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A b s t r a c t

Machine learning techniques are reaching or exceeding human level performances in tasks
involving simple data like image classification, translation, and text-to-speech. The success of
these machine learning algorithms is attributed to highly versatile representations learnt from
data using deep networks or intricately designed Bayesian models. Representation learning has
also provided hints in neuroscience, e.g. understanding how humans might categorize objects.
Despite these instances of success, progress has been limited to simple data-types so far.

Most real-world data come in all shapes and sizes, not just as images or text, but also as point
clouds, sets, graphs, compressed or even heterogeneous combinations thereof. In this thesis, we
develop representation learning algorithms for such complex data types by leveraging structure
and establishing new mathematical properties. Representations learned in this fashion were
applied on diverse domains and found to be competitive with task-specific state-of-the-art
methods.

Having representations is not enough in various applications - its interpretability is as crucial
as its accuracy. Deep models often yield better accuracy but require a large number of param-
eters, often in contrast to the simplicity of the underlying data, rendering it uninterpretable.
This is highly undesirable in tasks like user modeling. In this thesis, we show that by lever-
aging structure by incorporating domain knowledge in the form of Bayesian components on
top of deep models, we learn sparser representations with discrete components that are more
amenable to human interpretation. Our experimental evaluations show that the proposed tech-
niques compare favorably with several state-of-the-art baselines.

Finally, inferring interpretable representations from large-scale data is desirable, but often hin-
dered by a mismatch between computational resources and statistical models. In this thesis,
we bridge this gap by again leveraging structure, albeit of a different kind. Our solutions are
based on a combination of modern computational techniques/data structures on one side and
modified statistical inference algorithms on the other which exploit topological properties of
the training objective. This introduces new ways to parallelize, reduce look-ups, handle vari-
able state space size, and escape saddle points. On latent variable models, like latent Dirichlet
allocation (LDA), we observe significant gains in performance.

To summarize, in this thesis, we advance the three major aspects of representation learning
— diversity: being able to handle different types of data, interpretability: being accessible to
and understandable by humans, and scalability: being able to process massive datasets in a
reasonable time and budget — all by leveraging some form of structure.
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1
I n t r o d u c t i o n

The digitally connected world of today involves potentially valuable data growing at a tremen-
dous pace like text, images, and speech. The value generation lies is in transforming unstruc-
tured data into a usable information or representation, which is well organized, searchable and
understandable. This has been a major enabler for personalized recommendation (of articles to
read, videos to watch, locations to visit, restaurants to dine at), fraud detection, medical image
analysis, face recognition, etc. Machine learning and intelligent systems are used to carry out
the task listed above and have started to become an indispensable part of our modern society.

The current machine learning paradigms mostly focus on individual objects that have simple
representations. For example in the tasks of classification, regression, and clustering, an object
of interest is often described by a “feature vector”, and abstracted as a point in certain metric
space. The objective of learning is to estimate functions that map these points to target variables
such as the class labels or cluster memberships, with the goal of achieving both empirical accu-
racies on the training data as well as the generalization power on unseen data. This “one point
per object” abstraction has led to very concise representations, elegant mathematical theories,
and very successful algorithms. The performance of machine learning on above mentioned well
defined tasks with simple data have reached or exceeded human levels like image classifica-
tion (He et al., 2016a) or speech recognition (W. Xiong et al., 2016). The success of the methods
heavily depends on the choice of data representation (or features) used (Y. Bengio, Courville,
and Vincent, 2013), for which deep learning has been a boon.

However, the data comes in all shapes and sizes, i.e. ranging from text to images & videos to
point clouds to graphs to detailed user activity logs and shopping histories in sizes ranging
from a few megabytes to hundreds of terabytes and combinations thereof. For instance, in the
field of language modeling and text processing, an article can be considered as a group of
paragraph or sections. In computer vision, the recently gaining 3D imaging consists of a group
of coordinates. In recommendation systems, a user is mainly described by the heterogeneous
data of products bought, videos watched, articles read. We call these kinds of data that are
organized by groups or heterogeneous combinations as the complex data.

This thesis is centered around representation learning, i.e., learning representations of the
above mentioned complex data that make it easier to extract useful information when building
classifiers or other predictors for human and/or machine consumption. Traditionally, machine
learning has focuses on individual objects, each of which is described by a feature vector and
studied as a point in some metric space. When approaching more complex data, researchers
often reduce the groups into vectors to which traditional methods can be applied. We, on the
other hand, will try to develop machine learning methods that learn from them directly. In
order to build such methods, one needs to leverage structure present in the data. Furthermore,
by utilization of structure one can build faster inference techniques as well more interepretable
representation. The exploitation of structure is indeed the crux of our thesis:

Thesis statement: Leveraging structure can not only
lead to better representation learning, but also results in
speeding up inference and more interpretable models.



2 introduction

1.1 aspects of representation learning

There are two main categories for learning representations. First is using Bayesian models with
a parsimonious set of latent random variables that describe distribution over the observed
data. The representation is the posterior distribution of the underlying explanatory factors for
the observed input. A good representation is also one that is useful as input to a supervised
predictor. Second way of learning representations is utilizing deep learning methods, those that
are formed by the composition of multiple non-linear transformations, with the goal of yielding
more abstract – and ultimately more useful representations. For either categories following are
the open challenges:

diversity: Data come in all shapes and sizes: not just as images or text, but also as point
clouds, sets, graphs, compressed, or even heterogeneous mixture of these data types. In
this thesis, we want to develop representation learning algorithms for such unconven-
tional data types. Our methodology relies on leveraging the structure present in the data
which involve establishing new mathematical properties. Representations learned in this
fashion were applied on diverse domains and found to be competitive with task specific
state-of-the-art methods.

interpretability: Once we have the representations, in various applications its interpretabil-
ity crucial. Deep models often yield better accuracy, require a large number of parameters,
often notwithstanding the simplicity of the underlying data, rendering it uninterpretable
which is highly undesirable in tasks like user modeling. On the other hand, Bayesian
models produce sparse discrete representations, easily amenable to human interpreta-
tion. In this thesis, we want to explore that are capable of learning mixed representations
retaining best of both the worlds. Our experimental evaluations show that the proposed
techniques compare favorably with several state-of-the-art baselines.

scalability: Finally, one would want such interpretable representations to be inferred from
large-scale data, however, often there is a mismatch between our computational resources
and the statistical models. In this thesis, we want to bridge this gap by solutions based
on a combination of modern computational techniques/data structures on one side and
modified statistical inference algorithms on the other. We introduce new ways to paral-
lelize, reduce look-ups, handle variable state space size, and escape saddle points. On
latent variable models, like latent Dirichlet allocation (LDA), we find significant gains.

1.2 our approach

The versatility of representation learning makes it highly desirable to apply them to variety
of data, make the representations learned interpretable, and scale them to large datasets of
many terabytes of observations and billions of objects. We would like to take a more holistic
approach considering statistical and computational aspects simultaneously. This thesis is a step
in the direction of addressing these new challenges in modern ML applications. We begin by
tackling the issues case by case to begin with. Eventually we wish to extend these to generality.

• Find mathematical properties to be leveraged: Exploiting structure or finding mathemat-
ical properties present in data has found useful in improving performance of many ma-
chine learning tasks like optimization (Hsieh et al., 2015) or classification (Goel, Knoblock,
and Lerman, 2012). We carry forward the idea to case of representation learning. In partic-
ular, we characterize function on sets to design an universal deep network architecture, or
how to efficiently handle Stirling numbers which occur in many posterior distributions,



1.3 overview of thesis & our results 3

(a) Challenges (b) Contributions

Figure 1.1: Important challenges in machine learning and contributions of this thesis.

or how using the additivity of sufficient statistics for exponential family can lead to a
lock free and parallel inference algorithm. We show methods leveraging these structure
outperform simply throwing deep networks at the problem.

• Find correct data structures for the task: Data structures have been designed to solve
computational problems efficiently by organizing the data and making it cheap to locate
and retrieve data. In this thesis we want to identify inference algorithms having specific
access patterns, invariances, where efficient data structures can be adopted. We also con-
sider modifying the inference algorithm so as to enable us in leveraging some highly
efficient data structures. For example, in case of clustering only a small part of the space
needs to examined carefully, thus space partitioning data structures like cover trees can
come handy but requires novel modifications to the inference algorithm. Similarly to
reduce communication bandwidth, approximate counters can be employed in Gibbs sam-
pling instead of keeping track of exact counts. But approximate counters do not support
decrements, thus their adoption again calls for modifications in the inference strategies.
We want to find such solutions.

• Modify inference goal/strategy: Often the inference goal can be much stronger than
needed, e.g. one always does not need the full posterior but many a times just a point
estimate would suffice. As we will see the altered goal allows much better utilization of
modern computational resource, which are heavily distributed and each node itself being
heavily multithreaded, e.g. servers can have in excess of 64 threads and GPUs over 2048

of them, but having finite memory bandwidth. One can exploit it for tasks like clustering
and topic modeling. Furthermore, the alterations can open paths to use of efficient data
structures as described above.

1.3 overview of thesis & our results

This thesis presents a selection of my work on representation learning addressing the three
important issues raised above. The content of the thesis is divided into three parts: Part I,
consisting of Chapters 2 to 4, describes my work on handling complex data; Part II, organized
as the next two chapters, describes my work on making the representation more interpretable
while being expressive by mixing deep networks with graphical model incorporating domain
knowledge; and finally Part III, composed of Chapters 7 to 11, describes my work on speeding
up the inference procedure. We provide a brief overview of various chapters here and defer
the exact details to the respective chapters.
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Figure 1.2: Caption

Chapter 2: Set Data

We study the problem of designing models for machine learning tasks defined on sets. In con-
trast to traditional approach of operating on fixed dimensional vectors, we consider objective
functions defined on sets that are invariant to permutations. Such problems are widespread,
ranging from estimation of population statistics (Poczos, Rinaldo, et al., 2013), to anomaly de-
tection in piezometer data of embankment dams (Jung et al., 2015), to cosmology (Ntampaka et
al., 2016; Ravanbakhsh, Junier Oliva, et al., 2016). Our main theorem characterizes the permuta-
tion invariant functions and provides a family of functions to which any permutation invariant
objective function must belong. This family of functions has a special structure which enables
us to design a deep network architecture that can operate on sets and which can be deployed
on a variety of scenarios including both unsupervised and supervised learning tasks. We also
derive the necessary and sufficient conditions for permutation equivariance in deep models.
We demonstrate the applicability of our method on population statistic estimation, point cloud
classification, set expansion, and outlier detection.

Chapter 3: Compressed Data

Training robust deep video representations has proven to be much more challenging than learn-
ing deep image representations and consequently hampered tasks like video action recognition.
This is in part due to the enormous size of raw video streams, the associated amount of com-
putation required, and the high temporal redundancy. The ‘true’ and interesting signal is often
drowned in too much irrelevant data. Motivated by the fact that the superfluous information
can be reduced by up to two orders of magnitude with video compression techniques (like
H.264, HEVC, etc.), in this work, we propose to train a deep network directly on the com-
pressed video, devoid of redundancy, rather than the traditional highly redundant RGB stream.
This representation has a higher information density and we found the training to be easier.
In addition, the signals in a compressed video provide free, albeit noisy, motion information.
We propose novel techniques to use them effectively. Our approach is about 4.6 times faster
than a state-of-the-art 3D-CNN model, 2.7 times faster than a ResNet-152, and very easy to
implement. On the task of action recognition, our approach outperforms all the other methods
on the UCF-101, HMDB-51, and Charades dataset.

Chapter 4: Heterogeneous Data

Existing question answering methods infer answers either from a knowledge base or from
raw text. While knowledge base (KB) methods are good at answering compositional questions,
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their performance is often affected by the incompleteness of the KB. Au contraire, web text
contains millions of facts that are absent in the KB, however in an unstructured form. Universal
schema can support reasoning on the union of both structured KBs and unstructured text by
aligning them in a common embedded space. In this paper we extend universal schema to
natural language question answering, employing memory networks to attend to the large body
of facts in the combination of text and KB. Our models can be trained in an end-to-end fashion
on question-answer pairs. Evaluation results on Spades fill-in-the-blank question answering
dataset show that exploiting universal schema for question answering is better than using
either a KB or text alone. This model also outperforms the current state-of-the-art by 8.5 F1
points. In this paper we look at a more practical setting, namely QA over a combination of
a KB and entity-linked text, which is appropriate when an incomplete KB is available with a
large text corpus. Building on recent advances in graph representation learning we propose a
novel model GRAFT-Net for extracting answers from a question-specific subgraph consisting of
both KB entities and text documents. We construct a suite of benchmark tasks for this problem,
varying the difficulty of questions, the amount of training data, and KB completeness. We show
that GRAFT-Net is competitive with the state-of-the-art when tested using either KBs or text
only, and vastly outperforms existing methods in the combined setting.

Chapter 5: Domain Knowledge in Static Models

We study the problem of incorporating domain knowledge in data to enhance predictive power
and interepretability. Deep learning methods have been shown to be extremely successful in
a variety of well defined problems due their high expressive power across computer vision
(CV), speech recognition as well as natural language processing (NLP). However, their internal
representations are distributed codes and lack interpretability or manipulations. These dense
unstructured representations are in direct conflict with many real-world problems which have
inherent structures: like invariances, dependencies among random variables, etc. Graphical
models have been typically employed to represent and exploit such invariances and depen-
dencies. In this chapter, we will explore ways to incorporate domain knowledge so as to take
advantage of high predictive power of deep learning but also be more interpretable and sample
efficient by enforcing invariances and dependencies. We will also propose efficient inference
strategies to tackle new difficulties encountering in these combined models. Here we look at
diverse applications ranging from NLP and CV tasks to to even less relevant fields like physics
or chemistry or user action modeling.

Chapter 6: Interpretable Recurrent Models

Recurrent neural networks, such as long-short term memory (LSTM) networks, are powerful
tools for modeling sequential data like user browsing history (Korpusik, Sakaki, and F. C. Y.-Y.
Chen, 2016; Tan, X. Xu, and Y. Liu, 2016) or natural language text (Mikolov, Karafiát, et al.,
2010). However, to generalize across different user types, LSTMs require a large number of
parameters, notwithstanding the simplicity of the underlying dynamics, rendering it uninter-
pretable, which is highly undesirable in user modeling. The increase in complexity and param-
eters arises due to a large action space in which many of the actions have similar intent or
topic. In this paper, we introduce Latent LSTM Allocation (LLA) for user modeling combining
hierarchical Bayesian models with LSTMs. In LLA, each user is modeled as a sequence of ac-
tions, and the model jointly groups actions into topics and learns the temporal dynamics over
the topic sequence, instead of action space directly. This leads to a model that is highly inter-
pretable, concise, and can capture intricate dynamics. We present an efficient Stochastic EM
inference algorithm for our model that scales to millions of users/documents. Our experimen-
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tal evaluations show that the proposed model compares favorably with several state-of-the-art
baselines.

Chapter 7: Parallelization

We propose an embarrassingly parallel, memory efficient inference algorithm for latent vari-
able models in which the complete data likelihood is in the exponential family. The algorithm
is a stochastic cellular automaton and converges to a valid maximum a posteriori fixed point.
Applied to latent Dirichlet allocation we find that our algorithm is over an order of magnitude
faster than the fastest current approaches. A simple C++/MPI implementation on a 20-node
Amazon EC2 cluster samples at more than 1 billion tokens per second. We process 3 billion
documents and achieve predictive power competitive with collapsed Gibbs sampling and vari-
ational inference.

Chapter 8: Reducing Lookups

Hierarchical Bayesian models often capture distributions over a very large number of distinct
atoms. The need for these models arises when organizing huge amount of unsupervised data,
for instance, features extracted using deep convnets that can be exploited to organize abundant
unlabeled images. Inference for hierarchical Bayesian models in such cases can be rather non-
trivial, leading to approximate approaches. In this work, we propose Canopy, a sampler based
on Cover Trees that is exact, has guaranteed runtime logarithmic in the number of atoms, and
is provably polynomial in the inherent dimensionality of the underlying parameter space. In
other words, the algorithm is as fast as search over a hierarchical data structure. We provide
theory for Canopy and demonstrate its effectiveness on both synthetic and real datasets, con-
sisting of over 100 million images.

Chapter 9: Handling Variable State-Space Size

Latent variable models, such as topic models, have accumulated a considerable amount of in-
terest from academia and industry for their versatility in a wide range of applications. Bayesian
nonparametrics has used frequently in enabling latent variable models to adapt in accordance
to the size of data. However, it is non-trivial to scale the inference procedures to deal with real
life problems in industry consisting of massive datasets (1 TB+) in a reasonable time with rea-
sonable resources. In this paper, we wish to suggest a scalable inference procedure for Bayesian
Nonparametrics based on a combination of smart data structures for handling probability dis-
tributions on one side and modified statistical inference algorithms on the other. In particular,
we take up the task of topic modelling with Hierarchical Dirichlet Process to demonstrate effec-
tiveness of the proposed inference procedure. We provide experimental results for the proposed
method on big datasets like PubMed and Wikipedia obtaining 10x speed-up.

Chapter 10: Escaping Saddle Points

A central challenge to using first-order methods for optimizing nonconvex problems is the pres-
ence of saddle points. First-order methods often get stuck at saddle points, greatly deteriorat-
ing their performance. Typically, to escape from saddles one has to use second- order methods.
However, most works on second-order methods rely extensively on expensive Hessian-based
computations, making them impractical in large-scale settings. To tackle this challenge, we in-
troduce a generic framework that minimizes Hessian-based computations while at the same
time provably converging to second- order critical points. Our framework carefully alternates
between a first-order and a second-order subroutine, using the latter only close to saddle points,
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and yields convergence results competitive to the state-of-the-art. Empirical results suggest that
our strategy also enjoys a good practical performance.

1.4 bibliographic notes

The research presented in this thesis is based on joint work with many co-authors, as described
below.

In Part I, Chapter 2 is based on joint work with Satwik Kottur, Siamak Ravanbhaksh, Chun-
Liang Li, Yang Zhang, Barnabás Póczos, Ruslan Salakhutdinov, and Alex Smola (Zaheer, Kottur,
Ravanbakhsh, et al., 2017; Zaheer, C.-L. Li, et al., 2018). Chapter 3 is joint work with Chao-Yuan
Wu, Philipp Krahenbuhl, and Alex Smola (C.-Y. Wu et al., 2018). ´ Chapter 4 is joint work with
Rajarshi Das, Bhuwan Dhingra, Haitian Sun, Siva Reddy, William Cohen, Ruslan Salakhutdinov,
and Andrew McCallum (Haitian Sun et al., 2018; Zaheer, Das, Reddy, et al., 2017).

In Part II, Chapter 5 is based on joint work with Abhishek Khetan, Rajarshi Das, Guru Ganesh,
Siamak Ravanbhaksh, Chris Dyer, Golan Levin, Venkatasubramanian Viswanathan, Barnabás
Póczos, and Alex Smola (Khetan et al., 2018; Zaheer, Das, and Dyer, 2015; Zaheer, Guruganesh,
et al., 2018). Chapter 6 is joint work with Xun Zheng, Amr Ahmed and Alex Smola (Zaheer,
Amr Ahmed, and A. J. Smola, 2017; Zaheer, Amr Ahmed, Yuan Wang, et al., 2018; X. Zheng
et al., 2017).

In Part III, Chapter 7 is based on joint work with Jean-Baptiste Tristan, Michael Wick, Alex
Smola, and Guy Steele (Zaheer, Wick, et al., 2015). Chapter 8 is joint work with Satwik Kottur,
Amr Ahmed, and Alex Smola (Zaheer, Kottur, Amr Ahmed, et al., 2017). Chapter 9 is joint work
with Alex Smola (Zaheer and A. J. Smola, 2018). Chapter 10 is joint work with Sashank Reddi,
Suvrit Sra, Francis Bach, Ruslan Salakhutdinov, Barnabás Póczos and Alex Smola (Zaheer, S.
Reddi, et al., 2018).

1.4.1 Excluded Research

Besides representation learning, I have also worked on a number of other topics such as random
graphs, small sample estimation, spectral methods, reinforcement learning, which are not part
of my thesis. Here, I briefly describe my contributions in these areas.

Density Estimation (J. B. Oliva et al., 2018; Shashank Singh et al., 2018) The fundamental task
of general density estimation p(x) has been of keen interest to machine learning. In this
line of work, we attempt to systematically characterize and categorize methods for den-
sity estimation. As a consequence of this categorization, we noticed that algorithmically,
sampling, like MCMC and GAN, is a very distinct problem from density estimation, but
we show that, given unlimited computational resources, the problems of density estima-
tion and sampling are equivalent in a minimax statistical sense (Shashank Singh et al.,
2018). Also, leveraging this characterization, we propose a novel density estimator called
Transformative Autoregressive Networks (J. B. Oliva et al., 2018). Through a comprehen-
sive study over both real world and synthetic data, we show that jointly leveraging trans-
formations of variables and autoregressive conditional models, results in a considerable
improvement in performance.

Understand Text Classifications (Sachan, Zaheer, and R. Salakhutdinov, 2018, 2019) In this
line of work, we study deep networks for the task of text classification, which is one of
the most widely studied tasks in natural language processing. Motivated by the prin-
ciple of compositionality, large multilayer neural network models have been employed
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for this task in an attempt to effectively utilize the constituent expressions. Several prior
works have suggested that such complicated models with complex pretraining schemes
using unsupervised methods such as language modeling are necessary to achieve a high
classification accuracy. We explore whether these models actually learn to compose the
meaning of the sentences or still just focus on some keywords or lexicons for classifying
the document. To test our hypothesis, we carefully construct datasets and study various
text classifiers to observe that there is a big performance drop, suggesting our hypothesis
might be true. Finally, we develop a training strategy that allows even a simple BiLSTM
model, when trained with cross-entropy loss, to achieve competitive results compared
with more complex approaches. Furthermore, in addition to cross-entropy loss, by using
a combination of entropy minimization, adversarial, and virtual adversarial losses for
both labeled and unlabeled data, we report state-of-the-art results for text classification
task on several benchmark datasets.

Small Sample Estimation (Gu, Zaheer, and X. Li, 2014; F. Wang et al., 2015; Zaheer, X. Li,
and Gu, 2014; Zaheer, F. Wang, et al., 2015) Today’s VLSI circuits are designed via a
multi-stage flow. At each stage, simulation or measurement data are collected to validate
the circuit design, before moving to the next stage. These measurements are extremely
time consuming and expensive, hence only a few samples at each stage can be afforded.
Traditional performance modeling techniques rely on the data collected at a single stage
only and completely ignore the data that are generated at other stages. The key idea
proposed was to reuse the early-stage data when fitting a late-stage performance model.
As such, the performance modeling cost can be substantially reduced. Mathematically,
the proposed method is casted as a hierarchical Bayesian model with transfer learning.
This approach results in requiring very few late-stage samples points to produce reliable
performance models. On many tasks, our approach demonstrates up to 9× reduction in
validation time which can be translated to significant reduction of cost.

Random Graphs (Zaheer, J. Lee, et al., 2015) Preferential attachment models for random
graphs are successful in capturing many characteristics of real networks such as power
law behavior. At the same time they lack flexibility to take vertex to vertex affinities into
account, a feature that is commonly used in many link recommendation algorithms. We
propose a random graph model based on both node attributes and preferential attach-
ment. This approach overcomes the limitation of existing models on expressing vertex
affinity and on reflecting properties of different subgraphs. We analytically prove that
our model preserves the power law behavior in the degree distribution as expressed by
natural graphs and we show that it satisfies the small world property. Experiments show
that our model provides an excellent fit of many natural graph statistics.

Reinforcement Learning for Question Answering (Das, Dhuliawala, et al., 2018) Knowledge
bases (KB), both automatically and manually constructed, are often incomplete — many
valid facts can be inferred from the KB by synthesizing existing information. A popular
approach to KB completion is to infer new relations by combinatory reasoning over the
information found along other paths connecting a pair of entities. Given the enormous
size of KBs and the exponential number of paths, previous path-based models have con-
sidered only the problem of predicting a missing relation given two entities or evaluating
the truth of a proposed triple. Additionally, these methods have traditionally used ran-
dom paths between fixed entity pairs or more recently learned to pick paths between
them. We propose a new algorithm MINERVA, which addresses the much more diffi-
cult and practical task of answering questions where the relation is known, but only one
entity. Since random walks are impractical in a setting with combinatorially many desti-
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nations from a start node, we present a neural reinforcement learning approach which
learns how to navigate the graph conditioned on the input query to find predictive paths.
Empirically, this approach obtains state-of-the-art results on several datasets, significantly
outperforming prior methods

Spectral Methods (H.-Y. F. Tung et al., 2017) Nonparametric models are versatile, albeit compu-
tationally expensive, tool for modeling mixture models. We introduce spectral methods
for the two most popular nonparametric models: the Indian Buffet Process (IBP) and the
Hierarchical Dirichlet Process (HDP). We show proposed methods for the inference of
nonparametric models are computationally and statistically efficient. In particular, we de-
rive the lower-order moments, propose spectral algorithms for both models, and provide
reconstruction guarantees for the algorithms. For the HDP, we further show that applying
hierarchical models on dataset with hierarchical structure, which can be solved with the
generalized spectral HDP, produces better solutions than flat models.

1.5 how to read this thesis?
The introduction chapter provides a brief overview of all the chapters and relationship between
results of various chapters, and is a prerequisite to rest of the thesis. Each chapter is self-
contained and independent of other chapters so that it can be read without any reference
to rest of this thesis. Furthermore, the reader is not assumed to have detailed knowledge of
machine learning; we rather try to provide the necessary knowledge, allowing the thesis to be
accessible to graduate students.





Part I

D I V E R S I T Y B Y H A N D L I N G C O M P L E X D ATA

Data in real-world come in different shapes and sizes. We showcase ways to lever-
age structure in data, like invariances or heterogeneity in order to establish new
mathematical properties. Incorporating these mathematical properties in the model
and learning algorithms leads to versatile and sample efficient representations on
diverse domains.





2
S e t Data

We study the problem of designing models for machine learning tasks defined on sets. In con-
trast to traditional approach of operating on fixed dimensional vectors, we consider objective
functions defined on sets that are invariant to permutations. Such problems are widespread,
ranging from estimation of population statistics (Poczos, Rinaldo, et al., 2013), to anomaly de-
tection in piezometer data of embankment dams (Jung et al., 2015), to cosmology (Ntampaka et
al., 2016; Ravanbakhsh, Junier Oliva, et al., 2016). Our main theorem characterizes the permuta-
tion invariant functions and provides a family of functions to which any permutation invariant
objective function must belong. This family of functions has a special structure which enables
us to design a deep network architecture that can operate on sets and which can be deployed
on all three types of learning scenarios: supervised, semi-supervised, and unsupervised learn-
ing tasks. We also derive the necessary and sufficient conditions for permutation equivariance
in deep models. We demonstrate the applicability of our method on discriminative as well as
generative tasks.

2.1 introduction

A typical machine learning algorithm, like regression or classification, is designed for fixed
dimensional data instances. Their extensions to handle the case when the inputs or outputs are
permutation invariant sets rather than fixed dimensional vectors is not trivial and researchers
have only recently started to investigate them (Muandet, Balduzzi, and Schoelkopf, 2013; Muan-
det, Fukumizu, et al., 2012; J. Oliva, Poczos, and J. Schneider, 2013; Szabo et al., 2016). In this
paper, we present a generic framework to deal with the setting where input and possibly output
instances in a machine learning task are sets.

Similar to fixed dimensional data instances, we can characterize two learning paradigms in
case of sets. In supervised learning, we have an output label for a set that is invariant or equiv-
ariant to the permutation of set elements. Examples include tasks like estimation of population
statistics (Poczos, Rinaldo, et al., 2013), where applications range from giga-scale cosmology
(Ntampaka et al., 2016; Ravanbakhsh, Junier Oliva, et al., 2016) to nano-scale quantum chem-
istry (Faber, Lindmaa, et al., 2016).

Next, there can be the semi-supervised setting, where the “set” structure needs to be learned,
e.g. by leveraging the homophily/heterophily tendencies within sets. An example is the task
of set expansion (a.k.a. audience expansion), where given a set of objects that are similar to
each other (e.g. set of words {lion, tiger, leopard}), our goal is to find new objects from a large
pool of candidates such that the selected new objects are similar to the query set (e.g. find
words like jaguar or cheetah among all English words). This is a standard problem in similarity
search and metric learning, and a typical application is to find new image tags given a small
set of possible tags. Likewise, in the field of computational advertisement, given a set of high-
value customers, the goal would be to find similar people. This is an important problem in
many scientific applications, e.g. given a small set of interesting celestial objects, astrophysicists
might want to find similar ones in large sky surveys.
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Finally, among unsupervised tasks generative modeling is perhaps the most fundamental and
important where aslo “sets” can play a signigicant role. In this setting, one has to learn a gen-
erative model of the distribution of the provided training set and capable of generating arbitrary
many new sample points from the domain of this distribution. We would like to have detailed gen-
erative models for set data, like point clouds. This would allow data augmentation or style
transfer directly in point cloud domain which are gaining prominence in field of self-driving
cars and virtual reality.

main contributions . In this work, (i) we propose a fundamental architecture, DeepSets, to
deal with sets as inputs and show that the properties of this architecture are both necessary and
sufficient (Section 2.3). (ii) We extend this architecture to allow for conditioning on arbitrary ob-
jects, and (iii) based on this architecture we develop a deep network that can operate on sets with
possibly different sizes (Section 2.4). We show that a simple parameter-sharing scheme enables
a general treatment of sets within supervised and semi-supervised settings. (iv) We extend the
standard GAN to a hierarchical implicit model by combining Bayesian hierarchical modeling to
learn to generate set data like point clouds. (Section 2.8) (v) Finally, we demonstrate the wide
applicability of our framework through experiments on diverse problems (Section 2.5, 2.7, 2.9).

2.2 what are invariance and equivariance?
Although multilayer perceptrons are universal approximators, however, often in practice rather
than throwing large multilayer perceptrons at the problem, we often use specially designed lay-
ers and architectures. The specialized layers perform better and computationally more efficient
as they encode prior knowledge about the domain. Typically, this domain specific knowledge
is incorporated by specifying invariance and equivariance that needs to be obeyed by the net-
work. So, we begin by defining a standard neural network layer and then when would it be
said to satisfy given invariance or equivariance.

Definition 2.1 A standard neural network is a function f : RN → RM, of the form:

y = f(x) = σ(Θx + b) (2.1)

where θ is the weight matrix and σ is a nonlinearity such as sigmoid function. σ is the point-wise
application of σ to its input vector.

In the above definition, the affine portion is often generalized in literature to arbitrary input
and output vector spaces over the fields of reals R. However, since elements of any vector space
can be expressed in terms of basis (K. Hoffman and Kunze, 1971) and any linear transformation
can be expressed as a matrix (K. Hoffman and Kunze, 1971), the definition above suffices.

Invariance is supposed to enforce notions of a feature to remain unaffected by some inconse-
quential alteration to the input. Formally,

Definition 2.2 A function f : X→ Y is said to be invariant with respect to a transformation T : X→ X

when f’s value is left unchanged upon application of T to the input, i.e.

g(x) = g(T(x)) (2.2)

On the other hand, equivariance does not require the values of f to be left unchanged by
a transformation, but only that the input and output get transformed in a coupled fashion.
To elaborate, consider the simple case when input space and output space are the same, i.e.
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X = Y, then equivariance mean a transformation applied to the input of f gives the same result
as applying it directly to the output y, i.e. T(f(x)) = f(T(x)). In general, the equivariance is
defined formally as:

Definition 2.3 A function f : X→ Y is said to be equivariant with respect the coupled transformations
T : X→ X and T ′ : Y→ Y when f’s output is changed exactly according to T ′ upon application of T to
the input, i.e.

T ′(g(x)) = g(T(x)) (2.3)

An interesting property relating invariance and equivariance is that: any pooling of an equiv-
ariant function (e.g. max, sum, or requiring T ′ to be identity function) leads to an invariant
function.

A common method of capitalizing on invariance and equivariance is through augmentation,
i.e. adding extra training examples by applying appropriate transformations to account for
changes to the data that should not affect changes to representation or corresponding label
[7]. The invariance or equivariance is thus learned by seeing many examples from the same
class (i.e. related to each other by an invariance transformation). Although sometimes effective,
this method works by training over the extra augmented examples, which needs increased
model capacity, more computation, extra training time, and there is still no guarantee that the
resulting representation will be invariant or equivariant to the desired transformation.

We restrict the scope of this work to cases when the invariance and equivariance transforma-
tions are liner, i.e. it can be expressed by as matrix. Follow-up of this work, generalized to
handling equivariance to any coupled group actions (Ravanbakhsh, Jeff Schneider, and Póczos,
2017). We will see next an example where such invariance/equivariance requirement is behind
a highly successful specialized neural network architecture.

2.2.1 Example: CNN as Translation Invariance

Convolutional Neural Network (CNN) are popular in image processing, like objected detection.
In this section, instead of using minimalistic description of a vector space, we stick to the
popular convention that input is 2D (e.g. images) and output is 2D as well, i.e. X = Y = RM×N.
Thus, input-output relation of neural network layer would be:

yij = σ

∑
k,l

Θijklxkl + bij

 (2.4)

which can be conveniently expressed in tensor-matrix form as:

y = σ(Θx + b) (2.5)

For image processing a desirable property would be translation equivariant. For example, if
the layer is designed to identify a ball in an image, then a translation in any direction should
not affect the outcome, as it’s still a rectangle after all. The outcome should also be translated,
like the input. Formally, the translation transformation is a linear transformation and thus can
be expressed as tensor T . Keeping this in mind the translation equivarance can be expressed
as:

Ty = σ(ΘTx + b)

Tσ(Θx + b) = σ(ΘTx + b)

σ(TΘx + Tb) = σ(ΘTx + b)

TΘx + Tx = ΘTx + b

(2.6)
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Step two to three follows from the fact that σ is applied pointwise. Step three to four follows
by assuming σ is one-to-one.

Since the polynomial of x in LHS and RHS are always equal, they must be the same and have
equal coefficient. This implies:

TΘ = ΘT and Tb = b (2.7)

Thus for bias the condition reduces to mean that bias is same for all position (i, j) and can be
succinctly denoted by a scalar c. As for the weight, we need to further simplify

TΘ = ΘT ⇒ Θ = T−1ΘT (2.8)

Notice that the translation transformation tensor for a translation of s units right and t units
up can be explictly expressed as:

Tijkl = δ[(i− k)%M = s, (j− l)%N = t] , −M < s < M and −N < t < N (2.9)

Note that inverse of translation by (s, t) would be just translation in reverse direction, i.e.
(−s,−t). We plug these into (2.8) step by step. First let us evaluate:

(ΘT)ijkl =
∑
m,n

θijmnTmnkl

=
∑
m,n

θijmnδ[(m− k)%M = s, (n− l)%N = t]

= θi,j,(k+s)%M,(l+t)%N

(2.10)

Now continuing with remaining T−1, we obtain:

Θijkl = (T−1ΘT)ijkl

=
∑
m,n

T−1ijmn(ΘT)mnkl

=
∑
m,n

δ[(i−m)%M = −s, (j−n)%N = −t]Θm,n,(k+s)%M,(l+t)%N

= Θ(i+s)%M,(j+t)%N,(k+s)%M,(l+t)%N

(2.11)

As the above holds for all (s, t), there are many values in Θ are equal. To be specific, there are
only M×N unique value, which can represented in a matrix W ∈ RM×N as:

Wij = Θij00 = Θ(i+s)%M,(j+t)%N,s,t, ∀0 6 i, s < M, 0 6 j, t < N. (2.12)

or in other way round:

Θijkl =W(i−k)%M,(j−l)%N. (2.13)

Now notice the application of the translation invariant Θ on a 2D input, like an image:

yij = σ

(∑
m,n

Θijmnxmn + bij

)

= σ

(∑
m,n

W(i−m)%M,(j−n)%Nxmn︸ ︷︷ ︸
convolution!

+c

)
(2.14)
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This can be easily recognized as the popular Convolutional Neural Network (CNN) (LeCun
et al., 1998). Thus the popular CNN automatically pops out when translation equivariance is
imposed on a general neural network. It is interesting to note that original CNN in 1968 was
not motivated on basis on invariance/equivariance (Hubel and Wiesel, 1968). It was not until
in 1988, that CNN were understood to be consequence of shift invariance (W. Zhang, 1988).
Motivated by this, in next section we will study effect of another type of invariance that has
not be studied before, namely the permutation invariance.

2.3 permutation invariance and equivari-
ance

2.3.1 Problem Definition

A function f transforms its domain X into its range Y. Usually, the input domain is a vec-
tor space Rd and the output response range is either a discrete space, e.g. {0, 1} in case
of classification, or a continuous space R in case of regression. Now, if the input is a set
X = {x1, . . . , xM}, xm ∈ X, i.e., the input domain is the power set X = 2X, then we would
like the response of the function to be “indifferent” to the ordering of the elements. In other
words,

Property 2.4 A function f : 2X → Y acting on sets must be permutation invariant to the order of
objects in the set, i.e. for any permutation π :

f({x1, ..., xm}) = f({xπ(1), ..., xπ(M)}) (2.15)

In the supervised setting, given N examples of of X(1), ...,X(N) as well as their labels
y(1), ...,y(N), the task would be to classify/regress (with variable number of predictors) while
being permutation invariant w.r.t. predictors. Under unsupervised setting, the task would be to
assign high scores to valid sets and low scores to improbable sets. These scores can then be used
for set expansion tasks, such as image tagging or audience expansion in field of computational
advertisement. In transductive setting, each instance x(n)m has an associated labeled y(n)m . Then,
the objective would be instead to learn a permutation equivariant function f : XM → YM that
upon permutation of the input instances permutes the output labels, i.e. for any permutation
π:

f([xπ(1), . . . , xπ(M)]) = [fπ(1)(x), . . . , fπ(M)(x)] (2.16)

We want to study the structure of functions on sets. Their study in total generality is extremely
difficult, so we analyze case-by-case. Roughly speaking, we claim that such functions must
have a structure of the form f(X) = ρ

(∑
x∈Xφ(x)

)
for some functions ρ and φ. Over the next

two sections we try to formally prove this structure of the permutation invariant functions.

2.3.2 Countable Case

We begin by analyzing the invariant case when X is a countable set and Y = R, where the next
theorem characterizes its structure.

Theorem 2.5 Assume the elements are countable, i.e. |X| < ℵ0. A function f : 2X → R operating on
a set X can be a valid set function, i.e. it is permutation invariant to the elements in X, if and only if it
can be decomposed in the form ρ

(∑
x∈Xφ(x)

)
, for suitable transformations φ and ρ.
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Proof Permutation invariance follows from the fact that sets have no particular order, hence
any function on a set must not exploit any particular order either. The sufficiency follows by
observing that the function ρ

(∑
x∈Xφ(x)

)
satisfies the permutation invariance condition.

To prove necessity, i.e. that all functions can be decomposed in this manner, we begin by
noting that there must be a mapping from the elements to natural numbers functions, since
the elements are countable. Let this mapping be denoted by c : X → N. Now if we let
φ(x) = 4−c(x) then

∑
x∈Xφ(x) constitutes an unique representation for every set X ∈ 2X. Now

a function ρ : R→ R can always be constructed such that f(X) = ρ
(∑

x∈Xφ(x)
)
.

2.3.3 Uncountable Case

The extension to case when X is uncountable, e.g. X = [0, 1], is not so trivial. We could only
prove in case of fixed set size, e.g. X = [0, 1]M instead of X = 2X = 2[0,1], that any permutation
invariant continuous function can be expressed as ρ

(∑
x∈Xφ(x)

)
. Also, we show that there is

a universal approximator of the same form. These results are discussed below.

To illustrate the uncountable case, we assume a fixed set size of M. Without loss of generality
we can let X = [0, 1]. Then the domain becomes [0, 1]M. Also, to handle ambiguity due to
permutation, we often define the domain to be the set X = {(x1, ..., xM) ∈ [0, 1]M : x1 6 x2 6
· · · 6 xM} for some ordering of the elements in X.

The proof builds on the famous Newton-Girard formulae which connect moments of a sample
set (sum-of-power) to the elementary symmetric polynomials. But first we present some results
needed for the proof. The first result establishes that sum-of-power mapping is injective.

Lemma 2.6 Let X = {(x1, ..., xM) ∈ [0, 1]M : x1 6 x2 6 · · · 6 xM}. The sum-of-power mapping
E : X→ RM+1 defined by the coordinate functions

Zq := Eq(X) :=

M∑
m=1

(xm)q, q = 0, ...,M. (2.17)

is injective.

Proof Suppose for some u, v ∈ X, we have E(u) = E(v). We will now show that it must be the
case that u = v. Construct two polynomials as follows:

Pu(x) =

M∏
m=1

(x− um) Pv(x) =

M∏
m=1

(x− vm) (2.18)

If we expand the two polynomials we obtain:

Pu(x) = x
M − a1x

M−1 + · · · (−1)M−1aM−1x+ (−1)MaM

Pv(x) = x
M − b1x

M−1 + · · · (−1)M−1bM−1x+ (−1)MbM
(2.19)

with coefficients being elementary symmetric polynomials in u and v respectively, i.e.

am =
∑

16j1<j2<···<jm6M

uj1uj2 · · ·ujm bm =
∑

16j1<j2<···<jm6M

vj1vj2 · · · vjm (2.20)
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These elementary symmetric polynomials can be uniquely expressed as a function of E(u) and
E(v) respectively, by Newton-Girard formula. The m-th coefficient is given by the determinant
of m×m matrix having terms from E(u) and E(v) respectively:

am =
1

m
det



E1(u) 1 0 0 · · · 0

E2(u) E1(u) 1 0 · · · 0

E3(u) E2(u) E1(u) 1 · · · 0
...

...
...

...
. . .

...

Em−1(u) Em−2(u) Em−3(u) Em−4(u) · · · 1

Em(u) Em−1(u) Em−2(u) Em−3(u) · · · E1(u)



bm =
1

m
det



E1(v) 1 0 0 · · · 0

E2(v) E1(v) 1 0 · · · 0

E3(v) E2(v) E1(v) 1 · · · 0
...

...
...

...
. . .

...

Em−1(v) Em−2(v) Em−3(v) Em−4(v) · · · 1

Em(v) Em−1(v) Em−2(v) Em−3(v) · · · E1(v)



(2.21)

Since we assumed E(u) = E(v) implying [a1, ...,aM] = [b1, ...,bM], which in turn implies that
the polynomials Pu and Pv are the same. Therefore, their roots must be the same, which shows
that u = v.

The second result we borrow from Ćurgus and Mascioni (2006) which establishes a homeomor-
phism between coefficients and roots of a polynomial.

Theorem 2.7 (Ćurgus and Mascioni, 2006) The function f : CM → CM, which associates every
a ∈ CM to the multiset of roots, f(a) ∈ CM, of the monic polynomial formed using a as the coefficient
i.e. xM + a1x

M−1 + · · · (−1)M−1aM−1x+ (−1)MaM, is a homeomorphism.

Among other things, this implies that (complex) roots of a polynomial depends continuously
on the coefficients. We will use this fact for our next lemma.

Finally, we establish a continuous inverse mapping for the sum-of-power function.

Lemma 2.8 Let X = {(x1, ..., xM) ∈ [0, 1]M : x1 6 x2 6 · · · 6 xM}. We define the sum-of-power
mapping E : X→ Z by the coordinate functions

Zq := Eq(X) :=

M∑
m=1

(xm)q, q = 0, ...,M. (2.22)

where Z is the range of the function. The function E has a continuous inverse mapping.

Proof First of all note that Z, the range of E, is a compact set. This follows from following
observations:

• The domain of E is a bounded polytope (i.e. a compact set),
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• E is a continuous function, and

• image of a compact set under a continuous function is a compact set.

To show the continuity of inverse mapping, we establish connection to the continuous depen-
dence of roots of polynomials on its coefficients.

As in Lemma 4, for any u ∈ X, let z = E(u) and construct the polynomial:

Pu(x) =

M∏
m=1

(x− um) (2.23)

If we expand the polynomial we obtain:

Pu(x) = x
M − a1x

M−1 + · · · (−1)M−1aM−1x+ (−1)MaM (2.24)

with coefficients being elementary symmetric polynomials in u, i.e.

am =
∑

16j1<j2<···<jm6M

uj1uj2 · · ·ujm (2.25)

These elementary symmetric polynomials can be uniquely expressed as a function of z by
Newton-Girard formula:

am =
1

m
det



z1 1 0 0 · · · 0

z2 z1 1 0 · · · 0

z3 z2 z1 1 · · · 0
...

...
...

...
. . .

...

zm−1 zm−2 zm−3 zm−4 · · · 1

zm zm−1 zm−2 zm−3 · · · z1


(2.26)

Since determinants are just polynomials, a is a continuous function of z. Thus to show
continuity of inverse mapping of E, it remains to show continuity from a back to the roots
u. In this regard, we invoke Theorem 5. Note that homeomorphism implies the mapping as
well as its inverse is continuous. Thus, restricting to the compact set Z where the map from
coefficients to roots only goes to the reals, the desired result follows. To explicitly check the
continuity, note that limit of E−1(z), as z approaches z∗ from inside Z, always exists and is
equal to E−1(z∗) since it does so in the complex plane.

With the lemma developed above we are in a position to tackle the main theorem.

Theorem 2.9 Let f : [0, 1]M → R be a permutation invariant continuous function iff it has the repre-
sentation

f(x1, ..., xM) = ρ

(
M∑
m=1

φ(xm)

)
(2.27)

for some continuous outer and inner function ρ : RM+1 → R and φ : R → RM+1 respectively. The
inner function φ is independent of the function f.
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Proof The sufficiency follows by observing that the function ρ
(∑M

m=1φ(xm)
)

satisfies the
permutation invariance condition.

To prove necessity, i.e. that all permutation invariant continuous functions over the compact
set can be expressed in this manner, we divide the proof into two parts, with outline in
Figure 2.1. We begin by looking at the continuous embedding formed by the inner function:
E(X) =

∑M
m=1φ(xm). Consider φ : R → RM+1 defined as φ(x) = [1, x, x2, ..., xM]. Now

as E is a polynomial, the image of [0, 1]M in RM+1 under E is a compact set as well,
denote it by Z. Then by definition, the embedding E : [0, 1]M → Z is surjective. Using
Lemma 4 and 6, we know that upon restricting the permutations, i.e. replacing [0, 1]M with
X = {(x1, ..., xM) ∈ [0, 1]M : x1 6 x2 6 · · · 6 xM}, the embedding E : X → Z is injective with a
continuous inverse. Therefore, combining these observation we get that E is a homeomorphism
between X and Z. Now it remains to show that we can map the embedding to desired target
value, i.e. to show the existence of the continuous map ρ : Z → R such that ρ(E(X)) = f(X). In
particular consider the map ρ(z) = f(E−1(z)). The continuity of ρ follows directly from the fact
that composition of continuous functions is continuous. Therefore we can always find contin-

uous functions φ and ρ to express any permutation invariant function f as ρ
(∑M

m=1φ(xm)
)

.

A very similar but more general results holds in case of any continuous function (not necessar-
ily permutation invariant). The result is known as Kolmogorov-Arnold representation theorem
(Khesin and Tabachnikov, 2014, Chap. 17) which we state below:

Theorem 2.10 (Kolmogorov–Arnold representation) Let f : [0, 1]M → R be an arbitrary multi-
variate continuous function iff it has the representation

f(x1, ..., xM) = ρ

(
M∑
m=1

λmφ(xm)

)
(2.28)

with continuous outer and inner functions ρ : R2M+1 → R and φ : R→ R2M+1. The inner function
φ is independent of the function f.

This theorem essentially states a representation theorem for any multivariate continuous func-
tion. Their representation is very similar to the one we are proved, except for the dependence
of inner transformation on the co-ordinate through λm. Thus it is reassuring that behind all

Figure 2.1: Outline of the proof strategy for Theorem 2.1. The proof consists of two parts. First, we desire
to show that we can find unique embeddings for each possible input, i.e. we show that there
exists a homeomorphism E of the form E(X) =

∑
x∈X φ(x) between original domain and some

higher dimensional space Z. The second part of the proof consists of showing we can map the
embedding to desired target value, i.e. to show the existence of the continuous map ρ between
Z and original target space such that f(X) = ρ(

∑
x∈X φ(x)).
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the beautiful mathematics something intuitive is happening. If the function is permutation
invariant, this dependence on co-ordinate of the inner transformation gets dropped!

Further we can show that arbitrary approximator having the same form can be obtained for
continuous permutation-invariant functions.

Theorem 2.11 Assume the elements are from a compact set in Rd, i.e. possibly uncountable, and
the set size is fixed to M. Then any continuous function operating on a set X, i.e. f : Rd×M → R

which is permutation invariant to the elements in X can be approximated arbitrarily close in the form of
ρ
(∑

x∈Xφ(x)
)
, for suitable transformations φ and ρ.

Proof Permutation invariance follows from the fact that sets have no particular order, hence
any function on a set must not exploit any particular order either. The sufficiency follows by
observing that the function ρ

(∑
x∈Xφ(x)

)
satisfies the permutation invariance condition.

To prove necessity, i.e. that all continuous functions over the compact set can be approximated
arbitrarily close in this manner, we begin noting that polynomials are universal approximators
by Stone–Weierstrass theorem (Marsden and M. J. Hoffman, 1993, sec. 5.7). In this case
the Chevalley-Shephard-Todd (CST) theorem (Bourbaki, 1990, chap. V, theorem 4), or more
precisely, its special case, the Fundamental Theorem of Symmetric Functions states that
symmetric polynomials are given by a polynomial of homogeneous symmetric monomi-
als. The latter are given by the sum over monomial terms, which is all that we need since
it implies that all symmetric polynomials can be written in the form required by the theorem.

Finally, we still conjecture that even in case of sets of all sizes, i.e. when the domain is 2[0,1], a
representation of the form f(X) = ρ

(∑
x∈Xφ(x)

)
should exist for all “continuous” permutation

invariant functions for some suitable transformations ρ and φ. However, in this case even
what a “continuous” function means is not clear as the space 2[0,1] does not have any natural
topology. As a future work, we want to study further by defining various topologies, like using
Fréchet distance as used in Ćurgus and Mascioni (2006) or MMD distance. Our preliminary
findings in this regards hints that using MMD distance if the representation is allowed to be in
`2, instead of being finite dimensional, then the conjecture seems to be provable. Thus, clearly
this direction needs further exploration. We end this section by providing some examples:

examples :

• x1x2(x1+x2+ 3), Consider φ(x) = [x, x2, x3] and ρ([u, v,w]) = uv−w+ 3(u2− v)/2, then
ρ(φ(x1) +φ(x2)) is the desired function.

• x1x2x3+x1+x2+x3, Consider φ(x) = [x, x2, x3] and ρ([u, v,w]) = (u3+2w−3uv)/6+u,
then ρ(φ(x1) +φ(x2) +φ(x3)) is the desired function.

• 1/n(x1 + x2 + x3 + ... + xm), Consider φ(x) = [1, x] and ρ([u, v]) = v/u, then ρ(φ(x1) +
φ(x2) +φ(x3) + ... +φ(xm)) is the desired function.

• max{x1, x2, x3, ..., xm}, Consider φ(x) = [eαx, xeαx] and ρ([u, v]) = v/u, then as α → ∞,
then we have ρ(φ(x1) +φ(x2) +φ(x3) + ... +φ(xm)) approaching the desired function.

• Second largest among {x1, x2, x3, ..., xm}, Consider φ(x) = [eαx, xeαx] and ρ([u, v]) = (v−

(v/u)eαv/u)/(u− eαv/u), then as α→∞, we have ρ(φ(x1)+φ(x2)+φ(x3)+ ...+φ(xm))

approaching the desired function.
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2.3.4 Specialized Layer

Next, we analyze the equivariant case when X = Y = R and f is restricted to be a neural
network layer. Our goal is to design neural network layers that are equivariant to permutations
of elements in the input x. The function f : XM → YM is equivariant to the permutation of its
inputs iff

f(πx) = πf(x) ∀π ∈ SM

where the symmetric group SM is the set of all permutation of indices 1, . . . ,M.

Consider the standard neural network layer

fΘ(x)
.
= σ(Θx) Θ ∈ RM×M (2.29)

where Θ is the weight vector and σ : R → R is a nonlinearity such as sigmoid function. The
following lemma states the necessary and sufficient conditions for permutation-equivariance
in this type of function.

Theorem 2.12 The function fΘ : RM → RM as defined in (2.29) is permutation equivariant if and
only if all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well.
That is,

Θ = λI + γ (11T) λ,γ ∈ R 1 = [1, . . . , 1]T ∈ RM

where I ∈ RM×M is the identity matrix.

Proof From definition of permutation equivariance fΘ(πx) = πfΘ(x) and definition of f in
(2.29), the condition becomes σ(Θπx) = πσ(Θx), which (assuming sigmoid is a bijection) is
equivalent to Θπ = πΘ. Therefore we need to show that the necessary and sufficient conditions
for the matrix Θ ∈ RM×M to commute with all permutation matrices π ∈ SM is given by this
proposition. We prove this in both directions:

• To see why Θ = λI + γ (11T) commutes with any permutation matrix, first note that
commutativity is linear – that is

Θ1π = πΘ1 ∧Θ2π = πΘ2 ⇒ (aΘ1 + bΘ2)π = π(aΘ1 + bΘ2).

Since both Identity matrix I, and constant matrix 11T, commute with any permutation
matrix, so does their linear combination Θ = λI + γ (11T).

• We need to show that in a matrix Θ that commutes with “all” permutation matrices

– All diagonal elements are identical: Let πk,l for 1 6 k, l 6 M,k 6= l, be a transposition
(i.e. a permutation that only swaps two elements). The inverse permutation matrix
of πk,l is the permutation matrix of πl,k = πT

k,l. We see that commutativity of Θ with
the transposition πk,l implies that Θk,k = Θl,l:

πk,lΘ = Θπk,l ⇒ πk,lΘπl,k = Θ ⇒ (πk,lΘπl,k)l,l = Θl,l ⇒ Θk,k = Θl,l

Therefore, π and Θ commute for any permutation π, they also commute for any
transposition πk,l and therefore Θi,i = λ ∀i.

– All off-diagonal elements are identical: We show that since Θ commutes with any prod-
uct of transpositions, any choice two off-diagonal elements should be identical. Let
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(i, j) and (i ′, j ′) be the index of two off-diagonal elements (i.e. i 6= j and i ′ 6= j ′).
Moreover for now assume i 6= i ′ and j 6= j ′. Application of the transposition πi,i ′Θ,
swaps the rows i, i ′ in Θ. Similarly, Θπj,j ′ switches the jth column with j ′th column.
From commutativity property of Θ and π ∈ Sn we have

πj ′,jπi,i ′Θ = Θπj ′,jπi,i ′ ⇒ πj ′,jπi,i ′Θ(πj ′,jπi,i ′)
−1 = Θ ⇒

πj ′,jπi,i ′Θπi ′,iπj,j ′ = Θ ⇒ (πj ′,jπi,i ′Θπi ′,iπj,j ′)i,j = Θi,j ⇒ Θi ′,j ′ = Θi,j

where in the last step we used our assumptions that i 6= i ′, j 6= j ′, i 6= j and i ′ 6= j ′. In
the cases where either i = i ′ or j = j ′, we can use the above to show that Θi,j = Θi ′′,j ′′
and Θi ′,j ′ = Θi ′′,j ′′ , for some i ′′ 6= i, i ′ and j ′′ 6= j, j ′, and conclude Θi,j = Θi ′,j ′ .

This result can be easily extended to higher dimensions, i.e., X = Rd when λ,γ can be matrices.

2.3.5 Related Results

The general form of Theorem 2.5 is closely related with important results in different domains.
Here, we quickly review some of these connections.

de finetti theorem . A related concept is that of an exchangeable model in Bayesian statis-
tics, It is backed by deFinetti’s theorem which states that any exchangeable model can be
factored as

p(X|α,M0) =
∫

dθ

[
M∏
m=1

p(xm|θ)

]
p(θ|α,M0), (2.30)

where θ is some latent feature and α,M0 are the hyper-parameters of the prior. To see that this
fits into our result, let us consider exponential families with conjugate priors, where we can
analytically calculate the integral of (2.30). In this special case p(x|θ) = exp (〈φ(x), θ〉− g(θ))
and p(θ|α,M0) = exp (〈θ,α〉−M0g(θ) − h(α,M0)). Now if we marginalize out θ, we get a
form which looks exactly like the one in Theorem 2.5

p(X|α,M0) = exp

(
h

(
α+
∑
m

φ(xm),M0 +M

)
− h(α,M0)

)
. (2.31)

representer theorem and kernel machines . Support distribution machines use
f(p) =

∑
i αiyiK(pi,p) + b as the prediction function (Muandet, Fukumizu, et al., 2012; Poc-

zos, L. Xiong, et al., 2012), where pi,p are distributions and αi,b ∈ R. In practice, the pi,p
distributions are never given to us explicitly, usually only i.i.d. sample sets are available from
these distributions, and therefore we need to estimate kernel K(p,q) using these samples. A
popular approach is to use K̂(p,q) = 1

MM ′
∑
i,j k(xi,yj), where k is another kernel operating

on the samples {xi}
M
i=1 ∼ p and {yj}

M ′
j=1 ∼ q. Now, these prediction functions can be seen fitting

into the structure of our Theorem.

spectral methods . A consequence of the polynomial decomposition is that spectral meth-
ods (Anandkumar et al., 2014) can be viewed as a special case of the mapping ρ ◦ φ(X): in
that case one can compute polynomials, usually only up to a relatively low degree (such as
k = 3), to perform inference about statistical properties of the distribution. The statistics are
exchangeable in the data, hence they could be represented by the above map.
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2.4 deep sets

2.4.1 Architecture

2.4.1.1 Invariant model

The structure of permutation invariant functions in Theorem 2.5 hints at a general strat-
egy for inference over sets of objects, which we call deep sets. Replacing φ and ρ by
universal approximators leaves matters unchanged, since, in particular, φ and ρ can be
used to approximate arbitrary polynomials. Then, it remains to learn these approximators.

+

ϕ
ρ

X

x1

x2

z
Optional 

conditioning 

based on meta-

information

S(X)

Figure 2.2: Architecture of DeepSets: Invariant

This yields in the following model:

• Each instance xm ∀1 6 m 6M is trans-
formed (possibly by several layers) into
some representation φ(xm).

• The addition
∑
mφ(xm) of these rep-

resentations processed using the ρ net-
work very much in the same manner
as in any deep network (e.g. fully con-
nected layers, nonlinearities, etc).

• Optionally: If we have additional meta-
information z, then the above men-
tioned networks could be conditioned
to obtain the conditioning mapping
φ(xm|z).

In other words, the key to deep sets is to add up all representations and then apply nonlinear
transformations.

The overall model structure is illustrated in Figure 2.2.

This architecture has a number of desirable properties in terms of universality and correct-
ness. We assume in the following that the networks we choose are, in principle, universal
approximators. That is, we assume that they can represent any functional mapping. This is a
well established property, c.f. Micchelli (1984) for details in the case of radial basis function
networks.

What remains is to state the derivatives with regard to this novel type of layer. Assume
parametrizations wρ and wφ for ρ and φ respectively. Then we have

∂wφρ

∑
x ′∈X

φ(x ′)

 = ρ ′

∑
x ′∈X

φ(x)

 ∑
x ′∈X

∂wφφ(x
′)

This result reinforces the common knowledge of parameter tying in deep networks when or-
dering is irrelevant. Our result backs this practice with theory and strengthens it by proving
that it is the only way to do it.

2.4.1.2 Equivariant model

Our goal is to design neural network layers that are equivariant to the permutations of elements
in the input x. Based on Theorem 2.12, a neural network layer fΘ(x) is permutation equivariant
if and only if all the off-diagonal elements of Θ are tied together and all the diagonal elements
are equal as well, i.e., Θ = λI + γ (11T) for λ,γ ∈ R.
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Figure 2.3: Illustration of permutation
equivariant layer. Same color
indicates weight sharing.

This function is simply a non-linearity applied to a
weighted combination of i) its input Ix and; ii) the
sum of input values (11T)x. Since summation does not
depend on the permutation, the layer is permutation-
equivariant. Therefore we can manipulate the opera-
tions and parameters in this layer, for example to get
another variatione.g.:

f(x) .
= σ (λIx + γ maxpool(x)1) . (2.32)

where the maxpooling operation over elements of the
set (similar to sum) is commutative. In practice, this
variation performs better in some applications. This
may be due to the fact that for λ = γ, the input to the non-linearity is max-normalized.
Since composition of permutation equivariant functions is also permutation equivariant, we
can build DeepSets by stacking such layers as explained below.

+
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Figure 2.4: Architecture of DeepSets: Equivariant

So far we assumed that each instance xm ∈ R

– i.e. a single input and also output channel.
For multiple input-output channels, we may
speed up the operation of the layer using ma-
trix multiplication. For D/D ′ input/output
channels (i.e. x ∈ RM×D, y ∈ RM×D

′
, this

layer becomes

f(x) = σ
(
xΛ − 11TxΓ

)
(2.33)

where Λ, Γ ∈ RD×D
′

are model parame-
ters. As before, we can have a maxpool version as: f(x) = σ

(
xΛ − 1maxpool(x)Γ

)
where

maxpool(x) = (maxm x) ∈ R1×D is a row-vector of maximum value of x over the “set” di-
mension. We may further reduce the number of parameters in favor of better generalization by
factoring Γ and Λ and keeping a single Λ ∈ RD,D ′ and β ∈ RD

′

f(x) = σ
(
β+

(
x − 1maxpool(x)

)
Γ
)

(2.34)

stacking : Since composition of permutation equivariant functions is also permutation equiv-
ariant, we can build deep models by stacking layers of (2.34). Moreover, application of any com-
mutative pooling operation (e.g. max-pooling) over the set instances produces a permutation
invariant function.

2.4.2 Other Related Works

Several recent works study equivariance and invariance in deep networks w.r.t. general group
of transformations (T. S. Cohen and Welling, 2016; Gens and Domingos, 2014; Ravanbakhsh,
Jeff Schneider, and Póczos, 2017). For example, X. Chen, Cheng, and Mallat (2014) construct
deep permutation invariant features by pairwise coupling of features at the previous layer,
where fi,j([xi, xj])

.
= [|xi − xj|, xi + xj] is invariant to transposition of i and j. Pairwise inter-

actions within sets have also been studied in M. B. Chang et al. (2016) and Guttenberg et al.
(2016). Vinyals, S. Bengio, and Kudlur (2015) approach unordered instances by finding “good”
orderings.

The idea of pooling a function across set-members is not new. In Lopez-Paz et al. (2016), pooling
was used binary classification task for causality on a set of samples. B. Shi et al. (2015) use
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Figure 2.5: Using multiple permutation equivariant layers. Since permutation equivariance compose we
can stack multiple such layers

pooling across a panoramic projection of 3D object for classification, while Hang Su et al. (2015)
perform pooling across multiple views. Hartford, Wright, and Leyton-Brown (2016) observe
the invariance of the payoff matrix in normal form games to the permutation of its rows and
columns (i.e. player actions) and leverage pooling to predict the player action. The need of
permutation equivariance also arise in deep learning over sensor networks and multi-agent
setings, where a special case of Theorem 2.12 has been used as the architecture (Sukhbaatar,
Fergus, et al., 2016).

In light of these related works, we would like to emphasize our novel contributions: (i) the
universality result of Theorem 2.5 for permutation invariance that also relates DeepSets to
other machine learning techniques, see Section 2.3.5; (ii) the permutation equivariant layer of
(2.32), which, according to Theorem 2.12 identifies necessary and sufficient form of parameter-
sharing in a standard neural layer and; (iii) novel application settings that we study next.

2.5 experiments on discriminative tasks

2.5.1 Estimate Population Statistics

In the first experiment, we learn entropy and mutual information of Gaussian distributions,
without providing any information about Gaussianity to DeepSets. The Gaussians are gener-
ated as follows:

• Rotation: We randomly chose a 2× 2 covariance matrix Σ, and then generated N sample
sets from N(0,R(α)ΣR(α)T ) of size M = [300− 500] for N random values of α ∈ [0,π].
Our goal was to learn the entropy of the marginal distribution of first dimension. R(α) is
the rotation matrix.

• Correlation: We randomly chose a d× d covariance matrix Σ for d = 16, and then gener-
ated N sample sets from N(0, [Σ,αΣ;αΣ,Σ]) of size M = [300− 500] for N random values
of α ∈ (−1, 1). Goal was to learn the mutual information of among the first d and last d
dimension.

• Rank 1: We randomly chose v ∈ R32 and then generated a sample sets from N(0, I+λvvT )
of size M = [300− 500] for N random values of λ ∈ (0, 1). Goal was to learn the mutual
information.
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(a) Entropy estimation for first di-
mension of rotated of 2d Gaus-
sian

(b) Mutual information estima-
tion by varying correlation

(c) Mutual information estimation
by varying rank-1 strength

(d) Mutual information on 32d
random covariance matrices

Figure 2.6: Population statistic estimation: Top set of figures, show prediction of DeepSets vs SDM for
N = 210 case. Bottom set of figures, depict the mean squared error behavior as number of
sets is increased. SDM has lower error for small N and DeepSets requires more data to reach
similar accuracy. But for high dimensional problems deep sets easily scales to large number of
examples and produces much lower estimation error. Note that the N×N matrix inversion in
SDM makes it prohibitively expensive for N > 214 = 16384.

• Random: We chose N random d× d covariance matrices Σ for d = 32, and using each,
generated a sample set from N(0,Σ) of size M = [300− 500]. Goal was to learn the mutual
information.
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Figure 2.7: Accuracy of digit summation with text (left) and image (right) inputs. All approaches are
trained on tasks of length 10 at most, tested on examples of length up to 100. We see that
DeepSets generalizes better.

We train using L2 loss with a DeepSets architecture having 3 fully connected layers with ReLU
activation for both transformations φ and ρ. We compare against Support Distribution Ma-
chines (SDM) using a RBF kernel (Poczos, L. Xiong, et al., 2012), and analyze the results in
Figure 2.6.

2.5.2 Sum of Digits

Next, we compare to what happens if our set data is treated as a sequence. We consider the
task of finding sum of a given set of digits. We consider two variants of this experiment:

text We randomly sample a subset of maximum M = 10 digits from this dataset to build
100k “sets” of training images, where the set-label is sum of digits in that set. We test against
sums of M digits, for M starting from 5 all the way up to 100 over another 100k examples.

image MNIST8m (Loosli, Canu, and Léon Bottou, 2007) contains 8 million instances of 28×28
grey-scale stamps of digits in {0, . . . , 9}. We randomly sample a subset of maximum M = 10

images from this dataset to build N = 100k “sets” of training and 100k sets of test images,
where the set-label is the sum of digits in that set (i.e. individual labels per image is unavailable).
We test against sums of M images of MNIST digits, for M starting from 5 all the way up to 50.

We compare against recurrent neural networks – LSTM and GRU. All models are defined to
have similar number of layers and parameters. The output of all models is a scalar, predicting
the sum of N digits. Training is done on tasks of length 10 at most, while at test time we
use examples of length up to 100. The accuracy, i.e. exact equality after rounding, is shown in
Figure 2.7. DeepSets generalize much better. Note for image case, the best classification error
for single digit is around p = 0.01 for MNIST8m, so in a collection of N of images at least one
image will be misclassified is 1− (1− p)N, which is 40% for N = 50. This matches closely with
observed value in Figure 2.7(b).

2.5.3 Point Cloud Classification

A point-cloud is a set of low-dimensional vectors. This type of data is frequently encountered in
various applications like robotics, vision, and cosmology. In these applications, existing meth-
ods often convert the point-cloud data to voxel or mesh representation as a preprocessing step,
e.g. H.-W. Lin, Tai, and G.-J. Wang (2004), Maturana and Scherer (2015), and Ravanbakhsh, Ju-
nier Oliva, et al. (2016). Since the output of many range sensors, such as LiDAR, is in the form
of point-cloud, direct application of deep learning methods to point-cloud is highly desirable.
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Moreover, it is easy and cheaper to apply transformations, such as rotation and translation,
when working with point-clouds than voxelized 3D objects.

As point-cloud data is just a set of points, we can use DeepSets to classify point-cloud represen-
tation of a subset of ShapeNet objects (A. X. Chang et al., 2015), called ModelNet40 (Z. Wu et
al., 2015). This subset consists of 3D representation of 9,843 training and 2,468 test instances be-
longing to 40 classes of objects. We produce point-clouds with 100, 1000 and 5000 particles each
(x,y, z-coordinates) from the mesh representation of objects using the point-cloud-library’s sam-
pling routine (Rusu and Cousins, 2011). Each set is normalized by the initial layer of the deep
network to have zero mean (along individual axes) and unit (global) variance. Table 2.1 com-
pares our method using three permutation equivariant layers against the competition. Note
that we achieve our best accuracy using 5000× 3 dimensional representation of each object,
which is much smaller than most other methods. All other techniques use either voxelization
or multiple view of the 3D object for classification.

training details We use a network comprising of 3 permutation-equivariant layers with
256 channels followed by max-pooling over the set structure. The resulting vector representa-
tion of the set is then fed to a fully connected layer with 256 units followed by a 40-way softmax
unit. We use Tanh activation at all layers and dropout on the layers after set-max-pooling (i.e.
two dropout operations) with 50% dropout rate. Applying dropout to permutation-equivariant
layers for point-cloud data deteriorated the performance. We observed that using different
types of permutation-equivariant layers (see Section 2.4) and as few as 64 channels for set
layers changes the result by less than 5% in classification accuracy.

For the setting with 5000 particles, we increase the number of units to 512 in all layers and
randomly rotate the input around the z-axis. We also randomly scale the point-cloud by s ∼

U(.8, 1./.8). For this setting only, we use Adamax (D. P. Kingma and Ba, 2014) instead of Adam
and reduce learning rate from .001 to .0005.

Model Instance Size Representation Accuracy

3DShapeNets (Z. Wu
et al., 2015)

303
voxels (using convolutional deep be-
lief net)

77%

VoxNet (Maturana
and Scherer, 2015)

323
voxels (voxels from point-cloud + 3D
CNN)

83.10%

MVCNN (Hang Su et
al., 2015)

164× 164× 12 multi-vew images (2D CNN + view-
pooling)

90.1%

VRN Ensemble
(Brock et al., 2016)

323
voxels (3D CNN, variational autoen-
coder)

95.54%

3D GAN (J. Wu et al.,
2016)

643
voxels (3D CNN, generative adversar-
ial training)

83.3%

DeepSets 5000× 3 point-cloud 90± .3%

DeepSets 1000× 3 point-cloud 87± .1%

DeepSets 100× 3 point-cloud 82± 2%

Table 2.1: Classification accuracy and the representation-size used by different methods on the Model-
Net40.
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Figure 2.8: Each box is the particle-cloud maximizing the activation of a unit at the firs (top) and second
(bottom) permutation-equivariant layers of our model. Two images of the same column are
two different views of the same point-cloud.

Features. To visualize the features learned by the set layers, we used Adamax (D. P. Kingma and
Ba, 2014) to locate 1000 particle coordinates maximizing the activation of each unit.1 Activating
the tanh units beyond the second layer proved to be difficult. Figure 2.8 shows the particle-
cloud-features learned at the first and second layers of our deep network. We observed that the
first layer learns simple localized (often cubic) point-clouds at different (x,y, z) locations, while
the second layer learns more complex surfaces with different scales and orientations.

2.5.4 Set Anomaly Detection

The objective here is to find the anomalous face in each set, simply by observing examples
and without any access to the attribute values. CelebA dataset (Ziwei Liu et al., 2015) contains
202,599 face images, each annotated with 40 boolean attributes. We build N = 18, 000 sets of
64 × 64 stamps, using these attributes each containing M = 16 images (on the training set)
as follows: randomly select 2 attributes, draw 15 images having those attributes, and a single
target image where both attributes are absent. Using a similar procedure we build sets on the
test images. No individual person‘s face appears in both train and test sets.

Our deep neural network consists of 9 convolution layers with 3× 3 receptive fields. The model
has convolution layers with 32, 32, 64 feature-maps followed by max-pooling followed by 2D
convolution layers with 64, 64, 128 feature-maps followed by another max-pooling layer. The
final set of convolution layers have 128, 128, 256 feature-maps, followed by a max-pooling layer
with pool-size of 5 that reduces the output dimension to batch-size.M× 256, where the set-size
M = 16. This is then forwarded to three permutation-equivariant layers with 256, 128 and 1
output channels. The output of final layer is fed to the softmax, to identify the outlier. (Note
that one could identify arbitrary number of outliers using a sigmoid activation at the output.)
We use exponential linear units (Clevert, Unterthiner, and Hochreiter, 2015), drop out with
20% dropout rate at convolutional layers and 50% dropout rate at the first two set layers. When
applied to set layers, the selected feature (channel) is simultaneously dropped in all the set
members of that particular set. We use Adam (D. P. Kingma and Ba, 2014) for optimization and
use batch-normalization only in the convolutional layers. We use mini-batches of 8 sets, for a

1 We started from uniformly distributed set of particles and used a learning rate of .01 for Adamax, with first and second
order moment of .1 and .9 respectively. We optimized the input in 105 iterations. The results of Figure 2.8 are limited
to instances where tanh units were successfully activated. Since the input at the first layer of our deep network is
normalized to have a zero mean and unit standard deviation, we do not need to constrain the input while maximizing
unit’s activation.
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Figure 2.9: Each row shows a set, constructed from CelebA dataset, such that all set members except for
an outlier, share at least two attributes (on the right). The outlier is identified with a red frame.
The model is trained by observing examples of sets and their anomalous members, without
access to the attributes. The probability assigned to each member by the outlier detection
network is visualized using a red bar at the bottom of each image. The probabilities in each
row sum to one.

total of 128 images per batch. Our trained model successfully finds the anomalous face in 75%
of test sets. Visually inspecting these instances suggests that the task is non-trivial even for
humans; see Figure 2.9.

As a baseline, we repeat the same experiment by using a set-pooling layer after convolution
layers, and replacing the permutation-equivariant layers with fully connected layers of same
size, where the final layer is a 16-way softmax. The resulting network shares the convolution
filters for all instances within all sets, however the input to the softmax is not equivariant to the
permutation of input images. Permutation equivariance seems to be crucial here as the baseline
model achieves a training and test accuracy of ∼ 6.3%; the same as random selection.

2.6 set expansion

In the set expansion task, we are given a set of objects that are similar to each other and our
goal is to find new objects from a large pool of candidates such that the selected new objects
are similar to the query set. To achieve this one needs to reason out the concept connecting
the given set and then retrieve words based on their relevance to the inferred concept. It is an
important task due to wide range of potential applications including personalized information
retrieval, computational advertisement, tagging large amounts of unlabeled or weakly labeled
datasets.

Going back to de Finetti’s theorem in Section 2.3.5, where we consider the marginal probability
of a set of observations, the marginal probability allows for very simple metric for scoring
additional elements to be added to X. In other words, this allows one to perform set expansion
via the following score

s(x|X) = logp(X∪ {x} |α) − logp(X|α)p({x} |α) (2.35)

Note that s(x|X) is the point-wise mutual information between x and X. Moreover, due to
exchangeability, it follows that regardless of the order of elements we have

S(X) =
∑
m

s (xm| {xm−1, . . . x1}) = logp(X|α) −
M∑
m=1

logp({xm} |α) (2.36)
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Figure 2.10: Each row shows a set, constructed from CelebA dataset, such that all set members except
for an outlier, share at least two attributes (on the right). The outlier is identified with a red
frame. The model is trained by observing examples of sets and their anomalous members,
without access to the attributes. The probability assigned to each member by the outlier
detection network is visualized using a red bar at the bottom of each image.

