
Anomaly Detection in Graphs and Time

Series: Algorithms and Applications

Bryan Hooi

April 2019

CMU-ML-19-100

Machine Learning Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Christos Faloutsos, Chair

David Choi

Leman Akoglu

Vipin Kumar, University of Minnesota

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2019 Bryan Hooi

This research was supported by the National Science Foundation under Grant No. CNS-1314632, IIS-1408924, and

by the Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053, and in part by the

Defense Advanced Research Projects Agency (DARPA) under award no. FA8750-17-1-0059 for the RADICS pro-

gram. The views and conclusions contained in this document are those of the author and should not be interpreted

as representing the o�cial policies, either expressed or implied, of any sponsoring institution, the U.S. government

or any other entity.

Keywords: anomaly detection, unsupervised, graph, time series, dynamic graphs, fraud

detection, tensor

To my family, who have always been there for me. I love you all.

iv

Abstract

How can we detect fraudsters in large online review networks, or power grid

failures using electrical sensor data? With the increasing availablility of web-scale

graphs and high-frequency sensor data, anomaly detection in massive datasets has

seen growing focus. Social networks such as Facebook and Twitter contain up

to billions of users. Similarly, large scale sensor data includes networks of tra�c

speed detectors that span freeway systems in major metropolitan areas, networks

of voltage sensors spanning the electrical power grid, as well as numerous types

of industrial, weather and environmental sensors. These datasets have created an

increasing need for scalable algorithms that can automatically analyze this data and

�ag users or events which are anomalous or of interest.

This thesis focuses on these problems, by developing scalable, principled algo-

rithms that detect unusual behavior or events. We focus on the use of connectivity
and temporal information, which allow us to detect anomalies in large graphs such

as social networks, as well as for sensor datasets such as tra�c data, which contain

multiple sensors varying over time, that are also arranged on a graph.

First, we focus on static graphs, in which only connectivity information is present.

For example, how can we detect fraudsters in a user-product review graph, or a

Twitter follower-followee graph? We �rst propose a probabilistic approach that

evaluates how surprising a dense subgraph is, while avoiding Erdos-Renyi assump-

tions of existing methods. We then consider how to detect dense subgraphs in a

way that prevents anomalous users from evading detection by manipulating their

features. Our approach improves detection accuracy by up to 70% F-measure over

comparable baselines, and detects a Twitter subgraph of more than 4000 accounts,

a majority of which used follower-buying services.

Next, we consider time series: for example, how can we detect anomalous events,

such as electrical component failures in power grid time series? We develop algo-

rithms for modelling and detecting anomalies in discrete time-series data, such as

ratings, where a set of users rate a set of products; and real-valued power grid

data, in which we use physics-based circuit models to accurately model and de-

tect anomalies. Then, for mixed categorical, numeric and ordinal data, we propose

an online nonparametric anomaly detection approach, that detects anomalies with

61% higher F-measure than related baselines.

Finally, merging graphs and time series, we consider graphs with sensors. Con-

sider a set of sensors arranged in a graph, each collecting data over time: for exam-

ple, tra�c speed sensors, which are arranged on a road network, or voltage sensors

on a power grid network. We develop algorithms for detecting anomalous events

or large changes happening on a subset of the graph nodes, such as tra�c accidents

or power line failures. Additionally, we propose algorithms for near-optimally se-

lecting locations for new sensors to be placed on a power grid graph, improving

the detection of electrical component failures by 59% or more F-measure.

vi

Acknowledgments

First, I want to thank my family for their love and constant encouragement

over the years. Thanks for always Skyping with me and keeping me connected to

what’s going on at home; for giving me advice, encouragement, and prayers; for

encouraging my interest in computer science; for pointing me toward important

real-world problems; and for supporting me over the years in numerous ways.

I cannot overstate how thankful I am to my advisor, Christos Faloutsos. Through-

out my time in graduate school, I really appreciated his kindness and excitement

for research, and how he genuinely cares about the personal well-being and growth

of his students, constantly guiding us with a wealth of patience, insight and expe-

rience. During our meetings, he is always incredibly enthusiastic and energetic,

which helped to make research an enjoyable experience for me, even during late-

night paper writing sessions before a conference deadline. Christos has always

helped greatly in preparing me for an independent academic career, by involving

me in research proposal writing, student mentorship, giving me guidance on job

search, and numerous very helpful suggestions on giving research presentations,

paper writing and so on. Even during the times when he was on sabbatical, he still

spent hours meeting me and other students remotely on Skype on the weekends

to give us advice on research, discuss new ideas, always with endless patience. He

has been my role model, and I hope to emulate his kindness and care for others’

well-being, as I continue working with others.

I also want to thank my other thesis committee members: Leman Akoglu, David

Choi, and Vipin Kumar. Their guidance, questions and comments throughout the

process were invaluable to me in shaping the direction of the thesis, and helped me

in shaping my understanding of anomaly detection. I especially thank Leman for

being a wonderful collaborator in research - I certainly learned a lot from our re-

search discussions and group meetings, particularly from your insightful and detail-

oriented way in which you study and understand papers. I am also very thankful

to Susan Holmes, who was my undergraduate research advisor: thank you for all

you taught me about research, and for your kind, patient, and enthusiastic advising

as I worked on my undergraduate thesis.

I am also very grateful to my friends in the data mining group: graduate school

has been a much more fun, productive and enriching experience for me thanks

to the chance to discuss ideas and do research with all of you. Alex Beutel, Neil

Shah, Vagelis Papalexakis, Danai Koutra, Aditya Prakash: thank you for the con-

stant mentoring and guidance you all gave to myself and the rest of the group; for

guiding us around during conferences and making conferences a much more fun

experience, for your tips on all aspects of graduate school life, and for being good

examples through your work for how to do excellent research. I also greatly thank

Kijung Shin, Dhivya Eswaran, Hyun Ah Song, Hemank Lamba, Miguel Araujo,

Namyong Park, Minji Yoon, and Shubhranshu Shekhar for making the data mining

group fun, and always being amazing collaborators: thanks for being great to hang

out with and bounce research ideas o�; I am very grateful for being able to work

with all of you. I have also learned a lot about research from my collaborators as

well as visitors over the years at CMU: Meng Jiang, Shenghua Liu, Srijan Kumar,

Stephan Günnemann, Tsubasa Takahashi, Rohan Kumar, and Yasuko Matsubara; as

well as my other collaborators: Asim Smailagic, Pedro Costa, Aastha Nigam, Nitesh

Chawla, Boleslaw Szymanski, Mohit Kumar, Disha Makhija and others. I greatly

enjoyed working with all of you; thanks for patiently guiding and teaching me to

do research, especially when I was a new PhD student.

I also thank my o�ce-mates (Kevin Lin, Taylor Pospisil, Collin A. Politsch,

Peter Elliott, Yo Joong Choe, Conor Igoe, Tom Yan), as well as my cohort-mates

and friends in statistics and computer science: Jisu Kim, Shashank Singh, Natalie

Klein, Yotam Hechtlinger, Jining Qin, Lee Richardson, Sangwon Hyun, Nicolas

Kim, Qiong Zhang, Chun Kai Ling, William Herlands, Chun-Liang Li, Ian Yen,

Darby Losey, Pratik Patil, Yining Wang and many others, for fun discussions, enjoy-

able times taking classes together, good discussions over meals, and for watching

Youtube videos together on all kinds of topics, which were a distraction from re-

search work that I always appreciated. Much thanks also goes to my friends and

collaborators in the electrical and computer engineering department: Larry Pileggi,

Amritanshu Pandey, Marko Jereminov, and Shimiao Li: thanks for being such en-

thusiastic, helpful and patient collaborators. I knew nothing about electrical engi-

neering when we started to work together, but you all always managed to make

meetings fun and productive anyway, and I learned a lot from all of you.

Last but certainly not least, I greatly appreciate the wonderful administrative

support from Marilyn Walgora, Diane Stidle, Ann Stetser, Adrienne McCorkle,

Margie Smykla, Todd Seth, and Tony Mareino: thanks for always being amazingly

helpful and even going the extra mile in so many ways, whether in organizing con-

ference trips, accommodating special food requests for group meetings, and many

others; I really enjoyed working with all of you. Best wishes to all of you and happy

retirement Marilyn.

I could not have done it without all of you: thank you for making this a happy

and formative period in my life.

viii

Contents

1 Introduction 1

1.1 Overview and Contributions . 3

1.2 Detailed Chapter Summaries . 4

1.2.1 Part I: Graphs . 4

1.2.2 Part II: Time Series . 5

1.2.3 Part III: Graphs with Sensors . 8

2 Background 11

2.1 Graphs . 11

2.2 Time Series . 12

2.3 Graphs with Sensors . 12

I Graphs 13

3 TellTail: Scoring Dense Subgraphs 17

3.1 Introduction . 17

3.2 Related Work . 19

3.3 Background: Generalized Pareto . 20

3.4 Problem De�nition . 22

3.5 Proposed Approach . 23

3.5.1 Introductory Example . 23

3.5.2 Subgraph Mass Pro�les . 23

3.5.3 Empirical Observations . 24

3.6 Proposed Measures . 25

3.6.1 Tail Measure . 25

3.6.2 Adjusting for Degree: the TailDC Measure 25

3.6.3 Dense Subgraph Power Laws . 26

3.6.4 TellTail: Fast Scoring using Power Laws 26

3.6.5 Basic Optimization Algorithm . 28

3.6.6 Improved Algorithm: TellTail-Search+ 28

3.7 Theoretical Results . 29

3.7.1 Consistency . 29

ix

3.7.2 Proposed Monotonicity Axioms . 31

3.7.3 NP Completeness . 32

3.7.4 Q1. Scalability . 34

3.7.5 Q2. Accuracy of Measure . 36

3.7.6 Q3. Real-World E�ectiveness . 37

3.7.7 Case Study on Twitter Data . 38

3.8 Conclusion . 39

4 Fraudar: Fraud Detection in an Adversarial Setting 41

4.1 Introduction . 41

4.2 Background and Related Work . 43

4.3 Problem De�nition . 44

4.4 Proposed Method . 47

4.4.1 Metric . 47

4.4.2 Algorithm . 49

4.4.3 Theoretical Bounds . 51

4.4.4 Edge Weights and Camou�age Resistance 52

4.4.5 Implications: Bounding Fraud . 53

4.5 Experiments . 54

4.5.1 Q1. Illustration of our Theorem . 55

4.5.2 Q2. Evaluation on Synthetic Data . 55

4.5.3 Q3. E�ectiveness on Real Data . 57

4.5.4 Q4. Scalability . 59

4.6 Conclusion . 59

II Time Series 61

5 BirdNest: Fraud Detection in Timestamped Ratings 65

5.1 Introduction . 65

5.2 Background and Related Work . 67

5.3 Bayesian Model . 68

5.3.1 Motivating Example . 68

5.3.2 Proposed Model . 70

5.4 Proposed Algorithms . 72

5.4.1 Fitting our Bayesian Model (BIRD) . 72

5.4.2 NEST: Proposed Metric for Detecting Suspicious Users 75

5.5 Experiments . 77

5.5.1 Q1: E�ectiveness . 78

5.5.2 Q2: Scalability . 79

5.5.3 Q3: Interpretability . 79

5.6 Conclusion . 81

x

6 StreamCast: Forecasting and Anomaly Detection in Power Grid Time Series 83

6.1 Introduction . 83

6.2 Background and Related Work . 85

6.2.1 Related Work . 85

6.2.2 Background . 86

6.3 Proposed Model . 86

6.3.1 Proposed Dynamic BIG Model . 87

6.3.2 Dynamic BIG with Temperature Model 88

6.4 Proposed Optimization Objective . 88

6.5 Proposed StreamCast Algorithm . 88

6.5.1 Overview . 89

6.5.2 Streaming Optimization (StreamFit) . 89

6.5.3 Temperature Model Optimization (TempFit) 90

6.5.4 Forecasting Step (Forecast) . 91

6.5.5 Extensions . 91

6.6 Experiments . 92

6.6.1 Data . 92

6.6.2 Q1. Forecasting accuracy . 92

6.6.3 Q2. Scalability . 93

6.6.4 Q3. What-if scenarios . 94

6.7 Conclusion . 97

7 BNB: Nonparametric Anomaly Detection in Mixed Time Series 99

7.1 Related Work . 101

7.2 Problem De�nition . 101

7.2.1 Problem Setting . 101

7.3 Illustrative Example . 103

7.4 Proposed BNB Algorithm . 104

7.4.1 Random Partition Tree . 104

7.4.2 Change Score . 105

7.4.3 E�cient Implementation . 106

7.4.4 Online Algorithm (BNBO) . 108

7.4.5 Time Complexity . 108

7.5 Theoretical Analysis . 108

7.5.1 Interpretation of Separation Depth . 108

7.5.2 Bounds on False Positive Rate . 109

7.6 Experiments . 111

7.6.1 Q1. Detection Accuracy . 112

7.6.2 Q2. Scalability . 114

7.6.3 Q3. Real-World E�ectiveness . 116

7.7 Conclusion . 117

xi

8 SMF: Drift-Aware Matrix Factorization with Seasonal Patterns 119

8.1 Introduction . 119

8.2 Background and Related Work . 121

8.3 Model . 122

8.3.1 Proposed SMF Model . 122

8.4 Proposed SMF Algorithm . 123

8.4.1 Initialization Step . 124

8.4.2 Online Updates . 124

8.4.3 Speeding up Updates . 125

8.4.4 Forecasting . 126

8.4.5 Anomaly Detection: SMF-A Algorithm 126

8.5 Experiments . 128

8.5.1 Q1: Forecasting Accuracy . 129

8.5.2 Q2: Scalability . 129

8.5.3 Q3: Real-World E�ectiveness . 132

8.5.4 Anomaly Detection . 134

8.6 Conclusion . 135

III Graphs with Sensors 137

9 ChangeDAR: Localized Anomaly Detection in Graphs with Sensors 141

9.1 Introduction . 141

9.2 Related Work . 143

9.3 Background . 144

9.3.1 Prize-Collecting Steiner Tree (PCST) . 144

9.3.2 Maximum Weight Independent Set (MWIS) 145

9.4 Problem . 146

9.4.1 Problem Setting . 146

9.5 Change Scoring: ChangeDAR-S . 147

9.5.1 Optimization Objective . 147

9.5.2 Optimization Approach . 150

9.5.3 Theoretical Results . 151

9.6 Change Detection: ChangeDAR-D . 152

9.6.1 Optimization Objective . 153

9.6.2 Optimization Approach . 153

9.6.3 Theoretical Results . 154

9.7 Experiments . 157

9.7.1 Q1. Detection Accuracy . 157

9.7.2 Q2. Localization Accuracy . 158

9.7.3 Q3. Scalability . 160

9.8 Conclusion . 161

xii

10 GridWatch: Sensor Selection and Anomaly Detection on the Power Grid 163

10.1 Introduction . 163

10.2 Background and Related Work . 165

10.2.1 Background: Submodular Functions . 166

10.3 GridWatch-D Anomaly Detection Algorithm 167

10.3.1 Types of Anomalies . 168

10.3.2 Proposed Anomaly Score . 170

10.4 Sensor Placement: GridWatch-S . 171

10.4.1 Proposed Optimization Objective . 172

10.4.2 Properties of Objective . 172

10.4.3 Proposed GridWatch-S Algorithm . 173

10.4.4 Approximation Bound . 173

10.5 Experiments . 174

10.5.1 Q1. Anomaly Detection Accuracy . 175

10.5.2 Q2. Sensor Selection Quality . 176

10.5.3 Q3. Scalability . 177

10.6 Conclusion . 177

11 Conclusion and Future Work 181

11.1 Summary and Overarching Themes . 181

11.2 Vision and Future Work . 182

11.3 Closing Thoughts . 183

Bibliography 185

xiii

xiv

List of Figures

1.1 Applications of anomaly detection approaches 2

1.1a Fake followers . 2

1.1b Fake reviews . 2

1.1c Tra�c accidents . 2

2.1 Static graph . 11

2.2 Bipartite graph . 11

2.3 Weighted graph . 11

2.4 Induced subgraph . 12

2.5 Graph with sensors . 12

3.1 E�ectiveness of TellTail . 18

3.1a Accuracy (UCForum dataset) . 18

3.1b Quasi-linear runtime . 18

3.1c Accurate con�dence estimates . 18

3.2 TellTail avoids size-bias . 20

3.2a Average Degree measure . 20

3.2b Modularity measure . 20

3.2c TellTail measure . 20

3.3 Subgraph mass pro�le . 23

3.4 GP distribution closely �ts mass distributions of real graphs 24

3.4a UCForum dataset (n = 899) . 24

3.4b Blogs dataset (n = 1.2K) . 24

3.4c InternetAS dataset (n = 34K) . 24

3.5 Power law patterns in GP parameters . 27

3.6 TellTail+ reduces graph size . 35

3.7 TailF outperforms baselines in accuracy . 36

3.7a UCForum . 36

3.7b Email . 36

3.7c Blogs . 36

3.7d Petster . 36

3.7e PGP . 36

3.7f AstroPh . 36

3.7g DBLP . 36

xv

3.7h InternetAS . 36

3.8 TellTail+ detects a follower-boosting scheme 38

4.1 E�ectiveness of Fraudar . 42

4.1a Detection region . 42

4.1b Accuracy . 42

4.1c Fraction of con�rmed fraudsters . 42

4.1d Sample fraudster caught . 42

4.2 Examples of possible attacks . 46

4.3 Fraudar’s bounds on fraud are stringent . 56

4.4 Fraudar outperforms competitors . 56

4.5 Fraudar detects a large, clearly fraudulent block in Twitter 59

4.6 Follower-buying services . 60

4.7 Fraudar runs in near-linear time . 60

5.1 E�ectiveness of BIRDNEST in practice . 66

5.1a Burstiness . 66

5.1b Accuracy . 66

5.2 Di�erence between detected and normal users 67

5.3 Rating distribution of example users . 69

5.4 Motivating example: posterior distributions . 70

5.5 Graphical model describing users and ratings . 72

5.6 BIRDNEST is fast and scalable . 79

5.7 BIRDNEST is interpretable and agrees with intuition 80

6.1 StreamCast forecasts accurately . 93

6.1a CMU data . 93

6.1b LBNL data . 93

6.2 StreamCast is fast and scales linearly . 94

6.3 StreamCast handles forecasting under what-if scenarios 95

6.4 StreamCast accurately responds to changes in voltage 96

6.5 StreamCast detects an anomaly in the LBNL dataset 97

6.6 StreamCast provides con�dence intervals . 98

7.1 BNB is scalable and accurate . 100

7.1a Scalability . 100

7.1b Accuracy . 100

7.2 BNB is adaptive and nonparametric . 104

7.2a Original drawing . 104

7.2b Gaussian approach fails . 104

7.2c Random partition approach �nds change point 104

7.2d Peak in change score coincides with ground truth 104

7.3 Accuracy for single change points . 114

7.3a Without normalization . 114

7.3b With normalization . 114

xvi

7.4 Accuracy for multiple change points . 115

7.4a Without normalization . 115

7.4b With normalization . 115

7.5 Insensitive to parameters . 116

7.6 Linear scalability . 116

7.6a Time ticks . 116

7.6b Dimensions . 116

7.7 Accuracy for occupancy detection . 117

8.1 E�ectiveness of SMF . 120

8.1a Accurate . 120

8.1b Scales linearly . 120

8.1c Detects anomalies . 120

8.2 Illustration of our model . 123

8.3 SMF outperforms baselines in accuracy . 130

8.3a RMSE (Disease) . 130

8.3b RMSE (Taxi) . 130

8.3c Time-series RMSE (Disease) . 130

8.3d Time-series RMSE (Taxi) . 130

8.4 SMF is fast . 131

8.5 SMF scales linearly . 131

8.5a Attributes . 131

8.5b Time ticks . 131

8.5c Nonzero entries . 131

8.6 SMF is insensitive to parameter values . 132

8.6a Disease . 132

8.6b Taxi . 132

8.7 SMF provides interpretable results with seasonal information 133

8.7a ‘Tourism’: weekly pattern . 133

8.7b ‘Tourism’: pickup location . 133

8.7c ‘Tourism’: dropo� location . 133

8.7d ‘Commute’: weekly pattern . 133

8.7e ‘Commute’: pickup location . 133

8.7f ‘Commute’: dropo� location . 133

8.7g ‘Entertainment’: weekly pattern . 133

8.7h ‘Entertainment’: pickup location . 133

8.7i ‘Entertainment’: dropo� location . 133

8.8 SMF allows components to change over time . 134

8.8a Shift towards Brooklyn . 134

8.8b Increase in green taxis . 134

8.9 SMF detects multiple types of anomalies . 135

9.1 ChangeDAR correctly locates a tra�c accident 143

9.2 Outline of steps . 145

xvii

9.3 ChangeDAR correctly detects a power failure 159

9.4 ChangeDAR accurately detects power line failures 160

9.4a PolandHVN1 . 160

9.4b PolandHVN2 . 160

9.4c PolandHVN3 . 160

9.4d PolandHVN4 . 160

9.5 ChangeDAR accurately locates tra�c accidents 160

9.6 ChangeDAR scales linearly . 161

9.6a Time ticks . 161

9.6b Edges . 161

10.1 E�ectiveness of GridWatch . 165

10.1a Selects sensor locations . 165

10.1b Anomaly scores . 165

10.1c Accuracy . 165

10.2 Domain-aware model for anomalies . 168

10.3 GridWatch-D outperforms alternate anomaly detection methods 176

10.4 GridWatch-S provides e�ective sensor selection 178

10.5 Our algorithms scale linearly . 179

10.5a GridWatch-D . 179

10.5b GridWatch-S . 179

xviii

List of Tables

1.1 Overview of this thesis . 3

3.1 Symbols and De�nitions . 22

3.2 Power law patterns across multiple datasets . 27

3.3 Datasets used in our experiments . 35

3.4 TailF outperforms baselines . 38

3.5 TellTail and TellTail+ outperform baselines 38

4.1 Comparison between Fraudar and other fraud detection algorithms 44

4.2 Symbols and De�nitions . 45

4.3 Bipartite graph datasets used in our experiments 55

5.1 Notation and symbols . 71

5.2 Datasets user . 78

5.3 BIRDNEST detects fake reviews in the SWM data 79

6.1 Comparison between StreamCast and existing approaches 86

6.2 Symbols and de�nitions . 87

6.3 Accuracy under di�erent voltage levels . 96

7.1 Comparison of relevant change detection approaches 102

7.2 Symbols and de�nitions . 102

7.3 Datasets used . 111

7.4 Accuracy for single change points . 113

7.5 Accuracy for single change points (normalized) 113

7.6 Accuracy for multiple change points . 114

7.7 Accuracy for multiple change points (normalized) 115

8.1 Comparison between methods . 122

8.2 Symbols and de�nitions . 123

8.3 Datasets used . 129

8.4 SMF outperforms baselines in anomaly detection 135

9.1 Comparison of change detection approaches . 144

9.2 Symbols and de�nitions . 146

9.3 Datasets used . 157

xix

10.1 Comparison of related approaches . 166

10.2 Symbols and de�nitions . 167

10.3 Datasets used . 175

xx

Chapter 1

Introduction

A capacity for surprise is an essential aspect of

our mental life, and surprise itself is the most

sensitive indication of how we understand our

world and what we expect from it.

Daniel Kahnemann, Thinking, Fast and Slow

Our brains contain unconscious but sophisticated machinery for detecting deviations from

normality and responding to them quickly. In Thinking, Fast and Slow, Kahnemann writes:

“Studies of brain responses have shown that violations of normality are detected with aston-

ishing speed and subtlety. In a recent experiment, people heard the sentence ‘Earth revolves

around the trouble every year.’ A distinctive pattern was detected in brain activity, starting

within two-tenths of a second of the onset of the odd word. Even more remarkable, the same

brain response occurs at the same speed when a male voice says, ‘I believe I am pregnant be-

cause I feel sick every morning’ ... A vast amount of world knowledge must instantly be brought

to bear for the incongruity to be recognized [KE11].”

The challenge of quickly noticing deviations from normality is important not just for hu-

mans, but also in computer science. In many applications, extremely high-volume data arrives

constantly, and the challenge for algorithms is to perform the role that attention does in our

brains: of rapidly identifying anomalies in order to surface and respond to them as quickly

as possible. Hence, with the increasing availablility of web-scale graphs and high-frequency

sensor data, anomaly detection in massive datasets has seen growing focus. Social networks

such as Facebook and Twitter contain up to billions of users. Similarly, large-scale sensor data

involves numerous types of weather and environmental sensors, networks of voltage sensors

spanning the electrical power grid, and networks of tra�c speed detectors that span freeway

systems in major metropolitan areas.

These datasets are creating an increasing need for scalable algorithms that can automati-

cally analyze this data and �ag users or events which are anomalous or of interest. For example,

in online commerce and social networks, we are often interested in automatically �agging po-

tentially fraudulent users, spam, network intrusions or other forms of attacks. In large-scale

sensor data, we are often interested in unusual events or deviations from normal behavior, such

1

as tra�c accidents, major weather events, or the breakdown of electrical components in power

systems data.

(a) Fake followers (b) Fake reviews

5pm 6pm 7pm
Time

20

40

60

M
ile

s
pe

r h
ou

r

Output: time of change
5.50pm: ROYAL
COACHES
ADVS ETA 5
MINS

6.29pm:
UNIT
CLEARED

5.28pm: INJ TC ; BLK
HOND ACC VS WORK
TRK
5.29pm: LACOFD
ENRT
5.30pm: Request:
ROYAL COACHES
TOW

Los Angeles & Ventura
Input: graph, and sensor values (vehicle speeds)

Output:
localization
of change

Speed
sensors

5pm 6pm 7pm
Time

0

50

M
ile

s
pe

r h
ou

r

5pm 6pm 7pm
Time

0

50

M
ile

s
pe

r h
ou

r

(c) Tra�c accidents

Figure 1.1: Applications of our anomaly detection approaches. (a) Social networks: we detect

a large group of fake followers in Twitter. (b) Online reviews: we detect fake reviews in an

online application market. (c) Tra�c: we detect ground truth tra�c accidents (in red) in a

dataset containing tra�c speed sensors on a road network.

Figure 1.1 shows examples of anomalies in di�erent domains detected by our approaches.

In Figure 1.1a, we use connectivity information to detect a large group of fake followers in

Twitter. In Figure 1.1b, using temporal information, we detect fake reviews such as this review

which advertises ‘codes’ instead of reviewing the product: we detect these using the temporally

bursty nature of groups of fake reviews. In Figure 1.1c, we combine connectivity and temporal

information to detect tra�c accidents based on tra�c speed data: tra�c accidents a�ect a small

localized set of nodes on the road tra�c graph, and cause a drop in tra�c speed over a short time

frame. In this �gure, nodes represent speed sensors. Red nodes indicate the 3 nodes detected

by our algorithm. The 3 plots on the right show the drops in tra�c speed on these sensors,

which was detected by our method as a change point, and the dark blue text shows ground

truth tra�c reports, which indicate that a tra�c accident occurred.

There is a rich literature in anomaly (or outlier) detection, which de�nes anomalies as “ob-

servations which appear to be inconsistent with the rest of the observations” [BL74]. This the-

sis studies anomaly detection using graphs and time-series data: we aim to detect anomalies in

large graphs such as social networks, as well as time-series sensor datasets, which often involve

multiple sensors arranged on a graph and varying over time. Such data are commonplace in

modern real-world applications (e.g. arising from online systems), but does not �t neatly into

the traditional outlier detection setting, where observations are treated as independent from

one another. Hence, the questions we aim to answer are:

• Q1. Graphs: How can we identify subgraphs with unusual connectivity in a graph?

• Q2. Time Series: How can we use temporal information to detect time periods contain-

ing unusual activity?

• Q3. Graphs with Sensors: Given time-series sensors arranged on a static graph, how

can we detect the time and location of unusual events?

2

1.1 Overview and Contributions

This thesis is organized into three main parts. In Part I, we study how to use connectivity

(i.e. graph) information to detect unusual behavior. Part II we focuses on using time-series

information. Finally, Part III considers how to combine connectivity and temporal information,

in the setting of graphs with sensors.

Table 1.1 provides an overview of this thesis.

Table 1.1: Overview of this thesis.

Setting Goals Method

Graphs

(Part I)

Graphs (non-adversarial) Anomaly Detection TellTail [PDF]

Graphs (adversarial) Anomaly Detection (Robust) Fraudar [PDF]

Time-Series

(Part II)

Time-Series (categorical) Anomaly Detection BirdNest [PDF]

Time-Series (real-valued) Anomaly Detection, Forecasting StreamCast [PDF]

Time-Series (mixed) Anomaly Detection BNB [PDF]

Time-Series (matrix-valued) Anomaly Detection, Forecasting SMF [PDF]

Graphs with

Sensors (Part III)

Graphs with Sensors Anomaly Detection ChangeDAR [PDF]

Graphs with Sensors Anomaly Detection, Sensor Placement GridWatch [PDF]

Summary of Technical Contributions

• Graphs (Part I): Our TellTail provides a probabilistic score for how measuring how

abnormal a subgraph is, while Fraudar considers how to detect abnormal subgraphs

in a robust way against adversarial manipulation, improving detection accuracy by up

to 70% F-measure over comparable baselines, and detecting a Twitter subgraph of more

than 4000 accounts, a majority of which used follower-buying services.

• Time Series (Part II): BirdNest performs anomaly detection in categorical (e.g. rat-

ings) data, while StreamCast considers real-valued (e.g. electrical sensor) data. Then,

for mixed categorical, numeric and ordinal data, we propose an online nonparametric

anomaly detection approach, BNB, that detects anomalies more accurately than base-

lines, by 61% F-measure. Lastly, SMF performs forecasting and anomaly detection in a

time series of matrices, capturing seasonality and drift.

• Graphs with Sensors (Part III): ChangeDAR detects the time and location of sudden

changes in a localized region of the graph. We then develop GridWatch, an anomaly

detection approach for power grid data, which also studies how to near-optimally select

locations for new sensors to be placed on a power grid graph, improving the detection of

component failures by 59% or more F-measure.

Reproducibility: Our code is open-sourced, and our datasets used are available at www.
andrew.cmu.edu/user/bhooi/code.

3

http://www.andrew.cmu.edu/user/bhooi/telltail/
http://www.andrew.cmu.edu/user/bhooi/papers/fraudar_kdd16.pdf
http://www.andrew.cmu.edu/user/bhooi/papers/birdnest_sdm16.pdf
http://www.andrew.cmu.edu/user/bhooi/papers/streamcast_sdm18.pdf
http://www.andrew.cmu.edu/user/bhooi/bnb/paper.pdf
http://www.andrew.cmu.edu/user/bhooi/smf/paper.pdf
http://www.andrew.cmu.edu/user/bhooi/changedar/paper.pdf
http://www.andrew.cmu.edu/user/bhooi/papers/gridwatch_pkdd18.pdf
www.andrew.cmu.edu/user/bhooi/code
www.andrew.cmu.edu/user/bhooi/code

Summary of Impact

• Industry Adoption: BirdNestwas deployed at Flipkart for detecting ratings fraud, who

found that all of the top 50 reported suspicious users all involved fraud. ChangeDAR

and GridWatch contribute to DARPA’s $77 million Rapid Attack Detection, Isolation

and Characterization Systems (RADICS) program, for power grid security.

• Taught in Graduate Classes: our methods are being taught in graduate classes - e.g.

University of Michigan (Mining Large-Scale Graph Data) and Virginia Tech (Data Mining

Large Networks and Time-Series).

• Academic Recognition: Fraudar received KDD 2016 Best Paper Award and CogX 2017

Award for Best Student Paper in AI, and was invited to the TKDD special issue for “Best

of KDD 2016”. GridWatch received the Runner-up Best Student Paper of ECML-PKDD

2018.

• Media Coverage: Fraudar was covered by NSF (Discovery Files podcast), WESA - Pitts-

burgh NPR, TechXplore, Stanford Scholar, and Crain’s.

Next, we summarize the goals and contributions of each of our proposed methods.

1.2 Detailed Chapter Summaries

1.2.1 Part I: Graphs

Given a graph, how can we measure how unusual a subgraph is and catch unusual subgraphs?

In this part, we �rst propose TellTail, a probabilistic score which evaluates how abnormal

a subgraph is, and an e�cient algorithm for optimizing this score. We then consider the ad-
versarial case, and propose Fraudar, a robust algorithm for detecting dense subgraphs under

‘camou�age,’ where adversaries add edges (such as Twitter follows) to evade detection.

Measuring and Detecting Unusual Subgraphs

What is an ‘unusual’ subgraph?
How can we measure how unusual a subgraph is, and detect the most unusual subgraphs?

Our �rst goal is to de�ne and measure what constitutes an ‘unusual’ subgraph. Which is

more suspicious: a small but very dense subgraph of 10 nodes and 100 edges, or a larger but

less dense subgraph of 1000 nodes and 10000 edges? Can we probabilistically measure how

unusual each of these subgraphs is, and give our con�dence that they indicate anomalous or

fraudulent behavior, while exonerating the users if this is within normal variation?

Dense subgraphs often indicate interesting structure, such as network attacks in network

tra�c graphs, or protein families in protein interaction networks. However, most existing dense

subgraph measures, such as average degree, do not take normal variation into account and

hence cannot exonerate normal subgraphs, and can also be biased when comparing subgraphs

of di�erent sizes. Previous measures [JBC
+

16] compute a likelihood-based score for subgraphs,

but are based on the simple but unrealistic Erdos-Renyi distribution. Hence, in TellTail, we

4

propose a probabilistic measure for subgraphs based on a more �exible approach that relies on

realistic, empirically-observed patterns in real graphs.

Contributions

• Empirical Observations: We describe empirical patterns about subgraph density distribu-

tions in real graphs.

• Theoretical Framework: We probalistically evaluate the surprisingness of a subgraph un-

der realistic assumptions.

• E�ectiveness: Our approach scales linearly, and outperforms baselines in accuracy of de-

tecting injected and ground-truth subgraphs.

Detecting Unusual Subgraphs in an Adversarial Setting

How can we detect unusual subgraphs in the face of adversaries who are trying to evade
detection?

Next, we consider the adversarial setting, in which adversaries are trying to evade detec-

tion. In particular, consider online commercial settings such as Facebook, Amazon and Twitter,

where the data takes the form of a bipartite graph (e.g. likes, reviews, follows, or tweets). A

common goal is to detect link fraud, involving groups of fake user accounts which are used to

produce a large number of edges (e.g reviews). Existing approaches often try to detect this by

searching for dense subgraphs which are sparsely connected to the rest of the graph, e.g. using

spectral algorithms.

However, fraudsters performing link fraud can evade many forms of detection using camou-
�age, which involves adding reviews or follows with honest targets so that they look “normal.”

Furthermore, some fraudsters use hijacked accounts from honest users, to make the camou�age

more organic and hence harder to detect. Hence, in Fraudar, our focus is to spot fraudsters in

the presence of camou�age or hijacked accounts.

Contributions

• Camou�age-resistance: We show theoretically and empirically that our approach per-

forms well in the presence of camou�age.

• Theoretical guarantee: Our approach provides an upper bound on the e�ectiveness of

fraudsters.

• E�ectiveness: Fraudar improves detection accuracy by up to 70% F-measure over the top

baseline. In real-world experiments with a Twitter graph of 1.47 billion edges, Fraudar

successfully detected a Twitter subgraph of more than 4000 accounts, a majority of which

used follower-buying services.

1.2.2 Part II: Time Series

Time series data arising from online systems often involves discrete events (such as likes, fol-

lows, reviews, page views etc.) accompanied by timestamps, while the more traditional time se-

ries sensor setting involves real-valued time series data. For the former, we develop an anomaly

5

detection algorithm for ratings data (i.e. ratings submitted by users for products) in order to

catch fraudsters who manipulate ratings [HSB
+

16a]. For the latter, we develop a forecasting

and anomaly detection algorithm for power systems data that exploits domain knowledge via

a physics-based model of power systems data [HSP
+

18]. Next, for mixed data (i.e. combined

categorical, numeric or ordinal data), we develop an online nonparametric change detection

approach [HF19]. Finally, we propose an online approach for forecasting matrix-valued time

series (where we observe a matrix at each time point), and further show that we can e�ciently

perform anomaly detection in a computationally e�cient manner, without forecasting every

entry in the matrix [HSLF19].

Anomaly Detection in Categorical Time Series

How can we detect unusual users in categorical data involving a series of events (e.g. reviews)?

We �rst consider categorical temporal data arising from online settings, which often in-

volves a series of discrete events, such as reviews. Review fraud is a pervasive problem in

online commerce, in which fraudulent sellers write or purchase fake reviews to manipulate

perception of their products and services. Fake reviews are often detected based on several

signs, including 1) they occur in short bursts of time; 2) fraudulent user accounts have skewed

rating distributions. We use a Bayesian inference approach, which allows a principled approach

for taking into account the number of reviews each user has, as well as combining temporal

and rating information.

Hence, in this chapter, we �rst formulate our model, ‘Bayesian Inference for Rating Data’

(BIRD) model, a �exible Bayesian model of user rating behavior. Based on our model we for-

mulate a likelihood-based suspiciousness metric, ‘Normalized Expected Surprise Total’ (NEST).

Contributions

• Theoretically sound user behavior model: we de�ne a Bayesian model for the data based

on a mixture model which captures di�erent types of user behavior.

• Suspiciousness metric: we de�ne a likelihood-based metric which measures how muc a

user deviates form normal behavior.

• E�ectiveness: our approach runs in linear time and successfully spots fraud in real-world

graphs, which precision of over 84% on the top 250 Flipkart users �agged by our algo-

rithm.

Anomaly Detection in Real-Valued Time Series

How can we detect unusual events in real-valued time series data? (e.g. sensor data)

Next, we consider the more traditional real-valued, multivariate time series sensor setting:

e.g. power grid data, which consists of voltage, current, and environmental temperature data

over time. Our goal is to forecast the power consumption of a location for the next few days,

which can then be used for anomaly detection, by �agging anomalies when the forecast di�ers

6

from reality by more than a �xed threshold. An additional challenge is to take into account

‘what-if-scenarios:’ e.g. what if the temperature increases by 10◦C , the number of appliances

in the grid increase by 20%, and voltage levels increase by 5%? Such scenarios are crucial for

future planning, to ensure that the grid remains reliable even under extreme conditions.

Contributions

• Domain knowledge infusion: we propose a novel Temporal BIG model that extends the

physics-based BIG model, allowing it to capture changes over time, trends, and season-

ality, and temperature e�ects.

• E�ectiveness: StreamCast forecasts multiple steps ahead and outperforms baselines in

accuracy by 27% or more.

• Scalability: Our algorithm is online, requiring constant update time per new data point,

and bounded memory.

Anomaly Detection in Mixed Time Series

How can we detect unusual events in mixed categorical, numeric and ordinal time-series data?

Next, we consider multivariate time series containing mixed data types. A key challenge in

this setting is that we cannot make strong assumptions about the type of model that the data

follows, and how it changes after the event occurs: i.e. we want our approach to be nonpara-
metric. In this case, how do we detect changes in the behavior of the time series: for example,

the onset of illnesses or complications in patients?

We propose BNB (Branch and Border), an online, nonparametric change detection method

that detects multiple changes in multivariate data. Unlike most existing methods which �t

particular distributions (e.g. Gaussian, Poisson), BNB approaches change detection by treating

changes as time points where relatively simple random partitions of the data space can cleanly

separate the points before and after the change.

Contributions

• Generality: as BNB is nonparametric, it works well for data sources with any distribution,

including numerical, categorical, and ordinal data.

• E�ectiveness: BNB achieves 70% or more increased F-measure over comparable baselines

in experiments averaged over 11 datasets.

• Scalability: BNB scales linearly in the number of time ticks and dimensions, and is online,

thus using bounded memory and bounded time per iteration, regardless of the stream

length.

Anomaly Detection in Matrix-Valued Time Series

Given a stream of matrices, how can we �t a model that captures seasonality and drift over time,
and use it to forecast future data, and detect anomalous events?

7

Finally, we consider matrix-valued time series. An example is taxi ride data: at each time

point, we have a matrix whose rows represent the starting location of the ride, and columns

represent the ending location, where each taxi ride is an element in this matrix. Our goal

is to learn a model which captures seasonal patterns (e.g. rides toward o�ce areas are more

frequent in the morning) and drift (e.g. population growth). We propose a matrix factorization-

like model that provides interpretable components, and forecasts future data more accurately

than existing approaches. In addition, we show that in the large, sparse setting, we can perform

anomaly detection e�ciently, without needing to forecast every observation in the matrix.

Contributions

• Model: we propose a novel matrix factorization model incorporating seasonal patterns

and drift, an online �tting algorithm, and an e�cient anomaly detection approach.

• E�ectiveness: in experiments, SMF has lower forecasting error than baselines by 13% to

60%, and provides interpretable results in case studies on real data.

• Scalability: SMF is online, and scales linearly. In experiments, it was 12 to 103 times faster

than seasonal baselines.

1.2.3 Part III: Graphs with Sensors

We now consider data from a set of sensors placed on a graph, where each sensor provides

time series data. An example is electrical sensors placed on nodes of the power grid, where

we would like to automatically detect anomalous events, such as due to the failure of electrical

components. Another example is tra�c sensors which measure the speed of vehicles passing

over them, which we want to use to detect tra�c accidents.

Anomaly Detection in Graphs with Sensors

Given time-varying data from sensors arranged over a graph, how can we detect the time and
location of sudden changes occurring on the graph?

For this setting of sensors placed on a graph, our �rst approach considers the change de-
tection problem, where we want to detect signi�cant and sudden changes that occurred over a

connected subgraph of sensors. For example, after a tra�c accident, we would expect tra�c

speeds to drop sharply at a subgraph of roads around the accident. Similarly. sharp changes in

power grid sensor values occur during a power grid failure. Hence, our ChangeDAR (Change

Detection And Resolution) algorithm detects localized changes on the graph in an online man-

ner, and reports when and where the change occurred in the graph.

Contributions

• Algorithm: We propose novel information theoretic optimization objectives for scor-

ing and detecting localized changes, and propose two algorithms, ChangeDAR-S and

ChangeDAR-D respectively, to optimize them.

• Theoretical Guarantees: We show that both methods provide constant-factor approxima-

tion guarantees.

8

• E�ectiveness: In experiments, ChangeDAR detects tra�c accidents and power line fail-

ures with 75% higher F-measure than comparable baselines.

• Scalability: our methods are online and near-linear in the graph size and the number of

time ticks.

Sensor Placement in Graphs with Sensors

How can we select positions for sensors over a power grid graph, in order to detect anomalous
events?

In the power grid setting, maintaining the reliability of the electrical grid is a major chal-

lenge, and an important part of achieving this is to place sensors in the grid, and use them to

detect anomalies. Hence, focusing on the power grid setting, we now consider the follow-up

question of selecting where to place sensors over a graph, in order to have the highest probabil-

ity of detecting an anomaly using these sensors. In addition, using the chosen sensors, we then

propose an online algorithm for detecting anomalies, in order to provide real-time feedback on

the most anomalous parts of the graph.

Contributions

• Online anomaly detection: We propose GridWatch, a novel, online anomaly detection

algorithm with higher accuracy than existing approaches.

• E�ectiveness: Our sensor placement algorithm is provably near-optimal, and both our

algorithms outperform existing approaches in accuracy by 59% or more (F-measure) in

experiments.

• Scalability: Our algorithms scale linearly, and our detection algorithm is online, requiring

bounded space and constant time per update.

9

10

Chapter 2

Background

In this chapter, we introduce the main de�nitions in graph theory and time series analysis that

are useful in understanding this thesis.

2.1 Graphs

We start with the de�nition of a graph, along with the common types of graphs (bipartite,

directed, weighted).

Nodes
Edges

Figure 2.1: A graph.

Graph: a graph (or network) is a data structure used

to model interactions. Graphs consist of a set of nodes,
and a set of edges between pairs of nodes. For ex-

ample, the nodes could represent people, and the edges

could represent friendships between them. Mathemat-

ically, a graph G is an ordered pair (V , E), where

V is the set of nodes, and E is the set of edges.

Figure 2.2: A bipartite graph.

Bipartite Graph: a graph whose nodes can be di-

vided into two disjoint sets U and W such that all

edges connect a node in U and a node in W . For ex-

ample, given a product review website (such as Ama-

zon), U can be the set of users, and W the set of

products, where an edge between a user and a prod-

uct represents a review by that user for that product.

Figure 2.3: A weighted graph.

Weighted Graph: a graph whose edges have a nu-

meric weight associated with them. For example, in

a product review graph, edge weights may indicate

the rating that the user gave the product. In Fig-

ure 2.3, thickness is used to indicate edge weight.

11

Figure 2.4: A subgraph (in red)

induced by the 3 red nodes.

Subgraph: a subgraph of a graph G is a graph formed by

a subset of the nodes and edges of G.

Induced Subgraph: given a graph G, the induced sub-
graph of a subset V ′ of nodes is the subgraph with node set

V ′, and edge set equal to all edges connecting pairs of nodes

in V ′.

Neighbors: two nodes are called neighbors if there is an edge connecting them.

Neighborhood: the neighborhood of a node is the induced subgraph consisting of the node

and all its neighbors.

Degree: the degree of a node is the number of neighbors of the node.

2.2 Time Series

Time Series: a time series X1, X2, · · · consists of measurements of a variable collected over

time. Usually, the measurements are made at regular time intervals. A time series is univariate
if Xi ∈ R, while multivariate time series allow Xi ∈ Rd

.

Online Algorithm: an online (or streaming) algorithm is one that processes its input incre-

mentally, i.e. in the order that the algorithm receives its input. As each new data point is

received, the algorithm should compute a partial solution based on the input it has been given.

This contrasts with o�ine algorithms, which are only required to output an answer after re-

ceiving the full input data.

2.3 Graphs with Sensors

Node	sensor

Edge	sensor

Missing	sensors

Figure 2.5: A graph with sensors.

Graphs with Sensors: In the settings we consider, a

graphwith sensors consists of a static graph, with time-series

sensors placed on a subset of its nodes or edges. Some sen-

sors can be missing (thus, this naturally covers the case

where sensors may be placed only on nodes, or only on

edges).

12

Part I

Graphs

13

Overview: Graphs

Given a graph, how can we measure how unusual a subgraph is?
How can we catch unusual subgraphs?

Static graphs, which contain only connectivity information, are commonly used in practice

when temporal information is not present. In this part, we consider both how to measure how

unusual a subgraph is, as well as how to detect subgraphs with unusual connectivity, such

as network intrusion attacks, and link spam in social networks. Hence, TellTail focuses on

providing a probabilistic score for how abnormal a subgraph is: unlike previous work, we

evaluate how unusual a subgraph is under more realistic assumptions than existing Erdos-

Renyi approaches. Fraudar provides an algorithm for detecting fraud in review graphs and

social networks in a way that is robust against certain types of adversarial manipulation,

aiming to catch fraudsters who try to conceal their presence by adding edges toward honest

products.

15

16

Chapter 3

TellTail: Scoring Dense

Subgraphs

In this chapter, we propose probabilistic anomaly detection methods for graphs. Given

a phone call graph, or a graph of following relationships on Twitter, how can we design

a principled measure for identifying surprisingly dense subgraphs? If 50 users each re-

viewed almost all the same 500 products several times each, can we measure our con�dence

that this indicates anomalous or fraudulent behavior, while exonerating the users if this is

within normal variation? Our TellTail approach provides a probabilistic measure with

theoretical consistency guarantees, and provides near-linear time detection, while avoid-

ing Erdos-Renyi assumptions common in the literature.

3.1 Introduction

Given an undirected, possibly weighted graph, how can we measure how surprising or anoma-

lous a subgraph is? How can we do this in a way that exonerates subgraphs that are within the

range of normal variation, but catches only subgraphs which are truly surprising? Dense sub-

graph detection is useful for detecting social network communities, protein families [SHK
+

10],

follower-boosting on Twitter, and rating manipulation [HSB
+

16b]. In these situations, it is use-

ful to measure how surprising a dense subgraph is, to focus the user’s attention on surprising

or anomalous subgraphs.

Many measures exist for identifying dense subgraphs, such as average degree, modularity,

etc. However, knowing that a subgraph has, for example, an average degree of 10, does not tell

us how surprising it is, since we do not know if this is plausible under normal variation. To

quantify how surprising a subgraph is, we need a probabilistic measure, that tells us, e.g., that

the probability of a random subgraph of the same size being as dense as this one is 10−5
. Such a

probabilistic measure is useful for decision making: if a subgraph is very unlikely under normal

variation, we can more con�dently take action such as investigating these users.

17

0 50 100 150
Injected size

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

TellTail
Average
Modularity
Expansion
Conductance
Surplus (, = 1=3)
Surplus (, = 1=2)
Surplus (, = 2=3)
Suspiciousness

+160%

(a) Accuracy (UCForum dataset)

10
6

10
7

10
8

Number of edges

10
-2

10
-1

10
0

W
a

ll-
c
lo

c
k
 t

im
e

 (
s
)

Linear

growth

(b) Quasi-linear runtime

0 50 100 150 200 250

Subgraph size

0

1-10
-5

1-10
-10

1-10
-15

P
ro

p
o
s
e
d
 m

e
a
s
u
re

90%

99%

99.9%

99.99%

99.999%

...
Theoretical

quantiles

Empirical

quantiles

99%

90%

(c) Accurate con�dence estimates

Figure 3.1: (a) Accuracy: TellTail outperforms competitors in accuracy in detecting injected

blocks. (b) Scalability: Our search algorithm scales quasi-linearly. (c) Accurate con�dence

estimates: our measure clearly separates ground truth subgraphs (red triangles) from random

subgraphs (blue dots) while providing con�dence estimates.

The key challenge in this process is to accurately model subgraph densities under normal

behavior. In other words, what is a good null model? The simplest approach would be to assume

an Erdos-Renyi model, as in [JBC
+

16]. However, the Erdos-Renyi model does not accurately

model density patterns of real graphs: it ignores the clustering structure of graphs, as well as

dense subgraphs caused by high degree nodes, such as ‘hyperbolic communities’ [AGMF14]

observed in real graphs.

Instead, our approach uses a novel application of extreme value theory to the dense sub-

graph problem, with the goal of probabilistically measuring how ‘extreme’ a dense subgraph

is. Extreme value theory is an elegant statistical approach for modelling the distribution of ex-

treme (or rare) events. It was initially proposed to model the distribution of �ood heights, with

the goal of �nding the minimal dike height which would be tall enough to withstand �oods

with high probability. Since then, it has been applied to many types of extreme events, such as

earthquakes, �nancial crashes, and network attacks. Extreme value theory allows us to accu-

rately estimate the extreme tail of a distribution without making strong assumptions about the

distribution itself.

