G (xi, xi+1) =

{
g(xi, xi+1) if i ∈ a2 (0)

g(−xi, xi+1) if i ∈ a2 (1) .

For i = d, if 6τ ≥ |x1| , . . . , |xi−1| ≥ 2τ, |xi| ≤ τ :

f (x) =
∑

j≤i−1,j∈a2(0)

L (xj − 4τ)2 +
∑

j≤i−1,j∈a2(1)

L (xj + 4τ)2 − γx2
i − (i− 1)ν, (7.16)

and if 6τ ≥ |x1| . . . , |xi−1| ≥ 2τ, τ ≤ |xi| ≤ 2τ :

f (x) =
∑

j≤i−1,j∈a2(0)

L (xj − 4τ)2 +
∑

j≤i−1,j∈a2(1)

L (xj + 4τ)2 +G1 (xi)− (i− 1)ν, (7.17)

where

G1 (xi) =

{
g1(xi) if i ∈ a2 (0)

g1(−xi) if i ∈ a2 (1) .

Lastly, if 6τ ≥ |x1| , . . . , |xd| ≥ 2τ :

f (x) =
∑

j≤i−1,j∈a2(0)

L (xj − 4τ)2 +
∑

j≤i−1,j∈a2(1)

L (xj + 4τ)2 − dν. (7.18)

Note that if a coordinate xi satisfies |xi| ≤ τ , the function defined in Eq. (7.14) to (7.17)
is an even function (fix all xj for j 6= i, f(. . . , xi, . . .) = f(. . . ,−xi, . . .)) so f preserves the
smoothness of f0. By symmetry, mirroring the proof of Lemma 7.2 for Da for a = 1, . . . , 2d− 1
we have the following lemma:
Lemma 7.3. Choosing τ = e, if x(0) ∈ [−1, 1]d then for gradient descent with η ≤ 1

2L
and any

T ≤
(
L+γ
γ

)d−1

, we have x(T)
d ≤ 2τ .

154

Step 3: From the octopus to Rd. It remains to extend f from D to Rd. Here we use the
classical Whitney extension theorem (Theorem 7.5) to obtain our final function F . Applying
Theorem 7.5 to f we have that there exists a function F defined on Rd which agrees with f on
D and the norms of its function values and derivatives of all orders are bounded by O (poly (d)).
Note that this extension may introduce new stationary points. However, as we have shown pre-
viously, GD never leaves D so we can safely ignore these new stationary points. We have now
proved the negative result regarding gradient descent.

7.7.2 Proof for Claim 2 of Theorem 7.3

To show that PGD approximates a local minimum in polynomial time, we first apply Theorem 7.2
which shows that PGD finds an ε-second-order stationary point. Remark 7.2 shows in D, every
ε-second-order stationary point is ε close to a local minimum. Thus, it suffices to show iterates
of PGD stay in D. We will prove the following two facts: 1) after adding noise, x is still in D,
and 2) until the next time we add noise, x is in D.

For the first fact, using the choices of gthres and r in Jin et al. [45] we can pick ε polynomially
small enough so that gthres ≤ γτ

10
and r ≤ τ

20
, which ensures there is no noise added when there

exists a coordinate xi with τ ≤ xi ≤ 2τ . Without loss of generality, suppose that in the region

{x1, . . . , xk−1 ≥ 2τ, 0 ≤ xk, . . . , xd ≤ τ} ,

we have ‖∇f (x)‖2 ≤ gthres ≤ γτ
10

, which implies |xj − 4τ | ≤ τ
20

for j = 1, . . . , k − 1, and

xj ≤ τ
20

for j = k, . . . , d. Therefore,
∣∣∣(x + ξ)j − 4τ

∣∣∣ ≤ τ
10

for j = 1, . . . , k − 1 and∣∣∣(x + ξ)j

∣∣∣ ≤ τ

10
(7.19)

for j = k, . . . , d.
For the second fact suppose at the t′-th iteration we add noise. Now without loss of generality,

suppose that after adding noise, x(t′) ≥ 0, and by the first fact xt
′ is in the region{

x1, . . . , xi−1 ≥ 2τ, 0 ≤ xi ≤ . . . , xd ≤
τ

10

}
.