When inferring sets, our goal is to find set completions {xm+1, . . . xM} for an initial set of query
terms {x1, . . . , xm}, such that the aggregate set is coherent. This is the key idea of the Bayesian
Set algorithm (Zoubin Ghahramani and Heller, 2005).

2.6.1 Bayes Set

Bayes Set (Zoubin Ghahramani and Heller, 2005) assumes parametric formulation in the above
approach. If we consider exponential families, the above approach assumes a particularly nice
form whenever we have conjugate priors. Here we have

p(x|θ) = exp (〈φ(x), θ〉− g(θ)) and p(θ|α,M0) = exp (〈θ,α〉−M0g(θ) − h(α,M0)) .
(2.37)

The mapping φ : x → F is usually referred as sufficient statistic of x which maps x into a
feature space F. Moreover, g(θ) is the log-partition (or cumulant-generating) function. Finally,
p(θ|α,M0) denotes the conjugate distribution which is in itself a member of the exponential
family. It has the normalization h(α,M0) =

∫
dθ exp (〈θ,α〉−M0g(θ)). The advantage of this
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is that s(x|X) and S(X) can be computed in closed form (Zoubin Ghahramani and Heller, 2005)
via

s(X) = h (α+φ(X),M0 +M) + (M− 1)h(α,M0) −
M∑
m=1

h(α+φ(xm),M+ 1) (2.38)

s(x|X) = h (α+φ({x}∪X),M0 +M+ 1) + h(α,M0) (2.39)

− h (α+φ(X),M0 +M) − h(α+φ(x),M+ 1)

For convenience we defined the sufficient statistic of a set to be the sum over its constituents, i.e.
φ(X) =

∑
mφ(xm). It allows for very simple computation and maximization over additional

elements to be added to X, since φ(X) can be precomputed.

2.6.1.1 Beta-Binomial Model

The model is particularly simple when dealing with the Binomial distribution and its conjugate
Beta prior, since the ratio of Gamma functions allows for simple expressions. In particular, we
have

h(β) = log Γ(β+) + log Γ(β−) − Γ(β). (2.40)

With some slight abuse of notation we let α = (β+,β−) and M0 = β+ + β−. Setting φ(1) =

(1, 0) and φ(0) = (0, 1) allows us to obtain φ(X) = (M+,M−), i.e. φ(X) contains the counts of
occurrences of xm = 1 and xm = 0 respectively. This leads to the following score functions

s(X) = log Γ(β+ +M+) + log Γ(β− +M−) − log Γ(β+M) (2.41)

− log Γ(β+) − log Γ(β−) + log Γ(β) −M+ log
β+

β
−M− log

β−

β

s(x|X) =

log β
++M+

β+M − log β
+

β if x = 1

log β
−+M−

β+M − log β
−

β otherwise
(2.42)

This is the model used by Zoubin Ghahramani and Heller (2005) when estimating Bayesian
Sets for objects. In particular, they assume that for any given object x the vector φ(x) ∈ {0; 1}d

is a d-dimensional binary vector, where each coordinate is drawn independently from some
Beta-Binomial model. The advantage of the approach is that it can be computed very efficiently
while only maintaining minimal statistics of X.

In a nutshell, the algorithmic operations performed in the Beta-Binomial model are as follows:

s(x|X) = 1>

[
σ

(
M∑
m=1

φ(xm) +φ(x) +β

)
− σ (φ(x) +β)

]
(2.43)

In other words, we sum over statistics of the candidates xm, add a bias term β, perform a
coordinate-wise nonlinear transform over the aggregate statistic (in our case a logarithm), and
finally we aggregate over the so-obtained scores, weighing each contribution equally. s(X) is
expressed analogously.

2.6.1.2 Gauss Inverse Wishart Model

Before abstracting away the probabilistic properties of the model, it is worth paying some
attention to the case where we assume that xi ∼ N(µ,Σ) and (µ,Σ) ∼ NIW(µ0, λ,Ψ,ν), for
a suitable set of conjugate parameters. While the details are (arguably) tedious, the overall
structure of the model is instructive.
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First note that the sufficient statistic of the data x ∈ Rd is now given by φ(x) = (x, xx>).
Secondly, note that the conjugate log-partition function h amounts to computing determinants
of terms involving

∑
m xmx

>
m and moreover, nonlinear combinations of the latter with

∑
m xm.

The algorithmic operations performed in the Gauss Inverse Wishart model are as follows:

s(x|X) = σ

(
M∑
m=1

φ(xm) +φ(x) +β

)
− σ (φ(x) +β) (2.44)

Here σ is a nontrivial convex function acting on a (matrix, vector) pair and φ(x) is no longer a
trivial map but performs a nonlinear dimension altering transformation on x. We will use this
general template to fashion the DeepSets algorithm.

2.6.2 Using DeepSets

Using DeepSets, we can solve this problem in more generality as we can drop the assumption
of data belonging to certain exponential family.

For learning the score s(x|X), we take recourse to large-margin classification with structured
loss functions (Taskar, Guestrin, and Koller, 2004) to obtain the relative loss objective

l(x, x ′|X) = max(0, s(x ′|X) − s(x|X) +∆(x, x ′)). (2.45)

In other words, we want to ensure that s(x|X) > s(x ′|X) +∆(x, x ′) whenever x should be added
and x ′ should not be added to X.

conditioning Often machine learning problems do not exist in isolation. For example, task
like tag completion from a given set of tags is usually related to an object z, for example an
image, that needs to be tagged. Such meta-data are usually abundant, e.g. author information
in case of text, contextual data such as the user click history, or extra information collected with
LiDAR point cloud.

Conditioning graphical models with meta-data is often complicated. For instance, in the Beta-
Binomial model we need to ensure that the counts are always nonnegative, regardless of z. For-
tunately, DeepSets does not suffer from such complications and the fusion of multiple sources
of data can be done in a relatively straightforward manner. Any of the existing methods in deep
learning, including feature concatenation by averaging, or by max-pooling, can be employed.
Incorporating these meta-data often leads to significantly improved performance as will be
shown in experiments; Section 2.7.2.

2.7 experiments on set expansion

2.7.1 Text Concept Set Retrieval

We consider the task of text concept set retrieval, where the objective is to retrieve words
belonging to a ‘concept’ or ‘cluster’, given few words from that particular concept. For example,
given the set of words {tiger, lion, cheetah}, we would need to retrieve other related words like
jaguar, puma, etc, which belong to the same concept of big cats. The model implicitly needs
to reason out the concept connecting the given set and then retrieve words based on their
relevance to the inferred concept. Concept set retrieval is an important due to wide range of
potential applications including personalized information retrieval, tagging large amounts of
unlabeled or weakly labeled datasets, etc. This task of concept set retrieval can be seen as a set
completion task conditioned on the latent semantic concept, and therefore our DeepSets form
a desirable approach.
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Method
LDA-1k (Vocab = 17k) LDA-3k (Vocab = 38k) LDA-5k (Vocab = 61k)

Recall (%)
MRR Med.

Recall (%)
MRR Med.

Recall (%)
MRR Med.

@10 @100 @1k @10 @100 @1k @10 @100 @1k

Random 0.06 0.6 5.9 0.001 8520 0.02 0.2 2.6 0.000 28635 0.01 0.2 1.6 0.000 30600

Bayes Set 1.69 11.9 37.2 0.007 2848 2.01 14.5 36.5 0.008 3234 1.75 12.5 34.5 0.007 3590

w2v Near 6.00 28.1 54.7 0.021 641 4.80 21.2 43.2 0.016 2054 4.03 16.7 35.2 0.013 6900

NN-max 4.78 22.5 53.1 0.023 779 5.30 24.9 54.8 0.025 672 4.72 21.4 47.0 0.022 1320

NN-sum-con 4.58 19.8 48.5 0.021 1110 5.81 27.2 60.0 0.027 453 4.87 23.5 53.9 0.022 731

NN-max-con 3.36 16.9 46.6 0.018 1250 5.61 25.7 57.5 0.026 570 4.72 22.0 51.8 0.022 877

DeepSets 5.53 24.2 54.3 0.025 696 6.04 28.5 60.7 0.027 426 5.54 26.1 55.5 0.026 616

Table 2.2: Results on Text Concept Set Retrieval on LDA-1k, LDA-3k, and LDA-5k. Our DeepSets model
outperforms other methods on LDA-3k and LDA-5k. However, all neural network based meth-
ods have inferior performance to w2v-Near baseline on LDA-1k, possibly due to small data size.
Higher the better for recall@k and mean reciprocal rank (MRR). Lower the better for median
rank (Med.)

dataset To construct a large dataset containing sets of related words, we make use of
Wikipedia text due to its huge vocabulary and concept coverage. First, we run topic mod-
eling on publicly available wikipedia text with K number of topics. Specifically, we use the
famous latent Dirichlet allocation (D. M. Blei, A. Y. Ng, and Michael I. Jordan, 2003; Pritchard,
Stephens, and Donnelly, 2000), taken out-of-the-box2. Next, we choose top NT = 50 words for
each latent topic as a set giving a total of K sets of size NT . To compare across scales, we con-
sider three values of k = {1k, 3k, 5k} giving us three datasets LDA-1k, LDA-3k, and LDA-5k,
with corresponding vocabulary sizes of 17k, 38k, and 61k. Few of the topics from LDA-1k are
visualized in Table 2.11.

methods Our DeepSets model uses a feedforward neural network (NN) to represent a query
and each element of a set, i.e., φ(x) for an element x is encoded as a NN. Specifically, φ(x)
represents each word via 50-dimensional embeddings that are we learn jointly, followed by two
fully connected layers of size 150, with ReLU activations. We then construct a set representation
or feature, by sum pooling all the individual representations of its elements, along with that
of the query. Note that this sum pooling achieves permutation invariance, a crucial property
of our DeepSets (Theorem 2.5). Next, use input this set feature into another NN to assign
a single score to the set, shown as ρ(.). We instantiate ρ(.) as three fully connected layers
of sizes {150, 75, 1} with ReLU activations. In summary, our DeepSets consists of two neural
networks – (a) to extract representations for each element, and (b) to score a set after pooling
representations of its elements.

baselines We compare to several baselines: (a) Random picks a word from the vocabulary
uniformly at random. (b) Bayes Set (Zoubin Ghahramani and Heller, 2005), and (c) w2v-Near
that computes the nearest neighbors in the word2vec (Mikolov, Sutskever, et al., 2013) space.
Note that both Bayes Set and w2v NN are strong baselines. The former runs Bayesian infer-
ence using Beta-Binomial conjugate pair, while the latter uses the powerful 300 dimensional
word2vec trained on the billion word GoogleNews corpus3. (d) NN-max uses a similar archi-
tecture as our DeepSets with an important difference. It uses max pooling to compute the set

2 github.com/dmlc/experimental-lda
3 code.google.com/archive/p/word2vec/

github.com/dmlc/experimental-lda
code.google.com/archive/p/word2vec/
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feature, as opposed to DeepSets which uses sum pooling. (e) NN-max-con uses max pooling
on set elements but concatenates this pooled representation with that of query for a final set
feature. (f) NN-sum-con is similar to NN-max-con but uses sum pooling followed by concate-
nation with query representation.

evaluation To quantitatively evaluate, we consider the standard retrieval metrics – re-
call@K, median rank and mean reciprocal rank. To elaborate, recall@K measures the num-
ber of true labels that were recovered in the top K retrieved words. We use three values of
K = {10, 100, 1k}. The other two metrics, as the names suggest, are the median and mean of
reciprocals of the true label ranks, respectively. Each dataset is split into TRAIN (80%), VAL
(10%) and TEST (10%). We learn models using TRAIN and evaluate on TEST, while VAL is
used for hyperparameter selection and early stopping.

results and observations Table 2.2 contains the results for the text concept set re-
trieval on LDA-1k, LDA-3k, and LDA-5k datasets. We summarize our findings below: (a) Our
/deepsets model outperforms all other approaches on LDA-3k and LDA-5k by any metric,
highlighting the significance of permutation invariance property. For instance, /deepsets is
better than the w2v-Near baseline by 1.5% in Recall@10 on LDA-5k. (b) On LDA-1k, neural
network based models do not perform well when compared to w2v-Near. We hypothesize that
this is due to small size of the dataset insufficient to train a high capacity neural network, while
w2v-Near has been trained on a billion word corpus. Nevertheless, our approach comes the
closest to w2v-Near amongst other approaches, and is only 0.5% lower by Recall@10.
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Figure 2.11: Examples from our LDA-1k datasets. Notice that each of these are latent topics of LDA and
hence are semantically similar.

2.7.2 Image Tagging

We next experiment with image tagging, where the task is to retrieve all relevant tags corre-
sponding to an image. Images usually have only a subset of relevant tags, therefore predicting
other tags can help enrich information that can further be leveraged in a downstream super-
vised task. In our setup, we learn to predict tags by conditioning /deepsets on the image.
Specifically, we train by learning to predict a partial set of tags from the image and remaining
tags. At test time, we the test image is used to predict relevant tags.

datasets We report results on the following three datasets:
(a) ESPgame (Von Ahn and Dabbish, 2004): Contains around 20k images spanning logos, draw-
ings, and personal photos, collected interactively as part of a game. There are a total of 268
unique tags, with each image having 4.6 tags on average and a maximum of 15 tags.
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Method
ESP game IAPRTC-12.5

P R F1 N+ P R F1 N+

Least Sq. 35 19 25 215 40 19 26 198

MBRM 18 19 18 209 24 23 23 223

JEC 24 19 21 222 29 19 23 211

FastTag 46 22 30 247 47 26 34 280

Least Sq.(D) 44 32 37 232 46 30 36 218

FastTag(D) 44 32 37 229 46 33 38 254

DeepSets 39 34 36 246 42 31 36 247

Table 2.3: Results of image tagging on ESPgame and IAPRTC-12.5 datasets. Performance of our DeepSets
approach is roughly similar to the best competing approaches, except for precision. Refer text
for more details. Higher the better for all metrics – precision (P), recall (R), f1 score (F1), and
number of non-zero recall tags (N+).

(b) IAPRTC-12.5 (Grubinger, 2007): Comprises of around 20k images including pictures of dif-
ferent sports and actions, photographs of people, animals, cities, landscapes, and many other
aspects of contemporary life. A total of 291 unique tags have been extracted from captions for
the images. For the above two datasets, train/test splits are similar to those used in previous
works (M. Chen, A. Zheng, and Weinberger, 2013; Guillaumin et al., 2009).
(c) COCO-Tag: We also construct a dataset in-house, based on MSCOCO dataset (T.-Y. Lin et al.,
2014). COCO is a large image dataset containing around 80k train and 40k test images, along
with five caption annotations. We extract tags by first running a standard spell checker4 and
lemmatizing these captions. Stopwords and numbers are removed from the set of extracted
tags. Each image has 15.9 tags on an average and a maximum of 46 tags. We show examples
of image tags from COCO-Tag in Figure 2.12. The advantages of using COCO-Tag are three
fold–richer concepts, larger vocabulary and more tags per image, making this an ideal dataset
to learn image tagging using /deepsets.

image and word embeddings Our models use features extracted from Resnet, which is
the state-of-the-art convolutional neural network (CNN) on ImageNet 1000 categories dataset
using the publicly available 152-layer pretrained model5. To represent words, we jointly learn
embeddings with the rest of /deepsets neural network for ESPgame and IAPRTC-12.5 datasets.
But for COCO-Tag, we bootstrap from 300 dimensional word2vec embeddings6 as the vocabu-
lary for COCO-Tag is significantly larger than both ESPgame and IAPRTC-12.5 (13k vs 0.3k).

methods The setup for DeepSets to tag images is similar to that described in Section 2.7.1.
The only difference being the conditioning on the image features, which is concatenated with
the set feature obtained from pooling individual element representations. In particular, φ(x)
represents each word via 300-dimensional word2vec embeddings, followed by two fully con-
nected layers of size 300, with ReLU activations, to construct the set representation or features.
As mentioned earlier, we concatenate the image features and pass this set features into another
NN to assign a single score to the set, shown as ρ(.). We instantiate ρ(.) as three fully connected
layers of sizes {300, 150, 1} with ReLU activations. The resulting feature forms the new input to
a neural network used to score the set, in this case, score the relevance of a tag to the image.

4 http://hunspell.github.io/
5 github.com/facebook/fb.resnet.torch
6 https://code.google.com/p/word2vec/

http://hunspell.github.io/
github.com/facebook/fb.resnet.torch
https://code.google.com/p/word2vec/
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Method
Recall

MRR Med.
@10 @100 @1k

w2v NN (blind) 5.6 20.0 54.2 0.021 823

DeepSets (blind) 9.0 39.2 71.3 0.044 310

DeepSets 31.4 73.4 95.3 0.131 28

Table 2.4: Results on COCO-Tag dataset. Clearly, DeepSets outperforms other baselines significantly.
Higher the better for recall@K and mean reciprocal rank (MRR). Lower the better for median
rank (Med).

baselines We perform comparisons against several baselines, previously reported from M.
Chen, A. Zheng, and Weinberger (2013). Specifically, we have Least Sq., a ridge regression
model, MBRM (S. L. Feng, Manmatha, and Lavrenko, 2004), JEC (Makadia, Pavlovic, and S.
Kumar, 2008) and FastTag (M. Chen, A. Zheng, and Weinberger, 2013). Note that these methods
do not use deep features for images, which could lead to an unfair comparison. As there is no
publicly available code for MBRM and JEC, we cannot get performances of these models with
Resnet extracted features. However, we report results with deep features for FastTag and Least
Sq., using code made available by the authors 7.

evaluation For ESPgame and IAPRTC-12.5, we follow the evaluation metrics as in Guillau-
min et al. (2009) – precision (P), recall (R), F1 score (F1) and number of tags with non-zero recall
(N+). Note that these metrics are evaluate for each tag and the mean is reported. We refer to
Guillaumin et al. (2009) for further details. For COCO-Tag, however, we use recall@K for three
values of K = {10, 100, 1000}, along with median rank and mean reciprocal rank (see evaluation
in Section 2.7.1 for metric details).

results and observations Table 2.3 contains the results of image tagging on ESPgame
and IAPRTC-12.5, and Table 2.4 on COCO-Tag. Here are the key observations from Table 2.3:
(a) The performance of DeepSets is comparable to the best of other approaches on all metrics
but precision. (b) Our recall beats the best approach by 2% in ESPgame. On further investi-
gation, we found that DeepSets retrieves more relevant tags, which are not present in list of
ground truth tags due to a limited 5 tag annotation. Thus, this takes a toll on precision while
gaining on recall, yet yielding improvement in F1. On the larger and richer COCO-Tag, we see
that DeepSets approach outperforms other methods comprehensively, as expected. We show
qualitative examples in Figure 2.12.

We present examples of our in-house tagging datasets, COCO-Tag in Figure 2.12.

2.8 set generation

A fundamental problem in machine learning is to develop efficient methods that can learn
a generative model of the distribution of the provided training set and capable of generating
arbitrary many new sample points from the domain of this distribution (Christopher, 2016). Deep gen-
erative models use deep neural networks as a tool for learning complex distributions. These
approaches include variational autoencoders (D. Kingma and Welling, 2014), autoregressive
models (Oord, Kalchbrenner, and Kavukcuoglu, 2016) and generative adversarial networks
(GAN) (Goodfellow et al., 2014). The compelling results have been demonstrated on simple

7 http://www.cse.wustl.edu/~mchen/

http://www.cse.wustl.edu/~mchen/
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GT Pred
building building

sign street
brick city

picture brick
empty sidewalk
white side
black pole
street white
image stone

GT Pred
standing person
surround group
woman man
crowd table
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person room
group woman
table couple
bottle gather

GT Pred
traffic clock
city tower

building sky
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European cloudy
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GT Pred
photograph ski

snowboarder snow
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lifeguard water
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surfboard sky

Figure 2.12: Qualitative examples of image tagging using DeepSets. Top row: Positive examples where
most of the retrieved tags are present in the ground truth (brown) or are relevant but not
present in the ground truth (green). Bottom row: Few failure cases with irrelevant/wrong
tags (red). From left to right, (i) Confusion between snowboarding and skiing, (ii) Confusion
between back of laptop and refrigerator due to which other tags are kitchen-related, (iii)
Hallucination of airplane due to similar shape of surfboard.
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data types like images, speech, and text (Denton, Chintala, Fergus, et al., 2015; Finn, Goodfel-
low, and Levine, 2016; Karras et al., 2017; Lamb et al., 2016; Radford, Metz, and Chintala, 2015;
Van Den Oord et al., 2016). Their wide range of applicability was also demonstrated in many
important problems, including data augmentation (Salimans et al., 2016), image style transfor-
mation (J.-Y. Zhu et al., 2017), image captioning (Kelvin Xu et al., 2015) and art creations (Kang,
2017).

Hoowever, there are many unexplored, yet useful complex data type, like sets which has been
theme of this chapter. In particular set of 3D points, such as CAD designs, 3D meshes, and point
clouds, have recently garnered a lot of attention because various easily accessible sensors like
LiDAR on self-driving cars, Kinect for xbox, and face identification sensor on phones. Similar
to useful applications of generative models previous works on simple data type, we want to
extend to set data.

We propose a deep generative adversarial network for set data, in particular for point clouds
(PC-GAN). The proposed architecture learns a stochastic procedure which can draw samples
for point clouds without explicitly modeling the underlying density function.

2.8.1 Difficulty of the Task

We begin by defining the problem and ideal generative process for point cloud over objects.
Formally, a point cloud for an object is nothing but a set of n low dimensional vectors X =

{x1, ..., xn}, where n can be infinite and typically each xi ∈ R3 or xi ∈ R2. Point cloud for M
different objects is a collection of M sets X(1), ...,X(M), where each X(m) is as defined above.
Thus, we basically need a generative model p(X) for sets which should be able to:

• Sample entirely new sets X, as well as

• Sample more points for a given set, i.e. x ∼ p(x|X).

De-Finetti theorem allows us to express the set probability in a factored format as p(X) =∫
θ

∏n
i=1 p(xi|θ)p(θ)dθ for some suitably defined θ. In case of point clouds, the latent variable

θ can be interpreted as an object representation. In this view, the factoring can be understood as
follows: Given an object, θ, the points xi in the point cloud can be considered as i.i.d. samples

(a) Table: p(xi|θ1) (b) Chair: p(xi|θ2) (c) Plane: p(xi|θ3) (d) Marginalized: p(xi)

Figure 2.13: Unlike in case of images, the marginal distribution p(xi) =
∫
p(xi|θ)p(θ)dθ is not useful.

We have to learn the joint distribution p(X, θ). An illustrative parallel can be drawn between
pixels of an image and point cloud — marginal distribution of pixels is quite uninformative,
one has to consider the joint distribution of all pixels in one image (not across different
images).
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from p(x|θ), an unknown latent distribution representing the object θ. The joint likelihood can
be expressed as:

p(X, θ) = p(θ)︸︷︷︸
object

n∏
i=1

p(xi|θ)︸ ︷︷ ︸
points for object

(2.46)

Thus, the task boils down to modeling these two probabilities.

Attempts have been made to characterize these conditional probabilities with parametric mod-
els like Gaussian Mixture Models or parametric hierarchical models (Eckart et al., 2015; Jian
and Vemuri, 2005; Strom, A. Richardson, and Olson, 2010). However, such approaches have lim-
ited success as the point cloud conditional density p(x|θ) is highly non-linear and complicated
(example of point clouds can be seen in Figure 2.15, 2.18).

With advent of implicit generative models, like GANs (Goodfellow et al., 2014), it is possible
to model complicated distributions, but it is not clear how to extend the existing GAN frame-
works to handle the hierarchical model of point clouds as developed above. The aim of most
GAN framework(Arjovsky, Chintala, and Léon Bottou, 2017; Goodfellow et al., 2014; C.-L. Li
et al., 2017) is to learn to generate new samples from a distribution p(x), for fixed dimensional
x ∈ Rd, given a training dataset. We, in contrast, aim to develop a new method where the
training data is a set of sets, and learning from this training data would allow us to generate
points from this hierarchical distribution (e.g. point clouds of 3D objects). To re-emphasize the
incompatibility, note that the training data of traditional GANs is a set of fixed dimensional
instances, in our case, however, it is a set of sets. Using existing GANs to just learning marginal
distribution p(x), in case of point clouds x, is not of much use because the marginal distribution
is quite uninformative as can be seen from Figure 2.13. GANs have been extended to sample
from conditional distribution (Isola et al., 2017; Mirza and Osindero, 2014), but they require
conditioning variable to be observed, such as the label. While in case of point clouds we only
have partial knowledge of the conditional, i.e. we only have groupings of point coming from
the same object but we have no representation of the conditional or the object other than the
points themselves.

Figure 2.14: Natural extension of GAN to
handle set data

Another approach can be to model the dis-
tribution of the point cloud set together, i.e.,
{{x

(1)
i }ni=1, . . . , {x(m)

i }ni=1}. In this setting, a naíve appli-
cation of traditional GAN is possible through treating
the point cloud as finite dimensional vector by fixing
number and order of the points, i.e. reducing the prob-
lem to instances in Rn×3. Again, in this setting another
natural extension of traditional GAN framework is to
use a DeepSets classifier as the discriminator to distin-
guish real sets vs fake sets. However, it would not work
because the IPM guarantees behind the traditional GAN do not hold any longer (e.g. in case
of Arjovsky, Chintala, and Léon Bottou (2017), even Lipschitz-1 function over sets is not well
defined) and counter examples for breaking IPM guarantees can be easily found. We study a
counter example next.

counter example Consider a simple GAN (Goodfellow et al., 2014) with a DeepSets clas-
sifier as the discriminator. In order to generate coherent sets of variable size, we consider a
generator G having two noise sources: z1 and z2i. To generate a set, z1 is sampled once and z2i
is sampled for i = 1, 2, ...,n to produce n points in the generated set. Intuitively, fixing the first
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noise source z1 selects a set and ensures the points generated by repeated sampling of z2i are
coherent and belong to same set. The setup is depicted in Figure 2.14. In this setup, the GAN
minimax problem would be:

min
G

max
D

E
θ∼p(θ)
xi∼p(xi|θ)

[logD ({xi})] + E
z1∼q1(z1)
z2i∼q2(z2i)

[log (1−D ({G(z1, z2i)}))] (2.47)

Now consider the case, when there exist an ‘oracle’ mapping T which maps the set determin-
istically to the object identified, i.e. ∃T : T({xi}) = θ. An example is when different θ leads to
conditional distribution p(x|θ) with non-overlapping support. Let D = D ′ ◦ T and G ignores z2
then optimization becomes

min
G

max
D ′

E
θ∼p(θ)
xi∼p(xi|θ)

[
logD ′ (T ({xi}))

]
+ E
z1∼q1(z1)
z2i∼q2(z2i)

[
log
(
1−D ′ (T ({G(z1, z2i)}))

)]
⇒min

G
max
D ′

E
θ∼p(θ)
xi∼p(xi|θ)

[
logD ′ (θ)

]
+ E
z1∼q1(z1)
z2i∼q2(z2i)

[
log
(
1−D ′ (T ({G(z1)}))

)]
⇒min

G
max
D ′

E
θ∼p(θ)

[
logD ′ (θ)

]
+ E
z1∼q1(z1)

[
log
(
1−D ′ (T ({G(z1)}))

)]
(2.48)

Thus, we can achieve the lower bound − log(4) by only matching the p(θ) component, while
the conditional p(x|θ) is allowed to remain arbitrary. So simply using DeepSets classifier in
simple GAN in order to handle sets does not lead to a valid generative model.

2.8.2 Proposed Method

G(z1, z2) G(z1, z2)

G-1(X)

Randomness 
for points

z2

Randomness 
for points
z2

Randomness 
for objects

z1

Infererence

Generated 
point cloud 
for plane

Generated 
point cloud 

for chair

Figure 2.15: Overview

We present a solution to this problem by
learning a two-level implicit generative mod-
els for modeling the sampling process of
p(x|θ) and p(θ). In Isola et al. (2017) and
Mirza and Osindero (2014), the θ is a simple
one-hot vector of class labels or a given image
for transformations. However, naively model-
ing θ to be a one-hot vector to indicate which
object can not be generalized to unseen test-
ing data. Instead, different from Isola et al.
(2017) and Mirza and Osindero (2014), our θ
is an unobserved latent variable for modeling different objects with semantic meaning.

Our solution comprises of a generator Gx(z,ψ) which takes in a noise source z ∈ Rd1 and a
descriptor ψ ∈ Rd2 encoding information about distribution of θ. For a given θ0, the descriptor
ψ would encode information about the distribution δ(θ− θ0) and samples generated as x =

Gx(z,ψ) would follow the distribution p(x|θ0). More generally, ψ can used to encode more
complicated distributions regarding θ as well. In particular, it could be used to encode the
posterior p(θ|X) for a given sample set X in order to produce samples that follow the posterior
predictive distribution:

p(x|X) =

∫
p(x|θ)p(θ|X)dθ. (2.49)

We can train such a generator Gx using a GAN-like objective, for which we would need two
more components. First, we would need a discriminator Dθ(·) which distinguishes between
the generated samples and true samples conditioned on θ. Second, as ψ is unobserved, we



44 set data

would need an inference network Q(X) which would try to predict the descriptor ψ about the
distribution p(θ|X) given the sample set X. Under this formulation, if we use an IPM-based
GAN (Arjovsky, Chintala, and Léon Bottou, 2017; Mroueh, C.-L. Li, et al., 2017; Mroueh and
Sercu, 2017), the objective can be written as

Eθ∼p(θ)

[
min

Dθ∈ΩDθ
max
Gx,Q

EX∼p(X|θ) [Dθ(X)] − Ez∼p(z),X∼p(X|θ) [Dθ(Gx(z,Q(X)))]

]
(2.50)

where ΩD is the constraint for different probabilistic distances, such as 1-Lipschitz (Arjovsky,
Chintala, and Léon Bottou, 2017), L2 ball (Mroueh and Sercu, 2017) or Sobolev ball (Mroueh,
C.-L. Li, et al., 2017).

A major hurdle in taking this path is that X is a set of points, which can vary in size and permu-
tation of elements. Thus, making design ofQ complicated as traditional neural network can not
handle this and possibly is the reason for absence of such framework in the literature despite
being a natural solution for the important problem of generative modeling of point clouds.
However, we can overcome this challenge and We propose to construct the inference network
by utilizing the permutation equivariant layers from DeepSets as presented in Section 2.4.1.2.
This allows it handle variable number of inputs points in arbitrary order, yet yielding a consis-
tent descriptor ψ.

After training Gx(·, θ) and the inference network Q, we use trained Q to collect inferred
ψ = Q(x) and train another generator Gψ(z) with a different noise source z ∈ Rd3 such
that samples correspond to p(θ) to enable hierarchical sampling. Moreover, the two generators
can be combined and viewed as G(z1, z2) = Gx(z2,Gψ(z1)) for carrying out the hierarchical
sampling at one go. In addition to the layer-wise training, a joint training may further boost
the performance.

2.8.3 Tighter Solutions via Sandwiching

In our setting each point xi in the point cloud can be considered to correspond to single images
in case of training GANs over images. When multiple images are sampled from a GAN on
images, many great images are generated, but still some not so good images can be generated.
An example is illustrated in Figure 2.16 where samples from MMD-GAN (C.-L. Li et al., 2017)
trained is on celebA faces consists of both good and bad faces. In case of images, when quality
is evaluated, it primarily focuses on coherence individual images and the few bad ones can
easily be left out. Whereas in case of point cloud, to get representation of an object we need
many points together and presence of outlier points degrades the quality of the object. Thus,
when training a generative model for point cloud, we need to ensure a much lower distance
D(P||PG) between true distribution P and generator distribution PG than would be needed in
case of images.

Figure 2.16: Faces generated
from a GAN

We begin by noting that the popular Wasserstein GAN (Ar-
jovsky, Chintala, and Léon Bottou, 2017), tries to optimize G for
reducing the Wasserstein distance w(P,G) between the truth P
and generated distribution G, i.e. one aims to solve

min
G
w(P,G) (2.51)

Direct evaluation of wasserstein distance is computationally
very expensive in general (Arjovsky, Chintala, and Léon Bottou,
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2017). To practically solve this problem, the dual form of Wasser-
stein distance, is invoked, which is

w(P,G) = sup
‖f‖L61

Ex∼Pf(x) − Ex∼Gf(x), (2.52)

where ‖f‖L 6 1 is the set of functions whose Lipschitz constant is no larger than 1. Then in
practice, deep neural networks with parameters φ and representing function fφ with weight
clipping (Arjovsky, Chintala, and Léon Bottou, 2017) or gradient penalty (Gulrajani et al., 2017)
have been used to approximate ‖f‖L 6 1, i.e. solve

ŵ(P,G) = max
φ

Ex∼Pfφ(x) − Ex∼Gfφ(x) (2.53)

But this yields a lower bound on the Wasserstein distance, as ŵ(P,G) 6 w(P,G). When solving
a minimization problem, it is known that optimizing the lower bound is not an ideal idea
always.

On the other hand, there have been developed 1+ ε approximations wε(P,G) to Wasserstein
distance between to sample sets X and Y, where

w(P,G) 6 wε(P,G) 6 (1+ ε)w(P,G),

which is an upper bound to Wassertein distance (Bertsekas, 1985; H. Fan, Hao Su, and Guibas,
n.d.). We propose to combine both the lower bound and upper bound, in order to sandwich
the solution between the two, i.e. we solve the following minimization problem:

minG wε(P,G)

s.t. wε(P,G) − ŵ(P,G) < λ
(2.54)

This optimization problem be solved using Lagrange multipliers. In our experiments we use
this formulation and see significantly better recovery of true distribution.

2.8.4 Simplified Theoretical Justification

We want to understand what happens to GANs under weak discriminators (lower bounds)
from statistical perspective. Ignoring the implementation of these models, from the perspec-
tive of statistical analysis, generative model using GANs are different from classical density
estimators as loss is measured not with Lp distances (as is conventional in nonparametric
statistics (Tsybakov, 2009; Wasserman, 2006)), but rather with weaker losses, such as

dFD(P,Q) = sup
f∈FD

∣∣EX∼P[f(X)] − EX∼Q[f(X)]
∣∣ , (2.55)

where FD is a discriminator class of bounded, Lebesgue-measurable functions, and P and Q lie
in a generator class FG of Borel probability measures on a sample space X. To allow probability
measures P without densities (i.e., P 6� µ), we assume each basis element φz : X → R is a
bounded function, so that P̃z := EX∼P [φz(X)] is well-defined for a fixed orthonormal basis
B = {φz}z∈Z of L2µ indexed by a countable family Z.

We want to upper bound the adversarial risk of the following density estimator. Define, for
constants L > 0 and p > 1 and real-valued net {az}z∈Z, generalized ellipses of the form

Hp,a(L) =

f ∈ L1(X) :

(∑
z∈Z

apz |f̃z|
p

)1/p
6 L

 . (2.56)



46 set data

(where f̃z :=
∫
X fφz dµ is the zth coefficient of f in the basis B). For any finite set Z ⊆ Z, let P̂Z

be the truncated series estimate

P̂Z :=
∑
z∈Z

P̂zφz, where, for any z ∈ Z, P̂z :=
1

n

n∑
i=1

φz(Xi). (2.57)

Z is a tuning parameter that typically corresponds to a smoothing parameter; for example,
when B is the Fourier basis and Z = {z ∈ Zd : ‖z‖∞ 6 ζ} for some ζ > 0, P̂Z is equivalent
to a kernel density estimator using a sinc product kernel Kh(x) =

∏d
j=1

2
h

sin(2πx/h)
2πx/h

with
bandwidth h = 1/ζ (Owen, 2007).

We now present our main upper bound on the minimax rate of density estimation under adver-
sarial losses. The upper bound is given for the orthogonal series estimator given in Equation
(2.57), but we expect kernel and other standard linear density estimators to converge at the
same rate.

Theorem 2.13 Fix constants LD,LG > 0, p,q 6 2 and real-valued families {az}z∈Z and {bz}z∈Z.
Suppose FD = Hp,a(LD) and FG = Hq,b(LG). Then, for all P ∈ FG and Z ⊆ Z,

E
X1,...,Xn

IID
∼ P

[
dFD

(
P, P̂

)]
6
LD√
n

√√√√∑
z∈Z

‖φz‖2L∞P
a2z

+LDLG

(
sup

z ′∈Z\Z

a−1z

)(
sup

z ′∈Z\Z

b−1z

)
. (2.58)

Proof One can check, using the fact that FD is ortho-symmetric (i.e. for every f ∈ FD and
Z ⊆ Z, f − 2

∑
z∈Z f̃zφz ∈ FD, so that FD is symmetric across every axis defined by the

basis B), Lebesgue’s monotone convergence theorem, and the assumption that each f ∈ FD is
bounded, that, for all probability measures P and Q,

EX1,...,Xn
[
dFD (P,Q)

]
6 EX1,...,Xn

[
sup
f∈FD

∑
z∈Z

|f̃z
(
P̃z − Q̃z

)
|

]
.

Therefore,

EX1,...,Xn
[
dFD

(
P, P̂

)]
6 EX1,...,Xn

[
sup
f∈FD

∑
z∈Z

|f̃z
(
P̃z − P̂z

)
|

]

= EX1,...,Xn

 sup
f∈FD

∑
z∈Z

|f̃z
(
P̃z − P̂z

)
|+

∑
z∈Z\Z

|f̃z
(
P̃z − P̂z

)
|


= EX1,...,Xn

 sup
f∈FD

∑
z∈Z

|f̃z
(
P̃z − P̂z

)
|+

∑
z∈Z\Z

|f̃zP̃z|


6 EX1,...,Xn

[
sup
f∈FD

∑
z∈Z

|f̃z
(
P̃z − P̂z

)
|

]
+ sup
f∈FD

∑
z∈Z\Z

|f̃zP̃z|.

Note that we have decomposed the risk into two terms, the first comprising estimation error
(variance) and the second comprising approximation error (bias). Indeed, in the case that FD =

L2(X), the above becomes precisely the usual bias-variance decomposition of mean squared
error.
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To bound the first term, applying the Cauchy-Schwarz inequality, the fact that f ∈ FD, and
Jensen’s inequality (in that order), we have

EX1,...,Xn

[
sup
f∈FD

∑
z∈Z

|f̃z
(
P̃z − P̂z

)
|

]
= EX1,...,Xn

[
sup
f∈FD

∑
z∈Z

az|f̃z|
|P̃z − P̂z|

az

]

6 EX1,...,Xn

 sup
f∈FD

(∑
z∈Z

a2z |f̃z|
2
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For the second term, by the Cauchy-Schwarz inequality,
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The two terms in the bound (2.58) demonstrate a bias-variance tradeoff, in which the first
term (variance) increases with the truncation set Z and is typically independent of the class
FG of distributions, while the second term (bias) decreases with Z at a rate depending on the
complexity of FG. Thus, if discriminator is weak, we might obtain dFD(P,Q) to be 0, while in
reality it is not zero. Thus, combining GAN objective with an upper bound as well as presented
in Section 2.8.3 would help in strengthening the discriminating and producing better samples.

2.9 experiments on set generation

In this section we demonstrate the point cloud generation capabilities of PC-GAN and compare
it with some of the existing methods. We train the proposed PC-GAN on synthetic 3D point
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cloud and ModelNet40 benchmark datasets. The method of Achlioptas et al. (2017) could be
treated as an AAE extension to point clouds, therefore we call it AAE in the discussion below.
We use the implementation provided by Achlioptas et al. (2017) 8 to train AAE with the ap-
proximated EMD objective (Bertsekas, 1985). For AAE, the decoder is a MLP, where the output
is #points × point dimensions.

For PC-GAN, we combine the objective of Fisher GAN and Approximated Wasserstein dis-
tance (Bertsekas, 1985) with mixture 1 : 20 without tuning. We use Fisher GAN (Mroueh and
Sercu, 2017) to replace WGAN-GP (Gulrajani et al., 2017). We found that this way the perfor-
mance is similar to WGAN-GP, but the training is more stable and faster.

2.9.1 Synthetic Datasets

We created a simple 2D synthetic point cloud datasets from parametric distributions on which
we can carry out thorough evaluations of our model and draw comparisons with Achlioptas et
al. (2017) (AAE). We generate 2D point clouds for circles, where the center of circles is followed
a mixture of four Gaussians with means equal to {±16}× {±16}. The variances were set to be
16I and we used equal mixture weights. The radius of the circles was drawn from a uniform
distribution Unif(1.6, 6.4) as shown in Figure 2.17a. We sampled 10, 000 circles for the training
and testing data, respectively.

For the proposed PC-GAN, the architecture is a stack of 3 Permutation Equivariance Layers
with size 30. The size of the latent variables θ in (2.46) was set to be 15. In this experiment
the total number of parameters for PC-GAN was 12K. For AAE encoder, we follow the same
network architecture used in Achlioptas et al. (2017). Here the decoder is a 4-layer MLP where
the output is 500× 2 dimensions for 500 points. We consider two model configurations AAE-
10 and AAE-20, which use 10 and 20 units for the hidden layers of the decoder, respectively.
The total number of parameters (encoder+decoder) are 14K and 24K for AAE-10 and AAE-20,
respectively. Detailed model configurations are provided in the supplementary material.

We evaluated the conditional distributions on the 10, 000 testing circles. For the proposed PC-
GAN, we pass the same points into the inference network Q, then sample 500 points with the
conditional generator Gx to match the output number of AAE. We measured the empirical
distributions of the centers and the radius of the generated circles conditioning on the testing
data for PC-GAN. Similarly, we measured the reconstructed circles of the testing data for AAE.
The results are shown in Figure 2.17.

As we can see from the results, the models can successfully recover the center distribution,
but AAE does not learn the radius distribution well. Even if we increase number the hidden
layer unit to be 20 (AAE-20), which almost doubles the number of parameters, the performance
is still not satisfactory. Compared with AAE, the proposed PC-GAN recovers the both center
and radius distributions well with less parameters. The gap of memory usage could be larger
if we configure AAE to generate more points, while the model size required for PC-GAN is
independent of the number of points. The reason is MLP decoder adopted by Achlioptas et
al. (2017) wasted parameters for nearby points. Using the more advanced point cloud autoen-
coder (Y. Yang et al., 2018) may resolve the issue. However, it is still restricted to generate a
fixed number of points for each object.

8 https://github.com/optas/latent_3d_points

https://github.com/optas/latent_3d_points
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Figure 2.17: The reconstructed center and radius distributions. (a) (top) the true center distribution and
(bottom) one example of the 2D circle point cloud. (b-d) are the reconstructed center and
radius distributions of different algorithms.

2.9.2 ModelNet40

We consider the ModelNet40 (Z. Wu et al., 2015) benchmark, which contains 40 classes of
objects. There are 9, 843 training and 2, 468 testing instances. We follow Zaheer, Kottur, Ravan-
bakhsh, et al. (2017) to do pre-processing. For each object, we sampled 10, 000 points from the
mesh representation and normalize it to have zero mean (for each axis) and unit (global) vari-
ance. During the training, we augment the data by uniformly rotating 0,π/8, . . . , 7π/8 rad on
the x-y plane. For PC-GAN, the random noise z2 is fixed to be 10 dimensional for all experi-
ments. For other settings, we follow Achlioptas et al. (2017).

training on single class We start from a smaller model which is only trained on single
class of objects. For AAE, the latent code size for its encoder is 128 and the decoder outputs
2, 048 points for each object. The number of parameters for encoder and decoder are 15M in
total. Therefore, we set the size of PC-GAN latent variable to be 128 dimensional. The number
of parameters for G and G-inv is less than 1M in total.

training on all classes . We also train the proposed model on all 9, 843 objects in the
training set. The size of AAE latent code of is increased to be 256. The number of parameters
of its encoder and decoder is 15.2M. we set the size of PC-GAN latent variable to be 256
dimensional. The number of parameters for G and G-inv is around 3M in total.

2.9.2.1 Conditional Generation Results

We first evaluate the performance of trained conditional generator and the inference network.
We are interested in whether the learned model can model the distribution of the unseen
testing data. Therefore, for each testing point cloud, we use the inference network to infer the
latent variable xx, then use the conditional generator to generate points. We then measure the
distribution between the input point cloud and the generated point cloud.

There are many criteria based on finite sample estimation for evaluation, such f-divergence and
IPM. However, the estimator with finite samples are either biased or with high variance (Peyré,
Cuturi, et al., 2017; Póczos, Liang Xiong, and Jeff Schneider, 2012; Q. Wang, Kulkarni, and
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(a) Lamp (b) Chair

(c) Plane (d) Guitar

Figure 2.18: The reconstruction on test objects from seen categories. For each object, from left to right is
training data, AAE, and PC-GAN. PC-GAN is better in capturing fine details like wheels of
aeroplane or proper chair legs.

Table 2.5: The quantitative results of different models trained on different subsets of ModelNet40. Multi-
Net10 is a subset containing 10 classes of objects, while MultiNet40 is a full training set.

Data
Distance Coverage

AAE Approx GAN PC-GAN AAE Approx GAN PC-GAN

Aeroplanes 1.99E+01 1.53E+01 2.49E+01 1.89E+01 2.99E-02 1.73E-01 1.88E-01 1.95E-01

Benches 1.41E+01 1.05E+01 2.46E+01 1.09E+01 2.35E-01 2.58E-01 3.83E-01 4.44E-01

Cars 6.23E+01 4.25E+01 6.68E+01 4.39E+01 4.98E-02 1.78E-01 2.35E-01 2.35E-01

Chairs 1.08E+01 1.06E+01 1.08E+01 1.01E+01 1.82E-01 3.57E-01 3.95E-01 3.90E-01

Cups 1.79E+03 1.28E+03 3.01E+03 1.44E+03 3.31E-01 4.32E-01 5.68E-01 6.31E-01

Guitars 1.93E+02 1.97E+02 1.81E+02 2.16E+02 7.98E-02 2.11E-01 2.27E-01 2.25E-01

Lamps 1.60E+03 1.64E+03 2.77E+03 1.47E+03 2.33E-01 3.79E-01 3.66E-01 3.89E-01

Laptops 3.73E+00 2.65E+00 2.58E+00 2.43E+00 2.56E-01 3.93E-01 4.55E-01 4.31E-01

Sofa 1.64E+01 1.45E+01 2.76E+01 1.71E+01 1.62E-01 2.94E-01 3.47E-01 3.65E-01

Tables 2.96E+00 2.44E+00 3.69E+00 2.79E+00 2.59E-01 3.20E-01 3.53E-01 1.82E-01

ModelNet10 6.89E+00 6.03E+00 9.19E+00 5.77E+00 1.90E-01 3.36E-01 3.67E-01 3.47E-01

ModelNet40 5.86E+01 5.24E+01 7.96E+01 4.84E+01 1.85E-01 3.65E-01 3.71E-01 3.80E-01
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Verdú, 2009). Also, it is impossible to use these estimators with infinitely many samples if they
are accessible.

Figure 2.19: Sample mesh from
ModelNet40

For ModelNet40, the meshes of each object are available. In
many statistically guaranteed distance estimates, the adopted
statistics are commonly based on distance between nearest
neighbors (Póczos, Liang Xiong, and Jeff Schneider, 2012; Q.
Wang, Kulkarni, and Verdú, 2009). Therefore, we propose to
measure the performance with the following criteria. Given a
point cloud {xi}

n
i=1 and a mesh, which is a collection of faces

{Fj}
m
j=1, we measure

D
(
{xi}

n
i=1, {Fj}mj=1

)
=
1

n
min
j
d(xi, Fj),

where d(xi, Fj) is the Euclidean distance from xi to the face Fj.
This distance is similar to Chamfer distance, which is commonly
used for measuring images and point clouds (Achlioptas et al.,
2017; H. Fan, Hao Su, and Guibas, n.d.), with infinitely samples
from true distributions (meshes).

On the other hand, mode collapse is commonly happened in GAN algorithm. We are interested
in whether the generated points recover enough supports of the distribution. We compute the
Coverage ratio as follows. For each points, we find the its nearest face, we then treat this face
is covered9. We then compute the ratio of number of faces of a mesh is covered. A sampled
mesh is showed in Figure 2.19, where we can observe the distribution of mesh is not uniform.
Therefore, it is difficult to get high coverage for AAE or PC-GAN, since we only sample lim-
ited number of points for training. On the other hand, we can also observe the details of the
objects have more meshes. Therefore, the coverage measured based on faces could also serve
an indicator for how much details of the objects covered by the generated point cloud.

The results are reported in Table 2.5. We compare four different algorithm, AAE and use three
objective for training conditional generators, Approx (approximated Wasserstein distance),
GAN (Fisher GAN), and the primal-dual loss by combining Approx and GAN as mentioned
in Section 2.8. From Table 2.5, we observe that Approx usually results in smaller distance
measure, which suggests the validity of training GAN with primal formulation. However, it
loses more details with worse coverage than GAN. However, GAN results in worse distance
measure. From the empirical observation, by balancing these two objectives for training a gen-
erative model, PC-GAN results in an desirable middle ground. The simple balancing strategy
is also theoretically supported from “Sandwiching” objective discussed in Section 2.8.

2.9.2.2 Hierarchical Sampling

In Section 2.8, we propose a hierarchical sampling process for sampling point clouds. In the
first hierarchy, the generator XX samples a object, while the second generator sample points to
form the point cloud. The randomly sampled results without given any data as input are shown
in Figure 2.20. The point clouds are all smooth, structured and almost symmetric. It shows PC-
GAN captures inherent symmetries and patterns in all the randomly sampled objects, even
if overall object is not perfectly formed. This highlights that learning point-wise generation
scheme encourages learning basic building blocks of objects.

9 We should do thresholding to ignore outlier points. In our experiments, we observe that without excluding outliers
does not change conclusion for comparison.
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Figure 2.20: Randomly sampled objects and corresponding point cloud from the hierarchical sampling.
Even if there are some defects, the objects are smooth, symmetric and structured. It suggests
PC-GAN captures inherent patterns and learns basic building blocks of objects.

Figure 2.21: Interpolating between a table and a chair point clouds, using our latent space representation.

2.9.2.3 Understand the Learned Manifold

classification We evaluate the quality of the representation acquired from the learned
inference network. We train the inference network and the generator on the training split of
ModelNet40 with data augmentation as mentioned above. We then extract the latent represen-
tation and train linear SVM on the that. We apply the same setting to a linear classifier on the
latent code of Achlioptas et al. (2017).

The encoder of Achlioptas et al. (2017) took 2048 points for each obj as input while we only
sample 1000 as input for our inference network. Benefited by the Deep Sets architecture for
the inference network, which is invariant to number of points. Therefore, we are still allowed
to sample more points as input to the trained inference network for evaluation. Because of the
randomness of sampling points for extracting latent representation, we repeat the experiments
20 times and report the average accuracy and standard deviation on the testing split in Table 2.6.
By using 1000 points, we are already better than Achlioptas et al. (2017) with 2048 points, and
competitive with the supervised learning algorithm Deep Sets.

interpolation A commonly used method to demonstrate the quality of the learned latent
space is showing whether the interpolation between two objects on the latent space results in

Method # points Accuracy

PC-GAN 1000 87.5± .6%

PC-GAN 2048 87.8± .2%

AAE (Achlioptas et al., 2017) 2048 85.5± .3%

Supervised DeepSets 1000 87± 1%
Supervised DeepSets 5000 90± .3%

Table 2.6: Classification accuracy results.
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Figure 2.22: Interpolating between rotation of an aeroplane, using our latent space representation.

smooth change. We interpolate the inferred representations from two objects by the inference
network, and use the generator to sample points. The inter-class result is shown in Figure 2.21.

It is also popular to show intra-class interpolation. In addition show simple intra-class interpo-
lations, where the objects are almost aligned, we present an interesting study on interpolations
between rotations. During the training, we only rotate data with 8 possible angles for augmen-
tation, here we show it generalizes to other unseen rotations as shown in Figure 2.22.

However, if we linearly interpolate the code, the resulted change is scattered and not smooth
as shown in Figure 2.22. Instead of using linear interpolation, We train a 2-layer MLP with
limited hidden layer size to be 16, where the input is the angle, output is the corresponding
latent representation of rotated object. We then generate the code for rotated planes with this
trained MLP. It suggests although the transformation path of rotation on the latent space is
not linear, it follows a smooth trajectory10. It may also suggest the geodesic path of the learned
manifold may not be nearly linear between rotations. Finding the geodesic path with a principal
method (Shao, A. Kumar, and Fletcher, 2017) and Understanding the geometry of the manifold
for point cloud worth more deeper study as future work.

generalization on unseen categories In above, we studied the reconstruction of un-
seen testing objects, while PC-GAN saw the training objective from the same category. Here we
study the more challenging task. We train PC-GAN on first 30 (Alphabetic order of category
names) categories only, and test on the unseen 10 classes. The mean distance and coverage are
57.4 and 0.36. The reconstruted (conditionally generated) point clouds is shown in Figure 2.23.
The results are generalized surprisingly well. For the object from the unseen categories, the
conditionally generated point clouds still recovers main shape and reasonable gemotry struc-
ture, which confirms the advantage of the proposed PC-GAN: by enforcing the point-wise
transformation, the model is forced to learn the underlying goemetry structure and the shared
building blocks, instead of naively copying the input from the conditioning.

2.10 points to ponder

In this chapter, we developed DeepSets, a model for sets leveraging the permutation invariance
and equivariance structure. We demonstrated the generalization ability of DeepSets across sev-
eral domains by extensive experiments, and show both qualitative and quantitative results.
In particular, we explicitly show that DeepSets outperforms other intuitive deep networks on
discrimintative tasks, which are not backed by theory (Section 2.5). We also proposed a new
generative model for sets using DeepSets with application to point clouds. We can achieve very
competitive results using smaller network sizes than existing methods (Section 2.9) because we

10 By the capability of 1-layer MLP.
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(a) Sofa (b) Stool (c) Table

(d) Toilet (e) TV Stand (f) Vase

Figure 2.23: The reconstructed objects from unseen categories. In each plot, LHS is true data while RHS is
PC-GAN. PC-GAN generalizes well as it can match patterns and symmetries from categories
seen in the past to new unseen categories.

leverage the iid structure of points in a set and learn ‘point-wise’ transformations which can en-
force the model to learn the building components of the objects, instead of just naively copying
the whole object. This allows PC-GAN can capture delicate details of 3D point clouds and
can generalize well even on unseen data. Last but not least, it is worth noting that the state-
of-the-art we compare to is a specialized technique for each task, whereas our one model, i.e.
DeepSets, is competitive across the board.

Despite the instances of success, there are still many open questions left. First of all the proof
for expressing permutation invariance over uncountable universe is existential in nature, not
constructive. Thus, using DeepSets might not be be the best/easiest way to learn as for certain
problems the representation can be excessively difficult to represent the desired function in
form of DeepSets. For example, consider we want to express maximum of a set S of real number.
(For countable sets things are easy.) However, there cannot exist a algebraic expression for
maximum of a set of real number of size 5 or greater, and so cannot be expressed exactly by any
multilayer perceptron (i.e. without any max pooling operator). The reason for non-existence
follows from Abel’s impossibility theorem. Consider the polynomial p(x) =

∏
a∈S(x− a). If

there was an algebraic expression for finding the maximum of the set, it would implify there
exists an algebraic expression for one of the roots of polynomial of degree 5 or greater. But this
violates the “casus irreducibilis” of Abel’s impossibility, thus such an expression cannot exist.
Having said the technical difficulty of DeepSets in finding exact maximum, however, all hope
is not lost as DeepSets architecture can still find arbitrary close approximation (with increasing
architecture size) as mentioned in Section 2.3.
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C o m p r e s s e d Data

We study the problem of learning representations for compressed data, which have become ubiq-
uitous with advent of internet and smartphones, where cheap communication and computation
are of utmost importance. We raise the question is it possible to apply successful machine learn-
ing techniques like deep networks directly on compressed data without decompressing it first,
thereby reducing memory, computation, and latency. A prevalent example of compressed data
are videos and try to answer the raised question in this context. Training robust deep video
representations has proven to be much more challenging than learning deep image represen-
tations and consequently hampered tasks like video action recognition. This is in part due to
the enormous size of raw video streams, the associated amount of computation required, and
the high temporal redundancy. The ‘true’ and interesting signal is often drowned in too much
irrelevant data. video compression techniques (like H.264, HEVC, etc.) reduce such superflu-
ous information by up to two orders of magnitude by exploiting the structure in video stream.
Motivated by the aforementioned fact, in this chapter, we propose to train a deep network
directly on the compressed video, devoid of redundancy, rather than the traditional highly re-
dundant RGB stream. This compressed representation has a higher information density and
we found that leveraging the structure from compressed representation lead to easier training.
In addition, the signals in a compressed video provide free, albeit noisy, motion information.
We propose novel techniques to use them effectively. Our approach is about 4.6 times faster
than a state-of-the-art 3D-CNN model, 2.7 times faster than a ResNet-152, and very easy to
implement. On the task of action recognition, our approach outperforms all the other methods
on the UCF-101, HMDB-51, and Charades dataset.

3.1 introduction

Video nowadays commands the lion’s share of internet traffic at 70% and rising (Networking
Index, 2016). Most cell phone cameras now capture high resolution video streams in addition
to images. Many real world data sources for computer vision are video based, ranging from
inventory systems at warehouses to self-driving cars or autonomous drones. Video is also
arguably the next frontier in computer vision, as it captures a wealth of information still images
cannot convey. They carry more emotion (Gunnar A Sigurdsson et al., 2016), allow us to predict
the future to a certain extent (Mathieu, Couprie, and LeCun, 2016), provide temporal context
and give us better spatial awareness (Pollefeys et al., 2008). Unfortunately, very little of this
information is currently exploited.

State-of-the-art deep learning models for video analysis are quite basic. Most of them naïvely
try to exploit the deep learning based methods that have been highly successful in the image
domain by feeding the video into image-based convolutional neural networks (CNNs) frame
by frame. They often demonstrate results no better than hand-crafted techniques (Karpathy,
Toderici, et al., 2014; H. Wang and Schmid, 2013). So, why did deep learning not yet make as
transformative of an impact on video tasks, such as action recognition, as it did on images?
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Our	CNN

Traditional	CNN
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Figure 3.1: Traditional architectures first decode the video and then feed it into a network. Instead, we
propose to use the compressed video directly.

We argue that the reason is two-fold. First, videos have a very low information density, as 1h
of 720p video can be compressed from 222GB raw to 1GB. In other words, videos are filled
with boring and repeating patterns, drowning the ‘true’ and interesting signal. It is not just
harder for convolutional neural networks to extract the meaningful information, but also the
unnecessary replication of data makes training much slower. Second, with only RGB images,
learning temporal structure is difficult. While a single still image does not convey motion,
one could imagine stacking multiple RGB frames could. A vast body of literature attempts to
exploit this natural idea by processing videos as RGB image sequences, either with 2D CNNs,
3D CNNs, or recurrent neural networks (RNNs), but has yielded limited success (Karpathy,
Toderici, et al., 2014; Tran, Ray, et al., 2017). Using precomputed optical flow almost always
boosts the performance (Carreira and Zisserman, 2017).

To address these issues, we exploit the compressed representation developed for storage and
transmission of videos rather than operating on the RGB frames (Figure 3.1). These compres-
sion techniques (like MPEG, H.264 etc.) leverage the fact that successive frames are usually
very similar. They retain only a few frames completely and reconstruct other frames based on
offsets from the complete images, called motion vectors and residual error (Section 3.2). Our
model consists of multiple CNNs, each of which learns to model one kind of representation
in a compressed video: images, motion vectors, and residuals (Section 3.3). To simplify the de-
pendency in the compressed stream, we propose a novel preprocessing technique that allows
training a simple decoupled model which enables parallelism during test time. In particular,
we show that even though compressed representation, e.g. MPEG, does not seem amenable to
CNNs directly, our method makes it effective in practice.

Why is this better? First, video compression removes up to two orders of magnitude of super-
fluous information, making interesting signals prominent. Second, the motion vectors in video
compression provide us the motion information that lone RGB images do not have. Furthermore,
the motion signals already exclude spatial variations, e.g. two people performing the same ac-
tion in different clothings or in different lighting conditions exhibit the same motion signals.
This improves generalization, and the lowered variance further simplifies training. Third, with
compressed video, we account for correlation in video frames, i.e. spatial view plus some small
changes over time, instead of i.i.d. images. Constraining data in this structure helps us tackling
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the curse of dimensionality. Last but not least, our method is also much more efficient as we
only look at the true signals instead of repeatedly processing near-duplicates. Efficiency is also
gained by avoiding to decompress the video, because video is usually stored or transmitted in
the compressed version, and access to the motion vectors and residuals are free.

We demonstrate that our approach on the task of action recognition significantly outperforms
all other methods that train on traditional RGB images without using any recurrent neural
networks, complicated fusion or 3D convolutions on the UCF-101 (Soomro, Zamir, and M. Shah,
2012), HMDB-51 (Kuehne et al., 2011), and Charades (Gunnar A Sigurdsson et al., 2016) dataset.
In addition, our model is 4.6 times faster than state-of-the-art 3D CNN model Res3D (Tran, Ray,
et al., 2017), and 2.7 times faster than ResNet-152 (He et al., 2016a). When combined with scores
from a standard temporal stream network, our model outperforms state-of-the-art methods on
all datasets (Section 3.4).

3.2 background

We provide a brief overview about video action recognition and video compression.

3.2.1 Action Recognition

Traditionally, for the task of action recognition on video, the community utilized hand-crafted
features, such as Histogram of Oriented Gradients (HOG; Dalal and Triggs 2005) or Histogram
of Optical Flow (HOF; Laptev et al. 2008), both sparsely (Laptev et al., 2008) and densely (H.
Wang, Ullah, et al., 2009) sampled. While early methods consider independent interest points
across frames, smarter aggregation based on dense trajectories have been used (X. Peng et
al., 2014; H. Wang, Kläser, et al., 2013; H. Wang and Schmid, 2013). Some of these traditional
methods are competitive even today, like iDT which corrects for camera motion (H. Wang and
Schmid, 2013).

In the past few years, deep learning has brought significant improvements to video understand-
ing (Donahue et al., 2015; Karpathy, Toderici, et al., 2014). However, the improvements mainly
stem from improvements in deep image representations. Temporal structure is still relatively
simple — most algorithms subsample a few frames and perform average pooling to make fi-
nal predictions (Simonyan and Zisserman, 2014; Limin Wang et al., 2016). Recurrent neural
networks (RNNs) (Donahue et al., 2015; Yue-Hei Ng et al., 2015), temporal CNNs (Ma et al.,
2017), or other feature aggregation techniques (Girdhar, Ramanan, et al., 2017; Limin Wang
et al., 2016) on top of CNN features have also been explored. However, while introducing new
computation overhead, these methods do not necessarily outperform simple average pooling
(Limin Wang et al., 2016). Some works explore 3D CNNs to model temporal structure (Tran,
Bourdev, et al., 2015; Tran, Ray, et al., 2017). Nonetheless, it results in an explosion of param-
eters and computation time and only marginally improves the performance (Tran, Ray, et al.,
2017).

More importantly, evidence suggests that these methods are not sufficient to capture all tem-
poral structures — using of pre-computed optical flow almost always boosts the performance
(Carreira and Zisserman, 2017; Feichtenhofer, Pinz, and Zisserman, 2016; Simonyan and Zisser-
man, 2014; Limin Wang et al., 2016). This emphasizes the importance of using the right input
representation and inadequacy of RGB frames. Finally, note all these methods need raw video
frame-by-frame and cannot exploit the fact that video is stored in some compressed format.
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Figure 3.2: We trace all motion vectors back to the reference I-frame and accumulate the residual. Now
each P-frame depends only on the I-frame but not other P-frames.

3.2.2 Video Compression

The need for efficient video storage and transmission has led to highly efficient video compres-
sion algorithms, such as MPEG, H.264, and HEVC, some of which date back to 1990s (Le Gall,
1991). Most video compression algorithms leverage the fact that successive frames are usually
very similar. We can efficiently store one frame by reusing contents from another frame and
only store the difference.

Most modern codecs split a video into I-frames (intra-coded frames), P-frames (predictive
frames) and zero or more B-frames (bi-directional frames). I-frames are regular images and
compressed as such. P-frames reference the previous frames and encode only the ‘change’. A
part of the change – termed motion vectors – is represented as the movements of block of pixels
from the source frame to the target frame at time t, which we denote by T(t). Given a pixel
position, its motion vector describes the displacement from the current position to the referred
position in the reference picture. Formally, we denote by dt,p = (dx,dy)t,p the motion vector
at position p in frame t. dx denotes the horizontal displacement and dy denotes the vertical
displacement. We represent the residual in RGB space, and denote it by rt,p ∈ R3. The source
frame can be an I-frame or a P-frame. In most cases, the source frame is the previous frame.
Even after this compensation for block movement, there can be difference between the original
image and the predicted image at time t, we denote this residual difference by ∆t. Putting it
together, a P-frame at time t only comprises of motion vectors T(t) and a residual ∆(t). This
gives the recurrence relation for reconstructing P-frames as

I
(t)
i = I

(t−1)

i−T
(t)
i

+∆
(t)
i , (3.1)

where I(t) denotes the RGB image at time t and the subscripts denote the index of spatial loca-
tion. The motion vectors and the residuals are then passed through a discrete cosine transform
(DCT) space, and entropy-encoded.

A B-frame may be viewed as a special P-frame, where motion vectors are computed bi-
directionally and may reference a future frame as long as there are no circles in referencing.
A frame residual needs to be added back similar to a P-frame. Both B- and P- frames capture
only what changes in the video, and are easier to compress owing to smaller dynamic range
(I. E. Richardson, 2002). See Figure 3.3 for a visualization of the motion estimates and the resid-
uals. Modeling arbitrary decoding order is beyond the scope of this paper. We focus on videos
encoded using only backward references, namely I- and P- frames.



3.3 modeling compressed representations 59

features from compressed data Some prior works have utilized signals from com-
pressed video for detection or recognition, but only as a non-deep feature (Kantorov and
Laptev, 2014; Sukmarg and Rao, 2000; Töreyin et al., 2005; Yeo and B. Liu, 1995). To the best
of our knowledge, this is the first work that considers training deep networks on compressed
videos. MV-CNN apply distillation to transfer knowledge from an optical flow network to a
motion vector based network (B. Zhang et al., 2016). However, unlike our approach, it does
not consider the general setting of representation learning on a compressed video, it still needs
the entire decompressed video as RGB stream, and it requires optical flow as an additional
supervision.

Equipped with this background, next we will explore how to utilize the compressed represen-
tation, devoid of redundant information, directly for action recognition.

3.3 modeling compressed representations

Our goal is to design a computer vision system for action recognition that operates directly on
the stored compressed video. The compression is solely designed to optimize the size of the
encoding, thus the resulting representation has very different statistical and structural proper-
ties than the images in a raw video. It is not clear if the successful deep learning techniques
can be adapted to compressed representations in a straightforward manner. So we ask how to
feed a compressed video into a computer vision system, specifically a deep network?

Feeding I-frames into a deep network is straightforward since they are just images. How about
P-frames? From Figure 3.3 we can see that motion vectors roughly resemble optical flows,
though noisy. As modeling optical flows with CNNs has been proven quite effective, it is tempt-
ing to do the same for motion vectors. The third row of Figure 3.3 visualizes the residuals. We
can see that they roughly give us a motion boundary in addition to a change of appearance,
such as the change of lighting conditions. Again, CNNs are well-suited for such patterns. The
outputs of corresponding CNNs from the image, motion vectors, and residual will have differ-
ent properties. To combine them, we tried various fusion strategies, including mean pooling,
maximum pooling, concatenation, convolution pooling, and bilinear pooling, on both middle
layers and the final layer, but with limited success.

Digging deeper, one can argue that the motion vectors and residuals alone do not contain the
full information of a P-frame — a P-frame depends on the reference frame, which again might
be a P-frame. This chain continues all the way back to the preceding I-frame. Treating each
P-frame as an independent observation clearly violates this dependency. A simple strategy to
address this would be to reuse features from the reference frame, and only update the features
given the new information. This recurrent definition screams for recurrent neural networks
(RNNs) to aggregate features along the chain. However, preliminary experiments suggests the
elaborate modeling effort in vain (see Section 3.5.1 for details). The difficulty arises due to the
long chain of dependencies of the P-frames. To mitigate this issue, we devise a novel yet simple
back-tracing technique that decouples individual P-frames.

decoupled model To break the dependency between consecutive P-frames, we trace all
motion vectors back to the reference I-frame and accumulate the residual on the way. In this
way, each P-frame depends only on the I-frame but not other P-frames.
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Figure 3.3: Original motion vectors and residuals describe only the change between two frames. Usually
the signal to noise ratio is very low and hard to model. The accumulated motion vectors and
residuals consider longer term difference and show clearer patterns. Assume I-frame is at
t = 0. Motion vectors are plotted in HSV space, where the H channel encodes the direction of
motion, and the S channel shows the amplitude. For residuals we plot the absolute values in
RGB space. Best viewed in color.

Figure 3.2 illustrates the back-tracing technique. Given a pixel at location i in frame t, let
µT(t)(i) := i− T

(t)
i be the referenced location in the previous frame. The location traced back

to frame k < t is given by

J
(t,k)
i := µT(k+1) ◦ · · · ◦ µT(t)(i). (3.2)

Then the accumulated motion vectors D(t) ∈ RH×W×2 and the accumulated residuals R(t) ∈
RH×W×3 at frame t are

D
(t)
i := i− J

(t,k)
i , and

R
(t)
i := ∆

(k+1)

J
(t,k+1)
i

+ · · ·+∆(t−1)

J
(t,t−1)
i

+∆
(t)
i ,

respectively. This can be efficiently calculated in linear time through a simple feed forward
algorithm, accumulating motion and residuals as we decode the video. As shown in Figure 3.4b,
each P-frame now has a different dependency

I
(t)
i = I

(0)

i−D
(t)
i

+R
(t)
i , t = 1, 2, . . . , (3.3)

Here P-frames depend only on the I-frame and can be processed in parallel.

A nice side effect of the back-tracing is robustness. The accumulated signals contain longer-
term information, which is more robust to noise or camera motion. Figure 3.3 shows the accu-
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Figure 3.4: We decouple the dependencies between P-frames so that they can be processed in parallel.
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Figure 3.5: Decoupled model. All networks can be trained independently. Models are shared across P-
frames.

mulated motion vectors and residuals respectively. They exhibit clearer and smoother patterns
than the original ones.

proposed network Figure 3.5 shows the graphical illustration of the proposed model. The

input of our model is an I-frame, followed by T P-frames, i.e.
(
I0,D(1),R(1), . . . ,D(T),R(T)

)
.

For notation simplicity we set t = 0 for I-frame. Each input source is modeled by a CNN, i.e.

x
(0)
RGB := φRGB

(
I(0)

)
x
(t)
motion := φmotion

(
D(t)

)
x
(t)
residual := φresidual

(
R(t)

) (3.4)

While I-frame features x(0)RGB are used as is, P-frame features x(t)motion and x(t)residual need to incor-

porate the information from x
(0)
RGB. There are several reasonable candidates for such a fusion,

e.g. maximum, multiplicative or convolutional pooling. We also experiment with transforming
RGB features according to the motion vector. Interestingly, we found a simple summing of
scores to work best (see Section 3.5.2 for details). This gives us a model that is easy to train and
flexible for inference.
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implementation Note that most of the information is stored in I-frames, and we only need
to learn the update for P-frames. We thus focus most of the computation on I-frames, and use
a much smaller and simpler model to capture the updates in P-frames. This yields significant
saving in terms of computation, since in modern codecs most frames are P-frames.

Specifically, we use ResNet-152 to model I-frames, and ResNet-18 to model the motion vec-
tors and residuals (He et al., 2016b). This offers a good trade-off between speed and accuracy.
For video-level tasks, we use Temporal Segments (Limin Wang et al., 2016) to capture long
term dependency, i.e. feature at each step is average of features across k = 3 segments during
training.

3.4 experiments

We now validate for task of action recognition that (i) compressed video is a better represen-
tation (Section 3.4.1), leading to (ii) good accuracy (Section 3.4.3) and (iii) high speed (Sec-
tion 3.4.2). To illustrate these claims, we evaluate on task of action recognition. However, note
that the principle of the proposed method can be applied effortlessly to other tasks like video
classification (Abu-El-Haija et al., 2016), object detection (Russakovsky et al., 2015), or action
localization (Gunnar A Sigurdsson et al., 2016). We pick action recognition due to its wide
range of applications and strong baselines.

datasets and protocol We evaluate our method Compressed Video Action Recognition
(CoViAR) on three action recognition datasets, UCF-101 (Soomro, Zamir, and M. Shah, 2012),
HMDB-51 (Kuehne et al., 2011), and Charades (Gunnar A Sigurdsson et al., 2016). UCF-101

and HMDB-51 contain short (< 10-second) trimmed videos, each of which is annotated with
one action label. Charades contains longer (∼ 30-second) untrimmed videos. Each video is
annotated with one or more action labels and their intervals (start time, end time). UCF-101

contains 13,320 videos from 101 action categories. HMDB-51 contains 6,766 videos from 51 ac-
tion categories. Each dataset has 3 (training, testing)-splits. We report the average performance
of the 3 testing splits unless otherwise stated. The Charades dataset contains 9,848 videos split
into 7,985 training and 1,863 test videos. It contains 157 action classes.

During testing we uniformly sample 25 frames, each with flips plus 5 crops, and then average
the scores for final prediction. On UCF-101 and HMDB-51 we use temporal segments, and
perform the averaging before softmax following Limin Wang et al. (2016). On Charades we
use mean average precision (mAP) and weighted average precision (wAP) to evaluate the
performance, following previous work Gunnar A. Sigurdsson et al. (2017).

training details Following TSN (Limin Wang et al., 2016), we resize UCF-101 and HMDB-
51 videos to 340× 256. As Charades contains both portrait and landscape videos, we resize to
256 × 256. Our models are pre-trained on the ILSVRC 2012-CLS dataset (Deng et al., 2009),
and fine-tuned using Adam (D. P. Kingma and Ba, 2014) with a batch size of 40. Learning rate
starts from 0.001 for UCF-101/HMDB-51 and 0.03 for Charades. It is divided by 10 when the
accuracy plateaus. Pre-trained layers use a learning rate that is 100 times smaller than the base
learning rate. We apply color jittering and random cropping to 224× 224 for data augmentation
following Limin Wang et al. (2016). Where available, we tune the hyper-parameters on splits
other than the tested one. We use MPEG-4 encoded videos, which have on average 11 P-frames
for every I-frame. When optical flows are used, we use TV-L1 flows (Zach, Pock, and Bischof,
2007).
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Dataset I M R I+M I+R I+M+R (gain)

UCF-101

Split 1 88.4 63.9 79.9 90.4 90.0 90.8 (+2.4)

Split 2 87.4 64.6 80.8 89.9 89.6 90.5 (+3.1)

Split 3 87.3 66.6 82.1 89.6 89.4 90.0 (+2.7)

Average 87.7 65.0 80.9 89.9 89.7 90.4 (+2.7)

HMDB-51

Split 1 54.1 37.8 44.6 60.3 55.9 60.4 (+6.3)

Split 2 51.9 38.7 43.1 57.9 54.2 58.2 (+6.3)

Split 3 54.1 39.7 44.4 58.5 55.6 58.7 (+4.6)

Average 53.3 38.8 44.1 58.9 55.2 59.1 (+5.8)

Table 3.1: Action recognition accuracy on UFC-101 (Soomro, Zamir, and M. Shah, 2012) and HMDB-
51 (Kuehne et al., 2011). Here we compare training with different sources of information. “+"
denotes score fusion of models. I: I-frame RGB image. M: motion vectors. R: residuals. The bold
numbers indicate the best and the underlined numbers indicate the second best performance.