We use extreme value theory for modelling the top most dense subgraphs for two reasons:

�rstly, it provides more accurate modelling. Like �ood heights, we are mainly interested in the

densest few subgraphs, which is an inherently extremal process. Indeed, modelling the overall

distribution itself in full can mislead us about the tail of the distribution, particularly in realis-

tic settings where the extreme values are outliers whose distribution deviates from that of the

normal values. We show in Section 3.5.3 that our approach models real-world dense subgraph

patterns more accurately than other models. Secondly, the full distribution of subgraph densi-

ties in real graphs is hard to theoretically characterize explicitly, which is why it has only been

18

done for the (unrealistic) Erdos-Renyi model so far. Thus, extreme value theory allows us to

theoretically characterize dense subgraph patterns without restrictive assumptions.

To improve its practicality, our method further makes use of two novel empirical �ndings

about the distribution of subgraph densities in real graphs. We use these empirical �ndings in

our measure which assesses how surprising a subgraph is, then propose a fast pruning-based

algorithm for detecting dense subgraphs using this measure, in quasi-linear time. Figure 3.1a

shows that our measure outperforms baselines in its accuracy of identifying injected subgraphs.

Figure 3.1b shows that our search algorithm is fast and scales quasi-linearly: it took 0.41s per

subgraph to �nd, on a graph with 49 million edges, on a laptop computer. Figure 3.1c shows

that on a Twitter dataset of football clubs, our measure separates ground truth football clubs

from random subgraphs, while providing con�dence estimates. The ‘empirical quantiles’ plot

the 90% and 99% quantiles of the measure on random subgraphs, matching the theoretical

quantiles and verifying that our con�dence estimates are accurate.

Our contributions are:

• Theoretical underpinnings: we propose a probabilistic framework (De�nition 3.5) for

�nding dense subgraphs based on extreme value theory. Theorem 3.2 provides a guaran-

tee of consistency.

• Discoveries: We make 2 novel empirical observations on dense subgraph patterns in real

graphs, which we use to speed up our measure.

• E�ectiveness: Our approach outperforms baselines in �nding injected (Figure 3.7) and

ground truth dense subgraphs (Table 3.4 and 3.5).

• Algorithm: Our search algorithm scales quasi-linearly, and we further speed it up using

a safe pruning step (based on Theorem 3.1).

Reproducibility: Our code and data are publicly available at http://www.andrew.
cmu.edu/user/bhooi/telltail/.

3.2 Related Work

Measures based on internal connectivity: average degree [Gol84] is a common measure that

can be optimized exactly [Gol84] or via 1/2-approximation factor greedy algorithms [Cha00].

Variants allow for size restrictions [AC09] or local subgraphs [And10]. Other measures include

edge density, which underlies quasi-cliques [ARS02], edge surplus [TBG
+

13], triangle and k-

clique density [Tso15], discounted average degree [YH18], and minimum internal degree, which

de�nes k-cores [SERF16]. Related measures underlie k-plexes [SF78] and k-trusses [Coh08].

[ANMJZ12] evaluates density by subtracting the expected density of similar clusters.

Measures based on internal and external connectivity: external connectivity refers to the

edges between the subgraph and the rest of the graph. These measures �nd subgraphs which

are dense internally but sparsely connected to the rest of the graph. These include modular-

ity [New06], Maximum, Average, and Flake-ODF [FLG00], local density [QLCZ15], and the

family of cut-based measures, such as expansion [RCC
+

04] and conductance [SM00]. [KVV04]

proposes a bicriteria related to conductance for analyzing spectral clustering.

19

http://www.andrew.cmu.edu/user/bhooi/telltail/
http://www.andrew.cmu.edu/user/bhooi/telltail/

Model-basedmeasures: many generative models for graphs exist, such as scale-free graphs [LADW05],

Kronecker graphs [LCK
+

10], and so on. However, computing surprisingness under these mod-

els is often infeasible because the models do not allow for tractable analysis. For the Erdos-Renyi

model, [BE76] analyzes cliques in random graphs.

Closely related to our approach is Jiang (2016) [JBC
+

16] which de�nes the suspiciousness
subgraph measure: for a subgraph S with e(S) edges, the suspiciousness is− logP (Y = e(S)),

where Y has a Poisson distribution with mean equal to the expected mass of S under an Erdos-

Renyi model. E�ectively, the score of a subgraph is (approximately) the negative log probability

of how likely we are to achieve the same mass assuming edges are drawn randomly from an

Erdos-Renyi model. In comparison, our approach uses a more empirical approach of studying

subgraph distributions of real graphs, showing that they are well-modeled by a Generalized

Pareto (GP) distribution.

Also closely related is van Leeuwen (2016) [vLDBSM16], which proposes a subgraph in-

terestingness measure. Their general framework evaluates how subjectively interesting a sub-

graph is relative to a user’s prior beliefs. Given such priors, subjective interestingness of a

pattern is the ratio of information content (negative log probability of the pattern being present

under the user’s belief state) over the description length (length of pattern’s description). In

comparison, our approach also evaluates subgraphs in the context of a null distribution, but

takes a more empirical approach, with our choice of null distribution motivated by empirical

patterns in real graphs, rather than the user’s prior beliefs.

3.3 Background: Generalized Pareto

Injected

clique

(a) Average Degree measure

Injected

clique

(b) Modularity measure

Injected

clique

(c) TellTail measure

Figure 3.2: TellTail avoids size-bias: in an Erdos-Renyi graph with n = 50 and p = 0.2,

with an injected clique of size 10 (circled). The subgraph detected under each measure is labeled

in red triangles.

The Generalized Pareto (GP) distribution is a 3 parameter distribution used within extreme

value theory [CBTD01]. Its key properties are its �exibility in smoothly interpolating between

light- and heavy-tailed regimes, and its ‘universality’ property, Property 3.1.

20

The CDF of the GP distribution [CBTD01] is:

GPDµ,σ,ξ(x) =

{
1− (1 + ξ(x−µ)

σ
)−1/ξ

if ξ 6= 0

1− exp(−x−µ
σ

) if ξ = 0
(3.1)

for σ > 0. Its support (i.e. the set of x with nonzero density) is x ≥ µ when ξ ≥ 0, and

µ ≤ x ≤ µ − σ/ξ when ξ < 0. Its three parameters are its location parameter µ, its scale

parameter σ, and its shape parameter ξ. The GP distribution generalizes several well-known

distributions:

• For ξ > 0 it is a Pareto distribution with shape α = 1/ξ;

• For ξ = 0 and µ = 0 it is an exponential distribution with mean σ.

Note that Pareto distributions exhibit heavy-tailed decay (i.e. power law tails) while exponential

distributions exhibit light-tailed decay (i.e. exponential tails), so the GP distribution interpolates

smoothly between the two regimes.

Properties

Given any random variable X , let t ∈ R and de�ne a new distribution Ft representing the

upper tail of X past threshold t; i.e. Ft is the distribution of X − t conditioned on X > t.

De�nition 3.1

The conditional excess at threshold t has distribution (i.e. CDF) Ft(y) = P (X − t ≤
y|X > t).

The universality property, or Pickands- Balkema-de Haan theorem [BDH74], states that the

GP distribution can approximate the tails of an arbitrary distribution:

Let F be any distribution function from a broad class of distributions. (This class includes

almost all commonly used distributions; see [EKM99].)

Property 3.1: Universality

There exists ξ, σ(t) that approximates the tail of F arbitrarily closely: i.e.:

lim
t→tmax

sup
x
|Ft(x)− GPD0,σ(t),ξ(x)| = 0, (3.2)

where tmax is the right endpoint of F (tmax can be∞).

Intuitively, GP distributions can closely model upper tails arising from many distributions. This

justi�es using GP distributions to model the upper tail of subgraph mass distributions, as we

will do.

21

3.4 Problem De�nition

Table 8.2 summarizes the symbols used in this chapter.

Symbol Interpretation

G(V,E) Graph, with its vertex and edge set

n Number of nodes

m Number of edges

S Subset of nodes

k Size of subset (i.e. |S|)
A Adjacency matrix

d n× 1 vector of node degrees

B Modularity matrix: B = A− d · dT/(2m)
f(S) Desired output: the surprisingness of S
e(S) Number of edges in induced subgraph of S

(also called its mass)

ẽ(S) Adjusted mass of induced subgraph of S
i.e. its mass minus its expected mass

d(S) Sum of (weighted) degrees of nodes in S
µ, σ, ξ Location, scale, shape parameters of GP distribution

ε GP distribution tail cuto� probability

r No. of repetitions in TellTail-Search

t No. of neighborhoods in TellTail-Search+

Table 3.1: Symbols and De�nitions

Given a graph G = (V,E), our goal is to estimate how surprising a subgraph induced by

S ⊆ V is by de�ning a scoring function f from subsets of V to R. Our scoring function should

quantify the probability of observing a subgraph at least as dense as this one:

Problem 3.1: Scoring Function

Given: graph G = (V,E), subgraph induced by S ⊆ V
Output: f(S), an estimate of how surprising the mass of S is compared to the distribution

of subgraphs of the same size.

22

3.5 Proposed Approach

3.5.1 Introductory Example

Consider an Erdos-Renyi graph G of size n = 50 with edge probability p = 0.2. We select

10 random nodes and add all the edges between them to G, creating an injected clique, as

shown in Figure 3.2, with the injected clique circled. To detect the clique, we optimize each one

of three measures (average degree, modularity, and TellTail) using a standard greedy local

search approach [JBC
+

16], plugging in the measure in question. Figure 3.2a shows that the

highest average degree subgraph (red triangles) consists of almost all the nodes; Figure 3.2b

shows that the highest modularity subgraph contains around half the nodes; and Figure 3.2c

shows that under TellTail, the densest subgraph coincides with the injected clique.

Why does this happen? Consider average degree, 2e(S)/|S|. The average degree of the

entire graph (i.e. setting S = V) is 2|E|/|V |, while the average degree of any subgraph of k
nodes cannot exceed k− 1, even for a clique. Hence, average degree is biased in favor of larger

subsets, and in Figure 3.2a, the highest average degree subgraph can be almost the entire graph.

A similar problem holds for modularity, which tends to select subgraphs of size close to n/2, as

also observed by Leskovec et al. [LLM10]. This problem is not speci�c to average degree and

modularity: the key issue is that many measures are size-biased, meaning that the values they

produce on subgraphs of di�erent sizes are not comparable across sizes in any principled way.

Hence a highly surprising subgraph may be given a lower measure value than a less surprising

subgraph, due to di�erence in sizes.

In contrast, our proposed measure TellTail handles this problem by controlling for size:

it evaluates the surprisingness of a subgraph by comparing it to the population of subgraphs of

the same size. Speci�cally, it estimates the probability that a random subgraph of the same size

would have equal or higher density than the given subgraph. Since the measure values are in

‘units’ of probability, they can be compared across sizes in a principled way.

3.5.2 Subgraph Mass Pro�les

We start by introducing the subgraph mass pro�le, which we use to study empirical distri-

butions of subgraph masses in real graphs.

Complementary
CDF

1

0
0 1 2 3

Subgraph mass

Figure 3.3: A subgraph mass pro�le, for size k = 3. The curve is 1 – CDF of the mass of a

random subgraph of k nodes.

23

UCForum

101 102 103

Subgraph mass

10-4

10-3

10-2

10-1

C
om

pl
em

en
ta

ry
 C

D
F

Empirical
Generalized Pareto
Poisson
Gaussian

(a) UCForum dataset (n = 899)

Blogs

20 30 40 50
Subgraph mass

10-4

10-3

10-2

10-1

C
om

pl
em

en
ta

ry
 C

D
F

Empirical
Generalized Pareto
Poisson
Gaussian

(b) Blogs dataset (n = 1.2K)

InternetAS

100 101 102

Subgraph mass

10-4

10-3

10-2

10-1

C
om

pl
em

en
ta

ry
 C

D
F

Empirical
Generalized Pareto
Poisson
Gaussian

(c) InternetAS dataset (n =
34K)

Figure 3.4: The GP distribution closely �ts mass distributions of real graphs: Black

crosses indicate the empirical distribution of subgraph masses for subgraphs of size k = b
√
nc,

in the form of its complementary CDF. The colored curves are the best �t GP, Poisson, and

Gaussian to the empirical distribution.

Figure 3.3 illustrates a subgraph mass pro�le. For each subgraph mass, the curve plots the

probability that a randomly chosen subset of size k will have at least that mass. In other words,

it is the CCDF (i.e. 1− CDF) of the mass of a random subgraph of size k.

Next, we will estimate these pro�les in real graphs, and study the resulting empirical pat-

terns.

3.5.3 Empirical Observations

Figure 3.4 shows the empirical distribution of subgraph masses in three real graphs. The crosses

show the empirical CCDF of the mass of 5000 random subgraphs of size k = b
√
nc. The 3

colored lines are maximum likelihood �ts of 3 distributions to these masses.

The wide gap between the Poisson curve and the crosses indicates that the Poisson distribu-

tion greatly underestimates how many dense subgraphs we should observe. This makes sense,

as [JBC
+

16] shows that approximately Poisson mass distributions occur under an Erdos-Renyi

graph model. However, the Erdos-Renyi model ignores the clustering e�ects present in real

graphs. Hence, in real graphs, much denser subgraphs exist than in Erdos-Renyi models.

Figure 3.4 shows that Gaussian distributions also decay too quickly, while the Generalized

Pareto (GP) distribution �ts the empirical distribution very closely. For space reasons, plots for

our 5 other datasets are in our supplementary document [sup]. To summarize:

Observation 3.1

The upper tail of the subgraph mass distributions of real graphs closely follows a GP dis-

tribution.

24

3.6 Proposed Measures

Hence, we now propose measures which approximate a subgraph mass distribution using a GP

distribution, and use it to estimate the surprisingness of each subgraph.

3.6.1 Tail Measure

Tail, our simplest approach, estimates this GP distribution via sampling. Given a subgraph S to

evaluate of size |S| = k, �rst sample N uniformly random subsets of V of size k, and compute

the mass of each. Fit a GP distribution using maximum likelihood [Gri93] to the largest bεNc of

these subgraph masses. Then, the surprisingness of S is the CDF of the �tted GP distribution,

evaluated at e(S):

De�nition 3.2: Tail Measure

f(S) = GPDµ̂,σ̂,ξ̂(e(S))

where µ̂, σ̂, ξ̂ are the maximum likelihood GP �t [Gri93].

3.6.2 Adjusting for Degree: the TailDCMeasure

How do we identify subgraphs that are not just dense, but also sparsely connected to the rest of

the graph? For example, in a user-product review graph, subgraphs which are dense internally

and sparse externally could suggest the presence of lockstep behavior.

Instead of using the mass e(S) of subset S, we compute its adjustedmass, denoted by ẽ(S),

which is its mass minus the expected value of its mass assuming edges are connected randomly.

Similar to the computation of the modularity measure [New06], the expected value of e(S) is

equal to d(S)2/(4m), where d(S) is the sum of degrees of the nodes in S.

De�nition 3.3: Adjusted mass

The adjusted mass of S is its mass minus the expectation of its mass, and is equal to:

ẽ(S) = e(S)− d(S)2/(4m)

TailDC di�ers from Tail only in that it uses adjusted mass instead of mass:

25

De�nition 3.4: TailDC Measure

f(S) = GPDµ̂,σ̂,ξ̂(ẽ(S))

where µ̂, σ̂, ξ̂ are maximum likelihood GP parameters for the distribution of adjusted masses.

3.6.3 Dense Subgraph Power Laws

Tail and TailDC require a time-consuming sampling step. How do we speed them up? In this

subsection, we �rst observe near-power law empirical patterns. We will use these patterns to

greatly speed up TailDC by eliminating the random sampling step.

Let µ(k) be the GP location parameter as a function of subgraph size k (and similarly for

σ(k)). For GP distributions �tted to adjusted mass ẽ(S), we observe power law patterns for

µ(k) and σ(k):

µ(k) = µ0k
α

(3.3)

σ(k) = σ0k
β. (3.4)

where µ0, σ0, α and β are constants to be determined.

Plotting µ(k) and σ(k) against k on a log-log plot, this takes the form of a straight line.

Figure 3.5 shows such plots for the InternetAS graph (dataset information is in Table 10.3).

µ(k) and σ(k) closely follow the near-power law patterns in Eq. (3.3) and (3.4), with R2
of 1.00

and 0.99 respectively (where R2 = 1 indicates a perfect linear �t). Table 3.2 shows that the

same pattern holds across many datasets, with R2
values very near 1, and additionally, α and

β are close to 0.9 and 0.8 respectively, while ξ is close to −0.1.

Observation 3.2: Dense Subgraph Power Laws

In real graphs, the GP parameters of adjusted subgraph mass distributions closely follow

µ(k) = µ0k
0.9

and σ(k) = σ0k
0.8

.

3.6.4 TellTail: Fast Scoring using Power Laws

Using Observation 3.2, we now propose our main TellTailmeasure, which avoids the sampling

steps in Tail and TailDC, providing large speedup. TellTail is a simple, closed-form measure

that runs in O(m) time. Assume that the measure is used to compare the surprisingness of

di�erent subsets (e.g. in an algorithm for �nding the most surprising S), so we can ignore

strictly increasing transformations of the measure (e.g. multiplication by a constant), as they

do not change the relative order of di�erent subsets.

As in TailDC, the surprisingness of S is the CDF of a GP distribution, evaluated at the ad-

justed mass of S, as given in (3.1). As observed in Section 3.6.3, ξ remains fairly constant empiri-

26

10
2

10
3

10
4

k

10
0

10
1

10
2

10
3

7
(k

)

10
2

10
3

10
4

k

10
0

10
1

10
2

<
(k

)R = 1.00
2 R = 0.99

2

Figure 3.5: Power law patterns in GP parameters: in the InternetAS graph.

Dataset µ slope (α) R2 σ slope (β) R2 ξ

UCForum 0.87 0.99 0.63 0.98 -0.02

Email 0.82 0.99 0.74 0.98 -0.12

Blogs 0.87 0.99 0.76 0.99 -0.05

Petster 0.85 0.99 0.78 0.99 -0.11

PGP 0.86 0.99 0.81 0.99 -0.11

AstroPh 0.88 0.99 0.85 0.99 -0.12

DBLP 0.87 0.99 0.81 0.99 -0.13

InternetAS 0.98 1.00 0.76 0.99 -0.07

Table 3.2: Power law patterns across multiple datasets: as a function of k, µ(k) and σ(k)
closely follow the power-law patterns, (3.3) and (3.4). Dataset information is given in Table 10.3.

cally, so we approximate ξ by treating it as a constant as a function of k. Then GPDξ,µ,σ(ẽ(S)) is

a function of
ẽ(S)−µ

σ
; moreover, since the function is a CDF, it has to be a strictly increasing func-

tion of
ẽ(S)−µ

σ
. Thus, we can simplify our measure by using

ẽ(S)−µ
σ

in place of GPDξ,µ,σ(ẽ(S)).

Substituting the power law patterns (3.3) and (3.4):

ẽ(S)− µ(k)

σ(k)
=
ẽ(S)− µ0k

α

σ0kβ

The constant factor σ0 can be ignored, resulting in our expression for TellTail:

27

De�nition 3.5: Proposed TellTail Measure

The surprisingness of subgraph S with adjusted mass ẽ(S) and size of k nodes is:

f(S) =
ẽ(S)− µ0k

α

kβ
(3.5)

Following Observation 3.2, we set α = 0.9 and β = 0.8.

Estimating µ0

Let A be the adjacency matrix, d be the column vector of node degrees, B = A− d · dT/(2m),

and s = bn/2c. For brevity, the derivation of µ0 under a normal approximation is in our

supplementary document [sup], and the �nal value for µ0 is:

µ0 = s−α(p2S1 + z1−ε(p2S2 + p3(S3 − 2S2)

+ p4(S2
1 + S2 − S3)− (p2S1)2)1/2)

(3.6)

where: S1 =
∑

i<j Bij , S2 =
∑

i<j B
2
ij , S3 =

∑n
i=1(
∑n

j=1Bij)
2
, pr =

∏r
j=1(s−j+1)/

∏r
j=1(n−

j + 1), and z1−ε is the (1− ε)-quantile of a standard normal distribution.

3.6.5 Basic Optimization Algorithm

TellTail-Search, our basic approach for optimizing TellTail, uses randomized local search.

It is given in Algorithm 3.1, if we omit the pruning steps (lines 1 to 3 and 9; in green).

3.6.6 Improved Algorithm: TellTail-Search+

We now show that the form of our TellTail measure allows us to safely ignore less important

nodes, while guaranteeing that we never ignore nodes that are in the subset that optimizes

TellTail. This allows us to improve the accuracy and speed of our search algorithm by pruning

away (i.e. removing) some of the nodes.

Recall that B = A− d · dT/(2m) is the modularity matrix.

De�nition 3.6: Deviation of a node

The deviation of a node is the sum of the modularity matrix B between it and its neigh-

bors:

Devi =
∑
i,j∈E

Bij (3.7)

28

Intuitively, deviation measures how much a node can ‘contribute’ to the adjusted mass of a

subset. Let S∗ = arg maxS⊆V TellTail(S) and s = bn/2c. De�ne:

∆(S) = (sβ − (s− 1)β)TellTail(S) + µ0(sα − (s− 1)α) (3.8)

Our pruning is based on the following theorem.

Theorem 3.1: Safe Pruning

For any node i, if i ∈ S∗, we have:

Devi ≥ ∆(S∗) ≥ ∆(S) ∀ S ⊆ V (3.9)

Thus, we can prune nodes with deviation less than ∆(S), for any S.

Proof. De�ne k∗ = |S∗|, and γ = kα∗ − (k∗ − 1)α, and δ = kβ∗ − (k∗ − 1)β .

Since Devi is the sum of positive modularity terms along the ith row of B, Devi is an upper

bound for how much adjusted mass the ith row can contribute to ẽ(S∗). Hence:

TellTail(S∗) ≥ TellTail(S∗ \ {i}) (3.10)

=⇒ ẽ(S∗)− µ0 · kα∗
kβ∗

≥ ẽ(S∗)− Devi − µ0 · (k∗ − 1)α

(k∗ − 1)β
(3.11)

=⇒ ẽ(S∗)− µ0 · kα∗
kβ∗

≥ ẽ(S∗)− Devi − µ0 · kα∗ + µ0 · γ
kβ∗ − δ

(3.12)

=⇒ − δ · ẽ(S∗) + µ0 · δ · kα∗ ≥ −kβ∗ · Devi + kβ∗ · µ0 · γ (3.13)

=⇒ TellTail(S∗) ≤ Devi − µ0γ

δ
(3.14)

=⇒ Devi ≥ δ · TellTail(S∗) + µ0 · γ (3.15)

=⇒ Devi ≥ ∆(S∗) (3.16)

The second inequality ∆(S∗) ≥ ∆(S) ∀ S ⊆ V follows from TellTail(S∗) ≥ TellTail(S),

since this implies that ∆(S∗) ≥ ∆(S) ∀ S ⊆ V . �

TellTail-Search+ �rst uses the neighborhoods of the t highest degree nodes to construct

bounds to prune the nodes (lines 1 to 3 of Algorithm 3.1). After each repetition of the search

algorithm, we prune the nodes again (line 9).

3.7 Theoretical Results

3.7.1 Consistency

Our Tail estimate for the surprisingness of subgraphs is consistent: i.e. as the data size in-

creases, the error of f approaches zero. Formalizing this requires the notion of graphons

[OR15]:

29

Algorithm 3.1: TellTail-Search+

Input : Graph G, no. of repetitions r, no. of neighborhoods t
1 for i = 1 to t do
2 Let Ni be the neighborhood of ith highest degree node

3 Prune away nodes with deviation less than ∆(Ni)

4 end

5 for i = 1 to r do
6 Sample p ∼ Uniform([0, 1])
7 Initialize S[i] to include each node with probability p
8 while not converged do

9 BGreedily add or remove a node of S[i]
10 S[i]← arg max

S′:|S′∪S[i]|−|S′∩S[i]|≤1

TellTail(S ′)

11 end

12 Prune away nodes with deviation less than ∆(S[i])

13 end

14 Return S[j], where j = arg maxj TellTail(S[j])

De�nition 3.7: Graphon

A graphon is a symmetric function G : [0, 1]2 → [0, 1]. To sample a random graph G
of size n from G, for each vertex i = 1, . . . , n, we sample an independent random ui ∼
Uniform([0, 1]). Then edge (i, j) is independently included inGwith probability G(ui, uj).

As a simple example, setting G to a constant value of p corresponds to Erdos-Renyi graphs with

edge probability p.

De�ne an arbitrary graphon G to be the true model underlying the graph G, and �x k.

De�ne the ‘true surprisingness’ function F to be the CDF of the mass of a random graph of

size k drawn from G. Based on G, Tail de�nes an estimate F̂ of F , where F̂ is the CDF of the

maximum likelihood GP distribution in Section 3.6.1. Our consistency theorem states that F̂
converges to F in terms of relative error, as n→∞.

30

Theorem 3.2: Consistency

LetG be a graph drawn from G, and �x k. De�ne any �xed z > 0, and let yn = −σ(µ̂n)(1−
z)/ξ. Then as n→∞, there exists a sequence

a
of Nn →∞, εn → 0 such that:

1− F̂ (µ̂n + yn)

1− F (µ̂n + yn)

P→ 1

where
P→ denotes convergence in probability.

aNn, εn, µ̂n denote the original variables (N, ε, µ̂) indexed over runs corresponding to di�erent values

of n. ξ and σ(·) are from (3.2).

This says that F̂ converges to F , where following [Smi87], convergence is with respect to

relative error of the CCDF, 1−F . Since high surprisingness is associated with very small values

of the CCDF, this formulation guarantees that these small values are estimated accurately in

terms of relative error.

Proof. FixN and let n→∞. Consider an n-node graphG ∼ G and random subsets S1, . . . , SN
of size k. For any i, j, the probability that Si and Sj are completely disjoint is (n−k

n
)k → 1 as

n → ∞ (recall that k is �xed). Extending this to all of the pairs of i, j by union bound, the

probability that all of S1, . . . , SN are disjoint goes to 1 as n → ∞. This implies that with

high probability, S1, . . . , SN are disjoint and hence are i.i.d. samples of size k from G, and

their masses (denoted by m1, . . . ,mN) are i.i.d. samples from F . Note that the event in which

S1, . . . , SN are non-disjoint has probability converging to zero, and since the statement we

want to prove is about convergence in probability, this event can be ignored.

At this point, m1, . . . ,mN is an i.i.d. sample from a distribution F , and our algorithm Tail

estimates a GP distribution using maximum likelihood from this sample. [Smi87] shows that

under these conditions, the maximum likelihood procedure produces consistent estimators of

the tail probabilities of the distribution F . Formally:

1− F̂ (µ̂n + yn)

1− F (µ̂n + yn)

P→ 1

i.e. F̂ converges to F , measured in terms of relative error with respect to the CCDF 1− F .

�

3.7.2 Proposed Monotonicity Axioms

Next, we show that other than speed, TellTail has advantages over sampling-based approaches

in that it satis�es two intuitive ‘axioms,’ one of which TailDC does not satisfy.

Consider a measure f(S). Two natural axioms are:

31

Axiom 3.1: Mass

All else being equal, higher mass (i.e. number of edges) is more surprising: If |S| = |S ′|
and ẽ(S) > ẽ(S ′), then f(S) > f(S ′).

Axiom 3.2: Concentration

All else being equal: subsets of smaller size (i.e. number of nodes) are more surprising: If

ẽ(S) = ẽ(S ′) and |S| < |S ′|, then f(S) > f(S ′).

Theorem 3.3

TellTail satis�es Axioms 1 and 2.

Proof. f(S) = ẽ(S)−µ0kα

kβ
is increasing in ẽ(S) for �xed k, satisfying Axiom 1. For Axiom 2, as

k increases, both µ0k
α

and kβ increase, making f(S) decrease. Thus for �xed ẽ(S), f(S) is

decreasing in k, satisfying Axiom 2. �

TailDC also satis�es Axiom 1, since it �ts a (strictly increasing) CDF F̂ . However, it does

not satisfy Axiom 2, as the random sampling makes f(S) not strictly decreasing in k. Thus,

TellTail improves on the sampling approaches by removing the stochasticity of relying on

random samples.

3.7.3 NP Completeness

In this subsection, we show that maximizing TellTail is NP-complete. Let ẽG(S) denote the

adjusted mass of subset S with respect to the graph G, i.e. ẽG(S) = e(S) − d(S)2/(4m), all

with respect to G. De�ne the following two problems:

Problem 3.2:Modularity

Given a graph G, does there exist a subset S of its nodes that such ẽG(S) > 0?

The NP-hardness of modularity maximization was �rst shown by [BDG
+

07], though this

di�ers from the formulation here. The NP-hardness of this exact formulation was shown by

[DLT15]. They do this by reducing the known NP-hard Partition problem, of partitioning n
integers x1, · · · , xn into two subsets of equal sum, to the Modularity problem. To do this,

they show that given x1, · · · , xn, we can construct a graph such that a subset S of positive

32

modularity exists i� there exists a partition of x1, · · · , xn into two halves of equal sum, which

completes the reduction and establishes the NP-hardness of Modularity.

The problem we are interested in is:

Problem 3.3: TellTailProb

Given a graph G′, does there exist a subset S of its nodes such that TellTailG′(S) > 0?

We now show our main NP-completeness result:

Theorem 3.4

TellTailProb is NP-complete.

Proof. Given a subset S of the nodes of G, we can compute TellTail(S) in polynomial time.

Thus, TellTailProb can be veri�ed in polynomial time, and is therefore in NP. It remains to

establish that TellTailProb is NP-hard.

We do this by reducing Modularity to TellTailProb: given an algorithm A′ that solves

TellTailProb, we show that it can be used as a subroutine in a polynomial-time algorithm A
to solve Modularity. Then, since we know that Modularity is NP-hard, this would imply

that TellTailProb is NP-hard as well.

Consider an instance of Modularity with graph G. Construct a new graph G′ by adding

r extra nodes to G, in which the extra nodes have no edges attached to them. Note then that

for any subset S of the nodes of G, the adjusted mass of S is the same when computed with

respect to either G or G′: this is because in the formula ẽ(S) = e(S) − d(S)2/(4m), none of

the terms (e(S), d(S) or m) di�er between G and G′.
Consider Eq. (3.6) for µ0. Each of the pi is at most 1, and the Si are all constant as we

increase r, which we can verify from Eq. (6) to (8) of the original paper. Then, since G′ has

n+ r nodes, we have from Eq. (3.6) that µ0 ≤ (n+r
2

)−αB, for some B > 0 that does not depend

on r.
Set r > 2(4mnαB)(1/α)

. Then in G′, we have:

µ0 ≤
(
n+ r

2

)−α
B

<
(r

2

)−α
B

= (4mnαB)(1/α)·(−α)B

=
1

4mnα

De�ne the algorithm A(G) for Modularity that given G, constructs G′, runs our subrou-

tine for solving TellTailProb on G′, and outputs A′(G′). We claim that A(G) correctly solves

Modularity. To show this, we consider two cases:

33

• case 1: there exists S such that ẽG(S) > 0. Then since ẽG(S) is a fraction with an integer

in the numerator and a denominator of 4m, we have ẽG(S) ≥ 1/(4m). Then, recalling

that ẽG(S) = ẽG′(S),

TellTailG′(S) =
ẽG(S)− µ0|S|α

|S|β

≥
1

4m
− µ0|S|α

|S|β

≥
1

4m
− 1

4mnα
|S|α

|S|β

> 0

ThusA(G) outputs the correct result in this case: A′(G′) will return ‘true’ sinceTellTailG′(S) >
0, so A(G) will return ‘true,’ which is correct since ẽG(S) > 0.

• case 2: there does not exist such an S; i.e. ẽG(S) ≤ 0 for all S. Then for all S,

TellTailG′(S) =
ẽG(S)− µ0|S|α

|S|β
≤ ẽG(S)

|S|β
≤ 0

Thus A(G) returns ‘false’, which is the correct result in this case as well.

In conclusion, A(G) is a correct, polynomial time algorithm for Modularity, assuming we

have a subroutine A′ that solves TellTailProb. Since Modularity is NP-hard by [DLT15],

this implies that TellTailProb is NP-hard as well. Since we also showed that TellTailProb is

in NP, this implies that it is NP-complete. �

Our experiments answer the following questions:

• Q1. Scalability: how does TellTail+ scale with data size?

• Q2. Accuracy of Measure: does TailF accurately identify injected dense subgraphs?

• Q3. Real-World E�ectiveness: do TailF and TellTail+ accurately �nd ground-truth

communities in real graphs?

Datasets details are in Table 10.3. The �rst 8 datasets are available online at KONECT [Kun13].

The next 5 are topical Twitter graphs with ground truth communities [GC13]; we �lter exces-

sively small communities (< 10 nodes). We use WikiP [kon17] for testing scalability, and

Twitter [KLPM10] as a fraud detection case study.

3.7.4 Q1. Scalability

To get graphs that follow real-world patterns, rather than using a synthetic generator, we use

the real WikiP graph and extract subsets of its nodes. Hence, we run TellTail+ on random

subsets of the WikiP graph containing b(0.85)kc fraction of nodes for k = 0, . . . , 9, averaging

each over 10 trials. Figure 3.1b shows thatTellTail+ scales near-linearly: the blue line indicates

linear growth. TellTail+ is fast, taking 0.41 seconds (using a laptop computer) on the full graph

of 49.0 million edges.

34

Nodes Edges Node Info Edge Info Communities

UCForum [LKF07] 899 34K User/Forum Post -

Email [CHC
+

07] 1.1K 5K User Email -

Blogs [AG05] 1.2K 19K Blog Hyperlink -

Petster [Kun13] 2.4K 17K User Friendship -

PGP [BPSDGA04] 11K 24K User Interaction -

DBLP [Ley02] 13K 50K Publication Citation -

AstroPh [LKF07] 18K 198K Author Coauthor -

InternetAS [ZLMZ05] 34K 171K A.S. Connection -

Football [GC13] 248 3.8K User Follow 17

PoliticsIE [GC13] 348 17K User Follow 4

PoliticsUK [GC13] 419 27K User Follow 3

Olympics [GC13] 464 11K User Follow 18

Rugby [GC13] 854 36K User Follow 8

WikiP [kon17] 1.6M 49M Page Link -

Twitter [KLPM10] 41.7M 1.47B User Follow -

Table 3.3: Datasets used in our experiments

Pruning E�ectiveness

How e�ective are the pruning steps in TellTail+ in reducing the size of the graph? Figure 3.6

shows that TellTail+ reduces the number of nodes by a factor of 45, 18 and 52 on the largest

InternetAS, WikiP and Twitter datasets respectively.

F
oo

tb
al

l
P

ol
iti

cs
IE

P
ol

iti
cs

U
K

O
ly

m
pi

cs
R

ug
by

U
C

F
or

um
E

m
ai

l
B

lo
gs

P
et

st
er

P
G

P
D

B
LP

A
st

ro
P

h
In

te
rn

et
A

S
W

ik
iP

T
w

itt
er

102

104

106

108

N
um

be
r

of
 n

od
es Before pruning

After pruning

Figure 3.6: TellTail+ reduces graph size.

35

0 50 100 150
Injected size

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Ideal

(a) UCForum

0 100 200
Injected size

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

(b) Email

0 100 200
Injected size

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

(c) Blogs

0 100 200 300
Injected size

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

(d) Petster

0 200 400 600
Injected size

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

(e) PGP

0 200 400 600 800
Injected size

0

0.2

0.4

0.6

0.8

1
A

cc
ur

ac
y

(f) AstroPh

0 200 400 600
Injected size

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y
(g) DBLP

0 500 1000
Injected size

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

(h) InternetAS

0.99 1 1.01 1.02
0

0.2

0.4

0.6

0.8

1
TellTail
Average
Modularity
Expansion
Conductance
Surplus (, = 1=3)
Surplus (, = 1=2)
Surplus (, = 2=3)
Suspiciousness

Figure 3.7: TailF outperforms baselines in accuracy for identifying injected subgraphs.

3.7.5 Q2. Accuracy of Measure

In this section, we evaluate the accuracy of our TailF measure in distinguishing injected dense

subgraphs from normal subgraphs. Note that our goal here is to evaluate its accuracy as a

measure, against baseline measures, rather than against detection algorithms. Hence, our base-

line measures are chosen to provide a mix of standard internal density measures (average de-

gree, modularity), measures which consider internal and external density (expansion, conduc-

tance) and recently proposed dense subgraph measures (edge surplus [TBG
+

13], suspiciousness

[JBC
+

16]). De�ne c(S) = |{(u, v) ∈ E : u ∈ S, v /∈ S}|.
• Average Degree [RCC

+
04]: f(S) = 2e(S)/|S| is the average internal degree of the nodes

in S.

• Modularity [New06]: f(S) = 1
m
e(S) − (d(S)

2m
)2

is the fraction of links in S minus its

expected value.

• Expansion [RCC
+

04]: f(S) = c(S)/|S| is the number of edges per node that cross the

boundary of S.

• Conductance [SM00]: f(S) = c(S)
2e(S)+c(S)

is the fraction of the edge volume of S crossing

its boundary.

• Edge Surplus [TBG
+

13]: f(S) = e(S)−α
(|S|

2

)
. Following [TBG

+
13] we use α = 1/3, but

also include 1/2 and 2/3.

• Suspiciousness [JBC
+

16]: f(S) = − logP (Y = e(S)): Y is the mass of S under an Erdos-

Renyi model.

While edge density e(S)/
(|S|

2

)
is intuitive, it does not directly work as a single edge attains

the maximum possible density of 1. Average Degree, Modularity and Edge Surplus can be

considered as di�erent approaches for adjusting edge density to alleviate this problem.

36

For each graph, in each trial we inject a dense subgraph, whose nodes are uniformly sampled

at random from the graph’s existing nodes, and whose size is one of b
√
nc, 2b

√
nc, · · · , 5b

√
nc

(we obtain separate results for each of these sizes). We choose these values as it tends to be

the range where performance varies meaningfully. We inject edges uniformly at random to

this subgraph, adding additional density equal to twice the average density of the whole graph

(i.e. density 2m/
(
n
2

)
). A good measure should distinguish ‘unnatural’ (injected) subgraphs from

‘natural’ (non-injected) subgraphs. Thus, in each trial we generate 500 random null subgraphs:

their sizes follow an evenly distributed grid of sizes between 1 and n, then the nodes of each

null subgraph are chosen uniformly at random. A measure is successful on a trial if it gives a

higher value to the injected subgraph than to all the null subgraphs. We repeat each trial 20
times to generate error bars (representing 1 standard deviation).

Figure 3.7 shows accuracy (i.e. the fraction of trials where the injected subgraph received

the highest score) against injected size. TailF clearly outperforms the baselines, with accu-

racy near 1 for many cases. Why does this happen? In Section 3.5.1 we introduced size-bias:

many measures do not compare across sizes in a balanced manner: e.g. average degree chooses

large subsets of almost the whole graph, while modularity chooses subsets of around half the

graph size. TailF evaluates subgraphs of each size using an accurate GP model, allowing fair

comparison across sizes.

3.7.6 Q3. Real-World E�ectiveness

We next evaluate TailF on topically curated Twitter graphs with ground truth dense commu-

nities corresponding to sports teams or political parties manually labelled by [GC13]. On each

dataset, we randomly generate a pool of null subgraphs: for each size (twice), we generate 200
random subgraphs of that size and add the community with highest mass into the pool. This

ensures that the null subgraphs are reasonably dense. We then compute each measure on the

ground truth and null subgraphs. For each measure, its accuracy is its precision at k, i.e. the

fraction of ground truth communities in the top k subsets according to the measure, where k is

the true number of ground truth communities. Table 3.4 shows that TailF clearly outperforms

the baselines, and has more consistent performance across datasets. Many of the baselines have

highly variable performance, e.g. some high and some low accuracies, which suggests that they

are not comparing subgraphs of di�erent sizes in a balanced manner.

E�ectiveness of our Search Algorithms

We now evaluate TellTail and TellTail+ on detecting ground truth communities in the same

topical Twitter graphs. We use the same baselines, each optimized using standard local search [JBC
+

16].

Note that local search is a standard approach for optimizing most of these metrics: [Cha00,

New06, TBG
+

13, JBC
+

16]. We run each algorithm 10 times and choose the subset which it

gave the highest score to. We evaluate each method based on the largest Jaccard similarity

between its output and any ground truth community.

The results are shown in Table 3.5. Averaging over the 5 graphs, TellTail and TellTail+

outperforms the best-performing baseline by 0.34 and 0.31 respectively. This occurs likely due

37

T
a
i
l
F

A
v
e
r
a
g
e

M
o

d
u

l
a
r
i
t
y

E
x
p

a
n

s
i
o

n

C
o

n
d

u
c
t
.

S
u

r
p

.(
1
/
3
)

S
u

r
p

.(
1
/
2
)

S
u

r
p

.(
2
/
3
)

S
u

s
p

.

Football 1.00 0.00 0.96 0.71 0.55 0.99 1.00 1.00 0.68

PoliticsIE 1.00 0.00 0.94 0.87 0.86 0.16 0.75 0.86 0.38

PoliticsUK 0.96 0.46 0.87 0.54 0.87 0.46 0.71 0.87 0.29

Olympics 1.00 0.00 0.85 0.74 0.67 0.99 1.00 1.00 0.63

Rugby 0.97 0.00 0.85 0.90 0.80 0.97 0.94 0.94 0.55

Table 3.4: TailF outperforms baselines in identifying ground truth communities.

to their use of TailF, which also performs better in identifying ground truth communities in

Table 3.4.

T
e
l
l
T
a
i
l

T
e
l
l
T
a
i
l
+

A
v
e
r
a
g
e

M
o

d
u

l
a
r
i
t
y

E
x
p

a
n

s
i
o

n

C
o

n
d

u
c
t
.

S
u

r
p

.(
1
/
3
)

S
u

r
p

.(
1
/
2
)

S
u

r
p

.(
2
/
3
)

S
u

s
p

.

Football 0.78 0.67 0.11 0.19 0.06 0.11 0.13 0.15 0.20 0.13

Politics IE 0.90 0.82 0.42 0.39 0.02 0.41 0.42 0.41 0.40 0.39

Politics UK 0.82 0.84 0.81 0.75 0.01 0.36 0.51 0.53 0.81 0.76

Olympics 0.68 0.72 0.20 0.21 0.11 0.15 0.22 0.29 0.44 0.22

Rugby 0.47 0.49 0.43 0.24 0.36 0.17 0.25 0.03 0.03 0.28

Table 3.5: TellTail and TellTail+ outperform baselines in identifying ground truth

communities.

3.7.7 Case Study on Twitter Data

Figure 3.8: TellTail+ detects a follower-boosting scheme: we detect a large group of

accounts, 85% of which are directly connected to the pictured account.

38

We applyTellTail+ on a Twitter following graph of 41.7M users and 1.47B follows [KLPM10].

TellTail+ detects a group of 4334 users with edge density 75%, which is highly suspicious in

itself.

To further analyze the users in this block, we �rst take a random sample of 400 of these users.

We then exclude users whose accounts were deleted, suspended, or not searchable, resulting

in 280 remaining users. Of these, we use a script to search for which of these users have made

tweets linking either ‘tweepme.com’ or ‘tweetergetter.com,’ which are the names of two known

follower-buying services in which users who purchase the service follow one another (which

would explain the unusually dense subgraph). We �nd that 125 (45%) of these users have made

such tweets, and still remain undeleted in the 10 years since this dataset was collected.

The true number of users in this group engaging in follower-buying services is likely higher:

users may have cleared their old tweets, been suspended or deleted, or use other follower-

buying services. Indeed, we �nd that 85% of the users in this block are directly adjacent to

the user in Figure 3.8, which seems to be a user who was created for the purpose of reciprocal

following and amplifying follower-buying schemes: this user (who still exists without being

suspended) advertises over 20 follower-boosting services, such as ‘TweepMe’ and ‘TweeterGet-

ter’.

3.8 Conclusion

In this chapter, we introduced principled scoring functions for dense subgraphs. To sum up,

a persistent question in dense subgraph settings is: how can we fairly compare a very dense

subgraph of size 10, to a less dense subgraph of size 10000? Which is more surprising, and thus

preferable to bring to the user’s attention? Our answer is to evaluate each subgraph against the

empirical distribution of subgraphs of the same size, producing a probabilistic score, and then

to compare these scores. This allows us to treat subgraphs of all sizes fairly, rather than being

‘size-biased’ (i.e. giving high scores more often to subgraphs of particular sizes). Our approach

for doing this is based on the GP distribution, which closely �ts the empirical distribution of

subgraph masses.

Our contributions are as follows:

• Theoretical underpinnings: we propose a probabilistic framework (see De�nition 3.5)

for �nding dense subgraphs based on extreme value theory. Theorem 3.2 provides a guar-

antee of consistency.

• Discoveries: We make two novel empirical observations: Observations 1 and 2, on dense

subgraph patterns in real graphs, which we use to speed up our TellTail measure.

• Practicality: Our approach outperforms existing measures in synthetic (Figure 3.7) and

ground truth (Tables 3.4 and 3.5) settings.

• Search algorithm: Theorem 3.1 allows us to safely prune away graph nodes, which

improves the accuracy of our search algorithm, TellTailSearch+.

Reproducibility: Our code and data are publicly available at http://www.andrew.
cmu.edu/user/bhooi/telltail/.

39

http://www.andrew.cmu.edu/user/bhooi/telltail/
http://www.andrew.cmu.edu/user/bhooi/telltail/

40

Chapter 4

Fraudar: Fraud Detection in an

Adversarial Setting

Chapter based on work that appeared at KDD16 [HSB
+

16b] [PDF].

Given a bipartite graph of users and the products that they review, or followers and fol-

lowees, how can we detect fake reviews or follows? Fraudsters often evade detection using

camou�age, by adding reviews or follows with honest targets so that they look “normal”.

To spot fraudsters in the presence of camou�age or hijacked accounts, we propose

Fraudar, an algorithm that (a) is camou�age-resistant, (b) provides upper bounds on the

e�ectiveness of fraudsters, and (c) is e�ective in real-world data.

4.1 Introduction

How can we detect if a politician has purchased fake followers on Twitter, or if a product’s

reviews on Amazon are genuine? More challengingly, how can we provably prevent fraudsters

who sell fake followers and reviews for various web services from evading our detection sys-

tems? In this chapter we focus on precisely this problem – speci�cally, how can we design a

fraud detection system with strong, provable guarantees of robustness?

Given the rise in popularity of social networks and other web services in recent years, fraud-

sters have strong incentives to manipulate these services. On several shady websites, anyone

can buy fake Facebook page-likes or Twitter followers by the thousands. Yelp, Amazon and

TripAdvisor fake reviews are also available for sale, misleading consumers about restaurants,

hotels, and other services and products. Detecting and neutralizing these actions is important

for companies and consumers alike. The tell-tale sign of such fraudulent actions is that fraud-

sters must add many edges, creating unusually large and dense regions in the adjacency matrix

of the graph (see Figure 4.2). Smart fraudsters will also try to ‘look normal’, by adding links to

popular items/idols (like famous singers/actors, or well-liked products) - this behavior is called

“camou�age” in the recent literature. State-of-the-art algorithms, such as SpokEn [PSS
+

10] and

NetProbe [PCWF07] exploit exactly the density signal, but do not account for “camou�age.”

41

http://www.andrew.cmu.edu/user/bhooi/papers/fraudar_kdd16.pdf

We propose Fraudar, a novel approach for successfully detecting fraudsters under cam-

ou�age, and we give provable limits on undetectable fraud. We provide data-dependent limits

on the maximum number of edges a group of fraudulent adversaries can have without being

detected, on a wide variety of real world graphs.

(a) (b)

(c) (d)

Figure 4.1: (a) Fraudar detects more fraudsters: the detection region indicates where a

fraudster will be guaranteed to be caught by our approach. (b) Accuracy: Fraudar outper-

forms baselines. (c) Con�rmed fraudsters: a large fraction of our detected followees (left

red bar) and followers (right red bar) compared to almost none among non-�agged accounts

(2 control groups). Con�rmation was done by inspecting Tweets that advertise ‘TweepMe’ or

‘TweeterGetter’. (d) Real-life results: a sample fraudster caught.

As shown in Figure 4.1(a), Fraudar provides limits on undetectable fraud, and additionally

provides novel optimizations that strengthen this bound.

Moreover, our method outperforms competitors and �nds real world fraud on Twitter. In

Figure 4.1(b) we �nd that Fraudar detects injected fraud with high accuracy, even in the case

of camou�age, where prior methods struggle to detect fraudulent attacks. Additionally, when

tested on a Twitter graph from 2009, Fraudar �nds a 4031 by 4313 subgraph that is 68% dense.

As shown in Figure 4.1(c-d), we �nd that amajority of the detected accounts had tweets showing

42

that they used follower-buying services, and had gone undetected by Twitter for the 7 years

since the data was collected. Finally, our method is scalable, with near linear runtime in the

data size.

Thus, our main contributions are as follows:

• Metric we propose a novel family of metrics which satis�es intuitive “axioms” and has

several advantages as a suspiciousness metric.

• Theoretical Guarantees we provide a provable bound on how much fraud an adversary

can have in the graph without being caught, even in the face of camou�age. Additionally,

we improve the theoretical bound through novel optimizations that better distinguish

fraud and normal behavior in real-world data.

• E�ectiveness Fraudar outperforms state-of-the-art methods in detecting various fraud

attacks in real world graphs, and detects a large amount of previously undetected fraud-

ulent behavior on Twitter.

• Scalability Fraudar is scalable, with near-linear time complexity in the number of edges.

Furthermore, Fraudar o�ers natural extensibility and can easily incorporate more complex

relations available in certain contexts such as review text, IP addresses, etc.

4.2 Background and Related Work

Fraud detection has received signi�cant focus in recent years. Many existing methods aim to

detect fraud through review text [OCCH11, JL08]. However, these approaches are typically not

adversarially robust: spammers can carefully select their review texts to avoid detection. Even

without knowledge of the detection system, they may mimic normal user reviews as closely as

possible. Graph-based approaches detect groups of spammers, often by identifying unexpect-

edly dense regions of the graph of users and products. Such methods are potentially harder to

evade, as creating fake reviews unavoidably generates edges in the graph. Graph-based meth-

ods may be classi�ed into global and local methods.

Global methods: Building on singular value decomposition (SVD), latent factor models, and

belief propagation (BP), these model the entire graph to �nd fraud. SpokEn [PSS
+

10] considered

the “eigenspokes” pattern produced by pairs of eigenvectors of graphs, and was later general-

ized for fraud detection [JCB
+

14b]. fBox [SBGF14] builds on SVD but focuses on detecting

attacks missed by spectral techniques. Several methods have used HITS [Kle99]-like ideas to

detect fraud in graphs [JCB
+

14a, GGMP04, CSYP12, GVK
+

12, WGD06]. BP has been used for

fraud classi�cation on eBay [PCWF07], and fraud detection [ACF13]. All of these methods have

been successful in �nding fraud but they o�er no guarantees of robustness. [SBGF14] performs

adversarial analysis for spectral algorithms, showing that attacks of small enough scale will

necessarily evade detection methods which rely on the top k SVD components.

