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Abstract
Across domains, the scale of data and complexity of models have both been

increasing greatly in the recent years. For many models of interest, tractable learn-
ing and inference without access to expensive computational resources have become
challenging. In this thesis, we approach efficient learning and inference through the
leverage of sparse structures inherent in the learning objective, which allows us to
develop algorithms sublinear in the size of parameters without compromising the
accuracy of models. In particular, we address the following three questions for each
problem of interest: (a) how to formulate model estimation as an optimization prob-
lem with tractable sparse structure, (b) how to efficiently, i.e. in sublinear time,
search, maintain, and utilize the sparse structures during training and inference, (c)
how to guarantee fast convergence of our optimization algorithm despite its greedy
nature? By answering these questions, we develop state-of-the-art algorithms in var-
ied domains. Specifically, in the extreme classification domain, we utilizes primal
and dual sparse structures to develop greedy algorithms of complexity sublinear in
the number of classes, which obtain state-of-the-art accuracies on several benchmark
data sets with one or two orders of magnitude speedup over existing algorithms. We
also apply the primal-dual-sparse theory to develop a state-of-the-art trimming al-
gorithm for Deep Neural Networks, which sparsifies neuron connections of a DNN
with a task-dependent theoretical guarantee, which results in models of smaller stor-
age cost and faster inference speed. When it comes to structured prediction problems
(i.e. graphical models) with inter-dependent outputs, we propose decomposition
methods that exploit sparse messages to decompose a structured learning problem
of large output domains into factorwise learning modules amenable to sublinear-
time optimization methods, leading to practically much faster alternatives to existing
learning algorithms. The decomposition technique is especially effective when com-
bined with search data structures, such as those for Maximum Inner-Product Search
(MIPS), to improve the learning efficiency jointly. Last but not the least, we design
novel convex estimators for a latent-variable model by reparameterizing it as a solu-
tion of sparse support in an exponentially high-dimensional space, and approximate
it with a greedy algorithm, which yields the first polynomial-time approximation
method for the Latent-Feature Models and Generalized Mixed Regression without
restrictive data assumptions.
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Chapter 1

Introduction

Along with the dramatic improvement of modern Artificial Intelligence systems in the recent
years, the model complexity has also grown to another level, where a single model could easily
involve millions of parameters and billions of operations. At the same time, the amount of data
for training is also growing with the unlimited resources on the internet, crowdsourcing tech-
nology, and also data augmentation techniques. This puts significant challenges to the modern
Machine Learning system as the computational cost of training is growing with both the model
complexity and the amount of data. For many tasks of interest, it has become increasingly im-
possible in practice to train a model of state-of-the-art performance without access to expensive
computational resources such as dozens of GPU/CPUs. Sometimes even performing inference is
computationally expensive, especially on devices such as mobile phones or other edge devices—
they could easily consume too much energy or take too much time and space.

1.1 Thesis Statement
In this thesis, we consider a number of situations for which the size of model parameters could
easily go beyond millions:
• Extreme Classification: consider a simple linear model for document tagging using Bag-

of-Words features. For practical applications with both vocabulary size and the number of
tags being hundreds of thousands, a simple linear model would have (105)2 parameters,
which is very hard to store in a computer’s physical memory, and the training would be
even more expensive.

• Structured Prediction: for problem involving an output domain of size up to thousands,
modeling the interaction between outputs could easily introduce millions of parameters.
One example is the n-gram language model used in speech recognition and machine trans-
lation, which often results in hard inference problems that can only be approximated via
Beam Search in practice.

• Deep Architecture: a recent trend of modeling is to introduce multiple layers of feature
extraction before predicting the outputs, which introduces huge amount of parameters and
expensive operations such as 2D convolutions. In practice, an accurate DNN often involves
billions of operations for the prediction of a single instance.
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• Latent-Variable Model: The latent-variable model (LVM) itself does not necessarily in-
volve large number of parameters. However, to design robust estimators for LVM, in this
thesis we define a novel convex estimator with exponential number of variables, which
therefore requires algorithms that scale sublinearly with the number of variables.

In this thesis, we approach the tractability of large-scale estimation problems by leverag-
ing structures inherent in the learning objective, which allows us to: (i) design sublinear-time
algorithm for existing objective without sacrificing quality of the solution, and (ii) design new
objective (i.e. new estimator) that has potentially exponential or even infinite number of variables
without sacrificing tractability of the problem. For the first part, we use Extreme Classification,
Structured Prediction and Deep Neural Network as main examples to demonstrate how to exploit
sparse structures of the objective to design sublinear-time algorithms when the problem has huge
number of variables. For the second part, we show that, under the sparse optimization scheme,
we can formulate discrete latent-variable models such as Latent-Feature Allocation and Mixture
of Regression as high-dimensional sparse estimation problems, which allow us to develop novel
methods with theoretical guarantees without strong distributional assumption on the data.

1.2 Contributions and Outline

In the following, we introduce a couple of domains where our proposed approaches have been
shown successful, and discuss the contributions of this thesis within each domain.

Extreme Classification Extreme Classification encompasses multiclass and multilabel prob-
lems with huge number of classes or labels. Problems of this kind are prevalent in real-world
applications such as text, image or video annotation, where one aims to learn a predictor that
tags a data point with the most relevant labels out of a huge collection. In such settings, stan-
dard approaches such as one-versus-all and one-versus-one become intractable both in training
and prediction phase due to the computations involving large number of model parameters [23].
There are a couple of approaches proposed in the literature to address this issues: One of the
most popular approach to reduce complexity is to impose structural relations among labels to
reduce the model complexity such as low rank [15, 51, 125], tree-structure [17, 18, 77] and clus-
ters [66]. However, in practice such structural assumptions do not often hold and thus enforcing
such structures often significantly decreases the model performance. Another popular approach
to speed up learning in Extreme Classification is to sample a small number of candidate negative
classes as contrasts to the positive labels and evaluate the loss function (and its gradient) approx-
imately [35, 47, 68], which however often results in slower convergence and thus does not lead
to an overall speedup. In this thesis, unlike existing structural approaches, we investigate sparse
structures inherent in the learning objective, which allows us to qualitatively reduce the compu-
tational cost without sacrificing model’s accuracy. On several benchmark datasets for extreme
classification, our approach has demonstrated the state-of-the-art accuracy while being one or
two orders of magnitude faster than the competing methods in both single-core environments
and massively parallelizable environments.
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Structured Prediction with Large Output Domain Structured prediction has wide applica-
tions such as Natural Language Processing (NLP), Computer Vision, and Bioinformatics, where
one is interested in outputs of strong interdependence. Although many dependency structures
yield intractable inference problems, approximation techniques such as belief propagation and
convex relaxations [56, 64, 80] have been developed. However, solving those approximate ob-
jective (LP, QP, SDP, etc.) is still computationally expensive for factor graphs of large output
domain, which results in prohibitive training time when embedded into a learning algorithm re-
lying on the inference oracles [48, 59]. For instance, many applications in NLP such as Machine
Translation [29], Speech Recognition [106], and Semantic Parsing [21] have output domains as
large as the size of vocabulary in the target language, giving an expensive cost of inference. In
this thesis, we propose a new approach to learning structured predictor which, instead of em-
ploying inference as a subroutine in a learning algorithm, takes the learning of each factor as
subroutines and passes messages between factors to guarantee convergence to the same solution.
This reduces the complexity of learning w.r.t. the size of output domain from quadratic (or more)
to sublinear due the sublinear size of messages given by the number of active classes in the (mul-
ticlass) learning subproblem posed by each factor, where the spirit is to reduce the entropy of the
belief on each factor so one can pass sparse messages among factors. We demonstrate the effec-
tiveness of the decomposition technique in both learning phase and prediction phase (with MAP
inference), where the proposed greedy decomposition algorithm enjoys an order of magnitude
faster convergence than the competing optimization algorithms on problems with thousands of
output candidates.

Compression of Deep Neural Network State-of-the-art Deep Neural Network (DNN) typi-
cally involves millions of parameters. For example, the VGG-16 network from the winning team
of ILSVRC-2014 contains more than one hundred millions of parameters and the inference of
one single image on VGG-16 takes tens of billions of operations, which prohibits its use on
edge devices such as mobile phones or in real-time applications. A recent thread of researches
has thus focused on compressing the DNN and one of the key steps of compression is to trim
the connections between neurons, which reduces the number of non-zero parameters and thus
the model size [1, 34, 36, 37, 69]. However, there has been a huge gap between theory and
practice on this topic. In particular, the trimming algorithms of practical success have been rely-
ing on heuristics [34, 36, 37] subject to certain failure cases, while the performance of existing
theoretically-motivated approach has been less competitive to the heuristics-based approaches
[1]. In this thesis, we revisit the simple idea of trimming DNNs through `1 regularization and
exhibit two surprising results: (i) our analysis suggests that, for any stationary point under the `1

regularization, the number of non-zero parameters at each layer of a DNN should not be more
than the number of penalized prediction logits—an upper bound typically several orders of mag-
nitude smaller than the total number of DNN parameters; (ii) it is critical to employ an `1-friendly
optimization solver targeting for high precision, instead of SGD, in order to find the stationary
point of sparse support—in our experiments a Proximal Quasi-Newton method can compress the
fully-connected layers of VGG-16 (accounting for more than 90% of parameters) by 4 orders of
magnitudes, a ratio much better than the current state of the art.
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Estimation of Latent-Variable Models Tractable estimation for models with binary latent
variables such as Latent-Feature Model (LFM) (also called Indian Buffet Process (IBP)) and
mixed regression (MR) have been difficult [32, 67, 84, 97, 124, 127]. It is in part due to the
combinatorial nature of the binary incidence vectors. Indeed, with N samples, and K latent
components, the number of possible binary matrices consisting of theN binary feature incidence
vectors is 2NK , and the log-likelihood of such models is not a concave function of its parameters.
In practice, one often employs local search methods similar to Expectation Maximization [11],
Markov Chain Monte Carlo (MCMC) [24] or variational methods [25] to find a feasible solu-
tion. However, none of these approaches provide guarantees on the quality of solution within
finite time. The use of Spectral Sethods bypasses the problem of non-concave log-likelihood by
estimating the moments derived from the model [12, 84, 97], which however requires a high-
order sample complexity and also the knowledge of data distribution and thus is impractical. In
this thesis, we propose a novel approach to the estimation of binary latent-variable models by
formulating it as a high-dimensional sparse optimization problem and greedily searching binary
incidence vectors through solving a MAX-CUT problem. Unlike Spectral method, our approach
does not rely on any restrictive assumption on the distribution of data but provide polynomial
runtime and approximation guarantees.
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Chapter 2

Learning and Inference with Sparse
Structures

In this chapter, we consider the problem of extreme classification and introduce our first method-
ology for developing algorithms of sublinear cost w.r.t. the model size (i.e. size of output do-
main) by exploiting a type of structure, termed Primal-Dual sparsity (PD-Sparse), according to
our thread of works in [113, 118]. We will first develop a sequential optimization algorithm
in section 2.1, and then give a twist in the obective function to make the PD-Sparse technique
massively parallelizable in an environment of hundreds or thousands of cores in section 2.2.

2.1 Extreme Classification: Primal & Dual Sparsity

Extreme Classification encompasses multiclass and multilabel problems with huge number of
classes or labels. Problems of this kind are prevalent in real-world applications such as text,
image or video annotation, where one aims to learn a predictor that tags a data point with the
most relevant labels out of a huge collection. In the multiclass setting, we are given the fact that
only one label is correct, while in the multilabel setting, multiple labels are allowed.

In the Extreme Classification setting, standard approaches such as one-versus-all and one-
versus-one become intractable both in training and prediction phase due to computations involv-
ing large number of model parameters [23]. Recently several approaches have been proposed to
exploit structural relations between labels for reducing training and prediction time. A natural
approach is to find an embedding so the model parameters of each label can be projected to a
low-dimensional space, reducing the cost in training and prediction [15, 51, 125]. However, in
real applications, the data may not be low-rank and the low-rank approaches may result in lower
accuracy. Furthermore, for high-dimensional data with a sparse feature matrix, the model learned
from low-rank approach can project a sparse feature vector into a dense vector that results in even
higher prediction cost than a simple linear classifier.

Another recent thread of research has investigated tree-based methods that partition labels
into tree-structured groups, so in both training and prediction phases, one can follow tree branches
to avoid accessing irrelevant models [17, 18, 77]. However, finding a balanced tree structure that
partitions labels effectively in the feature space is a difficult problem in itself. While many
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heuristics have been proposed for finding a good tree structure, in practice, one needs to ensem-
ble several trees to achieve performance comparable to standard classifiers.

In this paper, instead of making a structural assumption on the label relationships, we assume
that for each instance, there are only a few correct labels and the feature space is rich enough
for one to distinguish between labels. This assumption is much weaker than other structural
assumptions, and under such an assumption, we show that a simple margin-maximizing loss
yields an extremely sparse dual solution in the setting of extreme classification. Furthermore, the
loss, when combined with `1 penalty, gives a sparse solution both in the primal and in the dual
for any `1 regularization parameter λ > 0.

We thus propose a Fully-Corrective Block Coordinate Frank-Wolfe algorithm to solve the
primal-dual sparse problem given by margin-maximizing loss with `1-`2 penalties. Let D be
the problem dimension, N be the number of samples, and K be the number of classes. In
case DK � N , the proposed algorithm has complexity sublinear to the number of variables
by exploiting sparsity in the primal to search active variables in the dual. In case DK . N , we
propose a stochastic approximation method to further speed up the search step in the Frank-Wolfe
algorithm. In our experiments on both multiclass and multilabel problems, the proposed method
achieves significantly higher accuracy than existing approaches of Extreme Classification with
competitive training and prediction time.

2.1.1 Problem Setup
Our formulation is based on the Empirical Risk Minimization (ERM) framework. Given a collec-
tion of training instances D = {(xi,yi)}Ni=1 where xi ∈ RD is D-dimensional (possibly sparse)
feature vector of i-th instance and yi ∈ {0, 1}K is label indicator vector with yik = 1 if k is a
correct label for the i-th instance and yik = 0 otherwise. We will useP(y) = {k ∈ [K] | yk = 1}
to denote positive label indexes, while using N (y) = {k ∈ [K] | yk = 0} to denote the negative
label indexes. In this work, we assume the number of labels K is extremely large but the number
of positive labels nnz(y) is small and not growing linearly with K. For example, in multiclass
classification problem, we have nnz(y) = 1, and the assumption is also satisfied typically in
mulitlabel problems. Denote X := (xTi )Ni=1 as the N × D design matrix and Y := (yTi )Ni=1 as
the N by K label matrix, our goal is to learn a classifier h : RD → [K]

h(x) := argmax
k

〈wk,x〉, (2.1)

parameterized by a D ×K matrix W = (wk)
K
k=1.

Loss with Dual Sparsity In this paper, we consider the separation ranking loss [20] that pe-
nalizes the prediction on an instance x by the highest response from the set of negative labels
minus the lowest response from the set of positive labels

L(z,y) = max
kn∈N (y)

max
kp∈P(y)

(
1 + zkn − zkp

)
+

(2.2)

where an instance has zero loss if all positive labels kp ∈ Pi have higher responses than that of
negative labels kn ∈ Ni plus a margin. In the multiclass setting, let p(y) be the unique positive
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label. The loss (2.2) becomes the well-known multiclass SVM loss

L(z,y) = max
k∈[K]\{p(y)}

(
1 + zk − zp(y)

)
+

(2.3)

proposed in [19] and widely-used in linear classification package such as LIBLINEAR [28].
The basic philosophy of loss (2.2) is that, for each instance, there are only few labels with high
responses, so one can boost prediction accuracy by learning how to distinguish between those
confusing labels. Note the assumption is reasonable in Extreme Classification setting whereK is
large and only few of them are supposed to give high response. On the other hand, this does not
give much computational advantage in practice, since, to identify labels of high response for each
instances, one still needs to evaluate (2.1) for ∀n ∈ [N ],∀k ∈ [K], resulting in an O(nnz(X)K)
complexity that is of the same order to the one-vs-all approach. [52] proposed an approach in the
multiclass setting that tries to identify active variables corresponding to labels of high responses
in the dual formulation of the `2-regularized instance

1

2

K∑
k=1

‖wk‖2 + C
N∑
i=1

L(W Txi, yi), (2.4)

where W = [w1,w2, ...,wK ]. Let αk := (αik)i∈[N ] and αi := (αik)k∈[K]. The dual problem is
of the form

min
α

1

2

K∑
k=1

‖wk(α)‖2 +
N∑
i=1

eTαi

s.t. αi ∈ ∆K
i , ∀i ∈ [N ]

(2.5)

where

wk(αk) =
N∑
i=1

αikxi = XTαk, (2.6)

ei = 1 − yi, and ∆K
i = {α | ∑K

k=1 αk = 0, αp(yi) ≤ C, αk ≤ 0, ∀k 6= p(yi)} is a shifted
simplex ofK corners. In particular, the optimal solutionα of (2.5) satisfies: for k 6= p(yi), α∗ik 6=
0 if and only if label k has highest response zik = 〈wk,xi〉 that attains the maximum of (2.3).
Therefore, to identify active variables that correspond to the confusing labels, [52] proposes
a shrinking heuristic that ”shrinks” a dual variable whenever its descent direction towards the
boundary. The shrunken variables are then excluded from the optimization, which in practice
reduces training time by orders of magnitude. While the shrinking heuristic is quite successful
for problem of medium number of classK. For problem ofK more than 104 labels, the technique
becomes impractical since even computing gradient for each of theN×K variables once requires
days of time and hundreds of gigabytes of memory (as shown in our experiments).

Primal and Dual-Sparse Formulation One important observation that motivates this work is
the intriguing property of ERM with dual-sparse loss (2.2) and `1 penalty

λ
K∑
k=1

‖wk‖1 +
N∑
i=1

L(W Txi,yi). (2.7)
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in the setting of Extreme Classification. Consider the optimal solution W ∗ of (2.7), which satis-
fies

λρ∗k +
N∑
i=1

α∗ikxi = λρ∗k +XTαk = 0, ∀k ∈ [K] (2.8)

for some subgradients ρ∗k ∈ ∂‖w∗k‖1 and αi∗ ∈ ∂zL(zi,yi) with zi = W ∗Txi. Recall that the
subgradients αi of loss (2.2) have αik∗ 6= 0 for some k∗ 6= k̄ only if k∗ is the confusing label that
satisfies

k∗ ∈ argmax
k 6=k̄
〈wk,xi〉.

This means we have nnz(αi) � K and nnz(A) � NK as long as there are few labels with
higher responses than the others, which is satisfied in most of Extreme Classification problems.
On the other hand, the subgradient ρk of `1-norm satisfies

ρjk =


1, w∗jk > 0
−1, w∗jk < 0
ν, ν ∈ [−1, 1], w∗jk = 0,

(2.9)

which means the set of non-zero primal variables B∗k = {j | w∗jk 6= 0} at optimal satisfies

λ sign([w∗k]B∗k)1B∗k =
[
XTα∗k

]
B∗k
, (2.10)

which is a linear system of |B∗k| equality constraints and nnz(αk) variables. However, for general
design matrix X that draws from any continuous probability distribution [95], the above cannot
be satisfied unless

nnz(w∗k) = |B∗k| ≤ nnz(α∗k),∀k ∈ [K] (2.11)

and (2.11) further implies
nnz(W ∗) ≤ nnz(A∗) (2.12)

by summation over K, where A∗ an N ×K matrix of stacked (α∗k)
K
k=1. This means in Extreme

Classification problem, not only non-zero dual variables but also primal variables are sparse at
optimal. Note this result holds for any `1 parameter λ > 0, that means it does not gain primal
sparsity via sacrificing the expressive power of the predictor. Instead, it implies there exists a
naturally sparse optimal solution W ∗ under the loss (2.2), which can be found through imposing
a very small `1 penalty. The result is actually a simple extension to the fact that the number of
non-zero weights at optimal under `1 penalty is less or equal to the number of samples [95]. We
summarize the result as following Corollary.
Corollary 1 (Primal and Dual Sparsity). The optimal primal and dual solution (W ∗, A∗) of ERM
problem (2.7) with loss (2.2) satisfies

nnz(W ∗) ≤ nnz(A∗)

for any λ > 0 if the design matrix X is drawn from a continuous probability distribution.
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Dual Optimization via Elastic Net Although (2.7) has superior sparsity, both the primal and
dual optimization problems for (2.7) are non-smooth and non-separable w.r.t. coordinates, where
greedy coordinate-wise optimization could be non-convergent 1. However, from the duality be-
tween strong convexity and dual smoothness [50, 63], this issue can be resolved simply via
adding an additional strongly convex term in the primal. In particular, by adding an `2 regular-
izer to (2.7), the Elastic-Net-regularized problem

K∑
k=1

1

2
‖wk‖2 + λ‖wk‖1 + C

N∑
i=1

L(W Txi,yi) (2.13)

has dual form

min
α

G(α) :=
1

2

K∑
k=1

‖wk(αk)‖2 +
N∑
i=1

eTi α
i

s.t. αi ∈ Ci, ∀i ∈ [N ]

(2.14)

that entangles variable of different samplesαi,αi′ only through a smooth term
∑K

k=1 ‖wk(αk)‖2/2,
where

wk(αk) := proxλ‖.‖1(XTαk). (2.15)

and

Ci :=

{
α

∣∣∣∣ ∑k∈Ni(−αk) =
∑

k∈Pi αk ∈ [0, C],
0 ≤ αk,∀k ∈ Pi, αk ≤ 0, ∀k ∈ Ni

}
. (2.16)

The proximal operator of `1-norm proxλ‖.‖1(v) performs soft-thresholding to each single ele-
ment vj as

proxλ|.|(vj) :=


0, |vj| ≤ λ
vj − λ, vj > λ
vj + λ, vj < λ

The dual problem (2.14) has very similar form to that from purely `2 regularized problem (2.5),
with difference on the definition of wk (2.15), where the `1-`2-regularized problem has wk(αk)
being a sparse vector obtained from applying soft-thresholding operator toXTαk. This, however,
leads to the key to our efficiency gain. In particular, the objective allows efficient search of active
dual variables via sparsity in the primal, while allows efficient maintenance of nonzero primal
variables through an active-set strategy in the dual.

Note the Elastic-Net-regularized problem could not satisfy corollary 1. However, empirically,
it has been observed to produce solution of sparsity close to that from `1 regularizer, while the
solution from Elastic-Net is often of higher prediction accuracy [128]. In our experiments, we
have observed extremely sparse primal solution from (2.13) which not only help in the training
phase but also results in faster prediction that is competitive to the logarithmic-time prediction
given by tree-based approach [18].

1The coordinate descent method has global convergence only on problem where the non-smooth terms are sep-
arable w.r.t. the coordinates.
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Algorithm 1 Fully-Corrective BCFW

[0:] Initialize α0 = 0, A0 = ∅.
for t = 1...T do

[1:] Draw a sample index i ∈ [N ] uniformly at random.
[2:] Find most-violating label k∗ ∈ Ni via (2.20).
[3:] At+

1
2

i = Ati ∪ {k∗}.
[4:] Solving subproblem (2.21) w.r.t. active set At+

1
2

i .

[5:] At+1
i = At+

1
2

i \ {k | αik = 0, k /∈ Pi}.
[6:] Maintain w(α), v(α) via (2.22).

end for.

2.1.2 Algorithm
The objective (2.14) comprises a smooth function subject to constraints C1, .., CN separable w.r.t.
blocks of variables α1,α2, ...,αN . A fast convergent algorithm thus minimizes (2.14) one block
at a time. In this section, we propose a Fully-Corrective Block-Coordinate Frank-Wolfe (BCFW)
for the dual problem (2.14) that explicitly taking advantage of the primal and dual sparsity.

Note for the similar dual problem (2.5) resulted from L2-regularization, a BCFW method
that searches the greedy coordinate α∗ik at each iterate is not better than a Block Coordinate
Descent (BCD) algorithm that performs updates on the whole block of variable αi [28, 52],
since the greedy search requires evaluation of gradient w.r.t. each coordinate, which results in
the same cost to minimizing the whole block of variables, given the minimization can be done
via a simplex projection.

On the other hand, our dual objective (2.14) has gradient of i-th block equals

∇αiG(α) = W Txi − ei. (2.17)

If a primal-sparse W can be maintained via (2.15), the gradient costs O(nnz(xi)nnz(wj)) (and
O(nnz(W )) for dense xi). In contrast, the update of the whole block of variable αi would
require maintaining relation (2.15) for w1...wK , which cannot exploit sparsity of wk and would
require O(nnz(xi)K) (and O(DK) for dense xi). So in the Extreme Classification setting, the
cost of updating an coordinate is orders of magnitude larger than cost of evaluating its gradient.

Fully-Corrective Block-Coordinate Frank Wolfe (FC-BCFW) As a result, we employ a
BCFW strategy where the updates of variables are restricted to an active set of labelsAti for each
sample i. In each iteration, the BCFW method draws a block of variables αi uniformly from
{αi}Ni=1, and finds greedy direction based on a local linear approximation

αitFW := argmin
αi∈Ci

〈∇αiG(αt),αi〉. (2.18)

For Ci of structure (2.16), (2.18) is equivalent to finding the most violating pair of positive,
negative labels:

(k∗n, k
∗
p) := argmin

kn∈Ni,kp∈Pi
〈∇αiG(αt), (δkp − δkn)〉, (2.19)
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where δk is K×1 indicator vector for k-th variable. However, since we are considering problem
where |Pi| is small, we can keep all positive labels in the active set Ai. Then to guarantee that
the FW direction (2.18) is considered in the active set, we only need to find the most-violating
negative label:

k∗n := argmax
kn∈Ni

〈∇αiG(αt), δkn〉,

= argmax
kn∈Ni

〈wt
k,xi〉 − 1

(2.20)

which costs O(nnz(xi)nnz(wj̄)), where j̄ is the feature j of most non-zero labels in W , among
all nonzero features xi.

After adding k∗n to the active set, we minimize objective (2.14) w.r.t. the active set and fix
αik = 0 for ∀k /∈ Ai by solving the following block subproblem

min
αAi∈Ci

〈∇αAiG,αAi −α
t
Ai〉+

Qi

2
‖αAi −αtAi‖2 (2.21)

where Qi = ‖xi‖2 and Ai = Ati ∪ {k∗n}. Note, when |Pi| = 1, the subproblem (2.21) can be
solved by a simple projection to simplex of complexity O(|Ai| log |Ai|). For |Pi| > 1, we derive
a similar procedure that generalizes projection of simplex to that for the constraint Ci of the same
complexity.

After solving the subproblem (2.21) w.r.t. the active set Ai, we update wk(α
t
k) to wk(α

t+1
k )

by maintaining an additional vector vtk such that

vtk = XTαtk, w
t
k = proxλ‖.‖(v

t
k). (2.22)

where maintaining the first relation costs O(nnz(xi)|Ai|) and maintaining the second requires
the same cost by checking only values changed by the first step.

The overall space requirement of Algorithm 1 for storing non-zero dual variables {αi}Ni=1

is bounded by |A| � NK, while the storage for maintaining primal variable is dominated by
the space for {vk}Kk=1, which in the worst case, requires O(DK). However, by the definition of
vk (2.22), the number of non-zero elements in {vk}Kk=1 is bounded by O(nnz(X) maxi(|Ai|)),
with maxi(|Ai|) bounded by the number of BCFW passes. This means the space requirement of
the algorithm is only t times of the data size nnz(X) for running t iterations. In practice, |Ai|
converges to the number of active labels of sample i and does not increase after certain number
of iterations.

The overall complexity for each iterate of FC-BCFW isO(nnz(xi)nnz(wt
j̄)+nnz(xi)|Ati|).

In case data matrix is dense the cost for one pass of FC-BCFW over all variables can be written
as O(Nnnz(W ) +Dnnz(A)), where A is the N by K matrix reshape of α. Let

kW := nnz(W )/D , kA := nnz(A)/N

be the average number of active labels per feature and per sample respectively. We have

O(Nnnz(W ) +Dnnz(A)) = O(NDkW +NDkA).

Note kA is bounded by the number of BCFW passes, and it is generally small when label has
diverse responses on each instance. On the other hand, suppose the Elastic-Net penalty leads
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to sparsity similar to that of `1-regularized problem (which we observed empirically). We have
nnz(W ) . nnz(A) and thus kW . N

D
kA, which means kW is small if D ≈ N . On the other

hand, for problem of small dimension, the bound becomes useless as the N
D
kA can be even larger

than K. In such case, the search (2.20) becomes the bottleneck.
Theorem 1 (Convergence of FC-BCFW). Let G(α) be the dual objective (2.14). The iterates
{αt}∞t=1 given by the Fully-Corrective Block-Coordinate Frank-Wolfe (Algorithm 1) has

G(αt)−G∗ ≤ 2(QR2 + ∆G0)

t/N + 2
, t ≥ 0 (2.23)

where Q =
∑N

i=1Qi, ∆G0 := G(α0)−G∗ and R = 2C is the diameter of the domain (2.16).
Note our objective G(αt) is N times of the objective defined by average loss in for example

[59, 85], so one would divide both sides of (2.23) by N to compare the rates.

2.1.3 Experiments
In this section we compare our proposed Primal-Dual Sparse(PD-Sparse) method with existing
approaches to multiclass and multilabel problems. In all experiments, we setC=1 for all methods
based on Empirical Risk Minimization, and choose ν = 3 and λ ∈ {0.01, 0.1, 1, 10} that gives
best accuracy on a heldout data set for our method. To prevent over-fitting, we compute accuracy
on a heldout data set to determine number of iterations used in all the iterative solvers. The
compared algorithms are listed as follows.
• LibLinear [28] one-versus-all logistic regression (1vsA-Logi).
• LibLinear one-vs-all SVM (1vsA-SVM).
• LibLinear multiclass SVM (Multi-SVM).
• LibLinear one-vs-all l1-regularized logistic regression solver (1vsA-L1-Logi).
• Vowpal-Wabbit (VW): A public fast learning system proposed in [18] for Extreme multi-

class classification. We use the online trees (Tree) options provided by their solver.
• FastXML: An Extreme multilabel classification method [77] that organizes models with

tree structure. We use solver provided by the author with default parameters.
• LEML: A low-rank Empirical-Risk-Minimization solver from [125]. We use solver pro-

vided by the authors with best rank parameter chosen from {50, 100, 250, 500, 1000}.
• SLEEC: A method based on Sparse Local Embeddings for Extreme multilabel classifica-

tion [8]. We use solver provided by the author with default parameters.
Among these solvers, LibLinear multiclass SVM, Vowpal-Wabbit are only for multiclass

problems. All other solvers can be used on both multiclass and multilabel data sets. Note
FastXML, LEML and SLEEC are designed for multilabel problems but also applicable to multi-
class problems.

Our experiments are conducted on 9 public data sets. Among them, LSHTC1, Dmoz, ima-
genet, aloi.bin and sector are multiclass and LSHTC-wiki, EUR-Lex, RCV1-regions, bibtex are
multilabel. ImageNet uses bag-of-word features downloaded directly from ImageNet 2. EUR-Lex

2http://image-net.org/
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Table 2.1: Results on multiclass data sets. The numbers shown are (i) training time, (ii) model
size, (iii) prediction time and (iv) testing accuracy (in %), respectively, where N= number of
train samples, K = number of classes, D = number of features. the best results among all solvers
are marked. Multi-SVM is not applicable to Dmoz due to > 200G memory requirement.

Data FastXML LEML 1vsA-Logi 1vsA-SVM Multi-SVM 1vsA-L1-Logi PD-Sparse VW(Tree) SLEEC

LSHTC1 2131s 78950s ≈ 6d 23744s 6411s ≈ 14d 952s 1193s 10793s
N=83805 308M 7.7G ≈ 57G 11G 4.5G ≈ 57M 92M 744M 1.38G
D=347255 6.33s 189s N/A 50.3s 49.0s N/A 6.20s 6.84s 155s
K=12294 21.66 16.52 N/A 23.22 22.4 N/A 22.66∗ 10.56 12.8

Dmoz 6900s 97331s ≈ 27d 136545s N/A ≈ 565d 2068.14s 7103s 113200s
N=345068 1.5G 3.6G ≈ 96G 19G N/A ≈ 406M 40M 1.8G 3.23G
D=833484 57.1s 1298s N/A 429.7s N/A N/A 6.74s 28s 3292s
K=11947 38.4 31.28 N/A 36.8 N/A N/A 39.58 21.27 32.49
imgNet 28440s 107490s 380971s 28640s 14510s 472611s 4958s 6492s 520570s

N=1261404 914M 13M 14M 23M 24M 1.8M 3.6M 35M 2.76G
D=1000 139s 554s 315.3s 136.8s 203.4s 390.5s 329.5s 37.7s 45372s
K=1000 6.48 7.21 8.56 15.25 10.3 10.07 12.7 5.37 8.5
aloi.bin 2410s 62440s 42390s 9468s 449s 31770s 773.8s 334.3s 12200s

N=100000 992M 5.4G 15G 5.9G 612M 18M 7.1M 106M 1.96G
D=636911 10.99s 38.83s 16.61s 22.83s 12.42s 13.24s 1.42s 1.59s 191s

K=1000 95.5 88.16 96.34 96.63 96.66 95.71 96.33 89.47 92.55
sector 100.77s 556.31s 107.12s 19.46s 11.46s 102.31s 14.12s 327.34s 164.3s

N=8658 7.0M 48M 129M 62M 57M 580K 1.6M 17M 223.5M
D=55197 0.25s 0.069s 0.114s 0.156s 0.169s 0.13s 0.09s 0.16s 1.59s

K=105 84.9 94.07 90.8 94.79 95.11 93.13 95.3∗ 82.1 87.62

and bibtex are from Mulan multilabel data collections. 3 LSHTC1, Dmoz and LSHTC-wiki are
from LSHTC2 competition described in [76]. RCV1-regions, aloi.bin and sector are from LIB-
SVM data collection 4, where aloi.bin uses Random Binning features [79, 115] approximating
effect of RBF Laplacian kernel.