Model M R I+M I+R I+M+R

Original 58.3 79.0 90.0 89.8 90.4

Accumulated 63.9 79.9 90.4 90.0 90.8

Table 3.2: Action recognition accuracy on UFC-101 (Soomro, Zamir, and M. Shah, 2012) (Split 1). The two
rows show the performance of the models trained using the original motion vectors/residuals
and the models using the accumulated ones respectively. I: I-frame RGB image. M: motion
vectors. R: residuals.

3.4.1 Ablation Study

Here we study the benefits of using compressed representations over RGB images. We focus on
UCF-101 and HMDB-51, as they are two of the most well-studied action recognition datasets.
Table 3.1 presents a detailed analysis. On both datasets, training on compressed videos signif-
icantly outperforms training on RGB frames. In particular, it provides 5.8% and 2.7% absolute
improvement on HMDB-51 and UCF-101 respectively.

Quite surprisingly, while residuals contribute to a very small amount of data, it alone achieves
good accuracy. Motion vectors alone perform not as well, as they do not contain spatial details.
However, they offer information orthogonal to what still images provide. When added to other
streams, it significantly boosts the performance. Note that we use only I-frames as full images,
which is a small subset of all frames, yet CoViAR achieves good performance.

accumulated motion vectors and residuals Accumulating them across multiple
frames results in clearer patterns to model. This improves the performance, as shown in Ta-
ble 3.2. On the first split of UCF-101, our accumulation technique provides 5.6% improvement
on the motion vector stream network and on the full model, 0.4% improvement (4.2% error
reduction). Performance of the residual stream also improves by 0.9% (4.3% error reduction).
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Figure 3.6: Two videos of “Jumping Jack" from UCF-101 in their RGB, motion vector, and residual rep-
resentations plotted in t-SNE (Maaten and G. Hinton, 2008) space. The curves show video
trajectories. While in the RGB space the two videos are clearly separated, in the motion vector
and residual space they overlap. This suggests that with compressed signals, videos of the
same action can share statistical strength better. Also note that the RGB images contain no
motion information, and thus the two ways of the trajectories overlap. This is in contrast to
the circular patterns in the trajectories of motion vectors. Best viewed on screen.
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Method
Accuracy (%)

GFLOPs UCF-101 HMDB-51

ResNet-50 3.8 82.3 48.9

ResNet-152 11.3 83.4 46.7

C3D 38.5 82.3 51.6

Res3D 19.3 85.8 54.9

CoViAR 4.2 90.4 59.1

Table 3.3: Network computation complexity and accuracy of each method. Our method is 4.6x more effi-
cient than state-of-the-art 3D CNN, while being much more accurate.

visualizations In Figure 3.6, we qualitatively study the RGB and compressed representa-
tions of two videos of the same action in t-SNE (Maaten and G. Hinton, 2008) space. We can
see that in RGB space the two videos are clearly separated, and in motion vector and resid-
ual space they overlap. This suggests that a RGB-image based model needs to learn the two
patterns separately, while a compressed-video based model sees a shared representation for
videos of the same action, making training and generalization easier.

In addition, note that the two ways of the RGB trajectories overlap, showing that RGB images
cannot distinguish between the up-moving and down-moving motion. On the other hand, com-
pressed signals preserve motion information. The trajectories thus form circles instead of going
back and forth on the same path.

3.4.2 Speed and Efficiency

Our method is efficient because the computation on I-frame is shared across multiple frames,
and the computation on P-frames is cheaper. Table 3.3 compares the CNN computational cost
of our method with state-of-the-art 2D and 3D CNN architectures. Since for our model the P-
and I-frame computational costs are different, we report the average GFLOPs over all frames.
As shown in the table, CoViAR is 2.7 times faster than ResNet-152 (He et al., 2016a) and is 4.6
times more than Res3D (Tran, Ray, et al., 2017), while being significantly more accurate.

A more detailed speed analysis is presented in Table 3.4. The preprocessing time of two-stream
methods, i.e. optical flow computation, is measured on a Tesla P100 GPU with an implementa-
tion of the TV-L1 flow algorithm from OpenCV. Our preprocessing, i.e. the calculation of the
accumulated motion vectors and residuals, is measured on Intel E5-2698 v4 CPUs. CNN time
is measured on the same P100 GPU. We can see that the optical flow computation is the bottle-
neck for two-stream networks, even with low-resolution 256× 340 videos. Our preprocessing
is much faster despite our CPU-only implementation.

For CNN time, we consider both settings where (i) we can forward multiple CNNs at the
same time, and (ii) we do it sequentially. For both settings, our method is significantly faster
than traditional methods. Overall, our method can be up to 100 times faster than traditional
methods with multi-thread preprocessing, when preprocessing time is considered, processing
more than 1,300 frames per second. Figure 3.7 summarizes the results. CoViAR achieves the
best efficiency and good accuracy, while requiring a far lesser amount of data.
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Method Preprocess
CNN

sequential concurrent

Two-stream

BN-Inception 75.0 1.6 0.9

ResNet-152 75.0 7.5 4.0

CoViAR 2.87/0.46 1.3 0.3

Table 3.4: Speed (ms) per frame of each method. Our method is fast in both preprocessing and CNN
computation. The preprocessing speed of our method is presented for both single-thread /
multi-thread settings.

Figure 3.7: Speed and accuracy on UCF-101 (Soomro, Zamir, and M. Shah, 2012), compared to Two-stream
Network (Simonyan and Zisserman, 2014), Res3D (Tran, Ray, et al., 2017), and ResNet-152 (He
et al., 2016a) trained using RGB frames. Node size denotes the input data size. Training on
compressed videos is both accurate and efficient, while requiring a minimal amount of data.

3.4.3 Accuracy

We now compare accuracy of our method CoViAR with state-of-the-art models in Table 3.6. For
fair comparison, here we focus on models using the same pre-training dataset, ILSVRC 2012-
CLS (Deng et al., 2009). While pre-training using Kinetics yields better performance (Carreira
and Zisserman, 2017), since it is larger and more similar to the datasets used in this paper,
those results are not directly comparable. From the upper part of the table, we can see that our
model significantly outperforms traditional RGB-image based methods. C3D (Tran, Bourdev,
et al., 2015), Res3D (Tran, Ray, et al., 2017) and I3D (Carreira and Zisserman, 2017) consider 3D
convolution to learn temporal structures. Karpathy, Toderici, et al. (2014) and Diba, Sharma,
and Van Gool (2017) consider more complicated fusions and pooling. MV-CNN (B. Zhang
et al., 2016) applies distillation to transfer knowledge from a optical-flow-based model. Our
method uses much faster 2D CNNs, simple late fusion without additional supervision, and
still significantly outperforms these methods.

2 Despite our best efforts, we were not able to reproduce the performance reported in the original paper. Here we
report the performance based on our implementation. For fair comparison, we use the same data augmentation and
architecture as ours. Training follows the 2-stage procedure described in the original paper. We reached out to the
authors, but they were unable to share their implementation.
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Dataset
UCF-101 HMDB-51

CoViAR Flow CoViAR CoViAR Flow CoViAR

+flow +flow

Split 1 90.8 87.7 94.0 60.4 61.8 71.5

Split 2 90.5 90.2 95.4 58.2 63.7 69.4

Split 3 90.0 89.1 95.2 58.7 64.2 69.7

Average 90.4 89.0 94.9 59.1 63.2 70.2

Table 3.5: Action recognition accuracy on UFC-101 (Soomro, Zamir, and M. Shah, 2012) and HMDB-
51 (Kuehne et al., 2011). Combining our model with a temporal-stream network achieves a
new state-of-the-art.

two-stream network Most state-of-the-art models use the two-stream framework, i.e. one
stream trained on RGB frames and the other on optical flows. It is natural to ask: What if we
replace the RGB stream with our compressed stream? Here we train a temporal-stream network
using 7 segments with BN-Inception (Ioffe and Szegedy, 2015), and combine it with our model
by late fusion. Despite its simplicity, this achieves very good performance as shown in Table 3.5.

The lower part of Table 3.6 compares our method with state-of-the-art models using optical
flow. CoViAR outperforms all of them. In particular, LRCN (Donahue et al., 2015), Composite
LSTM Model (Srivastava, Mansimov, and Salakhudinov, 2015), and L2STM (L. Sun et al., 2017)
use RNNs to model temporal dynamics. ActionVLAD (Girdhar, Ramanan, et al., 2017) and TLE
(Diba, Sharma, and Van Gool, 2017) apply more complicated feature aggregation. iDT+FT (H.
Wang and Schmid, 2013) is based on hand-engineered features. Again, our method simply
trains 2D CNNs separately without any complicated fusion or RNN and still outperforms
these models.

Finally we evaluate our method on the Charades dataset. As the Charades dataset consists
of longer videos with labels annotated at frame-level, we train our network to predict the
labels of each frame. At test time we average the scores of the sampled frames as the final
prediction. Table 3.7 shows the results. We can see that our method again outperforms other
models trained on RGB images. Note that Gunnar A. Sigurdsson et al. (2017) use additional
annotations including objects, scenes, and intentions to train a conditional random field (CRF)
model. Our model requires only action labels. When using optical flow, we beat all other state-
of-the-art methods. The effectiveness on Charades demonstrates that our method is not just
effective for video-level predictions, but also for frame-level predictions.

3.5 further analysis

3.5.1 RNN-Based Models

Given the recurrent definition of frames in a compressed video, it is natural to use a recurrent
neural network (RNN) to model the dependency. Figure 3.8 presents a graphical illustration.
In preliminary experiments, we tried Conv-LSTM (Xingjian et al., 2015) to model the evolution

of feature maps. Let x(t)fusion := max
(
x
(t)
motion, x(t)residual

)
, where x(t)motion and x(t)residual are the output
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Method UCF-101 HMDB-51

Without optical flow

Karpathy, Toderici, et al. (2014) 65.4 -

ResNet-50 (He et al., 2016a) 82.3 48.9

(from ST-Mult (Feichtenhofer, Pinz, and R. P. Wildes, 2017))

ResNet-152 (He et al., 2016a) 83.4 46.7

(from ST-Mult (Feichtenhofer, Pinz, and R. P. Wildes, 2017))

C3D (Tran, Bourdev, et al., 2015) 82.3 51.6

Res3D (Tran, Ray, et al., 2017) 85.8 54.9

TSN (RGB-only) (Limin Wang et al., 2016)* 85.7 -

TLE (RGB-only) (Diba, Sharma, and Van Gool, 2017)2
87.9 54.2

I3D (RGB-only) (Carreira and Zisserman, 2017)* 84.5 49.8

MV-CNN (B. Zhang et al., 2016) 86.4 -

Attentional Pooling (Girdhar and Ramanan, 2017) - 52.2

CoViAR 90.4 59.1

With optical flow

iDT+FV (H. Wang and Schmid, 2013) - 57.2

Two-Stream (Simonyan and Zisserman, 2014) 88.0 59.4

Two-Stream fusion (Feichtenhofer, Pinz, and Zisserman, 2016) 92.5 65.4

LRCN (Donahue et al., 2015) 82.7

Composite LSTM Model (Srivastava, Mansimov, and Salakhudinov, 2015) 84.3 44.0

ActionVLAD (Girdhar, Ramanan, et al., 2017) 92.7 66.9

ST-ResNet (Feichtenhofer, Pinz, and R. Wildes, 2016) 93.4 66.4

ST-Mult (Feichtenhofer, Pinz, and R. P. Wildes, 2017) 94.2 68.9

I3D (Carreira and Zisserman, 2017)* 93.4 66.4

TLE (Diba, Sharma, and Van Gool, 2017)2
93.8 68.8

L2STM (L. Sun et al., 2017) 93.6 66.2

ShuttleNet (Y. Shi et al., 2017) 94.4 66.6

STPN (Yunbo Wang et al., 2017) 94.6 68.9

TSN (Limin Wang et al., 2016) 94.2 69.4

CoViAR + optical flow 94.9 70.2

Table 3.6: Action recognition accuracy on UCF-101 (Soomro, Zamir, and M. Shah, 2012) and HMDB-
51 (Kuehne et al., 2011). The upper part of the table lists real-time methods that do not re-
quire computing optical flow. The lower part of the table lists methods that requires computing
optical flow. Our method outperforms all baselines in both settings. Asterisk indicates results
evaluated only on split 1 of the datasets. They are listed purely for reference.

feature maps of the motion vector network and the residual-stream network respectively. The
input sequence is[

g
(
x
(0)
RGB

)
, x(0)fusion, x(1)fusion, . . .

]
,
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Method mAP (%) wAP (%)

Without optical flow

ActionVLAD (Girdhar, Ramanan, et al., 2017) (RGB only) 17.6 25.1

Gunnar A. Sigurdsson et al. (2017) (RGB only) 18.3 -

CoViAR 21.9 29.4

With optical flow

Two-stream (Simonyan and Zisserman, 2014) 14.3 -

(from Gunnar A Sigurdsson et al. (2016))

Two-stream (Simonyan and Zisserman, 2014) + iDT (H. Wang and Schmid, 2013) 18.6 -

(from Gunnar A Sigurdsson et al. (2016))

ActionVLAD (Girdhar, Ramanan, et al., 2017) (RGB only) + iDT 21.0 29.9

Gunnar A. Sigurdsson et al. (2017) 22.4 -

CoViAR + optical flow 24.1 32.3

Table 3.7: Action recognition accuracy on Charades (Gunnar A Sigurdsson et al., 2016). Without using
additional annotations as Gunnar A. Sigurdsson et al. (2017) or complicated feature aggregation,
our method achieves the best performance.

where g performs 1 × 1 convolution so that the dimensionality of the I-frame feature map
matches those of the P-frames. We use 512 dimensional hidden states and 3× 3 kernels in the
Conv-LSTM cell. Due to memory constraint, we subsample one every two P-frames to reduce
the length of sequences. Since here we are modeling the original dependency of a compressed
video, we use the original compressed signals instead of the accumulated ones as CNN inputs.

RGB-only Conv-LSTM Conv-LSTM-Skip CoViAR

88.4 89.1 87.8 90.8

Table 3.8: Accuracy on UCF-101 (split 1). CoViAR decouples the long chain of dependency and outper-
forms RNN-based models.

Table 3.8 presents the results. While the Conv-LSTM model outperforms traditional methods
based on RGB images, the decoupled CoViAR achieves the best accuracy. We also try adding
the input of Conv-LSTM to its output as skip connections (as, e.g. used in Pixel RNN (Oord,
Kalchbrenner, and Kavukcuoglu, 2016)), but it leads to inferior performance (“Conv-LSTM-
Skip" in Table 3.8).

3.5.2 Feature Fusion

We experiment with different ways of combining P-frame features, x(t)motion and x(t)residual, with

I-frame features x(0)RGB. In particular, we evaluate maximum, mean, multiplicative fusion, con-
catenation of feature maps, and late fusion (summing softmax scores). Since the I-frame feature
maps (from ResNet-152) and P-frame feature maps (from ResNet-18) have different number of
channels, Similar to before, for maximum, mean and multiplicative fusion, when needed, we
perform 1× 1 convolution on I-frame feature maps before fusion, so that the dimensionality
matches those of P-frames.
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Table 3.9 shows that simply summing scores (late fusion) works the best for CoViAR. Note late
fusion allows training of a decoupled model, while the rest requires training multiple CNNs
jointly. The ease of training of late fusion may also contribute to its superior performance.

Max Mean Mult Concat Late

87.9 88.1 87.8 89.7 90.8

Table 3.9: Accuracy on UCF-101 (split 1). Max: element-wise maximum of feature maps. Mean: element-
wise average of feature maps. Mult: element-wise multiplication of feature maps. Concat: con-
catenating channels of feature maps. Late (used in CoViAR): summing of softmax scores (late
fusion).

3.5.3 Confusion Matrix

Figure 3.9 and Figure 3.10 show the confusion matrices of CoViAR and the model using only
RGB images respectively, on UCF-101. Figure 3.11 shows the difference between their predic-
tions. We can see that CoViAR, by using the motion information, corrects many mistakes made
by the RGB-based model (off-diagonal purple blocks in Figure 3.11). For example, while the
RGB-based model gets confused about the similar actions of Cricket Bowling and Cricket Shot,
our model can distinguish between them.

3.6 points to ponder

In this paper, we proposed to train deep networks directly on compressed videos. This is
motivated by the practical observation that either video compression is essentially free on all
modern cameras, due to hardware-accelerated video codecs or that the video is directly available
in its compressed form. In other words, decompressing the video is actually an inconvenience.

We demonstrate that, quite surprisingly, this is not a drawback but rather a virtue. In partic-
ular, video compression reduces irrelevant information from the data, thus rendering it more
robust. After all, compression is not meant to affect the content that humans consider pertinent.
Secondly, the increased relevance and reduced dimensionality makes computation much more
effective (we are able to use much simpler networks for motion vectors and residuals). Finally,

CNN CNN CNN CNNCNN

I-frame P-frame P-frame

Scores Scores Scores

LSTM LSTMLSTM

Figure 3.8: An alternative way of modeling compressed videos is to use recurrent neural networks. How-
ever, in experiments, we find that the long chain of dependency leads to difficulties in training.
A decoupled model works better.
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Figure 3.9: Confusion matrix of CoViAR on UCF-101.

the accuracy of the model actually improves when using compressed data, yielding new state
of the art.

Inspite of instances of success, the proposed method is not a general framework, or a recepie,
or automation to handle compressed data. The proposed CoViAR was a carefully handcrafted
architecture for compressed videos encoded in MPEG4 compression technique, which has only
I and P frames. Whereas many codecs have B-frames and CoViAR cannot out-of-the-box handle
them. While with little thinking it is possible to extend CoViAR to handle B-frames, we do not
have a fixed recepie to exploit the structure in compressed video yet. Another MpEG4 specific
design choice was the final late fusion. It might not work as well with other compression
techniques that have very long group of pictures (GOP). Finally, it is still an open question
if there can be general machine learning technique to automatically handle compressed data
thereby enabling applicability to compressed data in other domains, like audio, MRI, etc.
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Figure 3.10: Confusion matrix of the model using RGB images on UCF-101.

Despite above mentioned weaknesses, for the specific case of MPEG4 compressed videos, our
method is both faster and more accurate, while being simpler to implement than previous
works.
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Figure 3.11: Difference between CoViAR’s predictions and the RGB-based model’s predictions. For di-
agonal entries, positive values (in green) is better (increase of correct predictions). For off-
diagonal entries, negative values (purple) is better (reduction of wrong predictions).





4
H e t e r o g e n e o u s Data

We study the problem of learning representations for multimodal data, that have become ubiq-
uitous. Common examples include video with audio and images with text. Most work on mul-
timodal data focus aim to translate, align, or fuse data from different modalities (Baltrušaitis,
Ahuja, and Morency, 2018). There has been, however, limited work explicitly leveraging the het-
erogeneous structure of multimodal data to capture complementary information and still operate
in case of missing information in one of the modalities. A beautiful scenario is of question an-
swering (QA) where knowledge source are heterogeneous – raw text or knowledge base (KB).
Existing QA methods infer answers either from knowledge base alone or from raw text alone.
While KB methods are good at answering compositional questions, their performance is often
affected by the incompleteness of the KB. Au contraire, web text contains millions of facts that
are absent in the KB, however in an unstructured form. In this chapter, we look at this more
practical setting, namely QA over the heterogeneous combination of a KB and entity-linked text.
We extend universal schema to natural language QA, employing memory networks to attend
to the large body of facts in the combination of text and KB. Natural language facts are di-
rectly embedded using RNNs, but for embedding KB facts, we build upon recent advances in
representation learning leveraging graph structure. We propose novel models which naïvely
retrieves KB and text facts by direct matching with question as well as scalable approach for
extracting answers from only a question-specific subgraph consisting of both KB facts and
text facts. We construct a suite of benchmark tasks for this problem, varying the difficulty of
questions, the amount of training data, and KB completeness. We show that proposed method
is competitive with the state-of-the-art when tested using either KBs or text only, and vastly
outperforms existing methods in the combined setting.

4.1 introduction

Question Answering (QA) has been a long-standing goal of natural language processing. Two
main paradigms evolved in solving this problem: 1) answering questions on a knowledge base
(KB); and 2) answering questions using text, such as encyclopedia. Models in either paradigm,
however, answer questions using a single information source. Intuitively, the suitability of an
information source for QA depends on both the coverage of the information source and the
difficulty of extracting the relevant information.

Knowledge bases (KB) contains facts expressed in a fixed schema, facilitating information ex-
traction and even compositional reasoning. These attracted research ever since the early days
of computer science, e.g. BASEBALL (Green Jr et al., 1961). This problem has matured into
learning semantic parsers from parallel question and logical form pairs (Zelle and Raymond J
Mooney, 1996; L. S. Zettlemoyer and Collins, 2005), to recent scaling of methods to work on
very large KBs like Freebase using question and answer pairs (Jonathan Berant et al., 2013).
However, a major drawback of this paradigm is that KBs are highly incomplete (Dong et al.,
2014). It is also an open question whether KB relational structure is expressive enough to rep-
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Figure 4.1: A typical QA framework. Existing approaches utilizes only one type of information source.
However combination of the heterogeneous information source is powerful as can be seen from
the example illustrated. We want to develop a question answering system that can leverage
both the information source.

resent world knowledge (Gardner and Krishnamurthy, 2017; Stanovsky, O. Levy, and Dagan,
2014).

A large text corpus has high coverage, but the information is expressed using many different
text patterns. The paradigm of exploiting text for questions started in the early 1990s (Kupiec,
1993). With the advent of web, access to text resources became abundant and cheap. Initiatives
like TREC QA competitions helped popularizing this paradigm (Voorhees et al., 1999). With
the recent advances in deep learning and availability of large public datasets, there has been an
explosion of research in a very short time (Choi, Hewlett, et al., 2016; K. Lee et al., 2016; Nguyen
et al., 2016; Rajpurkar et al., 2016; Seo, Min, et al., 2016; Trischler et al., 2016; S. Wang and Jing
Jiang, 2016; C. Xiong, Zhong, and Socher, 2016). Still, text representation is unstructured and
does not allow the compositional reasoning which structured KB supports. As a result, methods
which operate on these unstructured patterns (Seo, Kembhavi, et al., 2017) do not generalize
beyond their training domains (Dhingra, Pruthi, and Rajagopal, 2018; Wiese, Weissenborn, and
Neves, 2017) and have difficulty with compositional reasoning (Talmor and J. Berant, 2018;
Welbl, Stenetorp, and Riedel, 2018).

An important but under-explored QA paradigm is where KB and text are exploited together
(Ferrucci et al., 2010). Such combination is attractive because text contains millions of facts not
present in KB, and a KB’s generative capacity represents infinite number of facts that are never
seen in text (Figure 4.1). As an illustrative example for power of the combination, consider
the question USA has elected _blank_, our first african-american president with its answer Barack
Obama. While Freebase has a predicate for representing presidents of USA, it does not have
one for ‘african-american’ presidents. Whereas in text, we find many sentences describing the
presidency of Barack Obama and his ethnicity at the same time. Exploiting both KB and text
makes it relatively easy to answer this question than relying on only one of these sources.
However QA inference on this combination is challenging due to the structural non-uniformity
of KB and text. In this chapter, we focus on a scenario in which a large-scale KB as well as a
text corpus is available, but neither is sufficient for answering all questions.

We begin by formally defining the problem of natural language QA using KB+text as the infor-
mation source and cover relevant work/background (Section 4.2). To use utilize both KB and
text facts, we present our solution in Section 4.3, which use universal schema that jointly em-
beds relevant KB facts and text into a uniform structured representation, allowing interleaved
propagation of information. Using the unified representation of all KB+text facts, we employ



4.2 problem definition & background 77

memory networks (Weston, Chopra, and Bordes, 2015) to answer the natural language query.
In this framework, a simple approach of independently embedding KB and textual facts on
the SPADES dataset (Bisk et al., 2016), containing real world fill-in-the-blank questions, out-
performs the state-of-the-art semantic parsing baseline, with 8.5 F1 points. Our analysis shows
how individual data sources help fill the weakness of the other, thereby improving overall per-
formance (Section 4.4). This approach of independent embedding, however, ignores the rich
relational structure present between the KB and textual facts, thanks to linking (Figure 4.2).
One obstacle in utilizing the relational structure is scalability as we operate jointly on all facts
present in KB+text, which can be very large. To make the approach more scalable, we propose
a method, called GRAFT-Net (Graphs of Relations Among Facts and Text Networks), to ex-
tract a ‘heterogeneous’ question subgraph first and operate on that leveraging the relational
structure between KB and text facts (Section 4.5). On WikiMovies (A. H. Miller et al., 2016)
and WebQuestionsSP (Yih, M. Richardson, et al., 2016) dataset, we show that our proposed
scalable approach have superior performance over varying amount of training supervision, KB
completeness, and question complexity ( Section 4.6). Finally, we also compare against naïve
approaches in KB+text setting that take state-of-the-art QA systems developed for each source,
and aggregate their predictions using some heuristic (Baudiš, 2015; Ferrucci et al., 2010). We call
such ad-hoc approach late fusion, and show that it can be sub-optimal, as models have limited
ability to aggregate evidence across the different sources compared to our early fusion strategy,
which allows more flexibility in combining information from multiple sources. (Section 4.6.4).

4.2 problem definition & background

4.2.1 Task Setup

A knowledge base is denoted as K = (V,E,R), where V is the set of entities in the KB, and the
edges E are triplets (s, r,o), which states the fact that relation r ∈ R holds between the subject
s ∈ V and object o ∈ V. A text corpus D is a set of textual facts {d1, . . . ,d|D|} where each
textual fact is a sequence of words di = (w1, . . . ,w|di|

). We further assume that an (imperfect)
entity linking system has been run on the text corpus D whose output is a set L of links (v,dp)
connecting an entity v ∈ V with a word at position p in the textual fact d. We denote with Ld
the set of entity links for any position in textual fact d.

The task is, given a natural language question q = (w1, . . . ,w|q|), extract its answers {a}q
from G = (K,D,L). There may be multiple correct answers for a question (Figure 4.2). In this
chapter, we assume that the answers are entities V. Hence the task reduces to classify each
member of the set V as being an answer or not. We also consider a more structured variation
of the question, namely cloze style. Here a question q is again words w1,w2, . . . ,wn, but one
of these words contain a _blank_ and at least an entity. Our goal is to fill in this _blank_ with
an answer entity qa using a knowledge base K and text D and the task reduces to classify
each member of the set V as being an answer or not. A few example question answer pairs are
shown in Table 4.2. We are interested in a wide range of settings, where the KB K varies from
highly incomplete to complete for answering the questions, and we will introduce datasets for
testing our models under these settings.

4.2.2 Background

Memory networks (MemNN; Weston, Chopra, and Bordes 2015), which are a class of neural
models which have an external memory component for encoding short and long term context,
have been successful in both type of individual information source QA. In this approach, we
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Q. Who voiced Meg in Family Guy?

Family Guy

Meg Griffin

CVT1

CVT2 Lacey Chabert

Mila Kunis

Megatron "Meg" Griffin is a 
character from the 

animated television series 
Family Guy.

Originally voiced by
Lacey Chabert during the 
first season, she has been 

voiced by
Mila Kunis since season 2actor

actor

character

character-played-by

KB Entity Text Document KB Relation Entity Mention

Question Subgraph

from

to

Figure 4.2: To answer a question posed in natural language, GRAFT-Net considers a heterogeneous graph
constructed from text and KB facts and can leverage the rich relational structure between the
two information sources.

define the memory components as observed cells of an universal schema matrix, and train
an end-to-end QA model on question-answer pairs. The cells of universal schema might be
as simple as independent embedding of individual facts or more involved ones leveraging rich
relational structure present between KB and textual facts due to entity linking. We explore both
the approaches, but before that briefly describe the pre-requisite and point to references in the
literature.

universal schema Traditionally universal schema is used for relation extraction in the con-
text of knowledge base population. Rows in the schema are formed by entity pairs (e.g. USA,
NYC), and columns represent the relation between them. A relation can either be a KB relation,
or it could be a pattern of text that exist between these two entities in a large corpus. The em-
beddings of entities and relation types are learned by low-rank matrix factorization techniques.
Riedel et al. (2013) treat textual patterns as static symbols, whereas recent work by Verga et al.
(2016) replaces them with distributed representation of sentences obtained by a RNN. Using
distributed representation allows reasoning on sentences that are similar in meaning but differ-
ent on the surface form. We too use this variant to encode our textual relations and shows its
applicability to QA.

memory networks MemNNs are neural attention models with external and differentiable
memory. MemNNs decouple the memory component from the network thereby allowing it
store external information. Previously, these have been successfully applied to question answer-
ing on KB where the memory is filled with distributed representation of KB triples (Bordes et
al., 2015), or for reading comprehension (Hill et al., 2016; Sukhbaatar, Szlam, et al., 2015), where
the memory consists of distributed representation of sentences in the comprehension. Recently,
key-value MemNN are introduced (A. H. Miller et al., 2016) where each memory slot consists
of a key and value. The attention weight is computed only by comparing the question with
the key memory, whereas the value is used to compute the contextual representation to predict
the answer. We use this variant of MemNN for our model. A. H. Miller et al. (2016), in their
experiments, store either KB triples or sentences as memories but they do not explicitly model
multiple memories containing distinct data sources like we do.
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personalized pagerank PageRank (Page et al., 1999) is a way of measuring ‘democratic’
importance of nodes in a graph that has no preference for any category of nodes. Random Walk
with Restart algorithm (Tong, Faloutsos, and Pan, 2008) and Personalized PageRank (Haveli-
wala, 2002) were independent works that extended PageRank to handle prior preference for
certain nodes. The idea can be explained clearly through an example of document retrival for
a given user. Simple PageRank ignores the ‘personal preference’ that a user may have to a
particular set of documents (such as the documents she considers most interesting), but ac-
counting for such preference would improve importance score of the document for that user.
Aforementioned works accounted for preferred documents in the random walk by introducing
a teleportation probability γ, i.e. at each step, the random walk restarts from a ‘preferred’ node
with a probability γ, and with probability 1− γ continues the random walk along an edge of
the current node. Then, it can be shown that in the limit distribution of this random walk would
favour the ‘preferred‘ nodes, the pages linked-to by the ‘preferred’ nodes, pages linked-to in
turn, etc. Thus, formally the Personalized PageRank score for a graph with adjacency matrix A
is defined as the fixed point R of:

R = γR0 + (1− γ)AR (4.1)

where R0 represents the distribution over the ‘preferred’ nodes. In case of QA, the Personal-
ized PageRank can allow us to retrieve not only the documents that explicitly contain entities
present in the question, but also other highly relevant documents.

graph convolution network The popular versions of Graph Convolution Networks
(GCN) are neural networks operating on graphs with weights tied in a particular fashion (Du-
venaud et al., 2015). Despite its name, the relation to convolution is limited (Huszar, 2016). How-
ever, GCN has been successful in learning node representations encoding features from local,
structured neighborhoods, and has led to significant improvements in graph classification (Du-
venaud et al., 2015; Schlichtkrull et al., 2017) and graph-based semi-supervised learning (Kipf
and Welling, 2016). (Schlichtkrull et al., 2017). Such models follow the standard gather-apply-
scatter paradigm to learn the node representation with homogeneous updates, i.e. treating all
neighbors equally. The basic recipe for these models is as follows:

1. Initialize node representations h(0)v .

2. For l = 1, . . . ,L update node representations

h
(l)
v = φ

h(l−1)v ,
∑

v ′∈Nr(v)
h
(l−1)
v ′

 ,

where Nr(v) denotes the neighbours of v ∈ V along incoming edges of type r ∈ R, and φ
is a neural network layer.

Here L is the number of layers in the model and corresponds to the maximum length of the
paths along which information should be propagated in the graph. Once the propagation is
complete the final layer representations h(L)v are used to perform the desired task, for example
link prediction in knowledge bases (Schlichtkrull et al., 2017). A newly designed variation of
GCN would be helpful for learning representation in the heterogeneous KB+text graph.

4.2.3 Related Works

A majority of the QA literature that focused on exploiting KB and text either improves the in-
ference on the KB using text based features (Choi, Kwiatkowski, and L. Zettlemoyer, 2015; Guu,
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J. Miller, and P. Liang, 2015; Joshi, Sawant, and Chakrabarti, 2014; Krishnamurthy and Mitchell,
2012; Neelakantan, Roth, and Andrew McCallum, 2015; Reddy, Lapata, and Steedman, 2014;
Savenkov and Agichtein, 2016; Kun Xu, Reddy, et al., 2016; X. Yao and Van Durme, 2014; Yih,
M.-W. Chang, et al., 2015) or improves the inference on text using KB (Huan Sun et al., 2015).

Limited work exists on exploiting text and KB jointly for question answering. Gardner and
Krishnamurthy (2017) is the closest to ours who generate a open-vocabulary logical form and
rank candidate answers by how likely they occur with this logical form both in Freebase and
text. Our models are trained on a weaker supervision signal without requiring the annotation of
the logical forms. Ryu, Jang, and H.-K. Kim (2014) use a pipelined system aggregating evidence
from both unstructured and semi-structured sources for open-domain QA. This approach falls
into ‘late-fusion’ category and thus is sub-optimal as discussed earlier.

A few QA methods infer on curated databases combined with OpenIE triples (Fader, L. Zettle-
moyer, and Etzioni, 2014; Kun Xu, Y. Feng, et al., 2016; Yahya et al., 2016). Our work differs
from them in two ways: 1) we do not need an explicit database query to retrieve the answers
(Andreas et al., 2016; Neelakantan, Q. V. Le, and Sutskever, 2015); and 2) our text-based facts
retain complete sentential context unlike the OpenIE triples (Banko et al., 2007; Carlson et al.,
2010).

Another line of work has looked at learning combined representations of KBs and text for
relation extraction and Knowledge Base Completion (KBC) (Das, Neelakantan, et al., 2017; X.
Han, Zhiyuan Liu, and M. Sun, 2016; Lao et al., 2012; Riedel et al., 2013; Toutanova, D. Chen,
et al., 2015; Verga et al., 2016). The key difference in QA compared to KBC is that in QA the
inference process on the knowledge source has to be conditioned on the question, so different
questions induce different representations of the KB and warrant a different inference process.
Furthermore, KBC operates under the fixed schema defined by the KB before-hand, whereas
natural language questions might not adhere to this schema.

The GRAFT-Net model itself is motivated from the large body of work on graph representation
learning (Atwood and Towsley, 2016; Kipf and Welling, 2016; Y. Li et al., 2016; Scarselli et al.,
2009; Schlichtkrull et al., 2017). Like most other graph-based models, GRAFT-Nets can also
be viewed as an instantiation of the Message Passing Neural Network (MPNN) framework of
Gilmer et al. (2017). GRAFT-Nets are also inductive representation learners like GraphSAGE
(Hamilton, Ying, and Leskovec, 2017), but operate on a heterogeneous mixture of nodes and
use retrieval for getting a subgraph instead of random sampling. The recently proposed Walk-
Steered Convolution model uses random walks for learning graph representations (Jiatao Jiang
et al., 2018). Our personalization technique also borrows from such random walk literature, but
uses it to localize propagation of embeddings.

Tremendous progress on QA over KB has been made with deep learning based approaches of
memory networks (Bordes et al., 2015; Jain, 2016) and reinforcement learning (Das, Dhuliawala,
et al., 2018; C. Liang et al., 2017). But extending them with text is non-trivial, which is our
main focus. In the other direction, there is also work on producing parsimonious graphical
representations of textual data (S. Krause et al., 2016; Lu et al., 2017), but in this paper we use
a simple sequential representation augmented with entity links to the KB to work well.

For QA over text only, a major focus has been on the task of reading comprehension (Gong
and Bowman, 2017; M. Hu, Y. Peng, and Qiu, 2017; Seo, Kembhavi, et al., 2017; Shen et al.,
2017; A. W. Yu et al., 2018), since the introduction of the SQuAD (Rajpurkar et al., 2016). These
systems assume answer-containing passage is known apriori, but there has been progress when
this assumption is relaxed (D. Chen et al., 2017; Dhingra, Mazaitis, and W. W. Cohen, 2017;
Raison et al., 2018; S. Wang, M. Yu, X. Guo, et al., 2018; S. Wang, M. Yu, Jing Jiang, et al., 2017;
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Figure 4.3: Memory network attending the facts in the universal schema (matrix on the left). The color
gradients denote the attention weight on each fact.

Watanabe, Dhingra, and R. Salakhutdinov, 2017). We also work in the latter setting, where
relevant information must be first retrieved from large information sources, but we go beyond
and incorporate KBs into this process as well.

4.3 simple model

Our model is a MemNN with universal schema as its memory with independent embedding
of KB and textual facts. Figure 4.3 shows the model architecture.

4.3.1 Fact Retrieval

We retrieve the relevant facts using two parallel pipelines – one over the KB K, and the other
over corpus D which returns a set of documents. We first perform entity linking on the question
q. This set of entities is denoted by Sq.

kb We retrieve all KB facts of the form (s, r,o) where either s, r ∈ Sq.

text We retrieve all textual facts which contain any entity in Sq.

4.3.2 Heterogeneous Embedding

memory : Our memory M comprise of both KB and textual triples from universal schema.
Each memory cell is in the form of key-value pair. Let (s, r, o) ∈ K represent a KB triple. We
represent this fact with distributed key k ∈ R2d formed by concatenating the embeddings
s ∈ Rd and r ∈ Rd of subject entity s and relation r respectively. The embedding o ∈ Rd of
object entity o is treated as its value v.

Let (s, [w1, . . . , arg1, . . . , arg2, wn], o) ∈ T represent a textual fact, where arg1 and arg2

correspond to the positions of the entities ‘s’ and ‘o’. We represent the key as the se-
quence formed by replacing arg1 with ‘s’ and arg2 with a special ‘_blank_’ token, i.e., k =
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[w1, . . . , s, . . . , _blank_, wn] and value as just the entity ‘o’. We convert k to a distributed
representation using a bidirectional LSTM (Graves and Jürgen Schmidhuber, 2005; Hochreiter
and Jürgen Schmidhuber, 1997), where k ∈ R2d is formed by concatenating the last states

of forward and backward LSTM, i.e., k =
[−−−−→
LSTM(k);

←−−−−
LSTM(k)

]
. The value v is the embed-

ding of the object entity o. Projecting both KB and textual facts to R2d offers a unified view
of the knowledge to reason upon. In Figure 4.3, each cell in the matrix represents a memory
containing the distributed representation of its key and value.

question encoder : A bidirectional LSTM is also used to encode the input question q to a
distributed representation q ∈ R2d similar to the key encoding step above.

attention over cells : We compute attention weight of a memory cell by taking the dot
product of its key k with a contextual vector c which encodes most important context in the
current iteration. In the first iteration, the contextual vector is the question itself. We only
consider the memory cells that contain at least one entity in the question. For example, for
the input question in Figure 4.3, we only consider memory cells containing USA. Using the
attention weights and values of memory cells, we compute the context vector ct for the next
iteration t as follows:

ct = Wt

ct−1 + Wp
∑

(k,v)∈M
(ct−1 · k)v


where c0 is initialized with question embedding q, Wp is a projection matrix, and Wt represents
the weight matrix which considers the context in previous hop and the values in the current
iteration based on their importance (attention weight). This multi-iterative context selection
allows multi-hop reasoning without explicitly requiring a symbolic query representation.

4.3.3 Cross-Normalization

To make the representations from both information source have similar distribution, we apply
a trick similar to batch normalization (Ioffe and Szegedy, 2015). We normalize the mean and
variance of the textual fact embeddings and then scale and shift to match the mean and vari-
ance of the KB fact embeddings. We term this transformation ‘cross-entropy’. Empirically, this
stabilized the training and gave a boost in the final performance.

Furthermore, as neural networks are lazy, they latch on to strongest signals, even though it may
lead to poorer performance. When jointly training on both KB and textual facts, the signal from
KB would be clearer (atleast for a sizable portion of the dataset), and thus network would focus
only on KB facts and ignore text facts. If we pre-train the model using text only, then during
training with KB facts, the network sees strong signal from KB and undergoes a catastrophic
forgetting of using textual facts. To train the UniSchema model successfully circumventing the
aforementioned obstacle, we pre-train the network on KB facts only and subsequently train for
textual fact. We found that this is crucial in making the UniSchema to work.

4.3.4 Answer Selection

The final contextual vector ct is used to select the answer entity qa (among all 1.8M entities in
the dataset) which has the highest inner product with it.

qa = argmax
e

e · ct

Finally, we minimize the cross-entropy loss to train the complete MemNN in an end-to-end
fashion.
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4.4 experiments on simple model

We describe our evaluation datasets, implementation details, baseline models and results.

4.4.1 Dataset

We use Freebase (Bollacker et al., 2008) as our KB, and ClueWeb (Gabrilovich, Ringgaard, and
Subramanya, 2013) as our text source to build universal schema. For evaluation, literature
offers two options: 1) datasets for text-based question answering tasks such as answer sentence
selection and reading comprehension; and 2) datasets for KB question answering.

Although the text-based question answering datasets are large in size, e.g., SQuAD (Rajpurkar
et al., 2016) has over 100k questions, answers to these are often not entities but rather sentences
which are not the focus of our work. Moreover these texts may not contain Freebase entities
at all, making these skewed heavily towards text. Coming to the alternative option, WebQues-
tions Jonathan Berant et al. (2013) is widely used for QA on Freebase. This dataset is curated
such that all questions can be answered on Freebase alone. But since our goal is to explore the
impact of universal schema, testing on a dataset completely answerable on a KB is not ideal.
WikiMovies dataset (A. H. Miller et al., 2016) also has similar properties. Gardner and Krishna-
murthy (2017) created a dataset with motivations similar to ours, however this is not publicly
released during the submission time.

Instead, we use Spades (Bisk et al., 2016) as our evaluation data which contains fill-in-the-blank
cloze-styled questions created from ClueWeb. This dataset is ideal to test our hypothesis for
following reasons: 1) it is large with 93K sentences and 1.8M entities; and 2) since these are
collected from Web, most sentences are natural. A limitation of this dataset is that it contains
only the sentences that have entities connected by at least one relation in Freebase, making it
skewed towards Freebase as we will see (Section 4.4.3). We use the standard train, dev and test
splits for our experiments. For text part of universal schema, we use the sentences present in
the training set.

4.4.2 Compared Models

We evaluate following models to measure impact of different knowledge sources for QA.

onlykb : In this model, MemNN memory contains only the facts from KB. For each KB triple
(e1, r, e2), we have two memory slots, one for (e1, r, e2) and the other for its inverse (e2, ri, e1).

onlytext : Spades contains sentences with blanks. We replace the blank tokens with the
answer entities to create textual facts from the training set. Using every pair of entities, we
create a memory cell similar to as in universal schema.

Model Dev. F1 Test F1

Bisk et al. (2016) 32.7 31.4

OnlyKB 39.1 38.5

OnlyText 25.3 26.6

Ensemble. 39.4 38.6

UniSchema 41.1 39.9

Table 4.1: QA results on Spades.
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Figure 4.4: Performance on varying the number of available KB facts during test time. UniSchema model
consistently outperforms OnlyKB

ensemble This is an ensemble of the above two models. We use a linear model that combines
the scores from, and use an ensemble to combine the evidences from individual models. An
instantiation of so-called ‘late-fussion’ models.

unischema This is our main model with universal schema as its memory, i.e., it contains
memory slots corresponding to both KB and textual facts.

The dimensions of word, entity and relation embeddings, and LSTM states were set to d =50.
The word and entity embeddings were initialized with word2vec (Mikolov, Sutskever, et al.,
2013) trained on 7.5 million ClueWeb sentences containing entities in Freebase subset of Spades.
The network weights were initialized using Xavier initialization (Glorot and Y. Bengio, 2010).
We considered up to a maximum of 5k KB facts and 2.5k textual facts for a question. We
used Adam (D. P. Kingma and Ba, 2014) with the default hyperparameters (learning rate=1e-3,
β1=0.9, β2=0.999, ε=1e-8) for optimization. To overcome exploding gradients, we restricted the
magnitude of the `2 norm of the gradient to 5. The batch size during training was set to 32.

4.4.3 Main Results

Table 4.1 shows the main results on Spades. UniSchema outperforms all our models validat-
ing our hypothesis that exploiting universal schema for QA is better than using either KB or

Question Answer

1. USA have elected _blank_, our first african-american president. Obama

2. Angelina has reportedly been threatening to leave _blank_. Brad_Pitt

3. Spanish is more often a second and weaker language among many
_blank_.

Latinos

4. _blank_ is the third largest city in the United_States. Chicago

5. _blank_ was Belshazzar ’s father. Nabonidus

Table 4.2: A few questions on which OnlyKB fails to answer but UniSchema succeeds.
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Model Dev. F1

OnlyKB correct 39.1

OnlyText correct 25.3

UniSchema correct 41.1

OnlyKB or OnlyText got it correct 45.9

Both OnlyKB and OnlyText got it correct 18.5

OnlyKB got it correct and OnlyText did not 20.6

OnlyText got it correct and OnlyKB did not 6.80

Both UniSchema and OnlyKB got it correct 34.6

UniSchema got it correct and OnlyKB did not 6.42

OnlyKB got it correct and UniSchema did not 4.47

Both UniSchema and OnlyText got it correct 19.2

UniSchema got it correct and OnlyText did not 21.9

OnlyText got it correct and UniSchema did not 6.09

Table 4.3: Detailed results on Spades.

text alone. Despite Spades creation process being friendly to Freebase, exploiting text still pro-
vides a significant improvement. Table 4.2 shows some of the questions which UniSchema

answered but OnlyKB failed. These can be broadly classified into (a) relations that are not ex-
pressed in Freebase (e.g., african-american presidents in sentence 1); (b) intentional facts since
curated databases only represent concrete facts rather than intentions (e.g. threating to leave
in sentence 2); (c) comparative predicates like first, second, largest, smallest (e.g., sentences 3

and 4); and (d) providing additional type constraints (e.g., in sentence 5, Freebase does not
have a special relation for father. It can be expressed using the relation parent along with the
type constraint that the answer is of gender male).

We have also analyzed the nature of UniSchema attention. In 58.7% of the cases the attention
tends to prefer KB facts over text. This is as expected since KBs facts are concrete and accurate
than text. In 34.8% of cases, the memory prefers to attend text even if the fact is already present
in the KB. For the rest (6.5%), the memory distributes attention weight evenly, indicating for
some questions, part of the evidence comes from text and part of it from KB. Table 4.3 gives a
more detailed quantitative analysis of the three models in comparison with each other.

To see how reliable is UniSchema, we gradually increased the coverage of KB by allowing only
a fixed number of randomly chosen KB facts for each entity. As Figure 4.4 shows, when the KB
coverage is less than 16 facts per entity, UniSchema outperforms OnlyKB by a wide-margin
indicating UniSchema is robust even in resource-scarce scenario, whereas OnlyKB is very
sensitive to the coverage. UniSchema also outperforms Ensemble showing joint modeling is
superior to ensemble on the individual models. We also achieve the state-of-the-art with 8.5 F1
points difference. Bisk et al. (2016) use graph matching to convert natural language to Freebase
queries whereas even without an explicit query representation, we outperform them.
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4.5 graft-nets

The simple model ignores the rich relational structure present in the data induced by the entity
linking. To leverage this structure we propose a novel graph convolution based neural network,
called GRAFT-Net (Graphs of Relations Among Facts and Text Networks), specifically designed
to operate over heterogeneous graphs of KB facts and text sentences. We build upon recent
work on graph representation learning (Kipf and Welling, 2016; Schlichtkrull et al., 2017), but
propose two key modifications to adopt them for the task of QA. First, we propose heterogeneous
update rules that handle KB nodes differently from the text nodes: for instance, LSTM-based
updates are used to propagate information into and out of text nodes. Second, we introduce a
directed propagation method, inspired by personalized Pagerank in IR (Haveliwala, 2002), which
constrains the propagation of embeddings in the graph to follow paths starting from seed
nodes linked to the question. Empirically, we show that both these extensions are crucial for
the task of QA.

We begin by recognizing that the question q and its answers {a}q induce a labeling of the nodes
in Vq: we let yv = 1 if v ∈ {a}q and yv = 0 otherwise for all v ∈ Vq. The task of QA then reduces
to performing binary classification over the nodes of the graph Gq. Several graph-propagation
based models have been proposed in the literature which learn node representations and then
perform classification of the nodes (Kipf and Welling, 2016; Schlichtkrull et al., 2017).

However, there are three differences in our setting from previously studied graph-based classifi-
cation tasks. The first difference is that, in our case, the graph Gq consists of heterogeneous nodes.
Some nodes in the graph correspond to KB entities which represent symbolic objects, whereas
other nodes represent textual documents which are variable length sequences of words.

The second difference is that we want to condition the representation of nodes in the graph
on the natural language question q. In Section 4.5.3 we introduce heterogeneous updates to
address the first difference, and in Section 4.5.4 we introduce mechanisms for conditioning on
the question (and its entities) for the second.

Finally, operating on entire text+KB graph is not scalable and only retrieving KB and textual
facts directly containing entities mentioned in the question might miss out many relevant and
necessary facts to answer the question or contain many spurious facts, especially for high
degree nodes. As the relation queried for by the question may exist between many pairs of
entities: we also want to only focus on relations that connect the question to a potential answer.
Hence, we also introduce a personalization technique to retrieve facts (Section 4.5.1) and also
use it to constrains the updates to only happen along paths starting from a seed nodes in the
question (Section 4.5.4).

4.5.1 Question Subgraph Retrieval

We retrieve the subgraph Gq using two parallel pipelines – one over the KB K which returns a
set of entities, and the other over the corpus D which returns a set of documents. The retrieved
entities and documents are then combined with entity links to produce a fully-connected graph.

kb retrieval . To retrieve relevant entities from the KB we first perform entity linking on
the question q. This set of seed entities is denoted Sq. Next we run the Personalized PageRank
(PPR) method (Haveliwala, 2002) around these seeds to identify other entities which might
be an answer to the question. The edge-weights around Sq are distributed equally among all
edges of the same type, and they are weighted such that edges relevant to the question receive
a higher weight than those which are not. Specifically, we average word vectors to compute
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a relation vector v(r) from the surface form of the relation, and a question vector v(q) from
the words in the question, and use cosine similarity between these as the edge weights. After
running PPR we retain the top E entities v1, . . . , vE by PPR score, along with any edges between
them, and add them to Gq.

text retrieval . We use Wikipedia as the corpus and retrieve textual facts at the sentence
level, i.e. facts in D are defined along sentences boundaries. We perform text retrieval in two
steps: first we retrieve the top 5 most relevant Wikipedia articles, using the weighted bag-
of-words model from DrQA (D. Chen et al., 2017); then we populate a Lucene1 index with
sentences from these articles, and retrieve the top ranking ones d1, . . . ,dD, based on the words
in the question. For the sentence-retrieval step, we found it beneficial to include the title of the
article as an additional field in the Lucene index. As most sentences in an article talk about the
title entity, this helps in retrieving relevant sentences that do not explicitly mention the entity
in the question. We add the retrieved sentence, along with any entities linked to them, to the
subgraph Gq.

The final question subgraph is Gq = (Vq,Eq,R+), where the vertices Vq consist of all the
retrieved entities and sentences, i.e. Vq = {v1, . . . , vE} ∪{d1, . . . ,dD}. The edges are all relations
from K among these entities, plus the entity-links between sentences and entities, i.e.

Eq ={(s,o, r) ∈ E : s,o ∈ Vq, r ∈ R}

∪ {(v,dp, rL) : (v,dp) ∈ Ld,d ∈ Vq},

where rL denotes a special “linking” relation. R+ = R ∪ {rL} is the set of all edge types in the
subgraph.

4.5.2 Node Initialization

Nodes corresponding to entities are initialized using fixed-size vectors h(0)v = xv ∈ Rn, where
xv can be pre-trained KB embeddings or random, and n is the embedding size. Textual nodes
in the graph describe a variable length sequence of text. Since multiple entities might link to dif-
ferent positions in the document, we maintain a variable length representation of document in
each layer. This is denoted by H(l)

d ∈ R|d|×n. Given the words in the textual fact (w1, . . . ,w|d|),
we initialize its hidden representation as:

H
(0)
d = LSTM(w1,w2, . . . ),

where LSTM refers to a long short-term memory unit. With a slight abuse of notation, we refer
to the embedding of p-th word in the textual fact d at layer l as H(l)

d,p.

4.5.3 Heterogeneous Updates

entities Let M(v) = {(d,p)} be the set of positions p in textual fact d which correspond to a
mention of entity v. The update for entity nodes involves a single-layer feed-forward network
(FFN) over the concatenation of four states:

h
(l)
v = FFN




h
(l−1)
v

h
(l−1)
q∑

r

∑
v ′∈Nr(v) α

v ′
r ψr(h

(l−1)
v ′ )∑

(d,p)∈M(v)H
(l−1)
d,p


 . (4.2)

1 https://lucene.apache.org/

https://lucene.apache.org/
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Figure 4.5: Illustration of the heterogeneous update rules for entities (left) and text documents (right)

The first two terms correspond to the entity representation and question representation (details
below), respectively, from the previous layer.

The third term aggregates the states from the entity neighbours of the current node Nr(v)
after scaling with an attention weight αv

′
r (described in the next section), and applying rela-

tion specific transformations ψr. Previous work on Relational-Graph Convolution Networks
(Schlichtkrull et al., 2017) used a linear projection for ψr. For a batched implementation, this
results in matrices of size O(B|Rq||Eq|n), where B is the batch size, which can be prohibitively
large for large subgraphs.2 Hence in this work we use relation vectors xr for r ∈ Rq instead of
matrices, and compute the update along an edge as:

ψr(h
(l−1)
v ′ ) = p

(l−1)
v ′ FFN

(
xr,h

(l−1)
v ′

)
. (4.3)

The memory complexity of the above is O(B(|Fq|+ |Eq|)n), where |Fq| is the number of facts
in the subgraph Gq. Here p(l−1)

v ′ is a PageRank score used to control the propagation of em-
beddings along paths starting from the seed nodes, which we describe in detail in the next
section.

The last term aggregates the states of all tokens that correspond to mentions of the entity v
among the documents in the subgraph. Note that the update depends on the positions of entity
linking—this is to disambiguate between multiple entities mentioned in the same document.

sentences Let L(d,p) be the set of all entities linked to the word at position p in textual
fact d. Then, the textual node update proceeds in two steps. First we aggregate over the entity
states coming in at each position separately:

H̃
(l)
d,p = FFN

H(l−1)
d,p ,

∑
v∈L(d,p)

h
(l−1)
v

 . (4.4a)

Here h(l−1)v are normalized by the number of outgoing edges at v. Next we aggregate states
within the document using an LSTM:

H
(l)
d = LSTM(H̃

(l)
d ). (4.4b)

2 This is because we have to use adjacency matrices of size |Rq|× |Eq|× |Eq| to aggregate embeddings from neighbours
of all nodes simultaneously.
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4.5.4 Conditioning on Question

For the parts described thus far, the graph learner is largely agnostic of the question. We
introduce dependence on question in two ways: by attention over relations, and by personalized
propagation.

To represent q, let wq1 , . . . ,wq
|q|

be the words in the question. Initial representation is computed
as:

h
(0)
q = LSTM(wq1 , . . . ,wq

|q|
)|q| ∈ Rn, (4.5)

where we extract the final state from the output of the LSTM. In subsequent layers the question

representation is updated as h(l)q = FFN
(∑

v∈Sq h
(l)
v

)
, where Sq denotes the seed entities

mentioned in the question.

attention over relations . The attention weight in the third term of (4.2) is computed
using the question and relation embeddings:

αv
′
r ∝ exp(xTr h

(l−1)
q ),

where the normalization is over all outgoing edges from v ′. This ensures that embeddings are
propagated more along edges relevant to the question.

directed propagation. Many questions require multi-hop reasoning, which follows a
path from a seed node mentioned in the question to the target answer node. To encourage
such a behaviour when propagating embeddings, we develop a technique inspired from per-
sonalized PageRank in IR (Haveliwala, 2002). The propagation starts at the seed entities Sq
mentioned in the question. In addition to the vector embeddings h(l)v at the nodes, we also
maintain scalar “PageRank” scores p(l)v which measure the total weight of paths from a seed
entity to the current node, as follows:

p
(0)
v =

 1
|Sq|

if v ∈ Sq

0 o.w.
,

p
(l)
v = (1− λ)p

(l−1)
v + λ

∑
r

∑
v ′∈Nr(v)

αv
′
r p

(l−1)
v ′ .

Notice that we reuse the attention weights αv
′
r when propagating PageRank, to ensure that

nodes along paths relevant to the question receive a high weight. The PageRank score is used
as a scaling factor when propagating embeddings along the edges in (4.3). For l = 1, the
PageRank score will be 0 for all entities except the seed entities, and hence propagation will
only happen outward from these nodes. For l = 2, it will non-zero for the seed entities and
their 1-hop neighbors, and propagation will only happen along these edges.

4.5.5 Answer Selection

The final representations h(L)v ∈ Rn, is used for binary classification to select the answers:

Pr (v ∈ {a}q|Gq,q) = σ(wTh(L)v + b), (4.6)

where σ is the sigmoid function. Training uses binary cross-entropy loss over these probabili-
ties.
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Figure 4.6: Directed propagation of embeddings in GRAFT-Net. A scalar pagerank score p(l)v is maintained
for each node v across layers, which distributes out from the seed node. Embeddings are only
propagated from nodes with pagerank > 0.

4.5.6 Regularization via Fact Dropout

To encourage the model to learn a robust classifier, which exploits all available sources of
information, we randomly drop edges from the graph during training with p0. We call this fact-
dropout. It is usually much easier to learn to reason over the KB than over textual documents,
so the model tends to overly rely on the KB, especially when the KB is complete. This method
shares similarities with DropConnect (Wan, Zeiler, et al., 2013).

4.6 experiments on graft-nets

4.6.1 Datasets

wikimovies-10k It consists of 10K randomly sampled training questions from the Wiki-
Movies dataset (A. H. Miller et al., 2016), along with the original test and validation sets. We
sample the training questions to create a more difficult setting, since the original dataset has
100K questions over only 8 different relation types, which is unrealistic in our opinion. In
Section 4.6.4 we also compare to existing state-of-the-art using the full training set.

We use the KB and text corpus (constructed from Wikipedia) released by A. H. Miller et al.
(2016). For entity linking we use simple surface level matches, and retrieve the top 50 entities
around these to create the question subgraph. We further add the top 50 sentences (along with
article titles) to add to the subgraph using Lucene search over the text corpus. The overall
answer recall in our constructed subgraphs is 99.6%.

webquestionssp (Yih, M. Richardson, et al., 2016) It consists of 4737 natural language ques-
tions posed over Freebase entities, split up into 3098 training and 1639 test questions. We

Dataset # train / dev / test # entity nodes # edges # document nodes # question vocab

WikiMovies-10K 10K / 10K / 10K 43,233 9 79,728 1759

WebQuestionsSP 2848 / 250 / 1639 528,617 513 235,567 3781

Table 4.4: Statistics of all the retrieved subgraphs ∪qGq for WikiMovies-10K and WebQuestionsSP.
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Model Text Only
KB + Text

10 % 30% 50% 100%

WikiMovies-10K

KV-KB – 15.8 / 9.8 44.7 / 30.4 63.8 / 46.4 94.3 / 76.1

KV-EF 50.4 / 40.9 53.6 / 44.0 60.6 / 48.1 75.3 / 59.1 93.8 / 81.4

GN-KB – 19.7 / 17.3 48.4 / 37.1 67.7 / 58.1 97.0 / 97.6

GN-LF
73.2 / 64.0


74.5 / 65.4 78.7 / 68.5 83.3 / 74.2 96.5 / 92.0

GN-EF 75.4 / 66.3 82.6 / 71.3 87.6 / 76.2 96.9 / 94.1

GN-EF+LF 79.0 / 66.7 84.6 / 74.2 88.4 / 78.6 96.8 / 97.3

WebQuestionsSP

KV-KB – 12.5 / 4.3 25.8 / 13.8 33.3 / 21.3 46.7 / 38.6

KV-EF 23.2 / 13.0 24.6 / 14.4 27.0 / 17.7 32.5 / 23.6 40.5 / 30.9

GN-KB – 15.5 / 6.5 34.9 / 20.4 47.7 / 34.3 66.7 / 62.4

GN-LF
25.3 / 15.3


29.8 / 17.0 39.1 / 25.9 46.2 / 35.6 65.4 / 56.8

GN-EF 31.5 / 17.7 40.7 / 25.2 49.9 / 34.7 67.8 / 60.4

GN-EF+LF 33.3 / 19.3 42.5 / 26.7 52.3 / 37.4 68.7 / 62.3

Table 4.5: Hits@1 / F1 scores of GRAFT-Nets (GN) compared to KV-MemNN (KV) in KB only (-KB), early
fusion (-EF), and late fusion (-LF) settings.

reserve 250 training questions for model development and early stopping. We use the entity
linking outputs from the S-MART system3 and retrieve 500 entities from the neighbourhood
around them in Freebase to populate the question subgraphs.4 We further retrieve the top 50
sentences from Wikipedia with the two-stage process described in Section 4.5.1. The overall
recall of answers among the subgraphs is 94.0%.

Table 4.4 shows the combined statistics of all the retreived subgraphs for the questions in each
dataset. These two datasets present varying levels of difficulty. While all questions in Wiki-
Movies correspond to a single KB relation, for WebQuestionsSP the model needs to aggregate
over two KB facts for ∼30% of the questions, and also requires reasoning over constraints for
∼7% of the questions (C. Liang et al., 2017). For maximum portability, QA systems need to be
robust across several degrees of KB availability since different domains might contain differ-
ent amounts of structured data; and as KBs vary across time, their completeness also varies.
Hence, we construct an additional 3 datasets each from the above two, with the number of KB
facts downsampled to 10%, 30% and 50% of the original to simulate settings where the KB is
incomplete. We repeat the retrieval process for each sampled KB.

4.6.2 Compared Models

KV-KB is the Key Value Memory Networks model from A. H. Miller et al. (2016) but using
only KB and ignoring the text. KV-EF is the simple model from Section 4.3 with access to both
KB and text as memories. For text we use a BiLSTM over the entire sentence as keys, and
entity mentions as values. This re-implementation shows better performance on the text-only

3 https://github.com/scottyih/STAGG
4 A total of 13 questions had no detected entities. These were ignored during training and considered as incorrect

during evaluation.

https://github.com/scottyih/STAGG
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Figure 4.7: Improvement of early fusion (-EF) and late fusion (-LF) over KB only (-KB) settings.

and KB-only WikiMovies tasks than the results reported previously5 (see Table 4.6). GN-KB
is the GRAFT-Net model ignoring the text. GN-LF is a late fusion version of the GRAFT-Net
model: we train two separate models, one using text only and the other using KB only, and then
ensemble the two6. GN-EF is our main GRAFT-Net model with early fusion. GN-EF+LF is an
ensemble over the GN-EF and GN-LF models, with a similar ensembling to GN-LF alone. We
report Hits@1, which is the accuracy of the top-predicted answer from the model, and the F1

score. To compute the F1 score we tune a threshold on the development set, to select answers
based on binary probabilities for each node in the subgraph.

4.6.3 Main Results

Table 4.5 presents a comparison of the above models across all datasets. GRAFT-Nets (GN)
show consistent improvement over KV-Memory Nets on both datasets in all settings, including
KB only (-KB), text only (-EF, Text Only column), and early fusion (-EF). Interestingly, we
observe a larger relative gap between the Hits and F1 scores for the KV models than we do
for our GN models. We believe this is because the attention for KV is normalized over the
memories, which are KB facts (or text sentences): hence the model is unable to assign high
probabilities to multiple facts at the same time. On the other hand, in GN, we normalize the
attention over types of relations outgoing from a node, and hence can assign high weights to all
the correct answers.

We also see a consistent improvement of early fusion compared to late fusion (-LF), and by
ensembling them together we see the best performance across all the models. In Figure 4.7, we
further show the improvement for KV-EF over KV-KB, and, GN-LF and GN-EF over GN-KB, as
the amount of KB is increased, to measure how effective these approaches are in utilizing text
plus a KB. For KV-EF we see improvements when the KB is highly incomplete, but in the full
KB setting, the performance of the fused approach is worse. A similar trend holds for GN-LF.
On the other hand, GN-EF effectively utilizes text over the KB-only approach across all the
settings. As we would expect, though, the benefit of adding text decreases as the KB becomes
more and more complete.

5 For all KV models we tuned the number of layers {1,2,3}, batch size {10,30,50}, model dimension {50,80}. We also
use fact dropout regularization in the KB+Text setting tuned between {0,0.2,0.4}.

6 For ensembles we take a weighted combination of the answer probabilities produced by the models, with the weights
tuned on the dev set. For answers only in text or only in KB, we use the probability as is.
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Method
WikiMovies (full) WebQuestionsSP

kb doc kb doc

MINERVA 97.0 / – – – –

R2-AsV – 85.8 / – – –

NSM – – – / 69.0 –

DrQA* – – – 21.5 / –

R-GCN#
96.5 / 97.4 – 37.2 / 30.5 –

KV 93.9 / – 76.2 / – – / – – / –

KV#
95.6 / 88.0 80.3 / 72.1 46.7 / 38.6 23.2 / 13.0

GN 96.8 / 97.2 86.6 / 80.8 67.8 / 62.8 25.3 / 15.3

Table 4.6: Hits@1 / F1 scores compared to SoA models using only KB or text: MINERVA Das, Dhuliawala,
et al., 2018, R2-AsV Watanabe, Dhingra, and R. Salakhutdinov, 2017, Neural Symbolic Machines
(NSM) C. Liang et al., 2017, DrQA D. Chen et al., 2017, R-GCN Schlichtkrull et al., 2017 and
KV-MemNN. *DrQA is pretrained on SQuAD. #We re-implement KV-MemNN and R-GCN.

4.6.4 Comparison to Specialized Methods

In Table 4.6 we compare GRAFT-Nets to state-of-the-art models that are specifically designed
and tuned for QA using either only KB or only text. For this experiment we use the full
WikiMovies dataset to enable direct comparison to previously reported numbers. For DrQA (D.
Chen et al., 2017), following the original paper, we restrict answer spans for WebQuestionsSP
to match an entity in Freebase. In each case, for a fair comparison, we also train GRAFT-Nets
using only KB facts or only text sentences. In three out of the four cases, we find that GRAFT-
Nets either match or outperform the existing state-of-the-art models. We emphasize that the
latter have no mechanism for dealing with the fused setting.

The one exception is the KB-only case for WebQuestionsSP where GRAFT-Net does 6.2% F1

points worse than Neural Symbolic Machines (C. Liang et al., 2017). On analyzing we found
that this is because: (1) In the KB-only setting, the recall of subgraph retrieval is only 90.2%,
which limits overall performance. In an oracle setting where we ensure the answers are part
of the subgraph, the F1 score increases by 4.8%. (2) We use the same probability threshold for
all questions, even though the number of answers may vary significantly. Models which parse
the query into a symbolic form do not suffer from this problem since answers are retrieved in
a deterministic fashion. If we tune separate thresholds for each question the F1 score improves
by 7.6%. (3) GRAFT-Nets perform poorly in the few cases where there is a constraint involved
in picking out the answer (for example, “who first voiced Meg in Family Guy”). If we ignore
such constraints, and consider all entities with the same sequence of relations to the seed as
correct, the performance improves to 66.6% F1. Heuristics such as those used by M. Yu et al.
(2017) can be used to improve these cases. Figure 4.7 shows examples where GRAFT-Net fails
to predict the correct answer set exactly.

4.6.5 Effect of Model Components

heterogeneous updates . We test a non-heterogeneous version of our model where in-
stead of using fine-grained entity linking information for updating the node representations
(M(v) and L(d,p) in (4.2) and (4.4a)), we aggregate the document states across all its positions
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Question Correct Answers Predicted Answers

what language do most people
speak in afghanistan

Pashto language,

Farsi (Eastern Language)
Pashto language

what college did john stockton
go to

Gonzaga University
Gonzaga University,

Gonzaga Preparatory School

Table 4.7: Examples from WebQuestionsSP dataset. Top: The model misses a correct answer. Bottom: The
model predicts an extra incorrect answer.

as
∑
pH

(l)
d,p and use this combined state for all updates. Without the heterogeneous update, all

entities v ∈ L(d, ·) will receive the same update from document d. Therefore, the model cannot
disambiguate different entities mentioned in the same document. The result in Table 4.8 shows
that this version is consistently worse than the heterogeneous model.

0 KB 0.1 KB 0.3 KB 0.5 KB 1.0 KB

NH 22.7 / 13.6 28.7 / 15.8 35.6 / 23.2 47.2 / 33.3 66.5 / 59.8

H 25.3 / 15.3 31.5 / 17.7 40.7 / 25.2 49.9 / 34.7 67.8 / 60.4

Table 4.8: Non-Heterogeneous (NH) vs. Heterogeneous (H) updates on WebQuestionsSP

conditioning on question. We also performed an ablation test on the directed propa-
gation method and attention over relations. We observe that both components lead to better
performance. Such effects are observed in both complete and incomplete KB scenarios, e.g. on
WebQuestionsSP dataset, as shown in Figure 4.8.

fact dropout. Figure 4.8 (Right) compares the performance of the early fusion model as
we vary the rate of fact-dropout. Moderate levels of fact-dropout improve performance on both
datasets. The performance increases as the fact-dropout rate increases until the model is unable
to learn the inference chain from KB.

4.7 points to ponder

In this work, we showed universal schema is a promising knowledge source for QA than using
KB or text alone. Our results conclude though KB is preferred over text when the KB contains
the fact of interest, a large portion of queries still attend to text indicating the amalgam of both
text and KB is superior than KB alone.

In this paper we look at QA using text combined with an incomplete KB, a task which has
received limited attention in the past. We introduce several benchmark problems for this task by
modifying existing question-answering datasets, and discuss two broad approaches to solving
this problem—“late fusion” and “early fusion”. We show that early fusion approaches perform
better.

We also introduce a novel early-fusion model, called GRAFT-Net, for classifying nodes in sub-
graph consisting of both KB entities and text documents. GRAFT-Net builds on recent advances
in graph representation but includes several innovations which improve performance on this
task. GRAFT-Nets are a single model which achieve performance competitive to state-of-the-
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Figure 4.8: Left: Effect of directed propagation and query-based attention over relations for the WebQues-
tionsSP dataset with 30% KB and 100% KB. Right: Hits@1 with different rates of fact-dropout
on and WikiMovies and WebQuestionsSP.

art methods in either a text-only setting or a KB-only setting, and outperform baseline models
when using text combined with an incomplete KB. Current limitations of the model include
– (1) GRAFT-Nets are currently restricted to picking entities as answers, whereas in general
open-domain questions are better answered by picking spans of text; and (2) the subgraph
retrieval process currently limits the maximum possible performance of the model, especially
in the text only case. These are promising directions for future work.





Part II

I N T E R P R E TA B L I T Y B Y I N C O R P O R AT I N G D O M A I N
K N O W L E D G E

Internal representations in most deep learning methods are distributed codes with
a large number of parameters and lack interpretability. These dense unstructured
representations are in direct conflict with many real-world problems which have
inherent structures: like invariances, dependencies among random variables, etc.
We will utilize methods developed in Part I to handle structures like invariances
along with leveraging structure in form of domain knowledge by using Bayesian
components on top of deep models. Such modifications will yield interpretable and
sample efficient model. We look at diverse applications ranging from static NLP and
CV tasks to to even less relevant fields like basic sciences to temporal user action
modeling.





5
S tat i c M o d e l s

We study the problem of incorporating domain knowledge in completely observed data (as
compared to sequentially observed data, which we will look at in next chapter) to enhance pre-
dictive power and interepretability. Deep learning methods have been shown to be extremely
successful in a variety of well defined problems due their high expressive power across com-
puter vision (CV), speech recognition as well as natural language processing (NLP). However,
their internal representations are distributed codes and lack interpretability or manipulations.
These dense unstructured representations are in direct conflict with many real-world problems
which have inherent structures: like invariances, dependencies among random variables, etc.
Graphical models have been typically employed to represent and exploit such invariances and
dependencies. In this chapter, we will explore ways to incorporate domain knowledge so as
to take advantage of high predictive power of deep learning but also be more interpretable
and sample efficient by enforcing invariances and dependencies. We will also propose efficient
inference strategies to tackle new difficulties encountering in these combined models. Here we
look at diverse applications ranging from NLP and CV tasks to to even less relevant fields like
physics or chemistry.

