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Abstract

Background. Stress can profoundly affect human behavior. Critical-infrastructure operators (e.g.,
at nuclear power plants) may make more errors when overstressed; malicious insiders may experi-
ence stress while engaging in rogue behavior; and chronic stress has deleterious effects on mental
and physical health. If stress could be detected unobtrusively, without requiring special equipment,
remedies to these situations could be undertaken. In this study a common computer keyboard and
everyday typing are the primary instruments for detecting stress.

Aim. The goal of this dissertation is to detect stress via keystroke dynamics – the analysis of
a user’s typing rhythms – and to detect the changes to those rhythms concomitant with stress.
Additionally, we pinpoint markers for stress (e.g., a 10% increase in typing speed), analogous to
the antigens used as markers for blood type. We seek markers that are universal across all typists,
as well as markers that apply only to groups or clusters of typists, or even only to individual typists.

Data. Five types of data were collected from 116 subjects: (1) demographic data, which can reveal
factors (e.g., gender) that influence subjects’ reactions to stress; (2) psychological data, which cap-
ture a subject’s general susceptibility to stress and anxiety, as well as his/her current stress state;
(3) physiological data (e.g., heart-rate variability and blood pressure) that permit an objective and
independent assessment of a subject’s stress level; (4) self-report data, consisting of subjective
self-reports regarding the subject’s stress, anxiety, and workload levels; and (5) typing data from
subjects, in both neutral and stressed states, measured in terms of keystroke timings – hold and la-
tency times – and typographical errors. Differences in typing rhythms between neutral and stressed
states were examined to seek specific markers for stress.

Method. An ABA, single-subject design was used, in which subjects act as their own controls.
Each subject provided 80 typing samples in each of three conditions: (A) baseline/neutral, (B)
induced stress, and (A) post-stress return/recovery-to-baseline. Physiological measures were an-
alyzed to ascertain the subject’s stress level when providing each sample. Typing data were ana-
lyzed, using a variety of statistical and machine learning techniques, to elucidate markers of stress.
Clustering techniques (e.g., K-means) were also employed to detect groups of users whose re-
sponses to stress are similar.

Results. Our stressor paradigm was effective for all 116 subjects, as confirmed through analysis
of physiological and self-report data. We were able to identify markers for stress within each
subject; i.e., we can discriminate between neutral and stressed typing when examining any subject
individually. However, despite our best attempts, and the use of state-of-the-art machine learning
techniques, we were not able to identify universal markers for stress, across subjects, nor were we
able to identify clusters of subjects whose stress responses were similar. Subjects’ stress responses,
in typing data, appear to be highly individualized. Consequently, effective deployment in a real-
world environment may require an approach similar to that taken in personalized medicine.



In memory of Martin Azizyan

and

To Ada, with lots of hugs and love



Acknowledgments

To the thesis committee (Roy, Mark, David, Tom, Peter, and Dan), thank you for your invaluable
advice and assistance throughout my thesis project. I would not have been able to complete this
project without your help.

To Pat, thank you for your tireless dedication to running subjects and collecting data for this thesis.
Without you, I would not have had any data to analyze.

To Huayun, thank you for your help with writing software for this project and for your help in
developing some of the visualizations in this thesis.

To my friends, Qirong, Nicole, Carlton, and especially Ada, thank you for your support throughout
my PhD. I would not have made it through without you.



Contents

1 Introduction 6

2 Problem and Approach 9

3 Related Work 11
3.1 Traditional keystroke dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Keystroke dynamics for non-stress affect or valence detection . . . . . . . . . . . . 12
3.3 Keystroke dynamics for stress detection . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Stress and fine motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Data 15
4.1 Independent-validation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Typing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Supporting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Experimental Methods 19
5.1 Guiding philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Experimental Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Apparatus and instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3.1 Independent validation data . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.2 Typing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.3 Supporting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.4 Subject relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.5 Stress induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Stimulus choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Power analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Subject recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.8.1 Protocol document and operations manual . . . . . . . . . . . . . . . . . . 33
5.8.2 Pre-experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8.3 Briefing and documentation . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.8.4 Familiarization period . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8.5 Main experiment body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.8.6 Clean-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3



5.9 Instructions to subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Question 0: Did the stressor work? 42
6.1 Aggregate changes in physiological and psychological measures . . . . . . . . . . 42

6.1.1 Statistical testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.2 MANOVAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1.3 ANOVAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1.4 Paired t-tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Identifying potential non-responders . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.1 Analyzing the lowest responders . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.2 Rank-based analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Aggregate changes in typing measures . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Question 1: Identifying markers for stress on an individual level 55
7.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.1 Classification regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.1.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1.3 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Ruling out practice as a potential confound . . . . . . . . . . . . . . . . . . . . . 61
7.2.1 Quantifying practice effects . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.2 Extent of practice effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.3 Accommodating practice effects in typing data . . . . . . . . . . . . . . . 65
7.2.4 Conclusion: Practice is not a dominant signal . . . . . . . . . . . . . . . . 66

7.3 Explaining high AA accuracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Statistical search for markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4.1 Identifying markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 Question 2: Seeking universal markers for stress 70
8.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.1.1 Classification regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.1.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.1.3 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.1.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Deep neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2.4 Implementation and training . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3 Examining the lack of markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4



8.3.1 Identifying marker patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Question 3: Grouping subjects by response to stress 83
9.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.1.1 Clustering setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.1.2 Clustering metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.1.3 Clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.1.4 Clustering algorithm evaluation . . . . . . . . . . . . . . . . . . . . . . . 89
9.1.5 Clustering results and discussion . . . . . . . . . . . . . . . . . . . . . . . 91

9.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10 Discussion 92
10.1 Overall findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.2 Contributions of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.3 Comparison with existing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.4 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

11 Conclusion 99

5



Chapter 1

Introduction

Stress is a common, familiar, and pervasive phenomenon. While typically viewed as a nuisance
at worst and a good motivator at best, stress can be used as an indicator for a wide variety of
phenomena. This is best illustrated by considering three different people: an air traffic controller,
a disgruntled employee at a top-secret government facility, and an average office worker.

An air traffic controller is an example of an operator of critical infrastructure; other examples
include electricity grid supervisors, nuclear power plant operators, and triage nurses in a hospital
emergency room. Such operators are responsible for making vital decisions on a day-to-day, and
often minute-to-minute, basis. Errors in decision making can lead to significant monetary loss,
serious injury, or even death. Such catastrophic errors are more likely to occur when operators are
under extreme stress. If it were possible to detect stress by analyzing the way operators interact
with their computer systems, it would be possible to take counter-measures to reduce the likeli-
hood of such errors occurring or to at least mitigate the impact of these errors. For example, an
overstressed operator could be given additional support from on-call operators or be temporarily
removed from duty until they regain their composure. Considering that errors may result in bil-
lions of dollars of damages and the loss of hundreds, if not thousands, of lives, any technique for
reducing their prevalence is worth pursuing.

Employees at top-secret government facilities are responsible for tasks that are vital to national
security. By virtue of their position, such employees necessarily have access to sensitive data and
sensitive computer systems that are vital to the national interest. If such an employee becomes
disgruntled and seeks to abuse their position to commit misdeeds, significant damage can be done
to the country’s interest. Malicious employees are often referred to as “insiders”; a prominent
example of an insider in recent years would be that of Edward Snowden. It is easy to imagine
that insiders are likely to be under considerable stress as they perpetrate their misdeeds. If this
stress could be detected, immediate action could be taken. Security officers could be notified to
detain the insider or temporary restrictions on data access could be imposed. Even the existence of
stress-detection technology may deter future disgruntled employees from becoming insiders.

Finally, consider the average office worker. Such an individual is charged with far less responsi-
bility than an operator of critical infrastructure or an employee working at a top-secret government
facility, but such individuals form a large percentage of the world’s population. Chronic stress,
whether caused by the job itself, finances, home-life, or otherwise, can cause physical and mental
health problems. This results in a lower quality-of-life and also contributes to decreased produc-
tivity at work. Such stress may not be obvious to the individual or even to those around him/her,
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as its accumulation is often a slow, gradual process. However, if detection of stress were possible,
individuals could have their levels of stress tracked over long periods of time without requiring any
change in daily patterns. This could be done either at a personal level (e.g., smartphone app) or
on an organizational level (e.g., monitoring software on every corporate workstation). Individuals
could be made aware of their chronically elevated levels of stress, permitting remedial actions to be
taken. Corporations could adjust their policies to promote a healthier, lower-stress lifestyle among
their employees.

Unfortunately, current methods for accurately detecting stress are intrusive and expensive.
Such methods often cost thousands of dollars and typically involve attaching high-grade sensors
and electrodes to an individual’s body to continuously monitor physiological measures for changes
that are indicative of stress. At best, this is impractical. Not only is the cost highly prohibitive, but
it would be nearly impossible to go through a normal day with such equipment attached. At worst,
it is impossible; insiders will not be wearing such equipment while perpetrating their misdeeds.
What is needed is a cheap and accurate technique to detect stress without the use of such sensors.

The purpose of this thesis is to evaluate the potential of one such technique. Our objective
is to use keystroke dynamics – the study of a user’s typing rhythms – as a detection method for
stress. The ubiquity of computing devices means that keystrokes are constantly being generated as
a user goes about his or her daily business. Capturing these keystrokes, and their associated typing
rhythm, is as easy as writing a simple piece of software to collect them. No specialized hardware is
required; virtually every computing device has a physical or virtual keyboard built-in. Moreover,
no explicit action is required from the user; a user can simply go about his intended task while the
stress detection software runs in the background and s/he will not be inconvenienced in any way.
If it is possible to detect stress via changes in typing rhythm, this technology could be rapidly and
cheaply deployed while being invisible to end-users.

The work in this thesis is intended to act as a proof-of-concept, not to generate a finalized,
deployable system. As such, the experimental protocols employed in this thesis are designed to
rigorously evaluate the potential of keystroke dynamics as a stress detection method. The protocols
are tightly controlled, with conditions that are likely unrealistic for real-world scenarios; however,
the tight controls permit us to have high confidence in our outcomes by minimizing the deleterious
impact of confounds and sources of noise. For the purpose of this thesis, we limit our scope to
keystrokes on a standard computer keyboard. These keyboards are highly standardized and will be
familiar to all our subjects. While this focus simplifies our experimental procedures, the experi-
mental methodology and analytical techniques we use can be easily extended to other keyboards,
including touch-screen and mobile devices.

It is also worth noting that the methodology we employ to detect stress using keystroke dynam-
ics can be easily adapted to detecting other phenomena of interest. This could include the detection
of other affective states, such as frustration, boredom, and excitement. The ability to detect a vari-
ety of affective states would be highly beneficial to the field of affective computing – which aims to
create computing devices that dynamically respond to human emotion – or to develop more effec-
tive computer-based tutoring systems. Also of interest is the detection of physiological disorders
(e.g., Carpal Tunnel Syndrome) or neurological conditions (e.g., Parkinson’s disease, Alzheimer’s
disease, cognitive decline). Early-detection of these afflictions results in better outcomes, and the
ability to monitor the progression (or regression) of the affliction on a daily basis would lead to
more effective treatment plans. The primary difference between the detection of affective states
and the detection of diseases is that affective states can be easily induced in laboratory subjects,
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while it is neither practical nor ethical to impose afflictions on subjects. However, the fundamental
idea remains the same: detecting phenomena of interest via changes in typing rhythms.

As a preview of our results, we found that each subject in our study has identifiable changes in
typing that are associated with stress, though these changes seem to be highly individualized.
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Chapter 2

Problem and Approach

Problem. The overarching problem addressed in this thesis is to determine whether or not stress is
manifested as changes in an individual’s typing rhythms, and whether such changes are universal
across all typists, or across at least some typists. To achieve this, we break the task into several
smaller pieces.

0. Induce stress in experiment participants.
1. Characterize how an individual subject’s typing rhythms are affected by stress.
2. Identify universal markers for stress.
3. Identify groups of subjects that share common markers.

Our experiments were performed under tightly-controlled laboratory conditions. We induce
stress with a computer-based multi-tasking user game, accompanied by social evaluation (e.g., a
negative judgment about a participant’s performance). We determine objectively how well the
stressor worked by measuring independent physiological and psychological indicators of stress.

The first step in deploying keystroke dynamics to detect stress is to establish that we can reliably
detect and characterize typing differences caused by stress. We start with the manifestations of
stress in a single user’s typing. A simple example would be that a 10% increase in typing speed
characterizes the difference between when a user is under stress, as compared to being in a neutral
setting. We use the term feature to refer to some aspect of the data that is changing; in this example,
the feature is typing speed.

We use the term marker to refer to any easily-interpretable characterization that holds across
groups of typists; we use the term to draw similarities to biological markers (e.g., the presence
of the N-acetylgalactosamine antigen is a marker for Type A blood). In an ideal situation, we
would find universal markers for characterizing the difference between neutral and stressed typing
– markers that hold across an entire population (e.g., all users exhibit a 10% increase in typing
speed when stressed).

If universal markers cannot be found, we will isolate smaller groups of users that share common
markers. Stress may manifest in one group as a 10% increase in hold times (the duration a key is
depressed), while it may manifest in another group as a 10% decrease in latency times (the duration
between key presses). Assuming that no universal markers are present, we will identify all groups
along with their markers.
Approach. Our approach will be an experimental one, as depicted in Figure 2.1. Data will be col-
lected from subjects using a single-subject ABA (baseline-stress-baseline) design in which each
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Rest #1

Typing

Induce stress

Typing

Rest #2

Typing

Baseline (A) Stress (B) Recovery (A)

Figure 2.1: Experiment overview. A high-level overview of the three central phases of our ex-
periment. Subjects undergo an initial rest period to place them in a neutral state, whereupon they
provide a typing sample. Then, stress is induced in subjects through the use of a vetted stressor;
subjects then provide a second typing sample. Finally, a second rest period returns the subject to a
neutral state, where a third and final typing sample is provided.

subject acts as his/her own control. Subjects will provide typing samples – consisting of 80 repeti-
tions of the phrase great friends are good to have – in each of three conditions: neu-
tral/baseline, stress, and recovery/return to neutral/baseline. Concomitantly, physiological (e.g.,
blood pressure, heart-rate variability) and psychological (e.g., State-Trait Anxiety Index) data will
be collected to provide independent and objective evidence that subjects are in the expected state
when providing typing samples. Both neutral and stress states will be induced in the subject; the
former via rest periods and the latter via a multitasking exercise coupled with social evaluation.

Extraordinary care was taken in the experimental approach to remove biases and to rule out
potential confounds. In particular, care is taken to minimize unanticipated induction of affect in the
subject. Confounds, such as the influence of practice, are accounted for in both the experimental
methodology and in the analysis of the collected data. The entire study was tightly controlled.

Our analytical techniques comprise a mix of statistical and machine learning methods to iden-
tify changes in typing due to stress. These are employed in both a single-subject approach –
comparing a subject’s stressed typing sample against only his/her baseline typing samples – and
also in a universal manner, with data from all subjects included. Clustering techniques are em-
ployed to identify groups of subjects that share common markers.

Anticipated outcome. If the experiments work, we would expect the following results:

0. Stressor. The stress paradigm is shown to have been effective if objective and independent
measures of stress (e.g., blood pressure) are responsive to stress.

1. Typing. Users’ typing rhythms show systematic changes due to induced stress; markers can
be identified.

2. Universal markers. Markers that are consistent across users will be identified.
3. Subgroups. Markers that not universal, but are shared by subgroups of the experiment pop-

ulation, will be identified.
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Chapter 3

Related Work

We divide related work into three major categories: (1) research on the use of keystroke dynamics
for tasks other than affect or valence detection, (2) research on the use of keystroke dynamics for
affect or valence detection, and (3) research on stress, focusing on work that describes the effect of
stress on fine motor control, as would pertain to typing. Affect refers to the emotion(s) felt by the
subject (e.g., happiness, sadness, frustration). Valence refers to the intrinsic attractiveness (positive
valence) or repulsiveness (negative valence) of a stimulus.

3.1 Traditional keystroke dynamics
Although we are using keystroke dynamics for stress detection, much of the keystroke literature is
focused on discriminating amongst different individuals, usually for computer-security purposes,
briefly reviewed here. Keystroke dynamics relies principally on two features: hold times (the
length of time a key is held down) and latency times (the time between one key being released
and the next key being depressed). Other features, such as combinations and ratios, can be derived
from these.

Keystroke dynamics traces its roots to Bryan and Harter (1897), who demonstrated that tele-
graph operators could be discriminated based on their keying rhythm. The first work using a
computer keyboard was conducted by Gaines et al. (1980), who discovered that the timings of just
5 digrams were sufficient to perfectly discriminate amongst 7 subjects. Most research in keystroke
dynamics aims to discriminate between users under a variety of circumstances. Many of the recent
developments have focused on short, fixed texts (e.g., passwords), which are quick to collect and
easy to analyze (Peacock et al., 2004). Some results have been promising: Obaidat (1995) claimed
to perfectly discriminate between 15 subjects using a neural network, and Yu and Cho (2003) ob-
tained a false reject rate of 0.814% with a false accept rate of 0% when discriminating between
21 subjects using a Support Vector Machine. It is worth noting that when comparing keystroke
algorithms on a fair basis (e.g., using the same data set, which researchers tend not to do), simple
techniques turn out to work better than the more complicated ones; for example, Killourhy and
Maxion (2009) showed that a classifier based on scaled Manhattan distance was the best performer
out of 14 classical methods.

Recent work has focused on long-text (e.g., paragraphs). Gunetti and Picardi (2012) obtained
an error rate of 0.5% when discriminating amongst 311 users who composed messages of roughly
65 characters, while Samura and Nishimura (2009) obtained 100% accuracy in discriminating
between 52 subjects who composed Japanese free text. A recent survey of the field was conducted
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by Teh et al. (2013).

3.2 Keystroke dynamics for non-stress affect or valence detec-
tion

There has been a handful of works focusing on affect or valence detection using keystroke dy-
namics, where stress is not the affect of interest. Unfortunately, all of these works have one or
more critical shortcomings, such as conducting an uncontrolled experiment, the use of non-vetted
affect induction techniques, lack of an independent measurement of affect, and/or lack of proper
statistical testing. Due to these shortcomings, the resulting work is neither rigorous nor valid; in
many cases, the work is not even reproducible. Nevertheless, we briefly review it because it is the
best we can find.

To our knowledge, ten research groups have attempted to discriminate between different af-
fective or valence states. Alhothali (2011) differentiated among five affective states: delighted,
neutral, confused, bored, and frustrated. Epp et al. (2011) differentiated among 15 affective states,
including anger, excitement, nervousness, sadness, and tiredness. Fairhurst et al. (2015) differen-
tiated between happy and non-happy states. Kolakowska (2015) differentiated among 7 affective
states: fear, anger, sadness, happiness, disgust, boredom, and surprise. Lv et al. (2008) differenti-
ated among six affective states: neutral, anger, fear, happiness, sadness, and surprise. Nahin et al.
(2014) differentiated among seven affects: joy, fear, anger, sadness, disgust, shame, and guilt.
Shikder et al. (2017) differentiated among ten affective states, including amusement, happiness,
inspiration, sympathy, and disgust. Tsihrintzis et al. (2008) differentiated among six affects: neu-
tral, surprise, anger, happiness, sadness, and disgust. Khanna and Sasikumar (2010) differentiated
among positive, negative, and neutral valence. Finally, Zimmermann et al. (2003) differentiated
among positive, neutral, and negative valence and between low and high arousal states. Reported
accuracies ranged between 57% (Tsihrintzis et al., 2008) to 95.6% (Lv et al., 2008).

None of the groups used a vetted affect induction technique along with vetted stimulus ma-
terials. Techniques employed ranged from having subjects use an automated computer tutor (Al-
hothali, 2011), read text passages (Lv et al., 2008), or watch movies (Zimmermann et al., 2003).
Eight groups either did not independently confirm affect induction or relied on self-reporting. Al-
hothali (2011) asked judges to subjectively determine affective state based on videos of the sub-
jects. Zimmermann et al. (2003) mentioned using physiological parameters as an objective mea-
surement of affect; however, no results were presented in their paper.

Only one group (Zimmermann et al., 2003) described a controlled experiment. The other
groups either stated that their experiment was uncontrolled, or reported so little methodological
detail that it is impossible to ascertain whether a controlled experiment was conducted. Details
such as the instructions to subjects, stimulus items, and descriptions of data collection are gener-
ally omitted. Without such details, it is impossible to judge the merits of the research conducted.
In the proposed work, of course, we will undertake to correct the shortcomings noted here.

3.3 Keystroke dynamics for stress detection
A brief survey of stress detection through keystroke and mouse dynamics has been performed by
Kolakowska (2013). We focus here on the papers that primarily used keystroke dynamics and we
provide a brief discussion on the validity of each work.
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Andren and Funk (2005) performed a proof-of-concept experiment with 4 subjects to deter-
mine whether stress could be detected via keystroke dynamics. Subjects provided typing data in
both neutral and stressed conditions. No details were provided about the stressor, nor were details
provided about any objective measurement of stress. Based on reported results, it cannot be deter-
mined whether or not the stressor was vetted or whether an objective measurement of stress was
used. Classification accuracies ranged from 20% to 100%; the wide range of accuracies could be
explained by the methodological shortcomings in the study.

Bando et al. (2015) performed a study with 18 subjects to determine whether there were cor-
relations between two physiological measures of stress – heart rate variability and respiration –
and keystroke latency times. Stress was induced by exposing subjects to white noise, which is not
a vetted stressor. They concluded that such correlations do exist, though it is not clear if these
correlations are significant.

Gunawardhane et al. (2013) performed a study on 20 students to determine whether typing, as
measured by bi-graph and tri-graph duration times, produced in a stressed state was significantly
different from that produced in a neutral state. Non-stressed typing data were collected from the
students when they were not preparing for exams; stressed typing data were collected during an
exam period. Students were exposed to a mental arithmetic test prior to the stressed data collection
to add additional stress. An attempt was made to confirm stress induction via a self-developed
questionnaire administered to the subjects and also using a proprietary “stress monitor”. It is
unclear how well either instrument works. The results presented are in terms of p-values – there
are significant differences between stressed and neutral typing on several bi-graphs and tri-graphs
(e.g., ‘a-n’ and ‘t-h-e’). Unfortunately, there appears to have been no correction for multiple testing
even though many tests were performed (at least 50); this casts doubt upon the presented results.

Kolakowska (2016) performed a study on 16 subjects to determine whether stress has signif-
icant effects on digraph and trigraph latency times. Typing was collected from subjects as they
completed two coding tasks, one without time pressure followed by one with time pressure. The
presence of the time pressure was postulated to induce stress in the subjects, though no objec-
tive measures of stress were used. The study concluded that digraph and trigraph latencies were
statistically significantly affected by the presence of stress.

Lim, Ayesh, and Stacey have published a series of five papers regarding the correlation between
perceived stress and keystroke/mouse behaviors (Lim et al., 2014a,b,d,c, 2016). There appear
to be two underlying experiments that were conducted. The first study had 60 subjects asked
subjects to answer mental arithmetic questions with and without a time constraint. The second
study also had 60 subjects and involved a variety of transcription tasks, again with and without a
time constraint. Placing a time constraint on the subjects was the only method of inducing stress;
it is unclear whether time constraints alone are sufficient to induce stress. No objective measure
of stress was obtained in either study, only a subjective response from each subject. The studies
established statistically significant correlation between perceived subject stress and changes in
average keystroke latency times.

Vizer et al. (2009) performed an exploratory study with 24 subjects to determine whether stress
could be detected via a combination of keystroke dynamics and linguistic analysis. They attempted
to distinguish between a neutral condition and a physical stress condition and between a neutral
condition and a cognitive stress condition; we focus on the cognitive stress condition since that is
most similar to the proposed work. An attempt was made to induce cognitive stress via a mental
multiplication task and a three-back number recall task. Despite the claims made in the paper,
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it is important to note that neither task is considered a vetted technique for inducing cognitive
stress; rather, these tasks are vetted tests for working memory. As such, they are less appropriate
as stress-induction methods. We also note that there was no objective measure of stress in the
study. Several different classifiers were employed; the best result was 75% accuracy when using a
k-nearest neighbor algorithm. The analytical focus in the Vizer work was on linguistic features, not
typing features, so the extent to which keystroke analysis played a central role was unconfirmed.

3.4 Stress and fine motor control
There are several potential pathways between stress and fine motor control. The first, and most
well-understood, is through the hypothalamic-pituitary-adrenal (HPA) axis. When under stress,
the hypothalamus releases corticotropin-releasing hormone (CRH), stimulating the production of
adrenocorticotropic hormone (ACTH), which in turn increases the production of cortisol, epinephrine
(also known as adrenaline) and norepinephrine. The presence of epinephrine causes an increase
in the contractile force of the skeletal muscles. This can directly influence typing by causing ac-
tions to be undertaken with increased force and also indirectly by magnifying physiologic tremors.
It is worth noting that adrenaline and noradrenaline are secreted via direct innervation between
the hypothalamus and the adrenal medulla (hence the fast acting response) - via the Sympathetic-
Adrenal-Medullary (SAM) axis, rather than the (relatively slower) HPA axis with the end result of
cortisol.

The remaining pathways operate through the neurotransmitter, dopamine. During stress, the
rate of dopamine loss and replacement is increased, altering the levels of dopamine in the brain.
Dopamine plays a vital role in regulating motor control and motor-path-planning processes. It is
believed that dopamine influences which motor actions are taken, though the precise pathways are
unclear. Obviously, any change in the motor actions will be reflected in typing.

Finally, dopamine is known to play a role in tremor, most notably in the case of Parkinson’s
Disease (PD). PD is marked by the death of dopamine-generating cells in the substantia nigra,
which is thought to cause the rest tremors that are most commonly associated with the disease. The
precise mechanisms underlying dopaminergic tremors are unclear, but a deficiency of dopamine,
caused by stress, may cause or exacerbate tremors.

We are not the first researchers to suggest a link between stress and fine motor control. There
is a sizable literature on techniques for reducing the effects of stage fright (a form of stress) on the
performing capabilities of musicians (Lehrer, 1987). Similar research has been conducted on the
performance of skilled shooters (Lakie, 2010). In both musicians and shooters, stress is believed
to increase the magnitude of tremors and to affect the tension levels of the muscles in the arm and
hand. Such changes have deleterious effects on performance.
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Chapter 4

Data

The data collected as part of this thesis work fall into three separate categories: 1) independent-
validation data, 2) typing data, and 3) supporting data.

Independent-validation data include physiological measures and self-reported, short-term psy-
chological measures that provide evidence that the typing data were actually collected in the ex-
pected affective states – either baseline neutral or stressed.

Typing data are essential in addressing the problems posed in this thesis work. It is in these
typing data that we expect to see manifestations of stress that constitute the central focus in this
thesis.

Supporting data consist primarily of responses to questionnaires, video and photographic evi-
dence, and physical measurements of our subjects, that may contain explanatory value for phenom-
ena discovered in the course of analyzing the typing or supporting data. Such data may explain,
for example, an anomaly in the collected data, why affect induction may have been unsuccessful
for a particular subject, or why particular subjects show common manifestations of stress in their
typing.

We start with a high-level description of the data before diving into details of how these data
were collected and pre-processed prior to analysis. For many of these data types, the raw data (i.e.,
data in its initially collected form) are not immediately suitable for analysis. Pre-processing must
be performed to convert these data into a form more directly suited for analysis. Preprocessing
details are relegated to the appendix.

As a reminder, all data were collected in tightly-controlled experiments. Protocols and forms
are in the appendix; apparatus and detailed descriptions of experimental methods are in Chapter 5.

4.1 Independent-validation data
Independent-validation data consist of physiological and self-reported, short-term psychological
measures collected during the course of the experiment. Physiological data consist of blood pres-
sure readings, an electrocardiogram, and respiration data. The psychological measures consist of
subject responses to two questionnaires: 1) the short-form State-Trait Anxiety Inventory (STAI)
and the 2) NASA Taskload Work Index (NASA-TLX).

Blood pressure. Each blood pressure reading consists of a quadruplet of systolic blood pres-
sure, diastolic blood pressure, pulse rate, and mean arterial pressure. An initial reading is taken
prior to the start of the experiment to ensure that the subject conforms to the inclusion criteria.
During the experiment, blood pressure readings are taken at 5-minute intervals during the two rest
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periods and during the stress induction period. It is expected that all four of these measures will be
elevated when a subject is stressed, as compared to baseline.

Electrocardiogram (ECG). ECG data are collected continuously during the course of the
experiment using a modified lead-II electrode placement. The data are sampled at a rate of 10,000
samples per second. These data are then converted to the measures of heart-rate variability, which
show marked changes between baseline neutral and stressed states. It is expected that the median
R-R interval – which can be thought of as the time between consecutive heart beats – will be lower
when a subject is stressed. Similarly, the SDRR – a measure of consistency in heartbeat timings –
is also expected to be lower when a subject is stressed.

Respiration. Respiration data are also collected continuously during the course of the exper-
iment using a respiration belt attached to the subject’s midsection. The data are sampled at a rate
of 10,000 samples per second from which a breaths/min value is extracted. It is expected that a
subject’s respiration rate will increase when stressed.1

Short-form State-Trait Anxiety Inventory (STAI). On six different occasions in the experi-
ment – after each rest period, after each typing sample, and after the multi-tasking exercise – the
subject provides responses to each of the 6 questions on the short-form STAI. Questions touch
on the immediate psychological state of the subject, whether the subject is content, worried, up-
set, etc. Responses are in the form of vertical marks on a visual analogous scale, which are then
converted to numeric measures by measuring distance from the left end of the line. It is expected
that measures associated with stress (e.g., worry) will be higher when a subject is stressed, while
measures associated with relaxation (e.g., contentedness) will be lower when a subject is stressed.

NASA Taskload Work Index (NASA-TLX). The subject responds to the NASA-TLX on the
same six occasions when the short-form STAI is administered. The NASA-TLX also contains 6
questions, touching on the subject’s experienced difficulty in completing a task. The NASA-TLX
is also a visual analogous scale; as with the short-form STAI, vertical marks are also converted to
numeric measures by measuring distance from the left end of the line. It is expected that measures
of workload challenge (e.g., effort required) will be higher following the multi-tasking exercise
while measures of performance will be lower following the exercise.

4.2 Typing data
Each subject in the experiment provides typing data on four different occasions, referred to as
sessions. In each session, the subject is asked to provide correctly-typed repetitions of the phrase
great friends are good to have. The choice of this particular phrase was quite in-
volved; however, we defer discussion of how the phrase was selected to Section 5.4. Briefly, the
phrase was selected to be easy to type so as to minimize the amount of variation in a subject’s typ-
ing. Typing data are collected using custom hardware and software, as discussed in the appendix
in Section A.1.

The typing data are broken down into keyup and keydown events, denoting the release or de-
pression of a key, respectively. All key events – whether they correspond to correctly or incorrectly

1Though we collected respiration data, we did not end up using it in any of our analysis. There are two primary
reasons. First, we directly instruct subjects to control their breathing in one of the rest periods in the experiment.
Consequently, respiration would no longer be a fully independent measurement of affect. Second, the respiration data
were extremely noisy, with numerous movement artifacts. A significant investment of resources would have been
required to clean the respiration data. Given the high cost of using the respiration data and the low benefit, we opted
to simply omit it from our analyses.

16



typed characters – are recorded by our software. Each key event is stored as a triplet containing 1)
the ASCII code of the key, 2) whether this was a keyup or keydown event, and 3) the timestamp of
the event. Each key event is recorded by two, paired logs. The first log utilizes a human-readable
XML format with low-resolution timestamps. The second log is a coded, non-human-readable
format which contains high-resolution timestamps. These logs are ultimately merged into a single
log that is both human-readable and possesses the high-resolution timestamps. The details of this
process can be found in Appendix A.2.

As there are four typing sessions, four sets of logs are generated, one for each session. Each log
will contain either 40 (familiarization session) or 80 (baseline, stress, and recovery) correctly-typed
repetitions of the phrase “great friends are good to have”. Additional key events, corresponding to
typographical errors, are also present in these logs.

4.3 Supporting data
Supporting data fall into six rough categories: 1) demographic, 2) psychological, 3) video, 4) pho-
tographic, 5) physical, and 6) observational notes. The value of this data is in explaining phenom-
ena discovered in the course of analyzing the typing or independent-validation data. For example,
changes in subjects’ typing rhythms due to stress may be dependent upon the handedness of the
subject; keys struck by the dominant hand of the subject may be less affected by stress. Anomalies
in typing or physiological measures could also be explained by examining video data; a sneeze or
cough could be responsible for an unusually lengthy typing repetition or for an unusual pattern in
respiration data. These data are largely collected under the guiding philosophy of maximizing the
research value of each subject run. While there may not be any specific plan for analyzing these
data, they are collected so that we can reference them if they occasion to be of use.

Demographic data. Demographic data consist of responses to a questionnaire administered
to each subject. Twenty-two questions were asked regarding topics with possible influence on a
subject’s typing behavior (e.g., gender, handedness, commonly-used keyboards). Some questions
merit a free-form response; for others, subjects circle an answer from a pre-set list of questions.
The questionnaire is shown in the appendix.

Psychological data. Psychological data consist of responses to two separate questionnaires:
1) the long-form State-Trait Anxiety Inventory and 2) the Perceived Stress Scale. As the name
suggests, the former is related to the short-form STAI. Where the short-form STAI focuses on a
subject’s immediate psychological state, the long-form STAI focuses on how a subject’s state in
general. The Perceived Stress Scale, as the name suggests, covers a subject’s perceived stress levels
in day-to-day life. Responses to both questionnaires are collected using a modified Likert scale.

Video data. Four different streams of video, from four different cameras, are collected as
part of the experiment. Three of the cameras are positioned to the left, to the right, and above
the keyboard and are intended to capture the subject’s typing behavior from different angles. The
fourth camera is focused on the subject’s face and is intended to aid in determining the status of
the subject at any point in the experiment. The chief purpose of the video data is to enable us to
revisit a specific point in time where an anomaly in the typing or supportive data occurred, so that
we can search for any explanatory cause.

Photographic data. Two types of photographs are taken during the experiment. The first are
photographs of each of the subjects’ hands, with a calibrated grid in the background. This enables
us to precisely determine the hand geometry of a subject, with the most notable measures being
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hand sizes and finger lengths. The second type of photographs are taken using a still camera placed
to the side of the subject. These photos capture the natural sitting posture of a subject as s/he types.
Both types of photographs could potentially provide evidence that explains why some subjects had
typing changes not present in others.

Physical data. We measure the height and weight of our subjects as part of the experimental
protocol; from these we can calculate BMI (body mass index). This information can be used to
more finely calibrate the blood pressure and electrocardiogram data.

Observational notes. Our experimental protocol mandates that the experimenter makes a
series of notes regarding the subject’s general and typing behavior. General behavior notes include
observations on the general demeanor of the subject and any information gleaned during casual
conversation that may be of explanatory value (e.g., a subject is generally agreeable vs. unusually
antagonistic). Typing behavior notes may include the general force with which a subject types or
unusual fingerings of the keys (e.g., using the right index finger to hit the Return key). Any unusual
occurrences in the experiment will also be logged in the observational notes; these may include
things like an error in the blood pressure reading due to a subject flexing his/her arm repeatedly
during a reading.
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Chapter 5

Experimental Methods

We turn our attention now to the experimental methods used in the course of this thesis. As a
prelude, we start with a brief, high-level overview of the experiment; the intent is to provide context
for the materials in the remainder of this chapter. The meat of the chapter consists of a description
of the data collected as part of the experiment, a discussion of the apparatus and instrumentation
used in the collection of these data, the methods by which the stimulus text was chosen for the
experiment, the experimental design employed, the precise details of the protocol used for each
subject in the experiment, and the instructions provided to our subjects.

5.1 Guiding philosophy
In designing this study, we were primarily concerned with its internal experimental validity. That
is, we want our conclusions to be as free from potential confounds, sources of noise, and bias as
is possible. We are engaged, effectively, in vetting the promise of a new technology: the use of
keystroke dynamics as a detection mechanism for stress. Our goal is to assess, as accurately as
possible within our abilities, how well this technology works. If confounding factors or significant
noise were to be present, it would significantly diminish the scientific value of our study. A conclu-
sion that keystroke dynamics is or is not capable of detecting stress is rendered meaningless if we
cannot be confident that the reasons for success or failure are directly related to the actual efficacy
of keystroke dynamics in stress detection. Conducting this experiment is a significant expenditure
in time, resources, and personnel; we want to be really sure that we get this right, as we only have
a single chance.

Our primary concerns in designing the study were:
Minimizing confounds. A confound is any unaccounted-for variable that could have a significant
bearing on the conclusions of the experiment. In the context of the present experiment, confounds
would include variables that influence a subject’s response to stress. Examples of such variables
would include caffeine, alcohol, or drug consumption; mental illnesses such as anxiety disorders;
and time of day when an experiment is conducted (as the main stress hormone, cortisol, has a
natural diurnal cycle that peaks in the morning, known as the cortisol awakening response).
Minimizing bias. Bias refers to any process that may prejudice a particular outcome in our experi-
ment. For example, suppose that we were to use an inadequate stressor that did not actually induce
stress in any of our subjects. We would then find little difference between the collected neutral
and stress typing from our subjects, leading us to conclude that stress cannot be detected through
keystrokes, when stress may very well manifest in keystrokes. This inadequate stressor would have
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biased us towards the incorrect conclusion that stress cannot be detected through keystrokes. In
our study, we employ a validated stressor that has been demonstrated to work, thus avoiding this
particular bias.
Maximize data collection. This experiment was designed with the knowledge that it would require
significant time investment. Our initial intent was to gather data from approximately 130-140 sub-
jects, with the understanding that we could only run a single subject per day and only on weekdays.
Accordingly, even with perfect scheduling, data collection would have to last over 6 months; tak-
ing into account cancellations, dropouts, no-shows, recruiting non-responses, holidays, and blank
calendar spots, data collection could easily last a full year. Given this mandatory investment of
time and resources, we wanted to ensure that we collected the maximum amount of data possible
for each subject. In several cases, this has resulted in the collection of data that are not directly an-
alyzed in this thesis; however, the data is available for future researchers to analyze, if they believe
it has value.
Consistency between subjects. This experiment was, by far, the most complicated one that we
have attempted to conduct in our lab. Our prior experiments generally consisted of a subject
providing a single typing sample, with each sample taking less than 20 minutes. By contrast,
this experiment includes four typing samples, along with stress induction and the recording of
numerous physiological measures; a single subject for this experiment takes between 2 to 3 hours
to run. Given the relative complexity and length of each experimental session, we took care to
design the experiment in a manner that enabled us to provide a consistent experience to each
subject. All subjects were run under identical lab and environmental conditions.

5.2 Experimental Overview
At a high level, this experiment is relatively simple. A subject provides typing data on four occa-
sions: 1) during a familiarization period, 2) in a baseline neutral state, 3) in a stressed state, and 4)
in a recovery neutral state. To find the desired markers for stress, the data from the neutral states
and the stressed state are compared.

As always, the devil is in the details. Of critical import in this experiment is the affective state
of the subject when providing these typing samples. The conclusions we draw will be invalid if
we cannot be sure that a subject is actually in a baseline neutral state or in a stressed state, as
appropriate, when providing the typing samples. Two rest periods, each immediately preceding a
neutral typing sample, are employed to bring subjects to a neutral state. In the first rest period,
subjects watch a relaxing movie while performing a simple task. In the second, subjects are asked
to focus and control their breathing. Stress is induced in our subjects through the use of a timed
multi-tasking exercise in conjunction with social evaluation (negative social judgment). A vari-
ety of physiological measures (e.g., blood pressure and an ECG) and self-reported psychological
measures (standard stress and workload surveys) are collected to independently verify that the rest
periods and stressor have had their desired effects.

The success of the experiment hinges on the particulars of its execution. Within this chapter,
we offer considerable detail regarding the conduct of the experiment. While such detail may be
common in other disciplines, we acknowledge that it is not common within computer science and
machine learning. We offer these details because they can best reveal potential biases, confounds,
and threats to experimental validity. Moreover, we do so in the interest of other investigators being
able to replicate our work, to judge the correctness of our work, and to take up where we have
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Figure 5.1: Modified Lead-II placement. Three electrodes are used in a modified lead-II place-
ment. The negative electrode (N) is placed on the bony part of the right shoulder, the positive
electrode (P) is placed on the lower-most left rib, and the ground electrode (G) is placed on the
right-side of the torso, slightly vertically lower than the positive electrode. The modified lead-II
placement maximizes the prominence of the R-wave in an ECG.

left off. We do not expect a reader to read the entirety of this chapter, unless s/he is curious or
interested in the particulars of the methodology supporting the experiment.

The apparatus and instrumentation, both for creating and measuring the affective state of the
subject, are detailed in Section 5.3. A brief overview of the choice of typing stimulus (i.e., Why do
subjects type the phrase great friends are good to have?) is provided in Section 5.4.
The inclusion and exclusion criteria, as well as the procedures for subject recruitment are detailed
in Section 5.6. The particulars of our protocol are discussed in great detail in Section 5.8. Finally,
instructions provided to our subjects are detailed in Section 5.9.

5.3 Apparatus and instrumentation
The apparatus and instrumentation in this experiment serve two primary purposes. First, the appa-
ratus and instrumentation is used to collect the numerous types of data in the experiment. Second,
they are used to induce the desired affective states – either neutral or stressed – in our subjects.
We start with a breakdown of the employed equipment by the data types they are used to collect.
This is followed by a discussion of the equipment used to encourage a relaxed state or to induce a
stressed state in our subjects.

5.3.1 Independent validation data
Independent validation data are separated into two categories: 1) physiological data and 2) psycho-
logical data. Physiological data provide an objective measure of the affective state of the subject
while psychological data provide a subjective, self-reported measure of a subject’s affective state.

Physiological data

Three different types of physiological data are collected in our experiment: 1) blood pressure,
2) electrocardiogram, and 3) respiration. Blood pressure is collected via a medical-grade blood-
pressure monitor (model number: GE Healthcare Carescape V100 Vital Signs Monitor); this is
a standard clinical blood-pressure machine found in professional laboratories and hospitals. Two
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blood-pressure cuffs are employed for the sake of the experiment – Adult Medium and Adult Large.
The cuff size is chosen based on the girth of the subject’s arm; most subjects are adequately served
by the Adult Medium size (less than 2% of subjects required the larger cuff). Prior to application of
the blood pressure cuff, the subject is asked which hand they use for the mouse. The cuff is placed
on the opposite arm; this is typically the non-dominant arm, but this is not always the case. Blood
pressure readings tend to fail if the arm is in motion; thus, obtaining blood pressure readings
during the stressor task requires us to attach the cuff to the non-dominant arm. Blood pressure
readings are triggered manually by the experimenter at 5-minute intervals during the rest periods
and stressor task. We had considered automatically triggering the readings through the LabChart
software (discussed below), but we were thwarted by insufficient and inconsistent documentation
of the blood-pressure machine’s inner workings.