The statistics of data sets and results are shown in Table 2.6 and 2.5. We include statistics of
test and heldout data set in Appendix B. Note many one-vs-all solvers require running for a huge
amount of time. We run a distributed version and use training time and models of at least 100
classes to estimate the expected total running time and model size.

As showed in the table, solvers rely on structural assumptions such as FastXML (tree), VW
(tree), LEML (low-rank) and SLEEC (piecewise-low-rank) could obtain accuracy significantly
worse than standard one-vs-all methods on multiclass data sets. Standard multiclass solvers
however suffer from complexity growing linearly with K. On the other hand, by exploiting
primal and dual sparsity inherent in Extreme Classification problem, PD-Sparse has training
time, prediction time and model size growing sublinearly with K while keeping a competitive
accuracy. As showed in Table 2.3, the average number of active dual variables for each sample
is much smaller than the number of classes.

3mulan.sourceforge.net/datasets-mlc.html
4www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multilabel.html
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Table 2.2: Results on Multilabel data sets. The numbers shown are (i) training time, (ii) model
size, (iii) prediction time and (iv) test top-1 accuracy (in %), respectively, where N= number of
training samples, K = number of classes, D = number of features.

Data FastXML LEML 1vsA-Logi 1vsA-SVM 1vsA-L1-Logi PD-Sparse SLEEC
LSHTC-wiki 104442s 217190s >10y >96d >10y 124867s 2224000s
N=2355436 8.9G 10.4G ≈ 426G ≈870G ≈ 358M 685M 12.6G
D=2085167 164.8s 2896s N/A N/A N/A 15.56s 8906s
K=320338 78.28 28.46 N/A N/A N/A 89.3∗ 73.44
EUR-Lex 317s 7471s 22551s 3227s 32531s 434.9s 2443s
N=15643 324.5M 78M 257M 118M 14M 8.0M 80.8M
D=5000 0.996s 42.24s 7.93s 7.23s 1.39s 1.089s 4.89s
K=3956 67.3 67.82 77.3 64.5 73.8 76.3 74.2

RCV1-regions 94.06s 2247s 79.27s 14.73s 84.74s 8.82s 1129s
N=20835 14.61M 205M 129M 39M 504K 1.7M 204M
D=47237 0.824s 2.515s 0.486s 0.392s 0.174s 0.115s 15.8s

K=225 93.28 96.28 90.96 95.98 94.7 96.54 91
bibtex 18.35s 157.9s 8.944s 3.24s 13.97s 5.044s 298s

N=5991 27M 8.6M 3.7M 3.3M 412K 68K 26.7M
D=1837 0.09s 0.2215s 0.0383s 0.079s 0.0238s 0.0059s 0.94s
K=159 64.14 64.01 62.65 58.46 61.16 64.55 65.09

Table 2.3: Average number of active dual and primal variables (kA, kW respectively) when pa-
rameter λ maximizes heldout accuracy.

Data sets kA kW
EUR-Lex (K=3956) 20.73 45.24

LSHTC-wiki (K=320338) 18.24 20.95
LSHTC (K=12294) 7.15 4.88
aloi.bin (K=1000) 3.24 0.31

bibtex (K=159) 18.17 1.94
Dmoz (K=11947) 5.87 0.116

2.2 Parallelizable Primal-Dual Sparse Method

As we pointed out in the previous section, when the number of classes become large, the collec-
tion of model parameters is under-determined, so that a simple structural constraint of sparsity
might be practically useful. For the specific max-margin loss, we have shown that there ex-
ists a naturally sparse solution to the Extreme Classification problem with sub-linear number of
non-zeros in both primal and dual variables, which can be exploited to develop an estimation
algorithm with sub-linear dependency on the number of classes. Since primal-dual sparsity is
naturally satisfied in the Extreme Classification setting, the estimation algorithm often leads to
higher accuracy on problems with larger number of classes. However, the max-margin loss em-
ployed in the previous section has several disadvantages: (i) it is not separable w.r.t. classes
and thus requires optimizing parameters of all classes together, which can lead to a high mem-
ory consumption that prohibits its application to larger problems, (ii) the non-separability w.r.t.
classes prevents a simple parallelization scheme that the one-versus-all methods enjoy, (iii) the
max-margin loss focuses on the margin between the most confusing classes, which as a criterion
is sensitive to mis-labeling, such as missing positive labels.

A recent work [6] shows that an one-versus-all based approach with weight truncation (for
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model compression) can reduce the training time substantially via parallelization, albeit the ap-
proach has no theoretical guarantee on the resulting model quality. This leads to the question:
can we develop a method that enjoys both the parallelizability, small memory footprint of the
one-versus-all technique and the sub-linear complexity of primal-dual sparse method?

In this section, we propose a greedy algorithm that enjoys both the low runtime complexity
inherent in the primal-dual sparse approach and one-versus-all’s simple parallelization training
with small memory footprint. In particular:
• We show that the loss optimized by the common one-versus-all technique also enjoys a

similar primal-dual sparse structure presented in [118] when a class-wise bias is added.
• Then we propose a greedy active-set algorithm that optimizes parameters of each class

separately without communication and thus enjoys both parallelizability and primal-dual
sparsity.

• We then extend the analysis we did in last section in two ways: (i) bounding the number of
non-zero dual variables in terms of the number of positive samples instead of the number
of confusing samples that could be growing linearly with the total number of samples for
the separable loss considered; (ii) bounding not only for the optimal solution but also for
any descent iterates during the optimization, which leads to a more realistic analysis for
the sub-linear complexity of the algorithm.

• In our experiments on several benchmark data sets with hundreds of thousands of classes,
the new approach achieves accuracy competitive with state-of-the-art. On a cluster of 100
cores, our method is orders-of-magnitude faster than the existing parallel one-versus-all
methods and the sequential PD-Sparse algorithm.

2.2.1 Formulation
A significant disadvantage of the loss (2.2) is that it is not separable w.r.t. the class parameters
w1, ...,wK , and therefore it requires training all parameters W together. This incurs a much
larger memory consumption than the one-versus-all approach even in the presence of sparsity.
This prohibits PD-Sparse from using a simple parallelization scheme that assigns the training of
different classes to different cores—a scheme that could enjoy nearly linear speedup to even a
thousand of cores in [6].

To achieve parallelizability and space efficiency, we consider the following class-separable
hinge loss

L(z,y) :=
K∑
k=1

`(zk, yk) =
K∑
k=1

max(1− ykzk, 0) (2.24)

One-versus-all method can be interpreted as minimizing (2.24) since

min
W∈RD×K

N∑
i=1

K∑
k=1

`(wT
k xi, yik) =

K∑
k=1

(
N∑
i=1

`(wT
k xi, yik)

)
(2.25)

The goal of this section is to show that (2.25) also permits a primal-dual sparse structure similar
to [118] when a bias term is added to the parameters of each class. We first note that showing
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(2.24) has dual sparsity is more difficult, since unlike (2.2), it penalizes each class separately, so
there could potentially be many more active labels for each sample as we discuss below. We thus
take two different approaches to show the desired dual sparsity structure.

Dual Sparsity: Active Labels We first employ an approach similar to [118], and try to estab-
lish dual sparsity in terms of the number of active labels of each sample i. In our case, the set of
active labels are characterized as

Ci := {k | yik〈wk,xi〉 ≤ 1},

that is, labels of either wrong predictions or confidence scores ≤ 1 for a particular sample i.
This is related to the set of support vectors of each class Sk := {i | yik〈wk,xi〉 ≤ 1}. Denote
ka := 1

N

∑N
i=1 |Ci| and na := 1

K

∑K
k=1 |Sk| as the average number of active labels and support

vectors. We have
Nka = Kna.

Note when the number of active labels ka is constant, we have na = Nka/K decreases with K,
which results in the dual sparsity when K � ka.

The following theorem then shows that the dual sparsity also implies a primal-sparse solution
when na � D.
Theorem 2. Let λ > 0 be an arbitrarily small constant and

w∗ ∈ argmin
w∈RD

λ‖w‖1 +
N∑
i=1

`(wTxi, yi). (2.26)

Then for {xi}Ni=1 drawn from a continuous distribution we have

dk := nnz(w∗) ≤ na. (2.27)

where na := {i | yi〈w∗,xi〉 ≤ 1} is the number of support vectors.

Proof. Let X be an N × D feature matrix with rows {xi}Ni=1. Any optimal solution of (2.26)
satisfies

λρ∗ +
N∑
i=1

α∗ixi = λρ∗ +XTα∗ = 0 (2.28)

for some ρ∗ ∈ ∂(‖w∗‖1) and α∗i ∈ ∂zi`(zi, yi) with zi := 〈w∗,xi〉 + b. Then since hinge loss
(and square hinge loss) has α∗i 6= 0 only when yiz∗i ≤ 1, there are at most na non-zeros α∗i in the
linear system (2.28). On the other hand, the subgradient ρ∗ of ‖w∗‖1 satisfies

ρ∗ =


1 , w∗j > 0
−1 , w∗j < 0
ν , ν ∈ [−1, 1], w∗j = 0.

Let B := {j | w∗j 6= 0} be the indexes with non-zeros weights. Then consider equations given
by the non-zeros αis and |B| rows in (2.28)

−λ sign([w∗]B) = XTα∗.
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It has nnz(w∗) equations and na variables, which, for a feature matrix at general position, can
be satisfied only if

nnz(w∗) = |B| ≤ na.

A feature matrix X is always at general position if its rows {x}Ni=1 are drawn from a continuous
distribution [95].

Note the Theorem 2 implies that when the number of active labels ka is constant, both the
number of non-zeros in the primal variables dk and dual variables na are proportional to Nka

K
.

However, there are several drawbacks with Theorem 2. First, the loss (2.24) does not force ka
to be small as the max-margin loss (2.2) does, so in our case ka could actually increase linearly
with K. Second, Theorem 2 only analyzes the optimal solution (α∗,w∗), which cannot however
guarantee the sparsity of w during the intermediate iterates of the training algorithm. Finally,
the result (2.27) holds only for a purely `1-regularized objective, which is known to yield a non-
smooth dual objective that can be hard to optimize in a coordinate-wise fashion. In next section,
we thus employ a different approach to resolve these caveats.

Dual Sparsity: Positive Examples In this section, we take a more realistic approach which
bounds the `1-norm of primal and dual variables by the number of positive examples of each
class, which decreases as a function of K even under the separable loss (2.24). Denote np as the
average number of positive samples per class, and kp as the average number of positive labels
per sample. We have

np :=

(
kp
K

)
N � N. (2.29)

when K is large. Note unlike the number of active labels ka, the number of positive labels kp is a
constant that does not grow with K in most of Extreme Classification problems. Therefore, the
number of positive samples per class np is decreasing with K since np = Nkp/K.

Now consider a model that incorporates the bias term, where we have an additional feature
xi,0 = 1 for all samples, and an additional weight wk,0 for all classes. For ease of optimization
in the dual, we consider the following `1-`2 (Elastic-Net) regularized objective :

min
wk∈RD

F (wk) := λ
D∑
j=1

|wjk|+
1

2
‖wk‖2 +

N∑
i=1

`(wT
kxi, yik), (2.30)

which has a dual objective of the form

min
αk∈RN

G(αk) :=
1

2
‖w(αk)‖2 −

N∑
i=1

αik

s.t. w(αk) = proxλ(X̂
Tαk),

0 ≤ αik ≤ 1.

(2.31)

where X̂ is N × D matrix with rows {yikxi}Ni=1, and proxλ(.) is the proximal operator of the
function λ

∑D
j=1 |wj|. Note we do not penalize bias term in the `1 regularization, so w0 =

[X̂Tαk]0. Then the following two theorems bound the `1-norm of primal and dual parameters
respectively.
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Theorem 3 (`1-norm of primal variables). Let ŵ = (ŵ0 = −1, ŵ−0 = 0) be a trival solution.
For any wk with F (wk) ≤ F (ŵ), we have

‖wk‖1 ≤
2nkp
λ
. (2.32)

where nkp is the number of positive samples of k-th class.

Proof. ŵ satisfies

F (ŵ) =
1

2
+ nkp ≤ 2nkp

since `(−1, yik) = 0 for yik = −1 and `(0, yik) = 1 for yik = 1. Then for any wk of better
objective than ŵ,

λ‖wk‖1 ≤ F (wk) ≤ F (ŵ) ≤ 2nkp

which yields the result.

Theorem 4 (`1-norm of dual variables). Any optimal solution αk of (2.31) satisfies

‖α∗k‖1 ≤ 4nkp.

Proof. Let w, α be the primal and dual variables for a particular class. By strong duality, the
optimal dual objective (in its maximization form) equals to the optimal primal objective

max
α
−G(α) = min

w
F (w)

and therefore, any optimal solution (w∗,α∗) satisfies

−1

2
‖w∗‖2 +

∑
i

α∗i =
1

2
‖w∗‖2 + λ

D∑
j=1

|w∗j |+
N∑
i=1

`(〈w∗,xi〉, yik),

which yields the bound

‖α∗‖1 = ‖w∗‖2 + λ
D∑
j=1

|w∗j |+
N∑
i=1

`(〈w∗,xi〉, yik)

≤ 2

(
1

2
‖w∗‖2 + λ

D∑
j=1

|w∗j |+
N∑
i=1

`(〈w∗,xi〉, yik)
)
≤ 4nkp

where the last inequality is due to the existence of ŵ = (ŵ0 = −1, ŵ−0 = 0) with primal
objective F (ŵ) ≤ 2nkp.

Theorem 3 and 4 successfully bound the `1-norm of primal, dual variables by np = O(N/K).
Although a small `1-norm does not imply small number of non-zeros in general, we show in the
next section that the complexity of our algorithm is determined by the `1 norm of primal and dual
variables. In particular, in Section 2.2.2, we propose a random sparsification procedure that finds
a sparse approximation to wk in order to perform efficient greedy search of active coordinates.
The procedure is guaranteed to find a sparse solution with number of non-zeros proportional to
‖wk‖2

1. Further, we give an iteration complexity, and thus a bound on the active size, proportional
to ‖α∗‖2

1, where α∗ is an optimal solution of (2.31).
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2.2.2 Algorithm
In this section, we propose a greedy algorithm that alternates between the search of potential
support vectors and the optimization over a small set of active samples. Note we have an objective
(2.30) for each class k independent of other classes, so in the following we simply useα to denote
αk and w to denote wk for a particular class k being solved. The algorithm will be performed
for each class independently without communication, and thus it is inherently easy to parallelize.

A Greedy Active-Set Method Instead of searching for the confusing labels of each sample as
in [118], we propose a greedy algorithm that optimizes (2.31) by looking for active samples of
each class. Note the domain of our objective (2.31) has box constraints 0 ≤ αi ≤ 1 instead of
simplex constraints as in [118], so a Frank-Wolfe-based algorithm used in [118] does not lead to
sparse iterates. Here we propose a greedy active-set coordinate descent algorithm that alternates
between the greedy search of novel active variables and the optimization over an active set.

The objective (2.31) has gradient of the form

∇G(α) = X̂Tw(α)− 1, (2.33)

which can be evaluated in time O (nnz(w)n̄) if the vector w(α) is maintained whenever any
dual coordinate αi is changed, where n̄ is an upper bound on the number of non-zero in each
column of X . On the other hand, when α is changed by ∆α, the maintenance of

w(α+ ∆α) = proxλ‖.‖1(X̂Tα+ X̂T∆α) (2.34)

requires a cost of O(nnz(∆α)d̄) where d̄ is an upper bound on the number of non-zeros for
each row of X̂ . Note one can exploit the sparsity of both X̂ and w(α) simultaneously when
computing the gradients of all coordinates together as

∇G(α) =
D∑
j=0

wjX̂: , j. (2.35)

Therefore, an efficient algorithm exploits (2.35) to compute gradients of all coordinate simulta-
neously while updates only a small number of them to ensure a small nnz(∆α). This suggests
a greedy strategy that optimizes only coordinates αi leading to the most progress. The resulting
algorithm is summarized in Algorithm 2, where we perform an inner minimization over active
set via Randomized Dual Coordinate Descent (Algorithm 3) [43]. The cost of one epoch of Al-
gorithm 3 over the active set is O(|A|d̄). Therefore, each iteration of Algorithm 2 has an overall
cost of O(nnz(w)n̄ + |A|d̄). Note this is a cost sublinear to the size of data matrix nnz(X) if
nnz(w)� D and nnz(α)� N . To the end, we give bounds on nnz(w) and |A| that decreases
with number of classes K.

Sublinear-Time Search via Random Sparsification Given an `1 norm bounded by (2.32), we
show that the maximum negative gradient found in Step 2 of Algorithm 2 can be approximated
with δ precision when replacing w(α) with its random sparsified version w̃ obtained from Al-
gorithm 4, where the number of non-zeros in w̃ is bounded by the square of `1-norm as stated in
the following theorem.
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Algorithm 2 Greedy Active-Set Algorithm

0. α = 0, b = 1, A = {i|yik = 1} and Hii = ‖xi‖2, i ∈ [N ].
for t=1......T do

1. Compute ∇G(α) via random sparsification (Algorithm 4).
2. A← Pick κ variables /∈ A of largest −∇αiG(α).
3. Minimize (2.31) w.r.t. coordinates in A via Algorithm 3.
4. Eliminate {i | αi = 0 & yik 6= 1} from A.

end for

Algorithm 3 Coordinate Descent for Acitve Subproblem
for s=1......S do

1. Draw i ∈ A uniformly at random.
2. Compute ∇iG(α) = yi〈w,xi〉 − 1.
3. ∆αi ← min(max(αi −∇iG(α)/Hii, 0), U)− αi
4. Maintain (2.34) with update ∆αi.

end for

Theorem 5. Running the Random Sparsification procededure 4 forR = d2‖w‖21
δ2 e iterations gives

a w̃ satisfying

nnz(w̃) ≤
(

4n2
p

λ2

)
1

δ2
, (2.36)

with
E [min

i
yi〈w̃,xi〉]−min

i
yi〈w,xi〉 ≤ δ, (2.37)

Proof. Since the function f(z) = mini zi is 1-Lipschitz-continuous, we have

min
i

yi〈w̃,xi〉 −min
i

yi〈w,xi〉 ≤ |〈w̃,xi〉 − 〈w,xi〉|.

Taking expectation over w̃ on both sides, we have

E [min
i

yi〈w̃,xi〉]−min
i

yi〈w,xi〉 ≤ E [|〈w̃,xi〉 − 〈w,xi〉|]

≤
√
E [|〈w̃,xi〉 − 〈w,xi〉|2]

(2.38)

from Jensen’s inequality. Since E [〈w̃,xi〉] = 〈w,xi〉 by the construction of w̃ in Algorithm 4,
the RHS of (C.19) corresponds to the square root of variance

E [min
i
〈w̃,xi〉] ≤

√
V ar[〈w̃,xi〉] =

‖w‖1√
R
.

The conclusion follows by noticing that nnz(w̃) ≤ R and ‖w‖1 satisfies (2.32).

Note (2.37) implies that the greedy coordinate î found by approximate search and the coor-
dinate found by exact search i∗ = argmini yi〈w,xi〉 − 1 satisfy

E [∇îG(α)] ≤ ∇i∗G(α) + 2δ (2.39)
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Algorithm 4 Random Sparsification

INPUT: a vector w ∈ RD.
0. w̃0 = 0.
for r = 1...R do

1. Draw j ∈ [D] with probability |wj|/‖w‖1.
2. w̃(r) → w̃(r−1) + sign(wj)ej

end for
OUTPUT: w̃ := ‖w‖1

R
w̃(R)

Therefore, by replacing w with w̃, we reduce the cost of gradient computation from the worst-
case O(nnz(w)n̄) = O(Dn̄) to O(nnz(w̃)n̄) with a 2δ approximation error. In the next section,
we will show that setting δ = O(Nε̂) suffices for the global convergence of our Greedy Algo-
rithm 2 to 1

N
(G(α)−G∗) ≤ ε̂ for some ε̂ ∈ (0, 1). Therefore, we have

nnz(w̃) = O(
n2
p

λ2N2ε̂2
) = O(

k2
p

λ2K2ε̂2
).

which could be much less than D in the Extreme Classification setting.

Convergence Analysis In this section, we give an iteration complexity of Algorithm 2 that
depends on the `1 norm of the optimal solution α∗. For simplicity of the analysis, we assume
that a normalized feature matrix with ‖xi‖ ≤ 1.
Theorem 6. Let α∗ be an optimal solution of (2.31). The iterates {αt}∞t=1 given by Algorithm 2
with Random Sparsification tolerance δ ≤ ε

4‖α∗‖1 has E [G(αt)]−G(α∗) ≤ ε for any iterate

t ≥ 4‖α∗‖2
1

ε
+
G(0)−G∗
‖α∗‖2

1

.

Proof. Our dual objective (2.31) is of the form

g(α) + h(α)

where h(α) :=
∑N

i=1 hi(αi) and

hi(α) =

{
0, 0 ≤ α ≤ 1
∞, o.w.

and g(α) = 1
2
‖w(α)‖2 −∑N

i=1 αi is smooth with Lipschitz-continuous gradient∇g(α). To see
this, let Bα = {j|wj(α) 6= 0}. The generalized Hessian of g(α) is

∇2g(α) = X:,BαX
T
:,Bα

which has diagonal elements ‖xi,Bα‖2 bounded by ‖xi‖2 ≤ 1 and thus a spectral norm bounded
by N . Then for any coordinate i, we have the following descent amount since the second deriva-
tive of the smooth part of objective is bounded by ‖xi‖2 ≤ 1.

min
η

G(α+ ηei)−G(α) ≤ min
η
∇iG ∗ η +

1

2
η2 + hi(αi + η) (2.40)
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where ei is an indicator vector. Note for i ∈ A, the minimizer of RHS of (A.1) is 0 since the
previous iteration already minimizes our objective w.r.t. the active set A. And for i /∈ A, the
minimizer of the RHS of (A.1) is −[−∇iG(α)]2+/2, which corresponds to the selection criteria
at Step 2 of Algorithm 2. Therefore, at each iteration, the coordinate î and i∗ found by the
approximate and exact greedy search respectively satisfy

E [G(α+ ∆α)]−G(α) ≤ E [min
η

G(α+ ηeî)]−G(α)

≤ min
η
∇i∗G ∗ η +

1

2
η2 + hi(αi + η) + 2δη

≤ min
η
〈∇G,η〉+

1

2
‖η‖2

1 + h(α+ η) + 2δ
∑
i

ηi

where the first inequality is because the update ∆α is obtained by minimizing objective w.r.t.
a working set Ar+1 containing î, and the second, third inequalities follow from (2.39) and the
fact that a linear objective subject to `1 ball has minimizer at the corner respectively. Then
we use convexity to obtain a global estimate of descent amount relative to the suboptimality
G(α)−G(α∗):

E [G(α+ ∆α)]−G(α) (2.41)

≤ min
η
〈∇G,η〉+

1

2
‖η‖2

1 + h(α+ η) + 2δ
∑
i

ηi (2.42)

≤ min
q∈[0,1]

q(∇G,α∗ −α) +
q2

2
‖α∗‖2

1 + 2qδ‖α∗‖1 (2.43)

≤ min
q∈[0,1]

−q(G(α)−G(α∗)) +
q2

2
‖α∗‖2

1 + 2qδ‖α∗‖1 (2.44)

where the last ineqaulity is from convexity, and the second inequality is from a restriction of
optimization space to η = q(α∗ − α) and the fact that for i ∈ A the minimizer of (C.20) has
ηi = 0. Then choosing δ ≤ G(α)−G(α∗)

4‖α∗‖1 and minimizing the RHS w.r.t. q leads to

E [G(α+ ∆α)]−G(α) ≤ −(G(α)−G(α∗))2

4‖α∗‖2
1

(2.45)

for iterates with G(α)−G(α∗) ≤ 2‖α∗‖2
1 and has

E [G(α+ ∆α)]−G(α) ≤ −‖α∗‖2
1/2 (2.46)

for iterates withG(α)−G(α∗) > 2‖α∗‖2
1. Note the constant descent amount (2.46) happens only

in the beginning iterates when G(α)−G(α∗) and can happen at most 2(G(0)−G(α∗))/‖α∗‖2
1

times. Considering those iterates of case (2.45), we have recursive relation ∆Gt+1 − ∆Gt ≤
− (∆Gt)2

4‖α∗‖21
where ∆Gt := E [G(αt) | αt−1]−G(α∗). The recursion leads to the conclusion by, for

example, Theorem 1 of [81].

22



Theorem 6 is significant when combined with Theorem 4, which gives us an iteration com-
plexity of

t =
4‖α∗‖2

1

ε
≤ 64n2

p

ε
,

and also a bound on the active size |A| ≤ κt ≤ κ
64n2

p

ε
that depends only on the number of positive

examples. Considering the average case where np = Nkp/K, for achieving 1
N

(G(α) − G∗) ≤
ε̂ ∈ (0, 1), we have

|A| = O(
Nk2

p

K2ε̂
).

Then the complexity for running Algorithm 2 on all classes is:

K ∗O(nnz(w̃)n̄+ |A|d̄) = O

(
k2
pn̄

Kλ2ε̂2
+ nnz(X)

k2
p

Kε̂

)
,

times the number of iterations, which is a cost proportional to the factor k2
p/K.

2.2.3 Experiments

Table 2.4: Results and statistics for large-scale Multilabel data sets, Ntrain= number of training
samples, Ntest= number of testing samples, Ttrain = training time, Ttest = testing time, K =
number of classes, D = number of features. P@k = top-k accuracy. DiSMEC and PPDSparse
are parallelized with 100 cores. We highlight the best result for each metric, except that for
Ttrain we highlight best results among single-core solvers (left four) and parallel solvers. For all
experiments, we set a memory limit to be 100G. Experiments that exceeded limits are marked
Memory Limit Exceeded (MLE).

Data Metrics FastXML PfastreXML SLEEC PDSparse DiSMEC PPDSparse
Amazon-670K Ttrain 5624s 6559s 20904s 174135s 921.9s
Ntrain=490449 P@1 (%) 33.12 32.87 35.62 43.00 43.04
Ntest=153025 P@3 (%) 28.98 29.52 31.65 MLE 38.23 38.24

D=135909 P@5 (%) 26.11 26.82 28.85 34.93 34.94
K=670091 model size 4.0G 6.3G 6.6G 8.1G 5.3G

Ttest/Ntest 1.41ms 1.98ms 6.94ms 148ms 20ms
WikiLSHTC-325K Ttrain 19160s 20070s 39000s 94343s 271407s 353s
Ntrain=1778351 P@1 (%) 50.01 57.17 58.34 60.70 64.00 64.13
Ntest=587084 P@3 (%) 32.83 37.03 36.7 39.62 42.31 42.10

D=1617899 P@5 (%) 24.13 27.19 26.45 29.20 31.40 31.14
K=325056 model size 14G 16G 650M 547M 8.1G 4.9G

Ttest/Ntest 1.02ms 1.47ms 4.85ms 3.89ms 65ms 290ms
Delicious-200K Ttrain 8832.46s 8807.51s 4838.7s 5137.4s 38814s 2869s
Ntrain=196606 P@1 (%) 48.85 26.66 47.78 37.69 44.71 45.05
Ntest=100095 P@3 (%) 42.84 23.56 42.05 30.16 38.08 38.34

D=782585 P@5 (%) 39.83 23.21 39.29 27.01 34.7 34.90
K=205443 model size 1.3G 20G 2.1G 3.8M 18G 9.4G

Ttest/Ntest 1.28ms 7.40ms 2.685ms 0.432ms 311.4ms 275ms
AmazonCat-13K Ttrain 11535s 13985s 119840s 2789s 11828s 122.8s
Ntrain=1186239 P@1 (%) 94.02 86.06 90.56 87.43 92.72 92.72
Ntest=306782 P@3 (%) 79.93 76.24 76.96 70.48 78.11 78.14

D=203882 P@5 (%) 64.90 63.65 62.63 56.70 63.40 63.41
K=13330 model size 9.7G 11G 12G 15M 2.1G 355M

Ttest/Ntest 1.21ms 1.34ms 13.36ms 0.87ms 0.20ms 1.82ms
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Table 2.5: Results and statistics for small Multilabel data sets, Ntrain= number of training sam-
ples, Ntest= number of testing samples, Ttrain = training time, Ttest = testing time, K = number
of classes, D = number of features. P@k = top-k accuracy. DiSMEC and PPDSparse are par-
allelized with 100 cores. We highlight the best result for each metric, except that for Ttrain we
highlight best results among single-core solvers (left four) and parallel solvers.

Data Metrics FastXML PfastreXML SLEEC PDSparse DiSMEC PPDSparse
Mediamill Ttrain 276.4s 293.2s 9504s 23.8s 12.15s 34.1s

Ntrain=30993 P@1 (%) 84.27 84.08 87.37 83.64 84.83 84.42
Ntest=12914 P@3 (%) 67.34 67.45 72.60 66.13 67.17 67.26

D=120 P@5 (%) 53.06 53.23 58.39 50.90 52.80 52.78
K=101 model size 87M 88M 104M 20K 412K 412K

Ttest/Ntest 0.27ms 0.37ms 4.95ms 0.004ms 0.142ms 0.078ms
Bibtex Ttrain 21.68s 21.47s 296.86s 7.71s 0.203s 0.232s

Ntrain=4880 P@1 (%) 63.66 63.18 64.77 62.36 63.69 63.69
Ntest=2515 P@3 (%) 39.42 39.67 38.97 36.50 38.80 39.43

D=1836 P@5 (%) 28.60 29.47 28.50 26.50 28.30 28.67
K=159 model size 34M 37M 5.2M 20K 2.1M 2.5M

Ttest/Ntest 0.64ms 0.73ms 0.70ms 0.007ms 0.28ms 0.094ms
RCV1-2K Ttrain 4874.4s 4947.2s 85212s 709.5s 641.1s 35.0s

Ntrain=623847 P@1 (%) 91.14 89.79 91.36 90.02 90.52 91.08
Ntest=155962 P@3 (%) 73.35 72.65 73.38 71.92 72.31 72.93

D=47236 P@5 (%) 52.69 52.23 52.50 51.23 51.25 52.10
K=2456 model size 3.9G 4.1G 1.1G 1.6M 209M 23M

Ttest/Ntest 0.87ms 1.08ms 53.95ms 0.066ms 1.72ms 0.338ms
EURLex-4K Ttrain 315.9s 324.4s 4543.4s 773.2s 76.07s 9.95s
Ntrain=15539 P@1 (%) 70.86 70.33 79.15 75.90 70.61 74.61
Ntest=3809 P@3 (%) 59.06 58.61 64.09 61.16 57.56 59.56

D=5000 P@5 (%) 49.58 49.69 52.09 50.83 47.33 48.43
K=3993 model size 384M 455M 121M 25M 15M 9.5M

Ttest/Ntest 3.65ms 5.43ms 3.67ms 0.73ms 2.26ms 1.5ms

In this section, we compare our proposed algorithm with state-of-the-art approaches on mul-
ticlass and multilabel problems chosen based on the experimental results shown in the Extreme
Classification Repository 5 and [6, 118]. The compared methods are:
• FastXML [77]: An efficient and scalable tree-based algorithm. We adopted parameter

setting suggested by the solver.
• PfastreXML [45]: An efficient and scalable tree ensemble based method improving upon

FastXML by minimizing propensity-scored loss at each tree node, which leads to better
performance on tail labels. Since all other methods are not adjusted based on the propen-
sity, in our experiment we still measure performance via traditional top-k accuracy.

• SLEEC [8]: A non-linear solver that 1) partitions training sample into clusters and 2)
compute local embeddings that preserves nearest neighbor structure within each cluster.
Because of this composition of components, its performance highly relies on its parameter
setting. We adopted settings suggested by the authors for each data set.

• PDSparse [118]: A Primal-Dual sparse method that minimizes a max-margin loss with
`1-`2 regularization and enjoys sublinear complexity w.r.t. the number of classes.

• DiSMEC [6]: A distributed and parallelized method that learns one-versus-all classifiers
with heuristic model compression ( weight truncation). We run this method with 100 cores

5https://manikvarma.github.io/downloads/XC/XMLRepository.html
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Table 2.6: Results and statistics for Multiclass data sets, Ntrain= number of training samples,
Ntest= number of testing samples, Ttrain = training time, Ttest = testing time, K = number of
classes, D = number of features. DiSMEC and PPDSparse are parallelized with 100 cores. We
highlight the best result for each metric, except that for Ttrain we highlight best results among
single-core solvers (left four) and parallel solvers.