5.1 introduction

In this section, we look at methods to incorporate domain knowledge into predictive tasks like
classification and regression and exploratory tasks like clustering, organization, and search. In
particular for predictive data analyis, we look at applications from basic science: molecular
properties estimation in quantum chemistry and red-shift estimation in cosmology. In these
applications, we design neural networks leveraging structure from the domain knowledge and
show reduction in preprocessing cost while improving the accuracy and interpretability. For
exploratory data analysis, we look at organizing satellite imagery and improving document
topic modeling with deep word embeddings using external knowledge.

molecular properties Graph convolutions have recently become popular for learning
molecular properties, as they move beyond commonly employed molecular fingerprints
and excel at encoding representation of the molecule as a part of the learning process
itself. These models, however, require extensive featurization of the input data, which
often relies on support from existing chemical fingerprinting schemes and phenomeno-
logical classifications like chirality, hybridization, aromaticity, bond ordering and partial
atomic charges. In this work, we make use of a novel idea of learning molecular rep-
resentation to predict DFT computed properties using just the set of 3D coordinates of
atoms in the molecules. Based on the condition that any regression model used for pre-
dicting quantum mechanical observables of the electronic density should be invariant
to the permutation of atoms in the molecular set, we utilize a recently proposed theo-
rem on DeepSets that characterizes such permutation invariant functions and provides
a convenient architecture to map such functions. The proposed method is shown to be



100 static models

competitive to graph convolutions and generality of the learnt molecular representations
is demonstrated without loss in prediction accuracy.

cosmological parameters An important regression problem in cosmology is to estimate
the red-shift of galaxies, corresponding to their age as well as their distance from us
(Binney and Merrifield, 1998) based on photometric observations. One way to estimate
the red-shift from photometric observations is using a regression model (Connolly et al.,
1995) on the galaxy clusters. The prediction for each galaxy does not change by permuting
the members of the galaxy cluster. Therefore, we can treat each galaxy cluster as a “set”.
There is an opportunity to and use DeepSets to estimate the individual galaxy red-shifts.

satellite imagery Creative inquiries through similarity search have historically offered
novel perspectives in many domains (Broder, 1997; Kiefer and Laub, 2013; Ngai et al.,
2011; Shin and Y. H. Kim, 2014; Saransh Singh, F. Ram, and De Graef, 2017). A real-
time online nearest neighbor (NN) search allows artists to expressively use the power of
computation to explore vast datasets. We develop, Terrapattern, a prototype for visual
query-by-example in satellite imagery. Terrapattern is an interface for finding “more like
this, please” images in satellite photos: when a user selects an interesting tile on Terrap-
attern’s map, the system finds other locations that look similar. This tool has been used
by artists, citizen scientists, and hobbyists alike to spot and explore emerging trends, and
has been well received by the media and public at large. To facilitate a fast online NN
search, we develop a tree data structure–Stable Greedy Tree(SG-Tree)–which allows for al-
most linear time construction and logarithmic query time under real world assumptions.
SG-Tree is amenable to parallelization and distribution which greatly enhances its appeal
over existing approaches such as NNet trees and Cover Trees and is essential for the scale
required on large datasets. Moreover, the data structure adapts to the intrinsic dimension
of the data, which is particularly beneficial when the feature vectors come from neural
networks that have high euclidean dimensions but often lie on a (significantly) smaller di-
mensional manifold. The proposed method significantly outperforms existing NN search
tools in construction time on many real world data-sets and is well suited for interactive
queries.

document modelling Continuous space word embeddings learned from large, unstruc-
tured corpora have been shown to be effective at capturing semantic regularities in lan-
guage. In this paper we replace LDA’s parameterization of “topics” as categorical dis-
tributions over opaque word types with multivariate Gaussian distributions on the em-
bedding space. This encourages the model to group words that are a priori known to
be semantically related into topics. To perform inference, we introduce a fast collapsed
Gibbs sampling algorithm based on Cholesky decompositions of covariance matrices of
the posterior predictive distributions. We further derive a scalable algorithm that draws
samples from stale posterior predictive distributions and corrects them with a Metropolis–
Hastings step. Using vectors learned from a domain-general corpus (English Wikipedia),
we report results on two document collections (20-newsgroups and NIPS). Qualitatively,
Gaussian LDA infers different (but still very sensible) topics relative to standard LDA.
Quantitatively, our technique outperforms existing models at dealing with OOV words
in held-out documents.
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5.2 predictive data analysis : molecular

properties

5.2.1 Learning Density Functional from Molecular Geometry

Machine learning has recently made significant advances in prediction of properties and de-
scriptors for material discovery and building quantitative structure-activity relationships (QSAR)
for material design. This approach relies on learning the fundamental relationship between
the electronic structure of a material and its thermal, chemical and physical properties. In its
most general usage, the structural or chemical features of a molecule X are often extracted
using molecular fingerprinting software (Φ) to compute fixed-dimensional representation vec-
tors R = Φ(X). Any desired property P is then predicted using those features as inputs to a
regression model(ρ) P = ρ(R) by means of generalization over several examples.

Encoding the representation of molecules as fingerprints is a difficult task because of their
diverse chemical compositions, arbitrary sizes and shapes. Standard topological or circular
fingerprints record the occurrence of certain known functional groups in a given molecule
within a certain distance or along a certain connected path (Cereto-Massagué et al., 2015). The
representations are built by applying a fixed hash function to concatenate the features of the
neighborhood of an atom, wherein the information about the 3D geometry and electronic struc-
ture of the molecule is lost, while a lot of representation bits are used up for rarely occurring
features. Besides, the same style of fingerprint is not necessarily optimum for training and
predicting different classes of properties.

A recent strategy to move beyond these limitations is to learn the representation of the molecule
as a part of the regression model itself. For instance, in Coley et al. (2017), Duvenaud et al.
(2015), and Kearnes et al. (2016) to name a few, the molecular fingerprint vectors are obtained
as differentiable convolutional graphs, in which node and edge features of the graph are analo-
gous to atoms and bonds in the molecule. The features of the convolutional graph are iteratively
updated based on those calculated at the previous depth. The resulting features from the con-
volutional neighborhood of each atom are then pooled together to yield a representation vector,
which is finally passed through additional hidden layers in a feed forward network to regress
on a desired property. This approach is a significant improvement over conventional off-the-
shelf fingerprints, as has been demonstrated conclusively by Faber, Hutchison, et al. (2017), in
which they compared the performance of several combinations of representation schemes and
regression models for predicting density functional theory (DFT) calculated properties.

These models, however, are heavily dependent on the featurization of the input representa-
tions. Kearnes et al. (2016) used atom and bond descriptors such as formal charge, Crippen contri-
bution to logP and molar refractivity, total polar surface area contribution, Labute approximate surface
area contribution, estate index, Gasteiger partial charges, aromaticity, bond order and conjugation for
featurizing their initial input representation for prediction of properties such as solubility, drug
efficacy and photovoltaic efficiency. In the same spirit, (Coley et al., 2017) used bond length, chirality,
ring size, hybridization and hydrogen bond donor/acceptor as features to their input, in addition to
several from those mentioned above, for prediction of aqueous solubility, octanol solubility, melt-
ing point, and toxicity. Several of these attributes were calculated using beforehand or had to
be estimated from wet lab. Moreover, the graph itself used for graph convolution in all these
methods is a featurization of the input data. This is because the each bond in the graph has
to be also obtained painstakingly, i.e. it is not inherently known from geometry which atoms
have a bond between them.
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Featurization of input data, however, is not necessarily generalizable for all molecules even if
their 3D geometry is known. Many of the attributes mentioned above are prone to uncertainties
in their estimation and are often not readily available for molecules of interest (McDonagh et
al., 2014). Besides, they rely on support from external chemical fingerprinting software and
phenomenological classification schemes derived from the electronic structure, which are not
trivial to determine consistently. Although quantum mechanics lets us compute the electronic
structure of materials from first principles using the Schrödinger equation, it is far too difficult
to solve exactly for many-electron systems. Density functional theory (DFT) is the most widely
used many-body approach for such calculations but it scales poorly (as O(N3), where N is the
number of electrons) when applied to large systems.

In this work, we develop an efficient deep learning approach that enables prediction of
quantum-mechanical observables of many-body electronic systems using only the molecular
geometry in its crudest form, i.e. just the set of 3D coordinates of atoms and their types in
the molecules. The reason for existence of such a mapping between the molecular geometry
and quantum-mechanical observables can be argued from the first of the two Hohenberg-Kohn
theorems (Koch and Holthausen, 2001), which are the fundamental basis for DFT. Under the
Born-Oppenheimer approximation of fixed atomic nuclei in a many-body electron system, the
first Hohenberg-Kohn theorem describes the relation between the electronic charge density
and the total external potential vext(r). Stated simply, the ground state energy of a system of
electrons E[n(r)] is a unique functional of the ground state density n(r) as

E[n(r)] =
∫

n(r)vext(r)dr + F[n(r)] (5.1)

where F[n(r)] is an unknown, but otherwise universal functional of the electron density only. In
fact all properties of the system, including excited state properties, are, in principle, exact func-
tionals of the ground state density. In absence of additional electromagnetic fields, the external
potential for electrons is decided uniquely by the three spatial coordinates of atoms and their
types in any given molecule. The implication of this is that all the quantum mechanical observ-
ables of the electronic structure of a molecule will therefore depend only on its 3D geometry.
In this work, we present a method to learn this mapping.

The representation of a molecule as a set of 3D coordinates is not expected to possess any inher-
ent ordering, and the dimension of such sets can vary from one molecule to other, thus posing
challenges in applying common machine learning tools that require ordered and fixed dimen-
sional inputs. In addition to this, the function that maps molecular geometry to properties that
are quantum-mechanical observables of the system should, in principle, possesses permutation
invariance with respect to the order in which spatial information of atoms is being provided.
In this regard, we employ a recently proposed theorem (Zaheer, Kottur, Ravanbakhsh, et al.,
2017) that characterizes such permutation invariant functions on sets and provides a family of
functions that can express any such relation. This family of functions has an iteratively decou-
pled structure which enables the design of a deep neural network that can operate directly on
molecular geometries, while simultaneously learning their representations and predicting their
properties.

The proposed method is demonstrated to be competitive to graph convolutions for several
properties that are directly dependent on the electronic structure, without any need for feature
engineering. We demonstrate robust generalization of the learnt representations for predicting
similar properties simultaneously, without the need for extending the network or loss in pre-
diction accuracy Additionally, we show handling output data of different dimensions from the
representation half of the network to predict Mulliken charges, which which, to the best of our
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knowledge, has not yet been reported. Finally, we discuss the systematic origin of prediction
errors depending in the number of atoms in the molecules.

5.2.2 Model

Formally, our problem can be described as follows: Given N molecular geometries of
X(1), ...,X(N), where each geometry can be represented as a set of co-ordinates of M atoms in
the molecule, i.e. X(i) = {x

(i)
1 , ..., x(i)M }. The learning tasks can be classified into two categories

depending on the target: (a) to regress (with variable M per molecule) on target molecular
property values Y(1), ...,Y(N) while obeying invariance w.r.t. specification of molecular geome-
try, and (b) to regress on a property y(n)m corresponding to every atom m with coordinates x(n)m

in any molecule n, like partial charge.

For a function f : X(i)
M → Y

(i)
M that takes only 3D coordinates as input, an arbitrary choice of

input data expressed in specified units (Å in this case) must be enabled by the following:

1. Translation invariance: The output of the model should be invariant to a constant shift in
the coordinates of the molecule X = {x1, ..., xM}, i.e. for any translation τ:

f({xj + τ}) = f({xj}) (5.2)

2. Rotation invariance: The output of the model should be invariant to all possible rotations
of the molecule X, i.e. for any rotation R

f(RX) = f(X) (5.3)

3a. Permutation invariance: The predictions of the model for molecular target properties Y
corresponding to a molecule X should always be invariant to the order in which the set
of atoms belonging to any molecule are fed into the network, i.e. for any permutation π
of the input atoms:

f([xπ(1), . . . , xπ(M)]) = Y (5.4)

3b. Permutation equivariance: In order to regress on a property ym corresponding to every
atom m with coordinates xm in any molecule X, the function should posses an equiv-
ariance such that the application of the function on a different order of the input atoms
transforms the output labels correspondingly, i.e. for any permutation π of the input
atoms:

f([xπ(1), . . . , xπ(M)]) = [yπ(1), . . . ,yπ(M)] (5.5)

Translation invariance is easily handled by always centering the data. However, note that ro-
tational invariance is not inherent to the network architecture but is enforced by training over
several transformations of the same dataset in a self-consistent manner, until there is no change
in the training set errors upon performing rotation.

5.2.3 Experiment

5.2.3.1 Dataset

The publicly available QM9 dataset (Ramakrishnan et al., 2017) was chosen as a suitable refer-
ence as it has been used for such prediction tasks previously. It contains B3LYP/6-31G(2df,p)
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level computed geometric, energetic, electronic, and thermodynamic properties for 133,885 sta-
ble small organic molecules composed from the elements H, C, N, O and F.

The dataset contains properties that relate to the frontier orbital energy states of the molecule
such as the highest occupied molecular orbital eigenvalue εHOMO (eV), the lowest molecular
orbital eigenvalue εLUMO (eV) and the HOMO-LUMO gap ∆ε (eV). In addition to these, some
target types characterize the spatial distribution of electronic charge in the molecule in terms of
quantities like the norm of dipole moment µ (Debye), static isotropic polarizability α (Bohr3),
and electronic spatial extent 〈R2〉 (Bohr2). The zero point vibrational energy ZPVE (eV), which
relates to the fundamental vibrations of the molecule at 0 K, is also included. Lastly, the heat
capacity at room temperature Cv (cal/molK) is also included as a target type. We predict the
Mulliken partial charge for any given atom in a molecule ‹q (e−). In total, 9 types of data were
used as targets for training and prediction. Only 2 molecules of size 3 and 4 molecules of size 4

were excluded from the study as their atoms could not be assigned at least 4 nearest neighbors
(Section 5.2.3.2).

5.2.3.2 Model training and evaluation

Only the DFT computed 3D geometry and atom types were provided as input data. In order
to accelerate the learning of topological features such as bonds, angles and dihedrals, the 3D
coordinates and atom types of the 4 next nearest neighbors were concatenated to the input
data of any given atom in the molecule, without any explicit specification of the values of
bond distances or angles. Inclusion of the 5th and 6th next nearest neighbors did not yield any
significant improvement in prediction accuracy. In order to utilize the equivariance inherent
to the representation half of the network architecture, the learning process was implemented
in a curriculum based on the dimension of the molecule, in which, only molecules of the same
dimension, i.e., same number of atoms, were passed together in batches of size 100. The ADAM
optimizer was chosen with an initial learning rate of 1e-03, which was reduced by a factor of
0.9 after every 50 epochs, except when the input 3D coordinates of all molecules in the training
set were rotated randomly after every 200 epochs in order to enforce rotational invariance until
prediction errors on the training set are self-consistently converged.

In the same spirit as previous machine learning efforts on the QM9 dataset by Faber, Hutchi-
son, et al. (2017) the entire dataset set was divided into a 9:1 ratio for training and testing,
respectively. Several randomly generated instances of training/test sets were created and used
in order to ensure reproducibility of errors on the unknown test set.

5.2.3.3 Performance

In Table 5.1, we compile the mean absolute errors (MAE) of our prediction model on the
test set and compare it with the best case scenarios of several combinations of regressors and
representations on the same dataset taken from the work of Faber, Hutchison, et al. (2017) for
all the targets at 0 K (except Cv at 298.15 K). In addition, we list the mean, mean absolute
deviation (MAD)1 and DFT chemical accuracy estimates for each of the targets (Ramakrishnan
et al., 2017). Faber, Hutchison, et al. (2017) tested a host of regression models such as Elastic Net
(EN), Bayesian Ridge Regression (BR), Random Forest (RF), Kernel Ridge Regression (KRR),
Graph Convolutions (GC) and Gated Graph Neural Networks (GG). From Table 5.1, it can be
observed that irrespective of the representation format, graph convolutions outperform other
regression methods with a general ordering of GC ∼ GG > KRR > RF ∼ BR ∼ EN.

1 *Mean and MAD values of the targets shown here are slightly different from the work of (Faber, Hutchi-
son, et al., 2017) as they exclude a larger set of molecules from the total set for which the SMILES
consistency tests failed.
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These regression models were tested on many schemes of molecular representations, amongst
which, BAML (Bonds, Angles, Machine Learning) and HDAD (Histogram of distances, Angles
and Dihedral angles) are worth mentioning as they consistently resulted in comparably low pre-
diction errors (Faber, Hutchison, et al., 2017). The BAML representation format requires Morse
and Lennard-Jones potentials for bonded and non-bonded atoms, respectively. Three and four-
body interactions between covalently bonded atoms are included using angular and torsional
terms, respectively. These parameters and their functional forms are based on the universal
force field (UFF) (Rappe et al., 1992), generating which requires very controlled and systematic
series of quantum chemical calculations that are difficult to execute for any unknown system.
HDAD, on the other hand, is a significant improvement in generalization over BAML because
it accounts for pairwise distances, triple-wise angles, and quad-wise dihedral angles through
manually generated bins in histograms. The collection of features obtained from the analysis of
histograms is subsequently rendered into fixed-size representations. With regards to featuriz-
ing the input, HDAD is even more general than featurized convolutional graphs, as it depends
only on the knowledge of the 3D geometry of the molecule.

Overall, our model produces errors which were within or quite close to the DFT level errors in
estimation of targets at 0 K. Targets that characterize the spatial distribution of electronic charge
in the molecule, such as dipole moment (µ), static isotropic polarizability (α) and electronic
spatial extent (〈R2〉) are predicted with accuracy of the same order as graph convolutions by
the present model. 〈R2〉 measures the extent to which a molecule can spontaneously incur a
dipole moment in response to an external field and is relatively difficult to predict because in
this case van der Waals interactions play a role in the dynamics of the medium. It must be
noted that DFT in its standard flavor, as applied in the QM9 dataset, is known to fail patently
when accounting for van der Waals interactions.

Prediction accuracies for frontier orbital (εHOMO-εLUMO) energy levels is achieved well within
the DFT error limits by the current model, which performs better than or equal to all baselines
except graph convolutions. DFT uncertainties in estimation of εHOMO-εLUMO is generally quite
high owing to the dependence on basis sets/functionals used for performing computations,
and accurate estimation needs higher order perturbation and wavefunction based methods. It is
not surprising, therefore, that convolutional graphs featurized with quantum mechanical meta-
information, such as hybridization of orbitals and aromaticity, perform better in predicting
these values.

The zero-point vibrational energy (ZPVE) at 0 K is calculated from bond force constants un-
der a harmonic oscillator approximation. It is predicted equally well by the current model in
comparison to graph convolutions, and is equivalent to DFT error limits. The heat capacity is
predicted poorly by the current model as compared to the standard methods, which are better
even than graph convolutions. A reason for this could be the fact that at 0 K, the contributions
of translation, rotation, and vibration degrees of freedom to the heat capacity of gas phase
molecules vanish and the current model fails to encode this information. Heat capacities in
the present data set have not been estimated as a direct quantum mechanical observable of the
electronic structure of the molecule, but rather from principles of thermochemistry, wherein
the contributions of the translational, rotational and vibrational degrees of freedom are only
obtained as corrections under the rigid rotor approximation.

5.2.3.4 Prediction of Mulliken charges

Mulliken charges are not integer charges, rather fractions of an electron corresponding to the
percentage of time an electron is near each nucleus. They are best obtained with smaller, gen-
eralized basis sets using linear combination of molecular orbitals, and are routinely used as
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Regressor µ α 〈R2〉 εHOMO εLUMO ∆ε ZPVE Cv

(Fingerprint) Debye Bohr3 Bohr2 eV eV eV eV cal/molK

EN(HDAD) 0.563 0.437 6.19 0.139 0.238 0.278 0.0064 0.088

BR(HDAD) 0.565 0.430 5.94 0.140 0.238 0.278 0.0032 0.079

RF(BAML) 0.434 0.638 51.1 0.107 0.118 0.141 0.0132 0.451

KRR(HDAD) 0.334 0.175 1.62 0.066 0.084 0.107 0.0019 0.044

GG(MG) 0.247 0.161 6.30 0.057 0.063 0.088 0.0043 0.084

GC(MG) 0.101 0.232 4.71 0.055 0.062 0.087 0.0097 0.097

This work 0.283 0.472 6.45 0.135 0.155 0.183 0.0096 0.200

DFT errors 0.1 0.4 - 2.0 2.6 1.2 0.0097 0.34

Mean 2.706 75.19 1189.53 -6.530 0.303 6.833 4.042 31.600

MAD 1.189 6.300 202.04 0.443 1.052 1.079 0.720 3.204

Table 5.1: MAE on unknown test data from the current model and its comparison with predictions from
combinations of regressors and representations taken from work of Faber, Hutchison, et al.
(2017) for all DFT calculated properties from the QM9 dataset.

variables in linear regression (QSAR) procedures. For any given molecule, every atom is as-
signed a Mulliken charge using population analysis. From a machine learning perspective, this
is a difficult task to implement and has not been performed yet in this area, as molecules of
different dimensions will have to be trained against outputs of different dimensions. However,
the inherent equivariance in the current model as well as the curriculum based learning imple-
mentation scheme allows for the handle outputs of the same dimension as the molecule, which
is the case for Mulliken charges.

Without needing to extend the representation half of the network, Mulliken charges were pre-
dicted for the unknown test with an error of 0.013e−, where e− represents an electron’s charge.
The error cannot be compared to a DFT benchmark as it is obtained entirely from mathemati-
cal constructions, rather than as a fundamental quantum mechanical observable. Its usefulness
and accuracy can be gauged from the fact that classical molecular dynamics simulations em-
ploy such values as point charges specified up to ∼ 0.01e−.

5.3 predictive data analysis : cosmological

parameters

5.3.1 Red Shift Estimation in Galaxy Clusters

An important regression problem in cosmology is to estimate the red-shift of galaxies, corre-
sponding to their age as well as their distance from us (Binney and Merrifield, 1998). Two
common types of observation for distant galaxies include a) photometric and b) spectroscopic
observations, where the latter can produce more accurate red-shift estimates.

One way to estimate the red-shift from photometric observations is using a regression
model (Connolly et al., 1995). We use a multi-layer Perceptron for this purpose and use the
more accurate spectroscopic red-shift estimates as the ground-truth. As another baseline, we
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have a photometric redshift estimate that is provided by the catalogue and uses various obser-
vations (including clustering information) to estimate individual galaxy-red-shift. Our objective
is to use clustering information of the galaxies to improve our red-shift prediction.

5.3.2 Model

Formally, our problem can be described as follows: Given N galaxy clusters of X(1), ...,X(N),
where each galaxy cluster can be represented as a set of features of M galaxies in the galaxy
cluster, i.e. X(i) = {x

(i)
1 , ..., x(i)M }. The learning task is to regress on a property y(n)m corresponding

to every galaxy m with features x(n)m in any galaxy cluster n, like red shift. That is we want to
learn a function, f : X(i)

M → Y
(i)
M that takes only features as input and output are the per galaxy

cosmological parameters.

In order to regress on a property ym corresponding to every galaxy m with features xm in
any galaxy cluster X, the function should posses an equivariance such that the application of the
function on a different order of the input galaxy transforms the output labels correspondingly,
i.e. for any permutation π of the input galaxy:

f([xπ(1), . . . , xπ(M)]) = [yπ(1), . . . ,yπ(M)] (5.6)

Note that the prediction for each galaxy does not change by permuting the members of the
galaxy cluster. Therefore, we can treat each galaxy cluster as a “set” and use permutation-
equivariant layer to estimate the individual galaxy red-shifts.

5.3.3 Experiment

5.3.3.1 Dataset

For each galaxy, we have 17 photometric features 2 from the redMaPPer galaxy cluster cata-
log (Rozo and Rykoff, 2014), which contains photometric readings for 26,111 red galaxy clus-
ters. In this task in contrast to the previous ones, sets have different cardinalities; each galaxy-
cluster in this catalog has between ∼ 20 − 300 galaxies – i.e. x ∈ RN(c)×17, where N(c) is
the cluster-size. See Figure 5.1(a) for distribution of cluster sizes. The catalog also provides
accurate spectroscopic red-shift estimates for a subset of these galaxies as well as photometric
estimates that uses clustering information. Figure 5.1(b) reports the distribution of available
spectroscopic red-shift estimates per cluster.

5.3.3.2 Method

We randomly split the data into 90% training and 10% test clusters, and use the following
simple architecture for semi-supervised learning. We use four permutation-equivariant layers
with 128, 128, 128 and 1 output channels respectively, where the output of the last layer is
used as red-shift estimate. The squared loss of the prediction for available spectroscopic red-
shifts is minimized.3 Figure 5.1(c) shows the agreement of our estimates with spectroscopic
readings on the galaxies in the test-set with spectroscopic readings. The figure also compares
the photometric estimates provided by the catalogue (Rozo and Rykoff, 2014), to the ground-

2 We have a single measurement for each u,g,r, i and z band as well as measurement error bars, location of the galaxy in
the sky, as well as the probability of each galaxy being the cluster center. We do not include the information regarding
the richness estimates of the clusters from the catalog, for any of the methods, so that baseline multi-layer Preceptron
is blind to the clusters.

3 We use mini-batches of size 128, Adam (D. P. Kingma and Ba, 2014), with learning rate of .001, β1 = .9 and β2 = .999.
All layers except for the last layer use Tanh units and simultaneous dropout with 50% dropout rate.
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Figure 5.1: Application of permutation-equivariant layer to semi-supervised red-shift prediction using
clustering information: (a) distribution of cluster (set) size; (b) distribution of reliable red-
shift estimates per cluster; (c) prediction of red-shift on test-set (versus ground-truth) using
clustering information as well as RedMaPPer photometric estimates (also using clustering
information).

truth. As it is customary in cosmology literature, we report the average scatter |zspec−z|
1+zspec

, where
zspec is the accurate spectroscopic measurement and z is a photometric estimate.

5.3.3.3 Performance

Our result is summarized in Table 5.2. The average scatter using our model is .023 compared
to the scatter of .025 in the original photometric estimates for the redMaPPer catalog. Both
of these values are averaged over all the galaxies with spectroscopic measurements in the test-
set. We repeat this experiment, replacing the permutation-equivariant layers with fully con-
nected layers (with the same number of parameters) and only use the individual galaxies with
available spectroscopic estimate for training. The resulting average scatter for multi-layer Per-
ceptron is .026, demonstrating that using clustering information indeed improves photometric
red-shift estimates.

Method Avg Scatter

MLP 0.026

redMaPPer 0.025

DeepSets 0.023

Table 5.2: Red-shift experiment. Lower scatter is better.

5.4 exploratory data analysis : satellite im-
agery

There has never been a more exciting time to observe humanity and understand it’s impact
on the world. Recognition of such patterns through similarity search has helped us in various
domains: wildlife tracking and identifying conflicts (Suju and Jose, 2017), discovering survivors
in battlefield dynamics (Y. Han et al., 2015), detecting fraudulent online behavior (Ngai et al.,
2011), finding diagnosis using medical histories (Korn et al., 1996), etc. We aim to help people
discover such patterns and repeat this success story using satellite data.

In light of this, we present Terrapattern, a prototype to demonstrate a workflow by which
lay users - such as journalists, citizen scientists, humanitarian agencies, and others - can easily
search for visually consistent “patterns of interest”. Our goal is to provide a geospatial software
tool that makes it easy for people, who may lack expertise in machine vision,
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1. to specify an image that they are interested in and automatically find similar examples

2. to provide the locations of those instances in a common data format that easily allows for
further examination

After its launch, Terrapattern was well received by the media and the public at large (see (Cold-
eway, 2016; Robinson, 2016; Ryan, 2016)).

Terrapattern consists of two components: a feature extraction service based on Deep Nets (see
Section 5.4.3) and the main contribution of this chapter, a nearest neighbor (NN) search. To
be popular in the aforementioned task, such a NN search service would have to satisfy the
following requirements:

• Online: Be responsive for interactive queries by artists, i.e. to be able to handle online
(not batch mode) queries over large high dimensional satellite imagery datasets in real-
time. This rules out many efficient batch-mode NN search service running on GPUs (Jeff
Johnson, Douze, and Jégou, 2017).

• High Recall: Must have high recall as humans are the direct consumers of the results
of the NN search. Furthermore, the number of neighbors needed would be small. The
super-fast approximate NN search methods work best when they must output a high
number of neighbors at moderate recall (e.g. as an intermediary step of an automated ML
pipeline), and thus are not applicable.

• Fast Construction: Allows for fast construction/indexing. For example, artists can load
various datasets and start playing with it immediately.

• Distributed: For extremely large datasets that do not fit on a single machine, the NN
search service should be distributable over multiple machines, without high cost of syn-
chronization in case of updates.

• Malleable: Possible to modify (insert/delete points) the search index. This is useful, for
example, when a higher resolution satellite imagery becomes available for certain region.

Since none of the existing NN search service meets all of our requirements, we develop a tree
data structure Stable Greedy Tree (SG-Tree). The proposed tree data structure allows for almost
linear time construction and fast query time for exact NN search under real world assumptions
(Section 5.4.1.3). Perhaps the most surprising features, are that SG-Tree is extremely simple and
as a result, our construction time is orders of magnitude faster than any comparable algorithm.
While these complexities are quite standard, the major distinguishing factor of SG-Tree is its
simplicity (Section 5.4.1.5).

Historically, NN Search has been used to classify unlabeled data based on a existing labeled
data-set. Underlying this task is an assumption that the exists data-set has some inherent clus-
tering. Existing methods such as Locally Sensitive Hashing, often implicitly use this assump-
tion, whereas we explicitly use this assumption. In some sense, our data structure is designed
to perform well on data that has some clustering.

At a high level, SG-Tree tries to create a hierarchical tree where each node performs a “coarse”
clustering. The centers of these “clusters” become the children and subsequent insertions are
recursively performed on these children. When performing the NN query, we prune out solu-
tions based on a subset of the dimensions that are being queried. This is particularly useful
when trying to find the nearest neighbor in highly clustered subset of the data, e.g. when the
data comes from a Gaussian. The effect of these two optimizations is that our data structure
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Figure 5.2: Overview of proposed hierarchical data structure that allows fast retrieval in logarithmic time.

is extremely simple, highly parallelizable and is comparable in performance to existing NN
implementations on many data-sets.

Another appealing aspect of our data structure is its simplicity. As a result, it is amenable to
theoretical guarantees. Existing data structures with theoretical guarantees such as Navigating
Net (Krauthgamer and J. R. Lee, 2004), Cover Trees (Beygelzimer, Kakade, and Langford, 2006),
HNSW (Malkov and Yashunin, 2016), P-DCI, (K. Li and Malik, 2017), RP-tree (Dasgupta and
Sinha, 2013), are either sequential in nature or hide large constants. We are able to show that SG-
Tree inherits some of the nice properties of Cover Trees and adapts to the intrinsic dimension
of the data. This is particularly beneficial when the feature vectors come from neural networks
that have high euclidean dimensions but often lie on a (significantly) smaller dimensional
manifold. In a similar vein, (G. H. Chen, D. Shah, et al., 2018) have used the clusterability of
the data to give non-asymptotic guarantees on the NN search. We take a similar step and show
that if the data comes from a mixture of Gaussians, then the resulting tree structure has some
nice properties. Our work, like that of (G. H. Chen, D. Shah, et al., 2018), relies on the clusters
being sufficiently far away so that noise is unlikely too many points to appear in the wrong
cluster. Although, this work only takes the first steps, we believe it should be possible to give
data-structures that have strong theoretical guarantees and are quite fast in practice.

5.4.1 Stable Greedy Trees

5.4.1.1 Definition

Stable Greedy Tree (SG-Tree)is defined with respect to a hyper-parameter γ > 1 over a dataset
S in a metric space with distance d(·, ·). SG-Tree is an example of a hierarchical trees where the
input points are leaves and each input point is associated with a unique internal point. Nodes
at a certain height are said to be in the same level. When we compress this tree (i.e. if a node
has only itself as a child, then we simply delete this child), it has the property that each node
is associated to a unique level.

The nodes of SG-Tree contains following attributes:

• point: The data point vector

• level: The level of the node in the tree as integer

• max: The upper bound to distance of furthest node in the current subtree.
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Insertion: To insert a node at a given subtree rooted at r at level l , we find the closest child p.
If d(p,q) 6 γl−1, then we recursively insert q into the subtree defined at p. On the other hand,
if d(p,q) > γl−1 then we insert it a sibling in the current level and connect it to the parent at
the last level. This is outlined in Algorithm 5.1.

Query: To find the closest neighbor to a query point, we traverse down the levels of the SG-Tree
starting from the root and maintain the current best node seen. At each level, we only maintain
nodes that could still contain the nearest neighbor to a given query point p. To help prune out
bad nodes, we first prune nodes using the first half of the coordinates before running the entire
distance. We make this formal in Algorithm 5.2.

5.4.1.2 Connections to Net Trees and Cover Trees

SG-Tree is inspired by and closely related to Cover Trees introduced by Beygelzimer, Kakade,
and Langford (2006). Cover trees form a hierarchical data structure that allows fast retrieval in
logarithmic time when the metric has a small expansion constant (defined below). In particular,
it allows for O(n logn) construction time, O(logn) retrieval, and it only depends polynomialy
on the expansion rate. Moreover, the degree of all internal nodes is well controlled.

Cover trees are defined as an infinite succession of levels Sl with l ∈ Z. Each level l contains
(a nested subset of) the data with the following properties:

• Nesting property: Sl−1 ⊆ Sl.

• Separation property: All p,q ∈ Sl satisfy d(p,q) > γl.

• All q ∈ Sl−1 have a parent in p ∈ Sl, possibly with p = q, with d(p,q) 6 γl.

We compress the data structure so each p is represented only once: it is only stored in the
largest level l for which p ∈ Sl. This data structure has a number of highly desirable prop-
erties, as proved in Beygelzimer, Kakade, and Langford (2006). SG-Tree does not satisfy the
separation property globally for all children in Sl but only for siblings under a common par-
ent. In that sense, SG-Tree changes this property from being a global one to a local one. This
slight modification will have huge repercussions in performance, as it will allow us to insert in
parallel and distribute query.

Another very related data structure is Net Trees introduced by Krauthgamer and J. R. Lee (2004).
Their data structure is also a hierarchical tree that has stronger properties. In fact, Jahanseir
and Sheehy (2016) showed that Net Trees capture Cover Trees for an appropriate choice of
parameters. They get stronger guarantees in part by maintaining epsilon nets at each level
which are constructed greedily, and maintain lists of relatives at each point that maintain close
neighbors. SG-Tree also builds an epsilon net, however only on the points that are in a ball
around some node. Once again, we substitute a global property for a local one. These changes
lose many of the theoretical properties but we gain by having a simple implementation that
can be optimized for modern architectures.

5.4.1.3 Structural Properties

In this section, we show that the SG-Tree shares some of the properties of Cover Trees in terms
of tree structure and construction time.

Definition 5.1 Let δmax := maxp,q∈S ‖p− q‖ denote the maximum distance between any two points
in S and δmin := minp6=q∈S ‖p− q‖ denote the minimum distance between any two points. We define
the aspect ratio of the metric to be ∆ := δmax/δmin.

Theorem 5.2 The height of the SG-Tree is at most O(log(∆)) where ∆ is the aspect ratio of the metric.
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Algorithm 5.1 Insert a new point into SG-Tree

1: function Insert(Node n, Point p)
2: # Start with n← root
3: Find child c of n closest in distance to p
4: if d(c,p) < γc.level then
5: if c.max < d(c,p) then
6: c.max← d(c,p)
7: end if
8: Insert(c,p)
9: else

10: Assign p as child of n
11: end if
12: return
13: end function

Proof Observe that the deepest level is at least logγ(δmin/2) as all balls of radius δmin/2 are
disjoint. The top level is at most logγ(2 · δmax) as all points are at most δmax apart. The total
height of the tree is at most the difference in these levels: O(log(δmax

δmin
)).

We use the definition of expansion constant α and the following lemmas from Beygelzimer,
Kakade, and Langford (2006).

Definition 5.3 The expansion constant α is defined as smallest α > 2 such that |B(p, 2r)| 6 α ·
|B(p, r)| for all p ∈ S where B(p, r) denotes a ball of radius r around the point p.

Lemma 5.4 The maximum degree of any node in this tree is at most α3.

Proof Let r be a node at level l and let c1, . . . , ct be its children. Each ci creates a disjoint
ball of radius γl−1/2 as we know that d(ci, cj) > γl−1. WLOG let c1 be the ball that contains
the least number of points in a ball of radius B(c1,γl−1/2). Observe that B(c1,γl−1/2) ⊆
B(r,γl) ⊆ B(p, 2 · γl). Since the larger ball is at most 4 · γ times bigger than the smaller ball,
and we choose γ < 2, we can bound the number of total points by the expansion constant. In
particular, |B(p, 2 · γl)| 6 α3 · |B(p,γl−1/2)|. Since we chose p1 so that B(p1,γl−1/2) to have
the least number of points, we know that there can be at most α3 such nodes.

Corollary 5.5 The time to insert a new point p is α3 log(∆).

Proof This is an easy consequence of Lemma 5.4 and 5.2. Upon insertion, we query all
the children of a node which is at most α3 and proceed to the next level. Since there are
at most log(∆) levels and each node has at most α3 children, this gives us the required bound.

5.4.1.4 Average Case Analysis

Since we do not have a global seperation property, this severely limits our ability to analyze
the tree under a worst case model. It is therefore necessary to go beyond worst-case and analyze
the model in an average case model.
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Algorithm 5.2 Find nearest neighbor in SG-Tree

1: function NN(Node r, Query point p, Candidate NN n)
2: # Start with r← root and n← root
3: if d(p, r) < d(p,n) then
4: n← r

5: end if
6: for each child q of r do
7: #high dim data: prune in two steps
8: if d 1

2
(p,q) − q.max < d(p,n) then

9: if d(p,q) − q.max < d(p,n) then
10: n← NN(q,p,n)
11: end if
12: end if
13: end for
14: return n

15: end function

In this section, we assume that the points are drawn from the uniform distribution. We do this
to elucidate the main ideas clearly, however, these ideas can be extended to the case where
the points are drawn from any sufficiently symmetric distribution (this includes the Gaussian
distribution).

To be more specific, we will assume that the points are drawn uniformly independently at
random from a ball of radius R in some ambient dimension d. Our proofs would also work
if these points are subsequently embedded in a higher dimensional space via a linear trans-
formation. In this sense, it is a simple linear generative model that we study. We will assume
that d = O(1) or some small growing function of n. (Otherwise, most points are very far away
from each other and are not very interesting for NN search.) This implies that the expansion
coefficient is α = O(2d).

The key to our understanding in this regime is the following lemma.

Lemma 5.6 Suppose S is drawn from the uniform distribution as described above. Then with high prob-
ability each node in the first k levels has at least Ω(logn) nodes in its subtree when k = O(log logn).

Proof We will do this by induction on each level and by the method of deffered decisions.
In particular, Conditioning on the first k levels of SG-Tree, we will argue that with high
probability, each node will contain a “voronoi" region that has a significant measure. Hence,
the probability that the remaining nodes do not fall in that cell is exponentially small. Thus
we can guarantee with probabity that at least a 1/poly(n) at least Ω(logn) points will fall in a
particular node. Taking a union bound finishes the proof.

Using the above lemma we can prove two important facts about the SG-Tree when S and q is
drawn from the uniform distribution.

Lemma 5.7 Find neighbor takes on at most O(α4 log∆) time per query when the input points S are
drawn from the uniform distribution and the query q in expectation.
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Proof Assume we insert the query point p into the tree and let us consider the root to leaf path
p1 = r, . . . ,pt. Observe the Algorithm 5.2 will also search along this path first.

By Lemma 5.6, we know that with high probability that there are at least Ω(logn) nodes in the
node pk where k ∈ o(log logn). Thus the distance d̃ = d(plog logn,q) is a good upper-bound
on the optimal distance d∗. Using this information, it remains to show two parts. The set of
nodes Ql queried at each level l is at most O(α) when l = o(log logn). For the remaining
nodes, since we have a good estimate, we will argue that with high probability there are only
O(α) nodes that will be better than this estimate. Since we might query each node and its
children, we can bound this total by O(α4).

Lemma 5.8 Given a SG-Tree with n points coming from a uniform distribution on a ball of radius R in
dimension d. the probability of a new point being inserted in top k levels is at most n(−Θd(1)) when k
and d are constants and n is large.

Proof Let k be a constant and we will bound the probability that a new point p is inserted at
level k as a child of node r. A point p gets inserted as a child of r at level k only if there is
no other existing child q violating the separation constraint, i.e. d(p,q) > γl−1. This requires
that of all the points inserted as children of r, none of them fall in B(r,γl) ∩B(p,γl−1 given
p ∈ B(r,γl). Observe that this is a function of d and γ but not n.

Since k is a constant, we can use Lemma 5.6 to show that the number of points expected to fall
in under node r is going to be t := Ω(logn)/Vd(R) · Vd(γl) with high probability. It remains
to calculate the probability conditioned on t points arriving inside B(r,γl) we can assume by
symmetry that they are uniformly chosen in this ball. Let ρ = |B(r,γl) ∩B(p,γl−1)|/|B(r,γl)|
denote an uppper bound on the probability that a point falls in this region. The value ρ
depends only on d and not on n (In fact, it is roughly O(1/γd)). The probability that all t
points ill be away from this is at least (1 − ρ)t. This event occurs with probability roughly
e−ρt ∼ eΘd(logn). Taking a union bound over all n points, we see that with high probability, a
new insertion will not create a new node in the top k levels. .

5.4.1.5 Practical Deployment

SG-Tree has simple construction and query procedures as outlined in Algorithm 5.1 and 5.2.
The main vantage point of SG-Tree over the theoretically guaranteed fast exact search method
cover trees, come from absence of a global separation constraint, making parallelization hard.
On a modern heavily multi-cored CPU, we have a threadpool and want to insert a batch of
points in parallel using the threadpool. In the case of a cover tree, if any worker thread inserts
a point, every other worker thread has to ensure that the inserted point does not violate the
global separation property for their point. This results in a lot of contention and deadlock,
and significantly poor performance. In Beygelzimer, Kakade, and Langford (2006), a batch in-
sert method is proposed for cover tree which is much faster than sequential insert on a single
threaded environment. Nonetheless, the algorithm is inherently sequential and it is not clear
how to modify it to make use of modern multi-threaded compute resources. In SG-Tree, a
worker node inserting a point does not need to worry about modifications to the tree hap-
pening at places other than current node because separation property needs to be only locally
maintained among siblings. Even in case the of current node being modified, the worker thread
does not need to discard any work, but only has to account for the newly inserted point. Thus,
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Figure 5.3: A natural distributed implementation of SG-Tree. Multiple replicas can be maintained at
cheaply, i.e. with low synchronization cost as modifications to top layers are guaranteed to
be rare by Lemma 6.

a very efficient construction for SG-Tree can be implemented in a work-stealing Fork/Join
framework.

In other methods, like HNSW, RP-Trees, etc. the bulk of the work can be easily parallelized,
but the total work needed is often much higher. For example, building the small world graphs
in worst case is O(n2) (Fu et al., 2017), and unknown for others.

heuristics for improved performance We discovered a practical trick that makes SG-
Tree (and cover trees as well) more balanced and thus increasing performance: Start with siz-
able chuck of data points representative of the data distribution. In this chunk, find the point
closest to the mean. Use this point as the root of the tree. Next, insert remaining points from
the chunk in descending order of the distance. Despite slight additional work at the beginning,
this trick reduces both the overall construction time and query search time. We conjecture that
this trick allows top layers of the tree to quickly spread out, identifying different regions in the
data and allowing more effective pruning during search.

extension to some improper distances Apart from finding NN according to L2 dis-
tance in Euclidean space, there are other popular naturally occurring criteria that are not
proper metrics such as: angular distance, maximum cosine similarity or maximum inner prod-
uct search. These criteria do not obey triangle inequality, so SG-Tree cannot be directly used
Following P. Ram and Gray (2012) and Bachrach et al. (2014), we can show that SG-Tree can be
used for even such improper distances by performing suitable and cheap transformations of
the data points.

• Maximum Cosine Similarity Search (MCSS): Instead of inserting data points xi in SG-
Tree, insert normalized version x̃i = xi/‖xi‖. Performing NN search in `2-distance is
equivalent to MCSS as:

NN(q|x̃) = argmin
i

‖x̃i − q‖ = argmin
i

‖x̃i − q‖2

= argmin
i

‖x̃i‖2 + ‖q‖2 − 2〈x̃i,q〉

= argmax
i

〈x̃i,q〉 = argmax
i

〈xi,q〉
‖xi‖‖q‖

= MCSS(q|x)

(5.7)
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• Maximum Inner Product Search (MIPS): As before, we will insert transformed points
in SG-Tree. Assume, we can have an upper bound u for the L2 norm, i.e. u 6 ‖x‖, ∀x.
Instead of inserting original data points xi, we insert the augmented data points x̃i =

[xi;
√
u2 − ‖xi‖2] in SG-Tree. The query vector q is also modified as q̃ = [q; 0]. Now

performing NN search in L2 distance with modified query is equivalent to MIPS for
original query as:

NN(q̃|x̃) = argmin
i

‖x̃i − q̃‖ = argmin
i

‖x̃i − q̃‖2

= argmin
i

u2 + ‖q‖2 − 2〈xi,q〉

= argmax
i

〈xi,q〉 = MIPS(q|x)

(5.8)

distributed high throughput implementation For large scale data, such as satellite
imagery data of whole earth (> 8TB), that do not fit in memory of a single computer, one
resorts to distribution across multiple machines. In a natural setup for a distributed tree search,
as first proposed by Patwary et al. (2016) using kd-trees, first the data would be spatially
partitioned into roughly equal size portions and distributed among the nodes. Then a global kd-
tree containing representation data points of these spatial partitions would be constructed and
would be used to direct queries/inserts to appropriate nodes. Results from the polled nodes
would be aggregated and returned. However, with kd-tree such spatial partitioning of can be
very expensive to construct. Moreover with new points coming in the spliting points/directions
in the global kd-tree might have to be updated often to maintain fast look-ups.

SG-Tree has favorable properties for distribution. First, no two-step construction is needed.
The tree can be grown normally till memory is exhausted, at which point sub-trees starting
from level k can be distributed among other nodes. The data can be continued to be added
after distribution. Unlike kd-trees, in SG-Tree there is no axis aligned splits that have to be
recomputed with new points coming in. Second, the top-k levels of SG-Tree can be replicated
across all nodes, without incurring much synchronization penalty. This is because by Lemma
6, modifications in top-k levels of SG-Tree are rare, thus replica would hardly needed to be
synchronized. Thus, every node can process incoming queries and direct it to appropriate
nodes, thereby increasing the throughput as illustrated in Figure 5.3.

5.4.2 Experiments

In this section, we present empirical studies comparing SG-Tree with other data structures.
These show that SG-Tree has fast construction speed and competitive query time meeting the
needs of TerraPattern.

datasets To test the above claims, we evaluate on a number of datasets from UCI reposi-
tory4 and from the popular ANN-Benchmark5, as listed in Figure 5.4 along with their size (N)
and dimensionality (D). These are multivariate datasets from a varied set of sources meant to
provide a broad picture of performance across different domains. They also include a mix of
Euclidean and Angular distance (1-cosine similarity) as the natural metric for NN query among
the selected datasets. The datasets come with a train and test split; we use the train set to build
the NN index and test set for query.

method As our metric for comparison, we use the “experience time”, i.e. the total time taken
for constructing the index and performing 1k queries to find the 10-NN in the index for each

4 https://archive.ics.uci.edu/ml
5 https://github.com/erikbern/ann-benchmarks

https://archive.ics.uci.edu/ml
https://github.com/erikbern/ann-benchmarks
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Figure 5.4: Comparison of SG-Tree on numerous benchmark datasets in terms of “experience time”, i.e.
total time taken to build the index and perform 1K queries. Approximate NN methods are
marked with * and for such methods the hyper-parameters are chosen to produce Recall@10

> 0.99 on all the datasets. Non-modifiable data structures are marked with †.

query vector. This metric better reflects the experience of an user who interactively wants to
perform some NN search. The traditional metrics of construction time and time taken per query
is provided in Table 5.3 and 5.4. We compare our multi-threaded implementation of SG-Tree in
C++14 against following methods, each covering a broad class of NN search strategy:

• Cover Tree: We use an in-house C++14 implementation of Cover Tree as no open source
multi-threaded code was available that exactly implemented cover tree. 6 Although con-

6 MLPack claims to implement Cover Tree, but they ignore the global separation property https://github.com/mlpack/

mlpack/blob/master/src/mlpack/core/tree/cover_tree/cover_tree.hpp#L39

https://github.com/mlpack/mlpack/blob/master/src/mlpack/core/tree/cover_tree/cover_tree.hpp#L39
https://github.com/mlpack/mlpack/blob/master/src/mlpack/core/tree/cover_tree/cover_tree.hpp#L39


118 static models

Dataset N D
Construction Time [s]

CoverTree RPTree* HNSW*† P-DCI* SG-Tree

Eu
cl

id
ea

n
Artificial 10K 40 2.38E+01 2.47E+00 5.82E-01 5.34E-01 2.01E-02

Faces 10K 20 1.01E+00 4.27E+00 1.25E+00 7.00E+00 4.14E-01

Corel 68k 32 8.84E+01 2.07E+01 3.08E+00 8.67E+00 1.65E-01

MNIST 70K 784 9.71E+02 8.41E+01 2.28E+01 9.56E+00 8.41E-01

FMNIST 70K 784 9.01E+02 8.12E+01 1.36E+01 1.03E+01 8.75E-01

TinyImages 100K 384 3.28E+03 8.55E+01 3.52E+01 1.75E+01 9.78E-01

CovType 581K 55 3.10E+01 3.10E+02 3.63E+01 2.84E+02 1.90E+00

Twitter 583K 78 9.74E+03 2.68E+02 4.55E+01 2.95E+02 2.09E+00

YearPred 515K 90 9.75E+03 2.77E+02 1.10E+02 2.51E+02 1.69E+00

SIFT 1.00M 128 8.41E+03 6.64E+02 3.44E+02 8.02E+02 2.56E+00

GIST 1.00M 960 1.94E+04 2.39E+03 2.16E+03 1.01E+03 1.96E+01

A
ng

ul
ar

NYTimes 300K 256 1.25E+03 2.35E+02 3.80E+02 7.54E+01 6.29E+00

GloVe25 1.28M 25 8.47E+03 8.35E+02 3.69E+02 1.03E+03 2.44E+00

GloVe50 1.28M 50 9.46E+03 8.11E+02 8.16E+02 1.05E+03 3.60E+00

GloVe100 1.28M 100 1.15E+04 1.06E+03 1.33E+03 1.10E+03 6.15E+01

GloVe200 1.28M 200 1.85E+04 1.37E+03 2.33E+03 1.14E+03 3.32E+02

Table 5.3: Comparison of SG-Tree on numerous benchmark datasets in terms of construction time on the
task of building NN graph. Approximate NN methods have been marked with * and for such
methods the hyper-parameters are chosen so as to produce Recall@10 > 0.99 on all the datasets.
Non-modifiable data structures are marked with †.

struction is not parallelizable, we tried to parallelize distance computations where possi-
ble. It is an exact search method.

• Random Projection (RP) Tree: We use Annoy7, an highly optimized implementation of
forest of RP trees in C++11. It is an approximate search method based on space partition-
ing.

• Hierarchical Navigation Small World (HNSW) Graphs: We use the excellent implementa-
tion of HNSW from NMSLIB8 in C++11. The method builds a proximity graph at multiple
resolutions for the points in index. It is also an approximate search method in the category
of neighborhood based methods.

• Prioritized Dynamic Continuous Indexing (P-DCI): We use the multi-threaded C code9

released by the authors. The method is a clever application of Johnson-Lindenstrauss
lemma to query in lower dimension at a much lower cost. Theoretically, it is an exact
search method with high probability, but in practice can be considered to be an approxi-
mate search method as well.

7 https://github.com/spotify/annoy
8 https://github.com/nmslib/nmslib/
9 https://github.com/UOMXiaoShuaiShuai/PDCI

https://github.com/spotify/annoy
https://github.com/nmslib/nmslib/
https://github.com/UOMXiaoShuaiShuai/PDCI
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Dataset N D
Avg Time per Query [s]

CoverTree RPTree* HNSW*† P-DCI* SG-Tree
Eu

cl
id

ea
n

Artificial 10K 40 3.75E-05 6.00E-04 6.30E-05 8.00E-04 1.43E-05

Faces 10K 20 7.05E-06 6.15E-04 3.80E-05 6.80E-04 5.19E-06

Corel 68k 32 1.07E-05 6.10E-04 3.83E-05 1.63E-03 1.34E-06

MNIST 70K 784 1.52E-03 9.38E-04 3.98E-04 1.98E-03 5.56E-04

FMNIST 70K 784 8.02E-04 6.17E-04 2.20E-04 2.03E-03 5.72E-04

TinyImages 100K 384 1.58E-03 7.56E-04 5.49E-04 3.36E-03 4.37E-04

CovType 581K 55 9.54E-06 5.46E-04 5.10E-05 3.89E-03 3.11E-06

Twitter 583K 78 2.29E-04 5.81E-04 7.97E-05 4.45E-03 7.05E-05

YearPred 515K 90 1.06E-03 7.01E-04 2.94E-04 5.21E-03 7.30E-04

SIFT 1.00M 128 3.79E-03 1.22E-03 5.03E-04 6.87E-03 2.80E-03

GIST 1.00M 960 6.66E-02 6.04E-03 3.07E-03 1.60E-02 6.10E-02

A
ng

ul
ar

NYTimes 300K 256 3.92E-03 1.74E-03 2.62E-03 2.92E-03 1.89E-03

GloVe25 1.28M 25 2.24E-03 3.79E-04 3.79E-04 6.36E-03 2.22E-03

GloVe50 1.28M 50 5.79E-03 1.56E-03 8.57E-04 7.21E-03 5.69E-03

GloVe100 1.28M 100 1.05E-02 2.37E-03 1.35E-03 8.66E-03 1.02E-02

GloVe200 1.28M 200 1.77E-02 3.63E-03 2.44E-03 1.08E-02 1.69E-02

Table 5.4: Comparison of SG-Tree on numerous benchmark datasets in terms of average time per query
of 10-NN search. Approximate NN methods have been marked with * and for such methods
the hyper-parameters are chosen so as to produce Recall@10 > 0.99 on all the datasets. Non-
modifiable data structures are marked with †.

For the approximate search methods, we selected the following hyper-parameters such that
Recall@10 > 0.99, i.e. we required the recall to be high as it is needed by TerraPattern.

• Cover Tree: It has only one hyper-parameters. Scale was chosen to 1.3 as suggest by
Beygelzimer, Kakade, and Langford (2006). We use transformation presented in (5.7) to
support angular criterion.

• RPTree/Annoy: It has only two hyper-parameters. We had to select n_tree=400 and
search_k=400k. It inherently supports angular criterion.

• HNSW/NMSLIB: It has multiple hyper-parameters. Following the guide provided by
developers, we had to select M=100, efCons=2000, efSearch=2000, and all others were
default value. It inherently supports angular criterion.

• P-DCI: It has multiple hyper-parameters as well. Following the hints pro-
vided by authors, we had to select num_comp_indices=10, num_simp_indices=20,
num_levels=3, construction_field_of_view=200, construction_prop_to_retrieve=1,
query_field_of_view=400, and query_prop_to_retrieve=1. We use transformation pre-
sented in (5.7) to support angular criterion.

• SG-Tree: It has only one hyper-parameter: scale. Similar to cover tree, we chose it to be
1.3.
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Also note that HNSW does not allow modification to the index, which is undesirable for our
application, but we still include them in the comparison.

setup & hardware We follow the experimental setup of the popular ANN-Benchmark .
Similar to their protocol, the queries are not batched as we are interested in online queries.
Instead each query is processed individually, but in parallel using a thread pool that saturates
all the CPU cores. We run our experiments on an Amazon EC2 c5.18xlarge nodes having 72

virtual threads per node and 144GB of memory. For purpose of experiments, all data and
calculations are carried out at single floating-point precision.

observations Overall, Figure 5.4 is in line with our claim that SG-Tree can enhance user
experience for interactive NN search compared to other methods because it takes lowest time
for build plus search across multiple datasets of varying sizes, dimensionality, and distance.
From Table 5.3, we can see that SG-Tree is way faster than all other methods over most of the
datasets. Even in terms of time taken per query (or equivalently queries per second), SG-Tree
is quite competitive with other state of the art methods like HNSW which are not modifiable
as can be seen from Table 5.4. Another salient observation is regarding the GloVe datasets,
which are word embeddings of various ambient dimensions 25, 50, 100, 200. Ideally all of these
vector collections should contain similar semantic information and thus posses similar intrinsic
dimension. As predicted by theory, the time scales linearly with ambient dimension.

5.4.3 Terrapattern Service

Terrapattern provides an open-ended interface for visual query-by-example, a test bed for our
SG-Tree nearest neighbor search algorithm. Simply click an interesting spot on Terrapattern’s
map, and it will find other locations that look similar. Our tool is ideal for locating specialized
’nonbuilding structures’ and other forms of soft infrastructure that aren’t usually indicated on
maps. Terrapattern is a “panoptic perceptron” that allows a user to perform arbitrary queries-
by-example in satellite imagery. A guest clicks on a “feature of interest” in a satellite image; the
Terrapattern system presents a batch of the most similar-looking places nearby; and the guest
can then download a list of these locations in GeoJSON format. An example query is shown in
Figure 5.5 for school bus parking.

For our purposes, “interesting” features are anthropogenic or natural phenomena that are not
only socially or scientifically meaningful, but also visually distinctive–thus lending themselves
ideally to machine recognition. Examples could include things like animal herds, methane
blowholes, factories, destroyed homes, or logging roads. Many other patterns await discovery.

The Terrapattern search tool features three visualizations: a slippy map, for specifying visual
queries; an "Geographical Plot" (or minmap), which shows the locations of search responses
in the surrounding metro region; and a "Similarity Plot", which organizes the returned results
within an abstract 2D space using Principal Component Analysis, or PCA. The Terrapattern
website is built using Ruby and JavaScript, with satellite imagery from Google Maps, while the
Geographical PLot and Similarity Plot were created in JavaScript using p5.js. The user-interface
(UI) is shown in Figure 5.5.

The Terrapattern project seeks to democratize geospatial intelligence. By providing a means
by which researchers, journalists, citizen scientists, and artists can quickly and easily scan
extremely large geographical areas for specific visual features, our hope is that the public at
large will gain the ability to research and answer questions about our world that are otherwise
unknowable.



5.4 exploratory data analysis : satellite imagery 121

Figure 5.5: Using Terrapattern we can identify some of Pittsburgh’s finest school bus depots. We click on
one bus depot in the map, then Terrapattern uses SG-Tree nearest neighbor search to find other
visually similar locations. The retrieved results location, similarity, and images are shown in
the right. Any of the results can be further explored in the main window on left, where we
can possibly issue another query based on a newly discovered feature of interest.

We emphasize that Terrapattern is a limited prototype. As of May 2018, it allows users to
search in the greater metropolitan regions of a few major cities: New York City, San Francisco,
Pittsburgh, Berlin etc. Altogether more than 5,200 square miles (13500 km2) are fully searchable.
Allowing high-resolution searches in size of the United States (e.g. 3.8M mi2 or 9.9M km2) is
financially beyond the scope of project. Website: http://www.terrapattern.com/.

Terrapattern uses a deep convolutional neural network (DCNN), based on the ResNet (“Resid-
ual Network”) architecture developed by He et al. (2016a). We trained a 34-layer DCNN using
hundreds of thousands of satellite images labeled in OpenStreetMap, teaching the neural net-
work to predict the category of a place from a satellite photo. Terrapattern was only possible
due to the astonishing crowdsourced mapping effort of the OpenStreetMap project, which has
generously categorized large parts of the world with its Nominatim taxonomy. We trained
our DCNN using 466 of the Nominatim categories (such as “airport”, “marsh”, “gas station”,
“prison”, “monument”, “church”, etc.), with approximately 1000 satellite images per category.
Our resulting model, which took 5 days to compute on an nVidia 980 GPU, has a top-5 er-
ror rate of 25.4%. In the process, our network learned which high-level visual features (and
combinations of those features) are important for the classification of satellite imagery.

After training the model, we removed the final classification layer of the network and extracted
the next-to-last layer of the DCNN. Using this layer of proto-features (a technique called “trans-
fer learning”), we computed descriptions for millions more satellite photos that cover a few
metropolitan regions. When we want to discover places that look similar to your query, we just

http://www.terrapattern.com/
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(a) Electric stations click here. (b) Cracked tarmacs, click here. (c) Solar panels click here.

(d) Cars click here. (e) Baseball fields, click here. (f) Bridges click here.

(g) Golf course sand traps click
here. (h) Purple tennis courts click here.

(i) Attractive runway markings
click here.

Figure 5.6: Some examples of interesting patterns found by our method.

have to find places whose descriptions are similar to those of the tile you selected. To perform
this search in near real time, we use the proposed SG-Tree algorithm for kNN.

Some interesting example searches patterns are shown in Figure 5.6. It is important to point
out that the Terrapattern system was not trained on any of the categories shown below, but
instead recognizes them because of their common visual features.

5.5 exploratory data analysis : document

modeling

Latent Dirichlet Allocation (LDA) is a Bayesian technique that is widely used for inferring the
topic structure in corpora of documents. It conceives of a document as a mixture of a small
number of topics, and topics as a (relatively sparse) distribution over word types (D. M. Blei,
A. Y. Ng, and Michael I. Jordan, 2003). These priors are remarkably effective at producing
useful results. However, our intuitions tell us that while documents may indeed be conceived
of as a mixture of topics, we should further expect topics to be semantically coherent. Indeed,
standard human evaluations of topic modeling performance are designed to elicit assessment of
semantic coherence (J. Chang et al., 2009; Newman, Karimi, and Cavedon, 2009). However, this
prior preference for semantic coherence is not encoded in the model, and any such observation

http://pgh.terrapattern.com/?lat=40.465007&lng=-80.0471425&_ga=1.202099158.658784226.1477981107
http://pgh.terrapattern.com/?lat=40.499492&lng=-80.23593&_ga=1.96190811.658784226.1477981107
http://nyc.terrapattern.com/?lat=40.7161993&lng=-74.1477104&_ga=1.202099158.658784226.1477981107
http://detroit.terrapattern.com/?lat=42.3902447&lng=-83.18058930000001&_ga=1.202099158.658784226.1477981107
http://pgh.terrapattern.com/?lat=40.355282&lng=-80.14462550000002&_ga=1.193604330.658784226.1477981107
http://pgh.terrapattern.com/?lat=40.4874745&lng=-79.905037&_ga=1.167429497.658784226.1477981107
http://pgh.terrapattern.com/?lat=40.5261395&lng=-79.8810095&_ga=1.160238330.658784226.1477981107
http://pgh.terrapattern.com/?lat=40.5261395&lng=-79.8810095&_ga=1.160238330.658784226.1477981107
http://sf.terrapattern.com/?lat=37.7791702&lng=-122.45761950000002&_ga=1.160238330.658784226.1477981107
http://nyc.terrapattern.com/?lat=40.6979118&lng=-74.16212689999998&_ga=1.196749035.658784226.1477981107
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of semantic coherence found in the inferred topic distributions is, in some sense, accidental.
In this paper, we develop a variant of LDA that operates on continuous space embeddings of
words—rather than word types—to impose a prior expectation for semantic coherence. Our
approach replaces the opaque word types usually modeled in LDA with continuous space
embeddings of these words, which are generated as draws from a multivariate Gaussian.

How does this capture our preference for semantic coherence? Word embeddings have been
shown to capture lexico-semantic regularities in language: words with similar syntactic and se-
mantic properties are found to be close to each other in the embedding space (Agirre et al., 2009;
Mikolov, Yih, and Zweig, 2013). Since Gaussian distributions capture a notion of centrality in
space, and semantically related words are localized in space, our Gaussian LDA model encodes
a prior preference for semantically coherent topics. Our model further has several advantages.
Traditional LDA assumes a fixed vocabulary of word types. This modeling assumption draw-
back as it cannot handle out of vocabulary (OOV) words in “held out” documents. Zhai and J. L.
Boyd-Graber (2013) proposed an approach to address this problem by drawing topics from a
Dirichlet Process with a base distribution over all possible character strings (i.e. words). While
this model can in principle handle unseen words, the only bias toward being included in a
particular topic comes from the topic assignments in the rest of the document. Our model can
exploit the contiguity of semantically similar words in the embedding space and can assign
high topic probability to a word which is similar to an existing topical word even if it has never
been seen before.

Our main contributions are as follows: We propose a new technique for topic modeling by treat-
ing the document as a collection of word embeddings and topics itself as multivariate Gaussian
distributions in the embedding space (Section 5.5.1). We explore several strategies for collapsed
Gibbs sampling and derive scalable algorithms, achieving asymptotic speed-up over the naïve
implementation (Section 5.5.2). We qualitatively show that our topics make intuitive sense and
quantitatively demonstrate that our model captures a better representation of a document in
the topic space by outperforming other models in a classification task (Section 5.5.3).

5.5.1 Gaussian LDA

Before going to the details of our model we provide some background on two topics relevant
to our work: vector space word embeddings and LDA.

5.5.1.1 Vector Space Semantics

According to the distributional hypothesis (Harris, 1954), words occurring in similar contexts
tend to have similar meaning. This has given rise to data-driven learning of word vectors that
capture lexical and semantic properties, which is now a technique of central importance in nat-
ural language processing. These word vectors can be used for identifying semantically related
word pairs (Agirre et al., 2009; Turney, 2006) or as features in downstream text processing ap-
plications (J. Guo et al., 2014; Turian, Ratinov, and Y. Bengio, 2010). Word vectors can either be
constructed using low rank approximations of cooccurrence statistics (Deerwester et al., 1990)
or using internal representations from neural network models of word sequences (Collobert
and Weston, 2008). We use a recently popular and fast tool called word2vec10, to generate skip-
gram word embeddings from unlabeled corpus. In this model, a word is used as an input to a
log-linear classifier with continuous projection layer and words within a certain window before
and after the words are predicted.

10 https://code.google.com/p/word2vec/

https://code.google.com/p/word2vec/
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5.5.1.2 Latent Dirichlet Allocation (LDA)

LDA (D. M. Blei, A. Y. Ng, and Michael I. Jordan, 2003) is a probabilistic topic model of corpora
of documents which seeks to represent the underlying thematic structure of the document
collection. They have emerged as a powerful new technique of finding useful structure in an
unstructured collection as it learns distributions over words. The high probability words in
each distribution gives us a way of understanding the contents of the corpus at a very high
level. In LDA, each document of the corpus is assumed to have a distribution over K topics,
where the discrete topic distributions are drawn from a symmetric Dirichlet distribution. The
generative process is as follows.

1. for k = 1 to K

a) Choose topic βk ∼ Dir(η)

2. for each document d in corpus D

a) Choose a topic distribution θd ∼ Dir(α)

b) for each word index n from 1 to Nd

i. Choose a topic zn ∼ Categorical(θd)

ii. Choose word wn ∼ Categorical(βzn)

As it follows from the definition above, a topic is a discrete distribution over a fixed vocabulary
of word types. This modeling assumption precludes new words to be added to topics. How-
ever modeling topics as a continuous distribution over word embeddings gives us a way to
address this problem. In the next section we describe Gaussian LDA, a straightforward exten-
sion of LDA that replaces categorical distributions over word types with multivariate Gaussian
distributions over the word embedding space.

5.5.1.3 Our Model

As with multinomial LDA, we are interested in modeling a collection of documents. However,
we assume that rather than consisting of sequences of word types, documents consist of se-
quences of word embeddings. We write v(w) ∈ RM as the embedding of word of type w or
vd,i when we are indexing a vector in a document d at position i.

Since our observations are no longer discrete values but continuous vectors in an M-
dimensional space, we characterize each topic k as a multivariate Gaussian distribution with
mean µk and covariance Σk. The choice of a Gaussian parameterization is justified by both
analytic convenience and observations that Euclidean distances between embeddings correlate
with semantic similarity (Collobert and Weston, 2008; Hermann and Blunsom, 2014; Turney
and Pantel, 2010). We place conjugate priors on these values: a Gaussian centered at zero for
the mean and an inverse Wishart distribution for the covariance. As before, each document is
seen as a mixture of topics whose proportions are drawn from a symmetric Dirichlet prior. The
generative process can thus be summarized as follows:

1. for k = 1 to K

a) Draw topic covariance Σk ∼ W−1(Ψ,ν)

b) Draw topic mean µk ∼ N(µ, 1κΣk)

2. for each document d in corpus D

a) Draw topic distribution θd ∼ Dir(α)
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b) for each word index n from 1 to Nd

i. Draw a topic zn ∼ Categorical(θd)

ii. Draw vd,n ∼ N(µzn ,Σzn)

Similar model has previously been proposed for obtaining indexing representations for audio
retrieval (P. Hu et al., 2012). They use variational/EM method for posterior inference. Although
we don’t do any experiment to compare the running time of both approaches, the per-iteration
computational complexity is same for both inference methods. We propose a faster inference
technique using Cholesky decomposition of covariance matrices which can be applied to both
the Gibbs and variational/EM method. However we are not aware of any straightforward
way of applying the aliasing trick proposed by (A. Q. Li et al., 2014) on the variational/EM
method which gave us huge improvement on running time (see Figure 5.7). Another work
which combines embedding with topic models is by Wan, L. Zhu, and Fergus (2012) where
they jointly learn the parameters of a neural network and a topic model to capture the topic
distribution of low dimensional representation of images.

5.5.2 Posterior Inference

In our application, we observe documents consisting of word vectors and wish to infer the
posterior distribution over the topic parameters, proportions, and the topic assignments of in-
dividual words. Since there is no analytic form of the posterior, approximations are required.
Because of our choice of conjugate priors for topic parameters and proportions, these variables
can be analytically integrated out, and we can derive a collapsed Gibbs sampler that resam-
ples topic assignments to individual word vectors, similar to the collapsed sampling scheme
proposed by (T.L. Griffiths and Steyvers, 2004).

The conditional distribution we need for sampling is:

p(zd,i = k | z−(d,i), Vd, ζ,α) ∝
(
nk,d +αk

)
× tνk−M+1

(
vd,i

∣∣∣∣µk,
κk + 1

κk
Σk

)
(5.9)

Here, z−(d,i) represents the topic assignments of all word embeddings, excluding the one at
ith position of document d; Vd is the sequence of vectors for document d; tν ′(x | µ ′,Σ ′) is the
multivariate t - distribution with ν ′ degrees of freedom and parameters µ ′ and Σ ′. The tuple
ζ = (µ, κ,Σ,ν) represents the parameters of the prior distribution.

It should be noted that the first part of the equation which expresses the probability of topic
k in document d is the same as that of LDA. This is because the portion of the model which
generates a topic for each word (vector) from its document topic distribution is still the same.
The second part of the equation which expresses the probability of assignment of topic k to
the word vector vd,i given the current topic assignments (aka posterior predictive) is given by
a multivariate t distribution with parameters (µk, κk,Σk,νk). The parameters of the posterior
predictive distribution are given as (Murphy, 2012):

κk = κ+Nk µk =
κµ+Nkv̄k

κk

νk = ν+Nk Σk =
Ψk

(νk −M+ 1)

Ψk = Ψ+ Ck+
κNk
κk

(v̄k − µ)(v̄k − µ)>

(5.10)
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where v̄k and Ck are given by,

v̄k =

∑
d

∑
i:zd,i=k

(vd,i)

Nk

Ck =
∑
d

∑
i:zd,i=k

(vd,i − v̄k)(vd,i − v̄k)>

Here v̄k is the sample mean and Ck is the scaled form of sample covariance of the vectors with
topic assignment k. Nk represents the count of words assigned to topic k across all documents.
Intuitively the parameters µk and Σk represents the posterior mean and covariance of the
topic distribution and κk, νk represents the strength of the prior for mean and covariance
respectively.

5.5.2.1 Analysis of running time complexity

As can be seen from (5.9), for computation of the posterior predictive we need to evaluate the
determinant and inverse of the posterior covariance matrix. Direct naïve computation of these
terms require O(M3) operations. Moreover, during sampling as words get assigned to different
topics, the parameters (µk, κk,Ψk,νk) associated with a topic changes and hence we have to
recompute the determinant and inverse matrix. Since these step has to be recomputed several
times (as many times as number of words times number of topics in one Gibbs sweep, in the
worst case), it is critical to make the process as efficient as possible. We speed up this process
by employing a combination of modern computational techniques and mathematical (linear
algebra) tricks, as described in the following subsections.

5.5.2.2 Faster sampling using Cholesky decomposition of covariance matrix

Having another look at the posterior equation for Ψk, we can re-write the equation as:

Ψk = Ψ+ Ck +
κNk
κk

(v̄k − µ)(v̄k − µ)>

= Ψ+
∑
d

∑
i:zd,i=k

vd,iv>d,i − κkµkµ
>
k

+ κµµ>.

(5.11)

During sampling when we are computing the assignment probability of topic k to vd,i, we
need to calculate the updated parameters of the topic. Using (5.11) it can be shown that Ψk can
be updated from current value of Ψk, after updating κk.νk and µk, as follows:

Ψk ← Ψk +
κk

κk − 1

(
µk − vd,i

) (
µk − vd,i

)> . (5.12)

This equation has the form of a rank 1 update, hinting towards use of Cholesky decomposition.
If we have the Cholesky decomposition of Ψk computed, then we have tools to update Ψk
cheaply. Since Ψk and Σk are off by only a scalar factor, we can equivalently talk about Σk.
Equation (5.12) can also be understood in the following way. During sampling, when a word
embedding vd,i gets a new assignment to a topic, say k, then the new value of the topic
covariance can be computed from the current one using just a rank 1 update.11 We next describe
how to exploit the Cholesky decomposition representation to speed up computations.

For sake of completeness, any symmetric M×M real matrix Σk is said to be positive definite
if ∀z ∈ RM : z>Σkz > 0. The Cholesky decomposition of such a symmetric positive definite

11 Similarly the covariance of the old topic assignment of the word w can be computed using a rank 1 downdate
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matrix Σk is nothing but its decomposition into the product of some lower triangular matrix L
and its transpose, i.e.

Σk = LL>. (5.13)

Finding this factorization also take cubic operation. However given Cholesky decomposition
of Σk, after a rank 1 update (or downdate), i.e. the operation:

Σk ← Σk + zz> (5.14)

we can find the factorization of new Σk in just quadratic time (Stewart, 1998). We will use this
trick to speed up the computations12. Basically, instead of computing determinant and inverse
again in cubic time, we will use such rank 1 update (downdate) to find new determinant and
inverse in an efficient manner as explained in details below.

To compute the density of the posterior predictive t−distibution, we need to compute the deter-
minant |Σk| and the term of the form (vd,i−µk)

>Σ−1
k (vd,i−µk). The Cholesky decomposition

of the covariance matrix can be used for efficient computation of these expression as shown
below.

computation of determinant The determinant of Σk can be computed from from its
Cholesky decomposition L as:

log(|Σk|) = 2×
M∑
i=1

log
(
Li,i
)

. (5.15)

This takes linear time in the order of dimension and is clearly a significant gain from cubic
time complexity.

computation of (vd ,i − µk )
>Σ−1

k (vd ,i − µ) Let b = (vd,i −µk) and cholesky decompo-
sition of Σ = LLT as before. Then b>Σ−1b can be written as

b>Σ−1b = b>(LL>)−1b

= bT (L−1)>L−1b

= (L−1b)>(L−1b)

(5.16)

Now (L−1b) is the solution of the equation Lx = b. Also since L is a lower triangular matrix,
this equation can be solved easily using forward substitution. Lastly we will have to take an
inner product of x and x> to get the value of (vd,i−µk)

>Σ−1(vd,i−µk). This step again takes
quadratic time and is again a savings from the cubic time complexity.

5.5.2.3 Derivation of Rank 1 update of the covariance matrix

Due to the conjugate properties of Normal and Normal Inverse Wishart distribution, the pa-
rameters of the posterior predictive distribution are given as:

κk = κ+Nk µk =
κµ+Nkv̄k

κk

νk = ν+Nk Σk =
Ψk

(νk −M+ 1)

Ψk = Ψ+ Ck+
κNk
κk

(v̄k − µ)(v̄k − µ)>

(5.17)

12 For our experiments, we set the prior covariance to be 3*I, which is a positive definite matrix.



128 static models

where v̄k and Ck are given by,

v̄k =

∑
d

∑
i:zd,i=k

(vd,i)

Nk

Ck =
∑
d

∑
i:zd,i=k

(vd,i − v̄k)(vd,i − v̄k)>

=
∑

i:z∗,i=k

(vi − v̄k)(vi − v̄k)>

In the last step we replace two summations by one.

Intuitively v̄k is the sample mean and Ck is the scaled form of sample covariance of the
vectors with topic assignment k. Nk represents the count of words assigned to topic k across
all documents.

