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“Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.”
(The limits of my language mean the limits of my world.)

– Ludwig Wittgenstein
Tractatus Logico-Philosophicus
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Abstract
Humans routinely learn new concepts using natural language communica-

tions, even in scenarios with limited or no labeled examples. For example, a
human can learn the concept of a phishing email from natural language ex-
planations such as ‘phishing emails often request your bank account number’.
On the other hand, purely inductive learning systems typically require a large
collection of labeled data for learning such a concept. We believe that advances
in Computational Linguistics and the growing ubiquity of computing devices
together can enable people to teach computers classification tasks using natural
language interactions.

Learning from language presents some key challenges. A preliminary chal-
lenge lies in the basic problem of learning to interpret language, which refers
to an agent’s ability to map natural language explanations in pedagogical con-
texts to formal semantic representations that computers can process and reason
over. A second challenge is that of learning from interpretations, which refers
to the mechanisms through which interpretations of language statements can
be used by computers to solve learning tasks in the environment. We address
aspects of both these problems, and provide an interface for guiding concept
learning methods using language.

For learning from interpretation, we focus on concept learning (binary clas-
sification) tasks. We demonstrate that language can define rich and expressive
features for learning tasks, and show that machine learning can benefit sub-
stantially from this ability. We also investigate assimilation of linguistic cues
in everyday language that implicitly provide constraints for classification mod-
els (e.g., ‘Most emails are not phishing emails’). In particular, we focus on
conditional statements and linguistic quantifiers (such as usually, never, etc.),
and show that such advice can be used to train classifiers even with few or no
labeled examples of a concept.

For learning to interpret, we develop new algorithms for semantic parsing
that incorporate pragmatic cues, including conversational history and sensory
observation, to improve automatic language interpretation. We show that envi-
ronmental context can enrich semantic parsing methods by not only providing
discriminative features, but also reducing the need for expensive labeled data
used for training them.

A separate but immensely valuable attribute of human language is that
it is inherently conversational and interactive. We also briefly explore the
possibility of agents that can learn to interact with a human teacher in a mixed-
initiative setting, where the learner can also proactively engage the teacher by
asking questions, rather than only passively listen. We develop a reinforce
learning framework for learning effective question asking strategies in context
of conversational concept learning.
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Chapter 1

Introduction

Learning from language is a fundamental hallmark of human intelligence. People routinely

use language to learn new tasks and knowledge. Indeed, verbal and written language

forms the core for much of human learning and pedagogy, as reflected in educational

devices such as text-books, lectures and student-teacher dialogues. The inextricable role

of language in human thought and intelligence has been extensively studied in multiple

disciplines including experimental psychology (Parker and Gibson, 1979; Piaget et al.,

1959), linguistics (Whorf, 1940; Chomsky, 2006), social anthropology (Dunbar, 1998) and

philosophy (Wittgenstein, 1953; Vygotsky, 1980). Language enables strategies including

explanations, questions and demonstrations, which facilitate human learning (Figure 1.1

shows an example of such as scenario).

Figure 1.1: Example of human learning via language. The child in the story learns to play
a game through a blend of strategies, including explanations, questions and observations
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It is then surprising that this type of learning remains underexplored in the fields of

artificial intelligence and machine learning. Machine learning systems have so far largely

followed a different paradigm of learning: labeling large quantities of data, followed by

inductive inference of statistical regularities between output labels and observable repre-

sentations of the data. While this approach has been extensively successful in a melange of

domains and practical applications, there are inherent limitations on what can be learned

from labeled examples alone. Consider for example: the number of examples needed by

an inductive learner coarsely scales as the log of the size of the hypothesis space (Valiant,

1984). This can be statistically intractable even for common knowledge representations

such as ontologies, which children learn with relatively few examples (Gopnik et al., 2004).

A central reason for this dissonance is that for the most part, machine learning has ignored

richer forms of input, including explanations, clarifications and interaction, which can have

significant consequences for learning research. This is the premise that has motivated our

work: we believe that to make computer learning as efficient as human learning, we need

to develop methods that can learn from natural language interactions.

Further, more than emulating human intelligence or sating scientific curiosity, enabling

a paradigm of conversational machine learning can have transformative practical implica-

tions. Today’s conversational assistants such as Amazon’s Alexa1 or Apple’s Siri 2 have the

capacity to act on a small number of pre-programmed natural language commands (e.g.,

“What is the weather going to be like today?”). However, advances in semantic parsing and

broader language technologies present the possibility of designing conversational interfaces

that enable users to teach computers using language, similar to how humans teach new

tasks to one another. For example, if a user wants Alexa to have a new functionality such

as “whenever there is an important email I haven’t seen within an hour, read it out to me”,

she should be able to teach this verbally, rather than wait for a software developer to create

1https://en.wikipedia.org/wiki/Amazon_Alexa
2https://en.wikipedia.org/wiki/Siri
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such a functionality. This instruction may involve explaining what constitutes an “impor-

tant email” for the user, and providing further clarifications and background knowledge.

When humans teach other humans, such knowledge is often imparted naturally through

explanations, e.g., “emails from my advisor are usually important”. If AI assistants could

be taught in a similar fashion, this could engender a host of ingenious applications and

effectively make every computer user a programmer.

Much of the work described in this dissertation was done as part of a larger effort

towards creating such an intelligent personal assistant, which can be programmed using

natural language by human users (Labutov et al., 2018). This effort included exploring

multiple competencies towards learning from human-like interactions, including learning

reusable conditional procedures, learning facts about the world stored in an ontology, and

grounding the learned knowledge in perception. In general, multiple types of tasks can

be learned through language3 There can also be other types of information about learning

that can be acquired from language, such as meta-knowledge about what to learn, or who

to learn from. However, the focus of our work is the specific problem of learning concepts

(such as the concept of important emails) through natural language.

1.1 Problem statement

This dissertation presents approaches towards enabling computers to learn concepts (or

equivalently, binary classification tasks) through natural language interactions, where we

define a concept as a Boolean function on some domain of instances. For example, such

tasks might include learning the concept of important emails (over the domain of emails),

the concept of a malignant tumor (over the domain of tumors), the concept of a ‘negative

review’ (over product reviews), the concept of ‘fraud’ in credit history analysis, etc. The
3‘Learning’ is a conflated term, which can denote a wide variety of things. For example, it may refer to

developing the ability to play a game, memorizing an alphabet or arithmetic tables, performing a procedure
such as booking a flight ticket or riding a bike, etc.
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ability to automatically learn such concepts is a core cognitive ability, with applications

across diverse domains. As we shall see, learning such concepts also finds natural value

in scenarios involving computers responding to human instructions. Furthermore, binary

classification constitutes the classical setting for supervised machine learning, and hence

successful approaches for this problem can be adapted to other supervised learning settings.

Our aim in this work is to develop methods in machine learning and language understanding

that leverage fundamental aspects of natural language to enable conversational concept

learning in artificial agents embodied as sensor-effector systems.

Communicating effectively with computers through natural language has been one of

the longstanding goals of AI. The bottleneck in using language to guide machines is the

gap between the way modern computers work – by deterministic processing of symbols

following an unambiguous and pre-defined set of rules, and the way humans communicate

via language – an inherently ambiguous yet powerful information channel. This makes it

difficult for machines to interpret human language. Apart from the knowledge of a lexicon

of words and their semantics, language interpretation requires resolution of linguistic am-

biguities (e.g., issues of polysemy, snyonymy), as well as an understanding of situational

context and background knowledge.

However, we believe that advances in NLP and speech research as well as the emer-

gence of ubiquitous computing devices (such as smart-phones and tablets) that can sense

the environment enable the possibility of agents that can learn from human language

interactions in ways that were not possible till very recently. In this dissertation, by

language interpretation we will refer to semantic parsing – converting natural language

sentences to logical forms grounded in a domain specific symbolic language, which repre-

sent their meanings, and can be easily understood by machines. For example, a sentence

such as “Drop a note to mother saying I’ll be late” may be converted to a logical form such

as sendMessage(recipient:mother, text:stringVal(I'll be late))4. While the state-of-
4This approach takes a model-theoretic view of semantics, i.e. the space of predicates in the logical
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the-art in semantic parsing has made steady advances in recent years, there is a need for

NLP methods to expand an awareness of the environment, as well as to drive training of

semantic parsers from easily accessible sources of supervision. Thus, conjoined with our

primary goal of developing machines that can learn concepts from language, a significant

component of this dissertation is the development of new methods for semantic parsing

that incorporate non-linguistic context and require weaker forms of supervision.

In this introduction, we discuss conceptual advantages of supplementing machine learn-

ing methods with language, enumerate the key challenges involved in learning from lan-

guage, and outline a conceptual framework for such an agent. We then describe specific

components of the framework that work in this dissertation explores.

1.2 Why learn from language?

At the onset, we briefly enumerate conceptual advantages that learning from language can

present over conventional methods of learning.

The field of machine learning has traditionally focused on making inductive inferences

from static collections of labeled data. However, this type of learning may often seem

unnatural, especially compared to how humans teach and learn from each other. For

example, an administrative assistant might learn how to process travel reimbursement

requests through explanation by a supervisor, but would never consider learning this by

first collecting volumes of data, then performing inductive analysis to infer the correct

procedure.

Secondly, learning from inductive observation is often inadequate since getting large

volumes of labeled examples is infeasible for the long tail of real-world learning tasks, which

may be highly domain-specific, or even personalized (for example, consider the concept of

important emails, which can vary from person to person). Collecting personalized labeled

language determines the set of possible meanings it can convey
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data for such scenarios might be infeasible.

Another related aspect is that in many cases, inductive learning can be inefficient

compared to learning from language. Consider learning a concept such as ‘emails from

my mother’, which can be much more easily explained in language than through gener-

alization from labeled examples. For example, one might say ‘these emails come from

mother@email.com’. In such scenarios language can significantly reduce the sample com-

plexity of learning.

As previously mentioned, perhaps the most significant possibility of agents that can

learn interactively from language might be to make AI systems accessible to non-experts

and everyday people, allowing them to teach personalized new concepts and procedures

as needed. The possibility to program computers using natural language coupled with

the growing ubiquity of computing devices with formidable repertoires of sensor-effector

capabilities can provide fertile ground for a range of creative applications.

1.3 Key Challenges

In this work, our goal is to develop algorithms that can learn through natural language

interaction. This presents some key challenges.

1. The first is the problem of learning to interpret natural language, which refers

to the primary ability to understand language. As mentioned before, in context of

this dissertation, this problem is synonymous with semantic parsing of sentences to

logical forms. This process involves not only understanding the semantics of words

and their composition in natural language, but also aspects of pragmatics of language

use in situational contexts (famously embodied in the Gricean maxims (Grice, 1975)),

which can affect its meaning. We note here that the ability to understand language

need not be perfect, but a basic ability to interpret is a prerequisite for learning from

language. To explain, a child might not completely understand all of a teacher’s
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instructions, but still learn useful behavior. However, a rather unsurprising result

from our work is that an improved ability to interpret language generally leads to an

improvement in performance on learning tasks.

2. The second challenge is learning from interpretation5, which refers to using in-

terpretations of language to learn and reason about the external environment. These

two problems are closely related. The former problem refers to parsing natural lan-

guage into domain symbols that computers can process, while the latter refers to the

processes of going from these domain symbols to the internal generalization/concept

definitions (usually in form of a classification model) that the agent uses to represent

its learned results. In context of this dissertation, learning from interpretation refers

to the different mechanisms through which interpretations of language statements can

be used to operationalize learning of binary classification (concept learning) tasks.

In different parts of this work, we show that language can drive learning through

multiple ways, such as through grounding concepts to features and direct declarative

knowledge transfer of concept definitions.

3. While the above two aspects are inextricably linked, a distinct but immensely useful

attribute of human language is that it is inherently conversational and interactive.

This is especially useful in pedagogical settings, where it allows human learners to

dynamically engage with a teacher in activities such as asking questions and seeking

clarifications, which can often make learning easier. This also suggests the possibility

that agents that can learn from language can be substantially more useful if they

can learn to interact in mixed-initiative setting, i.e. where the learner can also

proactively engage the teacher through dialog, rather than only listen.

The individual components of this dissertation work (briefly described in Section 1.6)

address aspects of these problems in the context of concept learning tasks, and hence
5Not to be confused with the homonymous but unrelated terminology from Inductive Logic Program-

ming
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provide a basic conceptual interface for guiding machine learning algorithms from language.

1.4 Thesis statement

The thesis of this research is that machines can learn concepts grounded in the environment

from natural language interactions, in ways similar to humans. In particular, machines can

use language to (1) compute rich and expressive features for learning tasks, (2) constrain

classification models by leveraging declarative knowledge, and (3) interactively engage with

humans to simplify their learning. At the same time, their ability to automatically interpret

language can be guided by incorporating different types of linguistic and non-linguistic

context. Such context can not only provide discriminative features for semantic parsers,

but also reduce the need for expensive labeled training data.

1.5 Framework for Learning from language

In this section, we introduce our framework for learning from language and highlight some

specific problems that the work in this dissertation explores. We first explain our view of

language and its grounding to sensor-effector agents. Next, we describe our agent architec-

ture for learning from language, and enumerate specific types of knowledge about function

approximation tasks that natural language can convey. Finally, through a concrete exam-

ple, we illustrate sub-problems involved in concept learning from language interaction that

we consider in this work.

1.5.1 Grounding language in sensor-effector systems

The grounding of language in the external environment is a fundamentally valuable prop-

erty that makes it useful above abstract symbol systems (Harnad, 1990). While several

prominent approaches such as Distributional Semantics (Firth, 1957) attempt to model
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meaning of language in isolation, any approaches towards learning about the environment

from language must necessarily ground linguistic symbols to their physical denotations.

Consequently, grounding is a pervasive theme throughout our work, which capacitates

both the ability to learn about the environment from symbolic representations of language

(learning from interpretation), as well as the ability to understand language (learning to

interpret) in situational context of the environment.

In this dissertation, we view an agent as a sensor-effector system (Russell et al., 1995).

In this view, an agent can interact with the environment by either perceiving the envi-

ronment through sensors, or acting upon the environment through effectors. Language

grounding can be achieved in this framework by simply mapping words and phrases in lan-

guage to trigger specific sensors or effectors, enabling the agent to observe or modify the

environment. To explain, consider a smartphone as a sensor-effector system. It contains a

repertoire of sensors that can read emails from an inbox, access stored phone numbers and

contact names, note geographical location (GPS), perceive kinematic data (accelerometer),

etc. It also contains effectors that can send messages, make phone calls, set alarms, capture

an image, etc. A natural language command from the phone user (e.g., Set an alarm for

5pm today) can be parsed to a logical form such as createEvent(type:alarm, time:1700).

The logical form can thought of a computer program, whose execution is grounded in the

external environment (API calls of the alarm-clock application).

Sensors are particularly important from the perspective of concept learning. They

provide perceptual inputs that by themselves, or in composition with other sensors, can

help realize complex concept learning. For example, a geo-positioning sensor can combine

with an accelerometer to learn a concept corresponding to ‘stuck in traffic’. An important

possibility is that new concepts learned once can themselves act as compound sensors for

further learning. e.g., the concept ‘work related emails’ could be taught in terms of an

existing concept like ‘emails from my boss’.

The forementioned framework of sensors and effectors naturally lends itself to realizing
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condition-action rules. e.g., ‘send my boss an email if I am stuck in traffic’. In principle, en-

abling people to instruct such rules via language can enable a range of creative applications,

essentially converting ordinary human users into programmers. The condition satisfaction

in such condition-action rules is essentially a problem of concept identification based on

the state of the environment, resolved by observation and categorization of an instance

through perceptual sensors. If the condition is true, the required subsequent processing

consists of calling the execution of operational procedures that are finally grounded in the

effectors.

The process of language interpretation can itself be subsumed in the sensor-effector

view of intelligent agents by assuming a language understanding/generation unit as a

distinct kind of sensor/effector (cognate with a Chomskyian Language Acquistion Device).

A language understanding sensor might consist of a semantic parser mappings surface

forms of natural language to intrinsic representations (logical forms) that provide basic

access to other sensors or effectors. Such ability is essential for the possibility of guiding

the agent through natural language. Implicitly, this would consist of a grammar and

inference modules that map basic natural language utterances to the agent’s internal logical

language.

1.5.2 Agent Architecture

Figure 1.2 shows a general framework for learning from language. An agent consists of a

language interpreter, a task learner and a persistent Knowledge Base. The environment

consists of the ambient surroundings, and also includes a teacher (e.g., a mobile phone

user). The agent can receive input from the environment in the form of (1) perceptual

observations through sensors, as well as (2) natural language instruction from a teacher.

In turn, the agent can also modify the environment through its effectors by performing

actions and asking questions. We note that this framing subsumes traditional approaches
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Figure 1.2: Framework for learning from language. An agent consists of a language inter-
preter, a task learner and a persistent Knowledge Base. The environment consists of the
ambient surroundings, and includes a teacher. The agent can perceive the environment
through sensors, and can also receive natural language advice from the teacher. The advice
can indicate the variables in the environment that are relevant for a learning task (g), or
describe the relationship between those variables and the concept to be learned (f)

such as supervised learning (from observations only), active learning (asking a teacher for

specific labels), etc.

In general, an agent can also refer to a personal knowledge base of background knowl-

edge to drive its learning, while also modifying the knowledge base with new facts as it

continues to learn. While background knowledge is a vital component of human learning

and reasoning, we do not delve into this aspect in this work. In this dissertation, learning

agents have no persistent memory and only learn a single classification task at a time. This

precludes certain types of learning (e.g., curricular learning, multi-task learning, etc.), but

allows us to better focus on the task of concept learning from language in isolation.

Formally, an agent can perceive the state of the environment et at time t through a

set of sensors s. At any time, the agent can access the set of sensor observations s(et).
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The teacher, who is part of the environment, can provide natural language advice of two

types. Firstly, the teacher can describe how to compute the quantities (variables) necessary

for learning a target concept in terms of groundable sensor observations, s(et). In terms

of the learning problem, this corresponds to defining the features of a learning problem,

X = g(s(et)). The learning problem then consists of finding a function approximation

Y = f(g(s(et))) to predict a concept in the environment, based on sensor readings s(et).

A second type of natural language advice can directly describe the target function f to be

learned. Thus, the scope of knowledge conveyed from language explanations can refer to:

• the sensor observations to use among the set of all possible observations, s(e)

• the reasoning or computation required to infer variables of interest (g)

• the mapping from those variables to the target concept (f)

We will illustrate this further through an example in the next section. While we have

described concept learning here, the same framework can conceptually also handle other

learning tasks framed as function approximation via language, such as regression and

reinforcement learning.

At this point, we observe that the different arcs in Figure 1.2 representing the interac-

tions between language, task learning and the environment also broadly correspond to key

challenges that we described earlier. The arcs from the environment to the language in-

terpreter correspond to the challenge of learning to interpret language in situated contexts

in an environment. The arcs from the language interpreter to the task learner correspond

to the challenge of learning from interpretion, i.e. operationalizing knowledge received

through language into task-specific models. Finally, the bottom arc directed from the

task learner towards the environment can be seen as signifying the challenge of learning to

interact.
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1.5.3 A Concrete Example

Let us consider an example to concretely understand the problems involved in learning

from natural language interactions. Figure 1.3 shows a hypothetical scenario, where an

email user explains the concept of important emails to a personal assistant. The inter-

action exemplifies some common facets of learning from language, including explanations,

clarifications, and declarative transfer of knowledge that we explore in this work.

Natural language instruction can encompass a very wide range of useful information,

e.g., advice on when to learn, which teachers to trust, what questions to ask during ex-

ploratory or confirmatory phases of learning, etc. Thus, it is very hard to have a definitive

formulation for learning from language. However, from the perspective of machine learn-

ing, language can be especially valuable at three specific points in the learning process,

beginning with identifying relevant features for learning tasks. Most successful applica-

tions of machine learning rely on a process of careful feature engineering, even before any

learning takes place. This involves design of features on part of the data analyst, which

defines the variables on which the learning problem is based. Instead of writing computer

programs to extract such features, learning from natural language instruction can expand

the scope of computer systems to learn from people with no machine learning expertise

(such as the physician in this example).