Now we use the same argument as for proving GD stays in D. Suppose at t′′-th iteration we add
noise again. Then for t′ < t < t′′, we have that if x(t) satisfies 6τ ≥ x1, . . . xk−1 ≥ 2τ, τ ≥ xk ≥
0, τ ≥ xk+1 . . . , xd ≥ 0, then for 1 ≤ j ≤ k,

x
(t+1)
j = (1− ηL)x

(t)
j − 4ηLτ ∈ [2τ, 6τ] ,

for j = k,
x

(t+1)
j = (1 + 2ηγ)x

(t)
j ∈ [0, 2τ] ,

and for j ≥ k + 1

x
(t+1)
j = (1− 2ηL)x

(t)
j ∈ [0, τ] .

155

Similarly, if x(t) satisfies 6τ ≥ x1, . . . xk−1 ≥ 2τ, 2τ ≥ xk ≥ τ, τ ≥ xk+1 . . . , xd ≥ 0, the above
arguments still hold for j ≤ k − 1 and j ≥ k + 2. For j = k, note that

x
(t+1)
j = x

(t)
j − η

∂g (xj, xj+1)

∂xj

≤ x
(t)
j + 4ηLτ ≤ 6τ,

where the first inequality we have used Lemma 7.4.
For j = k+ 1, by the dynamics of gradient descent, at the (Tk − T τk)-th iteration, x(Tk−T τk)

k+1 =

x
(t′)
k+1 (1− 2ηL)Tk−T

τ
k−t

′
. Note that Lemma 7.4 shows in the region

{x1, . . . , xk−1 ≥ 2τ, τ ≤ xk ≤ 2τ, 0 ≤ xk+1, . . . , xd ≤ τ} ,

we have
∂f(x)

∂xk+1

≥ −2γxk+1.

Putting this together we obtain the following upper bound, for t = Tk − T τk + 1, . . . , Tk:

x
(t)
k+1 ≤ x

(t′)
k+1 (1− 2ηL)(Tk−T τk−t

′) · (1 + 2ηγ)t−(Tk−T τk) ≤ τ,

where the last inequality is because t − (Tk − T τk) ≤ T τk ≤ 1
2ηγ
. This implies x(t) is in D0. Our

proof is complete.

7.7.3 Proof for Corollary 7.2

Define g(x) = f(x−z
R

) to be an affine transformation of f , ∇g(x) = 1
R
∇f(x−z

R
), and ∇2g(x) =

1
R2∇2f(x−z

R
). We see that `g =

`f
R2 , ρg =

ρf
R3 , and Bg = Bf , which are poly(d).

Define the mapping h(x) = x−z
R

, and the auxiliary sequence yt = h(xt). We see that

x(t+1) = x(t) − η∇g(x(t))

h−1(y(t+1)) = h−1(y(t))− η

R
∇f(y(t))

y(t+1) = h(Ry(t) + z − η

R
∇f(y(t)))

= y(t) − η

R2
∇f(y(t)).

Thus gradient descent with stepsize η on g is equivalent to gradient descent on f with stepsize
η
R2 . The first conclusion follows from noting that with probability 1 − δ, the initial point x(0)

lies in B∞(z,R), and then applying Theorem 7.3. The second conclusion follows from applying
Theorem 7.2 in the same way as in the proof of Theorem 7.3.