Data Metrics FastXML PfastreXML SLEEC PDSparse DiSMEC PPDSparse
aloi.bin Ttrain 1900.9s 1901.6s 16193s 139.8s 92.0s 7.05s

Ntrain=100000 accuracy (%) 95.71 93.43 93.74 96.2 96.28 96.38
Ntest=8000 model size 1.3G 1.3G 3.7G 19M 16M 14M
D=636911 Ttest/Ntest 5.05ms 5.10ms 28.00ms 0.064ms 0.02ms 0.0178ms

K=1000
LSHTC1 Ttrain 1398.2s 1422.4s 5919.3s 196.6s 298.8s 45.8s

Ntrain=88806 accuracy (%) 22.04 23.32 12.2 22.46 22.74 22.70
Ntest=5000 model size 937M 1.1G 631M 88M 142M 381M
D=347255 Ttest/Ntest 5.73ms 8.81ms 14.66ms 0.40ms 3.7ms 6.94ms
K=12294

Dmoz Ttrain 6475.1s 6619.7s 47490s 2518.9s 1972.0s 170.60s
Ntrain=345068 accuracy (%) 40.76 39.78 33.03 39.91 39.38 39.32
Ntest=38340 model size 3.5G 3.8G 1.5G 680M 369M 790M

D=833484 Ttest/Ntest 3.29ms 3.20ms 40.43ms 1.87ms 4.58ms 6.58ms
K=11947

using the same parallelization framework to our solver.
• PPDsparse: The proposed method with 100 cores (10 machines with 10 cores on each

machine).
All compared solvers are available from Extreme Classification RepositoryXMLRepo. Other

solvers not compared in this paper are i) one-vs-all logistic regression, one-vs-all SVM, multiclass
SVM, one-vs-all `1-regularized logistic regression, implemented in LibLinear [28], ii) Vowpal-
Wabbit [18], iii) LEML [125], iv) RobustXML [107], v) PLT [46], vi) LPSR-NB [105]. All of
these have been shown less competitive in a number of previous papers [6, 118].

Experiments are conducted on four large-scale multilabel data sets, four medium-scale mul-
tilabel data sets and three large-scale multiclass data sets. We adopt data sets used by [6, 45, 77,
118] and also that from the Extreme Classification Repository XMLRepo. Large-scale multilabel
data sets are WikiLSHTC-325K, Delicious-200K, Amazon-670K and AmazonCat-13K. Medium-
scale Multilabel data sets are Mediamill, Bibtex, RCV1-2K and EURLex-4K. They can be found at
Extreme Classification RepositoryXMLRepo. Multiclass data sets LSHTC1, Dmoz and aloi.bin
are available 6 from authors of [118].

The data statistics and results are shown in Table 2.4, 2.5 and 2.6. For all experiments, we
select our hyperparameter λ from {0.01, 0.1, 1} and τ from {0.1, 1, 10} to maximize the heldout
performance. However, we observed that for most of data sets, τ = 1, λ = 0.01 consistently
gives the best performance. For large-scale multilabel datasets (Table 2.4), we use tf-idf features
with sample-wise normalization as suggested by the author of [6].

Our experimental results confirmed several comments from previous work [6, 118]: 1) Among
single-core solvers (PDSparse, FastXML, PfastreXML, SLEEC), PDSparse can achieve orders
of magnitude speed up in terms of training time without significantly downgrading performance
compared to the direct one-vs-all approach (except on Delicious-200k, a data set of missing la-

6http://www.cs.utexas.edu/˜xrhuang/PDSparse/
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bels) . 2) Given enough computing resources, DiSMEC is able to achieve significantly higher
accuracy than other approaches on some data sets. However, their training on the largest data
sets typically take few days even with 100 cores.

From Table 2.4-2.6, we illustrate how our proposed PPDSparse method combines the strength
from both PDSparse and DiSMEC. By adopting one-versus-all loss, PPDSparse can achieve ac-
curacy as good as DiSMEC on most of data sets and resolve drawbacks of the max-margin loss
used by PDSparse in three ways: (i) PPDSparse reduces the memory requirement of PDSparse
by orders of magnitude due to the separation of training of each class, which clears the MLE is-
sue of PDSparse on Amazon-670K, (ii) By embarassingly parallelized to 100 cores, PPDSparse
is orders of magnitude faster than both PDSparse and parallel 1-vs-all (DiSMEC), (iii) the per-
formance of PPDSparse is less sensitive to data set of mislabeling. On Delicious-200K, a data
set of missing positive labels, PPDsparse improves accuracy of PDSparse significantly.

The training of PPDSparse is consistently faster than tree-based and local embedding meth-
ods by orders of magnitude while maintaining a competitive accuracy on most of data sets.
On Amazon-670K and WikiLSHTC-325K, PPDSparse (and DisMEC) enjoy a significant in-
crease in accuracy compared to tree-based approaches. On the other hand, the prediction speed
of Primal Dual sparse approaches (PPDSparse, PDSparse) are slower than tree-based methods
(FastXML, PfastreXML) on problems of more than 105 classes, while being comparable on
medium-sized data sets of 103−104 classes (Table 2.6), presumably because tree-based methods
enjoy logarithmic-time prediction w.r.t. the number of classes.

2.3 Compression of Deep Neural Networks
In this section, we apply the theory of primal and dual sparsity to the problem of compressing a
Deep Neural Network (DNN). This shows for the first time that: a simple `1 regularization gives
surprisingly effective trimming of DNNs both theoretically and empirically, given a `1-friendly
optimizer targeting high precision is used for the purpose of compression.

2.3.1 Problem Setup

Let X(0) : N ×D(0)
1 · · · ×D(0)

p ×K0 be an input tensor where N is the number of samples (or
batch size). We are interested in DNNs of the form

X(j) := σW (j)(X(j−1)), l = j . . . J

where σW (j)(X(j−1)) are piecewise-linear functions of both the parameter tensorW (j) : K(j−1)C
(j)
0 · · ·×

C
(j)
p ×K(j) and the input tensor X(j−1) : N ×D(j−1)

1 · · · ×D(j−1)
p of (j)-th layer. Examples of

such piecewise-linear function are (i) convolution layer with Relu activation

[σW (X)]i,k := [
K(j−1)∑
m=1

Xi,:,m ◦Wm,:,k]+,

where ◦ is p-dimensional convolution operator, (ii) fully-connected layer with Relu activation

[σW (X)]i,k := [Xi,:W:,k]+,
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and also other commonly used operations such as max-pooling, zero-padding and reshaping.
Note X(J) : N ×K provide K scores (i.e. logits) of each sample that relate to the labels of our
target task Y : N ×K. Denote L(X(J), Y ) as the task-specific loss function. We define Support
Labels of a DNN X(J) as indices (i, k) of non-zero loss subgradient w.r.t. the prediction logit:

Definition 1 (Support Labels). Let L(X, Y ) be a convex loss function w.r.t. the prediction logits
X . The Support Labels regarding DNN outputs X(J)(W ) are defined as

S(W ) :=
{

(i, k) ∈ [N ]× [K] | [Q]i,k 6= 0, for some Q ∈ ∂XL(X(J), Y )
}
.

We will denote kS(W ) := |S(W )|
N
≤ K as the average number of support labels per sample.

Multi-Regression In a multi-regression task, we are interested in real-valued labels, such as
the location and orientation of objects in an image, which can be expressed as an N × K real-
valued matrix Y . The loss function

L(X, Y ) :=
1

2
‖X − Y ‖2

F

are convex and differentiable, and in general we have [∇XL]i,k 6= 0, therefore all labels are
support labels (i.e. kS = K).

Binary Classification In a binary classification task, the labels are binary-valued, and can be
represented as a binary vector y : {−1, 1}N , and typical loss functions are the logistic loss

L(x,y) :=
N∑
i=1

log(1 + exp(−yixi)) (2.47)

and hinge loss

L(x,y) :=
N∑
i=1

[1− yixi]+, (2.48)

For (2.47) we have kS = 1 since [∇L]i 6= 0,∀i ∈ [N ]. On the other hand, the hinge loss
(2.48) typically has only a small portion of samples i ∈ [N ] with [∂L]i 6= {0}, often called
Support Vectors in the literature of Support Vector Machine. In this case, our definition of Support
Labels coincides with that of Support Vectors. In many applications with unbalanced positive and
negative examples, such as object detection, we have kS � 1.

Multiclass/Multilabel Classification In a multiclass or multilabel classification problem, the
labels of each sample can be represented as a K-dimensional binary vector {0, 1}K where 1/0
denotes the presence/absence of a class in the sample. Let Pi := {k | yik = 1} and Ni :=
{k | yik = 0} denote the positive and negative label sets. Common loss functions are the cross-
entropy loss

L(X, Y ) :=
N∑
i=1

(
log

K∑
k=1

exp(Xik)−
1

|Pi|
∑
k∈Pi

Xik

)
(2.49)

27



Figure 2.1: The level curves of the `1-regularized objective with 2 parameters and 1 sample:
λ‖w‖1 + 1

2
(xTw − 1)2 where x = [0.6, 0.4]. Note the stationary points have w2 = 0 as long

as λ > 0. However, smaller λ makes convergence to the stationary point harder for optimization
algorithms.

and maximum margin loss

L(X, Y ) :=
N∑
i=1

(
max

j∈Ni,k∈Pi
1 +Xij −Xik

)
. (2.50)

Although the cross-entropy loss (3.38) has number of support labels kS = K, it has been shown
that the maximum-margin loss (3.39) typically has kS � K in recent studies of classification
problems with extremely large number of classes [113, 118].

2.3.2 Deep-Trim: Theory and Algorithms
In this section, we aim to solve the following DNN compression problem.

Definition 2 (Deep-Trim). Given a target loss function L(., Y ) with training labels Y : N ×K,
and a pre-trained DNN X(J) parameterized by W := {W (j)}Jj=1 of loss L∗ := L(X(J)(W ), Y ) ,
finds a compressed DNN with number of non-zero parameters nnz(Ŵ ) ≤ τ andL(X(J)(Ŵ ), Y ) ≤
L∗ + ε for any ε > 0.

In the following, we show that the Deep-Trim problem with budget τ = (NkS) × J can be
solved through the simple `1 regularization with suitable optimization algorithms, where kS is
an upper bound on the number of support labels for any W with L(X(L)(W ), Y ) ≤ L∗.

Deep-Trim Algorithms Given a loss function L(., Y ) and a pre-trained DNN parameterized
byW ∗ := {W (j)}Jj=1, we initialize withW ∗ and apply an optimization algorithm that guarantees
descent to the following layerwise `1-regularized objective

min
W (j)

λ‖vec(W (j))‖1 + L(X(J)(W ), Y ) (2.51)

for all j ∈ [J ], where vec(W (j)) denotes the vectorized version of the tensor W (j).
The following Theorem states that any stationary point of (2.51) has its number of non-zero

parameters per layer bounded by the total number of support labels in the training set under a
couple of mild conditions.

28



Theorem 7 (Deep-Trim with `1 penalty). Let Ŵ (j) be any stationary point of objective (2.51)
with dim(W (j)) = d that lies on a single piece of the piecewise-linear function X(J)(W ) :
N ×K. Let V : NK × d be the Jacobian matrix of vec(X(J)) w.r.t. vec(W (j)). For V in general
position, we have

nnz(Ŵ (j)) ≤ NkS(Ŵ ).

for any regularization magnitude λ > 0, where kS(Ŵ ) is the average number of support labels
given by the compressed DNN.

Proof. Any stationary point of (2.51) should satisfy the condition

V Tvec(A) + λρ = 0 (2.52)

where A ∈ ∂L is an N ×K subgradient matrix of the loss function w.r.t. the prediction logits,
and ρ ∈ ∂‖vec(W (j))‖1 is a d-dimensional subgradient of the `1 norm penalty. Then let Q :=
{r | [vec(W (j))]r 6= 0} be the set of indices of non-zero parameters, we have [ρ]r ∈ {−1, 1} and
thus ∣∣∣∣ [V Tvec(A)

]
Q

∣∣∣∣ = λ1, (2.53)

which cannot be satisfied for V in general position (as defined in the literature of LASSO [95])
unless the number of variables is more than the number of equations in (2.53), that is, nnz(A) =
kS ≥ nnz(W (j)) = |Q|.

Figure 2.1 illustrates an example for the regression task where, no matter how small λ > 0
is, the second coordinate is always 0 at the stationary point. Note since Theorem 7 holds for any
λ > 0, by choosing λ ≤ ε/‖vec(W (j))‖1, any descent optimization algorithm can guarantee that

λ‖vec(Ŵ (j))‖1 + L(X(J)(Ŵ ), Y ) ≤ λ‖vec(W (j))‖1 + L(X(J)(W ), Y )

and thus
L(X(J)(Ŵ ), Y ) ≤ L(X(J)(W ), Y ) + ε

for any ε > 0. Then by applying the procedure for each layer j ∈ [J ], one can solve the Deep-
Trim problem with number of non-zero parameters τ = (NkS)× J .

In practice, however, the smaller λ, the harder for the optimization algorithm to get close
to the stationary point, and it is crucial to choose an optimization algorithm targeting for high
precision to find a sparse solution of (2.51). In our experiments, we found the combination
of Proximal Quasi-Newton (PQN) method with SGD pre-training yields surprisingly effective
trimming. We refer readers to [126] for the implementation details of the PQN algorithm.
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2.3.3 Experiments
We conduct experiments on the VGG-16 network with benchmark data set CIFAR-10. Since
most of the parameters of VGG-16 lie on the last 3 layers of the network, we evaluate our Deep-
Trim algorithm by applying it to trim parameters of its last 3 layers. The results are as in Table
2.7.

nnz(W (j)) FC-1 FC-2 FC-3 Total Acc
VGG-16 102760448 16777216 40960 119578624 92.6%

VGG-16 (Trimmed) 3991 4053 373 8417 93.5%
Ratio 0.0038% 0.024% 0.91% 0.007%

Table 2.7: The number of non-zero parameters of VGG-16, before and after applying the Deep-
Trim algorithm, evaluated on the CIFAR-10 task.

We can see the Deep-Trim method based on `1-regularization gives surprisingly good result—
more than 10000x reduction on the number of parameters while improving the accuracy by 1%
absolutely. Note although during the experiments we employ the cross-entropy loss (3.38) which
has a number of support labels NK = 5 × 105 on the CIFAR-10 data set, we suspect a more
careful analysis could improve our Theorem 7 to give a tighter bound for loss with entries of
gradient close to 0 but not exactly 0, making the bound for cross-entropy loss (3.38) match that
of maximum-margin loss (3.39).
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Chapter 3

Greedy Optimization via Decomposition

In real-world problems, the output variables could be inter-dependent, which makes the learning
and inference challenging when the output domain is large, as the prediction of an instance
requires a joint optimization over output variables, which not only prohibits the direct use of our
methodology developed in the last chapter, but also introduce computationally expensive burden
for the communication between the beliefs of output variables. In this chapter, we propose a
decomposed-learning framework that handles message passing not only at the inference level
but also at the learning level, following our recent works [44, 119]. This allows the entropy of
the predictive distribution over each output variable decreases before communication with other
output variables, and making each factor’s optimization amenable to an efficient sublinear-time
method, such as PD-Sparse discussed in the last chapter, or other approaches via search data
structures to be discussed in this chapter. We will introduce our technique under the contexts
of learning and inference in section 3.1 and 3.2 respectively. Then in section 3.3, we show how
our loss decomposition technique can be perfectly combined with a recent thread of works on
Maximum Inner Product Search (MIPS) for learning of large output domains [72, 99].

3.1 Decomposition for Learning Structured Predictor

Structured prediction is prevalent with wide applications in Natural Language Processing (NLP),
Computer Vision, and Bioinformatics to name a few, where one is interested in outputs of strong
interdependence. Although many dependency structures yield intractable inference problems,
approximation techniques such as convex relaxations with theoretical guarantees [56, 64, 80]
have been developed. However, solving the relaxed problems (LP, QP, SDP, etc.) is computa-
tionally expensive for factor graphs of large output domain and results in prohibitive training
time when embedded into a learning algorithm relying on inference oracles [48, 59]. For in-
stance, many applications in NLP such as Machine Translation [29], Speech Recognition [106],
and Semantic Parsing [21] have output domains as large as the size of vocabulary, for which the
prediction of even a single sentence takes considerable time.

One approach to avoid inference during training is by introducing a loss function conditioned
on the given labels of neighboring output variables [82]. However, it also introduces more vari-
ance to the estimation of model and could degrade testing performance significantly. Another
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thread of research aims to formulate parameter learning and output inference as a joint opti-
mization problem that avoids treating inference as a subroutine [62, 65]. In this appraoch, the
structured hinge loss is reformulated via dual decomposition, so both messages between factors
and model parameters are treated as first-class variables. The new formulation, however, does
not yield computational advantage due to the constraints entangling the two types of variables. In
particular, [62] employs a hybrid method (DLPW) that alternatingly optimizes model parameters
and messages, but the algorithm is not significantly faster than directly performing stochastic
gradient on the structured hinge loss. More recently, [65] proposes an approximate objective for
structural SVMs that leads to an algorithm considerably faster than DLPW on problems requiring
expensive inference. However, the approximate objective requires a trade-off between efficiency
and approximation quality, yielding an O(1/ε2) overall iteration complexity for achieving ε sub-
optimality.

The contribution of this new approach is twofold. First, we propose a Greedy Direction
Method of Multiplier (GDMM) algorithm that decomposes the training of a structural SVM into
factorwise multiclass SVMs connected through sparse messages confined to the active labels.
The algorithm guarantees an O(log(1/ε)) iteration complexity for achieving an ε sub-optimality
and each iteration requires only one pass of Factorwise Maximization Oracles (FMOs) over ev-
ery factor. Second, we show that the FMO can be realized in time sublinear to the cardinality
of factor domains, hence is considerably more efficient than a structured maximization oracle
when it comes to large output domain. For problems consisting of numerous binary variables,
we further give realization of a joint FMO that has complexity sublinear to the number of fac-
tors. We conduct experiments on both chain-structured problems that allow exact inference and
fully-connected problems that rely on Linear Program relaxations, where we show the proposed
approach is orders-of-magnitude faster than current state-of-the-art training algorithms for Struc-
tured SVMs.

3.1.1 Problem Setup
Structured prediction aims to predict a set of outputs y ∈ Y(x) from their interdependency
and inputs x ∈ X . Given a feature map φ(x,y) : X × Y(x) → Rd that extracts relevant
information from (x,y), a linear classifier with parameters w can be defined as h(x;w) =
argmaxy∈Y(x) 〈w,φ(x,y)〉, where we estimate the parameters w from a training set D =
{(xi, ȳi)}ni=1 by solving a regularized Empirical Risk Minimization (ERM) problem

min
w

1

2
‖w‖2 + C

n∑
i=1

L(w;xi, ȳi) . (3.1)

In case of a Structural SVM [92, 96], we consider the structured hinge loss

L(w;x, ȳ) = max
y∈Y(x)

〈w, φ(x,y)− φ(x, ȳ)〉+ δ(y, ȳ), (3.2)

where δ(y, ȳi) is a task-dependent error function, for which the Hamming distance δH(y, ȳi) is
commonly used. Since the size of domain |Y(x)| typically grows exponentially with the number
of output variables, the tractability of problem (C.7) lies in the decomposition of the responses
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Figure 3.1: (left) Factors with large output domains in Sequence Labeling. (right) Large number
of factors in a Correlated Multilabel Prediction problem. Circles denote variables and black
boxes denote factors. (Yu: domain of unigram factor. Yb: domain of bigram factor.)

〈w,φ(x,y)〉 into several factors, each involving only a few outputs. The factor decomposition
can be represented as a bipartite graph G(F ,V , E) between factors F and variables V , where an
edge (f, j) ∈ E exists if the factor f involves the variable j. Typically, a set of factor templates
T exists so that factors of the same template F ∈ T share the same feature map φF (.) and
parameter vector wF . Then the response on input-output pair (x,y) is given by

〈w, φ(x,y)〉 =
∑
F∈T

∑
f∈F (x)

〈wF ,φF (xf ,yf )〉, (3.3)

where F (x) denotes the set of factors on x that share a template F , and yf denotes output
variables relevant to factor f of domain Yf = YF . We will use F(x) to denote the union
of factors of different templates {F (x)}F∈T . Figure 3.1 shows two examples that both have
two factor templates (i.e. unigram and bigram) for which the responses have decomposition∑

f∈u(x)〈wu, φu(xf , yf )〉 +
∑

f∈b(x)〈wb, φb(yf )〉. Unfortunately, even with such decomposi-
tion, the maximization in (3.2) is still computationally expensive. First, most of graph structures
do not allow exact maximization, so in practice one would minimize an upper bound of the
original loss (3.2) obtained from relaxation [64, 93]. Second, even for the relaxed loss or a tree-
structured graph that allows polynomial-time maximization, its complexity is at least linear to
the cardinality of factor domain |Yf | times the number of factors |F|. This results in a prohibitive
computational cost for problems with large output domain. As in Figure 3.1, one example has a
factor domain |Yb| which grows quadratically with the size of output domain; the other has the
number of factors |F| which grows quadratically with the number of outputs. A key observation
of this paper is, in contrast to the structural maximization (3.2) that requires larger extent of ex-
ploration on locally suboptimal assignments in order to achieve global optimality, the Factorwise
Maximization Oracle (FMO)

y∗f := argmax
yf

〈wF ,φ(xf ,yf )〉 (3.4)

can be realized in a more efficient way by maintaining data structures on the factor parameters
wF . In the next section, we develop globally-convergent algorithms that rely only on FMO, and
provide realizations of message-augmented FMO with cost sublinear to the size of factor domain
or to the number of factors.
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3.1.2 Dual-Decomposed Learning
We consider an upper bound of the loss (3.2) based on a Linear Program (LP) relaxation that is
tight in case of a tree-structured graph and leads to a tractable approximation for general factor
graphs [62, 93]:

LLP (w;x, ȳ) = max
(q,p)∈ML

∑
f∈F(x)

〈
θf (w), qf

〉
(3.5)

where θf (w) :=
(〈
wF ,φF (xf ,yf )− φF (xf , ȳf )

〉
+ δf (yf , ȳf )

)
yf∈Yf

.ML is a polytope that

constrains qf in a |Yf |-dimensional simplex ∆|Yf | and also enforces local consistency:

ML :=

{
q = (qf )f∈F(x)

p = (pj)j∈V(x)

∣∣∣∣ qf ∈ ∆|Yf |, ∀f ∈ F (x),∀F ∈ T
Mjfqf = pj, ∀(j, f) ∈ E(x)

}
,

where Mjf is a |Yj| by |Yf | matrix that has Mjf (yj,yf ) = 1 if yj is consistent with yf (i.e.
yj = [yf ]j) and Mjf (yj,yf ) = 0 otherwise. For a tree-structured graph G(F ,V , E), the LP
relaxation is tight and thus loss (3.5) is equivalent to (3.2). For a general factor graph, (3.5) is
an upper bound on the original loss (3.2). It is observed that parameters w learned from the
upper bound (3.5) tend to tightening the LP relaxation and thus in practice lead to tight LP in the
testing phase [64]. Instead of solving LP (3.5) as a subroutine, a recent attempt formulates (C.7)
as a problem that optimizes (p, q) and w jointly via dual decomposition [62, 65]. We denote
λjf as dual variables associated with constraint Mjfqf = pj , and λf := (λjf )j∈N (f) where
N (f) = {j | (j, f) ∈ E}. We have

LLP (w;x, ȳ) = max
q,p

min
λ

∑
f∈F(x)

〈θf (w), qf〉+
∑

j∈N (f)

〈λjf ,Mjfqf − pj〉 (3.6)

= min
λ∈Λ

∑
f∈F(x)

max
qf∈∆

|Yf |
(θf (w) +

∑
j∈N (f)

MT
jfλjf )

Tqf (3.7)

= min
λ∈Λ

∑
f∈F(x)

max
yf∈Yf

θf (yf ;w) +
∑

j∈N (f)

λjf ([yf ]j)

 (3.8)

= min
λ∈Λ

∑
f∈F(x)

Lf (w;xf , ȳf ,λf ) (3.9)

where (C.16) follows the strong duality, and the domain Λ =
{
λ
∣∣∣∑(j,f)∈E(x) λjf = 0, ∀j ∈ V(x)

}
follows the maximization w.r.t. p in (C.15). The result (3.9) is a loss function Lf (.) that penalizes
the response of each factor separately given λf . The ERM problem (C.7) can then be expressed
as

min
w,λ∈Λ

∑
F∈T

(
1

2
‖wF‖2 + C

∑
f∈F

Lf (wF ;xf , ȳf ,λf )

)
, (3.10)

where F =
⋃N
i=1 F (xi) and F =

⋃
F∈T F . The formulation (3.10) has an insightful interpre-

tation: each factor template F learns a multiclass SVM given by parameters wF from factors
f ∈ F , while each factor is augmented with messages λf passed from all variables related to f .
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Algorithm 5 Greedy Direction Method of Multiplier

0. Initialize t = 0, α0 = 0, λ0 = 0 and A0 = Ainit.
for t = 0, 1, ... do

1. Compute (αt+1,At+1) via one pass of Algorithm 6, 7, or 1.
2. λt+1

jf = λtjf + η
(
Mjfα

t+1
f −αt+1

j

)
, j ∈ N (f), ∀f ∈ F .

end for

Greedy Direction Method of Multiplier Let αf (yf ) be dual variables for the factor responses
zf (yf ) = 〈w,φ(xf ,yf )〉 and {αj}j∈V be that for constraints in Λ. The dual problem of (3.10)
can be expressed as 1

min
αf∈∆

|Yf |
G(α) :=

1

2

∑
F∈T
‖wF (α)‖2 −

∑
j∈V

δTj αj

s.t. Mjfαf = αj, j ∈ N (f), f ∈ F .
wF (α) =

∑
f∈F

ΦT
fαf

(3.11)

where αf lie in the shifted simplex

∆|Yf | :=

{
αf
∣∣ αf (ȳf ) ≤ C , αf (yf ) ≤ 0, ∀yf 6= ȳf ,

∑
yf∈Yf

αf (yf ) = 0.

}
. (3.12)

Problem (3.11) can be interpreted as a summation of the dual objectives of |T | multiclass
SVMs (each per factor template), connected with consistency constraints. To minimize (3.11)
one factor at a time, we adopt a Greedy Direction Method of Multiplier (GDMM) algorithm that
alternates between minimizing the Augmented Lagrangian function

min
αf∈∆

|Yf |
L(α,λt) := G(α) +

ρ

2

∑
j∈N (f) ,f∈F

∥∥mjf (α,λ
t)
∥∥2 − ‖λtjf‖2 (3.13)

and updating the Lagrangian Multipliers (of consistency constraints)

λt+1
jf = λtjf + η (Mjfαf −αj) . ∀j ∈ N (f), f ∈ F , (3.14)

where mjf (α,λ
t) = Mjfαf − αj + λtjf plays the role of messages between |T | multiclass

problems, and η is a constant step size. The procedure is outlined in Algorithm 5. The minimiza-
tion (3.13) is conducted in an approximate and greedy fashion, in the aim of involving as few
dual variables as possible. We discuss two greedy algorithms that suit two different cases in the
following.

1αj is also dual variables for responses on unigram factors. We define U := V and αf := αj , ∀f ∈ U .
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Factor of Large Domain For problems with large factor domains, we minimize (3.13) via a
variant of Frank-Wolfe algorithm with away steps (AFW) [57], outlined in Algorithm 6. The
AFW algorithm maintains the iterate αt as a linear combination of bases constructed during
iterates

αt =
∑
v∈At

ctvv, At := {v | ctv 6= 0} (3.15)

Algorithm 6 Away-step Frank-Wolfe
(AFW)

repeat
1. Find v+ satisfying (3.16).
2. Find v− satisfying (3.17).
3. Compute αt+1 by (3.18).
4. Maintain active set At by (3.15).
5. Maintain wF (α) by (3.11).

until a non-drop step is performed.

Algorithm 7 Block-Greedy Coordinate
Descent

for i ∈ [n] do
1. Find f ∗ satisfying (3.19).
2. As+1

i = Asi ∪ {f ∗}.
for f ∈ Ai do

3.1 Update αf by (3.20).
3.2 Maintain wF (α) via (3.11).

end for
end for

where At maintains an active set of bases of non-zero coefficients. Each iteration of AFW
finds a direction v+ := (v+

f )f∈F leading to the most descent amount according to the current
gradient, subject to the simplex constraints:

v+
f := argmin

vf∈∆
|Yf |
〈∇αfL(αt,λt),vf〉 = C(eȳf − ey∗f ), ∀f ∈ F (3.16)

where y∗f := argmaxyf∈Yf\{ȳf} 〈∇αfL(αt,λt), eyf 〉 is the non-ground-truth labeling of factor
f of highest response. In addition, AFW finds the away direction

v− := argmax
v∈At

〈∇αL(αt,λt),v〉, (3.17)

which corresponds to the basis that leads to the most descent amount when being removed. Then
the update is determined by

αt+1 :=

{
αt + γFdF , 〈∇αL,dF 〉 < 〈∇αL,dA〉
αt + γAdA, otherwise.

(3.18)

where we choose between two descent directions dF := v+ −αt and dA := αt − v−. The step
size of each direction γF := argminγ∈[0,1] L(αt + γdF ) and γA := argminγ∈[0,cv− ] L(αt +
γdA) can be computed exactly due to the quadratic nature of (3.13). A step is called drop step
if a step size γ∗ = cv− is chosen, which leads to the removal of a basis v− from the active set,
and therefore the total number of drop steps can be bounded by half of the number of iterations
t. Since a drop step could lead to insufficient descent, Algorithm 6 stops only if a non-drop
step is performed. Note Algorithm 6 requires only a factorwise greedy search (3.16) instead of a
structural maximization (3.2). Later we will show how the factorwise search can be implemented
much more efficiently than structural ones. All the other steps (2-5) in Algorithm 6 can be
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computed in O(|Af |nnz(φf )), where |Af | is the number of active states in factor f , which can
be much smaller than |Yf | when output domain is large.

In practice, a Block-Coordinate Frank-Wolfe (BCFW) method has much faster convergence
than Frank-Wolfe method (Algorithm 6) [59, 75], but proving linear convergence for BCFW is
also much more difficult [75], which prohibits its use in our analysis. In our implementation,
however, we adopt the BCFW version since it turns out to be much more efficient. We include a
detailed description on the BCFW version in Appendix-A (Algorithm 1).

Large Number of Factors Many structured prediction problems, such as alignment, segmen-
tation, and multilabel prediction (Fig. 3.1, right), comprise binary variables and large number
of factors with small domains, for which Algorithm 6 does not yield any computational ad-
vantage. For this type of problem, we minimize (3.13) via one pass of Block-Greedy Coordi-
nate Descent (BGCD) (Algorithm 7) instead. Let Qmax be an upper bound on the eigenvalue
of Hessian matrix of each block ∇2

αf
L(α). For binary variables of pairwise factor, we have

Qmax=4(maxf∈F ‖φf‖2 + 1). Each iteration of BGCD finds a factor that leads to the most
progress

f ∗ := argmin
f∈F(xi)

(
min

αf+d∈∆
|Yf |
〈∇αfL(αt,λt),d〉+

Qmax

2
‖d‖2

)
. (3.19)

for each instance xi, adds them into the set of active factorsAi, and performs updates by solving
block subproblems

d∗f = argmin
αf+d∈∆

|Yf |
〈∇αfL(αt,λt),d〉+

Qmax

2
‖d‖2

(3.20)

for each factor f ∈ Ai. Note |Ai| is bounded by the number of GDMM iterations and it converges
to a constant much smaller than |F(xi)| in practice. We address in the next section how a joint
FMO can be performed to compute (3.19) in time sublinear to |F(xi)| in the binary-variable
case.

Convergence Analysis The analysis leverages recent analysis on the global linear convergence
of Frank-Wolfe variants [57] for function of the form (3.13) with a polyhedral domain, and also
the analysis in [42] for Augmented Lagrangian based method. This type of greedy Augmented
Lagrangian Method was also analyzed previously under different context [111, 112, 117].

Let d(λ) = minα L(α,λ) be the dual objective of (3.13), and let

∆t
d := d∗ − d(λt), ∆t

p := L(αt,λt)− d(λt) (3.21)

be the dual and primal suboptimality of problem (3.11) respectively. We have the following
theorems.
Theorem 8 (Convergence of GDMM with AFW). The iterates {(αt,λt)}∞t=1 produced by Algo-
rithm 5 with step 1 performed by Algorithm 6 has

E[∆t
p + ∆t

d] ≤ ε for t ≥ ω log(
1

ε
) (3.22)
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Figure 3.2: (left) Compare two FMO-based algorithms (GDMM, Soft-BCFW) in number of
iterations. (right) Improvement in training time given by sublinear-time FMO.

for any 0 < η ≤ ρ
4+16(1+ν)mQ/µM

with ω = max
{

2(1 + 4mQ(1+ν)
µM

), τ
η

}
, where µM is the gener-

alized geometric strong convexity constant of (3.13), Q is the Lipschitz-continuous constant for
the gradient of objective (3.13), and τ > 0 is a constant depending on optimal solution set.
Theorem 9 (Convergence of GDMM with BGCD). The iterates {(αt,λt)}∞t=1 produced by Al-
gorithm 5 with step 1 performed by Algorithm 7 has

E[∆t
p + ∆t

d] ≤ ε for t ≥ ω1 log(
1

ε
) (3.23)

for any 0 < η ≤ ρ
4(1+Qmaxν/µ1)

with ω1 = max
{

2(1 + Qmaxν
µ1

), τ
η

}
, where µ1 is the generalized

strong convexity constant of objective (3.13) andQmax = maxf∈F Qf is the factorwise Lipschitz-
continuous constant on the gradient.

3.1.3 Experiments
In this section, we compare with existing approaches on Sequence Labeling and Multi-label
prediction with pairwise interaction. The algorithms in comparison are: (i) BCFW: a Block-
Coordinate Frank-Wolfe method based on structural oracle [59], which outperforms other com-
petitors such as Cutting-Plane, FW, and online-EG methods in [59]. (ii) SSG: an implementa-
tion of the Stochastic Subgradient method [86]. (iii) Soft-BCFW: Algorithm proposed in ([65]),
which avoids structural oracle by minimizing an approximate objective, where a parameter ρ
controls the precision of the approximation. We tuned the parameter and chose two of the best
on the figure. For BCFW and SSG, we adapted the MATLAB implementation provided by au-
thors of [59] into C++, which is an order of magnitude faster. All other implementations are also
in C++. The results are compared in terms of primal objective (achieved byw) and test accuracy.