Local clustering methods: A di�erent direction for fraud detection focuses on local sub-

graphs, by analyzing the properties of egonets to detect fraud [CPV01, PAISM14]. CopyCatch

[BXG
+

13] and GetTheScoop [JCB
+

14b] use local search heuristics to �nd relevant dense bi-

partite subgraphs. However, without guarantees on the search algorithm, the algorithms may

not be robust to intelligent adversaries.

43

Property C
o
p
y
C
a
t
c
h

C
a
t
c
h
S
y
n
c

B
P

-
b
a
s
e
d

S
p
o
k
E
n

f
B
o
x

G
e
t
T
h
e
S
c
o
o
p

F
r
a
u
d
a
r

Detects dense blocks ! ! ! ! ! ! "

Camou�age-resistant ! ? ? "

Theoretical guarantees "

Table 4.1: Comparison between Fraudar and other fraud detection algorithms.

Dense subgraph mining: Finding dense subgraphs has been an important focus of graph

theory communities and has been studied from a wide array of perspectives [GTV11, KK98].

Most closely related to ours is Charikar’s work on �nding subgraphs with large average de-

gree [Cha00], which shows that subgraph average degree can be optimized with approxima-

tion guarantees. Variants have been proposed to e�ciently �nd large, dense subgraphs [Tso15],

with approximation guarantees. To our knowledge, however, this is the �rst work which adapts

this theoretical perspective to the challenges of fraud detection and camou�age resistance, and

achieves meaningful bounds for our application. Moreover, our work di�ers from these in its

setting of bipartite graphs, and in the use of edge re-weighting to further increase accuracy.

Social network-based Sybil defense: Multiple identity or ‘Sybil’ attacks pose problems of

malicious behavior in distributed systems. SybilGuard [YKGF06] and SybilLimit [YGKX08] use

a decentralized random walk approach to limit the number of Sybil attackers. SumUp [TMLS09]

and Iolaus [MKKSM13] adapt this to content rating settings. However, these systems rely on a

separate trust network between users; our setting is fundamentally di�erent as our approach

works directly with the user-product bipartite graph.

Handling camou�age: [GPW
+

, VD06] consider fraud detection methods that are robust

to camou�age attacks. However, both methods focus on the time-series domain, observing

changes in the behavior of fraudsters from system access logs rather than graph data.

A comparison between Fraudar and other fraud detection algorithms is summarized in

Table 10.1. Our proposed method Fraudar is the only one that matches all speci�cations.

4.3 Problem De�nition

Consider a set of m users U = {u1, . . . , um} and n objectsW = {w1, . . . , wn} connected ac-

cording to a bipartite graph G = (U ∪W , E). We can consider the objects to be followees on

Twitter or products on Amazon. Table 8.2 gives a complete list of the symbols we use through-

out the paper. We now describe our attack model and then our problem de�nition.

Attack model We assume that fraudsters are hired to use users they control to add edges

pointing to a subset of nodes inW . For example, a business may pay for followers on Twitter

44

Symbol Interpretation

U = {u1, . . . , um} Users

W = {w1, . . . , wn} Objects

V Nodes of bipartite graph: U ∪W
G Bipartite graph G = (V , E)
A Subset of users

B Subset of objects

S Subset of nodes, S = A ∪ B
g(S) Density metric

f(S) ‘Total suspiciousness’ metric (Eq. (4.2))

X Current set of nodes in the greedy algorithm

∆i f(X \ {i})− f(X)

Â, B̂ Users (resp. objects) returned by Fraudar

m0, n0 No. of users (resp. objects) in fraud block

di ith column sum of adjacency matrix

λ Min. fraction of fraud edges per customer

glog Logarithmic weighted metric

Table 4.2: Symbols and De�nitions

or positive reviews on Yelp. In general, fraudsters add a large number of edges, inducing a dense

subgraph between the fraudster accounts and customers, as shown in the bottom right corner

of each subplot of Figure 4.2. This general characteristic of fraud was found to be true in our

experiments on real datasets, as well as in many other papers which use dense blocks to detect

fraud [BXG
+

13, PSS
+

10, JCB
+

14b, PCWF07, ACF13].

To mask the fraud, fraudster accounts can add arbitrary “camou�age”, i.e. edges pointing

from their user accounts to any of the nodes in W that are not customers. We assume that

fraudsters have complete knowledge of the graph and fraud detection mechanisms, enabling

worst-case camou�age for any fraud detection system we create. Examples of the possible

types of camou�age are given in Figure 4.2: (a) adding camou�age edges to random honest

users, (b) camou�age biased toward high degree nodes, (c) using hijacked accounts, whereby

fraudster accounts have realistic patterns of camou�age essentially similar to that of honest

users.

While it is trivial for fraud accounts to add edges to any other node, it is more di�cult for

customer accounts to get honest edges. In particular, we assume that a customer would try to

increase their number of incoming edges by a signi�cant portion, and as a result a fraction,

λ ∈ [0, 1], of their incoming edges will be from fraudsters. This assumption would manifest

itself as customers wanting to boost their follower count to seem noticeably more popular or

a restaurant wanting a signi�cant number of positive ratings to shift its average “number of

stars” on Yelp. We will demonstrate how using this real world pattern signi�cantly improves

fraud detection both theoretically and in practice.

45

Figure 4.2: Three examples of possible attacks: (a) random camou�age; (b) biased camou-

�age; (c) hijacked accounts.

Desired properties of detection approach Our goal is to detect dense subgraphs in G,

typically indicative of fraudulent groups of users and objects, like in the bottom-right of each

sub�gure in Figure 4.2.

Informal Problem 4.1

Given a bipartite graph, detect attacks so as to minimize the number of edges that fraud-

sters can add pointing to customers without being detected.

Given that we want our detection algorithm to be able to handle camou�age, we de�ne the

requirements for a camou�age-resistant algorithm:

De�nition 4.1

Let (A,B) be a block consisting of fraudulent users and objects. A density metric g is

camou�age-resistant if when any amount of camou�age is added by the adversary, g(A∪B)
does not decrease.

That is, fraudsters cannot make themselves less suspicious by adding camou�age. Our goal is

to �nd a fraud detection approach satisfying the following criteria:

Problem 4.1: Dense Subgraph Detection

Design a class of density metrics for bipartite graphs, which can be optimized (1) in near-

linear time, (2) within a constant factor of the optimum, and (3) is minimally a�ected by

camou�age edges added by adversaries.

46

Obtaining theoretical guarantees on the near-optimality of the returned subgraph is impor-

tant because, as we will later show, it allows us to o�er guarantees against worst-case fraudsters.

4.4 Proposed Method

Given this problem de�nition and attack model, we now o�er Fraudar and our theoretical

analysis of Fraudar.

4.4.1 Metric

In this section, we propose a class of metrics g that have particularly desirable properties when

used as suspiciousness metrics. Namely, we will show that if g takes the form in (4.1) and (4.2),

then it can be optimized in a way that is (a) scalable; (b) o�ers theoretical guarantees, and (c) is

robust to camou�age.

Let A ⊆ U be a subset of users and B ⊆ W be a subset of objects. Let S = A ∪ B, and

V = U∪W . For the rest of this chapter, we use g to denote the density metric that the algorithm

will optimize, i.e. the algorithm will �nd S to (approximately) maximize g(S). Note that g has

a single argument, which is the union of the users and objects whose suspiciousness we are

evaluating.

We propose using density metrics g of the following form:

g(S) =
f(S)

|S|
(4.1)

where total suspiciousness f is:

f(S) = fV(S) + fE(S)

=
∑
i∈S

ai +
∑

i,j∈S∧(i,j)∈E

cij, (4.2)

for some constants ai ≥ 0 and constants cij > 0.

Intuitively, the node suspiciousness fV(S) is a sum of constants ai corresponding to the

users and objects in S , which can be thought of as how individually suspicious that particular

user or object is. The edge suspiciousness fE(S) is a sum of constants cij corresponding to the

edges in between S , which can be thought of as how suspicious that particular edge is (e.g. the

suspiciousness of the text of a review by user i for object j).
There are many advantages to metrics of this form. Firstly, metrics of this form can be

optimized in a way that is (a) scalable; (b) o�ers theoretical guarantees, and (c) is robust to

camou�age, as we demonstrate in the rest of this chapter. All 3 of these properties hold due to

the particular chosen form in (4.1) and (4.2).

Secondly, metrics of this form obey a number of basic properties (or “axioms”) that we would

intuitively expect a reasonable suspiciousness metric should meet, as we next show. These basic

properties are adapted from the “axioms for suspiciousness metrics,” proposed in [JBC
+

15], to

our setting where node and edge weights exist.

47

Axiom 4.1: Node Suspiciousness

A subset consisting of higher suspiciousness nodes is more suspicious than one consisting

of lower suspiciousness nodes, if the other conditions are �xed. Formally,

|S| = |S ′| ∧ fE(S) = fE(S ′) ∧ fV(S) > fV(S ′)⇒ g(S) > g(S ′)

Axiom 4.2: Edge Suspiciousness

Adding edges within a subset increases the suspiciousness of the subset if the other con-

ditions are �xed. Formally,

e /∈ E ⇒ g(S(V , E ∪ {e})) > g(S(V , E))

where S(V , E) is the subgraph induced by S in the graph (V , E).

The edge density ρ(S) of an induced subgraph is its number of edges divided by its maxi-

mum possible number of edges.

Axiom 4.3: Size

Assuming node and edge weights are all equal, larger subsets are more suspicious than

smaller subsets with the same edge density. Formally, given ai = a ∀ i, and cij =
b ∀ (i, j) ∈ E :

|S| > |S ′| ∧ S ⊃ S ′ ∧ ρ(S) = ρ(S ′)⇒ g(S) > g(S ′)

Axiom 4.4: Concentration

A subset with smaller size is more suspicious than one with the same total suspiciousness

but larger size. Formally,

|S| < |S ′| ∧ f(S) = f(S ′)⇒ g(S) > g(S ′)

Density metrics g of the form de�ned in Equation (4.1) satisfy these properties:

Theorem 4.1

The density metric de�ned in (4.1) satis�es axioms 4.1 to 4.4.

48

Proof. Axiom 4.1 (Node Suspiciousness)

g(S) =
fV(S) + fE(S)

|S|

>
fV(S ′) + fE(S ′)

|S|
=
fV(S ′) + fE(S ′)

|S ′|
= g(S ′).

Axiom 4.2 (Edge Suspiciousness) Let e = (u, v).

g(S(V , E ∪ {e})) =
fV(S) + fE(S) + cuv

|S|

>
fV(S) + fE(S)

|S|
= g(S(V , E)).

Axiom 4.3 (Size) Let S = A ∪ B, and ρ be the edge density.

g(S) =
fV(S) + fE(S)

|S|
= a+ b

(
ρ|A||B|
|A|+ |B|

)
= a+ bρ

(
1

|A|
+

1

|B|

)−1

which is increasing in both |A| and |B|.
Axiom 4.4 (Concentration)

g(S) =
f(S)

|S|
>
f(S)

|S ′|
=
f(S ′)
|S ′|

= g(S ′).

�

Note some simple metrics that violate these axioms: the edge density ρ(S) itself, as a metric,

does not increase with the size of S and hence violates axiom 4.3. On the opposite end, the total

edge weight function

∑
i,j∈S∧(i,j)∈E cij as a metric violates axiom 4.4 as it does not consider

how concentrated the edge weight is. In contrast, g scales in a reasonable manner as its size or

concentration changes.

A simple example of a metric g as de�ned in (4.1) and (4.2) is the bipartite graph average

degree:

Example 1. (Bipartite Graph Average Degree) Let ai = 0, and let cij = 1 if (i, j) ∈ E and 0
otherwise. In the expression (4.2) for f(S), we add one term cij for each edge (i, j) for which i, j
are both in the subset S . Thus, f(S) is equal to the number of edges in the subgraph spanned by S ,
or half the total degree in the subgraph spanned by S . As a result, g(S) = f(S)

|S| is half the average
degree of the subgraph spanned by S .

4.4.2 Algorithm

Let f and g be as given in (4.1) and (4.2). In this section, we give an algorithm for optimizing

the density metric g in near-linear time.

49

Algorithm 4.1 describes our proposed Fraudar algorithm, a greedy approach inspired by

that of [Cha00] but which covers our broader objective class. We start with the entire set of

nodes U∪W , then repeatedly remove the node which results in the highest value of g evaluated

on the remaining set of nodes. Formally, denote by X the current set we are optimizing over;

initially we set X = U ∪W . Let ∆i = f(X \ {i})− f(X) be the change in f when we remove

i from the current set. At each step, we will select i to maximize ∆i, i.e. to leave behind the set

with highest value of f . We then remove i from X . We then repeat this process: we recompute

the values of ∆j , then choose the next node to delete, and so on. This leads to a shrinking series

of sets X over time, denoted X0, . . . ,Xm+n of sizes m+n, . . . , 0. At the end, we return the one

of these that maximizes the density metric g.

The key fact that allows the algorithm to be e�cient is the forms for f and g in (4.1) and

(4.2). When i is removed, the only values of ∆j which need to be updated are those where j is a

neighbor of i. This is because for all other j, the expressions (4.1) and (4.2) ensure that ∆j does

not change. Hence, the updates are fast: for each (i, j) ∈ E , over the lifetime of the algorithm

we will perform at most one such update over this edge, for a total of O(|E|) updates. Using

appropriate data structures, as we next describe, each update can be performed in O(log |V|)
time, totalling O(|E| log |V|) time.

Algorithm 4.1: Fraudar, which greedily removes nodes to maximize a metric g. Line 5

and 6 run in O(log |V|) time, using a data structure described in Section 4.4.2.1.

Input : Bipartite G = (U ∪W , E); density metric g of the form in (4.1)

1 Construct priority tree T from U ∪W BSee Section 4.4.2.1

2 X0 ← U ∪W BSuspicious set is initially the entire set of nodes U ∪W
3 for t = 1 to (m+ n) do
4 BExonerate least suspicious node

5 i∗ ← arg maxi∈Xi g(Xi \ {i})
6 Update priorities in T for all neighbors of i∗

7 Xt ← Xt−1 \ {i∗}
8 end

9 BReturn most suspicious set Xi
10 Return arg maxXi∈{X0,...,Xm+n} g(Xi)

4.4.2.1 Priority Tree

Each element i ∈ X has a priority that will change as the algorithm progresses: the priority

of element i at the tth iteration is ∆i = f(Xt \ {i}) − f(Xt). This ensures that in Line 5, the

element i∗ = arg maxi∈Xt g(Xt \ {i}) we wish to �nd is exactly the element of highest priority,

allowing us to retrieve it quickly (in O(log |V|) time, as we explain below). Note that it does

not matter if we use f or g in the arg max since the denominator of g in (4.1), |Xt \ {i}|, is the

same for all possible deletions i.
These priorities are stored in the priority tree T constructed in line 1 of Algorithm 4.1. This

data structure is a binary tree with all |V| elements as leaves, all at the bottom level of the tree.

Each internal node keeps track of the maximum priority of its two children.

50

The priority tree supports fast retrieval of the maximum priority element (used in Line 5

of Algorithm 4.1); it does this by starting at the root and repeatedly moving to the child with

higher priority. It also supports quickly updating priorities: since all the leaves can be stored

in �xed locations, we can easily retrieve the leaf at any index to update its priority. Then, after

updating that node’s priority, we travel up the tree to update each parent up to the root (used

in Line 6). Each of these operations on T takes O(log |V|) time.

4.4.2.2 Scalability

The bottleneck is the loop in Lines 5 to 7 which runsm+n times. Lines 5 and 6 takeO(log |V|)
as discussed, while Line 7 is constant time. Finally, we need |E| updates to node priorities, one

for each edge. Thus the algorithm takes O(|E| log |V|) time.

4.4.3 Theoretical Bounds

So far, we have shown that g can be optimized in near-linear time. In this section, we will show

that when f and g are of the form (4.1) and (4.2), Fraudar is guaranteed to return a solution of

at least half of the optimum value.

Theorem 4.2

Let A,B be the set of users and objects returned by Fraudar. Then:

g(A ∪ B) ≥ 1

2
gOPT

where gOPT is the maximum value of g, i.e.

gOPT = max
A′,B′

g(A′ ∪ B′)

Proof. Let the elements of V be labeled v1, v2, . . . , vm+n. We de�ne ‘weight assigned to node vi
in S’ as

wi(S) = ai +
∑

(vj∈S)∧((vi,vj)∈E)

cij +
∑

(vj∈S)∧((vj ,vi)∈E)

cji

where ai(≥ 0) indicates the weight of node vi and cij(> 0) indicates that of edge (vi, vj) as in

(4.2). Note that when node vi is removed from the current set S at some point in the algorithm,

wi(S) is the decrease in the value of f , since it is the sum of all terms excluded in (4.2) when

node vi is removed.

51

Now consider the optimal set S∗. For each node vi ∈ S∗, we claim that wi(S∗) ≥ g(S∗).

Otherwise, removing a node with wi(S∗) < g(S∗) results in

g′ =
f(S∗)− wi(S∗)
|S∗| − 1

>
f(S∗)− g(S∗)
|S∗| − 1

=
f(S∗)− f(S∗)/|S∗|

|S∗| − 1
= g(S∗),

which is a contradiction.

Let vi be the node that Fraudar removes �rst among those in S∗, and let S ′ be the set before

Fraudar removes vi. Then, since S ′ ⊃ S∗, wi(S ′) ≥ wi(S∗). Moreover, since Fraudar chooses

to remove node vi, for each of the other remaining nodes vj ∈ S ′, wj(S ′) ≥ wi(S ′). Since each

term in f(S ′) can be assigned to at most two nodes, summing over j gives f(S ′) ≥ |S′|wi(S′)
2

.

Also note that g(A ∪ B) ≥ g(S ′) since Fraudar returns the best solution that it encounters.

We conclude that

g(A ∪ B) ≥ g(S ′) =
f(S ′)
|S ′|

≥ wi(S ′)
2
≥ wi(S∗)

2
≥ g(S∗)

2
.

�

4.4.4 Edge Weights and Camou�age Resistance

So far, we have seen that metrics of the form: g(S) = f(S)
|S| , where f(S) =

∑
i∈S ai+

∑
i,j∈S∧(i,j)∈E cij

can be optimized e�ciently and with approximation guarantees. In this section, we show how

we can select metrics within this class that are resistant to camou�age, i.e. they do not allow

fraudulent users to make themselves less suspicious by adding camou�age edges, i.e. edges

toward honest objects.

Recall that ai and cij are the weights of node i and edge ij, while f(S) is the total node and

edge weight in S . A key idea of our approach is that instead of treating every edge equally, we

assign a lower weight cij when the target object j has high degree. This is because objects of

very high degree are not necessarily suspicious (since highly popular objects commonly exist).

Thus, this weighting allows us to put greater emphasis on objects within unexpectedly dense

subgraphs, rather than just high degree objects.

If we consider the adjacency matrix with rows representing users and columns representing

objects, we would like to downweight columns with high column sum (column-weighting). A

simple result we show in this section is that column-weightings are camou�age resistant. Recall

that a density metric g is camou�age-resistant if g(A∪B) does not decrease when any amount

of camou�age is added by an adversary with fraudulent usersA and customers B. Let di be the

the ith column sum, i.e. the degree of object i.
Formally, de�ne a column-weighting as a choice of weighting in which each cij is a func-

tion of the respective column sum, i.e. cij = h(dj) for some function h.

52

Theorem 4.3

Let cij be a column-weighting. Then g (as de�ned in (4.1) and (4.2)) is camou�age resistant.

Proof. Adding camou�age only adds edges in the region between A (fraudulent users) and BC
(honest objects). It does not add or remove edges within the fraudulent block; moreover, the

weights of these edges do not change either as their weights only depend on the column degrees

of B, which do not change when camou�age is added. Thus the value of g does not change. �

A natural follow-up question is whether camou�age-resistance also holds for row-weightings

(i.e. selecting cij to be a function of the corresponding row sum). It turns out that row-

weightings are in general not camou�age resistant. This is because a fraudulent user account

can add a large number of camou�age edges, thereby increasing their row sum, decreasing the

weight of each of their edges. Thus g(A ∪ B) decreases, meaning that g is not camou�age

resistant.

Hence we may choose any column-weighting while ensuring camou�age resistance. The

remaining question is what function to choose for the column-weighting, i.e. the function h
where cij = h(dj). It should be decreasing (so as to downweight columns with high sum).

It should shrink more slowly than h(x) = 1/x, since h(x) = 1/x allows a single edge to

contribute as much as the total contribution of a column with any number of edges, causing us

to catch columns with single ones rather than dense blocks.

Within the remaining space of choices, we note that a very similar problem of downweight-

ing based on column frequency appears in deciding the form of the ‘inverse document fre-

quency’ term of the popular heuristic tf-idf weighting scheme [RUUU12], in which logarithmic

weighting of frequency has been empirically found to perform well. We also show empirical re-

sults (in Section 4.5.1) that logarithmic weighting leads to strong theoretical bounds. For these

reasons, we recommend using h(x) = 1/ log(x + c), where c is a small constant (set to 5 in

our experiments) to prevent the denominator from becoming zero, or excessive variability for

small values of x. We use the resulting density metric (denoted glog) in our experiments.

4.4.5 Implications: Bounding Fraud

Figure 4.1(a) shows curves representing our theoretical bounds on the maximum amount of

fraud that can be present for each possible size of the fraudulent block, based on Theorem

4.2. We now explain how such bounds can be computed from Theorem 4.2. Assume that the

fraudulent block contains m0 user accounts and n0 customers.

In this section, we assume that no side information is present, so we set the ai, the prior

suspiciousness of each node, to 0. Thus here glog(S) = 1
|S|
∑

i,j∈S
1

log(dj+c)
, where dj is the

degree of the jth object. Consider a fraudulent subgraph with m0 user nodes and n0 object

nodes. Assume that each fraudulent customer has at least a certain fraction 0 < λ < 1 of

fraudulent edges: each fraudulent customer should be receiving at least a comparable fraction of

fraudulent reviews to its actual honest reviews, otherwise it would not be pro�ting appreciably

from the fraud.

53

Theorem 4.4

Let (Â, B̂) be the block detected by Fraudar. Then the number of edges that a fraudulent

block of size (m0, n0) can have without being detected is at most 2(m0 + n0)glog(Â ∪
B̂) log(m0/λ + c). In other words, our algorithm will detect a fraudulent block without

fail if it contains more edges than this threshold.

Proof. By Theorem 4.2, 2glog(Â ∪ B̂) is an upper bound on the value of glog on any subgraph of

users and objects. Since the fraudulent block hasm0+n0 nodes in total, thus 2(m0+n0)glog(Â∪
B̂) is an upper bound on the value of total suspiciousness flog.

Moreover, each fraudulent customer has at most m0 fraudulent edges joined to it, and since

at least λ fraction of its edges must be fraudulent, it can have at most m0/λ degree in total.

Hence the weight of each fraudulent edge is at least
1

log(m0/λ+c)
. But since the total weighted

degree is at most 2(m0 + n0)glog(Â ∪ B̂), it follows that the number of fraudulent edges is at

most 2(m0 + n0)glog(Â ∪ B̂) log(m0/λ+ c). �

We apply this bound to real data in Section 4.5.1.

4.5 Experiments

We design experiments to answer the following questions:

Q1. Illustration of our theorem: How strong are the bounds that Fraudar provides in terms

of bounding undetectable fraud in the graph? Does column weighting improve those bounds?

Q2. Evaluation on synthetic data: How accurately does Fraudar detect injected fraud

under di�erent types of camou�age attacks? Does Fraudar outperform state-of-the-art com-

petitors?

Q3. E�ectiveness in real-world data: Does Fraudar detect true fraud in real-world graphs?

Have the fraudulent accounts already been detected by previous methods?

Q4. Scalability: Is Fraudar scalable with regard to the data size?

We implemented Fraudar in Python; all experiments were carried out on a 2.4 GHz Intel

Core i5 Macbook Pro, 16 GB RAM, running OS X 10.9.5. The code is available for download

at www.andrew.cmu.edu/user/bhooi/code. We test Fraudar on a variety of real

world datasets. Table 8.3 o�ers details on the datasets we used.

To test the accuracy of our method, we use synthetic attacks injected into our Amazon

dataset. We structure our “attacks” as shown in Figure 4.2. We injected a fraudulent block of

users and customers with varying densities. We assume λ = 0.5 for our theoretical bounds.

54

www.andrew.cmu.edu/user/bhooi/code

Nodes Edges Density Content

Amazon [ML13] 28K (24K,4K) 28K 2.7e-4 Review

Trip Advisor [WLZ11] 84K (82K,2K) 90K 5.9e-4 Review

Epinion [LHK10] 264K (132K,132K) 841K 4.8e-5 Who-trust-whom

Wiki-vote [LHK10] 16K (8K,8K) 103K 1.5e-3 Vote

Table 4.3: Bipartite graph datasets used in our experiments.

4.5.1 Q1. Illustration of our Theorem

In Figure 4.1 (a), we showed our theoretical bounds (Theorem 4.4) applied to compute the maxi-

mum number of edges an adversary withm0 = 50 user nodes can have for various values of n0.

These are computed by running Fraudar under two weighting schemes. First, we use our glog

scheme exactly as in Theorem 4.4 to get an upper bound 2(m0 +n0)glog(Â ∪ B̂) log(m0/λ+ c)
on the number of fraudulent edges; plotting this against n0 gives the green region (‘improved’)

in Figure 4.1 (a). The blue region (‘original’) comes from using the analogous procedure without

the log-weighting, i.e. where g(S) is half the average degree, as in Example 1.

In this case, we see that the log-weighted scheme provides stronger bounds, since the bound

is lower, i.e. an adversary should have fewer edges in order not to be detected. Intuitively, this

happens because down-weighting high degree columns decreases the weight of many of the

honest high degree objects in the dataset, so groups of adversaries stand out more, resulting in

stronger bounds on how many edges an adversary can have.

Next, we apply our Fraudar in the same way over various real-world graphs to analyze the

theoretical upper bounds computed by Fraudar on the density that fraudulent blocks can have.

We run Fraudar on four real-world graphs: Amazon [ML13], Trip Advisor [WLZ11], Epinions
[LHK10], and Wiki-vote [LHK10]. The detailed description of each graph is in Table 8.3. For all

datasets, Figure 4.3 shows the maximum number of fraudulent edges that an adversary can have

without being detected, assuming 50 fraudulent users and varying the number of fraudulent

customers. We see that we can detect fraud most easily in Trip Advisor, followed by Epinion,
Wiki-vote, Amazon; even a fairly sparse block of density around 0.05 would stand out strongly

in the Trip Advisor graph. While density is important in determining how easy it is to detect

fraud in each graph (fraudulent blocks stand out more strongly in a sparse graph), it is not the

only factor. Indeed, Wiki-vote is actually denser than Amazon. In fact, the di�culty of detecting

fraud in each graph is mainly determined by its densest blocks, since an adversarial block that

is signi�cantly less dense than the densest normal blocks in the graph is unlikely to be detected.

4.5.2 Q2. Evaluation on Synthetic Data

In Figure 4.1 (b), we demonstrated that Fraudar can e�ectively detect fraud under four types of

camou�age attacks: 1) Injection of fraud with no camou�age, 2) random camou�age, 3) biased

camou�age and 4) hijacked accounts, more accurately than competitors.

55

Figure 4.3: Fraudar’s bounds on fraud are stringent, on real graphs: E.g., on TripAdvisor,

the bound says that a fraudulent block containing 50 user accounts and anywhere between 100
and 1000 products must have density of < 2% to avoid detection.

Figure 4.4: (a) Fraudar outperforms competitors inmultiple settings. Accuracy of fraud

detection on Amazon data in the experiment with “reverse camou�age” (edges from honest

users to fraudulent products). (b) Fraudar has similar and high accuracy both in detect-

ing fraudulent users and fraudulent customers. Comparison of accuracy on fake users and

targets under four di�erent camou�age attacks.

56

We conduct experiments based on the settings at the beginning of this section, averaged over

5 trials. For the camou�age scenarios 2) and 3), the amount of camou�age added per fraudulent

user account was (on average) equal to the amount of actual fraudulent edges for that user. For

the ‘Random Camo’ case, for each fake user node, camou�age edges were chosen at random,

with on average the same number of camou�age edges as fraudulent edges, as shown in Figure

4.2 (a). For the ‘Biased Camo’ case, for each fake user node, camou�age edges were directed

toward each object with probability proportional to the degree of the object as shown in Figure

4.2 (b). For the ‘Hijacked’ case, we used a random subset of existing users to form the fraudulent

block.

In each case, we injected 200 fraudulent users and 200 fraudulent products with various

edge densities to the subsetted Amazon review graph of 2000 users and 2000 products, with a

density of 0.0006. We compare Fraudar to SpokEn in their F measure (= 2×precision×recall

precision+recall
) in

detecting the fake users. In the �rst set of experiments, we assume that no honest user added

an edge to the fraudulent target (i.e. object) nodes.

As seen in Figure 4.1(b), the results demonstrate that Fraudarworks robustly and e�ciently

against all four attacks, achieving F-measures of over 0.95 on all four scenarios for densities of

at least 0.04. On the other hand, SpokEnwas able to reach its maximum performance of 0.9 only

when fraud blocks had densities of higher than 0.06 and under the ‘no camou�age’ scenario.

The experimental results in Figure 4.1(b) were based on the assumption that no honest

user added an edge to the fraudulent target nodes. However, in a real-world environment,

some honest users may add edges to the fraudulent target nodes (which we refer to as “reverse

camou�age”). To incorporate this, we conducted another experiment using an attack model

where we add edges between honest users and the fraudulent target nodes, but with sparser

density compared to the fraud blocks. We added random edges to this region, with half the

density of the fraud blocks. All other experimental settings were unchanged. The experimental

results are shown in Figure 4.4 (a). For Fraudar, the results are generally similar. In contrast,

SpokEn shows slightly worse performance under this additional camou�age.

To show that Fraudar is e�ective both at catching fraudulent users accounts as well as

fraudulent objects, we next separately evaluate the fraud detection of both fake users and fake

targets using F measure. The basic experimental setup is same as before, with the density

of the fraudulent blocks now �xed to 0.03. In Figure 4.4 (b), the bar plots are shown for the

comparison. ‘User-wise’ (red) denotes the F measure of the detecting fake users, and ‘target-

wise’ denotes the F measure of detecting fake target nodes. We see that in general, accuracy is

high and fairly similar, but the performance in detecting fake users is slightly higher than that

of detecting products.

4.5.3 Q3. E�ectiveness on Real Data

In this section, we verify that Fraudar accurately detects a large block of fraudulent accounts

in the Twitter follower-followee graph, as veri�ed by hand labelling and by clear signs of fraud

exhibited by a majority of the detected users. Indeed, a majority of the detected accounts had

tweets advertising follower-buying services, and the tweets had not been removed or the ac-

counts suspended for the 7 years since the data was collected. Figure 4.1(d) shows a sample

fraudster caught by Fraudar.

57

The Twitter graph we use contains 41.7 million users and 1.47 billion follows; it was ex-

tracted in July 2009 and �rst used in [KLPM10]. On this graph, Fraudar detected a dense

subgraph of size 4031 followers by 4313 followees. This subgraph is extremely dense, with

68% density, which is highly suspicious in itself.

To further investigate this block, we randomly sampled 125 followers and 125 followees

in the block detected by Fraudar for hand labeling to determine how many of them appear

fraudulent. To do this, we labeled which users were fraudulent based on the following char-

acteristics of their pro�le data, chosen based on established criteria in the literature [SBGF14]

summarized below.

• links on pro�le associated with malware or scams

• clear bot-like behavior (e.g. replying to large numbers of tweets with identical messages)

• account deleted

• account suspended

For comparison, we also construct two control groups of size 100 containing users that were

not detected by the algorithm. The �rst control group contains randomly selected non-detected

users. For the second (degree-matched) control group, we constructed it to match the follower

count of users in the detected group; we do this by repeatedly selecting a random detected user,

then �nding another non-detected user who has at most 10% bigger or smaller follower count.

During the labelling process, we shu�ed the detected users with the control groups randomly

and hid group memberships from labellers, labeling users in a “blind” manner.

Additionally, we also check and report how many of these users have Tweets containing the

URLs of two known follower-buying services, TweepMe and TweeterGetter, showing that they

had advertised these follower-buying services through tweets.

Note that this entire labelling process used only pro�le and tweet data and not follower-

followee data, whereas our algorithm uses only follower-followee data, so the labelling is a

fair estimate of the algorithm’s accuracy. We present two pieces of evidence which strongly

indicates fraud in the detected group. Firstly, the percentage of users with tweets advertising

TweepMe or Tweetergetter is much higher among the detected users than among both control

groups (Figure 4.5): 41% of the detected followers, and 26% for the detected followees. These

rise to 62% and 42% respectively as shown in Figure 4.1(c) if we ignore deleted, protected

and suspended accounts (for which pro�le information was unavailable). In the control groups,

there were no mentions of TweepMe and very few mentions of TweeterGetter, as shown in Figure

4.5. Figure 4.5 shows the breakdown of our groups in terms of deleted and suspended users.

Given the sparsity of TweepMe and TweeterGetter in the control groups, we see that the detected

users are likely characterized by a large block of users using these and possibly other follower-

buying services, resulting in a dense block.

Secondly, we used our hand-labelling using the above criteria to determine how many of

each group appear fraudulent. 57% of the detected followers and 40% of the followees were

labelled as fraudulent, deleted or suspended accounts, but much fewer in the control groups,

with 25% for the degree-matched control group, and 12% for control group with no condition.

Thus both these results support the e�ectiveness of Fraudar in detecting fraudulent users in

the real-world graphs.

58

Figure 4.5: Fraudar detects a large, clearly fraudulent block in Twitter. A majority of

the detected accounts were either deleted, suspended, or contained known follower-buying

services, TweepMe and TweeterGetter. In comparison, the control groups had much less detected

fraud.

4.5.4 Q4. Scalability

Figure 9.6 shows the near-linear scaling of Fraudar’s running time in the number of edges.

Here we used the Trip Advisor dataset, and subsampled user nodes in proportions of 0.70, . . . , 0.712
.

Slopes parallel to the main diagonal indicate linear growth.

4.6 Conclusion

In this chapter, we propose Fraudar, a fraud detection algorithm which provably bounds the

amount of fraud adversaries can have, even in face of camou�age. Our main contributions are

as follows.

• Metric we propose a novel family of metrics which satis�es intuitive “axioms” and has

several advantages as a suspiciousness metric.

• Theoretical Guarantees we provide theorems (See Theorem 4.2 in Section 4.4.3 and

Theorem 4.4 in Section 4.4.5) on how Fraudar gives a provable upper bound on unde-

tectable fraud. We also prove that our proposed metric is camou�age-resistant.

• E�ectiveness Fraudar was successfully applied on real-world graphs on fraud attacks

with various types of camou�age, and outperformed the competitor. It also detected a

large block of fraudulent activity in the Twitter follower-followee graph.

• Scalability Fraudar runs near-linearly in the input size. (See Figure 9.6).

59

Figure 4.6: Follower-buying services: a large fraction of detected accounts use TweepMe (bot-

tom) or TweeterGetter (middle, top).

Figure 4.7: Fraudar runs in near-linear time: the curve (blue) shows the running time of

Fraudar, compared to a linear function (black).

60

Part II

Time Series

61

Overview: Time Series

Given temporal activity, how can we detect unusual time periods?

In this part, we propose several approaches for anomaly detection and forecasting in time

series data of several types. For applications arising from online systems (e.g. online com-

merce), time series data often involves discrete events with associated timestamps, such as

ratings, page visits, clicks, likes and so on. Hence, BirdNest focuses on this discrete case, e.g.

by detecting bursts of ratings or unusual temporal patterns via a Bayesian approach. More

classical time series data is real-valued (e.g. sensor data): StreamCast proposes a forecasting

and anomaly detection approach for power systems data, that exploits domain knowledge via

a physics-based model of power systems. Mixed data combines real-valued, categorical, and

ordinal data into a multivariate time series: our BNB proposes a nonparametric change detec-

tion approach for this case. Finally, interaction data (e.g. user-product) is often modelled using

matrices, resulting in a time-series of matrices: our SMF algorithm constructs a matrix fac-

torization model capturing drift and seasonality, and proposes an e�cient anomaly detection

approach.

63

64

Chapter 5

BirdNest: Fraud Detection in

Timestamped Ratings

Chapter based on work that appeared at SDM16 [HSB
+

16a] [PDF].

In this chapter we consider anomaly detection in discrete time-series data: in particular,

detecting fraud in timestamped ratings data. We de�ne a Bayesian model: Bayesian In-

ference for Rating Data (BIRD). Based on our model we then formulate a likelihood-based

anomalousness metric, Normalized Expected Surprise Total (NEST). Experiments on real

data show that BIRDNEST successfully spots review fraud in large, real-world graphs: the

50 most suspicious users of the Flipkart platform �agged by our algorithm were investi-

gated and all identi�ed as fraudulent by domain experts at Flipkart.

5.1 Introduction

Online reviews play an important role in informing customers’ purchasing decisions. This has

led to the problem of fake reviews, in which businesses write or purchase fake reviews in order

to raise the popularity of their products or services. Hence, it is crucial for online commercial

platforms to identify and remove these reviews, in order to maintain customers’ trust in the

accuracy of their reviews.

Various inputs such as rating, review text, timestamp etc. may be available for detection

systems; in this work we focus on ratings and timestamps as they are commonly available and

informative features. Informally, our problem is:

Problem 5.1: Suspiciousness Score

Given a set of users and products, and timestamped ratings (e.g. 1 to 5 stars) by users for

products, compute a suspiciousness score for each user.

65

http://www.andrew.cmu.edu/user/bhooi/papers/birdnest_sdm16.pdf

Normal users
Detected users

(rapid-fire)

Time difference bucket

(a) Common pattern observed that detected

users’ ratings are more ‘bursty’ than normal

users.. Times between a user’s ratings were buck-

eted logarithmically; detected users have shorter

times between ratings.

Ideal

(b) BIRDNEST is e�ective in practice, with 211
users of the top 250 �agged by BIRDNEST involved

in fraud.

Figure 5.1: BIRDNEST combines temporal and rating information in a principled man-

ner to detect fraud with high precision. Inspecting the most suspicious 100 users shows

their strongly anomalous patterns.

Currently, a number of algorithms use a temporal approach to detect ratings fraud [FCYJMT
+

15,

GGF14, XWLY12]. These focus on catching products that receive a large number of positive or

negative reviews in a short time, motivated by the ‘bursty’ nature of fraudulent reviews when

a store wishes to rapidly increase their popularity or defame their competitors. An alternative

approach based on rating distributions is to focus on �nding users who rate products very dif-

ferently from other users [LNJ
+

10, JLL10]. These focus on detection of suspicious behavior by

users or products in terms of their deviation from normal practice.

In this chapter, we aim to combine both approaches in a principled way by constructing a

Bayesian model for rating behavior, then formulating a likelihood-based metric which measures

how much a user deviates from the rest of the users.

The Bayesian approach also provides a principled solution to the conceptually di�cult prob-

lem of �nding a good tradeo� between users with extreme rating distributions vs. users with

larger number of ratings. Is a user with 50 ratings (average rating 5.0) more suspicious than a

user with 500 ratings (average rating 4.95)? Bayesian methods allow us to quantitatively an-

swer this question. Namely, our Bayesian method combines the rating distribution and number

of ratings to estimate our beliefs about the rating characteristics of a user in a way that captures

our uncertainty, which then determines how suspicious the user is.

Our contributions are:

• Theoretically sound user behavior model: we de�ne a Bayesian model for the data

based on a mixture model which captures di�erent types of user behavior. This model

then allows us to determine how much an anomalous user deviates from normal behavior.

66

Detected users
(negative)

Detected users
(positive)Normal users

Rating

Figure 5.2: Commonpattern observed that detected users’ ratings deviate strongly from

normal users: inspecting the detected users shows that they consists of two groups: highly

negative users (middle) and highly positive users (right).

• Suspiciousnessmetric: we de�ne a likelihood-based metric which measures how much

a user deviates from normal behavior.

• Algorithm: we propose a scalable and e�ective algorithm for learning the Bayesian

model and evaluating suspiciousness.

• E�ectiveness: we show that our method successfully spots review fraud in large, real-

world graphs, with precision of over 84% on the top 250 Flipkart users �agged by our

algorithm.

Reproducibility: our code is open-sourced atwww.andrew.cmu.edu/user/bhooi/
ratings.tar.

5.2 Background and Related Work

Content-based approaches

A signi�cant portion of opinion fraud comes from customer reviews online. Customer reviews

have been long studied [HL04], and many methods for review fraud focus on review text, such

as [OCCH11, JL08, FBC12]. While these methods are illuminating, many sites only have ratings

without text, or text is easily manipulated. Therefore, in our setting, we focus on ratings and

their temporal characteristics, as review text is not always available.

Graph-based approaches

Much of the existing work in fraud or anomaly detection on graphs has focused on detect-

ing fraud in pure graphs; that is, graphs with no node or edge labels. This includes spectral

methods which use eigen-decomposition or singular value decomposition (SVD) to group sim-

ilar nodes in the graph [PSS
+

10, JCB
+

14b, SBGF14]. [WXLY11] uses an iterative approach to

label as honest and dishonest. Approaches based on Markov Random Fields and belief propaga-

67

www.andrew.cmu.edu/user/bhooi/ratings.tar
www.andrew.cmu.edu/user/bhooi/ratings.tar

tion have also been used to identify dense or suspicious subgraphs [PCWF07, ACF13]. [YA15]

detects spammers through graph-based measures measuring self-similarity and neighborhood

diversity. However, these methods do not make use of key temporal and rating data.

Temporal methods for fraud detection

There are a number of works on anomaly detection in multivariate time series [LH07, CTPK09,

VS10, RRS00]. [BXG
+

13] focuses on fraudulent temporal patterns in graphs, and [FCYJMT
+

15]

found suspicious inter-arrival times between events in social media. A couple of works address

temporal patterns of reviews, e.g. [XWLY12] detects spam singleton reviews and [GGF14] de-

tects time periods of unusual activity. However, our goal is to compute a general, principled,

likelihood-based measurement of how suspicious each user is. In this regard, [JBC
+

15] o�ers a

general suspiciousness metric for count data but is not suitable for ratings data.

Behavior modeling and fraud detection

A wide body of research has focused on understanding user behavior and especially rating be-

havior. In particular ratings have been studied by the recommendation systems community,

with both frequentist [Kor08] and Bayesian models [SM08] demonstrating great success. Addi-

tionally some models have worked to take into account temporal features [Kor10], and others

have captured the bimodal patterns in ratings data [BMFS14].

Other behavior models have been proposed to detect users who deviate from normal prac-

tice in a meaningful way [LNJ
+

10, JLL10]. In [SBH
+

15] a similar problem of �nding anoma-

lies in temporal rating data was treated with information theoretic arguments. By taking a

Bayesian approach, we develop a signi�cantly di�erent perspective on the problem and our re-

sulting metric of suspiciousness is more �exible, allowing for explicit priors, unique posteriors

for each user, and easy extensions to other distributions.

5.3 Bayesian Model

5.3.1 Motivating Example

We start by illustrating why a Bayesian approach is helpful. Consider users Alice, Bob and Carol

whose rating distributions are as given in Figure 5.3. For example, Alice rated 4 products, all

with 5 stars. Bob did the same, 50 times. Carol gave about 300 ratings, and exhibits a ‘hockey-

stick’ distribution, which is close to the average over all users. Which user is the most suspicious

(i.e. likely fraudulent)? Our goal is to come up with a principled and intuitive measure of how

suspicious each user is.

Why does Alice’s low rating count makes her less suspicious than Bob? Our answer is: since

we only have 4 products rated by Alice, we have little information about her true (i.e. long-

term) rating behavior. She may simply be a normal user who appears unusual as her �rst few

ratings were high, but given more ratings, she would converge to a more typical distribution.

Bob, however, is much less likely to be a normal user: we can say with greater certainty that

his true rating behavior is anomalous.

68

0

4

1 2 3 4 5
Co

un
t

Rating

Alice

0

50

1 2 3 4 5
Rating

Bob

0

300

1 2 3 4 5
Rating

Carol

Figure 5.3: Rating distributions of example users. The histograms show how many times each

user gave each star rating.

Intuitively, deciding how suspicious each user is involves a two-step process: �rst, we es-

timate our beliefs for what that user’s true rating distribution is. Second, we estimate how

suspicious we believe they are, given our beliefs. For Alice, our beliefs are highly uncertain: we

cannot be con�dent that her rating distribution is unusual. For Bob, we are con�dent that his

rating distribution is fairly skewed toward 5s. For Carol, we know her rating distribution with

high con�dence, but it is not suspicious.

The Bayesian approach applies this intuition in a principled manner. It �rst sets a prior,

estimated from data, representing our ‘default’ beliefs about users’s rating behavior. It then

estimates our beliefs (in the form of a posterior distribution) about their rating distribution.

Finally, we compute how suspicious we believe them to be, averaging over their posterior dis-

tribution. Figure 5.4 illustrates how posterior distributions capture the information we need to

identify a user as suspicious. The posterior distributions in Figure 5.4 refer to our beliefs about

each user’s true long-term average rating, expressed as a probability distribution. The point

estimates refer to each user’s observed average rating, which do not capture how much more

certain we are in Bob’s case than Alice, and hence how much more suspicious Bob is.

Alternatives that don’t work (z or t tests) What about instead performing a standard hy-

pothesis test (such as a z or t-test) for each user’s average rating (or any other quantity associ-

ated with their rating distribution), to see whether their average rating di�ers signi�cantly from

the population? The problem with this approach lies with users like Carol, who di�er slightly

from the population but have a large number of ratings. Even as normal (non-fraudulent) users,

we expect their true average rating to di�er slightly from that of the population (say, by 0.1)

just due to inter-person variation.

Given enough ratings, however, even such a small di�erence could produce arbitrarily small

p-values under such a hypothesis test, since the test correctly concludes that there is an ex-

tremely small probability of drawing Carol’s observed average rating if her true average rating

were equal to that of the population. However, such small di�erences are not suspicious. The

Bayesian approach would instead estimate Carol’s posterior distribution as in Figure 5.4 and

conclude that it is both narrow and entirely non-suspicious, which is a more sensible result.

69

Average
Rating

1 5

Point estimates

Posterior
distributions

C B

A

Probability
density

Figure 5.4: Posterior distributions, not point estimates, mark a user as suspicious. Bob

is suspicious because our beliefs about his true average rating are both narrow and close to 5,

while Alice is less suspicious because our beliefs about her true average rating are more spread

out.

5.3.2 Proposed Model

Table 8.2 summarizes the notation used in this chapter.

In our problem setting, users are indexed i = 1, . . . ,m. User i has ni ratings, indexed by j =
1, . . . , ni. The ratings in stars given by user i are denoted by the variables xij ∈ {1, 2, . . . , s}
(e.g. for star ratings from 1 to 5 we have s = 5). Similarly to [FCYJMT

+
15], we preprocess the

rating timestamps by computing its time di�erence from the previous rating, i.e. the di�erence

between its timestamp and the timestamp of the last rating given by the same user. We then

bucket the time di�erences according to the integer part of the log base b, where b is chosen

to result in close to 20 buckets. The temporal bucket of the jth rating of user i is denoted

∆ij ∈ {1, 2, . . . ,∆max} for j = 1, . . . , ni, analogous to xij .
Using time di�erences instead of raw timestamps makes it possible to detect either unusu-

ally rapid rating of products by a user (due to having a concentration of small time di�erences),

or unusually regular patterns, such as rating products once every hour. Both of these patterns

suggest bot-like or spammy behavior, which we would like to detect. Moreover, the discretized

i.e. multinomial approach allows us to �exibly detect a wide range of possible deviations from

normal behavior without assuming a more restrictive parametric form, such as a Gaussian dis-

tribution.

We will consider the ratings X and time di�erences ∆ to be generated based on a model.

From a high level, our generative model for user behavior is a mixture model in which each

user belongs to one of K clusters: in general, there is no single type of user behavior, so we

use clusters to capture di�erent types of user behavior. Each cluster represents a certain type

of rating distribution and temporal distribution for the users in that cluster.

Let k = 1, . . . , K index into the K clusters. For each user i, we �rst generate which cluster

they belong to, zi ∈ {1, 2, . . . , K}, from a Multinomial(π) distribution, where πk, the kth entry

of π, is the probability that a random user is generated in cluster k.

70

Table 5.1: Commonly used notation in this chapter. Vectors are in bold.

Parameter Interpretation

m No. of users

ni No. of ratings given by user i
s No. of star levels (e.g. s = 5 for 1 to 5 stars)

xij Rating of the jth rating given by user i
b base of logarithm for temporal bucketing

∆ij temporal bucket of the jth rating by user i
∆max temporal bucket with highest index

xi,∆i Vector (xij)
ni
j=1 (resp. ∆ij)

ni
j=1)

X,∆ Matrix containing all the (xij) (resp. (∆ij))

nxil, n
∆
il No. of times user i gave rating (resp. time) l

nxi ,n
∆
i Vector ((nxi1), . . . , (nxis)) (resp. ((n∆

i1), . . .))
K No. of clusters

πk Probability of a random user being in cluster k
zi Cluster (or mixture component) of user i

pi,qi User i’s rating (resp. temporal) distribution

αk,βk Dirichlet parameters for cluster k
Fx, F∆ Global distributions; refer to (5.5)

Even within a single cluster, it would not be reasonable to expect all users to behave exactly

the same way. Thus, instead of using a single rating/temporal distribution per cluster, we allow

small deviations per user. We do this by associating a common Dirichlet prior with each cluster:

each user has their individual rating distribution drawn from this prior. We denote user i’s
rating distribution by pi, a vector of length s of nonnegative entries which sums to 1, where

the jth entry of this vector gives their probability of giving the jth rating. Thus, we draw

user i’s rating distribution pi from a Dirichlet(αzi). Similarly, qi represents user i’s temporal

distribution, and we draw qi ∼ Dirichlet(βzi).

Finally, to generate user i’s ratings, we draw each rating xij based on user i’s rating distri-

bution: xij ∼ Multinomial(pi). Similarly, for the temporal buckets, we draw each ∆ij from a

Multinomial(qi) distribution.

The generative model we have described is summarized in (5.1).

zi ∼ Discrete(π)

pi|zi = k ∼ Dirichlet(αk)

xij ∼ Multinomial(ni,pi)

qi|zi = k ∼ Dirichlet(βk)

∆ij ∼ Multinomial(ni,qi) (5.1)

The corresponding graphical model is given in Figure 5.5.

71

Figure 5.5: Graphical model describing users, ratings and rating times. User i’s mixture com-

ponent zi determines how we generate their individual multinomial parameter vectors pi, qi,
which then generate xij and ∆ij as samples from these multinomial distributions.

5.4 Proposed Algorithms

5.4.1 Fitting our Bayesian Model (BIRD)

Algorithm 5.1 �ts data to the model of Fig.5.5, by using a greedy hill climbing approach to

maximize the overall likelihood function. In this algorithm, we iteratively adjust each parameter

and the cluster assignments z until convergence. Each of the arg max lines in the algorithm

can be solved e�ciently, which we next describe how to do.