Once a learning problem is formulated, language can guide the learning process itself

through direct transfer of declarative knowledge about the task to be learned, which may

be hard for a machine to learn by itself. Such knowledge can simplify learning and im-

prove generalization by preferring models that concur with human provided advice. In our

example, an intelligent learner can use such knowledge (in the form of the email user’s

explanation) to avoid models that may predict a majority of emails that the user receives

to be important. In this sense, language can itself be a source of supervision by specifying

model constraints through declarative knowledge. This can simplify learning since model
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Figure 1.3: Hypothetical scenario of learning from natural language interaction. This
examples illustrates many of the problems involved in learning from natural language in-
teractions that we explore in our work. In particular, correct interpreting explanations
from a teacher can convey multiple types of useful information about learning tasks: these
include identifying relevant features for a learning task, as well as directly providing super-
vision by specifying model constraints in the form of declarative knowledge. Apart from
simply learning from interpretations of explanations from a teacher, the ability of a learn-
ing agent to interactively seek dialog and ask questions using language can also accelerate
the learning process. At the same time, in order to have these abilities, the agent must
also learn to interpret free-form language in situated contexts
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constraints can guide learning towards more promising parts of the hypothesis space, and

ensuring that the correct hypotheses are not spuriously discarded during training.

A third way in which language can facilitate learning is through interactive dialog on

part of the agent. As seen in the current example, this may takes multiple forms: (1) asking

questions about the target concept (2) seeking a clarification of a previous explanation, (3)

asking for data measurements or labels to validate a learned model, etc.

At the same time, in order to be able to learn from language, the learner needs the

ability to interpret instructional language as feature definitions, and identify different types

of model constraints and data measurements from free-form language. For example, we

assume that a statement such as ‘Check if the email is received after 10pm’ can be mapped

to a logical form such as greaterThan( getValueForField(timeStamp), 2200), which

can be executed as a query or a program against an email to retrieve the value of a

feature (a boolean value which denotes whether en email was received after 10 pm). As we

previously mentioned, a corollary of this grounding is that the scope of meanings that can

be conveyed through natural language is determined by the predicates in the domain logical

language. Learning to map such instructional language to actionable logical representations

is challenging, especially since creating labeled data consisting of language statements

paired with annotations of logical forms is expensive.

In this section, we have highlighted some of the principal sub-problems involved in con-

cept learning from language. The research presented in this dissertation develops methods

to address some of these. An important observation that we reiterate here is that in many

scenarios, learning may depend on reasoning over other accumulated background knowl-

edge, which we do not attempt to model here. For example, the email user might explain

that a useful indicator for identifying important emails is whether the user knows the

sender of an email. We may not be able to identify this directly, but we may know that

this is related to whether the user has previously communicated with the sender (which we

likely can observe from previously sent emails), and use that as a proxy feature. Ideally,
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an agent would be able to reason and use background knowledge to automatically infer

such relevant features. However, for sake of simplicity of analysis, we do not consider the

use of such background knowledge in the current work.

1.6 Chapter Overview

In the following chapters we will describe our solutions to the above-mentioned problems.

The organization of this dissertation is as follows. Chapter 2 provides context for the

contributions of our research by summarizing previous work on learning from natural lan-

guage interactions and grounded language acquisition. The bulk of the remaining chapters

can be seen as constituting three parts, corresponding to the key challenges described in

Section 1.3.

Part I: Learning from Interpretation

The following two chapters summarize our work on learning from interpretation.

Chapter 3 introduces an approach for using natural language explanations to compute

features for concept learning tasks. The approach depends on the use of a semantic parser

to map explanations of concepts from users to logical forms in a domain specific language.

The predicted logical forms are evaluated in context of different instances of data, hence

operationalizing rich and compositional feature functions. A discriminative classifier is

trained on this representation of the data to learn a concept model. The approach is em-

pirically tested on classification tasks to evaluate its effectiveness against baseline methods

for text classification.

Chapter 4 presents our research on incorporating declarative knowledge from natural lan-

guage to supervise training of machine learning models. In particular, we focus on leverag-

ing conditional statements and the semantics of quantifier expressions to learn classifiers in

scenarios with limited or no labeled examples of a concept. We present an approach that
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converts natural language explanations to quantitative constraints on machine learning

models, and describe a procedure that uses posterior regularization to incorporate such

constraints into training algorithms for concept classifiers.

Part II: Learning to Interpret

The following two chapters describe our work on new approaches for semantic parsing for

learning to interpret by incorporating environmental context.

Chapter 5 describes how sensory context can be incorporated to jointly learn both a

semantic parser and a concept classifier, extending our approach from Chapter 3. The only

supervision consists of a small number of labeled examples of a concept, and our approach

extends supervised semantic parsing by learning from a weaker form of supervision than

has been previously explored. Our approach suggests that pragmatic context can be a

viable and inexpensive source of supervision for training semantic parsers.

Chapter 6 presents an approach for incorporating conversational context to improve lan-

guage interpretation. Our approach uses a structured prediction formulation that can cap-

ture structural regularities in conversation sequences. Our formulations enables training

of semantic parsers that incorporates both traditional text-based features that depend on

the statement being parser, as well as structural features to model previous conversational

history and the flow of discourse in the conversation.

Part III: Learning to Interact

Chapter 7 describes our approach for learning to interact in context of concept learning in

a conversational setting. Here, we present our research on interactively learning question-

asking strategies. We present a reinforcement learning formulation of the problem, where

the space of actions consists of different types of questions that a learner can ask a teacher,

and reward is evaluated in terms of improvements in the concept model that an asked
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question leads to.

Finally, Chapter 8 summarizes the important contributions of this research, and looks

forward to some directions for future work.
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Chapter 2

Related Work

In this section, we overview previous approaches in two areas germane to our work. We

first discuss prior work in the areas of learning from natural interaction. Next, we look

at related work in the field of language interpretation in grounded contexts, focusing on

applications where language helps to learn a downstream task.

2.1 Learning from Natural Language

The connection between language and learning has been deeply explored from the per-

spective of linguistic and cognitive theories (Halliday, 1993; Lemke, 1990). In terms of

computer learning, natural language has been explored as a medium for providing instruc-

tion starting with early rule-based systems such as SHRLDU (Winograd, 1972). However,

these methods were difficult to generalize beyond narrow domains, or handle natural varia-

tion in language. More recently, multiple statistical approaches have used different kinds of

supervisory signals to use more complex language for performing external tasks in different

target environments (Liang et al., 2009b; Branavan et al., 2009). Lau et al. (2009) convert

language instructions to user-interface actions on websites. Tellex et al. (2011) learn to

map instructions to sequences of actions by a physical robot. There is, in particular, a rich
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body of literature on using natural language instructions to help reinforcement learning

agents complete tasks efficiently. In many of these approaches, language is used to specify

preferences for which actions to choose in specific states (Matuszek et al., 2013; Krening

et al., 2017). Similar approaches have also explored parsing natural language instructions

from user manuals in game playing frameworks (Branavan et al., 2012; Eisenstein et al.,

2009).

Our work is akin in spirit to previous work by Goldwasser and Roth (2014) and Clarke

et al. (2010), who train semantic parsers in weakly supervised contexts, where language

interpretation is integrated in real-world tasks, such as learning the rules of solitaire. The

theme of leveraging the mutually supportive relationship between language and learning

about the environment advanced in their research finds reflection in our work. Also notable

is the Interactive Task Learning framework (Laird et al., 2017), in which an agent modeled

on the SOAR cognitive architecture (Laird, 2012) can learn simple manipulation tasks

or extend previously learned tasks through natural language instruction from a human

teacher. A distinct body of recent research (Wang et al., 2017, 2016) explores interactive

language in simulated block-worlds to incrementally enable grounded language acquisition

and instruction for completing manipulation tasks. All of the above mentioned approaches

use a semantic parsing component, which maps language instructions to logical forms.

Other approaches have explored the use of language input for tasks such as QA (Sukhbaatar

et al., 2015), without explicitly modeling the process of language interpretation as semantic

parsing. Similarly, Weston (2016) learn a dialog model from natural language feedback,

whereas Ling and Fidler (2017) use natural language feedback to improve training of an

image captioning system. More generally, the idea of learning through human interactions

has been explored in several settings such as behavioral programming (Harel et al., 2012),

natural language programming (Biermann, 1983) and learning by procedures from instruc-

tion (Huffman and Laird, 2014; Azaria et al., 2016), etc. Azaria et al. (2016) present a

Learning from Interaction Agent (LIA), which can be taught by users to learn new pro-
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cedures (operationalized as a sequence of simpler instructions) and generalize these pro-

cedures to new scenarios by automatically inducing their arguments. LIA can also learn

more complex procedures through composition of already taught procedures.

To the best of our knowledge, ours is the first work to use semantic interpretation to

train classifiers from natural language. In terms of providing declarative supervision, this

conceptually extends previous approaches such as Generalized Expectation (Mann and Mc-

Callum, 2010), Posterior Regularization (Ganchev et al., 2010) and Constraint-driven learn-

ing (Chang et al., 2007), which integrate manually provided ‘side-information’ into training

of machine learning models. Our work can also be seen as extending broader paradigms

such as Incidental supervision (Roth, 2017) and learning-based programming (Kordjamshidi

et al., 2018). However, rather than pre-programmed domain knowledge as in many previous

approaches, this information is conveyed to the learner as free-form language.

2.2 Interpreting Grounded Language

In this work, we model the process of language interpretation as semantic parsing, which

is a rich area of NLP research. Statistical methods for semantic parsing rely on approaches

from structured prediction, and have been explored in diverse domains (Zelle and Mooney,

1996; Miller et al., 1996; Zettlemoyer and Collins, 2005; Artzi and Zettlemoyer, 2013).

Semantic parsers have traditionally been trained using datasets consisting of statements

paired with labeled logical forms (Zettlemoyer and Collins, 2005). More recent approaches

have focused on training semantic parsers from statements paired with denotations of

logical forms, rather than logical forms themselves (Liang et al., 2011; Krishnamurthy

and Mitchell, 2012; Berant et al., 2013)1. Some of our work extends this paradigm by

1By denotation, we refer to the non-symbolic outcome of executing a symbolic logical form in a particular
context or model theory. e.g., a statement such as ‘three less than twenty times six’ may be mapped to a
logical form such as minus( prod(20,6), 3), which can be executed in context of the domain theory of
arithmetic to yield the denotation of the logical form, the integer 117
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attempting to learn from still weaker signals, which have not been previously explored.

The semantic parsing algorithms presented in this work aim to incorporate contex-

tual cues from the external environment to improve semantic parsing. The role of such

context in assigning meaning to language has previously been emphasized from theoreti-

cal perspectives in computational semantics (Bates, 1976; Van Dijk, 1980; Searle, 1969).

Subsequently, a substantial body of literature has explored approaches for learning the se-

mantics of language in grounded contexts (Mooney, 2008; Liang et al., 2009b; Fleischman

and Roy, 2005; Roy and Reiter, 2005). More recent approaches such as Narasimhan et al.

(2015) also use supervision from grounded environments to learn language representations

that can help an agent complete tasks in reinforcement learning frameworks.

The methods developed in our work are largely agnostic to the choice of semantic

parsing formalism used. However, for this work, our semantic parsers are based on CCG

semantic parsing, which is a popular semantic parsing framework (Zettlemoyer and Collins,

2007; Kwiatkowski et al., 2013; Artzi et al., 2015) that maps language to logical commands

through function operations in combinatory logic. The CCG formalism (Steedman and

Baldridge, 2011) has been widely used for its explicit pairing of syntax with semantics,

and allows expression of long range dependencies extending beyond context-free-grammars.

However, the same methods could be adapted with work with other popular semantic

parsing frameworks, such as Dependency Compositional Semantics (Liang, 2013).
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Chapter 3

Interpreting Explanations as Feature

Definitions

Our sensory and cognitive faculties enable us to observe features of the environment. Such

features play a central role in learning about the environment. The relationship between

features and knowledge about the world has a long history. Aristotle (4th Century B.C.)

suggested that every idea or concept has a set of necessary features, which specify its

essence. Successful applications of modern machine learning too usually rely on a process

of feature definition, which transforms raw observations about the data into meaningful

inputs that are provided to a learning algorithm (Blum and Langley, 1997).

In this chapter, we suggest that language can be a natural medium for communicating

such information, and present an approach for using language to define expressive features

for concept learning. For example, learning the concept of ‘negative product reviews’ can

benefit from an explanation such as ‘Negative reviews often mention phrases such as “poor

quality”, “too expensive” and “disappointed”’. One way to interpret such a statement is

as defining some boolean property over the space of instances (reviews) X; that is, the

statement s defines a predicate ps : X → {0, 1}. The predicate operationalizes a feature

function that will have a non-zero value if the statement applies to a specific instance. e.g.,
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if a product review contains the word ‘disappointed’. Our work in this chapter provides a

simple computational approach to do this.

We posit that the process of mapping from language to such predicates can be accom-

plished through the use of semantic parsing. Semantic parsing maps language to logical

forms, which have previously been explored in an eclectic variety of settings such as question

answering (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005; Berant et al., 2013),

robot navigation (Kate et al., 2005) and spreadsheet manipulation (Gulwani and Marron,

2014). Our simple insight here is that logical forms obtained from semantic parsing of con-

cept explanations can be thought of as computer programs that specify the computation

of features. They can be evaluated in context of different instances of data, and hence

naturally act as feature functions.

There can be significant value in using logical forms to specify and compute features

on which machine learning systems can be trained. Perhaps most significantly, instead of

hand-crafting such features (as in traditional machine learning), language can provide a

natural way to specify the computation of rich and compositional features, reflecting the

richness and compositionality of natural language. Suppose we are interested in teaching

a computer the concept of work-related emails. Instead of designing features manually, a

user might say ‘These emails usually come from a CMU address’. By converting such state-

ments to executable programs such as isStringMatch( currentEmail::getDomainName,

stringVal(CMU) ), we can automatically extract computable features that can character-

ize a given email. The ability to dynamically define such features for learning tasks can

be especially significant from the perspective of enabling non-experts to teach machine

learning systems.

In this chapter, we show that such interactive feature space construction can signif-

icantly outperform classification models trained on traditional representations of data,

notably in scenarios with limited labeled data. We note here that our approach in this

chapter assumes that we have labeled data for training semantic parsers, in the form of
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statements annotated with their logical forms. In chapter 5, we will extend this approach

to provide a method that jointly learns to both parse and classify from a small number of

labeled classification examples only.

Work described in this chapter has previously appeared in Srivastava et al. (2017b).

3.1 Related Work

Early work in the field of Artificial Intelligence has explored in detail the role of features for

analogical and inductive reasoning. Notable among these explorations are the questions of

which among a potentially infinite number of possible features are relevant to a concept,

and work on the theory of determinations (Russell, 1987) that formalizes this. In terms

of objective, our approach here aligns with Blum (1990) and Roth and Small (2009),

who explore learning of classification tasks through interactive supervision in presence of

arbitrarily large feature spaces. Recent work such as by Lake et al. (2015) explores concept

learning from few examples in limited settings, and presents encouraging results for one-

shot learning by learning representations of instances over Bayesian programs. However,

despite rich literature that focuses on feature labeling and feature selection for statistical

learning, the issue of feature learning from language (i.e., converting natural language

explanations to definitions of feature computation for machine learning methods) remains

relatively unexplored.

3.2 Approach

As just mentioned, semantic parsing can be used to map natural language descriptions to

logical forms, which can denote feature functions, and can be evaluated in context of differ-

ent instances to yield the value of a feature. Our premise here is that interpreting natural

language explanations from human users as defining relevant and informative features for
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classification tasks can improve the sample complexity of concept learning.

Human users are asked to explain a concept using a set of short (sentence-length)

natural language explanations. Our approach relies on initially training a semantic pars-

ing model on a dataset of statements paired with logical forms. This semantic parser is

subsequently used for predicting interpretations (logical forms) for the user-supplied expla-

nations of concepts. These logical forms are evaluated on labeled examples of the concept

learning task, which provides a new feature representation of these examples. A discrim-

inative classifier is then trained over this new data representation to learn a classification

model for the concept in terms of the user-specified features. Figure 3.1 illustrates how a

learned parsing model can used to interpret explanations as specifying feature functions,

and be used to learn concept classifiers from labeled data.

System Input and Output: The preliminary input to the system consists of a se-

mantic parsing grammar G and a set of ntrain statements paired with their logical forms

{(sj, lj)}ntrain to train a semantic parser. The initial output is a semantic parsing model

(specified by parameters θp), which can be used to parse explanations.

Once the parsing model is trained, the system can be used to learn concept models.

Learning a classifier for a new concept requires a set of n natural language statements

describing the concept and a small number of labeled examples of the concept, {(xi, yi)}m.

The output is a concept classifier model (specified by parameters θc).

The remainder of this section describes these steps in detail.

3.2.1 Training a Semantic Parser

We train a semantic parser to map an explanation sentence s like ‘The subject contains the

word postdoc’ to a logical form l like getPhraseMention(subject, stringVal(`postdoc')).

Logical forms can be evaluated in a context of an instance x (here, an email) to yield some
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Figure 3.1: Natural language explanations can express rich and expressive feature defini-
tions for classification tasks. A user describes a concept such as ‘phishing emails’ using
language explanation. These are parsed by a semantic parser to logical forms, which are in
turn evaluated in the context of new instances to yield a feature vector. A discriminative
classifier (with parameters θc) is then trained on this representation of the data using a
small number of labeled examples for the concept learning task
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meaningful output JlKx (whether the statement is true for an email). The predicates (such

as stringVal) and constants (such as subject) come from a pre-specified logical language.

Logical Language: Our testbed in this work is concepts about emails. Hence, we specify

a logical language that is expressive enough to be useful for concept learning in this do-

main. Table 3.1 lists the predicates in our logical language along with descriptions of their

evaluation, and some illustrative examples showing how they can represent the meaning of

natural statements. We include a special predicate (unknown) to label statements whose

meanings go beyond our logical language (last row in Table 3.1), essentially ignoring them.

Such statements compose about 25% of our data. Note that this logical language can ex-

press compositional meanings. e.g., ‘These inquiries will usually seek a postdoc opportunity

and include a CV ’ can be expressed as and (getPhrasesLike(email, stringVal(`seek postdoc

opportunity')), (stringMatch attachment (stringVal`CV'))). The evaluations of some pred-

icates uses NLP tools that go beyond exact keyword matching. In Section 3.4, we show

that it is language understanding (semantic parsing), rather than these resources, which

enables learning from natural explanations.