156

7.8 Auxiliary Theorems
The following are basic facts from spline theory. See Equation (2.1) and (3.1) of [18]
Theorem 7.4. Given data points y0 < y1, function values f(y0), f(y1) and derivatives f ′(y0),
f ′(y1) with f ′(y0) < 0 the cubic Hermite interpolant is defined by

p(y) = c0 + c1δy + c2δ
2
y + c3δ

3
y ,

where

c0 = f(y0), c1 = f ′(y0)

c2 =
3S − f ′(y1)− 2f ′(y0)

y1 − y0

c3 = −2S − f ′ (y1)− f ′(y0)

(y1 − y0)2

for y ∈ [y0, y1], δy = y − y0 and slope S = f(y1)−f(y0)
y1−y0 . p(y) satisfies p(y0) = f(y0), p(y1) =

f(y1), p′(y0) = f ′(y0) and p′(y1) = f ′(y1). Further, for f(y1) < f(y0) < 0, if

f ′(y1) ≥ 3 (f(y1)− f(y0))

y1 − y0

then we have f(y1) ≤ p(y) ≤ f(y0) for y ∈ [y0, y1].
We use these properties of splines to construct the bivariate function g and the univariate

function g1 in Section 7.7. The next lemma studies the properties of the connection functions
g(·, ·) and g1(·).
Lemma 7.4. Define g(xi, xi+1) = g1(xi) + g2(xi)x

2
i+1. There exist polynomial functions g1, g2

and ν = −g1(2τ) + 4Lτ 2 such that for any i = 1, · · · , d, for fi,1 and fi,2 defined in Eq. (7.6)-
(7.10), g(xi, xi+1) ensures fi,2 satisfies, if xi = τ , then

fi,2(x) = fi,1(x),

Ofi,2(x) = Ofi,1(x),

O2fi,2(x) = O2fi,1(x),

and if xi = 2τ then

fi,2(x) = fi+1,1(x),

Ofi,2(x) = Ofi+1,1(x),

O2fi,2(x) = O2fi+1,1(x).

Further, g satisfies for τ ≤ xi ≤ 2τ and 0 ≤ xi+1 ≤ τ

−4Lτ ≤ ∂g(xi, xi+1)

∂xi
≤ −2γτ

∂g(xi, xi+1)

∂xi+1

≥ −2γxi+1.

157

and g1 satisfies for τ ≤ xi ≤ 2τ

−4Lτ ≤ ∂g1(xi)

∂xi
≤ −2γτ.

Proof. Let us first construct g1. Since we know for a given i ∈ [1, . . . , d], if xi = τ , ∂fi,1
∂xi

=

−2γτ , ∂2fi,1
∂x2i

= −2γ and if xi = 2τ , ∂fi+1,1

∂xi
= −4Lτ and ∂2fi+1,1

∂x2i
= 2L. Note for L > γ,

0 > −2γτ > −4Lτ and 2L > −4Lτ−(−2γτ)
2τ−τ . Applying Theorem 7.4, we know there exists a

cubic polynomial p(xi) such that

p(τ) = −2γτ and p(2τ) = −4Lτ

p′(τ) = −2γ and p′(2τ) = 2L,

and p(xi) ≤ −2γτ for τ ≤ xi ≤ 2τ . Now define

g1(xi) =

(∫
p

)
(xi)−

(∫
p

)
(τ)− γτ 2.

where
∫
p is the anti-derivative. Note by this definition g1 satisfies the boundary condition at τ .

Lastly we choose ν = −g1(2τ) + 4Lτ 2. It can be verified that this construction satisfies all the
boundary conditions.

Now we consider xi+1. Note when if xi = τ , the only term in f that involves xi+1 is Lx2
i+1

and when xi = 2τ , the only term in f that involves xi+1 is −γx2
i+1. Therefore we can construct

g2 directly:

g2(xi) = −γ − 10(L+ γ)(xi − 2τ)3

τ 3
− 15(L+ γ)(xi − 2τ)4

τ 4
− 6(L+ γ)(xi − 2τ)5

τ 5
.

Note

g′2(xi) = −30(L+ γ)(xi − 2τ)2(xi − τ)2

τ 5
.