Cluster parameters

Here we �x z and compute arg maxαk P (X,∆|αk, z) in Line 6; adjusting with respect to β will

be similar. Note that adjusting αk only a�ects the likelihood with respect to xi, for i in cluster

k. Thus we are equivalently maximizing

∏
i:zi=k

P (xi|αk, z).

To be clear, here P (xi|αk, z) refers to the marginal likelihood, i.e. the probability of gener-

ating xi, after marginalizing out pi. Thus we need to �nd the maximum likelihood update for

αk given the xi for i in cluster k, which were sampled from the two-step process of �rst gen-

erating pi ∼ Dirichlet(αk) and then generating xi ∼ Multinomial(pi). This two-step process

is also known as the Dirichlet-multinomial distribution; [Min00] provide �xed-point iteration

methods for maximum likelihood estimation of αk in this setting. Speci�cally, we repeat until

convergence, for each k = 1, . . . , K and l = 1, . . . , s:

αnewkl = αkl

∑m
i=1

nxil
nxil−1+αkl∑m

i=1
nxi

nxi −1+
∑
l′ αkl′

(5.2)

72

Similarly, the update for β is:

βnewkl = βkl

∑m
i=1

n∆
il

n∆
il−1+βkl∑m

i=1
n∆
i

n∆
i −1+

∑
l′ βkl′

(5.3)

Cluster assignments

In Line 11, we �x the cluster parameters and �t the maximum likelihood cluster assignment

zi. Note that changing zi only a�ects the likelihood with respect to user i. Referring to our

graphical model in Figure 5.5, maximizing P (X,∆|zi = k) is equivalent to �nding:

zi = arg max
k
πkP (xi|zi = k)P (∆i|zi = k) (5.4)

To compute P (xi|zi = k), note that this is the probability of drawing xi from a Dirichlet-

multinomial distribution with known parameter αk.

Let nxil =
∑ni

j=1 1{xij = l} be the number of user i’s ratings that equal l, and similarly

n∆
il =

∑ni
j=1 1{∆ij = l}. The marginal distribution of a Dirichlet-multinomial distribution

(after marginalizing out pi) is known to be

P (xi|zi = k) =
Γ(Ak)

Γ(ni + Ak)

s∏
l=1

Γ(nxil + αkl)

Γ(αkl)

where Γ is the gamma function, and Ak =
∑

l αkl. The term P (∆i|zi = k) can be computed in

the same manner. Since zi is discrete, we can thus maximize (5.4) by computing πkP (xi|zi =
k)P (∆i|zi = k) for each value of k and choosing the maximizing value of k.

Posterior distributions of p and q

Here we explain how to compute the posterior distributions in Line 14 of Algorithm 5.1. Let

nxi = ((nxi1), . . . , (nxis)) and n∆
i = ((n∆

i1), . . . , (n∆
is)). At this point the entire iterative process

of estimating the hyperparameters and cluster assignments is complete, and we have to com-

pute the posterior distributions of pi and qi given the data X and ∆. pi has a Dirichlet(αzi)
prior, so by the conjugate prior property of Dirichlet distributions, its posterior distribution is

Dirichlet(αzi + nxi). Similarly, the posterior distribution of β is Dirichlet(βzi + n∆
i).

Number of clusters

We select the number of clusters K using the Bayesian Information Criterion (BIC).

Convergence

As we can see from Algorithm 5.1, each adjustment to π, α, β or z is an arg max step and

increases the overall likelihood P (X,∆|z;π, α, β). Because the overall likelihood is bounded,

this must converge.

73

Algorithm 5.1: Fitting parameters for the model in Figure 5.5. X is a matrix containing

all the xij and ∆ is a matrix containing all the ∆ij .

Input : Rating matrix X , time-di�erence matrix ∆
Output: Cluster hyperparameters π, (αk,βk)

K
k=1

Output: Posterior distributions for each user’s rating and temporal distribution

P (pi), P (qi)
1 while not converged do

2 BAdjust cluster proportions π
3 πk =

∑m
i=1 1{zi = k}/m

4 for k = 1 to K do

5 BAdjust cluster hyperparameters αk,βk
6 αnewk = arg maxαk P (X,∆|αk, z) (5.2)

7 βnewk = arg maxβk P (X,∆|βk, z) (5.3)

8 end

9 for i = 1 tom do

10 BAdjust users’ assignments to clusters:

11 znewi = arg maxk P (X,∆|zi = k) (5.4)

12 end

13 end

14 BCompute user posterior distributions:

15 P (pi|X,∆) = Dirichlet(αzi + nxi)
16 P (qi|X,∆) = Dirichlet(βzi + n∆

i)

74

5.4.2 NEST: Proposed Metric for Detecting Suspicious Users

Algorithm 5.1 gives us the posterior distributions P (pi|xi,∆i) and P (qi|xi,∆i) for the user

parameters. In this section, we propose a suspiciousness metric, NEST (Normalized Expected

Surprise Total). Recalling Figure 5.4, the overall idea is to compute user i’s suspiciousness,

averaged over their posterior distribution.

We will compute suspiciousness with respect to rating and temporally, then normalize and

combine them to ensure that each has equal in�uence. This is a practically motivated decision

that ensures that even in settings where one of the variables has a much �ner resolution than

the other (i.e. it is bucketized into more buckets), neither variable will dominate the other in

determining suspiciousness.

We now explain how to compute user i’s suspiciousness is in terms of their ratings distri-

bution; the same formulas directly apply to the temporal distribution, and we explain how to

combine the scores in (5.7).

Global Distribution

Recall that our Bayesian model BIRD gives us an estimate for the distribution underlying the

rating behavior of all users, in the form of a mixture of Dirichlet(αk) distributions with mixture

coe�cients πk (and similarly, mixture of Dirichlet(βk) distributions for temporal distributions).

Denote this global distribution by Fx (resp. F∆):

Fx can be thought of as our estimate for the distribution of pi in general over all users (pi

is the true rating distribution of user i).

De�nition 5.1: Global Distribution

The global distribution Fx(p) is the distribution over users’ rating distributions:

Fx(p) =
K∑
k=1

πk Dirichlet(p;αk) (5.5)

where Dirichlet(p;αk) refers to the probability of generating p under a Dirichlet(αk) distri-

bution.

Surprise

Denote p̃i := P (pi|xi,∆i), the posterior distribution of pi given the data. To be clear, observe

that p̃i is a distribution over multinomial vectors. Recall that we estimate p̃i as part of BIRD: p̃i

is a Dirichlet(αzi + nxi) distribution. p̃i represents our beliefs about user i’s rating distribution.

75

For the sake of intuition, imagine p̃i was a point mass, i.e. we had perfect knowledge of user

i’s rating distribution: assume that it consists of a point mass at p. Recall that the posterior

distribution p̃i is a distribution over multinomial vectors, so p here is a multinomial vector.

Then user i’s suspiciousness could be calculated as surprise or negative log likelihood under

the global distribution Fx evaluated at the rating distribution p:

De�nition 5.2: Surprise

The surprise of a given rating distribution p is its negative log likelihood under the global

distribution:

surprise(p) = − logFx(p)

The less likely p is, the more suspicious the user is. This makes sense because Fx is our estimate

for the global distribution from which all the users are drawn from; the lower the log-likelihood

of p, the more anomalous user i is when compared to this distribution. Thus, we use surprise
to estimate the suspiciousness of a rating distribution p.

Expected Surprise

Now returning to the general case, when p̃i is a posterior distribution. In this case, we com-

pute the average over p̃i of the surprise − logFx(p): that is, now p is drawn at random from

this posterior distribution p̃i. Averaging the surprise gives us the posterior mean (or ‘Bayes

estimate’) of user i’s suspiciousness, which can be regarded as our ‘best estimate’ of user i’s
suspiciousness given our knowledge of them.

1
Thus, we use expected surprise to estimate the

suspiciousness of a user based on their posterior distribution p̃i.

De�nition 5.3: Expected Surprise

The expected surprise for user i measures how surprising user i rating distribution is av-

eraged over its posterior distribution, and is given by:

sx(i) = −Ep∼p̃i
logFx(p) (5.6)

The expected surprise s∆(i) with respect to the temporal distribution is computed similarly.

As discussed, −Ep∼p̃i
logFx(p) measures the expected suspiciousness of a sample rating

distribution drawn at random from the posterior distribution p̃i, where suspiciousness of a

single rating distribution is given by its surprise or negative log likelihood under Fx.

1
The posterior mean of a parameter (i.e. the mean of its posterior distribution) is also known as the mini-

mum mean square error estimator, as it minimizes expected least squares loss. It has desirable properties such as

consistency under fairly general conditions, and is widely used in practice.[LC98]

76

Normalized Expected Surprise Total (NEST)

In our dataset, we use both ratings and temporal data. Using ratings data, we compute posterior

distribution p̃i and the resulting expected surprise sx(i); using temporal data similarly gives us

posterior distribution q̃i and expected surprise s∆(i). To combine these, we could simply add

them; however, if one had a larger range of possible values than the other, the one with the

largest range could end up dominating the sum. To give both terms comparable in�uence, we

normalize them by their respective standard deviations. Let σx = std.dev(sx(1), . . . , sx(m))
and σ∆ be de�ned analogously. Then NEST is de�ned as:

De�nition 5.4: NEST

NEST measures how jointly suspicious user i is based on his or her ratings and temporally,

and is given by:

NEST(i) =
sx(i)

σx
+
s∆(i)

σ∆

(5.7)

Note that there is no need to normalize sx and s∆ additively (e.g. by subtracting the mean

scores) since that would simply shift all the scores by the same amount.

Computing NEST

Fitting BIRD gives us the posterior distribution for user i’s rating distribution p̃i = P (pi|X,∆)
(Line 15 in Algorithm 5.1); we get q̃i = P (qi|X,∆) similarly. We also know the full global

distribution Fx(p) =
∑K

k=1 πk Dirichlet(p;αk). Hence, we can compute the expected surprise

sx(i) = −Ep∼p̃i
logFx(p) by taking a �xed number of samples from p̃i and repeatedly evalu-

ating their log-likelihood under Fx. We can then compute the expected surprise values s∆(·)
and combining the two as shown in (5.7).

5.5 Experiments

We conducted experiments to answer the following questions: Q1. E�ectiveness on real data:

does BIRDNEST catch fraud on real data? Q2. Scalability: does it scale to large datasets? Q3:

Interpretability: can the results of the Bayesian model BIRD and the scores given by NEST be

interpreted in a real-life setting?

We implemented BIRDNEST in Python; all experiments were carried out on a 2.4 GHz Intel

Core i5 Macbook Pro, 16 GB RAM, running OS X 10.9.5. The code is available for download at

www.andrew.cmu.edu/user/bhooi/code. We test BIRDNEST on a variety of real

world datasets: table 8.3 o�ers details on the datasets we used.

77

www.andrew.cmu.edu/user/bhooi/code

Table 5.2: Datasets used.

Dataset # of users # of products # of ratings

Flipkart 1.1M 550K 3.3M

SWM[ACF13] 0.97M 15K 1.1M

5.5.1 Q1: E�ectiveness

Evaluation on Flipkart data

Flipkart is an online e-commerce platform on which merchants sell products to customers,

on which customers review products from 1 to 5 stars. We applied BIRDNEST to detect the

250 most suspicious users and provided them to Flipkart; these accounts were investigated and

hand-labelled by Flipkart, �nding that 211 users of the top 250 �agged by BIRDNEST were

involved in fraud. Figure 5.1b shows the algorithm’s precision at k: for various values of k up

to 250: note that precision for the most suspicious users is very high: e.g. precision of 1.0 for

the �rst 50 users. These are substantial �ndings for Flipkart. One common pattern that the

domain-experts found was that most of the users labeled as fraudulent are either spamming 4/5

star ratings to multiple products from a single seller (boosting seller’s ratings), or spamming

1/2 star ratings to multiple products from another seller (defaming the competition).

Figure 5.2 plots the averaged rating distributions of users within each group: that is, for

each user we computed their frequency of giving each rating from 1 to 5; Figures 5.2 and 5.1a

takes the average of the rating distributions for users in the corresponding group. Examining

the detected users in Figure 5.2, a common pattern we �nd is that they consist of extreme

polarized rating distributions as well as temporal distributions. The detected users consist of

highly negative users (who give only 1 ratings) and highly positive users (who give mostly 5
ratings, with a relatively small fraction of 4s). Similarly, Figure 5.1a shows the common pattern

that detected users contain much shorter temporal di�erences than normal users.

Evaluation on SWM data

The SWM datasets consists of software product (app) reviews. The dataset was collected by

[ACF13] by crawling all the app reviews in the entertainment category from an anonymous

online app store. Each review consists of review text as well as a rating from 1 star to 5 stars.

We �nd clear evidence of fake reviews in the dataset: for example, the most suspicious user

posted a block of 27 reviews for the same app all within the span of less than a week, all �ve-star

ratings with near-identical review title and text, as shown in Table 5.3. Moreover, the review

text shows clear signs of being a fake review: they advertise a code associated with an app:

typically, users advertise such codes because they give some bene�t to the owner when new

users download the app via one of these codes.

Aside from this block of reviews, almost all of this user’s reviews also consist of similar

blocks of repeated text advertising the code. In fact, all 10 of the top suspicious user accounts

�agged by BIRDNEST contain advertisements for codes in similar contexts, often accompanied

with promises of free cash, points and gift cards.

78

Table 5.3: BIRDNEST detects fake reviews in the SWM data: Example of a 5-star review by

the user �agged as most suspicious by BIRDNEST. 27 such near-identical reviews were present

for the same app (only trivial di�erences between them were present, such as the number of

dollars signs). All 10 of the top 10 user accounts �agged by BIRDNEST contain similar adver-

tisements for codes.

AWESOMEApp4FreeMoney!!! $$$$$$
All �rst time users will need a
CODE after downloading this app. So
download it now and use my CODE for
bonus points. CODE: ...

5.5.2 Q2: Scalability

Slope = 1:

linear

Figure 5.6: BIRDNEST is fast and scalable: running on our 1.1M user, 3.3M ratings dataset

in around 2 minutes. BIRDNEST shows linear growth in computation time.

Assume that we run (#it) iterations of the outer loop of Algorithm 5.1, letm be the number

of users, andK the number of clusters. In each iteration, adjustingπ takesO(m) time; adjusting

each αi, βi and zi all take O(K) time. Hence, the algorithm takes O((#it)mK) time, which

is linear. Figure 5.6 shows that the algorithm is fast and its computation time grows linearly in

practice.

5.5.3 Q3: Interpretability

In Section 5.3.1, we motivated the Bayesian approach by giving three users, Alice, Bob and

Carol. We explained how the Bayesian approach captures our intuitions about these users

79

through posterior distributions. We now use real data from Flipkart to verify that BIRDNEST

indeed conforms to the intuitions that motivated this approach, and that the posterior distribu-

tions from BIRDNEST are interpretable and useful in real-life settings.

We selected 3 real Flipkart users: alice, bob and carol (names changed to maintain

anonymity). They were chosen to match the rating frequencies of Alice, Bob and Carol in

5.3.1. We computed each user’s posterior distribution of their true rating distribution using

BIRDNEST. From this we computed the posterior distribution of their true, long-term average

rating, by simulating 10, 000 draws of pi from their Dirichlet posterior distribution. We display

these with their NEST values in Figure 5.7.

Agreeing with intuition, both alice and carol are nonsuspicious, while bob is very

suspicious, as indicated by the NEST scores: alice is ranked around 189, 000th most sus-

picious, bob is ranked around 800th, and carol is ranked around 10, 000th, out of the 1.1
million users. TheNEST scores given by our algorithm are interpretable as expected surprise val-

ues, i.e. they are in units of log-likelihood, so a unit di�erence (after normalization) represents

an exponential increase in likelihood. As such, we see from this example that BIRDNEST con-

forms to intuition in the way it uses posterior distributions to measure uncertainty. Moreover,

the posterior distributions of average rating or other quantities can be plotted via simulation

and used for further understanding and investigation.

Figure 5.7: BIRDNEST is interpretable and agrees with intuition: the posterior distribu-

tions for users capture both the location and certainty about a user’s true rating distribution.

Note that bob’s NEST is highest as his entire posterior distribution is extreme (far from other

users).

80

5.6 Conclusion

In this chapter, we developed BIRD, a Bayesian inference approach for ratings data, and NEST,

a principled likelihood-based suspiciousness metric for fraud detection. Our method provides

a principled way to combine rating and temporal information to detect rating fraud, and to

�nd a tradeo� between users with extreme rating distributions vs. users with larger number of

ratings. Our contributions are:

• Theoretically sound user behavior model: we de�ne a Bayesian model for the data

based on a mixture model which captures di�erent types of user behavior. This model

then allows us to determine how much an anomalous user deviates from normal behavior.

• Suspiciousnessmetric: we de�ne a likelihood-based metric which measures how much

a user deviates from normal behavior.

• Algorithm: we propose a scalable and e�ective algorithm for learning the Bayesian

model and evaluating suspiciousness.

• E�ectiveness: we show that our method successfully spots review fraud in large, real-

world graphs, with precision of over 84% for the top 250 Flipkart users �agged by our

algorithm.

81

82

Chapter 6

StreamCast: Forecasting and

Anomaly Detection in Power Grid

Time Series

Chapter based on work that appeared at SDM16 [HSB
+

16a] [PDF].

In this chapter we consider real-valued time series data, in particular from power grid sen-

sors. How can we e�ciently forecast the power consumption of a location for the next few

days? More challengingly, how can we forecast the power consumption if the temperature

increases by 10◦C , the number of appliances in the grid increase by 20%, and voltage lev-

els increase by 5%? Such ‘what-if scenarios’ are crucial for future planning, to ensure that

the grid remains reliable even under extreme conditions. We propose StreamCast, an on-

line forecasting and anomaly detection approach which scales linearly, provides con�dence

intervals, and has 27% lower forecasting error than baselines in experiments.

6.1 Introduction

The smart electrical grid is a set of technologies designed to improve the e�ciency and security

of power delivery. Estimates [Ami11] suggest that reducing outages in the U.S. grid could save

$49 billion per year, reduce emissions by 12 to 18%, while improving e�ciency could save an

additional $20.4 billion per year. A key part of achieving this goal is to use monitoring data

to accurately model the behavior of the grid and forecast future load requirements, especially

under extreme conditions such as changes in temperature, number of appliances in the grid, or

voltage patterns. This allows the grid to remain reliable even under adverse conditions.

A major challenge is scalability - power systems data can be both high-volume and received

in real time. This motivates us to develop fast methods that work in this online (or streaming)

setting. Rather than operating on an entire dataset at once, online algorithms allow input that

arrives over time as a continuous stream of data points. When each new data point is re-

83

http://www.andrew.cmu.edu/user/bhooi/papers/birdnest_sdm16.pdf

ceived, the algorithm updates itself - for our algorithm, each update requires constant time,

and bounded memory (i.e. it does not need to remember the entire history of the time series).

Hence, our goal is an online algorithm for modelling and forecasting power consumption

of a location. The input is a stream over time of real and imaginary voltage and current values:

Informal Problem 6.1: Online Model Estimation

• Given: A continuous stream of values of real and imaginary current (Ir(t), Ii(t)),

voltage (Vr(t), Vi(t)), and temperature T (t), for t = 1, 2, · · ·

• Estimate: Time-varying parameters of a physics-based model of electrical load be-

havior that accurately explains the observed values.

Our model is based on the circuit theoretic BIG model [JPS
+

17], which characterizes load

in the electric grid by modeling its voltage sensitivities. Importantly, the use of physics-based

models together with current and voltage state variables improves interpretability. For instance,

real power consuming loads such as light bulbs can be interpreted as the contribution of the

conductance (G) parameter, while susceptance (B), the reactive power component, represents

the contributions of motors or capacitors in the grid.

The �tted model is used to forecast future values:

Informal Problem 6.2: Multi-step Forecasting

• Given: values of current (Ir(t), Ii(t)), voltage (Vr(t), Vi(t)), and temperature T (t)
for t = 1, · · · , N , and given temperature forecasts for the next Nf time steps (i.e.

for t = N + 1, · · · , N +Nf),

• Forecast: voltage and current for Nf time steps in the future; i.e. (Vr(t), Vi(t)) and

(Ir(t), Ii(t)) for t = N + 1, · · · , N +Nf .

Due to our physics-based model, our algorithm can handle what-if scenarios in which the

temperatures or voltages change, which is useful for future planning.

Informal Problem 6.3: What-if Scenarios

• Given: current, voltage and temperature data, as above,

• Forecast: future values of voltage and current, under the condition that, e.g., tem-

perature increases by 10◦C , and voltage levels increase by 5%.

84

Our contributions are as follows:

1. Domain knowledge infusion: we propose a novel, Temporal BIG model that extends

the physics-based BIG model, allowing it to capture trends, seasonality, and temperature

e�ects.

2. Forecasting: our StreamCast algorithm forecasts multiple steps ahead and outperforms

baselines in accuracy by 27% or more. StreamCast is online, requiring linear time and

bounded memory.

3. What-if scenarios and anomaly detection: our approach accurately handles scenarios

in which the voltage levels, temperature, or number of appliances change. We also use it

to detect anomalies in a real dataset.

Reproducibility: our code is publicly available atwww.andrew.cmu.edu/user/bhooi/
power.tar.

6.2 Background and Related Work

6.2.1 Related Work

6.2.1.1 The BIGmodel for electrical load

The constant power PQ model [PJL
+

16] is a common approach for power grid modelling. How-

ever, industry experience has shown that it incorrectly characterizes load behavior [MAB13].

Recent advances [BJL
+

15] have shown that load behavior at a given time can be accurately

described by a linear relationship between current and voltage. From circuit theory, this can be

represented by a parallel or series combination of susceptance (B) and conductance (G). This

captures both magnitude and angle, in contrast to existing traditional load models [PJL
+

16].

Time series forecasting

Classical time-series forecasting methods include autoregression (AR)-based methods, includ-

ing ARMA, ARIMA [BJRL15], seasonal ARIMA [BJRL15], and vector autoregression (VAR) [Ham94].

Exponential smoothing (ETS) models [Win60], including Holt-Winters [Win60] capture trends

and seasonal patterns. Other methods include Kalman �ltering [K
+

60], Hidden Markov Models

(HMMs) [LRBP09], and non-linear dynamical systems [MS16].

For power grid load modelling, common approaches include AR models [PPL91, HS03],

ETS [JXWC12], and neural networks [HPS01]. [SCM
+

14, ZWWB15] use weather data as inputs.

PowerCast [SHJ
+

17] uses tensor decomposition to forecast power grid time sequences.

Contrast with existing literature

Other than [SHJ
+

17], all methods above do not use physics-based electrical models, and do

not consider what-if scenarios, while our approach does both. Compared to [SHJ
+

17], our

approach (which is completely di�erent from their tensor-based approach) additionally allows

for weather data, is an online algorithm, and produces con�dence intervals.

85

www.andrew.cmu.edu/user/bhooi/power.tar
www.andrew.cmu.edu/user/bhooi/power.tar

Table 6.1: StreamCast captures the listed properties. AR++ refers to ARIMA, seasonal

ARIMA etc.

Property A
R

+
+

[
B

J
R

L
1
5
]

K
a
l
m

a
n

/
L

D
S
[
K

+
6
0
]

W
e
a
t
h

e
r
-
b
a
s
e
d

[
S
C

M
+

1
4
]

H
M

M
+

+
[
L

R
B

P
0
9
]

P
o
w

e
r
C

a
s
t

[
S
H

J
+

1
7
]

S
t
r
e
a
m
C
a
s
t

Forecasting ! ! ! ! ! "

Seasonal patterns ! ? ! ! "

Physics-based model ! "

Weather-based ! "

Online algorithm ! "

Con�dence intervals ! ! ! "

What-if scenarios ! "

6.2.2 Background

BIGmodel

The BIG model [JPS
+

17] models the current as a linear function of the voltage, parameterized

by the BIG parameters: susceptance (B), conductance (G), and a current o�set (αr, αi). G can

be interpreted as the component contributing to real power consuming loads (e.g. due to light-

bulbs), while B can be interpreted as the contribution of the reactive power component (e.g.

due to motors or capacitors):

Ir(t) = G · Vr(t)−B · Vi(t) + αr + noise

Ii(t) = B · Vr(t) +G · Vi(t) + αi + noise

(6.1)

6.2.2.1 Holt-Winters model

The Holt-Winters model [Win60] models a univariate time series x(t) with seasonal structure.

The key idea is to model x(t) as the sum of a nonseasonal or level component l(t) and a seasonal
component s(t). The level component changes according to smooth trends, while the seasonal

component is approximately periodic with period m (e.g. m = 24 for hourly data with daily

seasonality). Smooth trends over time are modelled by a linear trend b(t), representing the rate

of change of l(t). Full details can be found in [Win60].

86

6.3 Proposed Model

Table 10.2 shows the symbols used in this chapter.

Table 6.2: Symbols and de�nitions

Symbol De�nition

N Number of time ticks in time sequences

Ir, Ii, Vr, Vi Real and imaginary current and voltage

B,G, αr, αi BIG parameters (susceptance, conductance, o�set to Ir and Ii)
θ(t) Parameter vector (B,G, αr, αi) at time t

y(t), X(t) BIG in linear model form; see Eq. (6.3)

θL(t) Nonseasonal part of θ(t)
θS(t) Seasonal part of θ(t)
θT (t) Trend in θL(t)
θW (t) Weather part of θ(t)

w Weather coe�cients

T0 Temperature threshold

Ninit Initialization period

6.3.1 Proposed Dynamic BIG Model

Consider the static BIG model in Eq. (6.1). Its parameters B,G, αr, αr can be interpreted as

types of load; but in practice, these should change over time as appliances are switched on and

o�, or usage levels change. How do we add temporal structure to this model? A natural step is

to replace B,G, αr, αr by time series B(t), G(t), αr(t), αr(t). Eq. (6.1) becomes:

Ir(t) = G(t) · Vr(t)−B(t) · Vi(t) + αr(t) + noise

Ii(t) = B(t) · Vr(t) +G(t) · Vi(t) + αi(t) + noise

(6.2)

For notational simplicity, rewrite this equivalently as:

(
Ir(t)
Ii(t)

)
︸ ︷︷ ︸

y(t)

=

(
Vr(t) −Vi(t) 1 0
Vi(t) Vr(t) 0 1

)
︸ ︷︷ ︸

X(t)

G(t)
B(t)
αr(t)
αi(t)

︸ ︷︷ ︸

θ(t)

+ noise (6.3)

Now, changes in usage (e.g. appliances switching on and o�) correspond to changes in θ(t).

What temporal patterns do we need to capture? Intuitively, some appliances follow daily sea-

sonality (e.g. lights used during working hours), while others follow slow-moving trends, e.g. a

gradual increase in load due to population growth. Hence, like in Holt-Winters, we decompose

87

θ(t) into a nonseasonal level part θL(t), and a seasonal part θS(t); hence, θ(t) = θL(t)+θS(t).

Here θL(t) changes according to smooth trends, while θS(t) has seasonal patterns, with period

m.

To model smooth trends (e.g. population growth), we additionally de�ne a trend term

θT (t), which approximates the change in θL(t) from one time tick to the next; i.e. θL(t) ≈
θL(t− 1) + θT (t). Then, our assumptions under this model are that:

A1: y(t) ≈ X(t)(θL(t) + θS(t)) (Low noise; see (6.3))

A2: θL(t) ≈ θL(t− 1) + θT (t) (Level moves wrt. trend)

A3: θT (t) ≈ θT (t− 1) (Trends change smoothly)

A4: θS(t) ≈ θS(t−m) (Seasonality)

We will formalize these as soft constraints in our optimization objective in Section 6.4.

6.3.2 Dynamic BIG with Temperature Model

Let T (t) denote the temperature at time t. When temperature increases above a threshold,

electricity demand tends to increase due to the use of air conditioning. To capture this, we

introduce weather coe�cients w and a temperature threshold T0: temperature over the

threshold linearly adds to a weather component θW (t). Hence, we replace assumption A1 with:

A1’: y(t) ≈ X(t)(θL(t) + θS(t) + θW (t)), where

θW (t) = w ·max(0, T (t)− T0)

The max function ensures that only temperatures above the threshold contribute to the weather

component.

6.4 Proposed Optimization Objective

We now de�ne our optimization objective based on our assumptions A1’ to A4. All norms are

L2 norms, for later computational simplicity.

L = L1 + λL2 + µL3 + νL4, where:

L1 =
N∑
t=1

‖y(t)−X(t)(θL(t) + θS(t) + θW (t))‖2

L2 =
N∑
t=2

‖θL(t)− θL(t− 1)− θT (t)‖2

L3 =
N∑
t=1

‖θT (t)− θT (t− 1)‖2

L4 =
N∑

t=m+1

‖θS(t)− θS(t−m)‖2

(6.4)

88

Here λ, µ, ν > 0 are hyperparameters (which we end up tuning indirectly rather than directly;

see Section 7.4). The problem to solve is then:

minimize

θL,θT ,θS ,w,T0

L (6.5)

6.5 Proposed StreamCast Algorithm

How do we approximately minimize L in an e�cient and online manner?

6.5.1 Overview

In this section, we outline our proposed StreamCast. StreamCast has two steps: 1) an o�ine

stepTempFit, which takes a subset ofNinit data points, and �tsw and T0; 2) an online ‘extension’

stage StreamFit: upon receiving each new data point at time t, this updates θL, θT , θS according

to Eq. (6.7).

Algorithm 6.1: StreamCast

Input : Streams Vr, Vi, Ir, Ii
Output: Parameter streams θL, θT , θS

1 w, T0 ←TempFit(Vr(1 : Ninit), Vi(1 : Ninit), Ir(1 : Ninit), Ii(1 : Ninit))
2 while input at time t is received: do
3 Update θL(t), θT (t), θS(t) using StreamFit

4 end

We will describe StreamFit in Section 6.5.2, and TempFit in Section 6.5.3.

6.5.2 Streaming Optimization (StreamFit)

StreamFit estimates θL, θT and θS for �xed temperature parameters w, T0, by minimizing our

objective, Eq. (9.6). Note that Eq. (9.6) could in theory be minimized using least squares; how-

ever, this is not online, and is also much too slow as it contains O(N) unknowns for N time

points, which would then take aroundO(N3) time. We would like a linear-time algorithm with

constant update time per data point.

Our approach is to split up the objective over t, and take gradient update steps with respect

to the term for t = 1, 2, · · · successively. At time t, we take a gradient step with respect to only

the terms of L corresponding to time t. This allows the �tted parameters to ‘track’ the true

values over time as we perform gradient updates. Meanwhile, each update is highly e�cient as

it only involves a single term of the objective function. Assume that we have �t θL, θT , θS up

to time t− 1 and are �tting them at time t. The component of L for time t is:

L(t) = ‖y(t)−X(t)(θL(t) + θS(t) + θW (t))‖2

+ λ‖θL(t)− θL(t− 1)− θT (t)‖2

+ µ‖θT (t)− θT (t− 1)‖2 + ν‖θS(t)− θS(t−m)‖2

(6.6)

89

To do gradient descent at time t, we start from the previously learned values and take a gra-

dient step. Hence, we start by assuming the previous trend (θT (t) = θT (t− 1)) and seasonality

(θS(t) = θS(t − m)), while for the level we follow a ‘default extrapolation’ of starting at the

previous level and following the previous trend (θL(t) = θL(t− 1) + θT (t− 1)).

Next, we want to move in the gradient direction with respect to minimizing L. Computing

the gradients of (6.6) is straightforward and results in the update equations: letting ŷ(t) =
X(t)(θL(t− 1) + θT (t− 1) + θS(t−m) + θW (t)),

θL(t) = θL(t− 1) + θT (t− 1)︸ ︷︷ ︸
default extrapolation

+αX(t)T (y(t)− ŷ(t))︸ ︷︷ ︸
gradient update

θT (t) = θT (t− 1)︸ ︷︷ ︸
previous trend

+β (θL(t)− θL(t− 1)− θT (t− 1))︸ ︷︷ ︸
gradient update

θS(t) = θS(t−m)︸ ︷︷ ︸
previous seasonality

+γ X(t)T (y(t)− ŷ(t))︸ ︷︷ ︸
gradient update

(6.7)

α, β, γ > 0 are ‘learning-rate’ tuning parameters that replace λ, µ, ν. We will consider how

to set these, and how to initialize θL, θT and θS , in Section 6.5.3.

6.5.3 Temperature Model Optimization (TempFit)

In TempFit, we optimize the temperature coe�cient w and threshold T0 using an alternating

approach. First, �xing w and T0, we solve for θL, θT and θS to minimize L. We then do the re-

verse (�xing θL, θT and θS and solving for w and T0), until convergence, as shown in Algorithm

6.2. The former step of solving for θL, θT and θS given w and T0 is done using StreamFit.

Algorithm 6.2: TempFit

Input : Vr, Vi, Ir, Ii
Output: BIG parameters θL, θT , θS ; weather parameters w, T0

1 while not converged do

2 Solve θL, θT , θS using Eq. (6.7) (StreamFit)

3 Solve w, T0 by minimizing Eq. (6.8)

4 end

It remains to solve forw and T0 for �xed θL, θT , θS . De�ne r(t) = y(t)−X(t)(θL(t)+θS(t)).

Then, since changing w and T0 only a�ects the L1 loss term, minimizing L is equivalent to

minimizing:

L′ =
N∑
t=1

‖r(t)−X(t) · w ·max(0, T (t)− T0)‖2
(6.8)

Minimizing over w is a straightforward least squares problem. Minimizing over T0 is less

straightforward since max(0, T (t)− T0) is nonlinear in T0. However, temperature is typically

given to 0 or 1 decimal of precision (roughly the precision of most thermometers), and varies

90

within a fairly narrow range, e.g. 0◦C to 35◦C . Hence, it su�ces to try all thresholds between

mint T (t) and maxt T (t) in intervals of 0.1◦C , and select among these to minimize L′.
To complete our algorithm, we need to explain how to choose α, β, γ, and initial values for

θL(t), θT (t), θS(t). We select the former using nonlinear optimization (Levenberg-Marquadt

algorithm [Mar63]) of L. For the latter, it can be veri�ed that the objective L is a quadratic in

these initial values, so we solve for them using least squares. We do these in Line 2 of TempFit,

then �x these values subsequently for the rest of the algorithm (Line 2-4 of StreamCast).

6.5.4 Forecasting Step (Forecast)

Given �tted model parameters up to timeN , how do we forecast future currents Îr(t), Îi(t), for

t = N + 1, · · · , N +Nf?

We �rst forecast voltages V̂r(t), V̂i(t), t = N + 1, · · · , N + Nf using standard univariate

Holt-Winters. Then, for k = 1, 2, · · · we forecast θ(N + k) as the sum of last estimated level

θL(N), trend θT (N), last estimated seasonality at the corresponding position θS(N − m +
1 + ((k − 1) mod m)), where mod is the modulo function, and temperature component

w ·max(0, T (N + k)− T0). Finally, we forecast Îr(t), Îi(t) using the BIG model, Eq. (6.2).

6.5.5 Extensions

Anomaly Detection

To detect anomalies, we compute an anomaly score at each time. Intuitively, the larger the

error between the �tted and actual values, the more anomalous a point is. The �tted values

Îr(t), Îi(t) are obtained by plugging the learned parameters into the BIG equations, Eq. (6.2).

The real and imaginary errors are then Er(t) = |Ir(t)− Îr(t)|, and Ei(t) = |Ii(t)− Îi(t)|. The

anomalousness at time t is then the sum of real and imaginary errors at time t, each in units of

inter-quartile ranges (IQRs
1
):

De�nition 6.1

The anomalousness at time t is the sum of real and imaginary residuals at time t, each in

units of IQRs:

anomalousness(t) =
Er(t)

IQR(Er(1 : N))
+

Ei(t)

IQR(Ei(1 : N))
(6.9)

While any threshold may then be used, we can follow common practice of designating deviation

of ≥ 2× IQR as outliers, resulting in a threshold of 4 for our anomalousness score. In Section

8.5.4 we show a clear anomaly found in the LBNL dataset.

1
The IQR is the di�erence between 75% and 25% quartiles, used as a more robust measure of spread compared

to standard deviation.[UC96]

91

Con�dence Intervals

Con�dence intervals allow us to provide lower and upper bounds that contain future values,

with e.g. 95% con�dence. We use the past distribution of residuals, Ir(t)−Îr(t) and Ii(t)−Îi(t),

as an estimate of residuals in the future. Thus, we sample a ‘possible future’ by repeatedly

sampling from this distribution of past residuals, and treating the sampled values as residuals

at time N + 1, repeating this process for N + 2, and so on. We sample 1000 possible futures in

this way. To generate (1 − α) con�dence intervals, we use the empirical α/2 and (1 − α/2)-

quantiles of these possible futures. The results are shown in Figure 6.6.

6.6 Experiments

We design experiments to answer the questions:

• Q1. Forecasting accuracy: how accurately does StreamCast forecast, based on real

data?

• Q2. Scalability: how does the algorithm scale with the data size?

• Q3. What-if scenarios: does StreamCast give accurate results under what-if scenarios,

and detect real anomalies in real data?

Our code and links to datasets are publicly available atwww.andrew.cmu.edu/user/
bhooi/power.tar. Experiments were done on a 2.4 GHz Intel Core i5 Macbook Pro, 16

GB RAM running OS X 10.11.2. We set Ninit to 10m (i.e. 10 days) in our experiments.

6.6.1 Data

We use the following two datasets:

• CMU data: (N = 648) hourly voltage and current for the Carnegie Mellon University

(CMU) campus for 23 days, from July 29, 2016 to August 20, 2016. Voltage angle is un-

available for this data, so here Vr is the voltage magnitude and Vi = 0.

• LBNL data: (N = 3168) from the Lawrence Berkeley National Laboratory (LBNL) Open

µPMU project [SLR16], from October 1, 2015 to October 11, 2015. The data is originally

at 120Hz, but we downsample it to one sample every 5 minutes (where each new data

point is the mean of the raw data within those 5 minutes).

6.6.2 Q1. Forecasting accuracy

Baselines

our baselines are ARIMA [BJRL15], Holt-Winters (ETS) [Bro59], seasonal ARIMA [BJRL15],

PowerCast (PCAST) [SHJ
+

17] (a recent tensor-based power grid forecasting approach), and

vector autoregression (VAR), which uses temperature data and the voltage time sequences as

input. Following standard practice, the ARIMA, SARIMA, and VAR orders are selected using

AIC (Akaike information criterion) [HT93], and the Holt-Winters hyperparameters are selected

92

www.andrew.cmu.edu/user/bhooi/power.tar
www.andrew.cmu.edu/user/bhooi/power.tar

using nonlinear optimization. For PowerCast, we follow the original paper in setting Nw =
5, σ = 0.5.

Experimental setup

in each trial, an algorithm is given the data for the �rst N days and forecasts Ir and Ii for

each time point of the (N + 1)th day, where we average each algorithm’s accuracy over N =
11, 12, · · · , 20 for CMU andN = 4, 5, · · · , 8 for LBNL. The forecasts are compared with the true

values using normalized RMSE: RMSE(x, x̂) =
√
‖x− x̂‖2

2/‖x‖2
2, where x = [Ir Ii] contains

Ir and Ii values stacked into a single vector.

Results:

Figure 6.1 shows that StreamCast outperforms the baselines in both datasets, with at least

27% lower RMSE. The tensor-decomposition based PCAST, which is also physics-based, is the

second-best performer, suggesting that physics-based models may be bene�cial for forecasting.

6.6.3 Q2. Scalability

We run StreamCast on a version of our CMU dataset, duplicated repeatedly so as to produce

larger datasets. We run StreamCast on time series of sizes as plotted on the x-axis of Figure

9.6, from around 1 million to around 40 million. The plot is parallel to the diagonal, indicating

linear growth.

StreamCast takes less than 4 minutes for the trial of size 40 million, making it scalable to

large datasets.

6.6.4 Q3. What-if scenarios

Changing temperature and number of appliances:

how can we forecast under the scenario that temperature increases by 10◦C , and number of

appliances increases by 20%? Such scenarios are useful for future planning, but standard fore-

casting methods cannot handle them. The BIG parameter G represents the contribution of the

conductive load component (e.g. light-bulbs) and B as the contribution of the reactive load com-

ponent (e.g. motors), so we examine the results of increasing either G, B, or temperature, and

plot how the forecasts change under each scenario.

The results are shown in Figure 6.3. The left plots are for increasing G; the center plots for

changing B, and the right plots for increasing temperature. Upper plots are for Ir while lower

plots are for Ii. In each plot, the colored lines correspond to di�erent amounts of increase:

e.g. 1.1×G means that the amount of reactive load on campus increased by 10%. The results

show that: 1) when G is increased, only Ir increases, but not Ii; 2) when B is increased, only Ii
increases, but not Ir; 3) when temperature increases, both Ir and Ii increase. All three results

are intuitive, given that in the CMU dataset we have Vi = 0; it can be veri�ed from (6.2) that in

this case Ir should be in�uenced by changes in G, but not by changes in B.

93

STREAMCAST

ARIM
A

ETS

SARIM
A

PCAST
VAR

0

0.02

0.04

0.06

0.08

F
o

re
c
a

s
t

e
rr

o
r

(R
M

S
E

)

32%

(a) CMU data

STREAMCAST

ARIM
A

ETS

SARIM
A

PCAST
VAR

0

0.05

0.1

0.15

0.2

0.25

0.3

F
o

re
c
a

s
t

e
rr

o
r

(R
M

S
E

)

27%

(b) LBNL data

Figure 6.1: StreamCast forecasts accurately: it has at least 27% lower forecasting error

than baselines. Error bars show 1 standard deviation.

Changing voltage

An important goal in practice is to ensure that the system can make accurate predictions

under changes to voltage levels. To test our model, we use an electrical system simulator,

SUGAR [PJL
+

16]. The simulator uses physics-based models for di�erent electrical equipment:

we specify 10 motors and additional load with maximum resistance 50Ω, varying sinusoidally

with daily periodicity. SUGAR generates realistic time series currents for an electrical system

given speci�ed input voltages Vr, Vi. In order to have a realistic voltage series, our input volt-

ages are the voltage series from our CMU dataset. We obtain currents (Ir, Ii) as outputs from

this simulation.

To test StreamCast, we �t it on (Vr, Vi, Ir, Ii), but then evaluate its RMSE on a di�erent

(V ′r , V
′
i , I
′
r, I
′
i) in which Vr and Vi are de�ned in one of two ways: 1) Increase: V ′r = 1.05× Vr,

94

10
6

10
7

10
8

Time series length

10
0

10
1

10
2

10
3

T
im

e
 t
a
k
e
n
 (

s
)

StreamCast

Linear

growth

Figure 6.2: StreamCast is fast and scales linearly: growth parallel to the diagonal indicates

linear growth.

16 18 20 22
400

500

600

700

I r [
A

m
p

.]

Changing G

Data
Forecast
1.1 x G
1.2 x G

16 18 20 22
Days

140

160

180

200

220

240

260

I i [
A

m
p

.]

Data
Forecast
1.1 x G
1.2 x G

16 18 20 22
400

500

600

700

I r [
A

m
p

.]

Changing B

Data
Forecast
1.1 x B
1.2 x B

16 18 20 22
Days

150

200

250

I i [
A

m
p

.]

Data
Forecast
1.1 x B
1.2 x B

16 18 20 22
400

500

600

700

I r [
A

m
p

.]

Changing Temperature

Data
Forecast
Temp + 10
Temp + 20

16 18 20 22
Days

140

160

180

200

220

240

260

I i [
A

m
p

.]

Data
Forecast
Temp + 10
Temp + 20

1.2 x G
1.1 x G

Forecast

1.2 x B

1.1 x B
Forecast

Temp + 20 C
Temp + 10 C

Forecast
All

scenarios

Temp + 20 C
Temp + 10 C

Forecast
All

scenarios

o

o

o

o

Figure 6.3: StreamCast can handle forecasting under what-if scenarios: the plots show

the results of 1) increasing G; 2) increasing B; and 3) increasing temperature.

V ′i = 1.05 × Vi. 2) Decrease: V ′r = 0.95 × Vr, V ′i = 0.95 × Vi. We then obtain I ′r and I ′i from

the same electrical simulation under voltages V ′r and V ′i .

Standard forecasting methods would not work as baselines, since an electrical model is

needed to accurately predict what happens to I when V changes. Hence, we use the following

baselines: 1) PQ: this is the same as our StreamCast approach, but substituting the BIG model

with the more common PQ electrical model [PJL
+

16]. 2) PowerCast [SHJ
+

17] as in the previous

95

Test case S
t
r
e
a
m
C
a
s
t

P
Q

P
o
w

e
r
C

a
s
t

W
i
n

d
o
w

2

W
i
n

d
o
w

4

W
i
n

d
o
w

8

W
i
n

d
o
w

1
6

Increase 0.19 7.13 5.26 11.18 4.94 4.95 4.72

Decrease 0.27 7.69 5.66 9.46 5.78 5.56 4.58

Table 6.3: StreamCast is accurate even under di�erent voltage levels: here the methods

are tested on what-if scenarios with di�erent voltage levels. Bold underline shows the best

performer. Error values are given as percentage RMSE (i.e. RMSE ×100).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
100

110

120

130

140

I r [A
m

p.
]

Increase: I
R

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Days
-170

-165

-160

-155

-150

-145

I i [A
m

p.
]

Increase: I
I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
110

120

130

140

150

I r [A
m

p.
]

Decrease: I
R

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Days
-170

-160

-150

-140

I i [A
m

p.
]

Decrease: I
I

Figure 6.4: StreamCast accurately responds to changes in voltage: forecasts of Ir and Ii
by each method vs. true values, when voltage was increased or decreased by 5%. StreamCast

�ts the data more accurately then baselines. RMSE results (with additional baseline methods)

are in Table 6.3.

section; 3) Windowk: this �ts the static BIG model (Section 6.2.2) to short time windows of size

k, where k = 2, 4, 8, 16.

Figure 6.4 shows the �t of StreamCast, PQ and Window4 against the true values (the re-

maining methods are not plotted for visibility, but their RMSE is in Table 6.3), and Table 6.3

shows the RMSE of each method against the true values. StreamCast outperforms the base-

lines by a clear margin. Because PQ is a constant-power model, increases in voltage magnitude

necessarily lead to the model predicting a decrease in current of a similar magnitude. How-

ever, in practice, both voltage and current can change in the same direction, in which case the

PQ model makes the wrong qualitative predictions. The Windowk baselines tend to over�t to

near-term behavior due to their use of windows; this explains the high variance over time in

Figure 6.4.

96

0 2 4 6 8 10 12
100

200

300

Am
p.

IR

0 2 4 6 8 10 12
-500

-400

-300

-200
Am

p.

II

0 2 4 6 8 10 12
Days

0

20

40

N
o.

 o
f I

Q
R

s

Anomalousness

0 1 2 3 4
-400

-200

0

200

400

Vo
lts

VR

0 1 2 3 4
Seconds

-200

-100

0

100

200

Vo
lts

VI

Seconds

Vo
lts

VI

Figure 6.5: StreamCast detects an anomaly in the LBNL dataset. It corresponds to a

2-second period where voltage rapidly oscillates between negative and positive values.

Anomaly Detection

Section 10.3 explains how to detect anomalies under our method; Figure 6.5 shows the results

on the LBNL dataset, where our method outputs a plot (‘anomalousness’) of the anomaly score

over time. There is a large spike in anomalousness around day 2; note that the anomaly is

not at all visible from only the current time series. In the voltage time series, however, we

�nd a 2-second period of quick oscillations between negative and positive values exactly at the

time of the anomaly. Follow-up analysis reveals that the oscillation is likely an error in the

measuring device: the complex angle of voltage is synchronized with the rest of the system via

a GPS signal, and in case of loss of this GPS signal, we may observe oscillations such as those in

Figure 6.5, which explains why the voltage magnitude remains stable while the angle oscillates.

Con�dence Intervals

Con�dence intervals are useful for obtaining ranges of predictions: e.g. when monitoring the

grid. Section 6.5.5 explains how we compute them. 95% and 99% con�dence intervals on our

CMU dataset are shown in Figure 6.6.

6.7 Conclusion

Our contributions are as follows:

1. Domain knowledge infusion: we propose a novel, Temporal BIG model that extends

the physics-based BIG model, allowing it to capture changes over time, trends, seasonal-

ity, and temperature e�ects.

2. Forecasting: our StreamCast algorithm forecasts multiple steps ahead and outperforms

baselines in accuracy. StreamCast is online, requiring linear time and bounded memory.

3. What-if scenarios and anomaly detection: our approach accurately handles scenarios

in which the voltage levels, temperature, or number of appliances change. We also use it

97

11 12 13 14 15 16 17 18 19
300

400

500

600

700

I R
 [
A

m
p
.]

11 12 13 14 15 16 17 18 19

Day

100

150

200

250

I I [
A

m
p
.]

Data
Forecast

99%

99%

95%

Confidence intervals

Forecast

Figure 6.6: StreamCast provides con�dence intervals.

to detect anomalies in a real dataset. Finally, StreamCast provides con�dence intervals

for its forecasts, to assist in planning for various scenarios.

Reproducibility: our code is publicly available atwww.andrew.cmu.edu/user/bhooi/
power.tar.

98

www.andrew.cmu.edu/user/bhooi/power.tar
www.andrew.cmu.edu/user/bhooi/power.tar

Chapter 7

BNB: Nonparametric Anomaly

Detection in Mixed Time Series

Chapter based on work to appear at SDM 2019 [PDF].

Given mixed time series data, e.g. numerical, categorical, and ordinal data, how do we

detect changes in the behavior of the time series: for example, the onset of illnesses or

complications in patients? We propose BNB (Branch and Border), an online, nonparametric

change detection method. Unlike existing methods, BNB approaches change detection by

separating points before and after the change using an ensemble of random partitions. Our

method (a) scales linearly; (b) provides theoretical guarantees on the false positive rate; and

(c) is nonparametric and works on mixed data.

How do we detect change points in multivariate time series data? This problem has wide-

ranging applications: in the medical domain, changes can indicate the onset of illnesses or

complications, such as seizures, panic, and heart attacks [RGBK15]. Change detection on sen-

sor data has been used to detect power plant failures and blackouts [BCDGV14]. Other appli-

cations include intrusion detection in computer networks [YTWM04], disease outbreak detec-

tion [KHH
+

05], and location recognition for robots [LYCS13].

In many cases, we cannot assume that the data follows any standard distribution (e.g. Gaus-

sian, Poisson). In realistic settings, data can be multi-modal, skewed, and nonlinear; moreover,

di�erent columns of the data may have di�erent types: e.g. binary, numerical, ordinal, or count

data. We also often want to detect change points in an online manner: many types of data (e.g.

medical data) are received in real time. As each data point is received, the algorithm should

update e�ciently. Thus, our goal is an online, nonparametric change detection algorithm:

99

http://www.andrew.cmu.edu/user/bhooi/bnb/paper.pdf

Informal Problem 7.1: Online Change Detection

• Given a multivariate stream X1, X2, · · · (possibly containing numerical, ordinal or

categorical data);

• Find a set of time ticks t where changes occurred, reported in a streaming manner.