First lets look at the update for the mean

µk =
κµ+Nkv̄k

κk
(5.18)

One way of looking at equation (5.18): µk is the mean of topic k which has presently Nk words
assigned to it. (Equivalently table k has Nk customers (words) sitting on it). When a new word
is assigned to (or an existing word is removed from) a topic, we have to update the mean µk
of the table based on the update equation (5.18). Let us denote the mean of the topic k which
presently has N words assigned to it as µNk . Then from equation (5.18), it can be seen that µNkk
can be recursively written interms of µNk−1k as

µ
Nk
k =

(κ+Nk − 1)µ
Nk−1
k + vd,i

κ+Nk
(5.19)

Here vd,i denotes the word embedding at position i of document d which was assigned topic
k during sampling and which made the mean of the topic to change from µ

Nk−1
k to µNkk . The

reader should note that this could be any given word during sampling.

Now lets look at the update for Ψk .

Ψk = Ψ+ Ck +
κNk
κk

(v̄k − µ)(v̄k − µ)>

= Ψ+
∑

i:z∗,i=k

(vi − v̄k)(vi − v̄k)> +
κNk
κk

(v̄k − µ)(v̄k − µ)>

= Ψ+
∑

i:z∗,i=k

viv>i −
∑

i:z∗,i=k

viv̄>k − v̄k
∑

i:z∗,i=k

v>i +Nkv̄kv̄>k +
κNk
κk

(v̄k − µ)(v̄k − µ)>

= Ψ+
∑

i:z∗,i=k

viv>i −Nkv̄kv̄>k +
κNk
κk

(v̄kv̄>k − µv̄>k − v̄kµ> + µµ>)

= Ψ+
∑

i:z∗,i=k

viv>i −
(κµ+Nkv̄k)(κµ+Nkv̄k)>

κ+Nk
+ κµµ>
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(5.20)

= Ψ+
∑

i:z∗,i=k

viv>i − (κ+Nk)µkµk
> + κµµ> (5.21)

We get the last step by using equation (5.18). Also following similar nomenclature we will be
denoting the scaled covariance of a topic with N words as ΨNk .

If we look closely, equation (5.21) also can be recursively written as follows:

Ψ
Nk
k = Ψ

(Nk−1)
k + vd,iv>d,i − (κ+Nk)µ

Nk
k µ

Nk
k

>
+ (κ+Nk − 1)µ

(Nk−1)
k µ

(Nk−1)
k

>

Now writing µ(Nk−1)k in terms of µ(Nk)k using equation (5.19),

Ψ
Nk
k = Ψ

(Nk−1)
k +

κ+Nk
(κ+Nk − 1)

(µ
(Nk)
k − vd,i)(µ

(Nk)
k − vd,i)

>

This is the same as equation (5.11) and is in the form of a Rank 1 update. Therefore, if we have
the Cholesky decomposition for Ψ(Nk−1)

k , then we can compute the Cholesky decomposition

of Ψ(Nk)
k in quadratic time complexity in the number of dimensions (which is an order of

magnitude improvement from the cubic time complexity)

5.5.2.4 Further reduction of sampling complexity using Alias Sampling

Although Cholesky trick helps us to reduce the sampling complexity of a embedding to
O(KM2), it can still be impractical.In Gaussian LDA, the Gibbs sampling equation (5.9) can be

split into two terms. The first term nk,d× tνk−M+1

(
vd,i

∣∣∣µk, κk+1κk
Σk

)
denotes the document

contribution and the second term αk × tνk−M+1

(
vd,i

∣∣∣µk, κk+1κk
Σk

)
denotes the language

model contribution. Empirically one can make two observations about these terms. First, nk,d
is often a sparse vector, as a document most likely contains only a few of the topics. Secondly,
topic parameters (µk,Σk) captures global phenomenon, and rather change relatively slowly
over the iterations. We can exploit these findings to avoid the naive approach to draw a sample
from:

p(zd,i = k | z−(d,i), Vd, ζ,α) ∝ (nk,d × tνk−M+1

(
vd,i

∣∣∣∣µk,
κk + 1

κk
Σk

)
︸ ︷︷ ︸

doc-specific

+α× tνk−M+1

(
vd,i

∣∣∣∣µk,
κk + 1

κk
Σk

)
︸ ︷︷ ︸

language-model

(5.22)

In particular, we compute the document-specific sparse term exactly and for the remainder
language model term we borrow idea from A. Q. Li et al. (2014). We use a slightly stale distri-
bution for the language model. Then Metropolis Hastings (MH) algorithm allows us to convert
the stale sample into a fresh one, provided that we compute ratios between successive states
correctly. It is sufficient to run MH for a few number of steps because the stale distribution
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Figure 5.7: Plot comparing average log-likelihood vs time (in sec) achieved after applying each trick on
the NIPS dataset. The shapes on each curve denote end of each iteration.

acting as the proposal is very similar to the target. This is because, as pointed out earlier, the
language model term does not change too drastically whenever we resample a single word.
The number of words is huge, hence the amount of change per word is concomitantly small.
(Only if one could convert stale bread into fresh one, it would solve world’s food problem!)

The exercise of using stale distribution and MH steps is advantageous because sampling from
it can be carried out in O(1) amortized time, thanks to alias sampling technique (Vose, 1991).
Moreover, the task of building the alias tables can be outsourced to other cores.

With the combination of both Cholesky and Alias tricks, the sampling complexity can thus be
brought down to O(KdM2) where Kd represents the number of actually instantiated topics
in the document and Kd � K. In particular, we plot the sampling rate achieved naively, with
Cholesky (CH) trick and with Cholesky+Alias (A+CH) trick in Figure 5.7 demonstrating better
likelihood at much less time. Also after initial few iterations, the time per iteration of A+CH
trick is 9.93 times less than CH and 53.1 times less than naive method. This is because initially
we start with random initialization of words to topics, but after few iterations the nk,d vector
starts to become sparse.

5.5.3 Experiments

In this section we evaluate our Word Vector Topic Model on various experimental tasks. Specif-
ically we wish to determine:

• Is our model is able to find coherent and meaningful topics?

• Is our model able to infer the topic distribution of a held-out document even when the
document contains words which were previously unseen?

We run our experiments on two datasets 20-newsgroup
13 and NIPS14. All the datasets were

tokenized and lowercased with cdec (Dyer et al., 2010).

13 A collection of newsgroup documents partitioned into 20 news groups. After pre-processing we had 18768 documents.
We randomly selected 2000 documents as our test set. This dataset is publicly available at http://qwone.com/~jason/
20Newsgroups/

14 A collection of 1740 papers from the proceedings of Neural Information Processing System. The dataset is available at
http://www.cs.nyu.edu/~roweis/data.html

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://www.cs.nyu.edu/~roweis/data.html
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Gaussian LDA topics

hostile play government people university hardware scott market gun

murder round state god program interface stevens buying rocket

violence win group jews public mode graham sector military

victim players initiative israel law devices walker purchases force

testifying games board christians institute rendering tom payments machine

provoking goal legal christian high renderer russell purchase attack

legal challenge bill great research user baker company operation

citizens final general jesus college computers barry owners enemy

conflict playing policy muslims center monitor adams paying fire

victims hitting favor religion study static jones corporate flying

rape match office armenian reading encryption joe limited defense

laws ball political armenians technology emulation palmer loans warning

violent advance commission church programs reverse cooper credit soldiers

trial participants private muslim level device robinson financing guns

intervention scores federal bible press target smith fees operations

0.8302 0.9302 0.4943 2.0306 0.5216 2.3615 2.7660 1.4999 1.1847

Multinomial LDA topics

turkish year people god university window space ken gun

armenian writes president jesus information image nasa stuff people

people game mr people national color gov serve law

armenians good don bible research file earth line guns

armenia team money christian center windows launch attempt don

turks article government church april program writes den state

turkey baseball stephanopoulos christ san display orbit due crime

don don time christians number jpeg moon peaceful weapons

greek games make life year problem satellite article firearms

soviet season clinton time conference screen article served police

time runs work don washington bit shuttle warrant control

genocide players tax faith california files lunar lotsa writes

government hit years good page graphics henry occurred rights

told time ll man state gif data writes article

killed apr ve law states writes flight process laws

0.3394 0.2036 0.1578 0.7561 0.0039 1.3767 1.5747 -0.0721 0.2443

Table 5.5: Top words of some topics from Gaussian-LDA and multinomial LDA on 20-newsgroups for
K = 50. Words in Gaussian LDA are ranked based on density assigned to them by the posterior
predictive distribution. The last row for each method indicates the PMI score (w.r.t. Wikipedia
co-occurence) of the topic’s fifteen highest ranked words.

5.5.3.1 Topic Coherence

quantitative analysis Typically topic models are evaluated based on the likelihood of
held-out documents. But in this case, it is not correct to compare perplexities with models
which do topic modeling on words. Since our topics are continuous distributions, the proba-
bility of a word vector is given by its density w.r.t. the normal distribution based on its topic
assignment, instead of a probability mass from a discrete topic distribution. Moreover, J. Chang
et al. (2009) showed that higher likelihood of held-out documents doesn’t necessarily corre-
spond to human perception of topic coherence. Instead to measure topic coherence we follow
Newman, Karimi, and Cavedon (2009) to compute the Pointwise Mutual Information (PMI) of
topic words w.r.t. wikipedia articles. We extract the document co-occurrence statistics of topic
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Figure 5.8: The first two principal components for the word embeddings of the top words of topics shown
in Table 5.5 have been visualized. Each blob represents a word color coded according to its
topic in the Table 5.5.

words from Wikipedia and compute the score of a topic by averaging the score of the top 15

words of the topic. A higher PMI score implies a more coherent topic as it means the topic
words usually co-occur in the same document. In the last line of Table 5.5, we present the PMI
score for some of the topics for both Gaussian LDA and traditional multinomial LDA. It can be
seen that Gaussian LDA is a clear winner, achieving an average 275% higher score on average.

However, we are using embeddings trained on Wikipedia corpus itself, and the PMI measure
is computed from co-occurrence in the Wikipedia corpus. As a result, our model is definitely
biased towards producing higher PMI. Nevertheless Wikipedia PMI is a believed to be a good
measure of semantic coherence.

qualitative analysis Table 5.5 shows some top words from topics from Gaussian-LDA
and LDA on the 20-news dataset for K = 50. The words in Gaussian-LDA are ranked based on
their density assigned to them by the posterior predictive distribution in the final sample. As
shown, Gaussian LDA is able to capture several intuitive topics in the corpus such as sports,
government, ‘religion’, ’universities’, ‘tech’, ‘finance’ etc. One interesting topic discovered by
our model (on both 20-news and NIPS dataset) is the collection of human names, which was not
captured by classic LDA. While one might imagine that names associated with particular topics
might be preferable to a ‘names-in-general’ topic, this ultimately is a matter of user preference.
More substantively, classic LDA failed to identify the ‘finance’ topics. We also noticed that
there were certain words (‘don’, ‘writes’, etc) which often came as a top word in many topics
in classic LDA. However our model was not able to capture the ‘space’ topics which LDA was
able to identify.

Also we visualize a part of the continuous space where the word embedding is performed.
For this task we performed the Principal Component Analysis (PCA) over all the word vectors
and plot the first two components as shown in Figure 5.8. We can see clear separations be-
tween some of the clusters of topics as depicted. The other topics would be separated in other
dimensions.
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Model
Accuracy

PPDB WordNet

infvoc 28.00% 19.30%

G-LDA (fix) 44.51% 43.53%

G-LDA (1) 44.66% 43.47%

G-LDA (100) 43.63% 43.11%

G-LDA (1932) 44.72% 42.90%

Table 5.6: Accuracy of our model and infvoc on the synthetic datasets. In Gaussian LDA fix, the topic dis-
tributions learnt during training were fixed; G-LDA(1, 100, 1932) is the online implementation
of our model where the documents comes in minibatches. The number in parenthesis denote
the size of the batch. The full size of the test corpus is 1932.

5.5.3.2 Performance on document containing new words

In this experiment we evaluate the performance of our model on documents which contains
previously unseen words. It should be noted that traditional topic modeling algorithms will
typically ignore such words while inferring the topic distribution and hence might miss out
important words. The continuous topic distributions of the Word Vector Topic Model on the
other hand, will be able to assign topics to an unseen word, if we have the vector representation
of the word. Given the recent development of fast and scalable methods of estimating word
embeddings, it is possible to train them on huge text corpora and hence it makes our model a
viable alternative for topic inference on documents with new words.

experimental setup Since we want to capture the strength of our model on documents
containing unseen words, we select a subset of documents and replace words of those docu-
ments by its synonyms if they haven’t occurred in the corpus before. We obtain the synonym
of a word using two existing resources and hence we create two such datasets. For the first set,
we use the Paraphrase Database (Ganitkevitch, Van Durme, and Callison-Burch, 2013) to get
the lexical paraphrase of a word. The paraphrase database15 is a semantic lexicon containing
around 169 million paraphrase pairs of which 7.6 million are lexical (one word to one word)
paraphrases. The dataset comes in varying size ranges starting from S to XXXL in increasing or-
der of size and decreasing order of paraphrasing confidence. For our experiments we selected
the L size of the paraphrase database.

The second set was obtained using WordNet (G. A. Miller, 1995), a large human annotated
lexicon for English that groups words into sets of synonyms called synsets. To obtain the
synonym of a word, we first label the words with their part-of-speech using the Stanford POS
tagger (Toutanova, Klein, et al., 2003). Then we use the WordNet database to get the synonym
from its sysnset.16 We select the first synonym from the synset which hasn’t occurred in the
corpus before. On the 20-news dataset (vocab size = 18,179 words, test corpus size = 188,694

words), a total of 21,919 words (2,741 distinct words) were replaced by synonyms from PPDB
and 38,687 words (2,037 distinct words) were replaced by synonyms from WordNet.

evaluation benchmark As mentioned before traditional topic model algorithms cannot
handle OOV words. So comparing the performance of our document with those models would
be unfair. Recently (Zhai and J. L. Boyd-Graber, 2013) proposed an extension of LDA (infvoc)

15 http://www.cis.upenn.edu/~ccb/ppdb/
16 We use the JWI toolkit (Finlayson, 2014)

http://www.cis.upenn.edu/~ccb/ppdb/
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Model
PPDB (Mean Deviation)

L1 L2 L∞
infvoc 94.95 7.98 1.72

G-LDA (fix) 15.13 1.81 0.66

G-LDA (1) 15.71 1.90 0.66

G-LDA (10) 15.76 1.97 0.66

G-LDA (174) 14.58 1.66 0.66

Table 5.7: This table shows the Average L1 Deviation, Average L2 Deviation, Average L∞ Deviation for
the difference of the topic distribution of the actual document and the synthetic document on
the NIPS corpus. Compared to infvoc, G-LDA achieves a lower deviation of topic distribution
inferred on the synthetic documents with respect to actual document. The full size of the test
corpus is 174.

which can incorporate new words. They have shown better performances in a document classi-
fication task which uses the topic distribution of a document as features on the 20-news group
dataset as compared to other fixed vocabulary algorithms. Even though, the infvoc model can
handle OOV words, it will most likely not assign high probability to a new topical word when
it encounters it for the first time since it is directly proportional to the number of times the
word has been observed On the other hand, our model could assign high probability to the
word if its corresponding embedding gets a high probability from one of the topic Gaussians.
With the experimental setup mentioned before, we want to evaluate performance of this prop-
erty of our model. Using the topic distribution of a document as features, we try to classify the
document into one of the 20 news groups it belongs to. If the document topic distribution is
modeled well, then our model should be able to do a better job in the classification task.

To infer the topic distribution of a document we follow the usual strategy of fixing the learnt
topics during the training phase and then running Gibbs sampling on the test set (G-LDA (fix)
in Table 5.6). However infvoc is an online algorithm, so it would be unfair to compare our model
which observes the entire set of documents during test time. Therefore we implement the
online version of our algorithm using Gibbs sampling following L. Yao, Mimno, and Andrew
McCallum (2009). We input the test documents in batches and do inference on those batches
independently also sampling for the topic parameter, along the lines of infvoc. The batch size
for our experiments are mentioned in parentheses in Table 5.6. We classify using the multi class
logistic regression classifier available in Weka (M. Hall et al., 2009).

It is clear from Table 5.6 that we outperform infvoc in all settings of our experiments. This
implies that even if new documents have significant amount of new words, our model would
still do a better job in modeling it. We also conduct an experiment to check the actual difference
between the topic distribution of the original and synthetic documents. Let h and h ′ denote the
topic vectors of the original and synthetic documents. Table 5.7 shows the average L1, L2 and
L∞ norm of (h− h ′) of the test documents in the NIPS dataset. A low value of these metrics
indicates higher similarity. As shown in the table, Gaussian LDA performs better here too.
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5.6 points to ponder

We looked at specific ways to alter neural network design so as to enforce invariances and
dependences. However, many questions still remain. We discuss them application-wise, but a
common question among the different applications is how can we automatically design net-
works obeying the invariances or dependencies.

predicting molecular properties A method based on DeepSets to predict DFT com-
puted properties of molecules only from their raw 3D geometrical coordinates was developed.
The model architecture was able to handle molecules containing different number of atoms, and
in contrast to available models in literature, it did not require any featurization of the input data
with additional meta-information. Prediction errors from the proposed model on several target
properties were found to be competitive to the state-of-the-art convolutional graphs, which are
heavily featurized. As expected, the properties with explicit spatial dependence were found
to have better prediction accuracies, as spatial invariances were incorporated in the network.
However, robustness to rotation is not clear. Instead of Cartesian coordinates, one might use
internal coordinates which are rotation invariant, but then feeding them to neural networks is
not clear.

searching satellite imagery There are a number of burgeoning, visually consistent,
and in many cases worrisome phenomena which future versions of Terrapattern could be use-
ful in tracking. These include Concentrated Animal Feeding Operations, or CAFOs; uranium
mill tailings deposits; “Gamma Gardens” (also called radiation farms) for mutation breeding;
Siberian methane blowholes, which are arising due to global warming; and megafauna poach-
ing. The Terrapattern project is only a prototype—especially in its scale—and we feel we have
only scratched the surface of what is possible. The major bottleneck lies how well we can say
two image portions are similar. Our approach using resnet trained on labeled satellite data can
measure similarity only upto some extent.

topic modelling with embeddings While word embeddings have been incorporated
to produce state-of-the-art results in numerous supervised natural language processing tasks
from the word level to document level (Q. Le and Mikolov, 2014) and (Turian, Ratinov, and Y.
Bengio, 2010, inter alia); however, they have played a more minor role in unsupervised learning
problems. This work shows some of the promise that they hold in this domain. Our model
can be extended in a number of potentially useful, but straightforward ways. First, DPMM
models of word emissions would better model the fact that identical vectors will be generated
multiple times, and perhaps add flexibility to the topic distributions that can be captured,
without sacrificing our preference for topical coherence. More broadly still, running LDA on
documents consisting of different modalities than just text is facilitated by using the lingua
franca of vector space representations, so we expect numerous interesting applications in this
area. An interesting extension to our work would be the ability to handle polysemous words
based on multi-prototype vector space models (Neelakantan, Shankar, et al., 2014; Reisinger
and Raymond J. Mooney, 2010) and we keep this as an avenue for future research.





6
R e c u r r e n t Data A na ly s i s

We study the problem of incorporating domain knowledge in sequential data to enhance in-
terepretability. Recurrent neural networks, such as long-short term memory (LSTM) networks,
are powerful tools for modeling sequential data like user browsing history (Korpusik, Sakaki,
and F. C. Y.-Y. Chen, 2016; Tan, X. Xu, and Y. Liu, 2016) or natural language text (Mikolov,
Karafiát, et al., 2010). Despite the strong performance, it has not gained popularity for user-
facing applications, mainly owing to a large number of parameters and lack of interpretability.
In this chapter, to further understand aforementioned shortcoming of LSTMs and provide solu-
tions we focus on user modelling as user data is representative of challenges in sequential data,
namely large symbol space and non-linear dynamics with long range interactions. In context
of user modelling, LSTMs require a large number of parameters to generalize across different
user types, notwithstanding the simplicity of the underlying dynamics/structure, rendering it
uninterpretable, which is highly undesirable in user modeling. The increase in complexity and
parameters arises due to naïve handling of a large action space, ignoring the structure that many
of the actions can be clustered to have similar intent or topic. In this chapter, we introduce La-
tent LSTM Allocation (LLA) for user modeling leveraging the above mentioned structure by
combining hierarchical Bayesian models with LSTMs. In LLA, each user is modeled as a se-
quence of actions, and the model jointly groups actions into topics and learns the temporal
dynamics over the topic sequence, instead of action space directly. This leads to a model that
is highly interpretable, concise, and can capture intricate dynamics. Furthermore, user data
sequence data often exhibit multi-modes of behaviors with abrupt dynamic changes, for which
we use a threaded LLA (thLLA) to break each sequence into a set of segments and then model
the dynamic in each segment using an LSTM mixture. We present an efficient Stochastic EM
inference algorithm for our model that scales to millions of users/documents. Our experimen-
tal evaluations show that the proposed model compares favorably with several state-of-the-art
baselines.

6.1 introduction

Sequential data prediction is an important problem in machine learning spanning over a di-
verse set of applications ranging from text (Mikolov, Karafiát, et al., 2010) to finance (Pai and
C.-S. Lin, 2005) to user behavior (Köck and Paramythis, 2011). For example, when applied to
statistical language modeling, the goal is to predict the next word in textual data given context,
very similar to that in user activity modeling where the aim is to predict the next activity of
the user given the history. Accurate user activity modeling is very important for serving rele-
vant, personalized, and useful contents to the user. A good model of sequential data should be
accurate, sparse, and interpretable. Unfortunately, none of the existing techniques for user or
language modeling satisfy all of these requirements.

The state-of-the-art for modeling sequential data is to employ recurrent neural networks (RNN;
Lipton, Berkowitz, and Elkan 2015), such as LSTMs (Long-Short Term Memory; Hochreiter and
Jürgen Schmidhuber 1997). Such RNNs have been shown to be effective at capturing long and
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Figure 6.1: LLA has better perplexity (lower is better) than LDA but much fewer parameters than LSTMs,
as shown in a language modeling task on Wikipedia.

short patterns in data, e.g. token-level semantic as well as syntactic regularities in language
(Jozefowicz et al., 2016). However, the neural network representations are generally uninter-
pretable and inaccessible to humans (Strobelt et al., 2016). Moreover, the number of parameters
of the model is proportional to the number of observed word types or action types, which can
grow to tens or hundreds of millions. Note that for user modeling task, character level RNN is
not feasible because user actions are often not words but hash indices or URLs.

On the other hand of the spectrum lies latent variable models with multi-task learning, such as
LDA (D. Blei, A. Ng, and M. Jordan, 2002) and other topic model variants. These topic models
are not strictly sequence models, nevertheless have proved to be powerful tools for uncovering
latent structure in both text and user data (Aly et al., 2012) with good commercial success (D. J.
Hu, R. Hall, and Attenberg, 2014). Topic models are popular for their ability to organize the
data into a smaller set of prominent themes or topics through statistical strength sharing across
users or documents. These topic representations are generally accessible to humans and easily
lend themselves to being interpreted.

In this chapter, we propose Latent LSTM Allocation (LLA), a model that bridges the gap be-
tween the sequential RNN’s and the non-sequential LDA. LLA borrows graphical model tech-
niques to infer topics (groups of related word or user activities) by sharing statistical strength
across users/documents and recurrent deep networks to model the dynamics of topic evolu-
tion inside each sequence (document or user activities) rather than at user action/word level
(Section 6.3.1). LLA inherits sparsity and interpretability from LDA, while borrowing accuracy
from LSTM. We provide various variants of LLA that trade model size vs. accuracy without
sacrificing interpretability (Section 6.3.5). As shown in Figure 6.1, for the task of language
modeling on the Wikipedia dataset, LLA achieves comparable accuracy to LSTM while being
as sparse as LDA in terms of models size. For exact inference, we develop a particle MCMC
method sampler that can draw from the joint posterior directly (Section 6.3.3). However, as
the exact inference is computationally very intensive, we provide an approximate but efficient
inference algorithm for parameter inference in LLA, with only slight degration in performance
(Section 6.3.4). Furthermore, LLA, while expressive and interpretable, can still capture spurious
dynamics in sequential data with mixed themes. This is because, while theoretically LSTM has
the expressive power to capture long-range dependency structures, in practice vanishing gra-
dients and the introduction of latent variables (topics) exacerbate the complexity of the surface
of objective function and precludes the optimization algorithm from linking each item in the
sequence to the most relevant item in the the same theme from the user history. To circumvent
this issue in data with abrupt change in themes, we combine LLA with switching state space
models to break each sequence into a set of segments and then model the dynamic in each
segment using an LSTM mixture (Section 6.5). We show quantitatively as well as qualitatively
efficacy and interpretability of LLA and its variants over several datasets (Section 6.4 and 6.6).
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6.2 background

In this section, we provide a brief review of user/language modeling, LSTMs, and sequential
Monte Carlo.

6.2.1 User/Language Modeling

User activity modeling and language modeling amounts to learning a function that computes
the log probability, logp(w|model), of a user activity or sentence w = (w1, . . . ,wn). Subse-
quently, this function can be used to predict the next set of actions or words. This function can
be decomposed and learned in different ways under various assumptions. Imposing a bag of
words assumption - as used in LDA - leads to ignoring the sequence information and yields∑n
i=1 logp(wi|model). Alternatively, one could decompose according to the chain rule into

sum of the conditional log probabilities
∑n
i=1 logp(wi | w1, . . . ,wi−1, model), thereby pre-

serving temporal information and use some RNN to model logp(wi | w1, . . . ,wi−1, model)
(Mikolov, Karafiát, et al., 2010; Sundermeyer, Schlüter, and Ney, 2012).

6.2.2 Long Short-Term Memories

Temporal aspect is very important for user activity modeling. LSTM, a type of RNN, is well
suited for the task as it can learn from experience to classify, process, and predict time se-
ries when there are very long time lags of unknown size between important events. LSTM is
designed to cope with the vanishing gradient problem inherent in simple RNNs (Hochreiter
and Jürgen Schmidhuber, 1997). This is one of the main reasons why LSTMs outperform simple
RNNs, hidden Markov models, and other sequence learning methods in numerous application.

In general, a RNN is a triplet (Σ,S, δ):

• Σ ⊆ RD is the input alphabet

• S ⊆ RH is the set of states

• δ : S× Σ→ S is the state transition function made up of a neural network.

RNN maintains an internal state and at each time step take an input xt and updates its state st
by applying the transition function made up of neural network δ the previous time step’s state
st−1 and the input.

Often the input is not available directly as elements of Σ and the output desired is not the state
of the RNN. In such cases, input is appropriately transformed and desired output is produced
at each time step from the state st:

yt = g(st),

where g is an arbitrary differentiable function.

For example, in a regular recurrent language model (RRLM; Mikolov, Karafiát, et al. 2010) a
document is treated as a sequence and an LSTM is trained to predict directly the next word
conditioned on the sequence of words before it, i.e. maximize p(wt|wt−1|,wt−2, ...,w0; model).
In this case, the input transformation is done by using a word lookup table from word to a
vector in Σ. This word representation is used to update the state of the LSTM. The output
transformation is the projection of st into a vector of size of the vocabulary V followed by a
softmax. However, this method will require two large matrices of dimension V ×H and cannot
handle out of vocabulary words.
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Algorithm 6.1 Sequential Monte Carlo

1: Let zp0 = z0 and weights αp0 = 1/P for p = 1, . . . ,P.
2: for t = 1 to T do
3: for p = 1 to P do
4: Sample ancestor apt−1 ∼ Categorical

(
α1t−1,α2t−1, ...,αPt−1

)
5: Sample particle zpt ∼ f(zt|z

a
p
t−1
1:t−1)

6: Set zp1:t = (z
a
p
t−1
1:t−1, zpt )

7: Compute the weight αpt ←
νt(z

p
1:t)

νt−1(z
a
p
t−1
1:t−1)f(z

p
t |z

a
p
t−1
1:t−1)

8: end for
9: Normalize the weights αpt ←

α
p
t∑P

l=1α
l
t

10: end for

To overcome above mentioned shortcomings, another input transformation has been proposed
in context of natural languages, which looks at characters directly instead of words (Ling et al.,
2015). On the spelling of the words another LSTM is run having characters as the input and the
final state is used as the word representation. In this case, the memory requirement is reduced
to half and the model can handle out-of-vocabulary words like typographical errors or new
words made from composing existing ones. To use character level embedding, we can simply
replace the word lookup table with the representation obtained from character-level LSTM. In
case of natural languages, a similar trick of using a character-level LSTM to emit words can be
applied as the output transformation as well. However, user modeling outputs (hash indices
and URLs) lack morphological structure, and hence cannot leverage the technique.

6.2.3 Sequential Monte Carlo

Finally, we need a tool to sample from complex posteriors which would arise unavoidably
in models having combination of LSTMs and Bayesian components. Sequential Monte Carlo
(SMC; Doucet, Freitas, and Gordon 2001) is an algorithm that samples from a series of poten-
tially unnormalized densities ν1(z1), . . . ,νT (z1:T ). At each step t, SMC approximates the target
density νt with P weighted particles using importance distribution f(zt|z1:t−1):

νt(z1:t) ≈ ν̂t(z1:t) =
∑
p

α
p
t δzp1:t

(z1:t), (6.1)

where αpt is the importance weight of the p-th particle and δ is the Dirac delta function. Re-
peating this approximation for every t leads to the SMC method, outlined in Algorithm 6.1.

The key to this method lies in the resampling, which is implemented by repeatedly drawing the
ancestors of particles at each step. Intuitively, it encourages particles with a higher likelihood
to survive longer, since the weight reflects the likelihood of the particle path. Final Monte Carlo
estimate (6.1) consists only of survived particle paths, and sampling from this point masses is
equivalent to choosing a particle path according to the last weights αT . We refer to Andrieu,
Doucet, and Holenstein (2010) and Doucet, Freitas, and Gordon (2001) for detailed proof.

6.2.4 Related Works

Our work is related to various dynamic topic models, however, previous works like ddLDA
(ddCRP in general) or hidden Markov topic models provide only limited modeling capabilities
of the temporal dynamics. Specifically, they impose smoothness constraints, i.e. topic of a word
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is biased toward nearby topics. This constraint cannot learn a predictive action model, e.g. after
“booking a flight” topic, the “booking a hotel” topic is likely to follow. Moreover, internet users
often wander between related activities, e.g. “booking a hotel” topic will happen shortly after
“booking a flight”, but not necessarily immediately as the user might have been interrupted by
something else. Thus we need a much richer temporal model such as an LSTM.

Another similar work would be lda2vec (Moody, 2016), where LDA is combined with local
context in a fixed window size. This provides a sparse, interpretable model but lacks modeling
the temporal aspect. The model cannot be used in a predictive-action setting. Also the spar-
sity is only in terms of per document parameters, whereas it suffers from huge dense of size
vocabulary times embedding size.

Another relevant recent work is Sentence Level Recurrent Topic Model (SLRTM; Tian, B. Gao,
and T.-Y. Liu 2016). However, this model cannot capture long-range temporal dependencies, as
the topic for each sentence is still decided using an exchangeable (non-sequential) Dirichlet-
multinomial scheme similar to the LDA. It might be able to preserve local sentence structure
or grammar, but that is particularly not very useful for the task of user modeling. Furthermore,
as it contains RNN that operates on the entire vocabulary (not topic as in our case), the SLTRM
has lots of parameters.

Finally, a solution to abrupt changes in themes could be use switching state-space (SSS) models
such as Cacciatore and Nowlan (1994) and Zoubin Ghahramani and Geoffrey E. Hinton (1996).
Most SSS models use linear (or simple non-linear) update or assume Markovianity, but it would
not be capable to intricate dynamics of user data. Enhancing SSS models, like any other state
space models, using neural networks to boost expressive power is not a new idea. Traditional
approaches can be traced back to nonlinear extensions of linear dynamical systems, such as
extended or unscented Kalman filters (Julier and Uhlmann, 1997), where both state transition
and emission are generalized to nonlinear functions. The idea of parameterizing them with
neural networks can be found in Zoubin Ghahramani and S. T. Roweis (1999), as well as many
recent works (Archer et al., 2015; M. J. Johnson et al., 2016; Karl et al., 2017; Krishnan, Shalit,
and Sontag, 2015, 2017) thanks to the development of recognition networks (D. Kingma and
Welling, 2014; Rezende, Mohamed, and Wierstra, 2014). Similarly one could extend SSS, by em-
ploying LSTMs with latent variables. However, as in standard SSS models all mixtures evolve
at each time step and a switch variable at time t selects a them to generate the input, they
do not mitigate the vanishing gradient problem directly (Hochreiter and Jürgen Schmidhuber,
1997). This is the primary reason for developing a tailored model for the problem of sudden
theme swings instead of just using LLA or LSTM+SSS.

6.3 latent lstm allocation

In this section, we provide a detailed description of the proposed LLA model and its variant
for performing joint clustering and modeling non-linear dynamics. An ideal model for such
a task should have three characteristics. First, it should have a low number of parameters.
Second, it should be interpretable, allowing human analysis of the components. Lastly and
most importantly, the model should be accurate in terms of predicting future events. We show
how LLA satisfies all of these requirements.

6.3.1 Generative model

In this model, we try to marry LDA with its strong interpretability capabilities with LSTM
having excellent track record in capturing temporal information. In this regard, we propose
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Figure 6.2: Graphical models for LDA and variants of proposed latent LSTM Allocation (LLA). In a slight
abuse of plate notation, we do not imply exchangibility by the dashed plate diagram and -1
on an edge means the dependence is from one time step back.

a factored model, i.e. we use the LSTM to model sequence of topics p(zt|zt−1, zt−2, ..., z1)
and multinomial-Dirichlet to model word emissions p(wi|zi), similar to LDA. Suppose we
have K topics, vocabulary size V , and a document collection D where each document d ∈ D is
composed ofNd words. With these notations, the complete generative process can be illustrated
as in Figure 6.2a and can be described as:

1. for k = 1 to K

a) Choose topic φk ∼ Dir(β)

2. for each document d in corpus D

a) Initialize LSTM with s0 = 0

b) for each word index t from 1 to Nd

i. Update st = LSTM(zd,t−1, st−1)

ii. Get topic proportions at time t from the LSTM state, θ = softmaxK(Wpst + bp)

iii. Choose a topic zd,t ∼ Categorical(θ)

iv. Choose word wd,t ∼ Categorical(φzd,t
)

Under this model, the marginal probability of observing a given document d can be written as:

p(wd|LSTM,φ) =
∑
zd

p(wd, zd|LSTM,φ)

=
∑
zd

∏
t

p(wd,t|zd,t;φ)p(zd,t|zd,1:t−1; LSTM).
(6.2)

Here p(zd,t|zd,1:t−1; LSTM) is the probability of generating topic for the next word in the
document given topics of previous words and p(wd,t|zd,t;φ) is the probability of generating
word given the topic, illustrating the simple modification of LSTM and LDA based language
models.
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Figure 6.3: Different parameters employed by LDA, LSTM and LLA. K is number of topics, V, is vocab-
ulary size, and H is the dimension of LSTM state. (a) Topics of LDA, (b) word embedding of
LSTM (c) factored topic embedding of LLA.

The advantage of this modification is two fold. Firstly, we obtain a factored model as shown in
Figure 6.3, thereby the number of parameters is reduced significantly compared to RRLM. This
is because, unlike RRLM we operate at topic level instead of words directly and the number
of topics is much smaller than the vocabulary size, i.e. K << V . This allows us to get rid of
large V ×H word embedding look-up table and V ×H matrix used in softmax over the entire
vocabulary. Instead we map from hidden to state to topics first using a K×Hmatrix, which will
be dense and then from topics to words using a V ×K matrix under the Dirichlet-multinomial
model similar to LDA which will be very sparse. Secondly, this model is highly interpretable.
We recover global themes present in the documents as φ. The LSTM output represents topic
proportions for document/user at time t. The LSTM input over topics can capture semantic
notion of topics.

6.3.2 Inference Overview

As the computation of the true posterior of LLA as described above is intractable, we have to
resort to an inference technique like mean field variational inference (Wainwright and Michael
I Jordan, 2008) or stochastic EM (SEM) as will be described in Chapter 7. Below we describe
the generic aspects of the inference algorithm for LLA.

Given a document collection, the inference task is to find the LSTM weights and word|topic
probability matrix φ. This can be carried out using SEM. We begin by writing out the likelihood
and lower bounding it as,

∑
d

logp(wd|LSTM,φ) >
∑
d

∑
zd

q(zd) log
p(zd; LSTM)

∏
t p(wd,t|zd,t;φ)

q(zd)
, (6.3)

for any distribution q. Then the goal is to ensure an increase in this evidence lower bound
(ELBO) with each iteration in expectation. Following the suit of most EM based inference
methods, each iteration involves three phases, each of which is described below:
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e-step We find the optimal variational distribution, which is nothing but the posterior:

q?(zd) ∝ p(zd; LSTM)
∏
t

p(wd,t|zd,t;φ). (6.4)

In the case of linear dynamical systems or HMM, efficient smoothing algorithms such
as the RTS smoother (Rauch, F. Tung, and Striebel, 1965) or the forward-backward al-
gorithm (Stratonovich, 1960) are available for computing the posterior expectations of
sufficient statistics. However, without Markovian state transition, although the forward
messages can still be computed, the backward recursion can no longer evaluated or effi-
ciently approximated.

s-step Due to the difficulties in evaluating expectations with respect to the variational differ-
ence, we take an alternative approach to collect samples. For fixed LSTM parameters and
φ, we sample the topic assignments z.

zd ∼ q?(·), (6.5)

given only the filtering equations. This acts as an unbiased sample estimate of the ex-
pectation with respect to the conditional distribution of z required in traditional EM.
This sampled estimate not only enjoys similar statistical convergence guarantees (Nielsen,
2000) but also provides many computational benefits like speed-up and reduced memory
bandwidth requirements a will be explained in Chapter 7.We will discuss an exact and
approximate but fast posterior sampling algorithm for the S-Step in detail over the next
two subsections.

m-step For fixed topic assignment z, update the φ and LSTM so as to improve the likelihood
in expectation. As the dependence of likelihood on LSTM parameters and φ are indepen-
dent given z, we can update them independently and in parallel. For the former, we use
the closed form expression for the maximizer,

φwk =
#{wd,t = w and zd,t = k}+β

#{zd,t = k}+ Vβ
=
nwk +β

nk + Vβ
, (6.6)

and for the latter we resort to stochastic gradient ascent which will increase the likelihood
in expectation.

6.3.3 Exact Inference with SMC

In this subsection, we discuss how to draw samples from the posterior (6.4), corresponding
to the S-step of the stochastic EM algorithm. For sake of simplicity of notation, we consider a
document w1, ...,wT of length T . Thus, the posterior from (6.4) is:

z1:T ∼ q?(z1:T ) = p(z1:T |w1:T ) ∝
∏
t

p(zt|z1:t−1; LSTM)p(wt|zt;φ). (6.7)

As the integration and normalization can be performed efficiently, the following quantities can
be evaluated in the forward pass without Markov state transition:

αt ≡ p(wt|z1:t−1) ∝
∑
zt

p(zt|z1:t−1; LSTM)p(wt|zt;φ) =
∑
k

θt,kφwt,k

γt ≡ p(zt|z1:t−1,wt) ∝ p(zt|z1:t−1; LSTM)p(wt|zt;φ) = θt,ztφwt,zt .
(6.8)

The task is to draw from the joint posterior of z1:T only given access to these forward messages.
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Algorithm 6.2 Inference with Particle Gibbs for LLA

1: Let zp0 = z0 and αp0 = 1/P for p = 1, . . . ,P.
2: for t = 1 to T do
3: Fix reference path: set a1t−1 = 1 and z11:t = z

?
1:t from previous iteration.

4: for p = 2 to P do
5: Sample ancestor apt−1 ∼ Categorical

(
α1t−1,α2t−1, ...,αPt−1

)
6: Sample particle zpt ∼ γ

p
t ∝ p(zt|z

a
p
t−1
1:t−1; LSTM)p(wt|zt;φ) in (6.9)

7: Set zp1:t = (z
a
p
t−1
1:t−1, zpt )

8: Compute the weight αpt ←
∑
k p(zt = k|z

a
p
t−1
1:t−1; LSTM)p(wt|zt = k;φ) in (6.10)

9: end for
10: Normalize the weights αpt ←

α
p
t∑P

l=1α
l
t

11: end for
12: Sample r ∼ αT , return the particle path za

r
T
1:T .

We propose to use a method based on SMC, which is a principled way of sampling from
a sequence of distributions. More importantly, it does not require the model to be Marko-
vian (Frigola et al., 2013; Lindsten, Michael I. Jordan, and Schön, 2014). As described earlier in
Section 6.2.3, the idea is to approximate the posterior (6.7) with point masses, i.e., weighted par-
ticles. Let f(zt|z1:t−1,wt) be the importance density, and P be the number of particles. We then
can run Algorithm 6.1 with νt(z1:t) = p(w1:t, z1:t) being the unnormalized target distribution
at time t. As for the choice of the proposal distribution f(·), we use the predictive distribution
p(zt|z1:t−1,wt), which is a locally optimal proposal in terms of variance (Andrieu, Doucet,
and Holenstein, 2010), i.e. f?(zt|z1:t−1,wt) = p(zt|z1:t−1,wt). Note that resulting proposal
distribution is precisely one of the available forward messages:

f?(zt|z
a
p
t−1
1:t−1,wt) = γ

p
t ∝ p(zt|z

a
p
t−1
1:t−1; LSTM)p(wt|zt;φ). (6.9)

With the choice of predictive distribution as the proposal density p(zt|z1:t−1,wt), the impor-
tance weight simplifies to

α
p
t ∝ α̃

p
t =
∑
k

p(zt = k|z
a
p
t−1
1:t−1; LSTM)p(wt|zt = k;φ) =

∑
k

θ
p
t,kφwt,k, , (6.10)

which is not a coincidence that the name collides with the message αt. Interestingly, this quan-
tity no longer depends on the current particle zpt . Instead, it marginalizes over all possible
particle assignments of the current time step.

After a full pass over the sequence, the algorithm produces Monte Carlo approximation of the
posterior and the marginal likelihood:

p̂(z1:T |w1:T ) =
∑
p

α
p
Tδzp1:T

(z1:T ) ,

p̂(w1:T ) =
∏
t

1

P

∑
p

α̃
p
t .

(6.11)

The inference is completed by a final draw from the approximate posterior,

z?1:T ∼ p̂(z1:T |w1:T ), (6.12)
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which is essentially sampling a particle path indexed by the last particle. Specifically, the last
particle zpT is chosen according to the final weights αT , and then earlier particles can be obtained
by tracing backwards to the beginning according to the ancestry indicators apt at each position.

Since SMC produces a Monte Carlo estimate, as the number of particles P → ∞ the approx-
imate posterior (6.11) is guaranteed to converge to the true posterior for a fixed sequence.
However, as the length of the sequence T increases, the number of particles needed to pro-
vide a good approximation grows exponentially. This is the well-known depletion problem of
SMC (Andrieu, Doucet, and Holenstein, 2010).

One elegant way to avoid simulating enormous number of particles is to marry the idea of
MCMC with SMC (Andrieu, Doucet, and Holenstein, 2010). The idea of such Particle MCMC
(PMCMC) methods is to treat the particle estimate p̂(·) as a proposal, and design a Markov ker-
nel that leaves the target distribution invariant. Since the invariance is ensured by the MCMC,
it does not demand SMC to provide an accurate approximation to the true distribution, but
only to give samples that are approximately distributed according to the target. As a result, for
any fixed P > 0 the PMCMC methods ensure the target distribution is invariant.

We choose the Gibbs kernel that requires minimal modification from the basic SMC. The re-
sulting algorithm is known as Particle Gibbs (PG), which is a conditional SMC update in a
sense that a reference path zref

1:T with its ancestral lineage is fixed throughout the particle prop-
agation of SMC. It can be shown that this simple modification to SMC produces a transition
kernel that is not only invariant, but also ergodic under mild assumptions. In practice, we use
the assignments from previous step as the reference path. The final algorithm is summarized
in Algorithm 6.2. Combined with the stochastic EM outer iteration, the final algorithm is an
instance of the particle SAEM (Lindsten, 2013; Schön et al., 2015), under non-Markovian state
transition.

6.3.4 Fast Approximate Inference

While particle Gibbs based S-Step a shown in Algorithm 6.2 provides exact samples, it is com-
putationally very experiment. In this subsection, we provide approximate techniques for S-Step
to speed up inference.

We begin by revisiting the conditional probability in S-Step for topic at time step t given word
at time t and past history of topics under LLA,

p(zd,t = k|wd,t, zd,1:t−1; LSTM,φ) ∝ p(zd,t = k|zd,1:t−1; LSTM)p(wd,t|zd.t = k;φ) (6.13)

The difficulty arises in sampling due to complicated dependencies among the latent variables
zd,t, unlike that in a Markov model. One way to circumvent the tight dependencies in zd,t is
to make a factorization assumption:

p(zd,t = k|wd,t, zd,1:t−1; LSTM,φ) ∝ p(zd,t = k|z
prev
d,1:t−1; LSTM)p(wd,t|zd.t = k;φ) (6.14)

where zprev
d,1:t−1 is the assignments from the previous iteration of S-Step. With this approxima-

tion, samples can be easily generated, whose computational cost we will discuss next.

The first term represents probability of various topics predicted by LSTM dynamics after final
softmax and second term comes from multinomial-Dirichlet word emission model given the
topic. Naïvely sampling from this distribution would cost O(KH+H2) per word.

Optionally, one could speed up this sampling. Note that the second term in (6.13) has a sparse
structure. For sampling from (6.13) the computation of the normalizer is not essential. To elab-
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orate, let us define nwk as the number of times word w currently assigned to topic k and nk
as the number of tokens assigned to topic k. Explicitly writing down first term:

p(wd,t = w|zd,t = k,φ) = φwk =
nwk +β

nk + Vβ

=
nwk

nk + Vβ︸ ︷︷ ︸
sparse

+
β

nk + Vβ︸ ︷︷ ︸
dense

(6.15)

There is an inherent sparsity present in nwk, as a given word would be typically about only a
handful of topics, Kw � K. The second term represents the global count of tokens in the topic
and will be dense, regardless of the number of documents, words or topics.

Following A. Q. Li et al. (2014), we devise an optional fast sampling strategy for exploiting this
sparsity and construct a Metropolis-Hastings sampler. The idea is to replace the low weight
dense term by a cheap approximation, while keeping the high weight sparse term exact. This
leads to a proposal distribution that is close to (6.13), while at the same time allowing us to
draw from it efficiently:

• First draw a biased coin to decide whether to draw from the sparse nwk term or from
the dense term. The bias is

b =
p

p+ q
, where

p =
∑

k:nwk 6=0

nwk
nk + Vβ

p(zd,t = k|zd,1:t−1; LSTM)

q =
∑
k

β

nk + Vβ
(pre-computed).

• If we draw from the sparse term, the cost is O(KwH+H2), else the cost is O(H2) using
the alias trick.

• Finally, perform a MH accept/reject move by comparing the approximation with the true
distribution.

The execution of the whole inference and learning process includes several iterations involving
the above mentioned two phases as outlined in Algorithm 6.3. This inference procedure is not
an ad-hoc method, but an instantiation of the well studied SEM method. We ensure that in
each iteration we increase the ELBO in expectation. Also, it is just a coincidence that for all
such latent variable models the equations for SE-step looks like Gibbs sampling. (Exploiting
this coincidence, in fact, one can prove that parallel Gibbs update will work for such models,
as we will see in Chapter 7 or in Tristan, Tassarotti, and Steele Jr. (2015), whereas in general
parallel Gibbs sampling fails miserably e.g. for Ising models.) Moreover, we found empirically
that augmenting the SEM inference with a beam search improved the performance.

Automatic differentiation software packages such as TensorFlow (Martin Abadi et al., 2015)
significantly speed up development time, but have limited control structures and indexing.
Whereas random sampling requires varied control statements, thus was implemented sepa-
rately on the CPU. Furthermore, the SEM saved us precious GPU-CPU bandwidth by transmit-
ting only an integer per token instead of a K-dimensional variational parameter.
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Algorithm 6.3 Stochastic EM for LLA
Input: Document corpus D.

1: Initialize φ and LSTM with a few iterations of LDA
2: repeat

SE-Step:
3: for all document d ∈ D in parallel do
4: for t← 1 to Nd (possibly with padding) do
5: ∀k ∈ {1, · · · ,K}, i.e. for every topic index obtain by LSTM forward pass:

πk = φwd,tkp(zd,t = k|zd,1:t−1; LSTM).

6: Sample zd,t ∼ Categorical(π)
7: end for
8: end for

M-Step:
9: Collect sufficient statistics to obtain:

φwk =
nwk +β

nk + Vβ
, ∀w,k

10: for mini-batch of documents B ⊂ D do
11: Compute the gradient by LSTM backward pass

∂L

∂LSTM
=
∑
d∈B

Nd∑
t=1

∂ logp(zd,t|zd,1:t−1; LSTM)

∂LSTM

12: Update LSTM parameters by stochastic gradient descent methods
like Adam (D. P. Kingma and Ba, 2014).

13: end for
14: until Convergence

6.3.5 Adding Context

Utilizing the word or user action, wd,t, directly would be more informative to model the
dynamics and predict the next topic. For example, rather than only knowing the previous
action belonged to “electronics purchase” topic, knowing exactly that a camera was bought,
makes it easier to predict user’s next interest, e.g. camera lenses.

In order to incorporate the exact context, we construct a variant of LLA, called word LLA,
where the LSTM is provided with an embedding of previous word wd,t−1 directly instead of
zd,t−1. The corresponding graphical model is shown in Figure 6.2b and the joint likelihood is:∑

d

logp(wd|LSTM,φ) =
∑
d

∑
t

log
∑
zd,t

p(wd,t|zd,t;φ)p(zd,t|wd,1:t−1; LSTM) (6.16)

A SEM inference strategy can be devised similar to topic LLA as presented in Section 6.3.4.

However, this modification brings back the model to the dense and high number of parameter
regime as a large trainable V ×H lookup table for the word embeddings is needed for the
input transformation. This problem can be mitigated by using char-level LSTM (char LSTM for
short) to construct the input transformation. Such character-level LSTM have recently shown
promising results in generating structured text (Karpathy, Justin Johnson, and Fei-Fei, 2015)
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Model Input Tranformation Output Transformation

word LSTM Word Embedding Softmax over vocabulary

Char LSTM Char Embedding Softmax over vocabulary

Topic LLA Topic Embedding Topic based

Word LLA Word Embedding Topic based

Char LLA Char Embedding Topic based

Table 6.1: Enumerating different input and output representation, leading to variants of LLA models.
Note we exclude char level output transformation due to its inapplicability to user modeling.

as well as in producing semantically valid word embeddings with a model we will refer to as
char-LSTM) (Ling et al., 2015). The character-level models do not need the huge lookup table
for words, as they operate directly on the characters and the number of distinct characters is
extremely small. We chose the latter as our input transformation and briefly describe it below.

The input word w is decomposed into a sequence of characters c1, . . . , cm, where m is the
length of w. Each character ci is transformed using a lookup table and fed into a bidirectional
LSTM The forward LSTM evolves on the character sequence and produces a final state hfm.
While the backward LSTM receives as input the reverse sequence, and yields its own final state
hb0 . Both LSTMs use a different set of parameters. The representation ecw of word w is obtained
by combining forward and backward final states:

eCw = Dfsfm + Dbsb0 + bd, (6.17)

where Df, Db and bd are parameters that determine how the states are combined. This ecw
is provided to the topic level LSTM as the input providing information about the word. Thus
we are able to incorporate more context information by providing some information about the
previous word without large number of parameters. We call this model, char LLA.

The different variants of LLA and LSTM as language model can be unified and thought of
having different input and out transformations over LSTM for capturing the dynamics. The
possible combinations are listed in Table 6.1. We will study each of them empirically next.

6.4 experiments on lla

We perform a comprehensive evaluation of our model against several deep models, dynamic
models, and topic models. For reproducibility we focus on the task of language modeling over the
publicly available Wikipedia dataset, and for generality, we show additional experiments on the
less-structured domain of user modeling.

6.4.1 Setup

For all experiments we follow the standard setup for evaluating temporal models, i.e. divide
each document (user history) into 60% for training and 40% for testing. The task is to predict
the remaining 40% of the document (user data) based on the representation inferred from
the first 60% of the document. We use perplexity as our metric (lower values are better) and
compare our models (topic-LLA, word-LLA, and char-LLA) against the following baselines:
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Figure 6.4: Comparison of the exact inference based on SMC to the approximate one assuming factored
model. The top row represents perplexity on the held out set and the lower row represents the
non zero entries in the word-topic count matrix. Lower perplexity indicates a better fit to the
data and lower NNZ results in a sparser model and usually having better generalization.

• Autoencoder: A feed forward neural network that comprises of encoder and decoder.
The encoder projects the input data into a low-dimensional representation and the de-
coder reconstructs the input from this representation. The model is trained to minimize
reconstruction error.

• LSTMs: We consider both word-level LSTM language model (word-LSTM) and character-
level hierarchical LSTM (char-LSTM) language model.

• LDA: The vanilla version trained using collapsed Gibbs sampling over the bag of word
representation.

• ddLDA: Distance-dependent LDA is a variant of LDA incorporating the word sequence.
It is based on a fixed-dimensional approximaiton of the distance-dependent Dirichlet
process (David Blei and Frazier, 2011). In this model a word is assigned to a topic based
on the popularity of the topics assigned to nearby words. Note that this model subsumes
other LDA-based temporal models such as hidden Markov topic Model (Andrews and
Vigliocco, 2010) and RCRP based models (Amr Ahmed and Xing, 2008).

We trained all deep models using stochastic gradient decent with Adam (D. P. Kingma and Ba,
2014). All LSTM and LLA based models used the sampled softmax method for efficiency (Cho,
Memisevic, and Y. Bengio, 2015). Finally, all hyper-parameters of the models were tuned over
a development set.

6.4.2 Language modeling

We used the publicly available Wikipedia dataset to evaluate the models on the task of sequence
prediction. Extremely short documents, i.e. documents having length less than 500 words were
excluded. The dataset contains ~0.7 billion tokens and ~1 million documents. The most fre-
quent 50k word-types were retained as our vocabulary. Unless otherwise stated, we used 1000
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(a) Wikipedia (b) User search click history

Figure 6.5: Test perplexity and number of parameters of various models. Bars represent model sizes and
the solid curve represents perplexity over testset (lower is better).

topics for LLA and LDA variants. For LSTM and LLA variants, we selected the dimensions
of the input embedding (word or topic) and evolving latent state (over words or topics) in
the range of {50, 150, 250}. In case of character-based models, we tuned the dimensions of the
character embedding and latent state (over characters) in the range of {50, 100, 150}.

exact vs approximate inference We want to compare the inference with the exact pos-
terior sampling using SMC and the faster approximate posterior sampling. Figure 6.4 shows
the test perplexity (lower is better) and number of nonzeros in the learned word topic count
matrix (lower is better). For varying number of topics, the SMC algorithm eventually gives bet-
ter perplexity, but is significantly slower than the approximate solution and the gap between
the two approaches is small. Similarly, the nonzeros in the word|topic decreases rapidly for the
approximate inference, which is highly desirable. The rapid sparsification further speeds-up
the subsequent iterations.

accuracy vs model size Figure 6.5(a) compares model size in terms of number of param-
eters with model accuracy in terms of test perplexity. As shown in the figure, LDA yields the
smallest model size due to the sparsity bias implicit in the Dirichlet prior over the topic|word
distributions. On the other hand, word-LSTM gives the best accuracy due to its ability to uti-
lize word level statistics; however, the model size is order of magnitudes larger than LDA.
Char-LSTM achieves almost 50% reduction in model size over word-LSTM at the expense of
a slightly worse perplexity. The figure also shows that LLA variants (topic-LLA, word-LLA,
and char-LLA) can trade accuracy vs model size while still maintaining interpretability since
the output of the LSTM component is always at the topic level. Note that the figure depicts
the smallest word-LSTM at this perplexity level, as our goal is not to beat LSTM in terms of
accuracy, but rather to provide a tuning mechanism that can trade-off perplexity vs model
size while still maintaining interpretability. Finally, compared to LDA, which is a widely used
tool, LLA variants achieve a significant perplexity reduction at a modest increase in model size
while still maintaining topic sparsity. As shown in Figure 6.1, the autoencoder model performs
poorly in terms of model size and perplexity thus we eliminated it from Figure 6.5(a) and the
following figures to avoid cluttering the display.

convergence over time At first glance, LLA seems to be more involved than both LDA
and LSTM. So, we raise the question whether the added complexity leads to a slower training.
Figure 6.8 shows that compared to LSTM based models, LLA variants achieve comparable
convergence speed. Moreover, compared to fast LDA samplers, our LLA variants introduce
only a modest increase in training time. The figure also shows that character based models
(char-LSTM and char-LLA) are slightly slower to train compared to word level variants due to
their nested nature and need to propagate gradients over both word and character level LSTMs.
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Wikipedia

Figure 6.6: The effect of the number of topics over the performance of LDA and LLA.

ablation study Since both LDA and LLA result in interpretable models, we want to ex-
plore if LDA can achieve a perplexity similar to a given LLA model by just increasing the
number of topics in LDA. Figure 6.17 shows the performance of LDA and variants of LLA
for different number of topics. As can be seen from the figure, even with 250 topics, all LLA
based models achieve much lower perplexity than LDA with 1000 topics. In other words, LLA
improves over LDA not because it uses a slightly larger model, but rather because it models
the sequential order in the data.

interpretability Last but not least, we demonstrate the interpretability of our models.
Similar to LDA, the proposed LLA also uncovers global themes, a.k.a topics prevalent in the
dataset. We found qualitatively the topics produced by LLA to be cleaner. For example, in
Table 6.2b we show a topic about funding, charity, and campaigns recovered by both. LDA
includes spurious words like Iowa in the topic just because it co-occurs in the same documents.
Whereas modeling the temporal aspect allows LLA to correctly switch topics at different parts
of the sentence producing cleaner topic regarding the same subject.

Modeling based on only co-occurrences in LDA leads to further issues. For example, strikes
among mine workers are common, so the two words will co-occur heavily but it does not
imply that strikes and mining should be in the same topic. LDA assign both the words in
the same topic as shown in Table 6.2a. Modeling sentences as an ordered sequence allows
distinction between the subjects and objects in the sentence. In the previous example, this leads
to factoring into two separate topics of strikes and mine workers.

LDA strike, strikes, striking, miners, strik-
ers, workers, day, began, general, called,
pinkerton, action, hour, hunger, keefe

LLA
union, unions, strike, workers, labor,
federation, trade, afl, bargaining, cio, or-
ganization, relations, strikes, national,
industrial

mining, coal, mine, mines, gold, ore,
miners, copper, iron, rush, silver, min-
eral, deposits, minerals, mined

(a) Factored topics

LDA foundation, iowa, charity,
fund, money, campaign,
raised, donated, funds,
donations, raise, support,
charitable, million, donation

LLA fund, foundation, money,
funds, support, charity, fund-
ing, donations, campaign,
raised, donated, trust, raising,
contributions, awareness

(b) Cleaner topics

Table 6.2: LLA vs LDA
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(a) LLA-variant against vanilla LDA (b) LLA-variants against LSTM-variants

Figure 6.8: Convergence speed for various models. The x-axis represents time in second while the Y-axis
gives the perplexity over the test dataset.

The topic LLA provides embedding of the topics in a Euclidean metric space. This embedding
allows us to understand the temporal structure learned by the model: topics close in this space
are expected to appear in close sequential proximity in documents. To understand this, we
built a topic hierarchy using the embeddings which uncovers interesting facts about the data.
For example in Figure 6.9a, we show a portion of the topic hierarchy discovered by topic-
LLA with 1000 topics. For each topic we list the top few words. The theme of the figure is
countries in Asia. It groups topics relating to one country together and puts topics related to
neighboring countries close by. Three prominent clusters are shown form top to bottom which
corresponds to moving from west to east on the map of Asia. Top cluster is about Arab world,
second one represent the Indian sub-continent, and the third one starts with south-east Asia
like Philippines. (The topic abs gma cbn represents TV station in south-east Asia.) The complete
hierarchy of topic is very meaningful and can be viewed at http://manzil.ml/lla.html.

6.4.3 User modeling

We use an anonymized sample of user search click history to measure the accuracy of different
models on predicting users’ future clicks. An accurate model would enable better user expe-
rience by presenting the user with relevant content. The dataset is anonymized by removing
all items appearing less than a given threshold, this results in a dataset of ~50 million tokens,
and 40K vocabulary size. This domain is less structured than the language modeling task since
users’ click patterns are less predictable than the sequence of words which follow definite syn-
tactic rules. We used a setup similar to the one used in the experiments over the Wikipedia
dataset for parameters ranges and selections.

Figure 6.5(b) gives the same conclusion as Figure Figure 6.5(a): LLA variants achieve signifi-
cantly lower perplexity compared to LDA and at the same time they are considerably smaller
models compared to LSTM. Furthermore, even compared to ddLDA, an improved variant
of LDA, our proposed LLA achieves better perplexity. ddLDA models time by introducing
smoothness constraints that bias future actions to be generated from recent topics; however,
it does not possess a predictive action model. As a result, it can neither model the fact that
“booking a flight” topic should not be repeated over a short course of time nor that “booking
a hotel” topic would likely follow shortly, but not necessarily immediately, after “booking a
flight” topic. LLA, on the other hand, is capable of capturing this intricate dynamics by mod-
eling the evolution of user topics via an LSTM – an extremely powerful dynamic model. This

http://manzil.ml/lla.html
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(a) Wikipedia (b) User search click history

Figure 6.9: Topic embedding discovered using LLA

point is more evident if we consider the following hand-crafted1 user click trace in context of
the topics depicted in Figure 6.9b:

theknot.com zola.com weddingwire.com www.bridalguide.com pinterest.com food.com doity-
ourself.com .....

There are four topics represented and color-coded (best viewed in color): wedding (sixth topic
from top), social media (fourth from top), food (third form bottom) and home improvement
(second form top) – all in Figure 6.9b. We asked each model to predict what would be the three
most likely topics that would appear next in current user’s session. LDA predicted wedding
as the top topic followed by a tie for the remaining topics. ddLDA, whose output is based
on exponential decay, yields wedding as most likely, followed by doityourself topic, and then
the food topic as expected. In contrast, LLA ranks the most likely three topics as: doityourself
topic, houzz topic (top topic in Figure 6.9b), and the wedding topic. This is indicative of LLA
learning that once a user starts in the doitourself topic, the user will stay longer in this part of
the tree for the task and wander in the nearby topics for a while. Moreover, LLA still remembers
the wedding topic, and unlike other models, LLA did not erroneously pick neighbors of the
wedding topic among the three most likely topics to follow. More generally, one can extract the
topic transitions learned by LLA, as illustrated in Figure 6.10.

Finally, to demonstrate the interpretability of our model, in Figure 6.9b, we show a portion
of the topic hierarchy discovered by topic-LLA with 250 topics. For each topic we list the
top few clicked items. The theme of the figure is wedding and various house chores. Three
prominent clusters are shown from top to bottom. The top cluster is about house renovations
and wedding. Second cluster captures makeup, designer shoes, and fashion. The bottom cluster
capture kitchen, cooking and gardening. It is clear form the hierarchy that LLA groups topics
into the embedding space based on sequential proximity in the search click history.

6.4.4 Effect of Joint Training

One might wonder what would happen if we first train LDA and then simply train LSTM
over the topic assignments from the LDA. We refer to this baseline as “independent learner”
since LDA and LSTM are trained independently. In Table 6.3, we compare its performance
against LLA, which jointly learns the topics and the evolution dynamics. As we can see, joint

1 For privacy concerns, we construct an artificial example manually for illustration purposes.
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best job search sites
jobs near me
work from home jobs
job postings

Job Search

0.042
0.041
0.038
0.035
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resume builder
cover letter
IT cover letter
resume examples

Writing a Resume
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critical thinking
active listening
personal strengths

Leadership & Skills

0.009
0.008
0.008
0.007
0.006

smart goals
goal setting
personal goals
how to find a mentor

Career Planning
0.014
0.005
0.005
0.004

how to show respect
finding your passion
procrastination
acts of kindness
decision making

Motivation & Attitude

0.010
0.008
0.008
0.007
0.007

how to study
how to memorize
studying for a test
procrastination 
pulling all nighter

Studying & Education

0.028
0.024
0.021
0.021
0.016

summer camps near me
summer programs
summer camps 
best summer camps

Summer Classes

0.008
0.008
0.007
0.006
0.005

Figure 6.10: State transition graph over topics from user data.

training is significantly better, since the LSTM will fit the random errors introduced by the
topic assignments inferred form the LDA model, and in fact LSTM will learn to be as good as
the sequence produced by an LDA model (which is time-oblivious to start with). The effect is
more pronounced in the user history data due to the unstructured nature of this domain.

Dataset Independent learner Joint learner

Wikipedia 2119 1785

User Click 1572 927

Table 6.3: Advantage in terms of perplexity for joint learning.

6.5 threaded lla

LLA, while expressive and interpretable, can still capture spurious dynamics in sequential data
with mixed themes. From now onwards, we focus on user modelling task only. In Figure 6.11

we visualize the learned transition graph over topics as extracted from LLA when fitted over
a user search history dataset. As evident, while the model captured useful transitions between
camping gear and hiking topics, it also captured a couple of spurious transitions between ice-
cream and painting topics. This can be attributed to mixed nature of user data, for instance,
the user might search for hiking, home remodeling, and baking desserts with abrupt transi-
tions between these totally different themes. While LSTM has the expressive power to capture
long-range dependency structures, the introduction of latent variables (topics) exacerbate the
complexity of the surface of objective function and precludes the optimization algorithm from
linking each item in the sequence to the most relevant item in the the same theme from the
user history. In addition LLA can not break the transition graph into themes such as camping
and baking deserts that would give another layer of structure and interpretability.

To address these shortcomings of LLA, we introduce thLLA, threading LLA as a more faith-
ful model for sequential data with mixed themes and abrupt transitions between the themes.
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Figure 6.11: Transition graph from LLA illustrating its shortcoming. The LLA model is fit over user search
history data, where each topic is a distribution of search queries and each edge denotes a
temporal transition. As evident, LLA captures both useful and spurious dynamics.

thLLA generates a sequence from a mixture of LLA models, topics are shared among all LLA
models in the mixture, however, each LLA model in the mixture has its own LSTM component
that captures dynamic evolution over a subset of the topics in the shared space. The input data
is endowed with a switch variable for each item that selects a given mixture to generate this
item. In that regard each item in the sequence is generated NOT conditioned on all the previ-
ous items as in LLA but rather conditioned on items that are associated with the same mixture
in the history. In that regard our model can be seen as a threading or segmentation model
that breaks the user sequence into coherent themes and models dynamic evolution within each
theme separately. thLLA still enjoys all nice properties of LLA, namely, interpret-ability and
small model size while being more accurate. Unfortunately, this comes with an added complex
dependency structure for which inference would be extremely non-trivial. To remedy this, we
present an efficient sampler based on particle MCMC method for inference that can draw from
the joint posterior over both segments and topic assignments. We show quantitatively as well
as qualitatively the efficacy and interpretability of thLLA over several datasets.

6.5.1 Generative process

In thLLA, we employ a mixture of different LSTM components to model different segments
of the dynamics in each sequence. Switching between the mixture components is modeled in
the topic space like LLA and we use a multinomial-Dirichlet distribution to model emissions
p(xt|zt) similar to LDA, where xt is the observed sequence and zt is the latent topic index.

Suppose we have K topics and M mixtures in the dynamics. For each of the M mixtures, we
have different LSTMs, denote them by LSTM1, ..., LSTMM. All the LSTMs share a common
embedding look-up table E. Assume that we have a dataset of user activity histories D where
each user history u ∈ D is composed of Nu actions. With these notations in place, the complete
generative process can be described as follows:

1. for k = 1 to K:

a) Draw topic distribution φk ∼ Dir(β)

2. for each user u in dataset D :

a) Initialize all LSTMs with sm = 0 and set zprev
m = 0 for 1 6 m 6M

b) Draw user πu ∼ Dir(α)
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LSTM1 states

LSTM2 states

Latent topics zt

Observations xt

(a) Example of thLLA: Can easily switch context

LSTM states

Latent topics zt

Observations xt

(b) Corresponding LLA struggles during abrupt switch

Figure 6.12: Illustration of generative process of thLLA vs LLA. In this example, thLLA breaks the se-
quence into two segments: one about blue topics (camping) and one about red topics (food
and desert). It models each segment with separate LSTM that can capture clean, intricate
dynamics over these subset of topics, whereas LLA struggles in practice. Note that, in LLA,
topic at time t is linked to that at time t− 1 but in thLLA, each time step is linked to the most
recent time step in its theme (not necessarily the most recent one in time).

c) for each action index t = 1 to Nu:
i. Select behavior mode at time t as
yt ∼ Categorical(πu)

ii. Update corresponding dynamics

syt = LSTMyt

(
E
[
z

prev
yt

]
, syt

)
iii. Get topic proportions at time t from the active LSTM, θ = softmaxK(Wpsyt + bp)
iv. Choose a topic zu,t ∼ Categorical(θ)
v. Save zprev

yt = zu,t

vi. Choose user action xu,t ∼ Categorical(φzu,t)

For a single user history sequence u, the above mentioned generative process specifies the
following marginal probability distribution of observing the sequence:

p(xu|ω,φ,πu) =
∑
yu,zu

p(xu,yu, zu|ω,φu,πu)

=
∑
yu,zu

∏
t

p(zu,t|zu,0:t−1,yu,1:t,ω)p(yu,t|πu)p(xu,t|φzu,t)
(6.18)

Here ω is the union of parameters of all LSTM1, ..., LSTMM, the embedding matrix E, the
projection matrix Wp and bias bp. The structure of the generative process/probability function
and importance of the switch variable yt is better illustrated in Figure 6.12 through an example.
Here each element of the observed sequence xt is associated with a topic zt and a switch
variable yt where yt links (xt, zt) to the elements in the history with the same mode of behavior
(theme). For instance in Figure 6.12, we have two themes in this sequence, one is given by
topics with yellow shades (e.g. camping) and the other is defined by topics with blue shades
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(e.g. baking deserts). The dynamic evolution of each theme is modeled using a different LSTM
mixture. In that regard, the switch variable introduces large jumps in the sequence to connect
relevant items so that data point (xt, zt) is generated conditioned only on elements from the
same theme in the history (x1,t−1, z1,t−1), whereas LLA generates this element conditioned
on all elements in the history. While in theory LSTM should be able to figure out these jumps,
due to the diminishing gradient problem, and the fact that these jumps can occur weeks apart,
the optimization algorithm in practice misses them as depicted in Figure 6.12 via the missing
yellow topic in the second-to-last position.

Note that LLA is a special case of thLLA when the number of mixtures M = 1. thLLA still
enjoys all good properties of LLA, namely sparsity, fewer parameters, and interpretability. In
addition, the introduction of different dynamic mixtures adds another layer of interpretablility
by breaking the data into a set of themes.

6.5.2 Parameter estimation

Similar to LLA, exact inference for thLLA is intractable due to complex dependences structure.
As a result we have to resort to an approximate technique like mean field variation inference
or stochastic EM. We begin by writing down, the variational lower bound to the marginal data
likelihood is given by∑

u

logp(xu|ω,φ,πu) >
∑
u

Eq

[
log

p(zu|yu,ω)p(yu|πu)p(xu|zu,φ)

q(yu, zu)

]
, (6.19)

where q is the variational distribution. Following the (stochastic) EM approach, we iteratively
maximize the lower bound with respect to q and the model parameters (ω,π,φ), which leads
to the following updates:

e-step : As before, the optimal variational distribution for each user u is given by the posterior:

q?(yu, zu) ∝ p(zu|yu,ω)
∏
t

p(yu,t|πu)p(xt|φzu,t). (6.20)

Unlike Markov models for which efficient smoothing algorithms such as the forward-
backward algorithm are available for computing the posterior expectations of sufficient
statistics, in case of thLLA, although the forward messages can still be computed, the
backward recursion can no longer evaluated or efficiently approximated.

s-step : As taking expectations is difficult, we take an alternative approach to collect posterior
samples for every user u instead:

(yu, zu) ∼ q?(·, ·), (6.21)

given only the filtering equations and SMC. Similar to LLA, we define the following
quantities as forward messages, which can be computed in the standard forward pass:

αt ≡ p(xt|y1:t−1, z1:t−1) ∝
∑
yt,zt

p(zt|z1:t−1,y1:t,ω)p(yt|π)p(xt|zt,φ)

γt ≡ p(yt, zt|z1:t−1,y1:t−1, xt) ∝ p(zt|z1:t−1,y1:t,ω)p(yt|π)p(xt|zt,φ).
(6.22)

As before, we use an SMC algorithm to approximate the posterior (6.20) with P-particles.
We then can use SMC as in (6.1) with νt(z1:t) = p(x1:t,y1:t, z1:t) (i.e. z ← (y, z)) being
the unnormalized target distribution at time t.
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Algorithm 6.4 Inference with Particle Gibbs for thLLA

1: Let yp0 = y0, zp0 = z0 and αp0 = 1/P for p = 1, . . . ,P.
2: for t = 1 to T do
3: Fix reference path: set a1t−1 = 1 and y11:t = y

?
1:t, z

1
1:t = z

?
1:t from previous iteration.

4: for p = 2 to P do
5: Sample ancestor apt−1 ∼ Categorical

(
α1t−1,α2t−1, ...,αPt−1

)
6: Sample particle ypt , zpt ∼ γ

p
t ∝ p(zt|z1:t−1,y1:t,ω)p(yt|π)p(xt|zt,φ)

7: Set yp1:t = (y
a
p
t−1
1:t−1,ypt ), and zp1:t = (z

a
p
t−1
1:t−1, zpt )

8: Compute the weight αpt ←
∑
yt,zt p(zt|z

a
p
t−1
1:t−1,y

a
p
t−1
1:t ,ω)p(yt|π)p(xt|zt,φ)

9: end for
10: Normalize the weights αpt ←

α
p
t∑P

l=1α
l
t

11: end for
12: Sample r ∼ αT , return the particle path (y

arT
1:T , za

r
T
1:T ).

For the choice of the proposal distribution f(·), as before, we chose the predictive dis-
tribution. This choice makes precisely one of the available forward messages in (6.22):

f?(yt, zt|z
a
p
t−1
1:t−1,y

a
p
t−1
1:t−1, xt) = γ

p
t . (6.23)

The computational cost for sampling from above at each time step isO(M(K+H2)) where
M is the number of mixtures, K is the number of topics (needed to compute P(xt|zt))
and H is the size of the LSTM hidden state (required to compute P(zt|z1:t−1)). Finally
M is required since we need to normalize the distribution across all possible mixture
assignments for yt. Indeed, with the choice of predictive distribution as the proposal
density, the importance weight simplifies to the other forward message in (6.22), as before.
Furthermore, to circumvent the issue of path-depletion, we employ Particle Gibbs, on the
lines of LLA. The final algorithm is summarized in Algorithm 6.4.

m-step : For fixed switching and topic assignments (y, z), update the parameters ω, π, and φ
so as to improve the likelihood in expectation. As the dependence of likelihood on LSTM
parameters ω and π,φ are independent given y, z, we can update them independently
and in parallel as follows:

ω = argmax
ω

∑
u

logp(zu|yu,ω), ⇒ solve approximately by SGD

πu = argmax
πu

∑
t

logp(yu,t|πu) ∀u ⇒ πu,j =
#{yu,t = j}+α

Nu +Mα
∀u

φ = argmax
φ

∑
u

∑
t

logp(xu,t|φzu,t) ⇒ φx,k =
#{xu,t = x and zu,t = k}+β

#{zu,t = k}+ Vβ
.