Grammar: The grammar, G, for a semantic parser produces the set of possible candidate

logical forms (G(s)) for any natural language sentence s. Semantic parsing grammars are

usually specified by a lexicon containing mappings from words to symbols in the logical

language, and a set of combinatory syntactic rules. Different semantic parsing formalisms

vary in the degree of permissivity of these lexical and syntactic rules. For this work, we

use CCG based semantic parsing, a popular semantic parsing approach Zettlemoyer and

Collins (2005); Artzi et al. (2015) that tightly couples syntax with semantics. For the CCG

grammar, we manually compile a small domain lexicon containing a list of trigger words

mapped to their syntactic categories and associated logical predicates. e.g. {‘subject’,

NP, subject}. We then use the PAL lexicon induction algorithm (Krishnamurthy, 2016)

to expand the lexicon and induce syntactic combination rules by adding automatically
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Predicate Description and evaluation
stringVal Returns string value corresponding to a text span in the statement
getPhraseMention Looks for matching tokens or phrases in a text, and return true if an

exact match is found. e.g., The subject contains the word postdoc →
getPhraseMention(subject,stringVal('postdoc'))

getPhrasesLike Uses an alignment based Textual Entailment model to find the clos-
est semantic match for a phrase in a text. Uses distributional se-
mantics to identify semantically similar words. Returns true if a
match is found. e.g., The emails often want me to buy something →
getPhrasesLike(email,stringVal(`buy something'))

getSemanticCategory Looks for occurrences of pre-specified semantic categories in a target
text (identified with Stanford CoreNLP’s expanded NER tagger), and
returns true if a match is found. e.g., these emails often have contain
prices and quotes → getSemanticCategory(body, MONEY)

stringMatch Returns true if one string value contains another. e.g., Spam emails
are rarely from a yahoo or gmail address → not( or(stringMatch(sender,

stringVal(`yahoo')), stringMatch(sender, stringVal(`gmail'))))

stringEquals Returns true if two string values are equal
or/ and/ not Boolean predicates with usual interpretations
beginWith/endWith Return true if a target text contains a phrase, a similar phrase, or a

semantic category at its beginning/end. e.g., The emails often mention
a phone number at the end → endWith(body, NUMBER)

merge Combines multiple elements into a list. e.g., These emails often re-
fer to problems like baldness and aging. → getPhrasesLike(email,

merge(stringVal(`baldness'), stringVal(`aging')))

before Returns true if there is an instance of one type preceding an instance of
another type in a text

length Lengths of lists or text fields (in number of words)
≥, equals Usual arithmetical comparators
unknown Return false by default. Used to deal with statements that cannot be

reasonably expressed using predicates in the language. e.g., These emails
are from weird addresses. → unknown

Table 3.1: Predicates in logical language used by our semantic parser for learning of email
based concepts
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generated entries.

Model Training: Semantic parsing can be seen as a structured prediction problem of pre-

dicting the highest scoring logical form l for a given natural language sentence s. Following

traditional semantic parsing models(Zettlemoyer and Collins, 2005), we are interested in

linear predictors of form:

l̂ = argmax
l∈G(s)

θTp ψ(s, l)

Here, model training corresponds to learning a real valued parameter vector θp for

this structured prediction problem. ψ(s, l) denotes a real valued vector of semantic parsing

features, which can depend on the sentence to be parsed (s) and a candidate logical form (l).

The data for training the parser is a collection of ntrain tuples {(sj, lj)}ntrain of statements

paired with logical forms. For training the parser, we use the Structured Perceptron

algorithm (Collins, 2002). We follow the feature set from Zettlemoyer and Collins (2007),

consisting of (i) indicator features for lexicon entries and (ii) indicator features for rule

applications. We also include (iii) string based features denoting the number of words in

a string span, and whether a string spans occur at the beginning or end of the utterance.

For retrieving the best parses for a statement, we use beam search with a beam size of 500.

3.2.2 Training a Concept Classifier

The semantic parsing model trained in the previous section is used to predict the logical

form l for an explanation s of a concept. A set of n such explanations yields n corresponding

logical forms. These logical forms are used in conjunctions with a set ofm labeled instances

of the concept to learn a classifier for the concept. In particular, each logical form is

evaluated in context of an instance of the data to yield the value of a feature z = JlKx.
This leads to a an new n dimensional feature representation of the instances Zm×n, which

can be used to train a classifier from a set of labeled examples of the concept, {(xi, yi)}m.
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For the discriminative classifier, we choose a logistic regression model. The classifier

receives as input a feature representation previously described, and returns a parameter

vector θc for the learned logistic regression model, which can be used to predict whether

an new instance belongs to a concept.

3.3 Data

Our evaluation for this task focused on the domain of emails as a testbed for concept

learning from language. This choice was motivated by our belief that concept learning

from explanations can be particularly effective for email classification; this is a domain

where (1) target concepts are often highly individualized, and (2) labeled data can often

be scarce.

We created a dataset of 1,030 emails paired with 235 natural language statements made

by human users in the process of teaching a set of seven concepts. The dataset was collected

using the Amazon Mechanical Turk crowd-sourcing platform. We deployed two tasks:

1. A Generation task requiring workers to create original emails

2. A Teaching task requiring workers to write statements that characterize a concept

We chose to create a new email corpus for evaluation of our approach, rather than

use an existing corpus such as Enron (For et al., 2004), since we wanted diverse examples

representative of everyday concepts that most people would be able to understand as well

as teach to a computer. Much of the Enron corpus is highly specific and contextualized,

making it difficult to teach for an outsider.

In this section, we describe the data and the two tasks in more detail.
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Concept # of emails Prompt
Contact 167 “You are writing an email to yourself to personally

keep note of a person contact”
Employee 149 “You are a boss writing an email to your employee

requesting something to be done”
Event 138 “You are writing an email to a friend asking to meet

up at some event”
Humor 134 “You are writing an email to a friend that includes

something humorous from the Internet”
Meeting 142 “You are writing an email to a colleague trying to re-

quest a meeting about something”
Policy 146 “You are writing an office email regarding announce-

ment of some new policy”
Reminder 154 “You are writing an email to yourself as a reminder to

do something”

Table 3.2: Email concepts used in our experiment, together with the prompts used to
describe the concept to workers. The same prompt was used in both the (i) Generation
task for generating emails belonging to each concept and the (ii) Teaching task for collecting
natural language statements that explain the concepts

3.3.1 Generation task

This task consisted of a web-page resembling a traditional email composition form (with

fields: recipient, subject, body, attachment), requiring workers to compose emails in a

grounded setting. For this task, we recruited 146 workers residing in the United States.

The workers were presented with each of the seven concepts in a sequence, where each

concept was represented by a short prompt encouraging workers to imagine a scenario

(e.g., a boss writing a request to an employee) and write a hypothetical email.

Table 3.2 shows details of email concepts and the corresponding prompts shown to

turkers for the Generation task. Workers were instructed to be realistic (e.g., they were

asked to include an attachment if an email is likely to have an attachment in reality), but

also creative (to encourage diversity) in composing their emails.

Figure 3.2 shows some samples of emails created by turkers from the Generation task.
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Figure 3.2: Examples of emails generated by turkers in the Generation task. Turkers were
presented with short prompts describing email categories. They were then asked to imagine
a scenario and write a hypothetical email belonging to the email category in a web-page
resembling a traditional email composition form
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3.3.2 Teaching task

The teaching task was then deployed to collect natural language statements that people

use to teach a concept to a machine. Workers were presented with five randomly selected

concepts using the same prompts (Table 3.2) used in the Generation task.

Protocol for Collection of Explanations

For each email concept, a small sample of 20 emails were shown in a style resembling a

traditional email inbox (Figure 3.3) to illustrate the concept. Half of the emails were posi-

tive examples of the concept to be described (these emails were highlighted and “starred”),

and the remaining half were sampled randomly from the other concepts. Workers were

encouraged to peruse through the emails while creating up to five statements explaining

the concept. Prior to the task, the workers were also informed that the statements are to

be used to teach email concepts to a computer. A follow-up quiz assessed an understanding

of the task, and contributions from workers with low scores were filtered. The final data

contains between 30 and 35 statements describing each category. The data described here

is available at http://www.cs.cmu.edu/~shashans/resources/emails.

We continue to follow the same data collection methodology for all experiments de-

scribed later in this dissertation – namely consisting of first showing Mechanical Turkers

examples and non-examples of a concept, and asking them to describe these concepts in

their own words. A notable observation about this methodology is that turkers have ac-

cess to examples (and non-examples) of a concept while they are describing the concept.

An alternative design choice might ask turkers to explain a concept after they have seen

examples, but when they don’t have access to examples at hand. It is possible that the

exact choice of the teaching framework may affect the quality and nature of explanations.

However, we do not explore this question in this work.
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Figure 3.3: Screenshot of Teaching task used to collect explanations describing concepts.
Each worker is given a concept prompt, together with a set of emails (starred emails denote
positive examples of the concept). A turker can enter upto five statements characterizing
the concept

These emails usually closes with a name or title
Some reminders will have a date and time in the subject
The body of the email may say funny, picture, or internet
Messages to friends sometimes have jpg attachments
Emails from a public domain are not office requests

Table 3.3: Examples of explanations collected from turkers during the Teaching task
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3.4 Evaluation

In this section, we describe baselines and evaluate the performance of our approach for

concept learning.

3.4.1 Baselines

Our baselines include the following two classes of approaches:

Text-only models: These approaches classify emails solely based on their text content,

and do not have access to natural language explanations of the concept.

• BoW: A logistic regression (LR) classifier trained over a bag-of-words representation

of emails.

• BoW tf-idf: A logistic regression classifier trained over a bag-of-words representation

of emails, with tf-idf weighting.

• Para2Vec: A logistic regression classifier trained over a distributed representation of

email text, learned using deep neural network approach by Le and Mikolov (2014).

• Bigram: A logistic regression classifier trained over a representation that also incor-

porates bigram features. Such as baseline is known to be competitive on several text

classification tasks (Wang and Manning, 2012).

• ESA: A logistic regression classifier trained over ESA (Explicit Semantic Analysis)

representations of emails (Gabrilovich and Markovitch, 2007), which describe a text

in terms of Wikipedia topics.

Models incorporating Statements: These approaches also take into account the nat-

ural language explanations, in addition to the text of the emails.

• RTE: This uses a Textual Entailment model that computes a score for aligning of

each statement to the text of each email. A logistic regression is trained over this
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representation of the data.

• Keyword filtering: Filters based on keywords are common in email systems. We add

this as a baseline by manually filtering statements referring to occurrences of specific

keywords. Such statements compose nearly 30% of the data. We train a logistic

regression over this representation.

We note here that the baseline approaches and our approach all use different types

of supervision and resources, and hence a direct comparison is not completely fair. In

particular, we note that the text-only models only use traditional supervision (in the form

of concept labels) for model training. Our approach, which we refer to as LNL (for

Learning from Natural Language) also presumes the availability of natural language

explanations of concepts, as well as a trained semantic parsing model. In this sense, LNL

requires strictly stronger supervision than the text-only approaches. However, we note that

the training of the parser is a one-time need only, and a parsing model once trained can

be used for learning of a large number of possible concepts in a domain (such as email).

Further, in Chapter 5 we show that the learning of such a parser can be accomplished from

very weak sources of supervision.

Other baselines that also incorporate statements too rely on other types of supervision

and resources. In particular, the RTE model relies heavily on lexical semantic representa-

tions of words that require large text corpora for learning. The Keyword filtering approach

also needs minimal semantic parsing.

3.4.2 Concept-learning Performance

Table 3.4 shows classification performance of our approaches for Learning from Natural

Language (LNL) against baselines described above for n = 10 labeled examples. The

reported numbers are average F1 scores over 10 data draws. We observe that Bigram and

bag-of-word methods are the most competitive among the baselines. On the other hand,
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Contact Employee Event Humor Meeting Policy Reminder Average
BoW 0.510 0.354 0.381 0.484 0.455 0.588 0.415 0.455
BoW tf-Idf 0.431 0.379 0.402 0.513 0.392 0.576 0.399 0.441
Para2Vec 0.238 0.191 0.121 0.252 0.222 0.286 0.092 0.200
Bigrams 0.525 0.385 0.426 0.525 0.458 0.668 0.423 0.487
ESA 0.187 0.209 0.107 0.194 0.154 0.160 0.131 0.164
RTE 0.551 0.353 0.406 0.475 0.398 0.522 0.232 0.419
Keyword filtering 0.521 0.429 0.412 0.425 0.702 0.748 0.392 0.522
LNL 0.648* 0.381 0.627* 0.565* 0.770* 0.892* 0.470 0.622
LNL-Gold 0.661 0.397 0.677 0.572 0.777 0.917 0.487 0.641
LNL+BoW 0.640 0.421 0.622 0.755 0.731 0.909 0.554 0.661
LNL-Gold+BoW 0.667 0.449 0.659 0.798 0.771 0.927 0.595 0.695

Table 3.4: Concept learning performance (F1 scores) using n = 10 labeled examples.
Reported numbers are averages over 10 data draws. Columns indicate different concept
learning tasks defined over emails. * for the rows corresponding to LNL denotes statistical
significance over the best performing non-LNL model

Para2Vec doesn’t perform well, probably due to the relatively small scale of the available

training data, while ESA fails due to the lack of topical associations in concepts.

However, most significantly, we observe that LNL dramatically outperforms all base-

lines for nearly all concepts (except Employee), and shows a 30% relative improvement

in average F1 over other methods (p < 0.05, Paired Permutation test). Our dataset also

contains manual annotations of the explanation statements with logical forms. In Ta-

ble 3.4, LNL-Gold denotes the classification performance with using these annotated gold

logical forms (rather than from a trained parsing model). This corresponds to the hypo-

thetical case where the classifier knows the correct semantic interpretation of each natural

language sentence from an oracle. These provide a further 2% improvement in concept

learning performance (Section 3.4.4 further explores the relationship between parsing and

classification performance). We also observe that LNL models perform significantly better

than Keyword filtering (p < 0.05), indicating that the model leverages the expressiveness

of our logical language.

Finally, the last two rows in the table show performance when the LNL methods also

utilize BoW representations of the data. The further gains over the base LNL models
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Figure 3.4: Figure showing Avg F1 accuracy over all concepts vs Number of labeled training
examples

suggest that original feature representations and natural language explanations contain

complementary information for many concepts. These results demonstrate that interpret-

ing natural language statements as feature functions leads to significant improvements in

concept learning, and validate our method.

3.4.3 Effect of training set size

A significant motivation for this work is the promise of natural language explanations

in facilitating concept learning with a relatively small number of examples. Figure 3.4

shows the dependence of concept learning performance of LNL on the number of labeled

training examples (size of training set). We observe that while our approach consistently

outperforms the bag-of-words model (BoW ), LNL also requires fewer examples to reach

near optimal performance, before it plateaus. In particular, the generalization performance

for LNL is more robust than BoW for n < 10.
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Figure 3.5: Figure showing concept classification performance vs parsing accuracy. This
denotes a basic point: better language interpretation leads to better concept learning
performance

3.4.4 Concept learning vs language interpretation

To delineate the relationship between parsing performance and concept learning more

clearly, we plot concept classification performance for different levels of semantic pars-

ing proficiency in Figure 3.5. For this, we choose the gold annotation logical form for a

statement with a probability corresponding to the semantic parsing accuracy, or randomly

select a candidate logical form with a uniform probability otherwise for all the statements

in our data.

The figure shows an expectedly strong association between parsing performance and

concept learning, although gains from parsing taper after a certain level of proficiency.

This is partially explained by the fact that natural statements in our data often contain

overlapping information, and that the set of statements in our data set may not be sufficient

to achieve perfect classification accuracy.
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3.5 Discussion

In this chapter, we demonstrated how interactive language can be used to specify relevant

features for concept learning tasks. Through experiments, we showed that this strategy

can lead to faster learning than traditional classification methods for email classification.

An important aspect of such explanations is that they can not only highlight specific

attributes of the data relevant for a learning task (which is more related to the problem

of feature selection), but also compositionally define new features, which can lead to rep-

resentations of the data that make inductive learning easier. Thus, for example, a person

explaining the concept of an email that is a reminder to oneself might say ‘The sender and

the recipient address are the same’. The statement not only also highlights a relevant prop-

erty from a potentially enormous space of possibilities; but the structure of language often

also naturally conveys the structure of computation required to calculate those features.

An important note about the language interpretation approach presented in this chap-

ter is that a new logical language would have to be created (and a corresponding semantic

parsing model trained) for each new domain. Designing the predicates for a domain lan-

guage (and creating a corresponding lexicon) might require significant effort. However,

this would be alleviated by the fact that this would only be a one-time effort, which would

find re-use across the long tail of possible concept learning problems in a domain.
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Chapter 4

Incorporating User Advice as

Probabilistic Model Constraints

Traditional supervised learning requires large quantities of labeled examples for general-

ization. While this paradigm has been widely successful in a large range of applications,

this is problematic since obtaining labeled data for user-specific learning tasks can often be

infeasible. This is especially relevant from the perspective of enabling ubiquitous machine

learning, allowing users to teach personalized concepts (e.g., identifying ‘important emails’

or ‘project-related emails’) in scenarios with limited or no training data.

On the other hand, language is often rich in declarative knowledge, which can directly

provide supervision for machine learning models. In particular, humans often teach and

learn using instructional language in the form of conditional rules expressing relationships

between features and labels (e.g., ‘If the subject of an email threatens to close an account,

it is definitely spam’). By identifying the types of relationships such explanations express,

and quantitatively using such information in computational frameworks, we can minimize

the labeled examples needed. We posit that such knowledge can enable learning in scenarios

with limited or even no labeled examples.

In this chapter, we will focus on leveraging conditional rules and quantifier expressions

43



Figure 4.1: Declarative supervision from language can enable concept learning from limited
or even no labeled examples. Our approach assumes the learner has sensors that can extract
attributes from data, such as those listed in the table, and language that can refer to these
sensors and their values

in language to provide supervision for concept learning tasks. Everyday language is rich in

quantifiers (such as determiners like ‘all’, ‘each’, ‘few’, and frequency adverbs like ‘always’,

‘usually’, ‘never’), which are explicit denoters of generality. Since learning is largely syn-

onymous with generalization, it is natural to use such signals to expedite learning. Even as

traditional logic has studied the simplest of such quantifiers (∀ and ∃) in significant detail,

statistical models have not yet leveraged their predictive potential.

We present a very general quantitative framework through which a set of explanations

of a concept can be used to learn a classifier from declarative language. For illustration,

consider the hypothetical example of a user explaining the concept of an “important email”

through natural language statements (Figure 4.1). Our framework takes a set of such nat-

ural language explanations describing a concept (e.g., “emails that I reply to are usually

important”) and a set of unlabeled instances as input, and produces a binary classifier

(for important emails) as output. Our hypothesis is that natural language explanations of

concepts encode key properties that can aid statistical learning. These include specifica-

tion of relevant attributes (e.g., whether an email was replied to), relationships between
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Figure 4.2: Our approach to Zero-shot learning from Language. Natural language expla-
nations on how to classify concept examples are parsed into formal constraints relating
features to concept labels. The constraints are combined with unlabeled data, using pos-
terior regularization to yield a classifier

such attributes and concept labels (e.g., if a reply implies the class label of that email is

‘important’), as well as the strength of these relationships (e.g., via quantifiers like ‘often’,

‘sometimes’, ‘rarely’). We infer these properties automatically, and use the semantics of

linguistic quantifiers to drive the training of classifiers without labeled examples for any

concept1. This is a novel scenario, where previous approaches in semi-supervised and

constraint-based learning are not directly applicable. This is because these approaches

require manual pre-specification of expert knowledge for model training. In our approach,

this knowledge is automatically inferred from noisy natural language explanations from a

user.

The schematic in Figure 4.2 summarizes our methodology. First, we map the set of

natural language explanations of a concept to logical forms that identify the attributes

1Note that we do not aim to provide a semantic representation to model the issue of quantification in
linguistics. Rather, the focus is on leveraging the generalization potential of quantifiers to enable learning
from language

45



mentioned in the explanation, and describe the information conveyed about the attribute

and the concept label as a quantitative constraint. This mapping is done through semantic

parsing. The logical forms denote quantitative constraints, which are probabilistic asser-

tions about observable attributes of the data and unobserved concept labels. For sake of

simplicity, we assume that the strength of a constraint is assumed to be specified by a

linguistic quantifier (such as ‘all’, ‘some’, ‘few’, etc., which reflect degrees of generality of

propositions). Next, we train a classification model that can assimilate these constraints

by adapting the posterior regularization framework (Ganchev et al., 2010).

Intuitively, this can be seen as defining an optimization problem, where the objective is

to find parameter estimates for the classifier that do not simply fit the data, but also agree

with the human provided natural language advice to the greatest extent possible. Since

logical forms can be grounded in a variety of sensors and external resources, an explicit

model of semantic interpretation conceptually allows the framework to subsume a flexible

range of grounding behaviors.