Change detection in time series [SK74, CF15] has been studied extensively (expanded in

Section 9.2). Our work di�ers in two key aspects. Firstly, most work focuses on purely numer-

ical data, whereas we want to allow for e.g. count, ordinal and categorical data. Secondly, we

use a nonparametric, random partition based approach. Algorithms which make distributional

assumptions can be negatively a�ected when these do not hold: e.g. Gaussian or Poisson-based

approaches will be overly in�uenced by outliers given heavy-tailed data, and report wrong

change points. Moreover, many real world datasets may be hard to �t using any standard

distribution: e.g. nonlinear or multimodal data.

Our contributions are as follows:

1. Algorithm: We propose an online nonparametric change detection algorithm based on

random partitions, a novel approach for change detection.

2. Scalability: BNBO is linear (Figure 7.1a) and online, using bounded memory and time

per iteration.

3. E�ectiveness: Our algorithms outperform baselines in accuracy by 70% or more (Fig-

ure 7.1b), in experiments on real and synthetic data. Theorem 7.3 provides a theoretical

guarantee on the false positive rate.

0 40000 80000
Number of time ticks

0

20

40

60

80

W
al

l-c
lo

ck
 ti

m
e

(s
) BNB

BNBO

(a) Scalability

BN
B
BN
BO
PE
LTGF

L
DM
L
KC
P
EC
P
ED
iv
MR
ho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F-
m
ea
su
re +96%+67%

Proposed Baselines

(b) Accuracy

Figure 7.1: BNB is scalable and accurate: (a) linear scalability of BNB and its online vari-

ant, BNBO (for a time series with 100 dimensions) (b) F-measure of detecting change points,

averaged over 11 datasets.

100

Reproducibility: our code and data are publicly available at http://www.andrew.
cmu.edu/user/bhooi/bnb/bnb.zip.

7.1 Related Work

[AC17] reviews time series change detection methods.

Supervised Change Detection Supervised methods treat change detection as a binary classi-

�cation task, or directly output class labels [RMB
+

10]. However, labeled data is often unavail-

able.

Parametric Change Detection Many approaches rely on a parametric statistical model: e.g.

Gaussians [KFE12], and more general exponential family distributions [FMS14]. Accompany-

ing these are search algorithms: greedy binary segmentation [SK74], bottom-up segmenta-

tion [KCHP01], dynamic programming (DP) [JSB
+

05]. Wild binary segmentation [Fry14] uses

binary segmentation on random intervals. PELT [KFE12] applies pruning to DP. Other ap-

proaches include Hidden Markov Models [KCG
+

15], Group Fused Lasso (GFL) [BV11], and

Distance Metric Learning (DML) [XJRN03], which uses a Mahalanobis metric.

Online Change Detection FLOSS [GDY
+

17] is an online segmentation approach for multi-

variate data. GGS [HNB16] is an online, multivariate, Gaussian approach. CUSUM [ZWZJ15]

is an online approach for several parametric families; other control-chart approaches include

e.g. MEWMA [QLW16]. CD [QAWZ15] uses a PCA-based, online multivariate approach.

OtherMethodsNonparametric change detection methods include Multivariate Rho (MRHO) [KQR16],

and E-statistic based EDIV [MJ14] and ECP [MJ14], which use nonparametric goodness-of-�t

measures. Other methods include Kernel Change Point Detection (KCP) [DDD05], and neural

networks [LLJ02]. Other methods exist for discrete change detection: e.g. see [CBK12] for a

survey.

Forest-Based Outlier Detection [LTZ08] proposed Isolation Forests, which detect outliers

based on the intuition that outliers have low depth in randomly constructed trees. [TTL11]

proposes a similar but streaming approach. However, outlier detection and change detection

require di�erent intuitions: outlier detection is non-temporal, and �nds deviations from the

data, while change detection requires a time-series, and �nds transitions from one regime to

another.

Table 10.1 summarizes existing change point detection methods. BNB di�ers from existing

methods in that it is online, nonparametric, and allows for multiple data types. Our approach

is also very di�erent, relying on an ensemble of random partitions.

7.2 Problem De�nition

7.2.1 Problem Setting

Table 10.2 shows the symbols used in this chapter.

We are given X , an n × d dataset, i.e. it has n time ticks with d dimensions. Denote by

Xt the data point at time t, and denote by Xtj the data value in dimension j at time t. Our

101

http://www.andrew.cmu.edu/user/bhooi/bnb/bnb.zip
http://www.andrew.cmu.edu/user/bhooi/bnb/bnb.zip

Table 7.1: Comparison of relevant change detection approaches. ‘Mixed Data Types’ refers to

allowing data types beyond just numerical data: including categorical, count, and ordinal data.

Property P
E

L
T

[
K

F
E

1
2
]

G
F
L

[
B

V
1
1
]

G
G

S
[
H

N
B

1
6
]

D
M

L
[
X

J
R

N
0
3
]

F
L

O
S
S

[
G

D
Y

+
1
7
]

Z
W

Z
J

[
Z

W
Z

J
1
5
]

K
C

P
[
D

D
D

0
5
]

M
R

H
O

[
K

Q
R

1
6
]

E
D

I
V

[
M

J
1
4
]

E
C

P
[
M

J
1
4
]

C
D

[
Q

A
W

Z
1
5
]

B
N
B
O

Multivariate Data ! ! ! ! ! ! ! ! ! ! ! "

Nonparametric ! ! ! ! ! ! "

Scales Linearly ! ! ! ! ! ! "

Online Algorithm ! ! ! ! "

Mixed Data Types "

Table 7.2: Symbols and de�nitions

Symbol Interpretation

n Number of time ticks in data

d Number of dimensions in data

Xt Data point at time t
Xtj Data value at time t in dimension j
w Window size

dlim Depth limit for trees

N Number of trees

sk,t Separation depth for tree k at time t (De�nition 7.2)

ct Change score for time t (De�nition 7.3)

zt Indicator vector for ancestors of Xt (Section 7.4.3)

sL, sR Left and right ancestor counts (Section 7.4.3)

sI Intersection set (Section 7.4.3)

goal is to detect change points: i.e. time ticks where the behavior of the time series changes

signi�cantly. Formally:

102

Problem 7.1: Multivariate Change Detection

• Given a multivariate dataset of t time ticks with d-dimensions (Xtj for j = 1, · · · , d
and t = 1, · · · , n) containing numeric, ordinal or categorical data;

• Output a set of time ticks where changes occurred.

A major challenge is the online setting, in which we receive the data incrementally, one

time tick at a time, i.e. X1, X2, · · · . In some cases the stream may be in�nite, in which case

n =∞. As we receive the data, we should output which time ticks are change points.

However, it would be unrealistic to expect to determine whether time point t is a change

point without any future information after time t: this is because the time ticks t+ 1, t+ 2, · · ·
are important in deciding whether an apparent change at time t was a true change point, or

simply noise. Hence, we introduce a window parameter w: upon receiving time tick t+w, the

algorithm must output whether time t is a change point.

Problem 7.2: Online Change Detection

• Given a multivariate stream of d-dimensional data (Xtj for j = 1, · · · , d and t =
1, 2, · · ·), possibly containing numeric, ordinal or categorical data;

• Output at time t+ w whether a change point occurred at time tick t.

7.3 Illustrative Example

The main idea of our approach is its use of random partitions to measure how good a change is.

Consider a 1-dimensional toy dataset: X = [0, 1, 0, 0, 10, 10, 9, 10], which clearly has a change

point at t = 5. If we sample a random cut point uniformly between 0 and 10 (the min and

max of the data), then with 80% probability, the cut point lies in (1, 9). In this case, the cut

point perfectly separates the points before and after t = 5. Intuitively then, t = 5 is a good

change point because the points before and after (or equal to) it are easily separable by random

partitions.

In real data, single cuts do not always su�ce, and we may need multiple cuts, but the in-

tuition is similar. Consider the drawing of a bird on a branch in Figure 7.2a, containing an

unknown change point, from drawing the branch to drawing the bird. The connecting line

segments (in black) indicate that the drawing is a time series, not just a set of points. Finding

the change point is challenging: the bird’s feet and tail are hard to separate from the branch.

Figure 7.2b shows that the Gaussian approach has di�culty: these approaches rely on a large

di�erence in means before and after the change, but the bird and branch have fairly close means.

Figure 7.2c illustrates our random partition approach. We conduct random cuts (gray lines)

that partition the space recursively. At the time of the correct change, the points before the

change (in red) and after the change (in blue) can be cleanly separated by the random partition:

103

(a) Original drawing

Mean of

 bird
Mean of

branch

(b) Gaussian approach fails

(c) Random partition approach �nds

change point

Drawing branch Drawing bird

(d) Peak in change score coincides with

ground truth

Figure 7.2: BNB is adaptive and nonparametric: (a) A drawing of a bird on a branch, with

an unknown change point (when moving from the branch to the bird) (b) The bird and the

branch have similar means, making them di�cult to separate using standard approaches. (c)

At the time of the true change, the red points (before the change) and blue points (after the

change) can be fully separated using a relatively simple random partition, suggesting that this

is a good change. The blue region (boxes only containing points after the change) conforms

to the bird’s outline well despite the bird’s unique shape which is hard to separate from the

branch. (d) Averaging over many such partitions, the change score is highest at the true change

time.

i.e. all boxes contain either only red or only blue points. The stronger the change point, the

easier the red and blue points are to cleanly separate, and the simpler the random partition we

would need to cleanly separate them. Hence, in Figure 7.2d we compute a score for each possible

change point based on how easily we can separate the points before and after the change using

random partitions (we formalize this in Section 7.4). Averaging over many such partitions,

Figure 7.2d shows that the highest change score indeed coincides with the true change point.

104

7.4 Proposed BNB Algorithm

7.4.1 Random Partition Tree

We �rst explain how our random trees are built. Given a datasetX of size nwith d dimensions,

we �rst uniformly sample one of the d dimensions to split. Then, we sample the split point:

we sample two independent uniform values between the minimum and maximum of the data

values, and use their mean as the split point. This causes split points to tend toward the middle

of the range, making the children more balanced in their node counts. We then recurse onto

each child, stopping when a node contains only one data point, or reaches a depth limit dlim.

Recall that we want to allow for ordinal and categorical data. These can be easily handled

by splitting ordinal data at a randomly chosen split point, and splitting categorical data by

randomly dividing the categories into two sets.

De�nition 7.1: Random Partition Tree

A random partition tree is built by recursively sampling a feature, and then sampling a

split point to partition the data space into two, continuing recursively until a depth of dlim
is reached.

7.4.2 Change Score

Our main intuition is that if time tick t is a good change point, then the data before and after

the change point should be cleanly separable using relatively simple partitions, i.e. shallow

trees. For a given candidate change point t, de�ne the ‘left set’ L as the w points before time t
(i.e. {Xt−w, · · · , Xt−1}). Similarly, de�ne the ‘right set’ R as the w points at or after time t (i.e.

{Xt, · · · , Xt+w−1}). Given a single random partition tree T , de�ne the ‘separation depth’ as the

minimum depth at which T fully separates the left set from the right set. Here ‘fully separated’

means that like in Figure 7.2c, each node of T at that depth either contains only points from L
or R, but not both.

De�nition 7.2: Separation Depth

The separation depth sk,t for the kth random partition tree at time tick t is the minimum

depth at which Tk fully separates the left set from the right set.

Intuitively, low separation depth means that L and R can be easily separated, which means

t is a good change point. If L and R are not fully separated when reaching the depth limit dlim,

we set the separation depth to dlim + 1, which functions as an upper limit to prevent any single

tree from being too in�uential.

105

Finally, we average the separation depth values overN random partition trees. Since dlim+1
is an upper bound, we then use dlim+1 minus this average separation depth as our change score:

thus, higher values indicate a better change, with 0 being the minimum value indicating a poor

change.

De�nition 7.3: Change Score

The change score ct at time tick t is dlim+1 minus the average separation depth computed

using N random partition trees:

ct = dlim + 1− 1

N

N∑
j=1

sj,t (7.1)

7.4.3 E�cient Implementation

The step of computing change scores can be sped up signi�cantly over the naive approach.

Implemented naively, at each of n time ticks, we would need to compute N separation depths,

each taking O(w) time, for a total of O(n ·N · w). However, we can save a factor of O(w), by

computing the change scores in a single pass over the dataset.

Consider a random partition tree T . Every data point Xt for each t has been assigned to a

leaf of T during the tree-building step. For convenience, let the nodes in T be assigned integer

ids i = 1, 2, · · · arbitrarily. De�ne sL (‘left ancestor count’), a sparse vector: for each node i of

T , sL[i] is the number of points in the left set that node i contains. For example, in Figure 7.2c,

each node corresponds to a box; then sL[i] is the number of points from the left set in that box.

De�ne sR (‘right ancestor count’) similarly using the right set. De�ne sI (‘intersection set’) as

the set of nodes which have nonzero counts in both sL and sR.

Lemma 7.1

At time t, the separation depth is 1 more than the maximum depth among nodes in sI .

Proof. All nodes with nonzero counts in sL are those with descendants in the left set, and

similarly for sR, so sI contains nodes with descendants from both sets. If D is the maximum

depth among nodes in sI , the tree at depth D is not enough to perfectly separate the left and

right sets, since a node at depth D has descendants from both sets (so the node contains points

from the left and the right sets). However, the tree at depth D + 1 does perfectly separate the

left and right sets, otherwise there would exist a node in sI with depth D + 1. �

Algorithm 9.1 shows our change scoring algorithm. We initialize sL, sR, sI and separation

depths sj,t, then maintain them e�ciently as we move forward in time.

106

Let zt be a 0-1 vector with 1 in entry i i� node i is an ancestor of the leaf containing the data

point Xt. Note then that sL is just the sum of zt over the left set, and similarly for sR. Initially,

the left set contains the �rst w time ticks, so sL is initialized as sL =
∑w

t=1 zt (Line 4). Similarly

sR =
∑2w

t=w+1 zt (Line 5). Next we initialize sI as the set of nodes with nonzero counts in both

sL and sR (Line 7), and compute the separation depth sj,w+1 following Lemma 7.1 (Line 8).

Algorithm 7.1: ChangeScore

Input : Dataset X , N random partition trees, window w
Output: Change scores ct for w ≤ t ≤ n− w + 1

1 BFor each tree:

2 for j in 1 to N do

3 BInitialize left and right ancestor counts

4 sL =
∑w

t=1 zt
5 sR =

∑2w
t=w+1 zt

6 BIntersection set and separation depth

7 sI = {k : sL[i] > 0 and sR[i] > 0}
8 sj,w+1 = 1 + maxi∈sI depth(i)

9 end

10 for t in w to n− w + 1 do

11 for j in 1 to N do

12 BUpdate due to change in left and right sets

13 sL ← sL + zt − zt−w
14 sR ← sR − zt+w − zt
15 sI = {x : sL[x] > 0 and sR[x] > 0}
16 sj,t = 1 + maxx∈sI depth(x)

17 end

18 end

19 return ct = dlim + 1− 1
N

∑N
j=1 sj,t, ∀ t

To maintain these values, for sL and sR we add and subtract the relevant vectors zt (Lines

13 and 14). For each such change, we incrementally update the intersection set sI (Line 15) and

thus the separation depth (Line 16). Finally, we compute the overall change score by averaging

over all the trees (Line 19).

Algorithm 7.2 summarizes our full o�ine algorithm BNB. It estimates N random partition

trees, then uses ChangeScore to compute scores.

7.4.4 Online Algorithm (BNBO)

We now explain how BNB can be modi�ed to be run online. The change score computation

ChangeScore is already online: Lines 2 to 8 are based on only the �rst 2w time ticks, while

Lines 13 to 16 are based only on the current window. Hence, it adapts to streams of arbitrary

length. At time t, to compute zt, for each tree, we ‘classify’Xt by recursively following the split

points, from the root node down to whichever leaf node Xt belongs to.

107

Algorithm 7.2: O�ine Change Detection BNB

Input : Dataset X , window w, number of trees N , depth limit dlim
Output: Change scores ct for w ≤ t ≤ n− w + 1

1 for j in 1 to N do

2 BRandom Partition Tree creation (Section 7.4.1)

3 Tj = MakeTree(X, dlim)

4 end

5 return ChangeScore(X,w, T)

Only the tree generation algorithm MakeTree is not yet online, as it uses the full dataset

to choose each split point. BNBO uses a small ‘initialization’ dataset of 250 points, which we

use for MakeTree to decide the split points for all trees. The resulting trees are then used in

the online version of ChangeScore for future data points in the stream.

7.4.5 Time Complexity

For BNB’s tree-building step, we have N trees, each requiring at most dlim splits, where all

splits combined in each level involve n data points. Hence, tree-building takes O(N · n · dlim).

For change scoring, we have N trees, each of which has to be updated O(n) times, and each

update is O(dlim) since each zt has at most dlim nonzeroes, and Lines 13 to 16 are sparse vector

operations with O(dlim) nonzeroes. Hence overall runtime is O(N · n · dlim).

For the same reasons, BNBO’s tree building step requires O(N · dlim). For each online

update, computing zt is still proportional to tree height, since we travel the height of the tree,

so each online update is O(N · dlim).

7.5 Theoretical Analysis

7.5.1 Interpretation of Separation Depth

Can we better understand what BNB does, by re-interpreting it in a more theoretical way: e.g.

is there a metric space (i.e. a space where we can measure distances), for which our approach

is related to distances in this space? We show that the answer is ‘yes’.

A metric space is a set X and a distance function d : X × X → [0,∞) such that:

1. d(x, y) = 0 i� x = y (Identity)

2. d(x, y) = d(y, x) (Symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

Given a tree Tk, the tree partitions the data space, mapping each data point Xt into a leaf

of Tk: let leaf(Xt) map Xt to its leaf. De�ne X as the set of leaves, and d(x, y) as the shortest

path distance (in terms of number of graph hops) between leaves x and y.

108

Lemma 7.2

(X , d) is a metric space.

Proof. This is a special case of the fact that geodesic distance in a graph forms a metric space, if

and only if the graph is connected [BDFG03]. In our case, the graph is a tree, hence the leaves

indeed form a metric space. �

Theorem 7.1

The separation depth sk,t can be rewritten in terms of distances in this metric space:

sk,t = dlim −
1

2
min

x∈L,y∈R
d(leaf(x), leaf(y)) + 1 (7.2)

Proof. Consider the pair of points x ∈ L and y ∈ R minimizing (7.2). Their shortest path dis-

tance is d(leaf(x), leaf(y)), so their deepest common ancestor (call it z) must be d(leaf(x), leaf(y))/2
steps above them. Since leaf(x) and leaf(y) are at depth dlim, thus z is at depth dlim−d(leaf(x), leaf(y))/2.

Moreover, since x and y were the closest pair of points, z must be the deepest node with

descendants in both L and R. Thus, L and R are fully separated exactly at depth dlim −
d(leaf(x), leaf(y))/2 + 1, but not at any lower depth (due to node z). �

This implies that separation depth sk,t, which measures how good a change is, is e�ectively

a nearest-neighbor like statistic (though not in a Euclidean space).

7.5.2 Bounds on False Positive Rate

Our main theorems bound our false positive rate. Assume that no change is present; as is

standard in change detection literature, we use the null hypothesis H0 : Xt−w, · · · , Xt+w−1 are

i.i.d., representing no change, and bound the probability of high values of change score. First

consider a single tree, which outputs the separation depth sk,t as change score. Then:

Theorem 7.2

For any λ > 0, letting pλ = 2λ−1
, we have:

P (sk,t ≤ λ) ≤ (1/2)w−pλ . (7.3)

Proof. Fix an arbitrary ordering < on the data space (e.g. lexicographic ordering), and let

X1, · · · , X2w
be the original data points (X1, · · · , X2w) sorted according to the order <. Since

109

the data points X1, · · · , X2w are i.i.d., if we condition on X1, · · · , X2w
, by symmetry, the con-

ditional probability that the original data is mapped to X1, · · · , X2w
by any particular permu-

tation is equal, which is 1/(2w)!.
De�ne Zi as a 0-1 random variable, taking value 0 if X i

is one of X1, · · · , Xw, and 1 other-

wise. Then exactly w of the random variables Z1, · · · , Z2w are 1, and since we earlier showed

that every permutation of the X1, · · · , X2w
is equally likely, thus now each assignments of 0s

and 1s to Z1, · · · , Z2w with exactly w 1s is also equally likely. Thus, by symmetry, each such

assignment has probability 1/
(

2w
w

)
.

For any λ, P (sk,t ≤ λ) is the probability that the sets L and R were fully separated by

the time the tree reached level λ. Note that at level λ, our tree partitions the data space into

pλ = 2λ−1
parts. The number of assignments to the Z variables for which L and R are fully

separated is then at most 2pλ , since each of the pλ parts we have to choose to assign either 0 or

1 to all variables in that part. Moreover, we earlier showed that each of the

(
2w
w

)
assignments

has the same probability. Thus, the probability that L and R are fully separated at level λ is at

most

P (sk,t ≤ λ) ≤ 2pλ(
2w
w

) (7.4)

=
2pλ(1) . . . (w)

(w + 1) . . . (2w)
(7.5)

≤ 2pλ(1/2)w (7.6)

≤ (1/2)w−pλ . (7.7)

In fact, this can be tightened signi�cantly by using stronger bounds for central binomial

coe�cients: it is known that

(
2w
w

)
≥ 4w/

√
4w for any positive integer w [Kaz14]. Substituting

this instead gives

P (sk,t ≤ λ) ≤ 2pλ(
2w
w

) (7.8)

≤ 2pλ
√

4w

4w
(7.9)

= 2pλ−1−2w
√
w (7.10)

= (1/2)2w−1−pλ
√
w. (7.11)

�

The next theorem concerns our �nal change score ct. For any error threshold ε > 0, we have:

Theorem 7.3

P (ct ≥ dlim + 1− log(1 + log
ε

N
+ w)) ≤ N(1/2)w−pλ (7.12)

110

Proof. Applying union bound on the (weaker) result of the previous theorem gives

P (sk,t ≤ λ) ≤ N(1/2)w−pλ ∀ k ∈ {1, · · · , N} (7.13)

Recalling that ct = dlim + 1− 1
N

∑N
j=1 sj,t, substituting this gives:

P (ct ≥ dlim + 1− λ) ≤ N(1/2)w−pλ (7.14)

Finally, if pλ = log ε
N

+ w, then N(1/2)w−pλ ≤ ε. Substituting this into (7.14) (and using the

fact that λ = log pλ + 1) gives the result.

�

This implies that any change scores above this value can be used to trigger an alarm with 1− ε
con�dence, i.e. at most ε probability of a false positive.

7.6 Experiments

We design experiments to answer the questions:

• Q1. Change Detection Accuracy: how accurate are BNB and BNBO compared to base-

lines?

• Q2. Scalability: do they scale linearly?

• Q3. Real-World Discoveries: how do they perform on an indoor occupancy detection

task?

Experiments were done on a 2.4 GHz Intel Core i5 Macbook Pro, 16 GB RAM running OS X

10.11.2. We implement our method in Python. For our methods we set w = 15, dlim = 15 and

N = 50, but show experiments on parameter sensitivity in this section.

We evaluate our algorithms on multivariate time series with various sizes and domains,

described in Table 10.3. The Occupancy dataset contains ground truth change labels, which

are the time points when the room changed from occupied to unoccupied, or vice versa.

7.6.1 Q1. Detection Accuracy

We now evaluate our algorithms’ accuracy in detecting change points.

Single Change Points

For each dataset, we sample a change point as a random time tick betweenn/4 to 3n/4 (rounded).

For data points on or after the change point, we add a Gaussian with mean 0 and standard de-

viation for each dimension equal to the standard deviation of the data for that dimension. Then

the goal of each algorithm is to detect the change point (exactly). For each algorithm we pass in-

put parameters for detecting one change point, and evaluate the results according to F-measure

against the true change point. As several of the baselines scale quadratically or slower, we sub-

set all datasets to a size of 500. However, in Section 8.5.2 we show that our algorithms easily

scale to 10K − 80K time ticks and 100 − 800 dimensions. The results are averaged over 20
repetitions.

111

Table 7.3: Datasets used

Dataset Name Time Ticks Dimensions Content

Chemical [DVMP
+

08] 9357 13 Chemical Sensor

Beijing [LZG
+

15] 43824 6 Air Quality

Exchange [LCYL17] 7588 8 Exchange Rate

Measles [VPGJ
+

13] 2501 50 Disease Counts

Influenza [VPGJ
+

13] 2501 50 Disease Counts

Scarlet [VPGJ
+

13] 2501 50 Disease Counts

Whooping [VPGJ
+

13] 2501 50 Disease Counts

Vehicle1 [HA18] 264 2 Unmanned Vehicle

Vehicle2 [HA18] 342 2 Unmanned Vehicle

Vehicle3 [HA18] 578 2 Unmanned Vehicle

Vehicle4 [HA18] 488 2 Unmanned Vehicle

Occupancy [CF16] 9752 5 In-room Sensors

Synthetic 10K-80K 100-800 Synthetic

Baselines

We compare BNB to the following recently proposed multivariate change detection methods:

• Parametric: PELT (Killick, 2012) is a dynamic programming (DP)-based approach. GFL

(Bleakley, 2011) uses group-fused lasso. DML (Xing, 2003) is a distance metric learning

approach, using a Mahalanobis metric.

• Nonparametric: KCP (Desobry, 2005) is a kernel-based approach. EDiv (Matteson, 2014)

and ECP (Matteson, 2014) use the E-statistic, a nonparametric goodness-of-�t statistic,

with hierarchical division and DP. MRho (Kojadinovic, 2016) uses Spearman’s rho.

We show results for unnormalized data in Table 7.4, and normalized data in Table 7.5. In

both, BNB and BNBO perform the best on almost all the datasets. Normalization does not signif-

icantly a�ect our methods, as all their steps are invariant to scaling. The baselines mostly per-

form slightly better with normalization than without. The results averaged over all 11 datasets

is in Figures 7.3a and 7.3b. BNB and BNBO signi�cantly outperform the baselines: e.g. by 82%
or more for BNB. Between our two methods, BNB generally performs better, but BNBO still

outperforms the baselines signi�cantly despite all the baselines being o�ine.

Multiple Change Detection

We use the same settings, except with 5 change points, sampled uniformly without replacement

from 0.1n to 0.9n (rounded). We evaluate each algorithm based on its top 5 changes, again using

F-measure, compared to the true changes. Results are averaged over 20 repetitions.

The results are shown in Table 7.6 for unnormalized data and Table 7.7 for normalized data.

BNB and BNBO again outperform the baselines on almost all the datasets. The average F-

112

BNB BNBO PELT GFL DML KCP ECP EDiv MRho

Chemical 0.70 0.70 0.50 0.50 0.15 0.15 0.45 0.28 0.00

Beijing 0.80 0.55 0.00 0.00 0.15 0.15 0.00 0.05 0.00

Exchange 1.00 0.90 0.00 0.10 0.00 0.00 0.15 0.00 0.00

Measles 0.95 0.95 0.40 0.45 0.20 0.20 0.15 0.33 0.33

Influenza 0.95 1.00 0.40 0.55 0.10 0.10 0.75 0.45 0.45

Scarlet 0.55 0.60 0.45 0.55 0.20 0.20 0.05 0.28 0.28

Whooping 1.00 0.70 0.00 0.00 0.20 0.20 1.00 0.40 0.40

Vehicle1 0.65 0.60 0.35 0.40 0.10 0.10 0.10 0.17 0.00

Vehicle2 0.40 0.50 0.10 0.10 0.05 0.05 0.15 0.05 0.00

Vehicle3 0.25 0.15 0.15 0.15 0.05 0.05 0.10 0.07 0.00

Vehicle4 0.95 0.70 0.25 0.25 0.05 0.05 0.70 0.05 0.00

Table 7.4: BNB and BNBO win consistently: F-measure for single change point detection

(without normalization)

BNB BNBO PELT GFL DML KCP ECP EDiv MRho

Chemical 0.70 0.75 0.65 0.65 0.30 0.30 0.50 0.28 0.00

Beijing 0.50 0.40 0.40 0.40 0.20 0.20 0.10 0.20 0.00

Exchange 0.95 0.85 0.25 0.25 0.10 0.10 0.50 0.12 0.00

Measles 0.95 0.90 0.80 0.90 0.20 0.20 0.00 0.42 0.42

Influenza 0.95 0.95 0.20 0.20 0.20 0.20 0.40 0.47 0.47

Scarlet 0.60 0.35 0.90 0.90 0.40 0.40 0.40 0.40 0.40

Whooping 1.00 0.70 0.00 0.00 0.15 0.15 1.00 0.47 0.47

Vehicle1 0.50 0.50 0.30 0.30 0.10 0.10 0.25 0.20 0.00

Vehicle2 0.15 0.30 0.00 0.00 0.00 0.00 0.10 0.03 0.00

Vehicle3 0.40 0.30 0.00 0.00 0.00 0.00 0.00 0.03 0.00

Vehicle4 0.95 0.55 0.45 0.45 0.05 0.05 0.95 0.20 0.00

Table 7.5: BNB and BNBO win consistently (with one exception): F-measure for single

change point detection (with normalization)

measure over all datasets are shown in Figures 7.4a and 7.4b. BNB outperforms the baselines

by 70% or more F-measure on average.

Parameter Sensitivity

Figure 7.5 compares performance for di�erent parameter values, on multiple change point de-

tection (without normalization). Results are averaged over datasets and over 5 repetitions; the

other settings follow the previous section. Our methods perform consistently well across val-

ues.

113

BN
B
BN
BO
PE
LTGF

L
DM
L
KC
P
EC
P
ED
iv
MR
ho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F-
m
ea
su
re +127%+104%

Proposed Baselines

(a) Without normalization

BN
B
BN
BO
PE
LTGF

L
DM
L
KC
P
EC
P
ED
iv
MR
ho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F-
m
ea
su
re +96%+67%

Proposed Baselines

(b) With normalization

Figure 7.3: BNB and BNBO outperform baselines for single changes: (a) F-measure of

detecting change points, averaged over 11 datasets. Error bars indicate one standard deviation.

(b) Same results, with normalization for all methods.

BNB BNBO PELT GFL DML KCP ECP EDiv MRho

Chemical 0.68 0.54 0.52 0.37 0.12 0.12 0.40 0.38 0.00

Beijing 0.62 0.61 0.21 0.23 0.03 0.03 0.19 0.23 0.00

Exchange 0.91 0.84 0.43 0.35 0.08 0.08 0.40 0.31 0.00

Measles 0.90 0.85 0.37 0.50 0.11 0.11 0.26 0.41 0.41

Influenza 0.99 0.99 0.29 0.59 0.14 0.14 0.61 0.50 0.50

Scarlet 0.60 0.56 0.31 0.40 0.10 0.10 0.10 0.29 0.29

Whooping 0.98 0.95 0.64 0.42 0.26 0.26 0.75 0.52 0.52

Vehicle1 0.68 0.71 0.28 0.29 0.09 0.09 0.21 0.20 0.00

Vehicle2 0.50 0.50 0.38 0.29 0.15 0.15 0.45 0.33 0.03

Vehicle3 0.54 0.44 0.41 0.36 0.06 0.06 0.34 0.30 0.02

Vehicle4 0.89 0.72 0.68 0.44 0.14 0.14 0.68 0.43 0.00

Table 7.6: BNB and BNBO win consistently: F-measure for multiple change point detection

(without normalization)

7.6.2 Q2. Scalability

Next, we verify that our methods scale linearly. We repeatedly duplicate our Occupancy
dataset in time ticks and dimensions, add Gaussian noise to each dimension with standard

deviation equal to the standard deviation of that dimension, then subset the data to the required

size. Figure 9.6a shows that BNB and BNBO scale linearly in time ticks; here dimensions is

�xed at 100. Figure 7.6b shows that they scale linearly in dimensions; here time ticks is �xed

114

BNB BNBO PELT GFL DML KCP ECP EDiv MRho

Chemical 0.68 0.55 0.58 0.63 0.14 0.14 0.45 0.41 0.02

Beijing 0.74 0.67 0.24 0.42 0.09 0.09 0.33 0.22 0.00

Exchange 0.93 0.87 0.57 0.51 0.11 0.11 0.47 0.37 0.02

Measles 0.91 0.87 0.36 0.69 0.14 0.14 0.26 0.45 0.45

Influenza 0.98 0.97 0.40 0.59 0.12 0.12 0.62 0.48 0.48

Scarlet 0.71 0.62 0.49 0.71 0.11 0.11 0.22 0.42 0.42

Whooping 0.99 0.95 0.64 0.48 0.17 0.17 0.72 0.55 0.55

Vehicle1 0.61 0.61 0.26 0.24 0.05 0.05 0.17 0.15 0.00

Vehicle2 0.49 0.50 0.41 0.28 0.08 0.08 0.41 0.32 0.00

Vehicle3 0.56 0.50 0.43 0.30 0.06 0.06 0.29 0.35 0.02

Vehicle4 0.91 0.63 0.62 0.47 0.21 0.21 0.62 0.47 0.00

Table 7.7: BNB and BNBO win consistently: F-measure for multiple change point detection

(with normalization)

BN
B
BN
BO
PE
LTGF

L
DM
L
KC
P
EC
P
ED
iv
MR
ho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F-
m
ea
su
re +83%+70%

Proposed Baselines

(a) Without normalization

BN
B
BN
BO
PE
LTGF

L
DM
L
KC
P
EC
P
ED
iv
MR
ho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F-
m
ea
su
re

+61%+47%

Proposed Baselines

(b) With normalization

Figure 7.4: BNB and BNBO outperform baselines for multiple changes: (a) F-measure of

detecting multiple change points, averaged over 11 datasets. Error bars indicate one standard

deviation. (b) Same results, with normalization.

at 10, 000. Both methods are fast: for 100 dimensional data, BNB takes 1.2ms per time tick on

average, whileBNBO takes 0.7ms, on a laptop computer. The online nature of BNBOmeans that

in settings where we need incremental results, it provides further e�ciency gains compared to

repeatedly running an o�ine algorithm.

115

0 50 100
T

0

0.2

0.4

0.6

0.8

1

F-
m
ea
su
re

0 10 20
dlim

0

0.2

0.4

0.6

0.8

1

F-
m
ea
su
re

0 10 20
w

0

0.2

0.4

0.6

0.8

1

F-
m
ea
su
re

0 10 20
dlim

0

0.2

0.4

0.6

0.8

1

F-
m
ea
su
re

BNB
BNBO

Figure 7.5: Insensitive to parameters: our methods perform consistently across parameter

values.

0 40000 80000
Number of time ticks

0

20

40

60

80

W
al

l-c
lo

ck
 ti

m
e

(s
) BNB

BNBO

(a) Time ticks

0 200 400 600 800
Number of dimensions

0

5

10

15

20

25

W
al

l-c
lo

ck
 ti

m
e

(s
) BNB

BNBO

(b) Dimensions

Figure 7.6: Our methods scale linearly.

7.6.3 Q3. Real-World E�ectiveness

We now evaluate our methods against the same baselines on a real-world occupancy detection

task [CF16], with ground truth change points when the room changed from being unoccupied

to occupied, or vice versa, resulting in 13 change points. The sensors measure the room’s

temperature, humidity, light and carbon dioxide levels. Ground truth occupancy was obtained

from time-stamped pictures taken every minute. We evaluate using F-measure, where reported

change points are considered as correctly matched to a given ground truth change if the two

are at most ‘tolerance’ minutes apart, where we plot di�erent values of ‘tolerance’ in Figure 7.7.

We repeat each method 5 times and average the results.

BNB and BNBO outperform the baselines, with BNB having F-measure of 115% higher

accuracy. We omit GFL, DML and KCP as they did not terminate after 16 hours. (BNB and

BNBO took 57s and 28s.)

116

0 2 4 6
Tolerance (minutes)

0

0.2

0.4

0.6

0.8

1

F
m

ea
su

re

0 0.5 1
-2

-1.8

-1.6

-1.4

-1.2

-1
BNB
BNBO
PELT
ECP
EDiv
MRho
GFL
DML
KCP

+115%

+51%

Figure 7.7: Accuracy for occupancy detection: our methods detect changes in occupancy in

a room accurately, based on F-measure.

7.7 Conclusion

We propose BNB, which uses an ensemble of random partitions to measure change score. It

generalizes to di�erent data types, and BNBO provides an online approach. Our contributions

are:

1. Algorithm: We propose a novel online nonparametric change detection approach.

2. Scalability: BNBO is linear (Figure 7.1a) and online, using bounded memory and time

per iteration.

3. E�ectiveness: Our algorithms outperform baselines in accuracy by 70% F-measure or

more, on real and synthetic data. Theorem 7.3 provides a theoretical guarantee on the

false positive rate.

117

118

Chapter 8

SMF: Drift-Aware Matrix

Factorization with Seasonal

Patterns

Chapter based on work to appear at SDM 2019 [PDF].

In this chapter we consider time-series matrix data: e.g. a stream of taxi rides, each record-

ing the start and end locations of each ride. How do we learn a matrix factorization model

which takes into account drift and seasonal patterns, and use it to forecast and perform

anomaly detection? In this chapter, we propose SMF (Seasonal Matrix Factorization), a ma-

trix factorization model for seasonal data, which is (a) accurate, outperforming baselines

by 13% to 60% in RMSE; (b) online; and (c) provides interpretable results. We also propose

SMF-A, which performs anomaly detection in a computationally feasible way, without fore-

casting every observation in the matrix.

8.1 Introduction

Consider a stream of events, represented as tuples of the form (entity1, entity2, time). Given

such data, a natural goal is to model patterns, and to forecast future data: for example, the

number of taxi rides from Brooklyn to Manhattan tomorrow. Other similar applications in-

cludes disease forecasting, movie recommendation, retweet prediction, etc. In all these cases,

seasonal patterns are present, and relevant to making accurate forecasts. Hence, our problem

is:

119

http://www.andrew.cmu.edu/user/bhooi/smf/paper.pdf

Informal Problem 8.1: Forecasting

• Given: a stream of past events, containing seasonal patterns;

• Forecast: the number of events between each pair of entities at any future time tick.

Another goal is to detect when anomalies occur. These could involve a sudden increase in

activity, but can also be any unusual shift in activity (e.g. a road accident redirecting tra�c

from one lane to another).

Informal Problem 8.2: Anomaly Detection

• Given: a stream of past events, containing seasonal patterns;

• Find: a measure of how much each entity deviates from normal behavior at each

time tick.

Standard matrix factorization approaches model this data by ignoring the time dimension,

resulting in a matrix. However, these approaches ignore seasonal patterns. Taxi activity typi-

cally follows a daily bimodal pattern, peaking at morning and evening peak hours. In addition,

standard matrix factorization cannot capture drift, or changes in the components over time:

such as population growth, or people entering or leaving a community.

SMF
SVD

NMF
Fold

CPHW

TSVDCWT
0

1000

2000

3000

4000

5000

R
M

SE
 (t

im
e

se
rie

s)

28%

(a) Accurate

0 1 2 3 4
Number of tuples#107

26

28

30

32

34

36

38

T
im

e
ta

ke
n

(s
)

(b) Scales linearly

1920 1940 1960 1980

Year

0

2

4

6

8

10

A
n
o
m
a
lo
u
s
n
e
s
s

#10
9

Threshold

Influenza

epidemic

Measles

epidemic

(c) Detects anomalies

Figure 8.1: SMF is accurate, scales linearly, and detects anomalies. (a) Forecast error of

SMF compared to state-of-the-art baselines. (b) Running time scales linearly. (c) SMF-A detects

two large epidemics, which have been previously reported in the medical literature, in a diseases

dataset.

Scalability is also a major challenge, both in memory and running time, since matrix fac-

torization often involves large numbers of entities. The entire dataset may not �t in memory,

or may even have no �nite size, in an online setting. Hence, we propose SMF (Seasonal Matrix

120

Factorization), a drift-and-seasonality aware matrix factorization model which can be �t using

an online algorithm. Our contributions are:

• Model: we propose a novel matrix factorization model incorporating seasonal patterns

and drift, and an online algorithm for �tting this model.

• E�ectiveness: in experiments, SMF has lower forecasting error than baselines by 13%
to 60% (Figure 8.1a), and provides interpretable results in case studies on real data.

• Scalability: SMF is online, and scales linearly (Figure 8.1b). In experiments, it was 12 to

103 times faster than seasonal baselines.

• Fast Anomaly Detection: we propose SMF-A for detecting anomalies (Figure 8.1c) in

a computationally feasible way, without forecasting every possible observation in the

matrix.

Reproducibility: our code and datasets are publicly available at www.andrew.cmu.
edu/user/bhooi/code.

8.2 Background and Related Work

StaticMatrix Factorization Matrix Factorization (MF) techniques including SVD [SKKR00],

NMF [LS01], and pLSI [Hof04] have been widely explored, particularly in collaborative �lter-

ing [Kor08, Kor10, SPV14]. Other work incorporated bias terms [Kor08], and alternating least

squares [BK07].

DynamicMatrix Factorization Time-weighting schemes weight past data by their recency [DL05,

DKA11]. Other approaches include temporal regularization [XCH
+

10] and Kalman �lters [SPV14,

COL13]. timeSVD++ [Kor10] modi�es SVD with a temporal bias term. [DKM15] uses dynamic

MF with priors. [XCH
+

10] proposes a Bayesian approach. [STF06] proposes a dynamic tensor

analysis algorithm. However, none of these consider seasonal patterns.

Seasonal Patterns in Matrix Factorization Fold [ENLSS16] combines data at the same

point in the season, then uses 3-way tensor decomposition (CPD). [THF17] similarly separates

recurring patterns from outliers. CPHW [DKA11] uses 3-way CPD, then extends the tempo-

ral factor matrix using the Holt-Winters algorithm. [dARF17] uses a similar approach, also

incorporating coupled tensor factorizations.

Why not use 3-way CPD? 3-way CPD [KB09, SDLF
+

17] treats the temporal dimension as a

discrete, unordered variable. Hence, it cannot be directly used for forecasting, and also does not

model component drift. To forecast, we could modify it, e.g. as in Fold or CPHW. Compared to

Fold and CPHW, which have �xed components, SMF allows both the components and seasonal

patterns to drift: this includes both drifting component strength (e.g. a community growing

more active) and drifting component structure (e.g. a community changing in composition). We

verify that SMF learns meaningful such drifts in taxi data in Section 8.5.3, and our experiments

show that SMF outperforms Fold and CPHW in forecasting accuracy. Another di�erence is that

both Fold and CPHW are o�ine algorithms, while SMF is online.

121

www.andrew.cmu.edu/user/bhooi/code
www.andrew.cmu.edu/user/bhooi/code

Table 8.1: Comparison between methods.

Property S
V

D
/
N

M
F

[
S
K

K
R

0
0
,
L

S
0
1
]

D
y

n
a
m

i
c

M
F

[
D

K
M

1
5
,
D

L
0
5
]

3
-
w

a
y

C
P

D
[
K

B
0
9
]

T
i
m

e
C

r
u

n
c
h

[
S
K

Z
+

1
5
]

F
o

l
d

[
E

N
L

S
S
1
6
]

C
P

H
W

,
e
t
c

[
D

K
A

1
1
,
d

A
R

F
1
7
]

S
M
F

Component-based ! ! ! ! ! "

Seasonal patterns ! ! ! "

Drifting component strength ! ! "

Drifting component structure "

Online algorithm some ! some "

8.3 Model

Preliminaries

The input data is a series of sparse matricesA(t), t = 1, 2, · · · , r. For example, in the taxi case,

if there were 100 taxi rides from location i to location j at time t, then the (i, j)th entry ofA(t)
is 100. Table 8.2 shows the symbols used. For matrix indexing, X (:, 1 : 2) is the submatrix of

X with all its rows and the �rst 2 columns.

8.3.1 Proposed SMF Model

To capture the desired seasonality patterns, we introduce seasonal weights wi(t): wi(t) is a

(scalar) multiplier that applies to component i at time t. Thus:

A(t) ≈
k∑
i=1

ui(t)wi(t)vi(t)
T

(8.1)

wi(t) will allow us to capture seasonal patterns, because we will ensure that wi(t) itself is close

to periodic over time. Following Figure 8.2, in matrix notation this is:

A(t) ≈ U(t)W(t)V(t)T (8.2)

We model the data using smoothly varying components u and v, and seasonally varying ‘mul-

tipliers’ w, which govern the seasonal patterns in the data. This model captures multiple types

of change: drifting component strength corresponds to variation in wi(t). Drifting community

structure corresponds to variation in ui(t).

122

Table 8.2: Symbols and de�nitions

Symbol De�nition

A(t) m× n sparse data matrix at time t
m, n Number of rows and columns in A(t)

r Number of time steps

k Number of components

ui(t),vi(t) Factorization component i at time t
wi(t) (Scalar) seasonal multiplier i at time t
U(t) m× k matrix form of ui(t): U(t) = [u1(t) · · ·uk(t)]
V(t) n× k matrix form of vi(t): V(t) = [v1(t) · · ·vk(t)]
W(t) k × k diagonal matrix:W(t) = diag(w1(t), · · · , wk(t))

s Period (e.g. 7 for daily data with weekly periodicity)

α Gradient step size hyperparameter

z(t) Number of nonzeroes in A(t)
z Total number of nonzeroes: z =

∑r
t=1 z(t)

X (:, 1 : 2) Submatrix of X with all rows and �rst 2 columns

𝑨(𝑡)𝑚

𝑛

𝑨(𝑡 + 1)

𝑼(𝑡)

𝑚

𝑘

𝑼(𝑡 + 1)

≈ 𝒖𝟏(𝑡)

𝑘

𝑘
𝑤1(𝑡)

𝑾(𝑡)
𝑾(𝑡 + 1)

𝑤𝑘(𝑡)0

0

𝑽 𝑡 2

𝑘

𝑛

𝑽 𝑡 + 1 2

𝒗𝟏 𝑡 2

𝒖𝒌(𝑡) 𝒗𝒌 𝑡 2⋱

Smooth
Seasonal

Smooth

Figure 8.2: An illustration of our model. Section 8.4 explains how we model smoothness in U
and V , and seasonality in w.

8.4 Proposed SMF Algorithm

We now propose SMF, an online optimization algorithm, which has two steps: Initialization,

where we use a short initial time period to train an initial model, then Online Update, where

we repeatedly observe the next time point and update our model. Note that standard �tting

methods cannot be used as they are generally o�ine: since we have de�ned U ,W ,V as func-

tions of time, storing all of them simultaneously would require too much memory, and cause

memory usage to grow over time.

123

8.4.1 Initialization Step

We start by initializing u,v, and w. A reasonable initialization requires a few seasons of data:

we use the �rst 3 seasons, following a common practice for initializing seasonal ETS mod-

els [HK
+

07]. We thus ‘stack’ up A(1), · · · ,A(3s) into a m × n × 3s sparse tensor Tinit. Next,

we ‘fold’ this into a m× n× s sparse tensor Tfold:

Tfold =
1

3

3∑
i=1

Tinit(:, :, (i− 1) · s+ 1 : i · s) (8.3)

We then run nonnegative CP decomposition [XY13] on Tfold. We use the resulting compo-

nent as U(0) and V(0). For the third component, we use its value in component i at time t as

the seasonal multipler wi(t), for t = −s+ 1, · · · , 0. The negative indices for t are used so that

starting at t = 1, we have valid values when we access the ‘previous season’ of wi(t). To al-

low the wi to re�ect component strength, we normalize ui(0) by dividing by its norm ‖ui(0)‖,
compensating by multiplying ‖ui(0)‖ into each of the wi(t) for t = −s+ 1, · · · , 0 instead. We

do the same for vi(0).

8.4.2 Online Updates

As we receive each A(t) for t = 1, 2, · · · , we need to update U ,V andW in an online way to

preserve good model �t. Assume that we have �t U ,V andW up to time t − 1. At time t, we

start by setting U(t) and V(t) equal to U(t − 1) and V(t − 1), and W(t) equal to W(t − s).

We then adjust U and V by taking a small gradient step in the direction given by minimizing

error with respect to A(t). The gradient step keeps error with respect to A(t) low (i.e. A(t) ≈
U(t)W(t)V(t)T). Taking a small step ensures that U and V are smooth (U(t) ≈ U(t−1)), while

W is near-seasonal (W(t) ≈ W(t− s)). The �tted parameters ‘track’ the true values over time

as we perform gradient updates. Meanwhile, each update is highly e�cient as it only involves

gradients with respect to A(t).

Let Â(t) = U(t−1)W(t−s)V(t−1)T . For adjusting ui(t) and vi(t), the gradient update to

ui(t) and vi(t) can be computed by di�erentiating �tting error. α > 0 determines the learning

rate.

ui(t)← ui(t− 1) + α(A(t)− Â(t))vi(t− 1)wi(t− s)
vi(t)← vi(t− 1) + α(A(t)− Â(t))Tui(t− 1)wi(t− s)

Next, we ensure that the nonnegativity constraint is met by projecting u and v: ui(t) ←
max(0,ui(t)) and vi(t) ← max(0,vi(t)), where max is applied elementwise. Finally, we re-

normalize ui(t) and vi(t) by dividing by their norms ‖ui(t)‖ and ‖vi(t)‖ respectively while

multiplying these norms into wi(t):

wi(t)← wi(t− s) · ‖ui(t)‖ · ‖vi(t)‖ (8.4)

ui(t)← ui(t)/‖ui(t)‖; vi(t)← vi(t)/‖vi(t)‖ (8.5)

This allows our seasonality pattern w to adapt over time, while also ensuring that the normal-

ization constraint is met for u and v.

124

Algorithm 8.1: Online Updates

Input : Sparse matrices A(1), · · · ,A(r), initialization for U ,V ,W
Output: U ,V ,W

1 for t = 1 to r do
2 BPerform gradient updates

3 Â(t) = U(t− 1)W(t− s)V(t− 1)T

4 U(t)← U(t− 1) + α(A(t)− Â(t))V(t− 1)W(t− s)
5 V(t)← V(t− 1) + α(A(t)− Â(t))TU(t− 1)W(t− s)
6 for i = 1 to k do

7 BProject onto nonnegative constraint

8 ui(t)← max(0,ui(t)), vi(t)← max(0,vi(t))
9 BRenormalize and multiply into w

10 wi(t)← wi(t− s) · ‖ui(t)‖ · ‖vi(t)‖
11 ui(t)← ui(t)/‖ui(t)‖
12 vi(t)← vi(t)/‖vi(t)‖
13 end

14 end

Note that only the last time step of U and V , and the last s time steps ofW are needed at

any time. This prevents memory usage from growing over time.

8.4.3 Speeding up Updates

Â(t) is a dense m × n matrix, so explicitly forming it is ine�cient both in running time and

memory. Instead, we can rewrite the gradient updates in Lines 4 and 5 of Algorithm 8.1 into a

more e�ciently computable form. Let z(t) be the number of nonzeroes in A(t).

Lemma 8.1

(A(t)− Â(t))V(t− 1) can be computed in O(kz(t) + k2(m+ n)) time.

Proof.