The electrocardiogram and respiration data are both channeled through the LabChart Pro 8
software, purchased from AD Instruments (AD Instruments, 2014). Electrodes for the electro-
cardiogram are placed according to a modified lead-II placement, as indicated in Figure 5.1; this
placement was chosen as it maximizes the prominence of the R-wave (Stern et al., 2001). The neg-
ative electrode is placed on the bony part of the right clavicle (collar bone), the positive electrode
is placed on the lower-most left rib, and the ground electrode is placed on the right side of the torso
2 inches below the positive electrode. Subjects are asked to assist the experimenter in locating
the relevant positions for the negative and positive electrodes. The signal passes through a Dual
Bio-Amp into a PowerLab 16/25, both manufactured by AD Instruments. Respiration data are col-
lected using a Polar Respiration Belt (Respiration Belt, 2014), routed through the same PowerLab
16/25. The respiration belt is attached in a snug fashion around the subject’s waist, right above
the belly button. Care is taken to ensure that the fit is snug during regular breathing; the subject
is asked to ensure that taking a deep breath results in slight discomfort, as this confirms the belt
is sufficiently tight. Both the ECG signal and respiration signal are sampled at a rate of 10,000
samples per second.

We chose to use the LabChart software and hardware because of its open source nature. We
had originally considered competing products from other vendors as well. However, the competing
products used proprietary file formats. Since we wanted to be able to freely access and analyze the
data using whatever methods we pleased, we opted to use LabChart since it uses an open-access
file format (CSV).

Despite our previous mention of cortisol (the stress hormone) and the cortisol awakening re-
sponse, we did not collect cortisol samples. The two primary measures for cortisol are plasma and
salivary cortisol. Collection of plasma cortisol requires blood to be drawn from the subject. Such
a setup would be expensive and impractical; moreover, we lack personnel with the appropriate
training to draw blood and lack proper storage facilities for drawn blood. Collection of salivary
cortisol was deemed to be unwise for three reasons. First, it is a lagging indicator of stress, so we
were concerned that it would not adequately reflect the stress state of our subjects. Second, we
already had independent measures of stress by monitoring ECG and blood pressure. We felt that
also collecting salivary cortisol would have added unnecessary complications to an already com-
plex experimental protocol. Finally, we did not have pre-existing refrigeration storage for salivary
cortisol and obtaining the required space for such storage would have been extremely difficult.
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# Statement
1 I feel calm
2 I feel tense
3 I am upset
4 I feel relaxed
5 I feel content
6 I feel worried

Table 5.1: Short-form STAI. Subjects are asked to rate their agreement to 6 statements on a visual
analogue scale of “not at all” to ”very much” at this particular moment in time.

# Statement
1 Mental demand
2 Physical demand
3 Temporal demand
4 Effort
5 Performance
6 Frustration

Table 5.2: NASA-TLX. Subjects are asked to rate their experience of a just-completed task on 6
axes by marking a visual analogue scale of “low” to “high”.

Psychological data

Two types of psychological data are collected: (1) general and (2) task-dependent. Each type of
data consists of responses to two different questionnaires.

General psychological data consist of responses to the 1) long-form State Trait Anxiety Form Y-
2 (STAI-Y) and the 2) Perceived Stress Scale-10 (PSS-10). The STAI Form Y-2 (Spielberger et al.,
1983) is designed to capture a subject’s general anxiety in day-to-day life (e.g., “I am satisfied with
myself”; “I feel that difficulties are piling up so that I cannot overcome them”).

The PSS-10 (Cohen et al., 1983) is designed to capture a subject’s perception of the degree to
which different types of stressors are present in his life (e.g., “How often have you felt that things
were going your way?”; “How often have you been angered because of things that happened that
were outside of your control?”). Both forms are administered once at the start of the study. The
general psychological data permit us to examine whether the magnitude of manifestations of stress
correlate with a subject’s general stress level.

Task-dependent psychological data consist of responses to the 1) short-form State Trait Anxiety
Inventory (STAI) (Marteau and Bekker, 1992) and the 2) NASA Taskload Work Index (NASA-
TLX) (Hart and Staveland, 1988). The short-form STAI consists of 6 questions, depicted in Table
5.1, asking a subject to self-report levels of stress and anxiety at the current moment on a scale
of “not at all” to “very much”?. The NASA-TLX, also 6 questions (Table 5.2), asks a subject to
self-report the level of workload felt in the previously completed task (from “Low” to “High”).
Both forms are visual-analog scales (VAS), where the response to each question is a vertical mark
on a 100mm line; the ends of each line represent the extremes (e.g., “not at all” and “very much”).

These self-reports are essential to the study, as they permit us to evaluate the effect of the rest
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periods and stressor task. It is expected that subjects will feel low levels of stress and anxiety, along
with low workload, after rest periods. It is expected that subjects will feel higher levels of stress and
anxiety, along with higher workload, after the stressor task. The task-dependent psychological data
complement the physiological data that are collected. The former allow us to confirm a subject’s
subjective feeling about his stress state; the latter allows us to objectively confirm a subject’s stress
state.

It is worth noting that both the short-form STAI and the NASA-TLX are quick to complete. It
would be reasonable for a subject to complete both forms in under 30 seconds. This is particularly
useful in our experiment, as we are concerned with a subject’s stress levels diminishing while they
complete the forms.

5.3.2 Typing data
Typing data are collected using custom software and a modified external keyboard. The apparatus
used in this experiment was designed with two major goals in mind: 1) to allow maximal control
over the presentation of the stimulus to the subject and 2) to collect highly accurate timestamps.
The custom software, called MTP, is responsible for displaying instructions and displaying stim-
ulus prompts to the subjects. In this particular experiment, stimulus prompts consist entirely of
repetitions of the phrase ’great friends are good to have’. For each repetition of the typed phrase,
the subject is presented with a blank text box in which s/he must correctly type the phrase, fol-
lowed by the Enter key. All characters in the phrase must be typed correctly, in sequence. Any
typographical errors made by the subject cause the text box to become momentarily grayed out,
then cleared; the subject must then re-type the phrase from the beginning. The MTP software runs
on a laptop running Windows XP; the machine has been stripped of as many processes as possible,
so as to reduce the effect of system load on the collected data. The machine is also disconnected
from the network, to reduce the influence of network interrupts on system performance.

The hardware employed in this experiment consists of a modified Apple USB-keyboard (model
number: M9034LL/A) with a standard QWERTY layout. The keyboard was modified by removing
the standard keyboard controller and rerouting the output through a custom external timer (collo-
quially referred to as the “Gizmo”). The Gizmo provides timestamps with an accuracy of 200
microseconds. This accuracy was confirmed by using a function generator to simulate keystrokes
at a fixed interval.

Whenever the subject presses or releases a key – regardless of whether the key is correct or
not – the key is recorded by two different logging processes. The first is contained within the
MTP software and the second is connected to the Gizmo external timer. The MTP log contains
coarser timestamps, but the log is formatted in a manner that is human-readable and contains meta-
information, such as what stimulus was presented to the subject. The Gizmo log contains the exact,
200-microsecond-accuracy timestamps, but is formatted in an encoded format; it does not contain
any of the meta-information present in the MTP log.

This dual-logging procedure permits a reconciliation of the timestamps at a later time, detailed
in Appendix A.2, to produce a single log that contains both the highly-accurate timestamps and
the meta-information. Note that it is far easier to perform this reconciliation at a later time, and
not in real-time, since the two logging processes record slightly different things; the MTP log
contains only keystrokes sent to the MTP application, while the Gizmo log contains all keystrokes
struck, regardless of the target application. While there is considerable overlap between these
two logs, keystrokes associated with starting or terminating the MTP application are generally
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recorded only in the Gizmo log and not the MTP log. Additionally, if MTP ever loses focus as
the active application – an admittedly rare occurrence in the tightly-controlled laboratory setting
of this experiment – keystrokes will be recorded only in the Gizmo log and not the MTP log. This
provides some redundancy in our data collection and permits error correction.

5.3.3 Supporting data
Supporting data are separated into three categories: 1) demographic data, 2) physical data, and
3) video data. These data are gathered because they may hold explanatory value for observed
anomalies or trends in the typing or supporting data.

Demographic data

Subjects in the study are asked to fill out a 22-question demographic questionnaire. This demo-
graphic questionnaire was derived from previous questionnaires that have been used in other stud-
ies our lab has conducted. Questions are designed to elicit information about physical or behavioral
factors that may have explanatory post-analysis capability. Of particular interest is whether clusters
of subjects with similar manifestations of stress are related by one or more factors. For example,
are all subjects with a large manifestation of stress left-handed? Identified factors may also allow
us to explain anomalies in our subject pool. A subject with an unusual manifestation of stress may
also have a physical injury; the injury could possibly explain the odd manifestation.

The first set of questions is largely generic, focusing on attributes like age, gender, and educa-
tion. These factors could potentially explain differences in manifestations of stress. Older subjects
and more educated subjects may be less prone to stressors as they have been in more stressful
situations. Biological differences between men and women may result in differing responses to
stress.

The second set of questions focuses on typing behavior. Subjects are asked questions such as
how they learned to type and how much time they spend typing. Subjects who learned to type at
an early age and those who spend significant time typing may exhibit smaller manifestations of
stress; typing for such subjects would be a highly practiced activity that may be less affected by
stressors.

The third set of questions focuses on physical traits that may influence typing behavior. For
example, subjects are asked whether they have long fingernails or wear jewelry that may influence
typing. Subjects with long fingernails generally have substantially different typing patterns from
those with short fingernails (e.g., it is generally highly unpleasant for a subject with long fingernails
to strike the key with the tip of the nail). Subjects wearing cumbersome jewelry also generally have
altered typing patterns; we ask subjects to remove such jewelry. These factors could be potential
confounds in our experiment; by asking these questions, we can account for the influence of these
factors when we perform our analyses. The questionnaire also asks whether subjects suffer from
temporary or permanent conditions that may influence typing. Temporary conditions might include
a sprained finger or swollen joints; permanent conditions could range from shortened or missing
fingers to arthritis. Clearly, such conditions will have a significant impact on a subject’s typing
overall; the manifestation of stress in that subject’s typing may likewise be affected.

The final set of questions concerns the subject’s experience with various styles and layouts of
keyboards. In this experiment, subjects are asked to produce their typing samples on a standard
desktop QWERTY keyboard. While most subjects use such a keyboard (or the laptop equivalent)
on a regular basis, some subjects used other styles and layouts in their day-to-day activities. Sub-
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Figure 5.2: Dot placement for hand photos. The positions of the dots can be used to accurately
extract the dimensions of a subject’s hand (e.g., finger lengths). Note the photo is taken on a
calibrated background.

jects used to ergonomic keyboards or alternate layouts (e.g., DVORAK) may have substantially
different typing rhythms as compared to subjects used to using a standard keyboard with a QW-
ERTY layout. Collecting this information permits us to account for these factors in our analyses.

Physical data

Physical data consists of measurements of a subject’s height and weight, along with photographs
of our subjects’ hands and typing posture. A subject’s electrocardiogram can be affected by his or
her height and weight (or more precisely, body mass index, which depends on height and weight),
so we take care to collect these data to allow us to properly read the electrocardiogram. A subject’s
height is taken via a measuring tape affixed to a wall, while weight is taken via a LifeSource digital
scale (model number UC-322) (Manuals Online, 2018). Subjects are asked to remove their shoes
and empty their pockets prior to the measurements to improve the accuracy of the measurements.

Photos of the subjects’ hands and typing posture were also collected. These photos enabled us
to ascertain a subject’s hand geometry and body position while typing. Prior work in our lab has
indicated that hand geometry and typing posture may have significant impact on a subject’s typing
rhythms. It seems conceivable that these may also impact manifestations of stress in typing; as a
result, we take care to collect this information in the event that it may be useful in our analysis.

Hand photos are taken of both the left and right hand. Prior to each photo, the subject’s hand is
marked with blue dots, as depicted in Figure 5.2. Dots are placed on the knuckle of each finger, as
well as the wrist of the subject. Photos are taken against a calibrated grid, enabling us to ascertain
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the precise geometry of each subject’s hands. Prior work in our lab has shown that hand geometry
can significantly affect a subject’s typing. For example, as compared to subjects with large hands,
subjects with small hands tend to have much larger latencies between distant keys typed by the
same hand.

Side photos of a subject’s typing posture are collected by use of a still camera, positioned 90
cm away from the subject’s chair. Prior to taking each photo, colored stickers are affixed to the
subjects’ shoulder, elbow, and hip. Care is also taken to ensure that the subject’s ear hole is visible;
subjects with long hair are asked to tie it back for the photo. Photos are taken while the subject
is engaged in a typing task, ensuring that the posture captured reflects the subject’s actual typing
posture and not just a subject’s estimation of his/her posture. These photos are taken in a manner
that permits application of the Keyboard-Personal Computer Style instrument (K-PeCS) (Baker
and Redfern, 2005).

Video data

Video data are collected using four Microsoft Life Studio Pro webcams positioned around the sub-
ject. Each of the cameras is capable of capturing 1080p resolution at 30 frames per second. These
particular cameras were chosen because of their ability to record 1080p at 30 fps and also because
they are equipped with threading in their base which permits easy attachment to professional pho-
tographic mounting hardware. The cameras are mounted using arms manufactured by Manfrotto.
One end of the arm is clamped to shelving in the room for stability; the cameras are attached to the
other end of the arm via the aforementioned threading. All four cameras are connected to the same
machine, and video data are recorded using four instances of the Open Broadcasting Software
(OBS) program (Open Broadcasting Software, 2018); one instance is used for each camera. An
extra PCI-E USB card (StarTech.com, 2018) was used in the machine to permit all four cameras
to simultaneously feed data to the same machine. In initial testing, we discovered that the data
rate from four separate cameras was sufficient to overload the motherboard’s default USB bus. To
circumvent this problem, two webcams are attached to the motherboard’s USB bus while the other
two are attached to the PCI-E USB card.

Two of the cameras are positioned to the left and right of the keyboard, with camera hovering
a few inches off the surface of the table. The purpose of these cameras is to capture a subject’s
hand positions from a side view during typing. A third camera is positioned directly above the
keyboard. This camera is placed as low as possible while still being outside the peripheral vision
of even a very tall subject. This camera’s purpose is to capture the positioning of the subjects’
fingers on the keys as they type. A fourth and final camera is directed at the face of the subject.
This camera aids the experimenter in determining whether the subject is engaged with the present
task and also provides a record of the facial expressions of the subjects. Such information can be
helpful in ascertaining the affective state of the subject and may also explain anomalies in collected
data (e.g., a sneeze may cause spikes in collected physiological data). Additionally, subjects are
informed that they would be recorded throughout the experiment; this acts as a form of evaluation
that is a potent source of perceived stress (Dickerson and Kemeny, 2004).

In addition to its purpose in the present experiment, the facial data was collected with the idea to
use the collected data to assess the reliability of available facial recognition software. The collected
data would be unusual in that it is accompanied by independent measures of the subjects’ affective
states at the time the data were collected. To make the collected data easier to process for such
software, both the background and lighting were carefully controlled. A Lastolite Chromakey 1.8
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x 2.75m green background (i.e., a greenscreen) was positioned behind the subject’s chair to ensure
a clear distinction between the subject’s face and the background. The standard room lighting
was turned off during the course of the experiment; illumination was provided by 2 Genaray SP-
AD35 SpectroLED 9 lights. The LEDs were always set to the same setting – the third notch,
approximately 60/100 strength – to ensure consistent lighting.

5.3.4 Subject relaxation
Throughout our experiment, we are interested in encouraging a relaxed, neutral state during two
different rest periods. The materials used for achieving this state are handled differently for these
two periods. We had originally planned to use the same technique for both sessions. However,
feedback from subjects during pilot testing indicated that repeating the same technique twice actu-
ally caused feelings of discontent due to boredom. Some subjects even reported they felt stressed
from being exposed to the same relaxation technique twice; clearly, this would be highly undesir-
able in our experiment.

In both periods, subjects watch video clips of underwater nature scenes of the Great Barrier
Reef set to soothing music. Two clips are used – one for the baseline period and one for the
recovery period. All subjects viewed the same clip in the baseline period and in the recovery
period. Both clips are taken from the same source (Hannan, 1999).

During the first rest period, subjects are given pencil and paper and are asked to write down
all animals they see in the video clip. During the second rest period, subjects are asked to pay
attention to breathing and take breaths that are as long and deep as possible. These tasks are
intended to prevent subjects from ruminating on topics unrelated to the experiment.

5.3.5 Stress induction
Stress induction is performed utilizing a combination of a multi-tasking framework and social eval-
uation – negative judgement from another person – from our experimenter. We initially planned on
using software manufactured by Purple Research Solutions (Figure 5.3) for our framework, which
effects a cognitive workload through a multitasking exercise presented as a game (Purple Research
Solutions, 2014). The software has been demonstrated to induce stress in subjects (Wetherell and
Carter, 2014). During the course of pilot testing this software, we discovered an issue with this
software (detailed below). With permission, we decided to re-implement a version of this soft-
ware that removed the identified issue; excepting this fix, our software is identical to the version
manufactured by Purple Research Solutions.

Within the multi-tasking framework, the subject must engage 4 different tasks simultaneously.
Points are awarded for good performance, and points are subtracted for poor performance. The
subject’s score is displayed in the middle of the screen.

In the upper-left quadrant is a set-membership task. The subject is shown a set of letters in the
lower box (e.g., A, U, V, L, F, E, X, R), which disappear after a few moments. The subject is then
shown a single letter in the circle (e.g., M) and must state whether the letter was a member of the
set. Points are awarded for each correct answer; points are deducted for an incorrect answer or if
the subject does not respond sufficiently quickly.

In the original software, we discovered an issue wherein subjects could rapidly accumulate
points by clicking “False” in response to this task. This was caused by the fact that the letters
in the circle were drawn (seemingly) uniformly at random from the 26 letters of the alphabet.
As a consequence, letters were far more likely to be not included in the set. The scoring payout
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Figure 5.3: Multi-tasking framework. The subject must monitor four tasks concurrently (de-
scribed in the body of the text). Points are awarded for good performance and subtracted for poor
performance.

scheme – i.e., the values for a correct answer and incorrect answer – meant that subjects would
be allowed to accrue points by always answering “False”. During pilot testing, we discovered
that this led to two major issues. First, subjects would often ignore the other three modules and
focus on rapidly clicking “False” in this module as much as possible; this virtually eliminates the
cognitive workload of the framework. Second, subjects would often have far too many points in
the framework for our social evaluation to be effective; subjects with very high scores simply did
not believe the administered social evaluation. In our version of the software, this issue was fixed
by ensuring that the letter in the circle has a 50/50 chance of being contained in the set.

In the upper-right quadrant is a Stroop task (Stroop, 1935). The subject is shown the names of
colors in different colored fonts (e.g., the word ‘green’ in a red font). The subject must click on
the colored rectangle that corresponds to the color of the font, not the color spelled by the word.
Points are awarded for each correct answer; points are deducted for an incorrect answer or if the
subject does not respond sufficiently quickly.

In the bottom-left quadrant is a timing task. The red dot starts in the center of the concentric
circles and drifts outward in a random direction. The subject can reset the position of the dot to
the center of the circles by pressing the ‘Reset’ button. If this is done before the dot leaves the
outer-most circle, points are awarded. The further out the dot is, the more points are awarded. If
the dot leaves the outer-most circle, points are deducted.

In the bottom-right quadrant is a maximum-membership task. Each circle in the grid is ran-
domly filled with one-digit numbers. Clicking on a circle highlights it in gray; clicking again
removes the highlight. The subject must highlight all instances of the largest digit. Points are
awarded when the subject successfully completes the task; point are deducted if a subject does not
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complete the task sufficiently quickly.

5.4 Stimulus choice
Our choice of stimulus for this experiment was 280 repetitions of the phrase great friends
are good to have, distributed across four sessions. 40 repetitions were collected in the
warmup session, primarily to familiarize the subject with the experimental task and apparatus.
The remaining 240 repetitions were collected in three sessions of 80 repetitions each; the three
sessions were the baseline neutral, stress, and recovery.

In our study, as in many other keystroke dynamics studies, the question of stimulus selection
arises. In most previous research, the selection process has been largely arbitrary. Researchers
often pick out a phrase they deem convenient (e.g., the name of their institution) without giving
considered thought to what phrase would be most suitable for the hypothesis entertained in the
experiment; this results in different researchers using varied stimuli with no particular justification
(Teh et al., 2013). In deciding the stimulus item for the present experiment, we wanted to avoid
this arbitrariness. To do this, we developed a generic, principled method for selecting stimuli for
affect-based keystroke dynamics research. We then applied this method to our present experiment,
which resulted in the phrase great friends are good to have.

The full details of the stimulus selection process and the particular application to the present
experiment can be found in Appendix A.3. Briefly, our goal was to find a phrase that was as easy
to type as possible. Past experience in our lab suggested that easily-typed phrases tend to have
lower practice effects and lower rate of errors than more difficult-to-type phrases. We devised a
four-step process for stimulus selection and solicited opinions from 413 subjects from Amazon’s
Mechanical Turk to arrive at the chosen phrase. The four-step process was 1) to define the desired
attributes of the end phrase, 2) to generate candidate phrases that fit these attributes, 3) to prune
the pool of candidate phrases down, and 4) to experimentally determine which phrase best fit the
list of desired attributes.

In the case of our experiment, the most notable requirements of the phrase was that it had to be
memorable, devoid of emotionally charged text, and should be easy to type. In prior work in our
lab, we had discovered that easily typed phrases tend to have lower variability in typing patterns,
so we reasoned that we would maximize our ability to detect the effects of stress if we chose an
easy-to-type phrase. We initially generated 100 phrases, which were then pruned down to 20 by
removing the phrases that were least consistent with the requirements. These 20 phrases were then
used as part of an experiment on Mechanical Turk. Subjects were repeatedly asked to type 2 of
the 20 phrases and to indicate which one they thought was easier to type; phrases were chosen at
random from the pool of 20. The resulting pairwise preferences were then transformed into an
ordinal ranking using a Thurstone model. The highest-ranked phrase – the easiest one to type –
was great friends are good to have, which was then taken to be the stimulus for the
present experiment.

5.5 Power analysis
Our study is based on a single-subject design; adding more subjects does not help us to better
identify physiological, psychological, and typing changes in a given subject. Rather, the primary
advantage to increasing the number of subjects is to increase our ability to detect small clusters of
subjects, with similar changes in typing rhythms, in the population. We estimate that 10 subjects
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is the minimum required to meaningfully capture the inter-subject typing variance of subjects in
the same cluster, which is critical for distinguishing a cluster from the remainder of the population.
Thus, if a cluster comprises 1% of the total population, 1000 subjects must be run before we expect
to see 10 members from the cluster; if it comprises 5% of the population, we need 200 subjects.

Due to the exploratory nature of the thesis work, it was decided that the smallest cluster we
can reasonably explore is one that comprises 10% of the total population. A simulated binomial
power analysis predicated on having at least an 80% chance of obtaining 10 subjects from such a
cluster, determined that 124 subjects would be needed. To accommodate potential drop-outs and
non-responders, our initial plan was to gather data from between 130 and 140 subjects.

5.6 Subject recruitment
A total of 132 subjects were recruited for the study through posters, posted on publicly accessi-
ble areas on campus, and through word-of-mouth. Our subjects are largely a convenience sample
from a university campus – Carnegie Mellon University. Most subjects tend to be university under-
graduates, with a mixture of graduate students, staff members, and persons outside of the campus
community. Our original plans for this work included use of external research registries – e.g., the
Center for Behavioral Decision Research – to supplement subjects recruited on campus and also to
recruit a more diverse collection of subjects. However, we ultimately relied solely on recruitment
from the campus community for two reasons.

First, we initially underestimated the number of subjects that we could recruit from campus
through the use of posters and word-of-mouth recruiting. We had assumed that only about half of
our recruitment needs could be met through such recruitment procedures, but ultimately were able
to rely entirely on campus-based recruiting.

Second, we were concerned about the proportion of “seat-fillers” in our study. The term refers
to subjects whose participation in the study is not grounded in good faith. Seat-fillers are typ-
ically individuals who seek to join studies for the sole purpose of making money and are more
interested in providing responses that expedite the completion of the experiment rather than truth-
ful responses. As an example of an issue, a seat-filler may not bother to ask clarifying questions
about the experimental tasks despite not understanding what s/he needed to do in that task. This
could lead to contaminated data; most genuine subjects could be expected to ask such clarifying
questions.

A copy of the recruitment poster used can be found in Appendix A.4. Posters requested that
the subjects contact our experimenter directly to confirm eligibility and to set up an appointment.

Subjects were asked to confirm their eligibility for the experiment by responding to the below
list of questions. The expected responses from the subject is ‘Yes’ (or ‘True’) to all questions. A
subject was required to meet all eligibility items to be eligible for the experiment.

1. I am at least 18 years old.
2. I speak English fluently.
3. I have at least three years of experience typing on a computer.
4. I can type at least 30 words per minute. (Typing at 30 words per minute means you can type

the sample text below in 1 minute.)
5. I do not have any history of cardiac disorders.
6. I do not have any history of neurological disorders.
7. I do not have any history of anxiety or stress disorders.
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8. I have never had a stroke.
9. I am not currently being treated by a doctor for a sleep disorder.

10. I do not suffer from any form of color-blindness.
11. My blood pressure is BELOW 140/90. (If you have a blood pressure ABOVE 140/90, you

suffer from hypertension.)

Subjects were also informed that they would not be eligible for the study if they:

1. Consumed any alcoholic beverages within the 48 hours leading up to the experiment.
2. Consumed more than 3 caffeinated beverages within the 24 hours leading up to the experi-

ment.
3. Consumed any caffeine or other stimulants within the 2 hours leading up to the experiment.
4. Consumed any psychoactive drugs, such as anti-depressants, Ritalin, marijuana, or LSD,

within the 48 hours leading up to the experiment.
5. Had heard anything about the experiment outside of what was on the recruitment poster.

The purpose of asking this set of questions is to ensure that subjects are:

1. Legally eligible for the study
2. Able to properly understand and complete the study tasks in a reasonable amount of time
3. Do not have any medical conditions that may impact the validity of the study
4. Will exhibit his/her normal stress response in the study

In cases where subjects did not understand the question or did not know the answer, further
clarification was provided by the experimenter. By far the most common issue was from subjects
who did not know their blood pressure. Assuming all other questions were answered satisfactorily,
and the subject stated that s/he was in general good health, an appointment was made for such
subjects with the admonition that his/her blood pressure would be checked prior to the start of the
experiment and that they would not be able to participate if his/her blood pressure was not in the
required range; no subjects were rejected from the experiment due to such blood pressure concerns.

The experimenter was instructed to not schedule appointments for any individuals whose de-
meanor, responses, or statements seemed suspect in any way. Out of the 237 subjects that contacted
us, 105 were rejected for some reason. Most commonly, subjects simply stopped responding to
our e-mails. Other subjects could not find a suitable date or time for an experimental session or
simply no-showed for their session. Finally, a small number of subjects did not meet the eligibility
criteria.

All subjects were scheduled for the afternoon appointments. Since cortisol follows a diurnal
cycle (Lovallo, 2005), we wanted to avoid time-of-day as a possible confounding variable. By
running all subjects in the afternoon, they will all be in roughly the same portion of their diurnal
cortisol cycle.

5.7 Experimental design
We have chosen to use an ABA single-subject design for the present experiment; this is also re-
ferred to as baseline-condition-baseline or baseline-condition-recovery. Simply put, the subject
will provide a typing sample in a neutral baseline, in an induced stress condition, and then again
in a neutral baseline (or recovered) state. The objective in using this design is to best enable us to
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attribute any changes in typing behavior to stress and only stress, as we can use each subject as
his/her own control.

We had originally considered using a simpler design, such as an AB or baseline-condition
design. However, the limitation of such a design is that it is difficult to attribute any particular
shift in typing, between the baseline and stress conditions, to stress and only stress. For example,
changes in typing could be simply attributable to increasing fatigue or hunger, and not to stress.
With an ABA design, if such external causes were responsible for typing changes, we would expect
to see even greater shifts in the recovery session as the magnitude of the external cause would
continue to increase over time; if stress were actually responsible for changes in typing, we would
expect the recovery session to be quite similar to the initial baseline session.

We have also used a single-subject design for this experiment, wherein each subject’s stressed
typing data is primarily compared his or her own baseline typing data; that is, each subject acts as
his/her own control. This enables us to capture individualized responses to stress that would not
be possible if all data were aggregated. Of course, we can perform this aggregation at the analysis
step where it is appropriate.

5.8 Experimental protocol
The protocol for our experiment ranges from the pre-experiment checks performed by our exper-
imenter to the post-experiment cleanup tasks. In this section, we provide not only the timings of
the events in the experiments, but also the specific instructions provided to the subjects. More-
over, where relevant, we discuss the reasons behind the choices made in designing the protocol
and where alterations were made following pilot studies.

We start with a discussion of the protocol document and operations manual, generated to aid in
the successful conduct of the experiment, and then proceed through the protocol in chronological
order.

5.8.1 Protocol document and operations manual
In designing the present experiment, we noted that it would be several orders of magnitude more
difficult and complex than experiments previously conducted by our experimenter. Prior experi-
ments conducted in our lab were short (15-20 minutes) as compared to the duration of the present
experiment (2-3 hours). While video and still photos were sometimes taken and occasionally a de-
mographic survey would be administered to subjects, the present experiment contains a multitude
of forms and additional equipment for capturing physiological measures, on top of the video and
still photos. Prior experiments were also largely unconcerned with the affective state of the subject;
we were happy to take subjects in whatever state they were in and merely made note of any exten-
uating circumstances that may have influenced typing. In the present experiment, we are highly
concerned with the precise affective state of the subject; every time we made a decision regarding
the protocol, we always evaluated how this decision might affect our ability to successfully control
the affective state of the subject.

Given the relative complexity of this experiment, we felt that the probability of success would
be significantly lowered if we asked our experimenter to execute the protocol from memory, or even
with the assistance of a simple checklist. To address this, and inspired by checklists used by airline
pilots, we opted to craft a protocol document that lists all of the steps required to successfully
execute the experiment. The document totals 55 pages; Figure 5.4 shows a small snippet of this
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Figure 5.4: Protocol snippet. A small section of the experimental protocol checklist is depicted
here. This particular section concerns the attachment of the ECG electrodes to the subject’s body.

protocol. The document is broken down into 42 sections, each containing a single, logical task.
It is organized in a 3-column fashion. The first column contains the step number, the middle
column contains the specific action the experimenter must perform, and the final column contains
checkboxes for the experimenter to mark that the action has been completed. Italicized text is used
for things the experimenter must say, while bolded text is used to emphasize critical actions that
must be performed.

Significant care was taken in crafting the protocol document, which went through dozens of
iterations over a period of months. Significant feedback on the protocol document was provided
by all researchers, including the experimenter herself. Our intention is that this protocol document
will aid and assist any researchers who may wish to replicate or extend our work.

In addition to the protocol document, an operations manual was also written for the experi-
ment. This 35-page document outlines the standard operating procedures for each of the software
and hardware components involved in the experiment; more importantly, it also includes trou-
bleshooting steps for any foreseen problems that may occur during the course of the experiment.
The intent of this document is to allow our experimenter to remedy potential problems without re-
quiring another researcher to be present and with only modest impact on an ongoing experimental
session.

5.8.2 Pre-experiment setup
The experimenter’s tasks begin approximately 30 minutes prior to the scheduled arrival of the
subject. The chief goals in the setup stage are to ensure that all required materials are present, to
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prepare a set of experimental materials (e.g., forms) for the subject, and to ensure that all required
software and hardware work appropriately. Note that these checks typically take less than 10
minutes to perform; the additional time is intended for recovery if something is found to be amiss
or if the subject arrives early.

Nearly all materials and equipment used in the experiment are dedicated to its exclusive use;
thus it is highly unlikely that any items will be missing. Nevertheless, a check is made to ensure
that the experiment can proceed without issue. Of particular concern in this check is to ensure
that the three items requiring batteries – a remote control for the still camera, a remote control for
the lights, and the scale for measuring the subject’s weight – function properly; a check for extra
batteries is equally paramount. To aid in the materials check, the protocol document lists them in
order from right to left in the room; this permits the experimenter to simply sweep the room once
instead of having to bounce back and forth. This was done to minimize the chance of omitting
a check; we were particularly concerned with such an omission because it is so unlikely that any
materials will be missing, possibly lulling our experimenter into a false sense of security.

The second setup stage is to assemble the experimental materials into a manila folder. This
folder includes a copy of the protocol document – to be checked-off as the experiment proceeds –
and sufficient copies of all the forms that will be administered during the course of the experiment
(consent form, demographic survey, long-form STAI, PSS-10, short-form STAI, NASA-TLX). The
experimenter also dates each form and records the subject number.

The final setup stage involves starting each piece of hardware and software used in the ex-
periment to ensure it functions properly. This includes the webcams, PowerLab and LabChart,
MTP, multi-tasking framework, the digital camera for the hand photos, the still camera for the
K-PeCS photos, the scale, and the studio lights. Should any issues be noted, the experimenter uses
the troubleshooting section of the operations manual to address any issues. To avoid any data-
confusion issues, checks are performed using a fake subject number starting with a ‘t’ (usually
t000 or tdemo). This enables any data generated during these checks to be easily discarded later in
the data-analysis phase.

5.8.3 Briefing and documentation
Following the arrival of the subject, the experimenter disconnects the phone in the room and places
a “Do not Disturb” sign on the door. This is intended to minimize the possibility of distractions
during the course of the experiment. The subject is also directed to turn his/her cell phone off,
place the contents on their pockets in a cardboard box, and discard any chewing gum or mints in
his/her mouth. The box is positioned to the right of the subject on the table; the box is within
sight of the subject at all times and is impossible for the experimenter to reach without crossing
close behind the subject (there is typically less than 6 inches between the back of the subject’s
chair and the greenscreen backdrop). Again, the goal here is to remove any potential distractions
during the course of the experiment while ensuring that subjects do not feel uncomfortable that
their possessions are out of sight.

Once settled, subjects are briefed about the purpose of the experiment and asked to provide their
informed consent. As part of the consent process, the experimenter checks for the inclusion and
exclusion criteria for the subject (see Section 5.6). Recall that the inclusion and exclusion criteria
were previously communicated to the subject as part of the recruitment process; nevertheless, a
second check is executed as part of the consent procedure since some of the criteria are short-term
in nature (e.g., no caffeine consumption within the past 24 hours). The consent procedure also
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involves a blood pressure reading to ensure that it falls within the eligibility range.
Once informed consent has been obtained, the subject is asked to fill out the demographic

survey, long-form STAI, and the PSS-10. These are presented one at a time to the subject. Hand
photos are also taken of both the subject’s hands and the subject’s height and weight are measured.

In total, the briefing and documentation procedure takes roughly 30 minutes. The actual time
taken depends largely on how fast the subject reads through the consent form materials and on how
many questions they have regarding interpretation of various items in the administered forms.

5.8.4 Familiarization period
The next stage of the experiment is the familiarization period. As its name suggests, the purpose of
this period is to allow the subject to become familiar with the software and equipment used in the
rest of the experiment as well as the visual analogue scales. This familiarization process is critical
for two reasons.

First, we are interested in the effects of stress on a subject’s typing behavior. These effects will
be made more difficult to detect if a subject’s typing is also being influenced by practice. During
the experiment, subjects are using a keyboard that is almost certainly different from keyboards
they use in their day-to-day life. Moreover, the MTP software is novel to the subjects. Without
providing a familiarization period, we would risk conflating the effects of practice with the effects
of stress. The issue of practice is discussed in detail in Section 7.2.

Second, we will be utilizing induced affective states during the course of the experiment; such
states naturally decay over time. Any delays in the main body of the experiment will be detrimental
to its success rate. We do not wish to have subjects asking lengthy questions about how to perform
the experimental tasks in the middle of an induced affective state.

The familiarization period lasts roughly 20 minutes, beginning with an explanation of the visual
analogue scales: the short-form STAI and NASA-TLX. It continues with a warmup typing task –
subjects are asked to type the phrase “great friends are good to have” a total of 40 times. As in
the proper experiment, repetitions of the phrase must be typed without error; the MTP software
automatically greys out the text box and resets it whenever a typographical error is made. This
typing task allows the subject to become familiar with the keyboard and the MTP software, while
also allowing them an opportunity to become practiced at typing the phrase; the phrase is the
same as the one typed during the main body of the experiment. During this warmup task, the
experimenter takes still side photos of the subject’s typing posture by remotely triggering a still
camera.

The familiarization period concludes with an explanation of the four quadrants of the multi-
tasking exercise. Subjects are encouraged to ask questions if they are at all confused, since their
understanding of the task is vital later in the experiment. Once a subject feels s/he has understood
the task, the experimenter starts a 2-minute warmup session of the multi-tasking exercise. The
demands on the subject during this warmup session are significantly lower than during the main
body of the experiment; the goal here is just to confirm the subject’s knowledge of the task, not to
induce stress. The subject is made aware that the task is intended to be extremely easy to ensure
that they will focus on the task during the main body of the experiment. Once the subject concludes
the 2-minute warmup session, they are given the opportunity to ask more questions or to participate
in additional warmup sessions until they feel comfortable with the task.
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Figure 5.5: Experimental Timeline. A timeline, in minutes, of the major events in the experi-
ment. Please note that the two rest periods for establishing and returning to baseline and the stress
induction period are fixed in length, but all other events have variable length based on the pace of
the subject.

5.8.5 Main experiment body
Upon completion of the familiarization period, the main body of the experiment begins. This is
where the subject is attached to the array of physiological measurement sensors while they perform
typing tasks in a neutral, then stressed, then neutral affective state. Before attaching the subject
to the equipment, we strongly encourage him/her to use the restroom. Subjects are told that they
will not be paid the full amount for the experiment if it is discontinued at any point before the end,
including needing to use the restroom. The primary issue with a subject pausing the experiment in
the middle to use the restroom is not the fact that equipment needs to be disattached and reattached;
rather, the issue is that any induced affective state will be diminished or destroyed during the pause.

Figure 5.5 lays out the timeline for the main body of the experiment. Note that the duration of
the rest periods and stressor exercise are exact; all other times are approximate and will depend on
the subject’s speed at completing tasks.

Sensor attachment. The first event in the main body of the experiment is the attachment of
sensors. The ECG electrodes are attached first, in the positions described in Figure 5.1, while
the subject is standing. Once these electrodes are attached, the subject is asked to sit down. The
respiration belt is then attached around the waist of the subject.

The ECG wires are then attached to the electrodes; the experimenter asks the subject to snap
the leads onto the electrodes. It is not only easier for the subject to do this than for the experimenter
to do this, but this also lessens any discomfort the subject might feel about having his/her personal
space invaded. To ensure proper lead attachment, the experimenter listens for the snapping sound
associated with a lead attaching to the electrodes; the experimenter also gently tugs on the leads to
ensure firm attachment. Following lead attachment, the blood pressure cuff is then attached to the
subject. All associated wires are then taped to the desk using heavy masking tape and/or duct tape.
Taping these wires is important for several reasons. First, the wires can occasionally get in a sub-
ject’s way if they are not taped. In some extreme circumstances, it could be possible for a subject
to roll over the wires with the wheels of the chair; this is obviously highly undesirable. Second,
the wires are actually relatively heavy; in early pilot experiments, we found that the weight of the
wires could contribute to ECG leads detaching from the electrodes or the electrodes themselves
peeling off the subject’s skin. Third, movement in the wires is transmitted back into the electrodes.
Thus, an accidental strike of the wires could lead to a disrupted ECG or respiration signal for a few
seconds until the wires stop moving.
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Following attachment of all the equipment, the experimenter checks to see that signals are
coming through properly on LabChart. This involves setting the captured range of the ECG and
respiration signals – the experimenter aims for a range that is roughly twice as wide as the nor-
mative signal coming from a resting subject. The subject is asked to take several deep breaths
during this time to help the experimenter in determining an appropriate range for the respiration
signal. Note that there is an inherent tradeoff in setting the range for the signals. Setting a wider
range lessens the possibility that the signal will go out-of-bounds at some point in the experiment
– say, due to a subject violently coughing or sneezing. However, this lowers the resolution of the
signal. Setting a narrow range increases the resolution of the signal, but increases the chance of an
out-of-bounds event. The range differs from subject to subject, with the physiology of the subject
(primarily the amount of tissue and muscle in the upper chest) being the primary factor for HRV
and the snugness of the respiration belt being the primary factor for respiration. Differences in
range can largely be attributed to a subject’s physiology (e.g., a larger subject may have more mass
between the heart and the ECG electrodes, diminishing the captured electrical reading) and, in the
case of respiration, the precise tightness of the attached equipment.

Establish neutral baseline. Once the experimenter is satisfied that the physiological equip-
ment is properly attached, she initiates the start of the first rest period. This period is 30 minute
in length, as measured by a stopwatch. During these 30 minutes, the subject is asked to perform a
simple task while watching a relaxing video of an underwater scene (Hannan, 1999). The subject
is handed paper and pen and asked to write down all unique animals that s/he sees while watching
the video; this simple task is intended to keep the subject’s attention on the experiment, so that s/he
does not ruminate on non-experiment-related thoughts. The experimenter also asks the subject to
try to relax as much as possible while performing this task.

In our initial pilot studies, we had asked our subjects to merely sit in the chair for the duration
of the 30 minutes in silence. Early pilot subjects reported that this was sufficiently boring that they
had difficulty relaxing. We then augmented this rest period by playing music in the background –
we chose Pachelbel’s Canon (Pachelbel, 1680) as it is generally regarded in the literature as being
a relaxing piece of music. The music was looped in the background for the 30 minute duration
of the rest period. Despite the view in the literature that this is a relaxing piece, we found that
subjects were generally annoyed by the repetitiveness associated with looping the music; subjects
who were trained musicians were particularly vehement in their dislike of listening to 30 minutes
of Pachelbel’s Canon. Needless to say, this did not achieve the desired relaxation effect. To avoid
the repetitiveness, we switched to playing the aforementioned video. Unfortunately, we found that
subjects often fell asleep during the video; since we do not want to capture any “grogginess” effect
in our subjects, this was not desirable. By adding a simple distractor task – writing down all unique
animals found in the video – we found that subjects did not fall asleep and also self-reported that
the 30 minutes were relaxing.

During the course of the first rest period, blood pressure readings are taken every 5 minutes.
The first reading is taken right at the beginning of the session, so a total of 7 readings are taken.
ECG and respiration data are taken continuously throughout the course of the rest period.

Upon the conclusion of the first rest period, the first set of VAS forms (short-form STAI and
NASA-TLX) are administered. These self-reports are designed to serve as a point of comparison
for the remainder of the experiment. It is expected that subjects will self-report high levels of
relaxation and very low workload experienced during the 30-minute rest period.

Baseline typing sample. Immediately after the VAS forms have been administered, the subject
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is asked to provide the first neutral typing sample. This consists of 80 repetitions of the phrase
“great friends are good to have”. No blood pressure readings are taken during the course of the
typing sample; in pilot studies, we found that the natural movements involved in typing routinely
caused the blood-pressure meter to struggle to obtain a reading. This would often cause the cuff to
significantly inflate, often to the point of significant physical discomfort for the subjects. In some
cases, the Critikon would fail to obtain a reading altogether, triggering a noisy alarm. Due to these
issues, we opted to not take blood pressure readings during the course of the typing sample. Both
ECG and respiration data are still continuously collected, however.

After the first typing sample has concluded, the second set of VAS forms is administered.
Stress exercise. Once the first neutral typing sample has concluded, the stress exercise begins.