Our experiments are conducted on 4 public datasets: POS, ChineseOCR, RCV1-regions, and
EUR-Lex (directory codes). For sequence labeling we experiment on POS and ChineseOCR.
The POS dataset is a subset of Penn treebank2 that contains 3,808 sentences, 196,223 words,
and 45 POS labels. The HIT-MW3 ChineseOCR dataset is a hand-written Chinese character

2https://catalog.ldc.upenn.edu/LDC99T42
3https://sites.google.com/site/hitmwdb/

38

https://catalog.ldc.upenn.edu/LDC99T42
https://sites.google.com/site/hitmwdb/


10
2

10
4

time

10
0

10
1

R
e

la
ti
v
e

-O
b

je
c
ti
v
e

POS

BCFW

GDMM-subFMO

SSG

Soft-BCFW-ρ=1

Soft-BCFW-ρ=10

10
3

10
4

time

1.5

2

2.5

3

O
b
je

c
ti
v
e

×10
5 ChineseOCR

BCFW

GDMM-subFMO

SSG

Soft-BCFW-ρ=1

Soft-BCFW-ρ=10

10
2

10
3

10
4

10
5

time

10
4

10
5

10
6

10
7

10
8

10
9

O
b

je
c
ti
v
e

RCV1-regions

BCFW

GDMM-subFMO

SSG

Soft-BCFW-ρ=1

Soft-BCFW-ρ=10

10
2

10
4

time

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

te
s
t 
e
rr

o
r

POS

BCFW

GDMM-subFMO

SSG

Soft-BCFW-ρ=1

Soft-BCFW-ρ=10

10
3

10
4

time

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
te

s
t 
e
rr

o
r

ChineseOCR

BCFW

GDMM-subFMO

SSG

Soft-BCFW-ρ=1

Soft-BCFW-ρ=10

10
2

10
3

10
4

10
5

time

10
-2

te
s
t 

e
rr

o
r

RCV1-regions

BCFW

GDMM-subFMO

SSG

Soft-BCFW-ρ=1

Soft-BCFW-ρ=10

10
2

10
3

10
4

time

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

te
s
t 
e
rr

o
r

EUR-Lex

BCFW

GDMM-subFMO

SSG

Soft-BCFW-ρ=1

Soft-BCFW-ρ=10

Figure 3.3: Primal Objective v.s. Time and Test error v.s. Time plots. Note that figures of objec-
tive have showed that SSG converges to a objective value much higher than all other methods,
this is also observed in [59]. Note the training objective for the EUR-Lex data set is too expensive
to compute and we are unable to plot the figure.

dataset from [91]. The dataset has 12,064 hand-written sentences, and a total of 174,074 char-
acters. The vocabulary (label) size is 3,039. For the Correlated Multilabel Prediction problems,
we experiment on two benchmark datasets RCV1-regions4 and EUR-Lex (directory codes)5. The
RCV1-regions dataset has 228 labels, 23,149 training instances and 47,236 features. Note that
a smaller version of RCV1 with only 30 labels and 6000 instances is used in [62, 65]. EUR-
Lex (directory codes) has 410 directory codes as labels with a sample size of 19,348. We first
compare GDMM (without subFMO) with Soft-BCFW in Figure 3.4. Due to the approximation
(controlled by ρ), Soft-BCFW can converge to a suboptimal primal objective value. While the
gap decreases as ρ increases, its convergence becomes also slower. GDMM, on the other hand,
enjoys a faster convergence. The sublinear-time implementation of FMO also reduces the train-
ing time by an order of magnitude on the ChineseOCR data set, as showed in Figure 3.4 (right).
More general experiments are showed in Figure 3.3. When the size of output domain is small
(POS dataset), GDMM-subFMO is competitive to other solvers. As the size of output domain
grows (ChineseOCR, RCV1, EUR-Lex), the complexity of structural maximization oracle grows
linearly or even quadratically, while the complexity of GDMM-subFMO only grows sublinearly
in the experiments. In particular, when running on ChineseOCR and EUR-Lex, each iteration of
SSG, GDMM, BCFW and Soft-BCFW take over 103 seconds, while it only takes a few seconds
in GDMM-subFMO.

4www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multilabel.html
5mulan.sourceforge.net/datasets-mlc.html
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3.2 Decomposition for MAP Inference

The last section deals with the learning of model parameters of a structured predictor. In this
section, we assume the model parameters have been estimated, and the problem is the inference
of inter-dependent output variables of potentially huge domain, given the inputs. The problem
is often called the MAP inference. In particular, we show how our greedy optimization method
could be employed to develop an algorithm of sublinear cost w.r.t. the output domain for a MAP
linear-program relaxation.

3.2.1 Problem Setup

We study the standard MAP inference problem described by a factor graph G = {V ,F , E},
where V ,F , E are the sets of random variables, factors, and connecting edges, respectively. We
denote the neighboring variables for each factor f ∈ F as ∂(f) = {i|(f, i) ∈ E} and similarly
the neighboring factors for each variable i ∈ V as ∂(i) = {f |(f, i) ∈ E}. Each variable i ∈ V
takes a value xi in a finite label set, i.e. xi ∈ Xi. Variables and factors are associated with local
score functions θi,∀i ∈ V and θf , f ∈ F , respectively.

The goal of the Maximum-a-Posteriori (MAP) problem is to find an assignment {xi ∈ Xi|i ∈
V} (i.e. each variable takes one value) that maximizes the sum of local score functions:

max
x

∑
i∈V

θi(xi) +
∑
f∈F

θf (yf ) (3.24)

Here yf ∈ Yf :=
∏

i∈∂(f)

Xi collects assignments from variables in ∂(f). Note that the factors

associated with only one variable can be absorbed by its neighboring variable, so we assume all
factors are of order at least two.

We consider a standard LP relaxation for (3.24). Specifically, we replace xi and yf with
marginal vectors xi ∈ ∆i = ∆|Xi| and yf ∈ ∆f = ∆|Yf |, where ∆M = {a ∈ RM |a �
0,
∑M

i=1 ai = 1} is a simplex of dimension M . The marginal vectors are highly constrained
with each other. The LP relaxations typically relax these constraints as linear constraints. In this
paper, we consider standard linear constraints given by ∀(f, i) ∈ E ,Mifyf = xi, where

Mif (xi, yf ) =

{
1 if yf ∼ xi

0 otherwise
.

and yf ∼ xi means that xi is consistent with yf ’s configuration.
Let θi and θf be vector representations of the local score functions, we derive the LP relax-

ation in this paper:

max
xi∈∆i
yf∈∆f

∑
i∈V
θTi xi +

∑
f∈F

θTf yf

s.t. ∀(f, i) ∈ E ,Mifyf = xi

(3.25)
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3.2.2 Greedy Direction Method of Multiplier
Augmented Lagrangian Applying the Augmented Lagrangian method, the objective function
becomes (constraints remain the same):

L({xi}, {yf}) =
∑
i∈V

(−θi)Txi +
∑
f∈F

(−θf )Tyf

+
∑

(f,i)∈E

(ρ
2
‖Mifyf − xi +

1

ρ
µtif‖2

2

)
.

(3.26)

For optimization, we alternate between optimizing the primal variables {xi,yf} and the dual
variables µif . Note that the primal constraints xi ∈ ∆i and yf ∈ ∆f are strictly enforced during
optimization.

GDMM We proceed to describe the proposed greedy direction method of multiplier (or GDMM)
for optimizing (3.26) (Please refer to Algorithm 8 for details). GDMM alternates between up-
dating the dual variables and sequentially optimizing the individual primal variables xi and yf
w.r.t. a judiciously selected active set of states within the factor. However, the cost of such op-
timization is still expensive when the label space is large. This leads to the key component of
this paper, i.e., by maintaining active sets of coordinates for each variable, one can pass only
active messages to the nearby factors. Once the messages become sparse, the selection of active
variables can be implemented efficiently using pre-built data structures. These active sets are
initialized as empty sets and are gradually augmented in an on-demand manner. Our approach is
motivated by the observations that the non-zero entries in xi and yf are relatively sparse and the
size of these active sets are small throughout the optimization. These observations could result
in significant speedup of the algorithm. Next, we present each step of the GDMM method in
detail: optimizing the primal variables with respect to the active sets, updating the active sets,
and updating the dual variables.
Primal variable optimization. The primal variables are optimized by the Fully-corrective
Frank-Wolfe (FCFW) with approximate correction [58] which alternates between optimizing
{xi} and {yf} until a certain precision is achieved. For each i ∈ V , we use Ai and Āi to denote
its active set and the complementary set, respectively. The subproblem of (3.26) w.r.t. Ai is given
by

min
xi∈∆i

xi(Āi)=0

−θTi xi +
ρ

2

∑
f∈∂(i)

‖Mifyf − xi +
1

ρ
µtif‖2

2

which is equivalent to the simplex projection problem

min
xi∈∆i

xi(Āi)=0

∥∥∥∥∥∥xi −
∑
f∈∂(i)

(
Mifyf
|∂(i)| +

1

ρ
µtif ) +

θi
ρ|∂(i)|

∥∥∥∥∥∥
2

2

(3.27)

As in [26], (3.27) can be solved via a simplex projection operation with time complexity O(|Ai| log(|Ai|).
This also implies that, when fixing µ, x can be written as a simple function x(y).
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Algorithm 8 GDMM for Large Factor Domain

Initialization: ∀i ∈ V ,xi ← 0,Ai ← ∅; ∀f ∈ F ,yf ← 0,Af ← ∅;∀(f, i) ∈ E ,µ0
if ← 0.

repeat
for s = 1, 2, · · · , S do

for γ = 1, 2, 4, 8, · · · , γmax do
1. ∀f ∈ F , update Af , yf (Af ) according to (3.31) and (3.29) with Q = γQmax.
2. ∀i ∈ V , update Ai, xi(Ai) according to (3.30) and (3.27)
3. Break if L(x′,y′)− L(x,y) ≤ σ〈∇yL,∆y〉

end for
end for
for ∀(f, i) ∈ E do

3. Compute µt+1
if based on (3.32)

end for
4. t← t+ 1

until primal/dual infeasibility < ε

Now we consider optimizing the variables associated with each factor f ∈ F . Let Af and
Āf be its active set and the complementary set. The subproblem w.r.t. Af is

min
yf∈∆f

yf (Āf )=0

Lf (x,y;µ)

:= −θTf yf +
ρ

2

∑
i∈∂(f)

‖Mifyf − xi +
1

ρ
µtif‖2

2

(3.28)

Instead of solving (3.28) exactly, we propose to minimize a quadratic upper bound of the function
(3.28). Let Q = ρ‖M‖2 where ‖.‖ is the spectral norm. (3.28) becomes:

min
y+
f ∈∆f

y+
f (Āf )=0

Q

2
‖y+

f − yf‖2
2 +∇yfLT (y+

f − yf ) (3.29)

where ∇yfL =
∑

i∈∂(f) M
T
if (µ

t
if − ρxi)− θf . Note the quadratic upper bound (3.29) is tighter

than that used in the Proximal Gradient Descent scheme described in [7] by a factor of |Yf ||Af | . It
can be solved by a simplex projection

min
y+
f ∈∆f

y+
f (Āf )=0

‖y+
f − (yf −

1

Q
(
∑
i∈∂(f)

MT
if (µ

t
if − ρxi)− θf ))‖2

2

in time O(|Af | log(|Af |)). In practice, computing Q could be expensive, so we introduce a line-
search procedure over Q, starting from a lower bound Qmax where Qmax := maxf∈F QAf and
QAf = ρ‖[Mif ]Af‖2. In practice, we found the descent amount often passes the line-search
condition without backtracking. Although we introduce a fully-corrective loop (s = 1...S) in
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Algorithm 8 for ease of our analysis, we found setting S = 1 suffices for fast convergence in
our experiments. Note by maintaining a small set of non-zero variables, we limit the size of
messages (non-zero dual variables), yielding an efficient scheme for finding new active variables
as introduced next.
Updating the active sets. The active sets are updated by finding a currently non-active coordi-
nate with largest gradient magnitude. For each i ∈ V , we update the corresponding active set
as

Ai ← Ai ∪ arg max
xi 6∈Ai
∇xiLi(x,y;µ) (3.30)

where ∇Lxi(x,y;µ) = − ∑
f∈∂(i)

[ρ(Mifyf − xi) + µtif ]xi − θi(xi). Similarly, for each f ∈ F ,

we update the corresponding active set as

Af ← Af ∪ arg max
yf 6∈Af

∇yfLf (x,y;µ) (3.31)

where ∇yfLf (x,y;µ) =
∑

i∈∂(f)

[MT
if (ρ(Mifyf − xi) + µtif )]yf − θf (yf ). Note that the new

active coordinates can be searched efficiently as long as the messages passed from nearby factors
(Mifyf − xi) are sparse. Specifically, as θi and θf are constant, we can build sorted lists on θi,
θf in the preprocessing phase. When executing our algorithm, the selection (3.30) can be done
in time O(|Ai|+

∑
f∈∂(i) |Af |) since the size of non-zero messages is bounded by

∑
f∈∂(i) |Af |.

The time complexity of the coordinate selection of factor based on (3.31) is O(|Ai||Ai′ | +
|Af |), where the messages are denoted by δif = ρ(Mifyf − xi) + µtif . For a pairwise-
interaction factor f = (i, i′) ∈ F with yf = (xi, xi′) and i, i′ ∈ V , we can find a coordi-
nate of largest gradient magnitude (3.31) by searching in four divisions of the coordinates: (i)
{(xi, xi′)|, δif (xi) = δi′f (xi′) = 0}, (ii) {(xi, xi′)|δif (xi) = 0}, (iii) {(xi, xi′)|δi′f (xi′) = 0}
and (iv) {(xi, xi′)|δif (xi) 6= 0, δi′f (xi′) 6= 0}. In particular, (i) can be done in O(1) via a sorted
list on θf . (ii), (iii) can be done in time O(|Ai||Ai′| + |Af |) via sorted lists built on the sets
{θf (xi, xi′)|xi = k}, {θf (xi, xi′)|xi′ = k} respectively. The complexity of (iv) is O(|Ai||Ai′ |).

To maintain a compact active set, after solving (3.27) and (3.29), we remove all coordinates
xi, yf with xi(xi) = 0, yf (yf ) = 0 from Ai, Af , respectively.
Updating the dual After optimizing the primal variables, the dual variables are updated as

µt+1
if = µtif + η(Mifyf − xi), ∀i ∈ V , f ∈ F , (3.32)

where η is the dual step size. In the analysis section we show for a sufficiently small η, Algorithm
8 globally converges to the optimum.

GDMM for a Large Number of Factors For applications such as alignment, segmentation
and multilabel prediction, the factor graphs comprise a large number of factors with binary
random variables. In this section, we introduce a variant of the GDMM specifically for such
problems. The procedure is sketched in Algorithm 9.

The idea behind Algorithm 9 is to maintain two active sets for variables and factors, denoted
as AV ⊆ V and AF ⊆ F , respectively. Then we ensure that at each iteration a variable i∗
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Algorithm 9 GDMM for Large Number of Factors

Initialization: ∀i ∈ V ,xi ← 0; ∀f ∈ F ,yf ← 0; ∀(f, i) ∈ E ,µ0
if ← 0; t ← 0. AV ← ∅;

AF ← ∅.
repeat

1. Find i∗ satisfying (3.33), AV ← AV ∪ {i∗}.
2. AF ← AF ∪ {f ∈ F|∂(f) ⊆ AV}
3. ∀i ∈ AV , update xi(Xi) according to (3.27).
4. Find f ∗ satisfying (3.34), AF ← AF ∪ {f ∗}.
5. ∀f ∈ AF , update yf (Yf ) according to (3.29).
for ∀f ∈ AF , i ∈ ∂(f) do

6. Update µt+1
if base on (3.32)

end for
7. t← t+ 1

until primal/dual infeasibility < ε

satisfying

i∗ = argmin
i

min
xi+d∈∆i

〈∇xiLi(x,y;µ),d〉+
1

2
‖d‖2 (3.33)

and a factor f ∗ satisfying

f ∗ = argmin
f

min
yf+d∈∆f

〈∇yfLf (x,y;µ),d〉+
Qf

2
‖d‖2. (3.34)

are in the active sets (i.e. i∗ ∈ AV and f ∗ ∈ AF ).
Note that all variables are binary and all factors have only 4 states, i.e. Yf = {(0, 0), (0, 1),

(1, 0), (1, 1)}. Therefore one can always write xi(0) = 1−xi(1) and write yf (0, 0), yf (0, 1), yf (1, 0)
as a function of yf (1, 1), xj(1) and xi(1) by enforcing consistency constraints yf (1, 0)+yf (1, 1) =
xi(1) and yf (0, 1) + yf (1, 1) = xj(1) for a factor connecting to two variables i and j. Then one
can verify the remaining constraints between factors and variables are:

xi(1)− yf (1, 1) = yf (1, 0) ≥ 0

xj(1)− yf (1, 1) = yf (0, 1) ≥ 0

1− xj(1)− xi(1) + yf (1, 1) = yf (0, 0) ≥ 0

(3.35)

One can encode (3.35) as the new set of constraints Mifyf − xi = 0 by introducing slack
variables for the inequalities. Under this scheme, we show an efficient method to include all
variables and factors that satisfy (3.33) and (3.34) in the active sets.

We achieve this by first pushing any inactive f into AF if its neighboring variables i and j
are both active. Note this accounts for only a small fraction of the factors if |AV | � |V|, and thus
can be computed efficiently. Then we consider any inactive factor f with either i or j inactive.
For this type of factor, we have (3.35) satisfied and µif = µjf = 0, and the gradient of each
factor yf := yf (1, 1) is simply

∇yfLf (x,y;µ) = −θf (1, 1).
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Therefore, the search of active factor (3.34) reduces to finding the minimal θf (1, 1) among f /∈
AF , which can be easily done via a sorted list of −θf (1, 1). For each iteration, we add the first
inactive f from the head until we have −θf (1, 1) > 0 which can be done with O(1) amortized
cost. In our experiments, only a small fraction of F will be added to AF . One can find in the
appendix the statistics of active size |AF | in our experiments.

Convergence Analysis In this section, we show the GDMM algorithms for the large factor
domains (Algorithm 8) and a large number of factors (Algorithm 9) admit linear convergence.
To state the main result formally, we introduce the following notations. We use zt = (xt,yt)
to encapsulate the primal variables, and denote the feasible space asM := {(x,y) ∈ | xi ∈
∆i, ∀i ∈ V ;yf ∈ ∆f ,∀f ∈ F}. Then the Augmented Lagrangian is expressed as

L(z,µ) = 〈−θ +MTµ, z〉+
ρ

2
‖Mz‖2,

where Mz = 0 collects all the constraints of the form

Mifyf − xi = 0, ∀(i, f) ∈ E .

To assess the convergence rate, denote a primal minimizer respect to a dual iterate µt at
iteration t as

z̄t := arg min
z∈M

L(z,µt). (3.36)

The convergence rate is measured by the primal gap ∆t
p and the dual gap ∆t

d:

∆t
p := L(zt+1,µt)− L(z̄t,µt)

∆t
d := d∗ − L(z̄t,µt)

where d∗ := maxµ minz∈M;L(z,µ) is the optimal dual objective value. The following part
states two major results for the convergence of the GDMM in the form of both Algorithm 8 and
Algorithm 9.
Theorem 10 (Convergence of Algorithm 8). Let Q = ρ‖M‖2. For any constant dual step size η
satisfying

0 < η ≤ ρ

4(1 + |F|Q/mM)
,

the iterates given by Algorithm 8 obey

∆t
p + ∆t

d ≤ ε, ∀t ≥ max

{
2(1 +

|F|Q
mM

),
τ

η

}
log(

1

ε
).

Here mM is the generalized geometric strong convexity constant of function L(.,µ) on the do-
mainM (defined in Lemma 12), and τ is a constant characterized in Lemma 11.
Theorem 11 (Convergence of Algorithm 9). Let Qmax := maxf∈F Qf . For any constant dual
step size η satisfying

0 < η ≤ ρ

4(1 +Qmax/m1)
,
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Figure 3.4: Convergence results for data sets with (a)(b): small #state and small #factor; (c):
large #factor; (d),(e): large #states. In this paper we only consider decoded (integer solution)
primal objective. Relative Primal Gap (decoded) is defined as P ∗−P

|P ∗| where P is the current
primal objective and P ∗ is the best primal objective found among all algorithms.

the iterates given by Algorithm 9 have

∆t
p + ∆t

d ≤ ε, ∀t ≥ max

{
2(1 +

Qmax

m1

),
τ

η

}
log(

1

ε
)

where m1 is a generalized strong convexity constant of function L(.,µ) measured in `1-norm
(defined in Lemma B.36).

Theorem 10 and 11 are based on the analysis framework of [42] for the Augmented La-
grangian Method, as well as the recent results on the linear convergence of Frank-Wolfe vari-
ants [57] and Greedy Coordinate Descent for non-strongly convex functions of the form (B.2)
[74, 114].

3.2.3 Experiments

Here we evaluate the GDMM algorithm by analyzing the performance of GDMM and compare
it with state-of-the-art MAP inference techniques.

Experimental Setup Benchmark datasets. We select five datasets that involve large output
domains. These datasets are selected from two benchmarks: OPENGM7 and The Probabilistic

6The specific instances we used for each dataset are: 16 16 s.21.uai (Segmentation), fileforGal 400markers.uai
(ImageAlignment), EurLex (Multilabel), and 2BBN.uai (Protein)

7http://hciweb2.iwr.uni-heidelberg.de/opengm/
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Dataset |Xi| |Yf | |V| |F|
Segmentation 21 441 226 842

ImageAlignment 83 6889 400 3334
MultiLabel 2 4 3884 7544670

Protein 404 163216 37 703
GraphMatching 1034 1069156 188 1864

Table 3.1: Data Statistics 6. |Xi| denotes the maximum domain size of an output variable, |Yf | is
the maximum domain size of a factor, and |V|, |F| denote the number of nodes, factors respec-
tively.

Dataset Segmentation ImageAlignment Multilabel Protein Graph Matching

Algorithm Time Primal Time Primal Time Primal Time Primal Time Primal
LBP 0.406s -252.39 4.136s -6907 5012.6s 899.06 86407s 11904 17696s 3733

TRWBP 1.6336s -252.39 17.2s -6907 25474s 899.06 75205s 11888 1598s 3733
TreeEP 11.514s -252.39 2666s -6916.95 2863.2s 899.06 2010.4s 11974 TLE TLE
HAK 6.75s -252.39 274.5s -6908 TLE TLE 10013s 10740 87886s 3717
GBP 0.22s -252.39 6.07s -6908 TLE TLE NE NE 3432s 3721

SoftBCFW 20.89s -356.57 5977s -19572 54.22s 889.32 1838s 9250 MLE MLE
LPsparse 0.57s -252.39 370s -6913.1 N/A N/A 32000s 12179 MLE MLE

SmoothMSD 11.19s -252.39 6462s -6907.6 53462s 893.66 13648s 11670 15312s 3733
MPLP 0.12s -252.39 9.85s -6907.6 45514s 846.64 124.3s 11771 212.5s 3730
PSDD 2.596s -319.38 531.4s -6907.6 1503s 899.06 20865s 10601.6 1192.9s 3733
AD3 0.15s -252.39 60.2s -6917.09 243.03s 899.06 48137s 12000.8 1659s 3733

TRW-S 0.0046s -252.39 0.65s -6907 21.89s 899.06 39.67s 12067 47.3s 3732
GDMM 0.26s -252.39 18.09s -6907.6 16.02s 899.06 661s 12263 25.9s 3733

Table 3.2: Primal : best decoded (integer solution) primal objective; Time: time taken to reach
the decoded primal objective. The shortest time taken to reach the best MAP objective among
all methods are marked with boldface. For all experiments we set memory limit = 100G and
time limit = 2 day. Experiments violating these limits are marked MLE: Memory Limit Ex-
ceeded, or TLE: Time Limit Exceeded; NE means the solver throws error message “quantity not
normalizable”.

Inference Challenge 2011(PASCAL)8. As shown in Table 3.1, they cover a diverse set of exam-
ples with varying scales, network connectivities, and output domain sizes. To help understand
the performance of the algorithms, we briefly describe each dataset:
• Protein. [27, 109] A Protein Folding dataset that is included in both PASCAL and OpenGM.

Its factor graph has bigram factors between every pair of variables.
• Graph Matching. A real world social network matching dataset generated using Face-

book network data from SNAP9. We attempt to match subgraphs to the original graph. In
particular, we construct the factor graph as follows: 1. one variable for each node in a
subgraph, with vertex set of the original graph as its domain. We use inner product of the
features provided from SNAP to generate the unigram factors. 2. For each induced edge
on the subgraph, we introduce a bigram factor for the two variables and use inverse of the
shortest distance on the graph to generate the bigram factor.

8http://www.cs.huji.ac.il/project/PASCAL/showNet.php
9http://snap.stanford.edu
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• Segmentation. A dataset from PASCAL which has a grid-4 neighborhood structure.
• ImageAlignment. A dataset from PASCAL.
• Multilabel. A multilabel data set from Mulan 10. The MAP inference problem is generated

from a trained model and an instance from the testset.

Compared Algorithms. The compared algorithms include several top performing algorithms as
well as widely used MAP inference algorithms.
• TRWS [53]: a variant of the Tree-Reweighted max-product message passing (TRW) [101]

algorithm that a) decomposes the graph into monotonic chains instead of trees, and b)
updates messages according to a global order on each chain. We used implementation
from the OPENGM Library [3, 4], which wraps the original TRWS code.

• AD3: The Alternating Directions Dual Decomposition algorithm with public implementa-
tion 11 provided by the authors of [61].

• PSDD: The Projected Subgradient Dual Decomposition algorithm by [54]. Its implemen-
tation is contained in the AD3 code.

• MPLP: The Max-Product Linear Programming algorithm [30, 89, 90] with public imple-
mentation 12. For a fair comparison, we disabled its tightening process to make sure that
GDMM and MPLP optimize the same objective function.

• According to the comparison figures in [63], we add two leading methods in terms of
performance.

SmoothMSD: as a variant of the coordinate minimization method on smoothed dual
(the CD soft in [63]), we implemented the smooth Max-Sum Diffusion (MSD) algo-
rithm in [104].

SoftBCFW: the Block-Coordinate Frank-Wolfe for soft-constrained primal, described
as Algorithm 1 by [63].

For each experiment, we choose γ ∈ {10−2, 10−3, 10−4, 10−5, 10−6} for SmoothMSD and
λ ∈ {1, 10−1, 10−2, 10−3, 10−4} for SoftBCFW. Among parameters that give the best de-
coded primal objective, we select the fastest.

• LPsparse: A recently proposed general-purpose LP solver for problems with sparse struc-
tures [117].

• Algorithm implemented in libDAI [70], including the Loopy Belief Propagation (LBP)
[55], the Tree-Reweighted Belief Propagation (TRWBP) [100], the Tree Expectation Prop-
agation (TreeEP)[78], the Double-loop GBP (HAK) [40], and Generalized Belief Propa-
gation (GBP) [110].

In all experiments, we pick ρ ∈ {1, 0.1, 0.01, 0.001} and η ∈ {0.1, 1} for GDMM. Generally
speaking, the performance of MAP inference algorithms is largely determined by the structure
and domain size of the factor graph. Among these five datasets, Segmentation and Image Align-
ment represent factor graphs with small domain sizes and a small number of factors; Multilabel

10http://mulan.sourceforge.net/datasets-mlc.html
11http://www.cs.cmu.edu/˜ark/AD3/
12http://cs.nyu.edu/˜dsontag/code/README_v2.html
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represents graphs with a large number of factors; Protein and Graph Matching represent graphs
with a large number of factors and large domain sizes.

Benchmark Evaluation In this section, we present our benchmark evaluation results. All
participating methods are compared in terms of running time and decoded (integer solution)
primal objective. Table 3.2 presents the statistics, and Figure 3.4 illustrates the convergence
behavior.

Overall, GDMM is the top-performing algorithm. It returns the best solutions among all five
datasets. In terms of running time, it is also competent with the top algorithms on each dataset.

On the grid-4 structured factor graphs such as Segmentation, TRWS and MPLP are generally
fast and accurate. But they are also less accurate on several examples. AD3 could provide more
accurate solutions, but its active-set method introduces a variable selection procedure that has
cost linear to the factor domain size, which results in the slow convergence on Protein and Graph
Matching. In contrast, GDMM takes advantage of the active sets of size sublinear to the factor
domains (see Appendix C for details), which leads to orders of magnitude speedup. Algorithms
such as SoftBCFW and SmoothMSD minimize over a smoothed objective function. However
SoftBCFW can not explicityly enforce consistency constraints and hence often stuck at solutions
with poor quality. Meanwhile SmoothMSD can provide solutions with good quality at the cost
of slow convergence.

Another key feature of the GDMM is its small memory overhead. Most algorithms re-
quire memory that is linear in the sum of factor domain sizes, due to the dense messages
and primal variables. For example, for the Graph Matching dataset, the memory consump-
tions for the compared algorithms are AD3 / PSDD: 69G, MPLP: 45G, TRWS:13G, LPsparse /
SoftBCFW:>100G. GDMM addresses this issue by maintaining an active set and sparse mes-
sages, results in a memory footprint of only 260M.

3.3 Decomposition with Maximum Inner-Product Search (MIPS)

For problems with large output spaces, evaluation of the loss function and its gradient are expen-
sive, typically taking linear time in the size of the output space. In chapter 2, we have discussed
one thread of our approach to deal with large output domain through a variety types of sparse
structures. However, many models of interest in practice could produce dense embedding of di-
mension ranging from hundreds to thousands, on which the efficiency gained by a primal-sparse
algorithm could be less than the case of sparse feature maps of dimension up to millions.

In such case of dense medium-dimensional embedding, another thread of methods have been
developed to speed up learning via efficient data structures for Nearest-Neighbor Search (NNS)
or Maximum Inner-Product Search (MIPS). However, the performance of such data structures
typically degrades when dimension grows. In this section, we propose a novel technique to
reduce the intractable high dimensional NNS or MIPS search problem to several much more
tractable lower dimensional ones via dual decomposition of the loss function. At the same time,
we demonstrate guaranteed convergence to the original loss via a greedy message passing proce-
dure. In our experiments on multiclass and multilabel classification with hundreds of thousands

49



of classes, as well as training skip-gram word embeddings with a vocabulary size of half a mil-
lion, our technique consistently improves the accuracy of search-based gradient approximation
methods and outperforms sampling-based gradient approximation methods by a large margin.

3.3.1 Problem Setup
Let X denote the input space and Y the output space, and let K := |Y|. In this paper we focus
on the situation where K is extremely large, on the order of hundreds of thousands or larger. We
are interested in learning a scoring function f : X → RK for a large output space Y from a given
class of such functions, F . Labeled samples are pairs (x,P) with x ∈ X and P ⊆ Y which
denotes the set of correct labels for the input point x. We use the notationN := Y \P to denote
the set of negative labels for the example. Given a collection of training samples {(xi,Pi)}Ni=1,
the learning objective takes the following form:

min
f∈F

1

N

N∑
i=1

L(f(xi),Pi).

where L : RK × 2Y → R is a loss function such that L(z,P) penalizes the discrepancy between
the score vector z ∈ RK and a set of positive labels P ⊆ Y . The evaluation of the loss function
and its gradient with respect to the score vector, ∇zL(z,P), typically has cost growing linearly
with the size of the output space K, and thus is expensive for problems with huge output spaces.

The key to our method for reducing the complexity of loss and gradient evaluation will be the
following linear structural assumption on the class of scoring functions F : there is an embedding
dimension parameter D ∈ N such that for every f ∈ F , we can associate a weight matrix
W ∈ RK×D and feature map φ : X → RD so that for all x ∈ X ,

f(x) = Wφ(x). (3.37)

We will assume that D � K, say on the order of a few hundreds or thousands, so that we can
explicitly evaluate φ(x).

The problem we consider is the following: given f and a batch of samples {xi,Pi}Ni=1,
compute an approximation to the empirical loss 1

N

∑N
i=1 L(f(xi),Pi) and its gradient. This is

an important subroutine that naturally arises in either full batch gradient descent or minibatch
stochastic gradient descent.

The main challenge here is to construct data structures that preprocess the matrix W so that
good approximations to the loss f(xi,Pi) and its gradient can be computed without computing
the vector f(x) entirely: i.e. we desire sublinear (inK) time computation of such approximations
given access to an appropriate data structure.

Before proceeding to our dual decomposition based search technique, we give a few examples
of problems with large output space that fit in our framework:

1. Extreme Classification. In extreme classification problems, popular classification loss
functions include Cross-Entropy Loss

L(z,P) :=
∑
k∈P

log
(∑K

j=1 exp(zj)
)
− zk (3.38)
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and Max-Margin Loss

L(z,P) :=

[
max

k∈P,j∈N
zk − zj + 1

]
+

. (3.39)

For multiclass problems, |P| = 1, while for multilabel problems we usually have |P| �
K. A typical scoring function takes the form

f(x) := Wφ(x). (3.40)

Here, φ(x) is a feature map constructed either from the domain knowledge or via learning
(e.g., a neural network). Both of them fit the structural assumption (3.37).