After some algebra, we can show this function satisfies for τ ≤ xi ≤ 2τ

g2(xi) ≥ −γ,
g′2(xi) ≤ 0,

g2(τ) = L, g2(2τ) = −γ
g′2(τ) = g′2(2τ) = 0

g′′2(τ) = g′′2(2τ) = 0.

Therefore it satisfies the boundary conditions related to xi+1. Further note that at the boundary
(xi = τ or 2τ), the derivative and the second derivative are zero, so it will not contribute to the
boundary conditions involving xi. Now we can conclude that g and g1 satisfy the requirements
of the lemma.

158

We use the following continuous extension theorem which is a sharpened result of the seminal
Whitney extension theorem [77].
Theorem 7.5 (Theorem 1.3 of [11]). Suppose E ⊆ Rd. Let the Cm (E) norm of a function
F : E → R be sup {|∂α| : x ∈ E, |α| ≤ m}. If E is a closed subset in Rd, then there exists a
linear operator T : Cm (E) → Cm

(
Rd
)

such that if f ∈ Cm (E) is mapped to F ∈ Cm
(
Rd
)

,
then F |E = f and F has derivatives of all orders on Ec. Furthermore, the operator norm ‖T‖op
is at most Cd5m/2, where C depends only on m.

159

Bibliography

[1] Pierre-Antoine Absil, Robert Mahony, and Benjamin Andrews. Convergence of the iterates
of descent methods for analytic cost functions. SIAM Journal on Optimization, 16(2):531–
547, 2005. 4.7.2

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918,
2018. 1

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. arXiv preprint arXiv:1811.03962, 2018. 5

[4] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks:
Implicit acceleration by overparameterization. In International Conference on Machine
Learning, pages 244–253, 2018.

[5] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained anal-
ysis of optimization and generalization for overparameterized two-layer neural networks.
arXiv preprint arXiv:1901.08584, 2019. 1.2.1, 1

[6] Sivaraman Balakrishnan, Simon S Du, Jerry Li, and Aarti Singh. Computationally efficient
robust sparse estimation in high dimensions. In Conference on Learning Theory, pages
169–212, 2017. 1.2.1

[7] Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and Adams Wei Yu. An improved
gap-dependency analysis of the noisy power method. In Conference on Learning Theory,
pages 284–309, 2016. 1.2.1

[8] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local
search for low rank matrix recovery. In Advances in Neural Information Processing Sys-
tems, pages 3873–3881, 2016. 1, 5.1, 7.1

[9] Avrim Blum and Ronald L Rivest. Training a 3-node neural network is NP-complete. In
Advances in neural information processing systems, pages 494–501, 1989. 1, 1

[10] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with
gaussian inputs. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 605–614. JMLR. org, 2017. 5.1, 5.1, 5.2, 5.2, 5.7, 1

[11] Alan Chang. The whitney extension theorem in high dimensions. Revista Matemática
Iberoamericana, 33(2):623–632, 2017. 7.5

[12] Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-

160

parameterized models using optimal transport. In Advances in neural information process-
ing systems, pages 3040–3050, 2018. 2.1

[13] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances in
neural information processing systems, pages 342–350, 2009. 5.2

[14] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann Le-
Cun. The loss surfaces of multilayer networks. In Artificial Intelligence and Statistics,
pages 192–204, 2015. 5.2

[15] Francis H Clarke, Yuri S Ledyaev, Ronald J Stern, and Peter R Wolenski. Nonsmooth
analysis and control theory, volume 178. Springer Science & Business Media, 2008. 4.2.1

[16] Amit Daniely. SGD learns the conjugate kernel class of the network. arXiv preprint
arXiv:1702.08503, 2017. 1

[17] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgra-
dient method converges on tame functions. Foundations of Computational Mathematics,
pages 1–36, 2018. 2, 4.2.3

[18] Randall L Dougherty, Alan S Edelman, and James M Hyman. Nonnegativity-,
monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation. Mathe-
matics of Computation, 52(186):471–494, 1989. 7.8