The subject is instructed to move the keyboard out of the way and place the mouse in a comfortable
position. Once this is done, the experimenter begins a 15-minute multi-tasking exercise task; this
is far more strenuous than the warmup task the subject has previously experienced. Throughout
the exercise, the experimenter applies social evaluation to the subject; care is taken to apply a
steady stream of social evaluation to the subject regardless of how well s/he is doing. This involves
pointing out mistakes that the subject has made – whether this is in the form of incorrect responses
or allowing a module to timeout – and pressuring the subject to work faster. Our experimenter also
reported that repeatedly sighing and standing immediately behind the subject were also effective
at increasing a subject’s stress level. Some form of negative evaluation – either a prompt to work
more quickly, a statement that the subject is not performing well enough, or a bout of sighing – was
administered once per minute. Additionally, at the 5-minute and 10-minute mark in the exercise,
the experimenter harangues the subject for not completing the task quickly or accurately enough.
The subject is also warned that they need to significantly improve their performance if they wish
to receive the full compensation for the experiment.

As with the rest period, blood pressure readings are taken every 5 minutes throughout the
exercise, with the first reading taken right as the exercise starts. In contrast to the typing sample,
we are able to take blood pressure readings during the multi-tasking exercise because the cuff is
attached to the subject’s non-mouse arm. Movement in the non-mouse arm is fairly minimal during
the exercise, whereas typing involves use of both hands. In addition to blood pressure data, ECG
and respiration data are collected throughout.

Once the multi-tasking exercise has finished, the third set of VAS forms is administered. Ex-
treme care is taken at this stage to shorten the time period between the completion of the multi-
tasking exercise and the beginning of the next typing session, as the induced stress will fall off over
time.

Stressed typing task. Before beginning the stressed typing session, the subject is asked to
move the mouse out of the way and return the keyboard to a comfortable typing position. The
stressed typing task consists of 80 repetitions of the phrase “great friends are good to have” – same
as in the neutral typing sessions.

Once the typing sample is complete, the fourth set of VAS forms is administered.
Second rest period. Prior to starting the second rest period, the subject is informed that they

performed well enough in the multi-tasking exercise to receive full payment, provided that they
complete the remainder of the experiment to the experimenter’s satisfaction. This is designed to
help reduce the levels of stress in the subject in preparation for the second rest period.

The second rest period consists of a 15-minute rest, while the subject watches additional scenes
from the underwater movie. In lieu of a written exercise, we asked our subjects to focus on taking

39



long, deep breaths throughout the course of the 15 minutes. In pilot studies, we found that offering
subjects a different task – i.e., not asking them to write down animals in the video again – reduced
boredom and helped in lowering stress. A shorter, 15-minute, rest period also seemed more effec-
tive than a 30-minute rest period; we suspect that the longer rest period gave subjects an increased
sense of boredom and frustration, inhibiting a return to a relaxed state.

As with the first rest period, blood pressure readings are taken every 5 minutes. ECG and
respiration data are collected continuously throughout this time.

Once the rest period is complete, the fifth set of VAS forms is administered.
Recovery typing sample. Once the rest period is over, the third and final typing sample is

collected from the subject. As before, the sample is 80 repetitions of the phrase “great friends are
good to have”. Once the typing sample is complete, the VAS forms are administered for a sixth
and final time.

Sensor detachment and debriefing. When the final VAS forms are completed, the experi-
menter informs the subject that the experiment is now complete. The sensors are then removed
from the subject and the experimenter answers any questions the subject may have concerning the
experiment.

The experimenter also inquires whether the combination of the multi-tasking framework exer-
cise and social evaluation was effective at stressing out the subject. Any comments that the subject
may have about the experiment are also taken into consideration, in case improvements could be
made to improve future runs of the experiment.

Following this debriefing and payment, the subject departs.

5.8.6 Clean-up
A few tasks remain for the experimenter before the conclusion of the experiment from her point-
of-view. Most importantly, all of the collected data must be archived. Then, all equipment is turned
off and cleaned with alcohol wipes, where applicable. The blood pressure records are then printed
out and all materials from the experiment are placed into the manila folder.

A check is then performed to ensure that sufficient consumable items (e.g, electrodes, tissues)
are available for upcoming experiments.

Should there be any pressing issues regarding the experiment (e.g., subject was rejected for
some reason or equipment malfunction), the experimenter notifies the researchers immediately so
that adjustments can be made prior to the arrival of the next day’s subject.

5.9 Instructions to subjects
We break down the instructions to the subjects by task.

Familiarization period – general. Subjects are informed that the purpose of this period is to
allow them to become comfortable with the experimental equipment (i.e., keyboard, mouse, chair)
and the important experimental tasks. Subjects are instructed to adjust the chair and keyboard so
that they are in a comfortable position. This includes adjusting the chair height, armrests, and
keyboard position. Subjects are asked to place their hands in a typing position to ensure that the
equipment is in a comfortable position. All subjects were also given the option of using a footrest;
this was mainly applicable for shorter subjects whose feet may not reach the floor given the desk
height.
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Multi-tasking framework. During the familiarization period, subjects are instructed to be-
come familiar with the multi-tasking framework used in the experiment. Written instructions are
provided to the subject (see Appendix A.5). These instructions are a bulleted, written description
of the tasks described in Section 5.3.5. The experimenter also verbally describes the tasks as the
subject reads through the written document. The reason for providing both a written and verbal
instructions for the task are to maximize the chances that a subject understands the way the frame-
work works. After completing a 2-minute warmup task for the multi-tasking framework, subjects
are encouraged to ask any questions they may still have. They are informed that if they have any
doubts or uncertainties about the tasks, they should raise doubts at this point, as the experimenter
will not be able to answer questions once the main experiment begins.

During both the familiarization period and prior to the stress exercise, it is emphasized to the
subjects that the framework is points driven – their goal is to accrue as many points as possible –
and that they will be awarded points for correct answers while having points deducted for incorrect
answers or missed responses. It is particularly emphasized to the subjects that they must be as fast
and accurate on ALL of the tasks in order to achieve as high a score as possible; we placed extra
emphasis on this after we observed subjects tending to focus on only one or two modules in our
pilot studies.

First rest period. Prior to the first rest period, subjects are instructed to make themselves
as comfortable as possible in the chair. They are instructed to relax as much as possible, while
completing the simple task of writing down all animals in the video. Subjects were instructed
to simply identify the broad category of animal, as though they were describing the animals to a
small child (e.g., fish, shark). Since the intent of this task is simply to stop subjects from ruminating
on non-experiment-related thoughts, we wanted to avoid subjects worrying about identifying the
specific species of animal.

Typing samples. Prior to each typing sample, subjects were asked to ensure that the chair and
keyboard were still comfortable for them. For all typing samples, subjects were instructed to type
at a normal pace. It was stressed to subjects that this was neither an accuracy contest nor a race,
and that it is their natural typing rhythm that we are interested in.

VAS forms. For both VAS forms (short-form STAI and NASA-TLX), subjects were instructed
to make a single vertical mark when responding to the questions. We discovered in pilot testing
that some subjects had a tendency to “color-in” their response by making multiple vertical marks.
This made it quite difficult to score the forms, so we explicitly asked our subjects to make a single
vertical mark.

Second rest period. Prior to the second rest period, subjects were instructed to once again
make themselves as comfortable as possible in the chair. Again, they were instructed to relax as
much as possible. Subjects were asked to control their breathing by making their breaths as long
and deep as possible.
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Chapter 6

Question 0: Did the stressor work?

Before we dive into the three major questions of the thesis, we must first answer a critical question:
did the stressor work? The objective of this thesis is to ascertain the extent to which an affective
state – stress – can be detected through changes in typing rhythms. It would not be meaningful to
address this objective without first considering whether our subjects were in the expected affective
states when they provided their typing samples.

If our stressor was successful, we would expect to see significant changes in the physiolog-
ical and psychological measures we collected in the experiment. Specifically, we would expect
to see elevated levels of blood pressure, decreased heart-rate variability measures, and elevated
psychological inventory scores. We would also expect to see subjects exhibiting return-to-baseline
behavior in the recovery session. That is, with the stressor removed, we expect subjects to revert
to their initial baseline scores on the collected measures.

We start with an analysis of the physiological and psychological measures that most directly
answer the question of whether the stressor worked. We will explore these changes both in aggre-
gate and also examine the most extreme cases. We then present a brief aggregate analysis of the
typing data, leaving the detailed analysis to the next three chapters – one for each major question
in the thesis.

6.1 Aggregate changes in physiological and psychological mea-
sures

Of the data that we have collected, the data that most directly answer the questions about the
affective state of our subjects are the physiological and psychological measures.

The physiological data analyzed are the heart-rate-variability (HRV) measures – consisting of
the median R-R interval and SDRR (standard deviation of R-R interval) – and the blood pressure
measures – consisting of systolic and diastolic blood pressure, mean arterial pressure, and pulse
rate. As previously mentioned in Chapter 4, we excluded respiration data from analysis because
of significant issues from movement artifacts and because we issued directions to our subjects to
explicitly control their breathing during the second rest period.

The psychological measures include responses to the short-form STAI and the NASA-TLX,
which measure anxiety and workload, respectively.

HRV measures are computed for 5-minute intervals in each of the baseline, stress, and recovery
periods. For each measure, we then average the values for all intervals in a period to arrive at an
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average value for that period. Blood pressure measures for each period are likewise obtained by
averaging all readings within that period.

For the STAI and NASA-TLX data, a subject’s responses to the inventories after the first rest
period, the stressor exercise, and the second rest period were used as the baseline, stress, and
recovery period values, respectively.

6.1.1 Statistical testing
The objective of our statistical testing is to determine whether there are statistically significant
changes in the physiological and psychological measures between the baseline, stress, and recovery
sessions. A particular concern we wish to mitigate is the effect of performing multiple statistical
tests. Doing so requires upward correction of all obtained p-values, based on the number of tests
performed, to avoid inadvertently increasing the false-detection rate; most simply this can be done
with a Bonferroni correction (Miller, 1981).

The easiest way to mitigate the effects of multiple testing is to reduce the number of statistical
tests run. Our objective is to run the broadest possible tests first. If these tests indicate that there is
no significant result, we can stop at that point; by stopping early, we do not run further statistical
tests, which lowers the required Bonferroni correction. If the broadest tests are significant, then
we proceed with the next round of tests, which are more focused. Again, if this round of tests are
not significant, we can stop early. If they are significant, we proceed to the most detailed round of
tests. One can picture this process as an inverted-pyramid scheme. The broadest test is run first
and each significant test causes us to run a narrower test until a test is either not significant or the
narrowest possible test has been run.

In the context of our analysis, the broadest possible test is a MANOVA (multivariate analysis of
variance). When a MANOVA is applied to a given set of measures, we are examining whether there
are any changes in any of the measures between the neutral, baseline, and recovery conditions. If
a MANOVA is not significant, we are assured that none of the measures in the set significantly
shifted between the neutral, baseline, and recovery conditions; a non-significant MANOVA rules
out any changes in any of the measures. On the other hand, a significant MANOVA does not reveal
the extent of the changes. It could be that all measures significantly vary between all the conditions
or it could be only a single measure varying between two of the three conditions.

Once a significant MANOVA has been obtained, we run a series of ANOVAs (analysis of vari-
ance) to hone in on which changes occurred. An ANOVA examines whether a particular measure
(e.g., systolic blood pressure) differs significantly between the baseline, stress, and recovery con-
ditions. If an ANOVA is not significant, we are assured that the measure did not vary significantly
between any of the three conditions. A significant ANOVA, however, does not indicate which of
the conditions differed. It could be that all three sessions differ from each other significantly or it
could be only two out of the three conditions that differ significantly.

When a significant ANOVA is obtained, we proceed to the most detailed series of tests, a set
of four paired t-tests for a given measure. The t-tests compare 1) baseline vs. stress, 2) stress vs.
recovery, 3) baseline vs. recovery, and 4) combined baseline and recovery vs. stress to determine
which of these conditions are significantly different from one another. The paired t-tests are the
most fine-grained analysis of this data that we can statistically perform. They indicate whether or
not the measure differed significantly between two specific conditions.
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6.1.2 MANOVAs
We performed three different repeated-measure MANOVAs, one for 1) HRV data, 2) blood pres-
sure data, and 3) NASA-TLX data; no MANOVA is performed for the STAI data as the instrument
produces a single score. We opted to conduct three separate MANOVAs instead of a single, large,
joint MANOVA because the large number of covariates required for fitting the joint MANOVA
would have been problematic both statistically and computationally. Moreover, conducting three
separate MANOVAs allows us to identify which particular types of data differ between neutral and
stressed states.

For each set of measures, Mauchly’s test for sphericity was performed (Maxwell and Delaney,
2004, p.542). Sphericity is an underlying assumption for a repeated-measures MANOVA. It refers
to the equal variance assumption when examining the differences between each of the time points
at which measures are taken. In our case, there are three time points: 1) initial neutral baseline, 2)
stressed, and 3) recovery neutral baseline. When this assumption is violated, the MANOVA results
can be inaccurate; this can be easily remedied through either a Greenhouse-Geisser correction
(Maxwell and Delaney, 2004, p.543), which adjusts the degrees of freedom in the MANOVA
to compensate for the violation of sphericity. Our goal in checking for sphericity is merely to
determine whether we need to undertake the correction. In almost all the analyses, we found that
sphericity was violated – Mauchly’s test was highly significant (p < 0.001). In the instances where
it was violated, we employed the Greenhouse-Geisser correction. As an analogy, one can think of
this process as checking whether a required pre-condition is met (e.g., Does the car have gas?); if
the pre-condition is not met, then a correction must be taken (e.g., fill up the tank).

There are a number of statistics used to assess the significance of MANOVAs. The four most
common statistics are Pillai’s statistic, Wilks’ statistic, Lawley-Hotelling’s statistic, or Roy’s great-
est root (Maxwell and Delaney, 2004, p.721). For the sake of brevity and clarity, we restrict our-
selves to presenting our results with Pillai’s statistic. The nature of our results does not change if
any of the other three statistics are used.

6.1.3 ANOVAs
A repeated-measures ANOVA was performed for each physiological and self-reported measure.
There are 13 such measures: four blood pressure readings, 2 HRV readings, 1 STAI score, and
6 NASA-TLX scores. The purpose of the ANOVAs is to examine whether there are significant
differences between the baseline, stress, and recovery sessions. Note that a significant ANOVA
test does not reveal which of the three sessions are different, merely that at least two of them are
different. To pinpoint the sessions that are different, we turn to paired t-tests.

6.1.4 Paired t-tests
Four paired t-tests were performed for each physiological and self-reported measure. The purpose
of the t-tests is to allow us to determine precisely which sessions are significantly different from
each other. The four tests compare: 1) the initial baseline vs. stress sessions (AB), 2) the recovery
baseline vs. stress sessions (BA), 3) the two baseline sessions against each other (AA), and 4) the
average of the baseline and recovery sessions vs. the stressed session (ABA).

As we are performing numerous paired t-tests (13 measures × 4 tests/measure = 52 tests) in
each analysis, we need to employ a correction factor to ensure that the desired false discovery rate
is respected. In this work, we use a significance value of α = 0.05, which directly corresponds to a
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false discovery rate of 5%. The simplest way to ensure the false discovery rate remains at 5% is to
divide the obtained p-values by the number of statistical tests conducted. This technique is known
as a Bonferroni correction (Maxwell and Delaney, 2004, p.202). Because we perform 52 tests per
analysis, we obtain a corrected significance level of α′ = 0.05/52 = 0.000962. As such, we only
claim statistical significance when p < α′ = 0.00962, instead of when p < α = 0.05, as would be
typical.

6.1.5 Results
Figure 6.1 shows the mean physiological and self-reported measures for subjects in the baseline,
stress, and recovery sessions. Note that all measures are expected to increase with stress with the
exception of HRV measures and Performance (NASA-TLX), which are expected to be lower. It is
further expected that recovery values will not constitute a full return to baseline.

The results almost entirely meet expectations. All measures increase/decrease as expected
between the initial baseline and the stressed sessions. The measures then decrease/increase toward
the initial baseline values, but do not make a full return. The sole exception is in SDRR, where
subjects actually experience a higher SDRR in the recovery session than in the baseline session.
A possible explanation for this phenomenon is that subjects are asked to perform a deep-breathing
exercise for the entirety of the second rest period; in the first rest period, subjects are asked to
watch a video and perform a trivial task (write down all the animals that appear).

MANOVAs for blood pressure, HRV, and NASA-TLX data were all highly significant (p <
0.001), indicating that there are significant changes in at least one measure in each group between
at least two of the three conditions (baseline, stress, recovery).

For all three MANOVAs, Mauchly’s test for sphericity was significant (blood pressure: p <
0.001, ε = 0.85, HRV: p = 0.002, ε = 0.92, NASA-TLX: p = 0.001, ε = 0.90). Accord-
ingly, we use a Greenhouse-Geisser correction when conducting the MANOVA. Results were
significant for blood pressure (Pillai’s trace= 0.84, F (1.70, 96.9) = 390.86, p < 0.001), HRV
(Pillai’s trace= 0.67, F (1.84, 104.88) = 143.16, p < 0.001), and NASA-TLX (Pillai’s trace
= 0.94, F (1.80, 101.7) = 1026.50, p < 0.001).

Table 6.2 shows the p-values resulting from the paired t-tests; the significance results are sum-
marized in Table 6.3. Note that every single measure is highly significantly different under AB,
BA, and ABA comparisons. This strongly indicates that our experiment was successful, in aggre-
gate, as our subjects’ states are different when comparing neutral and stressed conditions. Also
note that some measures are significantly different between the two baselines while others are not.
For the measures that are not different, it would appear that subjects properly returned to baseline
after the administration of the stressor. In aggregate, it appears that subjects did not fully return to
baseline after the stressor. However, since all tests were highly significant for the BA comparison,
we can conclude that there was some return to baseline, just not a complete one.

6.2 Identifying potential non-responders
So far, we have seen that the aggregate changes in physiological and psychological data are entirely
within our expectations. While this supports our claim that our subjects, in aggregate, were in the
appropriate affective states when they provided their typing samples, it does not directly address
the claim that every single subject was in the appropriate affective states. It could be plausible, for
example, that a large percentage (say, 90%) of subjects did respond, but that the remainder were
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Measure DF F-statistic p-value < 0.001?
Sys 2/230 300.98 X
Dia 2/230 251.93 X
MAP 2/230 358.65 X
PR 2/230 107.30 X
Median R-R 2/230 101.97 X
SDRR 2/230 152.85 X
STAI 2/230 370.81 X
Mental 2/230 1205.45 X
Physical 2/230 162.25 X
Temporal 2/228 1523.55 X
Effort 2/230 837.49 X
Performance 2/230 117.80 X
Frustration 2/230 162.83 X

Table 6.1: ANOVA results. Degrees of freedom, F-statistic, and p-values for repeated-measure
ANOVAs run on each physiological and self-reported measure. Note that one subject (s206) was
omitted from the Temporal ANOVA due to missing data. Note that all obtained p-values were
below 0.001, indicating highly significant changes for each measure.

not responsive to the stressor. Such non-responders could, for example, be seat-fillers who are
merely interested in collecting the compensation for the study without actually making an honest
attempt to participate.

In a perfect world, we would address this issue directly, in one of two ways. First, we could
have some well-defined set of thresholds that define whether a subject is neutral or stressed. For
each subject, we could then ascertain whether that subject was in the appropriate states at the rel-
evant points in the experiment. Unfortunately, subjects have widely varying individual differences
in their physiological and psychological manifestations of stress. Consequently, to the best of our
knowledge, such thresholds do not exist.

Second, we could attempt to perform a statistical analysis to demonstrate that each subject has
statistically significant physiological and psychological differences between neutral and stressed
conditions. Unfortunately, this too is not possible. The issue here is that we have very few data
points on each measure for each subject. For example, the STAI and NASA-TLX forms are admin-
istered once in each condition, providing a grand total of one data point per subject. Performing a
meaningful statistical analysis would require at least a small handful of data points for each sub-
ject. This would, in turn, require us to have brought subjects back for multiple sessions, vastly
expanding the experiment beyond our available resources.

With the two direct approaches ruled out, we must instead use an indirect approach. This
approach relies on establishing two facts. First, that even low-responding subjects still responded
to stress. Second, that there are no subjects who are consistent low-responders across all measures.
If these two facts hold, we are forced to conclude that all subjects responded on some measures to
the stressor.

To establish that low-responding subjects still responded to stress, we repeat the statistical
analyses that we have just showcased, but focus on the lowest responding quartile for each measure.
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Measure AB BA AA ABA
Sys 7.17× 10−44 1.17× 10−24 1.32× 10−23 1.62× 10−37

Dia 1.27× 10−42 1.14× 10−27 1.95× 10−9 5.17× 10−39

MAP 3.91× 10−48 4.45× 10−31 1.24× 10−18 3.81× 10−43

Pulse 4.17× 10−24 9.88× 10−19 2.92× 10−2 1.14× 10−23

Median R-R 2.69× 10−25 6.71× 10−16 8.09× 10−4 1.71× 10−22

SDRR 5.34× 10−12 3.06× 10−28 9.47× 10−21 2.42× 10−24

STAI 3.53× 10−43 3.47× 10−38 2.98× 10−8 7.96× 10−43

Mental 2.18× 10−78 2.74× 10−61 1.05× 10−2 2.96× 10−72

Physical 4.46× 10−28 2.52× 10−22 2.10× 10−6 2.30× 10−26

Temporal 1.27× 10−74 4.18× 10−69 2.43× 10−3 1.45× 10−73

Effort 1.25× 10−68 3.78× 10−56 6.39× 10−4 4.40× 10−67

Performance 9.24× 10−23 1.03× 10−22 6.28× 10−1 4.99× 10−25

Frustration 9.67× 10−27 4.28× 10−26 5.63× 10−1 5.03× 10−28

Table 6.2: Paired t-test p-values. P-values resulting from paired t-tests for each physiological and
self-reported measure. Comparisons are made between the initial baseline and stressed sessions
(AB), between the recovery baseline and stressed sessions (BA), between the two baseline sessions
(AA), and between the average of the two baseline session and the stressed session (ABA). See
Table 6.3 for a list of outcomes. While it is more common to report p-values as being below 0.001,
in lieu of reporting the actual number, we report the actual obtained p-value to underscore the
highly significant nature of our tests.

For example, we identify the lowest 25% of responders, as measured by systolic blood pressure,
and repeat our battery of MANOVAs, ANOVAs, and paired t-tests to establish this group still
responded to the stressor. This will be repeated for each of the 13 measures we have collected.

To establish that there are no consistent low-responders across all measures, we perform a
rank-based analysis of our subjects’ responses. On each measure, we will rank our subjects from
most-responsive (rank 1) to least-responsive (rank 116) – that is, largest change to smallest change.
For each subject, we will then compute the average rank across all measures. We will show that
no subject has an average rank in the lowest 25%; that is, we do not have any subjects who are
consistent low-responders across all measures. Rather, even if a subject shows little or no response
to one measure, s/he will have a significant response in other measures.

6.2.1 Analyzing the lowest responders
We must start by defining what is means for a subject to be low-responding on one of the 13
measures of interest. In lieu of defining a strict threshold for response, we take a more pragmatic
approach by defining the 25% of the subject population that showed the lowest response on a given
measure to be the low-responding subjects for that measure. As there are a total of 116 subjects,
there are exactly 116 ∗ 0.25 = 29 low-responding subjects in the bottom 25%.

For each of the 13 measures of interest, we then repeat the statistical analyses presented in
Section 6.1 using only the 29 lowest-responding subjects for that measure. We start examining
the results within a given measure. That is, we ask the questions: Do the 29 lowest-responding
subjects, as identified by systolic blood pressure, still show a statistically significant change on
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Measure AB BA AA ABA
Sys HS HS HS HS
Dia HS HS S HS
MAP HS HS HS HS
Pulse HS HS NS* HS
Median R-R HS HS S HS
SDRR HS HS HS HS
STAI HS HS S HS
Mental HS HS NS* HS
Physical HS HS S HS
Temporal HS HS NS* HS
Effort HS HS S HS
Performance HS HS NS HS
Frustration HS HS NS HS

Table 6.3: Test result summary. Results of paired t-tests for each of the physiological and self-
reported measures. Comparisons are made between the initial baseline and stress sessions (AB),
between the recovery baseline and stress sessions (BA), between the two baseline sessions (AA),
and between the average of the two baseline sessions and the stress session (ABA). A significance
value of α = 0.05 was used; after a Bonferroni correction, the corrected significance level is α′ =
0.05/52 = 0.000962. Entries in the table are either NS (not significant at the 0.05 level), NS* (not
significant, but only after the Bonferroni correction), S (significant after Bonferroni correction),
and HS (highly significant, p < 10−10). The pilot subjects are dropped in this analysis, leaving us
with 116 subjects; all data points in a session are used for BP and HRV data.

systolic blood pressure? How about when median R-R is used instead of systolic blood pressure?
How about STAI scores? And so on, for all 13 measures.

Table 6.4 shows the results of the analysis for each of the 13 measures. The left-most col-
umn lists the measure used to identify the 29 lowest-responding subjects. The MANOVA column
contains the significance results for the MANOVA applied on the group containing that measure.
For example, for systolic blood pressure, the MANOVA is performed using the 4 blood pressure
measures since systolic blood pressure is a blood pressure measure. Likewise, for median R-R, the
MANOVA is performed using the 2 HRV measures. The ANOVA column contains the significance
results for the ANOVA applied on the measure in the left-most column. If systolic blood pressure
is used to identify the lowest-responding subjects, the ANOVA is performed on systolic blood
pressure. Finally, the four right-most columns depict the t-test results, on the measure, between
the listed conditions. If systolic blood pressure is used to identify the lowest-responding subjects,
then the paired t-tests are performed on systolic blood pressure.

Note that, without exception, all of the MANOVAs are still significant even when examining
only the 25% lowest-responding subjects. 11 of the 13 ANOVAs are still significant; the exceptions
are pulse rate (PR) and Frustration. Likewise, excepting pulse rate and frustration, all of the neutral
vs. baseline t-tests are still significant. Therefore, we can conclude that for at least 11 of the 13
measures, even the lowest-responding subjects still responded.

We now turn our attention to pulse rate and frustration, which had non-significant ANOVAs

49



Measure MANOVA ANOVA AB BA AA ABA
Sys < 0.001 < 0.001 < 0.001 0.013 < 0.001 < 0.001
Dia < 0.001 < 0.001 < 0.001 < 0.001 0.543 < 0.001
MAP < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.001
PR < 0.001 0.036 0.670 0.054 0.056 0.099
Median R-R < 0.001 < 0.001 < 0.001 < 0.001 0.004 < 0.001
SDRR < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.001
STAI N/A < 0.001 < 0.001 < 0.001 0.032 < 0.001
Mental < 0.001 < 0.001 < 0.001 < 0.001 0.224 < 0.001
Physical < 0.001 < 0.001 < 0.001 0.001 0.467 < 0.001
Temporal < 0.001 < 0.001 < 0.001 < 0.001 0.545 < 0.001
Effort < 0.001 < 0.001 < 0.001 < 0.001 0.921 < 0.001
Performance < 0.001 < 0.001 < 0.001 < 0.001 0.104 < 0.001
Frustration < 0.001 0.281 0.647 0.161 0.286 0.238

Table 6.4: P-value results for the lowest-responding quartile. For each measure, the 25%
lowest-responding subjects were identified. Then, we repeated the MANOVA, ANOVA, and paired
t-test evaluations using only this smaller subset. For example, in the first line, the 25% lowest-
responding subjects were identified, as measured by systolic blood pressure. Using this subset, we
then repeated the statistical analyses. A MANOVA was conducted for the blood pressure measures
(as systolic blood pressure is a blood pressure measure), an ANOVA was conducted for systolic
blood pressure, and finally 4 paired t-tests were conducted for systolic blood pressure. Note that
aside from PR (pulse rate) and Frustration, all baseline vs. stress comparisons are significant. This
means that even the lowest-responding 25% of subjects still responded. PR and Frustration are
examined further, as detailed in the text.

and neutral vs. stress t-tests. What we have observed is that, in aggregate, the 25% of lowest-
responding subjects on pulse rate do not significantly respond on pulse rate and the 25% of lowest-
responding subjects on frustration do not significantly respond on frustration. One might wonder:
Do these two sets of subjects respond on other measures?

The answer is that they do. Table 6.5 presents the t-test analyses for the lowest 25% of respon-
dents, as measured by pulse rate. For simplicity’s sake, we present only the t-test analyses. With
the exception of median R-R, which is very closely tied to pulse rate, the other neutral vs. stress
t-tests are significant. This indicates that this group of subjects responded to the stressor on almost
all measures collected in the study.

Likewise, Table 6.6 presents the fuller set of analyses for the lowest 25% of respondents, as
measured by frustration. Note that all of the performed neutral vs. stress t-tests are statistically
significant.

6.2.2 Rank-based analysis
We have seen in the previous section that isolating the 25% of lowest responders, by each measure,
still results in significant changes on all other measures. We can therefore conclude that any subject
who is outside of the 25% of lowest responders (i.e., in the top 75% of responders), must have
responded to the stressor.

50



Measure AB BA AA ABA
Sys < 0.001 0.001 < 0.001 < 0.001
Dia < 0.001 < 0.001 0.004 < 0.001
MAP < 0.001 < 0.001 < 0.001 < 0.001
PR 0.6697 0.0543 0.0562 0.0987
Median R-R 0.0238 0.1569 0.4919 0.0307
SDRR < 0.001 < 0.001 < 0.001 < 0.001
Score < 0.001 < 0.001 0.0037 < 0.001
Mental < 0.001 < 0.001 0.1741 < 0.001
Physical < 0.001 < 0.001 0.0442 < 0.001
Temporal < 0.001 < 0.001 0.3525 < 0.001
Effort < 0.001 < 0.001 0.1474 < 0.001
Performance < 0.001 < 0.001 0.8622 < 0.001
Frustration < 0.001 < 0.001 0.3305 < 0.001

Table 6.5: Paired t-test p-values, lowest 25% of responders as measured by pulse rate. The
lowest 25% of responders, as measured by pulse rate, were identified. Then, 4 paired t-tests were
conducted for all 13 collected measures. Note that all neutral vs. stress tests are significant,
excepting those for pulse rate and median R-R; these two measures are closely tied as they both
measure heart beat rate. These results indicate that the lowest 25% of responders, as measured by
pulse rate, still demonstrate a significant stress response by 11 of the 13 measures.

The question remains: On average, are all subjects actually outside of the 25% of lowest re-
sponders? If this were the case, then we can conclude that all subjects must have responded to
the stressor. To assess this, we start by rank-ordering our 116 subjects from most responsive (rank
1) to least response (rank 116) on each of the 13 measures (systolic blood pressure, median R-R,
STAI score, etc.). We then compute the average rank for each subject over the 13 measures. Note
that a (hypothetical) subject who is the most responsive on every measure would have an average
rank of 1, while a subject who is the least responsive on every measure would have an average rank
of 116. The cutoff for the bottom 25% of responders is rank 87, since that subject must be in the
top 75% (116 * 0.75 = 87).

Figure 6.2 depicts the average rank for our subjects. Note that all subjects have an average
rank above 87. That is, there are no subjects who are consistently in the bottom 25% of responders
across all measures. The lowest rank belongs to subject s287, who has an average rank of 80.5.

6.3 Aggregate changes in typing measures
So far in this chapter, we have explored the changes in our subjects’ psychological and physiologi-
cal measures when exposed to stress. We have conducted analyses to conclude that our subjects did
respond to the stressor, in the expected manners. Having seen this, we eagerly turn our attention to
the changes in typing measures.

While we will defer the deep-dive analyses to the next three chapters of this thesis, we now
perform a cursory examination of the changes in our subjects’ typing. For the purposes of this
section, we restrict our attention to three measures: average hold time, average keydown-keydown
latency, and number of errors made for each correctly-typed repetition (recall that subjects are
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Figure 6.3: Typing measure changes. Mean hold times, keydown-keydown (DD) latencies, and
errors per correctly typed repetition across all subjects in the baseline, stress, and recovery sessions.
Error bars represent one standard error.
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Measure AB BA AA ABA
Sys < 0.001 < 0.001 < 0.001 < 0.001
Dia < 0.001 < 0.001 0.0370 < 0.001
MAP < 0.001 < 0.001 < 0.001 < 0.001
PR < 0.001 < 0.001 0.8112 < 0.001
Median R-R < 0.001 < 0.001 0.7260 < 0.001
SDRR 0.0023 < 0.001 < 0.001 < 0.001
Score < 0.001 < 0.001 0.0462 < 0.001
Mental < 0.001 < 0.001 0.2553 < 0.001
Physical < 0.001 < 0.001 0.0119 < 0.001
Temporal < 0.001 < 0.001 0.1775 < 0.001
Effort < 0.001 < 0.001 0.0646 < 0.001
Performance 0.0146 0.0035 0.8642 0.0049
Frustration 0.6471 0.1606 0.2861 0.2377

Table 6.6: Paired t-test p-values, lowest 25% of responders as measured by Frustration. The
lowest 25% of responders, as measured by Frustration, were identified. Then, 4 paired t-tests were
conducted for all 13 collected measures. Note that all neutral vs. stress tests are significant, except-
ing those for Frustration. These results indicate that the lowest 25% of responders, as measured by
pulse rate, still demonstrate a significant stress response by 12 of the 13 collected measures.

prompted to restart a repetition if they make a typographical error).
Our preconceptions about typing suggest that subjects would have markedly shorter hold and

latency times, while also having a markedly higher number of errors when under stress. Figure 6.3
shows the changes in these three measures. Careful examination of the figure demonstrates that
our preconceptions are correct, but it is also apparent that the aggregate effect size is small. In fact,
the aggregate effect size is so small that statistical analyses are likely not relevant; even if these
aggregate effects were statistically significant, they are not meaningful.

Having seen fairly sizable changes in our subjects psychological and physiological measures,
it may come as a surprise that the typing measures seem to have hardly changed. We shall see that
the aggregation – averaging over all subjects – has completely smoothed over the actual changes
from stress. As we shall see in the next few chapters, there are indeed sizable changes in our
subjects’ typing as they are exposed to stress. However, these changes are highly individualized;
the effect of our aggregation is to make these changes seem almost nil.

6.4 Summary
We started the experiment expecting to see particular changes in the collected physiological and
psychological measures. It was expected that all blood pressure measures would rise with stress,
all heart-rate variability measures would fall, the STAI score would rise, and the NASA-TLX mea-
sures would rise, excepting Performance which would fall. Using a combination of MANOVAs,
ANOVAs, and paired t-tests, we found that these expectations were met. The expected changes
were observed in the collected measures when subjects transitioned from a neutral to stress state.
We also observed a partial recovery on every measure but SDRR; we attribute the unexpected
SDRR results to the fact that we instructed our subjects to concentrate on taking deep breaths
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during the second rest period.
In addition to observing the expected results in aggregate, we also saw that even the lowest-

responding subjects still responded to the stressor. We established this by demonstrating that even
the lowest-responding 25% of subjects, as given by any measure, still responded to at least 11 of
the 13 measures. Moreover, we saw that there are not consistently low-responding subjects; no
subjects are consistently in the lowest-responding 25%. Consequently, we are left to conclude that
all subjects must have significantly responded to the stressor in some fashion.

Having established that the stressor was effective for our subjects, we turn our attention to a
closer analysis of the collected typing data in the next chapter.
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Chapter 7

Question 1: Identifying markers for stress
on an individual level

We saw in the previous chapter that the experiment appeared to be successful – all subjects had
the expected physiological and psychological changes between their neutral, stress, and recovery
typing samples. We also saw, a bit surprisingly, that the changes in the typing data appeared to be
fairly minor. In this chapter, we perform a closer examination of the typing data; we shall see that
the diminished response was largely an artifact of aggregating over all subjects.

The three primary objectives for this chapter are to: 1) ascertain whether neutral and stressed
typing from the same subject can be differentiated, 2) to confirm that it is actually stress that effects
this differentiation and not a confounding variable like practice, and 3) to identify the markers that
facilitate this differentiation. Recall that markers are features of a subject’s typing data that differ
significantly between neutral and stressed typing.

We start by attempting to differentiate neutral and stressed typing by employing machine learn-
ing algorithms. More precisely, we show that a small sampling of off-the-shelf machine learning
techniques are able to reliably and successfully distinguish between neutral and stressed typing
from any given subject. We then turn our attention to the issue of practice in the collected typing
data; as previously alluded to in Chapter 5, this concern had a major influence on our experimental
design. Finally, we will use more traditional statistical analyses to reveal the markers that facilitate
successful classification.

7.1 Classification
We use two types of keystroke features in this thesis work: hold times (duration between the press
and release of a given key) and keydown-keydown latency times (duration between the pressing of
two consecutive keys). As our phrase contains 31 characters in total (including the Return key), we
thus have 31 hold times and 30 latency times. If the presence of stress causes changes in typing,
we would expect it to manifest in one or more of the keystroke features that we have collected.

As we saw at the end of Chapter 6, there are only minute changes in the aggregate hold and
latency times, despite marked changes in aggregate physiological and psychological measures. It
is natural to ask: what about changes on a individual level (i.e., not aggregated across all subjects)?
We begin our exploration of this question by attempting to use machine learning (ML) algorithms
to differentiate between neutral and stressed typing within the same subject. We opt to employ
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Figure 7.1: Data selection methods. The two employed methods for data selection in our evalua-
tion. Blue dots represent training data and red dots represent testing data.

Classification task Selection method
Baseline
training/testing
reps

Stress
training/testing
reps

Recovery
training/testing
reps

AB Sequential Reps 1-40/41-80 Reps 1-40/41-80 None/None
BA Sequential None/None Reps 1-40/41-80 Reps 1-40/41-80
ABA Sequential Reps 1-20/21-40 Reps 1-40/41-80 Reps 1-20/21-40
AA Sequential Reps 1-40/41-80 None/None Reps 1-40/41-80
AB Random 40/40 random reps 40/40 random reps None/None
BA Random None/None 40/40 random reps 40/40 random reps
ABA Random 20/20 random reps 40/40 random reps 20/20 random reps
AA Random 40/40 random reps None/None 40/40 random reps

Table 7.1: Classification regimes. Repetitions used in the training and test set in each of the eight
classification regimes used in this chapter. Note that the training set and test set are always disjoint
and that all random draws are without replacement.

ML algorithms first because they are readily able to handle non-linear and multi-feature changes,
even if we are not necessarily aware of the nature of these changes; statistical approaches, which
we will also employ later, often require significant work to handle these complexities. Effectively,
ML algorithms act as a more stringent filter. If there is something to be found, ML algorithms are
more likely to reveal it than statistical approaches; if they do not find anything, it would provide
strong evidence that there is simply nothing to find (i.e., there are no changes between neutral and
stressed typing).

At a high level, the ML algorithms we employ all work in a similar fashion. The primary
inputs to each algorithm are repetitions of neutral typing and repetitions of stressed typing from
the same subject. These input data are referred to as the training data. Each algorithm then learns
a model for neutral and stressed typing from this subject. Naturally, different algorithms will form
different models, which may lead one algorithm to perform better than another on a given subject.
To evaluate the goodness of these models, we provide each learned model with some testing data,
consisting of new repetitions of neutral and stressed typing from the given subject. It is critical
to note that the training and testing data are disjoint; the goodness of the learned models is thus
contingent on their ability to predict whether never-before-seen repetitions from the subject were
produced in a neutral or stressed state. This disjointness is critical. It ensures that the algorithm
has actually learned something general about the subject’s typing in these two states; it is not just
regurgitating memorized answers.

7.1.1 Classification regimes
In this chapter, we will focus on eight different classification regimes. These are the cross-product
of four classification tasks and two methods for selecting training and testing data. Classification
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tasks are defined by the sessions of typing data that they compare. The four tasks are baseline
neutral vs. stress (AB), stress vs. recovery neutral (BA), joint baseline and recovery neutral vs.
stress (ABA), and baseline neutral vs. recovery neutral (AA). For each subject, we hope to see high
classification accuracy (the rate of successful prediction) when comparing neutral and stressed
sessions. We would hope to see lower accuracies when comparing the two neutral sessions against
each other.

The two methods for selecting training and testing data are illustrated in Figure 7.1: sequential
– where the training data and testing data are consecutive in the session – and random – where
training data and testing data are drawn randomly from the repetitions in a session. We would
expect that choosing consecutive training and testing data would result in lower accuracies than
when choosing these data randomly. This is because any local trends in the data (e.g., a few
consecutive repetitions with some unusual typing pattern) will be naturally accommodated by the
random selection method, as there will likely be repetitions with this unusual behavior in both the
training and testing set. Such trends will not necessarily be accommodated by the consecutive
selection method, as all repetitions with the pattern may occur in only the training data or in only
the testing data.

When comparing two sessions against each other (i.e., for AB, BA, and AA classification), we
always use 40 repetitions of each session for training and 40 repetitions of each session for testing,
regardless of the data selection method. With a sequential data selection method, we use the first 40
repetitions of each session for training and the remaining 40 repetitions for testing. With a random
data selection method, 40 repetitions of each session are randomly chosen, without replacement,
for training and the remaining 40 repetitions are used for testing. To alleviate any bias due to a
particularly good or bad random draw, we average our results over 100 random draws. That is, 100
random draws will be conducted, 100 different models will be learned, and the presented results
will be the average accuracy over the 100 resultant accuracies.

When performing joint baseline and recovery neutral vs. stress comparisons (ABA task), we
use 20 repetitions of each of the neutral sessions and 40 repetitions of the stress session for train-
ing. This split ensures that the classifier is provided with an equal number of neutral and stress
repetitions. Similarly, 20 repetitions of each neutral session and 40 repetitions of the stress session
are used for testing. With a sequential data selection method, we use the first 20 repetitions of each
neutral session for training, along with the first 40 repetitions of the stress session. The testing
data are comprised of repetitions 21-40 in each neutral session and repetitions 41-80 for the stress
session. With a random data selection method, we form the training data by taking 20 repetitions
chosen at random, without replacement, from each neutral session along with 40 randomly-chosen
repetitions from the stress session. The testing data are likewise formed, taking care to ensure that
the training and testing data are disjoint. As with the other classification tasks, we present average
results over 100 draws.

Table 7.1 contains a summary of the used repetitions for training and test data in each of the
eight classification regimes.

7.1.2 Classifiers
We employ three classification algorithms (classifiers) in this chapter: 1) random forest (RF),
2) support-vector machine (SVM), and 3) lasso-regularized logistic regression (LASSO). These
algorithms were chosen due to their readily-available off-the-shelf implementations, their relative
simplicity, and their reputation for excellent performance on real-world problems.
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Note that our goal in this work is not to find or create an algorithm that maximizes the classifi-
cation accuracy on one or more of the eight classification regimes we have identified. Rather, we
simply seek to demonstrate that sufficient differences exist between neutral and stressed typing to
permit successful classification. We presume that any results obtained in this section could be im-
proved upon with sufficient effort. In accordance with this philosophy, we have chosen to use the
default settings – as chosen by the software packages we employ – for each of the three classifiers
that we use.