2. Metric Learning. In Metric Learning problems, during training we learn a function

f(x) = [−d(x,y)]y∈Y , (3.41)

that denotes the dissimilarities of the point x to a collection of points y ∈ Y . Common
choices of the dissimilarity function include the squared Euclidean distance d(x,y) =
‖ψ(x) − ψ(y)‖2

2 parameterized by a nonlinear transformation ψ : X → Rd for some
d ∈ N, and, more generally, the squared Mahalanobis distance d(x,y) = (ψ(x) −
ψ(y))>M (ψ(x) − ψ(y)) parameterized by ψ and a positive definite matrix M . The
candidate set Y could be the whole set of training samples {xi}Ni=1, or a collection of
latent proxies {yk}Kk=1 as suggested by a recent state-of-the-art method [71]. For each
sample (x,P), the goal is to learn a distance function s.t. the positive candidates P are
closer to x than the negative ones. Common loss functions for the task are Neighborhood
Component Analysis (NCA) loss [31]

L(z,P) :=
∑
k∈P

log
(∑K

j=1 exp(zj)
)
− zk (3.42)

and the Triplet loss [103]

L(z,P) =
∑
k∈P

∑
j∈N

[zk − zj + 1]+. (3.43)

It is easy to see that such scoring functions satisfy the structural assumption (3.37): for the
scoring function f given by the squared Mahalanobis distance parameterized byψ andM ,
the matrix W consists of the rows 〈−ψ(y)>Mψ(y), 2ψ(y)>M ,−1〉 for each y ∈ Y ,
and φ(x) = 〈1,ψ(x)>,ψ(x)>Mψ(x)〉>. Thus the embedding dimension D = d+ 2.

3. Word Embeddings. In the standard word2vec training [66], the input space X is the
vocabulary set, and the output space Y = X ; thus K is the vocabulary size. The Skip-
gram objective learns a scoring function f of the following form:

f(x) = 〈φ(y)>φ(x)〉y∈X , (3.44)

where φ(·) is a latent word embedding. This clearly fits the structural assumption (3.37):
the rows of the matrixW are the embeddings φ(y) for all y ∈ X .
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Algorithm 10 Loss and Gradient Approximation via Search

A sample (x,P), accuracy parameter τ > 0, and access to a MIPS data structure T for
the rows of W . Approximations to L(f(x),P), ∇L(f(x),P). Query T with φ(x) and
threshold τ to find S := {k | |[f(x)]k| > τ}. Construct a sparse approximation z̃ for f(x)
by setting z̃k = f(x)k for k ∈ S ∪ P , and z̃k = 0 for k 6∈ S ∪ P . Return L(z̃,P) and
∇L(z̃,P).

Then given a text corpus D, the loss function13 for a sample (x,P) where P is the set of
words in the corpus appearing within a certain size window around the input word x, is
given by

L(z,P) = qx
∑
y∈P

qy|x · [log
(∑

y′∈X exp(zy′)
)
− zy] (3.45)

where qx is the empirical unigram frequency of x and qy|x is the empirical frequency of
observing y within a window of x in the corpus D.

Loss and Gradient Approximation via Search All the loss functions we considered in the
applications mentioned share a key feature: their value can be well approximated by the scores
of the positive labels and the largest scores of the negative labels. Similarly, their gradients are
dominated by the coordinates corresponding to the positive labels and the negative labels with
the largest scores. For example, the Max-Margin loss (3.39) is completely determined by the
largest score of the negative labels and the lowest scores of the positive labels, and its gradient
is non-zero only on the negative label with largest score and the positive label with lowest score.
Similarly, for the Cross-Entropy loss (3.38), the coordinates of the gradient corresponding to
the negative classes are dominated by the ones with the highest score; the gradient coordinates
decrease exponentially as the scores decrease.

This key property suggests the following natural idea for approximating these losses and
their gradients: since the the score function f satisfies the linear structural property (3.37), we
can compute the largest scores efficiently via a Maximum Inner Product Search (MIPS) data
structure [87]. This data structure stores a large data set of vectors v1,v2, . . . ,vK ∈ RD and
supports queries of the following form: given a target vector u ∈ RD and a threshold τ , it
returns the vectors vi stored in it that satisfy |v>i u| ≥ τ in time that is typically sublinear in K.
Thus, we can preprocessW by storing the rows ofW in an efficient MIPS data structure. Then
for each sample x, we can compute the highest scores by querying this data structure with the
target vector φ(x) and some reasonable threshold τ , computing approximations to the loss and
gradient from the returned vectors (and treating all other scores as 0). This method is depicted in
Algorithm 10.

The error in this approximation is naturally bounded by τ times the `∞ Lipschitz constant of
L(·,P). For most loss functions considered in this paper, the `∞ Lipschitz constant is reason-
ably small: 2 for Max-Margin loss, O(Pmax log(K)) for Cross-Entropy loss (here, Pmax is the
maximum number of positive labels for any example), etc.

13This is a more compact reformulation of the loss function in [66].
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The main difficulty in applying this approach in practice is the curse of dimensionality: the
dependence on D is exponential for exact methods, and even for approximate methods, such as
Locality-Sensitive Hashing, the cost still implicitly depends on the dimension as points become
far apart when the intrinsic dimensionality is high [60].

To deal with the curse of dimensionality, we introduce a novel search technique based on
dual decomposition. This method, and its analysis, are given in the following section.

In order to apply and analyze the technique, we need the loss functions to be smooth (i.e.
have Lipschitz continuous gradients). For non-smooth losses like Max-Margin loss (3.39), we
apply Nesterov’s smoothing technique, which constructs a surrogate loss function with guaran-
teed approximation quality by adding a strongly convex term to the Fenchel conjugate of the
loss:

Lµ(z) := max
α
〈z,α〉 −

(
L∗(α) +

µ

2
‖α‖2

)
. (3.46)

Here, µ is a smoothing parameter that ensures that the surrogate loss has 1
µ

Lipschitz continuous
gradients while approximating the original loss function to within O(µ). This Smoothed Max-
Margin loss has gradient

∇L(z) := projC(
z+1N
µ

) (3.47)

where 1N denotes a vector containing 0 for indices k ∈ P and 1 for k ∈ N , and projC(.) denotes
the projection onto the bi-simplex C = {α | ∑k∈N αk =

∑
k∈P −αk ≤ 1, αN ≥ 0, αP ≤ 0}.

The Smoothed Max-Margin loss and its gradient can again be computed using the largest few
scores.

3.3.2 Loss-Decomposition-Guided Search

We now describe our loss decomposition method. Recall the linear structural assumption (3.37):
f(x) = Wφ(x) for all x ∈ X . In this section, we will keep (x,P) fixed, and we will drop the
dependence on P in L for convenience and simply use the notation L(f(x)) and ∇L(f(x)).

While MIPS over the D-dimensional rows of W can be computationally expensive, we can
exploit the linear structure of f by decomposing it: chunking the D coordinates of the vectors
in RD into B blocks, each of size D/B. Here B ∈ N is an integer; larger B leads to easier
MIPS problems but reduces accuracy of approximations produced. Let W (1),W (2), . . . ,W (B)

be the corresponding block partitioning of W obtained by grouping together the columns cor-
responding to the coordinates in each block. Similarly, let φ(1)(x),φ(2)(x), . . . ,φ(B)(x) be the
conformal partitioning of the coordinates of φ(x).

Now define the overall score vector z := f(x) = Wφ(x), and per-chunk score vectors
zj = W (j)φ(i)(x), for j ∈ [B]. Then we have z =

∑B
j=1 zj , in other words, we have a

decomposition of the score vector. The following theorem states that the loss of a decomposable
score vector can itself be decomposed into several parts connected through a set of message
variables. This theorem is key to decoupling the variables into lower dimensional chunks that
can be optimized separately via an efficient MIPS data structure. While this theorem can be
derived by applying dual decomposition to the convex conjugate of the loss function, here we
provide a simpler direct proof by construction.
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Algorithm 11 Greedy Message Passing
a sample x, threshold parameters τ1, τ2 > 0, and access to B MIPS data structures Tj
storing the rows of W (j), for j ∈ [B] Approximation to L(f(x)) and ∇L(f(x)). Query

Tj with φ(j)(x) and threshold τ to find Sj := {k | |[zj]k| > τ1}. Construct a sparse
approximation z̃j for zj by setting [z̃j]k = [zj]k for k ∈ Sj ∪ P , and [z̃j]k = 0 for
k 6∈ S ∪ P . for t = 1, 2, . . . (until converged) do

1:2:3:4: Compute the set
A :=

⋃
j∈[B]

{k | |[∇L(B(z̃j + λj))]k| > τ2}.

5: Compute [λ∗j ]k = 1
B

[z̃]k − [z̃j]k for all k ∈ A and all j ∈ [B].
6: Compute the step size η = 2

t+2
.

7: For all k ∈ A and all j ∈ [B], update

[λj]k ← η[λ∗j ]k + (1− η)[λj]k.

8: end for
9: Return 1

B

∑B
j=1 L(B(z̃j + λj)) and 1

B

∑B
j=1∇L(B(z̃j + λj)).

Theorem 12. Let L : RD → R be a convex function, and let z ∈ RD be decomposed as a sum
of B vectors as follows: z =

∑B
j=1 zj . Then L(z) is equal to the optimum value of the following

convex minimization problem:

min
λj∈RD, j∈[B]

1

B

B∑
j=1

L(B(zj + λj)) s.t.
B∑
j=1

λj = 0. (3.48)

1:2:3: Proof. First, for any λ1,λ2, . . . ,λB ∈ RD such that
∑B

j=1 λj = 0, by Jensen’s inequality ap-
plied to the convex function L, we have L(z) ≤ 1

B

∑B
j=1 L(B(zj + λj)). On the other hand, if

we set λj = 1
B
z − zj for all j ∈ [B], we have L(z) = 1

B

∑B
j=1 L(B(zj + λj)).

Loss Decomposition Guided Search (LDGS) Theorem (12) is the basis for our algorithm for
computing approximations to the loss and its gradient. This approximation is computed by ap-
proximately solving the convex minimization problem (3.48) without computing the whole score
vector z, using a form of descent method on the λj variables (which we refer to as “message
passing”). The gradient computations required for each step can be (approximately) done using
an efficient MIPS data structure storing the D/B dimensional rows of W (j). The details of the
algorithm are given in Algorithm 13. It can be viewed as running a version of the Frank-Wolfe
algorithm on an appropriate convex function.

A sublinear in K time implementation of step 5 in the algorithm relies on the fact that both
z̃j and λj are sparse vectors, which in turn relies on the fact that gradients of the loss functions of
interest are either sparse or concentrated on a few coordinates. Step 9 in the algorithm moves the
current solution towards the optimal solution λ∗j that we have a closed form formula for, thanks
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to the constructive proof of Theorem (12). This movement is only done for the set of coordinates
of the gradients of high magnitude identified in step 5 of the algorithm, thus ensuring that only
a few coordinates are updated. Thus essentially the algorithm is performing a greedy descent
towards the optimal solution.

Error Analysis Define z̃ =
∑B

j=1 z̃j . Note that ‖z − z̃‖∞ ≤ Bτ1, so the error in approximat-
ing L(z) by L(z̃) is at most Bτ1 times the `∞ Lipschitz constant of L, which is typically small
as explained earlier. The algorithm essentially a runs a Frank-Wolfe type method to converge to
L(z̃). In the following, we analyze the convergence rate of the greedy message passing algo-
rithm (Algorithm 13) to L(z̃). The analysis relies on smoothness of the loss function. A function
is said to be 1/µ-smooth if its gradients are Lipschitz continuous with constant 1/µ. For the
Cross-Entropy loss (3.38) we have µ = 1, and for the smoothed max-margin loss (3.46), µ is a
tunable parameter, and we found setting µ ∈ [1, 5] works well in our experiments.

To analyze the algorithm, denote by Λ the BK dimensional vector 〈λ1,λ2, . . . ,λB〉 in any
given step in the loop of the algorithm. Similarly let Λ∗ denote the BK dimensional vector
composed of λ∗j . Define G(Λ) = 1

B

∑B
j=1 L(B(z̃j + λj)), i.e. the objective function in (3.48).

Theorem 13 (Greedy Message Passing). Suppose the loss function L is 1/µ-smooth. Then the
suboptimality gap of Λ in the t-th step of the loop can be bounded as follows:

G(Λ)−G(Λ∗) ≤ 2B‖Λ∗‖2

µ(t+ 2)
+ 2τ2 ln(t)‖Λ∗‖1

Proof. Since the loss function L is 1/µ-smooth, it is easy to check that G is B/µ-smooth. Thus,
if ∆Λ is the change in Λ in a given step of the loop in the algorithm, then

G(Λ + ∆Λ)−G(Λ) ≤ η〈∇G(Λ),∆Λ〉+
η2B

2µ
‖∆Λ‖2.

Note that ∆Λ equals Λ∗ − Λ in all coordinates except those corresponding to k /∈ A for all
j ∈ [B], and the magnitude of the gradient in those coordinates is at most τ2. Thus we have
〈∇G(Λ),∆Λ〉 ≤ 〈∇G(Λ),Λ∗ − Λ〉 + τ2‖Λ∗‖1. Here, we used the fact that each coordinate
of Λ lies between 0 and the corresponding coordinate of Λ∗. Next, by the convexity of G, we
have 〈∇G(Λ),Λ∗ −Λ〉 ≤ G(Λ∗)−G(Λ). Putting all the bounds together and following some
algebraic manipulations, we have

G(Λ + ∆Λ)−G(Λ∗)

≤ (1− η)(G(Λ)−G(Λ∗)) + ητ2‖Λ∗‖1 +
η2B

2µ
‖Λ∗‖2. (3.49)

Here, we used the fact that each coordinate of Λ lies between 0 and the corresponding coordinate
of Λ∗ to get the bound ‖∆Λ‖2 ≤ ‖Λ∗‖2.

Now, using the fact that η = 2
t+2

in iteration t, a simple induction on t implies the claimed
bound on G(Λ)−G(Λ∗).
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Thus, to ensure that the suboptimality gap is at most ε, it suffices to run the greedy procedure
for T = B‖Λ∗‖2

4µε
steps with τ2 = ε

4 ln(T )‖Λ∗‖1 . While this theorem provides a proof of convergence
for the algorithm to any desired error level, the bound it provides is quite weak. In practice, we
found that running just one step of the loop suffices to improve performance over direct search-
based methods.

If, in addition to being smooth, the loss function is also strongly convex (which can be
achieved by adding some `2

2 regularization, for instance) then we can also show convergence
of the gradients. This is because for strongly convex functions the convergence of gradients can
be bounded by in terms of the convergence of the loss value. This is a very standard analysis and
we omit it for the sake of clarity.

Cost Analysis. Exact gradient evaluation for a single sample can be computed in O(DK)
time. Directly applying a search-based gradient approximation (Algorithm 10) has a cost of
O(DQD(K)), where QD(K) is the number of classes retrieved in the MIPS data structure in
order to find all classes of significant gradients. The query cost QD(K) has a strong dependency
on the dimension D.

Exact MIPS has a cost QD(K) exponential in D [60, 87]. For approximate search methods,
such as Locality Sensitive Hashing (LSH), the cost QD(K) typically only implicitly depends
on the dimension. Our method (Algorithm 13) divides D into B subproblems of dimension
D/B with a cost per message passing iteration of O(DQD/B(K) +DB|A|), where A is the set
computed in step 4 of Algorithm 13. Note QD/B(K) decreases with B rapidly (exponentially in
the exact case) and therefore one can select B such that QD/B(K) � QD(K) and balance two
terms s.t. (DQD/B(K) +DB|A|)� DK.

3.3.3 Practical Consideration
MIPS queries. In practice when using the MIPS data strcuctures, instead of retrieving all
classes with scores more than the threshold τ1, it is more efficient to to retrieve the top Q classes
with the highest scores. In our implementation, we use Spherical Clustering [5] as the MIPS data
structure, where the number of clusters C is selected such that K/C ≤ Q and C ≤ Q. Note this
requires Q ≥

√
K, leading to a speedup bounded by

√
K. Similarly, for computing the active

setA in step 4 of Algorithm 13, we can compute an appropriate threshold τ2 using the properties
of the loss function. In the case of margin-based losses, (3.39) and (3.43), and their smoothed
versions (3.46), the gradient is sparse so τ2 can be set to 0 or some very small value. Loss
functions like (3.38), (3.42) typically have exponentially decayed gradient magnitudes over the
non-confusing negative classes. For these losses, classes can be retrieved in decreasing order of
gradient magnitude, using a lower bound on the partition function Z =

∑
k exp zk summing over

only the subset of retrieved classes in order to decide whether more classes need to be retrieved
or not.

Updates of data structures. During training the model parameters determining f will change,
and the data structures Tj need to be updated. These data structures stores rows of W and
treats φ(x) as query. For loss functions with a sparse gradient, such as (3.39), (3.43), and their
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smoothed versions (3.46), the number of updated rows of W , kr, is much smaller than K and
Q (the number of classes retrieved for a query). Thus the cost for re-indexing rows of W is
krC(D/B)B = krCD, where C is the number of inner products required to index each row,
which is much smaller than the costs of query and updates. For tasks with large number of
updated rows (kr ≈ Q), the method is still effective with a larger mini-batch size Nb. As the
costs of query and updates grow with Nb while the number of rows to re-index is bounded by K,
the cost of maintaining data structure becomes insignificant.

Sampling for initialization. For a randomly initialized model, the early iterates of learning
have gradients evenly distributed over the classes, as the scores of all classes are close to each
other. Therefore, it is unnecessary to search candidates of significant gradient magnitude in the
early stage. In practice, one can switch from a sampling-based gradient approximation to a
search-based gradient approximation after a number of mini-batch updates.
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Figure 3.5: Results of multiclass classification on the Megaface data set: Test Accuracy vs. Train-
ing time (left), Test Accuracy vs. Training Time (middle), and Training Accuracy vs. number of
epochs (right). Note the x-axis is in log-scale.
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Figure 3.6: Results of multilabel classification on the WikiLSHTC data set: Test Accuracy vs.
Training time (left), Test Accuracy vs. Training Time (middle), and Training Accuracy vs. num-
ber of epochs (right). Note the x-axis is in log-scale.
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3.3.4 Experiments

In this section, we conduct experiments on three types of problems: (i) multiclass classifica-
tion (face recognition), (ii) multilabel classification (document tagging), and (iii) Unsupervised
Word Embedding (Skip-gram objective (3.45)). For multiclass and multilabel classification, we
employ a Stochastic Gradient Descent (SGD) optimization algorithm, with an initial step size
chosen from {1, 0.1, 0.01} for the best performance of each method, with a 1/(1 + t) cooling
scheme where t is the iteration counter. The mini-batch size is 10 and all methods are parallelized
with 10 CPU cores in a shared-memory architecture, running on a dedicated machine. All the
implementation are in C++. The following loss functions and gradient evaluation methods are
compared for the experiments on multiclass and multilabel classification:

• Softmax: exact gradient evaluation of the cross-entropy loss (3.38). For multiclass, we
have |P| = 1 and for multilabel, |P| � K.

• Sampled-Softmax: the sampling strategy in [14, 47], which includes all positive classes
of the instances and uniformly subsamples from the remaining negative classes. Here we
choose sample size as K/100.

• Margin: exact gradient evaluation of the smoothed max-margin loss (3.46), where we
choose µ = 1 for the case of multiclass, and µ = 5 for the case of multilabel. The bi-
simplex projection (3.47) is computed in O(K logK) using the procedure described in
[118]. Note the gradient update for this loss is faster than that for cross-entropy, as the loss
gradient is very sparse, making the backward pass much faster.

• MIPS: search-based gradient evaluation (Algorithm 10) with smoothed max-margin loss
(same setting to Margin). We use Spherical Clustering [5] with 100 centroids as the MIPS
data structure, and a batch query of size K/100.

• Decomp-MIPS: gradient evaluation via decomposed search (Algorithm 13, T = 1 itera-
tion). We divide the inner product into B = 8 factors in the multiclass experiment and
B = 4 in the multilabel case. The settings for MIPS data structure are the same as above.

#Identities #Images Embed. Dim.
672K 4.7M 128

Table 3.3: Statistics of the MegaFace dataset.

Multiclass Classificatoin For multiclass classification we conduct experiments on the largest
publicly available facial recognition dataset MegaFace (Challenge 2)14, where each identity is
considered a class, and each sample is an image cropped by a face detector. The data set statistics
are shown in Table 3.3.

We employ the FaceNet architecture [83]15 pre-trained on the MS-Celeb-1M dataset, and
fine-tune its last layer on the MegaFace dataset. The input of the last layer is an embedding

14http://megaface.cs.washington.edu/.
15github.com/davidsandberg/facenet
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of size 128, which is divided into B = 8 factors, each of dimension 16, in the Decomp-MIPS
method.

The result is shown in Figure 3.5, where all methods are run for more than one day. Firstly,
comparing methods that optimize the (smoothed) max-margin loss (Decomp-MIPS, MIPS and
Margin) shows that both Decomp-MIPS, MIPS speed up the iterates by 1 ∼ 2 orders of magni-
tude. However, MIPS converges at an accuracy much lower than Decomp-MIPS and the gap gets
bigger when running for more iterations. Note the time and epochs are in log scale. Secondly,
Softmax has a much slower progress compared to Margin. Note both of them do not even finish
one epoch (4.7M samples) after one day, while the progress of Margin is much better, presum-
ably because its focus on the confusing identities. Sampled-Softmax has much faster iterates, but
the progress per iterate is small, leading to slower overall progress compared to the MIPS-based
approaches.

Multilabel Classification For multilabel classification, we conduct experiments on WikiL-
SHTC [76], a benchmark data set in the Extreme Classification Repository16, where each class is
a catalog tag in the Wikipedia, and each sample is a document with bag of words representation.
The data statistics are shown in Table 3.4.

We train a one-hidden-layer fully-connected feedforward network for the multilabel classifi-
cation task. The first layer has input dimension equal to the vocabulary size (1.6M) and an output
of dimension 100. The second layer has output size equal to the number of classes (325K), with
different loss functions and approximations for different methods in comparison. The training re-
sult also produces document and work embedding as by-products. For Decomp-MIPS, the input
of the last layer is divided into B = 4 factors, each of dimension 25.

We run all the compared methods for more than one day and the result is shown in Figure
3.6. First, for this multilabel task, Softmax has very good per-iteration progress, significantly
more than that from the other three approaches based on the smoothed max-margin loss (Margin,
MIPS, Decomp-MIPS). However, the iterates of Softmax are much slower than the others as it has
a dense loss gradient and thus a slower backpropagation, so that when comparing training time,
Softmax performs similarly to Margin. On the other hand, when comparing Margin Decomp-
MIPS, and MIPS in progress per epoch, the updates of Decomp-MIPS achieve almost the same
progress as the exact gradient calculation of Margin, while MIPS has a significant drop in its
training accuracy compared with Margin and Decomp-MIPS, since it runs for more iterations.
Overall, the MIPS-based methods lead to an order of magnitude speedup, while Decomp-MIPS
retains the accuracy of the exact method. On the other hand, Sampled-Softmax has an extremely
slow per-iteration progress despite its fast iterates, and could not reach a comparable accuracy to
other methods even after one day.

#Label #Sample Embed. Dim. Vocab. Size
325K 1.8M 100 1.6M

Table 3.4: Statistics of the WikiLSHTC data set. On average, each sample has 3.19 positive
labels, and each class appears in 17.46 samples as a positive class.

16manikvarma.org/downloads/XC/XMLRepository.html
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Figure 3.7: Results on word embedding with Skip-gram objective, where GD-Exact, GD-MIPS,
and GD-Decomp-MIPS are initialized with a model trained by one epoch of Word2vec-Neg.

Vocab. Size #Words Embed. Dim. Window Size
≈ 451K ≈ 680M 100 8

Table 3.5: Statistics of the BillionW dataset.

Unsupervised Word Embedding In this section, we evaluate the proposed gradient approx-
imation technique on the word embedding task with the Skip-gram learning objective (3.45)
and compare it with two widely-used gradient approximation methods — Hierarchical Softmax
(Word2vec-HS) and Negative Sampling (Word2vec-Neg) [66] implemented in the word2vec17

package released by the authors. The sample size for Word2vec-Neg is selected from {5, 10, 15, 20, 25}.
We use the benchmark data set BillonW18 of almost a half million vocabulary size. The data

statistics are provided in Table 3.5. Following [66], we use a window of size 8 and subsample
frequent words in the corpus. Each word w is dropped with probability max{1−

√
t
fw
, 0} where

fw is the relative frequency of the word in the corpus, and t = 10−4 is a threshold parameter.
Note that the Skip-gram objective (3.45) is presented in a collapsed form equivalent to the

one in [66]. Here, all terms of the same input-output pairs are grouped together and weighted by
the frequency.

We compute gradients from the positive outputs by summing over the empirical input-output
distribution qx, qy|x in (3.45). Then we perform gradient descent (GD) updates on the parame-
ters of input words {φ(x)}x∈X and output words {φ(y)}y∈X alternately. We use GD, GD-MIPS
and GD-Decomp-MIPS to denote the algorithm with different strategies of loss approximations.
As mentioned in Section 3.3.3, since in the early iterates the model has quite evenly distributed
gradient over candidates, we use 1 epoch of Word2vec-Neg to initialize GD, GD-MIPS and GD-
Decomp-MIPS. For this task, we have many more negative classes of significant gradient mag-
nitude than in the multilabel and multiclass experiments. So we use a batch query of size K/20
instead ofK/100 to the MIPS structure. All the compared methods are parallelized with 24 CPU
cores.

The results are shown in Figure 3.7. After the first epoch, methods based on alternating gradi-
ent descent (GD) (with the collapsed objective (3.45)) have faster convergence per epoch, and the

17code.google.com/archive/p/word2vec/
18www.statmt.org/lm-benchmark/
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iterations of GD-Deomp-MIPS are 5 times faster than those of GD while having a significantly
better objective value than GD-MIPS for the same training time.
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Chapter 4

Convex Estimator for Latent-Variable
Models

The principle of high-dimensional sparse estimation not only helps us develop new algorithms
for existing learning objective, but also equipps us with new tools when it comes to the design
of new estimators and learning objectives. In this chapter, we show how the ability to handle
problems of huge number of variables allows us to develop convex estimators for Latent-Variable
Models, such as Latent-Feature Model and Generalized Mixed Regression in section 4.1 and 4.2
respectively, that enjoy strong approximation guarantees without any restrictive assumption on
the data [122].

4.1 Latent-Feature Models

Latent variable models are widely used in unsupervised learning, in part because they provide
compact and interpretable representations of the distribution over the observed data. The most
common and simplest such latent variable model is a mixture model, which associates each
observed object with a latent class. However, in many real-world applications, observations
are better described by a combination of latent features than a single latent class. Accordingly,
admixture or mixed membership models have been proposed [2], that in the simplest settings,
assign each object to a convex combination of latent classes. For instance, a document object
could be modeled as a convex combination of topic objects. There are many settings however
where a convex combination might be too restrictive, and the objects are better modeled as simply
a collection of latent classes. An example is web image, which can often described by multiple
tags rather than a single class, or even by a convex combination of tag objects. Another example
is the model of user, who might have multiple interests in the context of a recommendation
system, or be involved in multiple communities in a social network. With such settings in mind,
[32] proposed a latent feature model (LFM), where each observed object can be represented by
a binary vector that indicates the presence or absence of each of a collection of latent features.
Their proposed model extended earlier models with a similar flavor for specialized settings, such
as [98] for bag of words models for text. The latent feature model can also be connected to
sparse PCA models [22, 49] by considering a pointwise product of the binary feature incidence
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vector with another real-valued vector. As [32] showed, LFM handily outperforms clustering as
an efficient and interpretable data representation, particularly in settings where the object can be
naturally represented as a collection of latent features or parts.

However, the estimation (inference) of an LFM from data is difficult, due to the combinatorial
nature of the binary feature incidence vectors. Indeed, with N samples, and K latent features,
the number of possible binary matrices consisting of the N binary feature incidence vectors is
2NK . And not in the least, the log-likelihood of LFM is not a concave function of its parameters.

Given that the finite feature case seems intractable, right from the outset, attention has focused
on the nonparametric infinite feature case, where a prior known as the Indian Buffet Process (IBP)
has been proposed for the infinite binary matrices consisting of the feature incidence vectors
given infinite set of latent features [33]. While the IBP prior provides useful structure, inference
remains a difficult problem, and in practice, one often relies on local search methods [11] to find
an estimate of parameters, or employ Markov Chain Monte Carlo (MCMC) [24] or variational
methods [25] to obtain an approximate posterior distribution. However, none of these approaches
can provide guarantees on the quality of solution in polynomial time.

Note that both in the mixture model, as well as the admixture model cases, the parametric
variants have been hugely popular alongside or perhaps even more so than the nonparametric
variants e.g. clustering procedures based on finite number of clusters, or topic models with a
finite number of topics. This is in part because the parametric variants have a lower model
complexity, which might be desired under certain settings, and also have simpler inference pro-
cedures. However, in the LFM case, the parametric variant has received very little attention,
which might suggest the relatively lesser popularity for LFMs when compared to mixture or
admixture/topic models.

Accordingly, we consider the question of computationally tractable estimation of parametric
LFMs. In the nonparametric setting with an IBP prior, [97] have proposed the use of spectral
methods, which bypasses the problem of non-concave log-likelihood by estimating the moments
derived from the model, and then recovers parameters by solving a system of equations. Their
spectral methods based procedure produces consistent estimates of LFMs in polynomial time,
however with a sample complexity that has a high-order (more than six-order) polynomial de-
pendency on the number of latent features and the occurrence probability of each feature. More-
over, the application of spectral methods requires knowledge of the distribution, which results in
non-robustness to model mis-specification in practice. Under a noiseless setting, [88] leveraged
identifiability conditions under which the solution is unique, to propose an algorithm for a para-
metric LFM. Their algorithm is guaranteed to recover the parameters in the noiseless setting, but
with the caveat that it has a computational complexity that is exponential in the number of latent
features.

We note that even under the assumption of a nonparametric LFM, specifically an Indian
Buffet Process with Linear Gaussian Observations, deriving its MAP point estimate under low-
variance asymptotics following the approach of MAD-Bayes Asymptotics [11] yields an objective
similar to that of a parametric LFM with an additional term that is linear in the number of latent
features. Thus, developing computationally tractable approaches for parametric LFMs would be
broadly useful. In the following, we propose the Latent Feature Lasso, a novel convex estimation
procedure for the estimation of a Latent Feature Model using atomic-norm regularization. We
construct a greedy algorithm with strong optimization guarantees for the estimator by relating
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each greedy step to a MAX-CUT like problem. We also provide a risk bound for the estimator
under general data distribution settings, which trades off between risk and sparsity, and has a
sample complexity linear in the number of components and dimension. Under the noiseless
setting, we also show that Latent Feature Lasso estimator recovers the parameters of LFM under
an identifiability condition similar to that proposed in [88].

4.1.1 Problem Setup
A Latent Feature Model represents data as a combination of latent features. Let x ∈ RD be an
observed random vector that is generated as:

x = W T z + e,

where z ∈ {0, 1}K is a latent binary feature incidence vector that denotes the presence or absence
of K features, W ∈ RK×D is an unknown matrix of K latent features of dimension D, and e ∈
RD is an unknown noise vector. We say that the model is biased whenE[e|z] = E[x|z]−W T z 6=
0, and which we allow in our analysis. Suppose we observe N samples of the random vector x.
It will be useful in the sequel to collate the various vectors corresponding to the N samples into
matrices. We collate the observations into a matrix X ∈ RN×D, the N latent incidence vectors
into a matrix Z ∈ {0, 1}N×K , and the noise vectors into an N × D matrix ε. We thus obtained
the vectorized form of the model as X = ZW + ε.

Most existing works on LFM make two strong assumptions. The first is that the model has
zero bias E [e|z] = 0 [11, 24, 25, 33, 39, 88, 97, 129]. The second common but strong class of
assumptions is distributional [39, 97]:

p(x|z) = N(W T z, σ2I) , p(z) = Bern(π),

where Bern(π) denotes the distribution of K independent Bernoulli with zk ∼ Bern(πk). In
the Nonparametric Bayesian setting [11, 24, 25, 33, 129], one replaces Bern(π) with an Indian
Buffet Process IBP(α) over theN×K+ binary incidence matrix Z ∈ {0, 1}N×K+ whereK+ can
be inferred from data instead of being specified a-priori. We note that both classes of assumptions
need not hold in practice: the zero bias assumption E[x|z] = W T z is stringent given the linearity
of the model, while the Bernoulli and IBP distributional assumptions are also restrictive, in part
since they assume independence between the presence of two features zik and zik′ . Our method
and analyses do not impose either of these assumptions.

It is useful to contrast the different estimation goals ranging over the LFM literature. In the
Bayesian approach line of work [11, 24, 33, 39, 129], the goal is to infer the posterior distribution
P (Z,W |X) given X . The line of work using Spectral Methods [97] on the other hand aim to
estimate p(z), p(x|z) in turn by estimating parameters (π,W ). In some other work [88], they
aim to estimate W , leaving the distribution of z unmodeled. In this paper, we focus on the more
realistic setting where we make no assumption on p(x) except that of boundedness, and aim to
find an LFM W ∗ that minimizes the risk

r(W ) := E[ min
z∈{0,1}K

1

2
‖x−W T z‖2]. (4.1)

where the expectation is over the random observation x.
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4.1.2 Latent Feature Lasso
We first consider the non-convex formulation that was also previously studied in [11] as asymp-
totics of the MAP estimator of IBP Linear-Gaussian model:

min
K∈N,Z∈{0,1}N×K ,W∈RK×D

1

2N
‖X − ZW‖2

F + λK. (4.2)

The estimation problem in [88] could also be cast in the above form with λ = 0 and K treated
as a fixed hyper-parameter, while [11] treats K as a variable and controls it through λ. (4.2) is
a combinatorial optimization of N × K + 1 integer variables. In the following we develop a
tight convex approximation to (4.2) with `2 regularization on W , by introducing a type of atomic
norm [13].