Work described in this chapter has previously appeared in Srivastava et al. (2018) and

Srivastava et al. (2017c).

4.1 Related Work

Many notable approaches have explored incorporation of background knowledge into the

training of learning algorithms. However, none of them addresses the issue of learning

from natural language. Prominent among these are the Constraint-driven learning (Chang

et al., 2007), Generalized Expectation (Mann and McCallum, 2010) and Posterior Regular-

ization (Ganchev et al., 2010) and Bayesian Measurements (Liang et al., 2009a) frameworks.

All of these require domain knowledge to be manually programmed in before learning. Sim-

ilarly, Probabilistic Soft Logic (Kimmig et al., 2012) allows users to specify rules in a logical

language that can be used for reasoning over graphical models. More recently, multiple
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approaches have explored few-shot learning from perspective of term or attribute-based

transfer (Lampert et al., 2014), or learning representations of instances as probabilistic

programs (Lake et al., 2015).

Other work (Lei Ba et al., 2015; Elhoseiny et al., 2013) considers language terms such as

colors and textures that can be directly grounded in visual meaning in images. Some pre-

vious work (Srivastava et al., 2017b) has explored using language explanations for feature

space construction in concept learning tasks, where the problem of learning to interpret

language, and learning classifiers is treated jointly. However, this approach assumes avail-

ability of labeled data for learning classifiers. Also notable is recent work by Andreas

et al. (2017), who propose using language descriptions as parameters to model structure

in learning tasks in multiple settings. More generally, learning from language has also

been previously explored in tasks such as playing games (Branavan et al., 2012), robot

navigation (Karamcheti et al., 2017), etc.

Natural language quantification has been studied from multiple perspectives in formal

logic (Barwise and Cooper, 1981), linguistics (Löbner, 1987; Bach et al., 2013) and cogni-

tive psychology (Kurtzman and MacDonald, 1993). While quantification has traditionally

been defined in set-theoretic terms in linguistic theories2, our approach joins alternative

perspectives that represent quantifiers probabilistically (Moxey and Sanford, 1993; Yildirim

et al., 2013). To the best of our knowledge, this is the first work to leverage the semantics

of quantifiers to guide statistical learning models.

4.2 Approach

Our approach relies on first mapping natural language descriptions to quantitative con-

straints that specify statistical relationships between observable attributes of instances and

their latent concept labels (Step 1 in Figure 4.2). These quantitative constraints are then
2e.g., ‘some A are B’ ⇔ A ∩B ̸= ∅
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imbued into the training of a classifier by guiding predictions from the learned models to

concur with them (Step 2). We use semantic parsing to interpret sentences as quantitative

constraints, and adapt the posterior regularization principle for our setting to estimate the

classifier parameters. Next, we describe these steps in detail. Since learning in this work

is largely driven by the semantics of linguistic quantifiers, we call our approach Learning

from Natural Quantification, or LNQ.

4.2.1 Mapping language to constraints

A key challenge in learning from language is converting free-form language to representa-

tions that can be reasoned over, and grounded in data. For example, a description such

as ‘emails that I reply to are usually important’ may be converted to a mathematical as-

sertion such as P (important | replied : true) = 0.7’, which statistical methods can reason

with. Here, we argue that this process can be automated for a large number of real-world

descriptions. In interpreting statements describing concepts, we infer the following key

elements:

1. Feature x, which is grounded in observed attributes of the data. For our exam-

ple, ‘emails replied to’ can refer to a predicate such as replied:true, which can be

evaluated in context of emails to indicate the whether an email was replied to.

Incorporating compositional representations enables more complex reasoning. e.g.,

‘the subject of course-related emails usually mentions CS100’ can map to a compos-

ite predicate like ‘isStringMatch(field:subject, stringVal(`CS100'))’ , which can

be evaluated for different emails to reflect whether their subject mentions ‘CS100’.

In Chapter 3, we have explored how mapping language to such executable feature

functions can be effective for concept learning. As before, here we assume that a

statement refers to a single feature, but the method can be extended to handle more

complex descriptions.
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2. Concept label y, specifying the class of instances a statement refers to. For binary

classes, this reduces to examples or non-examples of a concept. For our running

example, y corresponds to the positive class of important emails.

3. Constraint-type asserted by the statement. We argue that most concept descriptions

belong to one of three categories shown in Table 4.2, and these constitute our vo-

cabulary of constraint types for this work. For our running example (‘emails that I

reply to are usually important’), the type corresponds to P (y | x), since the syntax

of the statement indicates an assertion conditioned on the feature indicating whether

an email was replied to. On the other hand, an assertion such as ‘I usually reply

to important emails’ indicates an assertion conditioned on the set important emails,

and therefore corresponds to the type P (x | y).

4. Strength of the constraint. We assume this to be specified by a quantifier. For our

running example, this corresponds to the adverb ‘usually’. In this work, by quantifier

we specifically refer to frequency adverbs (‘usually’,‘rarely’, etc.) and frequency

determiners (‘few’, ‘all’, etc.).3 Our thesis is that the semantics of quantifiers can

be leveraged to make statistical assertions about relationships involving attributes

and concept labels. One way to do this might be to simply associate point estimates

of probability values, suggesting the fraction of truth values for assertions described

with these quantifiers. Table 4.1 shows probability values we assign to some common

frequency quantifiers for English. These values were set simply based on the authors’

intuition about their semantics, and do not reflect any empirical distributions. See

Figure 4.9 for empirical distributions corresponding to some linguistic quantifiers

in our data. While these probability values maybe inaccurate, and the semantics

of these quantifiers may also change based on context and the speaker, they can

still serve as a strong signal for learning classifiers since they are not used as hard

3This is a significantly restricted definition, and does not address non-frequency determiners (e.g.,‘the’,
‘only’, etc. ) or mass quantifiers (e.g. ‘a lot’, ‘little’), among other categories.
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Frequency quantifier Probability
all, always, certainly, defi-
nitely

0.95

usually, normally, gener-
ally, likely, typically

0.70

most, majority 0.60
often, half 0.50
many 0.40
sometimes, frequently,
some

0.30

few, occasionally 0.20
rarely, seldom 0.10
never 0.05

Table 4.1: Probability values we assign to common linguistic quantifiers (hyper-parameters
for method)

Type Example description Conversion to Expectation Constraint
P (y | x) Emails that I reply to are usually important E[Iy=important,reply(x):true]− pusually × E[Ireply(x):true] = 0
P (x | y) I often reply to important emails E[Iy=important,reply(x):true]− poften × E[Iy=important] = 0
P (y) I rarely get important emails Same as P (y|x0), where x0 is a constant feature

Table 4.2: Common constraint-types, and their representation as expectations over feature
values

constraints, but serve to bias classifiers towards better generalization.

We use a semantic parsing model to map statements to formal semantic representations

that specify these aspects. For example, the statement ‘Emails that I reply to are usu-

ally important’ is mapped to a logical form like (x→replied:true y→positive type:y|x

quant:usually).

Semantic Parser components

Given a descriptive statement s, the parsing problem consists of predicting a logical form

l that best represents its meaning. In turn, we formulate the probability of the logical

form l as decomposing into three component factors: (i) probability of observing a feature

and concept labels lxy based on the text of the sentence, (ii) probability of the type of the

assertion ltype based on the identified feature, concept label and syntactic properties of the
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sentence s, and (iii) identifying the linguistic quantifier, lquant, in the sentence.

P (l | s) = P (lxy | s) P (ltype | lxy, s) P (lquant | s)

We model each of the three components as follows: by using a traditional semantic parser

for the first component, training a Max-Ent classifier for the constraint-type for the second

component, and looking for an explicit string match to identify the quantifier for the third

component.

Identifying features and concept labels, lxy

For identifying the feature and concept label mentioned in a sentence, we presume a linear

score S(s, lxy) = θp1
Tψ(s, lxy) indicating the goodness of assigning a partial logical form, lxy,

to a sentence s. Here, ψ(s, lxy) ∈ Rn are semantic parsing features that can depend on both

the sentence and the partial logical form, and θp1 ∈ Rn is a parameter weight-vector for

this component of the semantic parser. Following recent work in semantic parsing (Liang

et al., 2011), we assume a loglinear distribution over interpretations of a sentence.

P (lxy | s) ∝ θp1
Tψ(s, lxy)

Provided data consisting of statements labeled with logical forms, the model can be trained

via maximum likelihood estimation, and be used to predict interpretations for new state-

ments. For training this component, we use a CCG semantic parsing formalism, and follow

the feature-set from Zettlemoyer and Collins (2007), consisting of simple indicator features

for occurrences of keywords and lexicon entries. This is also compatible with the semantic

parsing formalism in Chapter 3, whose data (and accompanying lexicon) are also used in

our evaluation. For other datasets with predefined features, this component is learned eas-

ily from simple lexicons consisting of trigger words for features and labels. We also identify

whether a feature x is negated, through the existence of a neg dependency relation with

the head of its text-span. e.g., Important emails are usually not deleted.
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This component is the only part of the parser that is domain-specific. We note that

while this component assumes a domain-specific lexicon (and possibly statement annotated

with logical forms), this effort is one-time-only, and will find re-use across the possibly large

number of concepts in the domain (e.g., email categories).

Identifying assertion type, ltype

The principal novelty in our semantic parsing model is in identifying the type of constraint

asserted by a statement. For this, we train a MaxEnt classifier, which uses positional and

syntactic features based on the text-spans corresponding to feature and concept mentions

to predict the constraint type. We extract the following features from a statement:

1. Boolean value indicating whether the text-span corresponding to the feature x pre-

cedes the text span for the concept label y.

2. Boolean value indicating if sentence is in passive (rather than active) voice, as iden-

tified by the occurrence of nsubjpass dependency relation.

3. Boolean value indicating whether head of the text-span for x is a noun, or a verb.

4. Features indicating the occurrence of conditional tokens (‘if’, ‘then’ and ‘that’) pre-

ceding or following text-spans for x and y.

5. Features indicating presence of a linguistic quantifier in a det or an advmod relation

with syntactic head of x or y.

Since the constraint type is determined by syntactic and dependency parse features,

this component does not need to be retrained for new domains. In this work, we trained

this classifier based on a manually annotated set of 80 sentences describing classes in the

small UCI Zoo dataset Lichman (2013), and used this model for all experiments.
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Identifying quantifiers, lquant:

Multiple linguistic quantifiers in a sentence are rare, and we simply look for the first

occurrence of a linguistic quantifier in a sentence, i.e. P (lquant|s) is a deterministic function.

We note that many real world descriptions of concepts lack an explicit quantifier. e.g.,

‘Emails from my boss are important’. In this work, we ignore such statements for the

purpose of training. Another treatment might be to models these statements as reflecting

a default quantifier, but we do not explore this direction here.

Finally, the decoupling of quantification from logical representation is a key design

decision in the approach. At the cost of linguistic coarseness, this allows modeling quan-

tification irrespective of the logical representation (lambda calculus, predicate-argument

structures, etc.).

4.2.2 Classifier training from constraints

In the previous section, we described how individual explanations can be mapped to prob-

abilistic assertions about observable attributes (e.g., the statement ‘Emails that I reply to

are usually important’ may map to P (y = important | replied = true) = pusually). Here,

we describe how a set of such assertions can be used in conjunction with unlabeled data

to train classification models.

Our approach relies on having predictions from the classifier on a set of unlabeled

examples (X = {x1 . . . xn}) agree with human-provided advice (in form of constraints).

The unobserved concept labels (Y = {y1 . . . yn}) for the unlabeled data constitute latent

variables for our method. The training procedure can be seen as iteratively inferring the

latent concept labels for unlabeled examples so as to agree with the human advice, and

updating the classification models by taking these labels as given. While there are multiple

approaches for training statistical models with constraints on latent variables, here we use

the Posterior Regularization (PR) framework. The PR objective can be used to optimize
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Figure 4.3: We invoke posterior regularization to incorporate quantitative constraints in
the training of concept learning models. The procedure can be seen as a modified EM
algorithm, where the latent variables correspond to concept label assignments for a set
of unlabeled examples. Each natural language explanation is mapped to a quantitative
constraint (in form of a probability assertion about features and label values). The con-
junction of such constraints define the set Q. In the modified E-step, we prefers concept
label assignments that do not violate the constraints (Figure adapted from Ganchev et al.
(2010))

a latent variable model subject to a set of constraints, which specify preferences for values

of the posterior distributions pθc(Y | X).

JQ(θc) = L(θc)−min
q∈Q

KL(q | pθc(Y |X)) (4.1)

Here, the set Q represents a set of preferred posterior distributions over latent variables

Y , and is defined as Q := {qX(Y ) : Eq[ϕ(X,Y )] ≤ b}. The overall objective consists of two

components, representing how well does a concept model θc explain the data (log-likelihood

term L(θc)), and how far it is from the set Q (KL-divergence term).

In our case, each parsed statement defines a probabilistic constraint. The conjunction of

all such constraints defines Q (representing models that exactly agree with human-provided

advice). Thus, optimizing the objective reflects a tension between choosing models that

increase data likelihood, and emulating language advice.
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Conversion to PR constraints

The set of constraints that PR can handle can be characterized as bounds on expected

values of functions (ϕ) of X and Y (or equivalently, from linearity of expectation, as linear

inequalities over expected values of functions of X and Y ). To use the framework, we need

to ensure that each constraint type in our vocabulary can be expressed in such a form.

Following the plan in Table 4.2, each constraint type can be converted in an equivalent

form Eq[ϕ(X,Y )] = b, compatible with PR. In particular, each of these constraint types in

our vocabulary can be expressed as equations about expectation values of joint indicator

functions of label assignments to instances and their attributes. To explain, consider the

assertion P (y = important | replied : true) = pusually. The probability on the LHS can

be expressed as the empirical fraction
∑

i E[Iyi=important,replied:true]∑
i E[Ireplied:true]

, which leads to the linear

constraints seen in Table 4.2 (expected values in the table hide summations over instances

for brevity). Here, I denote indicator functions. Thus, we can incorporate probability

constraints into our adaptation of the PR scheme.

Learning and Inference

We choose a loglinear parameterization for the concept classifier.

pθc(yi | xi) ∝ exp(yθcTx) (4.2)

The training of the classifier follows the modified EM procedure described in Ganchev et al.

(2010). As proposed in the original work, we solve a relaxed version of the optimization

that allows slack variables, and modifies the PR objective with a L2 regularizer. This

allows solutions even when the problem is over-constrained, and the set Q is empty (e.g.
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due to contradictory advice).

J ′(θc, q) = L(θc)−KL(q|pθc(Y |X))

− λ ||Eq[ϕ(X,Y )]− b||2 (4.3)

The key step in the training is the computation of the posterior regularizer in the E-step.

argmin
q

KL(q | pθc) + λ ||Eq[ϕ(X,Y )]− b||2 (4.4)

This objective is strictly convex, and all constraints are linear in q. We follow the opti-

mization procedure from Bellare et al. (2009), whereby the minimization problem in the

E-step can be efficiently solved through gradient steps in the dual space. In the M-step,

we update the model parameters for the classifier based on label distributions q estimated

in the E-step. This simply reduces to estimating the model parameters θc for the logistic

regression classifier, when class label probabilities are known. In all experiments, we run

EM for 20 iterations and use a regularization coefficient of λ = 0.1.

4.3 Data

For evaluating our approach for learning classifiers from declarative language, we created

datasets of classification tasks paired with descriptions of the classes, as well as used some

existing resources. In this section, we summarize these steps.

4.3.1 Shape classification

To experiment with our approach in a wider range of controlled settings, part of our

evaluation focuses on synthetic concepts. For this, we created a set of 50 shape classifi-

cation tasks that exhibit a range of difficulty, and elicited language descriptions spanning
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a variety of quantifier expressions. The tasks require classifying geometric shapes with a

set of predefined attributes (fill color, border, color, shape, size) into two concept-labels

(abstractly named ‘selected shape’, and ‘other’). The datasets were created through a gen-

erative process, where features xi are conditionally independent given the concept-label.

Each feature’s conditional distribution is sampled from a symmetric Dirichlet distribution,

and varying the concentration parameter α allows tuning the noise level of the generated

datasets (quantified via their Bayes Optimal accuracy4). A dataset is then generated by

sampling from these conditional distributions. We sample a total of 50 such datasets, con-

sisting of 100 training and 100 test examples each, where each example is a shape and its

assigned label.

For each dataset, we then collected statements from Mechanical Turk workers that

describe the concept. The task required turkers to study a sample of shapes presented on

the screen for each of the two concept-labels (see Figure 4.4(a)). They were then asked to

write a set of statements that would help others classify these shapes without seeing the

data. In total, 30 workers participated in this task, generating a mean of 4.3 statements

per dataset.

4.3.2 Email categorization

In Chapter 3, we describe a dataset of language explanations from human users describing 7

categories of emails, as well as 1030 examples of emails belonging to those categories. While

that work uses labeled examples, and focuses on mapping natural language explanations

(∼30 explanations per email category) to compositional feature functions, we can also use

statements in the same data for evaluating our approach. Even while language quantifiers

were not studied in the previous work, we found about a third of the statements in this

data to mention a quantifier.
4This is the accuracy of a theoretically optimal classifier, which knows the true distribution of the data

and labels
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(a) Statement generation task

(b) Quiz for human evaluation

Figure 4.4: Shapes data: Mechanical Turk tasks for (a) collecting concept descriptions,
and (b) human evaluation from concept descriptions
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Shapes:
If a shape doesn’t have a blue border, it is probably not a selected
shape.
Selected shapes occasionally have a yellow fill.
Most of the other shapes are triangles.
Emails:
Emails that mention the word ’meet’ in the subject are usually meet-
ing requests
Personal reminders almost always have the same recipient and
sender
Policy announcements typically contain a pdf attachment
Birds:
A specimen that has a striped crown is likely to be a selected bird.
Birds in the other category rarely ever have dagger-shaped beaks
Most of the selected birds have a solid tail pattern

Table 4.3: Examples of explanations for each domain

4.3.3 Bird species identification

The CUB-200 dataset (Wah et al., 2011) contains images of birds annotated with observable

attributes such as size, primary color, wing-patterns, etc. We selected a subset of the data

consisting of 10 species of birds and 53 attributes (60 examples per species). Turkers were

shown examples of birds from a species, and negative examples consisting of a mix of birds

from other species, and were asked to describe the classes (similar to the Shapes data).

During the task, users also had access to a table enumerating groundable attributes they

could refer to (see Figure 4.5). In all, 60 workers participated, generating 6.1 statements

per task on average.

The datasets for Bird species identification and Shape classification described here are

available at http://www.cs.cmu.edu/~shashans/resources/lnq.
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Figure 4.5: Statement generation task for Birds data

4.4 Evaluation

Incorporating constraints from language has not been addressed before, and hence previous

approaches for learning from limited data such as Mann and McCallum (2010); Chang et al.

(2007) would not directly work for this setting. Our baselines hence consist of extended

versions of previous approaches that incorporate output from the parser, as well as fully

supervised classifiers trained from a small number of labeled examples.