We provide here a brief description of the three classifiers employed in this chapter. Our goal
here is to merely convey the high-level idea behind each classifier. We would direct the interested
reader to the cited materials for the detailed mathematics behind these classifiers.
Random forest. The random forest algorithm was first introduced by (Breiman, 2001). A ran-
dom forest is comprised of many random decision trees. In order to train a single random tree, a
bootstrap sample of size n is first drawn from the existing data with replacement, where n is the
number of data points in the training data. The random tree is a decision tree which is trained
by considering

√
p randomly chosen features as candidates for each split, instead of all features

(where p denotes the total number of features). The random forest classifier is then created by
combining many random trees via a majority vote; we use 500 random trees in our work. We use
the randomForest function within the R package randomForest (version 4.6-2) (Liaw and
Wiener, 2002) in our implementation.
Support-vector machine. The current formulation of a support vector machine (SVM) was first
introduced by (Boser et al., 1992). In an SVM, the objective is to find a hyperplane which not
only separates the data, but which does so with a maximal margin. The margin is defined as the
minimum distance between any data point and this separating hyperplane. Of course, it is not
always possible to separate the data completely (as that would require data that could be classified
perfectly), so typically a linear penalty, C × ψ, is assigned, where C is a chosen constant and ψ
is the amount by which a data point falls short of achieving the margin. A larger value of C more
harshly punishes violations of the margin. The goal then becomes maximizing the margin while
ensuring that not too many points violate the margin by too large an amount. For our version of
the classifier, we employ the commonly-used RBF (radial basis function) kernel which permits
non-linear relationships to be established and set C = 1, as is default setting for the ksvm function
in the R package kernlab (version 0.9-25) (Karatzoglou et al., 2004).
Logistic regression. Logistic regression is a classical machine learning algorithm which still sees
regular use. It presumes that the likelihood of a given data point being generated under stress is
related to a linear, weighted “score” (akin to linear regression). It then applies a logistic function
to turn these numeric scores to probabilities that a given data point was generated under stress.
We use a slightly modified version with lasso (L1) regularization, which encourages small weights
to be zero (i.e., removing certain keystroke features from the score) (Hastie et al., 2009, p.125).
This is done by setting all weights with magnitude below some λ to be 0 while subtracting λ from
all larger weights. In our implementation, we use the cv.glmnet function from the R package
glmnet (version 2.0-13) (Simon et al., 2011); this function automatically selects the optimal value
of λ prior to running the algorithm.

7.1.3 Evaluation procedure
Our evaluation procedure is fairly straightforward: we evaluate each classifier, under each classi-
fication regime, for each subject. For classification regimes that involve sequential data selection,
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Classifier AB ABA BA AA
RF 76.64 72.14 71.83 84.87
SVM 73.67 69.66 70.04 81.06
Lasso 71.83 67.76 68.75 80.02

Table 7.2: Sequential classification accuracies. Classification accuracies are shown for each of
the four classification tasks for each of the three employed classifiers. The data selection method
was set to sequential to achieve these figures. Accuracies are aggregated over all subjects.

Classifier AB ABA BA AA
RF 89.47 80.96 86.04 93.67
SVM 85.56 76.79 82.06 89.68
Lasso 83.18 73.78 79.85 88.00

Table 7.3: Random classification accuracies. Classification accuracies are shown for each of the
four classification tasks for each of the three employed classifiers. The data selection method was
set to random to achieve these figures. Accuracies are aggregated over all subjects and over 100
random draws of data.

this means that we are learning 3 (classifiers) x 116 (subjects) = 348 classifiers for that regime.
Accordingly, a total of 348 classification accuracies will be obtained. For a regime that involves
random data selection, a total of 3 (classifiers) x 116 (subjects) x 100 (random draws) = 34,800
classifiers are learned for that regime. However, since we average over the 100 random draws, we
still obtain 348 classification accuracies in total.

7.1.4 Results and discussion
We first examine the results for each classifier, under each classification regime, while aggregating
over subjects. Table 7.2 depicts the accuracies for the sequential data selection method and Table
7.3 depicts the accuracies for the random data selection method. Note that a statistically significant
result (i.e., beating chance) requires an accuracy of 60%. This value is obtained by forming a one-
sided (greater) binomial 95% confidence interval with 80 total trials (the size of the test set) and
a null hypothesis of 50% accuracy. The smallest number of successes (i.e., correct classifications)
required for this confidence interval to not include the null hypothesis is the required number of
correct classifications to obtain above-chance accuracy. In our particular case, 48 correct classifi-
cations are required, corresponding to 60% accuracy. Regardless of the classification regime or the
classifier, we see that the average classification performance handily beats chance.

It is also worth noting that the Random Forest classifier uniformly dominates the other two
classifiers. That is, regardless of the classification task or data selection method, it out-performs
the other two classifiers. Accordingly, we will restrict our analysis for the remainder of the chapter
to only the Random Forest classifier; results are similar, but slightly worse for the other classifiers.

In comparing the results for the two data selection methods, we see that the random method
leads to markedly higher results than the sequential method. This is as expected, since the random
method is much more able to deal with local changes in typing; that is, if a subject has a few con-
secutive repetitions with a common deviation from typical typing, this can be easily accommodated
by the random selection method but not by the sequential selection method.
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Figure 7.2: Individual subject accuracies. Histograms of accuracies for individual subjects, as
obtained by the Random Forest classifier, are depicted for both the sequential (left) and random
data selection method (right) for the AB classification task. Accuracies for the random data selec-
tion method are averaged over 100 random draws of training and testing data. Vertical lines at the
60% mark in both histograms denote above-chance classification rates. Note that 61 of our 116
subjects (more than half) have classification accuracies above 90% in the random classification
task.

Another interesting observation is the manner in which the classification accuracies vary across
tasks. As expected, accuracies for the ABA task are lower than either the AB or BA task. Addi-
tionally, the AB accuracies are also higher than the BA accuracies. This suggests that the recovery
to neutral/baseline is incomplete – subjects are still slightly stressed despite undergoing a second
rest period. This agrees with the general trend of physiological and psychological measures, as
seen in Chapter 6. Quite surprisingly, we also see that the AA accuracies are considerably higher
than all other classifications. That means that it is easier to discriminate between baseline and
recovery typing than to discriminate between either neutral session of typing and stressed typing.
This suggests there may be some sort of external factor, such as practice, that is responsible for
this trend. For the moment, we will set this issue aside, but we will return to it shortly in Section
7.2.

Having seen that the overall accuracies, aggregated over all subjects, are quite good for Ran-
dom Forest, we delve down into subject-level accuracies. We wish to know whether the classifier
performed above chance on all subjects or if it merely excelled on some subjects while performing
at or below chance levels for others. Figure 7.2 depicts the per-subject accuracies for the classifier
for both sequential and random data-selection methods. We have chosen to depict the results for
the AB classification task only, as we have already seen that subjects do not fully recover by the
time the recovery typing sample is provided. Note that most classification accuracies are above
the chance mark (60%) for the sequential data selection method and all are above this mark for the
random data selection method. This confirms that above-chance classification is a general trend
across all subjects, not merely an artifact of a few high-performing outliers. Also noteworthy is the
fact that 61 out of 116 subjects (more than half) achieved a classification accuracy above 90% in
the random classification task.
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7.2 Ruling out practice as a potential confound
We saw in the prior section that there were unexpectedly high baseline vs. recovery (AA) classi-
fication accuracies. In fact, these accuracies are higher than those obtained when comparing data
from one or both of the neutral typing sessions against the data from the stress typing session. This
observation raises the question of whether a non-stress-related force is present in the data. The
most prominent such force, and one that we heavily considered as a potential confounding variable
(as noted in Chapter 5) is that of practice.

Practice, in the context of typing, is familiar to anyone who has had the “pleasure” of being
assigned (or forced to choose) a new password. Initially, the password is difficult to type; it feels
awkward, slow, and clumsy. With time, typing the password becomes increasingly easier, quicker,
and more fluent, until it is comfortable to type. Through repetition – i.e., with practice – the user’s
typing changes significantly.

If practice effects were prominent in the collected typing data, it might fully explain the high
AA classification accuracies. The classifier could effectively have learned to discriminate between
typing at various levels of practice. Therefore, we now turn our attention to ruling out practice as
a dominant effect in the collected typing data. We shall see that while some practice effects do
manifest in the collected data, these effects are fairly minimal. Moreover, these practice effects
can be accommodated – effectively “subtracted out” of the data – and doing so only has a minor
impact on our ability to discriminate between neutral and stressed typing data. That is, even with
the practice effect removed from the data, there remains a large signal in the data, which we
attribute to changes in stress state.

7.2.1 Quantifying practice effects
To address practice in the collected typing data, we must first quantify the magnitude of practice
in the data we have collected. Fortunately, the phenomena of practice is well studied in the social
and behavioral sciences. A standard approach in this literature is to use practice curves (Ritter and
Schooler, 2001) to numerically describe practice.

A practice curve is an exponentially decaying function, which can be described by the follow-
ing equation:

y =M +B · (x+ E)−β

which contains two variables, x and y, and four parameters (M , B, E, and β). Within the context
of our typing data, this equation expresses the length of a keystroke feature, y, as a function of
the number of repetitions of the phrase that a subject has typed, x. The four parameters also have
direct interpretations.

M is the predicted minimum amount of time required for the subject to type the password (on
average), even with an infinite number of practice repetitions. B is the “range of learning” which
predicts the total difference (in seconds) in the length of a keystroke feature between a state of zero
practice (i.e., fully unpracticed) and a state of infinite practice (i.e., fully practiced). E represents
the prior experience of a subject before he began our typing task, cast in terms of the number of
repetitions he has effectively already typed. A large value for E would indicate that a typist was
already fairly practiced at the task, perhaps due to being a skilled touch-typist, while a small value
for E indicates little prior experience. Finally, β is the learning parameter, which governs how
quickly a subject learns. A large value of β indicates that the subject learns rapidly.
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Figure 7.3: Two total typing time examples. Two subjects are depicted, with (left, s189) and
without (right, s290) a practice effect. In each plot, the total typing time for each repetition is
represented by a hollow circle. Vertical bars denote the boundaries between the warmup, baseline,
stress, and recovery sessions. A practice curve is also depicted; this curve is fitted using only
the data from the warmup and baseline sessions, to avoid potential contamination from the stress
typing data. Note that in the left plot, there is a steep decline in the fitted practice curve during
the warmup session and, to a lesser extent, in the baseline session. This indicates that there is a
noticeable practice effect in the user’s typing. In the right plot, the fitted practice curve is effectively
a flat line, with no deviation. The flatness of the curve indicates no practice effect is present.

The parameters of each practice curve (M , B, E, and β) are chosen to minimize the sum of the
absolute error of the residuals, similar to the process of finding a “best fit line” in linear regression.

Two examples of practice curves are depicted in Figure 7.3. In each example, the total typing
time (total time to completely type one full repetition of the phrase) for two subjects, s189 (left)
and s290 (right), are plotted against the repetition number. The plot further depicts the four typing
sessions that are collected, in chronological order: 1) warmup/familiarization, 2) neutral baseline,
3) stress, and 4) recovery. Overlaid on top of the data are practice curves; these curves are fitted
using only the data from the warmup and baseline neutral sessions, since these are the only data
known to occur in a non-stressed state. Note that s189 has an evident practice effect in his typing,
while s290 does not. This might be explained, for example, by the fact that s290 is a fluent touch
typist, while s189 is not.
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Figure 7.4: Practiced points. The height of each bar represents the number of subjects that achieve
practice, at a 0.1% threshold level, before the end of the warmup period for the hold times (top)
and latency times (bottom). Note that a majority of subjects achieve practice before the end of the
warmup session for each feature, but that no feature has all subjects achieving practice before that
point. 63



7.2.2 Extent of practice effects
Now that we have a method for quantifying practice effects in typing data, the next natural inquiry
is the extent to which practice manifests within the data we have collected. We will define a
subject as being practiced on a given keystroke feature if the expected per-repetition change, as
predicted by the fitted practice curve, is less than 0.1%, which is a very conservative threshold.
For example, a subject with a keystroke feature with a 1000 ms (1 second) duration would need
to have an expected per-repetition change of 1 ms to be considered practiced. We choose to use
such a conservative threshold because it guarantees that any typing changes due to practice will
be almost nil. Now that we have defined what it means for a subject to be practiced on a given
keystroke feature, we define a subject’s practiced point for a particular feature to be the repetition
number after which all expected per-repetition changes, as predicted by a fitted practice curve, are
less than 0.1%. Note that the form of a practice curve – a decaying exponential – guarantees that
such a point must exist for every feature for every subject.

In an ideal world, all subjects would achieve a practiced state on every single keystroke feature
before the end of the warmup session. As we do not use data from the warmup session for analytical
purposes, outside of the present examination of practice, any practice effect manifesting solely in
the warmup session does not affect any of our other analyses.

Figure 7.4 shows the number of subjects (out of 116) that achieve a practiced state for each hold
and DD latency time during the warmup session. With a small handful of exceptions, a majority of
subjects become practiced on most features before the end of the warmup period. However, there
is no feature for which all subjects become practiced by the end of the warmup period.

Subject practice
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Figure 7.5: Subjects, number of features practiced by the end of warmup session. Histogram
of the number of features subjects have practiced by the end of the warmup session. A 0.1%
threshold for practice is used for all features. Note that a majority of subjects have more than half
of their features practiced, but clearly not all subjects are practiced on all features.
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AB BA ABA AA
Sequential 76.64 72.14 71.83 84.87
Random 89.47 80.96 86.04 93.67

AB BA ABA AA
Sequential 82.47 75.17 72.11 92.25
Random 92.00 83.46 87.35 97.05

Table 7.4: Classification accuracies before and after accommodating practice. Classification
accuracies before (left) and after (right) accommodating for practice. In both tables, presented
results are averaged over all 116 subjects, with the Random Forest classifier, under all 8 classi-
fication regimes when accommodating practice. Note that, as expected, classification improved
slightly when accommodating practice. Also as expected, increases were generally larger for the
sequential data selection method.

A similar observation holds true when examining individual subjects – most subjects become
practiced at a majority of features – but no subject achieves practice on all features. The most
commonly practiced feature was DD.o.o (100 subjects), and the least commonly practiced feature
was DD.e.Return (48 subjects); this is unsurprising, as repeating a key twice is a common and
simple gesture that is likely to be highly practiced while striking the Return key after a letter key
is highly uncommon during normal typing and therefore likely to be fairly unpracticed. Figure 7.5
shows the distribution of the number of practiced features per subject by the end of the warmup
session. Note that the majority of subjects have at least half of their features practiced.

Regardless of which features or subjects are examined, it is clear that there are practice ef-
fects in the collected typing data. Therefore, we now turn our attention toward removing these
practice effects from the collected typing data. In doing so, we will confirm whether successful
classification is possible after practice effects have been removed from the data.

7.2.3 Accommodating practice effects in typing data
Our technique for removing practice effects from the collected typing data is quite simple. The
fundamental principle is that practice manifests in a known manner – in the form of an exponen-
tially decaying practice curve. By fitting a practice curve to each feature for every subject, we can
chart out the expected behavior for that feature over time. Then, instead of examining the actual
values of the typing data, we instead examine the residuals – the difference between the actual
values of the typing data and the practice curve. By doing so, we essentially “subtract out” the
effect of practice, leaving only changes in typing from other sources (e.g., stress).

To be more precise, a practice curve is fitted for each feature for every subject using the data
collected in the warmup and baseline typing sessions. As with the curves fitted when we were
concerned with merely measuring practice effects, our objective here is to use only data that are
“untainted” by a stress effect. Once these curves are fit – 61 for each subject – the residuals for
every feature are computed by taking the difference between the typing data and the value of the
practice curve. The resulting residuals are then used for classification, in place of the original
typing data.

Table 7.4 depicts the increases in classification accuracy, averaged over all subjects, for the
Random Forest classifier when accommodating practice. All 8 classification regimes are included
in the table. Note that accommodating for practice increases classification accuracy under all of
the classification regimes, though the increases are relatively minor.
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Trend Avg. number of features
Hold times, expected trend 20.46
Hold times, monotonic trend (not including warmup) 10.54
Hold times, monotonic trend (including warmup) 3.34
Latency times, expected trend 19.55
Latency times, monotonic trend (not including warmup) 10.45
Latency times, monotonic trend (including warmup) 3.24

Table 7.5: Keystroke feature trends. Number of keystroke features, averaged across all subjects,
following each of the trends found in our data. The expected, return-to-baseline trend involves
a shift in the median of a keystroke feature when moving from the neutral baseline to the stress
session, followed by a shift in the opposite direction (i.e., a return) when moving from the stress
session to the recovery session. Features not displaying this expected trend display a monotonic
trend. This monotonic trend may or may not persist when the warmup data are examined.

7.2.4 Conclusion: Practice is not a dominant signal
As we have seen, there is certainly a practice effect in the typing data that we have collected as
part of this experiment. While most features for most subjects are, in fact, practiced by the end of
the warmup session, it is clear that not all subjects are practiced on all features. However, once
the influence of any practice effects has been accommodated by virtue of examining the residuals
instead of the original typing data, we can see that successful classification between neutral and
stressed typing data is still possible.

Therefore, it is clear that practice is not the dominant signal in the collected data; if it were, then
removing the practice effect would significantly lower classification accuracies. Since removing
the effect did not do so – in fact, it slightly increased classification accuracy, we are led to conclude
that the dominant signal in the collected data is due to stress or something else, but not practice.

7.3 Explaining high AA accuracies
While there is clear evidence of a practice effect within our collected data, it is also clear that this
effect is fairly minimal. We have seen that it is fairly implausible that practice alone can explain
the high baseline vs. recovery (AA) classification accuracies that we saw in Section 7.1.4. With
one plausible explanation ruled out, what might explain these high accuracies?

To answer this question, we must examine the pattern of behavior for individual keystroke
features. More specifically, we are interested in whether a given keystroke feature, for a given
subject, exhibits return-to-baseline behavior. For every keystroke feature, we will observe some
change between the median in the neutral baseline typing session and the stress typing session.
If this change is an increase, the feature exhibits the return-to-baseline behavior if the median of
the recovery session is lower than that of the stress session; if the change is a decrease, a feature
exhibits the behavior if the median of the recovery session is higher than the stress session. This is,
of course, the expected behavior for any keystroke feature as we expect that typing in the recovery
neutral session should begin to revert to the typing of the baseline neutral session when the stressor
is no longer present.

If a feature does not exhibit return-to-baseline behavior, we say that the feature exhibits mono-
tonic behavior. The median either always increases as we progress chronologically through the
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experiment or it always decreases. Features possessing a monotonic trend could be undergoing a
practice effect. To determine whether this is the case, we examine the behavior of the feature in the
warmup session. If there is a truly a practice effect, the monotonic trend would still be apparent
even when taking into account the warmup session.

Table 7.5 shows the average number of features, per subject, that follow each of the identified
trends. Note that most of the hold and latency times, approximately two-thirds, exhibit the expected
return-to-baseline trend. About one-third of the features show a monotonic trend when not taking
into account the warmup session. When the warmup session is taken into account, there are only
about three features, on average, still exhibiting the monotonic trend.

A key aspect of ML classifiers, including Random Forest, is that their performance is dependent
on the features that are most useful for the classification task at hand. A classifier charged with per-
forming an AA classification task will seek out the one-third of features that possess a monotonic
trend, in spite of the fact that a supermajority of the features exhibit the expected return-to-baseline
trend and would thus be relatively poor for classification.

Focusing further on these features, we can see that while approximately 3 hold and latency
features per subject display a monotonic trend from the warmup session through to the recovery
session, there are roughly 7 hold and latency features per subject that display a monotonic trend
only within the three non-warmup sessions. This is unexpected behavior. The monotonic trend
for these 7 hold and latency features are clearly not caused by practice since the monotonic trend
is broken if the warmup session is included. Despite this, not only do these features not exhibit
an expected return-to-baseline behavior, they actually deviate further from baseline in the recovery
session. It remains an open question as to why this occurs. Our speculation is that subject may have
internalized some of the typing changes that were caused by stress. These internalized changes
might persist, or indeed strengthen, even when the stressor is removed.

7.4 Statistical search for markers
We have seen in Section 7.1 that we can successfully and reliably distinguish between neutral
and stressed typing from the same subject. If we can successfully distinguish the two, we must
conclude it is because of some underlying changes in typing. These changes would be precisely
the markers that we seek.

We rely on more traditional statistical analyses to reveal these markers, as the models learned
by ML algorithms are not guaranteed to be readily human-interpretable. Our approach is simple;
we look for features that are significantly different between neutral and stressed typing for each
subject.

7.4.1 Identifying markers
We define a marker as any feature whose mean shifts by more than 10% between the neutral base-
line and the stress typing sessions. While the choice of 10% as the required shift is somewhat
arbitrary, the upcoming analyses can be repeated for any level of shift. We choose 10% as we feel
this marks the minimum meaningful mean shift; a shift of this size is unlikely to be caused by ran-
dom noise. We also choose to compare only the neutral baseline and stress typing sessions, notably
omitting the recovery baseline session. As we have previously noted within this chapter, many of
our subjects experience an incomplete return to baseline. Accordingly, including the recovery
typing when computing the size of the shift would inordinately bias against finding markers.
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Figure 7.6: Markers per subject. Barplot depicting the number of markers for each subject. A
feature is considered a marker if its mean differs by more than 10% in the baseline neutral typing
session as compared to the stress typing session. Red portions of the bar indicate markers that
are longer under stress; blue portions indicate markers that are shorter under stress. Subjects are
arranged chronologically from first (left-most bar) to last (right-most bar). Note that all subjects
have at least one marker.

7.4.2 Results and Discussion
Figure 7.6 depicts the number of markers for each subject. The height of each bar depicts the total
number of markers for that subject, while the colors indicate whether the corresponding feature was
longer (red) or shorter (blue) when the subject was stressed. Subjects are organized chronologically
from left to right. Critically, note that all subjects have at least one marker; the minimum number of
markers was 9 for subjects s264 and s281. Therefore, we have succeeded in our goal in identifying
at least one marker per subject. It is also interesting to note that no subject had all features as
markers; the maximum number of markers was 51 for subject s253.

7.5 Summary
We have seen in this chapter that we can reliably discriminate between neutral and stressed typing
within a single subject. This is true for each of the three classifiers we tried – Random Forest,
Support Vector Machine, and Lasso-regularized logistic regression. It is also true in each of the
eight classification regimes, which are the cross-product between two data selection methods –
sequential and random – and four classification tasks – baseline neutral vs. stress (AB), stress vs.
recovery neutral (BA), baseline and recovery neutral vs. stress (ABA), and baseline neutral vs.
recovery neutral (AA).

We also saw that there are small practice effects present within the typing data we have col-
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lected, but that these do not constitute a dominant signal in our typing data. These practice effects
can be removed from our data by fitting a practice curve to each feature for each subject and then
classifying the residuals. Doing so slightly increases the accuracies that we obtain.

We also noted that while most features for most subjects exhibit the expected, if incomplete,
return-to-baseline trend in the recovery typing session, there are roughly a third of features that do
not do so for each subject. The existence of these features suggests that some of the changes in
typing that are attributable to stress persist even when the stressor is removed. It remains an open
question as to the mechanisms behind this persistence.

Finally, we saw that every single subject has at least nine markers that are substantially different
between neutral and stressed typing. Within the next chapter, we will perform a closer examination
of the marker patterns across different subjects to ascertain whether there are any universal markers.
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Chapter 8

Question 2: Seeking universal markers for
stress

We saw in the previous chapter that we are able to successfully discriminate between neutral and
stressed typing within a single subject. Not only that, we were able to identify at least nine mark-
ers for each subject that discriminate their neutral and stressed typing. In this chapter, we wish
to perform a more difficult version of both these tasks. We will start by attempting to success-
fully discriminate between neutral and stressed typing across subjects: the objective is to success-
fully discriminate between neutral and stressed typing from a subject without access to data from
him/her. If we are able to successfully accomplish this, the potential applications for detecting
stress through keystroke dynamics will significantly increase. When performing within-subject
classification, we require access to training data for that subject; this means we must have been
able to collect neutral and stressed data from that subject ahead of time. This may be realistic
in some environments, such as in a secure operating facility where a known set of operators will
repeatedly interact with the system. It is not realistic in general environments, where the set of
users may be unknown and where subjects may only interact with the system once.

Within this chapter, we will unfortunately see that across-subject classification appears to be
elusive. A representative sample of off-the-shelf classifiers was unable to successfully and reliably
discriminate between neutral and stressed typing data. Even when using a custom-crafted state-of-
the-art deep net, we were unable to obtain above-chance levels of classification.

We believe that the inability to perform this classification is a direct result of strong individual
differences in the manifestations of stress in our subjects’ typing. We will make the case for this
within this chapter by directly examining the lack of pattern(s) in the markers for our subjects.

8.1 Classification
Our approach toward across-subject classification is quite similar to our approach to within-subject
classification that we saw in Chapter 7. As we did in that chapter, we will attempt to use the three
off-the-shelf classifiers to classify between neutral and stressed typing. The major change is that we
will be classifying across subjects instead of within subjects; that is, we will attempt to classify a
given subject’s typing data as neutral or stressed without having seen other data from that subject.
We will be relying on data from other subjects, from both neutral and stressed conditions, for
training our classifiers.
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8.1.1 Classification regime
We utilize a leave-one-out (LOO) classification regime. We will take each subject, in turn, as
the test subject (the “left out” subject). All other subjects will be considered training subjects.
Thus, our training data will consist of neutral and stressed typing from 115 subjects while our test
data will consist of the neutral and stressed typing from a single subject. For the neutral data,
we use only typing from the neutral baseline session, omitting the data from the recovery neutral
session. As we saw in Chapters 6 and 7, there are strong reasons to believe that subjects did not
fully return to baseline in the recovery session, so we maximize our chances of success by only
including neutral data from the baseline neutral session. We utilize all available repetitions of
neutral baseline and stressed typing data. This totals 115 (subjects) x 80 = 9200 neutral reps and
an equal number of stressed reps comprising the training data. For the test data, we again use all
available repetitions of neutral baseline and stressed typing data. This gives us 80 repetitions of
neutral and stressed data for testing.

The LOO procedure is repeated 116 times, with each subject taken as the “left out” subject
once. This produces 116 total accuracies, which are averaged to produce accuracies for each of the
employed classifiers.

8.1.2 Classifiers
As in Chapter 7, we will start by employing three readily-available off-the-shelf classifiers: 1)
random forest (RF), 2) support-vector machine (SVM), and 3) lasso-regularized logistic regression
(LASSO). All details pertaining to the classifiers are unchanged from the analyses performed in
Chapter 7, only the classification regime and evaluation procedures change, so we refer the reader
to Section 7.1.2 for the full details.

8.1.3 Evaluation procedure
The evaluation procedure employed is straightforward: each classifier is evaluated under the LOO
regime and the resulting accuracies are averaged to obtain the classification accuracy for that sub-
ject. Thus, for each of the three classifiers, a total of 116 models are trained and evaluated, one for
each subject. This produces 116 accuracies, whose average is then the classification accuracy for
that classifier.

8.1.4 Results and discussion

Classifier Avg. Accuracy
RF 59.27
SVM 58.21
Lasso 57.34

Table 8.1: Across-subject classification accuracies. Classification accuracies, averaged over all
subjects, when training classifiers to discriminate between neutral and stressed typing in a leave-
one-out fashion. Note that chance level accuracy is 56.88% (as detailed in the text), so all of our
classifiers perform barely above chance.

Table 8.1 depicts the results for classification. Note that the required accuracy for statistically
significant classification (i.e., above-chance classification) is 56.88%, corresponding to 91 correct
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classifications out of 160 repetitions. This value is obtained by forming a one-sided (greater) bino-
mial 95% confidence interval with 160 total trials (the size of the test set) and a null hypothesis of
50% accuracy. The smallest number of successes (i.e., correct classifications) required for this con-
fidence interval to not include the null hypothesis is the required number of correct classifications
to obtain above-chance accuracy. In our particular case, 91 correct classifications are required,
corresponding to 56.88% accuracy.

While all of the obtained classifier accuracies are slightly above chance, classification accu-
racies below 60% are far from convincing. It would be difficult to foresee a practical use for a
classifier that performed so poorly in tightly-controlled laboratory settings.

An obvious paradox is why across-subject classification is so poor when within-subject clas-
sification is excellent. The most obvious answer is that each individual subject has their own set
of markers that make within-subject classification possible, but that these markers are not shared
in any meaningful way across all subjects. Without some universal sharing of markers, reliable
across-subject classification is impossible for the three classifiers we have employed. Addition-
ally, we are attempting to perform classification using hold and latency times. Even if subjects
were to share markers, individual differences between subjects in their natural typing speed would
make classification difficult. For example, consider the following scenario. Subject A and Subject
B share the hold time on g as a common marker for stress. Subject A has a hold time of 100ms on
g during neutral typing, but a hold time of 80ms during stressed typing. Subject B, on the other
hand, has a hold time on g of 120ms during neutral typing and 100ms during stressed typing. An
across-subject classifier must classify g hold times of 100 ms as being either neutral or stressed
typing; in the process, data from either Subject A or B must be misclassified.

Since our off-the-shelf classifiers were unable to effectively perform across-subject classifica-
tion, a logical step would be to revise the classifier being used. A particularly appealing option,
and one that is currently popular in state-of-the-art research and practice, are deep neural net-
works. Such deep nets have risen in popularity recently with the increase of computing power
and are widely employed in a variety of real-world tasks (LeCun et al., 2015). They possess a
marked increase, compared to our three off-the-shelf classifiers, in their expressiveness and ability
to discover underlying commonalities in stressed typing that are shared across all subjects.

8.2 Deep neural network
The fundamental idea behind our network is the hope that commonalities exist between neutral
typing data from all subjects and that they also exist between stressed typing data from all subjects.
These commonalities may not necessarily be apparent when examining the original features – i.e.,
hold and latency times – but may be more obvious once the data have been transformed. As such,
we approach our network from the perspective that we must discover an appropriate transformation
that permits successful classification.

We begin our discussion of neural networks with a brief overview for readers who may not be
familiar with the topic. Then, we discuss the particulars of our network, including the structure,
loss function, and training procedure.

8.2.1 Overview
Neural networks have been known since the 1960s, but have recently surged in popularity due to
the massive increase in available computational power. A typical example of a standard neural
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Figure 8.1: Basic three-layered neural network. A depiction of a simple, three-layered neural
network. Inputs to the network (x1, ..., xp) are features (e.g., hold and latency times). The hidden
layer of the network (z1, ..., zh) consist of multiple nodes. Each node takes as input all of the

features x1 to xp and computes a score, which is typically a weighted linear sum:
p∑
i=1

αixi, where

the αs are weights. This sum is then passed through a non-linear activation function. The final

layer (y1, ..., yk) consist of nodes whose values are a weighted sum of the hidden layers:
h∑
i=1

βizi,

where the βs are weights.
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network is depicted in Figure 8.1. The input layer (blue, leftmost) consists of the features inputted
to the network. In the case of the present work, these would be keystroke features (i.e., hold and
latency times). The hidden layer (orange, center) consists of nodes whose values are weighted
linear sums of the inputs, transformed by some non-linear function (e.g., the logistic function).
This non-linear transformation is crucial, as it makes neural networks markedly more expressive
than a simple linear combination; without a non-linear transformation function, a neural network of
any depth can be equivalently represented by a weighted sum. The outputs of the network (green,
rightmost) are typically just a weighted linear combination of the values of the hidden layer.

The parameters of the networks are the weights, both in the hidden layer and in the output layer.
By adjusting these weights, one can adjust how the inputs of the network relate to the outputs. In
a typical binary classification example, the output layer might consist of 2 nodes, one representing
each of the classes (e.g., one node for neutral and one node for stress). The objective would then
be to select the weights such that inputted neutral typing would produce a value of 1 in the neutral
node and a value of 0 in the stress node while also ensuring that inputted stress typing would
produce a value of 0 in the neutral node and a value of 1 in the stress node.

A useful interpretation of the hidden layer is to think of it as feature creation. New features are
generated, which are a non-linear function of the original features. The output (i.e., the predicted
class of the input) is then a weighted linear combination of these generated features.

The art of training a neural network is a deeply-studied topic. However, all methods share
some commonalities. A loss function is defined, which represents how poorly the neural network
performed. In the above binary classification example, we could choose the loss function as fol-
lows. For every repetition, we could take the predicted class to be whichever of the output nodes
had higher value. A correct prediction would then incur a loss of 0, while an incorrect prediction
would incur a loss of 1. The total loss would then be the sum of the loss for each repetition; this
is equivalent to counting the number of misclassifications 1. Given a set of weights, which define
a neural network, the loss can be computed. This information is then used to adjust the weights of
the network, typically through a back-propagation algorithm (Hastie et al., 2009, p.395), to better
minimize the loss.

8.2.2 Loss function
The primary objective of our neutral network is to transform the data to permit across-subject
classification. More precisely, a transformation can be considered successful if it places neutral
typing repetitions close to each other and stressed typing repetitions close to each other while
also keeping neutral and stressed typing repetitions apart. A popular method for creating such a
transformation is to use a triplet approach (Hoffer and Ailon, 2014). In the triplet approach, triplets
are formed, consisting of an anchor, a similar example, and a different example. The anchor is a
repetition of typing that is either neutral or stressed. The similar example must be of the same
class as the anchor (i.e., neutral if the anchor is neutral, stressed if the anchor is stressed). The
different example must be of the opposite class of the anchor. When training the neural network,
these triplets are fed through the network (i.e., transformed) and a loss is computed for the triplet.

For the moment, we consider a generic distance function d. The loss function is dependent on
the distance between the anchor and similar example (dsim) and the distance between the anchor

1Note that in practice, using this loss function would be problematic for a host of reasons, but we use it as an
example since it is easy to grasp.
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and the different example (ddiff ). Intuitively, the loss should be low (or zero) if the anchor is closer
to the similar example than to the different example (i.e., dsim < ddiff ); the loss should be high if
the reverse is true (i.e., dsim > ddiff ). We define our loss function as:

Loss =
T∑
max(dsim − ddiff − ψ, 0),

where T is the total number of triplets prepared and ψ is a small constant that represents the
desired margin of correct classification. To understand what the loss function is doing, we can
consider two cases.

First, imagine that for a given triplet dsim − ddiff − ψ ≤ 0. In this case, the anchor is closer to
the similar example than the different example; moreover, it is closer by at least the margin ψ. The
loss for this triplet will be 0, since the desired behavior is obtained.

Second, imagine a triplet where dsim − ddiff − ψ > 0. In this case, the anchor is either further
away from the similar example than the different example or it is closer, but not by the desired
margin ψ. In such a scenario, the loss for the triplet will be positive.

Note that the loss is zero if and only if all triplets have the property that the anchor is closer
to the similar example than the different example by at least the margin ψ. Since we will be
minimizing the loss, we will push the network towards finding a transformation that causes this
property to hold for the triplets.

We have so far discussed this loss function in the context of a generic distance function. We
wish our network to find a transformation that separates neutral and stressed data from each other
while keeping both of the groups similar. A cosine similarity is a natural fit as a metric for this
situation. As an added bonus, cosine similarity has fewer issues with degenerate solutions when
optimizing, as compared to a metric like Euclidean distance. Metrics like Euclidean distances can
often lead a network optimization procedure to exhibit undesired behaviors, like multiplying all
weights by a large constant; such a multiplication would naturally increase distances, which may
lead to a lower loss function value without improving the transformation learned by the network.

8.2.3 Structure
The network that we employ is a standard neural network with two hidden layers. We vary the size
of the hidden layer (denoted R) in our experiments, but for the sake of simplicity we force the two
hidden layers to be the same size. The activation function for both the hidden layers is the rectifier
function. The rectifier function is the identity if its input is positive and returns zero otherwise;
that is, it returns only the positive part of the input. The output layer of the neural network is also
of size R and we use a simple weighted linear summation function at the output layer. Note that
when R is less than the number of keystroke features, the neural network is implicitly performing
dimensionality reduction.

The network can be thought of as following a three-step process. First, in the first hidden layer,
new features are created by combining the initial keystroke features. Then, in the second hidden
layer, these new features are themselves combined to create a second round of new features. The
advantage of having two hidden layers over a single hidden layer that is markedly improves the
expressiveness of the neural network. The third step, occurring in the output layer of the network,
is that the second round of features are linearly combined to form the new representation of the
input data.
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R 2 12 22 32 42 52
Test accuracy 51.2% 50.0% 49.5% 50.3% 48.8% 47.9%

Table 8.2: Neural network classification accuracies. Test classification accuracies for our cus-
tom neural network for various values of R, which is the size of the hidden and output layers of the
network. Note that all versions of the classifier performed poorly; in fact, all classification accura-
cies are at chance levels (i.e., not better than random guessing). The poor classification accuracy is
likely attributable to the inherent difficulty of across-subject classification due to strong individual
differences.

8.2.4 Implementation and training
Our network is implemented in Python 3.6 (Foundation, 2018) using the Tensorflow architecture,
version 1.5 (Abadi et al., 2016). Weights in the network are initialized to small random values,
using the Xavier initializer (Glorot and Bengio, 2010). Biases in the network are initialized with
the value 1. Training is performed using an Adam Optimizer (Kingma and Ba, 2014), with an
initial learning rate of 0.00001. Networks are trained for 100000 iterations, with a batch of 200
triplets used for training at each iteration. Triplets are formed by randomly choosing training data
to serve as the anchor, similar, and different examples. The margin is set to ψ = 0.01.

The classification itself is performed using a simple k-nearest neighbors algorithm, with k = 5,
using the implementation found in sklearn, version 0.19.1 (Pedregosa et al., 2011).

We train networks with R (the size of the hidden and output layers) set to 2, 12, 22, 32, 42,
and 52. Since we are unsure which value of R will perform the best, we vary R in increments of
10 between the minimum possible size (2) and the dimensionality of the data (61). In accordance
with best practices, the data are centered and whitened prior to passing them into the network.
Centering sets the mean of each feature to 0 by simply subtracting the mean of each feature from
each value. Whitening (Agnan Kessy, 2016) is a transformation that decorrelates the data while
also setting all feature variances to 1.

8.2.5 Results and discussion
Table 8.2 shows the testing accuracies obtained by our neural network, for various values of R.
The accuracies are, unfortunately, not as desired. The classifier actually underperforms, relative
to the three off-the-shelf classifiers that we employed. A superficial explanation for this is that
the whitening procedure, which effectively reweights the features, may be downplaying the im-
portance of key features for classification. Ultimately, the root cause for the low classification
accuracies is most likely that classification is an inherently difficult or impossible task due to the
strong individual differences in stress manifestation for our subjects.

In the remainder of the chapter, we turn our attention to these individual differences. We
highlight the extent of these differences and discuss why these differences make across-subject
classification so difficult.

8.3 Examining the lack of markers
Thus far in this chapter, we have seen that across-subject classification is unsuccessful despite our
successes at within-subject classification. The data used in this experiment are likely to be the best
available data, in terms of quality. If the quality of the data is not at issue, what could be responsible
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for our inability to perform across-subject classification? As we have suggested within this chapter,
and also at the end of the previous chapter (Section 7.4), it is likely that individual differences in
manifestations of stress may be responsible for the difficulties in across-subject classification. To
address this claim directly, we examine the patterns of markers for our subjects.

8.3.1 Identifying marker patterns
As mentioned in Section 7.4, we define a marker as any feature whose mean changes by more
than 10% between the baseline neutral and stress sessions. We saw in that section that there do
not appear to be universal markers, but we offered only a shallow analysis at that point. We now
perform a more detailed version of that analysis.

We saw in Section 7.4 that every single subject has at least nine markers. A sensible line of
inquiry would be to investigate whether there are patterns in the markers for our subjects. Are there
one or more marker(s) shared among all subjects? Are there other notable patterns? To examine
this question, we use a set of barplot and heatmap visualizations that depict the marker patterns
across subjects. We further make the distinction between markers where the feature was shorter
under stress and markers where the feature was longer under stress.

8.3.2 Results and discussion
We start by examining how many subjects had each marker as a feature. Figure 8.2 depicts the
number of subjects that had each hold time as a marker; Figure 8.3 depicts this for the latency
times. Both figures are also color-coded to indicate how many subjects had the corresponding
feature grow longer (red) or shorter (blue) when the subject was stressed.

Note that it is immediately obvious that there are no universal markers. A universal marker
would have a bar of height 116, indicating that every single subject had that feature as a marker.
In fact, the most common markers are the space-t and e-Return latencies, which are each
markers for 69 subjects. Note that this represents less than 60% of our total subject pool. We will
provide a deeper-dive analysis regarding universal markers in the next chapter.

Taking a deeper look at the marker patterns across subjects, Tables 8.3 and 8.4 show the marker
heatmaps for the hold and latency times, respectively, for our subjects. Within the two heatmaps,
features that are not markers are represented by black rectangles, markers that grow shorter with
stress by blue rectangles, and markers that grow longer with stress by red rectangles. Subjects
(rows of the heatmap) are sorted so that subjects with many markers that were shorter under stress
(i.e., more blue rectangles) are near the top of the heatmap while those with many markers that
were longer under stress (i.e., more red rectangles) are near the bottom of the heatmap. Features
(columns) are in the same order as they occur when typing the phrase. Numbers on the end of a
feature name are there to permit discrimination between multiple occurrences of the same feature
(e.g., multiple e) hold times).

Note that there are no apparent patterns. An obvious marker pattern would involve one or more
columns that are entirely or mostly non-black. What we observe, however, is that every column has
numerous black entries. Even the features with the most markers have a substantial number, over
40%, of black entries. This means that any purported universal marker misses at least 40% of the
population. Moreover, any purported set of universal markers would have the undesirable property
that at least 40% of the subjects do not have each marker in the set. With such a significant fraction
of the population not being included, it would be difficult to claim that any one marker or set of
markers could be deemed universal.
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Figure 8.2: Hold time markers. Barplot depicting the number of subjects that had each hold
time as a marker. To be considered a marker, a feature’s mean must differ by more than 10%
between the baseline neutral typing session and the stress typing session. Colors indicate whether
the corresponding feature was longer (red) or shorter (blue) when the subject was stressed. For
example, the hold time for g (leftmost bar) was longer for 1 subject and shorter for 20 subjects.
Note that no hold time was a marker for each of our 116 subjects.
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Figure 8.3: Latency time markers. Barplot depicting the number of subjects that had each latency
time as a marker. To be considered a marker, a feature’s mean must differ by more than 10%
between the baseline neutral typing session and the stress typing session. Colors indicate whether
the corresponding feature was longer (red) or shorter (blue) when the subject was stressed. Note
that no latency time was a marker for each of our 116 subjects.
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If universal markers, or even near-universal markers, are out of the question, the natural pro-
gression of this line of inquiry is to ask whether there may be groups of subjects who have similar
markers. As this is a more relaxed definition – different groups could have different sets of markers
– we may hope to discover some patterns by searching for and analyzing such groups. The search
for such groups is precisely the topic of the next chapter.

8.4 Summary
We have seen in this section that across-subject classification can be performed at slightly above-
chance levels using standard off-the-shelf classifiers, but the data apparently do not support suffi-
ciently high classification accuracies to be of any practical use. Moreover, even utilizing a custom
deep-net to perform classification did not offer meaningful improvement. Ultimately, the issue
appears to be the lack of shared markers for stress among different subjects. Direct examination of
the markers indicates that it is fairly obvious that there is no one marker that is universal.