(6.24)

The first equation basically implies training each LSTM with sequences z corresponding
to the time when its active as specified by y. The other two equations are simply the MLE
of switch variable, and the MLE of the given emission model, which is same as LDA or
LLA. The full algorithm is summarized in Figure 6.13
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Figure 6.13: Overview of the Stochastic EM inference algorithm.

6.6 experiments on threaded lla

n this section we study empirically the properties of thLLA to establish that (1) it is flexible in
capturing underlying nonlinear dynamics in sequences with mixed themes and abrupt jumps,
(2) the inference algorithm is efficient (3) it produces cleaner and more interpretable topic
transitions compared to LLA especially with the add layer of structure due to the dynamic
mixture components.

6.6.1 Setup and Datasets

For all experiments we follow the standard setup for evaluating temporal models, i.e. we use
the first 60% portion of the each sequence for training and then predict the remaining 40%
of the sequence based on the representation inferred from the first 60%. We use perplexity as
our metric (lower values are better) and compare against the baseline LLA. Since superiority of
LLA against other temporal variants of topic models such as Andrews and Vigliocco (2010) and
David Blei and Frazier (2011) has been established in Section 6.4, we exclude those comparison.
Similarly we exclude comparisons against base LSTM as the same trade-off holds as in LLA.
We focus here on the effect of the added layer of structure. Unless otherwise stated we run our
experiments with number of topics K = 1000 and number of mixtures M = 20 (for thLLA). For
both, we chose the dimensions of the input embedding to LSTM in the range {50, 100, 150} and
the size of the evolving hidden LSTM state in the range of {50, ..., 500}. For thLLA, we share the
embeddings of topics among all LSTM in the mixtures, leaving each mixture to only learn the
evolving hidden LSTM state. For SMC inference, we gradually increase the number of particles
P from 1 to K during training, where K is the number of topics. Finally, all the algorithms are
implemented on TensorFlow and run on machines with 4 GPUs.

To establish our claims we use data of different characteristics:

• Wikipedia: The publicly available Wikipedia dataset comprised of short documents con-
taining 0.7 billion tokens and 1 million documents (Each document is a sequence). We
chose the most frequent 50k words as a vocabulary. This domain is structured with each
sequence having a few themes with no sharp transitions.

• User Search History: An anonymized sample of user search query history from a web
search engine. For privacy reasons, we remove all queries appearing less than a given
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(a) Base LLA transition graph

(b) thLLA transition graph for finance-related topics

(c) thLLA transition graph for film-related topics

Figure 6.14: Transition graphs on Wikipedia dataset. Top row shows base LLA and bottom row depicts
transition from two different thLLA mixtures about Movies and Finance. As evident thLLA
gives cleaner representation. Probabilities are trimmed to the first two decimal digits.
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(a) Transition graph for dessert-related topics

(b) Transition graph for outdoors-related topics

Figure 6.15: Transition graphs on user history dataset. Figure depicts transition from two different thLLA
mixtures about Camping and Desert. As evident thLLA gives cleaner representation com-
pared to LLA as show in Figure 6.11. Probabilities are trimmed to the first two decimal
digits.

threshold, and use only head queries. This results in a dataset of 10M users and 1M
vocabulary. This domain is less structured than the Wikipedia dataset with longer se-
quences ( history of a given user), and abrupt jumps back and forth between themes in
each sequence.

6.6.2 Qualitative Evaluation: Topic Graph

First we test the claim that thLLA gives cleaner and more interpretable representation com-
pared to LLA. In Figure 6.14 and 6.15, we show the topic transition graph from both LLA and
thLLA, each with 1000 topics and a comparable size of the LSTM(s) hidden state. For user
search history dataset the LLA transition graph is shown in Figure 6.11. There are various
ways to illustrate the dynamic behavior learned by the LSTM component(s) in each model.
For instance in LLA, hierarchical clustering over the input topic embedding from the LSTM
showed that topics that appears closer in time also appears closer in the hierarchy. Here we
make this more explicit and visualize the dynamics learnt by each model as a topic transi-
tion graph using the one step transition from the LSTM components, i.e. for LLA we use
PLLA(topict = k|topict−1 = k ′, LSTM parameters) and for mixture m from thLLA, we use
PthLLA(topict = k|topict−1 = k ′, LSTM parameters of mixture m). In the above figures, we
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(a) User Search History (b) Wikipedia

Figure 6.16: Convergence curves for LLA and thLLA on a) User history and b) Wikpedia (lower better)

show top words (queries) for each topic as well as top transitions. As evident, while LLA
captures useful transition, the added layer of structure (themes) in thLLA results in a much
cleaner models that uncovers fine-grained transitions such as between camping basics, equip-
ments and parks, as can be seen in Figure 6.15(b), due to having a separate dynamic model for
each mixture.

6.6.3 Quantitative Evaluation

accuracy and perplexity Figure 6.16 compares LLA and thLLA quantitatively using
held-out perplexity on both datasets. We use number of topics = 1000, for thLLA number of
mixtures = 10 and we fix the size of the hidden state of each LSTM mixture to be 50 while for
LLA we use a value of 500. We use the same size for topic embedding in all models (100) and we
share topic embedding across all mixtures in thLLA making the overall size of the two models
comparable. First, overall thLLA give better results in both domain, however, the improvement
is more pronounced over the user search history dataset as expected due to its mixed-theme
nature and abrupt transitions. Second, thLLA while being more complex still converges at the
same rate compared to LLA. To understand this, note that the time complexity of LLA training
is dominated by the M-Step due to the LSTM component. Since thLLA utilizes smaller-sized
LSTMs in its mixtures, this compensates for the extra complexity introduced in the E-step to
sample both the topic and mixture assignment for each item in the sequence.

effect of lstm size In this subsection we preform an ablation study to show the effect
of the LSTM size on the thLLA and LLA. One might argue that if we increase the size of the
evolving LSTM hidden state in LLA we can capture the same effect introduced by thLLA, i.e.
the LSTM will figure it out due to its ability to model long-range dependencies. To test this
hypothesis, we fix the number of topics to be 1000, the number of mixtures in thLLA to be
10, and LSTM topic embedding to be 100. We vary the size of the evolving hidden LSTM state
in both LLA and each mixture in thLLA from 50 to 500. As shown in Figure 6.17(a,d), this is
not the case, and in fact thLLA outperforms LLA across the entire range especially in the user
history dataset. In the Wikipedia dataset, thLLA peaks at around hidden sizes = 50-100 while
LLA peaks around 500, given that we use 10 mixtures for thLLA we see that at comparable
LSTM sizes thLLA still outperform LLA. One should note here that while the LSTM in LLA can
theoretically model very long-range dependencies, in practice this is hard due to the vanishing
gradient problem, thus especially for user sequences, the fact that users go back and forth
between themes over weeks poses a real challenge to LLA. In contrast, in thLLA, each mixture
considers only a small portion of the input sequence that shares the same theme modeled by
this mixture. Thus, two items might be adjacent in the input to the LSTM’s mixture (thanks
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(a) Effect of LSTM hidden state size
on User Data

(b) Effect of Number of thLLA mix-
tures on User Data

(c) Effect of Number of topics on
User Data

(d) Effect of LSTM hidden state size
on Wikipedia Data

(e) Effect of Number of thLLA mix-
tures on Wikipedia Data

(f) Effect of Number of topics on
Wikipedia Data

Figure 6.17: Ablation study comparing. From Left to right: effect of LSTM size, number of mixtures in
thLLA, and number of topics. Top shows results on User Search History dataset and bottom
shows results on the Wikipedia dataset.

to the inference in the E-Step) while in fact they are separated by many steps in the observed
sequence. This ability of thLLA to model long-range dependencies via jumps, as explained in
Section 6.5, is the key to its performance.

effect of number of topics In Figure 6.17(c,f) we show how varying the number of
topics affect the quality of both models. We fix number of mixtures in thLLA to be 10 and
use the best performing setting for LSTM configuration in each model. As shown in the figure
thLLA outperform LLA across the entire topic range. For Wikipedia, we vary number of topics
in the range {250, 500, 1000} which does not change the overall trend.

effect of number of mixtures In Figure 6.17(b,e) we show how varying the number of
mixtures in thLLA affects the model quality while fixing the number of topics to be 1000. As
expected from the figure, this is a model selection problem where the performance peaks at 20

mixtures for the user search history dataset. However, it should be noted that overall thLLA
is not very sensitive to slight variation around the optimal value. In practice, cross validation
over a development dataset can be used to find the best value of the number of mixtures.

6.6.4 A User Prediction Task

In this subsection we provide an additional quantitative evaluation besides the standard per-
plexity metric using the user search history dataset. The task here is to predict users’ future
query. We divide queries in each test user into 80% for topic inference and 20% for evaluation.
Each model produces a ranked list of queries based on the first 80% portion of the user history.
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Figure 6.18: Illustrating how LLA and thLLA breaks a user history into topics. As evident, thLLA first
breaks the history into themes: outdoor (red) and deserts (blue), then gives a more fine-
grained annotation in each theme resulting in better prediction as shown in Table 6.4 (best
viewed in color).

We use precision@K to evaluate the accuracy of each model in predicting future queries where
P(Query = q|user history) is computed as follows:

PLLA(q|u) =

K∑
k=1

PLLA(topic = k|u)P(q|k)

PthLLA(q|u) =

M∑
m=1

πu,m

K∑
k=1

PthLLA,m(topic = k|u)P(q|k)

(6.25)

In other words, in LLA we first run inference and use the last state of the LSTM to produce
a future topic distribution that we combine with the topic-query distribution to produce the
predicted ranked list of queries. In thLLA we perform the same computation on a per-mixture
basis where the contribution of each mixture is weighted by its prevalence in the user history
given by πu,m. The results are shown in Table 6.4.

As the table shows thLLA produced better results than LLA as it learns much more tighter
topics that enables a more accurate prediction. To further explain this result, we refer the
reader to Figure 6.18 where we show how LLA and thLLA segments a user history into topics.
As evident from the figure, thLLA produces a fine-grained annotation of the user activities in
both outdoor and desert-making themes. For instance, while LLA groups many events into
“camping gear”, thLLA breaks them down into camping tents and camping equipments. This
breakage allows for a better future prediction as the scope of future queries is reduced from
all possible queries in camping gears in addition to their immediate neighboring topics (as in
LLA, Figure 6.11) to only those queries in tents and camping equipments in addition to their
immediate neighboring topics (as in thLLA, Figure 6.15). This happens as thLLA devotes a

Model P@5 P@10 P@15

LLA 0.174 0.151 0.139

thLLA 0.219 0.192 0.183

Table 6.4: Query prediction on the user search history dataset. Improvements are statistically significant.
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whole mixture to modeling camping activities and this enables learning fine-grained topics
with accurate, theme-focused transitions.

6.7 points to ponder

In this chapter we present LLA: Latent LSTM allocation. LLA leverages the powerful dynamic
modeling capability of LSTM without blowing up the number of parameters while adding
interpretability to the model. We achieve this by shifting from modeling the temporal dynamics
at the observed word level to modeling the dynamics at a higher level of abstraction: topics. As
the number of topics K is much smaller than the number of words V , it can act as a knob that
can trade-off accuracy vs model size. In the extreme case, if we allow K → V in LLA then we
recover LSTM. Furthermore, the topics provide an informative embedding and transitions that
can reveal interesting temporal relationship as shown in Figure 6.9a-6.9b and Figure 6.14-6.15,
– which is a novel contribution to the best of our knowledge.

Inspite of nice interpretablity, it might seem from Figure 6.5,6.16 that LLA (and its variants)
produce high perplexity compared to best known language models (Jozefowicz et al., 2016;
Melis, Dyer, and Blunsom, 2017). Upon careful investigation, we found that the apparent gap
arises due to different evaluation scheme. When perplexity is reported in literature for lan-
guage models, entire test set is concatenated into a long text sequence. Over this long text
sequence, LSTM or other language model is run to evaluate the perplexity. Whereas, in our
task, concatenating different user history does not make sense. If we evaluate the best available
language model2 with 1 billion parameters in our setting for Wikipedia we get a perplexity of
983, which is in similar range to our small LLA models. Even in case of text, we raise the ques-
tion is it meaningful to evaluate perplexity by concatenating all the documents? Or one should
evaluate perplexity for each document independently then report the average perplexity. This
because it is not clear what state should the LSTM carry over from one document to another.

LLA (and its variants) are more elaborate models, thus come with more knobs tune. This makes
the training little unstable and needs careful hyper-parameter tuning to achieve good perfor-
mance. We found the hack of initializing the word|topic matrix by running a few iterations
of vanilla LDA helps a lot in generalization. The benefit of such initialization maybe because
when LLA model is initialized randomly, the latent variables do not have any meaningful infor-
mation. So the LSTM on the sequence of latent variable has hard time to start learning useful
patterns and the overall model gets stuck. It would be worthwhile to come up with a general
training procedure that can train a recurrent neural network on a sequence of latent variables,
starting from scratch.

Finally, based on preliminary experimentation, we find the proposed LLA does not work very
well on continuous input space such as images and speech data. We conjecture that the poor
performance might be due to simple emission model of elementary parametric distribution like
Gaussian or uniform. Other recent work in recurrent latent variable models where a recurrent
model is endowed with a more flexible family of distributions such as restricted Boltzmann
machines (RBM) (Boulanger-Lewandowski, Y. Bengio, and Vincent, 2012) or variational auto-
encoders (VAE) (Chung et al., 2015; Gregor et al., 2015), perform better but are not as inter-
pretable as LLA. However for our application of user modelling, interpretability is important
and we need to focus on discrete data only, for which LLA meets the bill.

2 https://github.com/tensorflow/models/tree/master/research/lm_1b

https://github.com/tensorflow/models/tree/master/research/lm_1b


Part III

S C A L I N G U P I N F E R E N C E B Y E X P L O I T I N G T O P O L O G Y

Inferring interpretable representations from large-scale data is desirable, but often
hindered by a mismatch between computational resources and statistical models.
We aim to bridge this gap by again leveraging structure, albeit of a different kind.
We will use a combination of modern computational techniques/data structures on
one side and modified statistical inference algorithms on the other which exploit
topological properties of the training objective. This introduces new ways to paral-
lelize, reduce look-ups, handle variable state space size, and escape saddle points.





7
Pa r a l l e l i z at i o n

We study the problem of scaling up inference for latent variable models (LVM) by paralleliza-
tion. The popularity of LVM rises from the ability to discover hidden thematic structures of
the data in a human-understandable format. The rich statistical dependencies and intractable
gradients of LVM, leave only variational methods or Markov chain Monte-Carlo (MCMC) for
inference, which are inherently sequential. Moreover, these methods attempt to infer the com-
plete posterior distribution whereas we are usually interested in some statistics of the posterior
like maximum or expected value of the parameter under the posterior. In this chapter, instead
of attempting to parallelize an inherently sequential algorithm, we start with a parallel com-
putational paradigm and design update rules that give rise to correct inference algorithms
for quantities that matter. We propose a model based on stochastic cellular automata (SCA),
perhaps the most embarrassingly parallel computational model and good match for the struc-
ture of modern computational resources. This approach results in an embarrassingly parallel,
memory efficient inference algorithm for LVM in which the complete data likelihood is in the
exponential family. The algorithm converges to a valid maximum a posteriori fixed point and
achieves better computational efficiency by exploiting the structure of the sufficient statistics of
LVM with complete data likelihood is in the exponential family. Applied to latent Dirichlet al-
location we find that our algorithm is over an order of magnitude faster than the fastest current
approaches. A simple C++/MPI implementation on a 20-node Amazon EC2 cluster samples at
more than 1 billion tokens per second. We process 3 billion documents and achieve predictive
power competitive with collapsed Gibbs sampling and variational inference.

7.1 introduction

In the past decade, frameworks such as stochastic gradient descent (SGD; Robbins and Monro
1951) and map-reduce (Dean and Ghemawat, 2008) have enabled machine learning algorithms
to scale to larger and large datasets. However, these frameworks are not always applicable to
Bayesian latent variable models with rich statistical dependencies and intractable gradients.
Variational methods (Michael I. Jordan et al., 1999) and Markov chain Monte-Carlo (MCMC;
Gilks, S. Richardson, and Spiegelhalter 1995) have thus become the sine qua non for inferring
the posterior in these models.

Sometimes—due to the concentration of measure phenomenon associated with large sample
sizes—computing the full posterior is unnecessary and maximum a posteriori (MAP) estimates
suffice. It is hence tempting to employ gradient descent. However, for latent variable models
such as latent Dirichlet allocation (LDA), calculating gradients involves expensive expectations
over rich sets of variables (Patterson and Y. W. Teh, 2013).

MCMC is an appealing alternative, but traditional algorithms such as the Gibbs sampler are in-
herently sequential and the extent to which they can be parallelized depends heavily upon how
the structure of the statistical model interacts with the data. For instance, chromatic sampling
(Gonzalez et al., 2011) is infeasible for LDA, due to its dependence structure. We propose an
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Emission/Mixture Categorical Dirichlet Mixture

Bernoulli Latent Class Model (For-
mann and Kohlmann, 1996)

Grade of Membership Model
(Woodbury, Clive, and Gar-
son, 1978)

Multinomial Unigram Document Cluster-
ing

Latent Dirichlet Allocation
(D. M. Blei, A. Y. Ng, and
Michael I. Jordan, 2003)

Gaussian Mixture of Gaussians (R.
Neal, 1998)

Gaussian-LDA (Section 5.5)

Poisson - GaP Model (Canny, 2004)

Table 7.1: Examples of some popular models to which ESCA is applicable.

alternate approach based on stochastic cellular automata (SCA). The automaton is massively
parallel like conventional cellular automata, but employs stochastic updates.

Our proposed algorithm, exponential SCA (ESCA), is a specific way of mapping inference in
latent variable models with complete data likelihood in the exponential family into an instance
of SCA (Section 7.2). ESCA has a minimal memory footprint because it stores only the data
and the minimal sufficient statistics (by the very definition of minimal sufficient statistics, the
footprint cannot be further reduced). In contrast, variational approaches such as stochastic
variational inference (SVI; M. D. Hoffman et al. 2013) require storing the variational parameters,
while MCMC-based methods, such as YahooLDA (Alexander Smola and Narayanamurthy,
2010) require storing the latent variables. Thus, ESCA substantially reduces memory costs,
enabling larger datasets to fit in memory, and significantly reducing communication costs in
distributed environments.

Furthermore, the sufficient statistics dramatically improves efficiency. Typically, in the general
case of SCA, updating a cell requires first assembling the values of all the neighboring cells be-
fore aggregating them into a local stochastic update. However, in ESCA, the sufficient statistics
adequately summarize the states of the neighbors; the computational load is therefore small
and perfectly balanced across the cells. As a result, ESCA addresses a key problem pervasive to
other graph-based models in which the computation factorizes over vertices, such as traditional
cellular automta and models employed by Pregel and GraphLab (Low et al., 2010; Malewicz
et al., 2010). Such vertex-centric models have difficulty with natural graphs because low-degree
vertices idle while high-degree vertices perform expensive computations.

We demonstrate how ESCA is a flexible framework for exponential latent variable models such
as LDA (Section 7.3). In our experiments, we process over 3 billion documents at a rate of 1

billion tokens per second on a cluster of 20 commodity servers (Section 7.5). That said, ESCA
is much more general. Table 7.1 explicitly lists some of the more common modeling choices for
which ESCA can be easily employed. Our algorithm implicitly simulates stochastic expectation
maximization (SEM), and is thus provably correct in the sense that it converges in distribution
to a stationary point of the posterior.
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7.2 exponential sca

Stochastic cellular automata (SCA), also known as probabilistic cellular automata, or locally-
interacting Markov chains, are a stochastic version of a discrete-time, discrete-space dynamical
system in which a noisy local update rule is homogeneously and synchronously applied to
every site of a discrete space. They have been studied in statistical physics, mathematics, and
computer science, and some progress has been made toward understanding their ergodicity
and equilibrium properties. A recent survey by Mairesse and Marcovici (2014) is an excellent
introduction to the subject, and the dissertation by Louis (2002) contains a comprehensive and
precise presentation of SCA.

The automaton, as a (stochastic) discrete-time, discrete-space dynamical system, is given by an
evolution function Φ : S −→ S over the state space S = Z −→ C which is a mapping from the
space of cell identifiers Z to cell values C. The global evolution function applies a local function
φz(c1, c2, · · · , cr) 7→ c such that ci = s(zi) to every cell z ∈ Z. That is, φ examines the values of
each of the neighbors of cell z and then stochastically computes a new value c. The dynamics
begin with a state s0 ∈ S that can be configured using the data or a heuristic.

Exponential SCA (ESCA) is based on SCA but achieves better computational efficiency by ex-
ploiting the structure of the sufficient statistics for latent variable models in which the complete
data likelihood is in the exponential family. Most importantly, the local update function φ for
each cell depends only upon the sufficient statistics and thus does not scale linearly with the
number of neighbors.

7.2.1 Latent Variable Exponential Family

Latent variable models are useful when reasoning about partially observed data such as collec-
tions of text or images in which each i.i.d. data point is a document or image. Since the same
local model is applied to each data point, they have the following form

p(z, x,η) = p(η)
∏
i

p (zi, xi|η) . (7.1)

Our goal is to obtain a MAP estimate for the parameters η that explain the data x through
the latent variables z. To expose maximum parallelism, we want each cell in the automaton
to correspond to a data point and its latent variable. However, in general all latent variables
depend on each other via the global parameters η, and thus the local evolution function φ
would have to examine the values of every cell in the automaton.

Fortunately, if we further suppose that complete data likelihood is in exponential family, i.e.

p(zi, xi|η) = exp (〈T (zi, xi) ,η〉− g(η)) (7.2)

then the complete and sufficient statistics are given by

T(z, x) =
∑
i

T(zi, xi) (7.3)

and we can thus express any estimator of interest as a function of just T(z, x). Further, when
employing expectation maximization (EM), the M-step is possible in closed form for many
members of the exponential family. This allows us to reformulate the cell level updates to
depend only upon the sufficient statistics instead of the neighboring cells. The idea is that,
unlike SCA (or MCMC in general) which produces a sequence of states that correspond to
complete variable assignments s0, s1, . . . via a transition kernel q(st+1|st), ESCA produces a
sequence of sufficient statistics T0, T1, . . . directly via an evolution function Φ(Tt) 7→ Tt+1.
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7.2.2 Stochastic EM

Before we present ESCA, we must first describe stochastic EM (SEM). Suppose we want the
MAP estimate for η and employ a traditional expectation maximization (EM) approach:

max
η
p(x,η) = max

η

∫
p(z, x,η)µ(dz) (7.4)

EM finds a mode of p(x,η) by iterating two steps:

e-step Compute in parallel p(zi|xi,η(t)).

m-step Find η(t+1) that maximizes the expected value of the log-likelihood with respect to
the conditional probability, i.e.

η(t+1) = argmax
η

Ez|x,η(t) [logp(z, x,η)]

= ξ−1

(
1

n+n0

∑
i

Ez|x,η(t) [T(zi, xi)] + T0

) (7.5)

where ξ(η)=∇g(η) is invertible as ∇2g(θ)�0 and n0, T0 parametrize conjugate prior. 1

Although EM exposes substantial parallelism, it is difficult to scale, since the dense structure
p(zi|xi,η(t)) defines values for all possible outcomes for z and thus puts tremendous pressure
on memory bandwidth.

To overcome this we introduce sparsity by employing stochastic EM (SEM; Celeux and Diebolt
1985). SEM substitutes the E-step for an S-step that replaces the full distribution with a single
sample:

s-step Sample z(t)i ∼ p(zi|xi;η(t)) in parallel.

Subsequently, we perform the M-step using the imputed data instead of the expectation. This
simple modification overcomes the computational drawbacks of EM for cases in which sam-
pling from p(zi|xi;η(t)) is feasible. We can now employ fast samplers, such as the alias method,
exploit sparsity, reduce CPU-RAM bandwidth while still maintaining massive parallelism.

The S-step has other important consequences. Notice that the M-step is now a simple function
of current sufficient statistics. This implies that the conditional distribution for the next S-step
is expressible in terms of the complete sufficient statistics

p(zi|xi;η(t)) = f(zi, T(x, z(t))). (7.6)

Thus each S-step depends only upon the sufficient statistics generated by the previous step.
Therefore, we can operate directly on sufficient statistics without the need to assign or store
latent variables/states. Moreover it opens up avenues for distributed and parallel implementa-
tions that execute on an SCA.

7.2.3 ESCA for Latent Variable Models

SEM produces an alternating sequence of S and M steps in which the M step produces the
parameters necessary for the next S step. Since we can compute these parameters on the fly
there is no need for an explicit M step. Instead, ESCA produces a sequence consisting only
of S steps. We require the exponential family to ensure that these steps are both efficient and
compact. We now present ESCA more formally.

1 The inversion may not be always available in closed form, in which case we resort to numerical techniques.
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(a) Phase 1 (b) Phase 2

Figure 7.1: Efficient (re)use of buffers

Define an SCA over the state space S of the form:

S = Z −→ K×X (7.7)

where Z is the set of cell identifiers (e.g. one per token in a text corpus), K is the domain of
latent variables, and X is the domain of the observed data.

The initial state s0 is the map defined as follows: for every data point, we associate a cell z to
the pair (kz, x) where kz is chosen at random from K and independently from kz ′ for all z ′ 6= z.
This gives us the initial state s0.

s0 = z 7→ (kz, x) (7.8)

We now need to describe the evolution function Φ. First, assuming that we have a state s and
a cell z, we define the following distribution:

pz(k|s) = f(z, T(s)) (7.9)

Assuming that s(z) = (k, x) and that k ′ is a sample from pz (hence the name “stochastic”
cellular automaton) we define the local update function as:

φ(s, z) = (k ′, x) where s(z) = (k, x) and k ′ ∼ pz( · |s) (7.10)

That is, the observed data remain unchanged, but we choose a new latent variable according
to the distribution pz induced by the state. We obtain the evolution function of the stochastic
cellular automaton by applying the function φ uniformly on every cell.

Φ(s) = z 7→ φ(s, z) (7.11)

Finally, the SCA algorithm simulates the evolution function Φ starting with s0.

As explained earlier, due to our assumption of complete data likelihood belonging to the expo-
nential family, we never have to represent the states explicitly, and instead employ the sufficient
statistics.

An implementation can, for example, have two copies of the data structure containing sufficient
statistics T (0) and T (1). We do not compute the values T(z, x) but keep track of the sum as we
impute values to the cells/latent variables. During iteration 2t of the evolution function, we
apply Φ by reading from T (0) and incrementing T (1) as we sample the latent variables (See
Figure 7.1). Then in the next iteration 2t+ 1 we reverse the roles of the data structures, i.e. read
from T (1) and increment T (0). We summarize in Algorithm 7.1.

Use of such read/write buffers offer a virtually lock-free (assuming atomic increments) im-
plementation scheme for ESCA and is analogous to double-buffering in computer graphics.
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Algorithm 7.1 ESCA

1: Randomly initialize each cell
2: for t = 0→ num iterations do
3: for cell z independently in parallel do do
4: Read sufficient statistics from T (t mod 2)

5: Compute stochastic updates using pz(k|s)
6: Write sufficient statistics to T (t+1 mod 2)

7: end for
8: end for

Although there is a synchronization barrier after each round, its effect is mitigated because
each cell’s work depends only upon the sufficient statistics and thus does the same amount of
work. Therefore, evenly balancing the work load across computation nodes is trivial, even for
a heterogeneous cluster.

Furthermore, in the case of discrete latent variable, updating sufficient statics only requires
increments to the data structure T (r) allowing the use of approximate counters (Csűrös, 2010;
Morris, 1978). Approximate counters greatly reduce memory costs for the counts: e.g. only 4 or
8 bits per counter. Recent empirical evidence demonstrates that approximate counters preserve
statistical performance without compromising runtime performance (Tristan, Tassarotti, and
Steele Jr., 2015). In fact, speed often increases because not every increment to the counter results
in a write to memory. Note, due to the compression, maintaining two buffers requires less
memory than one. Finally, if the latent variables are discrete valued then we can leverage the
fast Vose’ alias method (Vose, 1991) to sample. TheO(|K|) construction cost for the alias method
can be easily amortized because the rule is homogeneous and thus alias tables can be shared.
Details about alias sampling method is provided in Section 7.4.4.

7.2.4 Wide Applicability of ESCA

As stated previously, ESCA is technically applicable to any model in which the complete data
likelihood is in the exponential family. Designing an ESCA algorithm for a model of interest
requires simply deriving the S-step for the local update function in the automaton. The S-step
is the full conditional (7.9) which is easy to derive for many models; e.g. mixture models in
which (1) the data and parameter components are conjugate and (2) the latent variables and
priors are conjugate. We list a few examples of such models in Table 7.1 and provide additional
details in Section 7.4.5. Of course, the extent to which the models enable exploitation of sparsity
varies.

7.2.5 Convergence

We now address the critical question of how the invariant measure of ESCA for the model
presented in Section 7.2.1 is related to the true MAP estimates. First, note that SCA is ergodic
(Louis, 2002), a result that immediately applies if we ignore the deterministic components of
our automata (corresponding to the observations). Now that we have established ergodicity,
we next study the properties of the stationary distribution and find that the modes correspond
to MAP estimates.

We make a few mild assumptions about the model:

• The observed data Fisher information is non-singular, i.e. I(η) � 0.
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• For the Fisher information for z|x, we need it to be non-singular and central limit theorem,
law of large number to hold, i.e. Eη0 [IX(η0)] � 0 and

sup
η

∣∣∣∣∣ 1n
n∑
i=1

Ixi(η) − Eη0 [IX(η)]

∣∣∣∣∣→ 0 as n→∞
• We assume that 1n

∑n
i=1∇η logp(xi;η) = 0 has at least one solution, let η̂ be a solution.

These assumptions are reasonable. For example in case of mixture models (or topic models), it
just means all component must be exhibited at least once and all components are unique. The
details of this case are worked out in Section 7.4.3. Also when the number of parameters grow
with the data, e.g. for topic models, the second assumption still holds. In this case, we resort
to corresponding result from high dimensional statistics by replacing the law of large numbers
with Donsker’s theorem and everything else falls into place.

Consequently, we show ESCA converges weakly to a distribution with mean equal to some
root of the score function (∇η logp(xi;η)) and thus a MAP fixed point by borrowing the results
known for SEM (Nielsen, 2000). In particular, we have:

Theorem 7.1 Let the assumptions stated above hold and η̃ be the estimate from ESCA. Then as the
number of independent and identically distributed data point goes to infinity, i.e. n→∞, we have

√
n(η̃− η̂)

D→ N
(
0, I(η0)−1[I− F(η0)−1

)
(7.12)

where F(η0) = I+ Eη0 [IX(η0)](I(η0) + Eη0 [IX(η0)]).

This result implies that SEM flocks around a stationary point under very reasonable assump-
tions and tremendous computational benefits. Also, for such complicated models, reaching a
stationary point is the best that most methods achieve anyway. Now we switch gears to adopt
ESCA for LDA and perform some simple experimental evaluations.

7.3 esca for lda

Topic modeling, and latent Dirichlet allocation (LDA) (D. M. Blei, A. Y. Ng, and Michael I.
Jordan, 2003) in particular, have become a must-have of analytics platforms and consequently
needs to scale to larger and larger datasets. In LDA, we model each document m of a corpus of
M documents as a distribution θm that represents a mixture of topics. There are K such topics,
and we model each topic k as a distribution φk over the vocabulary of words that appear in
our corpus. Each document m contains Nm words wmn from a vocabulary of size V , and we
associate a latent variable zmn to each of the words. The latent variables can take one of K
values indicating the topic for the word. Both distributions θm and φk have a Dirichlet prior,
parameterized respectively with a constant α and β. See Section 7.4.1 for more details.

7.3.1 Existing systems

Many of the scalable systems for topic modeling are based on one of two core inference meth-
ods: the collapsed Gibbs sampler (CGS; T.L. Griffiths and Steyvers 2004), and variational in-
ference (VI; D. M. Blei, A. Y. Ng, and Michael I. Jordan 2003) and approximations thereof
(Asuncion et al., 2009). To scale LDA to large datasets, or for efficiency reasons, we may need
to distribute and parallelize them. Both algorithms can be further approximated to meet such
implementation requirements.
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collapsed gibbs sampling In collapsed Gibbs sampling the full conditional distribution
of the latent topic indicators given all the others is

p(zmn = k|z¬mn,w) ∝ (Dmk +α)
Wkwmn +β

Tk +βV
(7.13)

where Dmk is the number of latent variables in document m that equal k, Wkv is the number
of latent variables equal to k and whose corresponding word equals v, and Tk is the number of
latent variables that equal k, all excluding current zmn.

CGS is a sequential algorithm in which we draw latent variables in turn, and repeat the pro-
cess for several iterations. The algorithm performs well statistically, and has further benefited
from breakthroughs that lead to a reduction of the sampling complexity (A. Q. Li et al., 2014;
L. Yao, Mimno, and Andrew McCallum, 2009). This algorithm can be approximated to enable
distribution and parallelism, primarily in two ways. One is to partition the data, perform one
sampling pass and then assimilate the sampler states, thus yielding an approximate distributed
version of CGS (AD-LDA; Newman, Asuncion, et al. 2009). Another way is to partition the data
and allow each sampler to communicate with a distributed central storage continuously. Here,
each sampler sends the differential to the global state-keeper and receives from it the latest
global value. A scalable system built on this principle and leveraging inherent sparsity of LDA
is YahooLDA (Alexander Smola and Narayanamurthy, 2010). Further improvement and sam-
pling using alias table was incorporated in lightLDA (Yuan et al., 2015). Contemporaneously, a
nomadic distribution scheme and sampling using Fenwick tree was proposed in F+LDA (H.-F.
Yu et al., 2015).

variational inference In variational inference (VI), we seek to optimize the parameters
of an approximate distribution that assumes independence of the latent variables to find a
member of the family that is close to the true posterior. Typically, for LDA, document-topic
proportions and topic indicators are latent variables and topics are parameter. Then, coordinate
ascent alternates between them.

One way to scale VI is stochastic variational inference (SVI) which employs SGD by repeat-
edly updating the topics via randomly chosen document subsets (M. D. Hoffman et al., 2013).
Adding a Gibbs step to SVI introduces sparsity for additional efficiency (Mimno, M. Hoffman,
and David Blei, 2012). In some ways this is analogous to our S-step, but in the context of varia-
tional inference, the conditional is much more expensive to compute, requiring several rounds
of sampling.

Another approach, CVB0, achieves scalability by approximating the collapsed posterior (W. Y.
Teh, Newman, and Welling, 2007). Here, they minimize the free energy of the approximate dis-
tribution for a given parameter γmnk and then use the zero-order Taylor expansion (Asuncion
et al., 2009).

γmnk ∝ (Dmk +α)×
Wkwmn +β

Tk +β V
(7.14)

where Dmk is the fractional contribution of latent variables in document m for topic k, Wkv
is the contribution of latent variables for topic k and whose corresponding word equals v,
and Tk is the the contribution of latent variables for topic k. Inference updates the variational
parameters until convergence. It is possible to distribute and parallelize CVB0 over tokens
(Asuncion et al., 2009). VI and CVB0 are the core algorithms behind several scalable topic
modeling systems including Mr.LDA (Zhai, J. Boyd-Graber, et al., 2012) and the Apache Spark
machine-learning suite.
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remark It is worth noticing that Gibbs sampling and variational inference, despite being
justified very differently, have at their core the very same formulas (shown in a box in formula
(7.13) and (7.14)). Each of which are literally deciding how important is some topic k to the
word v appearing in documentm by asking the questions: “How many times does topic k occur
in document m?”, “How many times is word v associated with topic k?”, and “How prominent
is topic k overall?”. It is reassuring that behind all the beautiful mathematics, something simple
and intuitive is happening. As we see next, ESCA addresses the same questions via analogous
formulas for SEM.

7.3.2 An ESCA Algorithm for LDA

To re-iterate, the point of using such a method for LDA is that the parallel update dynamics of
the ESCA gives us an algorithm that is simple to parallelize, distribute and scale. In the next
section, we will evaluate how it works in practice. For now, let us explain how we design our
SCA to analyze data.

We begin by writing the stochastic EM steps for LDA (derivation is in Section 7.4.1):

e-step : independently in parallel compute the conditional distribution locally:

qmnk =
θmkφkwmn∑K

k ′=1 θmk ′φk ′wmn
(7.15)

s-step : independently in parallel draw zij from the categorical distribution:

zmn ∼ Categorical(qmn1, ...,qmnK) (7.16)

m-step : independently in parallel compute the new parameter estimates:

θmk =
Dmk +α− 1

Nm +Kα−K

φkv =
Wkv +β− 1

Tk + Vβ− V

(7.17)

We simulate these inference steps in ESCA, which is a dynamical system with evolution func-
tion Φ : S −→ S over the state space S. For LDA, the state space S is

S = Z −→ K×M×V (7.18)

where Z is the set of cell identifiers (one per token in our corpus), K is a set of K topics, M is a
set of M document identifiers, and V is a set of V identifiers for the vocabulary words.

The initial state s0 is the map defined as follows: for every occurrence of the word v in docu-
ment m, we associate a cell z to the triple (kz,m, v) where kz is chosen uniformly at random
from K and independently from kz ′ for all z ′ 6= z. This gives us

s0 = z 7→ (kz,m, v) (7.19)

We now need to describe the evolution function Φ. First, assuming that we have a state s and
a cell z, we define the following distribution:

pz(k|s) ∝ (Dmk +α)×
Wkv +β

Tk +βV
(7.20)
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where Dmk =
∣∣∣{ z | ∃v. s(z) = (k,m, v)

}∣∣∣,
Wkv =

∣∣∣{ z | ∃m. s(z) = (k,m, v)
}∣∣∣, and

Tk =
∣∣∣{ z | ∃m. ∃v. s(z) = (k,m, v)

}∣∣∣. Note that we have chosen our local update rule slightly
different without an offset of −1 for the counts corresponding to the mode of the Dirichlet
distributions and requiring α,β > 1. Instead, our local update rule allows us to have the
relaxed requirement α,β > 0 which is more common for LDA inference algorithms.

Assuming that s(z) = (k,m, v) and that k ′ is a sample from pz (hence the name “stochastic”
cellular automaton) we define the local update function as:

φ(s, z) = (k ′,m, v)

where s(z) = (k,m,v) and k ′ ∼ pz( · |s)
(7.21)

That is, the document and word of the cell remain unchanged, but we choose a new topic
according to the distribution pz induced by the state. We obtain the evolution function of the
stochastic cellular automaton by applying the function φ uniformly on every cell.

Φ(s) = z 7→ φ(s, z) (7.22)

Finally, the SCA algorithm simulates the evolution function Φ starting with s0. Of course,
since LDA’s complete data likelihood is in the exponential family, we never have to represent
the states explicitly, and instead employ the sufficient statistics.

Our implementation has two copies of the count matrices Di, Wi, and T i for i = 0 or 1 (as in
CGS or CVB0, we do not compute the values Dik, Wkv, and Tk but keep track of the counts as
we assign topics to the cells/latent variables). During iteration i of the evolution function, we
apply Φ by reading Di mod 2, Wi mod 2, and T i mod 2 and incrementing Di+1 mod 2, Wi+1 mod 2,
and T i+1 mod 2) as we assign topics.

7.3.3 Advantages of ESCA for LDA

The positive consequences of ESCA as a choice for inference on LDA are many:

• Our memory footprint is minimal since we only store the data and sufficient statistics.
In contrast to MCMC methods, we do not store the assignments to latent variables z.
In contrast to variational methods, we do not store the variational parameters γ. Further,
variational methods require K memory accesses (one for each topic) per word. In contrast,
the S-step ensures we only have a single access (for the sampled topic) per word. Such
reduced pressure on the memory bandwidth can improve performance significantly for
highly parallel applications.

• We can further reduce the memory footprint by compressing the sufficient statistics with
approximate counters (Csűrös, 2010; Morris, 1978). This is possible because updating the
sufficient statistics only requires increments as in Mean-for-Mode (Tristan, Tassarotti, and
Steele Jr., 2015). In contrast, CGS decrements counts, preventing the use of approximate
counters.

• Our implementation is lock-free (in that it does not use locks, but assumes atomic incre-
ments) because the double buffering ensures we never read or write to the same data
structures. There is less synchronization, which at scale is significant.
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• Finally, our algorithm is able to fully benefit from Vose’s alias method (Vose, 1991) be-
cause homogeneous update rule for SCA ensures that the cost for constructing the alias
table is amortized across the cells. To elaborate, the SCA update (7.20) decomposes as

pz(k|s) ∝
[
Dmk

Wkv +β

Tk +βV

]
+

[
α
Wkv +β

Tk +βV

]
(7.23)

allowing us to treat it as a discrete mixture and divide the sampling procedure into a two
steps. First, we toss a biased coin to decide which term of the equation to sample, and
second, we employ a specialized sampler depending on the chosen term. The first term
is extremely sparse (documents comprise only a small handful of topics) and a basic
sampling procedure suffices. The second term is not sparse, but is independent of the
current documentm and depends only on theW and T matrices. Moreover, as mentioned
earlier, during iteration i, we will be only reading values from non-changing Wi mod 2,
and T i mod 2 matrices. As a result, at the start of each iteration we can precompute, from
the W and T matrices, tables for use with Vose’s alias method, which enables sampling
from the second term in a mere 3 CPU operations. Thus, the evolution for ESCA is
extremely efficient.

7.3.3.1 Connection to SGD

We can view ESCA as implicit SGD on MAP for LDA. This connection alludes to the conver-
gence rate of ESCA. To illustrate, we consider θ only. As pointed out in R. Salakhutdinov, S.
Roweis, and Zoubin Ghahramani (n.d.) and L. Xu and Michael I Jordan (1996), one EM step is:

θ+m = θm +M
∂ logp
∂θmk

which is gradient descent with a Frank-Wolfe update and line search. Similarly, for ESCA using
stochastic EM, one step is

θ+mk =
Dnmk
Nm

=
1

Nm

Nm∑
n=1

δ(zmn = k)

Again vectorizing and re-writing as earlier:

θ+m = θm +Mg

where M = 1
Nm

[
diag(θm) − θmθ

T
m

]
and g = 1

θmk

∑Nm
n=1 δ(zmn = k). The vector g can be

shown to be an unbiased noisy estimate of the gradient, i.e.

E[g] =
1

θmk

Ni∑
n=1

E[δ(zij = k)] =
∂ logp
∂θmk

Thus, a single step of SEM on our SCA is equivalent to a single step of SGD. Consequently,
we could further embrace the connection to SGD and use a subset of the data for the S and
M steps, similar to incremental EM (R. M. Neal and Geoffrey E Hinton, 1998). Further details
are provided in Section 7.4.2. Note that in the limit in which batches comprise just a single
token, the algorithm emulates a collapsed Gibbs sampler. This interpretation strengthens the
theoretical justification for many existing approximate Gibbs sampling approaches.
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7.4 further details and derivations

7.4.1 (S)EM Derivation for LDA

We derive an EM procedure for LDA.

7.4.1.1 LDA Model

In LDA, we model each documentm of a corpus ofM documents as a distribution θm that rep-
resents a mixture of topics. There are K such topics, and we model each topic k as a distribution
φk over the vocabulary of words that appear in our corpus. Each document m contains Nm
words wmn from a vocabulary of size V , and we associate a latent variable zmn to each of the
words. The latent variables can take one of K values that indicate which topic the word belongs
to. We give each of the distributions θm and φk a Dirichlet prior, parameterized respectively
with a constant α and β. More concisely, LDA has the following mixed density.

p(w, z,θ,φ) =

[
M∏
m=1

Nm∏
n=1

Categorical(wmn | φzmn) Categorical(zmn | θm)

][
M∏
m=1

Dir(θm | α)

][
K∏
k=1

Dir(φk | β)

]
(7.24)

The choice of a Dirichlet prior is not a coincidence: we can integrate all of the variables θm and
φk and obtain the following closed form solution.

p(w, z) =

[
M∏
m=1

Pol
(
{zm ′n | m ′ = m},K,α

)][ K∏
k=1

Pol
(
{wmn | zmn = k},V ,β

)]
(7.25)

where Pol is the Polya distribution

Pol(S,X,η) =
Γ(ηK)

Γ(|S|+ ηX)

X∏
x=1

Γ
(∣∣{z | z ∈ S, z = x}

∣∣+ η)
Γ(η)

(7.26)

for all j

for all i

for all k

α θm zmn wmn φk β

Figure 7.2: LDA Graphical Model

The joint probability density can be expressed as:

p(W,Z, θ,φ|α,β) =

[
K∏
k=1

p(φk|β)

][
M∏
m=1

p(θm|α)

Nm∏
n=1

p(zmn|θm)p(wmn|φzmn)

]

∝

[
K∏
k=1

V∏
v=1

φ
β−1
kv

][
M∏
m=1

(
K∏
k=1

θα−1mk

)
Nm∏
n=1

θmzmnφzmnwmn

] (7.27)
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Algorithm 7.2 LDA Generative Model
input: α,β

1: for k = 1→ K do
2: Choose topic φk ∼ Dir(β)
3: end for
4: for all document m in corpus D do
5: Choose a topic distribution θm ∼ Dir(α)
6: for all word index n from 1 to Nm do
7: Choose a topic zmn ∼ Categorical(θm)

8: Choose word wmn ∼ Categorical(φzmn)
9: end for

10: end for

7.4.1.2 Expectation Maximization

We begin by marginalizing the latent variable Z and finding the lower bound for the likeli-
hood/posterior:

logp(W, θ,φ|α,β) = log
∑
Z

p(W,Z, θ,φ|α,β)

=

M∑
m=1

Nm∑
n=1

log
K∑
k=1

p(zmn = k|θm)p(wmn|φk)

+

K∑
k=1

logp(φk|β) +
M∑
m=1

logp(θm|α)

=

M∑
m=1

Nm∑
n=1

log
K∑
k=1

q(zmn = k|wmn)
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

logp(φk|β) +
M∑
m=1

logp(θm|α)

(Jensen Inequality) >
M∑
m=1

Nm∑
n=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

logp(φk|β) +
M∑
m=1

logp(θm|α)

(7.28)

Let us define the following functional:

F(q, θ,φ) := −

M∑
m=1

Nm∑
n=1

DKL(q(zmn|wmn)||p(zmn|wmn, θm,φ))

+

M∑
m=1

Nm∑
n=1

p(wmn|θm,φ) +
K∑
k=1

logp(φk|β) +
M∑
m=1

logp(θm|α)

(7.29)
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7.4.1.3 E-Step

In the E-step, we fix θ,φ and maximize F for q. As q appears only in the KL-divergence term, it
is equivalent to minimizing the KL-divergence between q(zmn|wmn) and p(zmn|wmn, θm,φ).
We know that for any distributions f and g the KL-divergence is minimized when f = g and is
equal to 0. Thus, we have

q(zmn = k|wmn) = p(zmn = k|wmn, θm,φ)

=
θmkφkwmn∑K

k ′=1 θmk ′φk ′wmn

(7.30)

For simplicity of notation, let us define

qmnk =
θmkφkwmn∑K

k ′=1 θmk ′φk ′wmn
(7.31)

7.4.1.4 M-Step

In the E-step, we fix q and maximize F for θ,φ. As this will be a constrained optimization (θ
and φ must lie on simplex), we use standard constrained optimization procedure of Lagrange
multipliers. The Lagrangian can be expressed as:

L(θ,φ, λ,µ) =
M∑
m=1

Nm∑
m=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)
+

K∑
k=1

logp(φk|β)

+

M∑
m=1

logp(θm|α) +

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µi

(
1−

K∑
k=1

θmk

)

=

M∑
m=1

Nm∑
n=1

K∑
k=1

qmnk log θmkφkwmn +

K∑
k=1

V∑
v=1

(βv − 1) logφkv +
M∑
m=1

K∑
k=1

(αk − 1) log θmk

+

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µm

(
1−

K∑
k=1

θmk

)
+ const.

(7.32)

maximising θ Taking derivative with respect to θmk and setting it to 0, we obtain

∂L

∂θmk
= 0 =

Nm∑
j=1

qmnk +αk − 1

θmk
− µm

µmθmk =

Ni∑
j=1

qmnk +αk − 1

(7.33)

After solving for µm, we finally obtain

θmk =

∑Nm
n=1 qmnk +αk − 1∑K

k ′=1

∑Nm
j=1 qmnk ′ +αk ′ − 1

(7.34)

Note that
∑K
k ′=1 qmnk ′ = 1, we reach at the optimizer:

θmk =
1

Nm +
∑

(αk ′ − 1)

(
Nm∑
n=1

qmnk +αk − 1

)
(7.35)
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maximising φ Taking derivative with respect to φkv and setting it to 0, we obtain

∂L

∂φkv
= 0 =

M∑
m=1

Nm∑
n=1

qmnkδ(v−wmn) +βv − 1

φkv
− λk

λkφkv =

M∑
m=1

Nm∑
n=1

qmnkδ(v−wmn) +βv − 1

(7.36)

After solving for λk, we finally obtain

φkv =

∑M
m=1

∑Nm
n=1 qmnkδ(v−wmn) +βv − 1∑V

v ′=1

∑M
m=1

∑Nm
n=1 δ(v

′ −wmn) +βv ′ − 1
(7.37)

Note that
∑V
v ′=1 δ(v

′ −wmn) = 1, we reach at the optimizer:

φkv =

∑M
m=1

∑Nm
n=1 qmnkδ(v−wmn) +βv − 1∑M

m=1

∑Nm
n=1 qmnk +

∑
(βv ′ − 1)

(7.38)

7.4.1.5 Introducing Stochasticity

After performing the E-step, we add an extra simulation step, i.e. we draw and impute the
values for the latent variables from its distribution conditioned on data and current estimate
of the parameters. This means basically qmnk gets transformed into δ(zmn − k̃) where k̃ is
value drawn from the conditional distribution. Then we proceed to perform the M-step, which
is even simpler now. To summarize SEM for LDA will have following steps:

e-step : in parallel compute the conditional distribution locally:

qmnk =
θmkφkwmn∑K
k ′=1 θmk ′φk ′wij

(7.39)

s-step : in parallel draw zmn from the categorical distribution:

zmn ∼ Categorical(qmn1, ...,qmnK) (7.40)

m-step : in parallel compute the new parameter estimates:

θmk =
Dmk +αk − 1

Nm +
∑

(αk ′ − 1)

φkv =
Wkv +βv − 1

Tk +
∑

(βv ′ − 1)

(7.41)

where Dmk =
∣∣∣{ zmn | zmn = k

}∣∣∣,
Wkv =

∣∣∣{ zmn | wmn = v, zmn = k
}∣∣∣, and

Tk =
∣∣∣{ zmn | zmn = k

}∣∣∣ = V∑
v=1

Wkv.

7.4.2 Equivalency between (S)EM and (S)GD for LDA

We study the equivalency between (S)EM and (S)GD for LDA.
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7.4.2.1 EM for LDA

EM for LDA can be summarized by follows:

e-step

qmnk =
θmkφkwmn∑K

k ′=1 θmk ′φk ′wmn
(7.42)

m-step

θmk =
1

Nm +
∑

(αk ′ − 1)

(
Nm∑
n=1

qmnk +αk − 1

)

φkv =

∑M
m=1

∑Nm
n=1 qmnkδ(v−wmn) +βv − 1∑M

m=1

∑Nm
n=1 qmnk +

∑
(βv ′ − 1)

(7.43)

7.4.2.2 GD for LDA

The joint probability density can be expressed as:

p(W,Z, θ,φ|α,β) =

[
K∏
k=1

p(φk|β)

][
M∏
m=1

p(θm|α)

Nm∏
n=1

p(zmn|θm)p(wmn|φzmn)

]

∝

[
K∏
k=1

V∏
v=1

φ
β−1
kv

][
M∏
m=1

(
K∏
k=1

θα−1mk

)
Nm∏
n=1

θmzmnφzmnwmn

] (7.44)

The log-probability of joint model with Z marginalized can be written as:

logp(W, θ,φ|α,β) = log
∑
Z

p(W,Z, θ,φ|α,β)

=

M∑
m=1

Nm∑
n=1

log
K∑
k=1

p(zmn = k|θm)p(wmn|φk)

+

K∑
k=1

logp(φk|β) +
M∑
m=1

logp(θm|α)

=

M∑
m=1

Nm∑
n=1

log
K∑
k=1

θmkφkwmn

+

M∑
m=1

K∑
k=1

(αk − 1) log θmk +
K∑
k=1

V∑
v=1

(βv − 1) logφkv

(7.45)

gradient for topic per document Now take derivative with respect to θmk:

∂ logp
∂θmk

=

Nm∑
j=1

φkwmn∑K
k ′=1 θmk ′φk ′wmn

+
αk − 1

θmk

=
1

θmk

(
Nm∑
n=1

qmnk +αk − 1

) (7.46)
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gradient for word per topic Now take derivative with respect to φkv:

∂ logp
∂φkv

=

M∑
m=1

Nm∑
n=1

θmkδ(v−wmn)∑K
k ′=1 θmk ′φk ′wmn

+
βv − 1

φkv

=
1

φkv

(
M∑
m=1

Nm∑
n=1

qmnkδ(v−wmn) +βv − 1

) (7.47)

7.4.2.3 Equivalency

If we look at one step of EM:

for topic per document

θ+mk =
1

Nm +
∑

(αk ′ − 1)

(
Nm∑
n=1

qmnk +αk − 1

)

=
θmk

Nm +
∑

(αk ′ − 1)

∂ logp
∂θmk

Vectorize and can be re-written as:

θ+m = θm +
1

Nm +
∑

(αk ′ − 1)

[
diag(θm) − θmθ

T
m

] ∂ logp
∂θm

(7.48)

for word per topic

φ+
kv =

∑M
m=1

∑Nm
n=1 qmnkδ(v−wmn) +βv − 1∑M

m=1

∑Nm
n=1 qmnk +

∑
(βv ′ − 1)

=
φkv∑M

m=1

∑Nm
n=1 qmnk +

∑
(βv ′ − 1)

∂ logp
∂φkv

Vectorize and can be re-written as:

φ+
k = φk +

1∑M
m=1

∑Nm
n=1 qmnk +

∑
(βv ′ − 1)

[
diag(φk) −φkφTk

] ∂ logp
∂φk

(7.49)

7.4.2.4 SEM for LDA

We summarize our SEM derivation for LDA as follows:

e-step

qmnk =
θmkφkwmn∑K

k ′=1 θmk ′φk ′wmn
(7.50)

s-step

zmn ∼ Categorical(qmn1, ...,qmnK) (7.51)

m-step

θmk =
Dmk +αk − 1

Nm +
∑

(αk ′ − 1)

φkv =
Wkv +βv − 1

Tk +
∑

(βv ′ − 1)

(7.52)
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Here Dmk is the total number of tokens that belong to topic k in document m, Wkv is the
number of times a word v belongs to topic k, i.e.,

Dmk =

Nm∑
n=1

zmnk (7.53)

Wkv =

Nm∑
n=1

Nd∑
m=1

zmnkδ(wm = v) (7.54)

However, observe that all our zmn are one-hot categorical random variables and hence, the
above sums can be easily computed without going through the entire dataset. This is where
the stochastic nature of SEM helps in reducing the training time. We next show the equivalency
of SEM to SGD.

7.4.2.5 Equivalency

In case of LDA, let us begin with θ for which the update over one step stochastic EM is:

θ+mk =
Dmk +αk − 1

Nm +
∑K
k ′=1(αk ′ − 1)

=
1

Nm +
∑K
k ′=1(αk ′ − 1)

Nm∑
n=1

δ(zmnk = 1) +αk − 1

Again vectorizing and re-writing as earlier:

θ+i = θi +Mg

where M = 1

Nm+
∑K
k ′=1(αk ′−1)

[
diag(θm) − θmθ

T
m

]
and g = 1

θmk

∑Nm
n=1 δ(zmnk = 1) + αk − 1.

The vector g can be shown to be an unbiased noisy estimate of the gradient, i.e.

E[g] =
1

θmk

Nm∑
n=1

E[δ(zmnk = 1)] +αk − 1

=
1

θmk

Nm∑
n=1

qmnk +αk − 1 =
∂ logp
∂θmk

Thus, it is SGD with constraints. We have a similar result for φkv, where we can see that an un-
biased, noisy estimator of the gradient has been used instead of the pure gradient, in the SEM
update of parameters. However, note that stochasticity does not arise from sub-sampling data
as usually in SGD, rather from the randomness introduced in the S-step. But this immediately
hints for developing an online/incremental version where we can subsample data also. This
can remove the barrier in current implementation and we can have a revolver like structure,
which would be loved by the hardware.

7.4.3 Non-singularity of Fisher Information for Mixture Models

Let us consider a general mixture model:

p(x|θ,φ) =
K∑
k=1

θkf(x|φk) (7.55)

Then the log-likelihood can be written as:

logp(x|θ,φ) = log

(
K∑
k=1

θkf(x|φk)

)
(7.56)
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The Fisher Information is given by:

I(θ,φ) = E
[
(∇ logp(x|θ,φ))(∇ logp(x|θ,φ))T

]
=

[
∂
∂θ logp(x|θ,φ)
∂
∂φ logp(x|θ,φ)

][
∂
∂θ logp(x|θ,φ)
∂
∂φ logp(x|θ,φ)

]T

These derivatives can be computed as follows:

∂

∂θk
logp(x|θ,φ) =

∂

∂θk
log

(
(

K∑
k=1

θkf(x|φk)

)

=
f(x|φk)∑K

k ′=1 θk ′f(x|φk ′)

∂

∂φk
logp(x|θ,φ) =

∂

∂φk
log

(
(

K∑
k=1

θkf(x|φk)

)

=
θk

∂
∂φk

f(x|φk)∑K
k ′=1 θk ′f(x|φk ′)

(7.57)

For any u, v ∈ RK (with at least one nonzero), then the Fisher Information is positive definite
as:

(uT vT )I

(
u

v

)
= (uT vT )E


 ∂
∂θ log

(∑K
k=1 θkf(X|φk)

)
∂
∂φ log

(∑K
k=1 θkf(X|φk)

)  ∂
∂θ log

(∑K
k=1 θkf(X|φk)

)
∂
∂φ log

(∑K
i=1 θkf(X|φk)

) T
( u

v

)

= E

(uT ∂
∂θ

log

(
K∑
k=1

θkf(X|φk)

)
+ vT

∂

∂θ
log

(
K∑
i=1

θkf(X|φi)

))2
= E

(∑Kk=1 ukf(X|φk) + vkθk ∂
∂φk

f(X|φk)∑K
k=1 θkf(X|φk)

)2
This can be 0 if and only if

K∑
k=1

ukf(x|φi) + vkθk
∂

∂φk
f(x;φk) = 0 ∀x. (7.58)

In case of exponential family emission models this cannot hold if all components are unique
and all θk > 0. Thus, if we assume all components are unique and every component has been
observed at least once, the Fisher information matrix becomes non-singular.

7.4.4 Alias Sampling Method

The alias sampling method is an efficient method for drawing samples from a K outcome
discrete distribution in O(1) amortized time and we describe it here for completeness. Denote
by pi for i ∈ {1 . . . K} the probabilities of a distribution over K outcomes from which we would
like to sample. If p were the uniform distribution, i.e. pi = K−1, then sampling would be trivial.
For the general case, we must pre-process the distribution p into a table of K triples of the form
(i, j,πi) as follows:
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• Partition the indices {1 . . . K} into sets U and L where pi > K−1 for i ∈ U and pi 6 K−1

for i ∈ L.
• Remove any i from L and j from U and add (i, j,pi) to the table.
• Update pj = pi + pj −K−1 and if pj > K−1 then add j to U, else to L.

By construction the algorithm terminates after K steps; moreover, all probability mass is pre-
served either in the form of πi associated with i or in the form of K−1 − πi associated with j.
Hence, sampling from p can now be accomplished in constant time:

• Draw (i, j,πi) uniformly from the set of k triples in K.
• With probability Kπi emit i, else emit j.

Hence, if we need to draw from p at least K times, sampling can be accomplished in amortized
O(1) time.

7.4.5 Applying ESCA

We begin with a simple Gaussian mixture model (GMM) with K components. Let x1, ..., xn be
independent and identically distributed observations, z1, ..., zn be hidden component assign-
ment variable and η = η(θ1, ..., θK,µ1,Σ1,µ2,Σ2, ...,µK,ΣK) be the parameters. Then the GMM
fits into ESCA with sufficient statistics given by:

T(xi, zi) = [1{zi = 1}, ...,1{zi = K},

xi1{zi = 1}, ..., xi1{zi = K},

xix
T
i 1{zi = 1}, ..., xixTi 1{zi = K}].

(7.59)

The conditional distribution for the E-step is:

p(zi = k|xi;η) ∝ θkN(xi|µk,Σk) (7.60)

In the S-step we draw from this conditional distribution and the M-step, through inversion of
link function, is:

θ̃k =
1

n+Kα−K

n∑
i=1

(1{zi = k}+α− 1)

µ̃k =
κ0µ0 +

∑n
i=1 xi1{zi = k}

κ0 +
∑n
i=1 1{zi = k}

Σ̃k =
Ψ0 + κ0µ0µ

T
0 +
∑n
i=1 xix

T
i 1{zi = k}− (κ0 +

∑n
i=1 1{zi = k})µ̃kµ̃

T
k

ν0 + d+ 2+
∑n
i=1 1{zi = k}

(7.61)

and is only function of the sufficient statistics.

Next, we provide more details on how to employ ESCA for any conditional exponential family
mixture model; i.e., in which n random variables xi, i = 1, . . . ,n correspond to observations,
each distributed according to a mixture of K components, with each component belonging to
the same exponential family of distributions (e.g., all normal, all multinomial, etc.), but with
different parameters:

p(xi|φ) = exp(〈ψ(xi),φ〉− g(φ)). (7.62)
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The model also has n latent variables zi that specify the identity of the mixture component of
each observation xi, each distributed according to a K-dimensional categorical distribution. A
set of K mixture weights θk, k = 1, . . . ,K, each of which is a probability (a real number between
0 and 1 inclusive) and collectively sum to one. A Dirichlet prior on the mixture weights with
hyper-parameters α. A set of K parameters φk, k = 1, . . . ,K, each specifying the parameter
of the corresponding mixture component. For example, observations distributed according
to a mixture of one-dimensional Gaussian distributions will have a mean and variance for
each component. Observations distributed according to a mixture of V-dimensional categorical
distributions (e.g., when each observation is a word from a vocabulary of size V) will have a
vector of V probabilities, collectively summing to 1. Moreover, we put a shared conjugate prior
on these parameters:

p(φ;n0,ψ0) = exp (〈ψ0,φ〉−n0g(φ) − h(m0,ψ0)) . (7.63)

Then joint sufficient statistics would be given by:

T(zi, xi) = [1{zi = 1}, ...,1{zi = K},

ψ(xi)1{zi = 1}, ...,ψ(xi)1{zi = K}]
(7.64)

In the E-step of tth iteration, we derive the conditional distribution p(zi|xi,η), namely

p(zi = k|xi,η) ∝ p(xi|φt−1k , zi = k)p(zi = k|θt−1)

=
θt−1k p(xi|φ

t−1
k )∑

k ′ θ
t−1
k ′ p(xi|φ

t−1
k ′ )

(7.65)

In the S-step we draw zti from this conditional distribution and the M-step through inversion
of the link function yields:

∇g(φ̃k) =
φ0 +

∑
iψ(xi)1{zi = k})

n0 +
∑
i 1{zi = k}

or φ̃k = ξ−1
(
ψ0 +

∑
iψ(xi)1{zi = k}

n0 +
∑
i 1{zi = k}

)
θ̃k =

∑
i 1{zi = k}+αk − 1

n+
∑
k αk − k

.

(7.66)

This encompasses most of the popular mixture models (and with slight more work all the
mixed membership or admixture models) with Binomial, multinomial, or Gaussian emission
model, e.g. beta-binomials for identification, Dirichlet-multinomial for text or Gauss-Wishart
for images as listed in Table 7.1.

7.5 experiments

To evaluate the strength and weaknesses of our algorithm, we compare against parallel and
distributed implementations of CGS and CVB0. We also compare our results to performance
numbers reported in the literature including those of F+LDA and lightLDA.
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Dataset V M Tokens

PubMed 141,043 8,200,000 737,869,085

Wikipedia 210,233 6,631,176 1,133,050,514

Large ∼140,000 ∼3 billion ∼171 billion

Table 7.2: Statistics of the dataset used.

7.5.1 Setup

software & hardware All three algorithms – CGS, CVB0, and ESCA – are implemented
in simple C++11. We implement multithreaded parallelization within a node using the work-
stealing Fork/Join framework, and the distribution across multiple nodes using the process
binding to a socket over MPI. We also implemented a version of ESCA with a sparse represen-
tation for the array D of counts of topics per documents and Vose’s alias method to draw from
discrete distributions. We run our experiments on a small cluster of 8 Amazon EC2 c4.8xlarge
nodes connected through 10Gb/s Ethernet. Each node has a 36 virtual threads per node. For
random number generation we employ Intel®Digital Random Number Generators through in-
struction RDRAND, which uses thermal noise within the silicon to output a random stream of
bits at 3 Gbit/s, producing true random numbers.

datasets We experiment on two public datasets, both of which are cleaned by removing stop
words and rare words: PubMed abstracts and English Wikipedia. To demonstrate scalability,
run on 100 copies of English Wikipedia and a third proprietary dataset. Statistics of the three
dataset are reported in Table 7.2

7.5.2 Evaluation

qualitative Table 7.3 shows three global topics inferred from 20- Newsgroups by MGCTM.
Each topic is represented by the ten most probable words for that topic. It can be seen that these
global topics capture the common semantics in the whole corpus and is not specifically associ-
ated with a certain news group. Global topic 9 is about news archive organization. Topic 10 is
about time. Topic 19 is about article writing. These topics can be used to generate documents
in all groups.

quantitative How to quantitatively evaluate topic models is a open problem in general.
To evaluate the proposed method we use predicting power as a metric by calculating the per-
word log-likelihood (equivalent to negative log of perplexity) on 10,000 held-out documents
conditioned on the trained model. In other words, we use:

LogLikelihood(Dtest) =
∑

m∈Dtest

frac1Nm

Nm∑
i=1

logp(wmn).

Here wmn is the n-th word in document m, Nm denotes the number of words in document
m. We set K = 1000 to demonstrate performance for a large number of topics. The hyper
parameters are set as α = 50/K and β = 0.1 as suggested in T.L. Griffiths and Steyvers, 2004;
other systems such as YahooLDA and Mallet also use this as the default parameter setting. The
results are presented in Figure 7.3.

Finally, for the larger datasets, our implementation of ESCA (only 300 lines of C++) processes
more than 1 billion tokens per second (tps) by using a 20-node cluster. In comparison, some
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PubMed

seizures data local gene state

epilepsy information block transcript change

seizure available lidocaine exon transition

epileptic provide anethesia genes states

temporal_lobe regarding anethetic expression occur

anticonvulsant sources acupuncture region process

convulsion literature bupivacaine mrna shift

kindling concerning anaesthesia mouse condition

partial limited under expressed changed

generalized provided anaesthetic human dynamic

Wikipedia

hockey medical von boy music

ice medicine german youth music

league hospital karl boys pop

played physician carl camp music

junior doctor friedrich girl artists

nhl clinical wilhelm scout electronic

professional md johann girls duo

games physicians ludwig guide genre

playing doctors prussian scouts genres

national surgeon heinrich scouting musicians

Table 7.3: The first five topics inferred via ESCA on LDA from both PubMed and Wikipedia datasets.

of the best existing systems achieve 112 million tps (F+LDA, personal communication) and 60

million tps (lightLDA) Yuan et al., 2015 using more hardware.

comparison to large scale systems We choose not to evaluate directly against highly
tuned and optimized systems

7.6 points to ponder

We have described a novel inference method for latent variable models that simulates a stochas-
tic cellular automaton. The equilibrium of the dynamics are MAP fixed points and the algo-
rithm has many desirable computational properties: it is embarrassingly parallel, memory effi-
cient, and like HOGWILD! (Recht et al., 2011), is virtually lock-free. Further, for many models,
it enables the use of approximate counters and the alias method. Thus, we were able to achieve
an order of magnitude speed-up over the current state-of-the-art inference algorithms for LDA
with accuracy comparable to collapsed Gibbs sampling.

In general, we cannot always guarantee the correct invariant measure (Dawson, 1974), and
found that parallelizing improperly causes convergence to incorrect MAP fixed points. Even
so, SCA is used for simulating Ising models in statistical physics (Vichniac, 1984). Interestingly,
in previous work by Lebowitz, Maes, and Speer (1990), it has been shown that stochastic cellular
automata are closely related to equilibrium statistical models and the stationary distribution is
known for a large class of finite stochastic cellular automata.
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(a) PubMed, K = 1000, α = 0.05, β = 0.1
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(c) Pubmed, K = 1000, α = 0.05, β = 0.1
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(d) Wikipedia, K = 1000, α = 0.05, β = 0.1

Figure 7.3: Evolution of log likelihood on Wikipedia and Pubmed over number of iterations and time.

7.6.1 Understanding the limitations for Full Posterior

While ESCA has tremendous potential as a computational model for machine learning, in some
cases, using it to obtain MAP estimates is not clear.

Consider an Ising model on an d-dimensional torus H

p(x) ∝
∏
〈i,j〉∈H

exp(wijxixj) (7.67)

in which xi takes on values in {−1, 1}. The equilibrium distribution of SCA with a Gibbs update
is then (Neumann and Derrida, 1988)

q(x) ∝
∏
〈i,j〉∈H

cosh(wijxixj). (7.68)

Note that the hyperbolic cosine function (cosh) is symmetric in the sense that cosh(r) =

cosh(−r). For values r > 0 cosh is a good approximation and has a maximum that corre-
sponds to the exponential function; however, for values r < 0, the cosh is a poor approximation
for the exponential function.

Let x1, x2 be two random variables taking on values in {−1, 1}. We define a simple two-variable
Ising model on a trivial one-dimensional torus:

p(x1, x2) ∝ exp(x1x2) (7.69)
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We can enumerate and quantify the state space under both SCA q(x1, x2) and the true distri-
bution p(x1, x2):

state x1 x2 x1 ∗ x2 q(x1, x2) ∝ p(x1, x2) ∝
0 -1 -1 1 cosh(1) exp(1)

1 -1 1 -1 cosh(-1) exp(-1)

2 1 -1 -1 cosh(-1) exp(-1)

3 1 1 1 cosh(1) exp(1)

Since cosh is symmetric, all states are equally probable for SCA and states 1 and 2 are MAP
states. Yet, under the true distribution, they are not. Consequently, SCA with a Gibbs rule for
the local evolution function can yield incorrect MAP estimates.

Fortunately, in most cases we are interested in a model over a dataset in which the data is
independent and identically distributed That is, we can fix our example as follows. Rather
than parallelizing a single Ising model at the granularity of pixels (over a single torus or grid),
we instead parallelize the Ising model at the granularity of the data (over multiple tori, one for
each image). Then, we could employ Gibbs sampling on each image for the S-step.

7.6.2 Understanding the limitations for Non-Factored Models

Till now we assumed certain factorization of LVM to enable ESCA. There are models in the ex-
ponential family such as restricted Boltzmann machines (RBMs) which do not factorize. Direct
application of ESCA to such models will not work, but there is a potential work and ESCA can
be still applicable to such models. For example, if the data were a collection of images, each
cell could independently compute the S-step for its respective image. For RBMs the cell would
flip a biased coin for each latent variable, and for deep Boltzmann machines, the cells could
perform Gibbs sampling.

To elabortate, consider 2-layer RBM (1 observed, 1 latent), then ESCA should work as it is. That
is, we sample latent variables conditioned on data and weights. Then optimize weights, given
latent variables and observed data. Now if we have deep RBM, i.e. one with many hidden
layers. Then ESCA will have similar problem as Ising model. But there is a quick fix borrowing
ideas from chromatic samplers.

for each iteration

1. Sample all odd layers of the RBM
2. Optimize for weights
3. Sample all even layers of the RBM
4. Optimize for weights

end for

We save a precise derivation and empirical evaluation for future work.
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R e d u c i n g L o o k u p s

We study the problem of scaling up inference for latent variable models (LVM) over a large
space by reducing look-ups. Hierarchical Bayesian models often capture distributions over a
very large number of distinct atoms. The need for these models arises when organizing huge
amount of unsupervised data, for instance, features extracted using deep convnets that can be
exploited to organize abundant unlabeled images. Inference for hierarchical Bayesian models
in such cases can be rather nontrivial, leading to approximate approaches. In this chapter,
we propose Canopy, a sampler based on Cover Trees that is exact, has guaranteed runtime
logarithmic in the number of atoms, and is provably polynomial in the inherent dimensionality
of the underlying parameter space. In other words, the algorithm is as fast as search over a
hierarchical data structure. We provide theory for Canopy and demonstrate its effectiveness on
both synthetic and real datasets, consisting of over 100 million images.

8.1 introduction

Fast nearest-neighbor algorithms have become a mainstay of information retrieval (Beygelz-
imer, Kakade, and Langford, 2006; Indyk and Motwani, 1998; T. Liu, Rosenberg, and Rowley,
2007). Search engines are able to perform virtually instantaneous lookup among sets containing
billions of objects. In contrast, inference procedures for latent variable models (Gibbs sampling,
EM, or variational methods) are often problematic even when dealing with thousands of dis-
tinct objects. This is largely because, for any inference methods, we potentially need to evaluate
all probabilities whereas search only needs the best instance.

While the above is admittedly an oversimplification of matters (after all, we can use Markov-
Chain Monte Carlo methods for inference), it is nonetheless nontrivial to perform exact sam-
pling for large state spaces. In the current work, we propose Canopy, an inference technique to
address this issue by marrying a fast lookup structure with an adaptive rejection sampler. This
leads to a surprisingly simple design for a plethora of sampling-based inference algorithms.
Moreover, we provide runtime guarantees for Canopy that depend only on the inherent dimen-

Figure 8.1: Canopy is much faster yet as accurate as other methods like EM or ESCA (Zaheer, Wick, et al.,
2015). The bar graph shows time per iteration while line plots the likelihood on held-out test
set. Results shown are for inference of a Gaussian mixture model with 32 million points having
4096 clusters at 1024 dimensions.
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sionality of both parameter and data distributions. The expected depth for lookups is never
worse than logarithmic in the number of atoms and the characteristic length scale at which
models can be sufficiently well distinguished. Furthermore, we can parallelize Canopy for hier-
archical Bayesian models using stochastic cellular automata (ESCA; Zaheer, Wick, et al. 2015),
thus leading to an extremely scalable and efficient system design.