[19] Dmitriy Drusvyatskiy, Alexander D Ioffe, and Adrian S Lewis. Curves of descent. SIAM
Journal on Control and Optimization, 53(1):114–138, 2015. 4.2.3

[20] Simon Du, Jason Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent
learns one-hidden-layer CNN: Dont be afraid of spurious local minima. In Proceedings of
the 35th International Conference on Machine Learning, pages 1339–1348, 2018. 1.1

[21] Simon S Du and Surbhi Goel. Improved learning of one-hidden-layer convolutional neural
networks with overlaps. arXiv preprint arXiv:1805.07798, 2018. 1.2.1

[22] Simon S Du and Wei Hu. Linear convergence of the primal-dual gradient method
for convex-concave saddle point problems without strong convexity. arXiv preprint
arXiv:1802.01504, 2018. 1.2.1

[23] Simon S Du and Wei Hu. Width provably matters in optimization for deep linear neural
networks. arXiv preprint arXiv:1901.08572, 2019. 1.2.1

[24] Simon S Du and Jason D Lee. On the power of over-parametrization in neural networks
with quadratic activation. In International Conference on Machine Learning, pages 1328–
1337, 2018. 1.2.1

[25] Simon S Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic vari-
ance reduction methods for policy evaluation. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1049–1058. JMLR. org, 2017. 1.2.1

[26] Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos.
Gradient descent can take exponential time to escape saddle points. In Advances in Neural
Information Processing Systems, pages 1067–1077, 2017. 1.1

[27] Simon S Du, Jayanth Koushik, Aarti Singh, and Barnabás Póczos. Hypothesis transfer

161

learning via transformation functions. In Advances in Neural Information Processing Sys-
tems, pages 574–584, 2017. 1.2.1

[28] Simon S Du, Yining Wang, and Aarti Singh. On the power of truncated svd for general high-
rank matrix estimation problems. In Advances in Neural Information Processing Systems,
pages 445–455, 2017. 1.2.1

[29] Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homo-
geneous models: Layers are automatically balanced. In Advances in Neural Information
Processing Systems 31, pages 382–393. 2018. 1.1

[30] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent
finds global minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018. 1.1

[31] Simon S. Du, Jason D. Lee, and Yuandong Tian. When is a convolutional filter easy to
learn? In International Conference on Learning Representations, 2018. 1.1, 2.1, 5.2

[32] Simon S Du, Yining Wang, Sivaraman Balakrishnan, Pradeep Ravikumar, and Aarti
Singh. Robust nonparametric regression under Huber’s epsilon-contamination model. arXiv
preprint arXiv:1805.10406, 2018. 1.2.1

[33] Simon S Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Ruslan R Salakhutdinov,
and Aarti Singh. How many samples are needed to estimate a convolutional neural network?
In Advances in Neural Information Processing Systems, pages 371–381, 2018. 1.2.1

[34] Simon S Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudı́k, and
John Langford. Provably efficient rl with rich observations via latent state decoding. arXiv
preprint arXiv:1901.09018, 2019. 1.2.1

[35] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019. 1.1

[36] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points − online
stochastic gradient for tensor decomposition. In Proceedings of The 28th Conference on
Learning Theory, pages 797–842, 2015. 1, 4.1, 6.3, 7.1, 7.2, 7.6

[37] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
In Advances in Neural Information Processing Systems, pages 2973–2981, 2016. 1, 5.1, 7.1

[38] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank prob-
lems: A unified geometric analysis. In Proceedings of the 34th International Conference
on Machine Learning, pages 1233–1242, 2017. 1, 4.1, 4.1, 4.7.3, 4.7.3, 5.1, 7.1

[39] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. arXiv preprint arXiv:1711.00501, 2017. 5.1

[40] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pages 249–256, 2010. 4.1, 5.1

[41] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint
arXiv:1611.04231, 2016. 3.2.2, 3

162

[42] Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applications.
In Advances in Neural Information Processing Systems, pages 2861–2869, 2014. 5.3, 5.10