Given that universal markers are not present, a logical fallback would be to inquire whether
there might exist groups of subjects with strongly shared sets of markers. This will be the line of
inquiry pursued in the next chapter.
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Table 8.3: Hold time markers. Hold time markers for each subject are displayed in heatmap
format. Black rectangles indicate that a feature is not a marker for a subject. Blue rectangles
indicate that a feature is a marker for a subject and that the feature was shorter under stress; red
rectangles indicate markers where the feature was longer under stress. More vibrant blue and
red rectangles indicate a stronger marker (i.e., larger difference between neutral and stressed).
Subjects (rows) are sorted so that subjects with many markers that were shorter under stress are
near the top of the heatmap, while those with many markers that were longer under stress are near
the bottom of the heatmap. Features (columns) are in the same order as they occur when typing the
phrase; numbers on the end of feature names are there to permit discrimination between multiple
occurrences of the same feature.
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Table 8.4: Latency time markers. Latency time markers for each subject are displayed in heatmap
format. Black rectangles indicate that a feature is not a marker for a subject. Blue rectangles
indicate that a feature is a marker for a subject and that the feature was shorter under stress; red
rectangles indicate markers where the feature was longer under stress. More vibrant blue and red
rectangles indicate a stronger marker (i.e., larger difference between neutral and stressed). Subjects
(rows) are sorted so that subjects with many markers that were shorter under stress are near the top
of the heatmap, while those with many markers that were longer under stress are near the bottom
of the heatmap. Features (columns) are in the same order as they occur when typing the phrase.

82



Chapter 9

Question 3: Grouping subjects by response
to stress

In Chapter 8, we saw that there are clearly no universal markers. Moreover, there did not appear
to be any particular pattern, common to all subjects, to markers for stress in typing. When initially
describing our approach to this thesis problem in Chapter 2, we had postulated that there might
be a lack of universal markers and offered a contingency plan in that event. This plan, which we
focus our attention on now, is to search for groups of subjects with similar responses to stress.
The purpose of identifying such groups of subjects is that it may permit classification of stress in
unknown subjects (i.e., subjects from whom we have no typing). Such a process would be akin to
markers for blood type. If such groups of subjects could be identified with strongly shared markers,
we could identify that an unknown subject belonged to a particular group without requiring a priori
knowledge of that subject’s typing. The fact the unknown subject was a member of a known group
could then be used to aid in classifying typing from that subject as neutral or stressed.

As it turns out, searching for groups with commonalities is a fairly well-studied problem.
Within the domain of machine learning, this is referred to as clustering; the fundamental idea
is to find clusters (i.e., groups) of data points with common properties. In the case of our specific
problem, the objective is to find clusters of subjects (data points) who share commonalities in their
markers (properties).

Within this chapter, we will provide a brief overview of clustering, explain how we set up
the clustering problem for our particular data, define the metric used to evaluate whether we have
successfully found clusters, and present the results of our evaluation. We shall see that, despite our
best efforts, there do not appear to be tight clusters of subjects within our data with strong shared
sets of markers. This suggests that stress, as manifested in keystroke typing behavior, is a strongly
individualized response.

9.1 Clustering
At its most basic, the principle is of clustering is to take a pool of data points and divide them into
clusters, such that the data points within each cluster are similar to each other while data points in
different clusters are dissimilar. The vast majority of clustering algorithms, including all of those
we will entertain in this chapter, rely on a definition of similarity between two data points. A
simple example of a similarity measure is Euclidean distance; two points are similar if they are
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close together and they are dissimilar if they are far apart. Given a similarity measure, a clustering
algorithm then generates a partition of the data set into some number of clusters.

Despite this relatively simple sounding description, the actual use of clustering algorithms is
often as much an art as it is a science. In some machine learning tasks, like classification, is it
straightforward to ascertain the goodness of an outcome by examining a metric like classification
accuracy. If a classifier regularly succeeds in predicting the label of test data points, it is a good
classifier. Judging the goodness of a given partition from a clustering algorithm is far trickier. Is
a result with many small clusters preferable to a result with a few large clusters? Is it acceptable
for a result to generate clusters that are winding and elongated (i.e., amoeba-shaped) instead of
spheroid? The answers to questions like these are in the eye of the beholder; different observers
may differ greatly in opinion on the goodness of a given partition.

An example of a common difficulty in clustering is to simply determine how many clusters one
should seek in the data. Clustering algorithms generally require the number of desired clusters as
input. The obvious difficulty in providing that number is that we have no idea how many clusters
we expect to have in our data. An imperfect solution, and the one that we use in this work, is to
define a range of the number of possible clusters and then re-run the algorithm for each value in
the range. Such an approach can be successful in the case where the data are naturally strongly
partitioned.

Our objective in this chapter is primarily to determine whether there is any evidence of strong
partitioning in the stress response of our subjects. A successful outcome would be one in which
subjects in the same cluster strongly share some core set of markers. Some subjects within the
cluster might have a small number of additional markers, while others might be missing a small
number of the core set of markers, but these deviations from the core set should be small.

9.1.1 Clustering setup
At a first glance, clustering our subjects seems quite straightforward. We would pick some set of
clustering algorithms to run, feed them our collected neutral and stressed typing data, and then
collect the resulting partitions on the other end. There would be, of course, the issue of analyzing
the goodness of those partitions, but the clustering itself might seem straightforward. Unfortu-
nately, this turns out to not be the case. The primary difficulty with this naive approach is that our
objective is to cluster subjects by their stress response and not to cluster the underlying data.

For example, consider a situation where we performed clustering using this naive approach.
Suppose that for a given subject, some repetitions of neutral typing data belong to cluster A, the
remaining repetitions of neutral typing data belong to cluster B, and all repetitions of stressed
typing data belong to cluster C. How would we identify what cluster this subject belonged to?
That is a difficult question to answer, even in this relatively simple example. In a messier example,
where a subject’s data might be spread across a dozen different clusters, identifying the cluster that
a subject belongs to would be even more challenging.

To avoid this thorny issue, our approach is to simply represent each subject as a single data
point. Since each subject will be his/her own data point, identifying the cluster that subject belongs
to will be trivial; it will simply be the cluster that contains the singular data point. We consider two
methods for constructing such a representation. Both methods share the property that they capture
a difference between neutral and stressed typing. As with our other analyses, we restrict ourselves
to using the only the neutral baseline data to represent neutral typing; the recovery data are omitted
since we have seen evidence that subjects did not fully return to baseline.
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In the first method (percentage method), we represent each subject by the percent changes in the
mean of each hold and latency time between the neutral baseline and stress typing sessions. That
is, for each subject, we compute the mean of each hold and latency time in both the neutral baseline
and stressed typing session. We then compute the percentage change between those means. Our
convention is to have a positive change indicate a longer duration in the stressed typing session; in
practice, using the opposite convention should make no difference in the resulting partitions.

In the second method (raw method), we represent each subject by the raw change (in seconds)
in the mean of each hold and latency time between the neutral baseline and stress typing sessions.
As with the percentage method, we compute the mean of each hold and latency time in the neutral
baseline and stressed typing session. However, instead of computing a percentage change, we
simply take a difference of means. As with the percentage method, our convention is to have a
positive change indicate a longer duration in the stressed typing session, though using the opposite
convention should make no difference.

Note that both methods represent each subject by the difference in their typing between neutral
and stressed conditions. Thus, when a partitioning places subjects together into a cluster, it indi-
cates that the two subjects have similar changes in typing when stressed. Our goal in this chapter
is to determine whether there exists a partition of our subjects that produces tight clusters with
strong commonalities among the subjects in that cluster. Such tight clusters would indicate that
there are groups of subjects with strongly shared markers. It is worth noting that our clustering
algorithms may find several, loosely-packed clusters, perhaps corresponding to high, medium, and
low responders to stress or to subjects that typed slower vs. faster when stressed. Such loosely-
packed clusters are not of particular interest, as they cannot be leveraged for practical purposes in
the manner that tight clusters could be.

9.1.2 Clustering metrics
We have so far seen how we will summarize each subject by a single data point prior to applying a
clustering algorithm. While it may seem that the natural next step would be to actually define and
apply some clustering algorithms and obtain some partitions, we first turn our attention to metrics
for measuring the goodness of a given partition. After all, obtaining a partition is meaningless if
we cannot evaluate how good it is.

There are numerous metrics for evaluating the goodness of a given partition; Wang et al. (2009)
provides an overview of some of the more popular metrics. Metrics can be broken down into
two categories. External metrics compute how well a given partition agrees with some external
labelling of the data. For example, if we already knew the clusters subjects should fall into (i.e.,
we had a “correct” partitioning), an external metric would compare the degree to which a given
algorithm’s partitioning agreed with the known clusters. Internal metrics do not require such an
external label. Instead they attempt to compute the extent to which a given partitioning has clusters
that are compact, cohesive, dense, and distinct. As we do not have any external labels, we restrict
our attention to internal metrics.

As noted in Wang et al. (2009), common internal metrics include the Silhouette index, Davies-
Bouldin index, Calinski-Harabasz index, Dunn index, and RMSSTD index. These metrics all
attempt to capture the compactness, cohesiveness, density, and distinctness of the clusters in a given
partitioning. Where the metrics differ is in how these terms should be mathematically defined.
These differences are akin to the manner in which the concept of spread can be measured using
range, inter-quartile range, variance, or standard deviation. The common goal of these metrics is
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to measure the underlying concept of spread in a data set, but the metrics differ in their precise
mathematical definitions.

For the purposes of this chapter, we will focus on using Silhouette index as our singular met-
ric. We make this choice for several reasons. First, we focus on a single metric for the sake of
simplicity. Second, the intuition and mathematics of the Silhouette index are easy to understand.
Third, our results are semantically identical when using other internal metrics, and we feel that a
full presentation of results, with an array of metrics, would be more difficult to grasp while adding
no value.

Computing the Silhouette index is fairly straightforward. Suppose that we have data points
x1, ..., xn. Let a(i) be the average distance xi to all other data points in the same cluster. a(i) can
be interpreted as how well xi fits in its assigned cluster. If the value is small, xi is close to every
other data point in the cluster; if it is large, at least some data points in the cluster are far away. We
can also define the distance between xi and a given cluster C as the average distance between xi
and every point in C. Let B denote the cluster, not containing xi, that is the closest to xi; B can
be interpreted as the neighboring cluster to xi. We can then let b(i) denote the average distance
between xi and the points in B. Then, we can define the silhouette for xi as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
.

Note that the silhouette for xi tends to be close to 1 if and only if xi is relatively close to the
other points in its cluster while being far away from the points in the neighboring cluster. The
silhouette is 0 when a(i) = b(i), which occurs when xi is equally far away from points in its
cluster and the points in the neighboring cluster; this situation can occur if a single cluster were to
be randomly split in half. The silhouette is negative when xi is actually closer, on average, to the
points in the neighboring cluster than in its own cluster. A negative silhouette suggests that xi may
not truly belong in its assigned cluster and/or that it might be an outlier in the data set.

The Silhouette index is then defined as the average silhouette for all points in the data set.
Intuitively, if this index is near 1, most data points are in tightly-packed clusters and are distant
from the neighboring cluster. If the index is near 0, data points generally fit as well in their assigned
cluster as with their neighboring cluster. This would suggest that the given partition is poor; if a set
of partitions from a variety of clustering algorithms have a low Silhouette index, this would then
suggest that there is not a strong underlying cluster structure.

It can be helpful to calibrate one’s intuition of the Silhouette metric using a few simple ex-
amples. Figure 9.1 contains four such examples with randomly generated data. These randomly
generated data sets each have 116 data points, just like our actual data sets. In the upper-left, data
were generated uniformly at random within the (0,10) square. The remaining three examples are
mixtures of Gaussians with varying degrees of spread. In each, the Gaussians are centered at (3,3),
(3,7), (7,3), and (7,7). In the upper-right, the covariance matrix was the identity. In the bottom-left,
the covariance matrix was 0.5 times the identity. In the bottom-right, the covariance matrix was
0.05 times the identity. Color-coding of the data points indicate the clusters in each example.

It is worth noting that a Silhouette index is affected by the dimensionality. In the examples de-
picted in Figure 9.1, the dimensionality of the data is clearly 2. It is trivial, at least mathematically,
to expand these examples to higher dimensions. For the uniform example, this can be done by
sampling points uniformly at random within the (0,10) hypercube. For the Gaussian examples, we
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keep the first two coordinates of the centers the same as in the 2-d example, and set all remaining
coordinates to 0. The caption of Figure 9.1 contains the Silhouette index for each example in 2,
5, and 61 dimensions. The value for the 5-d analogues of these examples will be useful later on
for a clustering algorithm that utilizes dimensionality reduction; the value for the 61-d analogue is
useful for the algorithms that cluster in the original feature space (of hold and latency times).

9.1.3 Clustering algorithms
We use three different clustering algorithms in our work, each representing a different class of
clustering methods. The first algorithm is PAM (partitioning around mediods), which represents
the most common types of clustering algorithms, which attempt to assign each data point into a
single cluster, using the originally provided features. The second algorithm is Agnes (agglomer-
ative clustering), which represents hierarchical clustering methods, which assign each data point
into successively broader clusters to create a taxonomy of the data. The third algorithm is the use
of LLE (locally linear embedding) followed by a standard clustering algorithm, representing the
class of spectral clustering algorithms. The approach of spectral clustering algorithms is to express
the data as a graph of its nearest neighbors and then to reduce the dimensionality of the data by
expressing data points as a function of its neighbors. Such methods are particularly powerful if the
data tend to lie in a low-dimensional subspace of the original feature space.

PAM (Partitioning around mediods). The PAM algorithm is a variant of the well-known
k-means algorithm. The PAM algorithm is quite straightforward. To initialize the algorithm, k
random data points are designated as mediods (cluster centers), where k is the number of desired
clusters. Then, all data points are associated with the closest mediod, as measured by Euclidean
distance. The cost of any particular choice of mediods is the summed Euclidean distance between
each data point and its assigned mediod. The actual algorithm itself has a single, repeated step. For
every pair of mediod and non-mediod points, consider swapping their roles – that is, replace the
mediod point with the non-mediod point. If this results in a lower cost, keep the swap. Otherwise,
revert the swap. In our work, we use the implementation of PAM within the R package cluster
(Maechler et al., 2017).

Agnes (Agglomerative clustering). The Agnes algorithm is a sub-class of hierarchical cluster-
ing techniques, which generate a taxonomy of the data. The fundamental idea behind the algorithm
is to take a bottom-up clustering approach. The algorithm is initialized with each data point in its
own cluster. Then, at each iteration of the algorithm, the two clusters that are most similar are
merged together. This process is repeated until a single mega-cluster, containing all of the data, is
formed. By tracing the path of each data point as it gets merged into various clusters, it is possible
to create a dendrogram like the one in Figure 9.2. Similarity within the algorithm is defined by
the average of the Euclidean distance between each unique pair of points in the two clusters. For
example, in the trivial case where each cluster contains only a single point, the similarity between
the two clusters is just the Euclidean distance between those two points. If we have a cluster of 3
points and a cluster of 5 points, 3× 5 distances must be computed and their average is the distance
between the two clusters. In our work, we use the implementation of the Agnes algorithm within
the R package cluster.

LLE (Locally Linear Embedding). The LLE approach to cluster is a two-step process. First,
the data are reduced in dimensionality by using a Local Linear Embedding. Then, the reduced-
dimensionality data (embedded data) are clustered using the aforementioned PAM algorithm. A
full description of the mathematics behind LLEs can be found in Saul and Roweis (2000). The fun-
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Figure 9.1: Silhouette Index examples. Four sample data sets with a partition (indicated by
differently colored points) are depicted here. The upper-left plot contains data generated uniformly
at random. The remaining plots contain data that are a mixture of four Gaussians with high (top-
right), medium (bottom-left), and low (bottom-right) spread. In the two-dimensional examples
plotted here, the Silhouette Index is 0.51, 0.46, 0.62, and 0.89 for the uniform, high spread, medium
spread, and low spread examples, respectively. The plotted examples also have higher-dimensional
analogues (see text for details). The 5-dimensional version of these examples leads to Silhouette
Indicies of 0.15, 0.34, 0.47, and 0.82. The 61-dimensional version leads to Silhouette Indicies of
0.003, 0.015, 0.061, and 0.467. We provide these values as context for results presented in this
chapter.
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Figure 9.2: Agnes dendrogram. A sample dendrogram plot depicting the results from running
the Agnes algorithm on the most-tightly clustered example depicted in Figure 9.1. At the top-most
level of the dendrogram (the root), all of the data are represented. As one descends through a
dendrogram, following successive splits, smaller and smaller portions of data are represented. At
the bottom-most portion of the dendrogram (the leaves), a single datum is represented. The length
of each arm is proportional to the difference between the data represented in the left and right
branch of each split. In this example, the longest arms correspond to the split between individual
clusters. The second-longest arms (at the top) represent the difference between the two clusters on
the left side and the two clusters on the right side.

damental idea behind this dimensionality-reduction approach is to assume that the data lie within
some low-dimensional manifold; this manifold could be simple (e.g., a hyperplane) or highly non-
linear (e.g., a high-dimensional swiss roll). Regardless of the complexity of the manifold, it is
assumed that the manifold around each data point is locally flat – that is, locally linear. Each data
point is then approximated as a weighted combination of its m closest neighbors. These weights
then form a new coordinate system for the data. Effectively, this technique attempts to flatten the
non-linear manifold, akin to the way a 3-dimensional crumpled piece of paper can be flatted into a
2-d surface.

9.1.4 Clustering algorithm evaluation
Our evaluation procedure for our clustering algorithm evaluation is straightforward. We run each
of the three clustering algorithms on both clustering setup methods (raw and percentage). As pre-
viously mentioned, each of the three clustering algorithms we use requires us to input the desired
number of clusters to find. Since we do not have a firm idea as to how many clusters there will be,
we run each algorithm multiple times, each with a different number of desired clusters. Specifi-
cally, we vary the number of desired clusters for all values between 2 and 20, inclusive. This range
is sufficiently wide to capture any meaningful cluster structure within our data. With 20 clusters,
each cluster would contain less than 6 subjects, on average; it is not clear that we could make
meaningful statements about clusters smaller than that. After each run of the clustering algorithm,
we compute the Silhouette Index for the resulting partition.
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Figure 9.3: PAM Silhouette Index. Silhouette index for the PAM algorithm’s partitions for 2-
20 clusters. There appears to be, at best, a loose clustering of subjects, and not the desired tight
clustering that would indicate strongly shared markers between a group of subjects.

Figure 9.4: Agnes dendrograms. Dendrogram plots depicting the results from running the Agnes
algorithm on the raw (left) and percent (right) data. Note that in both dendrograms there are no
arms that are markedly longer than the average arm length. This suggests that there are no natural
clusters in the data we are clustering. Compare these dendrograms against Figure 9.2, where there
are clear clusters within the data.

●

●

● ●

●

●
●

● ● ●
● ● ● ● ● ●

● ● ●

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

# of clusters

S
ilh

ou
et

te
 In

de
x

●

●

●
●

●
●

●
●

●
● ●

● ● ● ●
● ●

● ●

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

# of clusters

S
ilh

ou
et

te
 In

de
x

Figure 9.5: LLE Silhouette Index. Silhouette index for the PAM algorithm’s partitions after
transforming the data with a LLE. There appears to be, at best, a loose clustering of subjects, and
not the desired tight clustering that would indicate strongly shared markers between a group of
subjects.
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9.1.5 Clustering results and discussion
We examine the results for each algorithm, in turn. To place these results in context, we suggest
the reader view these results in the context provided by Figures 9.1 and 9.2.

PAM. Figure 9.3 depicts the Silhouette Index for the PAM algorithm, varying across 2 to 20
clusters. Note that the Silhouette Index is roughly 0.02 for most of the cluster sizes for both the raw
and percentage data. Comparing to the baseline seen in Figure 9.1, we can see that these values
correspond largely to a highly spread case (upper-right example). Direct examination of the few
clusterings that produce slightly higher, but still low, values can be seen as separating the data into
low, medium, and high responders. These are not the tight clusters that we seek.

Agnes. Figure 9.4 shows two dendrograms resulting from running the Agnes algorithm on the
raw and percentage data. It is evident that there is no obvious clustering structure; compare Figure
9.4 to the sample dendrogram in Figure 9.2 generated from data with obvious clusters. The long
arms, indicating clear separation between clusters, are simply not present in the two dendrograms
generated using the actual data.

LLE. Figure 9.5 depicts the Silhouette Index for the LLE algorithm, varying across 2 to 20
clusters. Recall that the LLE method actually projects the data down to 5 dimensions before using
the PAM algorithm to cluster the results. Accordingly, it is important to use the 5-dimensional
index values in Figure 9.1. As with the PAM algorithm without dimensionality reduction, the
produced partitions for both the raw and percentage data do not generate strong clusters, which
would be indicated by a Silhouette Index above 0.8.

9.2 Summary
We have seen in this chapter that little evidence exists for tight groups of subjects with strongly
shared commonalities in stress response. Out of the three clustering algorithms that we used, with
one representative each from the three major types of extant clustering algorithms, none were able
to identify such tight groups. This is true regardless of whether we used raw typing changes or
percentage-based typing changes as the input data to the clustering algorithms.

We are therefore forced to conclude that such groups of subjects are unlikely to exist. If they
do exist, these groups may be sufficiently small percentages of the population that they are not
visible given the sample size of our study. However, we speculate that our inability to detect any
such groups is due to the tremendous individual differences in the stress responses of our subjects.
It is well-established that natural typing rhythms differ significantly between subjects; it appears
that changes in typing rhythm due to stress also differ significantly between subjects.
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Chapter 10

Discussion

10.1 Overall findings
The findings of this thesis are divided in terms of the initial questions posed in Chapter 2.

Problem 0: Induce stress in experiment participants.
Findings: We found that our attempt at inducing stress in our subjects, through a combination of
a multi-tasking framework and social evaluation, was successful for 100% of our subjects. This
was ascertained through statistical examination of our independent-assessment data, consisting of
a mix of physiological and psychological evaluations of our subjects. We did note that our sub-
jects’ recovery was only partial during the 15-minute recovery period by both physiological and
psychological measures (see Figure 6.1). As previously noted, we had conducted our pilot stud-
ies with a 30-minute recovery period, but found that subjects became anxious and irritated due to
the length of the period, preventing effective recovery. It remains unclear how this paradox can
be avoided. Notwithstanding the issues surrounding the recovery period, we were pleased to find
strong evidence that our stress induction technique was effective for all subjects.

Problem 1: Characterize how an individual subject’s typing rhythms are affected by stress.
Findings: We were able to identify specific markers for stress within each subject. In fact, we were
able to identify at least nine such markers for each of our 116 subjects where the marker shifted
by at least 10% between the baseline and stress session. Given the existence of these markers,
we were also able to successfully classify neutral and stressed data within a given subject. These
classification accuracies were well above chance rates, with an average accuracy of 89.5% in the
most favorable classification regime. Classification accuracies in this regime ranged from 75.0%
to 99.1%; 61 of our 116 subjects (over 50%) had classification accuracies above 90%. Such high
accuracies indicate that stress clearly manifests in the typing rhythms of subjects. As our work
was intended as a proof-of-concept, we have largely employed simple, off-the-shelf classifiers. We
imagine that with refinement of existing techniques and development of new techniques, it would
be possible to reliably obtain 90+% classification accuracies for virtually all subjects. At such
classification accuracies, it may be feasible to consider pilot testing this technology in real-world
scenarios.
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Problem 2: Identify universal markers for stress.
Findings: Despite obtaining high accuracies on within-subject classification, we were unable to
find universal markers for stress that were common to all subjects. Of the classifiers that we ex-
amined, including a deep neural network, the best accuracy was below 60%. While this was still
statistically significantly above chance levels of classification, it may be too low to be useful in a
practical application. Direct examination of marker patterns helped to reveal why across-subject
classification performed so poorly: the most common marker is only shared by 69 out of 116 sub-
jects. There simply are not universal markers. The consequence of these results is that we cannot
expect to deploy a system utilizing keystroke dynamics for stress detection in an open-world en-
vironment, where the potential users are unknown. Any useful systems must be personalized for
each user. This still leaves a large number of applications in closed-world environments, where
the list of all users is known; such environments would include air traffic control centers, secure
operating facilities, process-control operations, or common office workplaces.

Problem 3: Identify groups of subjects that share common markers.
Findings: We examined our data for evidence of groups (i.e., clusters) of subjects with strongly
shared markers, analogous to the protein markers for blood type. Despite trying a variety of clus-
tering algorithms, we found little evidence that such clusters exist. Rather, it seems that subjects
have strongly individualized manifestations of stress in their typing.

Overall: At the outset of the experiment, we expected that our stressor would be successful for
the vast majority of our subjects. We had strong expectations of discovering markers for stress
for individual subjects and felt it was a plausible notion that we would discover either universal
markers for stress or groups of subjects with strongly shared sets of markers. Our stressor was
effective on all of the 116 subjects run in the study and we were able to identify at least nine
markers for each of these subjects. We did not find either universal markers for stressor nor did
we find groups of subjects with strongly shared markers. The available evidence suggests that the
manifestations of stress in typing data are highly individualized.

10.2 Contributions of this work
Our work makes several major contributions to the existing literature. First and foremost, we view
the experimental methodology and protocol of our study as a substantial contribution. All of the
previous work in the literature has had significant flaws, ranging from the use of unvetted stres-
sors (i.e., stressors that have not been previously demonstrated to induce stress), to the lack of
objective and independent measurements to confirm affect induction, to the presence of multiple
uncontrolled confounding variables. Our view is that conducting experiments with stimuli that
may or may not actually induce stress in subjects, without actually confirming whether the sup-
posed stressor has had the expected effects on a subject, while having other confounding variables
that may be partially or wholly responsible for the obtained results is not a sound mechanism for
making scientific progress. In view of numerous works with one or more of these significant flaws,
we hope that offering a concrete and detailed experimental methodology and protocol will set an
example for other researchers in future work. Moreover, unlike most of the existing literature, we
feel that we have offered sufficient detail within this thesis to permit reproduction and replication
of this work by others; it is our hope that others will take on this task to support or improve on our
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obtained results.
A second contribution is that we have collected multifaceted and detailed data from 116 sub-

jects, which is the largest (and most competently-collected) data set we know of in the literature.
Our data include physiological and psychological data to independently confirm the affective states
of our subjects, 280 repetitions of typing data from each of our subjects, and numerous support-
ing data that may reveal relationships between subject attributes and their changes in typing from
stress. It is our intent to make all of our data publicly accessible as soon as possible, in the hopes
that other researchers may benefit from their availability.

From an analytical perspective, our contribution is that we have performed a deeper analysis
than is currently common in the literature. In addition to providing surface-level numbers like clas-
sification accuracies, we also investigate the reasons why we obtain the classification accuracies
that we do. In the case of within-subject classification, we noted that success could be attributed
to the presence of at least nine markers for each subject. In the case of across-subject classifi-
cation, we noted that our poor classification accuracies could be directly attributed to the lack of
universal or near-universal markers. This deeper analysis provides insight into why we obtain the
classification results that we did.

A further contribution of this work is that we established a protocol for choosing typing stim-
ulus given a set of criteria. While this did not receive much focus within the scope of the thesis,
with many of the details left to the Appendix, this is a common problem in keystroke dynamics
research that has been previously unaddressed.

At a broader level, we believe that our work highlights the need for a re-envisioning of the
current state of affect detection through keystroke dynamics. The current research paradigm is
to throw an assortment of classifiers in an attempt to identify particular affects in typing data.
Our work, which has been conducted with a substantially higher degree of scientific rigor and
experimental control as compared to prior work, was unable to identify any universal markers for
stress nor was it able to identify groups of subjects with strongly shared markers. This finding
strongly suggests that performing generic affect and stress detection in an across-subject manner
– where one attempts to ascertain the affect present in a subject’s typing data without having
access to previous typing data from that subject – is unlikely to ever be successful. We suggest
that researchers should more closely focus on within-subject classification, where previous typing
data from the subject is available and classifiers can be personalized to individual subject; our
work has demonstrated that classification accuracies above 90% is relatively straightforward in
within-subject classification. Researchers who remain interested in across-subject classification
would be best served by searching for universal markers or groups of subjects with strongly shared
markers; this might be done by examining non-standard feature sets in keystroke dynamics or by
incorporating other sources of information (e.g., mouse movements).

10.3 Comparison with existing work
We compare our work with both the existing literature on stress detection through keystroke dy-
namics and, more generally, on affect detection through keystroke dynamics. Much of the existing
literature is insufficiently detailed about the experimental and analytical details of the work that
it can be difficult to precisely ascertain what was done. However, to the best of our reading, the
existing literature is largely focused on performing across-subject analysis (discussed in detail in
Chapter 8), an understaking that we found wanting.
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Attempting to perform across-subject analysis makes the implicit assumption that there are ei-
ther universal markers or at least groups of subjects with strongly shared sets of markers. Without
either of these, one can generally assume that the resulting analysis will be fruitless. Within the
data collected in this thesis work, we found no evidence of either universal markers or groups of
subjects with strongly shared markers. As would be expected, our across-subject analyses were
largely poor; all classifiers we ran performed below 60% accuracy. When we compare our results
with work from others focused on stress detection, reported classification accuracies are gener-
ally higher than what we obtained in our work, such as the 75% obtained by Vizer et al. (2009).
Papers focusing on keystroke features themselves – such as work by Gunawardhane et al. (2013)
and Kolakowska (2016) – generally report significant differences in keystroke features between
neutral and stressed conditions; but, it is worth noting that these papers generally do not use vetted
stressors and/or have independent validations of stress, so these results must be taken with only
low confidence.

When we broaden our comparison to include papers focused on generic affect (not specifically
stress) detection, the story remains largely the same. The reported classification accuracies – such
as the 95.6% reported by Lv et al. (2008) – are higher than those that we obtained. Due to the lack
of reported details, it is difficult to immediately discern why our results differ so significantly from
those reported in the literature. We consider several possibilities.

Lack of experimental control. Much of the existing literature was performed under ill-specified
and inexact experimental controls. Subjects were often exposed to unvetted stimuli with no as-
surance that subjects actually entered the desired affective states. Even when attempts were made
to check the affective state of subjects, this was most often done via only self-reporting using
instruments that are not previously vetted (unlike, for example, our STAI), without concomitant
objective measurements of affect, such as blood pressure, heart-rate variability, and psychological
inventories employed in our study. With such loose experimental controls, it is difficult for a reader
to feel assured that the obtained classification results could be directly attributed to the supposed
affect and not some other confounding variable.

Low sample size. More than half of the existing research into affect or stress detection via
keystrokes has been conducted with sample sizes below 30. It is entirely possible that many posi-
tive results may simply be artifacts of small sample size. It is perhaps noteworthy that the largest
study – with 100 subjects by (Tsihrintzis et al., 2008) – obtained results between 57% and 74%, a
range that brackets our best results.

Inattention to potential confounding variables. A common confounding variable in keystroke
research, and one that we paid a great deal of attention to in our own work, is the influence of
practice. In a typical keystroke experiment, including the vast majority of those in the literature,
subjects are asked to type an unfamiliar phrase into an unfamiliar piece of software using an unfa-
miliar keyboard and computer. Given these circumstances, it would not be surprising for subjects
to exhibit a significant practice effect. Indeed, in our own work, we saw that many subjects had a
substantial practice effect. The difference between our work and the work in the literature is that
we incorporated a familiarization period where subjects could become largely practiced prior to
providing the “real” data we would analyze; we also accommodated the practice effect by sub-
tracting it out of our data. Without such a familiarization period, the first typing session would
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generate highly unpracticed data while subsequent sessions would generate increasingly practiced
data; these data would also be influenced by any affect present during their production. Even if
affect induction was completely unsuccessful, with subjects remaining in a neutral state throughout
the experiment, we would expect the generated data to be easily classified as unpracticed data is
quite different from practiced data. This issue is magnified if only a small number of typing rep-
etitions are collected as the repetition-to-repetition changes are highest when subjects just begin
typing. We speculate that many of the high classification accuracies reported are merely the result
of differentiation between unpracticed and practiced data and not actually differentiation between
presence or absence of a given affect.

“File drawer problem”. The term “file drawer problem” colloquially refers to the problem of bias
being inserted into scientific literature by the tendency to publish only positive and/or confirma-
tory results while neglecting negative or contradictory results (which are then left to rot in the file
drawer). From our own personal experience, keystroke dynamics is an area of research that seems
to suffer from this problem. Much of the literature is filled with highly positive results, most of
which cannot be independently replicated and for which data are not available. It is possible that
the existing literature on affect/stress detection through keystroke dynamics suffers from the same
problem; authors or editors chose to publish only the positive results, effectively hiding all of the
negative ones.

10.4 Limitations and future work
As with any piece of research, our work is not intended to be the final word on stress detection
through keystroke dynamics. Rather, this work was intended from the outset to be a proof-of-
concept to determine whether stress manifests at all in typing data. We identify now a few limita-
tions on our work and suggest natural directions in which the work could be extended.

Single stimulus. In our work, we use only a single stimulus string: great friends are
good to have. While this string was carefully selected out of a pool of 100 candidate strings, it
is nevertheless still only a single string. While we expect that the results obtained in this thesis, us-
ing this string, are likely to be representative of results using any string, this remains unknown until
this work is reproduced using other stimulus items. It would be particularly interesting to allow
subjects to type arbitrary text (i.e., a free-text experiment), as that would more closely resemble the
natural environment where we would wish to perform stress detection through keystroke dynamics.

Single sitting. In our current study, each subject is run through the experimental protocol once.
In the course of doing so, the subject provides a single typing episode in each of the baseline,
stress, and recovery conditions. Since we have only a single episode for each subject, we have
no method for ascertaining the consistency of his/her stress response over an extended period of
time. Ideally, we would hope that this stress response is consistent across repeated applications of
a stressor, but we cannot ascertain this without actually conducting such a study. We opted against
performing such a repeated-measures study, as we expected that it would be too difficult for us
to conduct. In addition to a proportionate increase in experimenter manpower, laboratory space,
and financial compensation, we would expect that subject recruitment would be significantly more
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difficult, especially if subjects had to refrain from relatively common behaviors (e.g., caffeine or
alcohol consumption) for an extended period of time. There would also be the additional difficulty
of finding appropriate relaxation and stressor stimuli with similar intensities; one might reasonably
expect that repeated exposure to the same stimuli would have a smaller effect on the subject.

Generalizability. The results obtained in this thesis work focus on a limited subject population.
Subjects were skilled and healthy typists, largely from a university campus. While we expect that
these results would be similar for other subject populations, we cannot be certain without replicat-
ing the experiment with a different subject population.

Work must be reproduced/replicated. We hope the reader, at this point, has been convinced
that significant attention was paid to the particulars of conducting this experiment and analyzing
the resulting data. Nonetheless, some unknown flaw or quirk could have arisen in the course of
our experiment that may significantly impinge on the validity of our results. Our intention is to
make all of the data from this experiment available as soon as possible. We would hope that other
researchers would see fit to reproduce and replicate this work to confirm our findings. We draw
particular attention to this need since it is highly uncommon in keystroke dynamics to reproduce
or replicate the work of others, despite this being common practice in other scientific disciplines.

Larger-scale experiments. We have drawn our conclusions in this study based on a subject pool
of 116 subjects. One of the most notable findings was that subjects seem to be highly individual-
ized in the markers for stress in their typing. An interesting question to posit is whether all subjects
truly possess a unique set of markers for stress or if we merely have conducted an insufficiently
large-scale experiment to see groups of subjects with similar markers. Such a question can only
be answered with a large-scale version of experiment, perhaps with an order of magnitude more
subjects.

Motion capture and/or pressure-sensitive keyboards. One of the limitations in keystroke dy-
namics research is that we are largely limited to analysis of hold and latency times and their deriva-
tive measures. Using motion capture devices or pressure-sensitive keyboards could potentially in-
crease the information collected in a study, allowing researchers to analyze the 3-dimensional phys-
ical motions of typing rather than just the resultant hold and latency times. We wonder whether this
richer information could allow for a better understanding of typing behavior, perhaps eventually
resulting in higher classification accuracies in keystroke dynamics research.

Detecting other phenomena of interest. In this work, we have demonstrated that stress detection
is possible through keystroke dynamics. Stress is not the only phenomenon of interest that one
might wish to detect through typing behavior. With minor modifications, the experimental design,
protocol, and analyses in this thesis could be applied to other affects or toward early detection and
disease-progression tracking of afflictions such as Carpal Tunnel Syndrome, Alzheimer’s disease,
Parkinson’s disease, dementia, or cognitive decline. We hope that the work performed in this thesis
will enable and inspire others to investigate the non-computer-security applications of keystroke
dynamics.
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Despite the aforementioned limitations, as a proof of concept, our experiment and analyses
seem sufficiently sound to confidently say that stress does manifest as changes to typing rhythms.
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Chapter 11

Conclusion

At the outset of this work, our objective was to evaluate the promise of a new technology: detecting
a user’s stress through keystroke dynamics. This work was a proof-of-concept; we wanted to
know if this technology was effective in an ideal setting. Throughout the course of designing
and executing our study, we paid zealous attention to the particulars of the experiment so as to
ensure the maximal validity of the study. It is our belief that our study is more rigorously-designed
and scientifically-sound than any existing study on detecting stress or affect through keystroke
dynamics.

Our work has shown that there is significant promise for stress detection through keystroke
dynamics within a closed-world environment, where a computer system is aware of the identi-
ties of all persons on the system. Such systems are common in areas such as air-traffic control,
nuclear power plant operation, government facilities, process-control operations in a typical fa-
cility, and many corporate and office environments. In our work, we demonstrated that reliable
stress detection for a given user is possible so long as a system can be personalized to that user.
Gathering the required data to perform this personalization is straightforward in a closed-world
environment, where users are likely to use the same system for weeks, months, or even years. Our
proof-of-concept work has shown that using simple off-the-shelf machine learning algorithms, it
is possible to achieve nearly 90% classification accuracy rates. We imagine that such accuracies
would be sufficiently high to be useful as one indicator of stress, perhaps alongside other indepen-
dent indicators. With further refinements of the techniques used in this thesis work, we imagine
that significantly higher accuracies would be possible; it may be possible to raise these accura-
cies high enough such that keystroke dynamics could function as the sole indicator of stress in a
closed-world environment.
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Appendix A

A.1 Keystroke collection process
As typing data are generated, two separate logging processes occur; these generate a pair of output
data files – MTPXML and Gizmo. When a user presses (or releases) a key, this information is
first captured by the Gizmo hardware and then passed on to the operating system. The MTPXML
data contains all keystrokes captured by the MTP program and uses the (relatively inaccurate)
timestamps generated by the Windows XP operating system. Additionally, the MTPXML data
also contains indications of when a user successfully completes a repetition of the phrase, makes an
error, or is presented with a new screen (containing either instructions or a text box for a repetition
of the phrase). The Gizmo data contains all keystrokes generated, regardless of which program
these were sent to, and uses the highly accurate timestamps generated by the Gizmo hardware.

As its name implies, the MTPXML data are in XML format and are composed of “events”.
The majority of events are associated with the user pressing or releasing a key. However, the
completion of a repetition, a typographical error, and the presentation of a new screen all generate
events as well. Correctly typed repetitions – which are the only ones we are interested in – are
bookended by a New Screen event one on end and a Correct Entry event on the other. As discussed
in the next section, these events are crucial to converting the raw data files into a usable format.
Figure A.1 depicts an example of the data format.

The Gizmo data are in a much simpler format, as depicted in Figure A.2 (right). Lines alternate
between triplets containing a timestamp, an indication of a key-press (KEYDOWN) or key-release
(KEYUP) event, and the ASCII code for the key pressed and lines containing duration information
between these events. Note that the key events contained in the Gizmo file are a (generally strict)
superset of the key events recorded in the MTPXML format; this is because the Gizmo data file
contains ALL keys struck on the keyboard during a typing session, while the MTPXML contains
only keys directed to the MTP software by the operating system.

A total of 4 pairs of MTPXML and Gizmo files are generated during the experiment – one each
for the warmup, first neutral, stressed, and second neutral typing sessions.

A.2 Keystroke merger process
There are a total of three steps that must be performed to make the typing data usable from an
analysis standpoint. First, any unwanted data or undesirable artifacts must be removed in the
Keystroke Edit phase. The precise details will be discussed further in the next section, but such
this phase involves removing data from rejected subjects and removing artifacts that impede the
next two pre-processing steps. The second step is the Keystroke Merge phase, where a pair of



Figure A.1: MTPXML format. A snippet of the raw MTPXML file format.

MTPXML and Gizmo files are merged together into a single file containing only the keystrokes
seen by the MTP program but using the more accurate timestamps in the Gizmo file. The third
step is the Phrase Table Generation phase, where the data in the merged format are converted into
a standardized form suitable for keystroke analysis. We discuss each of these steps in turn.

Keystroke Edit. Keystroke editing can happen in both the MTPXML and Gizmo files, though
it is much more common in the MTPXML file. The most common type of edit is the deletion of
a entire session of collected data. Most deleted sessions are generated during the pre-experiment
phase, when the experimenter starts MTP to ensure that it is working properly. By design, MTP
creates a pair of MTPXML and Gizmo files whenever it is started; obviously, these files do not
contain any useful information and are thus removed. Some deleted sessions are caused by ty-
pographical errors by the experimenter. As previously noted, MTP requires a subject number to
be entered when it is started; if an error is made in typing the subject number, the experimenter
will close MTP and restart it with the correct subject number. However, this will result in a pair
of MTPXML and Gizmo files that must be discarded. Finally, sessions from rejected subjects –
where the experiment was prematurely terminated due to subject inattention or because s/he did
not meet the requirements of the study – are also removed in this step. Whenever a session is to be
removed, for any reason, both files in the pair are removed.

The other type of edit that can be performed is to remove individual keystrokes from the data
file. This is a step that is rarely taken, and is only used to remove keystrokes that are not of inter-
est, but which are impeding the remainder of the pre-processing procedures. The most common



Figure A.2: Gizmo format. A snippet of the raw Gizmo file format.

keystrokes that are removed are extraneous keys (usually Backspaces) that occur during at the be-
ginning of a repetition. As previously mentioned, correctly-typed repetitions are supposed to be
preceded by a New Screen event and followed by a Correct Entry event. In between, there is the
expectation that only keystrokes corresponding to the phrase “great friends are good to have” are
present. However, due to a design defect in the original MTP program, keystroke events that occur
immediately prior to the New Screen event can sometimes be logged after this event, breaking this
expectation 1. Such keystrokes must be removed so that the remainder of the pre-processing step
will function. Finally, keystrokes may sometimes have to be removed because they occurred while
the MTP program did not have focus. This is a highly rare occurrence, as the data are collected in
a highly controlled environment; moreover, subjects are asked to place the mouse out of the way
before they begin typing, reducing the possibility of accidentally clicking the mouse.

To make an edit, entries must be created in either the MTP-sedfile and/or the Gizmo-sedfile,
depending on the file-type to be modified. These two files are in a custom format that serve as
a “paper trail”, providing a summary of all the edits that were made to the data; this is intended
to provide a record of how the data were modified since their collection. Entries removing entire
sessions of data require the specification of the subject number and the file-creation date and time
for the file to be removed, though the latter can be omitted if all files from a subject are to be
removed (i.e., if a subject is rejected for any reason). Entries involving deletion of a keystroke
require specification of the subject number, file-creation date and time, and the precise timestamp
of the keystroke of interest.