For a fixed K, Z, consider the minimization over W of the `2 regularized version of (4.2)

min
W∈RK×D

1

2N
‖X − ZW‖2

F +
τ

2
‖W‖2

F , (4.3)

which is a convex minimization problem. Applying Lagrangian duality to (4.3) results in the
following dual form

max
A∈RN×D

{
−1

2N2τ
tr(AATM)− 1

N

N∑
i=1

L∗(xi,−Ai,:)
}
. (4.4)

where M := ZZT , A ∈ RN×D are dual variables that satisfy W ∗ = 1
N
Z∗A∗ at the optimum of

(4.3) and (4.4), and L∗(x, α) = 〈x, α〉+ 1
2
‖α‖2 is the convex conjugate of square loss L(x, ξ) =

1
2
‖x− ξ‖2 w.r.t. its second argument.

Let G(M,A) denote the objective in (4.4) for any fixed M , and let g(M) = maxA G(M,A)
denote the optimal value of the objective when optimized over A. The objective in (4.2) for
a fixed K could thus be simply reformulated as a minimization of this dual-derived objective
g(M). It can be seen that g(M) is a convex function w.r.t. M since it is the maximum of linear
functions of M . The key caveat however is the combinatorial structure on M since it has the
form M = ZZT , Z ∈ {0, 1}N×K . We address this caveat by introducing the following atomic
norm

‖M‖S := min
c≥0

K∑
a∈S

ca s.t. M =
∑
a∈S

caa. (4.5)

with S := {zzT |z ∈ {0, 1}N}. Note ‖M‖S =
∑

a∈S ca = K when ca in (4.24) are constrained
at integer value {0, 1}, and it serves a convex approximation to K similar to the `1-norm used
in Lasso for the approximation of cardinality. This results in the following Latent Feature Lasso
estimator

min
M
{g(M) + λ‖M‖S} . (4.6)

4.1.3 Algorithm
The estimator (4.6) seems intractable at first sight in part since the atomic norm involves a

set S of 2N atoms. In this section, we study a variant of approximate greedy coordinate descent
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Algorithm 12 A Greedy Algorithm for Latent Feature Lasso

[0:] A = ∅, c = 0.
for t = 1...T do

[1:] Find a greedy atom zzT by solving (4.28).
[2:] Add zzT to an active set A.
[3:] Minimize (4.7) w.r.t. coordinates in A via updates (4.29).
[4:] Eliminate {zjzTj |cj = 0} from A.

end for.

method for tractably solving problem (4.6). We begin by rewriting the optimization problem
(4.6) as an `1-regularized problem with K̄ = 2N − 1 coordinates, by expanding the matrix M in
terms of the K̄ atoms underlying the atomic norm ‖.‖S :

min
c∈RK̄+

g
(

K̄∑
j=1

cjzjz
T
j

)
︸ ︷︷ ︸

f(c)

+λ‖c‖1

︸ ︷︷ ︸
F (c)

(4.7)

where {zj}K̄j=1 enumerates all possible {0, 1}N patterns except the 0 vector. Our overall algorithm
is depicted in Algorithm 13. In each iteration, it finds

j∗ := argmax
j
−∇jf(c)

= argmax
j
〈−∇g(M), zjz

T
j 〉

(4.8)

approximately with a constant approximation ratio via a reduction to a MAX-CUT-like problem,
which we will discuss later. An active set A is maintained to contain all atoms zjzTj with non-
zero coefficients cj and the atom returned by the greedy search (4.28). Then we minimize (4.7)
over coordinates in A by a sequence of proximal updates:

cr+1 ←
[
cr − ∇f(cr) + λ

γ|A|

]
+

, r = 1...T2 (4.9)

where γ is the Lipschitz-continuous constant of the coordinate-wise gradient∇cjf(c).

Computing cooordinate-wise gradients. By Danskin’s Theorem, the gradient of function
f(c) takes the form

∇cjf(c) = zjA
∗A∗T zj/(2N

2τ), (4.10)

which in turn requires finding the maximizer A∗ of (4.4).
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Computing A∗. By taking advantage of the strong duality between (4.4) and (4.3), the maxi-
mizer A∗ can be found by finding the minimizer W ∗ of

min
W

1

2N
‖X − ZAW‖2

F +
∑
k∈A

τ

2ck
‖Wk,:‖2 (4.11)

and computing A∗ = (X − ZAW ∗), where ZA denotes N × |A| matrix of columns taking from
the active atom basis {zk}k∈A.

Computing W ∗. There is a closed-form solution W ∗ to (4.11) of the form

W ∗ = (ZT
AZA +Nτ−1(cA))−1ZT

AX. (4.12)

An efficient way of computing (4.12) is to maintain ZT
AZA and ZT

AX whenever the active set
of atoms A changes. This has a cost of O(NDKA) for a bound KA on the active size, which
however is almost neglectable compared to the other costs when amortized over iterations. Then
the evaluation of (4.12) would cost only O(K3

A + K2
AD) for each evaluation of different c.

Similarly the matrix computation of (4.10) can be made more efficient as∇cf(c) ∝

((ZT
AX − ZT

AZAW
∗)(ZT

AX − ZT
AZAW

∗)T )

can be computed in O(K2D +K3) via the maintenance of ZT
AZA, ZT

AX .
The output of Algorithm 13 is the coefficient vector c, and with the resulting latent feature

matrix W (c) given by (4.12). Since the solution could contain many atoms of small weight
ck. In practice, we perform a rounding procedure that ranks atoms according to the score
{ck‖Wk,:‖2}k∈A and then pick top K atoms as the output Z∗, and solve a simple least-squares
problem to obtain the corresponding W ∗.

Greedy Atom Generation A key step to the greedy algorithm (Algorithm 13) is to find the
direction (4.28) of steepest descent, which however is a convex maximization problem with bi-
nary constraints that in general cannot be exactly solved in polynomial time. Fortunately in this
section, we show that (4.28) is equivalent to a MAX-CUT-like Boolean Quadratic Maximiza-
tion problem that has efficient Semidefinite relaxation with constant approximation guarantee.
Furthermore, the resulting Semidefinite Programming (SDP) problem is of special structure that
allows iterative method of complexity linear to the matrix size [10, 102].

In particular, let C=∇g(M)=A∗A∗T/(2τN) the maximization problem

max
z∈{0,1}N

〈C, zzT 〉 (4.13)

can be reduced to an optimization problem over variables taking values in {−1, 1} via the trans-
formation y = 2z − 1, which results in the problem

max
y∈{−1,1}N

1

4

(
〈C, yyT 〉+ 2〈C,1yT 〉+ 〈C,11T 〉

)
. (4.14)
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where 1 denotes N -dimensional vector of all 1s. By introducing a dummy variable y0, (4.32)
can be expressed as

max
(y0;y)∈{−1,1}N+1

1

4

[
y0

y

]T [
1TC1 1TC
C1 C

] [
y0

y

]
. (4.15)

Note that one can ensure finding a solution with y0 = 1 by flipping signs of the solution vector to
(4.33), since this does not change the quadratic form objective value. Denote the quadratic form
matrix in (4.33) be Ĉ. Problem of form (4.33) is a MAXCUT-like Boolean Quadratic problem,
for which there is SDP relaxation of the form

max
Y ∈SN

〈Ĉ, Y 〉

s.t. Y � 0, diag(Y ) = 1
(4.16)

rounding from which guarantees a solution ŷ to (4.33) satisfying

h− h(ŷ) ≤ ρ(h− h) (4.17)

for ρ = 2/5 [73], where h(y) denotes the objective function of (4.33) and h, h denote the
maximum, minimum value achievable by some y ∈ {−1, 1}N+1 respectively. Note this result
holds for any symmetric matrix Ĉ. Since our problem has a positive-semidefinite matrix Ĉ,
h = 0 and thus

−∇ĵf(c) = h(ŷ) ≥ µh = µ(−∇j∗f(c)) (4.18)

for µ = 1 − ρ = 3/5, where ĵ is coordinate selected by rounding from a solution of (4.34) and
j∗ is the exact maximizer of (4.28).

Finally, it is noteworthy that, although solving a general SDP is computationally expensive,
SDP of the form (4.34) has been shown to allow much faster solver that has linear cost w.r.t. the
matrix size nnz(Ĉ) [10, 102]. In our implementation we adopt the method of [102] due to its
strong empirical performance.

Convergence Analysis The aim of this section is to show the convergence of Algorithm 13
under the approximation of greedy atom generation. In particular, we show the multiplicative
approximation error incurred in the step (4.28) only contributes an additive approximation error
proportional to λ, as stated in the following theorem.
Theorem 14. The greedy algorithm proposed (Algorithm 13) satisfies

F (ct)− F (c∗) ≤ 2γ‖c∗‖2
1

µ2

1

t
+

2(1− µ)

µ
λ‖c∗‖1︸ ︷︷ ︸

∆(λ)

,

where c∗ is any reference solution, µ = 3/5 is the approximation ratio given by (4.18) and γ is
the Lipschitz-continuous constant of coordinate-wise gradient∇jf(c), ∀j ∈ [K].

The theorem thus shows that the iterates converge sub-linearly to within statistical precision
λ of any reference solution c∗ scaled in main by its `1 norm ‖c∗‖1. In the following theorem, we
show that, with the additional assumption that F (c) is strongly convex over a restricted support
set A∗, one can get a bound in terms of the `0-norm of a reference solution c∗ with support A∗.
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Theorem 15. Let A∗ ∈ [K̄] be a support set and c∗ := argminc:supp(c)=A∗ F (c∗). Suppose F (c)
is strongly convex on A∗ with parameter β. The solution given by Algorithm 13 satisfies

F (cT )− F (c∗) ≤ 4γ‖c∗‖0

βµ2

(
1

T

)
+

2(1− µ)λ

µ

√
2‖c∗‖0

β
.

Let K̄ = 2N be the size of the atomic set. Any target latent structure Z∗W ∗ can be expressed
as ZD(c∗)W̃ ∗ where Z is an N × K̄ dictionary matrix, D(c∗) is a K̄ × K̄ diagonal matrix of
diagonal elements Dkk =

√
c∗k with c∗k = 1 for columns corresponding to Z∗ and c∗k = 0 for the

others, and W̃ ∗ is W ∗ padded with 0 on rows in {k | ck = 0}. Then since ‖c∗‖1 = ‖c∗‖0 = K∗,
Theorem 15 shows that our algorithm has an iteration complexity of O(K/ε) to achieve ε error,
with an additional error term proportional to λ

√
K due to the approximation made in (4.18).

Risk Analysis In this section, we investigate the performance of the output from Algorithm 13
in terms of the population risk r(·) defined in (4.1). Given coefficients c with supportA obtained
from algorithm (13) for T iterations, we construct the weight matrix by Ŵ = (

√
cA)W ∗ with

W ∗(cA) = 1
N
ZT
AA
∗, where A∗ is the maximizer of (4.4) as a function of c. It can be seen that Ŵ

satisfies

F (c) =
1

2N
‖X − ZAŴ‖2

F +
τ

2
‖Ŵ‖2

F + λ‖cA‖1. (4.19)

The following theorem gives a risk bound for Ŵ . Without loss of generality, we assume x is
bounded and scaled such that ‖x‖ ≤ 1.

Theorem 16. Let Ŵ = (
√
cA)W ∗(cA) be the weight matrix obtained from T iterations of

Algorithm 13, and W̄ be the minimizer of the population risk (4.1) with K components and
‖W̄‖F ≤ R. We then have the following bound on population risk: r(Ŵ ) ≤ r(W̄ ) + ε with
probability 1− ρ for

T ≥ 4γ

µ2β
(
K

ε
) and N = Ω(

DK

ε3
log(

RK

ερ
)),

with λ, τ chosen appropriately as functions of N .

Note the output of Algorithm 13 has number of components K̂ bounded by number of it-
erations T . Therefore, Theorem (16) gives us a trade-off between risk and sparsity—one can
guarantee to achieve ε-suboptimal risk compared to the optimal solution of size K, via O(K/ε)
components and Õ(DK/ε3) samples. Notice the result (16) is obtained without any distribu-
tional assumption on p(x) and p(z) except that of boundedness. Comparatively, the theoretical
result obtained from Spectral Method [97] requires the knowledge/assumption of the distribution
p(x|z), p(z), which is sensitive to model mis-specification in practice.
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Figure 4.1: From left to right, each column are results for Syn0 (K=4), Syn2 (K=14), Syn3
(K=35) and Syn1 (K=35) respectively. The first row shows the Hamming loss between the
ground-truth binary assignment matrix Z∗ and the recovered ones Ẑ. The second row shows
RMSE between Θ∗ = Z∗W ∗ and the estimated Θ̂ = ẐŴ .
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Figure 4.2: From left to right are results for Tabletop, Mnist1k, YaleFace and Yeast, where
Spectral Method does not appear in the plots for YaleFace and Yeast due to a much higher
RMSE, and Variational method reports a runtime error when running on the YaleFace data set.

4.1.4 Experiments

Table 4.1: Data statistics.

Dataset N D K σ nnz(W ∗k,:)
Syn0 100 196 4 0 ≤ 8
Syn1 1000 1000 35 0.01 1000
Syn2 1000 900 14 0.1 49
Syn3 1000 900 35 0.1 36

Tabletop 100 8560 4 n/a n/a
Mnist1k 1000 777 n/a n/a n/a
YaleFace 165 2842 n/a n/a n/a

Yeast 1500 104 n/a n/a n/a

Figure 4.3: Synthetic data (i.e. Syn1,
Syn2, Syn3). The first row shows obser-
vationsXi,:, and the second row shows la-
tent features Wk,:.

In this section, we compare our proposed method with other state-of-the-art approaches on
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both synthetic and real data sets. The dataset statistics are listed in Table 4.1. For the synthetic
data experiments, we used a benchmark simulated dataset Syn0 that was also used in [11, 97]. But
since this has only a small number of latent features (K = 4), to make the task more challenging,
we created additional synthetic datasets (which we denote Syn1, Syn2, Syn3) with more latent
features. Figure 4.3 shows example of our synthetic data, where we reshape dimension D into
an image and pick a contiguous region. Each pixel W (k, j) in the region is set as N(0, σ2),
while pixels not in the region are set to 0. In the examples of Figure 4.3, the region has size
nnz(W (k, :))=36. Note the problem becomes harder when the region size nnz(W (k, :)), number
of features K, or noise level σ becomes larger. For real data, we use a benchmark Tabletop data
set constructed by [32], where there is a ground-truth number of features K = 4 for the 4 objects
on the table. We also take two standard multilabel (multiclass) classification data sets Yeast and
Mnist1k from the LIBSVM repository 1, and one Face data set YaleFace from the Yale Face
database 2.

Given the estimated factorization (Z,W ), we use the following 3 evaluation metrics to com-
pare different algorithms:
• Hamming-Error: minS:|S|=K

‖Z:,S−Z∗‖2F
NK

.

• RMSE: ‖Z
∗W ∗−ZW‖F√

ND
.

• RMSEnoisy: ‖X−ZW‖F√
ND

.

where the first two can only be applied when the ground truth Z∗ are W ∗ are given. For real
data, we can only evaluate the noisy version of RMSE, which can be interpreted as trying to find
a best approximation to the observation X via a factorization with binary components.

The methods in comparison are listed as follows: (a) MCMC: An accelerated version of
the Collapsed Gibbs sampler for the Indian Buffet Process (IBP) model [24]. We adopted the
implementation published by 3. We ran it with 25 random restarts and recorded the best results for
each K. (b) Variational: A Variational approximate inference method for IBP proposed in [25].
We used implementation published by the author 4. (c) MF-Binary: A Matrix Factorization
with the Binary Components model [88], which has recovery guarantees in the noiseless case
but has a O(K2K) complexity and thus cannot scale to K > 30 on our machine. We use the
implementation published by the author 5. (d) BP-Means: A local search method that optimizes
a MAD-Bayes Latent Feature objective function [11]. We used code provided by the author
6. We ran it with 100 random restarts and recorded the best result. (e) Spectral: Spectral
Method for IBP Linear Gaussian model proposed in [97]. We used code from the author. The
implementation has a memory requirement that restricts its use to K < 14. (f) LatentLasso:
The proposed Latent Feature Lasso method (Algorithm 13).

The results are shown in Figure 4.1 and 4.2. On synthetic data, we observe that, when the
number of features K is small (e.g. Syn0), most of methods perform reasonably well. However,
when the number of features becomes slightly larger (i.e. K = 35 in Syn1, Syn3), most of

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://vision.ucsd.edu/content/yale-face-database
3https://github.com/davidandrzej/PyIBP
4http://mloss.org/software/view/185/
5https://sites.google.com/site/slawskimartin/code
6https://github.com/tbroderick/bp-means
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algorithms lose their ability of recovering the hidden structure, and when they fail to do so,
they can hardly find a good approximation to Θ∗ = Z∗W ∗ even using a much larger number
of components up to 50. We found the proposed LatentLasso method turns out to be the only
method that can still recover the desired hidden structure on the Syn1 and Syn3 data sets, which
gives 0 RMSE and Hamming Error. On Syn2 (K = 14) data set, MF-Binary and LatentLasso
are the only two methods that achieve 0 RMSE and Hamming-Error. However, MF-Binary has
a complexity growing exponential with K, which results in its failure on Syn1 and Syn3 due
to a running time more than one day when K > 30. The proposed LatentLasso algorithm
actually runs significantly faster than other methods in our experiments. For example, on the
Syn1 dataset (N=1000, D=1000, K=35), the runtime of LatentLasso is 398s, while MCMC,
Variational, MF-Binary and BP-Means all take more than 10000s to obtain their best results
reported in the Figures.

4.2 Mixed Regression
In this section, we extend the convex atomic-norm-regularized estimator to the problem of Mixed
Regression (MR). Mixed Regression considers the estimation ofK functions from a collection of
input-output samples, where for each sample, the output is generated by one of the K regression
functions. When fitting linear functions in a noiseless setting, this is equivalent to solving K
linear systems, while at the same time, identifying which system each equation belongs to. The
MR formulation can be employed as an approach to decompose a complicated function into K
simpler ones, by splitting the observations into K classes. Variants of regression families such
as piecewise-linear regression can be viewed as special cases of MR.

However, the MR problem is NP-hard in general [123] due to the simultaneous fitting of the
discrete class labels as well as the regression functions. Standard approaches to the mixture prob-
lem employ local search methods such as Expectation Maximization (EM) [108] and Variational
Bayes [9] that are prone to spurious local optima. There have thus been several lines of recent
work studying estimation of mixed regression models with strong statistical guarantees under
additional statistical assumptions. For the special case of linear function with K=2 components,
[16] propose a convex nuclear norm minimization formulation that is guaranteed to estimate the
two functions with minimax-optimal rates when given a sub-Gaussian design matrix. With the
additional conditions of zero noise and isotropic Gaussian inputs, [123] propose an initialization
for the EM algorithm to guarantee exact recovery of the true parameters. However, in addition to
the stringent statistical assumptions, these methods and results are specialized to the case of two
components, and seem non-trivial to generalize.

For problems with more than two components, most of the existing approaches [12, 84, 124,
127] rely on the Tensor Methods. In particular, for a D-dimensional linear MR problem, [12]
propose a convex optimization formulation using a third-order tensor, which results in a com-
putational cost of O(ND12) and a sample complexity of O(D6/ε2), limiting its application to
problems of small dimension. The Tensor Decomposition approach proposed in [84] has a sam-
ple complexity of only O(D3K4/ε2) and is computationally efficient. However, it requires the
knowledge of the input probability distribution in order to derive the score function used in their
algorithm, which might not be available, and estimating the density over the D-dimensional in-
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put variables could be an even harder problem than MR itself. Other recent work [124, 127]
show that in the noiseless setting with isotropic Gaussian inputs, an Alternating Minimization al-
gorithm initialized with the Tensor Method leads to exact recovery of the true parameters. These
latter methods have sample complexities linear in D, but with O(KK), O(K10) dependencies in
K respectively. Finally, [38] observed that, under the assumption of well-separated data, one can
use a guaranteed clustering algorithm to find the mixture assignment of each observation, and
thus solves the MR problem as a by-product. However, the data distribution considered in MR,
such as those assumed in [12, 84, 124, 127], are usually not well-separated (see our Figure 4.6
as an example).

In this work, we address a generalized version of Mixed Regression where the output can
be an additive combination of several mixture components. Our approach follows the general
meta-approach emerging in the recent years of addressing latent-variable model estimation from
the perspective of high-dimensional sparse estimation [116, 120, 121]. We propose a novel con-
vex estimator MixLasso for the mixed regression problem, which enforces the mixture structure
through minimizing a carefully constructed atomic norm that acts as a surrogate function for the
number of mixture components. We then propose a greedy algorithm that generates a steepest-
descent component at each iteration through solving a sub-problem similar to MAX-CUT. Our
analysis of the algorithm gives a risk bound that trades off prediction accuracy and model spar-
sity, with a sample complexity that is linear in bothD andK, and without imposing any stringent
assumptions on, or assuming knowledge of, the input/output distribution beyond that of bound-
edness, and even allowing for model mis-specification. This makes our MixLasso algorithm a
theoretically sound method for a wide range of practical settings. Moreover, we also show how
our proposed method can be easily extended to the nonlinear regression setting, to regression
functions lying in a Reproducing Kernel Hilbert Space (RKHS). Our experiments with both gen-
eralized MR and standard MR show that the proposed method finds high-quality solutions in a
wider range of settings when compared to existing approaches.

4.2.1 Problem Setup
In Generalized Mixed Regression, the response y ∈ R, given covariates x ∈ X , is specified as:

y =
K∑
k=1

zkfk(x) + ω (4.20)

where zk ∈ {0, 1}, k = 1, . . . , K is a latent binary vector indicating the presence or absence
of each component, and fk(xi) : RD → R is the regression function of k-th component. The
standard mixed regression is a special case of (4.20) with additional constraint ‖z‖0 = 1. Here
ω ∈ R is a noise term with both bias and variance. In other words, we consider the very general
setting where we allow for model mis-specification, and in general E [ω|x, z] 6= 0. This makes
our problem setting in (4.20) very practically plausible, especially when the regression functions
{fk(x)}Kk=1 lie in some restricted family such as linear functions.

Our goal is to find F := {fk(x)}Kk=1 minimizing the risk

r(F) := E
[

min
z∈{0,1}K

1

2
(y −

K∑
k=1

zkfk(x))2

]
, (4.21)
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while keeping the number of componentsK as small as possible. This yields a trade-off between
r(F) and K. While one can always have a small risk with K → ∞, we would like to find the
smallest K that achieves such risk.

4.2.2 MixLasso: A Convex Estimator

In the following, we will first focus on the linear case fk(x) := 〈wk,x〉 and consider extension
to nonlinear functions. Given a collection of i.i.d. samples {(xi, yi)}Ni=1, the `2-regularized
Empirical Risk Minimization (ERM) problem for our task (4.21) is

min
W∈RK×D,zi∈{0,1}K

1

2N

N∑
i=1

(yi − zTi Wxi)2 +
τ

2
‖W‖2

F . (4.22)

(C.7) is a hard optimization problem in general due to the simultaneous minimization w.r.t. pa-
rameters W and binary hidden variables {zi}Ni=1 [123]. However, given hidden variables, the
problem is convex w.r.t. W , and thus, from the duality theory (C.7) is equivalent to

min
Z∈{0,1}N×K

max
α∈RN

−1

N

N∑
i=1

L∗(yi,−αi)−
1

2N2τ
tr(D(α)XXTD(α)ZZT ) (4.23)

whereZ := (zi)
N
i=1,D(α) is a diagonal matrix formed by vectorα, andL∗(y, α) = yT α+ 1

2
‖α‖2

is the convex conjugate of square loss L(y, ξ) = 1
2
(y − ξ)2. The maximizer α∗ of (4.23) and

minimizer W ∗ of (C.7) are related by W ∗ = 1
Nτ

∑N
i=1 α

∗
i (zix

T
i ) = 1

Nτ
ZTD(α∗)X .

A key observation for our formulation is that, although (4.23) is non-convex w.r.t. Z, it is a
convex function of M := ZZT (since it is a maximum over linear functions of M ). Therefore,
the intractability of (4.23) only lies in the combinatorial constraint M = ZZT for some Z ∈
{0, 1}N×K . To relax such constraint, we introduce an atomic norm [13] of the form

‖M‖S := min
c≥0

∑
a∈S

ca s.t. M =
∑
a∈S

caa. (4.24)

where S := {zzT |z ∈ {0, 1}N}. Note if ca takes integer values {0, 1}, M =
∑

a∈S caa = ZZT

for some Z ∈ {0, 1}N×K and ‖M‖S = K. When ca is allowed to be any nonnegative number,
(4.24) serves as a convex approximation to the number of components K in a sense similar to
`1-norm as a convex approximation for the number of non-zero elements in Lasso [94]. Then the
MixLasso estimator solves

min
M∈RN×N+

g(M) + λ‖M‖S (4.25)

where g(M) is defined as

g(M) = max
α∈RN

− 1

2N2τ
tr(D(α)XXTD(α)M)− 1

N

N∑
i=1

L∗(yi,−αi) (4.26)
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Algorithm 13 A Greedy Algorithm for MixLasso (4.25)

Initialize A = ∅, c = 0.
for t = 1...T do

1. Find a greedy component zzT by solving (4.28).
2. Add zzT to the active set A.
3. Minimize (4.27) w.r.t. coordinates cA in the active set A through updates (4.29).
4. Eliminate {zkzkT |ck = 0} from A.

end for.

4.2.3 Algorithm
The convex formulation (4.25) is still a challenging optimization problem since it involves an
atomic norm defined over K̄ := 2N atoms. An equivalent formulation expresses (4.25) as the
minimizatioin of

F (c) := g

( K̄∑
k=1

ckz
kzkT

)
+ λ‖c‖1 (4.27)

w.r.t. c ∈ RK̄+ , where {zk}K̄k=1 enumerates ∀z ∈ {0, 1}N . We introduce a greedy algorithm
(Algorithm 13) for MixLasso, which maintains a sparse set of active components and adds one
more active component zkzkT at each iteration corresponding to the steepest descent direction

min
z∈{0,1}N

〈∇g(M), zzT 〉 = − 1

2N2τ
max

z∈{0,1}N
〈D(α∗)XXTD(α∗), zzT 〉, (4.28)

whereα∗ is the maximizer in (4.26). (4.28) is equivalent to a MAX-CUT like problem that can be
solved efficiently with a constant-ratio approximation guarantee. Then we minimize (4.27) w.r.t.
coefficients corresponding to the active components through a sequence of proximal gradient
updates:

cs+1
k ←

[
csk −

1

γ|A|(z
kT∇g(M s)zk + λ)

]
+

(4.29)

for k ∈ A, and s = 1 . . . S, where γ is the Lipschitz-continuous parameter of the coordinate-wise
gradient zkT∇g(M)zk. The evaluation of ∇g(M s) involves finding the maximizer α∗, which
can be obtained by solving the least-square problem:

W ∗ := argmin
W∈R|A|×D

1

2N

N∑
i=1

(yi − zTi Wxi)2 +
τ

2
tr(W TD−1(cA)W ) (4.30)

and compute α∗i = (yi − zTi W ∗xi). Let E be the N × (|A|D) design matrix of the least-square
problem (4.30). By maintaining E, ETE whenever the active set A changes, solving the least-
square problem (4.30) costs O(D3|A|3) amortizedly.

Greedy Generation of Components Problem (4.28) for finding the steepest descent direction
is a convex maximization problem with binary-valued variables and is hard in general. However,
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we show that it is equivalent to a Boolean Quadratic Maximization problem similar to MAX-
CUT, where constant-ratio approximate algorithm exists through a Semidefinite Relaxation [73].
Furthermore, the Semidefinie Relaxation of this type has scalable solver that requires only com-
plexity linear to the coefficient matrix [10, 102].

Let C = D(α∗)XXTD(α∗). The greedy step (4.28) solves a problem of the form

max
z∈{0,1}N

〈C, zzT 〉, (4.31)

which can be reduced to a problem of binary variables v ∈ {−1, 1}N via a transformation
v = 2z − 1:

max
v∈{−1,1}N

1

4

(
〈C,vvT 〉+ 2〈C,1vT 〉+ 〈C,11T 〉

)
. (4.32)

where 1 denotes N -dimensional vector of all 1s. By introducing a dummy variable v0, (4.32) is
equivalent to

max
(v0;v)∈{−1,1}N+1

1

4

[
v0

v

]T [
1TC1 1TC
C1 C

] [
v0

v

]
. (4.33)

Note one can always find a solution of v0 = 1 by flipping signs of the solution since this does not
change the objective value. Let the matrix in (4.33) be Ĉ. Problem of form (4.33) is a Boolean
Quadratic problem similar to MAX-CUT, for which there is Semidefinite relaxation of the form

max
V ∈SN

〈Ĉ, V 〉

s.t. V � 0, diag(V ) = 1
(4.34)

and rounding from which guarantees a solution v̂ to (4.33) satisfying h− h(v̂) ≤ ρ(h− h) with
ρ = 2/5 [73], where h(v) denotes the objective function of (4.33) and h, h denote the maximum
and minimum of the objective in (4.33) respectively. Note this result holds for any symmetric
matrix Ĉ. Since our problem has a positive-semidefinite matrix Ĉ, we have h = 0 and therefore
the component zk found this way satisfies

− zkT∇g(M)zk = h(v̂)

≥ µh = µ max
z∈{0,1}N

−zT∇g(M)z
(4.35)

with µ = 1 − ρ = 3/5. Semidefinite Programming of the form (4.34) allows specialized solver
with iteration cost linear to the matrix size nnz(Ĉ) [10, 102]. And it is worth mentioning that,
since our matrix Ĉ has low-rank structure (4.28), our implementation of the SDP solver [102]
can further reduce the complexity per iteration from nnz(Ĉ) to nnz(X).

Nonlinear Extension A simple way to consider a nonlinear version of the MixLasso estimator
is to consider each component fk(x) lying in a Reproducing Kernel Hilbert Space (RKHS) H
with respect to some Mercer kernel K(·, ·). In this setting, given {zi}Ni=1, the minimizer {f ∗k}Kk=1

of

min
fk∈H

1

2N

N∑
i=1

(
yi −

K∑
k=1

zikfk(xi)

)2

+
τ

2

K∑
k=1

‖fk‖2
H (4.36)
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satisfies the condition of the Representer Theorem that ensures an expression of the form

f ∗k (x) =
N∑
i=1

αizikK(xi,x), k ∈ [K], (4.37)

for the minimizer, and results in a MixLasso estimator (4.25) with

g(M) := max
α∈RN

− 1

2N2τ
tr(D(α)QD(α)M)− 1

N

N∑
i=1

L∗(yi,−αi) (4.38)

where Q : N × N is the kernel matrix with Qij = K(xi,xj). Then Algorithm 13 can be
applied with the only difference on the evaluation of gradient ∇g(M), which requires finding
the maximizer α∗ of (4.38) by solving the following linear system:

(
1

Nτ
Q ◦M + I)α = y. (4.39)

where ◦ denotes the elementwise product.

Rounding Procedure for Generalized & Standard Mixed Rregression While the atomic-
norm regularization λ‖M‖S is a good convex relaxation of the number of components, the num-
ber of non-zero components getting from estimator (4.25) cannot be precisely specified apriori
by the hyper-parameter λ directly. In practice, it is often useful to obtain a solution cwith exactly
‖c‖0 = K non-zeros. This can be achieved by setting the K coefficients of largest magnitude to
1 and all the other coefficients to 0. This results in a N ×K matrix of hidden assignments Ẑ as
the output of Algorithm 13. Then, starting from Ẑ, we can perform a number of alternating min-
imization steps between model parameters W (or {fk}Kk=1 in general) and hidden assignments
{zi}Ni=1 until convergence, as in a standard EM algorithm (with MAP hard assignment on zi).

While we have proposed a solution of the generalized version (4.20), in some applications, it
might be of interest to solve the special case of standard mixed regression, where each observa-
tion belongs to exactly one mixture component. One approach to convert a generalized mixture
solution with K components to a standard mixture of J components is to find the most frequent
J patterns z1, z2, ..., zJ from the estimated hidden assignments {ẑi}Ni=1, and then force each ob-
servation to choose their hidden assignments {zi}Ni=1 from the set {zj}Jj=1 instead of arbitrary
0-1 patterns {0, 1}K . This results in J functions {fj}Jj=1 of the form

fj(x) =
K∑
k=1

zjkfk(x), j ∈ [J ],

being actually used in the training observation, and thus gives a valid model {fj}Jj=1 of standard
mixed regression with J components. Then as noted previously, one can further refine this
rounded solution through EM iterates of standard mixed regression, initialized with component
functions {fj}Jj=1.
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Analysis We assume y and x are bounded such that |y| ≤ Ry, ‖x‖2 ≤ Rx. And without loss
of generality, we assume the data are scaled such thatRy = Rx = 1. Then the following theorem
guarantees the rate of convergence for Algorithm 13 up to a certain precision determined by the
approximation ratio given in (4.35).
Theorem 17. Let F (c) be the objective (4.27). The greedy algorithm (Algorithm 13) satisfies

F (cT )− F (c∗) ≤ 2γ‖c∗‖2
1

µ2

(
1

T

)
. (4.40)

for any iterate T satisfying F (cT )− F (c∗) ≥ 2(1−µ)
µ

λ‖c∗‖1, where c∗ is any reference solution,
µ = 3/5 is the approximation ratio given by (4.35) and γ is the Lipschitz-continuous constant of
the coordinate-wise gradient zkT∇g(M)zk, ∀k ∈ [K̄].