(A(t)− Â(t))V(t− 1)

= (A(t)− U(t− 1)W(t− s)V(t− 1)T)V(t− 1)

= A(t)V(t− 1)− U(t− 1)W(t− s)(V(t− 1)TV(t− 1)).

Performing the V(t − 1)TV(t − 1) multiplication produces a k × k matrix, so the subsequent

multiplications are fast. Speci�cally, performing V(t − 1)TV(t − 1) takes O(nk2) time, while

multiplying it by U(t−1) takesO(mk2) time. A(t)V(t−1) requiresO(kz(t)+nk) time, which

add up to give O(kz(t) + k2(m+ n)). �

125

Letting z =
∑r

t=1 z(t) be the number of nonzeroes:

Lemma 8.2

Algorithm 8.1 is O(kz + rk2(m+ n)).

Proof. By Lemma 8.1, lines 4 and 5 takeO(kz(t)+k2(m+n)) time. Lines 7 to 12 areO(m+n),

so the inner loop (line 6) is O(k(m+ n)). For the outer loop, summing O(kz(t) + k2(m+ n))
over t = 1, · · · , r gives O(kz + rk2(m+ n)). �

8.4.4 Forecasting

Given any t > r, we forecast A(t) using the most recent U and V (i.e. U(r) and V(r)) and the

W in the most recent season at the time corresponding to t (e.g. forecasting next Monday using

last Monday), i.e. tseas where tseas = r − (r − t mod s), where mod is the modulo operation:

Â(t) = U(r)W(tseas)V(r)T (8.6)

8.4.5 Anomaly Detection: SMF-A Algorithm

Having �t the above model, how do we identify anomalies, e.g. an epidemic, or a road diversion?

How anomalous is entity i at time t? We measure anomalousness of an entity at time t is by its

residuals: i.e. the di�erence between its observed data at time t, and our model’s �tted values.

If a large anomaly occurred at time t, this di�erence will be large.

De�ne the �tted values as Ã(t) = U(t)W(t)V(t)T . Then for any entity i in the �rst mode

(i.e. row i), its anomalousness is the sum of squared di�erences between the data and the �tted

values:

De�nition 8.1: Row Anomalousness

Anomi(t) =
n∑
j=1

(Aij(t)− Ãij(t))2
(8.7)

Anomalousness along the second mode is analogous.

Eq. (8.7) is infeasible to compute directly as Ã(t) is a dense m × n matrix. We now show

that Eq. (8.7) can be computed more e�ciently: to do this, we �rst rewrite Anomi(t) into a

form such that the slowest part of its computation can be precomputed and then re-used when

computing Anomi(t) for each i. Across m entities, this provides large savings (up to a factor of

m). In the following, we suppress the ‘t’ notation since all terms are taken at time t.

126

Lemma 8.3

An equivalent, faster to compute form is:

Anomi = U(i, :)WVTVWU(i, :)T

+
∑

i,j:Aij>0

(
(Aij − Ãij)2 − Ã2

ij

)
.

Proof. Note that (Aij − Ãij)2 = Ã2
ij when Aij = 0. Hence:

Anomi =
n∑
j=1

(Aij − Ãij)2

=
∑

j:Aij=0

Ã2
ij +

∑
j:Aij>0

(Aij − Ãij)2

=
n∑
j=1

Ã2
ij +

∑
j:Aij>0

(
(Aij − Ãij)2 − Ã2

ij

)
= ‖U(i, :)WVT‖2

2 +
∑

j:Aij>0

(
(Aij − Ãij)2 − Ã2

ij

)
.

= U(i, :)WVTVWU(i, :)T

+
∑

j:Aij>0

(
(Aij − Ãij)2 − Ã2

ij

)
.

�

The key point is thatWVTVW can be computed once, then re-used for all i, greatly reducing

runtime:

Lemma 8.4

Computing Anomi for all i is O(kz(t) + k2(m+ n)).

Proof. Computing WVTVW takes O(mk2) time. Then, computing U(i, :)WVTVWU(i, :)T

takesO(k2) for each i, thusO(nk2) overall. Computing the next term

∑
j:Aij>0

(
(Aij − Ãij)2 − Ã2

ij

)
for every row i takesO(z(t)k) time, since computing Ãij for each nonzeroAij takesO(k). Thus

the total runtime is O(kz(t) + k2(m+ n)). �

127

Identifying Anomalous Events

Given the Anomi(t) scores, how do we identify when an anomaly occurred? One way would

be to sum Anomi(t) over entities, and plot the resulting time series. However, some entities

have much higher natural variation and thus larger typical values of Anomi(t) than others, and

summing in this way would drown out other true anomalies. Hence, we instead use a ‘majority

vote’ approach that aims for both accuracy and interpretability: intuitively, time points with

much higher Anomi(t) scores than the next highest time point are particularly suspicious.

De�nition 8.2: Weighted Vote

Each entity i votes for time point t
(1)
i = arg maxt Anomi(t), and the weight of this vote

is Anomi(t
(1)
i)− Anomi(t

(2)
i), where t

(2)
i is the time of the next highest Anomi(t).

We repeat this for each entity i. Then, the �nal anomalousness of each time point is the sum

of the weighted votes given to it. This allows for interpretability: 1) the set of time points with

at least 1 vote acts as a restricted set that practitioners can focus their attention on. 2) Each

time point in this set has an ‘explanation’ in the form of the entities that voted for it. Hence, a

practitioner can examine whether this entity and time point are truly anomalous.

8.5 Experiments

We design experiments to answer the following:

• Q1. Accuracy: how accurately does SMF forecast?

• Q2. Scalability: how does it scale?

• Q3. Real-World E�ectiveness: does it provide meaningful components and anomalies

in real data?

Our code and datasets are publicly available atwww.andrew.cmu.edu/user/bhooi/
code. We implement our algorithms in Matlab; experiments were done on a 2.4 GHz Intel Core

i5 Macbook Pro, 16 GB RAM, running OS X 10.11.2. Dataset details are in Table 8.3. Taxi data

points are hourly, with weekly periodicity (s = 168). Disease data points are weekly, with

yearly periodicity (s = 52).

Baselines

Our baselines are static approaches 1) SVD and 2) NMF; the seasonal approaches 3) Fold [ENLSS16]

and 4) CPHW [DKA11], and 5) TSVDCWT (Truncated SVD with Collapsed Weighted Ten-

sors) [DKA11], a dynamic (but nonseasonal) approach. [Kor10, DKM15] are also dynamic ap-

proaches, but are designed for ratings (e.g. 1 to 5 stars) and do not work in our case. For fair

comparison, we use k = 15 components for all algorithms. Since our algorithm uses nonnega-

tive components, we also use nonnegative CPD for the Folding and CPHW baselines.

128

www.andrew.cmu.edu/user/bhooi/code
www.andrew.cmu.edu/user/bhooi/code

Rows Columns Time points Nonzero entries

Taxi 2167 2167 2184 28.5M

Disease 39 50 2601 0.5M

Synthetic 5000 5000 5000 31M

Table 8.3: Datasets used in our experiments.

8.5.1 Q1: Forecasting Accuracy

We evaluate SMF compared to baselines on Taxi and Disease. Each algorithm takes the

�rst rtrain time steps and forecasts the next rtest. This is repeated for multiple values of rtrain,

and the results are averaged: for Taxi, we use rtrain = 1600, 1800, 2000 and rtest = 100. For

Disease, we use rtrain = 1000, 1500, 2000 and rtest = 500.

Metrics

We use 1)RMSE; 2) Since RMSE values in large and sparse matrices are hard to interpret, Time-

series RMSE aims to more directly answer questions like: ‘how many taxi rides will happen

each day from Brooklyn to Manhattan,’ forecasting a subset of the matrix rows and columns,

as a time-series. Moreover, we want this forecast to be accurate for any such subsets. Hence, in

time-series RMSE, we select a random subset of rows and columns (each with probability 1/2).

Each algorithm compute a time series of its forecasted number of events within this subset of

rows and columns, and compares this to the true time series using RMSE. We average this result

over 10 such random subsets.

As seen in Figure 8.3, SMF outperforms baselines in accuracy. The baselines cannot capture

changes in the components, or seasonal pattern, over time. Fairly large changes happen over

time (e.g. see Section 8.5.3), so this causes high error.

8.5.2 Q2: Scalability

Computation time

We use a 5000 × 5000 matrix for 5000 timesteps, with 200M tuples generated from a realistic

power-law slice sum distribution in the �rst two modes (with exponent �tted to the Taxi
dataset), and a uniform distribution in the temporal mode. After combining overlaps, there

are 31M nonzeroes. For Figure 8.4, we subsample the �rst mode in (1000, · · · , 5000), and plot

time taken against size. Each trial is averaged over 4 repetitions. Among the seasonal baselines

(CPHW and Fold), CPHW is slowest as it performs CPD on the entire tensor. Fold performs

CPD on a shrunken (folded) tensor. SMF is much faster than these, requiring time comparable

to NMF. Note that SVD and NMF ignore temporal information completely, operating on a static

matrix, and are expected to be fast.

In an online setting where we require incremental results, the o�ine methods would need

to be re-run for each time step, while SMF would not. Figure 8.4 does not take this into account,

and runs each algorithm on the whole dataset. In such an online setting, the speedup of SMF

129

SM
F
SV
D
NM
F
Fo
ld
CP
HW

TS
VD
CW
T

0

20

40

60

80

R
M
SE

18%

(a) RMSE (Disease)

SM
F
SV
D
NM
F
Fo
ld
CP
HW

TS
VD
CW
T

0

0.02

0.04

0.06

0.08

0.1

R
M
SE

13%

(b) RMSE (Taxi)

SMF
SVD

NMF
Fold

CPHW

TSVDCWT
0

1000

2000

3000

4000

5000

R
M

SE
 (t

im
e

se
rie

s)

28%

(c) Time-series RMSE (Disease)

SMF
SVD

NMF
Fold

CPHW

TSVDCWT
0

1000

2000

3000

4000

5000

R
M

SE
 (t

im
e

se
rie

s)

60%

(d) Time-series RMSE (Taxi)

Figure 8.3: (a) SMF outperforms baselines in accuracy: SMF has 13% to 60% lower error

than the best performing baseline. Error bars indicate one standard deviation.

130

0 2000 4000 6000
Number of attributes

100

101

102

103

104

Ti
m

e
ta

ke
n

(s
)

0 0.5 1
Number of attributes

-2

-1.8

-1.6

-1.4

-1.2

-1

Ti
m

e
ta

ke
n

(s
)

SMF
SVD
NMF
Fold
CPHW
TSVDCWT

12x
faster

103x
faster

Non-seasonal
methods

Figure 8.4: SMF is fast: it outperforms seasonal baselines, Fold and CPHW. Error bars (small)

indicate one standard deviation.

over CPHW and Fold would be much greater. Figure 9.6 shows that SMF scales linearly in

attributes (a), timesteps (b), and entries (c).

0 5000
No. of attributes

20

25

30

35

40

45

T
im

e
ta

ke
n

(s
)

(a) Attributes

0 5000
No. of time ticks

15

20

25

30

35

40

T
im

e
ta

ke
n

(s
)

(b) Time ticks

0 2 4
Tuples #107

25

30

35

40
T

im
e

ta
ke

n
(s

)

(c) Nonzero entries

Figure 8.5: (a) SMF scales linearly.

Parameter Selection

We selectα using cross-validation between {0.1, · · · , 0.5}, producing 0.3 and 0.1 onDisease
and Taxi. The period s often can be deduced from domain knowledge, but if needed, it can

also be estimated by cross validation between a few reasonable candidates (daily, weekly, yearly,

etc.). Figure 8.6 shows that SMF is insensitive to the hyperparameter α, and performs well in

all cases.

131

8.5.3 Q3: Real-World E�ectiveness

0 0.5
alpha

0

50

R
M

S
E

(a) Disease

0 0.5
alpha

0

0.05

0.1

R
M

S
E

(b) Taxi

Figure 8.6: SMF is insensitive to parameter values.

We now show that SMF provides useful and interpretable results on the Taxi dataset. A

similar (but Manhattan-only) dataset was studied by [ENLSS16]. Figure 8.7 shows the results

for 3 components, one per row. The �rst is concentrated around Central Park and the nearby

museums, and likely to represent tourism. Its peaks coincide with mealtimes (9am, 1pm, 7pm).

The second component peaks at 8-9am on weekdays, and is concentrated on the major rail-

way stations and airports, and likely represents commuting trips, particularly in the morning

‘rush-hour.’ The third component peaks around Friday 10pm and Saturday midnight. This com-

ponent is concentrated around southwest Manhattan, an area with a large number of bars and

restaurants, suggesting entertainment related trips. In summary, our model �nds meaningful

seasonal components that give more insight than static approaches.

Drifting components

An advantage of SMF is that it allows components to drift. We use this to �nd meaningful

patterns in the Taxi dataset. In New York City, prior to 2013, most pick-ups by traditional

‘yellow’ taxis occurred in Manhattan or at airports, resulting in low access to taxis for people

living in outer areas (‘boroughs’) [tlc13]. In 2013, the ‘green’ taxi program was introduced:

these pick up passengers only in outer boroughs, except at airports. Did the green taxi program

improve access to taxis in the outer boroughs, and what type of trips were a�ected?

Figure 8.8a plots the fraction of each component that lies within Brooklyn (an outer bor-

ough). Only the red (‘commute’) components shows clear movement towards Brooklyn, in-

creasing by 53%. This suggests that more and more commute-related taxi trips are departing

from Brooklyn, while no such change occurs for the other two components. This supports the

claim of a shift towards outer boroughs, and further reveals what type of taxi trips were most

a�ected: commute-related trips.

Did this change occur because of the green taxi program? We extract the top 20 locations

in Brooklyn with the largest values of the ‘commute’ component. In these locations, Figure

8.8b plots the fraction of green and yellow taxis over time: green taxi rides rose signi�cantly,

while the yellow taxi rides decreased slightly. This suggests that green taxis were increasingly

132

M T W T F S S
0

20

40

60

80

100

120

140

9am
1pm
7pm

(a) ‘Tourism’: weekly pattern (b) ‘Tourism’: pickup location (c) ‘Tourism’: dropo� location

M T W T F S S
0

50

100

150

200
Weekdays 8-9am

(d) ‘Commute’: weekly pattern (e) ‘Commute’: pickup location (f) ‘Commute’: dropo� location

M T W T F S S
0

50

100

150

200
Fri 10pm Sun 12am

Nonzero at

late-night hours

(g) ‘Entertainment’: weekly

pattern

(h) ‘Entertainment’: pickup lo-

cation

(i) ‘Entertainment’: dropo� lo-

cation

Figure 8.7: (a) SMF provides interpretable results with seasonal information: the three

components in the Taxi dataset correspond roughly to tourism-related trips (near Central

Park and museums), morning rush-hour trips (airports and train stations), and entertainment

(restaurants and bars).

adopted, and since green taxis only pick up passengers in outer boroughs, this supports the

133

0 5 10 15

Week

0

0.01

0.02

0.03

0.04

F
ra

c
ti
o

n
 o

f
c
o

m
p

o
n

e
n

t
in

 B
ro

o
k
ly

n

‘Commute’

‘Tourism’

‘Entertainment’

(a) Shift towards Brooklyn

0 5 10 15

Week

3.8

4

4.2

4.4

4.6

4.8

5

N
o
.
o
f
ta

x
i
ri
d
e
s
 p

e
r

w
e
e
k

#10
4

Green

taxis

Yellow

taxis

(b) Increase in green taxis

Figure 8.8: SMF allows components to change over time: (a) the ‘commute’ component

(red) shifts toward Brooklyn, increasing by 53% in the fraction of the component in Brooklyn.

(b) This can be explained by an increase in green taxis in the ‘commute’ component.

claim that the rise of green taxis contributed to the shift towards Brooklyn. Thus, allowing the

components to change over time reveals useful new information about the dataset.

8.5.4 Anomaly Detection

We now evaluate the anomaly detection accuracy of SMF-A. Starting with the Taxi dataset,

we inject 100 anomalies of two types: ‘add’ anomalies represent an increase in activity (e.g. a

major festival), while ‘scramble’ anomalies represent changes in behavior (e.g. a tra�c accident

redirecting tra�c). For the 50 ‘add’ anomalies, we select a random 50 rows and columns, and

add 500 taxi trips to this block, distributed according the same power-law distribution as Section

8.5.2. For the 50 ‘scramble’ anomalies, we select the 200 highest degree rows and columns, and

randomly permute the rows and columns, changing the position of entries in this submatrix.

We compare SMF-A to DenseAlert [SHKF17], a recent anomaly detection algorithm based

on dense submatrix detection. The thresholds plotted in Figures 8.9 and 8.1c are 3 standard

deviations from the mean (in log-space).

Results: Table 8.4 shows the precision at 100 of both methods on ‘add’ and ‘scramble’

anomalies, and Figure 8.9 shows the output of SMF-A. 100 is the true number of anomalies,

so the number of false positives and negatives are equal. SMF-A is much more accurate than

DenseAlert, and faster. This is because SMF-A takes into account di�erences from expected

behavior, while DenseAlert only considers density. Moreover, DenseAlert cannot catch

‘scramble’ anomalies as it detects high activity, while SMF-A can detect any type of deviation

from expected behavior.

134

0 5 10 15 20 25
Days

100

102

104

An
om

al
ou
sn
es
s

Add
Scramble

Threshold

All true
positives

Only 1 false
negative

Figure 8.9: SMF-A detects multiple types of anomalies: it catches anomalies which add

taxi trips (‘add’) or permute a subset of locations (‘scramble’). We plot only the �rst 25 days,

for visibility.

Prec. (add) Prec. (scramble) Runtime (sec.)

SMF-A 1.00 0.86 304.94

DenseAlert 0.06 0.06 1247.13

Table 8.4: SMF-A outperforms baselines in anomaly detection: precision of SMF-A in

catching injected anomalies which add taxi trips (‘add’) or randomly reorder a subset of loca-

tions (‘scramble’).

Figure 8.1c shows our results of SMF-A on the Disease dataset. Two epidemics stand

out, both of which have been reported in the medical literature: a large in�uenza outbreak in

1928 in Northeast US [Col30], and a measles epidemic in New York in 1946 [PBS47].

8.6 Conclusion

We propose SMF, a drift and seasonality aware, online matrix factorization algorithm, and SMF-

A, a fast anomaly detection algorithm. In contrast to existing methods (Fold and CPHW), our

model uses smoothly varying components u and v, and seasonally varying multiplers w to

model seasonality. Our contributions are as follows:

• Model: we propose a novel matrix factorization model incorporating seasonal patterns

and drift, and an online algorithm for �tting this model.

• E�ectiveness: in experiments, SMF has lower forecasting error than baselines by 13%
to 60% (Figure 8.1a), and provides interpretable results in case studies on real data.

• Scalability: SMF is online, and scales linearly (Figure 8.1b). In experiments, it was 12 to

103 times faster than seasonal baselines.

135

• Fast Anomaly Detection: we propose SMF-A for detecting anomalies (Figure 8.1c) in

a computationally feasible way, without forecasting every possible observation in the

matrix.

136

Part III

Graphs with Sensors

137

Overview: Graphs with Sensors

Given time-varying data from sensors arranged in a graph, how can we detect unusual events?

In this part, we consider data from sensors placed on a static graph, where each sensor pro-

vides time series data: for example, electrical sensors placed on nodes of the power grid, where

we would like to automatically detect anomalous events, such as due to the failure of electrical

components, or the similar problem of detecting tra�c accidents using tra�c speed sensors.

Our �rst ChangeDAR approach uses a localized change detection approach, aiming to de-

tect sudden changes that are experienced by a group of nearby nodes, forming a connected sub-

graph. Our next GridWatch approach considers a domain-aware approach targeted at power

grid applications speci�cally, aiming to �nd power grid anomalies involving the failure of

electrical lines or other components. We also propose an approach for placing a given budget

of sensors, in order to more e�ectively detect anomalies.

139

140

Chapter 9

ChangeDAR: Localized Anomaly

Detection in Graphs with Sensors

Chapter based on work published in CIKM18 [PDF].

In this chapter, we consider event detection in graphs with sensors. Given electrical sensors

placed on the power grid, how can we automatically determine when electrical components

(e.g. power lines) fail? Or, given tra�c sensors which measure the speed of vehicles pass-

ing over them, how can we determine when tra�c accidents occur? Both these problems

involve detecting change points in a set of sensors on the nodes or edges of a graph. To this

end, we propose ChangeDAR (Change Detection And Resolution), which detects changes

in an online manner, and reports when and where the change occurred in the graph, with

theoretical guarantees.

9.1 Introduction

How do we detect change points using sensors placed on a subset of the nodes or edges of a

graph? In the power grid setting, this question is motivated by the need to quickly detect electri-

cal component failures using sensor data. Such failures can occur due to severe weather, human

or equipment failure, or even adversarial intrusion, and have major costs: estimates [Ami11]

suggest that reducing outages in the U.S. grid could save $49 billion per year and reduce emis-

sions by 12 to 18%. To achieve this goal, there is a need to use sensor data to quickly identify

in real-time when parts of the grid fail, so as to quickly respond to the problem. Similarly, in

the tra�c setting, a large network of tra�c speed detectors spans freeway systems in major

metropolitan areas - our goal is to use them to automatically detect notable changes, such as

tra�c accidents.

In both cases, the changes that we wish to detect are highly localized, both in time and

with respect to network structure: power line failures a�ect a localized set of power lines due

to redirection of current through neighboring lines, and the same holds for tra�c accidents,

which slow tra�c in neighboring roads.

141

http://www.andrew.cmu.edu/user/bhooi/changedar/paper.pdf

An additional challenge is that we want to detect change points in an online manner: both

power grid and tra�c data are high-volume and received in real time, since the data comes

from sensors which are continuously monitoring. This motivates us to develop fast methods

that work in this online setting. When each new data point is received, the algorithm should

update itself e�ciently - for our algorithm, each update requires constant time, and bounded

memory, regardless of the length of the stream.

Thus, our goal is an online, localized change detection algorithm:

Informal Problem 9.1: Online Localized Change Detection

• Given a �xed-topology graph G (e.g. road network or power grid), and time-series

sensor values on a subset of the nodes and edges of the graph, received in a streaming

manner,

• Find change points incrementally, each consisting of a time t and a localized region

of the graph where the change occurred.

Change detection in time-series [SK74, CF15] and graphs [DLJL09, SFPY07] has been studied

extensively (expanded in Section 9.2). Our work di�ers in two key aspects. Most work focuses

on dynamically evolving graphs with changing nodes or edges [DLJL09, SFPY07]. In our case

the graph topology is �xed, and only sensor values on nodes and edges are evolving. Second,

most work in this area �nds the time of a change, without being able to localize the change to

parts of the graph.

Figure 9.1 shows an example of our method on tra�c data. Given a road graph and the

tra�c speed over various sensors (indicated by the nodes in the left plots), our method detected

a tra�c accident. The accident caused a change point (drops in vehicle speed) over a localized

set of sensors (red nodes in the left plots). Our method exploits the localized nature of this

change to accurately detect it, and outputs both the change time and localization.

Our contributions are as follows:

1. Algorithm: We propose novel information theoretic optimization objectives for 1) scor-

ing and 2) detecting localized changes, and propose two algorithms, ChangeDAR-S and

ChangeDAR-D respectively, to optimize them.

2. Theoretical Guarantees: We show that both algorithms provide constant-factor ap-

proximation guarantees (Theorems 9.2 and 9.4).

3. E�ectiveness: Our algorithms detect tra�c accidents and power line failures in a power

grid with 75% higher F-measure than comparable baselines in experiments.

4. Scalability: Our full algorithm is online and near-linear in the graph size and the number

of time ticks (Figure 9.6).

Reproducibility: our code and data are publicly available at http://www.andrew.cmu.
edu/user/bhooi/changedar/.

142

http://www.andrew.cmu.edu/user/bhooi/changedar/
http://www.andrew.cmu.edu/user/bhooi/changedar/

5pm 6pm 7pm
Time

20

40

60

M
ile

s
pe

r h
ou

r

Output: time of change
5.50pm: ROYAL
COACHES
ADVS ETA 5
MINS

6.29pm:
UNIT
CLEARED

5.28pm: INJ TC ; BLK
HOND ACC VS WORK
TRK
5.29pm: LACOFD
ENRT
5.30pm: Request:
ROYAL COACHES
TOW

Los Angeles & Ventura
Input: graph, and sensor values (vehicle speeds)

Output:
localization
of change

Speed
sensors

5pm 6pm 7pm
Time

0

50

M
ile

s
pe

r h
ou

r

5pm 6pm 7pm
Time

0

50

M
ile

s
pe

r h
ou

r

Figure 9.1: ChangeDAR correctly locates a tra�c accident (red): the 3 time-series on the

right show drops in average speed at 3 consecutive points on a highway. ChangeDAR outputs

the time (red vertical lines) and location (red nodes) of the change, and we verify the accident

against the tra�c report by the California Highway Patrol (blue text at top-right) [pem18].

9.2 Related Work

MultivariateChangeDetection [AC17] reviews time-series change detection methods. Mul-

tivariate change detection methods aim to segment a time-series into two or more regimes,

such as greedy binary segmentation [SK74, CF15], or slower but exact dynamic programming

(DP) [JSB
+

05]. PELT [KFE12] applies a pruning step to perform DP in linear time. Other ap-

proaches include the Group Fused Lasso (GFL) [BV11], Bayesian change detection [AM07],

nonparametric methods [LYCS13, MJ14], support vector machines [DDD05], and neural net-

works [LLJ02]. These methods do not consider graph structure, and hence do not detect local-

ized changes.

Change Detection in Dynamic Graphs Change detection methods for dynamic graphs,

or graphs which change over time, have been proposed [DLJL09, SFPY07, PC15]. These in-

clude Bayesian methods [PC15], and distance-based methods, which de�ne a distance metric

on graphs: based on diameter [GKW06], node or edge weights [PDGM10, Pin05], connectiv-

ity [KVF13], or subgraphs [MBS13]. Except for [PDGM10, Pin05], these do not apply to our

setting, as they assume a changing graph over time, while we have a �xed graph with sensor

values changing over time. For [PDGM10, Pin05], we apply them by treating our sensors as

node or edge weights. While they do not perform localization, we still use them as baselines in

our experiments.

143

Graph-based Anomaly Detection and Scan Statistics A number of methods consider

anomaly detection using graph scan statistics [MBR
+

13, CN14, MSN13, RAGT14], which search

for a highly anomalous area in static and temporal graphs. [CCV17] uses coloring to e�ciently

optimize graph scan statistics, and [CBVD18] incorporates uncertainty in the observed data.

[SSR13] de�nes the Spatial Scan Statistic while [SRS16] de�nes the Graph Fourier Scan Statis-

tic (GFSS), which quantify the spatial locality of a signal. These methods focus on time intervals

containing unusual activity, while our goal is change detection, which involves a shift between

‘regimes’ (i.e. generative processes) before and after the change. In the power grid case, our

goal is to detect equipment failures, which involve a di�erence in regimes before and after the

failure, but not necessarily a temporal ‘burst’ of activity at any time.

Table 10.1 summarizes existing change point detection methods. ChangeDAR di�ers from

existing methods in that it detects localized change points using an online algorithm, and pro-

vides theoretical guarantees.

Table 9.1: Comparison of change detection approaches applicable to sensor data on a graph.

The last 2 rows refer to automatically detecting the number of changes, and how many nodes

and edges each change a�ects, respectively.

Property P
E

L
T

[
K

F
E

1
2
]

G
F
L

[
B

V
1
1
]

W
e
i
g
h

t
D

i
s
t

[
P

i
n

0
5
]

V
e
r
t
e
x
R

a
n

k
[
P

D
G

M
1
0
]

C
h
a
n
g
e
D
A
R

Graph-based ! "

Localization "

Online Algorithm ! "

Provable Guarantees ! ! "

Auto Detect # of Changes ! ! "

Auto Detect Size of Change "

9.3 Background

Before delving into the details of our problem statement and proposed algorithms, we brie�y

review two graph-theoretic concepts that we will make use of later, namely Prize-Collecting

Steiner Tree (PCST) and Maximum Weight Independent Set (MWIS).

144

Node sensor

Edge sensor

Missing sensors

Input:
- Graph 𝓖
- Time series for each sensor

Change
Scoring

(Problem 1)

(𝟏, 𝓢 𝟏 , 𝒔 𝟏)

(𝟐, 𝓢 𝟐 , 𝒔 𝟐)

(𝟑, 𝓢 𝟑 , 𝒔 𝟑)

…

Time
tick

Best subgraph
found at time 1

Score of best
subgraph at

time 1

Change
Detection

(Problem 2)

(𝟏, 𝓢 𝟏 , 𝒔 𝟏)

(𝟐, 𝓢 𝟐 , 𝒔 𝟐)

(𝟑, 𝓢 𝟑 , 𝒔 𝟑)

…

Figure 9.2: Outline of steps: given a graph with time-series sensors on some nodes and edges,

Change Scoring selects the best subgraph where a change occurred at each time, while Change

Detection selects the best subset of change points out of these.

9.3.1 Prize-Collecting Steiner Tree (PCST)

The prize-collecting Steiner tree problem [BGSLW93] �nds a connected subgraph of a graph

that maximizes total pro�t values on the subgraph nodes while minimizing cost of the edges in

the subgraph. Intuitively, imagine nodes represent cities, and the cost of each edge is the cost

of building a road between the two cities, and the pro�t of a node is the pro�t from that city

joining the road network. Then PCST aims to construct a road network to maximize net pro�t

(or minimize net cost).

• Given a graph G = (V , E) with non-negative node pro�ts p(v) ∀ v ∈ V and non-negative

edge costs c(e) ∀ e ∈ E ;

• Output a connected subgraph S = (VS , ES) of G that minimizes the pro�t in nodes not
chosen, plus the total cost of edges chosen, i.e.

∑
v/∈VS p(v) +

∑
e∈ES c(e).

[Kar72] shows that PCST is NP-hard. [BGSLW93] introduced the PCST problem and showed

a 3-approximation algorithm. [GW95] proposed a O(n2 log n) approximation algorithm with

a 2 − 1
n−1

factor guarantee, where n is the number of nodes. [HIS15] improved this to a near-

linear time (O(m log n)) 2-approximation algorithm. In our setting, we will use [HIS15] on a

modi�ed graph to �nd localized change points.

9.3.2 MaximumWeight Independent Set (MWIS)

The maximum weight independent set problem �nds a subset of nodes of highest weight which

has no edges between them.

• Given a graph G with node weights w(v) ∀ v ∈ V ;

• Output a set S of nodes with no edges between them maximizing

∑
v∈S w(v).

In the o�ine setting, approximation algorithms exist [Hal04], but in the online case, [GHK
+

14]

showed that no meaningful worst-case guarantees are possible. Hence, follow-up work consid-

ers non-worst case analysis [GHK
+

14, KP09].

145

In our setting, we study a constrained variant of the online MWIS problem that arises from

our change detection problem, and show that we can obtain constant worst-case approximation

guarantees, thanks to certain constraints in our setting. We then use this to obtain theoretical

guarantees for multiple change detection.

[RAGT14, CCV17] use PCST for anomaly detection, but to the best of our knowledge, both

PCST and online MWIS have not been used for change detection.

9.4 Problem

9.4.1 Problem Setting

Table 10.2 shows the symbols used in this chapter.

Table 9.2: Symbols and de�nitions

Symbol Interpretation

G = (V, E) Input graph

n,m Number of nodes and edges respectively

w Window size

Xv(t) Sensor value at node v at time t
Xe(t) Sensor value at edge e at time t

k Number of parameters of time-series model (see Eq. (9.3))

CF Number of bits needed to store a �oating point number

∆v(t) ‘Bitsave’ score at node v at time t (see Eq. (9.1))

∆e(t) ‘Bitsave’ score at edge e at time t (see Eq. (9.1))

π(v′) Pro�t assigned to node v′

c(e′) Cost assigned to edge e′

Gconf Con�ict graph (see De�nition 9.2)

r Repetitions of randomized algorithm in ChangeDAR-S

We are given an undirected graph G (e.g. a power grid graph) and a stream of sensor values

associated with the nodes and/or edges of the graph (e.g. voltage values measured at nodes), as

illustrated in Figure 9.2. Since some applications involve sensors on nodes while others involve

sensors at edges (e.g. current values measured along edges), we consider a general framework

that allows for both types of sensors. Some sensors may be missing: hence, if one type of sensor

is not present, we can simply consider their values as missing. De�neXv(t) as the sensor value

at node v at time t, and Xe(t) as the sensor value at edge e at time t.
We consider the sensor values to arrive in an online manner. However, intuitively, it is

unrealistic to decide if a change point exists at time t given only information up to time t, since

we have no information about what comes after. Hence, we allow for a window ofw time ticks,

in which the algorithm has access to the next w time ticks before needing to make a decision at

time t. In practice, this means the algorithm reports whether a change occurred at time t after

a lag time of w time ticks.

146

Hence, given data up to time t + w, we would like the algorithm to output if a change

occurred at time t. This can be broken down into two sub-problems: 1) change scoring and 2)

change detection.

Problem 9.1: Online Change Scoring

• Given a graph G = (V , E) and a stream of (possibly missing) sensor values Xv(t)
and Xe(t) for each node v, each edge e, and time tick t = 1, 2, · · · :

• Output (in an online manner) at time t+ w:

Scoring: a score s(t) measuring our con�dence that a change occurred at time

t;

Localization: the best subset of nodes and edges S = VS ∪ES , where VS ⊆ V
and ES ⊆ E , at which a change occurred.

The notion of the ‘best’ subset where a change most likely occurred, and the interpretation

of the score s(t), will be formalized in an information theoretic manner in Section 9.5.1.

Given these scores, the next sub-problem is to decide which of these changes actually oc-

curred:

Problem 9.2: Online Change Detection

• Given a graph G = (V , E) and a stream of sensor values Xv(t) and Xe(t) for each

node v, each edge e, and time tick t = 1, 2, · · · :
• Output (in an online manner) at time t + w: whether a change occurred at time t,

and if so, the corresponding subset S(t) where the change occurred.

Figure 9.2 provides an outline of the steps in our approach. We consider Change Scoring in

Section 9.5 and Change Detection in Section 9.6.

9.5 Change Scoring: ChangeDAR-S

We now propose an algorithm for Problem 9.1, for �nding the best subset S and score s(t) at

time t, in an online manner.

9.5.1 Optimization Objective

We �rst de�ne our ‘Bitsave’ metric, which intuitively measures how bene�cial (in terms of

number of bits we save) it is to add a change point at time t.

147

Description Length Framework

First consider the simpler question of how to encode a single time-series Y1, · · · , Yn. The Min-

imum Description Length (MDL) approach states that given data Y , we should encode it using

the model M that minimizes the description length of Y , which is de�ned as Cost(Y) =
Cost(M) + Cost(Y |M), where Cost(M) is the number of bits needed to encode the model

M , and Cost(Y |M) is the number of bits needed to encode the data given model M . The full

expression for these costs depends on the type of model used, which we describe as follows.

Model Cost: We use a �exible approach that allows for any model family to be used for

encoding a time-series, e.g. Autoregression, Seasonal Autoregression etc., resulting in a vector

of �tted values (Ŷi)
n
i=1. Let k be the number of parameters used: e.g. if we �t an Autoregressive

AR(p) model, then k = p + 1 (the additional 1 is for the intercept). Then the model cost

Cost(M) is the cost of k �oating point values, or k · CF , where CF is the cost to encode a

�oating point number
1
. A simple default choice (which we use in our experiments) is to set Ŷi

as the mean
1
n

∑n
j=1 Yj for all i, which has k = 1 parameter, but more complex functions can

be used, particularly when seasonality is present.

DataCost: For the data cost Cost(Y |M), we assume that the errors follow a normalN (0, σ2)
distribution. The log probability density of the errors Yi − Ŷi under this distribution is

logP (Y1 − Ŷ1, · · · , Yn − Ŷn) = log
n∏
i=1

1√
2πσ2

e−
(Yi−Ŷi)

2

2σ2
(9.1)

= − 1

2σ2

n∑
i=1

(Yi − Ŷi)2 + const. (9.2)

where ‘const.’ does not depend on the data. By the theory on Hu�man coding [CT12], the cost

in bits to represent some data under a given distribution is the negative log-likelihood of the

data. Intuitively, the less probable a particular outcome is, the more bits we need to encode it:

e.g. encoding the outcome of a coin �ip requires 1 bit, but encoding that we rolled a ‘1’ on a

fair 8-sided die needs − log2
1
8

= 3 bits.

Taking the negative of (9.2), the data cost Cost(Y |M) is
1

2σ2

∑n
i=1(Yi − Ŷi)2

. Thus the total

cost (in bits) of encoding Y is:

Cost(Y1, · · · , Yn) = Cost(M) + Cost(Y1, · · · , Yn|M)

= k · CF +
1

2σ2

n∑
i=1

(Yi − Ŷi)2 (9.3)

Note that we are not actually making a strong requirement that the errors be normal: Eq.

(9.3) simply encodes the data such that the lower the total squared error, the fewer bits we

need. We are essentially minimizing squared error, with an additional penalty for the cost of

the model, in bits.

1
We use CF = 32 for standard 4-byte �oats.

148

Computing Bitsave Scores

We now apply Eq. (9.3) to the sensor at node v at time t. Since we are in an online setting, bits

saved have to be computed with respect to a window of size w. Intuitively, the bits saved from

adding a change at time t is the cost of encoding Xv from time t − w to t + w − 1, minus the

same cost if we were to add a change at time t:

De�nition 9.1: Bitsave

The bitsave score from adding a change at time t at node v is:

∆v(t) = Cost(Xv(t− w), · · · , Xv(t+ w − 1))

− Cost(Xv(t− w), · · · , Xv(t− 1))

− Cost(Xv(t), · · · , Xv(t+ w − 1))

(9.4)

The bitsave score for edge e, ∆e(t), are the same, except using Xe instead of Xv. For missing

sensors, we simply set their bitsave score to 0 for all t.

Lemma 9.1

A lower bound for ∆v(t) (or ∆e(t)) is:

∆v(t) ≥ −k · CF (9.5)

Proof. When adding a change point at time t, the total data cost cannot increase, since we are

allowed to �t the same model to both sides of the change point. Meanwhile, the model cost

increases by exactly k · CF , since adding one change point adds an additional set of model

parameters, which costs k · CF bits. �

Localized Change Scoring Objective

The notion of localized changes captures the fact that in many applications, changes tend to

spread along the graph: e.g. power lines going down a�ect a connected set of lines, and tra�c

congestion a�ects a connected set of roads. To capture this, we stipulate that S , the subgraph

of nodes and edges a�ected by the change, must be connected in the graph.

Hence, at time t, we want to detect a localized set of nodes and edges which is a good change

point, i.e. provides large total bits saved. Denote by S = VS ∪ES the set of nodes and edges we

are searching for, where VS ⊆ V and ES ⊆ E .

Given subgraph S , the total bitsave by adding a change point at time t is the sum of ∆ values

on S : i.e.

∑
v∈VS ∆v(t) +

∑
e∈ES ∆e(t). Under the MDL framework, we then need to encode S

itself. The simplest way is to encode each of its elements individually: S ⊆ V ∪ E is a subset

over m+ n elements, so each element takes log(m+ n) bits, or |S| log(m+ n) bits in total. In

149

summary, the optimization objective to �nd S is:

max

S⊆V
ft(S) =

∑
v∈VS

∆v(t) +
∑
e∈ES

∆e(t)− |S| log(m+ n)

subject to: S is connected

(9.6)

9.5.2 Optimization Approach

To solve (9.6) we rewrite it into an equivalent form that can be optimized using the Prize-

Collecting Steiner Tree framework, which can then be solved in near-linear time with an ap-

proximation guarantee of 2.

We �rst construct a new, bipartite graph G ′ = (V ′, E ′): it has a node v′ for each v ∈ V , and

a node e′ for each e ∈ E . Then, in G ′, connect v′ to e′ i� v is adjacent to e in the original graph

G.

For each v ∈ V , assign the node v′ a pro�t of π(v′) = ∆v(t) + k · CF . Similarly, for each

e ∈ E , assign the node e′ a pro�t of π(e′) = ∆e(t) + k · CF . Finally, assign each edge e′ ∈ E ′ a
cost of c(e′) = k · CF + log(m+ n). Intuitively, the pro�ts correspond to bits saved due to the

corresponding sensor, while the costs correspond to a model complexity penalty in bits due to

encoding each additional node (log(m+ n)), as well as the additional set of model parameters

due to the added change point (k · CF).

We will show that our optimization objective (9.6) is equivalent to the Prize-Collecting

Steiner Tree objective in the new graph G ′.

min

S′⊆V ′
f ′t(S ′) =

∑
v′ /∈VS′

π(v′) +
∑
e′∈ES′

c(e′)

subject to: S ′ is connected

(9.7)

Let S ⊆ V ∪ E , and de�ne the corresponding S ′ to include all nodes in G ′ corresponding to

nodes and edges in S , i.e. S ′ = {v′ : v ∈ VS} ∪ {e′ : e ∈ ES}.

Lemma 9.2

The objectives of (9.6) and (9.7) are equivalent:

f ′t(S ′) = −ft(S) + C (9.8)

where C =
∑

v′∈V ′ π(v′)− k · CF − log(m+ n) is constant w.r.t. S and S ′.

Proof. S ′ has 1 node for each node or edge of S , so it has |S| nodes. Moreover, any optimal S ′
must be a tree since any edge in a cycle in S ′ only increases costs without adding any pro�ts.

150

Hence, S ′ has |S| − 1 edges. Then:

f ′t(S ′) =
∑
v′ /∈VS′

π(v′) +
∑
e′∈ES′

c(e′)

=
∑
v′∈V ′

π(v′)−
∑
v′∈VS′

π(v′) + (|S ′| − 1)(log(m+ n) + k · CF)

= C −
∑
v′∈VS′

π(v′) + |S|(log(m+ n) + k · CF)

= C − (
∑
v∈VS

∆v(t) +
∑
e∈ES

∆e(t)− |S| log(m+ n))

= C − ft(S).

�

Moreover, S ′ is connected if and only if its nodes form a single connected component, which

is equivalent to S being connected. In combination with Lemma 9.2, this implies that minimiz-

ing f ′t(S ′) is equivalent to maximizing ft(S).

Finally, note that by Lemma 9.1, we have ∆v(t) ≥ −k · CF and ∆e(t) ≥ −k · CF , which

implies that π(v′) ≥ 0 ∀ v′ ∈ VS′ , so all pro�ts are nonnegative. The costs, log(m+n)+k·CF are

also nonnegative. Hence we can solve (9.7) in near-linear time with approximation guarantees

of 2 using algorithms for Prize-Collecting Steiner Tree (as reviewed in Section 9.3.1).

Algorithm 9.1 gives the full ChangeDAR-S algorithm. We �rst convert G to the bipartite

G ′ (Line 1). Then for each t, we compute the PCST pro�ts (Lines 4 to 5) and costs (Line 6). We

then solve the resulting PCST problem in G ′ (Line 8) to obtain the best subgraph S ′, which we

then convert back to a subgraph of G (Line 10). Finally, the score s(t) is the total bitsave of S ,

de�ned as ft(S) in (9.6).

9.5.3 Theoretical Results

Theorem 9.1

Algorithm 9.1 is online, requiring bounded memory and linear time.

Proof. Memory. At time t, the only data we need to store over time are the sensor values within

a window from time t−w to t+w for O(m+n) sensors, used for computing (9.1), while takes

O(w(m+ n)) memory, which is bounded regardless of the stream length.

Running time. Computing all m + n bitsave scores at time t takes O(C(m + n)) time,

where C is the time to �t Ŷ in Eq. (9.2), which depends on the model family being used. For

AR, seasonal AR and the constant (mean) model, C is (amortized) constant, independent of w,

as we show in our supplementary document [sup18]. Then Lines 4 to 12 are linear in m + n,

151

Algorithm 9.1: ChangeDAR-S change scoring algorithm

Input : Graph G, sensor stream Xv(t), Xe(t) over time, window size w
Output: For each t, the best change-point localized set S(t), and its bitsave score s(t)

1 Convert G to G ′ s.t.: (v′, e′) ∈ E ′ i� v is adjacent to e in G
2 while sensor values for time tick t+ w are received do

3 BCompute pro�ts π and costs c
4 π(v′) = ∆t(v) + k · CF
5 π(e′) = ∆t(e) + k · CF
6 c(·) = k · CF + log(m+ n)
7 BSolve (9.7) using Prize-Collecting Steiner Tree

8 S ′ = PCST(G ′, π(·), c(·))
9 BS is the nodes and edges corresponding to S ′

10 S(t) = {v : v′ ∈ S ′} ∪ {e : e′ ∈ S ′}
11 Bs(t) is the total bitsave of S
12 s(t) = ft(S)

13 end

while the PCST step takes O((m + n) log n) time. Hence, Algorithm 9.1 is online, requiring

O((m+ n)(C + log n)) per time step, or O(T (m+ n)(C + log n)) for T time ticks. �

Theorem 9.2

Algorithm 9.1 provides an approximation guarantee of 2 for optimizing (9.7): letting S ′ be

the returned set and S∗ the optimal solution:

f ′t(S ′) ≤ 2 · f ′t(S∗). (9.9)

Proof. The optimization objective (9.7) is in the Prize-Collecting Steiner Tree form. By [HIS15],

this can be solved in near-linear time with an approximation guarantee of 2. �

9.6 Change Detection: ChangeDAR-D

So far, for each time tick t = 1, 2, · · · , we have found a localized change at subgraph S(t), with

score s(t). Our goal now is to decide which of them are actually change points: i.e. to output,

in an online manner, a set of time ticks {t1, t2, · · · } ⊆ {1, 2, · · · } and corresponding subsets

S(t1),S(t2), · · · such that a change occurred in each subset S(ti) at time ti.

152

9.6.1 Optimization Objective

Intuitively, since the scores s(t) represent bits saved, we want to pick the best set of time ticks

{t1, t2, · · · } ⊆ {1, 2, · · · }maximizing total bits saved, but without selecting con�icting change

points. Recall that a change point (t,S(t)) is scored based on its bits saved in the sensors

in S(t) from time t − w to t + w. This means that for two change points ti and tj , if their

subgraphs S(ti) and S(tj) have nonempty intersection, and their time intervals also overlap

(i.e. |ti − tj| ≤ 2w), then these two change points con�ict, i.e. they cannot both be chosen in

the �nal set of changes. In this way we de�ne the con�ict graph:

De�nition 9.2: Con�ict Graph

The con�ict graph Gconf = (Vconf, Econf) has a node for each time tick: {1, 2, · · · }. For

ti, tj ∈ {1, 2, · · · }, it has an edge between ti and tj i� the two change points (ti,S(ti)) and

(tj,S(tj)) con�ict, i.e.:

|ti − tj| ≤ 2w, and |S(ti) ∩ S(tj)| > 0.

Our goal is to choose the set of non-con�icting change points with highest total bitsave. As

an optimization objective:

max

T ⊆{1,2,··· }
g(T) =

∑
t∈T

s(t)

subject to: (ti, tj) /∈ Econf ∀ (ti, tj) ∈ T
(9.10)

9.6.2 Optimization Approach

Objective (9.10) is equivalent to a Maximum Weight Independent Set (MWIS) problem, where

we put weights of s(t) on node t, and �nd the max weight set which is independent (i.e. has no

edges) in graph Gconf. The key challenge, however, is that we need to optimize (9.10) in an on-

line manner in which we receive nodes in Gconf, along with their weight and con�icting edges,

incrementally. As reviewed in Section 9.3.2, [GHK
+

14] showed that no meaningful worst-case

guarantees are possible for the general online MWIS problem.

In our case, however, we have a constrained online MWIS problem: note that each node

can only con�ict with the 2w nodes to its immediate past and future. This turns out to be

su�cient for solving the problem with constant approximation guarantee (treating w as �xed).

We optimize (9.10) using a hybrid greedy-randomized approach, which keeps track of 1

greedy solution, and r randomized solutions, and returns the best solution out of these at each

time. The greedy solution performs better in practice, but the randomized algorithm provides

better theoretical guarantees. Hence, performing both algorithms and returning whichever

gives a higher objective value gives the ‘best of both worlds’ in terms of both empirical perfor-

mance and theoretical guarantees.

153

The full algorithm is given in Algorithm 9.2. Lines 8 to 15 perform a greedy choice: if s(t)
exceeds the score of all its con�icting neighbors (Line 9), we add t into the greedy set T (0)

(Line

11) and remove all its con�icting neighbors (Line 12). Based on the changes we made to T (0)
,

we then update gT (0) (a variable keeping track of g(T (0)) i.e. Objective (9.10)) accordingly (Line

14).

Lines 16 to 26 perform a randomized choice: we sample a uniform random value ut from 0
to 1 for each time t (Line 18). In the ith repetition, if ut is greater than the random values of all

its neighbors, we add t to the set T (i)
and remove its neighbors (Lines 21 to 22). As before we

then update gT (i) accordingly (Line 24).

Finally, after each tick we return the best solution (Line 28). Notice that both the Greedy

and Randomized parts always return a feasible solution with no con�icts, since we remove all

of a node’s neighbors when we insert it into one of the T (i)
.

9.6.3 Theoretical Results

Theorem 9.3

Algorithm 9.2 is online, requiring bounded memory and linear time.

Proof. Memory. At time t, we only need to store the nodes and edges of Gconf for up to the past

2w time ticks, since all neighbors of the node at time t are at time t− 2w or later. This requires

O(w) for the nodes and at mostO(w2) for the edges. For the randomized part, we need to store

r uniform values for each of these nodes, requiring O(wr) memory. Thus the total memory

usage is O(w(r + w)), where r and w are small constants.

Running time. Each iteration of the greedy part takes O(w) to visit each neighbor, and

O(w) in the same way for each of the r repetitions of the randomized part. Hence the overall

running time is O(wr) per iteration, or O(wrT) overall for T time ticks. We show that a

constant value of r is su�cient in Theorem 9.4. �

Theorem 9.4

Algorithm 9.2 has constant-factor approximation guarantee in expectation: letting Tbest be

the output of Algorithm 9.2 and T ∗ be the optimal solution of (9.7):

E[g(Tbest)] ≥
1

4w + 1
g(T ∗) (9.11)

Proof. Consider a �xed repetition i of the randomized algorithm, at any current time tick t′. For

each node t, note that t is included in T (i)
i� u

(i)
t is greater than its neighbors’ values. Since t

154

Algorithm 9.2: ChangeDAR-D change detection algorithm

Input : Con�ict graph Gconf, window size w, and change sets with scores (t,S(t), s(t))
as a stream at time t = 1, 2, · · · from ChangeDAR-S

Output: Set of change points Tbest = {(t1,S(t1)), (t2,S(t2)), · · · }
1 BChange sets T (i)

, and corresponding objective values gT (i)

2 T (i) = {} ∀ i = 0, 1, · · · , r
3 gT (i) = 0 ∀ i = 0, 1, · · · , r
4 while node for time tick t+ w is received do

5 BNeighbor set; i.e. nodes con�icting with t
6 Nt = {t′ : (t, t′) ∈ Econf}
7 BRun Greedy and Randomized and choose the best obtained set:

8 B Greedy : if t’s score exceeds sum of neighbors’ scores:

9 if s(t) >
∑

t′∈Nt s(t
′) then

10 Badd t into T (0)
and remove its neighbors

11 T (0) = T (0) ∪ {t}
12 T (0) = T (0) \ Nt
13 Bupdate objective for T (0)

based on changes to it

14 gT (0) = gT (0) + s(t)−
∑

t′∈Nt s(t
′)

15 end

16 B Randomized : over r repetitions:

17 for i in 1 to r do
18 Sample u

(i)
t ∼ Uniform(0, 1)

19 BIf t’s value is greater than its neighbors’ values

20 if u
(i)
t > maxt′∈Nt u

(i)
t′ then

21 T (i) = T (i) ∪ {t}
22 T (i) = T (i) \ Nt
23 Bupdate objective for T (i)

based on changes to it

24 gT (i) = gT (i) + s(t)−
∑

t′∈Nt s(t
′)

25 end

26 end

27 BOutput best subset out of Greedy and Randomized

28 Output Tbest = arg maxT ∈{T (0),··· ,T (r)} gT
29 end

can only be neighbors with the time ticks from t− 2w to t + 2w, it has at most 4w neighbors.