Keystroke Merge. The keystroke merger program takes in a pair of MTPXML and Gizmo
files and outputs a merged file where all the MTPXML keystrokes now have the timestamps from
the Gizmo file. The heart of the keystroke merger program is a longest-common-substring com-
putation. With the exception of keystrokes right at the beginning and end of the file, which are
usually associated starting or closing MTP, the merger program looks for a near-perfect match be-
tween the keys captured in the MTPXML file and those captured in the Gizmo file. The matched
keystrokes are then written to an output file with the timestamps in the Gizmo file. Additionally,

1Technically speaking, the defect is due to two simultaneous threads logging to the same file. Meta-events, in-
cluding New Screen and Correct Entry events, are generated by the Visual Basic MTP thread. Logging of the actual
keystrokes is done by a separate thread before these are passed to the Visual Basic thread. Thus, a race condition exists
where events in the log may not correspond to the order they were perceived by the Visual Basic thread, which evalu-
ates the correctness of a typed repetition. Ultimately, removing this race condition would have required a redesign of
the program; the condition manifests so rarely (approx. 5% of files) that it was easier to deal with in pre-processing.



the program also looks for correctly-typed repetitions of the phrase. Correctly-typed repetitions
must be preceded by a New Screen event and ended by a CorrectEntry event, with precisely the ex-
pected keystrokes in between. In addition to outputting a merged output file, the keystroke merger
program also outputs the number of correctly-typed repetitions it found. If these do not align
with expectations 2, the file is manually examined and fixed by creating entries in the MTP-sedfile
or Gizmo-sedfile. If such a misalignment occurs, the pre-processing procedure is fully restarted.
Misalignments happen in approximately 3-5% of subjects.

Phrase Table generation. Once merged files have been generated for every single session
of typing data, the phrase-table generation program is run. This program takes all of the merged
files as input and outputs a single phrase table. Each row in the table corresponds to a single
correctly-typed repetition; each column contains the duration of a single hold or latency time. This
phrase-table generation program is relatively straightforward; it simply computes the hold and
latency times for each of the correctly-typed repetitions identified in the Keystroke Merger phase.
A small amount of meta-data (e.g., subject and session numbers) is also added by the program to
help with bookkeeping.

A.3 Stimulus selection in keystroke dynamics
A.3.1 Problem and approach
The general problem is how to choose a suitable stimulus for an experiment in keystroke dynamics,
based on the goals of the experiment. More specifically, in the present experiment that serves as
the illustrative example case, how does one choose a stimulus string that is well-attuned to the
keystroke task of detecting affect, based on the characteristics of typing rhythms? Our stepwise
approach is four-fold: first, determine the criteria for the string; second, generate candidate strings;
third, prune the list of candidates to a number aptly suited for analysis; and finally, select the best of
the candidate strings. These steps will be detailed in the next section, and illustrated by a specific
example in the sections on experimental methods.

A.3.2 Stepwise approach
Here we describe the stepwise method; implementation details are provided in the Method sections.
Candidate definition. Defining what kind of stimulus is best suited to the research question simply
involves asking what the keystroke experiment is intended to do. For example, such experiments
can seek to distinguish among users (the most typical task), or to determine some other charac-
teristic of the users, such as handedness or gender. Take handedness as an example. One could
imagine that a simple string might serve best, where “simple” means no special characters, no
upper case, etc. If most of the characters in the stimulus string are predominantly on one side of
the keyboard, there won’t be enough comparisons between keys struck on the left vs. the right
to make an adequate comparison of how these respective keys are struck, and whether there are
significant differences among them. So, a stimulus string that is attuned to the research task would
be roughly evenly divided across the keyboard so as to attract keystrikes from both hands. There
may be other constraints, as well, but this is just illustrative. While this stimulus might be effective
for ascertaining handedness, it might not be the most effective stimulus for, say, gender. Every re-
search question is associated with a keystroke task, and that task should use a stimulus string that is

240 correctly-typed repetitions in the Warmup session and 80 repetitions in each of the three other session



best suited to answer the research question. This is not to say that a generic one-size-fits-all string
would be unsuitable; just that a customized string might be better. Every aspect of the research
question and keystroke task should be considered before settling on a definition, or requirement,
for the stimulus string. Based on the requirements of the keystroke task, the stimulus string should
be crafted to correspond to it, and a justification for the choice of stimulus should be provided.
Candidate generation. Given a definition for the stimulus string, it is likely that there are many
suitable strings, although some might be better than others. One should generate a large number
of candidate strings, and then choose the best from among them (called pruning, in the next step).
The constraints provided in the candidate definition procedure will guide the generation process.
Candidate pruning. Once a set of candidate strings has been generated, each string should be
analyzed individually for suitability as a final stimulus string. If the candidate set is too large for
one-by-one scrutiny, then the set of candidates should be pruned in a principled way to extract a
smaller, but higher quality, subset.
Candidate ordering/scaling. When the candidate list is suitably small, the candidate strings can
be ordered from worst to best in accordance with the criteria in the definition. In our work, this
ordering is done using a Thurstone scaling model, which determines a ranking of the phrases based
on subjects’ pairwise preferences among them.

A.3.3 Method – Candidate definition
In this section we go from the general to the specific, in terms of a concrete example in which a
stimulus string needs to be “easy to type.”

Our research question concerns detecting a user’s affective state (stress) by examining changes
to or characteristics of typing rhythm. One could imagine that these affective states might cause
only subtle changes in typing – in the timings of key-holds and interkey latencies. Hence, we
would want our users to type a stimulus string that induced as little noise, or variation, as possible,
lest the noise mask the signal for which we are searching. As previously indicated, pilot studies
in our lab have shown that easily-typed strings tend to have low variation. To help in defining the
stimulus string, we consider the criteria shown in Table A.1.

Regarding the guidance in Table A.1, we have defined the requirements for our stimulus string
as follows:

- English language, because our subject pool comprises native speakers of English.

- Memorable, so that users don’t have to look at the screen more than once to apprehend the
string (looking back induces pauses).

- Pre-habituated/familiar, so that rhythm doesn’t change with repeated typings.

- All lower case; no punctuation or special characters. Mixed case, punctuation and special
characters can be awkward to type, hence inducing pauses or breaks in rhythm.

- Time to type should be roughly 5 seconds so that enough repetitions of the string can be typed
before the laboratory-induced affective state fully attenuates.

- Emotional content should be flat; no emotionally charged text. If the stimulus string itself
induces emotion, it will be difficult to separate that from the effect of laboratory-induced affect.

- String length should be 30 characters; this is long enough to detect the sought-after affect,
but short enough to remember, based on a glance.



- Minimal noise; variability in rhythm should be as low as possible from one string tying
instance to another (for multiple repetitions of the same string).

- No constraints on keying patterns, which should not matter for this task.

- String type is words, because they are easier to remember that other kinds of strings; memo-
rability is critical in this task.

- Content should comprise dictionary words, exclusive of proper nouns.

These constraints on the definition of our stimulus string leave us with the higher-level defini-
tion of 30-character, lower-case strings, comprised of English words, easy to remember and easy
to type, the ease of typing imposed because easy-to-type strings will be intrinsically less variable,
and hence less noisy. One example string would be: smell the sweetness of the rose.

A.3.4 Method – Candidate pruning
The objective of candidate pruning is to reduce a large pool of stimulus candidates to a smaller,
more manageable pool. Because we planned to use pairwise comparisons for scaling the candi-
dates, we pruned our candidate list to 20 phrases, for reasons (mainly due to resource limitations)
explained in the next section.

We based the pruning on memorability - how memorable was each phrase, and which 20 of
the 100 phrases were the most memorable? We used a memory task to ascertain which of the
100 candidate phrases were most easily remembered. In this task a subject viewed a phrase for
5 seconds, after which the phrase disappeared, and the subject was asked to type the phrase. The
20 phrases that were most often typed correctly were selected; they appear in Table A.2 in no
particular order.

A.3.5 Method – Candidate ordering/scaling
This section describes how the 20 candidate phrases from the pruning procedure were ordered from
easiest to hardest to type, and how the relative positions of the phrases were pinned to a scale. To
achieve this, Thurstone scaling (Critchlow and Fligner, 1991; Thurstone, 1927) was applied to the
4129 pairwise comparisons amongst 20 phrases, provided by 413 Mechanical Turk subjects in an
on-line experiment, whose procedure is given below.

The Thurstone model presumes that each phrase has an inherent “strength” that represents how
easy it is to type; the easier a phrase is to type, the higher its strength. Given n different phrases
(n = 20 in our case), we have n different strengths: µ1, µ2, ..., µn. When a subject sees two
phrases, he is more likely to express a preference for the stronger phrase. Moreover, the bigger
the difference between the respective strengths of the two phrases, the more probable it is that the
subject expresses a preference for the stronger of the two. In practice, what we observe are the
counts of preferences from the subjects – how many times each phrase is preferred to each other
phrase. Similarly, we observe the fraction of the time that each phrase is preferred to each other
phrase; these fractions are denoted pij for i, j ∈ {1, ..., n}. The objective in fitting a Thurstone
model is to find values for µ1, ..., µn that fit these fractions well.

What makes one fit better than another? In the way that linear regression makes an ideal
assumption that the data lie on a line, y = βx, with some noise getting in the way, the Thurstone
model makes an ideal assumption that the relation φ−1(pij) = µi − µj holds, with some noise



getting in the way; φ−1 here refers to the inverse of the normal CDF. In linear regression, one fit is
better than another if it results in a smaller sum-squared-error:

n∑
i=1

(yi − βxi)2

For a Thurstone model, one fit is also considered to be better than another if it results in a
smaller sum-squared-error:3 ∑

i,j
i 6=j

(φ−1(pij)− (µi − µj))2

The intuition behind fitting a Thurstone model is to assign strengths such that phrases with
preference fractions close to 50-50 have similar strengths, while phrases with preference fractions
that are skewed have considerably different strengths; the more skewed the fractions are towards a
unanimous vote, the larger the difference there should be between the strengths of the two phrases.

Procedure. We conducted a Mechanical Turk (MTurk) (Amazon’s Mechanical Turk, 2014)
experiment with 413 subjects. The task presented 10 pairs of webpages to the subject. The first
webpage in each pair contained two distinct phrases (of the 20) that subjects had to type correctly
into text boxes. Once the two phrases were typed correctly, subjects could proceed to the next page
where they were asked to indicate which phrase they found easier to type. Subjects saw each of
the 20 phrases exactly once. Pairs of phrases were chosen in a pseudo-random fashion.

Outcome. The result of this process was a set of 4129 pairwise preferences, each of which
indicated a subject’s preference for one phrase being easier to type than the other – for example,
the number of times that Phrase-1 was thought to be easier to type than Phrase-2, and so on, for
all 20 phrases. These 4129 comparisons were the inputs to the Thurstone scaling procedure. The
Thurstone scaling procedure was fitted using the eba (Wickelmaier and Schmid, 2004) package in
R (R Core Team, 2012).

A.3.6 Results
Results are reported in terms of the ordering of the 20 phrases, from easiest to hardest to type, as
well as the relative scaling amongst the phrases; and an empirical validation showing the difference
between easy and hard phrases graphically.

A Thurstone model was fitted to the 4129 pairwise comparisons provided by 413 MTurk sub-
jects, each of whom made 10 pairwise comparisons (except one, who provided only 9). A depiction
of the fitted model is presented in Figure A.4. By convention, a Thurstone model gives the most
preferred (easiest to type) phrase a value of 0, with all other phrases receiving more negative val-
ues. As can be seen in Figure A.4, subjects found phrase #1 (great friends are good to
have) the easiest to type.
Ordering and scaling of phrases. Thurstone scaling produced an ordering and scaling of the 20
phrases. The ordering is shown in Table A.2, where the order is noted in the superscript at the

3In this work, we actually use the maximum-likelihood formulation of a Thurstone model, instead of the least-
squares formulation we describe here. The difference between the two models is that the least-squares formulation
breaks down (i.e., produces infinities) when there is a unanimous vote for one phrase over another, while the maximum-
likelihood formation does not. We choose here to present the least-squares formation due to its much clearer intuition.



0 1 2 3 4 5 6

0
10

20
30

40
50

Time (sec)

R
ep

et
iti

on

g r eatspacef r i en dsspacearespacego odspacet ospacehaveReturn

0 1 2 3 4 5 6

0
10

20
30

40
50

Time (sec)

R
ep

et
iti

on

e l e p h a n tsspaceac t u a l lyspace e atspacep e an u tsReturn

Figure A.3: Easy vs. hard phrase. Comparison between typing an easy phrase (left panel, great
friends are good to have) and a more difficult phrase (right panel, elephants actually eat peanuts).
Notice the low variability for the easy phrase vs. the high variability for the harder one. Both
examples were typed by the same person, a skilled touch typist. Solid dots indicate the moment
of key-press; open dots indicate key-release. Distance between like-colored solid/open dots is
key-hold time. Open space is time between key presses.

end of each phrase. The easiest phrase to type was number 1, great friends are good to have. The
hardest phrase to type was number 7, elephants actually eat peanuts. The scaling of the 20 phrases
can be seen in Figure A.4. The figure shows the ordering of the phrases, as well as the relative
distance among them.
Validation. Figure A.3 shows the typing rhythms of one subject in a laboratory validation of our
result. The subject typed both the easy phrase (left panel) and the hard phrase (right panel). It is
easy to see that the easy phrase engendered much less variation (noise) in terms of both total typing
time (x-axis) and latency times.
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Figure A.4: Thurstone ordering/scaling. Depiction of the ease of typing a phrase, as deter-
mined by a Thurstone model fit to data from touch-typists. Both no-look and sometimes-look
touch-typists had their data included in this model. Numbers 1-20 correspond to phrases, as listed
in Section A.3.4. By convention, the easiest phrase (#1 – great friends are good to
have) is given a value of 0, with all other phrases given more negative values. As examples, the
second easiest phrase is #13, with the hardest phrase being #7.



Language: English, French, Italian, etc.
Memorability: the string should be ”memorable”
in that once the string is apprehended, a subject
should be able to type it without looking back
to be reminded of the next character or word.
Recall that human short-term memory is limited
to 7 ± 2 ”chunks”, whether they are characters,
words, phrases or anything else that can be en-
coded in memory within about seven elements
Miller (1956).
Habituation: the more often you type a string,
the better you get at it, and hold/latency timings
will change. To avoid mistaking these changes in
time for indications of affect, we prefer a string
that is resistant to habituation; this suggests that
the string should be pre-selected as one that is al-
ready well habituated, such as “the” in English. Of
course three characters is too short, but the string
should be as resistant to habituation as possible.
Case: mixed case is harder to type and more vari-
able; all upper case is harder to read, and hence
might affect readability of the given string.
Punctuation: periods, commas and apostrophes
can be awkward to type (more so than not typing
them), so we opt for no punctuation.
Special characters: characters such as @ or #
or $ can be hard to type, especially when mixed
within running text.
Typing time: The amount of time it takes to type
the stimulus.
Emotional content: string should not induce
emotion in the typist; e.g., no distressing content.
Length of string: must be long enough to facil-
itate the detection of affect, yet not violate con-
straints such as memorability; a longer string will
more likely show the effect of affect, but will also
be less memorable.
Noise: by noise we mean high variability; the
string must induce as little variability as possible.
Required keying: At least 5 transitions between
the left and right hand for a proper touch typist.
String type: letters, phrases, sentences, free text,
fixed text, PIN.
Word content: Only English words found in the
dictionary; no proper nouns.
Strikingly unfamiliar words: Syzygy or uglify,
for example, by their very unfamiliarity, can in-
duce timing changes that may be mistaken for
signs of affect.
Character content: All letters in the alphabet, se-
lected letters only; inclusion and exclusion crite-
ria.

Table A.1: Stimulus selection considerations.



1. great friends are good to have(1)

2. where is the smallest donation(13)

3. jeans are not very comfortable(18)

4. he is going to an art festival(10)

5. he hates seeing spiders inside(2)

6. my cat did not enjoy the water(17)

7. elephants actually eat peanuts(20)

8. she goes to the football games(8)

9. he played games in high school(4)

10. it was too nice to stay inside(9)

11. she studied very hard at night(11)

12. always say please to be polite(5)

13. there is no need to argue here(15)

14. spilling milk is very bad luck(6)

15. the bride and groom are lovely(3)

16. their first apartment was tiny(16)

17. please arrive on time tomorrow(14)

18. they could see fire in the

sky(12)

19. celebrate your accomplishments(19)

20. spring has more hope than fall(7)

Table A.2: Experimental phrases. These 20 phrases, used in the Mechanical Turk experiment,
were given to the scaling algorithm in the order shown. The algorithm produced the order shown
in superscripts. For example, “great friends” was the easiest to type, “where is” was 13th and
“elephants actually” was hardest (20th).



A.4 Recruitment materials
The vast majority of the subjects in our study were recruited when they contacted us after viewing
recruitment posters around campus. The posters prompted the potential subject to send mail to our
experimenter. Our experimenter would then send an initial e-mail to the potential subject to ascer-
tain whether s/he met the inclusion and exclusion criteria. Once the potential subject responded,
a stock acceptance or rejection mail was sent. These recruitment materials are enclosed below in
the following order: 1) recruitment poster, 2) initial e-mail, 3) acceptance e-mail, and 4) rejection
e-mail.



 

Seeking Volunteers for a Research Study 

 
Principal Investigator:  Dr. Roy Maxion 
 
The purpose of this study is to establish whether cognitive load can be detected 
through the way somebody types.  It is well-known that a person under heavy 
cognitive load tends to make more errors.  This is particularly problematic for 
individuals working in highly-sensitive environments, such as air-traffic 
controllers or nuclear power plant operators.  If we can detect cognitive load 
through changes in typing, then we may be able to prevent catastrophic errors 
from happening. 
 

To participate in this research you must: 

 Be at least 18 years of age 

 Be a fluent English speaker 

 Have at least 3 years of typing experience on a computer 

 Be able to type at least 30 words per minute 

You must NOT: 

 Have a history of cardiac, neurological, anxiety, stress, or sleep disorders 

 Have hypertension – blood pressure above 140/90 

 Have had a stroke 

 Suffer from color-blindness 

Participation in this study involves: 

 A single 3-3.5 hour experimental session on the CMU campus 

 You will receive up to $60 as compensation for your participation 

To find out more about this research study, please contact: 

 Patricia Loring (Dr. Maxion’s research assistant) at sawako@cs.cmu.edu 

(Please include “Research Study” in the subject line) 
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Hi, <name>. 

 

Thank you for your interest in our study of the effects of 

cognitive loading on typing rhythms.  Before we schedule an 

appointment for your joining the study, we’d like to confirm your 

eligibility to participate.  Below are a few statements; please 

read these statements carefully, and REPLY to this email, answering 

each question with an 'x' in the appropriate "true/false/not-sure" box. 

 

Please note that we will be verifying these statements again on 

the day of the study.  If you are ineligible, we’ll need to 

excuse you from the study, without compensation. 

 

 1. I am at least 18 years old. 

         True [ ]  False [ ]  Not sure [ ] 

 

 2. I speak English fluently. 

         True [ ]  False [ ]  Not sure [ ] 

 

 3. I have at least three years of experience typing on a computer. 

         True [ ]  False [ ]  Not sure [ ] 

 

 4. I can type at least 30 words per minute. (Typing at 30 words 

    per minute means you can type the sample text below in 1 minute.) 

         True [ ]  False [ ]  Not sure [ ] 

 

 5. I have no history of cardiac disorders. 

         True [ ]  False [ ]  Not sure [ ] 

 

 6. I don’t have any history of neurological disorders. 

         True [ ]  False [ ]  Not sure [ ] 

 

 7. I do not have any history of anxiety or stress disorders. 

         True [ ]  False [ ]  Not sure [ ] 

 

 8. I’ve never had a stroke. 

         True [ ]  False [ ]  Not sure [ ] 

 



 9. I’m not currently being treated by a doctor for a sleep disorder. 

         True [ ]  False [ ]  Not sure [ ] 

 

10. I don’t suffer from any form of color-blindness. 

         True [ ]  False [ ]  Not sure [ ] 

 

11. My blood pressure is below 140/90.  (If you have a blood 

    pressure above 140/90, you may have hypertension.) 

         True [ ]  False [ ]  Not sure [ ] 

12. I have not heard anything about this experiment beyond 

    what is on the recruitment materials. 

         True [ ]  False [ ]  Not sure [ ] 

 

 

Once we hear from you, and have confirmed your eligibility for 

this study, we will contact you again for your appointment. 

 

Sincerely, 

 

   Patricia Loring 

 

 

Sample text - typing the text below, in one minute, is 30 words/min: 

 

  The old man is wearing a ship captain's uniform with a red cloth 

  in his back pocket.  He is hunched forward as he gazes out at the 

  beautiful blue ocean. 



<Acceptance letter for subjects - 021416@1815> 

<Subject field of this email should indicate topic and subject name.> 

<Don't forget to attach the map.> 

 

Hi, <name>. 

 

We are happy to let you know that you are eligible to participate 

in our study on typing rhythms and cognitive loading.  We are 

currently able to schedule you for the following dates and times: 

 

        <list of dates and times (both beginning and end times)> 

 

Can you please let me know which date and time would be most 

convenient for you, by REPLYing to this email? 

 

The study session will held in Gates Hall, room 8122, at Carnegie 

Mellon University.  Directions to campus and to the specific 

building and room are given below, at the end of this email. 

 

Please note that you ... 

 

1. Must not consume psychoactive drugs (e.g., anti-depressants, 

marijuana, ecstasy, LSD, Ritalin, etc.) during the 48 hours 

before the start of the study. 

 

2. Must not consume alcoholic beverages for 48 hours before the 

start of the study. 

 

3. Must not consume excessive caffeine (more than 3 cups of 

coffee, or equivalent, in a day) for 24 hours before the start of 

the study. 

 

4. Must not consume ANY caffeine or other stimulants for 2 hours 

before the study. 

 

5. Must wear a loose top, such as a half-sleeve/short-sleeve 

t-shirt on the day of the study.  If it is more convenient for 

you, you are welcome to bring a loose top, and change into it 

once you arrive.  (The loose top facilitates easy attachment of 

electrocardiogram leads and blood pressure cuff.) 

 

You will receive 10 dollars compensation for participating in the 



study.  You will have the opportunity to earn an additional 50 

dollars by being highly engaged during the experiment, bringing 

your total compensation as high as 60 dollars.  Compensation will 

be provided in the form of Giant Eagle gift cards (which we 

figure everyone can use). 

 

If you have any questions or concerns, you can reach me at 

(412)-268-5628 or by email at sawako@cs.cmu.edu.  I look forward 

to seeing you soon! 

 

 

   Sincerely, 

 

   Patricia Loring 

 

----------------- 

Directions to CMU 

----------------- 

 

A campus map (in PDF format) has been attached to this e-mail. 

 

  - Yellow circle: the Gates building at CMU. 

  - Red circles: Pittsburgh PAT bus stops near the CMU campus. 

  - Purple circle: CMU parking garage. 

 

Getting to the CMU campus by bus: 

 

The 61A, 61B, 61C, 61D, 58, 67, 69, and 28X buses all stop at 

Forbes and Morewood.  These stops are marked in red on the 

enclosed campus map. 

 

Getting to the CMU campus by car: 

 

The CMU campus is located at 5000 Forbes Avenue.  On-campus 

parking is available in the East Campus Garage (purple circle on 

the map); you can enter the garage from the intersection of 

Beeler and Forbes.  Once you have parked, exit the garage out 

onto Forbes Avenue, in the direction of downtown.  The Gates 

building is roughly one long block away on the same side of the 

street; it will be on your left (yellow circle on map). 

 

Getting to Gates Hall: 



 

The CMU campus can be difficult to navigate, so we recommend that 

when you arrive on campus, you consult the attached map, and/or 

ask the person nearest to you: How do I get to Gates Hall? 

 

If you lose your way, or you are running late, please call 

Patricia Loring (412-268-5628) to get help or let her know. 



Hi <name>, 

Unfortunately, you do not meet the eligibility requirements for participation in this study.  However, we 

would like to thank you for your interest in the study! 

Sincerely, 

Patricia Loring 



A.5 Multi-tasking framework instructions
In addition to the verbal instructions provided by the experimenter, we also provide subjects with
a written version of the same instructions, which are included below.
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Instructions 

1. This exercise consists of 4 different tasks, one in each 

quadrant of the screen. 

2. Your goal is to be as fast and as accurate as you can be, on 

ALL of the tasks at the same time. 

3. Your score is located in the center of the screen. 

4. Doing well at a task will gain you points, while doing poorly 

will cause points to be deducted from your score. 

5. Failing to attend to tasks in time will result in them timing out, 

causing you to lose many points. 

6. Your performance will be evaluated based on 1) your score, 

2) whether you attend to ALL of the tasks, and 3) whether 

you are going quickly enough. 

7. The four tasks are described on the following pages. 
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Color Word Task 
 

1. Your goal is to click the colored box that corresponds to the 

font color of the displayed word. 

2. In the above example, you should click on the red box, since 

the word “YELLOW” is written in a red font. 

3. You will be awarded 10 points for a correct response.  You 

will lose 10 points for an incorrect response. 

4. Failing to respond quickly enough will cause a timeout, 

causing you to lose 30 points. 

5. After each answer, or after you fail to respond quickly 

enough, a new word color will be displayed. 
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Target Tracker Task 

1. Your goal is to keep the red dot inside the target. 

2. The dot will start at the center of the target, and move 

outward. 

3. Clicking the “Reset” button will re-position the dot to the 

center of the target. 
4. The further out the dot is when you click Reset, the more 

points you will get (up to 10 for the outermost ring). 
5. If the dot drifts past the outer ring, the task will timeout, 

causing you will lose 10 points every half second. 
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Highest-Number Task 
 

1. Your goal in this task is to highlight all of the circles that 
contain the highest number (5 in this example). 

2. Click a circle to highlight it.  Click it again to un-highlight it. 
3. In this example, the highest number is 5, so you should click 

all of the circles that contain 5. 
4. You get 10 points once you’ve highlighted all the circles that 

contain the highest number. 
5. The task will timeout if you do not highlight the circles 

quickly enough, causing you to lose 30 points. 
6. The grid will reset when you finish highlighting all the circles, 

or after you have taken too long. 
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Letter-Match Task 
1. Your goal in this task is to indicate whether the letter in the 

circle is contained in the list of letters in the horizontal box.  
The list can be different and longer than in the example. 

2. The letters in the box will initially be visible for several 
seconds, after which they will be replaced by “Retrieve List”. 

3. If you cannot remember the letters in the box, you may click 
on “Retrieve List” to see them again. 

4. You can only respond to the task when the box contains the 
words “Retrieve List.” 

5. Respond by clicking the True or False buttons, depending on 
whether the circled letter was in the box.  In the above 
example, you should click False, because R is not contained 
in the horizontal box. 

6. You gain 10 points for a correct answer, and lose 10 for an 
incorrect answer. 

7. The task will timeout if you do not respond quickly 
enough, losing you 30 points. 

8. Clicking “Retrieve List” will cost you 5 points.  



A.6 Experiment forms
As referenced in Chapter 5, a number of forms are used during the course of our experiment. The
forms used are the Long-form STAI (Y-2), PSS-10, Short-form STAI, and NASA-TLX. We also
use a demographic survey that is commonly administered in our lab. For the sake of transparency,
we reproduce each of these forms in the coming pages.



 

STAI_Long-Y2-rm.doc 

ID          |     |     |     |     |  STAI_Long_Y2 
Initials   |     |     |     |    
DOB      |  m   |  m   |   d    |   d   |       yy 
Date       |  m   |  m   |   d    |   d   |       yy 
Session  | 

 

SELF-EVALUATION QUESTIONNAIRE : STAI Long Form Y-2 (Trait) 
    

 

 

 
 

 

21. I feel pleasant ................................................................................................. 1 2 3 4 
22. I feel nervous and restless ............................................................................. 1 2 3 4 
23. I am satisfied with myself ............................................................................... 1 2 3 4 

24. I wish I could be as happy as other seem to be ............................................. 1 2 3 4 

25. I feel like a failure ........................................................................................... 1 2 3 4 

26. I feel rested .................................................................................................... 1 2 3 4 

27. I am “calm, cool, and collected” ..................................................................... 1 2 3 4 
28. I feel that difficulties are piling up so that I cannot overcome them ............... 1 2 3 4 

29. I worry too much over something that really doesn’t matter .......................... 1 2 3 4 

30. I am happy ..................................................................................................... 1 2 3 4 

31. I have disturbing thoughts......................................................... .................... 1 2 3 4 

32. I lack self-confidence ..................................................................................... 1 2 3 4 

33. I feel secure .................................................................................................... 1 2 3 4 
34. I make decisions easily .................................................................................. 1 2 3 4 
35. I feel inadequate ............................................................................................. 1 2 3 4 
36. I am content ................................................................................................... 1 2 3 4 
37. Some unimportant thought runs through my mind and bothers me .............. 1 2 3 4 
38. I take disappointments so keenly that I can’t put them out of my mind ......... 1 2 3 4 
39. I am a steady person ...................................................................................... 1 2 3 4 

40. I get in a state of tension or turmoil as I think over my recent concerns 
and interests ................................................................................................... 1 2 3 4 
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DIRECTIONS: 
A number of statements which people have used to describe 
themselves are given below. Read each statement and then circle the 
appropriate number to the right of the statement to indicate how you 
generally feel. There are no right or wrong answers. Do not spend too 
much time on any one statement, but give the answer which seems to 
describe your present feelings best. 



PSS-10-rm.doc 

 
 
 
 

 
 
The following questions ask you about your feelings and thoughts during the last month.   
For each question you will be asked to indicate how often you felt or thought a certain way.  

The best approach is to answer each question fairly quickly. 
 
For each question circle one of the following answers:  0 = Never 

1 = Almost Never 
         2 = Sometimes 
         3 = Fairly Often 
         4 = Very Often 
 

In the last month…… 

 
 
 
 

ID    PSS-10 
Initials           
Date           
DOB           
Session  

 
 Never 

                         Very 
Often 

1 How often have you been upset because of 
something that happened unexpectedly?    0          1          2          3          4 

2 How often have you felt that you were unable to 
control the important things in your life?    0          1          2          3          4 

3 
How often have you felt nervous or stressed    0          1          2          3          4 

4* How often have you felt confident about your ability to 
handle your personal problems?    0          1          2          3          4 

5* How often have you felt that things were going your 
way?    0          1          2          3          4 

6 How often have you found that you could not cope 
with all the things that you had to do?    0          1          2          3          4 

7* How often have you been able to control irritations in 
your life?    0          1          2          3          4 

8* How often have you felt that you were on top of 
things?    0          1          2          3          4 

9 How often have you been angered because of things 
that happened that were outside of your control?    0          1          2          3          4 

10 How often have you felt difficulties were piling up so 
high that you could not overcome them?    0          1          2          3          4 



STAI_State_VAS_rm.doc 

 
 
 
 

 
A number of statements that people have used to describe themselves are given below. 
Read each statement, and then mark on the line at the most appropriate point to indicate  

how you feel right now, at this moment. 
 
 
 
I feel calm 

            not at all      very much 
 
I feel tense 

            not at all      very much 
 
I am upset 

            not at all      very much 
 
I feel relaxed 

            not at all      very much 
 
I feel content 

            not at all      very much 
 
I feel worried 

            not at all      very much 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ID    STATE_ANX_VAS 
Initials           
Date           
DOB           
Session  
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ID    NASA-TLX 

Initials           

DOB           

Date           

Session  

 
 

Please tick-mark each line at the point which matches your 
experience with the task you have just completed. 

 
A) MENTAL DEMAND – How much mental and perceptual activity was required (e.g., 
thinking, deciding, calculating, remembering, looking, searching, etc.)?  Was the task easy or 
demanding, simple or complex, exacting or forgiving? 
 

Low         High 
 
B) PHYSICAL DEMAND – How much physical activity was required (e.g., pushing, pulling, 
turning, controlling, activating, etc.)?  Was the task easy or demanding, slow or brisk, slack 
or strenuous, restful or laborious? 
 

Low         High 
 
C) TEMPORAL DEMAND – How much time pressure did you feel due to the rate or the pace 
at which the tasks or task elements occurred?  Was the pace slow and leisurely, or rapid and 
frantic? 
 

Low         High 
 
D) EFFORT – How hard did you have to work (mentally and/or physically) to achieve your 
level of performance? 
 

Low         High 
 
E) PERFORMANCE – How successful do you think you were in accomplishing the goals of the 
task set by the experimenter (or yourself)?  How satisfied were you with your performance 
in accomplishing these goals? 
 

Poor         Good 
 
F) FRUSTRATION – How insecure, discouraged, irritated, stressed and annoyed versus 
secure, gratified, content, relaxed and complacent did you feel during the task? 
 

Low         High 
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ID    DemographicMod21 
Initials           
Date           
DOB           
Session   

 

Keystroke Experiment Demographic Survey 
The objective of this survey is to help us understand the kinds of things that influence a person’s typing style.   
Your data will be kept confidential.  Some items are marked “Reserve;” ignore them. 

 

General 

Gender:  Male  Female 

Write your age here (or check one age group):  _________   

  18-20  21-25  26-30  31-35  36-40 

  41-45  46-50  51-60  61-70  71-80 

(Reserved)  ______________________ 

Highest level of education that you have completed: 

  High-school/GED  Some college  

  2-year college degree  4-year college degree - Major:____________________________  

  Some graduate school  M.A. or M.S - Major:___________________________________ 

  Ph.D. - Area of thesis:_________________________________________________________ 

Current occupation:  

 Undergraduate student Major:_______________________________________________ 

 Master’s student Field:________________________________________________ 

 Ph.D. student Field:________________________________________________ 

 Staff   Administrative  /  Technical 

 Faculty Field: ________________________________________________ 

 Other Specify: ______________________________________________ 

 



A.7 Protocol
The experiment conducted as part of this thesis work was far more complicated than previous
experiments that we had run in our lab. To execute the experiment properly and consistently, we
developed a detailed protocol laying out the precise steps required in the experiment. The basic
layout of the protocol is simple, there is an instruction to perform on the left, with checkboxes
on the right that should be marked when the instruction is completed. For simpler tasks, there
are sometimes multiple instructions corresponding to a single checkbox. At times, the checkbox
is replaced by a circle indicating a button to be pressed on a piece of equipment (e.g., the print
button on the blood pressure machine) or a conditional instruction (e.g., skip to the debriefing step
if a subject is not eligible). Actions that should be performed by the experimenter are in regular
font, verbal instructions are in italics and particularly noteworthy instructions (as deemed by the
experimenter herself) are in bold.

We reproduce here the full protocol document. We do so both for the sake of transparency and
in the hope that others might find it helpful in their own research.



Subject number: Date: Time:

1.0 Equipment

1.1 Ensure the following experiment equipment are available:

1.1.1 Still camera on tripod
Complete?

�
1.1.2 Remote for the still camera

Complete?

�
1.1.3 Subject’s display, keyboard, mouse, gizmo

Complete?

�
1.1.4 3 large lamps on clamps, remote for top lamp

Complete?

�
1.1.5 4 webcams

Complete?

�
1.1.6 Green camera background screen

Complete?

�
1.1.7 Case of Coke to serve as a footrest for shorter subjects

Complete?

�
1.1.8 Speakers for Experimenter’s laptop

Complete?

�
1.1.9 Experimenter’s laptop

Complete?

�
1.1.10 Flash drive for saving experiment data

Complete?

�
1.1.11 Electrodes - 3

Complete?

�
1.1.12 Electrode leads

Complete?

�
1.1.13 Respirator belt

Complete?

�
1.1.14 PowerLab

Complete?

�
1.1.15 Critikon blood pressure machine with 2 different cuff sizes

Complete?

�
1.1.16 Pulse transducer

Complete?

�
1.1.17 Timer

Complete?

�
1.1.18 Photomon, keyboard, screen, mouse

Complete?

�
1.1.19 Labmon, keyboard, screen, mouse

Complete?

�
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1.1.20 UPS for Labmon and Photomon
Complete?

�
1.1.21 UPS for Experimenter’s laptop

Complete?

�
1.1.22 Scale for measuring weight

Complete?

�
1.1.23 Samsung Digital Presenter

Complete?

�
1.1.24 Laptop connected to Digital Presenter

Complete?

�
1.1.25 Chair for subject

Complete?

�
1.1.26 Chair for experimenter

Complete?

�
Notes
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2.0 Signs/Images/Labels

2.1 Ensure the following signs/images/labels are available:

2.1.1 Experiment in progress sign - on the door
Complete?

�
2.1.2 Height scale - on door

Complete?

�
2.1.3 Photo of hand with blue dots - on wall

Complete?

�
2.1.4

Participant Subject # label for hand photos - on Digital
Presenter

Complete?

�
2.1.5 Image of EKG electrode attachment - on wall

Complete?

�
2.1.6 Image of Respirator placement - on wall

Complete?

�
2.1.7 Image of EKG electrode leads attachment - on wall

Complete?

�
2.1.8 Screen shot of appropriate Labchart readings - on wall near Labmon

Complete?

�
2.1.9 Participant Subject # label for desk - on desk

Complete?

�
2.1.10 Participant Subject # label for KPECS - on desk

Complete?

�
2.1.11

A schedule on the desk with the sequence of experiment steps so the
subjects know where they are in the experiment

Complete?

�
Notes
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3.0 Supplies in Box

3.1 Ensure the following supplies are available in the box:

3.1.1 Scotch tape for Subject # labels
Complete?

�
3.1.2 Paper for the subject to write on

Complete?

�
3.1.3 Ball point pens

Complete?

�
3.1.4 Hypoallergenic gloves

Complete?

�
3.1.5

Alcohol swabs for removing electrode residue on skin and cleaning
equipment

Complete?

�
3.1.6 Masking tape to ensure wires are secured

Complete?

�
3.1.7 Blue dot stickers for hand photos

Complete?

�
3.1.8 Blue dot stickers for KPECS

Complete?

�
3.1.9 4 AA batteries for the scale

Complete?

�
3.1.10 4 AAA batteries for the still-camera remote

Complete?

�
3.1.11 Hair ties or hairpins

Complete?

�
3.1.12 Tissues

Complete?

�
3.1.13 Bottle of water

Complete?

�
3.2 Separate box for subject’s cell phone and pocket contents

Complete?

�
Notes
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4.0 Manila Folders

4.1 Ensure the following are in the manila folder labeled with Subject #:

4.1.1
Printout of protocol which has the subject number and date on each
form

Complete?

�

4.1.2

Consent form, complete with

1. Highlighting where the subject needs to initial and sign

2. Experimenter signature

Complete?

�

4.1.3 Demographic survey with subject number and date
Complete?

�
4.1.4 1 copy of the Long-Form STAI Y-2 with subject number and date

Complete?

�
4.1.5 1 copy of the PSS-10 with subject number and date

Complete?

�
4.1.6 6 copies of the VAS form with subject number and date

Complete?

�
4.1.7 6 copies of the NASA-TLX with subject number and date

Complete?

�
4.2 Ensure the following are in the Cog Load - Purple Instructions manila folder:

4.2.1 Copy of the Purple instructions
Complete?

�
4.3

Ensure the following are in the Cog Load - Subject Payment Form manila
folder:

4.3.1 List of participant IDs, names, and schedule
Complete?

�
4.3.2 Subject payment record form

Complete?

�
4.3.3 Payment for subject

Complete?

�
Notes
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5.0 Video Check

5.1 Ensure that the video is working properly on Photomon1:

5.1.1 Double click on the desktop shortcut: Command Window
Complete?

�
5.1.2

Ensure the command window path is:
C:\Users\Administrator\Desktop

Complete?

�
5.1.3 Start the cameras in command window: start-cameras.bat tdemo

Complete?

�
5.1.4 Ensure that all cameras start 2.

Complete?

�
5.1.5

Right click mouse button on the bottom of the screen and select
Show windows stacked.

Complete?

�

5.1.6

The experimenter will check the videos on Photomon are displaying:

1. Right camera - keyboard

2. Top camera - keyboard, labels

3. Left camera - keyboard

4. Face camera - green background only

Complete?

�

5.1.7 Stop all cameras with: stop-cameras.bat
Complete?

�
Notes

1Photomon: login: xxxx password: yyyy
2Do not install updates if you are prompted. Inform Shing-hon after the experiment is over that there are updates

to be installed.
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6.0 LabChart Check

6.1 Turn on the Powerlab (button is in the back).
Complete?

�
6.2 Ensure that LabChart is working properly on Labmon3:

6.2.1 On the Desktop, double click the shortcut: Stress expt.
Complete?

�
6.2.2 Ensure miniwindow is visible: Preset Comment Function Keys

Complete?

�
6.2.3 Attach the pulse transducer to left thumb.

Complete?

�
6.2.4 Start recording in LabChart by pressing: Start

Complete?

�
6.2.5 Plug the pulse transducer into the PowerLab Slot 1.

Complete?

�
6.2.6 Check the screen to ensure that you have a clean reading.4

Complete?

�
6.2.7 Plug the pulse transducer into the PowerLab Slot 2.

Complete?

�
6.2.8 Ensure that you have a clean reading.

Complete?

�
6.2.9

If either PowerLab Slot 1 or PowerLab Slot 2 does not produce a
clean signal, continue to try higher-numbered slots until two working
slots are found. Attach the respiration belt input and the EKG input
to the two working slots.

6.2.10 Stop recording by pressing the button: Stop.
Complete?

�
6.2.11

Quit LabChart by clicking on the upper right X button. Do not save
the file.

Complete?

�
6.2.12 Ensure that all EKG and respiration belt wires are untangled.

Complete?

�
6.3 Turn off the Powerlab.

Complete?

�
Notes

3Labmon: login: xxxx password: yyyy
4A clean reading will have hills for the heartbeats. You may have to adjust the range to see the signal clearly.

This can be done by clicking on the drop-down arrow next to the channel name and selecting one of the options.
A good range setting will allow you to clearly see the signal without the signal ever going off the charts.
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7.0 MTP check

7.1 Ensure that MTP is working properly:
Complete?

�
7.1.1 Turn on the experimenter’s laptop.

7.1.2 Open a command window and type: run-cog-warmup.bat tdemo.

7.1.3 Close the MTP window by clicking on the upper right X button.

7.1.4 In the command window, type: q.

Notes
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8.0 Purple check

8.1 Ensure that Purple is working properly:
Complete?

�
8.1.1 Turn on the experimenter’s laptop if it’s not on.

8.1.2 Open a command window and type: run-purple.bat.

8.1.3 Purple should display the main screen.

8.1.4 Close the Purple window with Ctrl + q.

Notes
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9.0 Hand Photo Check

9.1 Ensure that the digital presenter and laptop is working properly:
Complete?

�
9.1.1 Plug in and turn on the DP.

9.1.2 Turn on the laptop attached to the DP.

9.1.3
Double-click the Digital Presenter shortcut on the laptop and click
on: Full.

9.1.4
Create two files for subject: s000-FirstL-left-month-day-year and
s000-FirstL-right-month-day-year.

9.1.5 Quit the digital presenter program and turn off the DP.

Notes
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10.0 Scale Check

10.1 Ensure that the scale is working properly:
Complete?

�
10.1.1 Power on the scale and step on it to ensure it takes a reading.

10.1.2
If the scale will not turn on, replace the batteries; spare batteries are
in the box of supplies.

Notes
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11.0 Still Camera Check

11.1 Ensure that the still camera is working properly:

11.1.1 Ensure that the legs of the tripod are on the floor markings.
Complete?

�
11.1.2

Unplug the charger and plug back in the remote. BE CAREFUL!
The mini-USB is very delicate and prone to bending!