Then the following lemma shows that, with the additional assumption that F (c) is strongly
convex over a restricted support set A∗, one can get a bound in terms of the `0-norm of the
reference solution.
Lemma 1. Let A∗ ∈ [K̄] be a support set and c∗ := argminc:supp(c)=A∗ F (c∗). Suppose F (c)
is strongly convex on A∗ with parameter β. We have

‖c∗‖1 ≤
√

2‖c∗‖0(F (0)− F (c∗))

β
. (4.41)

Since F (0)− F (c∗) ≤ 1
2N

∑N
i=1 y

2
i ≤ 1 , from (4.40) and (C.5), we have

F (cT )− F (c∗) ≤ 4γ‖c∗‖0

βµ2

(
1

T

)
+

2(1− µ)λ

µ

√
2‖c∗‖0

β
. (4.42)

for any c∗ := argminc:supp(c)=A∗ F (c).
Then we investigate the performance of output from Algorithm 13 in terms of the risk

(4.21). Given a coefficients c with support A, we can construct the weight matrix by Ŵ (c) =
D(
√
cA)W with W = ZTAD(α∗)X , where ZA = (zk)k∈A and α∗ is the maximizer in (4.26) as

a function of c. From the duality between (C.7) and (4.23), Ŵ satisfies

F (cA) =
1

2N

N∑
i=1

(yi − zTi Ŵxi)2 +
τ

2
‖W‖2

F + λ‖cA‖1. (4.43)

The following theorem gives a risk bound for the output weight matrix Ŵ (c) obtained from
Algorithm 13.
Theorem 18. LetA, ĉ, Ŵ be the set of active components, coefficients and corresponding weight
matrix obtained from T iterations of Algorithm 13, and W̄ be the minimizer of the population
risk (4.21) with K components and ‖W̄‖F ≤ R. We have r(Ŵ ) ≤ r(W̄ ) + ε with probability
1− ρ for

T ≥ 4γ

µ2β
(
K

ε
) and N = Ω(

DK

ε3
log(

RK

ερ
))

with λ, τ chosen appropriately as functions of N .
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Figure 4.4: Results for Noiseless Mixture of Linear Regression with N(0, I) input distribu-
tion (Top) and U(−1, 1) input distribution (Bottom), where (Left) D=100, K=3, (Middle) D=20,
K=10, and (Right) Generalized Mixture of Regression with D=20, K=3.

Note the output of Algorithm 13 has number of components K̂ ≤ T . Therefore, Theorem 16
gives a trade-off between the suboptimality of risk r(Ŵ )−r(W̄ ) ≤ ε and number of components
K̂ = O(K/ε). Note the result of Theorem (16) is obtained without distributional assumption on
the input/output (except boundedness), so it is in general not possible to guarantee convergence
to an optimal risk with exactly K components, since finding such optimal solution is NP-hard
even measured by the empirical risk [123]. It remains open if one can give a tighter result for
the estimator (4.25) that achieves ε-suboptimal risk with number of components being a constant
multiple of K, or derive a bound on the parameter estimation error, possibly with additional
assumptions on the observations.

4.2.4 Experiments
In this section, we compare the proposed MixLasso method with other state-of-the-art approaches
listed as follows:
• EM-Random: A standard EM algorithm that alternates between minimizing {zi}Ni=1 and
{fk(x)}Kk=1 until convergence, with random initialized W∼ N(0, I) in the linear case and
random initialized Z∼Multinoulli(1/K) in the nonlinear case. Each point in the figures
is the best result out of 100 random trials.

• EM-Tensor: The EM algorithm initialized with Tensor Method proposed in [124]. The
formula of Tensor Method is derived assuming xi ∼ N(0, I). We adopt implementation
provided by the author of [127].

• ALT-Random: An Alternating Minimization algorithm proposed in [127] with the same
initialization strategy and number of trails as EM-Random.
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Figure 4.5: Results for Noisy (σ = 0.1) Mixture of Linear Regression with N(0, I) input dis-
tribution (Top) and U(−1, 1) input distribution (Bottom), where (Left) D=100, K=3, (Middle)
D=20, K=10, and (Right) Generalized Mixture of Regression with D=20, K=3.

• ALT-Tensor: The Alternating Minimization algorithm initialized with Tensor Method pro-
posed in [127]. The formula of Tensor Method is derived assuming xi ∼ N(0, I). We
adopt implementation provided by the author of [127].

• MixLasso: The proposed estimator with Algorithm 13. We round our solution to exact K
components according to the rounding procedure described in the last section for gener-
alized MR and standard MR respectively. The rounded solution is further refined by EM
iterates.

For the linear case, we compare methods using the root mean square error on the learned pa-
rametersW compared to the ground-truth parametersW ∗ of sizeK×D: minS:|S|=K

‖WS,:−W ∗‖F√
DK

,
where S denotes a multiset that selects the best matched row in W for each row in W ∗. For the
nonlinear case, we compare methods using RMSE between the predicted value and the ground-

truth function value:
√

1
N

∑N
i=1(
∑K

k=1 zikfk(xi)−
∑K

k=1 z
∗
ikf
∗
k (xi))2.

Experiments on Synthetic Data We generate 14 synthetic data sets according to the model:

yi =
K∑
k=1

zikfk(x) + ωi, i ∈ [N ],

where Syn1∼Syn12 are generated by D-dimensional linear models

fk(x) = wT
kx
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Data D K xi zi ωi

Syn1 100 3 N(0,I) Multi(1/3) 0
Syn2 20 10 N(0,I) Multi(1/10) 0
Syn3 20 3 N(0,I) Ber(0.5) 0
Syn4 100 3 U(-1,1) Multi(1/3) 0
Syn5 20 10 U(-1,1) Multi(1/10) 0
Syn6 20 3 U(-1,1) Ber(0.5) 0
Syn7 100 3 N(0,I) Multi(1/3) N(0,0.1)
Syn8 20 10 N(0,I) Multi(1/10) N(0,0.1)
Syn9 20 3 N(0,I) Ber(0.5) N(0,0.1)

Syn10 100 3 U(-1,1) Multi(1/3) N(0,0.1)
Syn11 20 10 U(-1,1) Multi(1/10) N(0,0.1)
Syn12 20 3 U(-1,1) Ber(0.5) N(0,0.1)
Data deg K xi zi ωi

Syn13 6 4 U(-1,1) Multi(1/4) 0
Syn14 6 4 U(-1,1) Multi(1/4) N(0,0.1)

Table 4.2: Statistics of the synthetic data set, where Multi(1/K) means zi follows a Multinouli
distribution with pk = 1/K, ∀k ∈ [K], and Ber(0.5) means each component zik is an indepen-
dent Bernoulli Random variable with p = 0.5.

and Syn13∼Syn14 are generated by 1-dimensional polynomial model of degree 6:

fk(x) =
6∑
j=1

wkjx
j.

We summarize the data statistics in Table 4.2.
Figure 4.4 and 4.5 give experimental results of the linear model in the noiseless and noisy

case respectively.
We observe that, in the case of Normal input distribution (Syn1, Syn2, Syn7, Syn8) (top row),

both the Tensor-initialized methods and MixLasso consistently improve upon random-initialized
EM/ALT (even with 100 trials) in terms of the number of samples required to achieve a good
performance, where ALT performs better than EM in higher dimensional case (D = 100, K =
3) whileEM performs better for cases of more components (D = 20, K = 10); meanwhile,
MixLasso leads to significant improvements in both cases.

On the other hand, when the input distribution becomes U(-1,1) (Syn4, Syn5, Syn10, Syn11),
the tensor-initialized method becomes even worse than the random-initialized ones, presumably
due to the model mis-specification, while MixLasso still consistently improve upon the random
initialized EM/ALT. Note we are testing Tensor Method derived based on the Normal assumption
on data with Uniform input on purpose. The goal is to see the effect of model misspecification
on the Tensor approach, as in practice one would always have model misspecification to some
degree.
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Figure 4.6: Results on Mixture of 6th-order Polynomial Regression of K=4 components with
noise (Bottom) and without noise (Top). (Left) The best result of EM out of 100 random initial-
ization. (Middle) Solution from MixLasso followed by fine-tuning EM iterates. (Right) Com-
parison in terms of RMSE.

The rightmost columns of Figure 4.4, 4.5 show the results on data generated from the gener-
alized mixed regression model (Syn3, Syn6, Syn9, Syn12), where Tensor-based methods are not
applicable, while MixLasso improves upon EM-Random by a large margin.

Figure 4.6 gives a comparison of EM-Random and MixLasso on Mixture of Kernel Regres-
sion with polynomial kernelK(xi,xj) = (axTi xj+b)

d (d = 6), where we generateK=4 random
6th-degree polynomial functions {f ∗k}Kk=1 by uniform sampling their coefficients from U(−4, 4).
In this setting, we found EM-Random has a hard time converging to the ground-truth solution
even with 100-restarts, while MixLasso obtains solution close to the ground truth with a small
number of samples.

Experiments on Real Data In this section, we compare MixLasso and EM (with 100 restarts)
for fitting a mixture of polynomial regression on a Stock data set that contains the mixed stock
prices of IBM, Facebook, Microsoft and Nvidia of span 300 weeks till the Feb. of 2018. The task
is to automatically recover the company label of each stock price, while fitting the stock price
time series of each company as a polynomial curve. Both EM and MixLasso use a polynomial
kernel of the parameters: K(xi,xj) = (2xTi xj + 2)8.

The results are shown in Figure 4.7. We can see that MixLasso almost recovers the pattern
when all samples are given, except for a small number of samples generated by Nvidia’s rapid
growth recently. While MixLasso consistently achieving a lower RMSE over different sample
sizes, the RMSE gap between MixLasso and EM increases as the number of samples grows.
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Figure 4.7: Results of fitting mixture of polynomial regressions on the Stock data set of increas-
ing number of samples. The top row shows results fitted by EM, and the bottom row shows
that from MixLasso. From left to right we have (left) 100 weeks, (middle) 200 weeks, and
(right) 300 weeks. From left to right, the RMSE of EM=(6.33,6.04,6.27) and the RMSE of
MixLasso=(6.29,5.75,5.58).
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Chapter 5

Conclusion

Many high-dimensional problems have inherent low-dimensional structures such as the concen-
tration of loss, the sparsity of messages between factors, and the compactness of representation
when expressed in terms of an approximate atomic set. By exploiting such structures, one can de-
sign new algorithms and novel estimators of computational complexity sublinear to the domain
size without sacrificing expressiveness of the solution. We demonstrate the power of such scheme
through the development of state-of-the-art algorithms in Structured and Non-structured Classi-
fication of large output domains, and also extend the idea for the compression of Deep Neural
Networks. Last but not the least, we design the first polynomial-time estimator for Latent-Feature
Models and Generalized Mixed Regression that enjoy strong approximation guarantees without
prior knowledge or restrictive assumptions on the data.
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Appendix A

Appendix for Chapter 2

A.1 Proof for Theorem 1
The proof of Theorem 1 is similar to that in [59]. To be self-contained, we provide proofs in the
following.

The dual problem (2.14) has (generalized) Hessian for i-th block of variable αi being upper
bounded by

∇2
αiG(α) � QiI.

where Qi = ‖xi‖2. Since the active set includes the most-violating pair (2.19) that defines
the Frank-Wolfe direction αtFW satisfying (2.18), the update given by solving the active-set
subproblem (2.21) has

G(αt+1)−G(αt)

≤ γ〈∇αiG(αt),αitFW −αit〉+
Qiγ

2

2
‖αitFW −αit‖2

≤ γ〈∇αiG(αt),αitFW −αit〉+
QiR

2γ2

2

for any γ ∈ [0, 1], where ‖αtFW −αit‖2 ≤ R2 = 4C2 since both αtFW , αit lie within the domain
(2.16). Taking expectation w.r.t. i (uniformly sampled from [N ]), we have

E[G(αt+1)]−G(αt)

≤ γ

N
〈∇αG(αt),αtFW −αt〉+

QR2γ2

2N

(A.1)

where Q =
∑N

i=1Qi. Then denote α∗ as an optimal solution, by convexity and the definition of
Frank-Wolfe direction we have

〈∇αG(αt),αtFW −αt〉 ≤ 〈∇αG(αt),α∗ −αt〉
≤ G∗ −G(αt),

where G∗ := G(α∗). Together with (A.1), we have

∆Gt+1 −∆Gt ≤ −γ
N

∆Gt +
QR2γ2

2N
(A.2)
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for any γ ∈ [0, 1], where ∆Gt := E[G(αt)]−G∗. By choosing γ = 2N
t+2N

, the recurrence (A.2)
leads to the result

∆Gt ≤ 2(QR2 + ∆G0)

t/N + 2
,

which can be verified via induction as in the proof of Lemma C.2 of [59].
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Appendix B

Appendix for Chapter 3

B.1 Proof of Theorem 8 and 9
Recall that the Augmented Lagrangian L(α,λ) is of the form

L(α,λ) := G(α) + 〈λ,Mα〉+
ρ

2
‖Mα‖2.

where M is ”the number of consistency constraints” by ”the number of variables” matrix and
Mα = 0 encodes all constraints of the form

Mjfαf −αj =
[
Mjf −Ij

] [ αf
αj

]
= 0.

The function
G(α) =

1

2

∑
F∈F
‖wF (αF )‖2 −

∑
j∈U

δTj αj

can be written in a compact form as

G(α) =
1

2
‖w(α)‖2 + δTα

=
1

2
‖ΦTα‖2 + δTα

(B.1)

where Φ is the “number of variables (in α)” by ”number of parameters (in w)” design matrix.
Now let α be the ”primal variables” and denote

α(λ) := {α|α = argmin
α
L(α,λ)} (B.2)

with
ᾱt := argmin

ᾱ∈α(λt)

‖ᾱ−αt‖,

and letM = {α | αf ∈ ∆|Yf |,∀f ∈ F}. The dual objective of the augmented problem is

d(λ) = min
α∈M

L(α,λ)
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and
d∗ = max

λ
d(λ)

is the optimal dual objective value.
Then we measure the sub-optimality of iterates {(αt,λt)}Tt=1 given by GDMM in terms of

dual function difference
∆t
d = d∗ − d(λt)

and the primal function difference for a given dual iterate λt:

∆t
p = L(αt+1,λt)− d(λt)

yielded by αt+1 obtained from one pass of FC-BCFW algorithm on α. Then we have following
lemma.
Lemma 2 (Dual Progress). Each iteration of GDMM (Algorithm 5) has

∆t
d −∆t−1

d ≤ −η(Mαt)T (Mᾱt). (B.3)

Proof.

∆t
d −∆t−1

d = d∗ − d(λt)− d∗ − d(λt−1)

= L(ᾱt−1,λt−1)− L(ᾱt,λt)

≤ L(ᾱt,λt−1)− L(ᾱt,λt)

= 〈λt−1 − λt,Mᾱt〉
= −η〈Mαt,Mᾱt〉

where the first inequality follows the optimality of ᾱt−1 for the function L(α,λt−1) defined by
λt−1, and the last equality follows the dual update in GDMM (3.14).

On the other hand, the following lemma gives an expression on the primal progress that is
independent of the algorithm used for minimizing Augmented Lagrangian
Lemma 3 (Primal Progress). Each iteration of GDMM (Algorithm 5) has

∆t
p −∆t−1

p ≤L(αt+1,λt)− L(αt,λt)

+ η‖Mαt‖2 − η〈Mαt,Mᾱt〉

Proof.

∆t
p −∆t−1

p

=L(αt+1,λt)− L(αt,λt−1)− (d(λt)− d(λt−1))

≤L(αt+1,λt)− L(αt,λt) + L(αt,λt)− L(αt,λt−1) + (d(λt−1)− d(λt))

≤L(αt+1,λt)− L(αt,λt) + η‖Mαt‖2 − η〈Mαt,Mᾱt〉

where the last inequality uses Lemma 8 on d(λt−1)− d(λt) = ∆t
d −∆t−1

d .
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By combining results of Lemma 8 and 9, we can obtain a joint progress of the form

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ L(αt+1,λt)− L(αt,λt) + η‖Mαt −Mᾱt‖2 − η‖Mᾱt‖2
(B.4)

Note the only positive term in (B.32) is the second one. To guarantee the descent of joint
progress, we upper bound the three terms in (B.32) with the following lemmas.
Lemma 4.

‖Mαt −Mᾱt‖2 ≤ 2

ρ
(L(αt,λt)− L(ᾱt,λt)) (B.5)

Proof. Let
L̃(α,λ) = h(α) +

ρ

2
‖Mα‖2,

where
h(α) = G(α) + 〈λ,Mα〉+ Iα∈M.

, Iα∈M = 0 if α ∈ M and Iα∈M = ∞ otherwise. Note we have L̃(ᾱt,λt) = L(ᾱt,λt) and
L̃(αt,λt) = L(αt,λt) due to feasible iterates. Due to the optimality of ᾱt, we have

0 = σ +MTMᾱt ∈ ∂αL̃(ᾱt,λ)

for some σ ∈ ∂h(ᾱt). And by the convexity of h(·) and the strong convexity of ρ
2
‖ · ‖2, we have

h(αt)− h(ᾱt) ≥ 〈σ,αt − ᾱt〉
and ρ

2
‖Mαt‖2 − ρ

2
‖Mᾱt‖2 ≥ 〈MTMᾱt,αt − ᾱt〉+

ρ

2
‖Mαt −Mᾱt‖2

Then the above two together imply

L(αt,λt)− L(ᾱt,λt) ≥ ρ

2
‖M(αt)−M(ᾱt)‖2

which leads to our conclusion.

Lemma 5 (Hong and Luo 2012). There is a constant τ > 0 such that

∆d(λ) ≤ τ‖Mᾱ(λ)‖2. (B.6)

for any λ and any minimizer ᾱ(λ) satisfying (B.2).

Proof. This is a lemma adapted from [42]. Since our objective (3.13) satisfies the assumptions
A(a)—A(e) and A(g) in [42]. Then Lemma 3.1 of [42] guarantees that, as long as ‖∇d(λ)‖ is
bounded, there is a constant τ > 0 s.t.

∆d(λ) ≤ τ‖∇d(λ)‖2 = ‖Mᾱ(λ)‖2

for all λ. Note our problem satisfies the condition of bounded gradient magnitude since

‖∇d(λ)‖ = ‖M ¯̄α(λ)‖ ≤ ‖Mᾱ(λ)‖1 ≤ ‖M‖1‖ᾱ(λ)‖1 ≤ (max
f
|Yf |)|F|

where the last inequality is because ᾱ(λ) lies in a simplex domain.
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The remaining thing is to show that one pass of AFW (Algorithm 6) or BGCD (Algorithm
7) suffices to give a descent amount L(αt+1,λt) − L(αt,λt) lower bounded by some constant
multiple of the primal sub-optimality L(αt,λt) − L(ᾱt,λt). If it is true, then by selecting a
small enough GDMM step size η, the RHS of (B.32) would be negative. For AFW (Algorithm
6), this can be achieved by leveraging recent results from [57], which shows linear convergence
of AFW, even for non-strongly convex function of the form (B.43). We thus have the following
lemma.
Lemma 6. The descent amount of Augmented Lagrangian function produced by one pass of
AFW (Algorithm 6) (and FMO parameter ν) has

E[L(αt+1,λt)]− L(αt,λt) ≤ − µM
4(1 + ν)mQ

(L(αt,λt)− L(ᾱt,λt)) (B.7)

where µM is the generalized geometric strong convexity constant for function L(α) in domain
M, Q is the Lipschitz-continuous constant of∇αL(α) and m = |F|.

Proof. Note the Augmented Lagrangian is of the form

H(α) := L(α,λt) = g(Bα) + 〈b,α〉 (B.8)

where

B :=

[
ΦT

M

]
, b := δ +MTλt

and function g(

[
w
v

]
) = 1

2
‖w‖2 + ρ

2
‖v‖2 + const. is strongly convex with parameter ρ̄ =

min(1, ρ). Without loss of generality, assume ρ ≤ 1 and thus ρ̄ = ρ. Since we are minimizing
the function subject to a convex, polyhedral domain M, by Theorem 10 of [57], we have the
generalized geometrical strong convexity constant µM of the form

µM := µ(PWidth(M))2 (B.9)

where PWidth(M) > 0 is the pyramidal width of the simplex domainM and µ is the general-
ized strong convexity constant of function (B.43) (defined by Lemma 9 of [57]). By definition of
the geometric strong convexity constant, we have

H(αt)−H∗ ≤ g2
t

2µM
(B.10)

from (23) in [57], where gt := 〈−∇H(αt),vF − vA〉, and vF is the Frank-Wolfe direction

vF := arg min
v∈M
〈∇H(αt),v〉,

vA is the away direction
vA := argmax

v∈At
〈∇H(αt),v〉
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Then let m = |F| be the number of factors. The FMO returns v+
f = vFf with probability at

least 1
ν
, and suppose we set v+

f to αtf whenever 〈∇αfH,v+
f − αtf〉 � 0. We have 〈∇H,dF 〉 ≤

1
ν
〈∇H,vF −αt〉 and thus

(1 +
1

ν
)〈∇H,dt〉 ≤ 1

ν
〈∇H,vF −αt〉+

1

ν
〈∇H,αt − vA〉

and 〈∇H,dt〉 ≤ − 1
1+ν

gt. Therefore, for any ∀γ ∈ [0, 1],

E[H(αt+1)]−H(αt) ≤ −γ gt
1 + ν

+
Q

2
‖γ(αt+1 −αt)‖2 ≤ −γ gt

1 + ν
+

2mQ

2
γ2 (B.11)

where Q is an upper bound on the spectral norm of Hessian ‖∇2H(α)‖ and 2m is the square of
the radius of domainM. Now we need to consider two cases. When the greedy direction dF in
(3.18) is chosen, we have γ∗ = min( gs

mQmax
, 1), which gives us

E[H(αt+1)]−H(αt) ≤ − g2
t

4(1 + ν)mQ
. (B.12)

While in case dA in (3.18) is chosen, we have γ∗ = min( gs
mQmax

, cv−). When γ∗ = cv− , a
basis v− is removed from the active set and this is called a drop step [57] and it is hard to show
sufficient descent in this case. Nevertheless, we can ignore those drop steps since the number of
them is at most half of the iterates. For a non-drop step t, with the error bound (B.46), we have

E[H(αt+1)]−H(αt) ≤ −µM(H(αt)−H∗)
4(1 + ν)mQ

. (B.13)

The above Lemma shows a significant progress made by the AFW algorithm. In the fol-
lowing, we provide a similar Lemma for minimizing AL subproblem with the Block-Greedy
Coordinate Descent (BGCD) (Algorithm 7). Note that for problem of the form (B.43), the op-
timal solution is profiled by a polyhedral set S := {α | Bα = t∗, bTα = s∗, α ∈ M}.
Therefore, let ᾱ := ΠS(α). We can bound the distance of any feasible point α ∈ M to its
projection ΠS(α) on S using the Hoffman’s inequality [41]

‖ᾱ−α‖2
2,1 =

n∑
i=1

(
∑
f∈Fi
‖ᾱf −αf‖2)2 ≤ θ1

(
‖Bα− t∗‖2 + ‖bTα− s∗‖2

)
(B.14)

where θ1 is a constant depending on the set S. Then we can establish the following Lemma using
the error bound (B.52).
Lemma 7. The descent amount of Augmented Lagrangian function given by one pass of BGCD
(Algorithm 7) with FMO multiplicative-approximation parameter ν has

E[L(αt+1,λt)]− L(αt,λt) ≤ −1

1 + νQmax/µ1

(L(αt,λt)− L(ᾱt,λt)) (B.15)
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where

µ1 :=
1

max{16θ1∆L0, 2θ1(1 + 4L2
g)}

.

is the generalized strong convexity constant for function L(α) with feasible domainM, ∆L0 is
a bound on L(α0) − L(ᾱ0), Lg is the local Lipschitz-continuous constant of g(.) and Qmax =
maxf∈F Qf .

Proof. For each iteration s of Algorithm 7, let i be the chosen sample and suppose that out of ν
partitions the one containing greedy factor satisfying (3.19) is chosen. We have

L(αs+1)− L(αs) ≤ min
αs
f∗+df∗∈∆

|Yf∗ |
〈∇αf∗L,df∗〉+

Qmax

2
‖df∗‖2

= min
αsf+df∈∆

|Yf
+
∑
f∈Fi
〈∇αfL,df〉+

Qmax

2

(∑
f∈Fi
‖df‖

)2 (B.16)

where the second equality follows from the optimality of f ∗ w.r.t. (3.19). Then consider i being
uniformly sampled from [n], and consider the probability that the partition containing greedy
factor f ∗ is chosen, the expected descent amount is

E[L(αs+1)]− L(αs)

≤ 1

nν

(
min

αsf+df∈∆
|Yf

∑
f∈F
〈∇αfL,df〉+

Qmax

2

n∑
i=1

(∑
f∈Fi
‖df‖

)2
)

≤ 1

nν

(
min

αsf+df∈∆
|Yf
L(αs + d)− L(αs) +

Qmax

2

n∑
i=1

(∑
f∈Fi
‖df‖

)2
)

≤ 1

nν

(
min
β∈[0,1]

L(αs + β(ᾱs −αs))− L(αs) +
Qmaxβ

2

2

n∑
i=1

(∑
f∈Fi
‖ᾱsf −αsf‖

)2
)

≤ 1

nν

(
min
β∈[0,1]

β(L(ᾱs)− L(αs)) +
Qmaxβ

2

2
‖ᾱs −αs‖2

2,1

)
(B.17)

where ᾱs = ΠS(αs) is the projection of ᾱs to the optimal solution set S. The second and last
inequality is due to convexity, and the third inequality is due to a confinement of optimization
domain. Then we discuss two cases in the following.

Case 1: 4L2
g‖Bαs − t∗‖2 < (bTαs − s∗)2.

In this case, by the hoffman inequality (B.52), we have

‖αs − ᾱs‖2
2,1 ≤ θ1(‖Bᾱs − t∗‖2 + (bTαs − s∗)2)

≤ θ1(
1

4L2
g

+ 1)(bTαs − s∗)2

≤ 2θ1(bTαs − s∗)2,

(B.18)
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since 1
4L2

g
≤ 1. Then

|bTαs − s∗| ≥ 2Lg‖Bαs − t∗‖ ≥ 2|g(Bαs)− g(t∗)|

by the definition of Lipschitz constant Lg. Note that bTαs − s∗ is non-negative since otherwise
we have contradiction L(αs) − L∗ = g(Bαs) − g(t∗) + (bTαs − s∗) ≤ |g(Bαs) − g(t∗)| −
|bTαs − s∗| ≤ −1

2
|bTαs − s∗| < 0. Therefore, we have

L(αs)− L∗ = g(Bαs)− g(t∗) + (bTαs − s∗)
≥ −|g(Bαs)− g(t∗)|+ (bTαs − s∗)

≥ 1

2
(bTαs − s∗).

(B.19)

Combining (B.54), (B.55) and (B.56), we have

E[L(αs+1)]− L(αs)

≤ 1

nν

(
min
β∈[0,1]

−β
2

(bTαs − s∗) +
2θ1Qmaxβ

2

2
(bTαs − s∗)2

)
=

{
−1/(16θ1Qmaxnν) , 1/(4θ1Qmax(bTαs − s∗)) ≤ 1
− 1

4nν
(bTαs − s∗) , o.w.

Furthermore, we have

− 1

16Qmaxθ1nν
≤ − 1

16Qmaxθ1nν(L0 − L∗) (L(αs)− L∗) (B.20)

where L0 = L(α0), and

− 1

4nν
(bTαs − s∗) ≤ − 1

6nν
(L(αs)− L∗) (B.21)

since L(αs)−L∗ ≤ |g(Bαs)− g(t∗)|+ bTαs− s∗ ≤ 3
2
(bTαs− s∗). Since the bound (B.20) is

much smaller than (B.21). For Case 1, we obtain

E[L(αs+1)]− Ls ≤ − µ1

nνQmax

(L(αs)− L∗) (B.22)

where
µ1 =

1

16θ(L0 − L∗) . (B.23)

Case 2: 4L2
g‖Bαs − t∗‖2 ≥ (bTαs − s∗)2.

In this case, we have

‖αs − ᾱs‖2
2,1 ≤ θ1

(
1 + 4L2

g

)
‖Bαs − t∗‖2, (B.24)

and by strong convexity of g(.),

L(αs)− L∗ ≥ bT (αs −α∗) +∇g(t∗)TB(αs − ᾱs) +
ρ

2
‖Bαs − t∗‖2.
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Now let h(α) be a function that takes value 0 when α is feasible and takes value∞ otherwise.
Adding inequality 0 = h(αs)− h(ᾱs) ≥ 〈σ∗,αs − ᾱs〉 to the above gives

L(αs)− L∗ ≥ ρ

2
‖Bαs − t∗‖2 (B.25)

because σ∗ + b +∇g(t∗)TB = σ∗ +∇L(ᾱs) = 0 for some σ∗ ∈ ∂h(ᾱs). Combining (B.54),
(B.59), and (B.60), we obtain

E[L(αs+1)]− L(αs)

≤ 1

nν

(
min
β∈[0,1]

−β(L(αs)− L∗) +
θ1(1 + 4L2

g)Qmaxβ
2

ρ
(L(αs)− L∗)

)
≤ − ρ

nνθ1(1 + 4L2
g)Qmax

(L(αs)− L∗)

(B.26)

Combining results of Case 1 (B.57) and Case 2 (B.61), and taking expectation on both sides w.r.t.
the history, we have

E[L(αs+1)]− L(αs) ≤ − µ1

Qmaxnν
(L(αs)− L∗). (B.27)

where
µ1 := min{ 1

16θ(∆L0)
,

ρ

θ1(1 + 4L2
g)
}.

Taking summation of (B.62) over iterates s = 1...n, we have

E[L(αt+1)]− L(αt) ≤ − µ1

Qmaxnν
(
n∑
s=1

L(αs)− L∗)

≤ − µ1

Qmaxν
(L(αt+1)− L∗).

(B.28)

Rearranging terms gives the conclusion.

Now we provide proof of Theorem 8 as follows.

Proof. Let κ = 4(1 + ν)mQ/µM. By lemma 4, 12, 11 and (B.32), we have

∆t
d −∆t−1

d + E[∆t
p]−∆t−1

p

≤ −1

1 + κ

(
L(αt,λt)− L(ᾱt,λt)

)
+

2η

ρ
(L(αt,λt)− L(ᾱt,λt))− η

τ
∆t
d.

(B.29)

Then by choosing η < ρ
2(1+κ)

, we have guaranteed descent on ∆p+∆d for each GDMM iteration.
By choosing η ≤ ρ

4(1+κ)
, we have

(∆t
d + E[∆t

p])− (∆t−1
d + ∆t−1

p )

≤ −1

2(1 + κ)

(
L(αt,λt)− L(ᾱt,λt)

)
− η

τ
∆t
d

≤−min

(
1

2(1 + κ)
,
η

τ

)
(∆t

p + ∆t
d)

which then leads to the conclusion.
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The proof for Theorem 9 follows the same line of above reasoning with step (B.38) replaced
by application of Lemma 7 instead of Lemma 12.

B.2 Implementation details of FMO
Indicator Factor Here we assume δ(yj, ȳj) is constant for ∀yj 6= ȳj as in the case of Hamming
error. Then we find maximizers of the 4 cases as following

(i) Visit yf in descending order of v(.) to find the first yf :mif (yi) = 0, mjf (yj) = 0.

(ii) ∀yj:mjf (yj) 6= 0, visit yi in descending order of v(.) to find the first yi:mif (yi) = 0.

(iii) ∀yi:mif (yi) 6= 0, visit yj in descending order of v(.) to find the first yj:mjf (yj) = 0.

(iv) Evaluate the gradient of Augmented Lagrangian for ∀(yi, yj):mif (yi) 6= 0, mjf (yj) 6= 0.

Then y∗f is returned as label (6= ȳf ) of maximum gradient among the 4 cases. One can verify the
above procedure considers all labels that have potential to be y∗f . The complexities for (ii)-(iv) are
bounded by O(nnz(mif )nnz(mjf )), where nnz(mjf ) ≤ |Âtj|. When BCFW adopts sampling
without replacement, we have |Âtf | ≤ t. In practice, as t keeps increasing, |Âtf | converges to
a constant that depends on the optimal nnz(α∗f ). Note nnz(α∗f ) is equivalent to the number of
labels yf that attains the maximum of hinge loss (3.9), which is small in general as long as there
are few labels with larger responses than the others.

Define YNZ = {yf |mif (yi) 6= 0 ∨ mjf (yj) 6= 0} as the set of labels with messages from
one of the variables involved, and YInc = {yf |yf ∈ YNZ ∧v(yf ,xf ) > v(y′f ,xf ),∀y′f /∈ YNZ}
as the subset being inconsistently ranked at the top in the multimap. The complexity of step (i)
is O(|YInc|), where

|YInc| ≤ max(|Yi||Âtj|, |Yj||Âti|), (B.30)

which is sublinear to the size of factor domain |Yf | = |Yi||Yj|. Although the bound (B.30) is
already sublinear to |Yf |, it is a very loose bound. In our experiments, we observed the average
number of elements being visited at stage (i) is no more than 5 for problems of |Yf | up to 107,
presumably because the inconsistency between factors is small in real applications.

Binary-Variable Interaction Factor Similarly, the procedure for finding active factors with
largest gradient is as follows:

(i) Visit yf in descending order of v(.) to find the first yf :i 6∈ A , j 6∈ A.

(ii) ∀j:j 6∈ A, visit i in descending order of v(.) to find the first i:i 6∈ A.

(iii) ∀i:i 6∈ A, visit j in descending order of v(.) to find the first j:j 6∈ A.

(iv) Compute gradient for ∀(i, j):i ∈ A, j ∈ A.