4.4.1 Classification performance

The top section in Table 4.4 summarizes performance of various classifiers on the Shape

datasets, averaged over all 50 classification tasks. FLGE+ refers to a baseline that uses

the Feature Labeling through Generalized Expectation criterion, following the approach
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Approach Avg Accuracy Labels Descriptions
LNQ 0.751 no yes
Bayes Optimal 0.831 – –
FLGE+ 0.659 no yes
FLGE 0.598 no yes
LR 0.737 yes no
Random 0.524 – –
Ablation:
LNQ (coarse quant) 0.679 no yes
LNQ (no quant) 0.545 no yes
Human:
Human teacher 0.802 yes writes
Human learner 0.734 no yes

Table 4.4: Classification performance for various learning strategies on Shapes datasets
(averaged over 50 classification tasks).

in Druck et al. (2008); Mann and McCallum (2010). The approach is based on labeling

features are indicating specific class-labels, which corresponds to specifiying constraints of

type P (y|x)5. While the original approach Druck et al. (2008) sets this value to 0.9, we

provide the method the quantitative probabilities used by LNQ. Since the original method

cannot handle language descriptions, we also provide the approach the concept label y and

feature x as identified by the parser. FLGE represents the version that is not provided

quantifier probabilities. LR refers to a supervised logistic regression model trained on n = 8

randomly chosen labeled instances.6 We note that LNQ performs substantially better

than both FLGE+ and LR on average. This validates our modeling principle for learning

classifiers from explanations alone, and also suggests value in our PR-based formulation,

which can handle multiple constraint types. We further note that not using quantifier

probabilities significantly deteriorates FLGE’s performance.

Figure 4.6 provides a more detailed characterization of LNQ’s performance. Each blue

5In general, Generalized Expectation can also handle broader constraint types, similar to Posterior
Regularization

6LNQ models are indistinct from LR w.r.t. parameterization, but trained to maximize a different
objective. The choice of n here is arbitrary, but is roughly twice the number of explanations for each task
in this domain
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Figure 4.6: LNQ vs Bayes Optimal Classifier performance for Shape learning tasks. Each
dot represents performance of the approach on a dataset generated from a known distribu-
tion. Dots towards the right correspond to progressively easier learning tasks (as quantified
by the Bayes Optimal accuracy). The diagonal line represents the trajectory of an asymp-
totically optimal (Bayes Optimal) Classifier. Dots that lie above the line correspond to a
learned classifier performing better than the Bayes Optimal on a dataset (a sample size
effect).

dot represents performance on a shape classification task. The horizontal axis represents

the accuracy of the Bayes Optimal classifier, and the vertical represents accuracy of the

LNQ approach. The blue line represents the trajectory for x = y, representing an ideal

statistical classifier in the asymptotic case of infinite samples. We note that LNQ is effective

in learning competent classifiers for all levels of hardness. Secondly, except for a small

number of outliers, the approach works especially well for learning easy concepts (towards

the right). From an error-analysis, we found that a majority of these errors are due

to problems in parsing (e.g., missed negation, incorrect constraint type) or due to poor

explanations from the teacher (bad grammar, or simply incorrect information).

Figure 4.7 shows results for email classification tasks. In the figure, LN* refers to the

approach in Chapter 3, which uses natural language descriptions to define compositional

features for email classification, but does not incorporate supervision from quantification.

For this task, we found very few of the natural language descriptions to contain quantifiers

for some of the individual email categories, making a direct comparison impractical. Thus
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Figure 4.7: Classification performance (F1) on Email Categorization tasks.

Figure 4.8: Classification performance (F1) on Birds Species Identification tasks.

in this case, we evaluate methods by combining supervision from descriptions in addition

to 10 labeled examples (also in line with evaluation in the original paper). We note that

additionally incorporating quantification (LNQ) consistently improves classification per-

formance across email categories. On this task, LNQ improves upon FLGE+ and LN* for

6 of the 7 email categories.

Figure 4.8 shows classification results on the Birds data. Here, LR refers to a logistic

regression model trained on n=10 examples. The trends in this case are similar, where

LNQ consistently outperforms FLGE+, and is competitive with LR.
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4.4.2 Ablating quantification

From Table 4.4, we further observe that the differential associative strengths of linguistic

quantifiers are crucial for our method’s classification performance. LNQ (no quant) refers

to a variant that assigns the same probability value (average of values in Table 4.1), irre-

spective of quantifier. This yields a near random performance, which is what we’d expect if

the learning is being driven by the differential strengths of quantifiers. LNQ (coarse quant)

refers to a variant that rounds assigned quantifier probabilities in Table 4.1 to 0 or 1. (i.e.,

quantifiers such are rarely get mapped to 0, while always gets mapped to a probability of

1). While its performance (0.679) suggests that simple binary feedback is a substantial

signal, the difference from the full model indicates value in using soft probabilities. On the

other hand, in a sensitivity study, we found the performance of the approach to be robust

to small changes in the probability values of quantifiers.

4.4.3 Comparison with human performance

For the Shapes data, we evaluated human teachers’ own understanding of concepts they

teach by evaluating them on a quiz based on predicting labels for examples from the test

set (see Figure 4.4(b)). Second, we solicit additional workers that were not exposed to

examples from the dataset, and present them only with the statements describing that

data (created by a teacher), which is comparable supervision to what LNQ receives.

We then evaluate their performance at the same task. From Table 4.4, we note that

a human teacher’s average performance is significantly worse (p < 0.05, Wilcoxon signed-

rank test) than the Bayes Optimal classifier indicating that the teacher’s own synthesis of

concepts is noisy. The human learner performance is expectedly lower, but interestingly

is also significantly worse than LNQ. While this might be potentially be caused by factors

such as user fatigue, this might also suggest that automated methods might be better

at reasoning with constraints than humans in certain scenarios. However, we note that
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Figure 4.9: Empirical distributions of probability values corresponding to statements men-
tioning six quantifiers (on Shapes data). Plots show Beta distributions with Method-of-
Moment estimates. Vertical bars correspond to pre-registered estimates of point probabil-
ity values from Table 4.1. The differences between the pre-registered beliefs and empirical
probabilities suggest that LNL can be effective for learning classification tasks even when
the empirical semantics of quantifiers are relatively inaccurately modeled, or are too dif-
fused to be meaningfully represented by point probability estimates

the Shapes data present a significantly simplified learning task, where there are only a

small number of pre-identified features, and background knowledge is not useful due to

the abstract nature of the concepts to be learned. In this sense, these results need to be

validated through comprehensive experiments in more domains and a broader range of

learning tasks .

4.4.4 Empirical semantics of quantifiers

We can estimate the distributions of probability values for different quantifiers from our

labeled data. For this, we aggregate sentences mentioning a quantifier, and calculate the

empirical value of the (conditional) probability associated with the statement, leading to

a set of probability values for each quantifier. Figure 4.9 shows empirical distributions of

probability values for six quantifiers from Table 4.1. In the figure, vertical bars represent
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pre-registered point probability beliefs about corresponding quantifiers from Table 4.1.

We note that while a few estimates (e.g., ‘rarely’ and ‘often’) roughly align with pre-

registered beliefs, others are somewhat off (e.g., ‘likely’ shows a much higher value, partly

since it usually occurred prefixed by ‘most’ in the data) and yet others (e.g., ‘sometimes’)

show a large spread of values (indicating their diffused semantics) to be meaningfully

modeled as point values. LNQ’s performance, inspite of this, shows strong stability in the

approach.

We don’t use these empirically observed probabilities in experiments, (instead of pre-

registered values), so as not to tune the hyperparameters to a specific dataset. Such

estimates would not be available for a new task without labeled data. More importantly,

using labeled data for estimating these probabilities, and then using the learned model for

predicting labels would constitute overfitting, biasing evaluation.

4.5 Discussion

In this chapter, we made a simple proposal, arguing for leveraging declarative language for

learning classifiers without labeled examples. In general, language can convey an expansive

range of declarative knowledge. However, our exploration suggests that a large fraction

of concept explanations in everyday natural language can be converted to quantitative

constraints about statistical expectations about the true model. In particular, a lot of

such explanations can effectively be thought of as fuzzy conditional rules about features

and concept labels, where fuzziness can be quantified as a conditional probability. Lever-

aging natural language quantifiers, which are frequent denoters of generality in everyday

language, can be an effective way to model this knowledge.

Our approach for learning from natural language quantification is surprisingly effective.

However, it does not address linguistic issues such as modifiers (e.g., very likely), nested

quantification, etc. On the other hand, we found no instances of nested quantification in
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the data, suggesting that people might be primed to use simpler language when teaching.

While we approximate quantifier semantics as absolute probability values, they may vary

significantly based on the context, as shown by cognitive studies such as Newstead and

Collis (1987). However, the relative stability of our approach to changes in probability

values suggests that the learning procedure is encouraging in this regard. A notable aspect

of the training procedure (also mentioned previously) framing the PR optimization problem

with slack variables (thus allowing violations) allows for learning in scenarios with presence

of contradictory advice.

Future work can model how these parameters can be adapted in a task specific way

(e.g., cases such as cancer prediction where base rates are small), and provide better models

of quantifier semantics. e.g., as distributions, rather than point values. Another important

exploration might focus on modeling the semantics of default quantification of conditional

sentences, i.e. model the degree of generality of explanations without an explicit quantifier

(e.g., ‘emails from my boss are important’). Our proposed approach currently ignores such

explanations. The meaning of such statements can depend on pragmatic or task-specific

cues, which future directions can explore.

Perhaps even more importantly, our exploration of the problem also does not consider

the issue of trustworthiness of a teacher. In settings where a learner learns from multiple

teachers (e.g., consider an agent trying to learn to identify people who are at risk of cancer

by reading advice from the web), some teachers may be more reliable than others. Ideally,

an agent would also learn whom to trust over time, rather than weighing all advice equally.

Nonetheless, our approach in this chapter is a step towards the idea of using language

as supervision to guide statistical learning. Inductive bias through language can enable

learning in scenarios with limited or no labeled data, where traditional learning methods

struggle. The main contributions of this work are:

1. We present an approach for training classifiers from natural language advice, which
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can alleviate the need for labeled data for classification (and potentially require no

labeled examples).

2. We develop datasets for zero-shot classification from natural descriptions, exhibiting

tasks with various levels of difficulty.

3. We empirically show that coarse probability estimates to model linguistic quantifiers

can effectively supervise model training across three domains of classification tasks.
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Chapter 5

Jointly learning Concept

Classification and Semantic Parsing

with Weak Supervision

In the previous chapters, we explored two mechanisms through which interpreted language

can help concept learning: by specifying useful features for a learning task, and by pro-

viding quantitative constraints on the concept model to be learned. However, both these

approaches presume the presence of competent semantic parsing models that can interpret

free-form natural language. In this chapter and the next, we provide new methods that fo-

cus on the complementary problem of learning to interpret i.e. learning the mapping from

natural language statements to their correct interpretations. In particular, we provide

new algorithms for learning semantic parsers that incorporate different types of situational

context in the process of language interpretation.

In this chapter, we extend the setting in Chapter 3 and provide an approach for jointly

learning both a semantic parser and a concept model, where the supervision consists only

of labeled examples of the concept. The model does not have access to the logical form

annotations for a statement at any point. Rather, the interpretations of statements are
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Figure 5.1: A semantic parser may associate multiple logical forms with a statement.
Among these, correct interpretations are much more likely to help in discriminating in-
stances of the concept. We can leverage this idea to jointly learn a semantic parser and
a concept classifiers only from natural language explanations and labeled examples of the
concept

treated as latent variables, and the learning of the parsing model is driven only through

performance on a downstream task of concept learning. The only supervision comes in

the form of a small number of labeled examples of a concept to be learned; the method is

automatically biased towards learning interpretations of explanations that are helpful for

the learning task (see Figure 5.1).

Experiments with our approach show that sensory context (in the form of feature value

observations) can guide semantic parsing models towards correct language interpretations.

This is a significantly weaker form of supervision than has been previously used for training

semantic parsers. Semantic parsers have traditionally been trained on data consisting of

statements paired with logical forms or their denotations. In our approach, even denota-

tions are not directly observed, but inferred as latent variables.

Work described in this chapter has previously appeared in Srivastava et al. (2017b).

5.1 Approach

We address the task of learning concepts from natural language statements and a small

number of labeled examples of the concept. Figure 5.2 summarizes the outline of our

approach. Similar to Chapter 3, our approach maps statements to logical interpretations,

which can be evaluated in context of new instances. In doing this, each statement s
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Figure 5.2: Schematic representation of joint approach for learning both a semantic pars-
ing model (with parameters θp) and a concept classification model (with parameters θc).
The only supervision for the approach is a set of labeled examples of the concept. As
in Chapter 3, natural language explanations are mapped to logical forms that define fea-
ture functions. Over time, the model learns better interpretations of natural language
statements, which lead to better feature representations for the concept learning problem
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effectively acts as a binary feature function {z = fs(x) ∈ {0, 1}} that fires when the

interpretation of a statement s is true for an instance x. However, here we show that is

also possible to jointly learn a semantic parsing model with no additional supervision. The

crux of our approach is that correct interpretations of natural language explanations are

more likely to be useful in discriminating concepts, and this observation can be used to

jointly learn both a semantic parser and a concept classifier.

Next, we describe our probabilistic latent variable formulation that learns a semantic

parser and a concept classifier from labeled examples of the concept. The latent variables

correspond to evaluations of natural language statements for different instances, and train-

ing proceeds via a generalized EM procedure that iteratively (1) estimates evaluations of

explanations (marginalizing over all interpretations), and (2) updates the classification and

semantic parsing models. The inputs to the method consist of a small number of labeled

examples and non-examples of a concept, natural language statements explaining the con-

cept, and a domain specific lexicon. The method does not require labeling sentences with

logical forms.

5.1.1 Problem setting

We consider concept learning problems in which the goal is to approximate an unknown

classification function f : X → Y where Y = {0, 1}. The input to our learning algorithm

consists of a set of labeled training examples T := {(x1, y1), . . . , (xm, ym)}, along with a set

of natural language statements S := {s1 . . . sn} about the concept. Our aim is to leverage

statements in S to learn a better classifier for the concept. Our training data does not

contain any other form of supervision (such as logical forms).

We assume that each statement sj defines some Boolean property over the instances

X; that is, statement sj should be interpreted as defining a predicate lj : X → {0, 1}. We

augment the representation of each instance, xi, with a feature vector zi, that encodes the
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Figure 5.3: Our data consist of instances xi with binary labels yi and statements s1 . . . sn
about a concept. zij denotes whether the statement sj applies to instance xi, and is not
observed in the data. zij are not observed directly: they are computed by parsing sj to a
logical form lj, and evaluating it in context of an instance xi, i.e. zij = JljKxi

. We depart
from Chapter 3 in not assuming supervision for training a parsing model. Rather, both
the statement interpretations lj and their evaluations zij are treated latent variables

information contained in S. The individual elements of this feature vector, zij ∈ {0, 1},

denote whether the statement sj applies to instance xi (see Figure 5.3). In the general

case, the evaluation values zi’s are not directly observed. These are obtained by parsing

each statement sj into a logical expression lj : X → {0, 1} which can be evaluated for an

instance xi to obtain zij = JljKxi
.

In this paper, we jointly learn a classifier and a semantic parser while treating z’s as

latent variables. For training, we maximize the conditional log-likelihood of the observed

data. Let us consider the log-likelihood for a single data instance (ignoring the subscript

i) for now. Since the evaluations z of natural statements for any context are latent,

we marginalize over these. Using Jensen’s inequality, any distribution q over the latent

variables provides a lower-bound on the data log-likelihood:
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log p(y | x,S) = log
∑

z
p(y, z | x,S)

≥
∑

z
q(z) log p(y, z | x,S)

q(z)

=
∑

z
q(z)

(
log pθc(y | z, x)︸ ︷︷ ︸

classification

+ log pθp(z | x,S)︸ ︷︷ ︸
parsing

)
+Hq

(5.1)

Here, Hq is the entropy term for the distribution q.

5.1.2 Coupling parsing and classification

In Equation 5.1, we observe that the data likelihood decouples into the log probability of

observing the concept labels pθc(yi | z, x) conditioned on the statement evaluations and

the log probability of the latent statement evaluations pθp(z | x,S). In particular, the first

term can be naturally parameterized by a discriminative classifier such as a loglinear model

(with associated parameters θc). We provide more details in Section 5.1.4.

On the other hand, the probability of the latent statement evaluation values z can be

parameterized using a probabilistic semantic parsing model (with associated parameters

θp). The second term decouples over evaluations of individual statements.

log pθp(z | x,S) =
∑
j

log pθp(zj | x, sj) (5.2)

In turn, since we never observe the correct interpretation l for any statement, but only

model its evaluation zj, we marginalize over all interpretations whose evaluations in a

context x matches zj (similar to Liang et al. (2011)).
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log pθp(zj | x, sj) = log
∑

l:JlKx=zj

pθp(l | sj) (5.3)

Following recent work in semantic parsing (Liang and Potts, 2015; Krishnamurthy and

Mitchell, 2012), we use a log-linear model over logical forms:

pθp(l | s) ∝ exp(θpTψ(s, l)) (5.4)

where ψ(s, l) ∈ Rd is a feature vector over statements s and logical interpretations l.

5.1.3 Learning

In Equation 5.1, q(z) denotes a distribution over evaluation values of statements; whereas

θc and θp denote the model parameters for the classifier and semantic parser. The learning

algorithm consists of an iterative generalized EM procedure, which can be interpreted as

a block-coordinate ascent in the estimates of statement evaluations q(z) and the model

parameters θc and θp.

E-step: In the E-step, we update our estimates of evaluation variables (z). We make a

mean-field approximation by assuming that the joint distribution over evaluations decou-

ples as q(z) =
∏
qj(zj). Then maximizing the lower bound in Equation 5.1 in terms of qj

leads to the following update:

qj(zj) ∝ exp
(

E
j′ ̸=j

[log pθc(z|x)] + log pθp(zj|x, sj)
)

(5.5)

The first term in the update prefers values of an evaluation variable that are more discrim-

inative on average (when values of other statements are marginalized out). The second

term favours values of the evaluation variable that conforms with the most likely interpre-

tations of the corresponding statement (sj) by the semantic parser. Thus, in the E-step,
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we upweight evaluations of statements that are both discriminative, as well as supported

by interpretations from the semantic parser.

M-step: In the M-step, we update the model parameters to maximize the lower bound

in Equation 5.1. This corresponds to independently optimizing the log-likelihood for the

classification model and the semantic parser, based on current estimates of qj(zj)’s of the

statement evaluations. The entropy term Hq is constant from the perspective of model

parameters, and is not relevant for the optimization. In particular, the semantic parser is

updated to agree with evaluations of natural language statements that are discriminative.

At the same time, the classification model is updated to fit evaluations that are supported

by interpretations from the semantic parser.

We now describe the M-step updates for the log-linear semantic parser with parameters,

θp. The updates for the classifier parameters, θc, depend on the form of the classification

model, and are described in Section 5.1.4. For clarity, we focus on updates corresponding

to a particular statement sj from the training dataset. From Equations 5.1, 5.3 and 5.4,

the objective for the semantic parser is given by:

ℓj(θp) =
∑
i

∑
z∈{0,1}

q(zij) log

∑
l:JlKxi=z

exp(θpTψ(sj, l))∑
l

exp(θpTψ(sj, l))
(5.6)

Semantic parsers are usually optimized using gradient updates. Here, the gradient is:

∇ℓj(θp) =
∑
i,z,l

q(zij)pθp(l | s)
pθp(zij ̸= z|xi, s)
pθp(zij = z|xi, s)

ψ(sj, l) (5.7)
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5.1.4 Classification models

The problem formulation and learning procedure described in Sections 5.1.2 and 5.1.3 is

agnostic to the choice of the classification model (with parameters θc). For this work, we

experimented with a logistic classifier (LR) and a Naive Bayes model (NB).

Logistic Regression (LR)

The form of the logistic function log p(y|z) = − log(1 + exp(-θTc z y)) means that the

likelihood does not decouple for individual components in z. Hence, in the E-step, the

expectation in Equation 5.5 cannot be computed analytically. Instead, we estimate this

by drawing Bernoulli samples for individual zj’s using previous estimates of qj(zj). In the

M-step, we update classification parameters θc using stochastic gradient updates, while

again sampling individual zj’s.

Naive Bayes (NB)

The likelihood for this model is p(y, z) =
∏

j θ
zj
cy(1 − θcy)1−zj . In this case, the individual

components of z decouple in the log likelihood, leading to simple updates in both the E and

M steps. While this is not a conditional likelihood (as expected in Section 5.1.2), in our

experiments we found that the NB objective to be empirically effective with our approach.