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015. 5.1

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1.1, 3.1, 4.1, 6.1, 6.2.1

[45] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to
escape saddle points efficiently. In Proceedings of the 34th International Conference on
Machine Learning, pages 1724–1732, 2017. 1.1, 7.1, 2, 7.2, 7.2, 7.4.1, 7.7.2

[46] Kenji Kawaguchi. Deep learning without poor local minima. In Advances In Neural Infor-
mation Processing Systems, pages 586–594, 2016. 5.1

[47] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop.
In Neural networks: Tricks of the trade, pages 9–50. Springer, 1998. 5.1

[48] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent
only converges to minimizers. In Conference on Learning Theory, pages 1246–1257, 2016.
4.1, 4.1, 4.3.1, 4.7.4, 7.1, 7.1

[49] Xingguo Li, Zhaoran Wang, Junwei Lu, Raman Arora, Jarvis Haupt, Han Liu, and Tuo
Zhao. Symmetry, saddle points, and global geometry of nonconvex matrix factorization.
arXiv preprint arXiv:1612.09296, 2016. 1, 5.1, 7.1

[50] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic
gradient descent on structured data. arXiv preprint arXiv:1808.01204, 2018. 1

[51] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu
activation. In Advances in Neural Information Processing Systems, pages 597–607, 2017.
2.1, 2.1, 5.1, 5.1, 5.2

[52] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013. 6.1

[53] Qihang Lin and Lin Xiao. An adaptive accelerated proximal gradient method and its homo-
topy continuation for sparse optimization. In International Conference on Machine Learn-
ing, pages 73–81, 2014. 6.2.1

[54] Paul Malliavin. Gaussian sobolev spaces and stochastic calculus of variations. In Integra-
tion and Probability, pages 229–252. Springer, 1995. 3.3

[55] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape
of two-layers neural networks. In Proceedings of the National Academy of Sciences, volume
115, pages E7665–E7671, 2018. 2.1

[56] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional
neural networks for volumetric medical image segmentation. In 3D Vision (3DV), 2016
Fourth International Conference on, pages 565–571. IEEE, 2016. 6.1

163

[57] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87.
Springer Science & Business Media, 2013. 7.1, 7.2, 7.6

[58] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006. 7.2

[59] Behnam Neyshabur, Ruslan R Salakhutdinov, and Nati Srebro. Path-SGD: Path-normalized
optimization in deep neural networks. In Advances in Neural Information Processing Sys-
tems, pages 2422–2430, 2015. 5.1

[60] Ioannis Panageas and Georgios Piliouras. Gradient descent only converges to minimiz-
ers: Non-isolated critical points and invariant regions. In 8th Innovations in Theoretical
Computer Science Conference (ITCS 2017), 2017. 4.1, 4.3.1, 4.7.4

[61] Dohyung Park, Anastasios Kyrillidis, Constantine Carmanis, and Sujay Sanghavi. Non-
square matrix sensing without spurious local minima via the Burer-Monteiro approach. In
Artificial Intelligence and Statistics, pages 65–74, 2017. 1, 7.1

[62] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On
the expressive power of deep neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2847–2854. JMLR. org, 2017. 6.5

[63] Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameteriza-
tion to accelerate training of deep neural networks. In Advances in Neural Information
Processing Systems, pages 901–909, 2016. 5.1, 5.7, 5.9.2

[64] Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Weight sharing is crucial to
succesful optimization. arXiv preprint arXiv:1706.00687, 2017. 5.1, 5.1, 5.2

[65] Ohad Shamir. Are ResNets provably better than linear predictors? In Advances in Neural
Information Processing Systems, pages 505–514, 2018. 4.1

[66] Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration
phenomenon via high-resolution differential equations. arXiv preprint arXiv:1810.08907,
2018. 4.5

[67] Mahdi Soltanolkotabi. Learning relus via gradient descent. In Advances in Neural Infor-
mation Processing Systems, pages 2007–2017, 2017. 5.1