B.3 Proofs for Theorem 10 and 11
The key in proving Theorem 10 and 11 is to establish bounds on the primal-dual progress ∆t

p +

∆t
d − ∆t−1

p − ∆t−1
d . As intermediate steps, the two lemmas below bound the dual-progress
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∆t
d −∆t−1

d and the primal-progress ∆t
p −∆t−1

p with respect to the primal variables {zt} and the
optimal primal variables {z̄t} at each iteration.
Lemma 8 (Dual Progress). The dual progress is upper bounded as

∆t
d −∆t−1

d ≤ −η(Mzt)T (M z̄t). (B.31)

Lemma 9 (Primal Progress). The primal progress is upper bounded as

∆t
p −∆t−1

p ≤ L(zt+1,µt)− L(zt,µt)

+ η‖Mzt‖2 − η〈Mzt,M z̄t〉

By combining results of Lemma 8 and 9, we obtain an intermediate upper bound on the
primal-dual progress:

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ η‖Mzt −M z̄t‖2 − η‖M z̄t‖2

+ L(zt+1,µt)− L(zt,µt)

(B.32)

The following four lemmas provide upper bounds on the three sub-terms in (B.32), i.e.,
‖Mzt−M z̄t‖2,−η‖M z̄t‖2, and L(zt+1,µt)−L(zt,µt), where the bounds on the last term are
algorithm-dependent and therefore are tackled by Lemma 12 and Lemma B.36 for Algorithm 8
and Algorithm 9 respectively.
Lemma 10.

‖Mzt −M z̄t‖2 ≤ 2

ρ
(L(zt,µt)− L(z̄t,µt)). (B.33)

Lemma 11 (Hong and Luo 2012). There is a constant τ > 0 such that

∆d(µ) ≤ τ‖M z̄(µ)‖2. (B.34)

for any µ in the dual domain and any primal minimizer z̄(µ) satisfying (B.2).
Lemma 12. The descent amount of Augmented Lagrangian function produced by one pass of
FCFW (in Algorithm 8) has

L(zt+1,µt)− L(zt,µt)

≤ − mM
2|F|Q(L(zt,µt)− L(z̄t,µt))

(B.35)

where Q = ρ‖M‖2.
Lemma 13. The descent amount of Augmented Lagrangian function produced by iterations of
Algorithm 9 has

L(zt+1,µt)− L(zt,µt)

≤ −m1

Qmax

(L(zt,µt)− L(z̄t,µt))
(B.36)

where Qmax = maxf∈F Qf and

m1 :=
1

max{16θ1∆L0, 2θ1(1 + 4L2
g)/ρ, 6}

(B.37)
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is the generalized strong convexity constant for function L(.,µ). Here ∆L0 is a bound on
L(z0,µt) − L(z̄0,µt), Lg is local Lipschitz-continuous constant of the function g(x) := ‖x‖2,
and θ1 is the Hoffman constant depending on the geometry of optimal solution set.

Now we are ready to prove Theorem 10 and 11.
Proof of Theorem 10. Let κ = mM/(|F|Q). By lemma 12 and (B.32), we have

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ −κ
1 + κ

(
L(zt,µt)− L(z̄t,µt)

)
+

2η

ρ
(L(zt,µt)− L(z̄t,µt))− η‖M z̄t‖2.

(B.38)

Then by choosing η < κρ
2(1+κ)

, we have guaranteed descent on ∆p+∆d for each GDMM iteration.
By choosing η ≤ κρ

4(1+κ)
, we have

(∆t
d + ∆t

p)− (∆t−1
d + ∆t−1

p )

≤ −κ
2(1 + κ)

(
L(zt,µt)− L(z̄t,µt)

)
− η‖M z̄t‖2

≤ −κ
2(1 + κ)

∆t
d −

η

τ
∆t
d

≤−min

(
κ

2(1 + κ)
,
η

τ

)(
∆t
p + ∆t

d

)
where the second inequality is from Lemma 11. We thus obtain a recursion of the form

∆t
d + ∆t

p ≤
1

1 + min( κ
2(1+κ)

, η
τ
)

(
∆t−1
d + ∆t−1

p

)
,

which then leads to the conclusion.
The proof of Theorem 11 is the same as above except that the definition of κ is changed to

m1/Qmax and Lemma 12 is replaced by Lemma B.36.
We provide proofs to the lemmas used as follows.

Proof of Lemma 8.

∆t
d −∆t−1

d = L(z̄t−1,µt−1)− L(z̄t,µt)

≤ L(z̄t,µt−1)− L(z̄t,µt)

= 〈µt−1 − µt,M z̄t〉
= −η〈Mzt,M z̄t〉

where the first inequality follows from the optimality of z̄t−1 for the function L(z,µt−1) defined
by µt−1, and the last equality follows from the dual update (3.32).
Proof of Lemma 9.

∆t
p −∆t−1

p

=L(zt+1,µt)− L(zt,µt−1)− (d(µt)− d(µt−1))

≤L(zt+1,µt)− L(zt,µt) + L(zt,µt)− L(zt,µt−1)

+ (d(µt−1)− d(µt))

≤L(zt+1,µt)− L(zt,µt) + η‖Mzt‖2 − η〈Mzt,M z̄t〉
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where the last inequality uses Lemma 8 on d(µt−1)− d(µt) = ∆t
d −∆t−1

d .
Proof of Lemma 10. Introduce

L̃(z,µ) = h(z) +G(Mz),

where
G(Mz) =

ρ

2
‖Mz‖2,

and
h(z) = 〈−θ, z〉+ 〈µ,Mz〉+ Iz∈M.

Here

Iz∈M =

{
0 z ∈M,
∞ otherwise.

As feasibility is strictly enforced during primal updates, we have

L̃(z̄t,µt) = L(z̄t,µt), L̃(zt,µt) = L(zt,µt). (B.39)

As z̄t is a critical point of L(z,µt), and by definition, L(z,µt) ≤ L̃(z,µt), we obtain,

0 ∈ ∂zL̃(z̄t,µt) = ∂h(z̄t) +MT∇G(M z̄t).

Note that h(·) is convex, it follows that

h(zt)− h(z̄t) ≥ 〈v, zt − z̄t〉, ∀v ∈ ∂h(z̄t). (B.40)

Moreover,

G(M(zt))−G(M(z̄t)) (B.41)

=
ρ

2
(‖Mzt‖2 − ‖M z̄t‖2)

=
ρ

2
(zt − z̄t)TMTM(zt + z̄t)

= ρ(zt − z̄t)TMTM z̄t +
ρ

2
(zt − z̄t)TMTM(zt − z̄t)

= 〈MT∇G(M z̄t), zt − z̄t〉+
ρ

2
‖Mzt −M z̄t‖2. (B.42)

Combing (B.39), (B.40), and (B.42), we arrive at

L(zt,µt)− L(z̄t,µt) ≥ ρ

2
‖M(zt)−M(z̄t)‖2.

Proof of Lemma 11. This is a lemma adapted from [42]. Since our primal objective (3.25) is a
linear function with each block of primal variables xi (or yf ) constrained in a simplex domain, it
satisfies the assumptions A(a)—A(e) and A(g) in [42]. Then Lemma 3.1 of [42] guarantees that,
as long as ‖∇d(µ)‖ is always bounded, there is a constant τ > 0 s.t.

∆d(µ) ≤ τ‖∇d(µ)‖2 = ‖M z̄(µ)‖2
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for all µ in the dual domain. Note our problem satisfies the condition of bounded gradient
magnitude since

‖∇d(µ)‖ = ‖M z̄(µ)‖ ≤ ‖M z̄(µ)‖1

≤ ‖M‖1‖z̄(µ)‖1 ≤ (max
f
|Yf |)(|F|+ |V|)

where the last inequality is because each block of variables in z̄(µ) lie in a simplex domain.
Proof of Lemma 12. Recall that the Augmented Lagrangian L(z,µ) is of the form

L(z,µ) = 〈−θ +MTµ, z〉+G(Mz) ,∀i ∈ V (B.43)

where M is the matrix that encodes all constraints of the form

Mifzf − zi =
[
Mif −Ii

] [ zf
zi

]
= 0.

and function G(w) = ρ
2
‖w‖2 is strongly convex with parameter ρ. Let

H(z) := L(z,µ). (B.44)

Since we are minimizing the function subject to a convex, polyhedral domainM, by Theorem
10 of [57], we have the generalized geometrical strong convexity constant mM of the form

mM := m(PWidth(M))2 (B.45)

where PWidth(M) > 0 is the pyramidal width of the simplex domainM and m is the gener-
alized strong convexity constant of function (B.43) (defined by Lemma 9 of [57]). By definition
of the geometric strong convexity constant, we have

H(z)−H∗ ≤ g2
FW

2mM
(B.46)

from (23) in [57], where gFW := 〈∇H(z),vFW − vA〉. vFW is the greedy Frank-Wolfe (FW)
direction

vFW := arg min
v∈M
〈∇H(z),v〉 (B.47)

and vA is the away direction
vA := argmax

v∈M
〈∇H̃(z),v〉 (B.48)

where

∇kH̃(z) =

{
∇kH(z), zk 6= 0
−∞, o.w.

Then let m = |F| be the number of factors. For each inner iteration s of the Fully-Corrective
FW, by minimizing subproblem (3.28) w.r.t. an active set that contains the FW direction and also
the away direction (by the definition (B.48)), we have, for any ∀γ ∈ [0, 1],

H(zt+1)−H(zt) ≤ γgtFW +mQγ2. (B.49)
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Suppose the minimizer of (C.17) γ∗ = − gtFW
2mQ

has γ∗ < 1, we have

H(zt+1)−H(zt) ≤ − g
t2
FW

4mQ
(B.50)

Otherwise, let γ∗ = 1, we have

H(zt+1)−H(zt)

≤ gtFW +mQ ≤ gtFW
2

< − g
t2
FW

2mQ
≤ − g

t2
FW

4mQ
,

where the second inequality holds since − gtFW
2Qm
≥ 1.

Combining with the error bound (B.46), we have

H(zt+1)−H(zt) ≤ −mM(H(zt)−H∗)
2mQ

. (B.51)

Proof of Lemma B.36.
For problem of the form (B.2), the optimal solution is profiled by the polyhedral set S :=

{z | Mz = t∗, ∆Tz = s∗, z ∈ M} for some t∗, s∗. Denoting z̄ := ΠS(z), we can bound the
distance of any feasible point z to its projection ΠS(z) to set S by

‖z̄ − z‖2
2,1 = (

∑
f∈F
‖z̄f − zf‖2)2

≤ θ1

(
‖Mz − t∗‖2 + ‖∆Tz − s∗‖2

) (B.52)

where θ1 is a constant depending on the set S, using the Hoffman’s inequality [41].
Then for each iteration t of the Algorithm 9, consider the descent amount produced by the

update w.r.t. the selected factor satisfying (3.34). We have

H(zt+1)−H(zt)

≤ min
zt
f∗+df∗∈∆f∗

〈∇zf∗H,df∗〉+
Qmax

2
‖df∗‖2

= min
zt+d∈M

∑
f∈F
〈∇zfH,df〉+

Qmax

2

(∑
f∈F
‖df‖

)2
(B.53)

where the second equality is from the definition (3.34) of f ∗.
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Then we have

H(zt+1)]−H(zt)

≤ min
zt+d∈M

(∑
f∈F
〈∇zfH,df〉+

Qmax

2

(∑
f∈F
‖df‖

)2
)

≤ min
zt+d∈M

H(zt + d)−H(zt) +
Qmax

2

(∑
f∈F
‖df‖

)2

≤ min
β∈[0,1]

H(zt + β(z̄t − zt))−H(zt)

+
Qmaxβ

2

2

(∑
f∈F
‖z̄tf − ztf‖

)2

≤ min
β∈[0,1]

β(H(z̄t)−H(zt)) +
Qmaxβ

2

2
‖z̄t − zt‖2

2,1

(B.54)

where z̄t = ΠS(zt) is the projection of zt to the optimal solution set S. The second and last
inequality is due to convexity, and the third inequality is due to a confinement of optimization
domain. Then let Lg be the local Lipschitz-continuous constant of function G(Mz) = ρ

2
‖Mz‖2

in the bounded domain of Mz. We discuss two cases in the following.
Case 1: 4L2

g‖Mzt − t∗‖2 < (∆Tzt − s∗)2.
In this case, we have

‖zt − z̄t‖2
2,1 ≤ θ1(‖Mzt − t∗‖2 + (∆Tzs − s∗)2)

≤ θ1(
1

L2
g

+ 1)(∆Tzt − s∗)2

≤ 2θ1(∆Tzt − s∗)2,

(B.55)

and

|∆Tzt − s∗| ≥ 2Lg‖Mzt − t∗‖ ≥ 2|G(Mzt)−G(t∗)|

by the definition of Lipschitz constant Lg. Note ∆Tzt − s∗ is non-negative since otherwise,
H(zt) − H∗ = G(Mzt) − G(t∗) + (∆Tzt − s∗) ≤ |G(Mzt) − G(t∗)| − |∆Tzt − s∗| ≤
−1

2
|∆Tzt − s∗| < 0, which leads to contradiction. Therefore, we have

H(zt)−H∗

= G(Mzt)−G(t∗) + (∆Tzt − s∗)
≥ −|G(Mzt)−G(t∗)|+ (∆Tzt − s∗)

≥ 1

2
(∆Tzt − s∗).

(B.56)

103



Combining (B.54), (B.55) and (B.56), we have

H(zt+1)−H(zt)

≤ min
β∈[0,1]

−β
2

(∆Tzt − s∗) +
2Qmaxθ1β

2

2
(∆Tzt − s∗)2

=

{
−1/(16Qmaxθ1) , 1/(4ρθ1(∆Tzt − s∗)) ≤ 1
−1

4
(∆Tαs − s∗) , o.w.

Furthermore, we have

− 1

16Qmaxθ1

≤ − 1

16Qmaxθ1(H0 −H∗)
(
H(zt)−H∗

)
where H0 = H(z0), and

−1

4
(∆Tzt − s∗) ≤ −1

6
(H(zt)−H∗)

since H(zt)−H∗ ≤ |G(Mzt)−G(t∗)|+ ∆Tzt − s∗ ≤ 3
2
(∆Tzt − s∗). In summary, for Case

1 we obtain
H(zt+1)]−H∗ ≤ (1− m0

Qmax

)
(
H(zt)−H∗

)
(B.57)

where
m0 =

1

max {16θ1(H0 −H∗) , 6} . (B.58)

Case 2: 4L2
g‖Mzt − t∗‖2 ≥ (∆Tzt − s∗)2.

In this case, we have

‖z̄t − zt‖2 ≤ θ1

(
1 + 4L2

g

)
‖Mzt − t∗‖2, (B.59)

and by strong convexity of G(.),

H(zt)−H∗ ≥
∆T (zt − z∗) +∇G(t∗)TM(z̄t − zt) +

ρ

2
‖Mzt − t∗‖2.

Now let h(α) be a function that takes value 0 when z is feasible and takes value∞ otherwise.
Adding inequality 0 = h(zt)− h(z̄t) ≥ 〈σ∗, zt − z̄t〉 for some σ∗ ∈ ∂h(z̄t) to the above gives

H(zt)−H∗ ≥ ρ

2
‖Mzt − t∗‖2 (B.60)

since σ∗ + ∆ +∇G(t∗)TM = σ∗ +∇H(zt) = 0. Combining (B.54), (B.59), and (B.60), we
obtain

H(zt+1)−H(zt)

≤ min
β∈[0,1]

−β(H(zt)−H∗) +
θ1(1 + 4L2

g)Qmaxβ
2

2ρ

(
H(zt)−H∗

)
= − ρ

2θ1(1 + 4L2
g)Qmax

(
H(zt)−H∗

) (B.61)
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Combining results of Case 1 (B.57) and Case 2 (B.61), we have

H(zt+1)−H(zt) ≤ − m1

Qmax

(H(zt)−H∗), (B.62)

where
m1 =

1

max{16θ1∆L0, 2θ1(1 + 4L2
g)/ρ, 6}

This leads to the conclusion.
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Appendix C

Appendix for Chapter 4

C.1 Comparison of Runtime Complexity
The proposed LatentLasso algorithm runs significantly faster than other methods in our experi-
ments. For example, on the Syn1 dataset (N=1000, D=1000, K=35), the runtime of LatentLasso
is 398s, while MCMC, Variational, MF-Binary and BP-Means all take more than 10000s to ob-
tain their best results reported in the Figures (and the implementation of Spectral Method we
obtained from the authors has memory requirement that restricts K < 14). On the real data sets,
we report only up to K=50 because most of the compared methods already took one day to train.

Table C.1: Comparison of Time Complexity. (T denotes number of iterations)

MCMC Variational MF-Binary
(NK2D)T (NK2D)T (NK)2K

BP-Means Spectral LatentLasso
(NK3D)T ND +K5log(K) (ND +K2D)T

The complexity of each algorithm can be summarized in Table C.1. The reason for the
smaller runtime of LatentLasso is due to the decoupling of factor ND from the factor related to
K, where the factorO(ND) comes from the cost of solving a MAX-CUT-like problem using the
method of [10] or [102], while the factor O(K2D) comes from the cost of solving a least-square
problem given by (4.11) with the maintenance cost of ZTZ amortized.

C.2 Proof for Theorem 14
Let L(M) be a smooth function such that∇L(M) is Lipschitz-continuous with parameter β, that
is,

L(M ′)− L(M)− 〈∇L(M),M ′ −M〉 ≤ β

2
‖M ′ −M‖2

F .

Then
∇jf(c) = zTj ∇L(M)zj
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is Lipschitz-continuous with parameter γ, which is of order O(1) when loss function L(.) is an
empirical average normalized by ND.

LetA be the active set before adding ĵ. Consider the descent amount produced by minimizing
F (c) w.r.t. the cĵ given that 0 ∈ ∂jF (c) for all j ∈ A due to the subproblem solved in the previous
iteration. Let j = ĵ, for any ηj we have

F (c+ ηjej)− F (c) ≤ ∇jf(c)ηj + λ|ηj|+
γ

2
η2
j

≤ µ∇j∗f(c)ηj + λ|ηj|+
γ

2
η2
j

Minimize w.r.t ηj gives

min
ηj

F (c+ ηjej)− F (c)

≤ min
ηj

µ∇j∗f(c)ηj + λ|ηj|+
γ

2
η2
j

= min
ηk:k/∈A

∑
k/∈A

(
µ∇kf(c)ηk + λ|ηk|

)
+
γ

2

(∑
k/∈A
|ηk|
)2

≤ min
ηk:k/∈A

µ
∑
k/∈A

(
∇kf(c)ηk + λ|ηk|

)
+
γ

2

(∑
k/∈A
|ηk|
)2

+ (1− µ)λ
∑
k/∈A
|ηk|

where the last equality is justified later in Lemma 14. For k ∈ A, we have

0 = min
ηk:k∈A

µ
∑
k∈A

(∇kf(c)ηk + λ|ck + ηk| − λ|ck|)

Combining cases for k /∈ A and k ∈ A, we can obtain a global estimate of descent amount
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compared to some optimal solution x∗ as follows

min
ηĵ

F (c+ ηĵeĵ)− F (c)

≤ min
η

µ

(
〈∇f(c), η〉+ λ‖c+ η‖1 − λ‖c‖1

)
+
γ

2

(∑
k/∈A
|ηk|
)2

+ (1− µ)λ
∑
k/∈A
|ηk|

≤ min
η

µ

(
F (c+ η)− F (c)

)
+
γ

2

(∑
k/∈A
|ηk|
)2

+ (1− µ)λ
∑
k/∈A
|ηk|

≤ min
α∈[0,1]

µ

(
F (c+ α(c∗ − c))− F (c)

)
+
αγ

2
‖c∗‖2

1

+ α(1− µ)λ‖c∗‖1

≤ min
α∈[0,1]

−αµ
(
F (c)− F (c∗)

)
+
α2γ

2
‖c∗‖2

1

+ α(1− µ)λ‖c∗‖1.

It means we can always choose an α small enough to guarantee descent if

F (c)− F (c∗) >
(1− µ)

µ
λ‖c∗‖1. (C.1)

In addition, for

F (c)− F (c∗) ≥ 2(1− µ)

µ
λ‖c∗‖1, (C.2)

we have

min
ηĵ

F (c+ ηĵeĵ)− F (c)

≤ min
α∈[0,1]

−αµ
2

(
F (c)− F (c∗)

)
+
α2γ

2
‖c∗‖2

1.

Minimizing w.r.t. to α gives the convergence guarantee

F (ct)− F (c∗) ≤ 2γ‖c∗‖2
1

µ2

1

t
.

for any iterate with F (ct)− F (c∗) ≥ 2(1−µ)
µ

λ‖c∗‖1.
Lemma 14.

min
ηj

µ∇j∗f(c)ηj + λ|ηj|+
γ

2
η2
j (C.3)

= min
ηk:k/∈A

∑
k/∈A

(
µ∇kf(c)ηk + λ|ηk|

)
+
γ

2

(∑
k/∈A
|ηk|
)2

(C.4)
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Proof. The minimization (C.18) is equivalent to

min
ηk:k/∈A

∑
k/∈A

(
µ∇kf(c)ηk

)

s.t.

(∑
k/∈A
|ηk|
)2

≤ C1∑
k/∈A
|ηk| ≤ C2

and therefore is equivalent to

min
ηk:k/∈A

µ
∑
k/∈A
∇kf(c)ηk

s.t.
∑
k/∈A
|ηk| ≤ min{

√
C1, C2}

which is a linear objective subject to a convex set and thus always has solution that lies on the
corner point with only one non-zero coordinate ηj∗ , which then gives the same minimum as
(C.17).

C.3 Proof of Theorem 15
Lemma 15. Let A∗ ∈ [K̄] be a support set and c∗ := argminc:supp(c)=A∗ F (c). Suppose F (c) is
strongly convex on A∗ with parameter β. We have

‖c∗‖1 ≤
√

2‖c∗‖0(F (0)− F (c∗))

β
. (C.5)

Proof. Since supp(c∗) = A∗, and c∗ is optimal when restricted on the support, we have 〈η, c∗〉 =
0 for some η ∈ ∂F (c∗). And since F (c) is strongly convex on the support A∗ with parameter β,
we have

F (0)− F (c∗) = F (0)− F (c∗)− 〈η, 0− c∗〉

≥ β

2
‖c∗ − 0‖2

2,

which gives us

‖c∗‖2
2 ≤

2(F (0)− F (c∗))

β
.

Combining above with the fact for any c, ‖c‖2
1 ≤ ‖c‖0‖c‖2

2, we obtain the result.

Since F (0)− F (c∗) ≤ 1
2N

∑N
i=1 y

2
i ≤ 1 , from Theorem (14) and (C.5), we have

F (cT )− F (c∗) ≤ 4γ‖c∗‖0

βµ2

(
1

T

)
+

2(1− µ)λ

µ

√
2‖c∗‖0

β
. (C.6)

for any c∗ := argminc:supp(c)=A∗ F (c).
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C.4 Proof of Theorem 16
Before delving into the analysis of the Latent Feature Lasso method, we first investigate what
one can achieve in terms of the risk defined in (4.1) if the combinatorial version of objective is
solved. Let

f(x;W ) := min
z∈{0,1}K

1

2
‖x−W T z‖2.

Suppose we can obtain solution Ŵ to the following empirical risk minimization problem:

Ŵ := argmin
W∈RK×D:‖W‖F≤R

1

N

N∑
i=1

f(xi;W ). (C.7)

Then the following theorem holds.
Theorem 19. LetW ∗ be the minimizer of risk (4.1) and Ŵ be the empirical risk minimizer (C.7).
Then

E [f(x; Ŵ )]− E [f(x;W ∗)]

≤ 3

N
+

√
DK log(4R2KN)

2N
+

1

2N
log(

1

ρ
)

with probability 1− ρ.

Proof Sketch. Let EN [f(x,W )] denote the empirical risk. We have

E [f(x; Ŵ )]− E [f(x;W ∗)]

≤ 2

(
sup

W∈RK×D:‖W‖F≤R
|E [f(x;W )]− EN [f(x;W )]|

)
(C.8)

from error decomposition and EN [f(x, Ŵ )] ≤ EN [f(x,W ∗)]. Then by introducing a δ-net N (δ)

with covering number |N (δ)| =
(

4R
δ

)DK
, we have ‖W̃ −W‖F ≤ δ for some W̃ ∈ N (δ) and

P

(
sup

W̃∈N (δ)

∣∣∣∣E [f(x; W̃ )]− EN [f(x; W̃ )]

∣∣∣∣ ≤ ε

)

≥ 1−
(

4R

δ

)DK
exp(−2Nε2).

(C.9)

Then since

2(f(x, W̃ )− f(x,W )) ≤ ‖x− W̃ T z∗‖2 − ‖x−W T z∗‖2

= z∗T (W − W̃ )x+ 〈W̃W̃ T −WW T , z∗z∗T 〉
≤ ‖z∗‖2‖W − W̃‖F + 2R‖W̃ −W‖F‖z∗‖2

2

≤ 3RK‖W̃ −W‖F ,
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we have

sup
W :‖W‖F≤R

∣∣∣∣E [f(x;W )]− EN [f(x;W )]

∣∣∣∣
≤ (3RKδ) + sup

W̃∈N (δ)

∣∣∣∣E [f(x; W̃ )]− EN [f(x; W̃ )]

∣∣∣∣
≤ 3RKδ +

√
DK

2N
log(

4R

δ
) +

1

2N
log(

1

ρ
)

(C.10)

with probability 1− ρ. Choosing δ = 1/(RKN) yields the result.

Now we establish the proof of Theorem (16) for bounding risk of the Latent Feature Lasso
estimator.

Proof. Let Z∗ ∈ argminZ∈{0,1}NK
1
N
‖X − ZW ∗‖2

F and S∗ be the set of column index of Z
with the same 0-1 patterns to columns in Z∗. Let c∗ be indicator vector with c∗k = 1, k ∈ S∗ and
c∗k = 0, k /∈ S∗. We have

F (c̄) ≤ F (c∗) ≤ EN [f(x;W ∗)] +
τ

2
‖W ∗‖2

F + λ‖c∗‖1 (C.11)

where c̄ ∈ argmin
c:supp(c)=S∗

F (c). Then let (c,W ) with supp(c) = Ŝ be the output obtained from

running T iterations of the greedy algorithm, we have

EN [f(x,DcW )] +
τ

2
‖W‖2

F + λ‖c‖1

=
1

2N

N∑
i=1

min
z∈{0,1}‖c‖0

‖xi −W TDT
c z‖2 +

τ

2
‖W‖2

F + λ‖c‖1

≤ F (c)

(C.12)

Combining (C.17), (C.18) and (C.6), we obtain a bound on the bias and optimization error of the
Latent Feature Lasso estimator

EN [f(x,DcW )] ≤ F (c) ≤ EN [f(x;W ∗)]

+
τ

2
‖W ∗‖2 + λK︸ ︷︷ ︸

regularize bias

+
2γK

β

(
1

T

)
+

√
2(1− µ)K

µβ
λ︸ ︷︷ ︸

optimization error

(C.13)

To bound the estimation error, notice that the matrix Ŵ := DcW is K̂ × D with K̂ ≤ T .
Furthermore, the descent condition F (c) ≤ F (0) guarantees that

τ

2
‖W‖2

F + λ‖c‖1 ≤
1

N
‖X − 0‖2 ≤ 1

and thus ‖W‖2
F ≤ 1/τ , ‖c‖1 ≤ 1/λ.
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LetW(T, λ, τ) := {Ŵ ∈ (RT×D) | ‖Ŵ‖F ≤
√

1/(λτ)}. We have

sup
(c,W )∈W(T,λ,τ)

E [f(x; Ŵ )]− EN [f(x, Ŵ )]

≤
√
DT log(4TN/(τλ))

2N
+

1

2N
log(

1

ρ
)

with probability 1−ρ through the same argument as in the case of combinatorial objective (C.10).
Combining the above estimation error with the bias and optimization error in (C.13), we have

E [f(x;W )]− E [f(x;W ∗)]

≤ τ

2
R2 + λK +

2γK

βT
+

√
2(1− µ)K

µβ
λ

+

√
DT log(4TN/(τλ))

2N
+

1

2N
log(

1

ρ
)

Choosing T = 2γK
β

(1
ε
), λ = τ = 1√

N
and N & DT

ε2
= DK

ε3
gives the result.

C.5 Proof for Lemma 15
Since supp(c∗) = A∗, and c∗ is optimal when restricted on the support, we have 〈η, c∗〉 = 0 for
some η ∈ ∂F (c∗). And since F (c) is strongly convex on the support A∗ with parameter β, we
have

F (0)− F (c∗) = F (0)− F (c∗)− 〈η, 0− c∗〉

≥ β

2
‖c∗ − 0‖2

2,

which gives us

‖c∗‖2
2 ≤

2(F (0)− F (c∗))

β
.

Combining above with the fact for any c, ‖c‖2
1 ≤ ‖c‖0‖c‖2

2, we obtain the result.

C.6 Proof for Theorem 18
Lemma 16. Let r(W ) and rN(W ) be the risk (4.21) and the empirical risk respectively, we have

sup
W∈RK×D:‖W‖F≤R

|r(W )− rN(W )|

≤
√

2DK log(4RKN)

N
+

1

N
log(

1

ρ
)

with probability 1− ρ.
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Proof. Since minz∈{0,1}N
1
2
(y − zTWx)2 ≤ |y|2 ≤ 1 for a given W , by Hoeffding inequality,

P (|rN(W )− r(W )| ≥ ε)

≤ exp(−2Nε2).

Let N (δ) be a δ-covering of the setW := {W ∈ RK×D | ‖W‖F ≤ R} with |N (δ)| ≤
(

4R
δ

)DK .
Then for any W ∈ W , we have W̃ ∈ N (δ) with ‖W − W̃‖ ≤ δ. Applying a union bound, we
have

P

(
sup

W̃∈N (δ)

|rN(W̃ )− r(W̃ )| ≥ ε

)
≤
(

4R

δ

)DK
exp(−2Nε2).

(C.14)

Then for ∆W := W − W̃ satisfying ‖∆W‖ ≤ δ, we can bound the difference of square loss of
W and W̃ by

min
z∈{0,1}K

1

2
(y − zTWx)2 − min

z∈{0,1}K
1

2
(y − zT W̃x)2

≤ 1

2
(y − z̃TWx)2 − 1

2
(y − z̃T W̃x)2

≤ ‖∆W‖F‖z̃‖+ 2R‖z̃‖2‖∆W‖F ≤ 3RKε

(C.15)

where z̃ = argminz∈{0,1}K
1
2
(y − zTWx)2 and we used the fact that ‖x‖ ≤ 1 and |y| ≤ 1. By

symmetry, we have∣∣∣∣ min
z∈{0,1}K

1

2
(y − zT W̃x)2 − min

z∈{0,1}K
1

2
(y − zTWx)2

∣∣∣∣ ≤ 3RKε

. Combining (C.14) with (C.15), we have

sup
W∈W

|rN(W )− rN(W )|

≤ 6RKδ +

√
DK

2N
log(

4R

δ
) +

1

2N
log(

1

ρ
).

(C.16)

with probability 1 − ρ. Setting δ = 1/(6RK
√
N) and apply Jennen’s inequality gives the

result.

Then the following gives the proof for Theorem 18.

Proof. Let z̄i = argminzi∈{0,1}K (yi − zTi W̄xi)2 for i ∈ [N ]. Denote Z̄ as the N ×K matrix
stacked from (z̄Ti )Ni=1. Let {z̄k}Kk=1 be the columns of Z̄ and Ā be the indexes of atoms in the
atomic set (4.24) that have the same 0-1 patterns to those columns. Denote c̄ as the coefficient
vector with c̄k = 1 for k ∈ Ā and c̄k = 0 for k /∈ Ā. By the definition of F (c), we have

F (c̄) ≤ rN(W̄ ) +
τ

2
‖W̄‖2

F + λ‖c̄‖1. (C.17)
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where rN(W̄ ) := 1
2N

∑N
i=1 minz∈{0,1}K (yi − zT W̄xi)2 is the empirical risk of W̄ . Let c∗ :=

argminc:supp(c)=Ā F (c). We have F (c∗) ≤ F (c̄). Then from (C.6),

F (ĉ)− F (c̄) ≤ F (ĉ)− F (c∗) ≤ 4γK

βµ2

(
1

T

)
+

2(1− µ)λ

µ

√
2K

β
. (C.18)

In addition, the risk of Ŵ satisfies

rN(Ŵ ) +
τ

2
‖Ŵ‖2

F + λ‖ĉ‖1 ≤ F (ĉ) (C.19)

by the definition of the empirical risk rN(.) (since it is minimized w.r.t. the hidden assignments).
Combining (C.17), (C.18) and (C.19), we obtain a bound on the difference of empirical risk

rN(Ŵ )− rN(W̄ )

≤ τ

2
‖W̄‖2 + λK︸ ︷︷ ︸

bias of regularization

+
4γK

βµ2

(
1

T

)
+

2(1− µ)λ

µ

√
2K

β︸ ︷︷ ︸
optimization error

(C.20)

The remaining task is to bound the estimation error |r(W ) − rN(W )|. Since Algorithm 13 is
a descent algorithm w.r.t. F (c) and in the beginning F (0) ≤ 1/2, we have ‖c‖1 ≤ 1/λ and
‖W‖2 ≤ 1/τ at any iterate. Then we can bound the estimation error by Lemma 16 for Ŵ
belonging to the setW(T ) := {Ŵ ∈ RT×D | ‖Ŵ‖F ≤

√
1/λτ}, giving

|r(Ŵ )− rN(Ŵ )| ≤
√

2DT log(4TN/
√
λτ)

N
+

1

N
log(

1

ρ
). (C.21)

Combining (C.20) and (C.21), and choosing λ = 1/(NK), τ = 1/(NR2), we obtain r(Ŵ ) −
r(W̄ ) ≤ ε with T ≥ 4γ

µ2β
(K
ε

), and N ≥ DT
ε2

(2 log(4RKT
ε

) + log(1
ρ
)) for any 0 < ε < 1.
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