5.2 Data

For evaluation of our approach, we use the data previously described in Section 3. The

data consists of a collection of 1037 emails belonging to one of seven email categories, and

235 natural language explanations describing these categories. The explanation statements

are also annotated with logical forms. As opposed to our approach in Chapter 3, the joint

approach presented here does not use these labeled logical forms to train a semantic parser.
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Contact Employee Event Humor Meeting Policy Reminder Average
Joint LNL(LR) 0.608* 0.351 0.568* 0.570* 0.757* 0.898* 0.437 0.598*
Joint LNL(NB) 0.628* 0.370 0.453* 0.590* 0.732* 0.878* 0.414 0.581*
LNL 0.648* 0.381 0.627* 0.565* 0.770* 0.892* 0.470 0.622
LNL-Gold 0.661 0.397 0.677 0.572 0.777 0.917 0.487 0.641
Joint LNL(LR) + BoW 0.634 0.398 0.604 0.704 0.747 0.891 0.567 0.649
Joint LNL(NB) + BoW 0.644 0.409 0.520 0.709 0.723 0.878 0.543 0.632
LNL+BoW 0.640 0.421 0.622 0.755 0.731 0.909 0.554 0.661
LNL-Gold+BoW 0.667 0.449 0.659 0.798 0.771 0.927 0.595 0.695

Table 5.1: Concept learning performance (F1 scores) using n = 10 labeled examples for
Joint LNL (LR) and Joint LNL(NB) (reproduces and extends results from Table 3.4). *
for the rows corresponding to LNL denotes statistical significance over the best performing
non-LNL model

Rather, the supervision is only through concept labels for email instances provided to the

method. However, these annotations are used to evaluate the semantic parsing performance

of the approach.

5.3 Evaluation

In this section, we evaluate the performance of our approach from the perspectives of con-

cept learning as well as semantic parsing. We first compare our methods against traditional

text classification methods on the task of email classification (the baseline models are the

same as from Section 3.4).

5.3.1 Concept Learning

Table 5.1 reproduces results from Table 3.4 from Chapter 3, but also includes classification

performance of our joint approaches for concept learning and semantic parsing. These are

denoted by Joint LNL(LR) and Joint LNL(NB) in the table, which correspond to models

with a Logistic Regression and a Naive Bayes parametrization for the classifier component.

As before, the models are trained for n = 10 labeled examples, and the reported numbers

are averages of F1 scores over 10 uniform random draws of the labeled examples from the
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data set of emails.

We observe that both Joint LNL(LR) and Joint LNL(NB) (Logistic Regression) out-

perform all baselines approaches, and are consistently only slightly lower in performance

than the fully supervised LNL approach from Chapter 3. Interestingly, we also note that

Joint LNL(LR) and Joint LNL(NB) show similar performance for most concepts. As in

Table 3.4, LNL-Gold denotes the classification performance with using these annotated

gold parses. This corresponds to the hypothetical case where the classifier knows the cor-

rect semantic interpretation of each natural language sentence from an oracle. The last

four rows in the table show performance when the LNL methods also utilize BoW represen-

tations of the data. These show consistent gains in overall performance, while conforming

to the same pattern.

These results indicate that our weakly supervised method is quite effective in inter-

preting natural language statements for concept learning, without explicit supervision for

logical forms.

5.3.2 Semantic Parsing

We next evaluate the parsing performance of our approach, which learns a semantic parser

from only concept labels of examples. Table 5.2 evaluates parsing performance against the

gold annotation logical forms for statements. For this task, we check for exact match of

the predicted logical forms with manually annotated logical forms for the concept expla-

nations. In the table, full supervision refers to traditional training of a semantic parser

using complete annotations of statements with their logical forms, which is the approach

we previously follow in Chapter 3. The results report average accuracy over 10-fold cross-

validation, and demonstrate that while not comparable to supervised parsing, our weakly

supervised approach is relatively effective in learning semantic parsers.

Further, exact match to gold annotated logical forms is a restrictive measure. Qualita-
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Accuracy
Fully Supervised 0.63
Joint LNL (LR) 0.30
Joint LNL (NB) 0.28
No training 0.01

Table 5.2: Semantic parsing performance (exact match) for proposed weakly supervised
methods (Joint LNL(LR) and Joint LNL(NB)) vs full supervision (completely labeled
logical forms)

tive analysis revealed that even when the predicted and gold annotation logical forms don’t

match, predicted logical forms are often strongly correlated in terms of evaluation to gold

annotations. e.g., getPhraseMention( email, stringVal(`postdoc')) vs getPhraseMention(

body, stringVal(`postdoc')). In about 5% of cases, predicted and gold interpretations

are different on the surface, but are semantically equivalent (e.g., stringEquals( sender,

recipient) vs stringEquals( recipient, sender)).

5.4 Discussion

We consider the problem of jointly learning a semantic parser and a concept classifier from

natural language explanations, and a small number of labeled examples of the concept. On

email classification tasks, this approach yields improvements in classification performance

comparable with an approach that trains a fully supervised model for mapping explanations

to feature functions.

More significantly, this scenario demonstrates an application where sensory context

from the environment (in the form of feature value observations) in conjunction with con-

cept labels can be used to weakly supervise the training of a semantic parser, in absence

of usual semantic annotations (sentences paired with labeled logical forms or denotations

of logical forms). Our approach leverages pragmatics to prefer interpretations of natural

language explanations that are more discriminative in context of concept learning. Our

empirical results show that such context may be a viable and inexpensive source of su-
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pervision for training semantic parsers. Further, a parsing model trained using such an

approach (using natural language explanations and labeled examples of a concept) can

subsequently be used to bootstrap training of classifiers for other concepts where there are

no labeled examples (such as using the approach presented in Chapter 4).

Our contributions are:

• We provide a joint method for concept learning and language understanding that

can be trained from a small number of labeled concept instances alone.

• Our empirical results show that such context may be a viable and inexpensive source

of supervision for training semantic parsers. We leveraged pragmatics to prefer inter-

pretations of natural language explanations that are more discriminative in context

of concept learning. In doing this, we extend supervised semantic parsing by learn-

ing from a weaker form of supervision than learning from denotations. This is a

significantly weaker setting than either learning from logical forms, or learning from

denotations.

• We demonstrate that for small labeled data, such an approach can achieve substantial

gains in classification accuracy by using natural language explanations, even without

a fully supervised parsing model.
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Chapter 6

Semantic Parsing with

Conversational Context

Teaching machines through natural conversation involves significant challenges for seman-

tic parsing. Most extant methods for semantic parsing focus exclusively on parsing single

natural language sentences in isolation. While this maybe useful for environments con-

sisting of one-shot interactions of users with a system (e.g., running QA queries on a

database), conversational settings often require extended interactions between a user and

an automated assistant, where a model of previous conversational history maybe funda-

mental for understanding the meaning of a new statement from a user.

We illustrate this in Figure 6.1, which shows a snippet of a real conversation between

a human user and an automated email assistant. In this conversation, the user attempts

to instruct the assistant to perform a sequence of tasks related to sending an email. From

the figure, we note that pragmatics and conversational context are fundamental for under-

standing several individual utterances from the user. In particular, observe that utterance

U2 (‘Set to mom’s email’) cannot be correctly parsed based on its content alone, but re-

quires an understanding of the discourse. Based on the previous statement (composing a

new email), setting the recipient field is the user’s likely intent. Similarly, utterances U3

83



[U1] User: Compose an email
[A1] Agent: Composing new email. Its fields are: recipient, subject and body
[U2] User: Use mom's email
[A2] Agent: I set the recipient field to `momthebest@email.com'
[U3] User: Set the subject to hello, please
[A3] Agent: I set the subject field to `hello, please'
[U4] User: Set the subject to hello, please
[A4] Agent: I set the subject field to `hello'
[U5] User: Set the body to I'll be late
[A5] Agent: I set the body field to `I'll be late'
[U6] User: Send the email
[A6] Agent: I sent the email ...

Figure 6.1: Example of a real-world interaction between a human (User) and an automated
email assistant (Agent)

and U4 show an example of a repetition, where the agent first misinterprets (U3), and

then correctly parses a statement (U4). While parsing U4, the agent needs to implicitly

understand that it should interpret the current utterance to a different logical form than

before (even though the textual content is identical). This would not be possible in the

traditional one-shot parsing setting, which cannot incorporate such implicit feedback. In-

stead, correctly interpreting the sentence requires modeling of the discourse structure of

the conversation.

In this chapter, we provide an approach for semantic parsing of natural language that

incorporates such conversational context. In particular, we show that the state of a con-

versation immediately preceding a statement can provide contextual features that can

improve semantic parsing performance. We incorporate such structural features for mod-

eling the flow of discourse and context in a conversation, and provide a training algorithm

for learning such a model from conversation snippets consisting of sequences of statements

annotated with logical forms.

Work described in this chapter has previously appeared in Srivastava et al. (2017a).
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6.1 Related Work

Supervised semantic parsing has been studied in a wide range of settings (Zettlemoyer

and Collins, 2005; Wong and Mooney, 2007; Kwiatkowski et al., 2010). Recent approaches

have focused on various strategies for using weaker forms of supervision (Clarke et al.,

2010; Krishnamurthy and Mitchell, 2012; Berant et al., 2013) and rapid prototyping of

semantic parsers for new domains (Wang et al., 2015; Pasupat and Liang, 2015). Other

works have explored semantic parsing in a grounded contexts, and using perceptual con-

text to assist semantic parsing (Matuszek et al., 2012; Krishnamurthy and Kollar, 2013).

However, none of these approaches incorporate conversational context to jointly interpret a

conversational sequence. For instance, poor interpretations made while parsing at a point

in a conversation cannot be re-evaluated in light of more incoming information. A notable

work that incorporates conversational data in relation to semantic parsing is (Artzi and

Zettlemoyer, 2011). However, rather that incorporating contextual cues, their goal is very

different: using rephrasings in conversation logs as weak supervision for inducing a seman-

tic parser. Closer to our work is previous work by Zettlemoyer and Collins (2009), who also

learn context-sensitive interpretations of sentences using a two-step model. However, their

formulation is specific to CCG grammars and focuses on modeling discourse referents.

The role of context in assigning meaning to language has been emphasized from abstract

perspectives in computational semantics (Bates, 1976; Van Dijk, 1980), as well as in systems

for task-specific applications (Larsson and Traum, 2000). Examples of the former include

analyzing language from perspectives of speech acts (Searle, 1969) and semantic scripts

(Schank and Abelson, 1977; Chambers and Jurafsky, 2008; Pichotta and Mooney, 2015).

These works induce typical trajectories of event sequences from unlabeled text to infer

what might happen next.

On the other hand, a notable application area that has explored conversational context

within highly specific settings is state tracking in dialog systems. Here, the focus is on
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N

Figure 6.2: Model diagram for semantic parsing of conversational sequences. Traditional
semantic parsing features depend on utterances st and associated logical forms lt only. Our
model additionally allows structured features that can depend on previous logical forms
lt−1, latent variables zt representing the discourse state of the conversation at any step,
and the previous utterances s1 . . . st

inferring the state of a conversation given all previous dialog history (Higashinaka et al.,

2003; Williams et al., 2013) in context of specific task trajectories, rather than interpreting

the semantic meanings of individual utterances.

We allow our semantic parser to output logical forms that may not be entailed from

an utterance using a strict grammar formalism, expanding on similar ideas in Wang et al.

(2015); Goldwasser and Roth (2014). Finally, some of the heuristics proposed in this work

are motivated by previous work on paraphrasing for semantic parsing (Berant and Liang,

2014).

6.2 Approach

We present an approach for semantic parsing of conversations by posing conversations

as sequences of utterances to model ‘flow of discourse’. We consider the problem as a

structured prediction task, where we jointly learn preferences for collective assignments of

logical forms for sentences in a sequence.

Let s denote a conversation sequence of T utterances by a user, with individual ut-
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terances denoted as {s1 . . . sT}. Let l := {l1 . . . lT} be the intended logical forms for

corresponding utterances. We assume a supervised learning setting where we have la-

beled training sequences T := {
(
s(1), l(1)

)
. . .

(
s(N), l(N)

)
} consisting of utterances and their

associated logical forms. In comparison, the traditional supervised setting for learning se-

mantic parsers consists of pairs of training utterances and associated logical forms (si, li),

but doesn’t have a sequential structure. Our model utilizes this sequential structure to

incorporate information about discourse and pragmatics.

In addition, we also associate a latent categorical variable denoted as zt with each

user utterance st to reinforce the modeling of the flow of discourse (see Figure 6.2). The

latent states can take one of K possible discrete values, and abstractly represent distinct

discourse states. The value of K is a predefined parameter for the model1. In Section

6.5, we show that these latent states learn distinct interpretable discourse states that are

prevalent in conversations, and can support dynamic modeling of context with the progress

of a conversation.

For a given utterance sequence s = {s1 . . . sT}, our model predicts logical assignments,

l̂ = {l̂1 . . . l̂T}, and latent discourse states, ẑ = {ẑ1 . . . ẑT} by solving the following inference

problem, i.e. finding the highest scoring assignment of logical forms, l, and discourse states,

z, under a given model:

(̂l, ẑ) = argmax
l∈L(s),z

Sθp(s, l, z) (6.1)

Here, L(s) is the search space associated with sequence s, consisting of possible joint

assignments of logical forms to the various utterances in the sequence. For any utterance

st, the grammar of the meaning representation formalism can specify the set G(st) of its

candidate logical forms. The associated search space for the sequence s is then simply
1Setting K = 1 effectively reduces the model to not using latent variables at all. This model still

incorporates structural context and discourse by learning preferences for joint assignments of logical forms
to utterances. However, the latent variables zt afford additional flexibility to the model. i.e. for the same
utterance, the model can parse differently based on the current state
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given by the cross-product L(s) = ⊗tG(st), and the hat symbol (^) represents predicted

variables.

Sθp(s, l, z) represents a linear score denoting the goodness of an assignment of logical

forms, l, and latent discourse states, z, to utterances in conversation sequence s. This score

is defined as:

Sθp(s, l, z) = θp
Tψ(s, l, z)

where, ψ is a feature function that produces a real-valued feature vector for the tuple

(s, l, z). As we shall see in Section 6.3, these features consist of two categories ψ =

[ψtext ψcontext]: (a) ψtext: features for individual parses that model how well individual

logical forms, lt, match corresponding natural language utterances, st, in isolation. This

subset subsumes all features from traditional semantic parsing models (b) ψcontext: features

that model conversational context and discourse across the chain structure of the conver-

sation. The model parameters, θp, consist of a real-valued weight for each kind of feature,

and are learned during training.

6.2.1 Model training

The model parameters θp can be trained via the latent variable Structured Perceptron algo-

rithm (Collins, 2002; Zettlemoyer and Collins, 2007), which performs subgradient updates

minimizing the following structured hinge loss:

L(θp, s, l, z) :=
∣∣∣ max
l̂∈L(s),ẑ

Sθp(s, l̂, ẑ)−max
z⋆

Sθp(s, l, z⋆)
∣∣∣
+

(6.2)

The objective consists of a difference of two terms: the first is the score of predicted

assignment (̂l, ẑ) for sequence s under the current model, while the second is the score of

the highest-scoring latent discourse states for s with the ground truth logical form l. These
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correspond to solving the following inference problems: (1) finding the best combination

of logical forms and discourse states for a sequence (Equation 6.1), and (2) finding the

best combination of discourse states for a sequence and given logical forms. We describe

the procedure to solve Equation 6.1 below. The second inference problem is a simpler case

of the same equation, since one of the two variables to be inferred (l) is already known.

Finally, in our experiments, we also use an l2-regularizer (with ridge parameter 0.01) for

weight-vector θp.

We note that our formulation does not pre-suppose a specific semantic parsing frame-

work, grammar or feature-definition. In this work, we use a CCG-based semantic parsing

approach. However, our framework can seamlessly extend to other formalisms such as DCS

(Liang et al., 2013) that are trained with gradient updates.

6.2.2 Inference

Both training and prediction for the model depend on efficiently solving the inference

problem in Equation 6.1. In general, the problem can be tractably solved if components of

feature function ψ decompose into smaller factors. In our case, ψtext features decompose

according to the structure of individual parse trees. Similarly, ψcontext features factorize

according to chain structure of the discourse due to Markov properties (details in Section

6.3). Our inference procedure consists of a hierarchical two step process: (1) we find a

candidate set of possible logical forms for each utterance, st, in a sequence, and (2) we find

the best joint assignment among these by incorporating information from contextual and

structural cues. We now briefly describe the two steps.

In the first step, we obtain a set of candidate logical forms from the semantic parsing

grammar, G(st), for individual utterances, st, while viewing them in isolation. To prune

this set to a manageable size, we score a potential logical form using only the text-based
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features (ψtext). This is identical to traditional semantic parsing, and the highest scoring

logical forms for an utterance can be found using the k-best CYK algorithm. In practice,

considerations such as large grammars make exact inference prohibitive for this setting.

Following previous works in semantic parsing (Kwiatkowski et al., 2013; Berant et al.,

2013), we employ beam search to find an approximate set of best candidate logical forms

for a sentence.

In the next step, we combine the above-obtained sets of candidate logical forms for

individual utterances, st, to infer the best joint semantic parse l (and discourse states z)

for the complete sequence, s. This involves obtaining a sequence of lt’s that incorporates

scores from the contextual and discourse features (ψcontext). Since these features decompose

according to the chain structure of the sequence, the highest scoring assignments of a

sequence of discourse states z and logical forms l can be efficiently computed using the

Viterbi algorithm (where hidden states of the Viterbi chart correspond to pairs of logical

forms in the candidate set and discrete discourse states).

6.2.3 Expansion strategies

The approach described above uses the traditional semantic parsing setting (using the score

from ψtext only) to define the set of candidate logical forms for an utterance, G(st). However,

one may define strategies to expand the candidate set G(st) to also include logical forms

that are not included in the beam from the text-only features. We consider the following

simple heuristics to expand the candidate set, G(st), for each utterance st:

1. Highest PMI (PMI): Add to G(st) the logical forms that have the n-highest PMI

with the best scoring logical form from the text-only model for the previous utterance

(st−1) in the training set.

2. Highest conditional probability (Prob): Add to G(st) the n most frequent

logical forms that followed the best scoring logical form from the text-only model for
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the previous utterance (st−1) in the training set.

3. Paraphrase (PP): Add to G(st) the candidate sets for k utterances in the training

set that are semantically most similar to st. For computing similarity, we use Vec-

tor Tree Kernels (Srivastava et al., 2013; Srivastava and Hovy, 2014) that provide

a semantic similarity score between two sentences using syntactic information and

distributional embeddings.

4. Most frequent (MF): Add the n-most frequent logical forms observed in the train-

ing data to the candidate set G(st) for each utterance.

6.2.4 Prediction

Our model is trained to simultaneously consider all utterances of a sequence. At prediction

time however, in most scenarios, the agent would need to continually infer the parse of the

latest sentence during the conversation, in a real-time setting. In particular, we need

to ensure not to use future utterances while predicting the logical form for the current

utterance. Hence, at prediction time, we simply use the model to predict logical forms for

the sequence of conversation ending at the current utterance.

6.3 Features for Incorporating Conversational Con-

text in Semantic Parsing

In this section, we outline the text-based and context-based features used by our model.

The text-based features are based on lexical and grammar rules, typically employed in tra-

ditional semantic parsers, whereas the context-based features are based on simple counts of

specific configurations of logical predicates and discourse state assignments for a sequence.