Most latent variable models, e.g., Gaussian mixture models (GMM), latent Dirichlet allocation
(D. M. Blei, A. Y. Ng, and Michael I. Jordan, 2003), hidden Markov models, Dirichlet process
clustering (R. Neal, 1998), or hierarchical generative models (Adams, Z. Ghahramani, and M.
Jordan, 2010), have the structure of the form:

p(x) =
∑
z

p(z)p(x|θz) (8.1)

where x denotes observed variables, z latent variables, and θz parameters of the conditional.
Often the conditional distribution p(x|θz) belongs to the exponential family, which we assume
to be the case as well. The inference procedure on these models using either Gibbs sampling,
stochastic variation methods, or ESCA would require to draw z ∼ p(z|x) repeatedly. Naïvely
producing these draws would be expensive, especially when the number of latent classes is
huge. We aim to bring the per-iteration cost down from O(mn) to Õ(m+ n), where m,n are
the number of latent classes and data points, respectively. For example, on GMM, the proposed
method Canopy is much faster than EM or ESCA, while achieving the same accuracy as shown
in Figure 8.1.

Our approach is as follows: we use cover trees (Beygelzimer, Kakade, and Langford, 2006) to
design an efficient lookup structure for p(x|θz) and approximate the values of p(x|θz) for a
large number of θz. In combination with an efficient node summary for p(z), this allows us to
design a rejection sampler that has an increasingly low rejection rate as we descend the tree.
Moreover, for large numbers of observations x, we use another cover tree to aggregate points
into groups of similar points, perform expensive pre-computation of assignment probabilities
p(z|x) only once, and amortize them over multiple draws. In particular, the alias method (Vose,
1991; Walker, 1977) allows us to perform sampling in O(1) time once the probabilities have
been computed.

In summary, Canopy has three parts: construction of cover trees for both parameters and data
(Section 8.3.1, Section 8.3.2), an adaptive rejection sampler at the top-level of the cover tree
until the data representation is sufficiently high to exploit it for sampling (Section 8.3.2.1),
and a rejection sampler in the leaves (Section 8.3.2.2), whenever the number of clusters is
large. Most importantly, the algorithm becomes more efficient as we obtain larger amounts
of data since they lead to greater utilization of the alias table in Walker (1977) as shown by
theoretical analysis in Section 8.4. This makes it particularly well-suited to big data problems
as demonstrated through experiments in Section 8.5.

8.2 background

We briefly discuss latent variable models, cover trees, and the alias method needed to explain
this work.

8.2.1 Latent Variable Models

The key motivation for this work is to make inference in latent variable models more efficient.
As expressed in (8.1), we consider latent models which have mixtures of exponential family.
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(a) Expansion rate (b) Separation property (c) Covering property

Figure 8.2: Illustration of various properties of covering tree.

The reasons for limiting to exponential families are two fold. First, most of the mixture models
used in practice belong to this class. Second, assumptions on model structure, for instance
exponential family, allows for efficient design of fast inference. In particular, we first assume
that updates to p(z) can be carried out by modifyingO(1) values at any given time. For instance,
for Dirichlet process mixtures, the collapsed sampler uses p(zi = j|Z\ {zi}) = n−i

j / (n+α− 1).
Here, n is the total number of observations, n−i

j denotes the number of occurrences of zl = j

when ignoring zi, and α is the concentration parameter. Second, the conditional p(x|θ) in (8.1)
is assumed to be a member of the exponential family, i.e.,

p(x|θ) = exp(〈φ(x), θ〉− g(θ)). (8.2)

Here φ(x) represents the sufficient statistics and g(θz) is the (normalizing) log-partition func-
tion.

Trying to find a metric data structure for fast retrieval is not necessarily trivial for the exponen-
tial family. K. Jiang, Kulis, and M. Jordan (2012) and Cayton (2008) design Bregman divergence
based methods for this problem. Unfortunately, such methods are costlier to maintain and
have less efficient lookup properties than those using Euclidean distance, as computing and
optimizing over Bregman divergences is less straightforward. For example, whenever we end
up on the boundary of the marginal polytope, as is common with natural parameters associ-
ated with single observations, optimization becomes intractable. Fortunately, this problem can
be avoided entirely by rewriting the exponential family model as

p(x|θ) = e〈(φ(x),−1),θ,g(θ)〉 = e〈φ̃(x),θ̃〉 (8.3)

where φ̃(x) := (φ(x),−1) and θ̃ := (θ,g(θ)).

In this case, being able to group similar θ̃ together allows us to assess their contributions
efficiently without having to inspect individual terms. Finally, we assume that

∥∥φ̃(xi)∥∥ 6 R

and
∥∥θ̃z∥∥ 6 T for all i and for all z ∈ Z respectively.

8.2.2 Alias Sampler

A key component of Canopy is the alias sampler (Vose, 1991; Walker, 1977). Given an arbitrary
discrete probability distribution on n outcomes, it allows for O(1) sampling once an O(n)

preprocessing step has been performed. Hence, drawing n observations from a distribution
over n outcomes costs an amortized O(1) per sample. Section 7.4.4 has more details.

8.2.3 Cover Trees

Cover Trees (Beygelzimer, Kakade, and Langford, 2006) are a hierarchical data structure that
allow fast retrieval in logarithmic time. The key properties are: O(n logn) construction time,
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O(logn) retrieval, and polynomial dependence on the expansion constant (Karger and Ruhl,
2002) of the underlying space, which we refer to as c. Moreover, the degree of all internal nodes
is well controlled, thus giving guarantees for retrieval (as exploited by (Beygelzimer, Kakade,
and Langford, 2006)), and for sampling (as we will be using in this paper).

Cover trees are defined as an infinite succession of levels Si with i ∈ Z as illustrated in Fig-
ure 8.2. Each level i contains (a nested subset of) the data with the following properties:

• Nesting property: Si ⊆ Si−1.

• All x, x ′ ∈ Si satisfy ‖x− x ′‖ > 2i.

• All x ∈ Si have children x ′ ∈ Si−1, possibly with x = x ′, with ‖x− x ′‖ 6 2i.

• As a consequence, the subtree for any x ∈ Si has distance at most 2i+1 from x.

To analyze the performance of cover tree, we need the concept of expansion rate of a set,
defined by Karger and Ruhl (2002), which captures several key properties.

Definition 8.1 (Expansion Rate) Denote by Bρ(r) a ball of radius of r at ρ. Then a set S has a (l, c)
expansion rate iff all r > 0 and ρ ∈ S satisfy

|Bρ(r)∩ S| > l =⇒ |Bρ(2r)∩ S| 6 c |Bρ(r)∩ S| . (8.4)

In the following we set l = O(log |S|), thus referring to c simply as the expansion rate of S.

With this definition, this data structure has a number of highly desirable properties, as proved
in Beygelzimer, Kakade, and Langford (2006). We list the most relevant ones below:

• The depth of the tree in terms of its explicit representation is at most O(c2 logn).

• The maximum degree of any node is O(c4).

• Insertion & removal take at most O(c6 logn) time.

• Retrieval of the nearest neighbor takes at most O(c12 logn) time.

• The time to construct the tree is O(c6n logn).

8.3 our approach

Now we introduce notation and explain details of our approach when the number of clusters
is (a) moderate (Section 8.3.1) and (b) large (Section 8.3.2). In what follows, the number of data
points and clusters are denoted with n and m respectively. The function ch(x) returns children
of a node x of any tree.

data tree (TD): Cover tree built with levels Sj on all available data using the sufficient
statistic φ(x), constructed once for our setup. We record ancestors at level ̄ as prototypes x̄ for
each data point x. In fact, we only need to construct the tree up to a fixed degree of accuracy
̄ in case of moderate number of clusters. A key observation is that multiple points can have a
same prototype x̄, making it a many-to-one map. This helps us amortize costs over points by
re-using proposal computed with x̄ (Section 8.3.1).

cluster tree (TC): Similarly, TC is the cover tree generated with cluster parameters θ̃z.
For simplicity, we assume that the expansion rates of clusters and data are both c.
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Figure 8.3: Overview of Canopy sampler, when the number of clusters is relatively small compared to
the total number of observations: (1) Build a cover tree on data points with cost O(n logn).
(2) Truncate tree at an accuracy level ̄ such that nodes have O(m) descendants on average.
(3) Build alias tables for these surrogate points x̄ points with total cost O(n). (4) For each
observation x perform rejection sampling using the alias table as the proposal in O(1) time.

8.3.1 Canopy I: Moderate number of clusters

We introduce our sampler, Canopy I, when the number of clusters is relatively small compared
to the total number of observations. This addresses many cases where we want to obtain a flat
clustering on large datasets. For instance, it is conceivable that one might not want to infer
more than a thousand clusters for one million observations. In a nutshell, our approach is
illustrated in Figure 8.3 and described below:

1. Construct TD and pick a level ̄ ∈ Z with accuracy 2̄ such that the average number of
elements per node in S̄ is O(m).

2. For each of the prototypes x̄, which are members of S̄, compute p(z|x̄) using the alias
method to draw from m components θz. By construction, this cost amortizes O(1) per
observation, i.e., a total cost of O(n).

3. For each observation x with prototype x̄, perform rejection sampling using the draws
from p(z|x̄) =: q(z) as proposal. Hence we accept a sample z with probability

A(z) :=
p(z|x)

Mp(z|x̄)
, where M = max

z

p(z|x)

p(z|x̄)
. (8.5)

The key reason why this algorithm has a useful acceptance probability is that the normaliza-
tions for p(z|x) and p(z|x̄), and mixing proportions p(z) cancel out respectively. Only terms
remaining in (8.5) for M, the expected number of rejections is

M = max
z

p(z|x)

p(z|x̄)
= max

z
exp

(〈
φ(x) −φ(x̄), θ̃z

〉)
= max

z
exp

(
‖φ(x) −φ(x̄)‖

∥∥θ̃z∥∥) 6 e2̄+1L
for

∥∥θ̃z∥∥ 6 L. This follows from the Cauchy Schwartz inequality and the covering property
of cover trees, which ensures all descendants of x̄ are no more than 2̄+1 apart from x̄, i.e.,
‖φ(x) −φ(x̄)‖ 6 2̄+1. Thus, we can bound the expected number of rejections by selecting the
accuracy level ̄, thereby controlling the efficiency of the sampler.

8.3.2 Canopy II: Large number of clusters

The key difficulty in dealing with many clusters is that it forces us to truncate TD at a granular-
ity in x that is less precise than desirable in order to benefit from the alias sampler naively. In
other words, for a given sampling complexity, a larger m reduces the affordable granularity in



200 reducing lookups

O
bs

er
va

tio
ns

Clusters

O
bs

er
va

tio
ns

Clusters

O
bs

er
va

tio
ns

Clusters

Figure 8.4: Hierarchical partitioning over both data observations and clusters. Once we sample clusters
at a coarser level, we descend the hierarchy and sample at a finer level, until we have few
number of points per cluster. We then use Section 8.3.2.1 for rejection sampler.

x. The problem arises because we are trying to distinguish clusters at a level of resolution that
is too coarse. A solution is to apply cover trees not only to observations but also to the clusters
themselves, i.e., use both TD and TC. This allows us to decrease the minimum observation-
group size at the expense of having to deal with an aggregate of possible clusters.

Our method for large number of clusters operates in two phases: (a) Descend the hierarchy in
cover trees while sampling (Section 8.3.2.1) (b) Sample for a single observation x from a subset
of clusters arranged in TC (Section 8.3.2.2), when appropriate conditions are met in (a). We
begin with initialization and then elaborate each of these phases in detail.

initialize 1 : Construct TC and for each node θz, assign α(i, z) = p(z), where i is the highest
level Si such that z ∈ Si, else 0. Then perform bottom-up aggregation via

β(i, z) = α(i, z) +
∑

z ′∈ch(z)

β(i+ 1, z ′) (8.6)

This creates at most O(m) distinct entries β(i, z). Notice that aggregated value β(i, z) captures
the mixing probability of the node and its children in TC.

initialize 2 : Partition both the observations and the clusters at a resolution that allows for
efficient sampling and precomputation. More specifically, we choose accuracy levels ̂ and ı̂ to
truncate TD and TC, so that there are n ′ and m ′ nodes respectively after truncation. These
serve as partitions for data points and clusters such that n ′ ·m ′ = O(m) is satisfied. The
aggregate approximation error

δ := 2̂+1L+ 2ı̂+1R+ 2ı̂+̂+2 (8.7)

due to quantizing observations and clusters is minimized over the split, searching over the
levels.

8.3.2.1 Descending TD and TC

Given TD and TC with accuracy levels ̂ and ı̂, we now iterate over the generated hierarchy, as
shown in Figure 8.4. We recursively descend simultaneously in both the trees until the number
of observations for a given cluster is too small. In that case, we simply default to the sampling
algorithm described in Section 8.3.2.2 for each observation in a given cluster.

The reasoning works as follows: Once we have the partitioning into levels ̂, ı̂ for data and
clusters respectively with n ′ ·m ′ = O(m), we draw from the proposal distribution

q(z̄|x) ∝ β(ı̂, z̄) exp (〈φ(x̄), θz̄〉− g(θz̄)) (8.8)
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Figure 8.5: Caption

for all the observations and clusters above the partitioned levels ̂ and ı̂, respectively. That is, we
draw from a distribution where both observations and clusters are grouped. We draw from the
proposal for each x in TD truncated at level ̂. Here, β(ı̂, z̄) collects the prior cluster likelihood
from z̄ and all its children. As described earlier, we can use the alias method for sampling
efficiently from (8.8).

Within each group of observations, drawing from (8.8) leads to a distribution over a (possibly
smaller) subset of cluster groups. Whenever the number of observations per cluster group is
small, we default to the algorithm described in Section 8.3.2.2 for each observation. On the
other hand, if we have a sizable number of observations for a given cluster, which should
happen whenever the clusters are highly discriminative for observations (a desirable property
for a good statistical model), we repeat the strategy on the subset to reduce the aggregate
approximation error (8.7). In other words, we descend the hierarchy to yield a new pair (i ′, j ′)
on the subset of clusters/observations with i ′ < ı̂ and j ′ < ̂ and repeat the procedure.

The process works in a depth-first fashion in order to avoid using up too much memory. The
sampling probabilities according to (8.8) are multiplied out for the path over the various hi-
erarchy levels and used in a rejection sampling procedure. Each level of the hierarchy can be
processed in O(1) operations per instance, without access to the instance itself. Moreover, we
are guaranteed to descend by at least one step in the hierarchy of observations and clusters,
hence the cost is at most O(c2min(logn, logm)).

To summarize, we employ a rejection sampling scheme as before, with the aim of using a
highly accurate, yet cheap proposal. To overcome the loss in precision of Canopy I proposal
due to large number of clusters, we devise a proposal wherein we look at aggregates of both
data and clusters at comparable granularity using both TD and TC. Note that the acceptance
probabilities are always at least as high as the bounds derived in Section 8.3.1 as the errors on
the paths are log-additive. Instead of rejection sampler, a MH procedure can also be devised.
Details are omitted for the sake of brevity, since they mirror the single-observation argument
of the following section.

8.3.2.2 Sampling for a single observation x

Let x be the single observation for which we want to sample from possibly subset of clusters
z that are arranged in TC. In this case, we hierarchically descend TC using each aggregate
as a proposal for the clusters below. As before, we can either use MH sampling or a rejection
sampler. To illustrate the effects of the latter, we describe one below, whose theoretical analysis
is provided in Section 8.4. Before we delve into details, let us consider a simple case without
TC. If we are able to approximate p(x|θz) by some qz such that

e−εp(x|θz) 6 qz 6 e
εp(x|θz) (8.9)
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for all z, then it follows that a sampler drawing z from

z ∼
qzp(z)∑
z ′ qz ′p(z

′)
(8.10)

and then accepting with probability e−εq−1z p(x|θz) will draw from p(z|x) (see Section 8.4.1 for
details). Moreover, the acceptance probability is at least e−2ε. However, finding such qz with
a small ε is not easy in general. Thus, we propose to cleverly utilize structure of the cover tree
TC to begin with a very course approximation and successively improving the approximation
only for a subset of θz which are of interest. The resultant sampler is described below:

1. Choose approximation level ı̂ and compute normalization at accuracy level ı̂:

γ0 :=
∑
z∈Sı̂

β(ı̂, z) exp
〈
θ̃z, φ̃(x)

〉
. (8.11)

2. Set e−ε := e−2
ı̂‖φ̃(x)‖ as multiplier for the acceptance threshold of the sampler and

γ := eεγ0.

3. Draw a node z ∈ Sı̂ with probability δz := γ−1eεβ(ı̂, z) exp
〈
θ̃z, φ̃(x)

〉
.

4. Accept zı̂ at the current level with probability π := γ−1δ−1zı̂ p(zı̂) exp
〈
θ̃zı̂ , φ̃(x)

〉
.

5. For i := ı̂− 1 down to −∞ do

a) Set e−ε := e−2
i‖φ̃(x)‖ as the new multiplier and γ := δzi+1(1 − π) as the new

normalizer.

b) Draw one of the children z of zi+1 with probability δz := γ−1eεβ(i, z) exp
〈
θ̃z, φ̃(x)

〉
.

Exit if we do not draw any of them (since
∑
z∈ch(zi+1) δz 6 1) and restart from step

2, else denote this child by zi.

c) Accept zi at the current level with probability π := γ−1δ−1zi p(zi) exp
〈
θ̃zi , φ̃(x)

〉
. Do

not include zi+1 in this setting. as we consider z only the first time we encounter it.

The above describes a rejection sampler that keeps on upper-bounding the probability of ac-
cepting a particular cluster or any of its children. It is as aggressive as possible at retaining
tight lower bounds on the acceptance probability such that not too much effort is wasted in
traversing the cover tree to the bottom, i.e., we attempt to reject as quickly as possible.

8.4 theoretical analysis

8.4.1 Correctness of Sampler

For ease of explanation, we first consider how to use a simple proposal distribution that meets
some approximation bounds. Next, we show how using cover tree we can construct such a
proposal meeting the approximation bounds and its use in inference.

8.4.1.1 Flat Proposal

The proof for the proposed rejection sampler in case of sampling a cluster for a single observa-
tion x is as follows. If we approximate p(x|θz) by some qz such that

e−εp(x|θz) 6 qz 6 e
εp(x|θz) (8.12)
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then it follows that a sampler drawing z from

z ∼
qzp(z)∑
z ′ qz ′p(z

′)
(8.13)

and then accepting with probability e−εq−1z p(x|θz) will draw from p(z|x). To prove this, we
begin by computing the probability of this sampler r(z) to return a particular value z. The
sampler returns z when it (a) samples and accepts z, or (b) samples any value, rejects it to
proceed to next iteration of sampling. Using γ =

∑
z ′ qz ′p(z

′) and γT =
∑
z ′ p(x|θz ′)p(z

′) to
denote normalization for proposal and true posterior respectively, we have:

r(z) =
qzp(z)

γ
e−εq−1z p(x|θz) +

∑
z ′

(1− e−εq−1z ′ p(x|θz ′))
qz ′p(z

′)

γ
r(z)

=
e−ε

γ
p(z)p(x|θz) +

r(z)

γ

∑
z ′

qz ′p(z
′) − r(z)

e−ε

γ

∑
z ′

p(x|θz ′)p(z
′)

=
e−ε

γ
p(z)p(x|θz) + r(z) − r(z)

e−ε

γ
γT

r(z) =
p(z)p(x|θz)

γT

(8.14)

Hence the procedure will draw from the true posterior p(z|x).

8.4.1.2 Proposal in Cover Tree

We now extend the above proof strategy when the clusters are arranged in a cover tree, thereby
proving the correctness of our rejection sampler in Section 8.3.2.2.

Similar to previous case, we approximate p(x|θz) for z in level i by some qz such that

e−εip(x|θz) 6 qz 6 e
εip(x|θz). (8.15)

Note that approximation error εi now depends on the location of the cluster in the cover tree.
To be specific, if the cluster z is located at level i, then εi = 2i‖φ̄(x)‖. Also, we assume the
path to reach the node z starting from its (grand) parent at level ı̂ is given by T = [T(ı̂),T(ı̂−
1), ...,T(i)], with T(i) = z.

To prove the correctness of our rejection sampler in Section 8.3.2.1, we simply show that prob-
ability of this sampler to return a particular value z is equal to the true posterior. The sampler
returns z when it (a) reaches the corresponding node in the cover tree and accepts it, or (b)
rejects or exits to proceed to next iteration of sampling. So, the probability of this sampler to
return z is given by:

r(z) = A(z)︸︷︷︸
Probability of the

sampler accepting z

+ r(z) E︸︷︷︸
Probability of the

sampler rejecting or exiting

(8.16)
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We calculate these individual terms beginning with the probability of sampler accepting z.
Using γ as defined in (8.11) and γT =

∑
z ′ p(x|θz ′)p(z

′), we have:

A(z) =
p(z)p(x|θz)

eεiβ(i,T(i))p(x|θT(i))︸ ︷︷ ︸
Accepting node z

×
eεı̂β(ı̂,T(ı̂))p(x|θT(ı̂))

γ︸ ︷︷ ︸
Selecting the first parent (Step 4)

×


ı̂∏

i ′=i+1︸ ︷︷ ︸
The loop
(Step 5)

(
1−

p(T(i ′))p(x|θT(i ′))

eεi ′β(i ′,T(i ′))p(x|θT(i ′))

)
︸ ︷︷ ︸

Rejecting the nodes (Step 5iii)

eεi ′−1β(i ′ − 1,T(i ′ − 1))p(x|θT(i ′−1))

eεi ′β(i ′,T(i ′))p(x|θT(i ′)) − p(T(i
′))p(x|θT(i ′))︸ ︷︷ ︸

Selecting the next node (Step 5ii)


=
eεı̂β(ı̂,T(ı̂))p(x|θT(ı̂))

γ

 ı̂∏
i ′=i+1

eεi ′−1β(i ′ − 1,T(i ′ − 1))p(x|θT(i ′−1))

eεi ′β(i ′,T(i ′))p(x|θT(i ′))

 p(z)p(x|θz)

eεiβ(i,T(i))p(x|θT(i))

=
eεı̂β(ı̂,T(ı̂))p(x|θT(ı̂))

γ

[
eεiβ(i,T(i))p(x|θT(i))

eεı̂β(ı̂,T(ı̂))p(x|θT(ı̂))

]
p(z)p(x|θz)

eεiβ(i,T(i))p(x|θT(i))

=
p(z)p(x|θz)

γ
(by telescoping)

(8.17)

Next, the probability of rejecting or exiting from the sampler is one minus probability of ac-
cepting any node z, i.e.

E = 1−
∑
z ′∈Z

A(z ′)

= 1−
∑
z ′∈Z

p(z ′)p(x|θz ′)

γ

= 1−
γT
γ

(8.18)

Plugging back the acceptance and exit probabilities into (8.16):

r(z) = A(z) + r(z)E

=
p(z)p(x|θz)

γ
+ r(z)

(
1−

γT
γ

)
=
p(z)p(x|θz)

γ
+ r(z) − r(z)

γT
γ

r(z) =
p(z)p(x|θz)

γT

(8.19)

Hence the procedure will draw from the true posterior p(z|x).

The above describes a rejection sampler that keeps on upper-bounding the probability of accept-
ing a particular parameter or any of its children. It is as aggressive as possible at retaining tight
lower bounds on the acceptance probability such that not too much effort is wasted in traversing
the cover tree to he bottom. In other words, we attempt to reject as quickly as possible. Some
computational considerations are in order:
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1. The computationally most expensive part is to compute the inner products
〈
φ̃(x), θ̃z

〉
.

2. As soon as we compute this value for a particular θ̃z we cache it at the corresponding
vertex of the cover tree.

3. To avoid expensive bookkeeping we attach to each vertex two variables: the value of the
last compute inner product and the observation ID of x that it is associated with. +

8.4.2 Runtime of Sampler

The main concern is to derive a useful bound regarding the runtime required for drawing a
sample. Secondary concerns are those of generating the data structure. We address each of
these components, reporting all costs per data point.

construction The data structure TD costs O(c6 logn) (per data-point) to construct and
TC costs O(c6 logm) (per data-point, as m < n) — all additional annotations cost negligible
time and space. This includes computing α and β, as discussed above.

startup The first step is to draw from Sı̂. This costs O(|Sı̂|) for the first time to compute
all probabilities and to construct an alias table. Subsequent samples only cost 3 CPU cycles to
draw from the associated alias table. The acceptance probability at this step is e−2ε. Hence the

aggregate cost for the top level is bounded by O
(
|Sı̂|+ e

2ı̂‖φ̃(x)‖
)

.

termination To terminate the sampler successfully, we need to traverse TC at least once to
its leaf in the worst case. This costs O(c2 logm) if the leaf is at maximum depth.

rejections The main effort of the analysis is to obtain useful guarantees for the amount of
effort wasted in drawing from the cover tree. A brute-force bound immediately would yield

O
(
e2
ı̂‖φ̃(x)‖c6 logm

)
. Here the first term is due to the upper bound on the acceptance prob-

ability, a term of c4 arises from the maximum number of children per node and lastly the
c2 logm term quantifies the maximum depth. It is quite clear that this term would dominate
all others. We now derive a more refined (and tighter) bound.

Essentially we will exploit the fact that the deeper we descend into the tree, the less likely we
will have wasted computation later in the process. We use the following relations

ex − 1 6 ea
x

a
for x ∈ [0,a] and

∞∑
l=1

2−l = 1. (8.20)

In expectation, the first step of the sampler requires eε = e2
ı̂‖φ̃(x)‖ steps in expectation until

a sample is accepted. Thus, eε − 1 effort is wasted. At the next level below we waste at most
e2
ı̂−1‖φ̃(x)‖ − 1 effort. Note that we are less likely to visit this level commensurate with the

acceptance probability. These bounds are conservative since any time we terminate above the
very leaf levels of the tree we are done. Moreover, not all vertices have children at all levels, and
we only need to revisit them whenever they do. In summary, the wasted effort can be bounded
from above by

c4
∞∑
i=1

[
e2
ı̂−i‖φ̃(x)‖ − 1

]
6 c4e2

ı̂‖φ(x)‖
∞∑
i=1

2−i = c4e2
ı̂‖φ(x)‖.

Here c4 was a consequence of the upper bound on the number of children of a vertex. Moreover,
note that the exponential upper bound is rather crude, since the inequality (8.20) is very loose
for large a. Nonetheless we see that the rejection sampler over the tree has computational
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(a) Varying n with
fixed (m,d) =
(210,210)

(b) Varying m with
fixed (n,d) =
(225,210)

(c) Varying m with
n = 215m and
d = 210

(d) Varying m with
fixed (n,d) =
(225,210)

Figure 8.6: Showing scalability of per-iteration runtime of different algorithms with increasing dataset
size. From Figure 8.6a, Figure 8.6b, and Figure 8.6c we see that our approaches take orders
of magnitude less time compared to the traditional EM and ESCA methods, while varying
the number of points and clusters respectively. Note that we trade off memory for speed as
seen from Figure 8.6d. For instance, with (n,m,d) = (32mil, 4096, 1024), we see that there is a
speed-up of 150× for a mere 2× memory overhead.

overhead independent of the tree size! This result is less surprising than it may seem. Effectively we
pay for lookup plus a modicum for the inherent top-level geometry of the set of parameters.

Theorem 8.2 The cover tree sampler incurs worst-case computational complexity per sample of

O
(
|Sı̂|+ c

6 logn+ c6 logm+ c4e2
ı̂‖φ̃(x)‖

)
(8.21)

Note that the only data-dependent terms are c,Sı̂, ı̂ and
∥∥φ̃(x)∥∥ and that nowhere the particular

structure of p(z) entered the analysis. This means that our method will work equally well
regardless of the type of latent variable model we apply. For example, we can even apply the
model to more complicated latent variable models like latent Dirichlet allocation (LDA). The
aforementioned constants are all natural quantities inherent to the problems we analyze. The
constant c quantifies the inherent dimensionality of the parameter space,

∥∥φ̃(x)∥∥ measures the
dynamic range of the distribution, and Sı̂, ı̂ measure the “packing number” of the parameter
space at a minimum level of granularity.

8.5 experiments

We now present empirical studies for our fast sampling techniques in order to establish that
(i) Canopy is fast (Section 8.5.1), (ii) Canopy is accurate (Section 8.5.2), and (iii) it opens new
avenues for data exploration and unsupervised learning (Section 8.5.3), previously unthinkable.
To illustrate these claims, we evaluate on finite mixture models, more specifically, Gaussian
Mixture models (GMM), a widely used probabilistic models. However, the proposed method
can be applied effortlessly to any latent variable model like topic modeling through Gaussian
latent Dirichlet allocation (Gaussian LDA; Zaheer, Das, and Dyer 2015). We pick GMMs due
to their wide-spread application in various fields spanning computer vision, natural language
processing, neurobiology, etc.

methods For each experiment, we compare our two samplers (Canopy I, Section 8.3.1 and
Canopy II, Section 8.3.2) with both the traditional Expectation Maximization (EM; Dempster,
Laird, and Rubin 1977) and the faster Stochastic EM through ESCA (ESCA; Zaheer, Wick, et al.
2015) using execution time, cluster purity, and likelihood on a held out TEST set.
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Figure 8.7: Plots of cluster purity and loglikehood of ESCA, Canopy I, and Canopy II on benchmark real
datasets –MNIST8m and CIFAR-100. All three methods have roughly same performance on
cluster purity. See Section 8.5.2 for more details.

software & hardware All the algorithms are implemented multithreaded in simple C+

+11 using a distributed setup. Within a node, parallelization is implemented using the work-
stealing Fork/Join framework, and the distribution across multiple nodes using the process
binding to a socket over MPI. We run our experiments on a cluster of 16 Amazon EC2 c4.8xlarge
nodes connected through 10Gb/s Ethernet. There are 36 virtual threads per node and 60GB
of memory. For purpose of experiments, all data and calculations are carried out at double
floating-point precision.

initialization Recall that speed and quality of inference algorithms depend on initializa-
tion of the random variables and parameters. Random initializations often lead to poor results,
and so many specific initialization schemes have been proposed, like KMeans++ (Arthur and
Vassilvitskii, 2007), K-MC2 (Bachem et al., 2016). However, these initializations can be costly,
roughly O(mn).

Our approach provides a good initialization using cover trees free of cost, as the construction of
cover tree is at the heart of our sampling approach. The proposed initialization scheme relies
on the observation that cover trees partition the space of points while preserving important
invariants based on its structure. They thus help in selecting initializations that span the en-
tirety of space occupied by the points, which is desired to avoid local minima. The crux of the
approach is to descend to a level l in TD such that there are no more than m points at level
l. These points from level l are included in set of initial points I. We then randomly pick a
point from I such that it belongs to level l and replace it with its children from level l+ 1 in
I. This is repeated until we finally have m elements in I. The chosen m elements are mapped
to parameter space through the inverse link function g−1(·) and used as initialization. All our
experiments use cover tree based initializations. We also make comparisons against random and
KMeans++ in Section 8.5.2.

8.5.1 Speed

To gauge the speed of Canopy, we begin with inference on GMMs using synthetic data. Working
with synthetic data is advantageous as we can easily vary parameters like number of clusters,
data points, or dimensionality to study its effect on the proposed method. Note that, from
a computational perspective, data being real or synthetic does not matter as all the required
computations are data independent, once the cover tree has been constructed.
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synthetic dataset generation Data points are assumed to be i.i.d. samples generated
from m Gaussian probability distributions parameterized by (µ∗i ,Σ∗i ) for i = 1, 2, · · · ,m, which
mix with proportions given by π∗i . Our experiments operate on three free parameters: (n,m,d)
where n is the total number of points, m is the number of distributions, and d is the dimen-
sionality. For a fixed (n,m,d), we randomly generate a TRAIN set of n points as follows: (1)
Randomly pick parameters (µ∗i ,Σ∗i ) along with mixing proportions π∗i , for i = 1, 2, · · · ,m, uni-
formly random at some scale. (2) To generate each point, select a distribution based on {π∗i }
and sample from the corresponding d-dimensional Gaussian pdf. Additionally, we also gener-
ate another set of points as TEST set using the same procedure. For all the four models (Canopy
I, Canopy II, EM, ESCA), parameters are learnt using TRAIN and log-likelihood on the TEST
set is used as evaluation.

observations We run all algorithms for a fixed number of iterations and vary n,m,d individ-
ually to investigate the respective dependence on performance of our approach as shown in
Figure 8.6. We make the following observations: (1) Overall, Figure 8.6 is in line with our claim
that the proposed method reduced the per iteration complexity from O(nm) of EM/ESCA to
Õ(n +m). (2) To illustrate this further, we consider n = O(m) and vary m (shown in Fig-
ure 8.6c). While EM and ESCA have per-iteration time of O(mn), i.e., O(m2) in this case, our
Canopy I and Canopy II show Õ(m+ n), i.e., Õ(m). (3) However, there is no free lunch. The
huge speed-up comes at the cost of increased memory usage (for storing the data-structures).
For example, in the case of n = 32 mil, m = 4096, and d = 1024 (Figure 8.1), a mere 2× increase
in memory gets us a speed up of 150×.

8.5.2 Correctness

Next, we demonstrate correctness of Canopy using medium sized real world datasets with
labels, i.e., ground truth grouping of the points are known. We setup an unsupervised classifi-
cation task on these datasets and perform evaluation on both cluster purity and log-likelihood.

datasets We use two benchmark image datasets–MNIST8m (Loosli, Canu, and Léon Bottou,
2007) and CIFAR-100 (Krizhevsky and G. Hinton, 2009). The former contains 8 million anno-
tated handwritten digits of size 28× 28, giving us data points of dimension 784. CIFAR-100, on
the other hand, contains 50k images annotated with one of 100 object categories. Each image
has 3 channels (RGB) and of size 32× 32, resulting in a vector of dimension 3072.

unsupervised classification. We run unsupervised classification on the above two
datasets and evaluate using cluster purity and log-likelihood. Here, cluster purity is defined as
the mean of accuracy across all clusters, where each cluster is assigned the class of majority of
its members. In addition to using data points as is, we also experiment with unsupervised fea-
tures learnt from a denoising autoencoder (Geoffrey E Hinton and R. R. Salakhutdinov, 2006).
We extract 30 and 256 dimensional features for MNIST8m and CIFAR-100 respectively. Details
of our unsupervised feature extraction are provided below. Further, we evaluate in multiple
scenarios that differ in (a) number of clusters: m = 10, 100 for MNIST8m and m = 100, 500 for
CIFAR-100, and (b) parameter initializations (Random, Kmeans++ and CTree).

denoising autoencoder for mnist The autoencoder consists of an encoder with fully
connected layers of size (28x28)-1000-500-250-30 and a symmetric decoder. The thirty units in
the code layer were linear and all the other units were logistic. The network was trained on the
8 million images using mean square error loss.

denoising autoencoder for cifar100 The autoencoder consists of an encoder with
convolutional layers of size (3x32x32)-(64, 5, 5)-(32, 5, 5)-(16, 4, 4) and having a 2x2 max pool-



8.5 experiments 209

Figure 8.8: Illustration of concepts captured by clustering images in the ResNet (He et al., 2016a,b) fea-
ture space. We randomly pick three clusters and show four closest images (one in each row),
possibly denoting the semantic concepts of ‘crowd’, ‘ocean rock scenery’ and ‘horse mounted
police’. Our clustering discovers new concepts beyond the Resnet supervised categories (does
not include ‘crowd’).

ing after each convolutional layer. The decoder is symmetric with max pooling replaced by
upsampling. The 256 units in the code layer were linear and all the other internal units were
RelU while the final layer was sigmoid. The network was trained on the 50 thousand images
using mean square error loss.

observations Figure 8.7 shows our results on MNIST8m (m = 10, 100) and CIFAR-100

(m = 100, 500), with error bars computed over 5 runs. Here are the salient observations: (1) All
the methods (SEM, Canopy I, Canopy II) have roughly the same cluster purity with Canopy
II outperforming in CIFAR-100 (256 dim) and MNIST8m by around 10% and 3% respectively.
In CIFAR-100, SEM does slightly better than other methods by 2-3%. (2) Similar results are
obtained for log-likelihood except for MNIST8m, where SEM heavily outperforms Canopy.
However, note that log-likelihood results in an unsupervised task can be misleading (J. Chang
et al., 2009), as evidenced here by superior performance of Canopy in terms of cluster purity.

8.5.3 Scalability - A New Hope

Finally, we demonstrate the scalability of our algorithm by clustering a crawled dataset having
more than 100 million images that belong to more than 80,000 classes. We query Flickr1 with
the key words from WordNet (Fellbaum, 1998) and downloaded the returned images for each
key word, those images roughly belong to the same category. We extracted the image features
of dimension 2048 with ResNet (He et al., 2016a,b) – the state-of-the-art convolutional neural
network (CNN) on ImageNet 1000 classes data set–using publicly available pre-trained model
of 200 layers2. It takes 5 days with 20 GPUs to extract these features for all the images. We then
use Canopy II to cluster these images with m = 64000, taking around 27 hours.

1 http://www.flickr.com/
2 github.com/facebook/fb.resnet.torch

http://www.flickr.com/
github.com/facebook/fb.resnet.torch
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Figure 8.9: More Illustration of concepts captured by clustering images in the feature space extracted by
ResNet (He et al., 2016a,b). Figure shows four closest images of seven more randomly selected
clusters (one in each row) possibly denoting the semantic concepts of ‘electrical transmission
lines’, ‘image with text’, ‘lego toys’, ‘lightening’, ‘Aurora’, ‘buggy’ and ‘eyes’. Few of the con-
cepts are discovered by clustering as Resnet received supervision only for 1000 categories (for
example does not include label ‘lightening’, ‘thunder’, or ‘storm’). Full set of 1000 imagenet
label can be seen at http://image-net.org/challenges/LSVRC/2014/browse-synsets.

http://image-net.org/challenges/LSVRC/2014/browse-synsets
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resnet for imagenet We use the state of the art deep convolutional neural network
(DCNN), based on the ResNet (“Residual Network”) architecture (He et al., 2016a,b). ResNet
consists of small building blocks of layers which learn the residual functions with reference to
the input. It is demonstrated that ResNet is able to train networks that are substantially deeper
without the problem of noisy backpropagation gradient. For feature extraction We use a 200

layer ResNet that is trained on a task of classification on ImageNet. In the process, the network
learned which high-level visual features (and combinations of those features) are important.
After training the model, we remove the final classification layer of the network and extract
from the next-to-last layer of the DCNN, as the representation of the input image which is of
dimension 2048.

observations For a qualitative assessment, we randomly pick four clusters and show four
images (more in Figure 8.9) closest to the means in Figure 8.8 (each cluster in a row). We high-
light two important observations: (a) Though the underlying visual feature extractor, ResNet,
is trained on 1000 semantic classes, our clustering is able to discover semantic concepts that go
beyond. To illustrate, images from the first row indicate a semantic class of crowd even though
ResNet never received any supervision for such a concept. (b) The keywords associated with
these images do not necessarily collate with the semantic concepts in the image. For example,
images in first row are associated with key words ‘heave’ ,‘makeshift’, ‘bloodbath’, and ‘fullfill-
ment’, respectively. It is not too surprising as the relatedness of retrieved images for a query
key word generally decreases for lower ranked images. This suggests that pre-processing im-
ages to obtain more meaningful semantic classes could potentially improve the quality of labels
used to learn models. Such a cleanup would definitely prove beneficial in learning deep image
classification models from weakly supervised data.

8.6 points to ponder

We present an efficient sampler, Canopy, for mixture models over exponential families using
cover trees that brings the per-iteration cost down from O(mn) to Õ(m+ n). The use of cover
trees over both data and clusters combined with alias sampling can significantly improve sam-
pling time with no effect on the quality of the final clustering. We demonstrate speed, correct-
ness, and scalability of Canopy on both synthetic and large real world datasets. To the best
of our knowledge, our clustering experiment on a hundred million images is the largest to be
reported. We conclude with some related works and future extensions.

related works There has been work using nearest-neighbor search for guiding graphical
model inference like kd-trees (Gray and Moore, 2000; Moore, 1999). But use of kd-trees is
not scalable with respect to dimensionality of the data points. Moreover, kd-trees could be
deeper (especially for small c) and do not have special properties like covering, which can be
exploited for speeding up sampling. We observe this empirically when training kd-tree based
methods using publicly available code3. The models fail to train for dimensions greater than 8,
or number of points greater than few thousands. In contrast, our method handles millions of
points with thousands of dimensions.

further approximations From our experiments, we observe that using a simplified sin-
gle observation sampling in Canopy II works well in practice. Instead of descending on the
hierarchy of clusters, we perform exact proposal computation for k closest clusters obtained
through fast lookup from TC. All other clusters are equally assigned the least out of these k
exact posteriors.

3 http://www.cs.cmu.edu/~psand/

http://www.cs.cmu.edu/~psand/
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In the future, we plan to integrate Canopy with:

coresets Another line of work to speed up mixture models and clustering involves finding a
weighted subset of the data, called coreset (Feldman, Melanie Schmidt, and Sohler, 2013; Lucic,
Bachem, and A. Krause, 2016). Models trained on the coreset are provably competitive with
those trained on the original data set. Such approaches reduce the number of samples n, but
perform traditional inference on the coreset. Thus, our approach can be combined with coreset
for additional speedup.

inner product acceleration In an orthogonal direction to Canopy, several works like A.
Ahmed, Ravi, et al. (2012) and Mussmann and Ermon (2016) have used maximum inner product
search to speed up inference and vice versa in Auvolat et al. (2015). We want to incorporate
these ideas into Canopy as well, since the inner product is evaluated m times each iteration,
it becomes the bottleneck for large m and d. A solution to overcome this problem would be
to use binary hashing (A. Ahmed, Ravi, et al., 2012) as a good approximation and therefore a
proposal distribution with high acceptance rate.

Combining these ideas, one could build an extremely scalable and efficient system, which
potentially could bring down the per-iteration sampling cost from O(mnd) to Õ(m+n+ d) or
less!
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H a n d l i n g Va r i a b l e

S tat e - S pa c e S i z e

We study the problem of scaling up inference for latent variable models (LVM) over a variable
size state space. Such variable size state space occur in non-parametric models, enabling LVMs
to adapt in accordance to the size of data. This adaptability data sizes make non-parametric
models, including Bayesian ones, a highly versatile tool for inferring the structures and hier-
archies from unstructured data and they have become ubiquitous in statistical data analysis
spanning a diverse set of applications from text to images to user behaviour. However, it is
non-trivial to scale the inference procedures of LVM to deal with real life problems consisting
of massive datasets in a reasonable time with reasonable resources and the variable size state
space only aggravates the issue. In this chapter, we suggest a scalable inference procedure for
Bayesian Nonparametrics based on a combination of smart data structures for handling prob-
ability distributions on one side and modified statistical inference algorithms on the other. In
particular, we take up the task of topic modelling with Hierarchical Dirichlet Process (HDP) to
demonstrate effectiveness of the proposed inference procedure. We propose a log structured
alias sampling data structure for fast sampling from variable sized distribution and derive an
alternative parametrization of HDP for decoupled posterior allowing parallelism. Experimen-
tal results for the proposed method on big datasets like PubMed and Wikipedia show 10x
speed-up.

9.1 introduction

Bayesian nonparametrics such as the Dirichlet Process (DP; Ferguson 1973), the Chinese Restau-
rant Process (Pitman, 1995), the Indian Buffet Process (IBP; T. Griffiths and Z. Ghahramani 2011)
and the Hierarchical Dirichlet Process (HDP; Y. W. Teh et al. 2006) or the Chinese Restaurant
Franchise (A. Ahmed, Hong, and A.J. Smola, 2013) pose to be successful alternatives to model
selection and promising results have been reported for describing documents and networks,
for modelling user interests and behaviours, for collaborative filtering as well as for priors in
multi-task learning. However, inference procedures reported in the academic literature are lim-
ited and focused on providing proofs of concept. The scaling of these procedures to be able to
deal with real life problems in industry consisting of massive datasets (1 TB+) in a reasonable
time with reasonable resources is non-trivial.

One type of very celebrated LVM, the Topic models, are useful in modelling problems involving
groups of data. In these problems each observation within a group is drawn from a mixture
model and it is desirable to share mixture components across all the groups. They are very
useful tools in discovering the hidden thematic structure in large archives of documents, and
hence the name. Such categorization of data can help us perform tasks such as information
retrieval, document browsing, content recommendation (e.g. articles to read, movies to watch,
advertisements to display) etc.
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Topic models achieve this goal by introducing a discrete latent factor, z, for each observation
x ∈ D. This latent factor corresponds to the hidden causes motivating this behaviour, e.g.
the underlying theme of the document (finance, sports, etc.) or user tastes. Specifically, we
model x as being generated from p(x|z) and the latent factor has its own distribution p(z). For
instance, z may be the cluster indicator of a document, in which case it leads to the traditional
mixture models. When z is a vector of fixed dimension (i.e. number of topics), it leads to Latent
Dirichlet Allocation (LDA). However, we do not know the number of topics prevalent in a
given corpus apriori and model selection for LDA is prohibitively expensive. Hence, Bayesian
nonparametrics, like a DP has emerged as an attractive choice for p(z), leading to the HDP topic
model. Such a model is both a boon and a bane. On one hand it provides the much needed
flexibility of adopting model complexity with the amount of data available (i.e. inherently
performing model selection) and on the other hand such flexibility poses a bigger challenge for
inference, which is already pretty complicated for LVM.

As mentioned before, given a large set of data D it is expensive to use traditional inference
procedures for such fancy LVMs using Markov Chain Monte Carlo methods or stochastic vari-
ational algorithms. One of the key obstacles in performing scalable inference in topic models
is to draw from p(z|D) over the discrete state space associated with the latent factor given the
data. The efficiency of this step is critical as it will be repeated for every token in the dataset
(which run into billions) multiple times. For example, if we have a distribution over K outcomes
and we draw only a single sample before the distribution changes, then each step will require
O(K) computation.

Recently, a big improvement for parametric topic models was proposed in A. Q. Li et al. (2014)
by making the key observation that in many inference problems the model parameters only
change relatively slowly during sampling (e.g., the location of cluster centres, the definition
of topics) and appear as decoupled terms in the posterior. Leveraging this observation, they
propose generating an alias table (A. Q. Li et al., 2014) for the slow varying parts of the distri-
bution enabling O(1) sampling from it. Next, to account for the slight drift in the distribution,
they apply Metropolis-Hastings (MH) steps with samples from the stale tables acting as the
proposal, thus regaining its freshness, all in O(1). Moreover, this sample generation method
can be outsourced to another processor, enabling parallelism.

The problem of scalable inference is further exacerbated in case of nonparametric models and
aforementioned speed-up techniques cannot be used directly, mainly for two reasons. First, in
standard expressions of posterior for Bayesian nonparametrics the slowly varying part is not
decoupled from the rest. Second, the size of the discrete state space is no longer pre-determined
and keeps changing during the inference procedure. Now, if the size of the state space, K,
increases since the generation of the alias table, we cannot use the stale alias tables for MH
steps because now the domain of proposal does not contain the domain of target distribution.

In order to circumvent this issue, first of all we derive an alternative parametrization of HDP,
wherein the slowly varying terms are decoupled in the posterior. Next we propose a log struc-
tured alias sampling data structure for storing the variable size distribution and allowing al-
most a constant time generation and cheap updates. To extend the idea of A. Q. Li et al. (2014)
for HDP, we take advantage of this data structure by handling a mismatch in the state-space
size by updating the proposal cheaply on the fly. Also we describe a multithreaded imple-
mentation, leveraging the fact that modern computers have multiple processors. With this new
strategy we speed up the inference procedure on HDP significantly, e.g. gaining a 10x speed-up
on PubMed and Wikipedia datasets.



9.2 background 215

The key contribution is to study sampling algorithms in the context of training LVM. This in-
cludes both improvements to sampling algorithms (for example, using Walker’s alias method
to train HDP) and more efficient ways of computing Stirling numbers. Hence it is worth provid-
ing a comprehensive and self-contained overview of nonparametric probabilistic topic models.
Readers intimately familiar with the subject matter will likely only want to consult the discus-
sion below as notation reference.

9.2 background

9.2.1 Nonparametric Models

With large numbers of objects (documents, images, users, etc.) parametric models are less
useful since they fail to capture the amount of detail inherent in the data. For instance, it is
only marginally useful to strive for 10,000 or more topics. The result of such a strategy would
be nothing more than an extreme over-segmentation of the data. While this might be useful
as feature generator, it fails to capture the inherent structure of the data. Suggestions to the
contrary by Yi Wang et al. (2014) are likely due to the fact that their discriminative model
suffers from an unsophisticated parametrization, hence over-segmentation of the space helps.

Instead, nonparametric models allow for both structured and fine-grained information repre-
sentation and extraction. However, this often renders sampling inference painfully slow due to
the large degree of complexity. Even worse, the size and structure of the discrete state space
is no longer predetermined and keeps changing during the inference procedure. In short, the
cost of scaling latent variable models to large datasets is often superlinear in practice due to
inefficient data structures, unless great care is taken.

Hierarchical Bayesian Nonparametrics is an extraordinarily fertile field, leading to a vast range
of models such as the Hierarchical Dirichlet Process (Y. W. Teh et al., 2006), the Nested Chinese
Restaurant Process (D. Blei, T. Griffiths, and M. Jordan, 2010), Pachinko Allocation (W. Li, D.
Blei, and A. McCallum, 2007), the Mondrian Process (Roy and Y. W. Teh, 2009), the Indian Buffet
Process (T. Griffiths and Z. Ghahramani, 2011) , or the Nested Chinese Restaurant Franchise (A.
Ahmed, Hong, and A.J. Smola, 2013; Paisley et al., 2013), just to name a few of them. It is thus
virtually impossible to cover all sampling modifications of the ’flat’ model in this paper. Instead,
we focus on the HDP, as it exhibits all relevant properties and poses associated challenges:
structured and time-varying datastructures, dependence between states, and computation of
nontrivial combinatorial coefficients.

The HDP uses a Dirichlet Process (DP) Gj for each document j to handle uncertainty in number
of mixture components. At the same time, in order to share mixture components and clusters
across groups, each of these DPs is drawn from a global DP G0.

Gj ∼ DP(α0,G0) G0 ∼ DP(α0,H) (9.1)

We proceed to draw for each word i in document j a topic distribution ψji from Gj and a word
from it. As before the conjugate pair (F,H) form the language model.

ψji ∼ Gj xji ∼ F(ψji) (9.2)

Exploiting conjugacy, the HDP is best explained via the Chinese Restaurant Franchise metaphor.
We have a franchise of restaunts with same menu across all of its restaurants. Every document
amounts to its own restaurant belonging to this franchise, wherein the customers (tokens) enter
sequentially.
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Symbol Description

J Number of documents

K Number of topics active

Nj Number of tokens in document j

xji Token i in document j

X Entire collection of documents, i.e. X = {{xji}
Nj
i=1}

J
j=1

θj Topic-proportions for document j

φk Word distribution for topic k

n(j,k) Number of customers/tokens assigned to dish/topic k in restaurant/-
document j.

c(x,k) Number of times word x assigned to dish/topic k

m(j,k) Number of tables serving dish/topic k in restaurant/document j

M Total number of tables globally, i.e. M =
∑
j,km(j,k)

zji Dish/topic assignment of customer/token i in restaurant/document j.

uji Auxiliary variable to denote if customer/token i in restaurant/ docu-
ment j was responsible for creation of a new table

α0 Scaling parameter of document specific DPs

γ Scaling parameter of root DP

Snm Stirling numbers of the first kind

(a)b Falling factorial, i.e. (a)b = a(a+ 1) · · · (a+ b− 1)

Table 9.1: A quick reference for notations used in describing nonparametric models.

• Whenever a new customer walks into a particular restaurant, he will sit at an existing
table with probability proportional to the number of people sitting at the table and share
the dish (topic) being served on that table

• Alternatively the new customer will sit at a new table with probability proportional to
α0 and order a new dish (topic) k from G0. In this case a phantom customer is sent to
the restaurant responsible for G0.

• There, with probability proportional to γ, a new table is generated with a new dish drawn
from H. Otherwise, an existing dish is drawn with probability proportional to the number
of phantom customers associated with the dish.

G0 acts as a parent restaurant which controls the menu, i.e. the creation or deletion of dishes
(topic). This allows documents (or groups) to share statistical strength. By recognizing that draws
from a Dirichlet process are discrete almost surely we can express the HDP in a form very
similar to LDA as shown in Figure 9.1. In particular G0 ∼ DP(γ,H) can be represented as
(Sethuraman, 1994):

G0 =

∞∑
k=1

θ0kδφk where φk ∼ H(·) and θ0 = {θ0k}
∞
k=1 ∼ GEM(γ) (9.3)
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for all i

for all d

for all k

γ α0

θ0 θj zji xji φk H

Figure 9.1: HDP Graphical Model.

Here GEM(γ) denotes the Griffiths, Engen and McCloskey stick breaking process (Pitman,
2006). Since G0 has support only at {φk}∞k=1, each Gj necessarily has support there as well, and
can thus be written as:

Gj =

∞∑
k=1

θjkδφk (9.4)

It can be shown that each θj = {θjk}
∞
k=1 is independently distributed according to DP(α0, θ0),

i.e. θj ∼ DP(α0, θ0) (Y. W. Teh et al., 2006). Here we interpret θ0 and θj as probability measures
on natural numbers. As in any mixture model, since each factor ψji is distributed according
to Gj, it takes on the value φk with probability θjk. To simplify, let zji be an indicator vari-
able such that ψji = φzji . Given zji, we have xji ∼ F(φzji). Thus we obtain an equivalent
representation of the HDP, resembling LDA via the following conditional distributions:

θ0 ∼ GEM(γ)

θj ∼ DP(α0, θ0) φk ∼ H (9.5)

zji ∼ θj xji ∼ F(φzji)

If we let F(φ) have density f(·|φ) and H have density h(·), then under this view one can write
the joint density of the model as:

p(X, z, θ,φ|α,H) =
∞∏
k=1

h(φk)

J∏
j=1

p(θj|α)

Nj∏
i=1

p(zji|θj)f(xji|zji,φzdi) (9.6)

These representations will be helpful in deriving the inference using Gibbs sampling.

Inference in hierarchical models is decidedly more complex. A brief history of inference in
LVMs is illustrated in Figure 9.2. We discuss two main strategies below. This is done for self-
consistency and also to derive a computationally more efficient expansion for the associated
combinatorial coefficients. We discuss two samplers: sampling by direct assignment (Y. W. Teh
et al., 2006) and the more recently proposed sampling by compact representation (C. Chen, Du,
and W.L. Buntine, 2011). The latter has the property of mixing considerably faster. In a nutshell,
it decouples the issue of provenance, i.e. which level in the hierarchy gives rise to a specific
topic from the issue of which instance takes credit for its introduction at that level (which is
uniformly distributed over the instances satisfying the former condition). We begin with the
more conventional model.

9.2.1.1 Sampling by direct assignment

Similar to the case of LDA to speed up convergence, we would want to collapse out as many
variables as possible. However, due to the hierarchy collapsing out all of the variables leads
to a complex dependence structure and booking-keeping. As a solution Y. W. Teh et al. (2006)
proposed to collapse out the document specific DPs Gj, but retain the global DP G0. The
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Figure 9.2: Overview of various inference algorithms for parametric LDA and non-parametric HDP model.
Most models use certain data structures and auxiliary tools.

instantiation of G0 (equivalently θ0) makes the posterior conditioned on G0 to factorize across
documents, i.e. sampling for a given document will only depend on counts from the same
document given G0. This leads to a much simpler book-keeping as we will see.

Let us begin by deriving the posterior of zji given other topic assignments z−ji, the global DP
G0 (equivalently θ0), and document specific DP Gj (equivalently θj) integrated out. Using the
exchangeability property of DPs (Antoniak, 1974) for integrating out θj in (9.5), one can find
that posterior of zji depends only on local counts and is given by:

zji|z−ji,α0, θ0 ∝
K∑
k=1

n−ji(j,k)
Nj +α0

δk +
α0

Nj +α
θ0 (9.7)

Similarly at root level, as mentioned earlier, phantom customers from document level restau-
rants are sent each time a new table is created. Let m(j,k) denote the number of tables in
restaurant j, serving dish k. This means m̄(k) =

∑
jm(j,k) customers are sitting in a table

eating dish k at the root level and in total there are M =
∑
k m̄(k) customers at the root level.

Then posterior of G0, given table counts in each of the restaurants, is another Dirichlet process:

G0|m,γ,H ∼ DP

(
M+ γ,

K∑
k=1

m̄(k)

M+ γ
δφk +

γ

M+ γ
H

)
(9.8)

Now, to construct a finite instantiation of the posterior G0, we use the definition of DP that any
measurable partitions of parameter space under the DP is Dirichlet distributed. In particular, if
we consider partition of space into K+ 1 components where first K corresponds to topics seen
till now and the last component is rest of the space, we have:

θ0 = (θ01, θ02, ..., θ0K︸ ︷︷ ︸
Representing

existing topics

, θ0u︸︷︷︸
Representing
unseen topics

) ∼ Dirichlet( m̄(1), ..., m̄(K)︸ ︷︷ ︸
Measure of existing

topic partitions

, γ︸︷︷︸
Measure for rest

of the space

), (9.9)

Next, to incorporate the emission model, note that:

Pr(zji = k|z−ji,X, {φ},α0, θ0) ∝ Pr(zji = k|z−jiα0, θ0)f(xji|φk) (9.10)
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Finally, plugging (9.7) into (9.10), we obtain

Pr(zji = k|rest) ∝

(n−ji(j,k) +α0θ0k)f(xji|φk) if k in use

α0θ0uf(xji|φknew) if k is new
(9.11)

We can further collapse out φk, as in the case of LDA.

In the above discussion, we skipped how we obtained table counts, m̄(k) in the first place. As
we do not keep track of table creations at document levels (but only keep track which customer
is consuming which dish for efficiency), to obtain m̄(k) we have to sample m(j,k) for all j.
Note that m(j, k) is just the number of tables for the DP Gj, for which the desired conditional
distribution of has been shown by Antoniak (1974) to be:

Pr(m(j,k) = m) ∝ Sn(j,k)m (α0θ0k)
m. (9.12)

Here the terms Snm are Stirling numbers of the first kind.

In summary, this method requires three kinds of sampling, which are very similar to LDA:

• Sampling z:

Pr(zji = k|rest) ∝

(n−ji(j,k) +α0θ0k)f
−ji
k (xji) if k in use

α0θ0uf
−ji
knew(xji) if k is new

(9.13)

• Sampling m:

Pr(m(j,k) = m) ∝ Sn(j,k)m (α0θ0k)
m. (9.14)

• Sampling θ0:

θ0 ∼ Dirichlet(m̄(1), m̄(2), ..., m̄(K),γ). (9.15)

9.2.1.2 Sampling by table configuration

The key difference of C. Chen, Du, and W.L. Buntine (2011) relative to Y. W. Teh et al. (2006)
is that rather than keeping track of relative assignments of tables to each other it simply keeps
track of the level (global topic restaurant, current document restaurant, or no new table), de-
noted by uji, within the hierarchy of restaurants at which an individual customer opens a
new table, if any. The advantage is that this allows us to factor out the relative assignment of
customers to specific tables but rather only keep track of the dishes that they consume, very
similar to LDA.

Using the table configuration model, sampling in the HDP occurs through the following pro-
cess: in addition to the topic selector variable zji, we use the auxiliary variable uji to determine
whether the dish existed before (uji = 2), whether a new table was allocated (uji = 1), or
whether a new dish and a new table are allocated (uji = 0). The reason for this decomposition
is that for any topic we only need one token uji = 0 to instantiate the topic and only one
per restaurant to instantiate a table uji = 1. Thus, the counts, m(j,k) for table serving dish
k in restaurant j can be expressed in terms of uji’s as m(j,k) =

∑
i I{zji = k,uji < 2}. Note

that C. Chen, Du, and W.L. Buntine (2011) discuss this in the context of arbitrary hierarchies,
where uji could be as large as the depth of the hierarchical model. The benefit of this auxiliary
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variable decomposition is that we need not keep track of u explicitly but rather just resample
one variable at a time as needed, as pointed out by C. Chen, Du, and W.L. Buntine (2011),

The joint posterior of z and u for the HDP is

Pr({z,u}) =
γK

(γ)K

[
K∏
k=1

(m̄(k) − 1)!
m̄(k)

] J∏
j=1

α
m̄(j)
0

(α0)Nj

K∏
k=1

S
n(j,k)
m(j,k)

m(j,k)!(n(j,k) −m(j,k))!
n(j, k)!


(9.16)

where (x)n is the falling factorial x(x+ 1) · · · (x+n− 1). We can introduce the emission model
as before in (9.10) as well as marginalize out φ as before. To obtain conditional posteriors for a
particular zji,uji, we just divide Pr({z,u})/Pr({z,u}−ji) and simplify the resulting expression
to obtain Pr(zji,uji|{z,u}−ji).

In summary, we have the following (unnormalized) probabilities for document j for a word at
position i:

No change — uki = 2: Whenever we do not change the number of tables in a restaurant, we
have

Pr(zji = k,uji = 2|rest) ∝
S
n(j,k)+1
m(j,k)

S
n(j,k)
m(j,k)

n(j,k) + 1−m(j,k)
n(j,k) + 1

f
−ji
k (xji) (9.17)

New table — uji = 1: Whenever the customer starts a new table by picking one of the existing
dishes in the global menu we have

Pr(zji = k,uji = 1|rest) ∝ α0m̄
2(k)

(m̄(k) + 1)(M+ γ)

S
n(j,k)+1
m(j,k)+1

S
n(j,k)
m(j,k)

m(j,k) + 1
n(j,k) + 1

f
−ji
k (xji) (9.18)

New table, new global dish — uji = 0: In this case we get

Pr(zji = knew,uji = 0|rest) ∝ α0γ

M+ γ
f
−ji
knew(xji) (9.19)

Note that while the probabilities in (9.17)-(9.19) are unnormalized, they share the same nor-
malization constant. Hence joint normalization is immediately available. Note that the original
paper and its errata had some bugs, hence we re-derived the expressions.

9.2.2 Composing MCMC Algorithms

Over the past decade most of the fast samplers proposed for parametric LVMs like topic models
have been based on different Metropolis-Hastings (MH) schemes. To understand their relative
merits we need to review some background on the mixing and composition properties of
Markov Chain Monte Carlo (MCMC) algorithms.

We denote by K(x,y) the transition kernel between subsequent states x and y of a Markov Chain.
In MH sampling we have the following:

K(x,y) = A(x,y)q(y|x) + (1− r(x))δ(y− x) where r(x) =
∫
A(x,y)q(y|x)dy. (9.20)

Under mild conditions, it is possible to show that such chains are ergodic with equilibrium
being the target distribution (Tierney, 1994). However, MCMC is efficient only when the chain
converges quickly.
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In MH this is governed by an effective choice of p. A common misconception (A. Q. Li
et al., 2014; Yuan et al., 2015) is that getting higher acceptance probability in MH implies
faster convergence. As counterexample consider using N(5, 1) as proposal to sample from
1
2 [N(5, 1) +N(−5, 1)] as target distribution. If we begin near 5 the acceptance ratio would al-
most always be close to 1, yet the chain would be extremely slow in exploring the true dis-
tribution. Below we list a number of proposals whose mixing behaviour has been extensively
studied.

9.2.2.1 Random walks

In general the selection of the next state depends on the current state. Common choices in-
clude choosing a neighbor uniformly at random in the case of graphs or a normal distribution
centered around current position in the case of continuous space. Ergodicity (irreducible and
aperiodic) can be proved e.g. when the proposal is non-zero on the entire state space. Likewise,
if the state space is open and connected, then proposal being non-zero just on a neighbour-
hood of current position suffices. Rosenthal (1995) shows that the mixing rate of the Markov
chain is determined by the second largest eigenvalue of K. The smaller it is the faster the chain
converges.

9.2.2.2 Independence chain

A degenerate case (that we will use) is when the selection of the next state is independent of
the current state, i.e. q(j|i) = qj for all i, j and that moreover the support of q contains that of
p. Convergence of this proposal was analyzed by Mengersen, Tweedie, et al. (1996).

Theorem 9.1 The Markov chain under the independence proposal is uniformly ergodic if there exists
C > 1 such that

pk 6 Cqk for all k (9.21)

In this case the total variation distance between p and probability distribution of the chain at time t, i.e.
Pt is bounded by∥∥Pt − p∥∥

1
6 (1−C−1)t. (9.22)

Clearly, the closer C is to 1, the faster the rate of convergence. Hence, maxk pk/qk can be used
to indicate the goodness of the proposal. Note that it is same as for rejection sampling, albeit
without the requirement to know the C explicitly.

9.2.2.3 Hybrid methods

A great benefit in designing MCMC proposal distributions is that we can combine them into a
hybrid proposal. Suppose K1, ...,Kr are transition kernels with the same invariant distribution
p, then we can combine them e.g. sequentially or in parallel.

parallel composition. We define the mixture kernel via

K =

r∑
i=1

αiKi where αi > 0 and ‖α‖1 = 1. (9.23)

Here α defines a probability distribution over Ki. At each step one of the kernels is
selected according to α.

sequential composition. We may carry out the kernels in sequence, i.e.

K = K1 �K2 � · · · �Kr. (9.24)
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Each kernel is used in turn, and when the last one is the cycle is restarted. This is desirable,
e.g. whenever the eigenfunctions of the Ki differ considerably. In this poor convergence
with regard to some mode in one kernel can be mitigated by improved convergence in
another kernel and vice versa.

While individual kernels might not be ergodic, their composition can be. Unfortunately, exact
convergence analysis is only known for very limited cases (Tierney, 1994).

9.2.2.4 Gibbs sampling and variants

Perhaps the most famous example of the composition principle is the Gibbs sampler. In it, each
kernel Ki samples only one component (or a subset of variables) at a time. That is,

Ki(x
t, xt+1) =

0 if xt+1j 6= xtj for any j 6= i,

p(xt+1i |xt¬i) otherwise
(9.25)

Clearly Ki has p as its stationary distribution. However, it is not irreducible. Neither of the
kernels Kj on their own possess ergodicity, but after parallel or sequential composition the
chain becomes ergodic. See Gonzalez et al. (2011) for a discussion and analysis.

Whenever sampling from the conditional distribution p(xi|x¬i) is too costly, we may replace
Ki by an MH-step, i.e. by a sub-kernel that has p(xi|x¬i) as its invariant distribution. This
preserves mathematical validity, i.e. the chain remains ergodic and the stationary distribution
is still the true posterior.

In the following we will combine the above sampling techniques for efficient inference in
Bayesian latent variable methods. This will be accomplished by smart data structures, Metropolis-
within-Gibbs, and by using the composition principle, such as to speed up topic model inference
on large models and data considerably.

9.3 speeding up inference in nonparametric

models

In this section we show how techniques developed for speeding up parametrics models, like
LDA, can be extended to non-parametric models. However, scalable inference is rather more
complex in this case than in LDA, reasons for which are two fold. First, the model does not
decompose into local sparse terms and global, slowly varying terms, since local choices may
affect the composition in terms of topics all the way throughout the HDP. All the fast samplers
for LDA are based on such decompositions, thus invalidating their direct application. Second,
the size of the discrete state space is no longer pre-determined and keeps changing during the
inference procedure. This makes it difficult to design fast samplers that precompute parts of
the distribution.

9.3.1 Exploiting Sparsity

In order to speed-up the sampler by leveraging sparsity, one needs to identify a partition of
posterior having sparse terms, as in case of fast LDA samplers like SparseLDA (L. Yao, Mimno,
and Andrew McCallum, 2009) and AliasLDA (A. Q. Li et al., 2014). In case of inference on
HDP using Sampling by Direct Assignment (Section 9.2.1.1), due to resemblance of posterior
to LDA, one can directly use same partition of the posterior into a sparse local document-only
term and a slowly varying global word-topic count term as in LDA. Thus same techniques as
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presented for AliasLDA (A. Q. Li et al., 2014) directly applies. Whereas in the other case of
inference for HDP utilizing the faster mixing Sampling by Table Configuration (Section 9.2.1.2)
no straightforward decoupling can be seen. The probability of sitting at an existing table in
the restaurant, (9.17), is sparse and depends only on counts within restaurants. However, the
probability of starting a new table, (9.18), depends both on local and global counts and must
be evaluated for all active topics, which would not be sparse.

We now develop a reformulation of the posterior under Sampling by Table Configuration by
separating out the sparse terms. We begin by observing that for topics which have no represen-
tation in the current restaurant, i.e. when n(j,k) = 0 and m(j,k) = 0, the probability in (9.18)
just becomes:

Pr(zji = k,uji = 1|rest) ∝ α0m̄
2(k)

(m̄(k) + 1)(M+ γ)
fk(xji) := π (9.26)

Now we show that for topics which are already represented in the current restaurant, i.e.
n(j,k) > 0,m(j,k) > 0 we can collect π separately as:

Pr(zji = k,uji = 1|rest) ∝ π
S
n(j,k)+1
m(j,k)+1

S
n(j,k)
m(j,k)

m(j,k) + 1
n(j,k) + 1

= π

Sn(j,k)+1m(j,k)+1

S
n(j,k)
m(j,k)

m(j,k) + 1
n(j,k) + 1

− 1

+ π

(9.27)

If term in the bracket is non-zero, then it can become a local sparse distribution on its own
and the leftover π can be combined with distribution of (9.26). But for this split to yield valid
distributions, we need to prove that the term in the bracket is non-negative. To prove this, we
will first need a couple of lemma.

Lemma 9.2 For all m 6 n ∈N, we have

m+ 1

n+ 1

(
2n

m
− 1

)
> 1 (9.28)

Proof It is equivalent to show that:

m+ 1

n+ 1

(
2n

m
− 1

)
− 1 > 0 (9.29)

Simplifying the LHS we obtain:

LHS =
m+ 1

n+ 1

(
2n

m
− 1

)
− 1

=
(m+ 1)(2n−m) −m(n+ 1)

n+ 1

=
−(m+ 2)(m−n)

(n+ 1)

(9.30)

As a concave quadratic is always non-negative between its two roots, the LHS is always
non-negative for −2 6 m 6 n for all n. This completes our proof.
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Lemma 9.3 For all n ∈N, the following sequence is non-increasing in m:

an,m =
m

n−m

Snm+1

Snm
, m = 1, 2, ..,n− 1 (9.31)

In other words an,1 > an,2 > · · · > an,n−1.

Proof We prove the non-increasing sequence of an,m in m by induction. The induction hy-
pothesis is equivalent to

(m− 1)(n−m) (Snm)2 −m(n−m+ 1)Snm+1S
n
m−1 > 0 (9.32)

The base case for induction using n = 2,m = 1 holds trivially as S20 = 0. Assume the statement
holds till n, then for n+ 1 we need to prove:

(m− 1)(n−m+ 1)
(
Sn+1m

)2
−m(n−m+ 2)Sn+1m+1S

n+1
m−1 (9.33)

We begin by simplifying the LHS, which would reveal that each term in the LHS is indeed
positive or non-negative by the induction hypothesis.

LHS = (m− 1)(n−m+ 1)
(
Sn+1m

)2
−m(n−m+ 2)Sn+1m+1S

n+1
m−1

= (m− 1)(n−m+ 1)
(
Snm−1 +nS

n
m

)2
−m(n−m+ 2)

(
Snm +nSnm+1

) (
Snm−2 +nS

n
m−1

)
= (m− 1)(n−m+ 1)

(
Snm−1

)2
−m(n−m+ 2)SnmS

n
m−2︸ ︷︷ ︸

=a

+n2(m− 1)(n−m+ 1) (Snm)2 −n2m(n−m+ 2)Snm+1S
n
m−1︸ ︷︷ ︸

=b

+ [n(m− 2)(n−m) − 2n]SnmS
n
m−1 −nm(n−m+ 2)Snm+1S

n
m−2︸ ︷︷ ︸

=c

= a+ b+ c

(9.34)

Upon simplifying a further, we obtain:

a = (m− 1)(n−m+ 1)
(
Snm−1

)2
−m(n−m+ 2)SnmS

n
m−2

=
m

m− 1

[
(m− 2)(n−m+ 1)

(
Snm−1

)2
− (m− 1)(n−m+ 2)SnmS

n
m−2

]
+
n−m+ 1

m− 1

(
Snm−1

)2
>
n−m+ 1

m− 1

(
Snm−1

)2
(9.35)

where the last inequality follows by applying induction hypothesis. Similarly, proceeding for b
one obtains:

b = n2(m− 1)(n−m+ 1) (Snm)2 −n2m(n−m+ 2)Snm+1S
n
m−1

= n2
n−m+ 2

n−m+ 1

[
(m− 1)(n−m) (Snm)2 −m(n−m+ 1)Snm+1S

n
m−1

]
+n2

m− 1

n−m+ 1
(Snm)2

> n2
m− 1

n−m+ 1
(Snm)2

(9.36)
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again where the last inequality follows by applying induction hypothesis. Finally, we simplify
c,

c = [n(m− 2)(n−m) − 2n]SnmS
n
m−1 −nm(n−m+ 2)Snm+1S

n
m−2

> −2nSnmS
n
m−1

(9.37)

To see the last inequality, note again from induction hypothesis that an,m−2 > an,m, i.e.

(m− 2)(n−m)SnmS
n
m−1 −m(n−m+ 2)Snm+1S

n
m−2 > 0 (9.38)

Substituting the simplified expressions for a,b, c back into (9.34):

LHS = a+ b+ c

>
n−m+ 1

m− 1

(
Snm−1

)2
+

m− 1

n−m+ 1
(Snm)2 − 2nSnmS

n
m−1

=

(√
n−m+ 1

m− 1
Snm−1 −n

√
m− 1

n−m+ 1
Snm

)2
> 0

(9.39)

This completes the proof.

Theorem 9.4 The Stirling number of first kind satisfies the following inequality for all 0 6 m 6 n:

m+ 1

n+ 1

Sn+1m+1

Snm
> 1 (9.40)

Proof From Lemma 9.3, we have that an,m is an non-increasing sequence in m for all n. Thus
every element an,m in the sequence is lower bounded by the last element an,n−1 = 2/n, i.e.
∀n, 1 6 m 6 n− 1 : am > an−1. As a result

Snm+1

Snm
>
2(n−m)

nm
(9.41)

Finally to show the original claim (9.40), we use Lemma 9.2 and the recurrence relation on
Sn+1m+1 to obtain the desired result:

m+ 1

n+ 1

Sn+1m+1

Snm
>
m+ 1

n+ 1

(
1+

nSnm+1

Snm

)
>
m+ 1

n+ 1

(
2n

m
− 1

)
> 1. (9.42)

This result allows us to partition the posterior for sampling table configurations into sparse
local terms and slowly varying global terms, as follows:

No change — uki = 2: As before, whenever we do not change the number of tables in a
restaurant, we have

Pr(zji = k,uji = 2|rest) ∝
S
n(j,k)+1
m(j,k)

S
n(j,k)
m(j,k)

n(j,k) + 1−m(j,k)
n(j,k) + 1

fk(xji) (9.43)
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Figure 9.3: Typical posterior distribution of the HDP using a sampling table configuration representation.
Without loss of generality we order local and global terms into a joint list. What is displayed
are unnormalized probabilities.