Thus, u
(i)
t is greater than all its neighbors with probability ≥ 1

4w+1
.

We next compute the expected value of g(T (i)). In the following, (9.12) is the de�nition of

g, (9.13) is by linearity of expectation, (9.14) is since t is included with probability ≥ 1
4w+1

, and

155

(9.15) is since g(T ∗) is a sum of some subset of the s(·) score values.

E[g(T (i))] = E

∑
t∈T (i)

s(t)

 (9.12)

=
t′∑
t=1

s(t) · P (t ∈ T (i)) (9.13)

≥
t′∑
t=1

s(t)

4w + 1
(9.14)

≥ 1

4w + 1
g(T ∗) (9.15)

�

The guarantee in Theorem 9.4 is a guarantee in expectation, but can also be converted to a ‘with

high-probability’ guarantee. Speci�cally,

Theorem 9.5

Algorithm 9.2 has constant-factor approximation guarantee with high probability: for-

mally, for any 0 < δ, ε < 1, as long as we set r ≥ log δ

log(4w
4w+ε

)
, then with probability at least

1− δ:

g(Tbest) ≥
1− ε

4w + 1
g(T ∗) (9.16)

Proof. For any i, note that g(T (i)) ≤ g(T ∗), and by Theorem 9.4, E[g(T
(i))

g(T ∗)] ≥ 1
4w+1

. By Markov

inequality on the nonnegative variable 1− g(T (i))
g(T ∗) :

P (
g(T (i))

g(T ∗)
≤ 1− ε

4w + 1
) = P (1− g(T (i))

g(T ∗)
≥ 4w + ε

4w + 1
) (9.17)

≤
1− E[g(T

(i))
p

g(T ∗)]
4w+ε
4w+1

(9.18)

≤
1− 1

4w+1
4w+ε
4w+1

=
4w

4w + ε
(9.19)

Since g(Tbest) takes the max of r independent repetitions:

P (g(Tbest) ≤
1− ε

4w + 1
) = (

4w

4w + ε
)r (9.20)

≤ δ if r ≥ log δ

log(4w
4w+ε

)
(9.21)

�

156

For example, set ε and δ to small constants, e.g. 0.01. Then this theorem implies thatP (g(Tbest) ≥
0.99

4w+1
) holds with probability at least 0.99 as long as r is at least a constant value.

9.7 Experiments

We design experiments to answer the following questions:

• Q1. Change Detection Accuracy: how accurate are the change times detected by

ChangeDAR?

• Q2. LocalizationAccuracy: how accurate are the change locations reported byChangeDAR?

• Q3. Scalability: how does our method scale with data size?

Our code and data are publicly available athttp://www.andrew.cmu.edu/user/
bhooi/changedar/. Experiments were done on a 2.4 GHz Intel Core i5 Macbook Pro, 16

GB RAM running OS X 10.11.2. For window size w, small values around 5 are a good default,

as larger values might miss short-lasting changes. Hence we use w = 5. We set error variance

σ2
(Eq. (9.3)) to 0.05 for the power grid data and 1.5 for the tra�c data.

Table 9.3: Datasets used

Dataset name Nodes Edges Time Ticks Domain Sensors

PolandHVN1 [ZMST11] 2383 2896 480 Power Voltage

PolandHVN2 [ZMST11] 2737 3506 480 Power Voltage

PolandHVN3 [ZMST11] 3012 3572 480 Power Voltage

PolandHVN4 [ZMST11] 3120 3693 480 Power Voltage

TrafficLA [pem18] 4828 4868 2016 Tra�c Speed

9.7.1 Q1. Detection Accuracy

In this section, we compare ChangeDAR against baseline change detection approaches, in their

accuracy for detecting power line failures simulated using Matpower [ZMST11], a standard

power system simulation program.

Experimental Settings

For each graph, out of 480 time ticks (hourly data for 20 days) we sample 10 random time ticks

as the times when changes occur. In each such time tick, we deactivate a randomly chosen

edge (i.e. no current can �ow over that edge) for the remainder of the time period. As input

to Matpower, we use load patterns estimated from real data [SHJ
+

17] from the Carnegie Mel-

lon University (CMU) campus for 20 days from July 29 to August 17, 2016, with its standard

deviation scaled down by a factor of 10.

Given this input, each algorithm returns a set of time ticks where it detected a change. We

evaluate this using F-measure (
2·precision·recall

precision+recall
) compared to the true set of anomalies.

157

http://www.andrew.cmu.edu/user/bhooi/changedar/
http://www.andrew.cmu.edu/user/bhooi/changedar/

Baselines

We compare ChangeDAR to the following change detection methods:

• Dynamic Graph Change Detection: WeightDist [Pin05] and VertexRank [PDGM10].

• Multivariate Change Detection: PELT [KFE12] and Group Fused Lasso (GFL) [BV11].

• Graph-based Scan Statistics: Graph Fourier Scan Statistic (GFSS) [SRS16].

Only our method and VertexRank are online; for VertexRank, the original algorithm actually

requires an o�ine standard deviation, but we assume this can be done online as well. We use

the o�ine version of VertexRank in our experiments.

For WeightDist, we select the ARMA orders using AIC, with an upper limit of 2 following the

original paper [Pin05]. For VertexRank we use a threshold of 2 standard deviations, following

the original paper [PDGM10]. GFL and GFSS require the number of changes (i.e. the number of

time ticks where changes occur) as input: we pass in the true number of changes. For GFL we

use the default LARS (Least Angle Regression) approach. GFSS returns a statistic at each time

for how clustered the voltage patterns are with respect to the graph: instead of using GFSS

directly (which would detect individual time ticks with abnormal sensor values, rather than

detecting changes), since we are dealing with change points, it makes more sense to use GFSS

on di�erences between the data at adjacent time points, to detect large di�erences. Hence, we

convert all the original time series to di�erences in this way before using GFSS. For GFSS we set

the threshold ρ as the 5th-percentile smallest eigenvalue, following the original paper [SRS16].

Results

Figure 9.3 shows an example of a power failure correctly detected, shown by the blue cross.

This change causes cascading e�ects in the voltage levels in the surrounding nodes, which

ChangeDAR is able to detect (red circles). We evaluate the set of change times output by each

method against the ground truth values using F-measure on the 4 datasets in Figure 9.4a to

9.4d. The results show that ChangeDAR outperforms the baselines by 75% or more. Since

only ChangeDAR detects changes that are localized in the graph and persist over a period of

time, this suggests that combining graph and temporal structure in this way is e�ective. Note

that this occurs despite the baselines (other than VertexRank) being o�ine algorithms, while

our method is online.

9.7.2 Q2. Localization Accuracy

We evaluate ChangeDAR in detecting and locating tra�c accidents in the TrafficLA data.

Figure 9.1 shows a tra�c incident reported in the incident report as a tra�c collision at 5.30pm

on Jan 3 2018. ChangeDAR reported a localized change at the time shown by the red vertical

line and at the three stations marked in red, all of which experienced sharp drops in average

speed shortly after the accident.

We now evaluate the accuracy of ChangeDAR against the ground truth tra�c accidents,

compared to the same set of baselines (with the same settings as before). Since none of the

baselines perform localization (i.e. returning the location of an anomaly), for each change point

returned by a baseline, we select the sensor with the largest negative change in speed at that

158

Figure 9.3: ChangeDAR correctly detects a power failure: the blue cross shows a power

line failure, causing cascading e�ects in surrounding voltage levels, which are detected as a

localized change-point by ChangeDAR (red circles).

time as the detected location. We only consider negative changes since tra�c accidents should

only result in decreases in vehicle speed.

The ground truth accidents come from incident reports by the California Highway Patrol.

Each incident is accompanied by its occurrence time and location. We use all events listed as

tra�c collisions with duration at least 1 hour. For each change reported by an algorithm, we

match it to a ground truth incident if the two occurred at most 1 hour apart, and the mean

location among the algorithm’s detected nodes is at most ‘radius’ away from the true location,

for the values of ‘radius’ plotted on the x-axis of Figure 9.5.

Figure 9.5 shows that ChangeDAR outperforms the same baselines in precision and recall

of locating tra�c accidents, by 70% and 227% respectively, and F-measure by 124%. The fairly

low precision and recall of all methods occurs because many tra�c accidents do not lead to

159

C
ha
ng
eD

AR

W
ei
gh
tD
is
t

Ve
rte
xR
an
k

PE
LT

G
FL
Se
g

G
FS

S0

1

F-
m
ea
su
re +120%

(a) PolandHVN1

C
ha
ng
eD

AR

W
ei
gh
tD
is
t

Ve
rte
xR
an
k

PE
LT

G
FL
Se
g

G
FS

S0

1

F-
m
ea
su
re

+96%

(b) PolandHVN2

C
ha
ng
eD

AR

W
ei
gh
tD
is
t

Ve
rte
xR
an
k

PE
LT

G
FL
Se
g

G
FS

S0

1

F-
m
ea
su
re

+150%

(c) PolandHVN3

C
ha
ng
eD

AR

W
ei
gh
tD
is
t

Ve
rte
xR
an
k

PE
LT

G
FL
Se
g

G
FS

S0

1

F-
m
ea
su
re

+75%

(d) PolandHVN4

Figure 9.4: ChangeDAR accurately detects power line failures: F-measure of detecting

transmission line failures compared to (mostly o�ine) baselines.

any discernible change in vehicle speed, and conversely, tra�c slowdowns may be caused by

regular congestion or events that are not reported as tra�c accidents.

0 1 2
Radius (miles)

0

0.05

0.1

0.15

Pr
ec

is
io

n

0 1 2
Radius (miles)

0

0.05

0.1

0.15

0.2

0.25

0.3

R
ec

al
l+70% +227%

0 1 2
Radius (miles)

0

0.05

0.1

0.15
Pr

ec
is

io
n

ChangeDAR
WeightDist
VertexRank
PELT
GFLSeg
GFSS

Figure 9.5: ChangeDAR accurately locates tra�c accidents: ChangeDAR outperforms

baselines in precision (left) and recall (right) on ground truth tra�c accidents. The x-axis

plots the radius used to determine whether a change point output by each algorithm matches

a ground truth accident.

9.7.3 Q3. Scalability

Finally, we verify that ChangeDAR scales linearly in the number of time ticks and the number

of edges in the graph. Figure 9.6a plots the wall-clock time taken for ChangeDAR to run

on the TrafficLA dataset, varying the number of time ticks from 10%, 20%, · · · , 100% of

the full number of time ticks. For Figure 9.6b we construct subsets of nodes by taking the

10%, 20%, · · · , 100% of nodes with lowest geographical latitude, and run ChangeDAR on the

induced subgraphs of these subsets. Subsetting via latitude is done to prevent the graph from

160

separating into a large number of connected components. Figures 9.6a and 9.6b show that

ChangeDAR scales linearly in both dimensions.

ChangeDAR is fast, taking 10ms on average to run on each time tick on our largest (TrafficLA)

graph, with 4828 sensor values per time tick.

0 500 1000 1500 2000 2500
Number of time ticks

0

5

10

15

20

25

W
al

l-c
lo

ck
 ti

m
e

(s
)

(a) Time ticks

0 1000 2000 3000 4000 5000
Number of edges

0

5

10

15

20

25

W
al

l-c
lo

ck
 ti

m
e

(s
)

(b) Edges

Figure 9.6: ChangeDAR scales linearly: wall-clock time of ChangeDAR against (a) number

of time ticks and (b) number of edges.

9.8 Conclusion

In this chapter, we propose online algorithms for detecting localized changes for sensor data on

a graph. This type of data occurs in many settings: e.g. power grid monitoring, tra�c, climate,

disease surveillance, and monitoring users on social networks. Our approach uses PCST and

online MWIS, which to the best of our knowledge, have not been used for change detection.

Our contributions are:

1. Algorithm: We propose novel information theoretic optimization objectives for 1) scor-

ing and 2) detecting localized changes, and propose two algorithms, ChangeDAR-S and

ChangeDAR-D respectively, to optimize them.

2. Theoretical Guarantees: We show that both algorithms provide constant-factor ap-

proximation guarantees (Theorems 9.2 and 9.4).

3. E�ectiveness: Our algorithms detect tra�c accidents and power line failures in a power

grid with 75% or more higher F-measure than comparable baselines in experiments.

4. Scalability: Our full algorithm is online and near-linear in the graph size and the number

of time ticks (Figure 9.6).

Reproducibility: our code and data are publicly available at http://www.andrew.cmu.
edu/user/bhooi/changedar/.

161

http://www.andrew.cmu.edu/user/bhooi/changedar/
http://www.andrew.cmu.edu/user/bhooi/changedar/

162

Chapter 10

GridWatch: Sensor Selection and

Anomaly Detection on the Power

Grid

Chapter based on work published in ECML-PKDD18 [PDF].

In this chapter, we propose an anomaly detection method designed for power-grid graphs,

as well as a sensor selection approach. Given sensor readings over time from a power

grid, how can we accurately detect when an electrical component has failed? We propose

GridWatch, an online and linear-time detection approach, as well as a provably near-

optimal sensor selection approach. We show experimentally that our methods are e�ective,

outperforming existing approaches in accuracy by 59% or more F-measure.

10.1 Introduction

Improving the e�ciency and security of power delivery is a critically important goal, in the

face of disturbances arising from severe weather, human error, equipment failure, or even in-

tentional intrusion. Estimates [Ami11] suggest that reducing outages in the U.S. grid could save

$49 billion per year, reduce emissions by 12 to 18%, while improving e�ciency could save an

additional $20.4 billion per year. A key part of achieving this goal is to use sensor monitoring

data to quickly identify when parts of the grid fail, so as to quickly respond to the problem.

A major challenge is scalability - power systems data can be both high-volume and received

in real time, since the data comes from sensors which are continuously monitoring the grid. This

motivates us to develop fast methods that work in this online (or streaming) setting. When each

new data point is received, the algorithm should update itself e�ciently - for our algorithm, each

update requires constant time, and bounded memory, regardless of the length of the stream.

Hence, our goal is an online anomaly detection algorithm:

163

http://www.andrew.cmu.edu/user/bhooi/papers/gridwatch_pkdd18.pdf

Informal Problem 10.1: Online Anomaly Detection

• Given: A graph G = (V , E), and a subset S of nodes which contain sensors. For

each sensor, we have a continuous stream of values of real and imaginary voltage

V (t) and current I(t) measured by these sensors.

• Find: At each time t, compute an anomalousness score A(t), indicating our con�-

dence level that an anomaly occurred (i.e. a transmission line failed).

For cost reasons, it is generally infeasible to place sensors at every node. Hence, an impor-

tant follow-up question is where to place sensors so as to maximize the probability of detecting

an anomaly.

Informal Problem 10.2: Sensor Placement

• Given: A budget k of the number of sensors we can a�ord, a graph G = (V , E), and

a simulator that allows us to simulate sensor readings at each node.

• Find: A set of nodes S ⊆ V , which are the locations we should place our sensors,

such that |S| = k.

In contrast to most approaches, our anomaly detection algorithm, GridWatch-D, uses a

domain-dependent approach which exploits the fact that electrical sensors consist of a volt-

age reading at a node as well as the current along each adjacent edge. This allows us to

detect anomalies more accurately, even when using an online approach. Next, we propose

GridWatch-S, a sensor placement algorithm. The main idea is to de�ne an objective which es-

timates our probability of successfully detecting an anomaly, then show that this objective has

the submodularity property, allowing us to optimize it with approximation guarantees using

an e�cient greedy algorithm.

Figure 10.1a shows the sensors selected by GridWatch-S: red circles indicate positions cho-

sen. Figure 10.1b shows the anomaly scores (black line) output by GridWatch-D, which accu-

rately match the ground truth. Figure 10.1c shows that GridWatch-S outperforms baselines

on the case2869 data.

Our contributions are as follows:

1. Online anomaly detection: we propose a novel, online anomaly detection algorithm,

GridWatch-D, that outperforms existing approaches.

2. Sensor placement: we construct an optimization objective for sensor placement, with

the goal of maximizing the probability of detecting an anomaly. We show that this objec-

tive has the property of ‘submodularity,’ which we exploit to propose our sensor place-

ment algorithm.

3. E�ectiveness: Our sensor placement algorithm,GridWatch-S, is provably near-optimal.

In addition, both our algorithms outperform existing approaches in accuracy by 59% or

more (F-measure) in experiments.

164

4. Scalability: Our algorithms scale linearly, andGridWatch-D is online, requiring bounded

space and constant time per update.

Reproducibility: our code and data are publicly available athttp://www.andrew.cmu.
edu/user/bhooi/code/.

(a) Selects sensor locations

0 100 200 300 400 500
Time (h)

100

105

An
om

al
y

sc
or

e

Threshold

Anomalies×

(b) Anomaly scores

0 20 40 60
Number of sensors

0

0.2

0.4

0.6

0.8

1

F
M

ea
su

re 62%

0 20 40 60
Number of sensors

0

0.2

0.4

0.6

0.8

1

AU
C

GridWatch-S
Random
Degree
MaxCurrent
Betweenness
OPP

(c) Accuracy

Figure 10.1: (a) GridWatch-S provably selects near-optimal sensor locations. Red circles in-

dicate positions chosen for sensors, in the case2869 graph. (b) GridWatch-D computes

anomaly scores (black line) on case2869. Red crosses indicate ground truth - notice 100%

true alarms (all black spikes above blue line are true alarms) and only 4 false dismissals (red

crosses below blue line). Threshold (blue line) is 4 IQRs above the mean. (c) F-measure of

GridWatch-S compared to baselines on case2869.

10.2 Background and Related Work

Time Series Anomaly Detection. Numerous algorithms exist for anomaly detection in uni-

variate time series [KLLVH07]. For multivariate time series, LOF [BKNS00] uses a local den-

sity approach. Isolation Forests [LTZ08] partition the data using a set of trees for anomaly

detection. Other approaches use neural networks [YJYC17], distance-based [RRS00], and ex-

emplars [JNIH14]. However, none of these consider sensor selection.

Anomaly Detection in Temporal Graphs. [AMF10] �nds anomalous changes in graphs

using an egonet (i.e. neighborhood) based approach, while [CHS12] uses a community-based

approach. [MBR
+

13] �nds connected regions with high anomalousness. [APG
+

14] detect large

and/or transient communities using Minimum Description Length. [AF10] �nds change points

in dynamic graphs, while other partition-based [AZP11] and sketch-based [RHSS16] exist for

anomaly detection. However, these methods require fully observed edge weights (i.e. all sensors

present), and also do not consider sensor selection.

Power Grid Monitoring. A number of works consider the Optimal PMU Placement (OPP)

problem [BH05], of optimally placing sensors in power grids, typically to make as many nodes

165

http://www.andrew.cmu.edu/user/bhooi/code/
http://www.andrew.cmu.edu/user/bhooi/code/

as possible fully observable, or in some cases, minimizing mean-squared error. Greedy [LNI11],

convex relaxation [KGW12], integer program [DDGS08], simulated annealing [BMBA93], and

swarm-based [CVK08] approaches have been proposed. However, these methods do not per-

form anomaly detection. [RPUW07, ZGP12, MA99] consider OPP in the presence of branch

outages, but not anomalies in general, and due to their use of integer programming, only use

small graphs of size at most 60.

Epidemic and Outbreak Detection. [LKG
+

07] proposed CELF, for outbreak detection in

networks, such as water distribution networks and blog data, also using a submodular objec-

tive function. Their setting is a series of cascades spreading over the graph, while our input

data is time-series data from sensors at various edges of the graph. For epidemics, [PSV02,

CHBA03] consider targeted immunization, such as identifying high-degree [PSV02] or well-

connected [CHBA03] nodes. We show experimentally that our sensor selection algorithm out-

performs both approaches.

Table 10.1: Comparison of related approaches: only GridWatch satis�es all the listed proper-

ties.

Property T
i
m

e
S
e
r
i
e
s

[
K

L
L

V
H

0
7
]
,
e
t
c
.

G
r
a
p

h
-
b
a
s
e
d

[
A

M
F
1
0
]

O
P

P
[
B

H
0
5
]
,
e
t
c
.

I
m

m
u

n
i
z
a
t
i
o

n
[
P

S
V

0
2
]

G
r
i
d
W
a
t
c
h

Anomaly Detection ! ! "

Online Algorithm ! "

Using Graph Data ! ! ! "

Sensor Selection ! ! "

With Approx. Guarantee "

Table 10.1 summarizes existing work related to our problem. GridWatch di�ers from ex-

isting methods in that it performs anomaly detection using an online algorithm, and it selects

sensor locations with a provable approximation guarantee.

10.2.1 Background: Submodular Functions

A function f de�ned on subsets of V is submodular if whenever T ⊆ S and i /∈ S:

f(S ∪ {i})− f(S) ≤ f(T ∪ {i})− f(T) (10.1)

166

Intuitively, this can be interpreted as diminishing returns: the left side is the gain in f from

adding i to S , and the right side is the gain from adding i to T . Since T ⊆ S, this says that as

T ‘grows’ to S , the gains from adding i can only diminish.

[NWF78] showed that nondecreasing submodular functions can be optimized by a greedy

algorithm with a constant-factor approximation guarantee of (1− 1/e). These were extended

by [Svi04] to the non-constant sensor cost setting.

10.3 GridWatch-D Anomaly Detection Algorithm

Preliminaries Table 10.2 shows the symbols used in this chapter.

Table 10.2: Symbols and de�nitions

Symbol Interpretation

G = (V , E) Input graph

S Subset of nodes to place sensors on

n Number of nodes

s Number of scenarios

Ni Set of edges adjacent to node i
Vi(t) Voltage at node i at time t
Ie(t) Current at edge e at time t
Sie(t) Power w.r.t. node i and edge e at time t

∆Sie(t) Power change: ∆Sie(t) = Sie(t)− Sie(t− 1)
Xi(t) Sensor vector for scenario i at time t

c Anomalousness threshold parameter

µ̃i(t) Median of sensor i at time t
σ̃i(t) Inter-quartile range of sensor i at time t
ai(t) Sensor-level anomalousness for sensor i at time t
A(t) Total anomalousness at time t

In this section, we are given a graph G = (V , E) and a �xed set of sensors S ⊆ V . Each

sensor consists of a central node i on which voltage Vi(t) ∈ C is measured, at each time t. Note

that complex voltages and currents are used to take phase into account, following standard

practice in circuit analysis (this chapter will not presume familiarity with this). Additionally,

for sensor i, letting Ni be the set of edges adjacent to i, we are given the current Ie ∈ C along

each edge e ∈ Ni.
For sensor i and edge e ∈ Ni, de�ne the power w.r.t. i along edge e as Sie(t) = Vi(t) · Ie(t)∗,

where
∗

is the complex conjugate. We �nd that using power (rather than current) provides

better anomaly detection in practice. However, when considering the edges around a single

sensor i, variations in current result in similar variations in power, so they perform the same

role.

167

10.3.1 Types of Anomalies

In short, we will design detectors for 3 common types of anomalies (see Figure 10.2), then

combine these detectors into a score for each sensor (De�nition 10.4), then �nally combine

these sensor-level scores into an overall score for each time tick (De�nition 10.5).

Our goal is to detect single edge deletions, i.e. a transmission line failure. Single edge

deletions a�ect the voltage and current in the graph in a complex, nonlinear way, and can

manifest themselves in multiple ways.

As an illustrative example, consider the simple power grid shown by the graphs in Figure

10.2. The power grid consists of a single generator, a single load, and power lines of uniform

resistance. When the edge marked in the black cross fails, current is diverted from some edges

to others, causing some edges to have increased current �ow (blue edges), and thus increased

power, and others to have decreased current �ow (red edges). Current �ows are computed using

a standard power grid simulator, Matpower [ZMST11].

+0.4

+0.1

+0.1

-0.1

-0.1 +0.1

+0.3

++ +

+

+

+
+

-

-

+
Pattern

Toy
Example

Single-edge
anomaly

Group
anomaly

Group-diversion
anomaly

Detector

Current diverted
toward entire

region

Current diverted
into an edge

Current
diverted

between paths

Load

Generator
Edge Failure

Sensor

(over edges
adjacent to sensor)

Current
change

Figure 10.2: Domain-aware model for anomalies: edge failures divert current from one

region of the graph to another, forming 3 patterns. Edge color indicates change in current

due to the edge failure: blue is an increase; red is a decrease. Left: current from the deleted

edge diverts into an edge, resulting in a highly anomalous value along a single edge. Center:
the deletion diverts current between areas (from the right side to the left side of the graph),

forming a group anomaly at the leftmost sensor, due to its multiple positive edges. Right: the

deletion diverts current between paths, making the central sensor have multiple positive and

negative edges.

168

In the leftmost plot, the edge deletion diverts a large amount of current into a single edge, re-

sulting in a highly anomalous value (+0.4) along a single edge. To detect single-edge anomalies,

we consider the largest absolute change in power in the edges adjacent to this sensor. Formally,

letting ∆Sie(t) = Sie(t)− Sie(t− 1),

De�nition 10.1: Single-Edge Detector

The single-edge detector at sensor i is:

xSE,i(t) = max
e∈Ni
|∆Sie(t)| (10.2)

In the middle plot, the edge deletion cuts o� a large amount of current that would have

gone from the generator toward the right side of the graph, diverting it into the left side of

the graph. This results in some nodes in the left region with all their neighboring edges having

positive changes (blue), such as the leftmost node. Individually, these changes may be too small

to appear anomalous, but in aggregate, they provide stronger evidence of an anomaly. Hence,

the group anomaly detector computes the sum of power changes around sensor i, then takes

the absolute value:

De�nition 10.2: Group Anomaly Detector

The group anomaly detector at sensor i is:

xGA,i(t) = |
∑
e∈Ni

(∆Sie(t))| (10.3)

In the right plot, the edge deletion diverts current between nearby edges. In particular,

current diversions around the central node cause it to have neighbors which greatly di�er from

each other: 2 positive edges and 2 negative edges. If this diversion is large enough, this provides

stronger evidence of an anomaly than simply looking at each edge individually. Hence, the

group diversion detector measures the ‘spread’ around sensor i by looking at the total absolute

deviation of power changes about sensor i:

De�nition 10.3: Group Diversion Detector

The group diversion detector at sensor i is:

xGD,i(t) =
∑
e∈Ni

|∆Sie(t)−mean

e∈Ni
(∆Sie(t))| (10.4)

169

10.3.2 Proposed Anomaly Score

Having computed our detectors, we now de�ne our anomaly score. For each sensor i, concate-

nate its detectors into a vector:

Xi(t) = [xSE,i(t) xGA,i(t) xGD,i(t)] (10.5)

Sensor i should label time t as an anomaly if any of the detectors greatly deviate from their

historical values. Hence, let µ̃i(t) and σ̃i(t) be the historical median and inter-quartile range

(IQR)
1

[Yul19] of Xi(t) respectively: i.e. the median and IQR of Xi(1), · · · , Xi(t − 1). We use

median and IQR generally instead of mean and standard deviation as they are robust against

anomalies, since our goal is to detect anomalies.

Thus, de�ne the sensor-level anomalousness as the maximum number of IQRs that any

detector is away from its historical median:

De�nition 10.4: Sensor-level anomalousness

The sensor-level anomalousness is:

ai(t) =

∥∥∥∥Xi(t)− µ̃i(t)
σ̃i(t)

∥∥∥∥
∞

(10.6)

Here the in�nity-norm ‖ · ‖∞ is the maximum absolute value over entries of a vector.

Finally, the overall anomalousness at time t is the maximum of ai(t) over all sensors.

Taking maximums allows us to determine the location (not just time) of an anomaly, since we

can look at which sensor contributed toward the maximum.

De�nition 10.5: Overall anomalousness

The overall anomalousness at time t is:

A(t) = max
i∈S

ai(t) (10.7)

Algorithm 10.1 summarizes our GridWatch-D anomaly detection algorithm. Note that we

can maintain the median and IQR of a set of numbers in a streaming manner using reservoir

sampling [Vit85]. Hence, the Normalize operation in Line 5 takes a value of ∆Sie(t), subtracts

its historical median and divides by the historical IQR for that sensor. This ensures that sensors

with large averages or spread do not dominate.

1
IQR is a robust measure of spread, equal to the di�erence between the 75% and 25% quantiles.

170

Algorithm 10.1: GridWatch-D online anomaly detection algorithm

Input : Graph G, voltage Vi(t), current Ii(t)
Output: Anomalousness score A(t) for each t, where higher A(t) indicates greater

certainty of an anomaly

1 for t received as a stream: do
2 for i ∈ S do

3 Sie(t)← Vi(t) · I∗e (t) ∀ e ∈ Ni BPower

4 ∆Sie(t)← Sie(t)− Sie(t− 1) BPower di�erences

5 ∆Si·(t)← Normalize(∆Si·)
6 Compute detectors xSE,i(t), xGA,i(t) and xGD,i(t) using Eq. (10.2) to (10.4)

7 Concatenate detectors: Xi(t) = [xSE,i(t) xGA,i(t) xGD,i(t)]
8 µ̃i(t)← UpdateMedian(µ̃i(t− 1), Xi(t)) BHistorical median

9 σ̃i(t)← UpdateIQR(σ̃i(t− 1), Xi(t)) BHistorical IQR

10 ai(t)← ‖Xi(t)−µ̃i(t)σ̃i(t)
‖∞ BSensor-level anomalousness

11 end

12 A(t) = maxi∈S ai(t) BOverall anomalousness

13 end

Lemma 10.1

GridWatch-D is online, and requires bounded memory and time.

Proof. We verify from Algorithm 10.1 that GridWatch-D’s memory consumption is O(|S|),

and updates in O(|S|) time per iteration, which are bounded (regardless of the length of the

stream). �

10.4 Sensor Placement: GridWatch-S

So far, we have detected anomalies using a �xed set of sensors. We now consider how to select

locations for sensors to place given a �xed budget of k sensors to place. Our main idea will be

to construct an optimization objective for the anomaly detection performance of a subset S of

sensor locations, and show that this objective has the ‘submodularity’ property, showing that

a greedy approach gives approximation guarantees.

Note the change in problem setting: we are no longer monitoring for anomalies online

in time series data, since we are now assuming that the sensors have not even been installed

yet. Instead, we are an o�ine planner deciding where to place the sensors. To do this, we

use a model of the system in the form of its graph G, plugging it into a simulator such as

Matpower [ZMST11] to generate a dataset of ground truth anomalies and normal scenarios,

where the former contain a randomly chosen edge deletion, and the latter do not.

171

10.4.1 Proposed Optimization Objective

Intuitively, we should select sensors S to maximize the probability of detecting an anomaly.

This probability can be estimated as the fraction of ground truth anomalies that we success-

fully detect. Hence, our optimization objective, f(S), will be the fraction of anomalies that we

successfully detect when using GridWatch-D, with sensor set S . We will now formalize this

and show that it is submodular.

Speci�cally, de�ne Xi(r) as the value of sensor i on the rth anomaly, analogous to (10.5).

Also de�ne µ̃i and σ̃i as the median and IQR of sensor i on the full set of normal scenarios. Also

let ai(r) be the sensor-level anomalousness of the rth anomaly, which can be computed as in

De�nition 10.4 plugging in µ̃i and σ̃i:

ai(r) =

∥∥∥∥Xi(r)− µ̃i
σ̃i

∥∥∥∥
∞

(10.8)

De�ne overall anomalousness w.r.t. S , A(r,S), analogously to De�nition 10.5:

A(r,S) = max
i∈S

ai(r) (10.9)

Given threshold c, anomaly r will be detected by sensor set S if and only ifA(r,S) > c. Hence,

our optimization objective is to maximize the fraction of detected anomalies:

maximize

S⊆V,|S|=k
f(S), where f(S) =

1

s

s∑
r=1

1{A(r,S) > c} (10.10)

10.4.2 Properties of Objective

Our optimization objective f(S) is submodular: informally, it exhibits diminishing returns. The

more sensors we add, the smaller the marginal gain in detection probability.

Theorem 10.1

Detection probability f(S) is submodular, i.e. for all subsets T ⊆ S and nodes i ∈ V \ S :

f(S ∪ {i})− f(S) ≤ f(T ∪ {i})− f(T) (10.11)

172

Proof. By de�nition of f , we have:

f(S ∪ {i})− f(S) =
1

s

s∑
r=1

(1{A(r,S ∪ {i}) > c} − 1{A(r,S) > c})

=
1

s

s∑
r=1

(
1{ max

j∈S∪{i}
aj(r) > c} − 1{max

j∈S
aj(r) > c}

)
=

1

s

s∑
r=1

(
1{ai(r) > c ∧max

j∈S
aj(r) ≤ c}

)
≤ 1

s

s∑
r=1

(
1{ai(r) > c ∧max

j∈T
aj(r) ≤ c}

)
since T ⊆ S

= f(T ∪ {i})− f(T)

�

Theorem 10.2

f(S) is nondecreasing, i.e. f(T) ≤ f(S) for all subsets T ⊆ S .

Proof.

f(S) =
1

s

s∑
r=1

A(r,S) =
1

s

s∑
r=1

max
j∈S

aj(r) ≥
1

s

s∑
r=1

max
j∈T

aj(r) = f(T)

�

10.4.3 Proposed GridWatch-S Algorithm

We exploit this submodularity using an e�cient greedy algorithm that starts from S as the

empty set, and iteratively adds the best sensor to maximize f(S), until the budget constraint

|S| = k is reached. Algorithm 10.2 describes our GridWatch-S algorithm.

10.4.4 Approximation Bound

The nondecreasing and submodularity properties of f imply that Algorithm 10.2 achieves at

least 1 − 1/e (≈ 63%) of the value of the optimal sensor placement. Letting Ŝ be the set

returned by Algorithm 10.2, and S∗ be the optimal set:

173

Algorithm 10.2: GridWatch-S sensor selection algorithm

Input : Graph G, voltage Vi(t), current Ii(t), budget k, sensor scores ai(r) from (10.8)

Output: Chosen sensor set S
1 S = {}
2 Initialize A(r) = 0 ∀ r ∈ S BOverall anomalousness is all zero since S = {}
3 while |S| < k do

4 for i /∈ S do

5 δi ← 1
s

∑s
r=1 1{max(A(r), ai(r)) > c} BObjective value if we added i to S

6 end

7 i∗ ← arg max
i/∈S

δi BGreedily add the sensor that maximizes objective

8 S ← S ∪ {i∗}
9 A(r) = max(A(r), ai∗(r)) ∀ r ∈ S

10 end

Theorem 10.3

The objective value obtained by our algorithm is within 1− 1/e of the optimal:

f(Ŝ) ≥ (1− 1/e)f(S∗) (10.12)

Proof. This follows from [NWF78] since f is nondecreasing and submodular. �

10.5 Experiments

We design experiments to answer the following questions:

• Q1. Anomaly Detection Accuracy: on a �xed set of sensors, how accurate are the

anomalies detected by GridWatch-S compared to baselines?

• Q2. Sensor Selection: how much does sensor selection using GridWatch-S improve

the anomaly detection performance compared to other selection approaches?

• Q3. Scalability: how do our algorithms scale with the graph size?

Our code and data are publicly available athttp://www.andrew.cmu.edu/user/
bhooi/code/. Experiments were done on a 2.4 GHz Intel Core i5 Macbook Pro, 16 GB RAM

running OS X 10.11.2.

Data: We use 2 graphs, case2869 and case9241, which accurately represent di�erent

parts of the European high voltage network [ZMST11]. Dataset details are in Table 10.3.

174

http://www.andrew.cmu.edu/user/bhooi/code/
http://www.andrew.cmu.edu/user/bhooi/code/

Table 10.3: Datasets used

Dataset name Nodes Generators Edges Transformers

case2869 [ZMST11] 2869 327 2896 170

case9241 [ZMST11] 9241 1445 16049 1319

10.5.1 Q1. Anomaly Detection Accuracy

In this section, we compare GridWatch-D against baseline anomaly detection approaches,

given a �xed set of sensors.

Experimental Settings: For each graph, the sensor set for all algorithms is chosen as a uni-

formly random set of nodes of various sizes (the sizes are plotted in the x-axis of Figure 10.3).

Then, out of 480 time ticks, we �rst sample 50 random time ticks as the times when anomalies

occur. In each such time tick, we deactivate a randomly chosen edge (i.e. no current can �ow

over that edge).

Using MatPower [ZMST11], we then generate voltage and current readings at each sensor.

This requires an input time series of loads (i.e. real and reactive power at each node): we use

load patterns estimated from real data [SHJ
+

17] recorded from the Carnegie Mellon University

(CMU) campus for 20 days from July 29 to August 17, 2016, scaled to a standard deviation of

0.3 · σ, with added Gaussian noise of 0.2 · σ, where σ is the standard deviation of the original

time series [SHJ
+

17].

This results in a time series of 480 time ticks (hourly data from 20 days), at each time record-

ing the voltage at each sensor and the current at each edge adjacent to one of the sensors.

Given this input, each algorithm then returns a ranking of the anomalies. We evaluate this us-

ing standard metrics, AUC (area under the ROC curve) and F-measure (
2·precision·recall

precision+recall
), the latter

computed on the top 50 anomalies output by each algorithm.

Baselines: Dynamic graph anomaly detection approaches [AMF10, CHS12, MBR
+

13, APG
+

14,

SKZ
+

15] cannot be used as they require graphs with fully observed edge weights. Moreover,

detecting failed power lines with all sensors present can be done by simply checking if any edge

has current equal to 0, which is trivial. Hence, instead, we compareGridWatch-D to the follow-

ing multidimensional time series based anomaly detection methods: Isolation Forests [LTZ08],

Vector Autoregression (VAR) [Ham94], Local Outlier Factor (LOF) [BKNS00], and Parzen Win-

dow [Par62]. Each uses the currents and voltages at the given sensors as features. For VAR

the norms of the residuals are used as anomaly scores; the remaining methods return anomaly

scores directly.

For Isolation Forests, we use 100 trees (following the scikit-learn defaults [PVG
+

11]). For

VAR we select the order by maximizing AIC, following standard practice. For LOF we use 20
neighbors (following scikit-learn defaults), and 20 neighbors for Parzen Window.

Figure 10.3 shows thatGridWatch-D outperforms the baselines, by 31% to 42% Area under

the Curve (AUC) and 133% to 383% F-Measure. The gains in performance likely come from the

175

0 20 40 60
Number of sensors

0

0.2

0.4

0.6

0.8

1

F
M

ea
su

re

0 100 200
Number of sensors

0

0.2

0.4

0.6

0.8

1
F

M
ea

su
re

0 20 40 60
Number of sensors

0

0.2

0.4

0.6

0.8

1
AU

C

0 100 200
Number of sensors

0

0.2

0.4

0.6

0.8

1

AU
C

case2869 data case9241 data

42%

383%

31%

133%

0 20 40 60
Number of sensors

0

0.2

0.4

0.6

0.8

1

AU
C

GridWatch-D
Isolation
VAR
LOF
Parzen

Figure 10.3: GridWatch-D outperforms alternate anomaly detection methods: Left

plots are for case2869; right plots are for case9241.

use of the 3 domain-knowledge based detectors, which combine information from the currents

surrounding each sensor in a way that makes it clearer when an anomaly occurs.

Further testing shows that GridWatch-D’s 3 detectors all play a role: e.g. on case2869,

for 50 sensors, GridWatch-D has F-measure 0.67, but only using single detectors 1, 2 or 3

(where detector 1 refers to the detector in De�nition 10.1, and so on) gives F-measures of 0.51,

0.6 or 0.56 respectively.

10.5.2 Q2. Sensor Selection Quality

We now evaluate GridWatch-S. We use the same settings as in the previous sub-section, ex-

cept that the sensors are now chosen using either GridWatch-S, or one of the following base-

lines. We then compute the anomaly detection performance of GridWatch-D as before on

176

each choice of sensors. For GridWatch-S we use c = 15. For our simulated data sizes, we

assume 2000 anomalies and 480 normal scenarios.

Baselines: We use the following: randomly selected nodes (Random); highest degree nodes

(Degree); nodes with highest total current in their adjacent edges (MaxCurrent); highest be-

tweenness centrality [Fre78] nodes, i.e. nodes with the most shortest paths passing through

them, thus being the most ‘central’ (Betweenness); a power-grid based Optimal PMU Placement

algorithm using depth-�rst search (OPP [BMBA93]).

Figure 10.4 shows that GridWatch-S outperforms the baselines, by 18 to 19% Area under

the Curve (AUC) and 59 to 62% F-Measure.

Figure 10.1b shows the GridWatch-S anomaly scores on the case2869 data over time,

when using the maximum 200 sensors, with red crosses where true anomalies exist. Spikes

in anomaly score match very closely with the true anomalies. Threshold (blue line) is 4 IQRs

above the mean (in log-space).

10.5.3 Q3. Scalability

Finally, we evaluate the scalability of GridWatch-D and GridWatch-S. To generate graphs of

di�erent sizes, we start with the IEEE 118-bus network [118], which represents a portion of the

US power grid in 1962, and duplicate it 2, 4, · · · , 20 times. To keep our power grid connected,

after each duplication, we add edges from each node to its counterpart in the last duplication;

the parameters of each such edge are randomly sampled from those of the actual edges. We

then run GridWatch-D and GridWatch-S using the same settings as the previous sub-section.

Figure 10.5b shows that GridWatch-D and GridWatch-S scale linearly. The blue line is the

best-�t regression line.

10.6 Conclusion

In this chapter, we proposedGridWatch-D, an online algorithm that accurately detects anoma-

lies in power grid data. The main idea of GridWatch-D is to design domain-aware detectors

that combine information at each sensor appropriately. We then proposedGridWatch-S, a sen-

sor placement algorithm, which uses a submodular optimization objective. While our method

could be technically applied to any type of graph-based sensor data (not just power grids), the

choice of our detectors is motivated by our power grid setting. Hence, future work could study

how sensitive various detectors are for detecting anomalies in graph-based sensor data from

di�erent domains.

Our contributions are as follows:

1. Online anomaly detection: we propose a novel, online anomaly detection algorithm,

GridWatch-D that outperforms existing approaches.

2. Sensor placement: we construct an optimization objective for sensor placement, with

the goal of maximizing the probability of detecting an anomaly. We show that this objec-

tive is submodular, which we exploit in our sensor placement algorithm.

177

0 20 40 60
Number of sensors

0

0.2

0.4

0.6

0.8

1

F
M

ea
su

re

0 100 200
Number of sensors

0

0.2

0.4

0.6

0.8

1
F

M
ea

su
re

0 20 40 60
Number of sensors

0

0.2

0.4

0.6

0.8

1
AU

C

0 100 200
Number of sensors

0

0.2

0.4

0.6

0.8

1

AU
C

case2869 data case9241 data

18%

59%

19%

62%
0 20 40 60

Number of sensors
0

0.2

0.4

0.6

0.8

1

AU
C

GridWatch-S
Random
Degree
MaxCurrent
Betweenness
OPP

Figure 10.4: GridWatch-S provides e�ective sensor selection: sensor selection using

GridWatch-S results in higher anomaly detection accuracy than other methods.

3. E�ectiveness: Due to submodularity, GridWatch-S, our sensor placement algorithm is

provably near-optimal. In addition, both our algorithms outperform existing approaches

in accuracy by 59% or more (F-measure) in experiments.

4. Scalability: Our algorithms scale linearly, andGridWatch-D is online, requiring bounded

space and constant time per update.

Reproducibility: our code and data are publicly available athttp://www.andrew.cmu.
edu/user/bhooi/code/.

178

http://www.andrew.cmu.edu/user/bhooi/code/
http://www.andrew.cmu.edu/user/bhooi/code/

0 2000 4000 6000
Number of edges

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
al

l-c
lo

ck
 ti

m
e

(s
)

(a) GridWatch-D

0 2000 4000 6000
Number of edges

2

3

4

5

6

7

8

9

W
al

l-c
lo

ck
 ti

m
e

(s
)

(b) GridWatch-S

Figure 10.5: Our algorithms scale linearly: wall-clock time of (a) GridWatch-D and (b)

GridWatch-S against number of edges in G.

179

180

Chapter 11

Conclusion and Future Work

11.1 Summary and Overarching Themes

The explosion of massive datasets, including large graphs and high-frequency time series, has

created a “golden age” for data science. As a result, an overarching theme of much current re-

search in anomaly detection is its move from classic techniques toward approaches that meet

the needs of modern datasets and real-world applications, particularly in the aspects of scala-

bility, handling streaming data, robustness against adversaries, as well as complex or heteroge-

neous data types. This thesis takes a step toward this goal by developing scalable algorithms for

anomaly detection in graph and time series data, using approaches that allow us to deal with

high-volume data streams in a scalable manner. We conclude by �rst summarizing the themes

and approaches developed throughout this dissertation, and then extend these themes into the

future.

Throughout this dissertation, we have described a number of di�erent approaches, each

designed for the needs of a particular application. How can we distill these methods into a

coherent framework? The anomaly detection settings in this dissertation can be categorized

based on both the type of data we have, as well as the type of anomaly we wish to detect, as

follows.

• Graphs: “How can we �nd unusual subgraphs?”

Anomalous Subgraphs (Non-Adversarial): TellTail provides a probabilistic score for

how measuring how abnormal a subgraph is.

Anomalous Subgraphs (Adversarial): Fraudar detects abnormal subgraphs in a more

robust way, improving detection accuracy by up to 70% F-measure over comparable

baselines, and detecting a Twitter subgraph of more than 4000 accounts, a majority

of which used follower-buying services.

• Time Series: “How can we �nd unusual time ticks or subsequences?”

Categorical Data: BirdNest performs anomaly detection in a categorical data setting

arising from online rating systems.

Numerical Data: StreamCast considers a more traditional real-valued sensor data,

aiming to �nd time ticks containing unusual events (e.g. power failures).

181

Mixed Data: For mixed categorical, numeric and ordinal data, we proposed an on-

line nonparametric anomaly detection approach, BNB, that detects anomalies more

accurately than baselines, by 61% F-measure.

Matrix-valued Data: SMF performs forecasting and anomaly detection in a time se-

ries of matrices, capturing seasonality and drift.

• Graphs with Sensors: “How can we �nd sudden events or changes located on a

graph?”

Anomalous Subgraphs: ChangeDAR detects changes occurring over a localized re-

gion of the graph, i.e. a subgraph.

Anomalous Neighborhoods: GridWatch performs anomaly detection in power grid

graphs by detecting anomalous values along neighborhoods of nodes. In addition,

GridWatch studies how to near-optimally select locations for new sensors to be

placed on a power grid graph, improving the detection of component failures by

59% or more F-measure.

11.2 Vision and Future Work

Moving forward, we aim to increase the usability of anomaly detection approaches for real-

world applications. While this thesis focused on the challenges of graph and time series data,

there are many more, equally important real-world challenges that need to be addressed: these

include broadening the applicability of our approaches to detect more types of anomalies in

di�erent applications (e.g. trajectories, images and videos, and spatiotemporal data), designing

more general approaches for collective anomaly detection (i.e. groups of anomalous points), as

well as designing interpretable anomaly detection approaches.

Reaching Out to Other Applications Anomaly detection is broadly applicable and can �nd

value in almost any domain, as long as signi�cant and interesting deviations from the norm

exist. Future work could study how these approaches could be applied and adapted to new set-

tings. One particular application is to spatiotemporal datasets, where we have a set of sensors

located spatially, where an explicit graph is not given, and has to be learned from data: e.g. air

pollution sensors, weather sensors, detection of natural disasters and other phenomena. An-

other is to the detection of �ows or trajectories on a graph, such as money laundering detection:

which aims to detect fraudsters who use a series of bank transactions to hide the origin of funds

arising from illegal activities, i.e. “cleaning dirty money.” This problem shares similarities with

graph fraud detection as in Fraudar (e.g. fake reviews), but requires more complex techniques

capable of detecting ‘�ows’ along the graph.

Collective Anomalies Collective anomaly detection aims to detect groups of anomalies be-

having in a jointly unusual manner, e.g. lockstep behavior arising from spam or fraud. Dense

subgraph detection on a bipartite graph, such as in our Fraudar algorithm, can be considered

as a type of collective anomaly detection, but still only detects simple types of behavior, charac-

terized by high or concentrated activity. However, more complex collective types of anomalies

exist, particularly when temporal data is considered, as we have seen in Part II of this thesis:

182

such as the temporal patterns of fraudulent rating attacks studied in BirdNest, or the season-

ality and drift patterns in SMF. Hence, future work could seek to integrate realistic temporal

patterns into graph mining by carefully modelling how each node behaves temporally, and how

neighboring nodes in�uence each others’ temporal patterns. This could then lead to collective

anomaly detection approaches beyond just dense subgraphs.

Interpretability So far, most methods focus on returning either the time of the anomaly, and

/ or the location in the graph where it occurs (as in ChangeDAR). Future, future work could

build interpretable anomaly detection systems that provide further output about each anomaly.

To be useful for practitioners, they should be designed around how practitioners analyze and re-

spond to anomalies in real-world settings. A further step would involve an interactive anomaly

detection system, which would allow pracitioners to query (e.g. based on keywords or other

features in the dataset), or provide feedback (e.g. rejecting uninteresting anomalies) to seek

more useful clarifying information, which the algorithm would need to e�ciently update itself

to respond to, in an online manner.

11.3 Closing Thoughts

We began this thesis with the quote:

A capacity for surprise is an essential aspect of

our mental life, and surprise itself is the most

sensitive indication of how we understand our

world and what we expect from it.

Daniel Kahnemann, Thinking, Fast and Slow

To me, anomaly detection is ultimately about ‘teaching computers to be surprised’. This

is not an easy task: just as humans recognize deviations from normality without being taught

what those deviations are, there is a similarly important role for algorithms which detect anoma-

lies without labelled data (which is often scarce in practice); i.e. in an unsupervised manner. This

is a fundamental challenge with numerous high-impact applications, which will lead to exciting

future research.