Complete?

�
11.1.3 Power on the camera and the remote.

Complete?

�
11.1.4 Take a picture with the remote.

Complete?

�
11.1.5 Ensure that a picture is taken and the subject’s chair is in focus.

Complete?

�
11.1.6 Turn off the still camera and the remote.

Complete?

�
Notes
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12.0 Room Set Up

12.1 Set up the room:

12.1.1
Turn on all 3 LED lights and ensure that the subject area is
illuminated.

Complete?

�
12.1.2 Turn on the Powerlab (button is in the back).

Complete?

�
Notes
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13.0 Subject Arrival

13.1 On the door, the experimenter will put up the sign: Experiment in Progress.
Complete?

�
13.2 The experimenter will silence the ringer for the phone.

Complete?

�
13.3 Greet the subject:

Complete?

�

13.3.1

Hi, I’m Pat. Please come in. Check to see if the subject is wearing a
skintight top or a heavy sweater5.Then, ask the subject to:

1. Put down their book bag

2. Hang up their coat or jacket

3. Turn off their cell phone

4. Get rid of their chewing gum or a mint because we don’t
want it to impact their typing.

13.3.2

Now please have a seat here and make yourself comfortable. Then,

1. Explain how to adjust seat height, armrests

2. Offer the coke case as a footrest

3. Tell them to empty their pockets, jewelry into the box.

4. Tell them we want them to be comfortable typing.

13.3.3
Introduce the equipment to the subject. Mention the keyboard,
monitor, cameras, LED lights, and backdrop.

Notes

5If they are, ask if they have anything they can change into. If not, let them know they may not be able to
participate in the experiment.
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14.0 Subject Briefing

14.1 Brief the subject:
Complete?

�
14.1.1

The purpose of this experiment is to see whether cognitive load can
be detected through the way somebody types.

14.1.2

This experiment will take approximately 3-3.5 hours.

1. Start with some forms

2. Chance to get use to the experiment equipment

3. Two rest periods where you’ll watch videos

4. Assorted computer tasks

5. Compensation after all tasks are complete

14.1.3 Do you have any questions?

Notes
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15.0 Consent Form

15.1
The experimenter will present the consent form to the subject and obtain
his/her signature:

15.1.1 The first step in this experiment is to obtain your informed consent.

15.1.2
As part of this, I’m going to first ask you a series of yes and no
questions to confirm that you are eligible to participate. 6

15.1.3 Are you at least 18 years old? Yes

15.1.4 Do you speak English fluently? Yes

15.1.5
Do you have at least three years of experience typing on a
computer?

Yes

15.1.6 Can you type at least 30 words a minute 7? Yes

15.1.7 Do you have any history of cardiac disorders? No

15.1.8 Do you have any history of neurological disorders? No

15.1.9 Do you have any history of stress or anxiety disorders? No

15.1.10
Have you ever had a stroke? No

15.1.11
Are you currently being treated by a doctor for a sleep disorder? No

15.1.12
Do you suffer from any form of color-blindness? No

15.1.13
Is your blood pressure below 140/90 8? Yes

15.1.14
Have you consumed any alcoholic beverages in the past 48
hours?

No

15.1.15

Have you consumed more than 3 caffeinated beverages in the
past 24 hours? A caffeinated beverage could be a cup of coffee, a
can of soda, or energy drinks.

No

15.1.16
Have you consumed any caffeine or other stimulants in the past
2 hours?

No

15.1.17

Have you consumed any psychoactive drugs, such as
anti-depressants, Ritalin, or drugs like marijuana or LSD, in the
past 48 hours 9?

No

15.1.18
Have you heard anything about the experiment other than what
is on the recruitment poster?

No

6If the subject does not meet ALL of the criteria listed here, inform them that they are not eligible to participate
in the study.

7If the subject is not sure, show them the sample text and ask if they think they could type that in a minute.
8Both the systolic and diastolic blood pressure must be below the limit.
9A psychoactive drug is any drug that might affect your mood, cognition, or perceptive ability, including antide-

pressants, marijuana, ecstasy, LSD, Ritalin, etc.
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15.1.19

Finally, are you feeling well today? Is there anything that might
affect your typing, such as a minor cold or a flare-up of carpal
tunnel? 10

Complete?

�
15.1.20

IF THE SUBJECT IS ELIGIBLE FOR THE STUDY, then say
Great, looks like you are eligible for the study!

Complete?

�

15.1.21

Now, about the compensation:

1. We will provide compensation for your time at the completion
of this study.

2. It will be up to 60 dollars

3. In the form of Giant Eagle gift cards

4. 10 dollars for completing the study

5. 50 dollar bonus for being focused and performing well11

Complete?

�

15.1.22

Your participation in this study is completely voluntary. You are free
to leave at any time, but if you leave early, you will only receive 10
dollars.

15.1.23
Please take a moment to read through the form now. I need your
initials on page 3, and your signature on the last page.

15.1.24

Ensure that the subject:

1. Initialed all three places on page 3

2. Signed and dated the form for the Participant Signature

Complete?

�

15.1.25
Ensure the experimenter signed and dated the form for the
Signature of Person Obtaining Consent.

Complete?

�
15.1.26

Place the consent form in the manila folder.
Complete?

�

15.1.27

IF THE SUBJECT IS NOT ELIGIBLE FOR THE
STUDY, say I’m afraid that you’re not eligible for the study. We
can still provide you 10 dollars of compensation for showing up
today, but we can’t continue with the experiment. Have subject sign
Subject payment record form. [Proceed to the debriefing section
on page 53 for subject payment instructions.]

DEBRIEF

Notes

10Write the response in the notes box below. If the subject is feeling fine, right that down.
11If a subject asks what this means, say that s/he must be attentive to all instructions, pay attention to the task

at all times, and perform well on all tasks.
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16.0 Blood Pressure Reading

16.1 Take a blood pressure reading from the subject:
Complete?

�
16.1.1 Turn on the Critikon.
16.1.2 Now, I am going to take your blood pressure.

16.1.3
Remove any clothing that will prevent taking an accurate blood
pressure reading.

16.1.4

Place the cuff on the upper arm. Make sure:

1. the air is squeezed out of the cuff

2. the muscles are not tense

3. the BP cuff has some overlap of velcro

4. the BP cuff artery arrow is pointed at the pulse (it’s
slightly off-center and about 1” from the elbow crease)

5. the cuff index line falls within the range markings. If it’s
too small/big, replace the cuff with the appropriate size.

16.1.5

Then, check to ensure:

1. the tightness of the cuff allows 1-2 fingers to slip in

2. the velcro attachments are secure

3. the hose connected to the cuff is not kinked or warped

16.1.6 Press Inflate/Stop.

16.1.7
Press Print but do not tear off the printout on the machine–you’ll
do this at the end.

16.1.8 Systolic: Diastolic: Pulse: MAP: PRINT

16.1.9
Acceptable BP: ≤ 140 systolic / ≤ 90 diastolic. It looks like you

are in the acceptable range.

16.1.10

Unacceptable BP: NOT ≤ 140 systolic and NOT ≤ 90
diastolic. It looks like your blood pressure is outside the acceptable
range. Let’s have you relax for 5 minutes before I take another
reading to see if you fall inside the range. After 5 minutes, take
another reading:

16.1.11
Systolic: Diastolic: Pulse: MAP: PRINT

16.1.12
If the second reading is acceptable, and continue with the

rest of the experiment.
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16.1.13

If it is not accepable, inform the the subject that their blood
pressure does not meet the requirements for our study and they
cannot be included. Give them the $10 gift card for showing up.
Have subject sign Subject payment record form. [Proceed to the
debriefing section on page 53 for subject payment instructions.]

16.1.14
Remove the blood pressure cuff from the subject.

Complete?

�
16.1.15

Turn off the Critikon.
Complete?

�
Notes
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17.0 Demographic Survey

17.1 The experimenter will ask the subject to fill out the demographic survey:

17.1.1 Give a copy of the demographic survey and a pen to the subject.

17.1.2 Next we have a demographic survey.

17.1.3
Please fill out your initials and date of birth at the top of the first
page.

17.1.4 You can just ignore questions that are marked: “Reserved”.

17.1.5
Check the demographic survey to make sure the subject did not skip
any questions.

Complete?

�
17.1.6 Place the demographic survey into the manila folder.

Complete?

�
Notes
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18.0 Long-form STAI

18.1
The experimenter will ask the subject to fill out the Long-form STAI to the
subject:

18.1.1 Give a copy of the Long-form STAI to the subject.

18.1.2
Here’s the next form. Please circle the number corresponding to
statement describing how you generally feel.

18.1.3
Don’t worry about your initials and date of birth, I will copy that
later.

18.1.4 Allow the subject to respond to all questions on the form.

18.1.5 Check that the subject has responded to all questions on the form.
Complete?

�
18.1.6 Place the long-form STAI into the manila folder.

Complete?

�
Notes
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19.0 PSS-10

19.1 The experimenter will ask the subject to fill out the PSS-10:

19.1.1 Give a copy of the PSS-10 to the subject.

19.1.2 And now here’s the last form.

19.1.3
For each question, please circle a number to indicate how often you
felt or thought a certain way in the past month.

19.1.4 Check that the subject has responded to all questions on the form.
Complete?

�
19.1.5 Place the PSS-10 into the manila folder.

Complete?

�
Notes
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20.0 Hand Photos

20.1 Take two hand photos of the subject:

20.1.1 Turn on the DP and the black laptop.

20.1.2
On the black laptop, click the desktop icon: Samsung Digital
Presenter.

20.1.3 Enlarge the View Panel by clicking: Full
20.1.4 Now I’m going to take your hand photos.

20.1.5 Please come over here and sit in this chair.

20.1.6
First, I am going to stick these dots on your hands like this photo.
[Experimenter shows the blue stickers and gestures to photo.]

20.1.7 Apply the blue stickers to the subject’s hands.

20.1.8
Please place your hand so the tip of your middle finger is covering
the blue square.

20.1.9 Take the photo of the right hand.

20.1.10
Save the photo of the right hand into the Hand Measurement folder.
Name the file: s000-FirstL-right-month-day-year

20.1.11
Now, switch hands.

20.1.12
Take the photo of the left hand.

20.1.13
Save the photo of the left hand into the Hand Measurement folder.
Name the file: s000-FirstL-left-month-day-year

20.1.14
Double check that the images look ok.

Complete?

�
20.1.15

Please remove the dots on your hands and toss them in the trash.
Complete?

�
20.1.16

Turn off and unplug the DP; close the laptop.

Notes
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21.0 Weight and height measurement

21.1 Take weight and height measurements:

21.1.1
Next, we’re going to measure your weight so please remove your
shoes.

21.1.2 Turn on the scale.

21.1.3
Please don’t hold onto or lean against anything while you’re on the
scale.

21.1.4 Weight: 12
Complete?

�
21.1.5

Next we are going to measure your height so please stand with your
heels against the door.

21.1.6 Height: 13
Complete?

�
21.1.7 Go ahead and put your shoes back on and take a seat.

Notes

12Make sure that the subject is not leaning against or on anything. (kg)
13No shoes. Write down the number that appears on the tape. (in) Actual height will be this + 18 in.
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22.0 Subject Familiarization

22.1 The experimenter will say the following:
Complete?

�
22.1.1

Next up, I’m going show you the forms and software that youll be
using for the rest of the experiment, so that you can get comfortable
with them.

Notes
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23.0 NASA-TLX and VAS

23.1 The experimenter introduces the NASA-TLX and VAS:
Complete?

�
23.1.1

Present a copy of the NASA-TLX and a copy of the VAS to the
subject.

23.1.2 Here are two forms that I will ask you to fill out after various tasks.

23.1.3
NASA-TLX: On this form you need to make a vertical mark to
indicate how you felt about the task you just completed. For
each item, you should be responding to the bold item.

23.1.4
VAS: On this form you need to make a vertical mark to indicate how
you feel at the moment.

23.1.5 Do you have any questions?

Notes
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24.0 KPECS

24.1 Attach KPECS dots to the subject.
Complete?

�
24.1.1

Next, I’ll show you the software that we’ll use to collect your typing
data.

24.1.2
While you practice using the software, I’ll be taking a few pictures
with a still camera to help us capture your typing posture.

24.1.3
I need to attach a few stickers to you now so that we have some
reference points. [Show the subject the KPECS picture.]

24.1.4 Confirm that the ear hole is visible.

24.1.5 Attach a dot to the shoulder.
24.1.6 Attach a dot to the elbow knob.
24.1.7 Attach a dot to the wrist knob.
24.1.8 Attach a dot to the hip.
24.1.9 Power on the camera and the remote.

24.1.10
Look through the camera to see if the angle and focus is good.

24.1.11
Ensure that the remote is next to the experimenter laptop.

Notes
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25.0 MTP

25.1 The experimenter introduces MTP:

25.1.1
Type at the experimenter’s laptop command prompt:
run-cog-warmup.bat <subject-number>.

Complete?

�
25.1.2 Move cursor to the corner of the screen.

25.1.3

This is the program that we will be using to collect your typing data.
Explain:

1. In this experiment, you’ll type the same phrase repeatedly.

2. For this practice session, youll type the same phrase 40
times.

3. For the experiment itself, you’ll type the phrase 80 times.

4. After you type the phrase, you must press the Return key.

5. This counter increments when you type the phrase correctly.

6. In this experiment we want to collect your natural typing
style.

7. Not a speed nor an accuracy contest. So try to settle into a
normal, comfortable pace.

8. If you make a typo, you will hear a ’ding’ and the text box will
gray out so type the phrase from the beginning again.

9. Timing is critical in this experiment so please don’t take
breaks in the middle of typing a phrase. If you need to
stretch or talk, please do so after you have typed in the entire
phrase including the Return key.

Complete?

�

25.1.4
One final thing - Please keep both your feet flat on the floor
while you type. This is essential for the BP and EKG readings.

Complete?

�
25.1.5 Do you have any questions? Please start now.

25.1.6 Take 3 KPECS photos while the subject is typing.
Complete?

�
25.1.7

When the subject is done, close the MTP window and in the laptop
command window, type: q

25.1.8 Please go ahead and take off the dots and give them to me.
Complete?

�
25.1.9 Turn off the still camera and the remote.

Complete?

�
Notes
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26.0 Purple

26.1 The experimenter introduces Purple:

26.1.1

Next, we’ll go over the Purple software which requires you to
multi-task. You’ll get to practice using it for 2 minutes now. In the
experiment, however, you’ll be using it for 15 minutes and the tasks
will be a lot harder. Please pay attention because this is important.

26.1.2
[Hand the subject the Purple instruction packet.] Here are the
instructions for the tasks. I will go over them with you.

26.1.3

Provide Purple overview:

1. Perform 4 tasks simultaneously

2. Correct responses give you points

3. Incorrect responses lose you points

4. Timeouts will lose you lots of points

5. Must aim to be as fast and accurate on ALL of the tasks

6. I will evaluate your performance throughout

7. Your score will be displayed in the center of the screen

Complete?

�

26.1.4

Provide letter task overview:

1. This is a memory task

2. Random string of letters in box

3. Letters hidden by “Retrieve List”

4. When to respond true

5. When to respond false

6. Give an example

7. Cannot respond while letters are visible

8. Lose points to reveal letters by clicking on “Retrieve List”

9. Better to lose some points by revealing the letters than to get
answers constantly wrong

Complete?

�

26.1.5

Provide Stroop overview:

1. Respond by clicking on the font color

2. Give an example

Complete?

�
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26.1.6

Provide target overview:

1. Dot moves outwards quickly

2. Reset button to recenter dot

3. More points the further out the dot is

4. Continuously lose points if it is outside furthest circle

Complete?

�

26.1.7

Provide number grid overview:

1. Must click on all copies of the biggest number

2. Give example

3. Can click again to unselect

4. Once you’re done, the grid will refill itself

Complete?

�

26.1.8
Go ahead and read through the rest of the instructions now. Let me
know if you have any questions.

26.2 While the subject is reading the instructions, load up Purple.

26.2.1
Type at the experimenter’s laptop command prompt:
run-purple.bat.

Complete?

�
26.2.2 Start Purple with the 2 minute demo configuration file: Warmup.cfg

Complete?

�
26.2.3 When the subject is done reading, ask Are you ready to start?

26.2.4 Have subject move the Mouse to a comfortable position.
Complete?

�
26.2.5

Please keep both your feet flat on the floor while you use
Purple. Please start now.

Complete?

�
26.2.6

Observe the subject during the 2-minute period and ensure that they
are performing each task correctly. If you see a subject repeatedly
making mistakes at one task, offer corrective guidance.

26.2.7

Once the 2-minute period is over, give the subject the option of
going for another 2-minute period. Would you like to practice for a
few more minutes? Repeat this process until both you and the
subject are satisfied that the subject fully understands the tasks.

26.3 Great, we’re now done with the familiarization period.
Complete?

�
Notes
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27.0 Attach Sensors

27.1 Inform the subject that we will be attaching sensors to him/her:
Complete?

�

27.1.1

In a moment, I will be attaching some sensors to you. Explain:

1. These sensors will monitor your physiological signals.

2. Once the sensors are attached, they need to stay attached to
you for the rest of the experiment.

3. So you must stay in your chair for the next two hours or
so.

4. If we have to remove the sensors, then we will have to abort
the experiment and we will only be able to partially
compensate you.

5. So, would you like to take a break now to get a drink of water
or use the restroom?

Notes
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28.0 Explanation of Sensors

28.1

The sensors I am going to attach to you are:

1. an electrocardiogram, or EKG which will go on your upper torso,
beneath your clothing

2. a respiration belt, which will go on your ribcage, above your clothing

3. a blood pressure cuff on your left arm.

Complete?

�

Notes
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29.0 EKG electrode placement

29.1 Attach the EKG electrodes to the subject:

29.1.1
First, I am going to attach EKG electrodes on you like this picture.
[Gestures to picture on wall.]

29.1.2

Steps:

1. Please stand up.

2. Put on a pair of disposable gloves.

3. Clean oils on skin with alcohol wipes

(a) Boniest part of the right shoulder.

(b) Left lowest rib, 1 inch to the left of your nipple.

(c) Area below right rib, 1 inch to the right of your
nipple and 2 inches below the left electrode position.

4. Let the alcohol dry a bit.

5. Attach the electrodes14.

6. You can sit down now.

Complete?

�

29.1.3 Are you doing ok?

Notes

14If the electrodes fall off, clean the skin again and use a new electrode. Note that electrode patches can dry out
and become less sticky if exposed to air.
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30.0 Respiration Belt

30.1 Attach the respiration belt to the subject:

30.1.1
Next, we need to attach the respiration belt like this picture.
[Gestures to picture on wall.]

30.1.2

Steps:

1. This respiration belt goes over your clothes and high around
your chest.

2. It needs to be right side up and snug.

3. If it isn’t snug, we won’t get any readings but we want you to
be comfortable too.

4. [Experimenter wraps the respiration belt around the subject.]

5. You should only feel constrained when you take a deep breath.

6. Can you take a deep breath now? 15

Complete?

�

30.1.3 Are you doing ok?

Notes

15Once on, the belt should fit snugly. It should feel modestly constraining and should produce a sense of discomfort
if you take a very deep breath.
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31.0 EKG lead placement

31.1 Attach the EKG leads to the subject:

31.1.1
Next, we’re going to attach these EKG leads to the electrodes like
this picture. [Gestures to picture on wall.]

31.1.2

Steps:

1. I’ll give you a lead and you’ll snap them on like this.
[Demonstrates how to snap on a spare electrode.]

2. The white lead goes on the right shoulder electrode.

3. The black lead goes on the left rib electrode.

4. The green lead goes on the right torso electrode.

5. Let me check to see if they are secure.

6. [Gently tugs at leads.]

7. Can you please sit as though you were going to type?

Complete?

�

31.1.3 Are you doing ok?

Notes
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32.0 Blood Pressure Cuff

32.1
Attach the blood pressure cuff to the subject. Now, I am going to attach the
blood pressure cuff on you again.

32.1.1

Steps:

1. Which hand do you usually use for the mouse?

2. Have subject remove clothing or move fabric for the
non-mouse arm16.

3. Place the cuff on the upper arm. Make sure the:

(a) air is squeezed out of the cuff

(b) muscles are not tense

(c) BP cuff has some overlap of velcro

(d) BP cuff artery arrow is pointed at the pulse (it’s
slightly off-center and about 1” from the elbow crease)

(e) the cuff index line falls within the range markings. If
it’s too small/big, replace the cuff with the appropriate
size.

4. Then, check to ensure the:

(a) tightness of the cuff allows 1-2 fingers to slip in

(b) velcro attachments are secure

(c) hose connected to the cuff is not kinked or warped

Complete?

�

32.2 Provide the subject with instructions for the blood pressure cuff:

32.2.1

1. This BP cuff will stay on your arm for the whole experiment.

2. Readings will be taken automatically every 5 minutes.

3. Don’t overly flex your arm or lift it above your shoulder.

4. Your arm should stay on the armrest or at your side.

5. Let me know if you feel the cuff is slipping off.

Complete?

�

32.3 Use strips of masking tape so all wires are out of the way.
Complete?

�
Notes

16If the cuff is going on the right arm, make sure the hose runs over the subject’s lap and is comfortable.
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33.0 Confirming Readings

33.1 Start up LabChart:

33.1.1
Now I’m going check to the readings for the EKG and respiration
belt.

33.1.2 On Labmon, double click on the desktop shortcut: Stress expt
Complete?

�
33.1.3 Ensure this miniwindow is visible: Preset Comment Function Keys

Complete?

�
33.1.4 Click the button: Start

Complete?

�
33.2 The experimenter will confirm that appropriate readings are coming in.

Complete?

�
33.2.1

Adjust lab chart so there are high spikes above and low spikes below
for the EKG and Respiration readings.

Complete?

�
33.2.2

The incoming readings should be similar to the reference EKG and
Respiration example on the wall.

33.2.3

IF RESPIRATION BELT READINGS ARE INAPPROPRIATE:17

1. Ensure that all connections are firm.

2. Ensure all the equipment is powered on.

3. Ask the subject to place his/her hand over the sensor.

4. Ensure that the sensor is positioned correctly–facing up
in the center of the chest.

5. Ask the subject to confirm that the belt is tight against
his/her stomach.

6. Ask the subject to take a deep breath and hold it in for a
few seconds.

7. Check that the channel range is appropriate.18

17Respiration belt readings should be rolling hills. The readings should automatically adjust after a five seconds.
18If the reading is still inadequate, consult the Troubleshooting section in the operations manual. The range can

be adjusted by clicking on the drop-down arrow and selecting one of the options.
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33.2.4

IF EKG READINGS ARE INAPPROPRIATE (signals are upside
down or not the expected QRS wave)19:

1. Ensure that all connections are firm.

2. Ensure all the equipment is powered on.

3. Loosely pull on the leads; the wires should not come out
if the leads are properly clipped.

4. If the electrodes are improperly placed or the leads are
not properly clipped, ask the subject to remedy the
problem.20

Notes

19The lab chart should have high spikes above and low spikes below.
20If these steps do not resolve the issue, consult the Troubleshooting section in the operations manual.
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34.0 1st neutral induction

34.1 Guide the subject through the first rest period:

34.1.1 Turn off the fluorescent lights.
Complete?

�

34.1.2

Instructions:

1. We will now begin a 30-minute rest period, where you should
sit back and relax.

2. To help you relax, I’d like you to watch a video of peaceful
underwater scenes and perform a simple task.

3. I’d like you to note the different categories of animals that
appear in the video.

4. Use very general categories like fish and birds as though you
were describing the animals to a small child.

5. Please write the different animal categories down on this piece
of paper. You only need to write down an animal once. [Hand
the subject pen and paper.]

6. Please remember to keep your feet flat on the floor.

7. Is your BP cuff still secure?

8. I’ll start the automatic blood pressure readings now. They will
happen roughly every 5 minutes.

Complete?

�

34.1.3 Turn the Critikon on.
Complete?

�
34.1.4 Press the Cycle button on the Critikon until it reads 5 minutes.21

Complete?

�
34.1.5

Press F5 in LabChart to insert a comment indicating the start of
the blood pressure readings.

F5

34.1.6
Press F1 in LabChart to insert a comment indicating the start of
the rest period. 22 F1

.
34.1.7

Start the first video on the experimenter’s laptop with:
run-video1.bat

Complete?

�
34.1.8 The experimenter will start the timer. START TIME:

Complete?

�
34.1.9

During the rest period, ensure that the subject does not fall
asleep. If necessary, wake the subject by saying their name or tap
their shoulder.

21If the alarm sounds, press the yellow button twice to silence the alarm. Resume blood pressure readings by
hitting the cycle button and pressing the button to take a blood pressure reading.

22This can be also be done by clicking F1 in the Preset Comments Window or by entering text into the text
box at the top of the LabChart window and clicking the Add button
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34.2
Check that the subject’s feet are flat on the floor. If they move their
feet, remind them to keep them flat.

Complete?

�
34.2.1 After 30 minutes, turn off the timer.

Complete?

�
34.2.2

Press F2 in LabChart to insert a comment indicating the end of
the rest period.

F2

34.2.3 Turn off the Critikon.
Complete?

�
34.2.4

Stop the video by pressing Escape and then clicking on the red
X in the corner.

Complete?

�
34.2.5

The rest period is now over. Take the paper from the subject and
set it aside.

Complete?

�

34.3

Administer NASA-TLX and VAS.

1. Give forms to subject. Please fill out these forms.

2. Check to see if subject filled out both forms.

3. Place the NASA-TLX and VAS in the manila folder.

Complete?

�

Notes
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35.0 1st neutral typing sample

35.1 Prepare for the 1st neutral typing sample:

35.1.1

Instructions:

1. We are now going to start the first typing sample.

2. Let me start the video cameras and the typing software.

3. Please move the mouse out of the way; you won’t need it now.

4. Go ahead and adjust the keyboard so that you are in a
comfortable typing position.

5. Then, place your hands as if you were about to start typing.

Complete?

�

35.2
Start up the cameras in command window using: start-cameras.bat
<subject-number>

Complete?

�

35.2.1

The experimenter will check the videos on Photomon are displaying:

1. Right camera - keyboard

2. Top camera - keyboard, labels

3. Left camera - keyboard

4. Face camera - subject’s entire face, green background

5. Make sure the Mouse is out of the way.

Complete?

�

35.2.2 Could you please wiggle your fingers a bit? Ok, that looks good.
Complete?

�
35.3

Start MTP in the command window of the experimenter’s laptop:
run-cog-n1.bat <subject-number>

Complete?

�
35.3.1 Move cursor to the corner of the screen.

Complete?

�

35.3.2

Start the subject on the 1st typing sample:

1. This task will have 80 repetitions of the same phrase as
before.

2. Please remember not to talk or pause in the middle of a
phrase.

3. Also, keep your feet flat on the floor while you type. Ok?

4. Please start typing now.

Complete?

�

35.3.3
Press F3 in LabChart to insert a comment indicating the start of a
typing session.

F3

35.3.4 The experimenter will note the start time. TIME:
Complete?

�
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35.4 As the subject types, take notes on typing style.
Complete?

�
35.4.1 Wrist support:

35.4.2 Isolated digits:

35.4.3 Typing force:

35.4.4 Other:

35.5 Check LabChart to make sure the sensor readings are being taken.
Complete?

�
35.6

Check that the subject’s feet are flat on the floor. If they move their
feet, remind them to keep them flat.

Complete?

�
35.6.1

Press F4 in LabChart to insert a comment indicating the end of a
typing session.

F4

35.6.2 The experimenter will note the stop time. TIME:
Complete?

�
35.6.3 Close MTP and press ‘q’ in the command window.

Complete?

�

35.7

Administer NASA-TLX and VAS.

1. Give forms to subject. Please fill out these forms.

2. Check to see if subject filled out both forms.

3. Place the NASA-TLX and VAS in the manila folder.

Complete?

�

Notes
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36.0 Purple exercise

36.1 Set up Purple:

36.1.1

Instructions:

1. Next up, you will be doing a longer version of the multi-tasking
exercise.

2. Please move the keyboard out of the way and put the Mouse
in a comfortable position.

3. Then, I can check if the video looks good.

Complete?

�

36.1.2

The experimenter will check the videos on Photomon are displaying:

1. Right camera - keyboard

2. Top camera - keyboard, labels

3. Left camera - keyboard

4. Face camera - subject’s entire face, green background

5. Ok, that looks good. Let me start up Purple.

Complete?

�

36.1.3

Start up the Purple software in the command window of the
experimenter’s laptop with:

1. run-purple.bat

2. Enter the <subject-number> and Task.cfg.

Complete?

�

36.2 Purple instructions and BP setup:

36.2.1

1. You must aim to be fast and accurate on ALL of the tasks.

2. $30 of your compensation depends on how well you
perform on this task.

3. I’ll be evaluating your performance based on your score and will
also check to see whether you are attending to all of the tasks.

4. Please remember to keep both your feet flat on the floor
while you use the software.

5. Do you have any questions?

6. Ok. Let me start up the BP readings, then you can start.

Complete?

�

36.2.2 Turn on the Critikon.
Complete?

�
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36.2.3 Press the Cycle button on the Critikon until it reads 5 minutes. 23
Complete?

�
36.2.4

Press F5 in LabChart to insert a comment indicating the start of
the blood pressure readings.

F5

36.2.5 Press F6 to mark the start of the Purple exercise. F6

36.2.6 Please start now.
Complete?

�
36.2.7 START TIME:

36.2.8 The experimenter will start the timer.
Complete?

�
36.2.9 Check LabChart to see whether the sensors are working.

Complete?

�

36.2.10

Demonstrate active tracking of the subjects performance by:

1. Standing close to the subject

2. Looking at their screen

36.2.11

Monitor the subject for signs of engagement:

1. Subject should be averaging at least 2 clicks per second

2. Subject should be looking at the screen at all times

3. Subject’s eyes should be looking at the different quadrants on
the screen

4. Subject’s facial expression should be focused

5. Subject should seem occasionally frustrated (e.g., frowning,
shaking head, making discontented noises), especially after
making mistakes or when you criticize his/her performance

6. Subject’s posture should be engaged – generally upright and
leaning towards the screen

7. Subject should NOT be yawning

8. Subject should NOT be slouching

Complete?

�

23If the alarm sounds, press the yellow button twice to silence the alarm. Resume blood pressure readings by
hitting the cycle button and pressing the button to take a blood pressure reading.
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36.2.12

If you observe that the subject is NOT engaged, criticize their
performance:

1. Make sure you are focusing on the task.

2. You seem distracted, please refocus on the task.

3. Please concentrate on the task. Remember, you must stay
focused and perform well to get the $30.

4. You are not working fast enough.

5. You are making too many errors.

Complete?

�

36.2.13

At the 5 minute mark, the experimenter will administer social
evaluation:

1. Lean in and look at the subject’s computer screen.

2. Could you work faster? Most subjects have over <score +
200/500> points by now.24

Complete?

�

36.2.14

At the 10 minute mark, the experimenter will administer social
evaluation:

1. Lean in and look at the subject’s computer screen.

2. You really need to work faster to earn the full $30.

Complete?

�

36.2.15
At the 15 minute mark, Purple will stop automatically.

36.2.16
Press F7 in LabChart to mark the end of the Purple exercise. F7

36.2.17
Turn off the Critikon.

Complete?

�

36.3

Administer NASA-TLX and VAS.

1. Give forms to subject. Please fill out these forms.

2. Check to see if subject filled out both forms.

3. Place the NASA-TLX and VAS in the manila folder.

Complete?

�

Notes

24If the subject talks back or otherwise indicates displeasure at the comment, ask them to please focus on the task.
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37.0 Cognitive load typing sample

37.1 Set up for the cognitive load typing sample:

37.1.1

Instructions:

1. We are now going to start the second typing sample.

2. Let me check the video cameras and start the typing
software.

3. Please move the mouse out of the way; you won’t need it now.

4. Go ahead and adjust the keyboard so that you are in a
comfortable typing position.

5. Then, place your hands as if you were about to start typing.

Complete?

�

37.1.2

The experimenter will check the videos on Photomon are displaying:

1. Right camera - keyboard

2. Top camera - keyboard, labels

3. Left camera - keyboard

4. Face camera - subject’s entire face, green background

5. Make sure the Mouse is out of the way.

Complete?

�

37.1.3 Could you please wiggle your fingers a bit? Ok, that looks good.
Complete?

�
37.2

Start MTP in the command window of the experimenter’s laptop:
run-cog-cog.bat <subject-number>

Complete?

�
37.2.1 Move cursor to the corner of the screen.

Complete?

�

37.2.2

Start the subject on the 2nd typing sample:

1. This task will be just like the last one.

2. Please remember not to talk or pause in the middle of a
phrase.

3. Also, keep your feet flat on the floor while you type. Ok?

4. Please start typing now.

Complete?

�

37.2.3
Press F3 in LabChart to insert a comment indicating the start of a
typing session.

F3

37.2.4 The experimenter will note the start time. TIME:
Complete?

�
37.3 The experimenter Stands up.

Complete?

�
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37.4 As the subject types, take notes on typing style.
Complete?

�
37.4.1 Wrist support:

37.4.2 Isolated digits:

37.4.3 Typing force:

37.4.4 Other:

37.5 Check LabChart to make sure the sensor readings are being taken.
Complete?

�
37.6

Check that the subject’s feet are flat on the floor. If they move their
feet, remind them to keep them flat.

Complete?

�
37.6.1

Press F4 in LabChart to insert a comment indicating the end of a
typing session.

F4

37.6.2 The experimenter will note the stop time. TIME:
Complete?

�
37.6.3 Close MTP and press ‘q’ in the command window.

Complete?

�

37.7

Administer NASA-TLX and VAS.

1. Give forms to subject. Please fill out these forms.

2. Check to see if subject filled out both forms.

3. Place the NASA-TLX and VAS in the manila folder.

Complete?

�

Notes

3-8-2017 at 12:58 Page 47 of 55



38.0 2nd neutral induction

38.1 Guide the subject through the second rest period:

38.1.1

Instructions:

1. Tell subject that they did well on Purple and will get the full
$30. Also tell them that they are very likely to get the full $60
if they continue to do well for this last rest period and last
typing sample.

2. Ok, we’ll now begin the second 15-minute rest period.

3. Please rest and relax, while you watch another video of
peaceful underwater scenes and do a simple belly breathing
exercise.

4. In this belly breathing exercise, we want you to take long, deep
breaths that cause your stomach to move in and out instead of
just your chest.

5. While you do this, please focus on relaxing as much as possible
(without falling asleep).

6. You need to keep your head still so your face stays in the
video. Also, please don’t touch your face.

7. And remember to keep your feet flat on the floor.

8. Is your BP cuff still secure?

Complete?

�

38.1.2 Turn the Critikon on.
Complete?

�
38.1.3 Press the Cycle button on the Critikon until it reads 5 minutes.25

Complete?

�
38.1.4

Press F5 in LabChart to insert a comment indicating the start of
the blood pressure readings.

F5

38.1.5
Press F1 in LabChart to insert a comment indicating the start of
the rest period. 26 F1

.
38.1.6 Start the video on the experimenter’s laptop with: run-video2.bat

Complete?

�
38.1.7 The experimenter will start the timer. START TIME:

Complete?

�
38.1.8

During the rest period, ensure that the subject does not fall
asleep. If necessary, wake the subject by saying their name or or tap
their shoulder.

25If the alarm sounds, press the yellow button twice to silence the alarm. Resume blood pressure readings by
hitting the cycle button and pressing the button to take a blood pressure reading.

26This can be also be done by clicking F1 in the Preset Comments Window or by entering text into the text
box at the top of the LabChart window and clicking the Add button

3-8-2017 at 12:58 Page 48 of 55



38.2
Check that the subject’s feet are flat on the floor. If they move their
feet, remind them to keep them flat.

Complete?

�
38.2.1 After 15 minutes, turn off the timer.

Complete?

�
38.2.2

Press F2 in LabChart to insert a comment indicating the end of
the rest period.

F2

38.2.3 Turn off the Critikon.
Complete?

�
38.2.4

Stop the video by pressing Escape and then clicking on the red
X in the corner.

Complete?

�
38.2.5 The rest period is now over.

Complete?

�

38.3

Administer NASA-TLX and VAS.

1. Give forms to subject. Please fill out these forms.

2. Check to see if subject filled out both forms.

3. Place the NASA-TLX and VAS in the manila folder.

Complete?

�

Notes

3-8-2017 at 12:58 Page 49 of 55



39.0 2nd neutral typing sample

39.1 Set up for the 2nd neutral typing sample:

39.1.1

Instructions:

1. We are now going to start the last typing sample.

2. Let me check the video cameras and start the typing
software.

3. Go ahead and adjust the keyboard so that you are in a
comfortable typing position.

4. Then, place your hands as if you were about to start typing.

Complete?

�

39.1.2

The experimenter will check the videos on Photomon are displaying:

1. Right camera - keyboard

2. Top camera - keyboard, labels

3. Left camera - keyboard

4. Face camera - subject’s entire face, green background

5. Make sure the Mouse is out of the way.

Complete?

�

39.1.3 Could you please wiggle your fingers a bit? Ok, that looks good.
Complete?

�
39.2

Start MTP in the command window of the experimenter’s laptop:
run-cog-n2.bat <subject-number>

Complete?

�
39.2.1 Move cursor to the corner of the screen.

Complete?

�

39.2.2

Start the subject on the 2nd neutral typing sample:

1. This task will be just like the last one.

2. Please remember not to talk or pause in the middle of a
phrase.

3. Also, keep your feet flat on the floor while you type. Ok?

4. Please start typing now.

Complete?

�

39.2.3
Press F3 in LabChart to insert a comment indicating the start of a
typing session.

F3

39.2.4 The experimenter will note the start time. TIME:
Complete?

�
39.3 As the subject types, take notes on typing style.

Complete?

�
39.3.1 Wrist support:
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39.3.2 Isolated digits:

39.3.3 Typing force:

39.3.4 Other:

39.4 Check LabChart to make sure the sensor readings are being taken.
Complete?

�
39.5

Check that the subject’s feet are flat on the floor. If they move their
feet, remind them to keep them flat.

Complete?

�
39.5.1

Press F4 in LabChart to insert a comment indicating the end of a
typing session.

F4

39.5.2 The experimenter will note the stop time. TIME:
Complete?

�
39.5.3 Close MTP and press ‘q’ in the command window.

Complete?

�

39.6

Administer NASA-TLX and VAS.

1. Give forms to subject. Please fill out these forms.

2. Check to see if subject filled out both forms.

3. Place the NASA-TLX and VAS in the manila folder.

Complete?

�

Notes
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40.0 Save readings and remove sensors

40.1 Save readings:

40.1.1 Stop the video on Photomon with: stop-cameras.bat
Complete?

�
40.1.2 Stop the LabChart recording by pressing: Stop

Complete?

�

40.1.3

Save the LabChart reading

1. Select File -> Save As...

2. Save the LabChart reading in the Experiments folder with the
<subject number>.

3. Minimize the Labchart recording and check that the file
exists in the Experiments folder.

Complete?

�

40.1.4

Print out the blood pressure readings

1. Turn the Critikon on.

2. Press the History button

3. Press the Print button. Double check that there are readings
every 5 minutes from the start of the experiment to the end.

4. Staple printout to manila folder.

5. Turn the Critikon off.

Complete?

�

40.2 Remove the sensors from the subject:

40.2.1 Turn on the room lights.
Complete?

�

40.2.2

We’re done with the experiment so let’s remove everything carefully.

1. Detach blood pressure cuff.

2. Detach respiration belt.

3. Could you please carefully peel off the electrode pads with the
leads still attached to them and give them to me? Thanks.

4. Do you need an alcohol swab for any residue? Gestures to
alcohol swabs.

Complete?

�

Notes
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41.0 Debriefing

41.1 Debrief the subject:

41.1.1 This concludes the experiment. Thank you for your participation.

41.1.2

IF THE SUBJECT WAS ENGAGED:

1. You performed well during the experiment, so you get the full
60 dollars.

2. The experimenter provides 60 dollars to the subject.

3. Please sign next to your name on the Subject Payment
Record form.

Complete?

�

41.1.3

IF THE SUBJECT WAS *NOT* ENGAGED

1. Unfortunately, you did not perform well enough during the
experiment to earn the additional bonus.

2. The experimenter provides 10 dollars to the subject.

3. Please sign next to your name on the Subject Payment
Record form.

41.1.4

I have a few questions before you go:

1. Did you feel like you zoned out a bit during the typing tasks?

2. Did you experience cognitive load during Purple?

3. Did you find the videos calming or boring?

4. Did you prefer the animals or the breathing task?

Response:

Complete?

�

41.1.5
Thank you for your time today. Please make sure you collect all
your belongings before you go. Gestures to box and coat rack.

Complete?

�
41.1.6 The subject will depart.

41.1.7
Experimenter will take down the Experiment in Progress sign, turn
up the phone ringer, and remove the desk label.

Complete?

�
Notes
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42.0 Clean-up

42.1 Save and backup the collected data.

42.1.1

Copy all four of the “Cognitive Loading” folders from the
experimenter’s laptop onto the USB stick and place it next to the
laptop. Shing-hon will be in charge of taking the data and storing it
on Coolmon.

Complete?

�
42.1.2

Transfer the hand photo data from the hand-photo laptop to
Coolmon.

Complete?

�
42.1.3

Video data is automatically stored on Photomon. Shing-hon will be
in charge of backing up this data to Coolmon.

42.2 Turn off PowerLab.
Complete?

�
42.3 Turn off the LED lights.

Complete?

�

42.4

Use alcohol wipes to clean the:

1. Blood pressure cuff

2. EKG leads

Complete?

�

42.5

Still camera clean-up.

1. Ensure the still camera and the remote are off.

2. Unplug the still camera remote and plug in the charger. BE
CAREFUL! The mini-USB is very delicate and prone to bending!

3. Cover the still camera with the cloth.

Complete?

�

42.6
If you haven’t done so already, Copy the initials and date of birth from the
demographic form to all the other forms.

Complete?

�
42.7 Ensure that the manila folder contains:

Complete?

�
42.7.1

1 copy of the consent form, signed and dated by both the subject
and the experimenter.

Complete?

�
42.7.2 1 copy of the demographic survey

Complete?

�
42.7.3 1 copy of the long-form STAI Y-2.

Complete?

�
42.7.4 1 copy of the PSS.

Complete?

�
42.7.5 6 copies of the NASA-TLX.

Complete?

�
42.7.6 6 copies of the VAS.

Complete?

�

3-8-2017 at 12:58 Page 54 of 55



42.7.7 1 blood pressure reading printout.
Complete?

�
42.8

Place this protocol checklist into the manila folder and place the manila folder
into the file cabinet.

Complete?

�

42.9

If you haven’t done so already, Print out the blood pressure readings

1. Turn the Critikon on.

2. Press the History button

3. Press the Print button. Double check that there are readings every 5
minutes from the start of the experiment to the end.

4. Staple printout to manila folder.

5. Turn the Critikon off.

Complete?

�

42.10

If you have not done so already, Save the LabChart reading

1. Select File -> Save As...

2. Save the LabChart reading in the Experiments folder with the <subject
number>.

3. Minimize the Labchart recording and check that the file exists in the
Experiments folder.

Complete?