New table among existing local dishes — uji = 1: Whenever the customer starts a new table
by picking one of the existing dishes in the restaurant we have

Pr(zji = k,uji = 1|rest) ∝ α0m̄
2(k)

(m̄(k) + 1)(M+ γ)

Sn(j,k)+1m(j,k)+1

S
n(j,k)
m(j,k)

m(j,k) + 1
n(j,k) + 1

− 1

 fk(xji)
(9.44)

New table — uji = 1: Whenever the customer starts a new table picking one of the existing
dishes from the global menu (existing dish among the restaurant or new local dishes from the
global menu) we have

Pr(zji = k,uji = 1|rest) ∝ α0m̄
2(k)

(m̄(k) + 1)(M+ γ)
fk(xji) (9.45)

New table, new global dish — uji = 0: In this case we get

Pr(zji = knew,uji = 0|rest) ∝ α0γ

M+ γ
fknew(xji) (9.46)

Careful inspection of the posterior illustrates that (9.43) and (9.44) are the sparse local docu-
ment terms (after all, no new dish is added to the local document), whereas (9.45) is the slowly
varying global term. Thus, in this formulation of HDP the sparse and slowly varying terms
are decoupled as desired. Figure 9.3 shows an instance of unnormalized posterior after the de-
coupling which exhibits the division of sparse local quantities and dense global ones explicitly.
This allows us to exploit sparsity in a manner similar to LDA.
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Figure 9.4: Log structured alias table

9.3.2 Log Structured Alias Sampling

The resemblance of the sampling by direct assignment (Section 9.2.1.1) tempts one to immedi-
ately borrow the alias sampling trick. One might consider to partition the posterior of zji as
before into a sparse component and a slowly varying one.

Pr(zji = k|rest) ∝



n
−ji
kj f

−ji
k (xji)︸ ︷︷ ︸

sparse local terms

+ α0θ0kf
−ji
k (xji)︸ ︷︷ ︸

slowly varying global terms

if k in use

α0θ0uf
−ji
knew(xji)︸ ︷︷ ︸

singleton

if k is new

(9.47)

Unlike the case of LDA, now the size of the discrete state space is no longer pre-determined
and keeps changing during the inference procedure. This makes it difficult to precompute
parts of the distribution and store it efficiently in some data structure. This is because it is
costly recompute or update the data structure every time a new topic is created/deleted for all
the words.

To circumvent this issue, we propose a Log Structured Alias Sampler. It is inspired by log-
structured merge data-structures such as BigTable (F. Chang et al., 2006). We process and store
the counts for prevalent topics in alias tables and the counts for nascent topics are lazily stored
in a list as a log as shown in Figure 9.4. Then once in a while we merge growing topics from
the nascent list into the main alias table. To sample from this data structure costs O(Knascent),
as we can efficient draw from prevalent topics in O(1) time, but we traverse the list of nascent
topics. Typically, the number of nascent topics and the probability mass associated with it is
very small. As a result it does not cause a huge performance penalty as compared to direct
sampling from alias table.

Also we incorporate a reverse index for the log nascent topics to enable O(1) lookup of their
counts which is required in accept/reject step of Metropolis-Hastings.

9.3.3 Dealing with Stirling Numbers

In case of Sampling by Direct Assignment, we face Stirling’s number in posterior of the root
DP in form of Antoniak’s distribution. Using the following trick we can sample all of m from
Antoniak’s distribution with a cost equal to that of flipping a coin per token in the corpus.

• Draw auxiliary variables sljk ∼ Bernoulli
(

α0θ0k
α0θ0k+l−1

)
for l ∈

{
1, . . . nkj

}
.
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• A sample m from the Antoniak distribution can be computed by m =
∑
l s
l
jk.

Lemma 9.5 Denote by A(n, θ) the Antoniak distribution. That is, it denotes the distribution where
p(x = m) ∝ Snmθm for m ∈ {1, . . .m} and where Snm is the Stirling number of the first kind. Moreover,
assume that we have m Bernoulli random variables sl, drawn from sl ∼ Bin

(
θ

θ+l−1

)
for l ∈ {1, . . .m}.

Then s :=
∑n
l=1 sl satisfies s ∼ A(n, θ). Hence sampling from A(n, θ) can be accomplished in O(n)

time and O(1) space.

Proof We begin with the defining property of the Stirling numbers, namely that they are the
coefficients of a polynomial of degree n given by Γ(θ+n)/Γ(θ), i.e.

θn̄ :=
Γ(θ+n)

Γ(θ)
= θ(θ+ 1) · · · (θ+n− 1) =:

n∑
m=1

Snmθ
m (9.48)

By construction Sn0 = 0, hence it is omitted from the expansion. We obtain

Pr

[
n∑
l=1

sl = m

]
=

∑
s1,...sn|s=m

Pr [s1, . . . xn] (9.49)

=
θm∏n

l=1(θ+ l− 1)

∑
{s1,...sm}|s=m

∏
si=0

(i− 1) (9.50)

=
θm∏n

l=1(θ+ l− 1)
Snm =

θmSnm∑n
l=1 θ

lSnl
(9.51)

Here the equality (9.50) follows from the fact that we need to multiply over all terms
1 − θ

θ+l−1 = l−1
θ+l−1 for which sl = 0. Moreover, (9.51) follows from the definition of the

Stirling number of the first kind by decomposing (θ+ i− 1) = θ+ (i− 1) and the last equality
follows from the property of θn̄.

In case of Sampling by Table Configurations, many terms of the conditional posterior involves
Stirling numbers. However, Stirling numbers rapidly become very large and even computation
of Stirling numbers Snm for moderately large n andm, which will frequently occur for large text
corpus, can cause numerical instability. Hence one would typically resort to store and compute
them in log domain. The recursion for Stirling number yields:

logSn+1m+1 = logSnm+1 + log
(
exp

(
logSnm − logSnm+1

)
+n

)
(9.52)

But such implementation can be slow as the log() and exp() functions can make the evaluation
slow if implemented naively.

Fortunately, for sampling of hierarchical models we only need the Stirling numbers in the
following forms:

Unt =
Sn+1m

Snm
Vnt =

Sn+1m+1

Sn+1m+1

(9.53)

since only the ratios are required, we can directly compute them. W. Buntine (2002) showed
that just by manipulating the recursion obeyed by the Stirling numbers, we can obtain the
following recursion directly for the ratio:

Unm = Un−1m−1 +n− (n− 1)
Un−1m−1

Un−1m

(9.54)
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with U00 = 1,U10 =∞,U11 = 1. Also in backwards direction as:

Unm = Un+1m+1 − (n+ 1) +n
Un+1m+1 − (n+ 1)

Unm+1 −n
(9.55)

At every sampling instance of HDP, n or m can change by at most ±1. So we can cache a
few rows of Stirling numbers around the presently active values. If during sampling we move
towards the boundary we can re-compute some more rows and discard values at the other end.
Furthermore, numerically using the recursion (9.54) has been shown to be much more stable,
even when using float instead of double (W. Buntine, 2002). We do not need to cache the other
ratio Vnm separately, as it can be readily expressed in terms of Unm as follow:

Vnm =
Unm+1

Unm+1 −n
(9.56)

To summarize, in this section we explored ways to handle Stirling numbers which are hard
compute in numerically stable way. In case of sampling by direct assignment, we found an
alternate way to sample from Antoniak’s distribution which totally avoids use of Stirling’s
number. The new sampling strategy is much cheaper, costs O(n) per token and needs no
caching memory. In case of sampling table configuration, we only need ratios of certain Stirling
number and we found a numerically more stable and faster recursion to directly compute the
ratios.

When all of speed-up approaches, i.e. leveraging sparsity, log structured alias sampling, and
tackling Stirling numbers, are combined a significant gain in speed and scalability is achieved
for inference on HDP as will be seen from experiments presented in next section. Furthermore,
parallelization scheme same as that for flat models (Section 9.3.4) can be applied to HDP as
well.

9.3.4 Parallelization

All of the method we discussed can be easily parallelized, if we tolerate a small approxima-
tion. Modern computational resources are heavily multi-threaded and an efficient inference
procedure should utilize this structure. All the inference strategies discussed keeps track and
operates of two kinds of data:

• Global statistics which represents the word given topic counts, and

• Local statistics consisting of the latent topic indicators and topic given document counts.

There is a common framework behind each strategy, i.e. reading the current statistics, comput-
ing the conditional distribution and sampling from it and finally updating the statistics.

Reading and writing to the local statistics present no obstacles to parallelizing and can be
handled independently by individual threads. Now the key idea for parallelizing the sampler
is to observe that the global topic distribution and the topic given word counts (which we will
refer to as state of the system) change only little given the changes in a single document (we
may have millions of documents). Hence, we can assume that c̄(k) and c(x,k) are essentially
constant while sampling topics for a document. This means that instantaneously updating c(k)
and c(x,k) or not during the sampling process would hardly have any manifestations and
we can defer this action to a separate thread without much repercussions. This setup allows
us to execute a large number of sampling threads simultaneously, speeding up the inference
considerably as we will in the see in the experiments (Section 9.4).
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Sampling Thread

1. Read off statis-
tics

2. Sample with
MH correction

3. Push updates
FIFO

FIFO

Writing Thread

1. Write c(x,k),
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2. Optionally:
update asso-
ciated data-
structures

Sampling Thread
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3. Push updates FIFO
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Writing Thread
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ciated data-
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1. Read off statis-
tics
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MH correction

3. Push updates FIFO

FIFO

c(x,k)

Figure 9.5: Framework for parallel implementation of fast inference of nonparametric models. We have
two thread pools: Sampling threads are read-only. They process the documents in parallel by
sampling new topic assignments based on current statistic values and pushing the updates to
a FIFO queue. Writing threads receives updates from the FIFO queue and operate on their
own non-overlapping shards of the statistics, making them lock-free.
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The details of the parallelization framework are as follows: We propose to use create two
thread pools. One is tasked with maintaining the data structures and the other pool consists
of sampling threads which sample the documents. After drawing a new sample the sampling
thread pushes into a FIFO queue (often implemented as circular buffer) and a thread from
the other pool pops from this queue the sample to update the global c(x,k) table and any
associated data-structure. This way one set of threads only do writes and another only reads,
thereby minimizing locks required (can be eliminated completely by using atomics). Further,
the writing threads can be sharded according to words, i.e. each writing thread is responsible
for a subset of words thereby eliminating any contention among the writing threads. In practice,
we only create 1 or few threads for the maintaining the data structure, but use many more
threads, at least the number of available CPU cores, for the sampling pool. The framework is
illustrated in Figure 9.5.

9.4 experimental study

We now present empirical studies for the various fast sampling techniques in order to study
(i) computation speed (Section 9.4.1), and (ii) convergence speed (Section 9.4.2). For these stud-
ies, we evaluate on hierarchical Bayesian nonparametric models (Section 9.2.1), with Dirichlet-
Categorical emission model, i.e.

fk(x) =
c(x,k) +β
c̄(k) + β̄

(Dirichlet-Categorical) (9.57)

Using this emission model results in the widely used probabilistic model: HDP-LDA. However,
the proposed method can be applied effortlessly to any emission model like Normal-Inverse
Wishart in case of topic modeling through Gaussian latent Dirichlet allocation (Gaussian LDA;
Zaheer, Das, and Dyer 2015). We pick Dirichlet-Categorical emission model due to their wide-
spread application in various fields spanning natural language processing, computational biol-
ogy, user activity modeling etc.

methods We compare both the single-threaded and multi-threaded version (Section 9.3.4) of
the following samplers:

• SDA HDP: Gibbs sampler through sampling by direct assignment (without any speed-up
tricks) as proposed by Y. W. Teh et al. (2006) and discussed in Section 9.2.1.1

• Alias HDP: Improved version of SDA HDP by leveraging sparsity with log structured
alias sampling (Section 9.3.2) and fast Antoniak sampling using Lemma 9.5.

• STC HDP: Gibbs sampler through sampling table configuration (without any speed-up
tricks) as proposed by C. Chen, Du, and W.L. Buntine (2011) and discussed in Sec-
tion 9.2.1.2

• SSTC HDP: Improved version of STC HDP by utilizing modified posterior (Section 9.3.1)
with log structured alias sampling (Section 9.3.2) and direct evaluation of ratio of Stirling
numbers (Section 9.3.3).

We follow the tradition in setting α = 50/K and β = 0.01 where K is the number of topics for all
the methods (T.L. Griffiths and Steyvers, 2004; L. Yao, Mimno, and Andrew McCallum, 2009).
In order to compare speed we use the execution time as the metric. To measure the accuracy
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Dataset V L D L/V L/D

20 News 18,127 1,191,840 11,266 65.75 105.79

HEP 37,729 1,548,935 27,770 41.05 55.78

NIPS1
12,305 2,301,375 1740 187.03 1322.63

Reuters 69,973 2,624,373 14,377 37.51 182.54

Enron1
28,102 6,412,174 40,861 228.18 160.86

ACM 133,325 12,258,310 132,032 41.83 93.06

NY Times 101,330 99,542,127 299,753 982.36 332.08

PubMed1
141,043 737,869,085 8,200,000 5,231.52 89.98

Wikipedia 189,583 1,418,129,813 3,825,305 7,480.26 370.72

Table 9.2: Experimental datasets and their statistics. V denotes vocabulary size, L denotes the number of
training tokens, D denotes the number of documents, L/V indicates the average number of
occurrences of a word, L/D indicates the average length of a document.

and convergence, the log-likelihood on a held out test set Xtest is computed as follows on every
dataset:

LogLikelihood(Xtest) =
1

|Xtest|

∑
i∈Xtest

1

Nj

Nj∑
i=1

logp(xji|Learnt model) (9.58)

software & hardware All the algorithms are implemented multithreaded in simple
C + +11 using a distributed setup. Within a node, parallelization is implemented using the
work-stealing Fork/Join framework, and the distribution across multiple nodes using the pro-
cess binding to a socket over MPI. We run our experiments on a cluster of 16 Amazon EC2

c4.8xlarge nodes. There are 36 virtual threads per node and 60GB of memory. For purpose of
experiments, all data and calculations are carried out at double floating-point precision. For
random number generation we employ Intel® Digital Random Number Generators through
instruction RDRAND, which uses thermal noise within the silicon to output a random stream
of bits at 3 Gbit/s, producing true random numbers.

datasets The performance of all methods are evaluated against nine real-world datasets
(Table 9.2). These datasets cover a various range in corpus size, which helps to test the accuracy
and efficiency of each method at different data scale. The statistics for each of the dataset is
given over Table 9.2 after cleaning by removing stop words and rare words.

9.4.1 Computation Speed

We run all algorithms for a fixed number of iterations. In Figure 9.6, the samples produced per
second by different algorithms over datasets of varying size is reported. We make the following
observations: (1) In case of HDP, Alias HDP seems to be clear winner across all datasets. (2)
However, there is no free lunch. The huge speed-up comes at the cost of increased memory
usage (for storing the data-structures). However, looking at only computational speed paints
an incomplete picture. The computationally fastest method may not converge as fast overall.



9.4 experimental study 233

20
 N

ew
s

H
EP

N
IP

S

R
eu

te
rs

En
ro

n

AC
M

Datasets

0

1

2

3

4
Sa

m
pl

es
/s

ec

1e6 HDP Single-Thread
SDA HDP
Alias HDP
STC HDP
SSTC HDP

(a) Sampling rate for single threaded HDP

20
 N

ew
s

H
EP

N
IP

S

R
eu

te
rs

En
ro

n

AC
M

N
Y 

Ti
m

es

Pu
bM

ed

W
ik

ip
ed

ia

Datasets

0.0

0.5

1.0

1.5

2.0

Sa
m

pl
es

/s
ec

1e7 HDP Multi-Thread

(b) Sampling rate for multi threaded LDA

Figure 9.6: Samples produced per second by different algorithms across datasets of varying size. In case
of LDA over big datasets (NY Times, PubMed, Wikipedia), Light LDA is the fastest computa-
tionally. Similarly for HDPs, Alias HDP is the fastest computationally for all datasets. However,
looking at only computational speed paints an incomplete picture. The computationally fastest
may not converge as fast overall.

9.4.2 Convergence Speed

To compare overall convergence of samplers, we measure how log-likelihood changes over
time and over iterations. We run all algorithms for a fixed number of iterations. The compari-
son between various implementation of HDP are given over Figure 9.7, 9.8, 9.9, 9.10, and 9.11.
Figure 9.7 and 9.8 consists of relative smaller datasets 10k vocabulary size such as 20 News,
HEP, NIPS, and Reuters. Figure 9.9 and 9.10 consists of mid-size datasets with 100k vocabu-
lary size such as Enron, and ACM. Figure 9.11 consists of the largest datasets which are NY
Times, PubMed, and Wikipedia consisting over millions of documents and close to billions of
trainig tokens. Single threaded performance is reported in Figure 9.7 and 9.9. Multi threaded
performance is reported in Figure 9.8, 9.10, and 9.11.

We make the following key observations: (1) At the end, almost all methods, except Light LDA,
produce similar per-word log likelihoods, indicating good convergence of all methods. (2) In
terms of convergence and per-word log likelihoods, there does not seem to be a difference
between single threaded and multi threaded implementations. This implies that our mild as-
sumptions made in Section 9.3.4 regarding negligible difference in global word-topic count
c(x,k) between sampling a few tokens holds true. (3) Overall F+Nomad LDA seems to be con-
verging fastest among all methods. (4) The computationally fastest sampler Light LDA, exhibits
poor convergence as dataset grows larger and the discrepancy between its proposal and target
becomes wider. Thus, Light LDA is not the fastest method overall. (5) Alias HDP consistently
converges fastest and produce highest per-word Log likelihood among all methods.

Finally, we sweep LDA for different number of topics and compare against HDP. For this ex-
periment, since many LDA needs to be trained, we reduced the datasize to 10k most frequently
words for all datasets. HDP achieves a perplexity equivalent to the best LDA model as shown
in Figure 9.12a, 9.12b, and 9.12c.
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Figure 9.7: Single Threaded HDP on small datasets. The left column plots log-likelihood vs. Time and the
right column plots log-likelihood vs. iteration number.
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Figure 9.8: Multi Threaded HDP on small datasets. The left column plots log-likelihood vs. Time and the
right column plots log-likelihood vs. iteration number.
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Figure 9.9: Single Threaded HDP on medium datasets. The left column plots log-likelihood vs. Time and
the right column plots log-likelihood vs. iteration number. While it was not observable previ-
ously due to small datasets, the difference between each method is clearer. In the comparison
between time, Alias HDP was the fastest.
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Figure 9.10: Multi Threaded HDP on medium datasets. The left column plots log-likelihood vs. Time and
the right column plots log-likelihood vs. iteration number. While it was not observable previ-
ously due to small datasets, the difference between each method is clearer. In the comparison
between time, SDA HDP was the fastest.
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Figure 9.11: Multi Threaded HDP on large datasets. The left column plots log-likelihood vs. Time and
the right column plots log-likelihood vs. iteration number. While it was not observable previ-
ously due to small datasets, the difference between each method is clearer. In the comparison
between time, Alias HDP was the fastest.
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Figure 9.12: Comparison of perplexity between LDA and HDP on a small, medium, and large dataset.

9.5 points to ponder

HDP mixture models are a useful nonparametric Bayesian tool. Unfortunately the computa-
tional complexity of the inference algorithms is high. In this chapter, we described a high per-
formance inference procedure for latent variable models with Bayesian nonparametrics, and
empirically showed its efficiency by using it to analyse large scale data with billions of tokens
and thousands of topics at an unprecedented speed.

Despite the empirical success of the proposed approach, analyzing consistency and other sta-
tistical properties of the multi-threaded implementation would be useful. Even analyzing the
single threaded implementation of proposed sampler is not trivial. On one hand the sampler
is proved to produce the correct equilibrium distribution, as we have shown it satisfies the
detailed balance equation and is ergodic. On the other hand, however, tricks used for reducing
computational complexity such as MH-within-Gibbs, can have repercussions on the conver-
gence rates, which needs to be understood. Finally, automatic development and use of smart
data structure or modification to posterior for any model would be desirable than carefully
hand-crafted ones for a given family of models.





10
E s c a p i n g S a d d l e Po i n t s

We study the problem of improving solution quality of nonconvex optimization for training
deep network portion of a model. Till now we had focused on scaling up the inference for
latent variable portion of the model involving terms of the form p(x) =

∑
z p(x|z)p(z), which

is usually the main bottleneck. For learning a versatile representation the deep neural net-
work is often needed to achieve high accuracy. Using stochastic gradient descent, the train-
ing for the deep network can be parallelized and carried out on heavily multi-cored modern
compute infrastructures like GPUs. However, a central challenge to using first-order methods
like stochastic gradient descent for optimizing nonconvex problems, which arises in case of
deep networks, is the presence of saddle points. First-order methods often get stuck at saddle
points, greatly deteriorating their performance. Typically, to escape from saddles one has to
use second-order methods. However, most works on second-order methods rely extensively
on expensive Hessian-based computations, making them impractical in large-scale settings. To
tackle this challenge, we introduce a generic framework that minimizes Hessian-based compu-
tations while at the same time provably converging to second- order critical points. Leveraging
the structure of objective function, our framework carefully alternates between a first-order and
a second-order subroutine, using the latter only close to saddle points, and yields convergence
results competitive to the state-of-the-art. Empirical results suggest that our strategy also enjoys
a good practical performance.

10.1 introduction

We study nonconvex finite-sum problems of the form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (10.1)

where neither f : Rd → R nor the individual functions fi : Rd → R (i ∈ [n]) are necessarily
convex. We operate in a general nonconvex setting except for few smoothness assumptions
like Lipschitz continuity of the gradient and Hessian. Optimization problems of this form
arise naturally in machine learning and statistics as empirical risk minimization (ERM) and
M-estimation respectively.

In the large-scale settings, algorithms based on first-order information of functions fi are typi-
cally favored as they are relatively inexpensive and scale seamlessly. An algorithm widely used
in practice is stochastic gradient descent (Sgd), which has the iterative update:

xt+1 = xt − ηt∇fit(xt), (10.2)

where it ∈ [n] is a randomly chosen index and ηt is a learning rate. Under suitable selection of
the learning rate, we can show that Sgd converges to a point x that, in expectation, satisfies the
stationarity condition ‖∇f(x)‖ 6 ε in O(1/ε4) iterations (Ghadimi and Lan, 2013). This result
has two critical weaknesses: (i) It does not ensure convergence to local optima or second-order
critical points; (ii) The rate of convergence of the Sgd algorithm is slow.
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Figure 10.1: First order methods like GD can potentially get stuck at saddle points. Second-order methods
can escape it in very few iterations (as observed in the left plot) but at the cost of expensive
Hessian based iterations (see time plot to the right). The proposed framework, which is a
novel mix of the two strategies, can escape saddle points faster in time by carefully trading
off computation and iteration complexity.

For general nonconvex problems, one has to settle for a more modest goal than sub-optimality,
as finding the global minimizer of finite-sum nonconvex problem will be in general intractably
hard. Unfortunately, Sgd does not even ensure second-order critical conditions such as local
optimality since it can get stuck at saddle points. This issue has recently received considerable
attention in the ML community, especially in the context of deep learning (Choromanska et al.,
2015; Y. N. Dauphin et al., 2014; Y. Dauphin, Vries, and Y. Bengio, 2015). These works argue that
saddle points are highly prevalent in most optimization paths, and are the primary obstacle for
training large deep networks. To tackle this issue and achieve a second-order critical point for
which ‖∇f‖ 6 ε and ∇2f � −

√
εI, we need algorithms that either use the Hessian explicitly or

exploit its structure.

A key work that explicitly uses Hessians to obtain faster convergence rates is the cubic regu-
larization (CR) method (Nesterov and Polyak, 2006). In particular, Nesterov and Polyak (2006)
showed that CR requires O(1/ε3/2) iterations to achieve the second-order critical conditions.
However, each iteration of CR is expensive as it requires computing the Hessian and solving
multiple linear systems, each of which has complexity O(dω) (ω is the matrix multiplication
constant), thus, undermining the benefit of its faster convergence. Recently, N. Agarwal, Allen
Zhu, et al. (2016) designed an algorithm to solve the CR more efficiently, however, it still exhibits
slower convergence in practice compared to first-order methods. Both of these approaches use
Hessian based optimization in each iteration, which make them slow in practice.

A second line of work focuses on using Hessian information (or its structure) whenever the
method gets stuck at stationary points that are not second-order critical. To our knowledge,
the first work in this line is Ge et al. (2015), which shows that for a class of functions that
satisfy a special property called “strict-saddle” property, a noisy variant of Sgd can converge
to a point close to a local minimum. For this class of functions, points close to saddle points
have a Hessian with a large negative eigenvalue, which proves instrumental in escaping saddle
points using an isotropic noise. While such a noise-based method is appealing as it only uses
first-order information, it has a very bad dependence on the dimension d, and furthermore,
the result only holds when the strict-saddle property is satisfied (Ge et al., 2015). More recently,
Carmon et al. (2018) presented a new faster algorithm that alternates between first-order and
second-order subroutines. However, their algorithm is designed for the simple case of n = 1

in (10.1) and hence, can be expensive in practice.
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Inspired by this line of work, we develop a general framework for finding second-order critical
points. The key idea of our framework is to use first-order information for the most part of
the optimization process and invoke Hessian information only when stuck at stationary points
that are not second-order critical. We summarize the key idea and main contributions of this
paper below.

main contributions We develop an algorithmic framework for converging to second-
order critical points and provide convergence analysis for it. Our framework carefully alter-
nates between two subroutines that use gradient and Hessian information, respectively, and
ensures second-order criticality. Furthermore, we present two instantiations of our framework
and provide convergence rates for them. In particular, we show that a simple instance of our
framework, based on Svrg, achieves convergence rates competitive with the current state-of-
the-art methods; thus highlighting the simplicity and applicability of our framework. Finally,
we demonstrate the empirical performance of a few algorithms encapsulated by our framework
and show their superior performance.

related work There is a vast literature on algorithms for solving optimization problems
of the form (10.1). A classical approach for solving such optimization problems is Sgd, which
dates back at least to the seminal work of Robbins and Monro (1951). Since then, Sgd has been a
subject of extensive research, especially in the convex setting (Léon Bottou, 1991; Kushner and
Clark, 2012; Ljung, 1977; Poljak and Tsypkin, 1973). Recently, new faster methods, called vari-
ance reduced (VR) methods, have been proposed for convex finite-sum problems. VR methods
attain faster convergence by reducing the variance in the stochastic updates of Sgd, c.f. A. J. De-
fazio, Caetano, and Domke (2014), A. Defazio, Bach, and Lacoste-Julien (2014), R. Johnson and
T. Zhang (2013), Konečny et al. (2016), Mark Schmidt, Le Roux, and Bach (2017), and Shalev-
Shwartz and T. Zhang (2013). Accelerated variants of these methods achieve the lower bounds
proved in A. Agarwal and Leon Bottou (2015) and Lan and Zhou (2017), thereby settling the
question of their optimality. Furthermore, S. Reddi et al. (2015) developed an asynchronous
framework for VR methods and demonstrated their benefits in parallel environments.

Most of the aforementioned prior works study stochastic methods in convex or very specialized
nonconvex settings that admit theoretical guarantees on sub-optimality. For the general non-
convex setting, it is only recently that non-asymptotic convergence rate analysis for Sgd and its
variants was obtained by Ghadimi and Lan (2013), who showed that Sgd ensures ‖∇f‖ 6 ε (in
expectation) in O(1/ε4) iterations. A similar rate for parallel and distributed Sgd was shown
in Lian et al. (2015). For these problems, Sashank J. Reddi, Hefny, et al. (2016), Sashank J. Reddi,
Sra, et al. (2016), and Sashank J Reddi et al. (2016) proved faster convergence rates that ensure
the same optimality criteria in O(n+ n2/3/ε2), which is an order n1/3 faster than GD. While
these methods ensure convergence to stationary points at a faster rate, the question of conver-
gence to local minima (or in general to second-order critical points) has not been addressed. To
our knowledge, convergence rates to second-order critical points (defined in Definition 10.1)
for general nonconvex functions was first studied by Nesterov and Polyak (2006). However,
each iteration of the algorithm in Nesterov and Polyak (2006) is prohibitively expensive since it
requires eigenvalue decompositions, and hence, is unsuitable for large-scale high-dimensional
problems. More recently, N. Agarwal, Allen Zhu, et al. (2016) and Carmon et al. (2018) pre-
sented algorithms for finding second-order critical points by tackling some practical issues that
arise in Nesterov and Polyak (2006). However, these algorithms are either only applicable to a
restricted setting or heavily use Hessian based computations, making them unappealing from
a practical standpoint. Also, recently Carmon et al. (2017) proposed a fast accelerated first-
order method for nonconvex optimization; however, similar to Carmon et al. (2018), it requires
computation of the full gradient at each iteration and only provides convergence to stationary
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points. Noisy variants of first-order methods have also been shown to escape saddle points (Ge
et al., 2015; C. Jin et al., 2017; K. Y. Levy, 2016), however, they have strong dependence on either
n or d, both of which are undesirable.

10.2 background & problem setup

We assume that each of the functions fi in (10.1) is L-smooth, i.e., ‖∇fi(x)−∇fi(y)‖ 6 L‖x−y‖
for all i ∈ [n]. Furthermore, we assume that the Hessian of f in (10.1) is Lipschitz, i.e., we have

‖∇2f(x) −∇2f(y)‖ 6M‖x− y‖, (10.3)

for all x,y ∈ Rd. Such a condition is typically necessary to ensure convergence of algorithms to
the second-order critical points (Nesterov and Polyak, 2006). In addition to the above smooth-
ness conditions, we also assume that the function f is bounded below, i.e., f(x) > B for all
x ∈ Rd.

In order to measure stationarity of an iterate x, similar to Ghadimi and Lan (2013), Nesterov
(2004), and Nesterov and Polyak (2006), we use the condition ‖∇f(x)‖ 6 ε. In this paper, we are
interested in convergence to second-order critical points. Thus, in addition to stationarity, we
also require the solution to satisfy the Hessian condition ∇2f(x) � −γI (Nesterov and Polyak,
2006). For iterative algorithms, we require both ε,γ → 0 as the number of iterations T → ∞.
When all saddle points are non-degenerate, such a condition implies convergence to a local
optimum.

Definition 10.1 An algorithm A is said to obtain a point x that is a (ε,γ)-second order critical point
if E[‖∇f(x)‖] 6 ε and ∇2f(x) � −γI, where the expectation is over any randomness in A.

We must exercise caution while interpreting results pertaining to (ε,γ)-second order critical
points. Such points need not be close to any local minima either in objective function value,
or in the domain of (10.1). For our algorithms, we use only an Incremental First-order Ora-
cle (IFO) (A. Agarwal and Leon Bottou, 2015) and an Incremental Second-order Oracle (ISO),
defined below.

Definition 10.2 An IFO takes an index i ∈ [n] and a point x ∈ Rd, and returns the pair
(fi(x),∇fi(x)). An ISO takes an index i ∈ [n], point x ∈ Rd and vector v ∈ Rd and returns the
vector ∇2fi(x)v.

IFO and ISO calls are typically cheap, with ISO call being relatively more expensive. In many
practical settings that arise in machine learning, the time complexity of these oracle calls is
linear in d (N. Agarwal, Bullins, and Hazan, 2016; Pearlmutter, 1994). For clarity and clean
comparison, the dependence of time complexity on Lipschitz constant L, M, initial point and
any polylog factors in the results is hidden.

10.3 generic framework

In this section, we propose a generic framework for escaping saddle points while solving non-
convex problems of form (10.1). One of the primary difficulties in reaching a second-order crit-
ical point is the presence of saddle points. To evade such points, one needs to use properties
of both gradients and Hessians. To this end, our framework is based on two core subroutines:
Gradient-Focused-Optimizer and Hessian-Focused-Optimizer.
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Algorithm 10.1 Generic Framework

1: Input - Initial point: x0, total iterations T , error threshold parameters ε, γ and probability p
2: for t = 1 to T do
3: (yt, zt) = Gradient-Focused-Optimizer(xt−1, ε) (refer to G.1 and G.2)
4: Choose ut as yt with probability p and zt with probability 1− p
5: (xt+1, τt+1) = Hessian-Focused-Optimizer(ut, ε,γ) (refer to H.1 and H.2)
6: if τt+1 = ∅ then
7: Output set {xt+1}
8: end if
9: end for

10: Output set {y1, ...,yT }

The idea is to use these two subroutines, each focused on different aspects of the optimiza-
tion procedure. Gradient-Focused-Optimizer focuses on using gradient information for de-
creasing the function. On its own, the Gradient-Focused-Optimizer might not converge to
a local minimizer since it can get stuck at a saddle point. Hence, we require the subroutine
Hessian-Focused-Optimizer to help avoid saddle points. A natural idea is to interleave these
subroutines to obtain a second-order critical point. But it is not even clear if such a procedure
even converges. We propose a carefully designed procedure that effectively balances these two
subroutines, which not only provides meaningful theoretical guarantees, but also translates
into strong empirical gains in practice.

Algorithm 10.1 provides pseudocode of our framework. Observe that the presented algorithm
is still abstract, since it does not specify the subroutines Gradient-Focused-Optimizer and
Hessian-Focused-Optimizer. These subroutines determine the crucial update mechanism of
the algorithm. We will present specific instance of these subroutines in the next section, but we
assume the following properties to hold for these subroutines.

• Gradient-Focused-Optimizer: Suppose (y, z) = Gradient-Focused-Optimizer(x,n, ε),
then there exists positive function g : N×R+ → R+, such that

G.1 E[f(y)] 6 f(x),

G.2 E[‖∇f(y)‖2] 6 1
g(n,ε)E[f(x) − f(z)].

Here the outputs y, z ∈ Rd. The expectation in the conditions above is over any random-
ness that is a part of the subroutine. The function g will be critical for the overall rate of
Algorithm 10.1. Typically, Gradient-Focused-Optimizer is a first-order method, since
the primary aim of this subroutine is to focus on gradient based optimization.

• Hessian-Focused-Optimizer: Suppose (y, τ) = Hessian-Focused-Optimizer(x,n, ε,γ)
where y ∈ Rd and τ ∈ {∅, �}. If τ = ∅, then y is a (ε,γ)-second order critical point with
probability at least 1− q. Otherwise if τ = �, then y satisfies the following condition:

H.1 E[f(y)] 6 f(x),

H.2 E[f(y)] 6 f(x) −h(n, ε,γ) when λmin(∇2f(x)) 6 −γ for some function h : N×R+ ×
R+ → R+.

Here the expectation is over any randomness in subroutine Hessian-Focused-Optimizer.
The two conditions ensure that the objective function value, in expectation, never in-
creases and furthermore, decreases with a certain rate when λmin(∇2f(x)) 6 −γ. In
general, this subroutine utilizes the Hessian or its properties for minimizing the objec-
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tive function. Typically, this is the most expensive part of the Algorithm 10.1 and hence,
needs to be invoked judiciously.

The key aspect of these subroutines is that they, in expectation, never increase the objective
function value. The functions g and h will determine the convergence rate of Algorithm 10.1.
In order to provide a concrete implementation, we need to specify the aforementioned subrou-
tines. Before we delve into those details, we will provide a generic convergence analysis for
Algorithm 10.1.

10.3.1 Convergence Analysis

Theorem 10.3 Let ∆ = f(x0) − B, and θ = min{(1 − p)ε2g(n, ε),ph(n, ε,γ)}. Also, let Γ be
the set output by Algorithm 10.1 with Gradient-Focused-Optimizer satisfying G.1 and G.2 and
Hessian-Focused-Optimizer satisfying H.1 and H.2. Further, let T be such that T > ∆/θ.

Suppose the multiset S = {i1, ...ik} contains k indices selected independently and uniformly from {1, ...,
|Γ |}. Then the following holds for the indices in S:

1. yt (where t ∈ S) is an (ε,γ)-critical point with probability at least 1− max(∆/(Tθ),q).

2. If k = O(log(1/ζ)/min(log(∆/(Tθ)), log(1/q))), with at least probability 1− ζ, at least one
iterate yt where t ∈ S is an (ε,γ)-critical point.

Proof The case of τ = ∅ can be handled in a straightforward manner, so let us focus on the case
where τ = �. We split our analysis into cases, each analyzing the change in objective function
value depending on second-order criticality of yt.

We start with the case where the gradient condition of second-order critical point is violated
and then proceed to the case where the Hessian condition is violated.

case i : E[‖∇f(yt)‖] > ε for some t > 0

We first observe the following: E[‖∇f(yt)‖2] > (E‖∇f(yt)‖)2 > ε2. This follows from a straight-
forward application of Jensen’s inequality. From this inequality, we have the following:

ε2 6 E[‖∇f(yt)‖2] 6 1

g(n, ε)
E[f(xt−1) − f(zt)]. (10.4)

This follows from the fact that yt is the output of Gradient-Focused-Optimizer subroutine,
which satisfies the condition that for (y, z) = Gradient-Focused-Optimizer(x,n, ε), we have

E[‖∇f(y)‖2] 6 1

g(n, ε)
E[f(x) − f(z)].

From Equation (10.4), we have

E[f(zt)] 6 E[f(xt−1)] − ε2g(n, ε).

Furthermore, due to the property of non-increasing nature of Gradient-Focused-Optimizer,
we also have E[yt] 6 E[f(xt−1)].
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We now focus on the Hessian-Focused-Optimizer subroutine. From the property of
Hessian-Focused-Optimizer that the objective function value is non-increasing, we have
E[f(xt)] 6 E[f(ut)]. Therefore, combining with the above inequality, we have

E[f(xt)] 6 E[f(ut)]

= pE[f(yt)] + (1− p)E[f(zt)]

6 pE[f(xt−1)] + (1− p)(E[f(xt−1)] − ε2g(n, ε))

= E[f(xt−1)] − (1− p)ε2g(n, ε). (10.5)

The first equality is due to the definition of ut in Algorithm 10.1. Therefore, when the gradi-
ent condition is violated, irrespective of whether λmin(∇2f(x)) 6 −γ or ∇2f(yt) � −γI, the
objective function value always decreases by at least ε2g(n, ε).

case ii : E[‖∇f(yt)‖] < ε and λmin(∇2f(x)) 6 −γ for some t > 0

In this case, we first note that for y = Hessian-Focused-Optimizer(x,n, ε,γ) and
λmin(∇2f(x)) 6 −γ, we have E[f(y)] 6 f(x) − h(n, ε,γ). Observe that xt =

Hessian-Focused-Optimizer(ut,n, ε,γ). Therefore, if ut = yt and λmin(∇2f(x)) 6 −γ, then
we have

E[f(xt)|ut = yt] 6 f(yt) − h(n, ε,γ) 6 f(xt−1) − h(n, ε,γ).

The second inequality is due to the non-increasing property of Gradient-Focused-Optimizer.
On the other hand, if ut = zt, we have hand, if we have E[f(xt)|ut = zt] 6 f(zt). This is
due to the non-increasing property of Hessian-Focused-Optimizer. Combining the above two
inequalities and using the law of total expectation, we get

E[f(xt)] = pE[f(xt)|ut = yt] + (1− p)E[f(xt)|ut = zt]

6 p
(
E[f(yt)] − h(n, ε,γ)

)
+ (1− p)E[f(zt)]

6 p
(

E[f(xt−1)] − h(n, ε,γ)
)
+ (1− p)E[f(xt−1)]

= E[f(xt−1)] − ph(n, ε,γ). (10.6)

The second inequality is due to he non-increasing property of Gradient-Focused-Optimizer.
Therefore, when the hessian condition is violated, the objective function value always decreases
by at least ph(n, ε,γ).

case iii : E[‖∇f(yt)‖] < ε and ∇2f(yt) � −γI for some t > 0

This is the favorable case for the algorithm. The only condition to note is that the objective
function value will be non-increasing in this case too. This is, again, due to the non-increasing
properties of subroutines Gradient-Focused-Optimizer and Hessian-Focused-Optimizer. In
general, greater the occurrence of this case during the course of the algorithm, higher will the
probability that the output of our algorithm satisfies the desired property.

The key observation is that Case I & II cannot occur large number of times since each of
these cases strictly decreases the objective function value. In particular, from Equation (10.5)
and (10.6), it is easy to see that each occurrence of Case I & II the following holds:

E[f(xt)] 6 E[f(xt−1)] − θ,

where θ = min((1− p)ε2g(n, ε),ph(n, ε,γ)). Furthermore, the function f is lower bounded by
B, thus, Case I & II cannot occur more than (f(x0) − B)/θ times. Therefore, the probability of
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Algorithm 10.2 SVRG
(
x0, ε

)
1: Input: x0m = x0 ∈ Rd, epoch length m, step sizes {ηi > 0}

m−1
i=0 , iterations Tg, S = dTg/me

2: for s = 0 to S− 1 do
3: x̃s = xs+10 = xsm
4: gs+1 = 1

n

∑n
i=1∇fi(x̃s)

5: for t = 0 to m− 1 do
6: Uniformly randomly pick it from {1, . . . ,n}
7: vs+1t = ∇fit(x

s+1
t ) −∇fit(x̃s) + gs+1

8: xs+1t+1 = xs+1t − ηtv
s+1
t

9: end for
10: end for
11: Output: (y, z) where y is Iterate xa chosen uniformly random from {{xs+1t }m−1

t=0 }S−1s=0 and z = xSm.

occurrence of Case III is at least 1 − (f(x0) − B)/(Tθ), which completes the first part of the
proof.

The second part of the proof simply follows from first part. As seen above, the probability of
Case I & II is at most (f(x0) −B)/Tθ. Therefore, probability that an element of the set S falls in
Case III is at least 1− ((f(x0) −B)/Tθ)k, which gives us the required result for the second part.

The key point regarding the above result is that the overall convergence rate depends on the
magnitude of both functions g and h. Theorem 10.3 shows that the slowest amongst the sub-
routines Gradient-Focused-Optimizer and Hessian-Focused-Optimizer governs the over-
all rate of Algorithm 10.1. Thus, it is important to ensure that both these procedures have
good convergence. Also, note that the optimal setting for p based on the result above satisfies
1/p = 1/ε2g(n, ε) + 1/h(n, ε,γ) . We defer further discussion of convergence to next section,
where we present more specific convergence and rate analysis.

10.4 concrete instantiations

We now present specific instantiations of our framework in this section. Before we state our key
results, we discuss an important subroutine that is used as Gradient-Focused-Optimizer for
rest of this paper: Svrg. We give a brief description of the algorithm in this section and show
that it meets the conditions required for a Gradient-Focused-Optimizer. Svrg (R. Johnson
and T. Zhang, 2013; Sashank J. Reddi, Hefny, et al., 2016) is a stochastic algorithm recently
shown to be very effective for reducing variance in finite-sum problems. We seek to understand
its benefits for nonconvex optimization, with a particular focus on the issue of escaping saddle
points. Algorithm 10.2 presents Svrg’s pseudocode.

Observe that Algorithm 10.2 is an epoch-based algorithm. At the start of each epoch s, a full
gradient is calculated at the point x̃s, requiring n calls to the IFO. Within its inner loop Svrg

performs m stochastic updates. Suppose m is chosen to be O(n) (typically used in practice),
then the total IFO calls per epoch is Θ(n). Strong convergence rates have been proved Algo-
rithm 10.2 in the context of convex and nonconvex optimization (R. Johnson and T. Zhang,
2013; Sashank J. Reddi, Hefny, et al., 2016). The following result shows that Svrg meets the
requirements of a Gradient-Focused-Optimizer.
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Lemma 10.4 Suppose ηt = η = 1/4Ln2/3, m = n and Tg = Tε, which depends on ε, then Algo-
rithm 10.2 is a Gradient-Focused-Optimizer with g(n, ε) = Tε/40Ln2/3.

Proof The proof follows from the analysis in Sashank J. Reddi, Hefny, et al. (2016) with some
additional reasoning. We need to show two properties: G.1 and G.2, both of which are based
on objective function value. To this end, we start with an update in the sth epoch. We have the
following:

E[f(xs+1t+1)] 6 E[f(xs+1t ) + 〈∇f(xs+1t ), xs+1t+1 − x
s+1
t 〉+ L

2‖x
s+1
t+1 − x

s+1
t ‖2]

6 E[f(xs+1t ) − ηt‖∇f(xs+1t )‖2 + Lη2t
2 ‖v

s+1
t ‖2]. (10.7)

The first inequality is due to L-smoothness of the function f . The second inequality simply fol-
lows from the unbiasedness of Svrg update in Algorithm 10.2. For the analysis of the algorithm,
we need the following Lyapunov function:

As+1t := E[f(xs+1t ) + µt‖xs+1t − x̃s‖2].

This function is a combination of objective function and the distance of the current iterate from
the latest snapshot x̃s. Note that the term µt is introduced only for the analysis and is not part
of the algorithm (see Algorithm 10.2). Here {µt}

m
t=0 is chosen such the following holds:

µt = µt+1(1+ ηtβt + 2η
2
tL
2) + η2tL

3,

for all t ∈ {0, · · · ,m − 1} and µm = 0. For bounding the Lypunov function A, we need the
following bound on the distance of the current iterate from the latest snapshot:

E[‖xs+1t+1 − x̃
s‖2] = E[‖xs+1t+1 − x

s+1
t + xs+1t − x̃s‖2]

= E[‖xs+1t+1 − x
s+1
t ‖2 + ‖xs+1t − x̃s‖2 + 2〈xs+1t+1 − x

s+1
t , xs+1t − x̃s〉]

= E[η2t‖vs+1t ‖2 + ‖xs+1t − x̃s‖2] − 2ηtE[〈∇f(xs+1t ), xs+1t − x̃s〉]

6 E[η2t‖vs+1t ‖2 + ‖xs+1t − x̃s‖2] + 2ηtE
[
1
2βt
‖∇f(xs+1t )‖2 + 1

2βt‖x
s+1
t − x̃s‖2

]
. (10.8)

The second equality is due to the unbiasedness of the update of Svrg. The last inequality
follows from a simple application of Cauchy-Schwarz and Young’s inequality. Substituting
Equation (10.7) and Equation (10.8) into the Lypunov function As+1t+1 , we obtain the following:

As+1t+1 6 E[f(xs+1t ) − ηt‖∇f(xs+1t )‖2 + Lη2t
2 ‖v

s+1
t ‖2]

+ E[µt+1η
2
t‖vs+1t ‖2 + µt+1‖xs+1t − x̃s‖2]

+ 2µt+1ηtE
[
1
2βt
‖∇f(xs+1t )‖2 + 1

2βt‖x
s+1
t − x̃s‖2

]
6 E[f(xs+1t ) −

(
ηt −

µt+1ηt
βt

)
‖∇f(xs+1t )‖2

+
(
Lη2t
2 + µt+1η

2
t

)
E[‖vs+1t ‖2] + (µt+1 + µt+1ηtβt)E

[
‖xs+1t − x̃s‖2

]
. (10.9)

To further bound this quantity, we need the bound on the variance of Svrg:

Proposition 10.5 (Sashank J. Reddi, Hefny, et al., 2016) Let vs+1t be computed by Algorithm 10.2.
Then,

E[‖vs+1t ‖2] 6 2E[‖∇f(xs+1t )‖2] + 2L2E[‖xs+1t − x̃s‖2].
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We can use the above Proposition 10.5 to bound E[‖vs+1t ‖2], so that upon substituting it in
Equation (10.9), we see that

As+1t+1 6 E[f(xs+1t )] −
(
ηt −

µt+1ηt
βt

− η2tL− 2µt+1η
2
t

)
E[‖∇f(xs+1t )‖2]

+
[
µt+1

(
1+ ηtβt + 2η

2
tL
2
)
+ η2tL

3
]

E
[
‖xs+1t − x̃s‖2

]
6 As+1t −

(
ηt −

µt+1ηt
βt

− η2tL− 2µt+1η
2
t

)
E[‖∇f(xs+1t )‖2].

The second inequality follows from the definition of µt and As+1t . Since ηt = η = 1/(4Ln2/3)

for j > 0 and t ∈ {0, . . . , j− 1},

As+1j 6 As+10 − υn

j−1∑
t=0

E[‖∇f(xs+1t )‖2], (10.10)

where
υn =

(
ηt −

µt+1ηt
βt

− η2tL− 2µt+1η
2
t

)
.

We will prove that for the given parameter setting υn > 0 (see the proof below). With υn > 0, it
is easy to see thatAs+1j 6 As+10 . Furthermore, note thatAs+10 = E[f(xs+10 )+µ0‖xs+10 − x̃s‖2] =
E[f(xs+10 )] since xs+10 = x̃s (see Algorithm 10.2). Also, we have

E[f(xs+1j ) + µj‖xs+1j − x̃s‖2] 6 E[f(xs+10 )]

and thus, we obtain E[f(xs+1j )] 6 E[f(xs+10 )] for all j ∈ {0, ....,m}. Furthermore, using sim-
ple induction and the fact that xs+10 = xsm for all epoch s ∈ {0, ...,S − 1}, it easy to see that
E[f(xs+1j )] 6 f(x0). Therefore, with the definition of y specified in the output of Algorithm 10.2,
we see that the condition G.1 of Gradient-Focused-Optimizer is satisfied for Svrg algorithm.

We now prove that υn > 0 and also G.2 of Gradient-Focused-Optimizer is satisifed for Svrg

algorithm. By using telescoping the sum with j = m in Equation (10.10), we obtain

m−1∑
t=0

E[‖∇f(xs+1t )‖2] 6
As+10 −As+1m

υn
.

This inequality in turn implies that

m−1∑
t=0

E[‖∇f(xs+1t )‖2] 6 E[f(x̃s) − f(x̃s+1)]

υn
, (10.11)

where we used that As+1m = E[f(xs+1m )] = E[f(x̃s+1)] (since µm = 0), and that As+10 = E[f(x̃s)]

(since xs+10 = x̃s). Now sum over all epochs to obtain

1

Tg

S−1∑
s=0

m−1∑
t=0

E[‖∇f(xs+1t )‖2] 6 E[f(x0) − f(xSm)]

Tgυn
. (10.12)

Here we used the the fact that x̃0 = x0. To obtain a handle on υn and complete our analysis,
we will require an upper bound on µ0. We observe that µ0 = L

16n4/3
(1+θ)m−1

θ where θ =

2η2L2 + ηβ. This is obtained using the relation µt = µt+1(1+ ηβ+ 2η2L2) + η2L3 and the fact
that µm = 0. Using the specified values of β and η we have

θ = 2η2L2 + ηβ =
1

8n4/3
+
1

4n
6
3

4n
.
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Using the above bound on θ, we get

µ0 =
L

16n4/3
(1+ θ)m − 1

θ
=
L((1+ θ)m − 1)

2(1+ 2n1/3)

6
L((1+ 3

4n )
b4n/3c − 1)

2(1+ 2n1/3)
6 n−1/3(L(e− 1)/4), (10.13)

wherein the second inequality follows upon noting that (1+ 1
l )
l is increasing for l > 0 and

liml→∞(1+ 1
l )
l = e (here e is the Euler’s number). Now we can lower bound υn, as

υn = min
t

(
η−

µt+1η
β − η2L− 2µt+1η

2
)
>
(
η− µ0η

β − η2L− 2µ0η
2
)
>

1

40Ln2/3
.

The first inequality holds since µt decreases with t. The second inequality holds since (a) µ0/β
can be upper bounded by (e − 1)/4 (follows from Equation (10.13)), (b) η2L 6 η/4 and (c)
2µ0η

2 6 (e − 1)η/8 (follows from Equation (10.13)). Substituting the above lower bound in
Equation (10.12), we obtain the following:

1

Tg

S−1∑
s=0

m−1∑
t=0

E[‖∇f(xs+1t )‖2] 6 40Ln2/3E[f(x0) − f(xSm)]

Tg
. (10.14)

From the definition of (y, z) in output of Algorithm 10.2 i.e., y is Iterate xa chosen uniformly
random from {{xs+1t }m−1

t=0 }S−1s=0 and z = xSm, it is clear that Algorithm 10.2 satisfies the G.2
requirement of Gradient-Focused-Optimizer with g(n, ε) = Tε/40Ln2/3. Since both G.1 and
G.2 are satisfied for Algorithm 10.2, we conclude that Svrg is a Gradient-Focused-Optimizer.

In rest of this section, we discuss approaches using Svrg as a Gradient-Focused-Optimizer.
In particular, we propose and provide convergence analysis for two different methods with dif-
ferent Hessian-Focused-Optimizer but which use Svrg as a Gradient-Focused-Optimizer.

10.4.1 Hessian descent

The first approach is based on directly using the eigenvector corresponding to the smallest
eigenvalue as a Hessian-Focused-Optimizer. More specifically, when the smallest eigenvalue
of the Hessian is negative and reasonably large in magnitude, the Hessian information can be
used to ensure descent in the objective function value. The pseudo-code for the algorithm is
given in Algorithm 10.3.

The key idea is to utilize the minimum eigenvalue information in order to make a descent step.
If λmin(∇2f(x)) 6 −γ then the idea is to use this information to take a descent step. Note the
subroutine is designed in a fashion such that the objective function value never increases. Thus,
it naturally satisfies the requirement H.1 of Hessian-Focused-Optimizer. The following result
shows that HessianDescent is a Hessian-Focused-Optimizer.

Lemma 10.6 HessianDescent is a Hessian-Focused-Optimizer with h(n, ε,γ) = ρ
24M2γ

3.

Proof The first important observation is that the function value never increases because y =

arg minz∈{u,x} f(z) i.e., f(y) 6 f(x), thus satisfying H.1 of Hessian-Focused-Optimizer. We
now analyze the scenario where λmin(∇2f(x)) 6 −γ. Consider the event where we obtain v
such that

〈v,∇2f(x)v〉 6 λmin(∇2f(x)) +
γ

2
.
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This event (denoted by E) happens with at least probability ρ. Note that, since λmin(∇2f(x)) 6
−γ, we have 〈v,∇2f(x)v〉 6 −γ2 . In this case, we have the following relationship:

f(y) 6 f(x) + 〈∇f(x),y− x〉+ 1

2
(y− x)T∇2f(x)(y− x) + M

6
‖y− x‖3

= f(x) −α|〈∇f(x), v〉|+ α2

2
vT∇2f(x)v+ Mα3

6
‖v‖3

6 f(x) +
α2

2
vT∇2f(x)v+ Mα3

6

6 f(x) −
1

2M2
|vT∇2f(x)v|3 + 1

6M2
|vT∇2f(x)v|3

= f(x) −
1

3M2
|vT∇2f(x)v|3 6 f(x) −

1

24M2
γ3. (10.15)

The first inequality follows from the M-lipschitz continuity of the Hessain ∇2f(x). The first
equality follows from the update rule of HessianDescent. The second inequality is obtained
by dropping the negative term and using the fact that ‖v‖ = 1 . The second equality is obtained

by substituting α =
|vT∇2f(x)v|

M . The last inequality is due to the fact that〈v,∇2f(x)v〉 6 −γ2 . In
the other scenario where

〈v,∇2f(x)v〉 6 λmin(∇2f(x)) +
γ

2
,

we can at least ensure that f(y) 6 f(x) since y = arg minz∈{u,x} f(z). Therefore, we have

E[f(y)] = ρE[f(y)|E] + (1− ρ)E[f(y)|Ē]

6 ρE[f(y)|E] + (1− ρ)f(x)

6 ρ
[
f(x) − ρ

24M2γ
3
]
+ (1− ρ)f(x)

= f(x) − ρ
24M2γ

3. (10.16)

The last inequality is due to Equation (10.15). Hence, Hessian-Focused-Optimizer satisfies
H.2 of Hessian-Focused-Optimizer with h(n, ε,γ) = ρ

24M2γ
3, thus concluding the proof.

With Svrg as Gradient-Focused-Optimizer and HessianDescent as
Hessian-Focused-Optimizer, we show the following key result:

Theorem 10.7 Suppose Svrg with m = n, ηt = η = 1/4Ln2/3 for all t ∈ {1, ...,m} and
Tg = 40Ln2/3/ε1/2 is used as Gradient-Focused-Optimizer and HessianDescent is used as
Hessian-Focused-Optimizer with q = 0, then Algorithm 10.1 finds a (ε,

√
ε)-second order critical

point in T = O(∆/min(p, 1− p)ε3/2) with probability at least 0.9.

The result directly follows from using Lemma 10.4 and Lemma 10.6 in Theorem 10.3. The re-
sult shows that the iteration complexity of Algorithm 10.1 in this case is O(∆/ε3/2min(p, 1−
p)). Thus, the overall IFO complexity of Svrg algorithm is (n + Tg) × T = O(n/ε3/2 +

n2/3/ε2). Since each IFO call takes O(d) time, the overall time complexity of all
Gradient-Focused-Optimizer steps is O(nd/ε3/2 +n2/3d/ε2). To understand the time com-
plexity of HessianDescent, we need the following result due to N. Agarwal, Allen Zhu, et al.
(2016).

Proposition 10.8 (N. Agarwal, Allen Zhu, et al., 2016) The time complexity of finding v ∈ Rd that
‖v‖ = 1, and with probability at least ρ the following inequality holds: 〈v,∇2f(x)v〉 6 λmin(∇2f(x))+
γ
2 is O(nd+n3/4d/γ1/2).
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Algorithm 10.3 HessianDescent (x, ε,γ)

1: Find v such that ‖v‖ = 1, and with probability at least ρ the following inequality holds: 〈v,∇2f(x)v〉 6
λmin(∇2f(x)) + γ

2 .
2: Set α = |〈v,∇2f(x)v〉|/M.
3: u = x−α sign(〈v,∇f(x)〉)v.
4: y = arg minz∈{u,x} f(z)

5: Output: (y, �).

Note that each iteration of Algorithm 10.1 in this case has just linear dependence on d. Since
the total number of HessianDescent iterations is O(∆/min(p, 1− p)ε3/2) and each iteration
has the complexity of O(nd+n3/4d/ε1/4), using the above remark, we obtain an overall time
complexity of HessianDescent is O(nd/ε3/2 + n3/4d/ε7/4). Combining this with the time
complexity of Svrg, we get the following result.

Corollary 10.9 The overall running time of Algorithm 10.1 to find a (ε,
√
ε)-second order critical point,

with parameter settings used in Algorithm 10.7, is O(nd/ε3/2 +n3/4d/ε7/4 +n2/3d/ε2).

Note that the dependence on ε is much better in comparison to that of Noisy SGD used in
Ge et al. (2015). Furthermore, our results are competitive with N. Agarwal, Allen Zhu, et al.
(2016) and Carmon et al. (2018) in their respective settings, but with a much more practical
algorithm and simpler analysis. More specifically, N. Agarwal, Allen Zhu, et al. (2016) has
running time of O(nd/ε3/2+n3/4d/ε7/4). When ε > c/n2/3 where c is some constant (which
is very reasonable for most machine learning settings), our results would be better. However,
our rates can be slightly worse when this is not the case. Next, Carmon et al. (2018) does not
consider the finite-sum setting specifically, and if applied as it is for our finite-sum setup, it
will have a running time of O(nd/ε7/4). In comparison, our rates are better in a larger regime
where ε > c/n4/3. Note that in machine learning applications the goal is to obtain better
generalization which roughly translates to such regimes in practice. Thus, in settings of interest
to machine learning, our results are competitive (or better) in comparison to N. Agarwal, Allen
Zhu, et al. (2016) and Carmon et al. (2018). Finally, we also note that our algorithm is faster
than the one proposed in C. Jin et al. (2017), which has a time complexity of O(nd/ε2).

10.4.2 Cubic Descent

In this section, we show that the cubic regularization method in Nesterov and Polyak (2006) can
be used as Hessian-Focused-Optimizer. More specifically, here Hessian-Focused-Optimizer

approximately solves the following optimization problem:

y = arg min
z
〈∇f(x), z− x〉

+
1

2

〈
z− x,∇2f(x)(z− x)

〉
+
M

6
‖z− x‖3,

(CubicDescent)

and returns (y, �) as output. The following result can be proved for this approach.

Theorem 10.10 Suppose Svrg (same as Theorem 10.7) is used as Gradient-Focused-Optimizer

and CubicDescent is used as Hessian-Focused-Optimizer with q = 0, then Algorithm 10.1 finds
a (ε,

√
ε)-second order critical point in T = O(∆/min(p, 1− p)ε3/2) with probability at least 0.9.
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Proof First note that cubic method is a descent method (refer to Theorem 1 of Nes-
terov and Polyak (2006)); thus, H.1 is trivially satisfied. Furthermore, cubic descent is a

Hessian-Focused-Optimizer with h(n, ε,γ) = 2γ3

81M3γ
3. This, again, follows from Theorem 1

of Nesterov and Polyak (2006). The result easily follows from the aforementioned observations.

In principle, Algorithm 10.1 with CubicDescent as Hessian-Focused-Optimizer can converge
without the use of Gradient-Focused-Optimizer subroutine at each iteration since it essen-
tially reduces to the cubic regularization method of Nesterov and Polyak (2006). However, in
practice, we would expect Gradient-Focused-Optimizer to perform most of the optimiza-
tion and Hessian-Focused-Optimizer to be used for far fewer iterations. Using the method
developed in Nesterov and Polyak (2006) for solving CubicDescent, we obtain the following
corollary.

Corollary 10.11 The overall running time of Algorithm 10.1 to find a (ε,
√
ε)-second order critical

point, with parameter settings used in Theorem 10.10, is O(ndω/ε3/2 +n2/3d/ε2).

Here ω is the matrix multiplication constant. The dependence on ε is weaker in comparison to
Corollary 10.9. However, each iteration of CubicDescent is expensive (as seen from the factor
dω in the corollary above) and thus, in high dimensional settings typically encountered in
machine learning, this approach can be expensive in comparison to HessianDescent.

10.4.3 Practical Considerations

The focus of this section was to demonstrate the wide applicability of our framework; wherein
using a simple instantiation of this framework, we could achieve algorithms with fast conver-
gence rates. To further achieve good empirical performance, we had to slightly modify these
procedures. For Hessian-Focused-Optimizer, we found stochastic, adaptive and inexact ap-
proaches for solving HessianDescent and CubicDescent work well in practice. We begin by
describing an inexact approach fo CubicDescent which we will use for our experiments as
well.

CubicDescent method of Nesterov and Polyak (2006), which is designed to operate on full
batch, i.e., it does not exploit the finite-sum structure of the problem and requires the com-
putation of the gradient and the Hessian on the entire dataset to make an update. However,
such full-batch methods do not scale gracefully with the size of data and become prohibitively
expensive on large datasets. To overcome this challenge, we devised an approximate cubic
regularization method described below:

1. Pick a mini-batch B and obtain the gradient and the hessian based on B, i.e.,

g =
1

|B|

∑
i∈B
∇fi(x) H =

1

|B|

∑
i∈B
∇2fi(x) (10.17)

2. Solve the sub-problem

v∗ = arg min
v
〈g, v〉+ 1

2
〈v,Hv〉+ M

6
‖v‖3 (10.18)

3. Update: x← x+ v∗
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Figure 10.2: Comparison of various methods on a synthetic problem. Our mix framework successfully
escapes saddle point and uses relatively few ISO calls in comparison to CubicDescent.

We found that this mini-batch training strategy, which requires the computation of the gradient
and the Hessian on a small subset of the dataset, to work well on a few datasets (CURVES,
MNIST, CIFAR10). A similar method has been analysed in Cartis and Scheinberg (2017).

Furthermore, in many deep-networks, adaptive per-parameter learning rate helps immensely
(D. P. Kingma and Ba, 2014). One possible explanation for this is that the scale of the gradients
in each layer of the network often differ by several orders of magnitude. A well-suited opti-
mization method should take this into account. This is the reason for popularity of methods
like Adam or RMSprop in the deep learning community. On similar lines, to account for differ-
ent per-parameter behaviour in cubic regularization, we modify the sub-problem by adding a
diagonal matrix Md in addition to the scalar regularization coefficient M, i.e.,

min
v
〈g, v〉+ 1

2
〈v,Hv〉+ 1

6
M‖Mdv‖3. (10.19)

Also we devised an adaptive rule to obtain the diagonal matrix as Md = diag((s+ 10−12)1/9),
where s is maintained as a moving average of third order polynomial of the mini-batch gradient
g, in a fashion similar to RMSprop and Adam:

s← βs+ (1−β)(|g|3 + 2g2), (10.20)

where |g|3 and g2 are vectors such that [|g|3]i = |gi|
3 and [g2]i = g2i respectively for all

i ∈ [n]. The experiments reported on CURVES and MNIST in this paper utilizes both the above
modifications to the cubic regularization, with β set to 0.9. We refer to this modified procedure
as ACubic in our results.

Finally, in the context of deep learning, empirical evidence suggests that first-order meth-
ods like Adam (D. P. Kingma and Ba, 2014) exhibit behavior that is in congruence with
properties G.1 and G.2. While theoretical analysis for a setting where Adam is used as
Gradient-Focused-Optimizer is still unresolved, we nevertheless demonstrate its perfor-
mance through empirical results in the following section.

10.5 experiments

We now present empirical results for our saddle point avoidance technique with an aim to high-
light three aspects of our framework: (i) it successfully escapes non-degenerate saddle points,
(ii) it is fast, and (iii) it is practical on large-scale problems. All the algorithms are implemented
on TensorFlow (Martin Abadi et al., 2015). In case of deep networks, the Hessian-vector prod-
uct is evaluated using the trick presented in Pearlmutter (1994). We run our experiments on a
commodity machine with Intel® Xeon® CPU E5-2630 v4 CPU, 256GB RAM, and NVidia® Titan
X (Pascal) GPU.
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10.5.1 Synthetic Problem

To demonstrate the fast escape from a saddle point of our method, we consider the following
simple nonconvex finite-sum problem:

min
x∈Rd

1

n

n∑
i=1

xTAix+ b
T
i x+ ‖x‖

10
10 (10.21)

Here the parameters are designed such that
∑
i bi = 0 and

∑
iAi matrix has exactly one

negative eigenvalue of −0.001 and other eigenvalues randomly chosen in the interval [1, 2].
The total number of examples n is set to be 100,000 and d is 1000. It is not hard to see that
this problem has a non-degenerate saddle point at the origin. This allows us to explore the
behaviour of different optimization algorithms in the vicinity of the saddle point. In this exper-
iment, we compare a mix of Svrg and HessianDescent (as in Theorem 10.7) with Sgd (with
constant step size), Adam, Svrg and CubicDescent. The parameter of these algorithms is cho-
sen by grid search so that it gives the best performance. The subproblem of CubicDescent was
solved with gradient descent (Carmon et al., 2018) until the gradient norm of the subproblem
is reduced below 10−3. We study the progress of optimization, i.e., decrease in function value
with wall clock time, IFO calls, and ISO calls. All algorithms were initialized with the same
starting point very close to origin.

The parameter selection for all the methods were carried as follows:

1. Sgd: The scalar step-size was determined by a grid search.
2. Adam: We performed a grid search over α and ε parameters of Adam tied together, i.e.,
α = ε.

3. Svrg: The scalar step-size was determined by a grid search.
4. CubicDescent: The regularization parameter M was chosen by grid search. The sub-

problem was solved with gradient descent (Carmon et al., 2018) with the step-size of solver
to be 10−2 and run till the gradient norm of the sub-problem is reduced below 10−3.

The results are presented in Figure 10.2, which shows that our proposed mix framework was
the fastest to escape the saddle point in terms of wall clock time. We observe that performance
of the first order methods suffered severely due to the saddle point. Note that Sgd eventually
escaped the saddle point due to inherent noise in the mini-batch gradient. The other first
order methods like Adam with higher noise could escape relatively faster whereas Svrg with
reduced noise stayed stuck at the saddle point. CubicDescent, a second-order method, escaped
the saddle point faster in terms of iterations using the Hessian information. But operating on
Hessian information is expensive as a result this method was slow in terms of wall clock
time. The proposed framework, which is a mix of the two strategies, inherits the best of both
worlds by using cheap gradient information most of the time and reducing the use of relatively
expensive Hessian information (ISO calls) by 100x. This resulted in faster escape from saddle
point in terms of wall clock time.

10.5.2 Deep Networks

To investigate the practical performance of the framework for deep learning problems, we
applied it to two deep autoencoder optimization problems from Geoffrey E Hinton and R. R.
Salakhutdinov (2006) called “CURVES” and “MNIST”. Due to their high difficulty, performance
on these problems has become a standard benchmark for neural network optimization methods,
c.f. Martens (2010), Martens and Grosse (2015), Sutskever et al. (2013), and Vinyals and Povey
(2012). The “CURVES” autoencoder consists of an encoder with layers of size (28×28)-400-200-
100- 50-25-6 and a symmetric decoder totaling in 0.85M parameters. The six units in the code
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Figure 10.3: Comparison of various methods on a Deep Autoencoder on CURVES (top) and MNIST (bot-
tom). Our mix approach converges faster than the baseline methods and uses relatively few
ISO calls in comparison to ApproxCubicDescent

layer were linear and all the other units were logistic. The network was trained on 20,000 images
and tested on 10,000 new images. The data set contains images of curves that were generated
from three randomly chosen points in two dimensions. 1 The “MNIST” autoencoder consists
of an encoder with layers of size (28×28)-1000-500-250-30 and a symmetric decoder, totaling
in 2.8M parameters. The thirty units in the code layer were linear and all the other units were
logistic. The network was trained on 60,000 images and tested on 10,000 new images. The
data set contains images of handwritten digits 0–9. The pixel intensities were normalized to lie
between 0 and 1.2

As an instantiation of our framework, we use a mix of Adam, which is popular in deep learning
community, and approximate cubic regularization method described in Section 10.4.3. For com-
parison the algorithm in Carmon et al. (2018) is impractical for our setting because it requires
computing the full gradient at each iteration and is, thus, intractable for problems of our in-
terest. Furthermore, we tried to compare our algorithm with the method in N. Agarwal, Allen
Zhu, et al. (2016), however, the algorithm as stated in the paper is not practical3. To this end,
we compare our algorithm with a practical version of cubic method, ApproxCubicDescent,
described in Section 10.4.3. We also compared our algorithm with Adam, which is typically
the de-facto method for training large deep networks. The parameters of these algorithms were
chosen to produce the best generalization on a held out test set. The regularization parameter
M was chosen as the smallest value such that the function value does not fluctuate in the first
10 epochs. We use the initialization suggested in Martens (2010) and a mini-batch size of 1000

for all the algorithms. We report objective function value against wall clock time and ISO calls.

The parameter selection for all the methods were carried as follows:

1 Data available at: www.cs.toronto.edu/~jmartens/digs3pts_1.mat
2 Data available at: www.cs.toronto.edu/~jmartens/mnist_all.mat
3 We would like to emphasize that N. Agarwal, Bullins, and Hazan (2016) does not contain any empirical results. In

order to be fair, we also reached out to the authors of the paper, who via personal communication admitted that the
algorithm as implemented verbatim in the paper is not practical and comparison to it is not useful.

www.cs.toronto.edu/~jmartens/digs3pts_1.mat
www.cs.toronto.edu/~jmartens/mnist_all.mat
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Figure 10.4: Zoomed in version of plots with respect to time. Here we show progress from time=10s
onwards. This better exhibits the relative differences between the methods, and is illustrative
of the advantage of our method.

1. Adam: We performed a grid search over α and ε parameters of Adam so as to produce the
best generalization on a held out test set. We found it to be α = 10−3, ε = 10−3 for CURVES
and α = 10−2, ε = 10−1 for MNIST.

2. ApproxCubicDescent: The regularization parameter M was chosen as the largest value
such function value does not jump in first 10 epochs. We found it to be M = 103 for both
CURVES and MNIST. The sub-problem was solved with gradient descent (Carmon et al.,
2018) with the step-size of solver to be 10−3 and run till the gradient norm of the sub-
problem is reduced below 0.1.

The results presented in Figure 10.3 show that our proposed mix framework was the fastest
to escape the saddle point in terms of wall clock time. Adam took considerably more time
to escape the saddle point, especially in the case of MNIST. While ApproxCubicDescent es-
caped the saddle point in relatively fewer iterations, each iteration required considerably large
number of ISO calls; as a result, the method was extremely slow in terms of wall clock time, de-
spite our efforts to improve it via approximations and code optimizations. On the other hand,
our proposed framework seamlessly balances these two methods, resulting in fast decrease of
training loss.

10.6 points to ponder

In this chapter, we examined a generic strategy to escape saddle points in nonconvex finite-sum
problems and presented its convergence analysis. The key intuition is to alternate between a
first-order and second-order based optimizers; the latter is mainly intended to escape points
that are only stationary but are not second-order critical points. We presented two different
instantiations of our framework and provided their detailed convergence analysis. In this paper,
we primarily used Svrg as Gradient-Focused-Optimizer, however, investigating the use of
other first-order methods, like Carmon et al. (2017), is an interesting research direction. Also,
while both our methods explicity use the Hessian information, one can also use noisy first-
order methods as Hessian-Focused-Optimizer (c.f. noisy Sgd in Ge et al. (2015)). In such a
scenario, we exploit the negative eigenvalues of the Hessian to escape saddle points by using
isotropic noise, and do not explicitly use ISO. For these methods, under strict-saddle point
property (Ge et al., 2015), we can show convergence to local optima within our framework.

Our primary goal in this paper was to develop a well-founded, yet practical, framework for
finding local minima in nonconvex optimization. While convergence rates in N. Agarwal, Allen
Zhu, et al. (2016) may seem slightly better at first glance, we would like to point out that these
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running times are worst-case time complexity and might involve large constants. For example,
N. Agarwal, Allen Zhu, et al. (2016) solve a subroutine based on both gradient and Hessian
information at each iteration. Such methods do not scale well in practice because they rely on
expensive computations based on the Hessian at every iteration.

We primarily focused on obtaining second-order critical points for nonconvex finite-sums (10.1).
This does not necessarily imply low test error or good generalization capabilities. Thus, we
should be careful when interpreting the results presented in this paper. A detailed discussion
or analysis of these issues is out of scope of this paper. While a few prior works argue for con-
vergence to local optima, the exact connection between generalization and local optima is not
well understood, and is an interesting open problem. Nevertheless, we believe the techniques
presented in this paper can be used alongside other optimization tools for faster and better
nonconvex optimization.





11
C o n c l u s i o n

Machine learning techniques are reaching or exceeding human level performances in tasks
involving simple data like image classification, translation, and text-to-speech. The success of
these machine learning algorithms is primarily attributed to highly versatile representations
learnt from data using deep networks or intricately designed Bayesian models. Despite these
instances of success, progress has been limited to simple data-types so far.

Most real-world data come in different forms, encapsulating different kinds of information,
not limited to images or text, but also as point clouds, sets, graphs, compressed or even het-
erogeneous combinations thereof. In this thesis, we focus on different aspect of representation
learning, namely, enhancing versatility, interpretability and bridging the gap between the sta-
tistical and computational perspective.

We begin by showcasing ways to leverage structure in data, like invariances or heterogeneity in
order to establish new mathematical properties. Incorporating these mathematical properties
in the model and learning algorithms leads to versatile representations on diverse domains.

Having representations is not enough in various applications - its interpretability is as crucial
as its accuracy. Deep models often yield better accuracy but require a large number of param-
eters, often in contrast to the simplicity of the underlying data, rendering it uninterpretable.
This is highly undesirable in tasks like user modeling. In this thesis, we show that by lever-
aging structure by incorporating domain knowledge in the form of Bayesian components on
top of deep models, we learn sparser representations with discrete components that are more
amenable to human interpretation.

Finally, inferring interpretable representations from large-scale data is desirable, but often hin-
dered by a mismatch between computational resources and statistical models. In this thesis, we
bridge this gap by again leveraging structure, albeit of a different kind. Our solutions are based
on a combination of modern computational techniques/data structures on one side and mod-
ified statistical inference algorithms on the other which exploit topological properties of the
training objective. This introduces new ways to parallelize, reduce look-ups, handle variable
state space size, and escape saddle points.
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