183

184

Bibliography

[118] Ieee power systems test case archive. http://www2.ee.washington.
edu/research/pstca/. Accessed: 2017-03-15.

[AC09] Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size

bounds. In WAW, 2009.

[AC17] Samaneh Aminikhanghahi and Diane J Cook. A survey of methods for time

series change point detection. KIS, 51(2):339–367, 2017.

[ACF13] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion fraud detection

in online reviews by network e�ects. ICWSM, 13:2–11, 2013.

[AF10] Leman Akoglu and Christos Faloutsos. Event detection in time series of mobile

communication graphs. In Army science conference, pages 77–79, 2010.

[AG05] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us

election: divided they blog. In Link-KDD, pages 36–43. ACM, 2005.

[AGMF14] Miguel Araujo, Stephan Günnemann, Gonzalo Mateos, and Christos Faloutsos.

Beyond blocks: Hyperbolic community detection. In ECML-PKDD, pages 50–65.

Springer, 2014.

[AM07] Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint de-

tection. arXiv preprint arXiv:0710.3742, 2007.

[AMF10] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. Oddball: Spotting

anomalies in weighted graphs. In PAKDD, pages 410–421. Springer, 2010.

[Ami11] S Massoud Amin. Us grid gets less reliable [the data]. IEEE Spectrum, 48(1):80–

80, 2011.

[And10] Reid Andersen. A local algorithm for �nding dense subgraphs. Transaction on
Algorithms, 6(4):60, 2010.

[ANMJZ12] Hélio Almeida, Dorgival Guedes Neto, Wagner Meira Jr, and Mohammed J Zaki.

Towards a better quality metric for graph cluster evaluation. Journal of Infor-
mation and Data Management, 3(3):378, 2012.

[APG
+

14] Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos,

Prithwish Basu, Ananthram Swami, Evangelos E Papalexakis, and Danai Koutra.

Com2: fast automatic discovery of temporal (‘comet’) communities. In PAKDD,

pages 271–283. Springer, 2014.

185

http://www2.ee.washington.edu/ research/pstca/
http://www2.ee.washington.edu/ research/pstca/

[ARS02] James Abello, Mauricio GC Resende, and Sandra Sudarsky. Massive quasi-clique

detection. In Latin American symposium on theoretical informatics, pages 598–

612. Springer, 2002.

[AZP11] Charu C Aggarwal, Yuchen Zhao, and S Yu Philip. Outlier detection in graph

streams. In Data Engineering (ICDE), 2011 IEEE 27th International Conference on,

pages 399–409. IEEE, 2011.

[BCDGV14] Taposh Banerjee, Yu Christine Chen, Alejandro D Dominguez-Garcia, and Venu-

gopal V Veeravalli. Power system line outage detection and identi�cation - a

quickest change detection approach. In ICASSP, pages 3450–3454. IEEE, 2014.

[BDFG03] Jérémie Bouttier, Philippe Di Francesco, and Emmanuel Guitter. Geodesic dis-

tance in planar graphs. Nuclear Physics B, 663(3):535–567, 2003.

[BDG
+

07] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer,

Zoran Nikoloski, and Dorothea Wagner. On �nding graph clusterings with

maximum modularity. In International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 121–132. Springer, 2007.

[BDH74] August A Balkema and Laurens De Haan. Residual life time at great age. The
Annals of probability, pages 792–804, 1974.

[BE76] Béla Bollobás and Paul Erdös. Cliques in random graphs. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, volume 80, pages 419–427. Cam-

bridge Univ Press, 1976.

[BGSLW93] Daniel Bienstock, Michel X Goemans, David Simchi-Levi, and David

Williamson. A note on the prize collecting traveling salesman problem. Mathe-
matical programming, 59(1-3):413–420, 1993.

[BH05] Dennis J Brueni and Lenwood S Heath. The pmu placement problem. SIAM
Journal on Discrete Mathematics, 19(3):744–761, 2005.

[BJL
+

15] David M Bromberg, Marko Jereminov, Xin Li, Gabriela Hug, and Larry Pileggi.

An equivalent circuit formulation of the power �ow problem with current and

voltage state variables. In PowerTech, 2015 IEEE Eindhoven, pages 1–6. IEEE,

2015.

[BJRL15] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

[BK07] Robert M Bell and Yehuda Koren. Scalable collaborative �ltering with jointly

derived neighborhood interpolation weights. In ICDM. IEEE, 2007.

[BKNS00] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof:

identifying density-based local outliers. In ACM sigmod record, volume 29, pages

93–104. ACM, 2000.

[BL74] Vic Barnett and Toby Lewis. Outliers in statistical data. Wiley, 1974.

[BMBA93] TL Baldwin, L Mili, MB Boisen, and R Adapa. Power system observability with

minimal phasor measurement placement. IEEE Transactions on Power Systems,
8(2):707–715, 1993.

186

[BMFS14] Alex Beutel, Kenton Murray, Christos Faloutsos, and Alexander J Smola. Coba�:

collaborative bayesian �ltering. In Proceedings of the 23rd international confer-
ence on World wide web, pages 97–108. ACM, 2014.

[BPSDGA04] Marián Boguñá, Romualdo Pastor-Satorras, Albert Díaz-Guilera, and Alex Are-

nas. Models of social networks based on social distance attachment. Physical
review E, 70(5):056122, 2004.

[Bro59] Robert Goodell Brown. Statistical forecasting for inventory control. McGraw/Hill,

1959.

[BV11] Kevin Bleakley and Jean-Philippe Vert. The group fused lasso for multiple

change-point detection. arXiv preprint arXiv:1106.4199, 2011.

[BXG
+

13] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and

Christos Faloutsos. Copycatch: stopping group attacks by spotting lockstep

behavior in social networks. In Proceedings of the 22nd international conference
on World Wide Web, pages 119–130, 2013.

[CBK12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection for

discrete sequences: A survey. IEEE Transactions on Knowledge and Data Engi-
neering, 24(5):823–839, 2012.

[CBTD01] Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. An introduction to
statistical modeling of extreme values, volume 208. Springer, 2001.

[CBVD18] Jose Cadena, Arinjoy Basak, Anil Vullikanti, and Xinwei Deng. Graph scan

statistics with uncertainty, 2018.

[CCV17] Jose Cadena, Feng Chen, and Anil Vullikanti. Near-optimal and practical algo-

rithms for graph scan statistics. In SDM. SIAM, 2017.

[CF15] Haeran Cho and Piotr Fryzlewicz. Multiple-change-point detection for high

dimensional time series via sparsi�ed binary segmentation. JRSS(B), 77(2):475–

507, 2015.

[CF16] Luis M Candanedo and Véronique Feldheim. Accurate occupancy detection of

an o�ce room from light, temperature, humidity and co2 measurements using

statistical learning models. Energy and Buildings, 112:28–39, 2016.

[Cha00] Moses Charikar. Greedy approximation algorithms for �nding dense compo-

nents in a graph. In Approximation Algorithms for Combinatorial Optimization,

pages 84–95. Springer, 2000.

[CHBA03] Reuven Cohen, Shlomo Havlin, and Daniel Ben-Avraham. E�cient immuniza-

tion strategies for computer networks and populations. Physical review letters,
91(24):247901, 2003.

[CHC
+

07] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass,

and James Scott. Impact of human mobility on opportunistic forwarding algo-

rithms. IEEE TMC, 6(6), 2007.

[CHS12] Zhengzhang Chen, William Hendrix, and Nagiza F Samatova. Community-

based anomaly detection in evolutionary networks. Journal of Intelligent In-

187

formation Systems, 39(1):59–85, 2012.

[CN14] Feng Chen and Daniel B Neill. Non-parametric scan statistics for event detection

and forecasting in heterogeneous social media graphs. In KDD. ACM, 2014.

[Coh08] Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis. Na-
tional Security Agency Technical Report, 16, 2008.

[Col30] Selwyn D Collins. The in�uenza epidemic of 1928-1929 with comparative

data for 1918-1919. American Journal of Public Health and the Nations Health,

20(2):119–129, 1930.

[COL13] Freddy Chong Tat Chua, Richard J. Oentaryo, and Ee-Peng Lim. Modeling tem-

poral adoptions using dynamic matrix factorization. In Data Mining (ICDM),
2013 IEEE 13th International Conference on, pages 91–100. IEEE, 2013.

[CPV01] Corinna Cortes, Daryl Pregibon, and Chris Volinsky. Communities of interest.
Springer, 2001.

[CSYP12] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. Aiding the

detection of fake accounts in large scale social online services. In NSDI, 2012.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley

& Sons, 2012.

[CTPK09] Haibin Cheng, Pang-Ning Tan, Christopher Potter, and Steven A Klooster. De-

tection and characterization of anomalies in multivariate time series. In SDM,

pages 413–424. SIAM, 2009.

[CVK08] Saikat Chakrabarti, Ganesh K Venayagamoorthy, and Elias Kyriakides. Pmu

placement for power system observability using binary particle swarm opti-

mization. In Power Engineering Conference, 2008. AUPEC’08. Australasian Uni-
versities, pages 1–5. IEEE, 2008.

[dARF17] Miguel Ramos de Araujo, Pedro Manuel Pinto Ribeiro, and Christos Faloutsos.

Tensorcast: Forecasting with context using coupled tensors (best paper award).

InDataMining (ICDM), 2017 IEEE International Conference on, pages 71–80. IEEE,

2017.

[DDD05] Frédéric Desobry, Manuel Davy, and Christian Doncarli. An online kernel

change detection algorithm. IEEE TSP, 2005.

[DDGS08] Devesh Dua, Sanjay Dambhare, Rajeev Kumar Gajbhiye, and SA Soman. Opti-

mal multistage scheduling of pmu placement: An ilp approach. IEEE Transac-
tions on Power delivery, 23(4):1812–1820, 2008.

[DKA11] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. Temporal link prediction

using matrix and tensor factorizations. TKDD, 5(2):10, 2011.

[DKM15] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. Dynamic matrix fac-

torization with priors on unknown values. In KDD. ACM, 2015.

[DL05] Yi Ding and Xue Li. Time weight collaborative �ltering. In CIKM. ACM, 2005.

188

[DLJL09] Dongsheng Duan, Yuhua Li, Yanan Jin, and Zhengding Lu. Community mining

on dynamic weighted directed graphs. In Proceedings of the 1st ACM interna-
tional workshop on Complex networks meet information & knowledge manage-
ment, pages 11–18. ACM, 2009.

[DLT15] Thang N Dinh, Xiang Li, and My T Thai. Network clustering via maximizing

modularity: Approximation algorithms and theoretical limits. In Data Mining
(ICDM), 2015 IEEE International Conference on, pages 101–110. IEEE, 2015.

[DVMP
+

08] Saverio De Vito, Ettore Massera, Marco Piga, Luca Martinotto, and Girolamo

Di Francia. On �eld calibration of an electronic nose for benzene estimation

in an urban pollution monitoring scenario. Sensors and Actuators B: Chemical,
129(2):750–757, 2008.

[EKM99] Paul Embrechts, Claudia Kluppelberg, and Thomas Mikosch. Modelling ex-

tremal events. British Actuarial Journal, 5(2):465–465, 1999.

[ENLSS16] Lisette Espín Noboa, Florian Lemmerich, Philipp Singer, and Markus Strohmaier.

Discovering and characterizing mobility patterns in urban spaces: A study of

manhattan taxi data. In Proceedings of the 25th International Conference Com-
panion on World Wide Web, pages 537–542. International World Wide Web Con-

ferences Steering Committee, 2016.

[FBC12] Song Feng, Ritwik Banerjee, and Yejin Choi. Syntactic stylometry for decep-

tion detection. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2, pages 171–175. Association

for Computational Linguistics, 2012.

[FCYJMT
+

15] Alceu Ferraz Costa, Yuto Yamaguchi, Agma Juci Machado Traina, Caetano

Traina Jr, and Christos Faloutsos. Rsc: Mining and modeling temporal activity

in social media. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 269–278. ACM, 2015.

[FLG00] Gary William Flake, Steve Lawrence, and C Lee Giles. E�cient identi�cation of

web communities. In KDD, pages 150–160. ACM, 2000.

[FMS14] Klaus Frick, Axel Munk, and Hannes Sieling. Multiscale change point inference.

JRSS(B), 76(3):495–580, 2014.

[Fre78] Linton C Freeman. Centrality in social networks conceptual clari�cation. Social
networks, 1(3):215–239, 1978.

[Fry14] Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection.

The Annals of Statistics, 42(6):2243–2281, 2014.

[GC13] Derek Greene and Pádraig Cunningham. Producing a uni�ed graph represen-

tation from multiple social network views. In ACMWeb, pages 118–121. ACM,

2013.

[GDY
+

17] Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar, Li-

udmila Ulanova, and Eamonn Keogh. Matrix pro�le viii: Domain agnostic on-

line semantic segmentation at superhuman performance levels. In ICDM. IEEE,

189

2017.

[GGF14] Stephan Günnemann, Nikou Günnemann, and Christos Faloutsos. Detecting

anomalies in dynamic rating data: A robust probabilistic model for rating evolu-

tion. In Proceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 841–850. ACM, 2014.

[GGMP04] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating web spam

with trustrank. In VLDB Endowment, pages 576–587, 2004.

[GHK
+

14] Oliver Göbel, Martin Hoefer, Thomas Kesselheim, Thomas Schleiden, and

Berthold Vöcking. Online independent set beyond the worst-case: Secretaries,

prophets, and periods. In International Colloquium on Automata, Languages, and
Programming, pages 508–519. Springer, 2014.

[GKW06] Matthew E Gaston, Miro Kraetzl, and Walter D Wallis. Using graph diameter for

change detection in dynamic networks. Australasian Journal of Combinatorics,
35:299, 2006.

[Gol84] Andrew V Goldberg. Finding a maximum density subgraph. Technical Report,

1984.

[GPW
+

] Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xiangyu Zhang, and Dongyan

Xu. Leaps: Detecting camou�aged attacks with statistical learning guided by

program analysis.

[Gri93] Scott D Grimshaw. Computing maximum likelihood estimates for the general-

ized pareto distribution. Technometrics, 35(2):185–191, 1993.

[GTV11] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. Evaluating

cooperation in communities with the k-core structure. In Advances in Social Net-
works Analysis and Mining (ASONAM), 2011 International Conference on, pages

87–93. IEEE, 2011.

[GVK
+

12] Saptarshi Ghosh, Bimal Viswanath, Farshad Kooti, Naveen Kumar Sharma, Gau-

tam Korlam, Fabricio Benevenuto, Niloy Ganguly, and Krishna Phani Gummadi.

Understanding and combating link farming in the twitter social network. In 21st
WWW, pages 61–70. ACM, 2012.

[GW95] Michel X Goemans and David P Williamson. A general approximation technique

for constrained forest problems. SIAM Journal on Computing, 24(2):296–317,

1995.

[HA18] Natascha Harth and Christos Anagnostopoulos. Edge-centric e�cient regres-

sion analytics. In 2018 IEEE EDGE, pages 93–100. IEEE, 2018.

[Hal04] Magnús M Halldórsson. Approximations of weighted independent set and

hereditary subset problems. InGraph Algorithms And Applications 2, pages 3–18.

World Scienti�c, 2004.

[Ham94] James Douglas Hamilton. Time series analysis, volume 2. Princeton university

press Princeton, 1994.

190

[HF19] Bryan Hooi and Christos Faloutsos. Branch and border: Partition-based change

detection in multivariate time series. In Proceedings of the 2016 SIAM Interna-
tional Conference on Data Mining. SIAM, 2019.

[HIS15] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A nearly-linear time frame-

work for graph-structured sparsity. In ICML, pages 928–937, 2015.

[HK
+

07] Rob J Hyndman, Yeasmin Khandakar, et al. Automatic time series for forecasting:
the forecast package for R. Number 6/07. Monash University, Department of

Econometrics and Business Statistics, 2007.

[HL04] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Pro-
ceedings of the tenth ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 168–177. ACM, 2004.

[HNB16] David Hallac, Peter Nystrup, and Stephen Boyd. Greedy gaussian segmentation

of multivariate time series. arXiv preprint arXiv:1610.07435, 2016.

[Hof04] Thomas Hofmann. Latent semantic models for collaborative �ltering. ACM
Transactions on Information Systems (TOIS), 22(1):89–115, 2004.

[HPS01] Henrique Steinherz Hippert, Carlos Eduardo Pedreira, and Reinaldo Castro

Souza. Neural networks for short-term load forecasting: A review and eval-

uation. IEEE Transactions on power systems, 16(1):44–55, 2001.

[HS03] Shyh-Jier Huang and Kuang-Rong Shih. Short-term load forecasting via arma

model identi�cation including non-gaussian process considerations. IEEE Trans-
actions on power systems, 18(2):673–679, 2003.

[HSB
+

16a] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit

Kumar, Disha Makhija, and Christos Faloutsos. Birdnest: Bayesian inference for

ratings-fraud detection. In Proceedings of the 2016 SIAM International Conference
on Data Mining, pages 495–503. SIAM, 2016.

[HSB
+

16b] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos

Faloutsos. Fraudar: Bounding graph fraud in the face of camou�age. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 895–904. ACM, 2016.

[HSLF19] Bryan Hooi, Kijung Shin, Shenghua Liu, and Christos Faloutsos. Smf: Drift-

aware matrix factorization with seasonal patterns. In Proceedings of the 2016
SIAM International Conference on Data Mining. SIAM, 2019.

[HSP
+

18] Bryan Hooi, Hyun Ah Song, Amritanshu Pandey, Marko Jereminov, Larry Pi-

leggi, and Christos Faloutsos. Streamcast: Fast and online mining of power grid

time sequences. In Proceedings of the 2018 SIAM International Conference on Data
Mining, pages 531–539. SIAM, 2018.

[HT93] Cli�ord M Hurvich and Chih-Ling Tsai. A corrected akaike information crite-

rion for vector autoregressive model selection. Journal of time series analysis,
14(3):271–279, 1993.

191

[JBC
+

15] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos

Faloutsos. A general suspiciousness metric for dense blocks in multimodal data.

In Data Mining (ICDM), 2015 IEEE International Conference on, pages 781–786.

IEEE, 2015.

[JBC
+

16] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos

Faloutsos. Spotting suspicious behaviors in multimodal data: A general metric

and algorithms. TKDE, 28(8):2187–2200, 2016.

[JCB
+

14a] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang.

Catchsync: catching synchronized behavior in large directed graphs. In 20th
KDD, pages 941–950. ACM, 2014.

[JCB
+

14b] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Infer-

ring strange behavior from connectivity pattern in social networks. In Advances
in Knowledge Discovery and Data Mining, pages 126–138. Springer, 2014.

[JL08] Nitin Jindal and Bing Liu. Opinion spam and analysis. In Proceedings of the 2008
International Conference on Web Search and Data Mining, pages 219–230. ACM,

2008.

[JLL10] Nitin Jindal, Bing Liu, and Ee-Peng Lim. Finding unusual review patterns using

unexpected rules. In Proceedings of the 19th ACM international conference on
Information and knowledge management, pages 1549–1552. ACM, 2010.

[JNIH14] Michael Jones, Daniel Nikovski, Makoto Imamura, and Takahisa Hirata.

Anomaly detection in real-valued multidimensional time series. In International
Conference on Bigdata/Socialcom/Cybersecurity. Stanford University, ASE. Cite-

seer, 2014.

[JPS
+

17] Marko Jereminov, Amritanshu Pandey, Hyun Ah Song, Bryan Hooi, Christos

Faloutsos, and Larry Pileggi. Linear load model for robust power system anal-

ysis. In IEEE PES Innovative Smart Grid Technologies, page (submitted). IEEE,

2017.

[JSB
+

05] Brad Jackson, Je�rey D Scargle, David Barnes, Sundararajan Arabhi, Alina Alt,

Peter Gioumousis, Elyus Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, and

Tun Tao Tsai. An algorithm for optimal partitioning of data on an interval. IEEE
Signal Processing Letters, 12(2):105–108, 2005.

[JXWC12] Peirong Ji, Di Xiong, Peng Wang, and Juan Chen. A study on exponential

smoothing model for load forecasting. In Power and Energy Engineering Con-
ference (APPEEC), 2012 Asia-Paci�c, pages 1–4. IEEE, 2012.

[K
+

60] Rudolph Emil Kalman et al. A new approach to linear �ltering and prediction

problems. Journal of basic Engineering, 82(1):35–45, 1960.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[Kaz14] Nicholas D Kazarino�. Analytic inequalities. Courier Corporation, 2014.

192

[KB09] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications.

SIAM review, 51(3):455–500, 2009.

[KCG
+

15] Stanley IM Ko, Terence TL Chong, Pulak Ghosh, et al. Dirichlet process hidden

markov multiple change-point model. Bayesian Analysis, 10(2):275–296, 2015.

[KCHP01] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algo-

rithm for segmenting time series. In ICDM. IEEE, 2001.

[KE11] Daniel Kahneman and Patrick Egan. Thinking, fast and slow, volume 1. Farrar,

Straus and Giroux New York, 2011.

[KFE12] Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of

changepoints with a linear computational cost. JASA, 107(500):1590–1598, 2012.

[KGW12] Vassilis Kekatos, Georgios B Giannakis, and Bruce Wollenberg. Optimal place-

ment of phasor measurement units via convex relaxation. IEEE Transactions on
power systems, 27(3):1521–1530, 2012.

[KHH
+

05] Martin Kulldor�, Richard He�ernan, Jessica Hartman, Renato Assunçao, and

Farzad Mostashari. A space–time permutation scan statistic for disease outbreak

detection. PLoS medicine, 2(3):e59, 2005.

[KK98] George Karypis and Vipin Kumar. Multilevelk-way partitioning scheme for

irregular graphs. Journal of Parallel and Distributed computing, 48(1):96–129,

1998.

[Kle99] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM (JACM), 46(5):604–632, 1999.

[KLLVH07] Eamonn Keogh, Jessica Lin, Sang-Hee Lee, and Helga Van Herle. Finding the

most unusual time series subsequence: algorithms and applications. Knowledge
and Information Systems, 11(1):1–27, 2007.

[KLPM10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,

a social network or a news media? In 19th WWW, pages 591–600. ACM, 2010.

[kon17] Wikipedia links, portuguese network dataset – KONECT, April 2017.

[Kor08] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collab-

orative �ltering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[Kor10] Yehuda Koren. Collaborative �ltering with temporal dynamics. Communications
of the ACM, 53(4):89–97, 2010.

[KP09] Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and

hypergraphs. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 508–520. Springer, 2009.

[KQR16] Ivan Kojadinovic, Jean-François Quessy, and Tom Rohmer. Testing the con-

stancy of spearmanâĂŹs rho in multivariate time series. Annals of the Institute
of Statistical Mathematics, 68(5):929–954, 2016.

193

[Kun13] Jérôme Kunegis. Konect: the koblenz network collection. InWWW, pages 1343–

1350. ACM, 2013.

[KVF13] Danai Koutra, Joshua T Vogelstein, and Christos Faloutsos. Deltacon: A princi-

pled massive-graph similarity function. In SDM, pages 162–170. SIAM, 2013.

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad

and spectral. JACM, 51(3):497–515, 2004.

[LADW05] Lun Li, David Alderson, John C Doyle, and Walter Willinger. Towards a theory

of scale-free graphs: De�nition, properties, and implications. Internet Mathe-
matics, 2(4):431–523, 2005.

[LC98] Erich Leo Lehmann and George Casella. Theory of point estimation, volume 31.

Springer Science & Business Media, 1998.

[LCK
+

10] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and

Zoubin Ghahramani. Kronecker graphs: An approach to modeling networks.

The Journal of Machine Learning Research, 11:985–1042, 2010.

[LCYL17] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-

and short-term temporal patterns with deep neural networks. arXiv preprint
arXiv:1703.07015, 2017.

[Ley02] Michael Ley. The dblp computer science bibliography: Evolution, research is-

sues, perspectives. In SPIRE, pages 1–10. Springer, 2002.

[LH07] Xiaolei Li and Jiawei Han. Mining approximate top-k subspace anomalies in

multi-dimensional time-series data. In Proceedings of the 33rd international con-
ference on Very large data bases, pages 447–458. VLDB Endowment, 2007.

[LHK10] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in

social media. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pages 1361–1370. ACM, 2010.

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densi-

�cation and shrinking diameters. ACM TKDD, 1(1):2, 2007.

[LKG
+

07] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne

VanBriesen, and Natalie Glance. Cost-e�ective outbreak detection in networks.

In KDD, pages 420–429. ACM, 2007.

[LLJ02] X Liu and RG Lathrop Jr. Urban change detection based on an arti�cial neural

network. International Journal of Remote Sensing, 23(12):2513–2518, 2002.

[LLM10] Jure Leskovec, Kevin J Lang, and Michael Mahoney. Empirical comparison of

algorithms for network community detection. In WWW, pages 631–640. ACM,

2010.

[LNI11] Qiao Li, Rohit Negi, and Marija D Ilić. Phasor measurement units placement for

power system state estimation: A greedy approach. In Power and Energy Society
General Meeting, 2011 IEEE, pages 1–8. IEEE, 2011.

194

[LNJ
+

10] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and Hady Wirawan Lauw.

Detecting product review spammers using rating behaviors. In Proceedings of the
19th ACM international conference on Information and knowledge management,
pages 939–948. ACM, 2010.

[LRBP09] Julie Letchner, Christopher Re, Magdalena Balazinska, and Matthai Philipose.

Access methods for markovian streams. In Data Engineering, 2009. ICDE’09.
IEEE 25th International Conference on, pages 246–257. IEEE, 2009.

[LS01] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix fac-

torization. In NIPS, 2001.

[LTZ08] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In ICDM. IEEE,

2008.

[LYCS13] Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama. Change-point

detection in time-series data by relative density-ratio estimation. Neural Net-
works, 43:72–83, 2013.

[LZG
+

15] Xuan Liang, Tao Zou, Bin Guo, Shuo Li, Haozhe Zhang, Shuyi Zhang, Hui

Huang, and Song Xi Chen. Assessing beijing’s pm2. 5 pollution: severity,

weather impact, apec and winter heating. Proc. R. Soc. A, 471(2182):20150257,

2015.

[MA99] Fernando H Magnago and Ali Abur. A uni�ed approach to robust meter place-

ment against loss of measurements and branch outages. In Power Industry Com-
puter Applications, 1999. PICA’99. Proceedings of the 21st 1999 IEEE International
Conference, pages 3–8. IEEE, 1999.

[MAB13] José R Martí, Hamed Ahmadi, and Lincol Bashualdo. Linear power-�ow for-

mulation based on a voltage-dependent load model. IEEE Transactions on Power
Delivery, 28(3):1682–1690, 2013.

[Mar63] Donald W Marquardt. An algorithm for least-squares estimation of nonlin-

ear parameters. Journal of the society for Industrial and Applied Mathematics,
11(2):431–441, 1963.

[MBR
+

13] Misael Mongiovi, Petko Bogdanov, Razvan Ranca, Evangelos E Papalexakis,

Christos Faloutsos, and Ambuj K Singh. Netspot: Spotting signi�cant anoma-

lous regions on dynamic networks. In SDM. SIAM, 2013.

[MBS13] Misael Mongiovi, Petko Bogdanov, and Ambuj K Singh. Mining evolving net-

work processes. In ICDM, pages 537–546. IEEE, 2013.

[Min00] Thomas Minka. Estimating a dirichlet distribution, 2000.

[MJ14] David S Matteson and Nicholas A James. A nonparametric approach for multiple

change point analysis of multivariate data. JASA, 109(505):334–345, 2014.

[MKKSM13] Arash Molavi Kakhki, Chloe Kliman-Silver, and Alan Mislove. Iolaus: Securing

online content rating systems. In Proceedings of the 22nd international conference
onWorld Wide Web, pages 919–930. International World Wide Web Conferences

Steering Committee, 2013.

195

[ML13] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: under-

standing rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems, pages 165–172. ACM, 2013.

[MS16] Yasuko Matsubara and Yasushi Sakurai. Regime shifts in streams: Real-time

forecasting of co-evolving time sequences. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 1045–1054. ACM, 2016.

[MSN13] Edward McFowland, Skyler Speakman, and Daniel B Neill. Fast generalized

subset scan for anomalous pattern detection. JMLR, 14(1):1533–1561, 2013.

[New06] Mark EJ Newman. Modularity and community structure in networks. PNAS,

103(23):8577–8582, 2006.

[NWF78] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis

of approximations for maximizing submodular set functions-i. Mathematical
Programming, 14(1):265–294, 1978.

[OCCH11] Myle Ott, Yejin Choi, Claire Cardie, and Je�rey T Hancock. Finding deceptive

opinion spam by any stretch of the imagination. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 309–319. Association for Computational Linguis-

tics, 2011.

[OR15] Peter Orbanz and Daniel M Roy. Bayesian models of graphs, arrays and other

exchangeable random structures. IEEE TPAMI, 37(2):437–461, 2015.

[PAISM14] Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sánchez, and Emmanuel Müller.

Focused clustering and outlier detection in large attributed graphs. In 20th KDD,

pages 1346–1355. ACM, 2014.

[Par62] Emanuel Parzen. On estimation of a probability density function and mode. The
annals of mathematical statistics, 33(3):1065–1076, 1962.

[PBS47] James E Perkins, Anne M Bahlke, and Hilda Freeman Silverman. E�ect of

ultra-violet irradiation of classrooms on spread of measles in large rural central

schools preliminary report. American Journal of Public Health and the Nations
Health, 37(5):529–537, 1947.

[PC15] Leto Peel and Aaron Clauset. Detecting change points in the large-scale struc-

ture of evolving networks. In AAAI, pages 2914–2920, 2015.

[PCWF07] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Net-

probe: a fast and scalable system for fraud detection in online auction networks.

In Proceedings of the 16th international conference onWorldWideWeb, pages 201–

210. ACM, 2007.

[PDGM10] Panagiotis Papadimitriou, Ali Dasdan, and Hector Garcia-Molina. Web graph

similarity for anomaly detection. Journal of Internet Services and Applications,
1(1):19–30, 2010.

196

[pem18] Caltrans performance measurement system. http://pems.dot.ca.
gov/, 2018. Accessed: 2018-04-08.

[Pin05] Brandon Pincombe. Anomaly detection in time series of graphs using arma

processes. Asor Bulletin, 24(4):2, 2005.

[PJL
+

16] Amritanshu Pandey, Marko Jereminov, Xin Li, Gabriela Hug, and Larry Pileggi.

Aggregated load and generation equivalent circuit models with semi-empirical

data �tting. In Green Energy and Systems Conference (IGSEC), 2016 IEEE, pages

1–6. IEEE, 2016.

[PPL91] JH Park, YM Park, and KY Lee. Composite modeling for adaptive short-term

load forecasting. IEEE Transactions on Power Systems, 6(2):450–457, 1991.

[PSS
+

10] BA Prakash, M Seshadri, A Sridharan, S Machiraju, and C Faloutsos. Eigen-

spokes: Surprising patterns and community structure in large graphs. PAKDD,
2010a, 84, 2010.

[PSV02] Romualdo Pastor-Satorras and Alessandro Vespignani. Immunization of com-

plex networks. Physical Review E, 65(3):036104, 2002.

[PVG
+

11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,

2011.

[QAWZ15] Abdulhakim A Qahtan, Basma Alharbi, Suojin Wang, and Xiangliang Zhang.

A pca-based change detection framework for multidimensional data streams:

Change detection in multidimensional data streams. In KDD. ACM, 2015.

[QLCZ15] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. Locally densest sub-

graph discovery. In Proceedings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 965–974. ACM, 2015.

[QLW16] Dequan Qi, Zhonghua Li, and Zhaojun Wang. On-line monitoring data quality

of high-dimensional data streams. JSCS, 86(11):2204–2216, 2016.

[RAGT14] Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Nikolaj Tatti.

Event detection in activity networks. In KDD. ACM, 2014.

[RCC
+

04] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and

Domenico Parisi. De�ning and identifying communities in networks. PNAS,

101(9):2658–2663, 2004.

[RGBK15] Mahshid Zomorodi Rad, Saeed Rahati Ghuchani, Kambiz Bahaadinbeigy, and

Mohammad Mahdi Khalilzadeh. Real time recognition of heart attack in a smart

phone. Acta Informatica Medica, 23(3):151, 2015.

[RHSS16] Stephen Ranshous, Steve Harenberg, Kshitij Sharma, and Nagiza F Samatova.

A scalable approach for outlier detection in edge streams using sketch-based

approximations. In SDM, pages 189–197. SIAM, 2016.

197

http://pems.dot.ca.gov/
http://pems.dot.ca.gov/

[RMB
+

10] Sasank Reddy, Min Mun, Je� Burke, Deborah Estrin, Mark Hansen, and Mani

Srivastava. Using mobile phones to determine transportation modes. ACM
TOSN, 6(2):13, 2010.

[RPUW07] Chawasak Rakpenthai, Suttichai Premrudeepreechacharn, Sermsak Uatrongjit,

and Neville R Watson. An optimal pmu placement method against measurement

loss and branch outage. IEEE transactions on power delivery, 22(1):101–107, 2007.

[RRS00] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. E�cient algorithms

for mining outliers from large data sets. In ACM SIGMOD Record, volume 29,

pages 427–438. ACM, 2000.

[RUUU12] Anand Rajaraman, Je�rey D Ullman, Je�rey David Ullman, and Je�rey David

Ullman. Mining of massive datasets, volume 1. Cambridge University Press

Cambridge, 2012.

[SBGF14] Neil Shah, Alex Beutel, Brian Gallagher, and Christos Faloutsos. Spotting sus-

picious link behavior with fbox: an adversarial perspective. In Data Mining
(ICDM), 2014 IEEE International Conference on, pages 959–964. IEEE, 2014.

[SBH
+

15] Neil Shah, Alex Beutel, Bryan Hooi, Leman Akoglu, Stephan Gunnemann,

Makhija, Mohit Kumar, and Christos Faloutsos. Edgecentric: Anomaly detec-

tion in edge-attributed networks. arXiv preprint, 2015.

[SCM
+

14] A Selakov, D Cvijetinović, L Milović, S Mellon, and D Bekut. Hybrid pso–svm

method for short-term load forecasting during periods with signi�cant temper-

ature variations in city of burbank. Applied Soft Computing, 16:80–88, 2014.

[SDLF
+

17] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evan-

gelos E Papalexakis, and Christos Faloutsos. Tensor decomposition for sig-

nal processing and machine learning. IEEE Transactions on Signal Processing,

65(13):3551–3582, 2017.

[SERF16] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope: Graph mining

using k-core analysis - patterns, anomalies and algorithms. In ICDM, 2016.

[SF78] Stephen B Seidman and Brian L Foster. A graph-theoretic generalization of the

clique concept. Journal of Mathematical sociology, 6(1):139–154, 1978.

[SFPY07] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S Yu. Graph-

scope: parameter-free mining of large time-evolving graphs. In KDD. ACM,

2007.

[SHJ
+

17] Hyun Ah Song, Bryan Hooi, Marko Jereminov, Amritanshu Pandey, Larry Pi-

leggi, and Christos Faloutsos. Powercast: Mining and forecasting power grid

sequences. In ECML-PKDD, pages 606–621. Springer, 2017.

[SHK
+

10] Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang.

Dense subgraphs with restrictions and applications to gene annotation graphs.

In RECOMB, 2010.

[SHKF17] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. Densealert: Incre-

mental dense-subtensor detection in tensor streams. In Proceedings of the 23rd

198

ACMSIGKDD International Conference on Knowledge Discovery and DataMining,

pages 1057–1066. ACM, 2017.

[SK74] Andrew Jhon Scott and M Knott. A cluster analysis method for grouping means

in the analysis of variance. Biometrics, pages 507–512, 1974.

[SKKR00] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application

of dimensionality reduction in recommender system-a case study. Technical

report, Minnesota Univ Minneapolis Dept of Computer Science, 2000.

[SKZ
+

15] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.

Timecrunch: Interpretable dynamic graph summarization. In KDD, pages 1055–

1064. ACM, 2015.

[SLR16] Emma M. Stewart, Anna Liao, and Ciaran Roberts. Open Îĳpmu: A real world

reference distribution micro-phasor measurement unit data set for research and

application development. 10/2016 2016.

[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. PAMI,
22(8):888–905, 2000.

[SM08] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factor-

ization using markov chain monte carlo. In Proceedings of the 25th international
conference on Machine learning, pages 880–887. ACM, 2008.

[Smi87] Richard L Smith. Estimating tails of probability distributions. The annals of
Statistics, pages 1174–1207, 1987.

[SPV14] John Z. Sun, Dhruv Parthasarathy, and Kush R Varshney. Collaborative

kalman �ltering for dynamic matrix factorization. IEEE Trans. Signal Process-
ing, 62(14):3499–3509, 2014.

[SRS16] James Sharpnack, Alessandro Rinaldo, and Aarti Singh. Detecting anomalous

activity on networks with the graph fourier scan statistic. IEEE Transactions on
Signal Processing, 64(2):364–379, 2016.

[SSR13] James Sharpnack, Aarti Singh, and Alessandro Rinaldo. Changepoint detection

over graphs with the spectral scan statistic. InArti�cial Intelligence and Statistics,
pages 545–553, 2013.

[STF06] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs:

dynamic tensor analysis. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 374–383. ACM, 2006.

[sup] Supplementary document. https://www.dropbox.com/sh/
il46i2cgqfd1vrk/AABazVadhlLAp-Z8h0kKoZf5a?dl=0.

[sup18] Supplementary document. http://www.andrew.cmu.edu/user/
bhooi/bnb/supplement.pdf, 2018.

[Svi04] Maxim Sviridenko. A note on maximizing a submodular set function subject to

a knapsack constraint. Operations Research Letters, 32(1):41–43, 2004.

199

https://www.dropbox.com/sh/il46i2cgqfd1vrk/AABazVadhlLAp-Z8h0kKoZf5a?dl=0
https://www.dropbox.com/sh/il46i2cgqfd1vrk/AABazVadhlLAp-Z8h0kKoZf5a?dl=0
http://www.andrew.cmu.edu/user/bhooi/bnb/supplement.pdf
http://www.andrew.cmu.edu/user/bhooi/bnb/supplement.pdf

[TBG
+

13] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,

and Maria Tsiarli. Denser than the densest subgraph: Extracting optimal quasi-

cliques with quality guarantees. In SIGKDD, pages 104–112, 2013.

[THF17] Tsubasa Takahashi, Bryan Hooi, and Christos Faloutsos. Autocyclone: Auto-

matic mining of cyclic online activities with robust tensor factorization. In

WWW, 2017.

[tlc13] Background on the boro taxi program. http://www.nyc.gov/html/
tlc/html/passenger/shl_passenger_background.shtml,

2013. Accessed: 2017-01-25.

[TMLS09] Dinh Nguyen Tran, Bonan Min, Jinyang Li, and Lakshminarayanan Subrama-

nian. Sybil-resilient online content voting. In NSDI, volume 9, pages 15–28,

2009.

[Tso15] Charalampos Tsourakakis. The k-clique densest subgraph problem. In 24th
WWW, pages 1122–1132. International World Wide Web Conferences Steering

Committee, 2015.

[TTL11] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly detection for

streaming data. In IJCAI, 2011.

[UC96] Graham Upton and Ian Cook. Understanding statistics. Oxford University Press,

1996.

[VD06] Sankar Virdhagriswaran and Gordon Dakin. Camou�aged fraud detection in

domains with complex relationships. In 12th KDD, pages 941–947. ACM, 2006.

[Vit85] Je�rey S Vitter. Random sampling with a reservoir. ACM Transactions on Math-
ematical Software (TOMS), 11(1):37–57, 1985.

[vLDBSM16] Matthijs van Leeuwen, Tijl De Bie, Eirini Spyropoulou, and Cédric Mesnage.

Subjective interestingness of subgraph patterns. Machine Learning, 105(1):41–

75, 2016.

[VPGJ
+

13] Willem G Van Panhuis, John Grefenstette, Su Yon Jung, Nian Shong Chok, Anne

Cross, Heather Eng, Bruce Y Lee, Vladimir Zadorozhny, Shawn Brown, Derek

Cummings, et al. Contagious diseases in the united states from 1888 to the

present. NEJM, 2013.

[VS10] Alireza Vahdatpour and Majid Sarrafzadeh. Unsupervised discovery of abnor-

mal activity occurrences in multi-dimensional time series, with applications in

wearable systems. In SDM, pages 641–652. SIAM, 2010.

[WGD06] Baoning Wu, Vinay Goel, and Brian D Davison. Propagating trust and distrust

to demote web spam. MTW, 190, 2006.

[Win60] Peter R Winters. Forecasting sales by exponentially weighted moving averages.

Management science, 6(3):324–342, 1960.

[WLZ11] Hongning Wang, Yue Lu, and ChengXiang Zhai. Latent aspect rating analysis

without aspect keyword supervision. In 17th KDD, pages 618–626. ACM, 2011.

200

http://www.nyc.gov/html/tlc/html/passenger/shl_passenger_background.shtml
http://www.nyc.gov/html/tlc/html/passenger/shl_passenger_background.shtml

[WXLY11] Guan Wang, Sihong Xie, Bing Liu, and Philip S Yu. Review graph based online

store review spammer detection. In Data mining (icdm), 2011 ieee 11th interna-
tional conference on, pages 1242–1247. IEEE, 2011.

[XCH
+

10] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Je� Schneider, and Jaime G Carbonell.

Temporal collaborative �ltering with bayesian probabilistic tensor factorization.

In SDM. SIAM, 2010.

[XJRN03] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. Distance

metric learning with application to clustering with side-information. In NIPS,

pages 521–528, 2003.

[XWLY12] Sihong Xie, Guan Wang, Shuyang Lin, and Philip S Yu. Review spam detection

via temporal pattern discovery. In Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 823–831. ACM,

2012.

[XY13] Yangyang Xu and Wotao Yin. A block coordinate descent method for regularized

multiconvex optimization with applications to nonnegative tensor factorization

and completion. SIAM Journal on imaging sciences, 6(3):1758–1789, 2013.

[YA15] Junting Ye and Leman Akoglu. Discovering opinion spammer groups by net-

work footprints. In Machine Learning and Knowledge Discovery in Databases,
pages 267–282. Springer, 2015.

[YGKX08] Haifeng Yu, Phillip B Gibbons, Michael Kaminsky, and Feng Xiao. Sybillimit:

A near-optimal social network defense against sybil attacks. In Security and
Privacy, 2008. SP 2008. IEEE Symposium on, pages 3–17. IEEE, 2008.

[YH18] Hiroki Yanagisawa and Satoshi Hara. Discounted average degree density metric

and new algorithms for the densest subgraph problem. Networks, 71(1):3–15,

2018.

[YJYC17] Subin Yi, Janghoon Ju, Man-Ki Yoon, and Jaesik Choi. Grouped convolutional

neural networks for multivariate time series. arXiv preprint arXiv:1703.09938,

2017.

[YKGF06] Haifeng Yu, Michael Kaminsky, Phillip B Gibbons, and Abraham Flaxman. Sybil-

guard: defending against sybil attacks via social networks. ACM SIGCOMM
Computer Communication Review, 36(4):267–278, 2006.

[YTWM04] Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and Peter Milne. On-line

unsupervised outlier detection using �nite mixtures with discounting learning

algorithms. DMKD, 8(3):275–300, 2004.

[Yul19] George Udny Yule. An introduction to the theory of statistics. C. Gri�n, limited,

1919.

[ZGP12] Yue Zhao, Andrea Goldsmith, and H Vincent Poor. On pmu location selection for

line outage detection in wide-area transmission networks. In Power and Energy
Society General Meeting, 2012 IEEE, pages 1–8. IEEE, 2012.

201

[ZLMZ05] Beichuan Zhang, Raymond Liu, Daniel Massey, and Lixia Zhang. Collecting the

internet as-level topology. ACM SIGCOMM Computer Communication Review,

35(1):53–61, 2005.

[ZMST11] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John

Thomas. Matpower: Steady-state operations, planning, and analysis tools for

power systems research and education. IEEE Transactions on power systems,
26(1):12–19, 2011.

[ZWWB15] Pei Zhang, Xiaoyu Wu, Xiaojun Wang, and Sheng Bi. Short-term load forecast-

ing based on big data technologies. CSEE Journal of Power and Energy Systems,
1(3):59–67, 2015.

[ZWZJ15] Changliang Zou, Zhaojun Wang, Xuemin Zi, and Wei Jiang. An e�cient on-

line monitoring method for high-dimensional data streams. Technometrics,
57(3):374–387, 2015.

202

	1 Introduction
	1.1 Overview and Contributions
	1.2 Detailed Chapter Summaries
	1.2.1 Part I: Graphs
	1.2.2 Part II: Time Series
	1.2.3 Part III: Graphs with Sensors

	2 Background
	2.1 Graphs
	2.2 Time Series
	2.3 Graphs with Sensors

	I Graphs
	3 TellTail: Scoring Dense Subgraphs
	3.1 Introduction
	3.2 Related Work
	3.3 Background: Generalized Pareto
	3.4 Problem Definition
	3.5 Proposed Approach
	3.5.1 Introductory Example
	3.5.2 Subgraph Mass Profiles
	3.5.3 Empirical Observations

	3.6 Proposed Measures
	3.6.1 Tail Measure
	3.6.2 Adjusting for Degree: the TailDC Measure
	3.6.3 Dense Subgraph Power Laws
	3.6.4 TellTail: Fast Scoring using Power Laws
	3.6.5 Basic Optimization Algorithm
	3.6.6 Improved Algorithm: TellTail-Search+

	3.7 Theoretical Results
	3.7.1 Consistency
	3.7.2 Proposed Monotonicity Axioms
	3.7.3 NP Completeness
	3.7.4 Q1. Scalability
	3.7.5 Q2. Accuracy of Measure
	3.7.6 Q3. Real-World Effectiveness
	3.7.7 Case Study on Twitter Data

	3.8 Conclusion

	4 Fraudar: Fraud Detection in an Adversarial Setting
	4.1 Introduction
	4.2 Background and Related Work
	4.3 Problem Definition
	4.4 Proposed Method
	4.4.1 Metric
	4.4.2 Algorithm
	4.4.3 Theoretical Bounds
	4.4.4 Edge Weights and Camouflage Resistance
	4.4.5 Implications: Bounding Fraud

	4.5 Experiments
	4.5.1 Q1. Illustration of our Theorem
	4.5.2 Q2. Evaluation on Synthetic Data
	4.5.3 Q3. Effectiveness on Real Data
	4.5.4 Q4. Scalability

	4.6 Conclusion

	II Time Series
	5 BirdNest: Fraud Detection in Timestamped Ratings
	5.1 Introduction
	5.2 Background and Related Work
	5.3 Bayesian Model
	5.3.1 Motivating Example
	5.3.2 Proposed Model

	5.4 Proposed Algorithms
	5.4.1 Fitting our Bayesian Model (BIRD)
	5.4.2 NEST: Proposed Metric for Detecting Suspicious Users

	5.5 Experiments
	5.5.1 Q1: Effectiveness
	5.5.2 Q2: Scalability
	5.5.3 Q3: Interpretability

	5.6 Conclusion

	6 StreamCast: Forecasting and Anomaly Detection in Power Grid Time Series
	6.1 Introduction
	6.2 Background and Related Work
	6.2.1 Related Work
	6.2.2 Background

	6.3 Proposed Model
	6.3.1 Proposed Dynamic BIG Model
	6.3.2 Dynamic BIG with Temperature Model

	6.4 Proposed Optimization Objective
	6.5 Proposed StreamCast Algorithm
	6.5.1 Overview
	6.5.2 Streaming Optimization (StreamFit)
	6.5.3 Temperature Model Optimization (TempFit)
	6.5.4 Forecasting Step (Forecast)
	6.5.5 Extensions

	6.6 Experiments
	6.6.1 Data
	6.6.2 Q1. Forecasting accuracy
	6.6.3 Q2. Scalability
	6.6.4 Q3. What-if scenarios

	6.7 Conclusion

	7 BNB: Nonparametric Anomaly Detection in Mixed Time Series
	7.1 Related Work
	7.2 Problem Definition
	7.2.1 Problem Setting

	7.3 Illustrative Example
	7.4 Proposed BNB Algorithm
	7.4.1 Random Partition Tree
	7.4.2 Change Score
	7.4.3 Efficient Implementation
	7.4.4 Online Algorithm (BNBO)
	7.4.5 Time Complexity

	7.5 Theoretical Analysis
	7.5.1 Interpretation of Separation Depth
	7.5.2 Bounds on False Positive Rate

	7.6 Experiments
	7.6.1 Q1. Detection Accuracy
	7.6.2 Q2. Scalability
	7.6.3 Q3. Real-World Effectiveness

	7.7 Conclusion

	8 SMF: Drift-Aware Matrix Factorization with Seasonal Patterns
	8.1 Introduction
	8.2 Background and Related Work
	8.3 Model
	8.3.1 Proposed SMF Model

	8.4 Proposed SMF Algorithm
	8.4.1 Initialization Step
	8.4.2 Online Updates
	8.4.3 Speeding up Updates
	8.4.4 Forecasting
	8.4.5 Anomaly Detection: SMF-A Algorithm

	8.5 Experiments
	8.5.1 Q1: Forecasting Accuracy
	8.5.2 Q2: Scalability
	8.5.3 Q3: Real-World Effectiveness
	8.5.4 Anomaly Detection

	8.6 Conclusion

	III Graphs with Sensors
	9 ChangeDAR: Localized Anomaly Detection in Graphs with Sensors
	9.1 Introduction
	9.2 Related Work
	9.3 Background
	9.3.1 Prize-Collecting Steiner Tree (PCST)
	9.3.2 Maximum Weight Independent Set (MWIS)

	9.4 Problem
	9.4.1 Problem Setting

	9.5 Change Scoring: ChangeDAR-S
	9.5.1 Optimization Objective
	9.5.2 Optimization Approach
	9.5.3 Theoretical Results

	9.6 Change Detection: ChangeDAR-D
	9.6.1 Optimization Objective
	9.6.2 Optimization Approach
	9.6.3 Theoretical Results

	9.7 Experiments
	9.7.1 Q1. Detection Accuracy
	9.7.2 Q2. Localization Accuracy
	9.7.3 Q3. Scalability

	9.8 Conclusion

	10 GridWatch: Sensor Selection and Anomaly Detection on the Power Grid
	10.1 Introduction
	10.2 Background and Related Work
	10.2.1 Background: Submodular Functions

	10.3 GridWatch-D Anomaly Detection Algorithm
	10.3.1 Types of Anomalies
	10.3.2 Proposed Anomaly Score

	10.4 Sensor Placement: GridWatch-S
	10.4.1 Proposed Optimization Objective
	10.4.2 Properties of Objective
	10.4.3 Proposed GridWatch-S Algorithm
	10.4.4 Approximation Bound

	10.5 Experiments
	10.5.1 Q1. Anomaly Detection Accuracy
	10.5.2 Q2. Sensor Selection Quality
	10.5.3 Q3. Scalability

	10.6 Conclusion

	11 Conclusion and Future Work
	11.1 Summary and Overarching Themes
	11.2 Vision and Future Work
	11.3 Closing Thoughts

	Bibliography