[68] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016. 2.1

[69] Weijie Su, Stephen Boyd, and Emmanuel J Candès. A differential equation for modeling
Nesterov’s accelerated gradient method: Theory and insights. Journal of Machine Learning
Research, 17(1):1–43, 2016. 4.5

[70] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. In Information
Theory (ISIT), 2016 IEEE International Symposium on, pages 2379–2383. IEEE, 2016. 1,
7.1

[71] Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere I:
Overview and the geometric picture. IEEE Transactions on Information Theory, 63(2):
853–884, 2017. 1, 7.1

164

[72] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-
v4, inception-resnet and the impact of residual connections on learning. In AAAI, pages
4278–4284, 2017. 6.1, 6.2.1

[73] Yuandong Tian. An analytical formula of population gradient for two-layered relu network
and its applications in convergence and critical point analysis. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 3404–3413, 2017. 5.1,
5.1, 5.2, 6.2, 6.3.2, 6.6.2

[74] Russell Tsuchida, Farbod Roosta-Khorasani, and Marcus Gallagher. Invariance of weight
distributions in rectified MLPs. In International Conference on Machine Learning, pages
5002–5011, 2018. 2.2

[75] Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Ben Recht. Low-
rank solutions of linear matrix equations via procrustes flow. In International Conference
on Machine Learning, pages 964–973, 2016. 4.1

[76] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010. 3.14

[77] Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets.
Transactions of the American Mathematical Society, 36(1):63–89, 1934. 7.7.1, 7.8

[78] Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing compos-
ite objectives. In Advances in Neural Information Processing Systems, pages 3639–3647,
2016. 7.6

[79] Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target functions.
In Artificial Intelligence and Statistics, pages 1216–1224, 2017. 2.2, 5.2

[80] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the
British Machine Vision Conference (BMVC), pages 87.1–87.12, September 2016. 1.1

[81] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2017, 2017. 1.1

[82] Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Residual learning without normalization
via better initialization. In International Conference on Learning Representations, 2019.
3.2.2

[83] Xiao Zhang, Simon Du, and Quanquan Gu. Fast and sample efficient inductive matrix
completion via multi-phase procrustes flow. In Proceedings of the 35th International Con-
ference on Machine Learning, pages 5756–5765, 2018. 1.2.1

[84] Kai Zhong, Zhao Song, and Inderjit S Dhillon. Learning non-overlapping convolutional
neural networks with multiple kernels. arXiv preprint arXiv:1711.03440, 2017. 5.1, 5.2,
5.6

[85] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery
guarantees for one-hidden-layer neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 4140–4149. JMLR. org, 2017. 5.1,
5.2, 5.6

165

	1 Introduction
	1.1 Overview of Thesis
	1.2 Bibliographic Notes
	1.2.1 Excluded Research

	1.3 Notations

	I Gradient Descent for Empirical Risk Minimization in Deep Learning
	2 Gradient Descent Provably Optimizes Over-paramterized Two-layer ReLU Neural Networks
	2.1 Introduction
	2.2 Continuous Time Analysis
	2.2.1 Proof of Theorem 2.2

	2.3 Discrete Time Analysis
	2.3.1 Proof of Theorem 2.3

	2.4 Experiments
	2.5 Conclusion
	2.6 Proofs for Section 2.2
	2.7 Proofs for Section 2.3

	3 Gradient Descent Provably Optimizes Over-parameterized Deep Neural Networks with Smooth Activation
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Activation Function
	3.2.2 Problem Setup

	3.3 Technique Overview
	3.4 Convergence Result of GD for Deep Fully-connected Neural Networks
	3.5 Convergence Result of GD for ResNet
	3.6 Convergence Result of GD for Convolutional ResNet
	3.7 Conclusion and Future Work
	3.8 Proof Sketch
	3.9 Proofs for Section 3.4
	3.9.1 Proofs of Lemmas