Thus, both kinds of features can be computed efficiently.
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6.3.1 Text-based features

These features (denoted by ψtext) depend on a single utterance st and a candidate logical

form lt. As such, they lie in the ambit of traditional semantic parsing features, and are

standard features for CCG semantic parsers (Zettlemoyer and Collins, 2007; Azaria et al.,

2016; Artzi and Zettlemoyer, 2013). We use the following text-based features:

• Lexicon features: Indicator features for each lexicon entry that fires for the given

utterance, and indicator features for each syntactic category (POS) in the utterance

combined with the logical form.

• Rule application features: Indicator features for both unary and binary rules in the

parse of the given utterance to the associated logical form.

• String-based features: Number of words in the utterance, indicator features denoting

whether string spans occur at the beginning or end of the utterance.

6.3.2 Structural context-based features

These features (denoted by ψcontext) model the flow of discourse and context-specific regu-

larities by learning preferences for correlations between logical predicates, discourse state

assignments and features based on the text of the conversational history.

• Transition features: Indicator features denoting combinations of logical predicates

in successive utterances (e.g., {Li:setBodyToString, Li−1:createEmail})2, combina-

tions of discourse variable assignments in successive utterances (e.g., {Zi=State1,Zi−1=State2}

), combinations of logical predicates and discourse variable in successive steps.

• Emission features: Indicator features denoting presence of a logical predicate in the

current utterance combined with the current discourse state (e.g. {Zi=State0,Li:greeting}).

• Lexical trigger features: Indicator features denoting presence of trigger words (from
2{Li:a,Lj:b} denotes that the logical form Li includes the logical predicate a, and Lj contains b.
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CCG lexicon) in the current utterance, paired with logical predicates in the current

logical form and the current discourse state.

• Repetition features: Indicator features denoting whether the current utterance is a

repeat, Indicator features denoting if the current utterance is a repeat and the current

logical form is the same as the previous step, etc.3

• Domain-specific features: Indicator feature that looks at long term history to denote

whether the user is currently teaching the system a new procedure (e.g., inProcedure=true).

See Section 6.4 for explanation.

• Positional features: Feature denoting the position of the current utterance in the

conversation.

• Provenance features: Indicator feature denoting whether the current logical form was

derived from the CCG grammar, or added through an expansion strategy.

6.4 Data

Most existing datasets for semantic parsing focus on understanding single utterances at a

time, rather than conversations. Thus, we created a dataset of real-life user conversations

in an email assistant environment. For this, we annotated transcripts of real conversations

between human subjects and an email assistant agent in a text-dialog environment provided

in previous work by Azaria et al. (2016).

Each interaction session consists of the user trying to accomplish a set of email-based

tasks by interacting with the agent (similar to those seen in Figure 6.1). The system also

allows users to teach new procedures (e.g., forwarding an email), concepts (e.g., concept of a

contact with fields name, phone number, etc.), and instances (e.g., instantiating a contact)

on-the-fly. Because of this feature, and since the users are unaware of the capabilities of
3While Figure 6.2 indicates possible edge features between latent variables (zt or lt) and st , the model

also allows features that could depend on the entire history of utterances observed till t (s1 . . . st).
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the agent, linguistic usage in the experiments is complex and diverse, compared to many

existing datasets. The data consists of sequences of user utterances and system responses.

In order to make the data usable for research, we pruned conversation sequences and

annotated user utterances with their associated logical forms. e.g., the utterance: ‘What is

Mom’s email?’ is annotated with the logical form (evalField (getFieldByInstanceName mom

email)), following the logical language in the original paper (Azaria et al., 2016). Utterances

that could not be reasonably expected to be interpreted by the email agent were marked

as unknownCommand (7% of utterances). However, if the user later taught the system what

she meant, future instances of the utterance were marked with the intended logical form

(e.g., users often taught the command ‘Next’ to read and move to the next email in the

inbox). Sequences devolving into non-meaningful interactions were removed, e.g., if the

annotator deemed that the user did not intend to complete a task. Superfluous segments

of the original conversation (e.g., utterances re-phrasing a previous utterances that the

system didn’t process) were also manually pruned.

Annotating every command by manually specifying its logical form would require expe-

rience with the underlying logical language of the system. Instead, we developed a software

that allowed faster annotation using an alternate procedure. The software allows annota-

tors to load a conversation sequence, and execute each utterance against a live version of

the email agent. If the response indicates that agent has correctly interpreted the com-

mand, the annotator may save the associated logical form for the utterance. However, if

the response indicates that the system did not interpret the command correctly (judged by

the annotator’s belief of the user’s intent), the annotator may provide a command which (i)

reflects the intention of the utterance, and that (ii) the email agent can interpret correctly.

In effect, the strategy uses annotators to paraphrase the original command into simpler

commands (still in natural language) that the agent would parse to the correct logical form,

without exposing them to the underlying meaning representation formalism. Thus, while

this procedure still requires the annotator to be familiar with the capabilities of the email
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Table 6.1: Corpus statistics for Email Assistant dataset

Number of user utterances 4759
User sessions 113
Avg length of session (utterances) 42
Word types (all utterances) 704

agent, the annotator is not required to know the specifics of the meaning representation

language and logical predicates used by it.

Figure 6.1 summarizes the statistics for the curated dataset. For evaluation and future

comparisons, we split the data into a training fold (93 conversation sequences) and a test

fold (20 conversation sequences). The data described here is available at http://www.cs.

cmu.edu/~shashans/resources/conversationparsing.

6.5 Evaluation

In this section, we discuss quantitative and qualitative evaluation of our method. We

first make a comparative evaluation of our method in recovering gold-standard annotation

parses on the held-out test set. Next, we make an ablation study to assess the contributions

of different families of structural features described in Section 6.3. We then briefly analyze

the characteristics of the latent states learned by the model, and qualitatively discuss the

performance of the model.

6.5.1 Parsing performance

For training our models, we tune parameters, i.e. number of training epochs (5), and the

number of clusters (K = 3) through 10-fold cross-validation on the training data. For

the CCG grammar, we use the PAL lexicon induction algorithm (Krishnamurthy, 2016)

to expand the base lexicon provided by Azaria et al. (2016). Our baselines include the
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Accuracy
Previous methods
Unstructured CCG 51.9
Seq2Seq 52.3
LEX 46.4
Proposed models
SPCon 54.2
SPCon + PMI 56.2
SPCon + Prob 56.9
SPCon + MF 62.3
SPCon + PP 59.8

Table 6.2: Test accuracies on Email Assistant dataset

following semantic parsing models:

• Unstructured CCG: CCG parser from Azaria et al. (2016), which uses the same lexicon

and text-based features from Section 6.3, but does not incorporate structural features

• Seq2Seq: Deep neural network based on sequence-to-sequence RNN model from Bah-

danau et al. (2015) to directly maps utterances to logical forms.

• LEX: Alignment-based model that chooses best parse using lexical trigger scores only,

with no syntactic rules (does not use provided lexicon).

Table 6.2 compares the performance of variations of our method for semantic parsing

with conversational context (SPCon) with baselines on the held-out test set of conver-

sational sequences. Parses are evaluated for exact match in logical forms, and reported

results are averages over 5 runs. We observe that the Seq2Seq and Unstructured CCG

models perform comparably, whereas LEX doesn’t perform as well.

We find that our structured models (SPCon and its variations) consistently outperform

the baseline models. Further, the expansion strategies suggested in Section 6.2 lead to

consistent gains in performance. The improvement of SPCon over Unstructured CCG, and

further improvements of expanded models over SPCon are statistically significant (α = 0.1,

McNemar’s test). In particular, the expansion strategies that afford highest coverage (MF
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Figure 6.3: Comparison of parsing accuracy by successive removal of structured feature
families described in Section 6.3. Removing structural transition and emission features (C1
and C2) leads to the most significant drop in performance

and PP) prove to be most effective. This suggests that the structural features are helpful

for disambiguating between a large number of candidate logical forms, even when text-only

features don’t yield the correct logical form as a candidate. This also indicates that the

performance of the unstructured CCG parser is restricted by issues of recall (the correct

parse is not among the candidates from the beam search for the majority of error cases)

due to the open-ended linguistic usage in the dataset. The expansion strategies partially

alleviate this issue.

6.5.2 Feature ablation

Next, we perform an ablation study to analyze the contributions of various kinds of features

to the model performance. Figure 6.3 shows the effects of successively removing different

categories of structural features from the best performing model described above.

We note that removing positional and provenance features (C6 and C7) has minimal

effect on model performance. Removing features identifying repetition and domain-specific

features (C4 and C5) leads to a 1% drop. Further removing lexical trigger features (C3)

that associate certain words with specific logical predicates and discourse states leads to

a more significant drop. However, the biggest effect is seen by removing transition and
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Figure 6.4: Semantic Parsing accuracy for different values of the number of latent discourse
states, K. Setting K = 1 effectively reduces the model to not using latent variables at all.
This model still incorporates structural context and discourse by learning preferences for
joint assignments of logical forms to utterances. Larger values of K can enable additional
modeling flexibility. i.e. for the same utterance, the model can parse differently based on
the current state

emission features (C1 and C2). This is expected since these are fundamental for model-

ing associations across steps in the sequential structure of conversations. Ablating these

features in the final step reduces the model to text-based features only, and the model per-

formance is then understandably close to the performance of the unstructured CCG model

(the marginal difference is due to batch updates for sentences in a conversation sequence vs

online updates in the unstructured case). This also validates our thesis that incorporating

contextual information leads to better models for understanding conversations.

6.5.3 Interpretations of Latent states

We investigate the effect of latent states on model performance. We varied the number

of latent states (K) and found model performance deteriorated for more than K = 3

states (see Figure 6.4). We qualitatively explored contents of individual latent states to

see if learned latent states reflect distinct discourse states in conversations. Table 6.3

characterizes some of the highest weighted features associated with each state for a run of

the model. State 1 appears to be associated with confusion as it has highest weights for

features that indicate presence of logical predicates unknownCommand and cancel. Similarly,

State 2 is associated with teaching new procedures (the feature inProcedure=true has a

high weight, and another high-weighted feature indicates presence of the logical predicate
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State 1 has(unknownCommand), has(cancel)
State 2 inProcedure=true, has(doSeq)
State 3 has(createInstanceByName), has(readInstance)

Table 6.3: High-weight features for each latent state (K = 3). has(a) denotes a feature
associated with the presence of logical predicate a

doSeq which is strongly associated with teaching procedures). On the other hand, State 3

has a more generic character, consisting of the most common logical predicates, and is the

predicted state for the majority of utterances.

We also observe that latent states enable our approach to model interesting context-

specific linguistic usage. For example, an analysis of state-specific weights learned by the

model showed that it learns two distinct interpretations for the trigger word cancel in

different contexts: within a learning procedure cancel is strongly associated with a logical

predicate to quit the procedure, outside this context it is strongly associated with undoing

the action taken in the previous step.

Errors: We found that in many examples, structured features partially address many of the

issues highlighted in Figure 6.1. A manual inspection of errors revealed that a significant

number (about 20%) of them are due to user-specific procedures that were taught to the

agent by human users during the original study. These errors are too hard to resolve with

a batch training approach, and would require incorporating user-specific behavior in the

semantic parsing.

6.6 Discussion

In this chapter, we presented a new approach for training semantic parsers, which incor-

porates conversational context. We developed a structured prediction formulation that

incorporates conversational context by leveraging structural regularities in conversation

sequences. This enables joint learning of text-based features traditionally used by seman-
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tic parsers, as well as structural features to model the flow of discourse. While the current

work uses a simple model of discourse as statistical regularities (with Markov properties) in

sequential structure of conversations, this can further be refined by incorporating models

of discourse entities and discourse referents from discourse representation theory. Un-

derstanding of conversations can also be enhanced by models incorporating background

world knowledge. Finally, the idea of using conversational context can be generalized to

incorporate other modes of contextual information, such as from the agent’s execution

environment. Our contributions are:

• An annotated dataset of conversations, comprising of 4759 natural language statements

with their associated logical forms.

• A latent variable approach that incorporates both text-based cues within sentences (that

model semantics), and structural inferences across sentences (that capture discourse and

pragmatics). Using this, we empirically demonstrate significant improvements in parsing

conversations over the state-of-the-art.

• Latent categories learned by the approach are seen to be semantically meaningful, and

can be interpreted in terms of discourse states in the conversations.
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Chapter 7

Learning Question-asking Strategies

for Mixed-Initiative Dialog

When children learn from language, they do not rely only on passively receiving supervi-

sion from a teacher in the form of explanations or instructions. Rather, the interaction

usually takes the form of a mixed-initiative dialog, where students can also ask questions

and proactively seek clarifications that simplify the learning problem. These questions may

focus on generalizing learning to novel situations, exploring new hypotheses, or filling cru-

cial information gaps. The ability to ask questions can, therefore, fundamentally facilitate

learning and understanding. The central value of questions (in terms of human pedagogy)

is indicated by the fact that a student’s understanding of a topic is often judged from being

able to ask the right questions.

Language allows a natural medium for such interactive dialog on part of a learner. In

this chapter, we explore the ability to ask questions in an interactive dialog-based setting.

We examine the role of mixed-initiative interaction between a learner and a teacher in

terms of the following question: how can we learn intelligent questioning strategies on part

of the learner, which can help concept learning tasks? Interactivity on the part of the

learner can facilitate multiple facets of learning. While the potential space of questions
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that a student can ask a teacher can be vast (Ram, 1991), our treatment here specifically

focuses on the ability of interactive dialog for:

1. Seeking labels for specific examples

2. Asking for explanations of a concept

3. Requesting clarifications about earlier explanations

These dimensions can facilitate multiple aspects of the learning process: including

learning from labeled examples (similar to traditional supervised learning), learning from

natural language explanations (extending our research presented in the previous chapters)

and alleviating limitations in the learner’s semantic parsing abilities. Learning systems that

reify these abilities can enable users to teach new concepts using a blend of traditional and

natural language supervision in dialog-based settings.

In this chapter, we first describe how our approach to learn from declarative language

described in Chapter 4 can be extended to learn classifiers using a mix of explanations and

labeled examples. Next, we present a simple reinforcement learning approach for learning

question-asking policies for dialog based concept learning.

7.1 Related Work

From the perspective of traditional supervised learning, the problem of asking questions

can be seen as cognate with active learning. Methods in active learning have explored

various criteria for choosing which of a set of unlabeled examples to label next while

training supervised machine learning models. This can be seen as asking a specific kind

of question – and also the most natural – since labeled examples compose the supervision

in traditional machine learning models. Thus, learning to ask questions subsumes active

learning, but also generalizes it in multiple ways.

A learner can initiate dialog to solicit various kinds of measurements to simplify a
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learning problem. These include seeking of instance labels (e.g., ‘This email is spam’),

feature labels (‘Emails that mention “Viagara” are spam’), label proportions (‘Spam emails

are as common as non-spam email’), constraints on model expectations, etc. However, using

natural language as a medium of information communication adds further challenges: the

optimal question answering strategy may depend not only on the learning task at hand,

but also the teacher’s skill and the quality of the learner’s semantic parsing model. For

example, a teacher’s language may be too complex to handle for the parser, in which case

it might be preferable to stick to asking about the teacher about instance labels (which

would not require parsing).

However, rather than learning static criterion for choosing what question to ask (such as

in active learning), our focus here is to learn to ask questions in context of a conversational

setting (which is inherently a dynamic process). To explain, asking a teacher to rephrase

an explanation only makes sense in specific contexts (when the interpretation of something

said previously is unclear). This has motivated our choice of a reinforcement learning based

approach for learning question-asking strategies rather than static criterion.

Conversational agents and dialog systems have been explored in comprehensive details

in the field of dialog research. However, our focus here is not the mechanism of language

generation, but learning what questions to ask at specific points in the concept learn-

ing process. To simplify our analysis, we restrict ourselves to predefined questions types

mentioned above.

7.2 Approach

Learning question-asking strategies presupposes a mechanism through which answers to

those questions can jointly help towards the goal of the dialog, i.e. concept learning.

Thus, in Section 7.2.1 we first describe an approach for learning classifiers from a mix of

labeled examples and natural language advice as a preliminary. Next, in Section 7.2.2, we
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present our reinforcement learning formulation for learning question-asking strategies in

a simulated conversational setting. The space of actions for the framework consists of a

vocabulary of question types that a learner can ask a teacher, and reward is evaluated in

terms of improvements in the concept model that an asked question leads to.

7.2.1 Learning classifiers from a mix of observations and expla-

nations

We can naturally extend our approach presented in Chapter 4, to learning loglinear clas-

sifiers from a mix of both labeled and unlabeled data, and natural language explanations.

This is done by simply appending a log-likelihood term for the labeled examples to the

objective in Equation 4.1. The updated objective is given by:

JQ(θ) = Llabeled(θ) + µ
(
Lunlabeled(θ)−min

q∈Q
KL(q | pθ(Y |X))

)
(7.1)

Here, Llabeled(θ) =
∑

k lθ(xk, yk) denotes the log-likelihood term for a set of nlabeled

labeled examples Xlabeled = {(xk, yk)}nlabeled, whereas the other two terms are as before:

Lunlabeled(θ) denoting log-likelihood over a set of nunlabeled unlabeled examples, and a pos-

terior regularizer term (KL-divergence) penalizing violations of the parse natural language

advice. The training procedure proceeds similar to before. In the E-step, the computation

of the posterior regularizer remains unchanged. However, the M-step is modified so that

the classifier parameters θ are learned using both the inferred labels (from the E-step) for

the unlabeled examples, and provided labels for the labeled examples.

In Equation 7.1, µ > 0 determines the relative weights of provided example labels

and natural language advice in the optimization objective. In cases where there is little

labeled data, we would like to rely primarily on constraints specified from natural language

explanations, and unlabeled data. On the other hand, in scenarios where there is a lot of

labeled data available enabling robust inductive inference, we would like to primarily rely
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on it rather than explanations1. While setting up the optimization problem, the value of µ

can be adapted to reflect this intuition. In our experiments, we found setting µ = 1/nlabeled

to work well across settings.

7.2.2 RL formulation for learning to question

For our framework for concept learning in a dialog setting, we assume the presence of

a teacher to answer questions posed by the learner. We further restrict the structure of

dialog to the learner asking a sequence of questions, and the teacher responding to them.

The schematic in Figure 7.1 shows a hypothetical example of such a dialog.

Further, we also assume the presence of a held-out set of labeled examples of the

concept, which can be used to evaluate the classification performance of the learner’s

concept model as the dialog progresses. At each step t, the learner’s action at consists of

choosing a question to ask the teacher. The teacher’s response to the learner’s question is

parsed to a data measurement (in the form of a labeled example, or a model constraint),

which is then incorporated into the learner’s concept model (by retraining the model with

the additional labeled example or the new quantitative constraint). The classification

performance, ct, of the updated model is evaluated on the held-out set. The change in

classification performance from the previous step, rt approximates the marginal value of

the question in the learning process, and constitutes the learner’s immediate reward at

that step.

Our approach for learning question asking strategies consists of modeling the dialog

process as a Markov Decision Process, and using a SARSA-learning procedure to estimate

the relative values of different question types in different contexts.

We next describe the state-space, actions and rewards, and the learning procedure.

1To explain, in the asymptotic case of infinite data with labels, an inductively learned Bayes Classifier
would be optimal
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Figure 7.1: We assume that the dialog between the learner and the teacher is in the form
of turn-wise conversations – consisting of a sequence of questions asked by the learner,
and the teacher’s responses to those questions. At each step in this process, the teacher’s
response is parsed by the learner, and can be incorporated into the learner’s concept model
as either a labeled example or a quantitative constraint (the learner can also choose to seek
a clarification). A reward (denoted by rt) can be computed at each step, which denotes
the marginal change in classification performance on a held-out set of examples due to
the last response. In this framework, learning good question-asking strategies corresponds
to asking sequences of questions that maximize the cumulative (discounted) reward, and
hence quickly lead to effective concept models
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Action Space

As mentioned previously, there can be a multitude of questions that a human learner

can ask a teacher in context of concept learning tasks. However, in this chapter, we

are concerned only with three specific types of questions that are specially germane for

facilitating learning from a mix of labeled examples and explanations. These consist of the

following:

1. Seeking labels for specific examples: This is similar to traditional active learn-

ing. In particular, we can have a different action corresponding to every active

learning criterion, which chooses which example to label next. In our experiments,

we use two active learning techniques (and hence have a corresponding action for

each):

• Random Instance: Ask for the concept label for a randomly chosen unlabeled

instance in the data

• Maximum Uncertainty Instance: Ask for the concept label for the instance in the

data for which the current concept model is most uncertain (highest entropy).