�
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A.8 Operations Manual
Our experiment involves numerous pieces of equipment, each essential to the successful conduct
of the experiment. It is obviously critical that the experimenter knows how each piece of equip-
ment works, and we decided that a written operations manual would assist our experimenter in
achieving that understanding. Moreover, we noted at the outset of the design of the experiment
that a foreseeable risk in executing our experiment is that one of these pieces of equipment might
breakdown prior to or while running a subject. Many of these breakdowns are fairly easy to rem-
edy and repairs could be effected by the experimenter in short order. These common breakdowns
and the repairs required to remedy them were also added into the operations manual. As with the
protocol, we reproduce here the full operations manual document both for the sake of transparency
and in the hope that others might find it helpful in their own research.
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1 Machine access

There are three machines used in the stress experiment. The first is the laptop, which is used for all
keystroke experiments. The laptop is not password protected. The second machine is Photomon,
which runs the video-capture software. The third machine is Labmon, which runs the physiological
software. The username on both machines is xxxx and the password is yyyy followed by the FAC 
code, which is aaaa for Photomon and bbbb for Labmon. 

2 Video

There are three primary reasons that we collect video in the stress experiment. First, the video en-
ables us to associate any interesting typing timings or physiological readings with subject behavior.
Second, the video allows us to subjectively determine whether the subject is stressed. Third, the
face video will be provided to researchers at Pitt (SHL: What researchers? What are they doing?).

The video cameras setup consists of four different cameras: one focused on the face, one focused
on the keyboard from above, one focused on the keyboard from the left side, and one focused on
the keyboard from the right side. All four cameras are connected to a single video machine. Each
camera’s video is captured independently, into its own file, at a resolution of 720p (1280x720) using
the Open Broadcaster Software (OBS) – an open source video capturing software.

2.1 Operating Procedures

Starting all the cameras at once

1. If no command window is open, double click on the Command Window shortcut on the Desktop.

2. Ensure that the path in the command window reads C:\Users\Administrator\Desktop. If
it does not, close the window and return to step 1.

3. At the command line, type start-cameras.bat <subject number> and press Return, re-
placing <subject number> with the subject number for the current subject.

4. All cameras will appear on the screen, with each camera in its own window. Note: Cameras
start recording as soon as the image appears on the screen.

Stopping all the cameras at once

1. If no command window is open, double click on the Command Window shortcut on the Desktop.

2. Ensure that the path in the command window reads C:\Users\Administrator\Desktop. If
it does not, close the window and return to step 1.

3. At the command line, type stop_cameras.bat and press Return. No subject number is
required.

4. All windows with a camera image will close. Note: Cameras stop recording as soon as they
disappear from the screen.

Restarting a camera

1. Click on “Stop Recording”.

2. Wait 3 seconds.

3. Click on “Start Recording”.
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4. If this does not fix the problem, continue to the remaining steps.

5. Close the OBS window containing the camera that has failed.

6. If no command window is open, double click on the Command Window shortcut on the Desktop.

7. Ensure that the path in the command window reads C:\Users\Administrator\Desktop. If
it does not, close the window and return to step 1.

8. To start the left camera, type start-left-camera.bat <subject number> and press Return,
replacing <subject number> with the subject number for the current subject.

9. To start the right camera, type start-right-camera.bat <subject number> and press
Return, replacing <subject number> with the subject number for the current subject.

10. To start the top camera, type start-top-camera.bat <subject number> and press Return,
replacing <subject number> with the subject number for the current subject.

11. To start the face camera, type start-face-camera.bat <subject number> and press Return,
replacing <subject number> with the subject number for the current subject.

12. The missing camera(s) will now appear on the screen, with each camera in its own window.
Note: Cameras start recording as soon as the image appears on the screen.

2.2 Troubleshooting

There is an issue with OBS or one of the cameras.
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When this happens What to do

1. The batch file gives an error Ensure that all of the cameras are plugged in
(three in back and one in front).
If it still does not work, attempt to start the
cameras individually.
If it still does not work, stop all cameras and
start them all again.
Make a note of the issue in the checklist.

2. One or more of the cameras
are black OR have frozen.

Restart all cameras by stopping and then
starting them.
Check to see that the cameras are not affected
by the camera bug (see Troubleshooting item
number 6, below).
If it still does not work and the experiment has
not yet started, ensure that the cameras are
plugged in (three in back and one in front).
If it still does not work and the experiment
has not yet started, unplug the cameras and
then plug them back in.
If it still does not work and the experiment
has not yet started, restart Photomon.
Make a note of the issue in the checklist and
proceed without the affected cameras.

3. The video is distorted. Restart all cameras by stopping and then
starting them.
If it still does not work, ensure that the cam-
eras are firmly plugged in (three in back and
one in front).
If the issue persists and the experiment has
not yet started, restart the video machine.
If the issue persists but the experiment has
already started, proceed without video.
Make a note of the issue in the checklist.

4. OBS has stopped responding. Close all the OBS windows by clicking on the
red X.
If OBS refuses to close, run
stop_cameras.bat and then restart the
cameras.
If the issue persists and the experiment has
not yet started, restart the video machine.
If the issue persists but the experiment has
already started, proceed without video.
Make a note of the issue in the checklist.

5. The cameras do not have the
proper field of view.

Slightly reposition the subject or keyboard to
ensure a proper field of view.
Make slight adjustments to the cameras to en-
sure a proper field of view.
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Figure 1: OBS view with all cameras turned off.

6. A camera is black due to the
camera bug.

Identify the video camera that is black (should
be one of the 4 quadrants as in Fig. 1).
Right click on the camera name in that win-
dow and select properties (as in Fig. 2).
From the properties menu, select the first
“Microsoft LifeCam Studio” camera that ap-
pears (as in Fig. 3).
Hit OK on the properties menu and then click
on “Preview Stream” in the main window
(Fig. 1).
If the issue is not yet fixed, repeat the above
steps with the second, third, and fourth “Mi-
crosoft LifeCam Studio” cameras.
When the issue is fixed, click “Stop Preview”
and click “Start Recording”.
If the issue is still not fixed, proceed with the
remaining troubleshooting steps in Step 2.
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Figure 2: Selecting the properties of the affected camera.

Figure 3: Reassigning the affected camera.
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Figure 4: OBS’s main window.

2.3 Technical Details

2.3.1 Cameras

Each of the four cameras has the same make and model: Microsoft LifeCam Studio (http://www.
microsoft.com/hardware/en-us/p/lifecam-studio). The most important characteristic of this
camera is the 1080p resolution. Additionally, the camera comes on a mount, permitting it to be
attached to various extension and mounting equipment. This permits us to get the best possible
camera angle for each of our cameras. The camera is a USB 2.0 camera.

After we had purchased these cameras, we considered upgrading to a Logitech C920 (http:
//www.logitech.com/en-us/product/hd-pro-webcam-c920), which has a wider field of view.
However, we opted not to because the Microsoft LifeCam Studio cameras were already purchased.

2.3.2 Open Broadcaster Software (OBS)

OBS (https://obsproject.com/)is a piece of software intended primarily to facilitate the live-
streaming of events. It has the ability to take in a large number of sources, including cameras, text,
images, and audio. We are using this software for one of its secondary features, which is the ability
to record a broadcast to disk. The software is highly customizable, permitting nearly every aspect
of the recording to be customized.

Figure 4 shows the main window for OBS. The bottom left of the screen contains the scene
selection; scenes are defined pre-sets for which cameras, text overlays, and graphical overlays are
recorded. For our purposes, there will only ever be a single scene. In the bottom middle of the
screen is the list of sources used in the scene. Sources include cameras, text overlays, and graphical
overlays. It is also possible to record programs on the machine. The bottom right of the screen
contains buttons to configure OBS and to start/stop recording, start/stop the video preview, and
exit OBS. The upper half of the window displays the video being captured or a message stating
that the recording has not started yet. Once preview mode has been turned on, it is possible to edit
the scene by clicking the “Edit scene” button. This allows drag-and-drop editing of the elements
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Figure 5: Camera settings window in OBS.

in the scene.
To add a new camera (or any other input source), right click on the “Sources” box and add

the appropriate input type. After attempting to add a camera, the menu in Figure 5 will pop up.
This menu can also be accessed after a camera has been added by right clicking the camera and
selecting “Edit”. Particularly noteworthy in this menu is the ability to set the resolution and FPS
(frames per second) of the camera. There are also options to flip the camera image vertically or
horizontally. This is useful if a camera is most easily mounted upside down; this setting is used for
the face camera.

Further customization of the camera can be performed by clicking on the “Configure” button,
which brings up the menu depicted in Figure 6. All of the cameras we are using automatically adjust
for the amount of light in the room and automatically focus. There appears to be no method for
turning off auto-focus, but it is helpful to stop the camera from adjusting for the amount of light
in the room; this is particularly helpful for the face camera. Unchecking the “Truecolor” box stops
the camera from automatically adjusting the brightness, saturation, and contrast. White balance
and exposure can also be manually controlled by unchecking the corresponding boxes.

We are using a date and time text overlay as part of the video capture in this experiment. This
enables us to easily synchronize video data from each camera. This text overlay can be added by
right clicking on the “Sources” box and selecting the appropriate option. It can be edited at a later
date by right clicking on the appropriate source and selecting “Edit”. When creating a new overlay
or editing an existing one, the menu depicted in Figure 7 will appear.

Clicking on the “Settings” button in the OBS main menu will bring up the settings menu
depicted in Figure 8. Among the configurable options are the video and audio encoding options
and the save location for the files. The settings are pre-set for our experiment, so there should be
little need to use this settings menu.

All of the video recordings are taken in 720p. The goal was to record in the highest possible
resolution while still achieving 30 frames per second (fps). We determined that 30 fps would be
enough for us to determine what the subject was doing at any point in time. Given the computing
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Figure 6: Camera focus settings window in OBS.

Figure 7: Date and time overlay settings window in OBS.
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Figure 8: Settings window in OBS.

power available to us, it would be difficult to simultaneously record 4 cameras at 30 fps and a
resolution above 720p; this would likely require the use of 4 separate computers, each recording a
single camera. Due to the additional complexity required by such a setup, we have opted for 720p.

OBS has several different configuration files. The default location for these files are the %APP-
DATA%/Roaming/OBS folder. However, since we are using the -portable switch (see below), the
configuration files are stored in the OBS installation directory. The most important configuration
file is scenes.xconfig. This file contains the settings for each of the cameras, permitting fine-tuned
tweaking of how each camera is recorded.

OBS also permits several different command line switches to be used. The ones that are most
applicable to us are -multi, -portable, and -start. The -multi switch permits multiple instances of
OBS to be run on the same machine. This is required because we are simultaneously running 4
instances of OBS, one for each camera being recorded. By design, OBS records an entire scene –
consisting of one or more cameras and graphical elements – to a file. It is not possible to record
individual cameras to a file unless that camera is the only item in a scene. This limitation prevents
us from recording all four cameras to their own file with a single OBS instance. The -portable switch
permits each instance of OBS to have its own configuration file; in our case, the configuration file
is different for each instance of OBS since the camera being recorded is different as is the output
file name. There are 4 OBS directories, each containing a different configuration file. Finally, the
-start switch causes cameras to start recording as soon as OBS starts. This is convenient for the
purposes of writing a script to start all cameras simultaneously.

The timestamp is generated using a free addon that can be found on the OBS forums.
The website for OBS is https://obsproject.com/. The current version of OBS being used is

0.638 Beta (released on November 11th, 2014). Support queries can be posted on the forum located
at the aforementioned URL.
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2.3.3 Starting and stopping cameras

Batches files have been created to start and stop the cameras. Cameras are started simply by
running all instances of OBS (4 in total, one for each camera). Due to the -start switch, cameras
will start recording as soon as OBS starts. Cameras are stopped by killing the OBS instances.
Cameras can be started and stopped individually as well, by starting or stopping the corresponding
OBS instance. It is also possible to start and stop recording without opening or closing OBS
instances; this can be done by clicking the “Start recording” or “Stop recording” button on the
OBS interface.

The save location for videos can be set by the user. In our case, we have set the save location
to be E:/New Videos (after 1Jan2015).

2.3.4 Machine specs

The video machine (named Photomon) has an Intel Xeon E5-1620v2 processor running at 3.7 GHz.
The machine is equipped with 32 GB of RAM and an Nvidia Quadro K2000 video card. The
current hardware in the machine was recommended to us by various members of CMU’s facilities
group for our specific needs. Of particular note is that an Nvidia graphics card was chosen because
the OBS software permits offloading of the video encoding to Nvidia graphics cards, but not cards
from other manufacturers. That said, we are actually not making use of this feature because the
CPU actually has enough processing power to encode all four videos simultaneously.

In the case that additional cameras were desired or a higher resolution was desired, the best
upgrades for the machine would be a faster CPU or 1-2 excellent Nvidia graphics cards. An
alternative would be to purchase multiple weaker machines; each machine would then handle the
load from 1-2 cameras.

We had originally considered using multiple machines, but the net cost was higher and it would
be much more difficult to sync videos from multiple machines than videos from a single machine.

2.3.5 Post-processing

Post-processing of the recorded video is necessary to create the split-screen view – all four cameras
in a single video file, similar to the appearance of a security camera. Post-processing of the video
is done through Adobe Premiere software.

3 Physiological Measures

The physiological measures collected in the stress experiment are used for objective assessment of
the affective state of the subject (i.e., neutral or stressed). Four physiological measures are being
collected: (1) electrocardiogram (ECG/EKG), (2) respiration rate, (3) blood pressure, and (4)
pulse rate.

3.1 Operating Procedures

Ensuring proper equipment attachment

1. Ensure that all equipment is off.

2. Ensure that the Doodad power cable is plugged in.

3. Ensure that the Critikon power cable is plugged in.

4. Ensure that the PowerLab power cable is plugged in.
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5. Ensure that the pink cable is attached to the Critikon blood pressure monitor.

6. Ensure that the green cable is attached to the output port on the back of the PowerLab.

7. Ensure that the 25-pin connector is attached to the Doodad.

8. Ensure that the BioAmp is connected to the PowerLab via the I2C port; the ports are in the
back of the PowerLab and BioAmp.

9. Ensure the leads are connected to the front of the BioAmp.

10. Ensure that the Polar Respiration Belt is connected to Port 1 in the front of the PowerLab.

11. Ensure that the USB cable is plugged into the back of the PowerLab and the back of the
LabChart machine.

Turning on the hardware

1. Ensure that all hardware is off.

2. Ensure that all hardware is connected.

3. Turn on the PowerLab.

4. Turn on the Doodad (by plugging in the power cable).

5. Turn on the Critikon.

6. The video and LabChart machines can be turned on at any time.

Starting up LabChart

1. Double click on Cog experiment on the desktop of the LabChart machine.

2. Ensure that the preset comment miniwindow is visible.

3. Ensure that the blood pressure macros are visible (in the toolbar).

Start recording data in LabChart

1. Click one of the two start buttons (upper-right or bottom-right). Either button will work.

Stop recording data in LabChart

1. Click one of the two stop buttons (upper-right or bottom-right). The stop button replaces
the start button once recording has begun. Either button will work.

Attaching the EKG cables to the subject

1. Remove the EKG cables from its storage position.

2. Ask the subject to assist you with moving their clothing out of the way.

3. Feel along the right collarbone of the subject, until you reach the point where it intersects
the shoulder. Scrub the skin in this area with an alcohol wipe and attach an electrode.

4. Feel along the bottom-most rib on the left side, moving outwards, until you hit a bony
intersection. Scrub the skin in this area with an alcohol wipe and attach an electrode.

5. Attach an electrode roughly parallel with the rib on the right side. Make sure the area is
scrubbed with an alcohol wipe prior to electrode attachment.

6. Attach the leads by snapping them onto the electrode. The white lead goes on the right
shoulder electrode, the black lead goes on the left rib electrode, and the green lead goes on
the right torso electrode.
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Attaching the Polar Respiration Belt to the subject

1. Ensure that you have attached the EKG electrodes and cables PRIOR to attaching the
respiration belt.

2. Say to the subject: The respiration belt wraps around your stomach, just above your belly
button. The sensor [point to the sensor], should be right above your belly button. The belt
attaches to the sensor through a long velcro strap. [Point out the attachment points to the
subject.] Once on, the belt should fit snugly. It should feel modestly constraining and should
produce a sense of discomfort if you take a very deep breath.

3. Ask the subject to sit down.

4. Attach the belt to the subject, with the sensor positioned just above the belly button.

Attaching the Critikon blood pressure cuff to the subject

1. Ask the subject to indicate which hand he typically operates the mouse with. The blood
pressure cuff should be placed on the other arm.

2. The blood pressure cuff will be placed on the subject’s upper arm, at the same level as the
heart. Using a tape measure, measure the circumference of the subject’s upper arm at that
location.

3. Check if the currently attached cuff is the right size. If it is not, swap it out for an
appropriately-sized one.

4. If the subject is wearing any clothing that is not skin-tight, ask them to move the fabric out
of the way so that the cuff can be attached (e.g., by rolling up a sleeve).

5. Ensure that the hose connected to the cuff is not kinked or warped in any way.

6. Place the cuff so that the subject’s artery is aligned with the cuff arrow marked “artery.”

7. Squeeze the cuff to remove all air from it.

8. Wrap the cuff snugly around the subject’s limb. Ensure that the cuff index line falls within
the range markings. If it does not, use a larger cuff and repeat the attachment process from
the beginning. Ensure that the velcro attachments are secure. You should be able to fit a
single finger between the subject’s arm and the cuff.

Ensuring the EKG is functional

1. Check to see that the characteristic QRS wave is present and has little noise.

2. If no QRS wave is present, check that all connections (leads to electrodes, leads to BioAmp,
and BioAmp to PowerLab) are firmly connected.

3. If no QRS wave is present and all the connections are firm, ensure that the range is set to
100 mV.

4. If the QRS wave is inverted, check that the black and white leads are clipped to the proper
electrodes. The white lead should be clipped on to the right shoulder electrode, and the black
lead should be clipped on to the left rib electrode. If the QRS wave is still inverted, switch
the black and white leads and make a note of it. (This can occur due to an unusual medical
condition that causes the heart to be rotated. It should occur in about 2-3 people per 100.)

Ensuring the Polar Respiration Belt is functional

1. Ask the subject to deeply inhale and then exhale. This should produce a clear and obvious
signal.
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2. If no signal is present, check that the connection between the respiration belt and the Pow-
erLab is firm.

3. If there is still no signal present, ensure that the range is set to 50 mV.

Ensuring the Critikon is functional

1. Ensure that there are no warnings displayed. If there are, restart the Critikon to clear the
errors.

2. Take a blood pressure reading and ensure that a proper reading is displayed. The systolic
blood pressure should be less than 140 and the diastolic blood pressure should be less than
90, unless the subject has high blood pressure. The pulse rate should be between 60 and 100
for most subjects. This may be lower if the subject exercises heavily.

Removing the EKG from the subject

1. Ask the subject to remove the electrodes, with leads still attached, from their body.

2. Unclip the leads from the electrodes.

3. Provide the subject with alcohol wipes if they wish to clean off any residue.

Removing the Polar Respiration Belt from the subject

1. Remove the EKG leads and electrodes prior to removing the belt.

2. Detach the velcro strap and remove the belt.

3. Clean the belt and curl it up prior to storage.

Removing the Critikon blood pressure cuff from the subject

1. Ensure the the cuff is not currently inflated.

2. Detach the velcro and remove the cuff. Ensure that the hose is not kinked when the cuff is
put into storage.

3.2 Troubleshooting

For all problems, note the problem in the checklist and inform Shing-hon and Roy asap.

A physiological measure is not reading a signal
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When this happens What to do

1. There is no discernible reading Narrow the range by clicking the arrow next
to the channel reading and selecting: 100mV
for EKG, 50mV for Respiration belt

2. There is no discernible read-
ing even though the range has
been reduced

Double-check to see if the EKG leads and the
respiration belt are attached securely.

3. There is no discernible reading
even though the range is re-
duced and the equipment is se-
cure. Also, there are five min-
utes remaining in the rest pe-
riod or during the Purple task.

Save the file and restart LabChart

4. There is no discernible read-
ing even though LabChart was
restarted

Reboot LabMon1 and restart LabChart.

5. There is no discernible reading
even though LabMon has been
rebooted

Continue with the experiment with the work-
ing physiological measures

1login: xxxx, password: yyyy
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A physiological measure is out of bounds or has an odd reading
When this happens What to do

1. Reading is out of bounds Adjust the range by clicking the arrow next
to the channel reading and selecting a wider
range: 100mV for EKG, 50mV for Res-
piration belt

2. Odd reading but not out of
bounds

Insert a comment in LabChart

3. Odd reading before the 1st
rest period

Re-attach equipment

4. Odd reading while the subject
is not typing

Ask subject to check all electrodes are at-
tached and the respiration belt is snug on their
chest – if this doesn’t work, continue with the
experiment anyway

5. Odd reading while the subject
is typing or using Purple

Wait until the subject completes the typing
task or Purple. Then, ask the subject to check
all electrodes are attached and the respiration
belt is snug on their chest – if this doesn’t
work, continue with the experiment anyway.

6. Odd reading is fixed Insert comment into LabChart saying the odd
reading was fixed.

An EKG electrode has fallen off
When this happens What to do

1. EKG electrode fell off Insert a comment in LabChart

2. EKG electrode fell off before
the 1st rest period

Attach a new electrode to the subject, then
the EKG lead.

3. EKG electrode fell off when
the subject is not typing
or using Purple

Attach a new electrode to the subject, then
the EKG lead.

4. EKG electrode fell off while
the subject is typing or us-
ing Purple

Wait until the next rest period and then at-
tach a new electrode to the subject, then the
EKG lead.

5. After the EKG electrode is re-
placed

Insert a comment in LabChart
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Subject complains that the respiration belt is too loose/tight
When this happens What to do

1. Subject complains that
the respiration belt is too
loose/tight

Insert a comment in LabChart

2. Subject complains before the
first rest period

Ensure the subject is seated and re-adjust the
respiration belt

3. Subject complains when the
subject is not typing or us-
ing Purple

Ensure the subject is seated and re-adjust the
respiration belt

4. Subject complains when the
subject is typing or using
Purple

Wait until the next rest period, then, ensure
the subject is seated and re-adjust the respi-
ration belt

5. After respiration belt adjust-
ment is made

Insert a comment in LabChart

Respiration belt falls off
When this happens What to do

1. Respiration belt falls off Insert a comment in LabChart

2. Respiration belt falls off be-
fore the first rest period

Ensure the subject is seated and re-attach the
respiration belt

3. Respiration belt falls off when
the subject is not typing
or using Purple

Ensure the subject is seated and re-attach the
respiration belt

4. Respiration belt falls off when
the subject is typing or us-
ing Purple

Wait until the next rest period, then, ensure
the subject is seated and re-attach the respi-
ration belt

5. After respiration belt is re-
attached

Insert a comment in LabChart
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BP cuff is too loose/tight
When this happens What to do

1. Subject complains that the BP
cuff is too loose/tight

Check the cuff size and re-adjust or swap with
an appropriate-sized one.

2. Subject complains before the
first rest period

Adjust the BP cuff.

3. Subject complains when the
subject is not typing or
using Purple and no BP
reading will be taken in
the next minute

Adjust the BP cuff.

4. Subject complains when the
subject is not typing or
using Purple BUT a BP
reading will be taken in
the next minute

Wait until after the BP reading to adjust the
cuff.

5. Subject complains when the
subject is typing or using
Purple

Wait until the next rest period, then adjust
the cuff.

BP cuff has fallen off
When this happens What to do

1. The BP cuff falls off subject’s
arm

Check the cuff size and re-adjust or swap with
an appropriate-sized one.

2. The BP cuff falls off during a
rest period

Adjust the BP cuff immediately and take any
missed BP readings immediately after adjust-
ment.

3. The BP cuff falls off in a non-
rest period

Re-attach it before the next rest period.

Critikon alarm has sounded
When this happens What to do

1. Critikon alarm has sounded Press the alarm button twice; the first press
silences the alarm temporarily and the second
silences it completely.
Ensure the subject is ok. The alarm only
sounds when the BP is excessively high or low.
Call x82323 (Campus EMS) if necessary.
If the subject is ok, discontinue the use of the
BP monitor and complete the experiment.
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Figure 9: LabChart’s main window.

Critikon printer has jammed
When this happens What to do

1. Critikon printer has jammed Open the printer and remove the jam.
Ensure that a small strip of paper is sticking
out of the printer to prevent future jams.

3.3 Technical Details

ECG/EKG is collected through a 5-lead electrode system, which feeds data to the PowerLab.
Respiration rate is collected using the Polar Respiration belt, which also feeds data to the PowerLab.
Blood pressure and heart rate are collected by the Critikon. The output of the Critikon is directly
printed out using a printer attached to the device. However, each reading is trigged by LabChart,
via the Doodad. LabChart is the name of the software that interfaces with the PowerLab hardware.

The LabChart software is responsible for integrating all of the physiological signals in a time-
synchronized fashion, and then recording it into a single file. The main screen for LabChart is
displayed in Figure 9. At the top left of the main window is the menu bar; the contents of each
sub-menu in this bar is described later. The center of the screen contains channels of input. In
this example, there are 5 channels in total. In the right sidebar for each channel, the channel range
is displayed. This range can be altered by clicking on the drop-down arrow next to the range. In
this example, Channels 1, 2, and 5 have a range of 10V, while Channels 3 and 4 have a range
of 100 mV. Other options can also be adjusted in this sidebar; however, we will not be altering
these options for this experiment. Data collection can be started and stopped by clicking on one
of the two start/stop buttons. One is located in the upper-right, while the other is located in the
bottom-right. When data collection is active, the data will scroll across each of the channels.

The setup sub-menu, depicted in Figure 10, allows many settings to be altered. For our ex-
periment, we will utilize Channel Settings, Digital Output, and Preset Comments. Clicking on
Channel Settings will bring up the window shown in Figure 11. From here, it is possible to set
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Figure 10: LabChart’s setup menu.

Figure 11: LabChart’s channel settings menu.
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Figure 12: LabChart’s digital output menu.

many parameters regarding the channels. For example, the number of channels, their input and/or
associated calculation, the range, the sample rate, and the units, can all be set via this window.

The digital output window, depicted in Figure 12, allows us to control the signal emitted from
the digital output port in the back of the PowerLab. For this experiment, we initially intended
for there to be one-way communication with the Critikon, via the Doodad. However, we later
discovered that this was not worth the effort. Nevertheless, here are Harvey’s instructions regarding
communication with the Critikon:

Pin 1: initiate BP start , if the trigger (see pin 3) is armed.

Nothing otherwise.

Pin 2: cancel an in-progress BP sequence. Nothing if a BP sequence

isn’t running.

Pin 3: trigger arm/print results: After starting a BP sequence and

either cancelling or finishing it normally, assert this pin to re-arm

the "start" pin (pin 1). This acts as a "debounce"/multiple-start

safety to avoid sending redundant start commands to the BP machine.

It will also cause a PRINT command to be sent to the BP machine to

print out the latest result

Note that Harvey’s numbering of the pins is mirrored to the LabChart numbering. That is, what
he calls Pin 1/2/3 is labeled as Pin 8/7/6 in LabChart. A pin is considered “on” if it exceeds 2.5V;
this is achieved by activating the corresponding digital output pin. Similarly, a pin is considered
“off” if it falls below 2.5V.

We do not directly control the digital output signal, since the timing on rearming is quite
sensitive. Keeping Pin 3 (as per Harvey’s instructions) on for more than a few moments will cause
multiple printings of the last blood pressure reading. Instead of controlling the digital output
directly, we instead employ LabChart’s macro functionality. Two macros have been created. One
rearms the Critikon and takes a blood pressure reading; this has the side-effect of causing the last
reading to be printed. The second cancels the current reading. The macros also insert comments
into the LabChart file to indicate when a reading is started or stopped. The macro window can
be accessed via the Macro sub-menu (see Figure 13 and selecting “Manage...”. The macros can be
viewed in Figures 14 and 15.
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Figure 13: LabChart’s macro sub-menu.

Figure 14: LabChart macro to start a blood pressure reading.
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Figure 15: LabChart macro to stop a blood pressure reading.

Figure 16: LabChart’s preset comments window.
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Figure 17: LabChart’s preset comments miniwindow.

The final item of interest in the setup menu is the Preset Comments window, depicted in Figure
16. As the name suggests, this menu allows the user to define comment strings that can then be
inserted into the LabChart file with the press of a single button. This allows us to record when a
subject begins or ends a typing session or rest period. Once preset comments have been defined,
they can be inserted into the file by either clicking on the comment in the miniwindow (see Figure
17) or by hitting the appropriate hotkey. In Figure 17, the F1 hotkey has been assigned to the
inserting the comment “Start of typing session”.

3.3.1 Physiological Equipment

The first decision made with regard to the physiological equipment used in this experiment was
to choose the PowerLab hardware and corresponding LabChart software. This combination is
manufactured by AD Instruments. This choice was made largely because the equipment could
perform the necessary physiological monitoring and because it had a non-proprietary data format.
Other equipment that we considered had proprietary data formats, making it difficult to share data
with other researchers and making it difficult to perform our own analysis.

There are four physiological signals that are recorded as part of this experiment: 1) electro-
cardiogram (ECG/EKG), (2) respiration rate, (3) blood pressure, and (4) pulse rate. All signals
are routed through the PowerLab and then into a computer running LabChart. The EKG is col-
lected using a 5-lead system (of which we use 3 leads), which is routed through a BioAmp (also
manufactured by AD Instruments); the BioAmp is connected to the PowerLab. Respiration rate is
collected using a Polar respiration belt kit, which plugs directly into the PowerLab. Blood pressure
and pulse rate are both collected by a Critikon blood pressure monitor.

The EKG and respiration rate data are automatically synchronized by LabChart. It was our
original intent to also synchronize the data captured by the Critikon monitor. We asked Harvey
to manufacture a device (dubbed the Doodad) to facilitate this. The idea was to have LabChart
automatically trigger a blood pressure and pulse reading at fixed times throughout the experiment.
The resulting data from this reading would then be sent back to LabChart, where it would be au-
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tomatically recorded. The automation was designed to reduce the burden on the experimenter and
hopefully reduce the potential for mistakes. Due to inconsistencies with the Critikon programming,
the Doodad is unable to send back the data. However, the automated triggering still works.

4 Typing data

As in prior keystroke experiments, typing data will be collected using MetriTextPrompter (MTP).
The keyboard used will be an Apple keyboard connected to the Gizmo. Subjects will type the same
phrase repeatedly for each sessions.

4.1 Operating Procedures

Starting the warm-up session

1. Bring up the command window on the laptop.

2. Run run-cog-warmup.bat.

Starting the first neutral session

1. Bring up the command window on the laptop.

2. Run run-cog-n1.bat.

Starting the cognitive load session

1. Bring up the command window on the laptop.

2. Run run-cog-cog.bat.

Starting the second neutral session

1. Bring up the command window on the laptop.

2. Run run-cog-n2.bat.

4.2 Troubleshooting

The participant is distracted mid-repetition.
When this happens What to do

1. The participant stops typing
mid-repetition

Make a typo so that the data entry is invalid.

If it’s too late to make a typo, record the
counter number in the notes section of that
typing session.

4.3 Technical Details

Technical details have thoroughly detailed in other operations manuals. See the Strong, Hester, or
Phone operations manual for details.
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5 Neutral induction

Neutral induction is performed twice during the course of the stress experiment. Its purpose is to
establish that the subject is actually in a neutral state; the validity of the experiment would be
compromised if we simply assumed the subject was in a neutral state. The first induction is done
prior to the first typing baseline sample, to ensure that the subject is in a neutral state. The second
induction is performed after the stressed typing and before the post-stress baseline sample.

5.1 Operating Procedures

1. Give the subject instructions for the neutral induction

2. Turn on the relaxing video

3. Provide subject instructions for the simple task – count the number of types of animals for
the first video; count the number of human divers for the second video

4. Provide the subject with pen and paper to perform the task

5. Set a timer for 30 minutes

6. During the 30 minute period, check the physiological measures at least once a minute to
ensure they are still functioning

7. At the 21 minute mark, take a blood pressure reading

8. At the 24 minute mark, take another blood pressure reading

9. At the 27 minute mark, take another blood pressure reading

10. At the 30 minute mark, take a final blood pressure reading

5.2 Troubleshooting

For all problems, note the problem in the checklist and inform Shing-hon and Roy asap.

Some distraction has occurred
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When this happens What to do

1. A distraction occurred that
did not require the subject
to leave the room (e.g. Peo-
ple talking loudly in the hall-
way)

Attempt to stop the distraction asap.

Make a note of the time and nature of the
distraction in checklist
Continue with the experiment.

2. A distraction occurred during
the rest period that required
the subject to leave the
room for < 5 min (e.g. bath-
room break)

Make a note of the time and nature of the
distraction.

Resume the rest period and add 10 minutes
to the end.
Continue with the experiment

3. A distraction occurred during
the rest period that required
the subject to leave the
room for > 5 min (e.g. fire
alarm)

Restart the rest period.

Continue with the experiment
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A blood pressure reading was missed
When this happens What to do

1. Missed a BP reading and the
next scheduled BP reading is
more than 1 min

Take the BP reading asap and make a note in
checklist.

2. Missed a BP reading and the
next scheduled BP reading is
less than 1 min

Skip the BP reading and note in checklist that
the BP reading was missed.

3. Missed two BP readings Take the BP reading asap and note in check-
list that the two BP readings were missed.

A form was not administered
When this happens What to do

1. A form was omitted from the
experiment

Note omission in checklist and notify
Roy/Shing-hon.

6 Stress induction

Stress induction is performed once during the course of the experiment. It is done using a combi-
nation of the Purple framework and social evaluation.

6.1 Operating Procedures

1. Give the subject instructions for using the Purple software

2. Start up the Purple software

3. Start a timer for 15 minutes

4. At the 5 minute mark, perform social evaluation

5. At the 10 minute mark, perform social evaluation

6. Take a blood pressure reading

6.2 Troubleshooting

For all problems, note the problem in the checklist and inform Shing-hon and Roy asap.

The Purple software stopped working
When this happens What to do

1. The Purple software crashes Close and re-start Purple.
Inform subject that we need to re-start the
Purple session.
Make a note in the checklist.

2. The Purple software crashes
twice

Skip the Purple session.

Continue with the remainder of the experi-
ment, starting with the typing session
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Figure 18: Purple’s main window.

6.3 Technical Details

The Purple software was originally provided to us by Mark Wetherell. The software is intended to
be a pseudo-realistic simulation of a typical work environment, where an individual is being asked
to multi-task heavily. Studies by Mark and his colleagues have demonstrated that using the Purple
framework induces a mild to moderate stressor in subjects. In our experiment, we are combining
the use of the Purple software with social evaluation, in the form of negative feedback from the
experimenter. We have a re-written version of the Purple software to increase the stress on the
user. For example, some bugs that caused time-outs to not happen have been fixed. The penalty
for time-outs has also been increased to force subjects to attend equally to all the tasks; in pilot
studies, we found that subjects tended to ignore some modules since the time-out penalties were
not severe.

The Purple framework consists of 4 different quadrants, each with a task that the subject must
perform. The difficulty level (speed) can be varied, as can the tasks themselves. Figure 18 shows the
main window for Purple. The upper-left corner contains the task intensity selection menu. In our
experiment, we will use low for the familiarization task and high for the actual task. This will allow
the subject to have an easy time learning how to use the software during the familiarization period,
while making the actual task difficult enough to induce cognitive load. The bottom-left corner
contains the task duration menu. In our experiment, we will use 2-minutes for the familiarization
period and 15 minutes for the actual task. In the top-center of the screen is the results file location.
The middle-center of the screen contains the toggling for “vs mode”, where a score appears on
the screen that is purported to be from a human opponent, but is in actually controlled by the
software. The bottom-middle of the screen contains options for the scoring; we allow the subject
to see the score and allow negative scores. The right-hand side of the screen contains saving and
loading configurations and the selection of modules (see Figure 19). In our experiment, we have
chosen Numbertap, Stroop, Tracking, and LetterSearch as the four tasks. These tasks are chosen
for consistency with what Mark has used in his studies.

7 Forms

There are several different types of forms will be employed during the course of the experiment:
Consent form, Demographic survey, Perceived Stress Scale, Long-form STAI (Y-2), State-Anxiety
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Figure 19: Purple’s configuration window.

Visual Analogue Scale, and the NASA-TLX workload inventory.

7.1 Operating Procedures

Consent form

1. Give a copy of the consent form to the subject.

2. The first step in this experiment is to obtain your informed consent. I will describe the key
points to you now, and then I will give you an opportunity to read through the form itself.

3. You must be at least 18 years old to participate in this experiment. You must be fluent in
English, have at least three years of experience typing on a computer, and must type at least
30 words a minute.

4. Ask the subject to confirm that all four facts are true.

5. You must not have any history of cardiac or neurological disorders, anxiety or stress disorders,
or sleep disorders.

6. Ask the subject to confirm they do not have any such history.

7. You must not have a systolic blood pressure above 140 or a diastolic blood pressure above 90.
You also must not have had a stroke. We will be verifying your blood pressure in a moment,
if you are unsure about your blood pressure readings.

8. Ask the subject to confirm that they have not had a stroke and that they believe their blood
pressure lies in the appropriate range.

9. It is also important that you have not had excessive caffeine consumption (more than 3 cups
of coffee in a day) and psychoactive drugs for a 72-hour period before the experiment.

10. Ask the subject to confirm that they have not consumed excessive caffeine or psychoactive
drugs for the 72-hour period.

11. The risks and discomfort associated with participating in this study are no greater than that
you would encounter in your daily life or during typical office work.

12. There will be no personal benefit to you for participating in this study. However, we will
provide compensation for your time at the completion of this study. The compensation will be
60 dollars, in cash. You will earn 10 dollars for completing the experiment, and an additional
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bonus of 50 dollars if you are highly engaged during the study. If you choose to leave early,
you will only the 10 dollars.

13. During the course of this study, we will be collecting a variety of data from you. This includes
your written responses to questionnaires and forms, physiological measurements, and audio-
visual data. All data collected from you will be protected by storing it in a locked location on
Carnegie Mellon property and will not be disclosed to third parties. Personal identifiers, like
your name, phone number, and date of birth, will be kept separate from other information
collected.

14. Your participation in this study is completely voluntary. You are free to leave at any time.

15. Please take a moment to read through the form now. Take as long as you would like. Please
feel free to ask any questions you may have. Please initial where called for in the form and
then sign your name at the end of the form.

16. Give the subject as long as they wish to read through the consent form.

17. Answer any questions the subject might have.

18. Ensure that the subject initials where called for in the form.

19. Ensure that the subject signs and dates the consent form under “Participant Signature”.

20. Sign and date the form under “Signature of Person Obtaining Consent”.

21. Place the consent form into the manila folder.

Demographic survey

1. Give a copy of the demographic survey to the subject.

2. The next form is a demographic survey. This asks questions like: “Are you right-handed or
left-handed?” and also questions about your typing habits.

3. Please take some time to fill out this form now. Please let me know if you have any questions.

4. Place the demographic survey into the manila folder.

Perceived Stress Scale

1. Give a copy of the Perceived Stress Scale to the subject.

2. The last form we have for now is the Perceived Stress Scale. For each question, please circle
a number to indicate how often you felt or thought a certain way in the past month.

3. Place the Perceived Stress Scale into the manila folder.

Long-form STAI Y-2

1. Give a copy of the Long-form STAI to the subject.

2. The next form is the Long-form State Trait Anxiety Inventory, or STAI. Please circle the
number corresponding to statement describing how you feel right now, at this moment.

3. Allow the subject to respond to all the questions.

4. Ensure that the subject has answered all of the questions.

5. Place the long-form STAI Y-2 into the manila folder.

State-Anxiety Visual Analogue Scale

1. Give a copy of the VAS to the subject.
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2. I will ask you to fill out this form on a few occasions throughout the experiment. Please make
a mark on each line indicating how you feel at this moment. Please look over it now and see
if you have any questions.

3. Answer any questions the subject might have.

NASA-TLX Workload Inventory

1. Present a copy of the NASA-TLX to the subject.

2. Throughout the experiment, I will ask you to fill out this form on a few occasions. For each
question on the form, place a vertical mark on each line corresponding to how you feel at the
moment.

7.2 Troubleshooting

For all problems, note the problem in the checklist and inform Shing-hon and Roy asap.

Subject wants to correct an answer on the form
When this happens What to do

1. Subject wants to correct an
answer on the form while
completing the form

Ask subject to mark the incorrect answer with
a large X.

2. Subject wants to correct an
answer on the form after
completing the form

Tell subject that they cannot change answers
once they have completed the form.

7.3 Technical Details

The consent form is mandatory due to IRB regulations. The demographic form is used to obtain
demographic information from our subjects; this information could have explanatory capabilities
for changes in a subject’s typing. The remaining forms (long-form STAI, PSS, short-form STAI,
and Bond-Lader VAS) are chosen because they are the standard forms in stress research. The
long-form STAI and the PSS covers the way that stress impacts the subject in terms of their
general activities. The short-form STAI and Bond-Lader VAS cover short-term responses to stress,
measuring changes in stress due to the experimental conditions. These forms were also used by
Mark Wetherell in his own research.

8 Still camera

We will be using a remotely-activated still camera to take KPECS pictures for this experiment.

8.1 Operating procedures

Turning on the still camera

1. Turn on the camera.

2. Turn on the remote attached the camera.

3. Detach the remote from the camera itself.

Turning off the still camera
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1. Attach the remote to the camera.

2. Turn off the remote.

3. Turn off the camera.

8.2 Troubleshooting

The camera or remote does not function.
When this happens What to do

1. The camera or remote will not
turn on.

Replace the batteries for the device that will
not turn on.
If the scale still does not turn on, skip the
still photos and let Roy and Shing-hon know
about the issue.

2. The remote does not work. Ensure that the remote is turned on.
Replace the batteries in the remote if it does
not turn on.
If the remote still does not work after replac-
ing the batteries, take the pictures manually
by pressing the button on the camera. Inform
Roy and Shing-hon about the issue after the
experiment is over.

8.3 Technical Details

9 Height and weight measurements

We will be measuring subjects’ height and weight to help calibrate the EKG readings.

9.1 Operating procedures

Measuring the subject’s height

1. Ask the subject to remove their shoes.

2. Ask the subject to stand against the door with their heels against the door.

3. Ask the subject to place a hand on the top of their head against the scalp.

4. Record the reading on the measuring tape. The offset from the scale starting off the floor
will be added in later.

Measuring the subject’s weight

1. Turn on the scale by pressing the button on the front.

2. Ask the subject to remove their shoes.

3. Ask the subject to step on the scale and to avoid holding onto or leaning on anything.

9.2 Troubleshooting

The subject is too tall.
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When this happens What to do

1. The subject is taller than the
top of the scale.

Estimate the subject’s height to the best of
your ability.
Make a note that the measurement was an
estimate due to the subject being taller than
the top of the scale.

The scale will not turn on.
When this happens What to do

1. The scale will not turn on. Replace the batteries for the scale.
If the scale still does not turn on, skip the
weight measurement and let Roy and Shing-
hon know about the issue.

9.3 Technical Details

The scale is designed to automatically turn off after a period of inactivity. There is no need to
manually turn off the scale.

The height chart is offset from the ground by approximately 18 inches. The reading should be
taken according to what is on the chart; adjustments to the height to accommodate the offset will
be done at a later time.
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