	3.10 Proofs for Section 3.5
	3.10.1 Proofs of Lemmas

	3.11 Proofs for Section 3.6
	3.11.1 Proofs of Lemmas

	3.12 Analysis of Random Initialization
	3.12.1 A General Framework for Analyzing Random Initialization in First (H-1) Layers
	3.12.2 From K(H-1) to K(H)

	3.13 Full Rankness of K(h)
	3.13.1 Full Rankness of K(h) for the Fully-connected Neural Network
	3.13.2 Full Rankness of K(h) for ResNet

	3.14 Useful Technical Lemmas

	4 Auto-balancing Property of Gradient Descent for Optimizing Deep Homogeneous Models
	4.1 Introduction
	4.1.1 Notations

	4.2 The Auto-Balancing Properties in Deep Neural Networks
	4.2.1 Fully Connected Neural Networks
	4.2.2 Convolutional Neural Networks
	4.2.3 Proof of Theorem 4.1

	4.3 Gradient Descent Converges to Global Minimum for Asymmetric Matrix Factorization
	4.3.1 The General Rank-r Case
	4.3.2 The Rank-1 Case

	4.4 Empirical Verifications
	4.5 Conclusion and Future Work
	4.6 Proofs for Section 4.2
	4.7 Proof for Rank-r Matrix Factorization (Theorem 4.4)
	4.7.1 Proof of Lemma 4.1
	4.7.2 Convergence to a Stationary Point
	4.7.3 Proof of Lemma 4.2
	4.7.4 Finishing the Proof of Theorem 4.4

	4.8 Proof for Rank-1 Matrix Factorization (Theorem 4.5)

	II Parameter Estimation in Convolutional Neural Networks via Gradient Descent
	5 Learning a Two-layer Convolutional Neural Network via Gradient Descent
	5.1 Introduction
	5.2 Preliminaries
	5.3 Main Result
	5.3.1 Gradient Descent Can Converge to the Spurious Local Minimum

	5.4 Proof Sketch
	5.4.1 Qualitative Analysis of Convergence
	5.4.2 Quantitative Analysis of Two Phase Phenomenon

	5.5 Experiments
	5.5.1 Multi-phase Phenomenon
	5.5.2 Probability of Converging to the Global Minimum

	5.6 Conclusion and Future Work
	5.7 Proofs of Section 5.2
	5.8 Proofs of Qualitative Convergence Results
	5.9 Proofs of Quantitative Convergence Results
	5.9.1 Useful Technical Lemmas
	5.9.2 Convergence of Phase I
	5.9.3 Analysis of Phase II

	5.10 Proofs of Initialization Scheme
	5.11 Proofs of Converging to Spurious Local Minimum

	6 Learning a Convolutional Filter via Gradient Descent
	6.1 Introduction
	6.2 Warm Up: Analyzing One-Layer One-Neuron Model
	6.2.1 Convergence Rate of One-Layer One-Neuron Model

	6.3 Main Results for Learning a Convolutional Filter
	6.3.1 What distribution is easy for SGD to learn a convolutional filter?
	6.3.2 The Power of Random Initialization

	6.4 Experiments
	6.5 Conclusions and Future Work
	6.6 Proofs and Additional Theorems
	6.6.1 Proofs of the Theorem in Section 6.2
	6.6.2 Proofs of Theorems in Section 6.3

	III When Does Gradient Descent Fail?
	7 Gradient Descent Can Take Exponential Time to Escape Saddle Points
	7.1 Introduction
	7.2 Preliminaries
	7.3 Warmup: Examples with ``Un-natural" Initialization
	7.4 Main Result
	7.4.1 Proof Sketch

	7.5 Experiments
	7.6 Conclusion and Future Work
	7.7 Proofs for Results in Section 7.4
	7.7.1 Proof for Claim 1 of Theorem 7.3
	7.7.2 Proof for Claim 2 of Theorem 7.3
	7.7.3 Proof for Corollary 7.2

	7.8 Auxiliary Theorems

	Bibliography