If there are multiple such instances, randomly pick one of them.

2. Asking for an explanation for the concept: This action seeks out from the

teacher a short natural language explanation of the concept, similar to those seen in

previous chapters. These are intended to be incorporated in the concept model as

quantitative constraints. In general, this can encompass several types of explanations.

For example,

• Asking for probability estimates about specific labels and features. e.g., ‘How

likely are emails about meetings?’

• Asking for discriminative features for particular concept labels. e.g., ‘Can you

think of a feature that if present always denotes that an email is important?’
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• Asking about class probabilities. e.g., ‘Around what fraction of emails in your

inbox are important?’

All of these provide admissible constraints which our classifier training procedure

(from Section 7.2.1) can handle. However, to simplify our analysis and data col-

lection, in our experiments, we only explored asking for general explanations of the

form ‘Can you give me an explanation of the concept?’, which could return a wide

variety of responses.

3. Requesting clarifications about earlier explanations: This action asks for a

clarification about the interpretation of a previous explanation (which should be help-

ful in cases when the learner is uncertain about the correct interpretation). Such a

clarification could simplest verify if the learner’s interpretation of the previous expla-

nation (parsed logical form) was correct or not. This type of binary feedback about

language interpretation has been previously explored in works such as (Goldwasser

and Roth, 2014) to train semantic parsers. In our case, this feedback is simply used

to decide whether the previous explanation should be used to update the learner’s

concept model, based on whether it was interpreted correctly.

Rewards

The reward, rt, evaluates the change in concept learning performance due to an asked

question at each step of the dialog. In our experiments, we use the model’s F1 score as the

measure of concept learning performance, ct. We define the reward as the absolute change

in model performance from the previous step, rt = ct − ct−1.

State-space

Conversations are inherently dynamic. The best question to ask at a particular point might

strongly depend on the state of the conversation, i.e. this could include the pedagogical
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stage in the learning process (exploratory vs confirmatory), previous questions asked, etc.

Thus, defining a rich enough state space is an important consideration for a formulation

of conversational learning.

In our treatment, we assume a discrete state-space, which is defined simply by the cross

product of the following (also discrete) factors.

• Curricular stage in the learning process: We use a discrete variable to model the

curricular stage of the learner simply by the number of steps (questions previously

asked) in the interaction at any point. We cluster the number of steps such that

the curricular stage are defined by the following five values: BEGINNER (0 steps),

ELEMENTARY (1-5 steps), INTERMEDIATE (6-10 steps), ADVANCED (11-15

steps) and MATURE (> 15 steps)2.

• Reward in the previous state: We discretize the value of reward using the follow-

ing threshold values: GOOD (rt ≥ 0.03), INCREASING (0.01 < rt < 0.03), UN-

CHANGED (−0.01 < rt < 0.01) and DECREASING (rt < −0.01).

• Velocity of reward (3 states): This simply returns whether the value of the discrete

variable for the reward (just described) improves, worsens or remains the same com-

pared to the previous step.

• Type of the previous two actions as earlier mentioned in the description of the Action

Space.

• Domain of learning task: This simply indicates which domain of classification tasks

the current concept belongs to. The evaluation of our approach uses datasets de-

scribed in previous chapters, corresponding to three types of tasks: Email catego-

rization, Shape classification and Bird species identification; hence this variable can

take three corresponding values.

2These threshold values were heuristically chosen based on the observation that for most of datasets
that we experiment with, classifier performance roughly begins to plateau at around 20 training examples
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• Confidence of previous parse: We model the confidence of the parser in parsing the

previous sentence as the ratio of the probability of the highest probability (predicted)

logical form and the next best logical form. We discretize this ratio into three values,

corresponding to the upper, lower and interquartile ranges for the value of the ratio.

On the other hand, we note here that our state-space does not model the following also

important considerations:

• User behavior: We do not model aspects such as whether the user is a good teacher

(i) provides correct information, (ii) uses parseable language

• Task difficulty: how expressible is the task using language explanations. For exam-

ple, some concept maybe significantly easier to explain using language than others,

depending on the logical language available for grounding explanations. For exam-

ple, it maybe impossible to explain digit recognition using pixel level features using

natural language (such as in the MNIST classification dataset).

7.2.3 Model training

For training, we use the SARSA learning algorithm (Rummery and Niranjan, 1994), where

we represent the Q-value function for a pairs of a state s and an action a, Q(s, a), as a

table of values. We use an ϵ-greedy strategy (where we set ϵ = 0.10). In other words,

the strategy balances between exploitation and exploration by picking the next action to

be the estimated optimal one (in terms of having the maximum estimated Q-value for a

particular state) with a probability of 1− ϵ, and choosing the next action randomly with

a probability of ϵ.

SARSA allows on-policy learning by iteratively updating the estimates of Q(s, a) values

at each step. In each step t, when the agent is in state st, it chooses the next action at

ϵ-greedily, and observes the corresponding reward rt+1 and the next state st+1. The agent

again chooses the next action at+1 ϵ-greedily, and makes the following update.

110



Q(st, at)←− Q(st, at) + α
(
rt+1 + γQ(st+1, at+1)−Q(st, at)

)
(7.2)

Here, γ ∈ (0, 1] denotes the discounting factor for the rewards (set to 0.9 in our experi-

ments), while α ∈ (0, 1] (set to 0.2 in our experiments) denotes the learning rate

7.3 Evaluation

For our model training, our environment does not consist of questioning human users in

real-time, but we rather simulate the conversational exchange by asking questions to a

oracle, which has access to previously collected data about a concept (consisting of both

explanations and labeled examples). In particular, we note that each of the question types

that we previously discussed in Section 7.2.2 – namely asking for instance labels, asking for

a general concept explanation, verifying interpretation of an explanation, or asking for a

paraphrase – can be answered with statically collected data – consisting of labeled examples

and natural language explanations paired with their logical forms and paraphrases.

For our experiments, we use data previously described in Chapter 3 and Chapter 4,

consisting of three domains of classification tasks – Email concepts, Bird Species identifi-

cation and Visual Shape classification. We compared our model with a naive policy that

randomly takes a new action at each step in the learning process.

We note that a limitation of learning question-asking strategies from simulated inter-

actions is that for some classification tasks, we may run out of concept explanations in the

course of model training (since the number of explanations of a concept are limited). In

such cases, we end the interaction as soon as all explanations are already provided to the

learner.
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7.3.1 Learned vs Random policies

Figure 7.2 shows cumulative reward (averaged over 20 classification tasks) in the process

of interactive concept learning when the question asking strategy is learned compared with

the random strategy. Here, the question-asking strategy was previously learned over a set

of 50 separate classification tasks. We note that the policy learning strategy performance

is consistently superior (on average, it achieves any given level of classification performance

in a smaller number of interactions), which unambiguously indicates value in asking the

right questions.

Figure 7.2: Cumulative Reward (averaged over 20 tasks) for interactive concept learning
when question asking strategy is learned vs when questions are asked randomly

7.3.2 Reliance on NL vs Parsing accuracy

Intuitively, the ability of a learner to interpret language should be a significant consideration

in whether it should choose to ask for explanations or labeled examples. To test this, we

simulate scenarios of learners with different levels of semantic parsing ability by choosing

the true logical form for any explanation with the corresponding probability, and choosing

an alternative logical form from the remaining candidates in the beam otherwise.

Figure 7.3 depicts the effect of parsing competence on learned question-asking strate-
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gies. We note that the learned strategies increasingly avoid seeking natural language

explanations of concepts as the parsing performance worsens. In the base case where the

learner has no parsing competence, the model learns to exclusively ask for labeled examples

only (In the figure, the fraction is seen to converge to 0.1 instead of 0.0 due to the ϵ-greedy

nature of the policy-learning procedure).

Figure 7.3: Fraction of actions seeking Natural Language Explanations vs competence of
the learner’s semantic parsing model

7.3.3 Differential value in sequences of explanations

A significant feature in concept learning from explanations, which our approaches do not

acknowledge is that a person’s multiple explanations of a concept might have significantly

different utility. Specifically, it might be reasonable to imagine that people would be

more likely to provide the most useful explanations first, and provide minor explanations

subsequently.

From an ablation study, we observe that this is indeed a valid concern. Figure 7.4

shows the average marginal increase in classification performance over 50 visual shape

classification tasks from explanations with different rank (based on order of providing from

a human user).
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Figure 7.4: Average increase in classification performance by incorporating explanations of
different positional orders in explanation sequences

7.4 Discussion

Learning to ask questions is a fundamentally important aspect of human learning. In

this chapter, we provided a simple formulation for learning to ask different types of ques-

tions in the context of interactive concept learning. Our empirical analysis shows that

question-asking strategies learned from our approach can accelerate concept acquisition.

At the same time, a direction that we don’t explore here is that the interactive nature of

the dialog naturally lends itself to simultaneously improving the learner’s semantic pars-

ing capabilities. Our approach of grounding language in teacher-learner interactions with

a shared and measurable goal (concept acquisition) can have interesting implications be-

yond concept learning; as a modeling framework, it is also consonant with the cooperative

principle of language (Grice, 1975).

On the other hand, our approach is simplistic in some ways. Significantly, while our

method can consume both explanations and labels, we make restrictive assumptions on the

types of questions that can be asked, as well as the structure of the dialog. In particular,

for the sake of simplicity, our framework does not allow more than two exchanges about

a particular explanation – consisting of the original explanation from the teacher, and at

most one clarification.
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Further, in future work, it might be possible to also evaluate the learned question-asking

strategies through human user studies.
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Chapter 8

Conclusion

In this research, we have explored how different aspects of natural language can be lever-

aged to train classification models from language interactions with human users. As our

results across multiple tasks show, such interactions can be effective sources of supervi-

sion for training statistical models, rivaling the performance of models trained from fully

labeled data in many cases. Our approach for learning from natural language rests on

semantic parsing, and can be seen as a fundamentally new application of semantic parsing

in comparison with prior work. A second, but important component of our work is the

development of new methods for grounded language acquisition that use context from the

environment to improve the process of semantic interpretation. Leveraging the grounding

of language to improve both language understanding and learning about the environment

is a central theme in our work.

8.1 Overview

We began by exploring the problem of how natural language explanations can be used

to specify relevant features for concept learning tasks. Through empirical studies on the

domain of emails, we showed that parsing such explanations to feature functions can lead
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to learning with fewer examples than traditional classification methods for email classifi-

cation. Note that language can not only highlight specific features of the data from among

a pre-defined set (which is more related to the problem of feature selection), but also com-

positionally define new features, which can lead to representations that make inductive

learning easier. An intrinsic property of natural language that facilitates this is that the

structure of language explanations closely mirrors the structure of the computation needed

to calculate a feature. For example, a person explaining the concept of an email that is a

reminder to oneself might say ‘The sender and the recipient address are the same’.

We then explored how didactic language can be used to directly provide supervision

for training of concept learning models, reducing (or even eliminating) dependence on

labeled data. Here, we introduce a general quantitative framework through which a set of

explanations are converted to quantitative constraints, which can be used to learn classifiers

by inference over a set of unlabeled examples of the concept. Our formulation defines a

modified optimization problem for model training, where the objective is to find parameter

estimates for the classifier that do not simply fit the data, but also agree with the human

provided natural language advice as much as possible. In particular, we focus on identifying

different types of statistical relationships between features and labels expressed in language

(e.g., ‘If the subject of an email threatens to close an account, it is definitely spam’) and

leverage linguistic quantifiers (e.g., ‘definitely’). Our experiments on multiple data domains

suggest that this approach for learning driven by linguistic quantification is surprisingly

effective.

In the next two chapters, we focused on the complementary problem of learning to

interpret language utterances. In particular, we provided two new algorithms for learn-

ing semantic parsers that incorporate different types of situational context in the process

of language interpretation. First, we considered the problem of jointly learning both a

semantic parser and a concept classifier from natural language explanations, and a small

number of labeled examples of the concept. Our approach leverages pragmatics to prefer
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interpretations of natural language explanations that are more discriminative in context of

concept learning. Our empirical results show that sensory context (in the form of feature

value observations) along with natural language instruction and labeled examples can be

a viable and inexpensive source of supervision for training semantic parsers. This is a sig-

nificantly weaker form of supervision than has been previously used for training semantic

parsers. We believe that the approach of modeling latent interpretations of language as

auxiliaries to downstream tasks, which we propound here, can be a useful paradigm for

grounded language learning in a range of applications.

Next, we presented a semantic parsing method for parsing conversations. Our approach

incorporates conversational context by leveraging structural regularities in the sequential

structure of conversations. The method employs a structured prediction formulation, en-

abling it to incorporate not only text-based features traditionally used by semantic parsers,

but also structural features to model the flow of discourse. For example, a terse statement

such as ‘Use mom’s email’ can be better parsed using such discourse features that can

model the intent of the speaker from previous statements, such as ‘Compose a new email’.

Finally, we explore the problem of learning intelligent question-asking strategies to

engage with a teacher, which can help concept learning tasks in interactive dialog settings.

Here, we developed a simple reinforcement learning formulation for the problem, where

agent actions correspond to different question types and reward is measured in terms

of improvement in performance on concept learning task. Our empirical analysis across

three domains of classification taks shows that question-asking strategies learned from our

approach can accelerate concept acquisition.

8.2 Summary of contributions

The principal contributions of this work can be summarized as follows:

1. We present a novel application of semantic parsing for interactive feature specification
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for machine learning tasks.

2. We present the first application of linguistic quantifiers for guiding generalization

of statistical models. Our approach emulates paradigms such as constraint-driven

learning that leverage declarative knowledge in lieu of example labels for supervision

– but also extends them by providing a natural solution to how such constraints are

to be obtained.

3. We develop datasets for concept learning from natural language explanations for three

data domains. These include classification tasks with various levels of difficulty.

4. We provide two new approaches (and corresponding datasets) for semantic parsing

in grounded contexts. Our approach in Chapter 5 represents a significant departure

from existing methods in semantic parsing by learning from weaker supervision than

annotations of logical forms or their denotations for individual sentences.

5. We present a framework for learning from a blend of labeled examples and natural lan-

guage explanations, which might be the most realistic scenario for concept-learning

tasks in everyday life. Using this framework, we explore the problem of learning ques-

tioning strategies for mixed initiative dialog, and develop a reinforcement learning

formulation for this.

8.3 Directions for future work

Many aspects of this work have an exploratory nature. A reasonable characterization of the

research done in this dissertation might be as a preliminary study in leveraging advances

in language technologies and the newfound ubiquity of sensor-effector systems grounded in

the environment towards the goal of creating machine learning systems that can be taught

through language, similar to a how one might teach a human assistant. Our exploration

of learning from language revealed several challenges and directions for future work.
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8.3.1 Learning from multiple teachers

An important challenge is developing algorithms that can learn from multiple teachers.

e.g., consider an agent trying to learn to identify people who are at risk of a specific type

of cancer by reading advice from the web. In such scenarios, the issue of trustworthiness

may be an important modeling consideration, since some teachers may be more reliable

than others. One way to accommodate this might be through extending our approach in

Chapter 4 by weighing constraints from different sources differently.

8.3.2 Learning persistent knowledge and ontologies

Another important aspect that our treatment here neglects is learning from extended

interactions. When humans learn concepts, they do not learn each concept in isolation.

Rather, they might rely on using knowledge of simpler concepts to learn incrementally

more complex concepts. Further, in many cases, jointly learning concepts might be an

easier learning problem than learning concepts in isolation due to coupling constraints.

For example, an explanation such as ‘Emails from my friends are definitely important’

couples two concepts: emails that are important, and contacts who are friends. Learning

one concept should help learn the other. In future work, the research presented here

can be expanded to enable learning agents with persistent knowledge bases, which allow

learned concepts and abstractions to be reused across multiple tasks – enabling generalized

learning. As an example, the concept of a ‘diagonal’ acquired while learning the game of

tic-tac-can be re-used in learning other games (such as chess).

8.3.3 Characterizing what to learn from language

An important direction of future research that we do not explore here is the question of

choosing which learning tasks might be better to learn through language. The renaissance

of neural network methods in the current decade has led to exciting advances in supervised
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learning for tasks such as object recognition, which seem closer to low-level perception

than higher-level reasoning. This type of learning may be similar to things that humans

learn in an unconscious fashion (e.g., learn to see, learn to walk, etc.). On the other hand,

when people learn to play a game (e.g., tic-tac-toe), it is clear that they use a different

paradigm, where good strategies and sub-goals can be explained, and learning does not

need to be driven solely by examples. This kind of learning can enable better generalization

and reasoning across tasks, compared to fixed-structure learning (For example, many deep

network video game players can be thrown off by simply mapping pixels to different color

values). In general, it is unclear how neural models can be used in the long tail of learning

tasks that have limited data, or require complex reasoning. Along with advances in speech

and language processing, this suggests a future towards systems that can leverage the

perceptual capabilities of neural methods with the explainability of language.    

8.3.4 Natural language programming

One of the exciting possibilities in learning from language is to program computers using

natural language. The ubiquity of computing devices with rich repertoires of sensor-effector

capabilities can have vast potential if language can be used to unfetter the creativity of

everyday people who do not know programming languages. By enabling agents that can be

instructed through language, people can program a vast variety of personalized procedures

and behavior.

The work presented in this dissertation propounds the idea of using language to guide

learning of statistical models. This is an intriguing direction, which contrasts starkly with

the predominant theme of using statistical learning methods to advance the field of NLP.

We believe that language may have as much to help learning, as statistical learning has

helped NLP. Machines that can be interactively instructed from natural language present
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a profoundly exciting new area for the imminent future, which can have transformational

implications for both learning and language research.
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Appendix

Appendix A: List of common notations

x Input instance from an input space X
y Output label from an output space Y
s A natural language statement
l Logical Form for natural language statement
G(s) Semantic parsing grammar; takes as input a statement s and returns a

set of candidate logical forms that can be associated with s
ψ(s, l) Feature function for semantic parsing; takes as input a statement s and

candidate logical form l, and returns a real-valued feature vector
θp Model parameters for a semantic parser
θc Model parameters for a concept classifierJlKx Evaluation of a logical form l in context of a data instance x; equivalently,

the denotation of l in context x
ϕ(x, y)/ϕ(X,Y ) Feature function defined on an instance x and an output label y, or

a set of instances X = {xi, x2 . . . xn} and a set of output labels Y =
{y1, y2 . . . yn}. Returns a real valued feature value

⊗ Cartesian product of sets
Rn Euclidean space with dimensionality n
uTv Dot product of two vectors u ∈ Rn and v ∈ Rn, equivalent to

∑
i
nuivi

Appendix B: Relevant publications

• (Srivastava et al., 2018) Zero shot learning of classifiers from natural language quan-

tification. Proceedings of ACL 2018

• (Labutov et al., 2018) LIA: A natural language programmable personal assistant
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(Demonstrations). Proceedings of EMNLP 2018

• (Srivastava et al., 2017c) Learning classifiers from declarative language. Workshop

on Learning from Limited Data, NIPS 2017

• (Srivastava et al., 2017b) Joint concept learning and semantic parsing from natural

language explanations. Proceedings of EMNLP 2017

• (Srivastava et al., 2017a) Parsing natural language conversations with contextual

cues. IJCAI 2017

In preparation/review

• Learning question-asking strategies for mixed-initiative dialog. In preparation

• An agent for learning new natural language commands. In review
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